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Preface

Mixed-integer nonlinear programs, or MINLPs for short, constitute a large class of op-
timization problems. The name also reveals its two most challenging features: Non-
linearity and integrality. Concerning nonlinearity, neither the objective nor the con-
straint functions need to be linear in MINLP, and these nonlinearities are difficult to
handle theoretically. For example, ignoring integrality for the moment, the continuous
problem need not be convex, which makes global optimization difficult, if not impossi-
ble. Nonlinearities also present significant numerical challenges; already the restricted
class of polynomials leads to notorious numerical instabilities. Concerning integrality,
even “easy” linear optimization problems with integrality requirements are NP-hard in
varying dimensions (Theorem 1.35), and the classical optimization methods from “the
smooth world” – roughly speaking, compute the gradient and solve for critical points;
if you can, use the Hessian or an approximation of it cleverly, too – are, naively carried
out, pointless in face of integer variables. Even worse, in the general form of MINLP, it
is not even guaranteed that the functions at hand are differentiable, so even first-order
methods (exploiting and applying gradient information in the solution process) cannot
be applied to continuous subproblems or relaxations. Combining both difficulties, the
situation gets worse. We end up with a class of optimization problems that are so diffi-
cult that, even when we restrict to the all-integer special case of a polynomial objective,
discard all constraint functions, it can still be shown that there cannot exist an algorithm
solving the problems in this subclass (Theorem 1.39). In short, the class of MINLP is too
large to hope for a general solution. So why should one even try to approach MINLP?
Because, by all means, this is not the end of the story. Many important subclasses are
well-understood and solvable, and for the remaining ones, a plethora of techniques exist
that may allow to solve a given problem. And the fact that many problems in science
and industry can be accurately modeled in the form of MINLP ensures that the demand
for progress in this field remains high.

Our contribution is the presentation of geometric approaches that assist in the solu-
tion process of MINLP. Amongst others, we compute half-spaces, seminorm balls and
ellipsoids that contain the relaxed feasible set. We also compute norm balls that contain
all optimal solutions, which is formalized in the concept of norm bounds. We then in-
vestigate how integrality arguments can be used to shrink these sets and potentially cut
off continuously feasible points. The norm and seminorm balls as well as the ellipsoids
make the integer part of the problem (given some assumptions) accessible to branch and
bound. For the branch and bound part, we also propose a class of underestimators that
yield tight lower bounds. The approaches always involve the task to optimally choose
a geometric object out of a whole class of similar geometric objects – for example, to
choose an ellipsoid of minimal volume containing the relaxed feasible set out of the col-
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lection of all axis-parallel ellipsoids. For polynomial objective and constraint functions,
these auxiliary problems, or approximations thereof, become tractable by using sum of
squares programming and tools from real algebra. These auxiliary problems can then
be implemented and assist in the solution process of a given problem. We also present
results that guarantee that the approximate solutions converge eventually to the optimal
solution of the auxiliary problem. A subset of the approaches has been implemented
and we demonstrate that they work in computer experiments.
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1. Introduction

In this chapter, we introduce MINLP, or mixed-integer nonlinear programming, a large
class of optimization problems, with a focus on polynomials. We motivate our contri-
butions and supply the necessary preliminaries from various fields of mathematics that
are used in the chapters to follow.

Section 1.1 gives the formal definition of the problem class. The associated feasible
set and its relaxed variant are the point of entry for our geometric approaches. We
motivate polynomial constraint and objective functions.

Section 1.2 outlines the structure of this work. The aim of every chapter is summarized
in a few sentences, followed by a brief summary of the chapter’s sections.

Section 1.3 gives an overview on the literature on mixed-integer nonlinear program-
ming. We refer to surveys as well as negative and positive results.

Section 1.4 presents the tools that are necessary for our approaches. Starting off
with the basics on numbers, norms and topology, we proceed with polynomial algebra
and give the definition of a quadratic module. We settle terminology from optimization
and introduce coercivity, a key property in this work. Furthermore, matrices, valid
inequalities and cuts, convexity, polyhedra and spectrahedra as well as ellipsoids are
introduced.

Section 1.5 repeats sos programming, a class of optimization problems. Almost all of
our approaches result in an sos program, hence this technique is central for our work.
Together with results from real algebraic geometry, we outline how sos programming can
be used to approximate continuous polynomial programs. Many of the auxiliary pro-
grams we consider are continuous polynomial programs. We also show how sos programs
translate to semidefinite programs.

Section 1.6 closes this chapter. We repeat fundamental results from complexity theory
which help us judge throughout the following chapters which auxiliary problems are
tractable and which are not. Furthermore, we recall how various geometric, algebraic
and analytic properties relate to the existence of optimal solutions to MINLP.
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1.1. Mixed-Integer Nonlinear Programming

Enter MINLP. In the most general form that we consider in this work, a mixed-integer
nonlinear program reads

min f(x)

s.t. gk(x) ≥ 0, k = 1, . . . , r, (MINLP)

xi ∈ Z, i ∈ I, (MIPP)

x ∈ Rn,

where f : Rn → R is the objective function and g1, . . . , gr : Rn → R are the constraint
functions. If f and gi are arbitrary functions, we refer to the program as MINLP. The
variant with polynomial data, i.e., f and gi are polynomials in n variables, is referred to
by MIPP. The integer variables are indexed by the set I ⊂ {1, . . . , n}.

The program and its geometry

Let us define two sets associated with MINLP. The set of all feasible solutions with
integrality relaxed, namely,

F := {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}

which we denote the relaxed feasible set for short, and the set of all feasible solutions
with integrality enforced, that is,

FI := {x ∈ F : xi ∈ Z ∀i ∈ I},

the feasible set for short.
A key step in solving MINLP is to understand and exploit the geometry of the sets

F and FI , and then to approximate and finally dissect them, with the objective to
simplify a complicated problem into – hopefully – easier subproblems. Actually, there
are several classical [BP03] techniques for and approaches to the solution of MINLP that
rely on geometric and combinatorial properties of F and FI . Three of the most common
techniques are branch and bound, or B&B for short, outer approximation and (linear)
cuts. In the following, we show how our approaches contribute to each of them.

Branch and bound. For the integer variables, a recurring solution ingredient is some
form of branch and bound (see, e.g., Chapter 3 in [BKL+13], Preface in [LL12]). Enu-
meration of the integer part of candidate optimal solutions can be depicted as a rooted
tree, and branch and bound examines its branches, trying to discard branches once it
can be concluded the branch does not contain an optimal solution by using lower and
upper bounds on the objective. If a branch and bound approach is to succeed, two
factors are decisive: A small search tree (the fewer nodes the better) and tight bounds
on the objective (to prune branches as early as possible).
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We address both in this work. Concerning the search tree, we explore how to compute
sets of minimal size that contain F (or F intersected with a suitable sublevel set in the
case of a norm bound). These sets come in the form of norm and seminorm balls as well
as ellipsoids, and allow for easy enumeration of the integer variables. Since finding these
sets involves a choice, we cast these problems as auxiliary optimization problems. Using
integrality arguments, we can shrink the enclosing sets further so that they still contain
FI (or FI intersected with a sublevel set) solutions but potentially cut off points from
F . This information helps to keep the number of enumerated solutions and hence the
search tree small. For the unconstrained case and a polynomial objective, we compare
our norm bounds with a norm bound from the literature [Mar03]. We show that our norm
bound is never worse and, for dense instances, better. Computer experiments on random
instances show that our norm bounds are smaller by orders of magnitude, allowing
to solve problems which would have been previously unsolvable. Regarding the lower
bounds on the objective function, we derive the lower bounds from underestimators,
where the objective f is underestimated on a subset U of Rn by g if g(x) ≤ f(x)
for all x ∈ U . To this end we introduce a class of easy-to-minimize underestimators
for mixed-integer minimization problems. Experiments on random instances show that
they perform well.

Outer approximations. A further recurring component to the solution of MINLP are
outer approximations. The meaning of outer approximation is, in the literature on
optimization, twofold: It is the name of a celebrated solution method for a special class
of MINLP [DG86; FL94], and also describes the process of relaxing a complicated set
to a larger set (hence outer approximation) that is easier to handle. An important
special case of outer approximation is outer linearization [Geo70], where the set F is
approximated by a polyhedron. This results in giving valid inequalities for F , which can
be derived, e.g., by using gradient information if the associated constraint functions are
convex. Geometrically, valid linear inequalities correspond to half-spaces containing F .

In this work, we also study the problem to find tight valid linear inequalities for
F . More generally, such outer approximations by linear functions can be seen as a
convexification [TS02] of the problem, where a non-convex feasible set or objective is
approximated by convex sets or a convex objective, respectively. In this view, our
enclosing half-spaces, norm and seminorm balls as well as ellipsoids are convexifications
of the problem.

Cuts. The third solution method that relies on geometric properties of MINLP and
that has proved successful are linear cuts, also known as cutting planes in the literature.
The famous article “Solution of a Large-Scale Traveling-Salesman Problem” by Dantzig,
Fulkerson and Johnson [DFJ54] can be seen as the first linear cut algorithm (p. 7–9
in [JLN+10]), and since then, linear cuts had a tremendous impact on integer program-
ming, or as the authors in in [JLN+10], p. 9, put it, “Great new ideas may transform the
discipline they came from [. . . ] profoundly [. . . ]. The cutting-plane method of George
Dantzig, Ray Fulkerson, and Selmer Johnson had the same kind of impact on the dis-
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cipline of mathematical programming.” A linear cut for F , the relaxed feasible set, is
a valid linear inequality for the feasible set FI . Roughly speaking, cutting planes are
often used in a solution framework as follows: If an optimal solution of the continuous
relaxation – the task to minimize the objective over F instead of FI – has been found
which is infeasible for the original problem (else an optimal solution of the original prob-
lem is found), add a linear cut which cuts off this solution, and solve again. Cutting
planes have been extended to convex programming. Even more, the concept of a cut
has been generalized to nonlinear cuts, sometimes called “nonlinear cutting planes”, see,
e.g., [BF76], [LS00], [MB09].

The geometric approaches we consider provide – linear or nonlinear – cuts as follows.
We search for half-spaces, seminorm balls or ellipsoids containing the set of feasible
solutions FI (and norm bounds on the optimal solutions). Since these problems are
themselves mixed-integer nonlinear programs with possibly infinitely many constraints
and too difficult in practice, we eventually relax integrality and require containment of
F , the relaxed feasible set, in the half-space, seminorm ball, or ellipsoid instead (or,
containment of F intersected with a suitable sublevel set in the case of norm bounds).
Once a, say, seminorm ball containing F is chosen, we can think of it as a valid –
nonlinear in this case – inequality for F . It is then, in a second step, often possible to
use integrality arguments to “tighten” the inequality further, so that the inequality still
holds for all (non-relaxed) feasible solutions, that is, FI , but is possibly violated at a
point in F . Thus, we have a cut for the feasible set.

Real algebra for real polynomials

So far we have seen that in solving MINLP, geometry is omnipresent. Since the title
is “Geometric and algebraic approaches to mixed-integer polynomial optimization using
sos programming”, let us explain where the polynomials and algebra is in all of this.

Our different geometric approaches all involve auxiliary optimization problems. These
problems can usually be formulated in very general terms and in a first step, we attempt
to infer information about existence of feasible and optimal solutions of these auxiliary
problems with as few assumptions as possible. These results are important from a
theoretical perspective, as they justify the chosen auxiliary problem and show that it is
well-posed.

However, it is of little use to replace a difficult problem (MINLP in this case) by
another problem (the auxiliary problem), if the latter is not easier to solve. The path
that we pursue in this work to make the auxiliary problems tractable is to restrict the
problem data – not immediately, but at some point – to polynomials.

The primary motivation for polynomials is that they constitute a large class of nonlin-
ear functions. In a sense, polynomials are prototypes of (continuous) nonlinear functions.
To make this precise, we can refer to the Stone-Weierstrass theorem (Theorem 1.1): Ev-
ery continuous real function on a compact subset of Rn can be uniformly approximated
by polynomials in n variables. Also, the set of polynomials is closed under some common
operations: They can be added, multiplied by scalars and multiplied by other polyno-
mials, without leaving the class (formally, the polynomial functions are a subalgebra of
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the algebra of all continuous functions on a subset of Rn), which is very handy for alge-
braic manipulations. Moreover, polynomials have been extensively studied in real and
complex algebra as well as in algebraic geometry, which allows us to connect algebra and
geometry. We make extensive use of concepts and results from real algebra (amongst
others, the Positivstellensatz, Theorem 1.20).

Polynomials are also easy to handle with a computer, as they have the nice property
that they are completely parameterized by their coefficients. In contrast, the implemen-
tation of functions involving limits (holomorphic functions as sin, exp, ln. . . , parameter
integrals, . . . ) is rather involved. If the data is rational, it is moreover possible to im-
plement them exactly, at least in principle. The fact that polynomials are described by
their coefficients also allows to draw random samples from families of polynomials. In
contrast, it is rather difficult to sample from the space of all continuous functions on a
subset of Rn.

Another good reason for polynomials is a comparably new result by Lasserre [Las01]
that allows to approximately, sometimes even accurately, solve continuous polynomial
optimization problems. The result has lead to a technique known as sum of squares pro-
gramming, which has been powerfully influenced by above-mentioned Positivstellensatz
from real algebra, since the Positivstellensatz guarantees under an additional assump-
tion the convergence of an approximating hierarchy towards the actual solution. These
sum of squares programs, or sos programs for short, reduce to semidefinite programs,
and the latter are well understood. We refer to Section 1.5 for details. Throughout
this work, we rely on sos methods to (approximately) solve the auxiliary problems and
continuous relaxations.

The last advantage of polynomials that we wish to mention is the following: If a
polynomial has integer coefficients, it is integrality preserving – at integer points, it
attains integer values. This information can and is used in our approaches to deduce
nonlinear cuts.
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1.2. Structure of this work

Chapter 1 is the introduction to this work. In Section 1.1 we state the program
class, outline some geometric solution approaches and makes the case for polynomials.
Section 1.2 is this overview. A literature review is given in Section 1.3. Notation and
results from various fields of mathematics are settled in Section 1.4. The approximation
of continuous polynomial optimization by sos programming is repeated in Section 1.5.
The chapter repeats complexity results for MINLP in Section 1.6, along with a collection
of known existence results on optimal solutions to MINLP.

Chapter 2 introduces half-spaces for MINLP, our first geometric approach. In Sec-
tion 2.1 we motivate half-spaces with known results from linear and convex programming.
In Section 2.2 we formulate the task to find tight a half-space as an auxiliary program.
For polynomial constraints, we show in Section 2.3 how the problem can be approxi-
mated by sos methods. The chapter closes by exploring ways to turn the valid linear
inequalities into linear cuts in Section 2.4.

Chapter 3 describes the computation of norm bounds for MINLP, our second ap-
proach. Under a coercivity condition, we compute upper bounds on the norm of all
optimal solutions. This is formalized in the concept of norm bounds in Section 3.1. In
the unconstrained case and for a polynomial objective, we compare our norm bound
with a norm bound from the literature and show that our norm bound is never worse
and better for dense instances. In Section 3.2 we discuss norm bounds for the convex
quadratic case and give an application to systems of polynomial equations. We evaluate
the norm bounds numerically in Section 3.3.

Chapter 4 analyzes seminorm balls containing the feasible set. In Section 4.1 we
motivate the seminorm bounds and show the relation norm bounds. We formulate the
auxiliary program in Section 4.2 and give an approximating hierarchy of sos programs
along with a convergence result. Section 4.3 explores how Diophantine arguments can
be used to derive a cut.

Chapter 5 outlines the fourth and last geometric approach to MINLP: ellipsoids. In
Section 5.1, we give an auxiliary program that computes ellipsoids of minimal volume
containing the feasible set. Here, we may optimize the shape as well as the center of
the ellipsoid. In Section 5.2 we use ideas from the literature [ND05] to linearize the
constraints. If the constraint functions are polynomials, we show in Section 5.3 that the
problem reduces to a hierarchy of concave semidefinite minimization problems.

Chapter 6 is devoted to the solution of unconstrained (mixed-)integer polynomial op-
timization, a special case of MINLP. Properties of this subclass are discussed in Sec-
tion 6.1. In Section 6.2, a class of suitable underestimators is proposed. We implemented
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a full branch and bound framework, allowing for the computational solution of a given in-
stance provided its leading form is positive definite. The solution algorithm is presented
in Section 6.3. Using the norm bounds from Chapter 3, we evaluate our underestimators
on random instances.

Chapter 7 takes a closer look at coercive polynomials. Coercivity appears in one form
or another throughout this work, and that chapter explores coercivity in terms of the
so-called order of coercivity. We give additional motivation for coercivity in Section 7.1.
Then, we recall the order and stability of coercivity in Section 7.2. Section 7.3 contains
the main result and relates both concepts. In Section 7.4, we present families with small
order of coercivity. We introduce the minimal order of coercivity in Section 7.5. The
chapter closes with a look towards the decision problem whether a given polynomial is
coercive in Section 7.6.

Chapter 8 summarizes this work and points towards extensions of the presented re-
sults. Section 8.1 contains the summary. Section 8.2 yields ideas for underestimation of
quadratic functions using the S-lemma and discusses a subgradient-type approach. We
also look at robust polynomial optimization problems using quantifier elimination and
extensions of sos programming.

Appendix. The work closes with an appendix. We explore the role of sublevel sets and
tight inequalities in Chapter A. Supplementary proofs are given in B.
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1.3. Literature review

Surveys. The literature on nonlinear mixed-integer programming is vast. For an
overview, a presentation of key techniques and complexity results as well as numer-
ous references for further reading, see the article [HKLW10], which comes as chapter
of [JLN+10]. For a recent survey on nonlinear mixed-integer programming, see [LL12].
We also wish to mention the recent book [BKL+13], which also covers modeling, convex
methods, heuristics and software for MINLP.

Complexity. Integrality turns even seemingly simple problems incomputable: Based on
results of Matiyasevich, Jeroslow [Jer73] proved that there cannot be an algorithm for
integer minimization of a linear form subject to quadratic constraints (Theorem 1.40), a
negative result. But there are also many positive results, see, e.g., [Hei05], [LHKW06],
[DPHWZ16], [HWZ16]. For a collection of further complexity results we refer to [Köp12],
which is part of [LL12].

Algorithms for polynomial integer programming in special cases. But substantial
special cases are solvable, for example, every integer problem with a bounded feasible
set is solvable. More specifically, an important case is Boolean programming, see [BH02]
for a survey. A classic approach is linearization by introducing new variables and con-
straints (for early results see, e.g., [For60]). In theory, also a general bounded integer
polynomial optimization problem can be reduced to the binary case [Wat67], but this
is not practicable since the number of variables grows too much. Another technique for
Boolean polynomial programming is the reduction to a quadratic problem which can
be done with significantly fewer variables and constraints [Ros75; BR07]. Another sub-
stantial case that gained attention are (quasi-)convex problems, as the incomputability
results do not hold for this case [Kha83; KP00]. [HK13] present a Lenstra-type algorithm
for quasiconvex integer polynomial optimization.

Unconstrained mixed-integer polynomial optimization. Unconstrained quadratic in-
teger minimization is considered by [BHS15]. We did not find results in the literature
that consider the unconstrained mixed-integer minimization problem for multivariate
polynomials of arbitrary degree.

Branch and bound. As indicated before, a common solution ingredient for the inte-
ger variables in MINLP is branch and bound as proposed (originally only for convex
functions) by [GR85]. A popular method is to calculate convex underestimators (see,
e.g., [LT11] for polynomial functions) to obtain lower bounds. As a different approach,
if the feasible set is a box and the objective a polynomial, [BD14] compute separable un-
derestimators which give lower bounds that are easy to obtain. In contrast, [LHKW06]
directly compute lower and upper bounds, i.e., no underestimators, for nonnegative
polynomials on polytopes.
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Sos programming. Throughout our work we rely on methods from constrained con-
tinuous polynomial optimization. Based on work of Shor [Sho87; SS97], Parrilo [Par00]
suggested a method now known as sos programming that makes continuous polynomial
optimization accessible to semidefinite programming (see, e.g., [WSV00] for the latter),
whilst Lasserre [Las01] published the dual approach, based on moment sequences. Since
the emergence of the two ground-breaking publications by Parrilo and Lasserre, many
results on continuous polynomial optimization via sos techniques and its theoretical
background have been published, we only name a few: The expository paper [PS03]
shows that existing algebraic techniques are outperformed by the sos method. As in-
depth treatments, we refer to [AL12] for the interplay of semidefinite, conic and polyno-
mial optimization, and [BPT13] for a focus on the geometry involved. For an algebraic
treatment, we mention Marshall’s book [Mar08]. We point out Laurent’s elegant sur-
vey [Lau09], which treats, among other aspects, the duality of the sos and moment
approach.

Chapter-specific literature. We end our literature review remarking that we present
additional references to the literature in each of the following chapters that are specific
to the topic at hand.
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1.4. Preliminaries

In this section we introduce basic concepts and notation that is used throughout this
work.

1.4.1. Numbers

The natural, integer, rational, real and complex numbers are denoted by N, Z, Q, R
and C respectively. In this work, the natural numbers do not contain 0, and we denote
N0 := N ∪ {0}. For n ∈ N, we let

[n] := {1, . . . , n}.
As is well-known, the supremum and infimum of a subset of the real numbers always exist
but may be infinite. Especially, inf ∅ = +∞ and sup ∅ = −∞. Let R be any of the rings
Z, Q, R. We use the notation R≥0 := {x ∈ R : x ≥ 0}, and R>0 := {x ∈ R : x > 0}.

1.4.2. Norms, seminorms, topology

A seminorm N on a real or complex vector space V is a real-valued function such that

1. N(x+ y) ≤ N(x) +N(y)

2. N(ax) = |a|N(x)

for all x, y ∈ V and scalars a, see, e.g., Definitions 1.33 in [Rud91]. Property 1 is
called subadditivity, whilst property 2 is called absolute homogeneity. If, additionally
definiteness holds, that is,

3. N(x) = 0 implies x = 0

for all x ∈ V , the seminorm N is a norm, and usually denoted by ‖ · ‖.
The (open) seminorm ball with center p ∈ V and radius R ∈ R is given by

BR(p;N) := BN
R (p) := {x ∈ V : N(x− p) < R}.

The (closed) seminorm ball with center p ∈ V and radius R ∈ R is given as

BR(p;N) := BNR (p) := {x ∈ V : N(x− p) ≤ R}.
We define norm balls, open or closed, analogously.

A set M ⊂ V of a normed space V is bounded if M ⊂ BR(0) for some R > 0.1

A unit sphere, or sphere for short, is the set {x ∈ Rn : ‖x‖ = 1} for a norm ‖ · ‖ on
Rn. For the important special cases of p-norms, we introduce the notation

Sn−1
p := {x ∈ Rn : ‖x‖p = 1}

where the p-norm on Rn, p ∈ [1,∞], is given by ‖x‖p = p

√∑n
j=1 |xj|p for x ∈ Rn.

Now let (X, τ) be a topological space. Then, for S ⊂ X, clX denotes the closure of
S with respect to τ .

1As all norms are equivalent on Rn, boundedness does not depend on the choice of the norm on Rn.

16



1.4.3. Ring of polynomials

Let R be a ring with unit. We denote the ring of polynomials in n unknowns X1, . . . , Xn

and coefficients in R by R[X1, . . . , Xn], which we abbreviate by R[X]. We use X here
in order to distinguish the multivariate from the univariate case. Using multi-index
notation, we write a polynomial f ∈ R[X1, . . . , Xn] as

f =
∑

α∈A(f)

aαX
α =

∑
α∈A(f)

aαX
α1
1 · · ·Xαn

n

where A(f) ⊂ Nn
0 indexes the terms cαX

α, the monomials, appearing in the definition
of f . We use the notation Xα := Xα1

1 · · ·Xαn
n for α = (α1, . . . , αn) ∈ Nn

0 . The aα ∈ R,
α ∈ A(f), are the coefficients of f . We assume that the set A(f) is chosen minimally in
the sense that A(f) = {α ∈ Nn

0 : aα 6= 0}; especially, A(f) is always finite. The degree
of f is defined as deg(f) := supα∈A(f) |α| with |α| =

∑n
i=1 αi being the modulus of α.

Notably, deg(0) = −∞. The set of all polynomials in R[X1, . . . , Xn] of degree at most
d, some d ∈ N0 ∪ {−∞}, deserves special attention: We denote it by

R[X1, . . . , Xn]d := {f ∈ R[X1, . . . , Xn]d : deg(f) ≤ d} ,

and note that this set forms a vector space.
As an example, for

f = X3
1 + 4X5

1X
6
2 ∈ Z[X1, X2],

we have A(f) = {(3, 0), (5, 6)}, c(3,0) = 1, c(5,6) = 4 and deg(f) = |(5, 6)| = 5 + 6 = 11.
We express the evaluation of f at some x ∈ Rn by

f(x) =
∑

α∈A(f)

aαx
α,

where xα := xα1
1 · · ·xαnn . The map Rn → R, x 7→ f(x), is the polynomial function defined

by f .

1.4.4. Real polynomials

Now consider the ring of real polynomials R[X1, . . . , Xn]. A polynomial f is homogeneous
of degree i if f is a sum of monomials of degree i or the zero polynomial. Equivalently, f
is homogeneous of degree i if and only if f =

∑
|α|=i aαX

α. A homogeneous polynomial

is also called a form. Any polynomial f ∈ R[X] can be uniquely decomposed as a sum
of forms

f =
d∑
j=0

fj

where d := deg f and the fj are homogeneous polynomials of degree j, called the homo-
geneous components of f . The highest degree component, fd, is the leading form of f .
Concerning the dimension, we have by, e.g., Remark 1.2.5 in [Mar08]

dimR[X1, . . . , Xn]d =
(
n+d
d

)
(1.1)
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and

dim {f ∈ R[X1, . . . , Xn]d : f = fd} =
(
n+d−1

d

)
. (1.2)

For a polynomial f that is homogeneous of degree d ∈ N0, one has

f(λx) = λdf(x), x ∈ Rn, λ ∈ R.

This implies that a homogeneous polynomial is uniquely determined by its values on a
sphere.

A homogeneous polynomial f is positive definite if f(x) > 0 for x 6= 0. Similarly,
a (possibly non-homogeneous) polynomial f is positive semidefinite if f(x) ≥ 0 for all
x ∈ Rn, for short f > 0 and f ≥ 0. For a homogeneous polynomial f , we often use
the following equivalent characterization (which does not depend on the choice of the
sphere):

f ≥ 0⇐⇒ ∃c ≥ 0 : f(x) ≥ c for all x ∈ Sn−1,

f > 0⇐⇒ ∃c > 0 : f(x) ≥ c for all x ∈ Sn−1.
(1.3)

We define the following norms for polynomials:

‖f‖1 :=
∑

α∈A(f)

|aα|, f ∈ R[X]

‖f‖∞ := sup
α∈A(f)

|aα|, f ∈ R[X], f 6= 0,

and ‖0‖∞ := 0. We furthermore define the “norm”

‖f‖0 :=
∑

α∈A(f)

1, f ∈ R[X]

which is, of course, not a norm, but counts the monomials in f .
The following result is from functional analysis and constitutes a special case of the

Stone-Weierstrass theorem in a more general form.

Theorem 1.1 (Stone-Weierstrass, see, e.g., Corollary 1.3 in Chapter 3.1 of [Lan93]).
Let S be a compact subset of Rn. Any real continuous function on S can be uniformly
approximated by polynomial functions in n variables.

1.4.5. Real algebra

We now present the concept of quadratic modules, following [Mar08]. Here, we take the
algebraic point of view which is convenient for algebraic manipulations, before we con-
sider a more geometric approach to quadratic modules in Section 1.5.3. In the following,
R is a commutative ring with unit.
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Definition 1.2. A subset M of R is a quadratic module if

M +M ⊂M, a2M ⊂M for all a ∈ R, and 1 ∈M.

A quadratic module M of R is Archimedean if for each f ∈ R there is k ∈ N with
f + k ∈M .

Hence,
∑
R2 is the smallest (with respect to set inclusion) quadratic module of R,

where
∑
R2 denote the set of all finite sums

∑
a2
i , ai ∈ R. By a classical hull argument,

the quadratic module generated by h1, . . . , hs ∈ R, that is, the smallest quadratic module
in R containing the hi, is given by

M(h1, . . . , hs) :=

{
s∑
i=0

σihi : σ0, . . . , σs ∈
∑
R2

}
,

with h0 := 1.

Remark 1.3. The name Archimedean is related to the Archimedean property for the
real numbers as follows: The latter states that for every x > 0 there exists n ∈ N with
n > x. Equivalently, for every x ∈ R there exists n ∈ N with x + n ≥ 0, which is,
in our new terminology, equivalent to the quadratic module

∑
R2 = R≥0 of R being

Archimedean.

1.4.6. Rounding

Given x ∈ R, we let bxc and dxe denote the integer below and above x. The number
bxe denotes the integer obtained by rounding x to its nearest integer. In case this is
not unique, we use the round the half up rule, although none of our results depends
on the exact nature of the tiebreaker. These definitions extend to vectors x ∈ Rn by
componentwise application. In the mixed-integer setting, the following notation is useful,
too: Given I ⊂ [n] indexing the integer variables in MINLP, let bxeI denote the vector
with components

(bxeI)i :=

{
bxie, i ∈ I,
xi, else.

For S ⊂ Rn, let us also introduce the notation

SI = {x ∈ S : xi ∈ Z for all i ∈ I}.

Whilst using integrality arguments, it is useful to know that a function attains integer
values if evaluated at a mixed-integer point. This motivates the following definition:
Let f : S → R be a function defined on S ⊂ Rn. The function is called I-integrality
preserving if f(SI) ⊂ Z. It is integrality preserving if it is I-integrality preserving for
I = [n]. As an example, any f ∈ Z[X1, . . . , Xn] is integrality preserving. Also, the
modulus on R is integrality preserving. The squared seminorm

∑
i∈I x

2
i is I-integrality

preserving on Rn
I for I ⊂ [n].
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1.4.7. Notions from optimization

Let us establish some terminology of optimization problems. Consider a minimization
problem of the form

min f(x)

s.t. x ∈ S (OPT)

where f : S ′ → R is a function, and S ′ is some set with S ⊂ S ′. The function f is the
objective or objective function, and the number given by evaluating f at x ∈ S is the
objective value of f at x. Any point in S ′ is a solution of OPT. The set S is the set of
all feasible solutions.

The number inf{f(x) : x ∈ S} ∈ [−∞,+∞] is the optimal value.2 Any point x̄ in
arg minx∈S f(x) is an optimal solution (or minimizer). Note that, with these defini-
tions, OPT always has an optimal value but might not have optimal solutions (or not
even feasible solutions).

It is sometimes convenient to use the following special terms in the presence of inte-
grality constraints. If F ⊂ Rn, and we consider the minimization problem

min f(x)

s.t. x ∈ Zn

x ∈ F,
(1.4)

then the problem
min f(x)

x ∈ F
(1.5)

is the continuous relaxation, the set F is the relaxed feasible set, the optimal value of
Program 1.5 is the continuous minimum, and any optimal solution of Program 1.5 is a
continuous minimizer. The optimal value of Program 1.4 is the integer minimum, and
any optimal solution of Program 1.4 is an integer minimizer. The notion of a mixed-
integer minimum and minimizer is defined analogously to the notion of the integer
minimum and minimizer.

Two optimization problems are equivalent if feasible and optimal solutions coincide
(but the objective need not be the same). Finally, if

min f1(x) min f2(x)

s.t. x ∈ S ′1 s.t. x ∈ S ′12

2In accordance with the traditional notation in optimization, we write max or min (instead of the
formally more correct notation sup or inf) next to an optimization problem, even if it might not
be clear if the maximum or minimum is attained. Note that, however, in this work we shall not
implicitly assume that the supremum (or infimum) is attained. Existence of optimal solutions will
either be explicitly assumed or proved.
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are two optimization problems OPT1, OPT2, with f1 : S1 → R, f2 : S1 × S2 → R,
respectively, and S ′1 ⊂ S1, and S ′12 ⊂ S1×S2, we say that program OPT1 is a projection
of program OPT2 (and OPT2 a lift of program OPT1) if, firstly, every feasible solution
(x1, x2) of OPT2 yields a feasible solution x1 of OPT1, and similarly, for every feasible
solution x1 ∈ S ′1 of OPT1 exists x2 ∈ S ′2 such that (x1, x2) is feasible for OPT2, and,
secondly, the same holds true for optimal solutions of both programs.

We need the notion of a sublevel set : For a function f : U → R from some set U , the
sublevel set of level z ∈ R is defined by

Lf≤(z) = {x ∈ U : f(x) ≤ z}.

Similarly, a suplevel set of level z is defined, with “≤” replaced by “≥”. A level set of
level z is the intersection of the sub- and suplevel set (of level z).

1.4.8. Coercivity

A function f : S → R, defined on a subset S ⊂ Rn, is coercive if for all c ∈ R there
exists some M ∈ R such that for all x ∈ S the implication

‖x‖ ≥M ⇒ f(x) ≥ c (1.6)

holds. Since all norms are equivalent on Rn, this does not depend on the choice of norm.
Let us recall the following well-known fact: A function is coercive function if and only
if all sublevel sets are bounded.3

Proposition 1.4 (see, e.g., Chapter 12.3 in [Lan13]). Let S ⊂ Rn. Then f : S → R is
coercive if and only if every sublevel set Lf≤(z), z ∈ R, is bounded.

Proof. If f is coercive, every sublevel set is bounded by (1.6). Suppose now that all
sublevel sets are bounded. Let s = lim inf |x|→+∞ f(x). Suppose to the contrary that
s ∈ [−∞,+∞), and pick z ∈ (s,+∞). There must be a sequence xk ∈ Rn, ‖xk‖2 →∞
as k →∞, such that f(xk) ≤ z for all k. Put differently, xk ∈ Lf≤(z) for all k, hence the
sublevel set is unbounded, a contradiction.

1.4.9. Matrices

Let R be a ring with unit. The set of m × n matrices over R, m,n ∈ N, is denoted by
Rm×n. The n×n-unit matrix over R is denoted by In, where we may drop the subscript
n if no confusion seems possible. A matrix A ∈ Rm×n is square if m = n. For square
matrices A1, . . . , Am with Ai ∈ Rni×ni , let diag(A1, . . . , Am) denote the (

∑
i ni)×(

∑
i ni)-

block diagonal matrix arising from the Ai. A matrix is diagonal if it is block-diagonal
with ni = 1 for all i.

3In the literature, the statement usually requires some form of continuity, and results in the function
being coercive if and only if all sublevel sets are compact. However, the proof is the same, which we
give for completeness.
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A square matrix is symmetric if A = AT , where AT is the transposed of A. We
denote the set of real symmetric n× n-matrices by Sn. A real n× n-square matrix V is
orthogonal if V TV = In. The famous spectral theorem holds for symmetric matrices:

Theorem 1.5 (Spectral theorem, see, e.g., Corollary 2.5.11 in [HJ12]). Let A ∈ Rn×n

be a symmetric matrix. Then A has n real eigenvalues and is unitarily diagonalizable:
A has a spectral decomposition

A = V DV T

with V orthogonal and D diagonal.

Proof.

By the spectral theorem, any real symmetric matrix A ∈ Sn has n real eigenvalues
λi(A), i ∈ [n], which we may assume to be nondecreasing, and we write

λmin(A) := λn(A) ≤ λn−1(A) ≤ . . . ≤ λ2(A) ≤ λ1(A) =: λmax(A).

Using the spectral decomposition, we may estimate the associated quadratic form.
This result is the Rayleigh-Ritz theorem, we give the version for real matrices.

Theorem 1.6 (Rayleigh-Ritz, see, e.g., Theorem 4.2.2 in [HJ12]). Let A ∈ Sn. Then

λmin(A)xTx ≤ xTAx ≤ λmax(A)xTx, x ∈ Rn.

Furthermore,
λmin(A) = min

x∈Sn−1
2

xTA, λmax(A) = max
x∈Sn−1

2

xTAx.

A matrix A ∈ Sn is positive semidefinite if xTAx ≥ 0 for all x ∈ Rn, positive def-
inite if xTAx > 0 for all nonzero x ∈ Rn, and indefinite if there are x, y ∈ Rn with
(xTAx)(yTAy) < 0. We abbreviate positive semidefiniteness by A � 0 and denote the
set of all such matrices by Sn+; similarly, we abbreviate positive definiteness by A � 0 and
denote the set of all such matrices by Sn++. Positive semidefinite matrices play a central
role in semidefinite programming, which we consider in more detail in Section 1.5.

The following characterization of positive semidefinite matrices is useful for our pur-
poses:

Proposition 1.7 (see, e.g., Proposition A.1 in [BPT13]). Let A ∈ Sn be a symmetric
matrix. Then, the following are equivalent:

1. A is positive semidefinite (A � 0).

2. For all x ∈ Rn, xTAx ≥ 0.

3. All eigenvalues of A are nonnegative.

4. There exists a factorization A = BBT with B ∈ Rn×r and r is the rank of A.

There is a similar characterization for positive definite matrices:
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Proposition 1.8 (see, e.g., Proposition A.2 in [BPT13]). Let A ∈ Sn be a symmetric
matrix. Then, the following are equivalent:

1. A is positive definite (A � 0).

2. For all nonzero x ∈ Rn, xTAx > 0.

3. All eigenvalues of A are positive.

4. There exists a factorization A = BBT with B ∈ Rn×n nonsingular.

Further characterizations are available in the given reference.
The notion of positive semidefiniteness induces the so-called Loewner partial order

on Sn: For A,B ∈ Sn, we write A � B if A − B is positive semidefinite, and, for
completeness, define B � A if and only if A � B. The following fact is easy to see but
useful in arguments involving semidefinite matrices:

Observation 1.9 (see, e.g., p. 6 in [WSV00]). Let A,B ∈ Sn, C,D ∈ Sm. Then

A � B and C � D if and only if diag(A,C) � diag(B,D).

Moreover, positive (semi-)definiteness is invariant under basis transformations:

Proposition 1.10. Let B ∈ Rn×n be invertible. Then

A ∈ Sn+ if and only if BTAB ∈ Sn+.

Similarly,
A ∈ Sn++ if and only if BTAB ∈ Sn++.

If B ∈ Rn×m, then
A ∈ Sn+ implies BTAB ∈ Sm+ .

Proof. The equivalences are shown, e.g., in Proposition 1.1.7 in [Hel00]. For the last
implication, the proof is identical: Let y ∈ Rm. Then

yT (BTAB)y = (By)TA(By) = xTAx ≥ 0

for x = By.

With the following observation, matrix inversion can be modeled in semidefinite pro-
grams:

Theorem 1.11 (Schur complement, see, e.g., Theorem 1.1.9 in [Hel00]). Let A ∈ Sm++,
C ∈ Sn, B ∈ Rm×n. Then(

A B
BT C

)
� 0 ⇐⇒ C −BTA−1B � 0 (1.7)

and (
A B
BT C

)
� 0 ⇐⇒ C −BTA−1B � 0. (1.8)
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Finally, the space of matrices Rn×n carries a natural inner product structure. Given
X, Y ∈ Rn×n, the inner product of X and Y is given by

〈X, Y 〉 := tr(XTY ) =
n∑

i,j=1

XijYij.

With this inner product, the set of all real n×n matrices is linear-topologically isomorph
to Rn2

.

1.4.10. Half-spaces, valid inequalities and cuts

A half-space in Rn is a set of the form {x ∈ Rn : aTx ≤ b} for some a ∈ Rn, a 6= 0,
b ∈ R. The corresponding hyperplane is denoted by

H(a, b) = {x ∈ Rn : aTx = b}.

We may refer to inequalities using the notation (aTx ≤ b). So let an inequality
(aTx ≤ b) be given. We say the inequality is

• a valid inequality for S ⊂ Rn if it is satisfied for all x ∈ S, that is, aTx ≤ b holds
for all x ∈ S.

• tight for S if it is valid for S and for any b′ < b, the inequality (aTx ≤ b′) is
violated by some x ∈ S, where the inequality is

• violated by some x ∈ S if aTx > b.

• is tight at q ∈ S if the inequality is tight for S and aT q = b.

• a cut for S if it is a valid inequality for SI .

Abusing notation, we may also use (aTx ≤ b) to denote the set {x ∈ Rn : aTx ≤ b}.

Similarly, if V : Rn → R is a function, b ∈ R, we say the inequality (V (x) ≤ b) is a
valid inequality for S ⊂ Rn if V (x) ≤ b for all x ∈ S. The notions tight for S, tight at
q ∈ S, violated by x ∈ S and cut for S are defined analogously to the case of a linear
function Rn → R, x 7→ aTx.

We use the attributes linear and nonlinear if we wish to stress the linearity or non-
linearity of the function defining the inequality.

1.4.11. Convexity, affine dimension and cones

Turning to convexity, a set C ⊂ Rn is convex if for all x, y ∈ C, λ ∈ [0, 1], the point
λx + (1 − λ)y lies in C. The convex hull conv(M) of M ⊂ Rn is the intersection of all
convex sets containing M and hence the smallest (with respect to set inclusion) convex
set that contains M .
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Theorem 1.12 (see, e.g., Corollary 11.5.1 in [Roc70]). Let A ⊂ Rn. Then

cl convA =
⋂
{V : V is a half-space of Rn, A ⊂ V } .

In particular, the closure of a convex set is convex.

Disjoint convex sets can be separated by a hyperplane:

Theorem 1.13 (Separating Hyperplane, see, e.g., Theorem 4.4 in [Gru07]). Let C1, C2 ⊂
Rn be disjoint convex sets. Then there is a ∈ Rn \ {0}, b ∈ R with

C1 ⊂ (aTx ≤ b) and C2 ⊂ (aTx ≥ b).

In this case, the hyperplane H(a, b) is called a separating hyperplane.

Also, points on the boundary of a convex set have a special exposure property:

Theorem 1.14 (Supporting Hyperplane, see, e.g., Chapter 2.5.2, p. 51 in [BV04]).
Let C ⊂ Rn be a convex set. Then, for every x0 ∈ bdC there is a ∈ Rn \ {0} with
C ⊂ (aTx ≤ aTx0).

Then, the hyperplane H(a, aTx0) is called a supporting hyperplane to C at x0.

Now let f : C → R be a function, where C ⊂ Rn is a convex set. Then f is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), x, y ∈ C, λ ∈ [0, 1],

and f is quasiconvex if all sublevel sets of f are convex.

The affine hull aff(M) of a set M ⊂ Rn is the intersection of all affine subspaces
containing M and hence the smallest (with respect to set inclusion) affine subspace
containing M . The affine dimension of M ⊂ Rn is the dimension of its affine hull.

A set K ⊂ Rn is a cone if for all a ∈ K, λ > 0, the point λa lies in K.

1.4.12. Polyhedra and spectrahedra

A polyhedron is a finite intersection of closed half-spaces in some Rn. If A ∈ Rm×n and
b ∈ Rm, we write

P (A, b) := {x ∈ Rn : Ax ≤ b}

for the polyhedron generated by A and b as well as

P+(A, b) := {x ∈ Rn
≥0 : Ax ≤ b}

for the polyhedron generated by A and b with nonnegativity constraints on x.
A polytope is a polyhedron that is also bounded. The integer hull of a polyhedron

P ⊂ Rn is the set conv(P ∩ Zn) and is denoted by PI .
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Finally, we turn to geometric objects that arise as solution sets of linear matrix in-
equalities : A set M ⊂ Rn is a spectrahedron if it can be described as

M = {x ∈ Rn : A0 + x1A1 + . . .+ xnAn � 0}

for A0, . . . , An ∈ Sm and some m ∈ N. More generally, a set M ⊂ Rn is a projected
spectrahedron if there exists k ∈ N and a spectrahedron P ⊂ Rn+k with

M =
{
x ∈ Rn : (x, y) ∈ P for some y ∈ Rk

}
.

In this equation, y is a lifting vector and P a lifting spectrahedron of S. Equivalently,
M is a projected spectrahedron if there are k,m ∈ N and

M =

{
x ∈ Rn : A0 +

n∑
i=1

xiAi +
k∑
i=1

yjBj � 0 for some y ∈ Rk

}

holds for some Ai, Bi ∈ Sm. Our definition follows Chapter 6 in [BPT13], and we also
point to this reference for more theory on as well as many examples of spectrahedra and
projected spectrahedra.

1.4.13. Ellipsoids

If Q ∈ Sn, Q � 0, x0 ∈ Rn, we denote the ellipsoid corresponding to Q centered at x0

by
E(Q, x0) := {x ∈ Rn : (x− x0)TQ(x− x0) ≤ 1}.

If Q 6� 0, E(Q, x0) is degenerated. In case x0 = 0, we may write E(Q) instead of E(Q, 0).
We use the relation

rE(Q) = E

(
1

r2
Q

)
(1.9)

for all Q � 0 and r > 0, which follows directly from the definition.
The volume (Lebesgue measure) of an ellipsoid E(Q, x0) is proportional to the root

of the determinant of the inverse of Q, where vol(A) denotes the volume of a Lebesgue
measurable set A ⊂ Rn:

Observation 1.15. Let Q � 0, x0 ∈ Rn. Then

vol(E(Q, x0)) =
vol(Bn)√

det(Q)
,

where Bn is the n-dimensional unit ball Bn := {x ∈ Rn : ‖x‖ ≤ 1}.

Sketch of a proof. This fact is mathematical folklore. For completeness, let us remark
that in case x0 = 0 and Q is non-degenerated, the volume is given, e.g., in [Han96].
Note that, by translation invariance of the Lebesgue measure, the formula holds for any
x0 ∈ Rn. Let us verify the degenerated case Q � 0 but not Q � 0. Let k be the
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nullity of Q. Under an orthogonal transformation, E(Q) takes the form E(Q′) × Rk

where Q′ ∈ Sn−k++ . Now, the fact that the Lebesgue measure on Rn is invariant under
orthogonal transformations and moreover a product measure, we find

vol(E(Q)) = vol(E(Q′)× Rk) = vol(E(Q′)) · vol(Rk) = +∞

as vol(E(Q′)) > 0 by Q′ � 0.
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1.5. Sum of squares programming

1.5.1. Nonnegativity, sums of squares and tractability

Throughout this work, continuous polynomial programming problems appear – as a
relaxation of the original problem, as a subproblem, or as another auxiliary problem.
By a continuous polynomial optimization problem, we mean a program of the form

min p(x)

s.t. hk(x) ≥ 0, k ∈ [s],

x ∈ Rn

(CPOP)

where p, h1, . . . , hs ∈ R[X1, . . . , Xn].
It is therefore highly desirable to have a method for these problems that has a solid,

well-known theory but also works in practice, at least for moderately sized problems.
One of the most successful methods can be traced back to the seminal works in the early
2000s of Lasserre [Las01] and Parrilo [Par00]: This method is known as sos programming,
where sos abbreviates sum of squares. Let us motivate the method. A polynomial
p ∈ R[X] is a sum of squares or sos for short, if it has a representation as a sum of
squared polynomials. Formally, p ∈ R[X] is sos if there are q1, . . . , ql ∈ R[X] with

p = q2
1 + . . .+ q2

l . (1.10)

What makes this notion so useful? An immediate consequence of a representation of
p as in (1.10) is that that p is nonnegative, and the qi certify nonnegativity. It turns
out that deciding if a polynomial is a sum of squares can be reformulated as a semidefi-
nite program, and semidefinite programs in turn are well-understood and can be solved
efficiently, see, e.g., [WSV00; VB96].

But even more is possible: It can be shown that the considerably more powerful
problem of optimizing a linear form over the cone of all sos polynomials (with a bound
on the degree) can be rewritten as a semidefinite program. This extension allows to
approximate polynomial programming problems with a hierarchy of sos programs. Under
additional assumptions, finite convergence holds. We sketch below how semidefinite and
sos programming are related.

We should, however, stress that not every nonnegative polynomial is a sum of squares
– this holds for almost all number of variables and degrees, except in the three cases
outlined in the next theorem, where Pn,d denotes the set of nonnegative polynomials in
n unknowns of degree at most d, and similarly Σn,d the set of sos polynomials for n and
d. The proof is due to David Hilbert. Let us note that it was not until the 1960s that
an explicit example of a polynomial p ∈ Pn,d \ Σn,d was found [Mot67].4

Theorem 1.16 (see, e.g., p. 59 in [BPT13]). Let n ∈ N and d ∈ 2N. We have

Pn,d = Σn,d

4The Motzkin polynomial is p = 1 − 3X2Y 2 + X2Y 4 + X4Y 2. This degree six polynomial in two
unknowns is nonnegative on all of R2, yet cannot be represented as a sum of squares.
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if and only if (n, d) satisfies

1. n = 1, d arbitrary, or

2. d = 2, n arbitrary, or

3. (n, d) = (2, 4).

In contrast to deciding if a polynomial is a sum of squares, deciding nonnegativity
of a given polynomial is a NP hard problem, even if one fixes the degree to d = 4
(Theorem 1.38). However, being able to decide if a polynomial is globally nonnegative
is important in this work: For example, in Chapter 6 underestimators play a crucial
role. A function f is (globally) underestimated by g if f(x) ≥ g(x) holds for all x ∈ Rn.
Hence, deciding if f is underestimated by g means deciding nonnegativity of f−g, which
we approximate with a sufficient criterion by searching for an sos decomposition of f−g.

More generally, as deciding nonnegativity is NP hard, continuous minimization of
a polynomial must be NP hard, too. Therefore, if one wants to solve a polynomial
programming problem, it is common practice to not solve the problem directly but
to approximate it with an sos program. It is the aim of this section to introduce sos
programming in its classical form.

1.5.2. Optimization over the cone of sos polynomials

We saw in the introduction of this section that a polynomial p ∈ R[X] is sos if there are
q1, . . . , ql ∈ R[X] such that p = q2

1 + . . . + q2
l . The set of all sos polynomials is a convex

cone in R[X1, . . . , Xn] which we denote by

Σn :=

{
p ∈ R[X1, . . . , Xn] : ∃q1, . . . , ql ∈ R[X1, . . . , Xn] s.t. p =

l∑
i=1

q2
i

}
,

where we may write Σ instead of Σn if n is known by the context. Recall that Σn,d is
the set {p ∈ Σn : deg(p) ≤ d}.

It is possible to optimize a linear form over the cone Σn subject to affine constraints,
and this is sos programming. Specifically, for given costs b ∈ Rm as well as fixed poly-
nomials ci, aij ∈ R[X1, . . . , Xn], i ∈ [k], j ∈ [m], an sos program has the form

max bTy

s.t. ci + y1ai1 + . . .+ ymaim ∈ Σn, i = 1, . . . , k, (SOSP)

y ∈ Rm

and y ∈ Rm are the decision variables. As mentioned before, such an sos optimization
problem or sos program is tractable, as it is equivalent to a semidefinite program. For a
detailed introduction to sos programming, we refer to [AL12; BPT13].

Before we give a generalization of sos programming that suits our needs, we show
how sos programming can be used to approximate continuous polynomial optimization
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problems. It turns out that central to this is the ability to represent a polynomial that
is positive (or, in other variants, nonnegative) on a set given by polynomial constraints
as a sum of the constraint polynomials, if one allows to scale the latter by sos polynomi-
als, or more generally, if one allows cross-multiplication of the constraint polynomials.
Statements that give sufficient (or sometimes equivalent) conditions that guarantee the
existence of such a representation are known in the literature on real algebraic geometry
as Stellensätze.5

1.5.3. Putinar’s Positivstellensatz

In this section we introduce Putinar’s Positivstellensatz. It holds under a technical
condition (a related quadratic module is required to be Archimedean). We explore
when this condition holds in our setting before giving the Stellensatz. Our notation
follows [Mar08] and [NS07].

Semialgebraic sets and Archimedean quadratic modules

Given a finite collection of multivariate polynomials h1, . . . , hs ∈ R[X1, . . . , Xn], consider
the subset of Rn where all polynomials hi attain nonnegative values:

K(h1, . . . , hs) := {x ∈ Rn : h1(x) ≥ 0, . . . , hs(x) ≥ 0} . (1.11)

A subset of Rn is called basic closed semi-algebraic if it is of the form (1.11) for some
polynomials h1, . . . , hs. The Stellensatz we consider gives a sufficient condition which
allows to represent every polynomial p ∈ R[X] that is positive on K(h1, . . . , hs) as a
combination of the hi and 1 – each multiplied by a sum of squares. The set of these
combinations is the quadratic module generated by the hi (Definition 1.2) and is thus
given by

M(h1, . . . , hs) :=

{
s∑
i=0

σihi : σ0, . . . , σs ∈ Σ

}
(1.12)

where h0 := 1.
For the Positivstellensatz to hold we need to impose a technical condition on the

quadratic module M(h1, . . . , hs), namely, the quadratic module needs to be Archimedean
(we introduced the algebraic definition of the Archimedean property in Definition 1.2).
This is the case if any of the following equivalent conditions hold.

Theorem 1.17 (see, e.g., Corollary 5.2.4 in [Mar08] and Corollary 3 in [NS07]). Let
h1, . . . , hs ∈ R[X1, . . . , Xn]. Then, for the quadratic module M = M(h1, . . . , hs), the
following are equivalent:

1. M is Archimedean, that is, for all p in R[X] exists k ∈ N with p+ k ∈M .

5A Stellensatz (plural Stellensätze) from the German words Stelle, meaning: argument of a function,
and Satz, meaning: theorem. A Positivstellensatz is a theorem on the arguments where a function
is positive.
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2. There is a number k ∈ N such that k −
∑n

i=1 X
2
i ∈M .

3. There is k ∈ N with k ±Xi ∈M for i ∈ [n].

4. There is a polynomial h ∈M such that K(h) is compact.

We explore how the Archimedean property, a prerequisite for the Stellensatz, is related
to geometric and analytic properties of MIPP at the end of this section.

The Stellensatz

Suppose a polynomial f is positive (or nonnegative) on

K(h1, . . . , hs) = {x ∈ Rn : h1(x) ≥ 0, . . . , hs(x) ≥ 0}.

Can it then be written in terms of the defining inequalities hi(x) ≥ 0 of K(h1, . . . , hs)?
Conditions that guarantee such representations are addressed in Positivstellensätzen
(Nichtnegativstellensätzen, respectively). The “converse direction”, a geometric con-
clusion from an algebraic fact, is usually much easier to show. We give a well-known
example in the following observation. It states that if a polynomial is written in terms of
the defining inequalities (in the forms “allowed” by quadratic modules), it is nonnegative
on K(h1, . . . , hs). The proof is immediate from the definition.

Observation 1.18. Let h1, . . . , hs ∈ R[X1, . . . , Xn] and p ∈M(h1, . . . , hs). Then p ≥ 0
on K(h1, . . . , hs).

A straightforward, well-known but useful conclusion is that the basic closed semi-
algebraic set associated with the polynomials hi is compact provided the quadratic
module they generate is Archimedean.

Corollary 1.19. Let h1, . . . , hs ∈ R[X1, . . . , Xn] and M(h1, . . . , hs) be Archimedean.
Then K(h1, . . . , hs) is compact.

Proof. This follows from Observation 1.18 and Theorem 1.17 (2).

The Positivstellensatz – a (real) algebraic statement implied by a geometric condition
– is much more difficult to prove. Note that the theorem requires positivity, a stronger
requirement than nonnegativity.6

Theorem 1.20 (Putinar’s Positivstellensatz, see, e.g., Corollary 6.1.2 in [Mar08] and [NS07]).
Let p, h1, . . . , hs ∈ R[X1, . . . , Xn] be given. Furthermore, let the quadratic module
M(h1, . . . , hs) generated by the hi be Archimedean. Then p(x) > 0 for all x ∈ K(h1, . . . , hs)
implies p ∈M(h1, . . . , hs).

6For an overview on Nichtnegativstellensätze, we refer to [Mar08].
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In the application of the Stellensatz in sos programs, the σi appearing in (1.12) are
unknowns that we optimize. As there is no degree bound on the σi, this is impractical.
Hence, we instead use the truncated quadratic module of order k ∈ N∪{−∞}, given by

M(h1, . . . , hs)[k] :=

{
s∑
i=0

σihi : σi ∈ Σ, deg(σihi) ≤ k, i = 1, . . . , s

}
(1.13)

where, again, h0 := 1.

The Archimedean property in terms of MIPP

The Archimedean property for a quadratic module associated with MIPP can be enforced
if the relaxed feasible set F is contained in a 2-norm ball of known radius7 R ≥ 0 by
adding the redundant constraint ‖x‖2

2 ≤ R2 to MIPP.

Proposition 1.21 (see, e.g., [JLL14]). Consider MIPP. Suppose F is contained in
BR(0; ‖ · ‖2) for some R ≥ 0. Put

gs+1 := R2 −
n∑
i=1

X2
i .

Then, the quadratic module M(g1, . . . , gs+1) is Archimedean, and

F = K(g1, . . . , gs) = K(g1, . . . , gs+1).

The task to find R such that F is contained in BR(0, ‖ · ‖2) can be approximated
with sos programming as outlined in [JLL14]. Let us now explore which geometrical,
topological and analytical conditions on MIPP ensure that the Archimedean property for
a related quadratic module, an algebraic statement, holds. The results are well-known
or at least easy consequences from well-known results, but are nevertheless important
in this work.

Proposition 1.22. Consider MIPP. The quadratic module M := M(g1, . . . , gr) is
Archimedean if

K(gi) = {x ∈ Rn : gi(x) ≥ 0}
is compact for some i ∈ [s]. This holds if −gi is coercive.

Proof. If K(gi) is compact for some i, then M(g1, . . . , gr) is Archimedean by Theo-
rem 1.17 (4). If −gi is coercive, all of its sublevel sets are compact by Proposition 1.4,
especially L−gi≤ (0) = K(gi).

If a feasible solution q ∈ FI is known, the optimal solutions do not change by adding
the constraint f(x) ≤ f(q). This motivates the following variant, where we only assume
knowledge of an upper bound on a feasible objective value.

7In theory, this is obviously equivalent to F being compact. However, to compute R in case of a
compact relaxed feasible set F is not straightforward.
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Proposition 1.23. Consider MIPP. Let z ∈ R with z ≥ f(q) for some q ∈ FI. The
quadratic module M ′ := (g1, . . . , gr, z − f) is Archimedean if M(g1, . . . , gr) or M(z − f)
is Archimedean. M(z− f) is Archimedean in turn if and only if Lf≤(z) is compact. This
holds if f is coercive.

Proof. Let M(g1, . . . , gr) be Archimedean. By (1.12), we know that M(g1, . . . , gr) ⊂
M(g1, . . . , gs, z − f), and the Archimedean property for the larger quadratic module
follows directly from Definition 1.2. The proof that M(g1, . . . , gr, z− f) is Archimedean
provided M(z − f) is Archimedean follows similarly.

Now let M(z− f) be Archimedean. By Corollary 1.19, K(z− f) = Lf≤(z) is compact.
The remaining arguments to finish the proof are verbatim the same as for Proposi-
tion 1.22.

Proposition 1.22 says that we get convergence if there is a single constraint with com-
pact suplevel set. In case that MIPP has equality constraints8, this can be generalized
to the requirement of only an intersection of sublevel sets being compact.

Proposition 1.24. Suppose some of the constraints in MIPP are equality constraints,
the first r′, say. Suppose further that the constraint set they generate, i.e.,

K ′ := {x ∈ Rn : gi(x) = 0 ∀i ∈ [r′]}

is compact. Then M(g̃, gr′+1, . . . , gr) is Archimedean, where g̃ :=
∑r′

i=1−g2
i .

Proof. An equality constraint gi(x) = 0 is equivalent to gi(x) ≥ 0 and −gi(x) ≥ 0. Note
that

K ′ = {x ∈ Rn : g̃(x) ≥ 0},
which is compact by assumption. The claim follows by Theorem 1.17 (4).

After having illustrated the Archimedean property – the assumption in Putinar’s
Positivstellensatz – for MIPP, we turn now to the statement itself.

1.5.4. A note on model building in sos programming

In the following, we recall how common types of constraints can be remodeled as classical
sos programming constraints.

Sos variables. Constraints of the form

σ1a1 + . . .+ σmam ∈ Σn

deg σi ≤ k, i ∈ [m]

σi ∈ Σn, i ∈ [m]

(1.14)

for some ai ∈ R[X1, . . . , Xn] and k ∈ N. The decision variables, sos polynomials
with a degree bound, translate directly to classical sos programming constraints of the
form SOSP since the σi have a bound on the degree and are thus fully parameterized by
finitely many scalar decision variables.

8This is just to ease notation: Every equality constraint can be modeled by two inequality constraints.
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Polynomial variables. Constraints of the form

p1a1 + . . .+ pmam ∈ Σn

deg pi ≤ k, i ∈ [m]

pi ∈ R[X1, . . . , Xn], i ∈ [m]

(1.15)

for some ai ∈ R[X1, . . . , Xn] and k ∈ N. The decision variables, polynomials with a
degree bound, translate to classical sos programming by the same argument as for sos
variables.

Truncated quadratic module containment. Constraints of the form

c+ y1a1 + . . .+ ymam ∈M(h1, . . . , hs)[k]

y ∈ Rm (1.16)

for some ai, hi ∈ R[X1, . . . , Xn] and k ∈ N. This translates to a classical sos programming
constraints as follows: The statement

c+ y1a1 . . .+ ymam ∈M(h1, . . . , hs)[k]

is equivalent to

c+ y1a1 . . .+ ymam −
∑
j=1

σjhj ∈ Σn

deg σi ≤ k, i ∈ [s]

σi ∈ Σn, i ∈ [s]

and is thus a constraint with sos variables as introduced in (1.14).

Linear programming constraints. Constraints of the form

Ay ≤ b

y ∈ Rm (1.17)

for a real matrix A and real vector b. The requirement u ≤ v for real numbers u, v is
equivalent to v − u ∈ Σn, as every nonnegative real number is a square. Note that, as
sos solvers reformulate an sos program into a semidefinite one, this can be done more
efficiently in practice.

Semidefinite constraints. Constraints of the form

Q ∈ Sn

Q � 0,

that is, a positive definite decision variable, can be modeled using classical sos con-
straints. The matrix is fully parameterized by finitely many scalars. Symmetry of Q
can be enforced by a system of linear equations in the entries of Q, moreover, Q � 0 is
equivalent to (X1, . . . , Xn)TQ(X1, . . . , Xn) ∈ Σn by Theorem 1.16. Again we note that
this can be done more efficiently in practice.
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Combinations of the above. It goes without saying that said constraints can be com-
bined. For example, a constraint of the form

c+
m∑
j=1

yja0j +

m1∑
j=1

σja1j +

m2∑
j=1

pja2j ∈M(h1, . . . , hs)[k]

y ∈ Rm, deg σj ≤ k′, σj ∈ Σn, deg pj ≤ k′′, p ∈ R[X1, . . . , Xn]

where c, aij ∈ R[X1, . . . , Xn] and k, k′, k′′ ∈ N, combining scalar decision variables y, sos
decision polynomial variables σj (of bounded degree) and polynomial decision variable
pj (of bounded degree) can be modeled in sos programming.

1.5.5. Lower bounds for continuous polynomial optimization
problems

We have already remarked that throughout this work we use sos programming to ap-
proximate continuous polynomial optimization problems of the form CPOP, that arise,
for example, as relaxations of mixed-integer polynomial problems. As these problems
are hard, we use sos programming to compute lower bounds on CPOP.

In the following we describe how lower bounds on

min p(x)

s.t. x ∈ K(h1, . . . , hs),
(1.18)

for p, h1, . . . , hs ∈ R[X] can be derived by sos programming. Note that (1.18) is just a
reformulation of CPOP, since by the defining equation (1.11),

K(h1, . . . , hs) = {x ∈ Rn : h1(x) ≥ 0, . . . , hs(x) ≥ 0},

or put differently, the feasible set of CPOP is basic closed semi-algebraic.
The method we outline follows Schweighofer [Sch05], based on Lasserre’s [Las01] work.

Consider the hierarchy Qk, k = 1, 2, . . ., of sos programs

max y

s.t. p− y −
s∑
i=1

σihi ∈ Σ

deg(σihi) ≤ k, i = 1, . . . , s

σi ∈ Σ, i = 1, . . . , s

y ∈ R.

(Qk)

In Qk, the decision variables are y ∈ R and the real coefficients of σ1, . . . , σs ∈ R[X].
We then have the following result:

Proposition 1.25 (see, e.g., Chapter 3 in [BPT13]). Every feasible solution y to Qk

gives a lower bound on (1.18).
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Proof. Let y be feasible. Then, there are σ0, . . . , σs ∈ Σ, deg(σihi) ≤ k for i = 1, . . . , s,
such that

p− y −
s∑
i=1

σihi = σ0

=⇒ p(x) = y + σ0(x) +
s∑
i=1

σi(x)hi(x) ≥ y, x ∈ K(h1, . . . , hs),

as σi ∈ Σ, hence σi are nonnegative, and hi(x) ≥ 0 on K(h1, . . . , hs) by definition. Hence
p is bounded from below by y on K(h1, . . . , hs), i.e., every feasible solution to Qk is a
lower bound on (1.18).

Remark 1.26. In view of (1.16), the hierarchy Qk can be formulated more compactly
as

max y

s.t. p− y ∈M(h1, . . . , hs)[k]

y ∈ R.
(1.19)

A justification for the ansatz Qk is the following well-known and easy consequence
of Putinar’s Positivstellensatz (Theorem 1.20). We give the proof to illustrate how to
apply the Positivstellensatz in convergence arguments.

Corollary 1.27 (see, e.g., Proposition 10.5.2 in [Mar08]). Denote the minimum of (1.18)
by p∗ and the minimum of Qk by y(k). If M(h1, . . . , hs) is Archimedean, then y(k) ↗ p∗

for k →∞.

Proof. There is nothing to prove if p∗ = ±∞. So suppose p∗ ∈ R and let ε > 0.
Hence p − p∗ + ε > 0 on K(h1, . . . , hs). Since M := M(h1, . . . , hs) is Archimedean,
p−p∗+ε ∈M . Thus there is kε ∈ N with p−p∗+ε ∈M [kε], in other words, yε := p∗−ε
is feasible for Qk with k = kε. As ε > 0 was arbitrary, we have yε → p∗ for ε→ 0. Since
moreover yε ≤ y(kε) ≤ p∗, we also have y(kε) → p∗, and a subsequence of y(k) converges.

It remains to show monotonicity. Monotonicity follows from M [k] ⊂ M [k + 1] for all
k ∈ N0 by the defining equation (1.13).

Although finite convergence is not guaranteed [Las01], there are cases where an op-
timal solution x ∈ K(h1, . . . , hs) to (1.18) can be extracted from Qk. For example, a
sufficient condition for the extraction is given by a rank condition on associated moment
matrices [HL05]. In the unconstrained case min{p(x) : x ∈ Rn} given by s = 0 in (1.18)
even more is known: Instead of solving Qk with respect to K(∅) = Rn which would be
given as max{y : p − y ∈ Σ}, one can consider the gradient variety9, resulting in 2n
constraints corresponding to the equations

∂x1p = . . . = ∂xnp = 0

9It is well-known that the gradient of a differentiable function f : Rn → R vanishes at a local optimum,
a fortiori at a global minimum.

36



and solve (1.19) with respect to the constraint polynomials

∂x1p, . . . , ∂xnp,−∂x1p, . . . ,−∂xnp. (1.20)

Then we have:

Theorem 1.28 ([NDS06]). Consider the set of polynomials of degree at most d ∈ N0

that possess a global continuous minimizer:

Fd := {p ∈ R[X] : deg(p) ≤ d and ∃x∗ ∈ Rn s.t. p(x∗) = p∗ = inf
x∈Rn

p(x)}.

Then, for the sos programs Q′k with gradient variety constraint polynomials from (1.20),
finite convergence holds for almost all10 polynomials p ∈ Fd. More precisely, there is a
k0 ∈ N0 such that for the optimal solutions y(k) of Q′k one has y(k) = y(k0) = p∗ for
k ≥ k0. Moreover, a minimizer x∗ of (1.18) can then be extracted.

1.5.6. Sos and semidefinite programming

Sos programs translate to semidefinite programs. Semidefinite programs in turn are op-
timization problems that are well-understood, and many numerical solvers are available.
Since semidefinite programs are omnipresent in this work – implicitly in the form as
sos programs, or explicitly in Chapter 5 –, we recall their standard formulations in this
section. Note that in Section 5.3 we use a more general form of sos programming. The
basic idea itself – how extensions of semidefinite programming transfer to extensions of
sos programming – is indicated in Section 8.2.4

Semidefinite programs are matrix optimization problems. To end with a scalar objec-
tive, the standard inner product on Rn×n plays a crucial role. A semidefinite program
in primal form minimizes a linear form over the cone of positive semidefinite matrices,
subject to linear constraints. Formally, it is given by11

min 〈C,X〉
s.t. A(X) = b (SDP-P)

X � 0

for given C ∈ Sn, b ∈ Rm and a linear map A : Sn → Rm. The decision variables are
n×n symmetric matrices X that are required to be positive semidefinite. Note that the
constraint A(X) = b can be rewritten as

〈A1, X〉 = b1, . . . , 〈Am, X〉 = bm

for some matrices A1, . . . , Am ∈ Sn.

10More precisely, finite convergence holds if the gradient ideal 〈∂x1
p, . . . , ∂xn

p〉 is radical and the cor-
responding complex gradient variety consists of finitely many points. These properties are generic
in the sense of algebraic geometry. See [NDS06] for details.

11We follow the presentation of semidefinite programming in Chapter 2 in [Hel00].

37



The dual program to SDP-P, i.e., a semidefinite program in dual form, is given by

max 〈b, y〉
s.t. AT (y) + Z = C (SDP-D)

y ∈ Rm, Z � 0,

where AT : Rm → Sn is the adjoint of A, that is, the unique linear map satisfying

〈AX, y〉 = 〈X,ATy〉

for all X ∈ Sn and y ∈ Rm. For the dual, the two constraints AT (y)+Z = C and Z � 0
can be rewritten as the single constraint

m∑
k=1

ykAk � C

with the matrices Ak from above. We call constraints as they appear in SDP-P primal
constraints and in SDP-D dual constraints. For completeness, let us mention the well-
known fact that equality constraints and matrix unknowns are perfectly acceptable in
a semidefinite program in dual form, and vice versa. We give a proof to illustrate the
techniques involved.

Observation 1.29. Let A ∈ Sn, b ∈ Rn. A constraint of the form

〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

with decision variable X ∈ Sn can be expressed as a single constraint of the form

m∑
j=1

yjBj � C, y ∈ Rm′ ,

for suitable C,B1, . . . , B
′
m ∈ Sn

′
, n′,m′ ∈ N, and vice versa.

Proof. We start with a single equation 〈A,X〉 = b, A ∈ Sn, b ∈ R. This is equivalent to
the two 1 × 1-matrix constraints (

∑
i,j AijXij) � b, (−

∑
i,j AijXij) � −b. Two matrix

constraints D � E,F � G can be written into one block diagonal matrix requirement
diag(D,F ) � diag(E,G) (by Observation 1.9). By the same argument, all m constraints
can be written into a single constraint. Similarly, the requirement X � 0 – in its
equivalent form 0 � X – can be appended to said block diagonal matrix. The proof for
the converse direction is similar.

Semidefinite programming has a rich duality theory. We refer to Chapter 4 of the
handbook [WSV00] and the references therein for a detailed exposition. Let us note that,
as a fundamental difference to linear programming, strong duality does not necessarily
hold: It can happen that both the primal and the dual program have an optimal solution,
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but the optimal values do not coincide. Put differently, it may happen that the duality
gap is nonvanishing.

We present now the key theorem that links sum of squares programming and semidef-
inite programming. The theorem states that, given a polynomial p ∈ R[X1, . . . , Xn], the
polynomial p has an sos decomposition if and only if a semidefinite system involving the
coefficients of p has a solution. Before we state the theorem, we introduce the following
notation: Let

[X]d := (1, X1, . . . , Xn, X
2
1 , X1X2, . . . , X

d
n)T

be the vector of all
(
n+d
d

)
monomials in the unknowns X1, . . . , Xn of degree at most d.

In view of (1.1), [X]d is an ordered basis of R[X1, . . . , Xn]d.

Theorem 1.30 (see, e.g., Theorem 3.39 in [BPT13]). A polynomial p =
∑

α pαX
α in n

variables of degree 2d is a sum of squares if and only if there is Q ∈ S
(
n+d
d

)
with

p = [X]TdQ[X]d, Q � 0,

where we index the matrix Q by the exponent tuples. Equivalently, this is the case if and
only Q � 0 and the following system of

(
n+2d

2d

)
linear equations (in the unknown entries

in Q) holds:

pα =
∑

β+γ=α

Qβγ.

Note that the characterization in Theorem 1.30 explicitly refers to the monomial basis
on R[X1, . . . , Xn]d. It is, of course, easily possible to express the coefficients in terms
of any other basis of the space of polynomials with a bound on the degree and its dual
space. The details can be found in Theorem 3.41 in [BPT13].

With Theorem 1.30, it is easy and well-known to translate sos constraints to semidef-
inite constraints, and thus an sos program into a semidefinite program.

Corollary 1.31. Let c, a1, . . . , am ∈ Σ. Put

d0 := deg c, di := deg aj, j ∈ [m], d := max
0≤j≤m

ddj/2e.

Then, the constraint

c+
m∑
j=1

yjaj ∈ Σ, y ∈ Rm,

is equivalent to the semidefinite system

cα +
m∑
j=1

(aj)αyj =
∑

β+γ=α

Qβγ, y ∈ Rm, Q ∈ S
(
n+d
d

)
, Q � 0.
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1.6. Existence and hardness results for MIPP

This section characterize sufficient conditions ensuring the existence of optimal solutions
to MIPP and gives key hardness results.

1.6.1. Existence of optimal solutions

The aim of this section is to illustrate with the following proposition the interplay of
geometrical, algebraical, topological and analytical conditions that force the existence
of optimal solutions to MIPP. In the proposition, we assume that MIPP has feasible
solutions, that is, FI 6= ∅. None of the single observations are new, so the proof consists
of pointers to well-known results. We do not address the important but difficult question
how to decide whether or not FI = ∅. Also, note that for the sake of clarity we omit
implications that are easily derived by transitivity.

Proposition 1.32. Let f, g1, . . . , gr ∈ R[X1, . . . , Xn] be polynomial data for MIPP and
suppose FI 6= ∅. Let z ∈ R with z ≥ f(q) for some q ∈ FI. Let Sn−1 be a sphere
corresponding to a norm on Rn. Then, the following implications hold:

fdeg(f) > 0

��

ks +3 inf
x∈Sn−1

fdeg(f)(x) > 0

f is coercive ks +3

��

all Lf≤(z′) compact

M(z − f) Ar. ks +3

��

Lf≤(z) compact

M(g1, . . . , gr, z − f) Ar. +3
KS

F ∩ Lf≤(z) compact +3
KS

FI ∩ Lf≤(z) compact
KS

+3 opt: MIPP

M(g1, . . . , gr) Ar. +3
KS

F compact +3 FI compact

∃i : K(gi) compact
KS

∃i : −gi coercive
KS

∃i : −(gi)deg(gi) > 0 ks +3 sup
x∈Sn−1

gdeg(gi)(x) < 0

In the diagram, “Ar.” abbreviates “is Archimedean” and “opt: MIPP” abbreviates
“MIPP has optimal solutions”.

Proof. The proof iterates as outer loop from top to bottom and as inner loop from left
to right. The equivalence of f having a positive definite leading form fd and fd having a
positive infimum on the sphere is from (1.3) To see that fdeg(f) > 0 implies coercivity, let

d := deg(f), and decompose f into its homogeneous components, f =
∑d

j=0 fj. Let S

40



denote the Euclidean unit sphere in Rn. Let cj = minx∈S fj(x) for all j. By compactness,
the cj are finite, and by positive definiteness of fd, we know that cd > 0 by (1.3). By
homogeneity,

f(x) =
d∑
j=0

fj(x) =
d∑
j=0

fj

(
x

‖x‖2

)
‖x‖j2 ≥

d∑
j=0

c∗j‖x‖
j
2,

and f is bounded from below by a coercive univariate polynomial in ‖x‖2. The claim
follows.

If f is coercive, boundedness of all sublevel sets follows from Proposition 1.4. As f
is continuous, the sublevel sets are moreover closed. Compactness of all sublevel sets
follows. Suppose now all sublevel sets are compact. Then they are a fortiori bounded,
and the claim follows from Proposition 1.4. The topmost equivalence is proved.

Coercivity of f implies M(z − f) Archimedean by Proposition 1.23. To see that
coercivity implies that M(z− f) is Archimedean, we know by the above that coercivity
implies all sublevel sets are compact, especially Lf≤(z) = K(z − f) is compact. Then
by Theorem 1.17 (4), M(z − f) is Archimedean. On the other hand, if M(z − f) is
Archimedean, by Corollary 1.19, K(z − f) = Lf≤(z) is compact.

Now, let M(z − f) be Archimedean. By Proposition 1.23, M(g1, . . . , gr, z − f) is
Archimedean. The implication “M(g1, . . . , gr, z − f)⇒ F compact ” results from

K(g1, . . . , gr, z − f) = F ∩ Lf≤(z)

and Corollary 1.19. That this implies compactness of FI in turn follows from the fact
that FI = F ∩ Rn

I and Rn
I is closed. The final implication in this row is based on the

subsequent observation: We know that z ≥ f(q) for some feasible q, hence FI ∩ Lf≤(z)
is nonempty. Minimizing f , a continuous function, over a nonempty, compact set yields
an optimal solution.

Now, if M(g1, . . . , gr) is Archimedean, M(g1, . . . , gr, z− f) is Archimedean by Propo-
sition 1.23. We refer to Corollary 1.19 again to see that M(g1, . . . , gr) Archimedean
implies F = K(g1, . . . , gr) is compact. Also, FI is compact if F is, by the argument
FI = F ∩ Rn

I again (and Rn
I is closed). The implications F compact (FI compact)

implies F ∩ Lf≤(z) compact (F ∩ Lf≤(z) compact) follow from the fact that Lf≤(z) is a
closed set by continuity of f .

The next two implications – K(gi) compact for some i ∈ [r] implies M(g1, . . . , gr) and
−gi coercive implies K(gi) compact – were proved in Proposition 1.22.

The proof of the claim, −gi has positive definite leading form implies −gi is coercive,
is verbatim identical to the proof of “fd > 0 implies f coercive”.

Also, the last equivalence is proved as the first.

Let us note that in the unconstrained case, the existence of a mixed-integer minimum
enforces positive semidefiniteness of the leading form.

Proposition 1.33. Let f ∈ R[X1, . . . , Xn] of degree d. Suppose that

inf
x∈RnI

f(x) > −∞.
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Then fd ≥ 0; especially, d is even.

Proof. It suffices to show the claim for I = [n], that is, integer minimization. Suppose
there is x ∈ Rn such that fd(x) < 0. By homogeneity, we may assume x ∈ Sn−1

∞ . By
continuity, there is a whole neighborhood W of x such that fd(y) < 0 for all y ∈ W . As
W ∩ Sn−1

∞ 6= ∅, there is a point r ∈ W ∩ Sn−1
∞ with rational coordinates ri = zi

ni
, zi ∈ Z,

ni ∈ N, i = 1, . . . , n. Now for all λ ∈ R,

f(λr) =
d∑
j=0

fj(r)λ
j,

and since fd(r) < 0, we have f(λr) → −∞ as λ → ∞. Since ri = zi
ni

, i = 1, . . . , n,
there is a lowest common denominator l ∈ N of the ri. For k ∈ N, we have especially
f(klr) → −∞ as k → ∞. But since klr ∈ Zn, f is unbounded from below on Zn. The
conclusion that d must be even follows from homogeneity.

1.6.2. Hardness results

In this section we state complexity results for important special cases of MINLP. We
start with binary programming.

Theorem 1.34 ([Kar72]). Let A ∈ Zm×n, b ∈ Zm. The decision problem:

Does Ax = b have a solution x ∈ {0, 1}n?

is NP-complete.

The more general problem of linear integer programming is in a precise sense not more
difficult than binary programming:

Theorem 1.35 (see, e.g., Problem MP1 in [GJ79]). Let A ∈ Zm×n, b ∈ Zm. The
decision problem:

Does Ax ≤ b have a solution x ∈ Zn?

is NP-complete.

We turn now to the complexity of continuous polynomial optimization. Nesterov [Nes00]
showed how to encode a binary optimization problem as a continuous polynomial opti-
mization problem. We repeat a simplified variant, which seems mathematical folklore
(see, e.g., Lecture 11 in [Tod12]). Let A ∈ Zm×n, b ∈ Zm, and consider the following
continuous polynomial optimization problem:

min p(x) := ‖Ax− b‖2
2 +

n∑
i=1

(xi − x2
i )

2

x ∈ Rn

(1.21)

For x ∈ Rn, p(x) = 0 if and only if Ax = b and xi = x2
i for all i ∈ [n], equivalently,

x ∈ Rn satisfies Ax = b and x ∈ {0, 1}n. By Theorem 1.34, we have:
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Theorem 1.36 ([Nes00]). Deciding nonnegativity of f ∈ Z[X1, . . . , Xn] is NP-hard,
even if one restricts to polynomials of degree four.

Positive definite leading forms of polynomials play a central role, so we also cite:

Theorem 1.37 ([Nes00]). Deciding positive definiteness of f ∈ Z[X1, . . . , Xn] is NP-
hard, even if one restricts to homogeneous polynomials of degree four.

The following is a newer, stronger variant.

Theorem 1.38 (see, e.g., p. 459 in [AOPT13]). Deciding nonnegativity of a polynomial
f ∈ Z[X1, . . . , Xn] is strongly NP-hard, even if one restricts to biquadratic forms.12

We end this section with two important incomputability results for all-integer problems
and a hardness result for continuous optimization. The all-integer special case of MIPP
with no constraint functions and a polynomial objective has the form

min f(x)

s.t. x ∈ Zn
(1.22)

and are studied in Chapter 6. Even this very restricted subclass of MIPP is already
incomputable in general: Hilbert’s tenth problem asks if there exists an algorithm that
decides whether for a given polynomial f with integer coefficients the equation f(x) = 0
has a solution x ∈ Zn. Seventy years later it was proved by Matiyasevich [Mat70] that
no such algorithm can exist. So if there was an algorithm to solve (1.22), we would also
get an algorithm to decide whether f(x) = 0 has an integer solution by minimizing f 2

over Zn. Let us state this well-known, important consequence of Matiyasevich’s result:

Theorem 1.39. There cannot be an algorithm that solves (1.22).

As a final hardness result, we show that integer optimization of a linear function
subject to quadratic constraints is also incomputable. Consider the program

min cTx

s.t. gi(x) ≥ 0, i = 1, . . . , n

s.t. x ∈ Zn
(1.23)

where r = n and gi ∈ Z[X1, . . . , Xn] are quadratic polynomials with no mixed terms.
Extending ideas of Matiyasevich, Jeroslow proved the following theorem.

Theorem 1.40 ([Jer73]). There cannot be an algorithm that solves (1.23).

12A subclass of homogeneous polynomials of degree four.
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2. Half-spaces containing the feasible
set

In this chapter we consider half-spaces that contain the feasible set F or the relaxed
feasible set FI . We find these half-spaces with the help of gauges – a generalization
of a norm on Rn – and a known feasible point q ∈ FI . We explore when half-spaces
containing F can be used to find half-spaces containing FI ; the latter half-space is called
a cut for F . The main motivation is that these cuts have proved quite successful for
linear and convex programming.

Section 2.1 gives a more detailed motivation of cuts. We repeat some results from
linear and convex programming and outline our gauge-based approach. In that section
we also recall the definition of gauges as well as their basic properties and special types
of gauges that prove useful for our ansatz.

Section 2.2 formulates the task to find a half-space containing F as an auxiliary
program. We give geometric characterizations that ensure the existence of feasible and
optimal solutions.

Section 2.3 is concerned with the task to compute solutions to the auxiliary program.
With additional assumptions, the task can be formulated as an sos program. Several
linearization steps are necessary. We end with an approximating hierarchy and give
convergence conditions.

Section 2.4 closes the chapter with an investigation when a half-space containing F
can be used to derive a cut for F , that is, a half-space containing FI .
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2.1. Motivating half-spaces and preliminaries on gauges

In this chapter we consider, as outlined in the introduction, half-spaces that contain the
feasible set or the relaxed feasible set. Yet the task to find a half-space containing a
given set is an interesting task by itself. We will thus, for additional generality, state
our results using a deputy set S ⊂ Rn instead. We keep in mind that candidates for this
set S are, amongst others, the feasible set FI , the relaxed feasible set F , and the set of
all optimal solutions of MINLP.

At first, we discuss the problem of finding a valid, and tight if possible, inequality.
The formulation we use is quite general and assumes knowledge of a point q ∈ S. Our
auxiliary problem finds a valid inequality that minimizes the distance to q, where our
measure for the distance comes from a gauge. In later sections we restrict to polyno-
mial constraints and polyhedral gauges and derive an approximating hierarchy, which
makes the problem tractable. Finally, we show how techniques from mixed-integer linear
programming can, in certain cases, yield linear cuts for MINLP.

The geometric and algebraic perspectives in this section are closely related. Recall
from Section 1.4.10 that half-spaces correspond to linear inequalities, and a half-space
containing S corresponds to a valid linear inequality for S. A linear cut for S is a valid
linear inequality for SI . Before we start with the math, we present some results on valid
linear inequalities and cuts in linear and convex programming.

2.1.1. Motivation from linear and convex programming

Valid linear inequalities are of prime importance in the theory and history of linear,
linear integer and linear mixed-integer programming.1 One reason is the following. For
a given linear function cTx to be optimized over FI – where the constraints in linear
programming are affine-linear functions –, it is not difficult to see that it is sufficient
to optimize it over the convex hull of FI instead, see, e.g., [CCZ10]. The convex hull
of FI in turn is in this case, for rational data, polyhedral. This fact was first proved
by Meyer [Mey74] and is also known as the fundamental theorem of integer program-
ming [CCZ10]. Hence, the convex hull is completely described by finitely many valid
inequalities, the so-called facet-defining inequalities. Knowledge of all facet-defining in-
equalities of FI thus reduces mixed-integer linear programming to linear programming,
at least in principle.2

We saw that in mixed-integer linear programming, the search for half-spaces that
contain FI but do not contain a given point q ∈ F is the search for linear cuts. The first
result in this direction was Gomory’s algorithmic approach to linear cuts [Gom58]. Later,
Chvátal and Schrijver showed that the repeated application of all Gomory-type linear
cuts yields the convex hull of FI (for linear constraints), see Theorem 1.1 in [MMWW02].
Nowadays, the underlying theory of linear cuts has become quite deep and the number

1For example, the seminal work on integer and combinatorial optimization [NW88] devotes a whole
chapter on the theory of valid inequalities.

2However, by complexity considerations, it must be NP-hard to compute all facet-defining inequalities
of FI .
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of different types of linear cuts is – even though the underlying ideas of the cuts are
often related – vast. The article [MMWW02] is a modern presentation of the most
influential linear cuts, and the article [CL01] explores the relationships in the linear
cut zoo. Recently, maximal lattice free polyhedra have attracted attention:3 It can be
shown that, as the authors in [AWW11] put it, the strongest linear cuts are derived from
maximal lattice-free polyhedra.

Linear cuts also play a fundamental role in the actual solution process in a modern,
state-of-the art linear solver. This seems like a generally agreed-upon fact in the opti-
mization community, but as a reference, let us mention a talk given in 2010 [BGR10]
by Robert E Bixby, a mathematician who also conceived two of the three large com-
mercial linear solvers of today, presented computer experiments on which single feature
in the solution process of mixed-integer linear programs was most helpful (the feature
list consisted of cuts, presolve, variable selection, heuristics and node presolve). In his
experiments, cuts contributed by far the most significant part.

Cutting plane methods also exist in convex programming. Soon after the first linear
cut method was published by Gomory in 1958 [Gom58], Kelley published a version for the
more general, convex program in 1960 [Kel60]. A modern introduction into the key ideas
on linear cuts for the continuous convex problems (absence of integrality constraints) is
given in [BV11]. For an overview on linear cuts for mixed-integer convex problems, we
refer to Chapter 4 in [BKL+13].

2.1.2. A note on our approach

With this background from linear and convex programming in mind, we approach the
task to find valid linear inequalities for MINLP, and take a look at some ideas on
how to generate cuts from these valid inequalities. Now seems the right moment to
mention that we must not expect a general algorithm of the following type: Given a
point q ∈ F \ FI , compute a valid inequality for FI that is violated by F . Why is
this? Algorithms of this type are separation algorithms. A fundamental result from
convex optimization states that, roughly speaking, any separation algorithm for convex
problems yields an optimization algorithm (Corollary 4.2.7 in [GLS93]). Hence, if we
could give an algorithm that in polynomial time separates q ∈ F from FI , we have
a polynomial time optimization algorithm for MINLP, which in view of Theorem 1.35
cannot be expected (unless P = NP).

3A convex set K ⊂ Rn with non-empty interior is lattice-free if Zn does not intersect the interior of
K. It is maximal lattice-free if K is inclusion maximal in the set of all lattice-free convex sets. If the
data is rational, it can then be shown that every maximal lattice-free set K is actually a polyhedron
and each facet of K has an integer point in its relative interior [BCCZ10]. We refer to [AWW11]
and the references therein for further material on the topic.
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2.1.3. Gauges

Measuring distances via gauges

A gauge is a function γ : Rn → R of the form

γ(x) = γ(x;A) = inf{t ≥ 0 : x ∈ tA} (2.1)

for A ⊂ Rn compact, convex with 0 in its interior. Let us note some well-known prop-
erties of gauges:

Proposition 2.1 (see, e.g., p. 14 in [Hol75]; also p. 25 and Theorem 1.39 in [Rud91]).
Let γ : Rn → R be a gauge. Then, the gauge γ

• is nondegenerated, γ(x) = 0 if and only if x = 0 and γ(x) <∞ for all x ∈ Rn,

• attains the infimum in the defining equation (2.1) for all x ∈ Rn,

• is positively homogeneous, γ(λx) = λγ(x) for all x ∈ Rn and λ > 0,

• is absolutely homogeneous, γ(λx) = |λ|γ(x) for all x ∈ Rn and λ ∈ R if A in (2.1)
is symmetric (A = −A),

• is subadditive, γ(x+ y) ≤ γ(x) + γ(y) for all x, y ∈ Rn.

Remark on the proof. For the actual proof we refer to the given references. To explain
the assumptions, we note the following. The property γ(x) <∞ follows from A having
0 in its interior. The property γ(x) = 0 if and only if x = 0 follows from A being
bounded. The infimum is attained due to compactness. Positive homogeneity is imme-
diate from the definition. Absolute homogeneity follows from definition and symmetry
of A. Subadditivity follows from convexity.

The (closed) gauge ball at p ∈ Rn of radius R ≥ 0 is the set

BγR(p) := BR(p; γ) := {x ∈ Rn : γ(x− p) ≤ R} . (2.2)

Given A,B ⊂ Rn and a gauge γ on Rn, the distance from A to B is

d(A,B) = inf {γ(b− a) : a ∈ A, b ∈ B} . (2.3)

For a singleton set A = {a} we also write d(a,B).
In the following Lemma, we note that the distance measured by gauges between two

sets A, K is attained if A is closed and K compact. Since the proof is elementary and
similar to the proof for the case of norms, we expect the result to be known. As we
could not find a proof in the literature, we give one in the appendix for completeness.

Lemma 2.2. Let γ be a gauge on Rn, A ⊂ Rn be closed, K ⊂ Rn be compact and A,
K 6= ∅. Then there are a∗ ∈ A and k∗ ∈ K with

d(a∗, k∗) = d(A,K).

Proof. See Chapter B in the appendix.
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Polar gauges

The function γ◦(x) = sup{xTy : y ∈ Rn, γ(y) ≤ 1} is the polar of γ. The polar is again
a gauge, see, e.g., Theorem 15.1 in [Roc70], and if we introduce the notion of a polar of
a set A ⊂ Rn as

A◦ = {x ∈ Rn : xTy ≤ 1 ∀y ∈ A}, (2.4)

it can be shown that
γ◦(x,A) = γ(x,A◦), (2.5)

see, e.g., Theorem 15.1 in [Roc70]. We also consider gauges γ that are polyhedral : γ(·, A)
is called polyhedral if A is a polyhedron. As the polar of a polyhedron is a polyhedron
(see, e.g., Corollary 19.2.2 in [Roc70]), it is clear in view of (2.5) that the polar of a
polyhedral gauge is again polyhedral. For a polyhedral gauge γ(·, A), the extreme points
of A of are called fundamental directions of γ.
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2.2. Finding valid inequalities using gauges

Suppose you are given a set S ⊂ Rn and your task is to compute an inequality that
is tight for S. Can this be done? This task seems too difficult without additional
assumptions. Our approach to generate valid, possibly tight, inequalities for the set S is
governed by the following assumption: You are given a point q in S. Is it now possible to
compute a valid inequality for S with minimum distance to q, in the sense of (2.3)? And
then, secondly, is the inequality thus computed also tight for S? A somewhat abstract
answer to the first question is that the task to find a valid inequality can be cast as an
auxiliary program (see V1 below). A constructive answer to the first question, i.e., to
compute a valid inequality for a given set S in practice, requires additional assumptions,
and is deferred to Section 2.3. There, provided S is semi-algebraic, we approximate
Program V1 with a hierarchy of sos programs, that yield feasible solutions and, under
additional assumptions, converge towards the optimal solution. The second question
can be answered in the affirmative (Proposition 2.3).

Now consider the following program. It computes a valid inequality for S that is as
close as possible to q ∈ S.

min d(q,H(a, b))

s.t. a 6= 0

aTx ≤ b for x ∈ S
a ∈ Rn, b ∈ R

(V1)

In our setting, natural candidates for S are F or F ∩Lf≤(f(q)). Before we prove some
properties of this program, let us note that Program V1 can also be considered as a
hyperplane location problem. For an overview over such problems, we refer to Chapter
7 in [Sch99]. Let us now interpret solutions of Program V1 geometrically.

Proposition 2.3. For Program V1,

1. Every feasible solution (a, b) yields a valid inequality (aTx ≤ b) for S.

2. Every optimal solution (a, b) yields an inequality (aTx ≤ b) that is tight.

3. Every optimal solution (a, b) with objective value 0 yields an inequality that is tight
at q.

Proof. Claim (1) is clear. To see Claim (2), let (a, b) be an optimal solution and assume
the contrary, i.e., there is b′ < b with (aTx ≤ b′) valid for S. By Lemma 2.2 there is
p ∈ H(a, b) with γ(p− q) = d(q,H(a, b)). Using q ∈ S, we get the inequalities

aT q ≤ b′ < b = aTp, (2.6)

and hence aT (p− q) > 0. Put

p̂ := p+ λ(q − p) with λ :=
b− b′

aT (p− q)
.
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Observe that p̂ is a point on H(a, b′):

b′ = aTp+ b′ − b = aTp+
aT (q − p)
aT (q − p)

(b′ − b) = aTp+ λaT (q − p) = aT p̂.

Note that (2.6) implies λ > 0 and λ ≤ b−b′
b−b′ = 1. Since p̂ − q = (1 − λ)(p − q), all our

observations combine to

d (q,H(a, b′)) ≤ γ(p̂− q) = (1− λ)γ(p− q) < γ(p− q) = d(q,H(a, b)).

Hence (a, b′) is a feasible solution to V1 with better objective value, contradicting opti-
mality of (a, b).

To see Claim 3, note that if the objective value is 0 at (a, b) we know from Lemma 2.2
that d(q, p) = 0 for some p ∈ H(a, b), hence q = p and we conclude q ∈ H(a, b). The
claim follows.

It turns out that feasibility of V1 is sufficient for the existence of optimal solutions.

Theorem 2.4. Let S ⊂ Rn and q ∈ S. Program V1 is feasible if and only if convS ( Rn.
In that case optimal solutions exist.

Proof. Assume first that Program V1 is feasible. Then S ⊂ (aTx ≤ b) for some a ∈ Rn,
a 6= 0, b ∈ R. Now

convS ⊂ conv(aTx ≤ b) = (aTx ≤ b) ( Rn

follows.
To see the converse implication, let z ∈ Rn \ convS. By Theorem 1.13, we may

separate z from convS by a hyperplane H(a, b) with aTx ≤ b for all x ∈ convS, and
this hyperplane is feasible to Program V1.

To see that feasibility implies existence of optimal solutions, we construct an optimal
solution that corresponds to a supporting hyperplane at a suitably chosen point on the
boundary of the closure of the convex hull of S. So let (aTx ≤ b) be an inequality
that is valid for S and thus convS. Moreover, as half-spaces are closed, (aTx ≤ b)
remains valid for C := cl convS, and we conclude C ( Rn . Also, C is convex by
Theorem 1.12. As q ∈ S ⊂ C, C is a nonempty, proper subset of Rn, so its boundary
B := bdC is nonempty. As B is closed, Lemma 2.2 ensures the existence of x1 ∈ B with
d(q, x1) = d(q, B). By Theorem 1.14, there is a supporting hyperplane H1 = H(a1, b1)
to C at x1. We claim that (a1, b1) is optimal.

Suppose it is not, so there are (a2, b2) such that (aT2 x ≤ b2) is valid for S and the
corresponding hyperplane H2 := H(a2, b2) suffices d2 := d(q,H2) < d(q,H1) =: d1.
Again there is x2 ∈ H2 with d(q, x2) = d2. We now distinguish all three possible
locations for x2 and derive a contradiction in every case.

1. x2 in Rn \ C. As q ∈ C, the line segment from x2 to q crosses the boundary B of
C at a point x3. But then d(x3, q) ≤ d2 < d1, contradicting minimality of x1.
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2. x2 ∈ bdC = B. As in the case x2 6∈ C, this contradicts minimality of x1.

3. x2 ∈ intC. Hence there is ε > 0 with x2 +εa ∈ C, and aT2 (x2 +εa2) = b2 +εaT2 a2 >
b2 as x2 ∈ H(a2, b2). Consequently, (aT2 x ≤ b2) is not a valid inequality for C.
On the other hand, S ⊂ {x ∈ Rn : aT2 x ≤ b2} by assumption on (aT2 x ≤ b2).
But Theorem 1.12 then entails C = cl convS ⊂ (aT2 x ≤ b2), contradicting our
observation that (aT2 x ≤ b2) is not valid for x2 + εa2 ∈ C.

We conclude that x2 cannot exist, so neither can (a2, b2). Hence (a1, b1) is an optimal
solution to Program V1.

So far, we have not yet taken into account the presence of an objective function.
Suppose the objective function is given as f : S → R. Now, if q ∈ S and q is not a
local maximizer of f , it can be shown (Proposition A.3) that q lies on the boundary
(with respect to S) of Lf≤(f(q)) ∩ S. In other words and under above-said assumption,
adding the inequality f(x) ≤ f(q) (note that no optimal solutions get lost) pushes q
to the boundary of the (altered) feasible set Lf≤(f(q)) ∩ S. For the convex setting, this
has interesting consequences: By Corollary A.4, there is a supporting hyperplane to
S ∩ Lf≤(f(q)) which is tight at q. We have thus proved:

Proposition 2.5. Let S be a convex set, q ∈ S, f : S → R quasiconvex. If q is not a
local maximum of f , then Program V1 with S replaced by S ∩ Lf≤(f(q)) has an optimal
solution with objective value 0.

52



2.3. Computing valid inequalities

We now want to make Program V1 tractable through a relaxation that can be solved
with a computer. Several obstacles need to be addressed: We lack an analytic, preferably
linear, expression for d(q,H(a, b)), the distance of q to the hyperplane. This is, as shown
in Section 2.3.1, possible if we enforce an additional constraint. This constraint, however,
is non-convex, but using disjunctive arguments, we linearize the constraint nevertheless
in Section 2.3.2. Finally, the requirement that the inequality is valid for x ∈ S possibly
corresponds to infinitely many linear constraints, which we sidestep by restricting to
semi-algebraic S as explained in Section 2.3.3.

2.3.1. Linearization of the objective

The aim of this section is to linearize the objective function d(q,H(a, b)) in Program V1.
The following result is the first step.

Theorem 2.6 (Theorem 1.1 in [PC01]). Let γ be a gauge on Rn and denote its polar
by γ◦. Furthermore, let 0 6= a ∈ Rn and b ∈ R. Then

d(q,H(a, b)) =

{
(b− aT q)/γ◦(a), aT q ≤ b,

(aT q − b)/γ◦(−a), aT q > b.
(2.7)

The variable a enters the fractions in (2.7) in a nonlinear fashion. Moreover, the
constraint a 6= 0 is not closed. Now compare Program V1 with the following program
that avoids a constraint of the form a 6= 0:

min b− aT q
s.t. aTx ≤ b for x ∈ S

γ◦(a) = 1

a ∈ Rn, b ∈ R,

(V2)

It turns out that Programs V1 and V2 are closely related.

Proposition 2.7. Let q ∈ S ⊂ Rn and γ be any gauge on Rn. Then, solutions of Pro-
gram V1 are in correspondence to solutions of Program V2 as follows: The optimal val-
ues coincide. Moreover, if (a, b) is feasible/optimal to V1, then (a,b)

γ◦(a)
is feasible/optimal

to V2. If (a, b) is feasible/optimal to V2, then (a, b) is feasible/optimal to V1.

Proof. By (2.7) and using the fact that aT q ≤ b, Program V1 is the same as

min (b− aT q)/γ◦(a)

s.t. aTx ≤ b for x ∈ S
a 6= 0

a ∈ Rn, b ∈ R.

(2.8)
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Let (a, b) be feasible for Program (2.8). To ease the presentation write a′ = a/γ◦(a)
and b′ = b/γ◦(a). As a 6= 0, H(a, b) = H(a′, b′) and the inequality [a′, b′] is valid for
S. Also, the tuple (a′, b′) is feasible to V2, and the objective values coincide. On the
other hand, every feasible solution to V2 is a feasible solution to (2.8), with coinciding
objective values. This implies the claim about optimal solutions, too.

To summarize, instead of solving V1 we may solve V2.

2.3.2. Linearization of a constraint

Program V2 contains the non-convex constraint

γ◦(a) = 1.

This non-convexity can be circumvented by considering polyhedral gauges: There are
well-known results on the facets of their unit balls which allow us to linearize the con-
straint γ◦(a) = 1. We start with a characterization of the faces of a unit ball in terms
of the extreme points of the polar polyhedron defined in (2.4).

Theorem 2.8 (see, e.g., Proposition 3.2, and Theorems 5.3 and 5.5 in Chapter I.4
in [NW88]). If P is a full-dimensional and bounded polyhedron and 0 is an interior
point of P then

P =
⋂
k∈K

{
x ∈ Rn : πTk x ≤ 1

}
where {πk}k∈K are the extreme points of P ◦. The inequalities πTk x ≤ 1 describe exactly
the facets of P .

Now suppose γ is a polyhedral gauge. Denote its fundamental directions – that is, the
extreme points of its unit ball B – by v1, . . . , vl ∈ Rn, and the unit ball of the polar gauge
γ◦ by B◦. Then, it is well-known that the facets of B◦ are Ej =

{
x ∈ B◦ : vTj x = 1

}
,

j = 1, . . . , l. This can be seen as follows:
As γ is a polyhedral gauge, so is the polar gauge γ◦. This implies that B◦ is a

polyhedron which is is full-dimensional, bounded, with 0 in its interior. Thus, B◦ satisfies
the assumptions of Theorem 2.8, so every facet of B◦ is given by one of the sets {x ∈
B◦ : π̂Tk x = 1} where {π̂k}K̂ are the extreme points of B◦◦. But using the fact that
B◦◦ = B – this holds for all closed, convex sets containing the origin [Roc70, Th. 14.5]
– we have {π̂k}k∈K̂ = {v1, . . . , vl}, so every facet of B◦ corresponds to one of the Ej.

We use this characterization to write the boundary of B◦, in other words the non-
convex set {a ∈ Rn : γ◦(a) = 1}, with disjunctive linear constraints.

Corollary 2.9. Let γ be a polyhedral gauge and denote its fundamental directions by
v1, . . . , vl ∈ Rn. Denote the unit ball of γ◦ by B◦. Then

bdB◦ = {x ∈ Rn : γ◦(x) = 1} =
l⋃

j=1

Ej, (2.9)

where Ej =
{
x ∈ B◦ : vTj x = 1

}
, j = 1, . . . , l.
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Proof. The first equality in (2.9) is clear. As the boundary of every polyhedron is the
union of its facets, which are the Ej in this case, the second equality in (2.9) follows.

With this corollary, we note that V2 can be disjunctified. Here, a disjunctification of
a program min{f(x) : x ∈ ∪k∈KMk} – where K and Mk are sets and f : ∪k∈KMk → R
is any function – means rewriting it as |K| programs min{f(x) : x ∈Mk}, k ∈ K.

Proposition 2.10. Let q ∈ S ⊂ Rn and γ be a polyhedral gauge on Rn with fundamental
directions v1, . . . , vl ∈ Rn. Consider the j = 1, . . . , l programs

min b− aT q
s.t. vTi a ≤ 1 for i ∈ {1, . . . , l}, i 6= j

vTj a = 1

aTx ≤ b for x ∈ S
a ∈ Rn, b ∈ R.

(V3j)

Then the programs V3j are a disjunctification of V2.

Proof. Immediate from Corollary 2.9.

Remark 2.11. Let the assumptions of Proposition 2.10 hold. Disjunctification entails
as usual the following statements:

1. Program V2 has feasible solutions if and only if V3j has for some j ∈ [l].

2. Denote the optimal value of Program V2 by z∗ and for j ∈ [l] denote the optimal
value of Program V3j by z∗j . Then z∗ = minj∈[l] z

∗
j .

3. If (a, b) is an optimal solution of V2, there is j ∈ [l] such that (a, b) is an optimal
solution to V3j.

4. If (a, b; j0) is an optimal solution to V3j with z∗j0 = minj∈[l] z
∗
j , then (a, b) is an

optimal solution to V2 (with the same objective value).

2.3.3. An approximative solution to semi-algebraic sets

The aim of this section is to state an approximating hierarchy to the Programs V3j in
terms of sos programming. Note that the constraint

aTx ≤ b for x ∈ S

is semi-infinite if S contains infinitely many points. There is much literature on semi-
infinite programming problems. Classical overview articles are, e.g., [HK93], [RR98]; a
more recent survey is [Ste12]. A bi-level approach is explored in [Ste13]. Also, several
numerical solution methods exist, for an overview, we refer to [RG98], [LS07] [VRSS08].

However, in this work we take a different route. Let us explore how semi-infinite
constraints can be sidestepped by the requirement of semi-algebraic S and a polyhedral
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gauge γ. For example when considering MIPP, S is semi-algebraic if S = F or if
S = F ∩Lf≤(z) for some z ∈ R. To avoid such case distinctions, we use an arbitrary basic
closed semi-algebraic set S = K(h1, . . . , hs) instead of the one given by the constraints
and the objective, say, S = K(g1, . . . , gr) or S = K(g1, . . . , gr, z − f) and so forth.

With this in mind, we consider the following hierarchy of programs.

min b− aT q
s.t. vTi a ≤ 1 for i ∈ [l], i 6= j

vTj a = 1

b−
n∑
i=1

aiXi ∈M (h1, . . . , hs) [k]

a ∈ Rn, b ∈ R.

(VRj,k)

where k ∈ N, h1, . . . , hs ∈ R[X1, . . . , Xn] and q ∈ S := K(h1, . . . , hs), and v1, . . . , vl ∈ Rn

be given.
Before we proceed, let us convince ourselves that this formulation is within the scope

of sos programming.

Observation 2.12. Program VRj,k is a valid sos program.

Proof. Linear programming constraints can be used in sos programming constraints,
cf. (1.17). Also, the containment constraint involving the quadratic module is allowed
in sos programming, cf. (1.16).

The next proposition shows that feasible solutions to Program VRj,k yield feasible
solutions to Program V3j.

Proposition 2.13. Let h1, . . . , hs ∈ R[X1, . . . , Xn], S := K(h1, . . . , hs) and v1, . . . , vl ∈
Rn be given. If (a, b; j, k) is feasible to VRj,k, some j ∈ [l], k ∈ N, then (a, b; j) is feasible
to V3j.

Proof. Let (a, b; j, k) feasible to VRj,k. Feasibility implies that

b−
n∑
i=1

aiXi ∈M (h1, . . . , hs) [k],

which entails aTx ≤ b on S = K(h1, . . . , hs) by Observation 1.18. Hence (a, b; j) is
feasible to V3j.

The next theorem shows that we get valid inequalities that are, at least asymptotically,
tight if the corresponding quadratic module M(h1, . . . , hs) is Archimedean. Note that
for the important special cases S = F or S = F ∩ Lf≤(z)) for some suitable z ∈ R, we
have given characterizations in terms of the MIPP domain that ensure the Archimedean
property in Propositions 1.22, 1.23 and 1.24.
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Theorem 2.14. Let h1, . . . , hs ∈ R[X1, . . . , Xn] and q ∈ S := K(h1, . . . , hs). Suppose
further that M(h1, . . . , hs) is Archimedean. Also, let a polyhedral gauge γ on Rn with
fundamental directions v1, . . . , vl ∈ Rn be given. Then, it holds:

1. There is j ∈ [l] such that Program VRj,k is feasible for eventually all k.

2. Fix j ∈ [l]. Denote the optimal value of V3j by z∗j and put z∗ = minj z
∗
j . For k ∈ N

denote the optimal value of VRj,k by zj,k and put zk = minj zj,k. Then zk ↘ z∗ for
k →∞.

Proof. To see Claim 1, we first show that V3j has a feasible solution. To this end note
that M(h1, . . . , hs) Archimedean implies that S = K(h1, . . . , hs) is compact (Corol-
lary 1.19). Consequently, convS is a proper subset of Rn and by Theorem 2.4 an
optimal solution (a, b) to V1 exists. By scaling the optimal solution if necessary, we may
further assume that γ◦(a) = 1, hence (a, b) is optimal for V2 by Proposition 2.7. By
Remark 2.11, there is j ∈ [l] such that (a, b; j) is optimal for V3j. Fix ε > 0. Then
b + ε −

∑n
i=1 aixi > 0 for x ∈ S = K(h1, . . . , hs), and by Theorem 1.20 there is k0 ∈ N

with b+ ε−
∑n

i=1 aiXi ∈M(h1, . . . , hs)[k] for all k ≥ k0. Hence (a, b+ ε; j, k) is feasible
for VRj,k for all k ≥ k0, and Claim 1 is proved.

To see Claim 2, fix ε > 0. We have just proved that z∗ = z∗j0 , some j0 ∈ [l], is
finite. Denote some corresponding optimal solution by (a, b; j0). Furthermore we have
just proved that there is kε ∈ N such that (a, b + ε; j0, kε) is a feasible solution of
Claim VRj,k. Hence

zkε = min
j
zj,kε ≤ zj0,kε ≤ b+ ε− aT q = z∗j0 + ε = z∗ + ε

and as z∗j ≤ zj,kε by Proposition 2.13, we have z∗ ≤ zkε ≤ z∗ + ε, hence zkε → z∗ for
ε→ 0.

Since the sets M(h1, . . . , hs)[k] are increasing in k, the values zj,k are monotonically
decreasing in k for j fixed. Hence the values zk = minj zj,k are monotonically decreasing.
Together with the observation zkε → z∗ for ε→ 0 we find zk ↘ z∗ for k →∞.

To summarize, we have shown that the problem to find a tight valid inequality for S,
using a gauge γ and a known feasible point q ∈ S as stated in V1, can be approximated
with sos programming if the set S is semi-algebraic. S is (basic closed) semi-algebraic
if S = M(h1, . . . , hs) for some polynomials h1, . . . , hs ∈ R[X1, . . . , Xn]. The approx-
imating hierarchy is guaranteed to converge if the quadratic module M(h1, . . . , hs) is
Archimedean. This in turn is the case if f or −gi are coercive, related sub- and suplevel
sets are compact.
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2.4. Cuts from valid linear inequalities

In this section we approach the question on how to generate linear cuts from given valid
linear inequalities. Again, we consider the problem in more generality by not restricting
our considerations to the feasible set F or F intersected with a sublevel set, but more
generally to some deputy set S ⊂ Rn. Our focus is on the all-integer case I = [n].

2.4.1. A single valid linear inequality

The first approach for the all-integer variant is based on the following observation that
allows to cut off q if it is sufficiently exposed and a tight valid inequality with rational
data is available. As a notation, let gcd(a) of a ∈ Zn denotes the greatest common
divisor of a.

Proposition 2.15. Let S ⊂ Rn and (aTx ≤ b) be a valid inequality for S, where a ∈ Zn
and b ∈ R. Then (

a

gcd(a)

)T
x ≤

⌊
b

gcd(a)

⌋
for x ∈ S ∩ Zn. (2.10)

Prior to the proof, let us motivate division by gcd(a) in Proposition 2.15 before round-
ing down by showing that it strengthens the cut.

Lemma 2.16. Let b ∈ R and g ∈ N. Then⌊
b

g

⌋
≤ bbc

g
.

Proof. Clearly, bb/gc ≤ b/g. Thus, gbb/gc ≤ b, and since the right hand side is integer,
flooring on both sides yields

gbb/gc = bgbb/gcc ≤ bbc

and hence division by g gives bb/gc ≤ bbc/g, proving the claim.

For the proof of Proposition 2.15, let us recall the following fact:

Lemma 2.17 (Integer hull of a rational half-space, see, e.g., p. 15 in [Eis00]). Let a ∈ Zn
with gcd(a) = 1 and b ∈ R. Consider the polyhedron

P := P (a, b) = {x ∈ Rn : aTx ≤ b}.

Then

PI = {x ∈ Rn : aTx ≤ bbc}

We can now prove the proposition.
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Proof of Proposition 2.15. Let (aTx ≤ b) be a valid inequality for S. Equivalently,(
a

gcd(a)

)T
x ≤ b

gcd(a)
for x ∈ S. (2.11)

Put P := P (a, b). Since gcd(a/ gcd(a)) = 1, Lemma 2.17 applies to the half-space
defined by the valid inequality (2.11). On the other hand, since the inequality is valid,
S ⊂ P , hence

conv(S ∩ Zn) ⊂ conv(P ∩ Zn) = PI = P

(
a

gcd(a)
,

⌊
b

gcd(a)

⌋)
.

Hence, the inequality in (2.10) is valid for S ∩ Zn. The claim follows.

This gives the first linear cut result.

Proposition 2.18. Let S ⊂ Rn. Let (aTx ≤ b) be a valid inequality for S, a ∈ Zn with
gcd(a) = 1, b ∈ R. If q ∈ S satisfies aT q > bbc, then (aTx ≤ bbc) is a linear cut that
cuts q from S ∩ Zn.

Proof. This follows readily from Proposition 2.15.

We consider now how the presence of additional linear constraints can be exploited to
generate a cut.

2.4.2. Presence of nonnegativity constraints

If S is moreover contained in the positive orthant, e.g. if the constraint x ≥ 0 is present
in the description of S, then for separating q ∈ S from S ∩ Zn, given a valid inequality
(aTx ≤ b) for S, it is enough to separate q from the integer hull of

P+(a, b) = {x ∈ Rn : aT ≤ b, x ≥ 0}.

It seems that no explicit description of the integer hull of P+(a, b) is available. This is
not too surprising: In [Eis00], the explicit linear description of the integer hull of a half-
space (Lemma 2.17) and the integer hull of the intersection of two half-spaces is outlined
(p. 15 in [Eis00]).4 However, Eisenbrand concludes (p. 16 in [Eis00]) “There does not
seem to exist an elementary method to construct the linear description of the integer
hull formed by three or more half spaces in polynomial time. It is possible though with
an application of Lenstra’s method ([LJ83]) as proposed by Cook, Hartmann, Kannan
& McDiarmid ([CHKM92]).”

This motivates to look at a more elementary approach. Since we have the additional
constraint x ≥ 0, we do not need to restrict to the case of half-spaces with integer normal
as in Proposition 2.15 , but may round down the coefficients. Formally, we have the
following fact, which uses the well-known key observation leading towards Gomory cuts:

4Note that P+(a, b) is an intersection of n+ 1 half-spaces.
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Proposition 2.19. Let S ⊂ Rn
≥0 and let (aTx ≤ b) be valid for S. Then

(bac)Tx ≤ bbc for x ∈ S ∩ Zn.

Proof. Let x ∈ Rn
≥0. Hence we find

∑n
i=1(baic − ai)xi ≤ 0. On the other hand, if x is

also in S, we have the inequality
∑n

i=1 aixi ≤ b, and adding both yields

n∑
i=1

baicxi ≤ b for x ∈ S.

Since baic are integers and Z is a ring, the sum on the left is integer for integer x. Hence

n∑
i=1

baicxi ≤ bbc for x ∈ S ∩ Zn,

proving the claim.

Given our valid inequality (aTx ≤ b), we saw in (2.10) and Lemma 2.16 that it can be
advantageous to scale it before rounding the inequality down. This idea is formalized in
the following corollary.

Corollary 2.20. Let S ⊂ Rn
≥0 and let (aTx ≤ b) be valid for S. Then

(buac)Tx ≤ bubc for x ∈ S ∩ Zn and u ∈ R>0.

Proof. Let u ∈ R>0. The inequality (aTx ≤ b) is valid for S if and only if ((ua)Tx ≤ ub)
is valid for S. The claim follows from Proposition 2.19.

This yields the next linear cut result.

Proposition 2.21. Let S ⊂ Rn
≥0 and q ∈ S. Let (aTx ≤ b) be a valid inequality for S.

If there is u ∈ R>0 such that q satisfies

(buac)T q > bubc (2.12)

then (buac)Tx ≤ bbc) is a linear cut that cuts q from S ∩ Zn.

Now if we are given q ∈ S that we wish to cut off with a linear cut, and since
Corollary 2.20 holds for all u ∈ R>0, it is only natural to ask for the choice of u with
the “deepest cut” for q. Let us formulate this an optimization problem. Since we have
a cut if and only if (buac)T q − bubc is positive, we maximize this expression. It turns
out that the following optimization problem models this task (Section 2 in [FL07]).

max zT q − y
zi ≤ uai, i ∈ [n]

ub− 1 < y

u > 0

(z, y) ∈ Zn × Z
u ∈ R

(2.13)
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The variables can be motivated as follows: Essentially, zi = buaic and y = bubc. The
authors show [FL07] that q can be cut off if and only if the maximum of Program (2.13)
is positive. Hence, we find:

Proposition 2.22. Let S ⊂ Rn
≥0 and q ∈ S. Let (aTx ≤ b) be a valid inequality for S.

There is u ∈ R>0 which cuts off q as in (2.12) if and only if the Program (2.13) has a
positive maximum.

We close this chapter with a note on possible directions of further research. Suppose
some of the constraint functions in MINLP are linear. Extending the idea of Proposi-
tion 2.22, it makes sense to additionally use these linear constraints for the cut genera-
tion by incorporating them in a separation program similar to (2.13). This amounts to
separation from the Chvátal closure and is also treated in [FL07].

Another interesting question is how linear cuts can be generated in the presence of
mixed-integer constraints. The associated separation problem from the so-called MIR
closure is, however, more difficult, since the objective of the auxiliary program is non-
linear [DGL10].
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3. Norm bounds on optimal solutions

This chapter is all about the computation of upper bounds on the norm of optimal
solutions of MINLP. This idea is formalized in the concept of a norm bound and uses a
known feasible point. Computer experiments show that they work in practice, and we
indicate that there are other areas in mathematics for which they can be used.

Section 3.1 gives our definition of norm bounds. We present a result from the literature
for polynomial objective functions with positive definite leading form, a strong form of
coercivity, that can be interpreted as a norm bound. For this class of objective functions,
we give a new norm bound. It can be proved that our bound is never worse and strictly
better in dense instances. Our norm bound makes extensive use of lower bounds on the
homogeneous components of the objective restricted to a sphere, and we discuss in detail
how such lower bounds can be derived. In this section we also explore how integrality
information can be used to tighten the norm bounds.

Section 3.2 is about special cases and applications to other fields. It starts with a
discussion of the convex quadratic case. The applications we give are so-called search
bounds for Diophantine equations and a ball containing a real variety, both illustrated
with an example.

Section 3.3 ends the chapter, where we evaluate our norm bounds on random in-
stances. We start this with a discussion on how to generate polynomials with positive
definite leading form, a necessary input to our norm bound and the one from the litera-
ture. Then, we proceed by comparing the volume of the corresponding norm balls. The
experiments show that our norm bound outperforms the norm bound from the literature
by orders of magnitude.
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3.1. Introducing norm bounds

If a norm ball that contains all optimal solutions of MINLP is known, the problem is
accessible to branch and bound, at least in the all-integer case. This is the primary
motivation for this chapter.

A ball containing all optimal solutions corresponds to a valid nonlinear inequality for
the set of optimal solutions. In this regard they supply norm bounds. The name norm
bound catches the notion that they provide a bound on the norm of all feasible solutions
with a smaller objective value than a known feasible solution, a fortiori on all optimal
solutions. The formal definition allows for a “reference point” x̄ other than zero and is
the following.

Definition 3.1. Let q ∈ FI , a norm ‖ · ‖ on Rn and x̄ ∈ Rn be given. A number
R(q, x̄) ∈ R is a norm bound for f with respect to the feasible solution q, the norm ‖ · ‖
and the point x̄ if the following holds: For all x ∈ FI ,

f(x) ≤ f(q) =⇒ ‖x̄− x‖ ≤ R(q, x̄). (3.1)

If ‖ · ‖ is merely a seminorm, it is equally possible to define a seminorm bound, but
in this work we focus on norm bounds. Also, most results are concerned with the case
x̄ = 0, and we write R(q) instead of R(0, q). In this case, if no confusion seems possible,
we will furthermore write R instead of R(q) and also suppress the norm in the notation.

Norm bounds boil down to a valid inequality for MINLP with an additional constraint.
Explicitly, a norm bound R(x̄, q) gives rise to the valid inequality ‖x̄− x‖ ≤ R(x̄, q) for
the program

min f(x)

s.t. gk(x) ≥ 0, k = 1, . . . , r,

f(q) ≥ f(x),

xi ∈ Z, i ∈ I,
x ∈ Rn.

(3.2)

Hence, any feasible solution with norm larger than R cannot be optimal, as the ob-
jective value is worse than f(q), and said feasible solution may thus be discarded in the
solution process.

The smallest possible norm bound, given x̄ ∈ Rn, q ∈ FI and a norm, is thus given
by solving the mixed-integer nonlinear program

max ‖x̄− x‖
s.t. gk(x) ≥ 0, k = 1, . . . , r,

f(q) ≥ f(x),

xi ∈ Z, i ∈ I,
x ∈ Rn.

(3.3)

Since this program can be difficult to solve, we compute upper bounds on the optimal
value of Program (3.3) in this chapter. We note that any finite upper bound on the
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optimal value of Program (3.3) is a norm bound for f with respect to q, the norm ‖ · ‖
and x̄.

A suitable form of coercivity

It turns out that it is quite easy to compute norm bounds on MINLP if f satisfies a strong
type of coercivity condition, namely, if f has a positive definite leading form. In the
remainder of Section 3.1, we assume that f has a positive definite leading form (and that
a feasible solution is known). In other words, we impose a growth condition on f , which
is a stronger form of coercivity as the former implies the latter, cf. Proposition 1.32.

Now let f ∈ R[X] have a positive definite leading form fd. Thus, by (1.3), this is
equivalent to the minimum of fd on the sphere Sn−1

p , given by c∗d = minx∈Sn−1
p

fd(x), being
positive. In the following we do not assume knowledge of c∗d, which may be difficult to
compute as deciding nonnegativity of a polynomial is NP hard in general (Theorem 1.38),
but assume knowledge of a lower bound cd on the minimum with 0 < cd ≤ c∗d instead.
It is then possible to give norm bounds.

3.1.1. Norm bounds, old and new

A norm bound from the literature

We only found one result in the literature that can be interpreted as a norm bound. The
norm under consideration in the result is the 2-norm; the result itself is a special case
of a more general theorem, which assumes the lower bound cd on c∗d holds on Sn−1

2 and
that q = 0 is feasible.

Theorem 3.2 (see Conclusions 5.5 in [Mar03]). Let f ∈ R[X] satisfy fd(x) ≥ cd > 0
for all x ∈ Sn−1

2 . Put

Rlit := max

(
1,

1

cd

d−1∑
j=1

‖fj‖1

)
(3.4)

Then f(x) ≤ f(0) implies ‖x‖2 ≤ Rlit for all x ∈ Rn.

Laurent gives a more elementary proof for Marshall’s bound (3.4) by showing f(x) >
f(0) for ‖x‖2 > Rlit directly, see Lemma 7.12 in [Lau09] As 0 is not necessarily a feasible
solution, we generalize her argument so that it takes the form of (3.1) (with x̄ = 0). As
the constant term of f does not enter Rlit, we have to modify the estimate in [Lau09].

Theorem 3.3. Let f ∈ R[X] satisfy fd(x) ≥ cd > 0 for all x ∈ Sn−1
2 . Also, let q ∈ Rn.

Put

R′lit := max

(
1,

1

cd

(
f(q)− f(0) +

d−1∑
j=1

‖fj‖1

))
. (3.5)

Then f(x) ≤ f(q) implies ‖x‖ ≤ R′lit for all x ∈ Rn.
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Proof. Introduce the notation f<d := f − fd. Let f =
∑

α aαX
α and x ∈ Rn with

f(x) ≤ f(q). If ‖x‖2 ≤ 1, we are done, so we may assume ‖x‖2 > 1. Then

cd · ‖x‖d2 ≤ fd

(
x

‖x‖2

)
‖x‖d2 = fd(x) = f(x)− f<d(x) ≤ f(q)− f<d(x)

= f(q)− f(0)−
∑

0<|α|<d

aαx
α ≤ f(q)− f(0) +

∑
0<|α|<d

|aα||xα|

As |xα| ≤ ‖x‖|α|2 for ‖x‖2 ≥ 1, division by ‖x‖d−1
2 yields

cd · ‖x‖2 ≤
f(q)− f(0)

‖x‖d−1
2

+
∑

0<|α|<d

|aα|
‖x‖|α|2

‖x‖d−1
2

≤ f(q)− f(0) +
∑

0<|α|<d

|aα| = f(q)− f(0) +
d−1∑
j=1

‖fj‖1.

It is immediate that (3.5) specializes to (3.4) for q = 0.

A new bound

However, for non-sparse polynomials, this bound may get quite large. Within branch and
bound approaches it is crucial to find a small bound R to reduce the number of feasible
solutions – scaling R by a constant C > 0, the number of integer points that satisfy the
norm bound scales with a factor of (roughly) Cn. We hence suggest a different approach:
In the following theorem, we still compute R ≥ 0 with f(x) > f(q) for ‖x‖ > R, but
instead of bounding all homogeneous components simultaneously, we compute constants
cj such that

cj ≤ c∗j = min
x∈Sn−1

p

fj(x)

on a sphere Sn−1 corresponding to a given norm, that is, Sn−1 = {x ∈ Rn : ‖x‖ = 1}.

Theorem 3.4. Let f ∈ R[X1, . . . , Xn] with deg f = d > 0 and q ∈ Rn. Moreover, let
‖ · ‖ be a norm on Rn with unit sphere Sn−1. There are cj ∈ R with

fj(x) ≥ cj for all x ∈ Sn−1, j ∈ [n].

Suppose that cd > 0. Define a univariate polynomial P : R→ R via

P (λ) :=
d∑
j=0

cjλ
j,

where c0 := f(0) − f(q). Then P has nonnegative real roots, and denote the largest of
them by R(q).
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1. Then f(x) ≤ f(q) implies ‖x‖ ≤ R(q) for all x ∈ Rn.

Suppose further that x is integer and ‖ · ‖ is a p-norm for some p ∈ N.

2. Then f(x) ≤ f(q) implies

‖x‖p ≤
p
√
bR(q)pc,

as well as

|xi| ≤ bR(q)c for i ∈ [n].

Proof. We begin with Claim 1. By compactness of the sphere and continuity, every fj
is bounded below by some cj ∈ R. We observed in (1.3) that cd > 0 implies positive
definiteness of fd, hence d is even. Using homogeneity, we find for x ∈ Rn that fj(x) ≥
cj‖x‖j, j ∈ [n], and

f(x)− f(q) =
d∑
j=0

fj(x)− f(q) =
d∑
j=1

fj(x) + f(0)− f(q) ≥
d∑
j=0

cj‖x‖j = P (‖x‖) . (3.6)

This implies P (‖q‖) ≤ 0. The assumption cd > 0 also yields limλ→+∞ P (λ) = +∞.
These two observations, together with the intermediate value theorem, imply that P
has nonnegative real roots as well as P (λ) > 0 for λ > R(q). Thus, eq. (3.6) forces
f(x) > f(q) for ‖x‖ > R(q).

To see Claim 2, suppose further that x is integer and ‖ · ‖ = ‖ · ‖p for some p ∈ N. Let
x ∈ Rn with f(x) ≤ f(q). We have just seen that then ‖x‖p ≤ R(q) holds, equivalently,∑n

i=1 |xi|p ≤ R(q)p. The p-th power of the p-norm is integrality preserving, hence

n∑
i=1

|xi|p ≤ bR(q)pc.

The claim p
√∑n

i=1 |xi|p ≤
p
√
bR(q)pc follows. Finally, since ‖x′‖∞ ≤ ‖x′‖p for all x′ ∈ Rn,

we have ‖x‖∞ ≤ R(q), or |xi| ≤ R(q) for i ∈ [n]. Since the modulus is integrality
preserving, the last claim follows.

Note that Statement (2) of Theorem 3.4 shows how integrality can be used to tighten
the bounds. It turns out that there are more sophisticated arguments that, based on
integrality, can be used to strengthen the norm bound further. We defer this discussion
to Section 4.3.

Let us state that the larger the cj the smaller the resulting norm bound R(q).

Proposition 3.5. Let P =
∑n

j=0 cjλ
j, P̃ =

∑n
j=0 c̃jλ

j, such that cj ≥ c̃j, and define

R(q) and R̃(q) as in Theorem 3.4. Then R(q) ≤ R̃(q).
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Proof. W.l.o.g., it suffices to consider the case that cj = c̃j for j 6= k and ck > c̃k for
some k ∈ {1, . . . , n}. Now P (λ)− P̃ (λ) = (ck − c̃k)λk > 0 for λ > 0 and by assumption
on ck, c̃k. Thus, P (λ) > P̃ (λ) for λ > 0, hence R(q) < R̃(q) – unless R̃(q) = 0. In this
case R(q) = R̃(q) = 0.

Proposition 3.5 has two consequences: The norm bound gets better the smaller the
incumbent upper bound f(q) on the minimum gets, since c0 = f(0) − f(q). Moreover,
the smallest norm bound computable with the method of Theorem 3.4 is attained if
cj = c∗j , j ∈ [n], where c∗j = minx∈S fj(x).

Comparison of the norm bounds

Before we present different methods of computing valid cj, we compare R and Rlit. In
the experiments in Section 3.3, we show that our norm bound R is drastically smaller
than Rlit. We prove in the next proposition that our norm bounds are never larger and,
except for special cases, are actually strictly smaller than the bound from the literature.
To this end let us fix a basic estimate.

Lemma 3.6. Let f ∈ R[X1, . . . , Xn]. Fix p ∈ [1,∞], and denote by f ∗ the optimal value
of the program

min f(x)

x ∈ Sn−1
p .

Then
f ∗ ≥ −‖f‖1.

Proof. Write f in multi-index notation as

f =
∑

α∈A(f)

aαX
α.

As ‖x‖p ≤ 1 implies ‖x‖∞ ≤ 1 and hence |xα| ≤ 1 for α ∈ Nn
0 , one has

f(x) =
∑

α∈A(f)

aαx
α ≥

∑
α∈A(f)

−|aα||xα| ≥
∑

α∈A(f)

−|aα| = −‖f‖1 (3.7)

for x ∈ Sn−1
p .

We can now show the relation between R and Rlit.

Proposition 3.7. Let f with deg f = d > 0 and cd ∈ R with

fd(x) ≥ cd > 0 for all x ∈ Sn−1
2 ,

and q ∈ Rn. Compute R ∈ [0,∞) as in Theorem 3.4 for

cj := −‖fj‖1, j ∈ [d− 1], and c0 := f(q)− f(0), (3.8)

and compute R′lit ∈ [1,∞) as in (3.5). Then R ≤ R′lit. If moreover d > 2 and there is a
coefficient aα 6= 0 of f with |α| < d−1, then R < R′lit for R 6= 1 and R = R′lit for R = 1.
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Proof. Observe that by Lemma 3.6, the numbers cj = −‖fj‖1 in (3.8) are indeed valid
lower bounds for fj on Sn−1

2 , j ∈ [n− 1]. We prove the case d > 2 and aα 6= 0 for some
α with |α| < d− 1. The claim obviously holds in case R < 1. For the cases R = 1 and

R > 1, define P (λ) =
∑d

j=0 cjλ
j as before and let P̃ (λ) = cdλ

d +
(∑d−1

j=0 cj

)
λd−1. Then

we have

P (λ) > P̃ (λ) for λ > 1, P (λ) = P̃ (λ) for λ = 1 (3.9)

as cj ≤ 0 for j = 1, . . . , d − 1 and one ck < 0 for some k ∈ {1, . . . , d − 2} by the
assumption on aα. By definition, the largest nonnegative real root of P is R, and the
largest nonnegative real root R̃ of P̃ is

R̃ = − 1

cd

d−1∑
j=0

cj =
1

cd

∑
0<|α|<d

|aα| =
1

cd

(
f(q)− f(0) +

n−1∑
j=1

‖fj‖

)

and, by definition, R′lit = max(1, R̃). If R = 1, we infer from (3.9) that 0 = P (1) = P̃ (1),
so R′lit = 1. In case R > 1, we infer from (3.9) that 0 = P (R) > P̃ (R), so R < R′lit as
P̃ (λ) → +∞ for λ → +∞. The proof for the two remaining cases, d = 2 or all aα = 0
for |α| < d− 1, is similar as P = P̃ in these cases.

3.1.2. Computation of the constants cj

We now present different ways of computing bounds cj on

c∗j = min
x∈Sn−1

fj(x).

The first approach is the only one that yields c∗j – the others yield, in virtually all cases,
only lower bounds cj ≤ c∗j – and consists in solving a hard continuous problem. The
second approach gives lower bounds by sos programming. In the third approach we
consider sos-free methods.

Constrained polynomial optimization

By Proposition 3.5, the best possible bounds are found by solving the constrained poly-
nomial optimization problem

c∗j = min fj(x)

x ∈ Sn−1

for j ∈ [n], for a sphere Sn−1 corresponding to a norm on Rn. This problem is NP-hard
in general: If c∗j > 0, then fj > 0 by homogeneity. So this approach involves solving
several hard problems, as, e.g., deciding positive definiteness of fj, j even, is NP-hard
(Theorem 1.37).
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Approximations via sos programming

Standard approximation of the constrained program. If the sphere is given by a
p-norm with p ∈ 2N, then the arguably easiest way to find the cj, j ∈ [n], by sos
programming is to minimize fj on the sphere Sn−1

p . To this end, consider the following
program with parameter k′ ∈ N:

max y

s.t. fj − y − q ·

(
1−

n∑
i=1

Xp
i

)
∈ Σ

q ∈ R[X], deg q ≤ k′

y ∈ R.

(3.10)

Note that this is a valid sos program by (1.15). We use an arbitrary polynomial q
instead of an sos polynomial as we deal with equality constraints, which is a standard
technique in sos programming, see, e.g., Section 2 in [PPP02]. It turns out that the
optimal values of the hierarchy converge to the constant c∗j .

Proposition 3.8. For f ∈ R[X1, . . . , Xn] and j ∈ [n], consider the hierarchy (3.10) and
denote the optimal values by y(k′) and let

c∗j = min
x∈Sn−1

p

fj(x).

Then

y(k′) ↗ c∗j

for k′ →∞.

Proof. For p ∈ 2N, the constraint ‖x‖p = 1 is equivalent to two semi-algebraic con-
straints given by g1 := 1 −

∑n
i=1X

p
i and g2 :=

∑n
i=1X

p
i − 1. Now, note that the usual

quadratic module containment constraint in (1.19) rewrites via

σ1g1 + σ2g2 = (σ1 − σ2)g1 = qg1,

some q ∈ R[X]. Note that moreover any polynomial can be written as the difference of
sums of squares, e.g. using 4q = (q + 1)2 − (q − 1)2.

As p ∈ 2N, the quadratic module M(1 −
∑n

i=1 X
p
i ,
∑n

i=1 X
p
i − 1) is Archimedean by

Theorem 1.17 (4). Hence, from Corollary 1.27, the optimal objective values of (3.10)
converge, for k′ →∞, to c∗j .

For completeness, let us note that this is, in principle, also possible for odd p, but
requires to consider 2n constraints as the modulus occurring in odd p-norms cannot be
modeled as easily as for even p, that is, by squaring. We will not pursue this idea further.
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A lower bound for one of the forms. If the norm under consideration is ‖ · ‖p, where
p ∈ 2N and p ≤ deg(f), a lower bound on the form fp can be computed via the program

max γ

s.t. fp − γ ·
n∑
i=1

Xp
i ∈ Σ,

cf. [Nie12].

Sos-free methods

In the remainder we present lower bounds cj on the best constants c∗j that do not rely
on sos programming. We start with a somewhat rough estimate which we successively
refine.

Using a basic estimate. We saw in (3.7) that the choice

cj = −‖fj‖1 (3.11)

gives valid lower bounds for any p ∈ [1,∞]. However, this bound is rather rough and
only useful for the lower order forms, that is those fj with j < d.

Improvement by term-wise optimization. The first improvement on (3.11) comes
from the observation that we can replace the estimate |xα| ≤ 1 on Sn−1

p in Lemma 3.6
with |xα| ≤ x̂α, where x̂ is a continuous maximizer of the function Sn−1

p → R, x 7→ xα.
We give a closed form for x̂ in the following lemma.

Lemma 3.9. Let 0 6= α ∈ Nn
0 and p ∈ [1,∞). Then, the monomial Xα attains its

maximum on Sn−1
p at x̂ with coordinates

x̂i = p

√
αi∑n
i=1 αi

, i = 1, . . . , n. (3.12)

Proof. Maximizers exist by compactness of the sphere. At first, we show the auxiliary
claim that it suffices to prove the assertion for αi ≥ 1 for all i. To this end, denote
the zero entries of α by z1, . . . , zr and the positive entries of α by p1, . . . , ps. For every
maximizer x̃, x̃z1 = . . . = x̃zr = 0. Hence, we may as well optimize Xα over the set

{x ∈ Rn : ‖x‖p = 1, xz1 = . . . = xzr = 0}
={x ∈ Rn : ‖(xp1 , . . . , xps)‖p = 1, xz1 = . . . = xzr = 0}
∼={x ∈ Rs : ‖x‖p = 1} = Ss−1 = Sn−1−r.

This means optimization of Xα over Sn−1
p is equivalent to optimization of X(αp1 ,...,αps )

over Sn−1−r
p , and the auxiliary claim is proved. By symmetry of the sphere, we may

further assume that x ≥ 0. Even more, we may exclude equality since by the auxiliary
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claim, all αi > 0, hence x̃i > 0 for every maximizer x̃. So it suffices to find a maximizer
of Xα over

S+ := {x ∈ Sn−1
p : x1 > 0, . . . , xn > 0}

– and in this form, the problem is accessible to Lagrange multipliers: At a critical point
x ∈ S+ there is λ ∈ R such that

∇(xα) = (α1x
α1−1
1 xα2

2 · · ·xαnn , . . . , αnx
α1
1 x

α2
2 · · ·xαn−1

n ) = λ(pxp−1
1 , . . . , pxp−1

n )

where we used the equivalence of ‖x‖p = 1 to
∑n

i=1 x
p
i = 1 if all xi > 0. Equivalently,

λ = α1x
α1−p
1 xα2

2 · · ·xαnn = · · · = αnx
α1
1 · · ·xαn−pn . (3.13)

Fix some k ∈ {1, . . . , n}, and (3.13) gives xpi = αi
αk
xpk for i 6= k. As x suffices the

constraint,

1 = xpk +
∑
i 6=k

αi
αk
xpk ⇐⇒ xpk =

αk∑
i αi

.

This proves that the only critical point of Xα on S+ is x̂, which must be the maximizer.

Observation 3.10. Denote by x̂(α) the maximizer of Xα on Sn−1
p as in (3.12). Hence

for x ∈ Sn−1
p we have

fj(x) =
∑
|α|=j

aαx
α ≥

∑
|α|=j

−|aα| · (x̂(α))
α =: cj. (3.14)

This cj is as least as large as the cj from Proposition 3.7, since, for 0 6= α, (x̂(α))
α < 1

– unless Xα ∈ R[Xi] for some i, in which case x̂(α) = ei, the i-th unit vector, and thus
(x̂(α))

α = 1.

Further improvement by orthant distinction. In a second improvement step, we con-
sider all orthants separately to furthermore get rid of approximately half of the terms
in the estimate in Lemma 3.6. This last approach for computing cj is different to the
ones before, as we actually compute 2n norm bounds: We restrict f to each of the 2n

orthants

Hτ = {x ∈ Rn : τixi ≥ 0} for τ ∈ {−1, 1}n (3.15)

and compute a norm bound on minimizers for every f |Hτ . This has the advantage that,
roughly speaking, we may neglect half of the terms of f =

∑
aαX

α. Also, minimization
on Hτ can be reduced to minimization on H(1,...,1), i.e., the set of those x ∈ Rn with
x ≥ 0, as we shall see in a moment.

Introducing the notation |a|− = |min(a, 0)| for a ∈ R and with x̂ from (3.12), we have
for every term

aαx
α ≥ −|aα|−xα ≥ −|aα|−x̂α
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as x ≥ 0, thus

fj(x) =
∑
|α|=j

aαx
α ≥

∑
|α|=j

−|aα|−x̂α︸ ︷︷ ︸
=:c

(1,...,1)
j

, x ∈ Sn−1
p and x ≥ 0,

which means about half of the coefficients are neglected in comparison to (3.14), if signs
are distributed equally among the aα. Now let R(1,...,1) be the largest real root of

q(1,...,1)(λ) := cdλ
d +

d−1∑
j=1

c
(1,...,1)
j λj.

The verbatim argument of Theorem 3.4 shows that f(x) > f(q) for ‖x‖p > R(1,...,1)

and x ≥ 0. This gives norm bounds on minimizers in H(1,...,1). Bounding the norm of
minimizers of f on Hτ , τ ∈ {−1, 1}n, can be reduced to bounding the norm of minimizers
on H(1,...,1) by a simple change of coordinates. To this end, let τ(x) = (τ1x1, . . . , τnxn),
x ∈ Rn, and f τ be the polynomial

f τ (x) := f(τ(x)) =
∑
α

aατ
αxα, τ ∈ {−1, 1}n.

As τα ∈ {−1, 1}, f and f τ merely differ in the sign of their coefficients, and f τd (x) ≥ cd
still holds for x ∈ Sn−1

p as the sphere is τ -invariant, that is τ(Sn−1
p ) = Sn−1

p . Similarly to
before, denote by Rτ the largest real root of

qτ (λ) = cdλ
d +

d−1∑
j=1

cτjλ
j,

with cτj = −|aατα|−x̂α for j ∈ [d − 1] and c0 = f(0) − f(q). It is now clear that
f τ (x) > f(q) for ‖x‖p > Rτ and x ≥ 0, equivalently, f(x) > f(q) for ‖x‖p > Rτ and
x ∈ Hτ .

This results in more effort in the preprocessing, but reduces the number of feasible
solutions.
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3.2. Special cases and applications

In this section we consider norm bounds for the special case of a strictly convex quadratic
objective and show an application of norm bounds to systems of polynomial equations.

3.2.1. The convex quadratic case

We consider norm bounds for the following variant of MINLP:

min f(x) = xTQx+ LTx+ c (MIQP)

s.t. x ∈ FI

for some Q ∈ Rn×n with Q � 0, L ∈ Rn and c ∈ R. It is a well-known fact that the
condition Q � 0 is equivalent to f being strictly convex. The all-integer variant without
constraint functions and linear constraints have been studied recently. We refer to the
two articles [BCL12; BHS15] and the references therein for an introduction into this
class.

It is well-known that a strictly convex quadratic has a unique continuous minimizer.
The following characterization is useful for our purposes.

Lemma 3.11 (Lemma 2.1 in [BHS15]). Let f(x) = xTQx+ LTx+ c be strictly convex.
The unique continuous minimizer of f is given by

x̄ = −1

2
Q−1L.

The optimal value is

f(x̄) = c− 1

4
LTQ−1L.

Moreover,
f(x) = (x− x̄)TQ(x− x̄) + f(x̄). (3.16)

The sublevel sets of f are of the form

Lf≤(z) =
√
z − f(x̄)E(Q, x̄) (3.17)

for z ≥ f(x̄) and empty otherwise.

Optimal constants for our norm bounds

The homogeneous components of the quadratic objective f are f2(x) = xTQx, f1(x) =
LTx and f0 = c. In contrast to the general case, computation of constants c2 and
c1, bounding the homogeneous components on the sphere Sn−1

2 from below, are easier to
compute. In fact, the largest possible lower bound, i.e., the minimum c∗2 of all admissible
bounds c2, is given by the smallest eigenvalue of Q. This follows from the famous
Rayleigh-Ritz Theorem (Theorem 1.6). In the quadratic case, c∗1 can easily be computed
as well.
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Proposition 3.12. Let L ∈ Rn. Then the optimal value c∗1 of

min LTx

s.t. x ∈ Sn−1
2

satisfies c∗1 = −‖L‖2.

Proof. We only prove the case L 6= 0. By the Cauchy-Schwarz inequality, for every
x ∈ Sn−1

2 ,
|LTx| ≤ ‖L‖2 · ‖x‖2 = ‖L‖2

with equality if and only if x and L are parallel. This is the case if and only if x = L/‖L‖2

or x = −L/‖L‖2. The latter x minimizes the objective.

We can now express the norm bound in closed form in case of a strictly convex
quadratic objective by solving a quadratic equation.

Corollary 3.13. Let f(x) = xTQx + LTx + c be strictly convex quadratic and q ∈ Rn.
The norm bound (for the Euclidean norm) as defined in Theorem 3.4 that arises from
the best possible choice of c1 and c2 is given by

R = − c∗1
2c∗2

+

√(
c∗1
2c∗2

)2

− f(q)− f(0)

c∗2
=

‖L‖2

2λmin(Q)
+

√(
‖L‖2

2λmin(Q)

)2

− f(q)− c
λmin(Q)

Proof. The optimal choice (cf. Proposition 3.5) for c1 is c∗1 = −‖L‖2 by Proposition 3.12,
the optimal choice for c2 is c∗2 = λmin(Q) by Theorem 1.6. Hence, the claim follows by
solving c∗2λ

2 + c∗1λ+f(q)−f(0) = 0 for the largest nonnegative root, using f(0) = c.

A further improvement: Optimal norm bounds for a convex
objective

It turns out that smallest possible norm bound for a strictly convex quadratic objective
function can actually be derived analytically. More specifically, given a feasible solution
q ∈ FI , our result is an explicit formula for the maximal Euclidean distance of all feasible
solutions to the unique continuous minimizer. Arguments from [BHS15] are central to
the proof.

Theorem 3.14. Let f(x) = xTQx+LTx+ c be strictly convex and q ∈ Rn. Denote the
continuous minimizer by x̄. The smallest possible R such that

f(x) ≤ f(q) implies ‖x− x̄‖2 ≤ R

is given by

R =

√
f(q)− f(x̄)

λmin(Q)
=

√
(q − x̄)TQ(q − x̄)

λmin(Q)
.
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To prove the theorem, we need the following lemma.

Lemma 3.15 (see, e.g., Section 3.3 in [BHS15]). Let Q ∈ Sn, Q � 0, x0 ∈ Rn and
r > 0. Then

E(Q, x0) ⊂ Br(x0)

if and only if

r ≥ 1

λmin(Q)
.

Proof of Theorem 3.14. Let z = f(q) and r ≥ 0. By Lemma 3.11, f has a unique
continuous minimizer x̄. Moreover, Lemmata 3.11 and 3.15 imply that

Lf≤(z) =
√
z − f(x̄)E(Q, x̄) ⊂

√
z − f(x̄)Br(x̄)

if and only if r ≥ 1
λmin(Q)

. In other words, the smallest R ≥ 0 such that x ∈ Lf≤(z)

implies x ∈ Br(x̄) is given by R =

√
z−f(x̄)

λmin(Q)
.

The theorem has a nice consequence: The distance in norm of all integer minimizers
towards the continuous minimizer can be bounded from above by an expression only
depending on the eccentricity of the ellipsoid E(Q), that is, the ratio of the smallest to
the largest eigenvalue of Q, and the dimension.

Corollary 3.16. Let f(x) = xTQx + LTx + c be strictly convex. Denote the contin-
uous minimizer by x̄. Then we have the following a priori norm bound for all integer
minimizers x∗:

‖x∗ − x̄‖2 ≤

√
n

4
· λmax(Q)

λmin(Q)

Proof. The point bx̄e is a feasible solution to the unconstrained integer minimization
problem with objective f . By Theorem 3.14,

‖x∗ − x̄‖2 ≤

√
(bx̄e − x̄)TQ(bx̄e − x̄)

λmin(Q)
.

Then, by Rayleigh-Ritz (Theorem 1.6),

(bx̄e − x̄)TQ(bx̄e − x̄) ≤ λmax(Q) ‖bx̄e − x̄‖2
2 ≤ λmax(Q)

∥∥∥∥(1

2
, . . . ,

1

2

)∥∥∥∥2

2

≤ λmax(Q)
n

4
,

and the claim follows.

In the proof of Corollary 3.16, the point bx̄e, the rounded continuous minimizer of f =
xTQx+LTx+c, played a central role. It has been investigated when this point coincides
with the integer minimizer of f , and sufficient conditions where given in [BHS15]:
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Proposition 3.17 (Lemma 3.2 in [BHS15]). Let f = xTQx+LTx+ c be strictly convex
and let x̄ be its continuous minimizer. Then bx̄e is the integer minimizer of f in either
of the following cases:

• The matrix Q is diagonal.

• The sublevel sets of f satisfy a so-called quasi round property, namely, if

1

λmin(Q)
− 1

λmax(Q)
≤ α(x̄)√

f(bx̄e)− f(x̄)
,

where

α(x̄) := inf {‖x̄− y‖2 : y ∈ Zn \ {bx̄e} − inf {‖x̄− y‖2 : y ∈ Zn} .

3.2.2. Application to systems of polynomial equations

As a further application of norm bounds, we consider systems of polynomial equations
in this section. It is a common approach to solve a system of polynomial equations

h1(x) = 0, . . . , hs(x) = 0, x ∈ Kn,

with solutions restricted to, say, K ∈ {Z,Q,R}, by minimizing f = h2
1 + . . . h2

s over the
integers, rationals or reals, respectively. If the minimum is 0 at some x, the equations
have a solution at x; if the minimum is nonzero, there cannot be any solution.

Diophantine equations

As an example, does the system

−3x3
1 + x2

1x2 − x2
1 + 2x1x2 + x1 − 2x2

2 − 2x2 + 4 = 0

2x3
2 + x1x

2
2 + 4x2 − 5 = 0

possess an integer solution? Denote the polynomials in Z[X1, X2] on the left hand side
in the first and second equation by h1 and h2, respectively, and consider f := h2

1 + h2
2.

The homogeneous components of f are bounded from below on S1
6 by

(c1, . . . , c6) = (−60.49,−13.03,−41.76,−7.85,−24.45, 2.59),

we found the values by solving (3.10) numerically.1 Using the feasible point q = 0, the
univariate polynomial P (λ) =

∑6
j=1 cjλ

j has only two real roots: 0 and R ≈ 9.90. Thus,

by Theorem 3.4, integer minimizers exist and must be in the box [−9, 9]2. Iterating
over all integer points in the box one finds f(x1, x2) = 0 at (x1, x2) = (−1, 1). From
the perspective of number theory, our method provides search bounds on solutions of a
system of Diophantine equations if the leading form of f =

∑s
j=1 h

2
j is positive definite.

1See Section 3.3 for details on the software.
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Bounds on algebraic varieties

Similarly to the systems of Diophantine equations, our bounds apply to real algebraic
varieties: Given h1, . . . , hs ∈ R[X], the variety of the hi is

V (h1, . . . , hs) = {x ∈ Rn : h1(x) = 0, . . . , hs(x) = 0}.

If the leading form of f =
∑s

j=1 h
2
j is positive definite, we may give a norm bound on

all points of the variety. As an example, let us consider the polynomial system:

x2 + y2 + z2 = 1

x2 + z2 = y

x = z

x, y, z ∈ C

(3.18)

from Example 2, Section 2 § 8 in [CLO07]. Computing the cj by solving (3.10) for p = 2
yields (c1, . . . , c4) = (0,−2.0,−0.77, 1.0) and gives us for q = 0 the value R ≈ 1.86 as
a 2-norm bound on all points in the variety. It is known that the variety consists of
exactly four points: The system has two real and two complex solutions (x, y, zi) with

zi ∈ {±1
2

√
±
√

5− 1}, where the real solutions suffice ‖(x, y, z)‖2 = 1 by (3.18). We
conclude that in this case our bound is not far off.

78



3.3. Experimental comparison of norm bounds

To evaluate our norm bounds on random instances, we ran computer experiments.2

In this section we outline the algorithm to decide positive definiteness and if applicable
proceed to compute the norm bounds. We moreover elaborate the choice of a distribution
from which we sample random instances. Later, in Section 6.3, we use such samples as
objective functions to an unconstrained optimization problem and solve it by branch
and bound.

3.3.1. Sampling, positive definiteness and norm bounds

Once we have agreed upon a distribution to sample our random polynomials from, we
have to decide if the instance has a positive definite leading form and, if this is the
case, proceed to compute the norm bounds. We present these steps in algorithmic
form (Algorithm 1). In summary, we solve a hierarchy of sos programs to test positive
definiteness. Either we can certify positive definiteness by (1.3) or extract a point x with
fd(x) ≤ 0 or positive definiteness cannot be decided at this level of the hierarchy.3 In
case of positive definiteness, we compute the constants cj with the methods discussed in
Section 3.1 and proceed to compute a p-norm bound on all integer minimizers.

In the experiments, we computed the following five norm bounds:

a) the bound Rlit from the literature, defined in (3.4), denoted Lit in the plots,

b) the new norm bound with the rather rough estimate cj = −‖fj‖ from Proposi-
tion 3.7, denoted Drct in the plots,

c) the norm bound with the refined constants cj from Observation 3.10, denoted Mx
in the plots,

d) the orthant based bound as outline in Section 3.1.2, denoted Or in the plots,

e) the norm bound where the cj are the optimal solutions of the sos program (3.10)
with k′ = 2, denoted Sos in the plots.

We compare the volume, i.e., the Lebesgue measure λ, of the resulting sets, as it
approximates the number of integer points, i.e., potentially optimal solutions, contained

2 We use MATLAB 2014b 64-bit (MATLAB is a registered trademark of The MathWorks Inc., Natick,
Massachusetts), SOSTOOLS 3.00 [PAV+] to translate the sos programs into semidefinite programs
and CSDP 6.1.0 [Bor99]/SDPT3 [TTT99] to solve the latter. The experiments were conducted on a
GNU/Linux machine running on 2 Intel R© Xeon R©X5650 CPUs, 6 cores each, with a total of 96 GB
RAM.

3We shortly discussed the extraction of x after Corollary 1.27; in our setup, this corresponds to a
non-empty third return argument of SOSTOOLS’s findbound.m-routine.
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Algorithm 1 Norm bound on mixed-integer minimizers

input f ∈ R[X1, . . . , Xn] with deg f ∈ 2N, parameters p ∈ 2N, k′max ∈ N0

k′ ← 0
cd ← −∞

4: x← NULL

while k′ ≤ kmax and cd < 0 and x = NULL do
solve program (3.10) for j = d and parameter k′

cd ← optimal value
8: if corresponding optimal solution can be extracted then

x← optimal solution
end if
k′ ← k′ + 1

12: end while
if cd < 0 and x 6= NULL then // by Proposition 1.33, infx∈Zn f(x) = −∞

print f has no mixed-integer minimizers.

output x
16: else if cd = 0 and x 6= NULL then // as x ∈ Sn−1

p , x 6= 0, so fd is not positive def.
print Cannot decide existence of mixed-integer minimizers.

output x
else if cd ≤ 0 and x = NULL then

20: print Cannot decide fd > 0 for k ≤ kmax.

else // cd > 0 in the following
print f has mixed-integer minimizers. // fd > 0 by (1.3)
for j = 1, . . . , d− 1 do

24: compute valid cj // via methods (3.8), (3.10) or (3.14)
end for
define q : R→ R, q(λ) =

∑d
j=1 cjλ

j

R← largest root of q in R // R ≥ 0 by Theorem 3.4
28: print The minimizers x′ suffice ‖x′‖p ≤ R. // also by Theorem 3.4

output R
end if
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in these sets. More precisely, we compare the values λ ({x ∈ Rn : ‖x‖p ≤ R}) for meth-
ods a), b), c) and e) as well as

λ

 ⋃
τ∈{−1,1}n

{x ∈ Hτ : ‖x‖p ≤ Rτ}

 =
1

2n

∑
τ∈{−1,1}n

λ ({x ∈ Rn : ‖x‖p ≤ Rτ})

for method d) with Hτ from (3.15).

3.3.2. The first approach to sampling

Our first approach to sampling is the following: For a fixed number of variables n and
an even degree d, we sample from the family

f =
∑
|α|≤d

aαX
α =

∑
|α|≤d

aαX
α1
1 · · ·Xαn

n , aα ∼

{
U(−1, 1), α 6= dei,

U(0, 1), α = dei,
(F1)

where the ei are unit vectors. We make the case distinction on α as we are only interested
in polynomials with positive definite leading form, and a leading form that does not
satisfy the condition

a(d,0,...,0) > 0, a(0,d,0,...,0) > 0, . . . , a(0,...,0,d) > 0 (A)

cannot be positive definite. Then, we solve Program (3.10) at the level k′ = d in the
hierarchy to compute a lower bound cd on minx∈Sn−1

2
fd(x) to determine whether f indeed

has a positive definite leading form. If cd ≤ 0, we discard the instance, else we know
that fd is positive definite.

For every tuple (n, d) with n = 2, 3, 4 and d = 2, 4, 6, 8, 10, we created 1000 random
instances of polynomials from family (F1). In Figure 3.1, we plot how many of these
have been detected to satisfy fd > 0. For these instances that satisfy fd > 0, we
compute the norm bounds, which are depicted in Figure 3.2 for a selection of n and d.
By construction, the bound b) is improved by c), which is in turn improved by d), and
the plot shows that the difference is significant. The plot also shows that the sos-based
norm bound e) yields a further improvement and gives the best results. Our bounds
improve the bound from the literature a) by several orders of magnitude (even more so
with higher n and d, cf. the next section).

However, Figure 3.1 also reveals that, as d and n increase, less instances with positive
definite leading form get detected. This is to be expected, as the ratio of terms we
control through condition (A), linear in n, to the total number of terms of the leading
form,

(
n+d−1

d

)
by (1.2), decreases quickly in n and d, and so does the probability that the

leading form only attains positive values. Moreover, the conversion from an sos program
to an SDP and its following solution process takes much longer with increasing n and
d. It is thus not practicable to generate enough instances with positive definite leading
form via (F1) in reasonable time for higher n and d. We hence sample from a second
family.
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Figure 3.1.: From family (F1), 1000 instances are sampled for different dimension n and
degree d. The plot shows the number of instances with detected positive
definite leading form.

3.3.3. Sampling from the Parrilo-Sturmfels distribution

The following distribution on a subset of all polynomials is based on a suggestion by
Parrilo and Sturmfels [PS03]:

f = Xd
1 + . . .+Xd

n +
∑
|α|<d

aαX
α, aα ∼ U(−K,K), (F2)

where K > 0 is a constant. The advantage is that every polynomial from this family has
a positive definite leading form. As parameters for the experiments, we chose the (n, d)-
tuples (2, 6), (3, 4), (3, 6), (4, 4), (5, 8) and (7, 4), p = deg f and sampled 50 instances
from the distribution (F2). Five of these (n, d) tuples are of the order of the B&B-
experiments to follow, and (5, 8) illustrates the volume for a high degree and a moderate
number of variables. We chose K = 2 since then the coefficients are of the same size on
average, i.e. the expected value of the modulus of all present coefficients is 1.

The resulting volumes are plotted in Figure 3.2. In comparison with family (F1),
there is a smaller variance in the values of each norm bound for family (F2). This can
be seen as follows: The largest real zero of the polynomial q(λ) =

∑d
j=1 cjλ

j is a valid
norm bound on integer minimizers of f if cd > 0 and cj ≤ c∗j = minx∈Sn−1

p
fj(x) for all

j (Theorem 3.4). For family (F1), the leading form fd contains random terms and the
value c∗d (and thus cd) can, in principle, be positive and arbitrarily close to zero. Positive
but arbitrarily small cd lead to arbitrarily large real zeros of q and thus arbitrarily large
norm bounds. On the other hand, for family (F2), the leading form fd and hence c∗d
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Figure 3.2.: From family (F1), 1000 instances are sampled for different dimension n and
degree d. If the leading form is detected to be positive definite, the 5 norm
bounds are computed. We scatter plot the volume of the sets they confine
(logarithmic scale). The larger line is the median of the depicted values.

and cd are constant, which results in less variance in the largest zero of q and thus
in the norm bounds. As for family (F1), the plot shows that the sos-based bound e)
improves on our other bounds b), c), d). Concerning the norm bound a), the new norm
bounds outperform the one from the literature on all instances, and this even more so
with increasing n and d. Most prominently in the plot, for (n, d) = (5, 8), the norm
bound based on the cj from e) reduces, on average, the number of potentially optimal
solutions by a factor of approximately 18 orders of magnitude by comparison with the
classic norm bound.
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Figure 3.3.: From family (F2), 50 instances are sampled for different dimension n and
degree d. We compute the 5 norm bounds and scatter plot the volume
corresponding to the sets they confine (logarithmic scale). The larger line
is the median of the depicted values.
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4. Seminorm balls containing the
feasible set

In this chapter we compute seminorm balls that contain all feasible solutions, that is,
the set FI , or the relaxed feasible set F . Similar to norm bounds, one motivation is to
make the integer variables of MINLP accessible to branch and bound. Contrasting to
the norm bounds in the previous chapter (Chapter 3), we do not assume knowledge of
a feasible point q.

Section 4.1 starts with a motivation and illustrates the relation to norm bounds.

Section 4.2 formulates the task to find a seminorm ball containing FI as an auxiliary
program. We go on by discussing how the geometry of FI is related to the existence
of feasible solutions of the auxiliary program. For polynomial constraint functions,
relaxed integrality and suitable seminorms, we show that the auxiliary program can be
approximated with sos programming.

Section 4.3 shows that if a seminorm ball containing F is known, it is possible to use
purely arithmetic arguments to shrink the ball further such that it still contains FI , but
not necessarily F . In other words, we explore how we can infer a nonlinear cut for F .
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4.1. Motivation

Norm bounds have been introduced in (3.3) in Section 3.1 as upper bounds on the
mixed-integer nonlinear problem

max ‖x̄− x‖
s.t. f(x) ≤ f(q)

x ∈ FI .

Similar to norm bounds, the primary motivation is to make the integer variables
of MINLP accessible to branch and bound. We have seen that norm bounds can be
explicitly computed with various methods provided the leading form of f is positive
definite (Theorem 3.4).

The norm bound approach works well if a feasible point q is known. This chapter
generalizes norm bounds to the case that no such q is known, that is, we consider the
problem

max ‖x̄− x‖
s.t. x ∈ FI ,

where our auxiliary program also allows for a seminorm N instead of a norm ‖ · ‖.

We explore in this chapter in which ways the assumptions necessary for the compu-
tation of the norm bound can be weakened. Firstly, we show how the strong coercivity
assumption on the objective f , namely, positive definiteness of the leading form fd, can
be weakened or even replaced by suitable assumptions involving only the constraint
functions. Secondly, the new approach takes the underlying geometry of the feasible
set into account explicitly by considering nonlinear valid inequalities that are deduced
from the constraint functions (the quadratic module generated by the constraint poly-
nomials), and not only implicitly (by, e.g., a feasible point q). Thirdly, we allow for
seminorms instead of norms, which is of particular interest in the mixed-integer case, as
we explain below. Let us note that, however, these extensions do not belittle the results
on norm bounds. The results in this chapter rely strongly on sos methods, whilst the
norm bounds work without sos methods, too.

In the next section, we analyze the auxiliary problem and discuss an approximating
hierarchy.
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4.2. Finding tight enclosing seminorm balls

In the following, N : Rn → R is a seminorm defined on Rn. For the sake of generality,
we consider again a deputy set S ⊂ Rn; natural candidates for S are FI and F . The
auxiliary problem to find a seminorm ball centered at x̄ ∈ Rn containing S can be
formulated as

max N(x̄− x)

s.t. x ∈ S
(S1)

where x̄ may be thought of as a reference point.
We can interpret interpret Program S1 in two ways: Geometrically, and in terms of

valid inequalities.

Observation 4.1. Let N : Rn → R be a seminorm and denote the optimal value of S1
by z∗.

1. a) Let S ⊇ FI. If z∗ is finite, (N(x̄− x) ≤ z∗) is a valid inequality for FI. Put
differently, FI is contained in the seminorm ball BNz∗(x̄) in this case.

b) Let S ⊂ FI. If z∗ is infinite, FI is unbounded.

2. Suppose q ∈ FI is given.

a) Let S ⊇
(
FI ∩ Lf≤(f(q))

)
. If z∗ is finite, (N(x̄−x) ≤ z∗) is a valid inequality

for all optimal solutions of MINLP. Put differently, all optimal solutions are
contained in the seminorm ball BNz∗(x̄) in this case.

b) Let S ⊂
(
FI ∩ Lf≤(f(q))

)
. If z∗ is infinite, the set of feasible solutions with

objective value at least as good as f(q) is unbounded.

For the proof, we need the following result:

Lemma 4.2 (see, e.g., “Proposition” in [Gol17]). Let V be a finite-dimensional real
or complex vector space, equipped with a seminorm N and a norm ‖ · ‖. Then N is
left-equivalent to ‖ · ‖, i.e., there is a constant C > 0 with

N(x) ≤ C‖x‖, x ∈ V.

Proof of Observation 4.1. To see 1a, note that, by optimality of z∗, N(x̄−x) ≤ z∗ holds
for all x ∈ S, thus for all x ∈ FI . For a proof of 1b, note that, by Lemma 4.2, there is
C > 0 such that N(x̄−x) ≤ C‖x̄−x‖2 for all x ∈ Rn. Hence, as N(x̄−·) is unbounded
on S, so is ‖x̄− ·‖2, and hence ‖x̄− ·‖ on FI , and the claim follows. The proofs for the
remaining claims follow analogously.

To get tractable relaxations, we restrict our attention from now on weighted p-
seminorms, that is, seminorms of the form

N(x) = p

√√√√ n∑
i=1

ai|xi|p, x ∈ Rn, (4.1)
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for some fixed a1, . . . , an ∈ R≥0 and p ∈ [1,∞). Clearly, N is a norm if and only if
all ai are positive. Then, as N is nonnegative, maximizing N over S is equivalent to
maximizing Np over S, that is, S1 reads

max
n∑
i=1

ai|x̄i − xi|p

s.t. x ∈ S.
(S2)

If p is even, lower bounds on S2 can be computed with the help of sos program-
ming, provided S is given by polynomial constraints. So suppose S = K(h1, . . . , hs) for
some h1, . . . , hs ∈ R[X1, . . . , Xn]. This leads to the following hierarchy of sos programs,
parameterized by k ∈ N:

min λ

s.t. λ−
n∑
i=1

ai(x̄−Xi)
p ∈M (h1, . . . , hs) [k]

λ ∈ R

(SRk)

where p ∈ 2N, a1, . . . , an ∈ R≥0. Let us note that the formulation is within the scope of
sos programming.

Observation 4.3. Program SRk is a valid sos program for p ∈ 2N.

Proof. This follows from (1.16), using the fact that p ∈ 2N.

Let us also note that feasible solutions of SRk can be used to derive feasible solutions
of S2.

Observation 4.4. Every feasible solution λ of SRk yields the upper bound
p√
λ on S2

with S = M(h1, . . . , hs).

Proof. Feasibility of λ for SRk implies

λ−
n∑
i=1

ai(x̄i − xi)p ≥ 0 for x ∈ S = K(h1, . . . , hs)

by Observation 1.18. Thus, as p is even and p > 0, this means λ ≥ N(x)p (where N was
defined in (4.1)) on S, or

p√
λ ≥ N(x) on S, and the claim follows.

We may now prove, under the usual assumption that the corresponding quadratic
module is Archimedean, convergence of the optimal values of the approximating hierar-
chy towards the optimal value of the auxiliary problem. We have outlined in detail in
Section 1.5.3 several sufficient conditions in terms of the optimization problem MINLP
that ensure the Archimedean property.
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Theorem 4.5. Suppose M(h1, . . . , hs) is Archimedean. Then S2 has an optimal solution
x ∈ S = K(h1, . . . , hs). Denote the optimal value of S2 by z∗ and of SRk by λ(k). Then

p√
λ(k) ↘ z∗ for k →∞.

Proof. As M(h1, . . . , hs) is Archimedean, the set S = K(h1, . . . , hs) is compact by Corol-
lary 1.19. Fix a norm ‖ · ‖ on Rn. By Lemma 4.2, there is C > 0 such that

N(x) ≤ C‖x‖

for x ∈ Rn. As any norm is bounded on the compact set S, so is N(x), and maxx∈S N(x)
is finite. As N is continuous, the maximum is attained at some x in the compact set S,
in other words z∗ is finite and attained.

Let maxx∈S N
p(x) = λ∗. We have just shown that λ∗ is finite. By Corollary 1.27,

λ(k) ↘ λ∗ for k →∞.

The convergence claim now follows from the fact that (z∗)p = λ∗.

Theorem 4.5 can be strengthened in case that N is a norm.

Proposition 4.6. Let a norm N(x) = p
√∑n

i=1 aix
p
i with ai > 0 for all i ∈ [n] be given.

Then SRk is feasible if and only if M(h1, . . . , hs) is Archimedean.

Proof. Note that ai > 0 for all i implies that N is a norm. Let SRk be feasible. Thus
there is λ ∈ R such that

q := λ−
n∑
i=1

ai(x̄i −X)p ∈M(h1, . . . , hs).

Clearly,
K(q) = {x ∈ Rn : q(x) ≥ 0} = B p√

λ(x̄)

where BR(p) denotes the N -norm ball with radius R centered at p. Since λ is finite and
N a norm, the set K(q) is bounded. Also, K(q) is closed, hence K(q) is compact. By
Theorem 1.17 (4), M(h1, . . . , hs) is Archimedean.

The converse direction is immediate from Theorem 4.5, since the existence of optimal
solutions implies the existence of feasible solutions.

We have given many sufficient conditions in terms of MIPP that ensure M(h1, . . . , hs)
is Archimedean in Section 1.5.3. It is future research to compare the performance of the
norm bounds from Chapter 3 and the (semi)norm ball approach from this chapter on
random instances.
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4.3. Exploiting integrality

We end this section by considering how integrality information can be used to tighten the
seminorm balls. This takes the idea in Theorem 3.4 (2) further. Clearly, the arguments
to follow work for norm bounds, too.

For our arguments, the p-th power of the seminorm needs to be I-integrality preserv-
ing, that is N(x)p ∈ Z whenever x in Rn

I . To this end let we consider seminorms N
of the type Np(x) =

∑n
i=1 ai|xi|p, ai ≥ 0. As a first step, let us consider when Np is

I-integrality preserving.

Observation 4.7. Let p ∈ [1,∞) and

N(x) = p

√√√√ n∑
i=1

ai|xi|p, x ∈ Rn,

with ai ≥ 0 and not all ai = 0. Then, the following are equivalent:

1. Np is I-integrality preserving.

2. p ∈ N, ai ∈ Z≥0 for i ∈ I and ai = 0 for i ∈ [n] \ I.

Proof. Let Np be I-integrality preserving. We derive a contradiction if any of the
statements in Condition 2 does not hold. Let i0 ∈ [n] with ai0 > 0 and ei be the i-th
unit vector. If p is not a natural number, then Np(λei0) = ai0|λ|p is not integer for any
prime λ. Hence p ∈ N. Suppose ai 6∈ Z≥0 for some i ∈ [n]. Then Np(ei) = ai 6∈ Z,
and Np is not I-integrality preserving. Now suppose ai > 0 for some i ∈ [n] \ I. Then,
there is λ ∈ R such that N(λei) = ai|λ|p is not integer. For the converse direction, if
Condition 2 holds, Np is obviously I-integrality preserving.

We also require that the reference point x̄ ∈ Rn from Program S2 in Section 4.2 is a
mixed-integer point with respect to I, that is, x̄ ∈ Rn

I . To derive a cut, suppose we have
an upper bound λ on S2, i.e., an upper bound on

max
∑
i∈I

ai|x̄i − xi|p

s.t. x ∈ S.
(4.2)

To solve MINLP, it is however more useful to have an upper bound for SI , that is, an
upper bound on

max
∑
i∈I

ai|x̄i − xi|p

s.t. x ∈ SI .
(4.3)

To use integrality arguments, denote the optimal value of (4.3) by z∗. We can now shrink
the seminorm ball containing S by decreasing the upper bound λ towards z∗, which
geometrically corresponds to cutting off points in S \SI , using integer rounding. Integer
rounding is a common technique in integer programming [NW88], and for integrality
preserving maps, the argument can be formulated as follows:
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Observation 4.8. Let f : Rn → R be I-integrality preserving and λ ∈ R with λ ≥
maxx∈S f(x). Then bλc ≥ maxx∈SI f(x).

Proof. This follows from the fact that f(SI) ⊂ Z.

For our seminorm, we have:

Observation 4.9. Let N be a seminorm defined as in (4.1) which is I-integrality pre-
serving. Given x̄ ∈ Rn

I, let λ be a finite upper bound on (4.2) and z∗ be the optimal value
of (4.3). Then

z∗ ≤ bλc.

In decreasing the bound from λ to bλc, we have not used any geometric property of S
or SI , but only relied on arithmetic arguments. Pursuing this path further, we may ask
more generally, given a seminorm N as in (4.1) with p ∈ 2N (to end with a polynomial)
and furthermore Np I-integrality preserving:

Is there x ∈ Rn
I with

∑
i∈I

ai(x̄i − xi)p = bλc? (4.4)

Equations such as (4.4) are in the field of number theory known as Diophantine equations,
see, e.g., p. 10 in [Sma98]. Clearly, these equations do not always have a solution, as the
example below shows. Let us introduce some notation. For p ∈ 2N, N ∈ N and λ ∈ R
nonnegative and a ∈ Zk≥0 put

Lp,a(λ) := max

{
µ ∈ Z : µ ≤ λ and there is x ∈ Zk with

k∑
i=1

aix
p
i = µ

}
.

Example 4.10. We consider an instance with p = 2, I = [2], N2(x) = x2
1 + x2

2 and
λ = 96.2 as upper bound for N2 on some feasible set S. Using, e.g., enumeration, it
turns out that the largest integer µ below λ that can be written as µ = x2

1 + x2
2 with

integer xi is 90 = 32 + 92, i.e., L2,(1,1)(96.2) = 90.

With the new notation, we have:

Proposition 4.11. Let N be a seminorm defined as in (4.1) with p ∈ 2N. Suppose
further that Np is I-integrality preserving. Given x̄ ∈ Rn

I, let λ be a finite upper bound
on (4.2) and z∗ be the optimal value of (4.3). Then

z∗ ≤ Lp,a(λ).

Proof. If SI is empty, z∗ = −∞ and there is nothing to prove. Suppose now that SI
is nonempty. As before, z∗ is bounded from below by any feasible objective value and
bounded from above by λ. Since Np is I-integrality preserving, Np attains integer values
on Rn

I only, hence there is an optimal solution x ∈ SI to (4.3) where z∗ is attained, i.e.,
z∗ =

∑
i∈I aix

p
i . On the other hand we have z∗ ≤ λ. By definition of Lp,a, the inequality

z∗ ≤ Lp,a(λ) follows.
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We have thus shown how one may find a cut by using number-theoretic arguments
which are isolated from the geometry at hand (and can thus, e.g., be preprocessed).
This is similar to the arguments leading to Gomory-type cuts in integer program-
ming [MMWW02]. In the following, we discuss the important special case of unit weights
for the seminorm N .

Unit weights

We now look at p-seminorms (which are a special case of (4.1) with unit weights), that
is,

Np(x) =
∑
i∈I

xpi , x ∈ Rn.

For this case, the Diophantine equation in (4.4) is closely related to Waring’s prob-
lem [VW02]. It asks the following: Given an integer k, is there an integer s such that
every natural number is the sum of at most s k-th powers (of natural numbers)? The
smallest such s is denoted by g(k) in the literature and it was shown by Hilbert [Hil09]
that g(k) always exists. The first value is g(2) = 4: This is a restatement of La-
grange’s classical four-square theorem – every natural number is the sum of four integer
squares [HWHBS08, Theorem 369]. The next values are g(3) = 9 and g(4) = 19. This
results in the following consequence:

Observation 4.12. Let p ∈ 2N. If I satisfies |I| ≥ g(p), then Lp,(1,...,1)(λ) = bλc for
all λ ≥ 0.

Proof. Let I satisfy |I| ≥ g(p) and µ ∈ Z≥0. By definition of g(p),

µ =

g(p)∑
i=1

xpi

for some x ∈ Zg(p). A fortiori,

µ =
∑
i∈I

xpi

for some x ∈ ZI . Thus, for λ ∈ [µ, µ+ 1), we have

Lp,a(λ) = µ = bλc

where ai = 1 for i ∈ I. As µ was arbitrary, the claim follows from the fact that
R≥0 =

⋃
µ∈Z≥0

[µ, µ+ 1).

In other words, if we allow for sufficiently many summed-up powers, the cut in Propo-
sition 4.11 reduces to the standard cut in Observation 4.9.

As a small digression, let us take a look at some examples as to how deep such a cut
“on average” will be.1 That is, given p ∈ 2N and unit weights ai = 1 for i ∈ I, how

1Note that, geometrically, we are only able to shrink the seminorm ball until the first integer points
appear on the boundary of the ball.
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often can we expect a cut Lp,a(λ) that is deeper than bλc for varying λ? By means of
number theory, questions as these can be approached with densities : For A ⊂ N, let
A(m) = A ∩ {1, . . . ,m}, a(m) = |A(m)| . The upper and lower asymptotic densities of
A are

d(A) = lim sup
m→∞

a(m)/m, d(A) = lim inf
m→∞

a(m)/m.

In case the upper and lower asymptotic densities coincide, A has asymptotic density
d(A) = d(A) = d(A). For our setting, we define

Ap,k =

{
a ∈ N : there are x1, . . . , xk ∈ Z with

k∑
i=1

xpi = a

}
, p ∈ 2N, k ∈ N.

The sequence ap,k(m) = |Ap,k(m)| thus counts the natural numbers below m for which
there is an integer point on a (k − 1) dimensional p-sphere with integer radius not
larger than m. For some p and k, analytic expressions for the densities are known.
Clearly, ap,1(m) counts the perfect p-th powers below m. Hence ap,1(m) = b p

√
mc,

and d(Ap,1) = 0 follows by elementary means. Also, it can be shown [Tho73] that
d(A2,2) = 0, d(A2,3) = 5

6
. The identities d(A2,4) = d(A2,k) = 1 for k ≥ 4 follow again by

Lagrange’s four-square theorem [HWHBS08, Theorem 369]. For a graphical visualization
of ap,k(m)/m for some further values of p and k, we refer to Figure 4.1.
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Figure 4.1.: First values of the sequence ap,k(m)/m (vertical axis) depending on m (hor-
izontal axis) for different values of p and k.
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5. Ellipsoids containing the feasible set

This chapter is about ellipsoids of minimal volume containing FI , the feasible set
of MINLP. The primary motivation is again to make the integer variables in MINLP
accessible to branch and bound. There are two prominent differences to the seminorm
balls approach from Chapter 4: The shape (and not only the size) of the ellipsoid enters
the auxiliary program, and, most importantly, we treat the center of the ellipsoid as a
decision variable. Additionally, we allow for restrictions on the shape and position of
the center.

Section 5.1 formulates the task to find an ellipsoid of minimal volume – with shape
confined to a shape class and with a center restricted to a certain region – containing
F as an auxiliary program. We analyze geometric conditions on FI that guarantee the
existence of feasible and optimal solutions of the auxiliary program. In this general form,
the auxiliary program is not yet tractable.

Section 5.2 provides the first steps towards tractability: We use results from the
literature to linearize some of the constraints and end up with a semidefinite program
with possibly infinitely many constraints, a semi-infinite program.

Section 5.3 circumvents semi-infinite constraints by restricting to polynomial con-
straint functions, that is, to MIPP. This makes the problem accessible to methods from
real algebra. We give an approximating hierarchy and convergence results. Under suit-
able assumptions on the shape class and the region confining the center of the ellipsoid,
the approximating hierarchy is a semidefinite program with concave objective.
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5.1. An auxiliary program to find ellipsoids of minimal
volume

5.1.1. Motivation

The aim of this chapter is, as indicated in the introduction, to find ellipsoids contain-
ing the feasible set. Similarly to the norm bounds and seminorm balls we considered,
ellipsoids are well-understood objects and highly useful in the actual solution process
of MINLP: For example, they make the integer part of solutions enumerable and thus
accessible to branch and bound.

However, the task to find an ellipsoid of minimal volume containing a given set is
interesting in its own right, and for additional generality, we state our results using a
deputy set S ⊂ Rn instead. We keep in mind that natural candidates for this set S
are the relaxed feasible set F or the feasible set FI itself, or even the set of all optimal
solutions.

The reason for considering ellipsoids instead of norm or seminorm balls is the following:
The norm and seminorm balls that we studied in the previous chapters have a fixed
shape, more precisely their unit spheres are fixed. However, it may happen that the set
S is large (in diameter, say) but flat (in some unknown direction). In applications, this is
a useful information as it allows, amongst other things, earlier branching on the integer
variables. Hence it makes sense to detect this flatness, and this is what we attempt with
enclosing ellipsoids of minimal volume. It turns out that, in the ellipsoidal setting, we
can also optimize for the center of the ellipsoid. Once an ellipsoid containing S is found,
we are confident that integrality arguments can be used to shrink the ellipsoids further
so that it still contains SI but not necessarily S, in other words, resulting in a nonlinear
cut, but leave this as interesting future research.

5.1.2. The auxiliary program

In this section we formulate the auxiliary program that computes an ellipsoid of minimal
volume containing the deputy set S ⊂ Rn. The shape of the ellipsoid is determined by
its defining matrix Q and its center x0.1 We additionally allow restrictions on the shape
of the ellipsoid by defining a shape class Q ⊂ Sn+, that is, a set over which Q may range
and on the position of the center x0 of the ellipsoid, ranging over X ⊂ Rn.

min vol(E(Q, x0))

s.t. S ⊂ E(Q, x0)

Q ∈ Q
x0 ∈ X

(E1)

For future reference, let us state the assumptions on X and Q that shall tacitly hold
henceforth.

1Deviating from our conventions in Section 1.4.7, we allow in Program E1 for feasible (and possibly
optimal) solutions with objective value +∞.
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Assumption 5.1. In Program E1 and in the programs to follow in this chapter,

• X is a closed, nonempty subset of Rn,

• Q, the shape class, is a closed, nonempty cone in Sn+, with Q∩ Sn++ 6= ∅.

As a note on the assumptions, we require nonemptiness of X and Q to avoid irrelevant
special cases. The assumption that Q contains a positive definite matrix is to ensure ex-
istence of feasible solutions in case S is bounded (Theorem 5.3). Closedness is necessary
for compactness arguments, which in turn gives a sequence converging to an optimal so-
lution (Theorem 5.6). Finally, the requirement of Q to be a cone is to stay feasible when
scaling the ellipsoids. In [BHS15], the authors consider related shape classes; amongst
others, the set of diagonal matrices – corresponding to axis-parallel ellipsoids – and the
set of those matrices that yield quadratic functions having the so-called strong rounding
property.

Before we analyze Program E1, let us also note that it contains several interesting
special cases. For the shape of the ellipsoids, we may chose Q = Sn+ and impose no
constraints on the shape. We may choose Q = {Q ∈ Sn+ : Q is diagonal} to only
consider axis-parallel ellipsoids. As a final important example, we may choose Q =
{rIn : r ∈ R≥0} to restrict the investigation to norm balls. For the center x0 of the
ellipsoid, we may choose no restriction X = Rn to end up with the smallest enclosing
ellipsoid in the shape class Q, mixed-integer restriction X = Rn

I which is useful for
integrality arguments, or a singleton set X = {x0} for some x0 ∈ Rn to fix the center of
the ellipsoid.

Also, let us note the suitability of E1. We omit the trivial proof.

Observation 5.2. Let S ⊂ Rn be arbitrary. If (Q, x0) is a feasible solution of Pro-
gram E1, it yields an ellipsoid E(Q, x0) that contains S.

5.1.3. Existence of feasible solutions

We proceed by characterizing the existence of feasible to Program E1 with finite volume.
Our attention is restricted to solutions of finite volume as the solution Q = 0 of little
insight is always feasible: the zero matrix is in the shape class Q, since the latter is conic,
closed, and nonempty. It should not be surprising that the existence of said solutions is
tied – with equivalence – to a natural geometric assumption on S.

Theorem 5.3. Let S ⊂ Rn. Then Program E1 has feasible solutions with finite objective
value if and only if S is bounded.

Before we give the proof, let us remark some easy observations. The following obser-
vation allows nesting of scaled unit balls, possibly degenerated, and ellipsoids.

Observation 5.4. Let Q ∈ Sn. Then

λmin(Q) · In � Q � λmax(Q) · In.
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Proof. This is immediate by Rayleigh-Ritz (Theorem 1.6).

Furthermore, the Loewner order of positive semidefinite matrices and containment of
the corresponding ellipsoids are in order-reversing correspondence:

Observation 5.5 (see, e.g., Section 4 in [BHS15]). Let A,B ∈ Sn+ and x0 ∈ Rn. Then

A � B if and only if E(A, x0) ⊃ E(B, x0).

We can now prove the theorem.

Proof of Theorem 5.3. Let (Q, x0) be a feasible solution with finite objective value.
Hence Q � 0 by Observation 1.15, and the smallest eigenvalue is positive. By Ob-
servation 5.4, there is r > 0 with rIn � Q, thus

E(Q, x0) ⊂ E(rIn, x0) = x0 + E(rIn) = x0 +
1√
r
E(In) = B1/

√
r(x0)

by Observation 5.5 and the relation (1.9), hence S is bounded.

For the converse implication, let S be bounded, hence clS is compact. By Assump-
tion 5.1, there are x ∈ X and Q ∈ Q with Q � 0. Let

z′ := sup
y∈clS

(y − x0)TQ(y − x0).

By continuity and compactness, z′ < ∞, by Q � 0 we also have z′ ≥ 0. Now put
z := max(1, z′). Observe that

S ⊂ E(µQ, x0)

for all µ < 1
z
, since

(y − x0)TµQ(y − x0) ≤ (y − x0)TQ(y − x0)

z
≤ 1

for y ∈ S. Since µQ ∈ Q, we have found a feasible solution (µQ, x0).

5.1.4. Existence of optimal solutions

Similarly to the characterization of feasible solutions of Program E1 with finite volume
(Theorem 5.3), we now characterize optimal solutions of Program E1. Again, the exis-
tence of said solutions is tied to mild, natural geometric assumptions on S. We discuss
a converse statement at the end of this section.

Theorem 5.6. Let S ⊂ Rn. Then for Program E1, optimal solutions with finite objective
exist if S is bounded and has maximal affine dimension.
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Again we break the proof down into a sequence of observations and lemmata. Firstly,
we need the fact that a sequence of ellipsoids with centers diverging in norm that contain
a fixed ball must have a diverging volume as well. This seems completely evident,
however, we give a proof for completeness. Instead of tedious volume computations
we give a simple argument that suffices to push the volume towards infinity. This
observation is used in the proof of Theorem 5.6 to bound a sequence of feasible xk,
which results in a converging subsequence by a compactness argument.

Observation 5.7. Let a ball Br(p) corresponding to a norm on Rn be given, r > 0
and p ∈ Rn, that is contained in every member of a sequence of ellipsoids E(Qk, xk),
Qk ∈ Sn+, xk ∈ Rn, k ∈ N. Let the sequence of centers {xk}k∈N satisfy ‖xk‖ → +∞.
Then volE(Qk, xk)→ +∞.

This observation in turn is easy to see with the following lemma.

Lemma 5.8. Let A,B ⊂ Rn, x0 ∈ Rn with

x0 +B ⊂ A.

1. If A is symmetric (A = −A), then −x0 −B ⊂ A.

2. If A and B are symmetric, then −x0 +B ⊂ A.

3. If A and B are symmetric and A is convex, then

conv ((x0 +B) ∪ (−x0 +B)) ⊂ A.

Proof. To see Claim 1, note that x0 + B ⊂ A if and only if −x0 − B ⊂ −A. Since
A = −A, the claim follows. To see Claim 2, note that B = −B if B is symmetric,
and the claim follows from Claim 1. Claim 3 is immediate by the fact that x0 + B and
−x0 +B are subsets of A.

Proof of Observation 5.7. By equivalence of norms on Rn, we may assume that the norm
under consideration is the 2-norm. Fix k0 ∈ N. Note that Br(0) and E(Qk0) are
symmetric, convex sets, and that Br(p) ⊂ E(Qk0 , xk0) is equivalent to p + Br(0) ⊂
xk0 + E(Qk0), equivalently, p− xk0 +Br(0) ⊂ E(Qk0). Hence by Lemma 5.8,

conv((p− xk0 +Br(0)) ∪ (xk0 − p+Br(0)) ⊂ E(Qk0).

Thus, E(Qk0) – and hence E(Qk0 , xk0), too – contains a cylinder of radius r and height
2‖p−xk0‖. Since xk diverges, so does the volume of the cylinder contained in E(Qk, xk),
and hence the volume of E(Qk, xk) itself.

In the proof of Theorem 5.6, we also consider a sequence of feasible Qk. To exhibit
convergence for the matrices as well, we rely again on a compactness argument. Com-
pactness enters our setting as follows:
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Lemma 5.9. Let Q∗ ∈ Sn+. Then, the set

B(Q∗) := {Q ∈ Sn+ : Q � Q∗}

is compact in Sn+.

Proof. Firstly, the set is closed. Indeed, let Q ∈ Sn+ and {Qk}k∈N a sequence in B(Q∗)
with Qk → Q. We must show that Q ∈ B(Q∗). The condition Qk ∈ B(Q∗) is equivalent
to

xT (Q∗ −Qk)x ≥ 0, all x ∈ Rn.

Taking the limit in the equation (matrix multiplication is continuous) shows that

xT (Q∗ −Q)x ≥ 0

for all x ∈ Rn, hence Q∗ � Q and Q ∈ B(Q∗) follows.
Secondly, it is also bounded. Suppose the contrary, and let {Qk}k∈N be a sequence

in B(Q∗) with ρ(Qk) → +∞, where ρ is the spectral norm on Rn×n. As all Qk are
symmetric, ρ(Qk) = λmax(Qk). On the other hand, by Observation 5.4, λmax(Q∗) �
Q∗ � Qk for all k, bounding the maximum eigenvalue of Qk and thus the spectral norm,
a contradiction.

Now, in the proof of Theorem 5.6, if we can find an upper bound Q∗ � 0 with Q � Q∗

for all feasible solutions (Q, x0) of E1, we can apply Lemma 5.9. Finding Q∗ is achieved
using convexity and a dimensionality argument by the fact that there is a fixed ball
Br(p) contained in all ellipsoids that are feasible for E1.

Lemma 5.10. Let S ⊂ Rn. Assume further that S is bounded and of affine dimension
n. Then, there is a ball Br(p), where r > 0 and p ∈ Rn, such that every feasible ellipsoid
E(Q, x0) to Program E1 satisfies Br(p) ⊂ E(Q, x0). Moreover, there is Q∗ ∈ Sn++ with
the property:

If (Q, x0) is feasible for Program E1, then Q � Q∗.

Proof. Let C := conv(S). Since S has affine dimension n, so does the supset C. Any
full-dimensional convex set has nonempty interior, hence there is p ∈ C, r > 0 with
Br(p) = rE(In, p) = E(Q∗, p) ⊂ C where Q∗ := 1

r2
In. Now let (Q, x0) be any feasible

solution. The proof is finished if we can show that Q � Q∗. As ellipsoids are convex,
the ellipsoid E(Q, x0) must also contain the convex hull of C = conv(S), especially,
Br(p) ⊂ E(Q, x0). Note that by Lemma 5.8 (3), the ball Br(p) still lies in E(Q, x0) if we
shift it towards x0, that is, Br(x0) = E(Q∗, x0) ⊂ E(Q, x0). Hence, by Observation 5.5,
Q∗ � Q.

We can finally prove the theorem.

Proof of Theorem 5.6. Let S be bounded and of affine dimension n. By Theorem 5.3,
the program has feasible solutions, and we denote the infimum of E1 by v∗. There is a
sequence of feasible solutions (Qk, xk) ∈ Q× X with the property

volE(Qk, xk) ↓ v∗ for k →∞. (5.1)
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We show now that (a subsequence of) the xk converge. By Lemma 5.10, there is
r > 0, p ∈ Rn such that Br(p) ⊂ E(Qk, xk) for all k, and by Observation 5.7, we may
assume that the xk are bounded (the volume of the E(Qk, xk) is eventually bounded).
Every bounded sequence in Rn has a converging subsequence, and we denote the limit
by x0 ∈ Rn. Since X was assumed to be closed, x0 ∈ X follows. By passing to this
subsequence if necessary, we may assume that xk converges to x0 ∈ X .

We show next that (a subsequence of) the Qk converge. By Lemma 5.10, there is Q∗

such that for all feasible solutions Q, we have

Q ∈ B(Q∗) = {Q′ ∈ Sn+ : Q′ � Q∗},

especially Qk ∈ B(Q∗) for all k. By Lemma 5.9, B(Q∗) is compact. Since Q is closed,
the intersection B′ := Q∩B(Q∗) is compact, too, thus a subsequence of the Qk converges
to some Q0 ∈ B′. By passing to a subsequence if necessary, we may assume that Qk

converges to Q0 ∈ Q.
It remains to show that (Q0, x0) is an optimal solution. To this end we need to verify

feasibility of (Q0, x0) and volE(Q0, x0) = v∗. We have just seen that Q0 ∈ Q and
x0 ∈ X . Feasibility follows if S ⊂ E(Q0, x0). Indeed, let x ∈ S. Then, as all (Qk, xk)
are feasible,

(x− xk)TQk(x− xk) ≤ 1

holds for all k ∈ N. By taking the limit and using the fact that matrix multiplication is
continuous, we find

(x− x0)TQ0(x− x0) ≤ 1,

or x ∈ E(Q0, x0). Feasibility of (Q0, x0) for E1 follows. Now, using the explicit formula
for the volume of an ellipsoid (Observation 1.15), we find

v∗ = lim
k→∞

volE(Qk, xk) = lim
k→∞

volBn√
det(Qk)

=
vol(Bn)√
det(Q0)

= volE(Q0, x0),

where continuity of the determinant was used.

Remark 5.11. The task to exhibit minimal assumptions for a converse statement of
Theorem 5.6 is left as future research. For example, if Q = Sn+ and X = Rn, then
optimal solutions exist only if S is bounded and has maximal affine dimension (i.e.,
affine dimension n). Note that these assumptions are surely not minimal. To see the
claim, note the following. Suppose S does not satisfy the assumptions (S is bounded
and has affine dimension n). In case S is unbounded, obviously no optimal solutions
with finite objective exist, as by Theorem 5.3, no feasible solutions with finite objective
exist. It remains to show that even if S is bounded, an affine dimension of d < n implies
that no optimal solutions exist. Let A be the affine hull of S, and let V be a subspace
of Rn with A = v0 + V (and hence, dimV = d). The case d = 0, corresponding to an
empty or singleton set S, is trivial. By the proved necessity in Theorem 5.6 and the
assumption that Q = Sn+, there is a nondegenerated, d-dimensional ellipsoid E(Q, x0)
in A of minimal volume containing S. Let {b1, . . . , bn−d} be an orthonormal basis of the
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orthogonal complement V ⊥ of V , that is, Rn = V ⊕ V ⊥. The ellipsoid can be turned
into a nondegenerated, n-dimensional ellipsoid E ′ by adding the axis {rb1, . . . , rbn−d}
for some fixed r > 0, with volume proportional to rn−d. Hence, the infimum objective
is 0. If there was an optimal solution to this infimum objective of 0, it would, in view of
Observation 1.15 correspond to a matrix with determinant +∞, which is absurd.
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5.2. Towards semidefinite constraints

Program E1 computes an ellipsoid of minimal volume containing a given set S, with
additional constraints on the shape and center, and has nice theoretical properties.
However, it is not clear how to solve it for some given S.

The first step to make this program tractable is to switch to a simpler, computa-
tionally advantageous2 objective. Secondly, we rewrite the set inclusion constraint as
a nonnegativity constraint. Thirdly, we restrict our attention to nondegenerated ellip-
soids, which we justify formally in Proposition 5.12. After these steps, the program still
contains the matrix Q and its inverse Q−1; furthermore, one constraint is quadratic in x0.
To avoid matrix inversion, we fourthly use a linearization technique from the literature
to rewrite the program with (possibly infinitely many) semidefinite constraints. Fifthly,
the quadratic constraint can be circumvented with another linearization technique from
the literature. After the first three steps, program E1 reads

min log det(Q−1)

s.t. 1− (x− x0)TQ(x− x0) ≥ 0 for x ∈ S
Q ∈ Q�0

x0 ∈ X

(E2)

where Q�0 := Q ∩ Sn++. Let us state formally how both programs are related and that
it is enough to consider nondegenerated ellipsoids.

Proposition 5.12. The feasible solutions of Program E2 are feasible solutions of E1.
Conversely, if a feasible solution of E1 has finite objective, it is feasible for E2. Moreover,
if E1 has optimal solutions of finite objective, the optimal solutions of both programs
coincide.

Proof. Note at first that S ⊂ E(Q, x0) is equivalent to x ∈ E(Q, x0) for x ∈ S, or
(x− x0)TQ(x− x0) ≤ 1 for x ∈ S. By Observation 1.15, the volume of E(Q, x0) equals
Cn/

√
det(Q), where Cn > 0 is a constant depending on n. This shows that feasible

solutions of finite objective coincide, and moreover, as the volume is nonnegative and
the square root is monotonic, minimizing the volume over the feasible set is equivalent
to minimizing 1/ det(Q) over the feasible set. Now the fact

det(A−1) = 1/ detA

for all invertible n×n-matrices A and that the logarithm is a monotonic function implies
the claim.

For semidefinite modeling reasons preparing the fourth step, we substitute P := Q−1,
which yields the formulation

2The function X 7→ − log detX is self-concordant on Sn++; see, e.g., Example 9.5 in [BV04].
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min log detP

s.t. 1− (x− x0)TP−1(x− x0) ≥ 0 for x ∈ S
P ∈ Q′

x0 ∈ X

(E2′)

where

Q′ := {Q−1 : Q ∈ Q�0} (5.2)

Observation 5.13. Feasible and optimal solutions of Programs E2 and E2′ are in bi-
jection under the map (Q, x0) 7→ (Q−1, x0).

For now, the variable x0 enters the constraint in E2 in a nonlinear fashion. We
now explore the fifth step, i.e., how this constraint may be linearized using tools from
semidefinite programming. The linearization technique is based on [ND05] (where the
authors in turn rely on methods from [EGC99] and [CEG04]). The important difference
of our approach to [ND05] is that in the reference, the authors do not minimize the
volume directly, which is proportional to the determinant of Q−1, but minimize the
trace of Q−1 through a hierarchy of programs. However, the trace of Q−1 is only a
coarse approximation of the volume of an ellipsoid.

The first observation from [ND05] is that in the constraint

1− (x− x0)TP−1(x− x0) ≥ 0 for x ∈ S

the variables x and x0 can be separated into different factors, as the constraint is equiv-
alent to

1−
(
x
1

)T (
In,−x0

)T
P−1

(
In,−x0

)(x
1

)
≥ 0 for x ∈ S.

where
(
In,−x0

)
is an n× (n+ 1) matrix. As we are minimizing, the latter is equivalent

to

1−
(
x
1

)T
A

(
x
1

)
≥ 0 for x ∈ S

A �
(
In,−x0

)T
P−1

(
In,−x0

)
(5.3)

where A ∈ Sn+1 is an additional matrix variable.3 The second observation from [ND05]
that we use is that now the Schur complement (Theorem 1.11) can be taken to rewrite
equation (5.3) in fully semidefinite form, completing the fourth step, as(

P
(
In,−x0

)(
In,−x0

)T
A

)
� 0,

3All reformulations are verified formally in Proposition 5.14.
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which is the very reason for the reformulation of E2 into E2′. Collecting our observations,
we get the following variant of Program E1:

min log detP (E3)

s.t. 1−
(
x
1

)T
A

(
x
1

)
≥ 0 for x ∈ S (5.4)(

P
(
In,−x0

)(
In,−x0

)T
A

)
� 0 (5.5)

A ∈ Sn+1

P ∈ Q′

x0 ∈ X

Since we have added additional variables in a nontrivial manner, we verify that we can
still extract the relevant information from E3. This motivates the following proposition.

Proposition 5.14. Program E2′ is a projection of Program E3.

Proof. Let (P, x0) be a feasible solution of E2′. We have to show that the solution extends

to a feasible solution of E3. Choose A :=
(
In,−x0

)T
Q
(
In,−x0

)
. From the definition

of A and feasibility of P , (5.4) holds. By the Schur complement (Theorem 1.11), (5.5)
holds. Thus, the feasible solution lifts to a feasible solution (P, x0, A) of E3.

For the converse direction, let (P, x0, A) be a feasible solution to E2. Especially, P � 0
and P is invertible. Feasibility of (P, x0) for E2 follows if we can show that the constraint

1− (x− x0)TP−1(x− x0) ≥ 0 for x ∈ S (5.6)

of E2′ holds. By the Schur complement again, (5.5) is equivalent to

A �
(
In,−x0

)T
P−1

(
In,−x0

)
,

and hence(
x
1

)T
A

(
x
1

)
≥
(
x
1

)T (
In,−x0

)T
P−1

(
In,−x0

)(x
1

)
= (x− x0)TP−1(x− x0) (5.7)

for all x ∈ Rn. Now equations (5.4) and 5.7 immediately imply (5.6).
It remains to show projection and lift of optimal solutions. But since the objective

does not depend on A, this follows readily from the first part of this proof.
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5.3. Computational formulation as an approximating
hierarchy

5.3.1. The hierarchy of approximations

As S may be infinite, the constraint (5.4) parameterized by all x ∈ S can be semi-infinite
(cf. the discussion in Section 2.3.3). To sidestep this, we restrict to a constraint set S
given in the form of polynomial inequalities, which makes the problem accessible to
(generalized) sos methods. In [ND05], the authors use a similar approach for a different
objective function. Precisely, we assume that S is basic closed semialgebraic, i.e., S
is given by polynomial constraints, S = K(h1, . . . , hs), for polynomials h1, . . . , hs ∈
R[X1, . . . , Xn]. Now let us consider the following program with parameter k ∈ N:

min log detP (ERk)

s.t. 1−
(
X
1

)T
A

(
X
1

)
∈M(h1, . . . , hs)[k] (5.8)(

P
(
In,−x0

)(
In,−x0

)T
A

)
� 0 (5.9)

A ∈ Sn+1

P ∈ Q′

x0 ∈ X

where Q′ was defined in (5.2) and, to be sure,

(
X
1

)
= (X1, . . . , Xn, 1)T . Let us verify

that this formulation yields feasible solutions to E3.

Observation 5.15. Any feasible solution to Program ERk yields a feasible solution to E3
for S = K(h1, . . . , hs) and given polynomials h1, . . . , hs.

Proof. Let M := M(h1, . . . , hs). Let (P, x0, A) be a feasible solution to ERk for some
k ∈ N. By feasibility,

p1 := 1−
(
X
1

)T
A

(
X
1

)
∈M [k]. (5.10)

Hence p1 ∈ M . By Observation 1.18, if p1 ∈ M = M(h1, . . . , hs), then p1(x) ≥ 0 on
S = K(h1, . . . , hs). The claim follows.

The next theorem shows that we have convergence of the optimal values of the hier-
archy to the optimal value of the original program, provided the quadratic module is
Archimedean.

Theorem 5.16. Let h1, . . . , hs ∈ R[X1, . . . , Xn] be given, and consider Program ERk.
The quadratic module M(h1, . . . , hs) is Archimedean if and only if ERk is feasible for
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some k ∈ N. In this case, denote the optimal values of ERk by λ(k) and the optimal
value of E3 by z∗. Then

lim
k→∞

λ(k) ↘ z∗.

Proof. Let M := M(h1, . . . , hs) be Archimedean. By assumption on Q there is Q ∈ Sn++

with Q ∈ Q, and hence P ′ := Q−1 � 0. Pick x0 ∈ X . By Theorem 1.17 (1), there is
N ∈ N with N−(X−x0)T (P ′)−1(X−x0) ∈M , hence, by the Definition 1.2 of quadratic
modules, we find that we may divide by N and still find that

p2 := 1− (X − x0)TP−1(X − x0) ∈M (5.11)

for P := NP ′. Note that P is still in Q′ as Q is conic by assumption. Put

A :=
(
In,−x0

)T
P−1

(
In,−x0

)
and note that

p2 = 1−
(
X
1

)T
A

(
X
1

)
.

Moreover, by the definition of the truncated quadratic module, there is k ∈ N such
that p2 ∈ M [k]. Thus, constraint (5.8) is satisfied. With the Schur complement (Theo-
rem 1.11) in mind, it is easily seen that (5.9) holds, too. Hence, (P, x0, A) is a feasible
solution to ERk.

For the converse direction, let (P, x0, A) be a feasible solution to ERk, some k ∈ N.
Thus, by feasibility, p1 defined as in (5.10) is in M [k] and hence in M . Furthermore, the
Schur complement and (5.9) imply that

H := A−
(
In,−x0

)T
P−1

(
In,−x0

)
is positive semidefinite. Therefore, the spectral theorem (Theorem 1.5) implies the
existence of a factorization H = V TDV with V orthogonal and D diagonal, and by
Proposition 1.7, D has nonnegative entries. This implies that

q :=

(
X
1

)T
H

(
X
1

)
=

(
V

(
X
1

))T
D

(
V

(
X
1

))
is a sum of squares and, by Definition 1.2, lies in M . Again by Definition 1.2, so does
the sum of p1 and q:

q′ := p1 + q = 1− (X − x0)TP−1(X − x0) ∈M.

But K(q′) = {x ∈ Rn : q′(x) ≥ 0} = E(P−1, x0) is a nondegenerated ellipsoid – by
feasibility P � 0 – and thus a compact set. By Theorem 1.17 (4), M is Archimedean.

To show convergence of the objective values, let M be Archimedean. We have just
shown that feasible solutions to ERk exist. Hence, by Observation 5.15, Program E3 is
feasible, so by Proposition 5.14, also Program E2′ is feasible. This forces the infimum
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v∗ of Program E2′ to be finite, yet it may vanish. Fix ε > 0. Then, there is a feasible
solution (P, x0) ∈ Q′ ×X of E2 with

log detP ≤ v∗ + ε. (5.12)

We show in the following that the family of solutions ((1+δ)Pδ, x0, A) parameterized by
δ > 0 is feasible for ERk and approximates P in volume. To this end, given M ∈ Rn×n,
put

pM := (X − x0)TM(X − x0) ∈ R[X1, . . . , Xn],

and by feasibility we have for all x ∈ S = K(h1, . . . , hs) that

1− pP−1(x) ≥ 0

⇐⇒ 1 + δ − pP−1(x) ≥ δ

⇐⇒ 1− 1

1 + δ
pP−1(x) ≥ δ

1 + δ

⇐⇒ 1− pP−1/(1+δ)(x) ≥ δ

1 + δ

where δ > 0 is arbitrary, and hence qδ(x) := 1 − pP−1/(1+δ)(x) > 0 on S for δ > 0.
Since M is Archimedean, qδ ∈ M by the Positivstellensatz (Theorem 1.20), and there
is kδ ∈ N with qδ ∈ M [kδ]. As P is part of a feasible solution of E2, we have P−1 � 0,
hence P−1/(1+δ) = ((1+δ)P )−1 � 0 for all δ > 0, and as Q is conic by Assumption 5.1,
((1 + δ)P, x0) is feasible for Program E2. By Proposition 5.12, ((1 + δ)P, x0) lifts to a
feasible solution ((1 + δ)P, x0, Aδ) of Program E3, which we have just seen is a feasible
solution to ERk for k = kδ. The objective value depending on δ > 0 is

log det ((1 + δ)P ) = n · log(1 + δ) + log det(P ) ≤ n log(1 + δ) + v∗ + ε
δ→0−−→ v∗ + ε,

and as ε > 0 was arbitrary in (5.12), the claim follows.

5.3.2. Solving the hierarchy

We show now that Program ERk can be reformulated as a (generalized version of) a
so-called log-det minimization program. With semidefinite constraints, log-det mini-
mization programs have the form

min log detX (LOGDET)

s.t. A(X) = b

X � 0

with matrix decision variable X, a linear map A : Sn → Rm, and b ∈ Rm[FHB03]. It
turns out that Program ERk is slightly more general and we need to allow the minimiza-
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tion of the determinant of a submatrix of X. The program takes the form

min log detX1 (LOGDET+)

s.t. A(X) = b

X =

(
X1 X2

XT
2 X3

)
� 0

Before we explore the relation to Program ERk, let us note that LOGDET+ is a
concave program.4 The objective is common in convex optimization and known to be
concave:

Lemma 5.17 (see, e.g., Lemma 1.4.2 in [Hel00]). The function

Sn++ → R, X 7→ log detX

is concave.

Observation 5.18. Program LOGDET+ is a concave minimization problem.

Proof. By Lemma 5.17, the objective is concave. Since the feasible set is an intersection
of half-spaces with the positive semidefinite cone, it is convex. The claim follows.

The aim of the remainder of this section is to show that Program ERk is essentially
of the form LOGDET+, if Q′ and X are spectrahedra (see Section 1.4.12). But first we
need to address a technical detail: The constraint set

Q′ = {Q−1 : Q ∈ Q�0} = {Q−1 : Q ∈ Q, Q � 0}

is not closed since 0 6∈ Q′, but spectrahedra are. We thus need to require Q′ to be a
spectrahedron – that is, if we identify Rn×n ∼= Rn2

, then Q′ is a projected spectrahedron
in Rn2

–, and optimize over Q′ instead of over Q′. Let us note that this does not change
the problem:

Observation 5.19. Any matrix P ∈ Q′ \ Q′ is singular.

Proof. Let P ∈ Q′ \Q′ be given. Hence there is a sequence {Pn}n∈N ⊂ Q′ with Pn → P
for n→∞. Suppose to the contrary P is nonsingular. Thus P � 0, since P lies in the
closed set Sn+. Since inversion is a continuous operation over the set of all nonsingular
matrices, P−1

n → P−1. It follows P−1 ∈ Q, since the latter is closed by Assumption 5.1.
As P−1 � 0, we have (P−1)−1 = P ∈ Q′, in contradiction to the assumption.

In other words, any P ∈ Q′ has objective value log det(P ) = −∞, and can geometri-
cally be interpreted as an ”ellipsoid“ of vanishing volume (corresponding to Program E1
with optimal value 0); this can only happen in the degenerated case that S does not
have maximal affine dimension.

We may now state above-mentioned equivalence:

4A convex (concave) programming problem is a minimization problem of a convex (concave) objective
subject to convex constraints.
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Theorem 5.20. Suppose Q′ and X are projected spectrahedra. Then Program ERk can
be reformulated as a program of the form LOGDET+.

Proof. By assumption on Q′, there are mQ′ , nQ′ ∈ N and matrices Bij, B
′
i ∈ SkQ′ with

Q′ =

{
P ∈ Rn×n :

n∑
i,j

PijBij +

nQ′∑
i=1

yiB
′
i � 0 for some y ∈ RnQ′

}
. (5.13)

Similarly, by assumption on X , there are mX , nX ∈ N as well as matrices Ci, C
′
i ∈ SkX

with

X =

{
x0 ∈ Rn :

n∑
i=1

x0,iCi +

nX∑
i=1

y′iC
′
i � 0 for some y′ ∈ RnX

}
. (5.14)

We have just seen (Observation 5.19) that in Program ERk, the set Q′ can be replaced
by Q′. The constraint

P ∈ Q′

is thus by (5.13) equivalent to the semidefinite constraint (in dual form, see Section 1.5.6)

n∑
i,j

PijBij +

nQ′∑
i=1

yiB
′
i � 0

P ∈ Rn×n, y ∈ RnQ′ .

Similarly, the constraint x0 ∈ X can be rewritten using (5.14) as a semidefinite constraint
(in dual form).

The constraint in (5.8), given by

1−
(
X
1

)T
A

(
X
1

)
∈M(h1, . . . , hs)[k]

involving the quadratic module is equivalent to an sos constraint and additional decision
variables as detailed in (1.16). By Corollary 1.31 again, the constraint is thus equivalent
to a semidefinite constraint (in primal form). Constraint 5.9, that is,(

P
(
In,−x0

)(
In,−x0

)T
A

)
� 0

is a semidefinite constraint (in dual form).
Now, by Observation 1.29, all constraints in dual form can be equivalently reformu-

lated in primal form, and aggregated into a single constraint (Observation 1.9). The
claim follows.
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6. Unconstrained mixed-integer
polynomial optimization

This chapter is devoted to a subclass of MIPP: Mixed-integer polynomial optimization
in absence of constraints. We review a condition that ensures the existence of minimizers
for this subclass. In case this condition holds, we compute norm bounds from Chapter 3
on the optimal solution, which makes the problem accessible to branch and bound,
especially the all-integer case. Furthermore, we derive a new class of underestimators
of the polynomial objective function. Using a result from real algebraic geometry and
again sos programming, we optimize over this class to get a strong lower bound on the
mixed-integer minimum. Our lower bounds are evaluated experimentally for the all-
integer case. They show good performance, in particular within a branch and bound
framework.

Section 6.1 introduces the problem class, outlines the solution process and recalls the
condition that ensures the existence of minimizers.

Section 6.2 motivates, introduces and illustrates our class of underestimators. We
show that the lower bound they provide on the mixed-integer minimum gives rise to a
linear function that can be used as objective in an sos program. We proceed by casting
the task to find the best global underestimator as an sos program. It turns out that it
is sufficient for our purposes to use underestimators on sublevel sets, and refine the sos
program accordingly.

Section 6.3 is about the solution of random instances with branch and bound. To this
end, we give the solution process in algorithmic form. To evaluate the performance of
our underestimators in a branch and bound framework, we present other lower bounds
from the literature. We implemented our underestimators and the lower bounds from
the literature and report on the runtimes.
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6.1. Introductory remarks

6.1.1. The problem class

In this section, we consider the unconstrained mixed-integer optimization problem of a
polynomial objective function f ∈ R[X1, . . . , Xn], that is, the problem

min f(x)

s.t. xi ∈ Z, i ∈ I,
x ∈ Rn,

(UMIPP)

and the all-integer variant
min f(x)

s.t. x ∈ Zn.
(UIPP)

In the following, we outline the solution process.

6.1.2. Discussion of the solution process

We have seen that, even though Program UIPP is a restricted special case of MIPP,
it is already undecidable in general (Theorem 1.39). We therefore concentrate on a
class of objective functions that satisfy a coercivity condition which is sufficient for the
existence of minimizers. If the leading form of f is positive definite, f has mixed-integer
minimizers – a fortiori, f has integer minimizers – by Proposition 1.32. As deciding
positive definiteness is NP-hard (Theorem 1.38), we approximate this problem by sos
programming. We outline the details below.

However, positive definiteness of f only tells us that f has mixed-integer minimizers,
but not where they are located. We locate the minimizers by computing the radius of a
p-norm ball that contains all minimizers, that is, the norm bound on the minimizers of
f as introduced in Chapter 3. Since norm bounds require a feasible solution, we choose
the point q = 0 which is always feasible in the absence of constraints.

This section is devoted to the actual solution of UMIPP for a given polynomial f ,
where, for simplicity, we restrict minimization at some point to the all-integer case UIPP.
To this end, we present algorithms and demonstrate that they are actually implementable
by sampling from a family of random polynomials and carrying out all described algo-
rithmic steps.

In principle, once a norm bound is known, UIPP is solvable by enumeration. How-
ever, to find the optimal solution to UIPP, instead of enumeration, we use a branch
and bound scheme. As indicated in the introduction (Chapter 1), an effective branch
and bound procedure has two key ingredients: Tight lower bounds and a small search
tree. To find tight lower bounds, we introduce a class of polynomials with obvious in-
teger minimizer that serve as underestimators to f . Using sos programming, we may
choose the underestimator g with the strongest lower bound. Firstly, we search for a
global underestimator which is later refined to underestimation on sublevel sets, yielding
stronger bounds. This refinement further allows to prove that, provided f has a positive
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definite leading form, there always are underestimators in our class that can be found
by sos programming. Concerning the small search tree, we compute our norm bounds,
and show that they outperform the bounds from the literature by orders of magnitude.

The branch and bound scheme consists of two algorithms. The first algorithm decides
whether f suffices the coercivity condition, and if f does, computes a norm bound on f ,
making the problem accessible to branch and bound. The second algorithm computes a
suitable underestimator g for f from our class of underestimators. It then proceeds to
the actual branch and bound part and uses the underestimator g, in conjunction with
the norm bound for f , to minimize f over the integer lattice.

In our experiments, we compare the performance of our underestimators with under-
estimators from the literature as well as the classical approaches, namely, continuous
relaxation and brute force enumeration.

6.1.3. A note on the coercivity condition

We indicated that we rely on the sufficient condition fd > 0 to ensure the existence of
integer minimizers. As deciding nonnegativity of the leading form fd is NP hard, even
for degree four (Theorem 1.38), we compute a lower bound cd on the leading form fd
restricted to the sphere, i.e.,

cd ≤ c∗d = min
x∈Sn−1

p

fd(x). (6.1)

If cd > 0 we know from (1.3) that fd > 0, so integer minimizers exist by Proposition 1.32.
Our approach fails if cd ≤ 0 unless we find a point x ∈ Sn−1

p with fd(x) < 0 which
certifies that fd is not positive semidefinite, and hence f cannot have minimizers by
Proposition 1.33.
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6.2. Underestimation

Given f, g : Rn → R and U ⊂ Rn, we say1 g is an underestimator of f on U if

g(x) ≤ f(x) for all x ∈ U.

Let us mention two important special cases that appear in this chapter: In case U =
Rn, the function g is a global underestimator ; if U = Lf≤(z) for some z ∈ R, g is an
underestimator on a sublevel set.

The primary motivation for global underestimators is that they yield lower bounds on
the mixed-integer minimum, since

(∀x ∈ Rn : g(x) ≤ f(x)) =⇒ inf
x∈FI

g(x) ≤ inf
x∈FI

f(x) (6.2)

where infx∈FI g(x) gives a stronger bound on the mixed-integer minimum of f than
infx∈Rn g(x). Using the mixed-integer minimum of g to derive a lower bound on the
mixed-integer minimum of f makes only sense if mixed-integer minimization of g is
easy compared to mixed-integer minimization of f . In Section 6.2.3, we show that
lower bounds on the mixed-integer minimum of f can still be computed by considering
functions g that underestimate f only on a sublevel set (of f) and possibly not all of Rn.

We outline now our class of underestimators and show that the problem to choose the
underestimator with the strongest lower bound can be cast as an sos problem.

6.2.1. A class of underestimators

We motivate our class of easy-to-minimize underestimators g with an observation on
monomials with a shift in the argument which shall serve as the building blocks to the
more general underestimators.

Observation 6.1. For some h ∈ Rn and α ∈ Nn
0 , let

g = (X − h)α =
n∏
j=1

(Xj − hj)αj

be a shifted monomial. If all αi are even, g has a mixed-integer minimizer at bheI (and
thus a continuous minimizer at h and an integer minimizer at bhe). If one αi is odd, g
is not bounded from below and does not have mixed-integer minimizers.

Our underestimators are conic combinations of shifted monomials with even αj, j =
1, . . . , n, as the combinations inherit the mixed-integer minimizer bheI . More precisely:

Proposition 6.2. Let a polynomial g ∈ R[X] be given as g =
∑

α bα(X − h)2α with
bα ≥ 0 for α 6= 0, and h ∈ Rn.

1Synonymously, we may say g underestimates f on U .
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1. The restriction of g to
∏k−1

i=1 {xi}×R×
∏n

i=k+1{xi} that is, the univariate function
y 7→ g(x1, . . . , xk−1, y, xk+1, . . . , xn) for fixed x ∈ Rn is nonincreasing for y ≤ hk
and nondecreasing for y ≥ hk, k ∈ {1, . . . , n}.

2. We have
g(x1, . . . , xn) ≥ g(x1, . . . , xk−1, bhke, xk+1, . . . , xn)

for every x ∈ FI = {x ∈ Rn : xi ∈ Z for i ∈ I} and k ∈ I.

3. The point bheI is a mixed-integer minimizer of g.

Proof. It is enough to show the claimed properties for a term of the form (X − h)2α, as
g is a conic combination of such terms. Claim 1 is elementary and immediately implies
Claim 2. Applying the latter repeatedly gives Claim 3.

Three properties make these polynomials g useful underestimators: Firstly, mixed-
integer minimization is trivial – this is inspired by the so-called rounding property [HS14],
i.e. rounding of a continuous minimizer yields an integer minimizer. Secondly, all
nonlinearity is confined to the parameter h. Thirdly, the fact that the expression is
linear in the bα makes them accessible to optimization.

Proposition 6.2 motivates

Notation 6.3. We denote the set of conic combinations of monomials with a shift of h
by

C (h) :=

{
g ∈ R[X] : g =

∑
α∈J

bα(X − h)2α, bα ∈ R≥0 for all α 6= 0, J ⊂ Nn
0 finite

}
.

As an example, the polynomial

g = (X1 − 1.5)4(X2 − 2)6 + 0.3(X1 − 1.5)2(X3 − 3.2)8 − 1 ∈ C (1.5, 2, 3.2)

with J = {(2, 3, 0), (1, 0, 4), (0, 0, 0)} has an integer minimizer at (1, 2, 3).

Proposition 6.4. Let g ∈ C (h) satisfy g(x) ≤ f(x) for all x ∈ Rn. Then

g(bheI) ≤ inf
x∈FI

f(x)

Proof. This follows from (6.2) and Proposition 6.2.

For determining an underestimator g we still have to choose h and the coefficients bα.
This is described next.

Choice of h: In principle, every h ∈ Rn may be chosen. Heuristically, we chose an
approximate continuous minimizer of f since g has its continuous minimizer at h. In
fact, every nontrivial g looks like an elliptic paraboloid or a parabolic cylinder near h,
as does f near every local minimizer. For almost all f , the continuous minimizer of f
can be found using sos methods (Theorem 1.28).
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Choice of bα: We choose the bα so that the lower bound g(bheI) is maximized. In
other words, we wish to maximize the expression

g(bheI) =
∑
α∈J

bα(bheI − h)2α

subject to g ≤ f . The higher order terms in g ensure a certain aggressiveness in the
growth behavior away from h, even for small coefficients bα, which leads to strong bounds.

6.2.2. Global underestimation

Using the notation wα := (bheI − h)2α, we get the following optimization problem:

max
J, bα

∑
α∈J

wαbα

s.t. f(x)−
∑
α∈J

bα(x− h)2α ≥ 0 ∀x ∈ Rn

bα ≥ 0 for α 6= 0

with decision variables bα ∈ R, α ∈ J and J ⊂ Nn
0 finite. Since this program is not

tractable in general, we consider the following sos version instead:

y = max
∑
α∈J

wαbα (GLOB)

s.t. f −
∑
α∈J

bα(X − h)2α is sos in R[X1, . . . , Xn],

bα is sos in R[X1, . . . , Xn] for α 6= 0.

The decision variables are the real bα, α ∈ J . Note that bα ∈ Σ is equivalent to
bα ≥ 0. Once J is fixed, GLOB is a valid sos program. We show in Corollary 6.9 that
it is sufficient to choose J = {α ∈ Nn

0 : |α| ≤ deg(f)/2}.

In the following we identify a solution bα, α ∈ J , with the polynomial g it defines,
that is with g =

∑
α∈J bα (X − h)2α, and hence may say that a polynomial is a feasible

or optimal solution to GLOB. We note that every feasible solution to GLOB (for any
choice of h) gives valid lower bounds on UMIPP:

Theorem 6.5. Let f ∈ R[X], h ∈ Rn and g =
∑

α∈J bα(X − h)2α ∈ C (h) be a feasible
solution to GLOB for some J . Then

1. g(bheI) ≤ infx∈FI f(x).

If moreover f − f(h) ∈ Σ holds and g is an optimal solution to GLOB, then
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2. g(bheI) ≥ f(h).

Proof. Claim 1 holds as g being feasible to GLOB implies f − g ∈ Σ, hence f − g ≥ 0,
and the claim follows by Proposition 6.4. Concerning Claim 2, observe that f−f(h) ∈ Σ
implies that h is a continuous minimizer of f and that the constant polynomial g̃ = f(h)
is a feasible solution to GLOB, hence g(bheI) ≥ g̃(bheI) = f(h) for every optimal
solution g ∈ C (h).

We note that GLOB is feasible if and only if f is sos-bounded from below, i.e. if there
is r ∈ R with f − r ∈ Σ. Indeed, if g =

∑
α∈J bα (X − h)2α is feasible for GLOB, then

f − g ∈ Σ, and hence f − g +
∑

α∈J,α6=0 bα (X − h)2α = f − b0 ∈ Σ. For the converse
direction, if f − r ∈ Σ, then g := r is a feasible solution to GLOB.

6.2.3. Underestimation on sublevel sets

Motivation

A quite restrictive condition in GLOB is that it requires g(x) ≤ f(x) globally, i.e., for
all x ∈ Rn. Actually, this is not necessary for our purposes. It is enough to require
g(x) ≤ f(x) only for those x ∈ Rn that satisfy f(x) ≤ f(q) for some q ∈ FI . That is,
for all q ∈ FI , we have(

∀x ∈ Lf≤(f(q)) : g(x) ≤ f(x)
)

=⇒ inf
x∈FI

g(x) ≤ inf
x∈FI

f(x), (6.3)

in other words, the mixed-integer minimum of g is a lower bound on the mixed-integer
minimum of f even if g is an underestimator of f only on a sublevel set Lf≤(f(q)). If we
make use of this in our sos program, the lower bound can only improve.

But before we delve into the details, let us consider the potential payoff by taking a
look at the integer minimization example in Figure 6.1a. The plot depicts the univariate
polynomial

f = 0.2 · (X − 0.3)6 − 5 · (X − 0.3)4 + 32 · (X − 0.3)2.

along with two underestimators gGLOB, gSLS. A short calculation shows that f has five

local extrema at 0.3 and 0.3 ±
√

25±
√

145
3

, and that the local minimizers are at x = 0.3

and at x± = 0.3 ±
√

25+
√

145
3

≈ 0.3 ± 3.51. Considering that f has a positive definite

leading form, one of the local minimizers must be a global one, and comparing the
function values shows that x = 0.3 is the continuous minimizer. Moreover, f must have
its integer minimizer in [−3, 3] as min{f(x+), f(x−)} > f(0); comparing the function
values shows that f has a single integer minimizer at x = 0 with value f(0) ≈ 2.84. The
underestimator gGLOB ∈ C (h), computed as optimal solution to GLOB is given by2

gGLOB ≈ 8.71 ·10−11 · (X−0.3)6 +1.09 ·10−09 · (X−0.3)4 +0.75 · (X−0.3)2−1.22 ·10−09,

2For this example we solved GLOB for h = 0.3 and deg g = 6, using SOSTOOLS 3.00 and CSDP
6.1.0.
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is globally below f . To find an underestimator on a sublevel set, we first fix the level
z = f(q) heuristically. Note that any q ∈ Z is a feasible solution to UIPP and hence an
upper bound; any integer minimizer must be contained in Lf≤(f(q)). As h = 0.3 is the
global minimizer, we choose q = bheI = 0 here. The polynomial gSLS, given by

gSLS ≈ 9.09 · (X − 0.3)6 + 11.80 · (X − 0.3)4 + 39.36 · (X − 0.3)2 − 0.81,

is an underestimator on the sublevel set Lf≤(f(0)) = [0, 0.6], as can be seen in Figure 6.1b.
In the next section, we show show how this function can be found. The plot reveals the
shortcomings of global underestimation: Any global underestimator in C (0.3) cannot
go above the local minimizers of f . This “barrier” from above turns gGLOB in this
example essentially into a quadratic underestimator for small x as the ratio of the higher
order coefficients and the one in front of the quadratic term is of order 10−10. The
underestimator gSLS however is a degree 6 polynomial whose higher order coefficients
are not small at all. Note that gGLOB is much closer to f near 0.3 compared to the new
underestimator gSLS. However, the quality of the resulting lower bound depends on the
function values at 0 and there gSLS is closer to f than gGLOB. The lower bounds the two
underestimators provide are gGLOB(0) ≈ 0.07 and gSLS(0) ≈ 2.84. In this case, we are
lucky as the lower bound on the integer minimum and f(0) coincide, showing once more
that f has its integer minimizer at 0.

-40

0

40

80

-4 0 4

gSLS(x)
gGLOB(x)

f(x)

(a) From far

-4

0

4

8

0 0.3 0.6

gSLS(x)
gGLOB(x)

f(x)

(b) From close

Figure 6.1.: Global underestimator gGLOB and an underestimator gSLS on a sublevel set.

6.2.4. The sos program for computing the improved underestimator

How do we compute the improved underestimator? At first, we observe that every
sublevel set Lf≤(z), z ∈ R, of f is semi-algebraic. Indeed, with the notation from (1.11),
we have

Lf≤(z) = {x ∈ Rn : z − f(x) ≥ 0} = K(z − f).
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Moreover, Lf≤(z) is compact if the leading form of f is positive definite (see Proposi-

tion 1.32). Compactness of Lf≤(z) in turn implies that the quadratic module M(f −
g, z − f), for any g ∈ R[X1, . . . , Xn], is Archimedean by Theorem 1.17 (4). Hence, for
every feasible underestimator g ∈ C (h) the existence of a representation for f − g as in
Putinar’s Positivstellensatz (Theorem 1.20) is guaranteed. This motivates the following
program:

y(k) = max
∑
α∈J

wαbα (SLS)

s.t. f −
∑
α∈J

bα(X − h)2α − σ(z − f) is sos in R[X1, . . . , Xn],

bα for α 6= 0, σ are sos in R[X1, . . . , Xn],

deg σ ≤ k

The decision variables are the real bα as for GLOB and, additionally, the real coeffi-
cients of the polynomial σ. As before, we use the notation wα := (bheI − h)2α. SLS is a
valid sos program once J and the degree of σ are fixed.

Theorem 6.6. Let f ∈ R[X], h ∈ Rn and g ∈ C (h) be a feasible solution to SLS with
z ≥ f(q) for some q ∈ FI.

1. Then g(bheI) ≤ infx∈FI f(x).

2. If J is fixed, y(−∞) ≤ y(0) ≤ y(2) ≤ y(4) ≤ . . .3

3. If f is coercive, there is k0 ∈ N0 such that SLS is feasible for all k ≥ k0.

4. SLS with k = −∞ is GLOB.

5. If f − f(h) ∈ Σ and g is optimal, then g(bheI) ≥ f(h).

Proof. Statement 1 holds as g feasible implies f−g−σ(z−f) ∈ Σ. Hence f(x)−g(x) ≥ 0
for those x with f(x) ≤ z, especially for those x with f(x) ≤ f(q) as f(q) ≤ z by
assumption. The claim follows by (6.3).

Statement 2 is clear as we only allow more coefficients for σ.
To see Statement 3, note that Lf≤(z) is nonempty as z ≥ f(q) and moreover compact

(Proposition 1.32), so f(x) > c for some c ∈ R and all x ∈ Lf≤(z). Hence f−c ∈M(z−f)
by Putinar’s Positivstellensatz (Theorem 1.20). This means f − c = σ0 + σ(z − f) for
some sos σ0, σ ∈ R[X]. Thus g := c is a feasible solution, and k0 := deg σ.

To see Statement 4, we note that k = −∞ corresponds to σ = 0, in which case SLS
is GLOB.

Statement 5 is a consequence of Statements 2 and 4 and Theorem 6.5.

3Note that every sos polynomial σ 6= 0 has even degree.
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We have not yet addressed the degree of g in GLOB and SLS nor the degree of σ
in SLS. The following proposition shows that once the degree of σ in SLS is fixed, the
degree of g in any feasible solution is bounded from above in terms of deg f and deg σ.
Let us note at first the following technical lemma that we need for its proof.

Lemma 6.7 (see, e.g., Corollary 1.1.3 in [Mar08]). Suppose v = u2
1 + · · ·+ u2

k for some
given u1, . . . , uk ∈ R[X] and u1 6= 0. Then v 6= 0, and

deg v = 2 max
1≤i≤k

deg ui.

Proposition 6.8. Let f ∈ R[X], g ∈ C (h) with deg f > 0, deg g > 0, z ∈ R and σ ∈ Σ
such that

f − g − σ(z − f) is sos. (6.4)

Then
deg(g) ≤ deg(f) + max{deg(σ), 0}.

Proof. Eq. (6.4) is equivalent to f − g − σ(z − f) = σ0 for some σ0 ∈ Σ, or

g + σ0 = f(1 + σ)− zσ. (6.5)

Hence deg(g) ≤ max {deg(g), deg(σ0)} (I)
= deg(g + σ0)

(II)
= deg (f(1 + σ)− zσ)

(III)
= max {deg (f(1 + σ)) , deg(zσ)} (IV)

= deg (f(1 + σ))

(V)
= deg(f) + deg(1 + σ)

(VI)
= deg(f) + max{deg(σ), 0}.

As g − g(h) ∈ Σ and deg g > 0, equality (I) follows from Lemma 6.7. Equality in
(II) follows from eq. (6.5). Using deg f > 0, the equalities in (III) and (IV) follow
from a typical degree argument: If u, v ∈ R[X], deg u 6= deg v, we have u + v 6= 0 and
deg(u + v) = max(deg u, deg v). Equality in (V) holds as the degree is multiplicative,
(VI) follows easily if one distinguishes the cases σ = 0, σ ∈ R≥0 and deg σ > 0.

Corollary 6.9. Let g ∈ C (h) be a feasible solution to GLOB. Then deg g ≤ deg f .

Proof. Use Proposition 6.8 with σ = 0 and the result follows from Statement 4 of
Theorem 6.6.
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6.3. Using and evaluating our underestimators within
branch and bound

Note that, for the remainder of this section, we assume the all-integer case: I = [n].
We evaluate the underestimators in a branch and bound framework. Firstly, we present
an algorithm that shows how special properties of our underestimators can be exploited
to speed up branching and pruning. In the following experiments, we generate random
polynomials. For completeness, we sample from families (F1) and (F2) (Sections 3.3.2
and 3.3.3, respectively), but focus on the latter as we get instances with higher n and
d: Specifically, for the family (F1) and each of the (n, d)-tuples (2, 4), (3, 4) and (4, 2),
we sample instances until we have 50 with detected positive definite leading form (cf.
Section 3.3.2); for the second family (F2) and each of the (n, d)-tuples (2, 6), (3, 4), (3, 6),
(4, 4) and (5, 6) for K = 2, we sample 50 instances (cf. Section 3.3.3). We compare the
resulting runtimes in a branch and bound framework with other lower bounds from the
literature and conclude with an evaluation of the initial lower bound g(bhe).

6.3.1. Algorithm

We present the implementation of our underestimators in a branch and bound framework
in Algorithm 2. The algorithm can be summarized as follows. New subproblems are
chosen depth first. This keeps memory usage small and allows us to quickly obtain good
feasible solutions. We do not reorder the variables. Subproblems are collected in a list
L; every subproblem P ∈ L is of the form P = (m, r1, . . . , rm), where m ∈ {0, . . . , n}
encodes the number of fixed variables (r1, . . . , rm) ∈ Zm; i.e.,

min f(r1, . . . , rm, xm+1, . . . , xn)

xm+1, . . . , xn ∈ Z
(P = (m, r1, . . . , rm))

and (0) encodes the initial problem. At every subproblem (m, r1, . . . , rm), we get a
univariate underestimator g̃ from the original underestimator g by fixing the first m
variables x1, . . . , xm to the values r1, . . . , rm from the subproblem, and by fixing the last
n−m+ 1 free variables xm+2, . . . , xn to bhm+2e, . . . , bhne. Now suppose g is a solution
to GLOB or SLS. Then, for some q ∈ Zn, f(x) ≥ g(x) for those x ∈ Rn with f(x) ≤ f(q).
Using Proposition 6.2,

f(r1, . . . , rm, xm+1, xm+2, . . . , xn) ≥ g(r1, . . . , rm, xm+1, xm+2, . . . , xn)

≥ g(r1, . . . , rm, xm+1, bhm+2e, . . . bhne) = g̃(xm+1)

for all x ∈ Zn with f(x) ≤ f(q). This means that all subproblems with g̃(xm+1) larger
than the current upper bound u can be pruned – and this holds, trivially, also for those x
with f(x) > f(q). In short, if g̃(xm+1) > u, the subproblem P ′ = (m+1, r1, . . . , rm, xm+1)
of P can be pruned. Since g̃ is nondecreasing for xm+1 ≥ hm+1 and nonincreasing for
xm+1 ≤ hm+1, the set of all these subproblems of P , whose xm+1-coordinate must lie in
a subinterval of [−R,R], can be identified by a binary search:
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Proposition 6.10. 1. Algorithm 2 is correct, that is, it always terminates after a
finite number of steps with an optimal integer solution x∗ that satisfies f(x∗) = u.

2. The integers L1 and L2 (in lines 13 & 15) can be found with binary search in
dlog2(L)e+ 2 ≤ dlog2(R)e+ 2 evaluations of g̃ if L > 0.

Proof. Let x∗ be any optimal solution. To prove 1. it suffices to show that the algorithm
terminates and no problem with (n, x∗) as subproblem gets pruned in Step 12 or lost in
Step 19. To see termination of the algorithm, we observe that the number of subproblems
is finite as the sets Bm = {y ∈ Zm : ‖y‖p ≤ R}, m = 1, . . . , n are finite, every subproblem
(m, r1, . . . , rm) suffices (r1, . . . , rm) ∈ Bm and no subproblem is inserted into the list L
more than once. To see that x∗ does not get discarded in Step 12, define

g̃(xm+1) := g(x∗1, . . . , x
∗
m, xm+1, bhm+2e, . . . , bhne) (6.6)

and suppose g̃(bhm+1e) > u. Hence

g̃(bhm+1e) > u ≥ f(x∗) ≥ g(x∗) ≥ g(x∗1, . . . , x
∗
m, bhm+1e, . . . , bhne) = g̃(bhm+1e),

a contradiction, where we used the monotonicity property of g (Proposition 6.2) and
that g(x) ≤ f(x) for x ∈ Lf≤(f(q)), a fortiori for x ∈ Lf≤(f(x∗)). Suppose that x∗

gets lost in Step 19. Necessarily, x∗m+1 < L1 or x∗m+1 > L2. We derive a contradiction
for x∗m+1 < L1, the other case is identical. Observe that x∗m+1 ∈ [−L,L] as every

optimal integer solution satisfies
∑n

j=1 |x∗j |p ≤ Rp, so we must have |x∗m+1| =
p
√
|x∗m+1|p ≤

p
√
Rp − |x∗1|p − . . .− |x∗m|p. As x∗m+1 is integer, we may round down – in other words,

x∗m+1 ∈ [−L,L]. By definition of L1 and Proposition 6.2, we have g̃(x∗m+1) > u with g̃
from (6.6), thus, using Proposition 6.2 again,

g̃(x∗m+1) > u ≥ f(x∗) ≥ g(x∗) ≥ g̃(x∗m+1),

a contradiction.
We finally show that Claim 2 holds. We prove the claim for hk+1 ≥ 0, the proof for
hk+1 ≤ 0 is similar. In case hk+1 > L, L1 exists if and only if g̃(L) ≤ u as g̃(xk+1)
is non-increasing for xk+1 ≤ hk+1 (by Proposition 6.2); necessarily, L2 := L. Using
binary search on [−L,L], L1 can be found using at most dlog2(2L)e = dlog2(L)e + 1
further evaluations of g̃. In case 0 ≤ hk+1 ≤ L, L1 exists as g̃(bhk+1e) ≤ u in Step 12.
Again using binary search, L1 ∈ [−L, bhk+1e] can be found in no more than dlog2(2L)e
evaluations. As g̃(xk+1) = g̃(hk+1 − xk+1), it only needs at most one more evaluation
of g̃ to find L2, so we find both numbers in no more than dlog2(L)e + 2 evaluations of
g̃.

Remark 6.11. Concerning our implementation, we chose deg g = deg f for GLOB
and SLS since for large x, we expect a similar order of growth of f and g. Also, we
chose deg σ = 2 for SLS, since deg σ = 4 takes too long in the preprocessing. For the
parameter h ∈ Rn we chose an (approximate) continuous minimizer computed via the
SOSTOOLS function findbound.m – however, the algorithm accepts arbitrary h ∈ Rn.
We determined R using Algorithm 1.
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Algorithm 2 Branch and Bound

input f ∈ R[X1, . . . , Xn], h ∈ Rn, p-norm bound R on minimizers, k ∈ 2N0

x∗ ← bhe // initial guess for integer minimizer
u← f(x∗) // upper bound on integer minimum

4: L ← {(0)} // initial list of subproblems
find underestimator g: solve SLS with h, deg g ≤ deg σ = k // or GLOB, resp.
while L 6= ∅ do

pick P = (m, r1, . . . , rm) ∈ L with m maximal
8: L ← L \ {P}

if m < n then
L←

⌊
p
√
Rp − |r1|p − · · · − |rm|p

⌋
let g̃ : R→ R, g̃(xm+1) = g(r1, . . . , rm, xm+1, bhm+2e, . . . , bhne)

12: if g̃(bhm+1e) ≤ u then // otherwise prune
find L1 ∈ [−L,L] ∩ Z minimal with g̃(L1) ≤ u
if such an L1 exists then

find L2 ∈ [−L,L] ∩ Z maximal with g̃(L2) ≤ u // cf.
Proposition 6.10

16: else
L1 ← +∞, L2 ← −∞.

end if
for all rm+1 ∈ [L1, L2] ∩ Z do // [L1, L2] = ∅ if L1 = +∞

20: L ← L ∪ {(m+ 1, r1, . . . , rm+1)} // actual branching
end for

end if
else // all variables xi were fixed to values ri

24: if f(r) < u then // update upper bound
x∗ ← r
u← f(r)

end if
28: end if

end while
output x∗, u
print f attains its integer minimum u at x∗.
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6.3.2. Presentation of other lower bounds

It is not straightforward to compare the performance of our underestimators with lower
bounds from the literature. In our setting, we compute a single underestimator per
instance – which is then merely evaluated during the branch and bound process.4 We
could not find other underestimators with this property that give sensible results in
branch and bound. However, there are lower bounds in the literature that are more
general than ours since they consider restricted polynomial optimization problems and
can hence be applied to any polynomial – not only to those with positive definite leading
form – and are suitable for branch and bound if computed new at each node. In addition
to Algorithm 2 (with GLOB and SLS) we implemented the following four algorithms
in a MATLAB framework for solving UIPP: three of them are branch and bound ap-
proaches as Algorithm 2 which use other bounds (taken from [BD14], [LHKW06], and
the continuous relaxation) while our last algorithm is a simple brute force approach.

• For arbitrary polynomials on boxes, Buchheim and D’Ambrosio [BD14] suggested
to compute, for every term of f , the L1-best separable underestimator. The sum
of the underestimators is again separable, so its integer minimization is a univari-
ate problem. For degree d ≤ 4 and arbitrary n, they provide explicit underes-
timators. We hard-coded the explicit underestimators, and used the MATLAB
built-ins polyval, polyder and roots to evaluate and differentiate the sepa-
rable underestimators, and to compute their roots, respectively. As a suitable
box at the subproblem P = (m, r1, . . . , rm) we chose the box [−L,L]n−m where

L =
⌊

p
√
Rp − |r1|p − · · · − |rm|p

⌋
. The authors suggest to successively halve the

box into subboxes which does not fit into our scheme. This approach is abbreviated
SEP in the plots.

• For nonnegative polynomials on polytopes P , De Loera et al. [LHKW06] approxi-
mate the maximum of f on P∩Zn by the sequence k

√∑
x∈P∩Zn f(x)k. Each member

of the sequence can be computed in polynomial time, using a reformulation as a
limit of a rational function which in turn is based on the generating function of P .
We did experiments with k = 2 and k = 4, the latter taking significantly longer,
without giving much better results, so we restricted ourselves to k = 2. Note that
the suggested implementation uses residue techniques, while we just use symbolic
limit computations. On the other hand, we improved the bounds as follows: To
make their approach applicable to not necessarily nonnegative polynomials, the
authors suggest to add the sufficiently large constant

c := ‖f‖0‖f‖∞Md

to obtain f = f + c nonnegative on P . Here, M ≥ 0 is a bound on the polyhedron
such that |xi| ≤M for all x ∈ P ; the norm ‖ · ‖∞ (as well as the norm ‖ · ‖1 below)

4By fixing some variables at each node and then computing new underestimators, this could be im-
proved but would need additional runtime for the computation of the new underestimator.
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and the “norm” ‖ · ‖0 were introduced for polynomials in Section 1.4.4. However,
the constant

c′ :=
d∑
j=0

‖fj‖1M
j

suffices to ensure that f + c′ is nonnegative on P . A short calculation shows that
c′ ≤ c if M ≥ 1, and in dense instances one often has c′ � c. As polyhedron we
again chose the box [−L,L]n−m from the previous bound. This bound is abbrevi-
ated to POLY in the plots.

• We compute an sos approximation of the global continuous relaxation (CR in the
plots) at each subproblem P = (m, r1, . . . , rm), that is

max λ

s.t. f(r1, . . . , rm, Xm+1, . . . , Xn)− λ is sos in R[Xm+1, . . . , Xn]

• Brute force enumeration with no lower bounds, abbreviated BF. As f has to be
evaluated at each node, we use matlabFunction to convert the Symbolic Math
Toolbox object that encodes f into a function handle that can be evaluated sig-
nificantly faster.

• Algorithm 2 using GLOB with parameters as described in Remark 6.11.

• Algorithm 2 using SLS with parameters as described in Remark 6.11.

6.3.3. Runtime comparison

Implementing the six different lower bounds from Section 6.3.2 into our B&B-framework,
we measured the runtime of the B&B routine without preprocessing time, which is
evaluated separately at the end of this section. On every instance each of the lower
bounds had a maximum of 5 minutes to complete B&B; if this time constraint was
violated, the process was interrupted and the lower bound considered as unsuccessful
on this instance. If the parameter h could not be found by SOSTOOLS’ findbound.m
function, GLOB and SLS were considered to have violated the time constraint. The
results for family (F1) from Section 3.3.2 are plotted in Figure 6.2 and for family (F2)
from Section 3.3.3 in Figure 6.3.

We infer from the plots that for a small number of variables, the problem size (i.e., R),
is still so small that brute force is competitive with our approach. However, if instances
get larger, GLOB and SLS are, on average, faster than brute force and the continuous
relaxation. SEP is quite fast in small instances, but for large instances the running
time is high as a new underestimator is computed at each node. In our setting, POLY
takes too long to be competitive. The continuous relaxation is satisfactory for smaller
instances but slower than brute force. For (n, d) = (5, 6), no lower bound except for SLS
finished B&B within the time limit of 5 minutes.
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Figure 6.2.: From family (F1), we sample instances until 50 with positive definite leading
form are generated. Using these as input to our B&B framework together
with the lower bounds from Section 6.3.2, we scatter plot the runtimes in [s]
for different dimension n and degree d (logarithmic scale). The larger line is
the median of the depicted values. The number following the bound is the
amount of instances that are solved within 5 minutes.

To evaluate the underestimators on larger instances, we additionally increased n,
the number of variables, for fixed degree d = 4 until no instance was solved by any
underestimator. For these large instances we allowed a larger time constraint of 2 hours.
We improved solvability by alternatively allowing h = 0 if a continuous minimizer x̄
could not be found, or if GLOB or SLS could not be computed with h = x̄.

The largest n for which instances could still be solved for the different underestimators
are the following:

GLOB SLS SEP POLY CR BF
7 9 6 4 11 6

The results for the largest instances that SLS was still able to solve are plotted in
Figure 6.4. The plot and table show that brute force cannot solve larger instances. Only
the continuous relaxation can compete with SLS, it solves more instances within the
given time limit. However, as Figure 6.4 shows, SLS is significantly faster than CR for
n = 7, 8 and for 9 in most of the instances that SLS solved within the time limit.

Figure 6.5 illustrates the differences in preprocessing time, i.e., the time needed to
compute an approximate continuous minimizer h and the underestimator g, and the
time needed for the actual branch and bound. It can be seen that the preprocessing
time does not vary too much with the instance and is mostly significantly longer than
the subsequential branch and bound.

Also, SLS takes longer than GLOB in the preprocessing phase. This is to be expected
as the corresponding sos program is larger, and so are preprocessing times. Indeed,
Figure 6.5 reveals that GLOB has shorter preprocessing times throughout, but SLS is
superior in B&B, as expected.
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Figure 6.3.: From family (F2), we sample 50 instances. Using these as input to our B&B
framework together with the lower bounds from Section 6.3.2, we scatter plot
the runtimes in [s] for different dimension n and degree d (logarithmic scale).
The larger line is the median of the depicted values. The number below the
bound is the amount of instances that are solved within 5 minutes.
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Figure 6.4.: Large instances: From family (F2), we sample 50 instances. Using these
as input to our B&B framework together with the lower bounds from Sec-
tion 6.3.2, we scatter plot the runtimes in [s] for different dimension n and
degree d (logarithmic scale). The larger line is the median of the depicted
values. The number below the bound is the amount of instances that are
solved within 2 hours.
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Figure 6.5.: From family (F2), 50 instances are sampled for different dimension n and
degree d. The scatter plot shows the Preprocessing (P) and B&B (B) times
– GLOB on the left, SLS on the right (logarithmic scale). The larger line is
the median of the depicted values.
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Figure 6.6.: From family (F2), 50 instances are sampled for different dimension n and
degree d. We compare the initial lower bound on the integer minimizer using
the ratio Q (logarithmic scale).

The initial lower bound on the minimum

At last, we evaluate the initial lower bound g(bhe) of our underestimators g. To this
end, we define a ratio Q as follows: Let h be a continuous minimizer of f (if found by sos
methods), x∗ an integer minimizer of f found during B&B and g be a solution to GLOB
or SLS. Then

Q :=
g(bhe)− f(h)

f(x∗)− f(h)

takes values in [0, 1], is invariant under scaling of f by constants λ > 0 and addition of
constants c ∈ R to f – and, needless to say, the larger Q, the tighter the lower bound.
See Figure 6.6 for the results.

By Theorem 6.6, SLS gives bounds that are at least as good as GLOB. The plots
show that, once the semidefinite program is solved, SLS gives strictly tighter bounds
more often than not.
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7. Growth and stability properties of
coercive polynomials

This chapter is about coercive polynomials, which appeared throughout this work. To
characterize coercive polynomials, we investigate how fast a coercive polynomial grows,
using the so-called order of coercivity, and how stable the coercivity property is under
perturbations of its coefficients.

Section 7.1 motivates the problem and concepts of this chapter, and gives some point-
ers to the literature.

Section 7.2 recalls, for a coercive multivariate polynomial f ∈ R[X1, . . . , Xn], the
notion and also some of the properties of the so-called order of coercivity o(f) and links
them to the so-called  Lojasiewicz exponent at infinity. For coercive polynomials f we
further recall the definition of the degree of stable coercivity s(f) and introduce the
degree of strongly stable coercivity s̃(f). Also, by studying the order of coercivity of
rational functions, we give an alternative proof of the known result that o(f) is always
positive for any coercive polynomial f .

Section 7.3 describes, for a coercive polynomial f , how the order of coercivity o(f), the
degree of stable and strongly stable coercivity, s(f) and s̃(f), respectively, are related.
One of the two main results, Theorem 7.15, gives an explicit relation between these
three numbers. The other main result, Theorem 7.16, shows that coercive polynomials
f whose order of coercivity o(f) is maximum possible, that is, o(f) = deg(f), are
exactly the polynomials with a positive definite leading form. We also show that this is
equivalent to the fact that their degree of stable coercivity s(f) is maximum possible,
that is, s(f) = deg(f).

Section 7.4 explicitly constructs two families of coercive polynomials with the corre-
sponding order of coercivity being positive but tending to zero. For the first family the
number of variables is hold fixed but the degree varies, and, for the second family, the
degree is fixed but the number of variables varies.

Section 7.5 addresses the question whether it is possible to determine the minimal
possible order of coercivity for a polynomial in n variables of degree not exceeding d.

Section 7.6 is about the decision problem whether a given polynomial is coercive.
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7.1. Introduction

7.1.1. Motivation

In almost every of the previous chapters, coercivity played an important role: To guar-
antee existence of optimal solutions to MINLP given feasibility (Proposition 1.32), as a
sufficient condition for the Archimedean property (Section 1.5.3), as an assumption to
the norm bound from the literature and our norm bound as outlined in Chapter 3, to
guarantee existence of underestimators (Theorem 6.6) and so forth.

To understand multivariate polynomials better, we consider the order of growth at
infinity and how this relates to the stability of coercivity with respect to perturbations
of the coefficients.

As a motivation, let us first consider the univariate case. A polynomial f ∈ R[X] is
called coercive on R if f(x)→ +∞ whenever |x| → +∞. This is the case if and only if
the leading coefficient of f is positive and the degree deg(f) of f is positive and even.
This, in turn, is equivalent to the property f(x)/|x|q being coercive for all q ∈ [0, deg(f)).
Hence, the number deg(f) expresses how fast f grows for large x, and, thus, it can be
viewed as a meaningful measure for the order of growth of f at infinity. We call this
number the order of coercivity of f .

We observe further that, in the univariate case, small perturbations of a coercive
polynomial f by another univariate polynomial g preserves coercivity. In fact, if f is
coercive, so is f + g whenever deg(g) ≤ deg(f) and if the leading coefficient of g is
sufficiently close to zero. On the other hand, f + g is not necessarily coercive if the
degree of g exceeds the degree of f , and, thus, the number deg(f) can also be viewed
as a measure expressing how stable the coercivity of f on R is. We call this number the
degree of stable coercivity of f .

Consequently, for a univariate coercive polynomial f , the order of coercivity coincides
with the degree of stable coercivity, and both are equal to the degree of f . Once these
two numbers are properly defined in the multivariate setting, it is only natural to ask
if the order of coercivity again equals the degree of stable coercivity, and if so, whether
these numbers again coincide with the degree of f .

In [BS15b] the first question is answered affirmatively for a broad class of coercive
polynomials whereas the authors give a dissenting answer to the second question. More
precisely, using properties of the underlying Newton polytopes, a class of coercive poly-
nomials f is identified for which the order of coercivity coincides with the degree of
stable coercivity, and both are equal to a so-called degree of convenience of f which, in
general, differs from deg(f).

In the present article we shall show that for coercive polynomials f the degree of
stable coercivity of f may differ from the order of coercivity of f in general, but not
”too much”. More precisely, our main results show that for any coercive polynomial, its
degree of stable coercivity is always equal to the integral part of the order of coercivity.
We shall further characterize the case when the order of coercivity of f is maximum
possible by positivity of its leading form. The latter turns out to be equivalent to
the degree of stable coercivity of f also being maximum possible (see Theorems 7.15
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and 7.16).

7.1.2. Related literature

Coercivity of multivariate polynomials itself is an interesting property for various rea-
sons. In continuous polynomial optimization theory it is a recurring question whether a
given polynomial f ∈ R[X1, . . . , Xn] attains its infimum over Rn (see, e.g. [BS15a; ED08;
GSED14; GSED11; NDS06; Sch06; VP07; VP10]); a similar question is equally relevant
in our integer and mixed-integer programming variant (Proposition 1.32). Coercivity of
f is a sufficient condition for f having this property, and, thus, it is a natural task to
verify or disprove whether f is coercive.

As a further consequence of coercivity, f is bounded below on Rn by some v ∈ R, so
that f − v is positive semidefinite on Rn. Also, since coercivity of f is equivalent to the
boundedness of its lower level sets {x ∈ Rn : f(x) ≤ α} for all α ∈ R, understanding
coercivity can be useful to decide whether a basic semi-algebraic set is bounded. Further-
more, properness of polynomial maps F : Rn → Rn can be characterized by coercivity
of the polynomial ‖F‖2

2. This is useful to decide whether F is globally invertible (see,
e.g. [BS17; BA07; CDTT14]).

Coercivity of polynomials is partially analyzed in [JLL14] and, in the convex setting,
in [JPL14], while the coercivity of a polynomial f defined on a basic closed semi-algebraic
set and its relation to the Fedoryuk and Malgrange conditions are examined in [VP10]. A
connection between coercivity of multivariate polynomials and their Newton polytopes
is given in [BS15a]. In [MN14], the authors study how fast – not necessarily coercive –
polynomials grow on semi-algebraic sets.
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7.2. Order and stability of coercivity

7.2.1. The order of coercivity

We saw in Section 1.4.8 that a function f : S → R, defined on a subset S ⊂ Rn, is
coercive if

∀c > 0 ∃M ≥ 0 ∀x ∈ S, ‖x‖ ≥M : f(x) ≥ c (7.1)

holds. The function f is called q-coercive for some q ≥ 0 if f(x)/‖x‖q is coercive. Note
that coercivity and q-coercivity are properties that are independent of the choice of the
norm on Rn. The following characterization of q-coercivity, q ≥ 0, turns out to be useful
for our later purposes. For completeness, we give its short proof.

Observation 7.1. Let f : S → R defined on a subset S ⊂ Rn and q ≥ 0 be given. Then
f is q-coercive if and only if

∀c > 0 ∃M ≥ 0 ∀x ∈ S, ‖x‖ ≥M : f(x) ≥ c · ‖x‖q (A)

holds.

Proof. Let f be q-coercive and c > 0. By definition of q-coercivity, there is M ≥ 0 such
that f(x)/‖x‖q ≥ c whenever x ∈ S and ‖x‖ ≥ M . Multiplication by ‖x‖q gives the
claim. Now suppose (A) holds and fix c > 0 with the corresponding M ≥ 0. Division
by ‖x‖q yields for all nonzero x ∈ S with ‖x‖ ≥M the inequality

f(x)

‖x‖q
≥ c,

and, thus, lim inf‖x‖→∞ f(x)/‖x‖q ≥ c. Since c > 0 was arbitrary, f is q-coercive.

For coercive f : S → R, the number

o(f) := sup {q ≥ 0 : f is q-coercive}

is called the order of coercivity of f . A coercive function f is q′-coercive for all q′ with
0 ≤ q′ < o(f), but f need not be o(f)-coercive. Now, if property (A) does not hold for
all but only some c > 0, we may not conclude q-coercivity of f . However, the following
holds:

Observation 7.2. Let f : S → R defined on a subset S ⊂ Rn and q > 0 be given. Then
the property

∃c > 0 ∃M ≥ 0 ∀x ∈ S, ‖x‖ ≥M : f(x) ≥ c · ‖x‖q (B)

implies o(f) ≥ q.
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Proof. For any 0 < ε < q and all nonzero x ∈ S with ‖x‖ ≥M one has

f(x)

‖x‖q−ε
≥ c‖x‖ε,

and, as the right hand side is coercive, f is (q − ε)−coercive. Thus the inequality
o(f) ≥ q − ε holds and since ε was arbitrary, o(f) ≥ q follows.

Note that the converse statement does not necessarily hold.
The following example shows that for quadratic coercive polynomials, the equality

o(f) = deg(f) is always fulfilled. For the proof and the proofs to come, the following
immediate estimate is handy; for completeness, we give a proof.

Observation 7.3. For f ∈ R[X1, . . . , Xn]d, where n ∈ N, d ∈ N0, and any q ∈ [d,+∞),
the following estimate holds:

|f(x)| ≤
(
n+ d

d

)
· ‖f‖∞ · (‖x‖q∞ + 1) , x ∈ Rn.

Proof. Fix n ∈ N, d ∈ N0, f ∈ R[X1, . . . , Xn] of degree at most d and q ≥ d. In multi-
index notation, f =

∑
α∈A(f) aαX

α, and in view of (1.1), we get |A(f)| ≤
(
n+d
d

)
. Also,

for all x ∈ Rn and α ∈ Nd
0 with |α| = α1 + . . .+ αn ≤ q, we have

|xα| ≤ ‖x‖|α|∞ ≤ max (‖x‖q∞, 1) ≤ ‖x‖q∞ + 1.

The estimates combine to

|f(x)| = |
∑

α∈A(f)

aαx
α| ≤ ‖f‖∞

∑
α∈A(f)

|xα| ≤ ‖f‖∞
∑

α∈A(f)

(‖x‖q∞ + 1)

= |A(f)| · ‖f‖∞ · (‖x‖q∞ + 1) ≤
(
n+ d

d

)
· ‖f‖∞ · (‖x‖q∞ + 1) .

Example 7.4. Let f ∈ R[X1, . . . , Xn], f(x) = xTQx+Ltx+c with Q ∈ Rn×n symmetric,
L ∈ Rn and c ∈ R be given. If f is coercive, then o(f) = 2. Indeed, as f is coercive,
Q must be positive definite. It is well-known that this implies the existence of a unique
global minimal point x0 ∈ Rn of f , and one finds f(x) = (x − x0)TQ(x − x0) + f(x0)
(see, e.g. [BHS15]). Denoting the smallest eigenvalue of Q by λ, one obtains that f(x) ≥
λ(x − x0)T (x − x0) + f(x0) = λ‖x − x0‖2

2 + f(x0) holds for all x ∈ Rn, and thus, by
Observation 7.2, the inequality o(f) ≥ 2 follows. On the other hand, Observation 7.3
implies o(f) ≤ deg(f), and, due to deg(f) = 2, one obtains o(f) ≤ 2.

Property (B) shows how the order of coercivity is related to the so-called  Lojasiewicz
exponent at infinity (see, e.g. [Kra07]). For a polynomial map F : Rn → Rm it is defined
as

L∞(F ) := sup {ν ∈ R : ∃c,M > 0 ∀x ∈ Rn : ‖x‖ ≥M ⇒ ‖F (x)‖ ≥ c ‖x‖ν} .

Indeed, for coercive polynomials, the order of coercivity and  Lojasiewicz exponent at
infinity coincide:
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Observation 7.5. Let f ∈ R[X1, . . . , Xn] be coercive. Then

o(f) = L∞(f).

Proof. From the definitions, o(f) ≤ L∞(f). Note that the coercivity of f implies
L∞(f) ≥ 0 and o(f) ≥ 0. Suppose at first that L∞(f) = 0, then o(f) = 0 and
hence o(f) = L∞(f) = 0 follows. Suppose next that L∞(f) > 0. It is enough to show
that for any 0 ≤ q < L∞(f), we also have q < o(f). Let ε > 0 with q + ε ≤ L∞(f). By
definition of L∞(f), there is c > 0 and M ≥ 0 with f(x) ≥ c · ‖x‖q+ε = (c · ‖x‖ε) · ‖x‖q
whenever ‖x‖ ≥M . As c · ‖x‖ε grows without bound, this yields o(f) > q.

Since the  Lojasiewicz exponent L∞(f) is known to be rational (see [Gor61]), Obser-
vation 7.5 yields the following:

Corollary 7.6. If f ∈ R[X1, . . . , Xn] is coercive, then o(f) ∈ Q.

7.2.2. The stability of coercivity

Given a coercive polynomial f ∈ R[X1, . . . , Xn] we are interested in how stable this
coercivity property is under small perturbations of f by other polynomials. This gives
rise to the following definition for stability of coercivity which was already analyzed
from the viewpoint of the underlying Newton polytopes in [BS15b] and is inspired by
the concept of stable boundedness of polynomials [Mar03].

Definition 7.7 (Stable coercivity). A polynomial f ∈ R[X1, . . . , Xn] is called q-stably
coercive for q ∈ N0, if there exists an ε > 0 such that for all g ∈ R[X1, . . . , Xn] with
deg g ≤ q and all coefficients of g bounded in absolute value by ε it holds that f + g is
coercive. The degree of stable coercivity s(f) of f is the largest q such that f is q-stable
coercive.

We also introduce the following stronger notion for the stability of coercivity.

Definition 7.8 (Strong stable coercivity). A polynomial f ∈ R[X1, . . . , Xn] is called
strongly q-stable coercive for q ∈ N0, if for all g ∈ R[x] with deg g ≤ q it holds that f +g
is coercive. The degree of strongly stable coercivity s̃(f) of f is the largest q such that
f is strongly q-stable coercive.

7.2.3. Observations on the order of coercivity

In this section we collect some preliminary results on the order of coercivity. The follow-
ing result is not only useful for our purposes but interesting in its own right: It states
that any coercive rational function has a positive order of growth. To this end we denote
the vanishing set of the polynomial g ∈ R[X1, . . . , Xn] by V (g) := {x ∈ Rn : g(x) = 0}
and its complement by V c(g) := Rn \ V (g).

Theorem 7.9. Let f, g ∈ R[X1, . . . , Xn], g 6= 0, such that f/g : V c(g)→ R is coercive.
Then

o (f/g) > 0.
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As a corollary, every coercive polynomial f ∈ R[X1, . . . , Xn] has a positive order of
growth, which is a known result (see, e.g. [Gor61]). For the proof of Theorem 7.9, we
use the following.

Theorem 7.10 (see Theorem 4.1 in [Gor61]). Let P (x, z, w) be a real polynomial of
n′ = n1 + n2 + n3 variables x ∈ Rn1, z ∈ Rn2, w ∈ Rn3 where n1, n2, n3 are non-negative
integers. If the surface M given by the equation

P (x, z, w) = 0

is not empty and lies in the domain defined by the inequality

‖z‖2 ≥ ϕ(‖x‖2),

where ϕ(t) → +∞ as t → +∞, then there exists constants h > 0 and b such that this
surface also lies in the domain defined by the inequality

‖z‖2 ≥ ‖x‖h2 − b.

Our choice of a suitable ϕ is given in the next lemma.

Lemma 7.11. In the setting of Theorem 7.9, let ϕ : [0,∞) → R be defined as follows:
Let

ϕ̃(t) := inf

{∣∣∣∣f(y)

g(y)

∣∣∣∣ : y ∈ V c(g), ‖y‖2 = t

}
and put

ϕ(t) =

{
ϕ̃(t), ϕ̃(t) <∞,
0, else.

Then ϕ is coercive.

Proof. Note at first that there can at most be d := deg(g) many t ≥ 0 with the property
that g(x) = 0 whenever ‖x‖ = t (resulting in ϕ̃(t) = ∞). Indeed, suppose there were
d+ 1 points t0 < . . . < td with that property. Consider the leading form gd of g and pick

x ∈ Rn with gd(x) 6= 0 . Then λ 7→ gd

(
λ · x
‖x‖

)
is a univariate polynomial of degree d

with zeros at t0, . . . , td, which is impossible. Now suppose ϕ is not coercive. Thus there
is C > 0 and an increasing sequence {τk}k∈N of reals with τk → +∞ and ϕ(τk) ≤ C.
We may assume τ1 is larger than any of the at most d points ti from above. Fix ε > 0.

Thus there is a sequence {xk}k∈N ⊂ V c(g) with ‖xk‖ = τk and
∣∣∣f(xk)
g(xk)

∣∣∣− ε ≤ ϕ(τk) ≤ C,

contradicting coercivity of f/g.

We may now prove Theorem 7.9.
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Proof of Theorem 7.9. Let f, g ∈ R[X1, . . . , Xn] with f/g coercive. To apply the theo-
rem by Gorin, we let n1 = n, n2 = n3 = 1 and define P ∈ R[X1, . . . , Xn, Z,W ] via

P (x, z, w) := (f(x)− zg(x))2 + (wg(x)− 1)2 , x ∈ Rn, z, w ∈ R.

The surface M = V (P ) is not empty, as

M =
{

(x, z, w) ∈ Rn+2 : f(x) = zg(x) and wg(x) = 1
}

=
{

(x, z, w) ∈ Rn+2 : x ∈ V c(g), f(x)/g(x) = z and w = 1/g(x)
}
.

Consider the function ϕ from Lemma 7.11. We now show that M lies in the domain
defined by the inequality ‖z‖2 ≥ ϕ(‖x‖2). To this end let a point (x, z, w) ∈M be given.
Then g(x) 6= 0 and so we conclude

‖z‖2 = |z| =
∣∣∣∣f(x)

g(x)

∣∣∣∣ ≥ inf

{∣∣∣∣f(y)

g(y)

∣∣∣∣ : y ∈ V c(g), ‖y‖2 = ‖x‖2

}
= ϕ(‖x‖2).

Hence, we may apply Gorin’s theorem, so there are constants h > 0 and b such that M
also lies in the domain defined by the inequality

|z| = ‖z‖2 ≥ ‖x‖h2 − b.

This means |f(x)/g(x)| ≥ ‖x‖h2 − b whenever g(x) 6= 0. From Observation 7.2 we
conclude o(|f/g|) ≥ h. Since f/g is coercive, f(x)/g(x) > 0 for x ∈ V c(g) with ‖x‖2

large enough, which implies o(f/g) ≥ h, too.

We note that for a q-coercive polynomial f , the number q is strictly bound above by
the order of growth of f . This is implicit in [Gor61]; we give an explicit proof in the
setting of this article for completeness.

Lemma 7.12. Let f ∈ R[X1, . . . , Xn] be coercive. Then f is not o(f)-coercive.

Proof. Suppose the contrary and let f be o(f)-coercive. By Corollary 7.6 and Theo-
rem 7.9, the number o(f) is rational and positive, so o(f) = p/q, with some p, q ∈ N
and we may further assume that p is even. Thus by definition, f(x)/‖x‖p/q2 is coercive,
and hence r(x) := f(x)q/‖x‖p2 is coercive. However, as p is even, r is a coercive ratio-
nal function, so by Theorem 7.9, there is h > 0 such that r is h-coercive. Hence by
Observation 7.1 and continuity of f , there are c1 > 0, c2 ≥ 0 with

f(x)q

‖x‖p2
≥ c1‖x‖h2 − c2.

Hence, for any fixed 0 < ε < h,

f(x)q

‖x‖p+ε2

≥ c1‖x‖h−ε2 − c2

‖x‖ε2
,

which means f q is (p + ε)-coercive. As f , being coercive, attains positive values for
large x, this implies that f is ((p+ ε)/q)-coercive, and we conclude o(f) ≥ (p + ε)/q,
contradicting the assumption o(f) = p/q.
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Although, by Lemma 7.12, a coercive f ∈ R[X1, . . . , Xn] is not o(f)-coercive, one can
still underestimate f by an o(f)-power of a norm for large values of ‖x‖. That is, for
coercive polynomials, we have a converse statement to Observation 7.2. Several variants
of this result are known; one may argue by Tarski-Seidenberg [Gor61] or, in the complex
setting, by curve selection at infinity [Kra07]. Our contribution is a proof by elementary
methods.

Lemma 7.13. Let f ∈ R[X1, . . . , Xn] be coercive. Then there exist c > 0, M ≥ 0 with

f(x) ≥ c · ‖x‖o(f), ‖x‖ ≥M.

Proof. Assume to the contrary that the assertion does not hold. Then for every sequence
{ck}k∈N ⊂ R with ck ↓ 0 there exists a sequence {xk}k∈N ⊂ Rn with ‖xk‖ → +∞ such
that

f(xk) < ck‖xk‖o(f), k ∈ N.

Since f is coercive and ‖xk‖ → +∞, we may further assume f(xk) ≥ 0 for all k ∈ N,
hence

0 ≤ f(xk)

‖xk‖o(f)
< ck, k ∈ N.

Using the decomposition f =
∑d

i=0 fi of f into its homogeneous components fi ∈
R[X1, . . . , Xn] of degree i = 0, . . . , d, with ξk := xk/‖xk‖ the latter property yields

0 ≤
d∑

i=do(f)e

‖xk‖i−o(f)fi(ξk) < ck −
do(f)e−1∑
i=0

‖xk‖i−o(f)fi(ξk), k ∈ N. (7.2)

Due to ck ↓ 0 and i− o(f) < 0 holding for all i = 0, . . . , do(f)e − 1, the right hand side
in (7.2) converges to zero as k approaches infinity. This implies

lim
k→∞

d∑
i=do(f)e

‖xk‖i−o(f)fi(ξk) = 0 (7.3)

Passing to an appropriate convergent subsequence of the sequence ξk = xk/‖xk‖ with
a limit point ξ, due to continuity of each homogeneous component fi of f , we may
assume that limk→∞ fi(ξk) = fi(ξ) ∈ R for all i = do(f)e, . . . , d. In fact, property (7.3)
yields fi(ξ) = 0 for all i = do(f)e, . . . , d, and, hence again, using the homogeneous
decomposition of f one obtains

f(t · ξ) =
d∑
i=0

fi(t · ξ) = tdo(f)e−1fdo(f)e−1(ξ) + · · ·+ f0(ξ) for all t ∈ R

resulting in o(f) ≤ do(f)e − 1, a contradiction.
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7.3. Main result

In this section we show how the degree of stable and strongly stable coercivity are tied
to the order of growth (Theorem 7.15). In case of a positive definite leading form, a
stronger characterization is available (Theorem 7.16). We use the following estimate in
the proof of both.

Proposition 7.14. Let f ∈ R[X1, . . . , Xn] be coercive. Then the following inequalities
are fulfilled:

s̃(f) ≤ s(f) ≤ o(f) ≤ s̃(f) + 1.

Proof. The first inequality s̃(f) ≤ s(f) follows obviously from the Definitions 7.7 and 7.8.
To see s(f) ≤ o(f), assume q := s(f) > o(f). We introduce polynomials

fc,σ := f − c ·

(
n∑
j=1

σjXj

)q

,

parameterized by c ∈ R and σ ∈ Σ := {−1, 1}n. As s(f) = q, for every σ ∈ Σ there
is εσ > 0 such that fc,σ is coercive whenever c ∈ [−εσ, εσ]. Let ε̂ := minσ∈Σ εσ and
fix ĉ ∈ (0, ε̂). Hence fĉ,σ is coercive for all σ ∈ Σ and thus also bounded from below.
Boundedness from below means for every σ there is kσ ≥ 0 with

f(x) ≥ ĉ
(∑n

j=1 σjxj

)q
− kσ, x ∈ Rn, σ ∈ Σ.

Put k̂ := maxσ∈Σ kσ. Then for x ∈ Rn

f(x) ≥ ĉ ·max
σ∈Σ

(∑n
j=1 σjxj

)q
− k̂ = ĉ ·

(∑n
j=1 |xj|

)q
− k̂ = ĉ · ‖x‖q1 − k̂,

so Observation 7.2 implies o(f) ≥ q = s(f), a contradiction.
Now we proceed to prove the third inequality o(f) ≤ s̃(f) + 1. Assume the contrary:

Let q := s̃(f) and suppose o(f) > q + 1. We have arrived at a contradiction if we may
show that for any g ∈ R[X1, . . . , Xn] of degree at most q + 1, f + g is coercive, as in
this case s̃(f) ≥ q + 1 = s̃(f) + 1. To this end fix an arbitrary g ∈ R[X1, . . . , Xn]q+1.
Now choose c1 >

(
n+d
d

)
· ‖g‖∞. As o(f) > q + 1, f is q + 1-coercive, therefore, by

Observation 7.1 and continuity of f , there is c2 ≥ 0 such that f(x) ≥ c1‖x‖q+1
∞ −c2 holds

for x ∈ Rn, and hence, by Observation 7.3,

f(x) + g(x) ≥ f(x)− |g(x)| ≥ c1‖x‖q+1
∞ − c2 −

(
n+ d

d

)
· ‖g‖∞

(
‖x‖q+1

∞ + 1
)

= c′1 · ‖x‖q+1
∞ − c′2, x ∈ Rn,

for some appropriately chosen c′1 > 0, c′2 ∈ R. Thus f + g is coercive.

We show now how the integer part of the order of growth and our notions of stability
are related to each other.
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Theorem 7.15. Let f ∈ R[X1, . . . , Xn] be coercive.

1. If o(f) is integer, then
s̃(f) + 1 = s(f) = o(f).

2. If o(f) is fractional, then
s̃(f) = s(f) = bo(f)c.

Proof. In order to prove 1., we show s̃(f) + 1 = o(f) first. By integrality of s̃(f), o(f)
and by the property o(f) ∈ [s̃(f), s̃(f) + 1] holding due to Proposition 7.14, it is enough
to show that s̃(f) < o(f). Suppose the contrary, that is s̃(f) = o(f) =: q. Now for c > 0
and σ ∈ Σ := {−1, 1}n, define

fc,σ := f − c ·

(
n∑
j=1

σjXj

)q

∈ R[X1, . . . , Xn].

By definition of s̃(f), the polynomial fc,σ is coercive and hence bounded from below for
all c > 0 and σ ∈ Σ. That is, for every c > 0 and σ ∈ Σ, there exists kc,σ ≥ 0 such that

f(x) ≥ c ·

(
n∑
j=1

σjxj

)q

− kc,σ, x ∈ Rn, c > 0, σ ∈ Σ,

and hence with kc := maxσ∈Σ kc,σ, we have for all x ∈ Rn and c > 0 the property

f(x) ≥ c ·max
σ∈Σ

(
n∑
j=1

σjxj

)q

− kc = c ·

(
n∑
j=1

|xj|

)q

− kc = c · ‖x‖q1 − kc.

In view of Observation 7.1, the polynomial f is q-coercive. Since q = s̃(f) = o(f) is
holding by assumption, f is o(f)-coercive. This is impossible by Lemma 7.12, and we
may conclude that s̃(f) + 1 = o(f).

For the second equality s(f) = o(f), put q := o(f). By Lemma 7.13 and continuity
of f , there are constants c1, c2 > 0 such that

f(x) ≥ c1‖x‖q∞ − c2 holds for all x ∈ Rn.

Define ε := c1
2
·
(
n+q
q

)−1
. Now for any g ∈ R[X1, . . . , Xn]q with ‖g‖∞ ≤ ε and all x ∈ Rn,

we have from Observation 7.3

f(x) + g(x) ≥ f(x)− |g(x)|
≥ c1‖x‖q∞ − c2 − ε ·

(
n+q
q

)
(‖x‖q∞ + 1)

=
c1

2
‖x‖q∞ − c2 −

c1

2
.

To summarize, f + g is coercive whenever deg g ≤ q and ‖g‖∞ ≤ ε, that is, f is q-stably
coercive, or s(f) = q = o(f).

Statement 2. follows at once from Proposition 7.14.
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Our next result shows that more characterizations are available for a maximal order
of coercivity.

Theorem 7.16. Let f ∈ R[X1, . . . , Xn] of degree d ≥ 2. Then, the following assertions
are equivalent:

1. fd(x) > 0 for all x ∈ Rn, x 6= 0.

2. There exists δ > 0 such that fd(x) ≥ δ‖x‖d for all x ∈ Rn.

3. o(f) = d.

4. o(f) > d− 2.

5. s(f) = d.

6. s(f) ≥ d− 1.

7. s̃(f) = d− 1.

8. s̃(f) ≥ d− 2.

Proof. ”1 ⇒ 2” For x = 0 the assertion is trivial. For nonzero x ∈ Rn one obtains

fd(x) = ‖x‖dfd
(

x

‖x‖

)
≥ ‖x‖d inf

y∈Sn−1
fd(y).

The infimum is positive by compactness of the sphere. Now for ”2 ⇒ 3”, let cj =
infy∈Sn−1 fj(y) for j = 0, . . . , n− 1 and put cd = δ. Then by homogeneity of the fj,

f(x) =
d∑
j=0

fj(x) ≥
d∑
j=0

cj‖x‖j,

hence o(f) = d. The implication ”3 ⇒ 4” is trivial. The implication ”4 ⇒ 1” holds as
follows: Suppose o(f) > d−2 but fd(x̃) = 0 for some x̃ ∈ Rn with x̃ 6= 0. By assumption
o(f) is positive, hence f is coercive. Let us show that this implies fd−1(x̃) = 0. Indeed,
we find that for all λ ∈ R it holds

f(λx̃) =
d∑
j=0

fj(λx̃) =
d−1∑
j=0

λjfj(x̃),

which, as a function of λ is unbounded from below unless fd−1(x̃) = 0. In fact, this holds
since as d− 1 is odd. Hence

|f(λx̃)| ≤
d−2∑
j=0

|fj(λx̃)| =
d−2∑
j=0

|λ|j|fj(x̃)|,

implying o(f) ≤ d− 2, a contradiction, so 1 through 4 are equivalent.
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To see ”2⇒ 5”, let g ∈ R[X1, . . . , Xn] of degree d, and let c′ = maxx∈Sn−1 gd(x). Then
|gd(x)| ≤ c′‖x‖d by homogeneity, so for ε ∈ [− δ

2c′
, δ

2c′
],

fd(x) + εgd(x) ≥ fd(x)− |εgd(x)| ≥ δ‖x‖d − δ

2
‖x‖d =

δ

2
‖x‖d,

hence f + εg is still coercive, and we conclude s(f) = d.
We show that 5. implies 6 and 7. The first implication is trivial. To see “5 ⇒ 7”,

note that Proposition 7.14 implies s̃(f) ≥ d− 1. As s̃(f) ≥ d is not possible for a degree
d polynomial, s̃(f) = d − 1. Since both 6 and 7 imply 8 trivially, all equivalences are
shown once “8 ⇒ 4” holds.

So suppose s̃(f) ≥ d− 2. From the definition of strong stable coercivity, this implies
coercivity of f , and d must be even. The function g(x) = ‖x‖d−2

2 is a polynomial of
degree d−2. The assumption s̃(f) ≥ d−2 implies that f − c1g is coercive for all c1 > 0.
Hence there is M , depending on c1, such that

f(x)− c1‖x‖d−2
2 ≥ 0

holds for ‖x‖ ≥M . As d ≥ 2, we may use Observation 7.1 to find that f is d−2-coercive.
Now Lemma 7.12 states that o(f) > d− 2, which finishes the proof.
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7.4. Example families

7.4.1. Introductory remarks

In this section, we give two explicit example families of coercive polynomials with ar-
bitrarily small but positive order of growth. The first family has a bounded number of
variables (two) but varying degree and the second family has a bounded degree (four)
but a varying number of variables.

There are some examples families of {fi}i∈I ⊂ R[X1, . . . , Xn], where I is some index
set, in the literature where the  Lojasiewicz exponents at infinity L∞(fi) of the fi –
and hence the order of coercivity o(fi) of fi, if fi is coercive – are explicitly computed,
e.g., [Gor61], [Kra07]. These example families are extensive in the following sense: For
every q ∈ Q there is i ∈ I with L∞(fi) = q. Hence, example polynomials with arbitrarily
small order of growth are easily given.

However, these example families from the literature were not created with the objective
in mind to keep the number of variables and the degree of the resulting polynomials low.
The examples we present are, in this sense, not only some further polynomials with
known  Lojasiewicz exponents at infinity.

In the literature, the computations are rather terse. We take a different route and
carefully prove all assertions. These proofs are simplified by partitioning the domain of
definition. Specifically, given S ′ ⊂ S, we write o(f |S ′) for the order of coercivity of f
restricted to S ′. Then, in view of the immediate Observation 7.17, we may compute the
order of coercivity on more suitable subsets of Rn instead of on all of Rn.

Observation 7.17. Let S1, . . . , Sk ⊂ Rn, S := ∪ki=1Si and f : S → R coercive. Then

o(f) = min
1≤i≤k

o(f |Si).

The following handy observation is immediate.

Observation 7.18. Let f : Rn → R be given by f(x) =
∑n

j=1 cj|xj|αj for some cj > 0,
αj > 0. Then o(f) = minj αj.

7.4.2. Fixed number of variables

We give now an example of a family of coercive polynomials of arbitrarily small (but,
of course, positive) order of growth in two variables. The key observation is that the
function R2 → R, (x, y) 7→ x2, is 1

k
-coercive on (the image of) the curve γ : R → R2,

t 7→ (t, t2k).

Proposition 7.19. Consider the polynomial fk ∈ R[X, Y ], k ∈ N, given by

fk = X2 +
(
Y −X2k

)2
. (7.4)

Then o(fk) = 1
k
.
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Note that by Theorem 7.15, s(fk) = s̃(fk) = 0 holds for all k ≥ 2, thus even small
linear perturbations of fk may lead to the loss of coercivity.

Corollary 7.20. For any given ρ > 0 there is a polynomial that is coercive but not
ρ-coercive; this even holds if the number of variables is fixed to 2.

We split the proof of Proposition 7.19 into two Lemmata.

Lemma 7.21. For fk as in (7.4), o(fk) ≥ 1
k
.

Proof. The proof is by case distinction on a given point (x, y) ∈ Rn. Put

S↓ := {(x, y) ∈ R2 : y < 0},
S↔ := {(x, y) ∈ R2 : 0 ≤ y < 2x2k},
S↑ := {(x, y) ∈ R2 : 2x2k ≤ y},

and observe that these sets are a partition of Rn.

1. (x, y) ∈ S↓. Then y < 0 and hence

fk(x, y) = x2 + (−|y| − x2k)2 ≥ x2 + y2 + x4k,

thus o(fk|S↓) ≥ 2 by Observation 7.18.

2. (x, y) ∈ S↔. Thus x2k > 1
2
|y|, or x2 > 1

k√2
|y|1/k and we find

fk(x, y) ≥ 1

2
x2 +

1

2
x2 ≥ x2

2
+

1
k
√

2
|y|1/k,

hence o(fk|S↔) ≥ 1
k
.

3. (x, y) ∈ S↑. Then y ≥ 2x2k, equivalently, y − x2k ≥ 1
2
y. As y is non-negative,

fk(x, y) ≥ x2 +
(y

2

)2

= x2 +
y2

4
,

which yields o(fk|S↑) ≥ 2.

The claim follows now from Observation 7.17.

Lemma 7.22. For fk as in (7.4), o(fk) ≤ 1
k
.

Proof. Assume o(fk) >
1
k
. By Observation 7.1 and continuity of fk, there are c1 > 0,

c2 ≥ 0 and ρ > 1
k

with

fk(x, y) ≥ c1‖(x, y)‖ρ1 − c2, (x, y) ∈ R2.
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Let {xn}n∈N be a sequence of reals with limn→∞ xn = +∞. We define another sequence
yn := x2k

n . Thus x2
n = k
√
yn and

fk(xn, yn) = x2
n = y1/k

n ≥ c1‖(xn, yn)‖ρ1 − c2 ≥ c1‖(0, yn)‖ρ1 − c2 = c1y
ρ
n − c2.

We shorten the last estimate to the inequality

y1/k
n ≥ c1y

ρ
n − c2, n ∈ N,

which yields a contradiction: Since ρ > 1
k
, c1 > 0 and limn→∞ yn = +∞, so this

inequality is eventually violated.

7.4.3. Fixed degree

Our second example is a family of coercive polynomials of arbitrarily small order of
growth with a degree fixed to four. The geometric idea behind this family is similar to
the one before: The function Rn → R, x 7→ x2

1 is 22−n coercive on (the image of) the
curve

γ : R→ Rn, t 7→ (t, t2, t4, t8, . . . , t2
n−2

, t2
n−1

, )

To model this curve as the zero set of a single polynomial, we use the fact that for real
polynomials h1, . . . , hs ∈ R[X1, . . . , Xn] and x ∈ Rn, the following holds:

h1(x) = . . . = hs(x) = 0⇐⇒
s∑
i=1

hi(x)2 = 0.

More specifically, the term
∑n−1

i=1 (Xi+1 −X2
i )

2
vanishes at x if and only if xi+1−x2

i = 0
for all i ∈ {2, . . . , n} if and only if x lies on the curve γ, i.e., if and only if x satisfies
xn = x2

n−1 = x4
n−2 = x8

n−3 = · · · = x2n−1

1 .

Proposition 7.23. Consider the polynomial gn ∈ R[X1, . . . , Xn], n ∈ N, given by

gn = X2
1 +

n∑
i=2

(
Xi −X2

i−1

)2
. (7.5)

Then o(gn) = 22−n.

Note that by Theorem 7.15, s(gn) = s̃(gn) = 0 holds for all n ≥ 3, thus even small
linear perturbations of gn may lead to the loss of coercivity.

Corollary 7.24. For any given ρ > 0 there is a polynomial that is coercive but not
ρ-coercive; this even holds if the degree is fixed to 4.

The proof of Proposition 7.23 is divided into three lemmata.

Lemma 7.25. Let
C := {x ∈ Rn : |xi| ≥ 1 for all i ∈ [n]}.

Then o(gn|C) ≥ 22−n for gn as in (7.5).
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Proof. We introduce the functions on C

T1(x) := x2
1, Ti(x) := (xi − x2

i−1)2, i = 2, . . . , n,

Qi(x) :=
1

8i
|xi|2

2−i
, i = 1, . . . , n,

so gn(x) =
∑n

i=1 Ti(x) on C. The claim follows from Observation 7.18 if we can prove
by induction

j∑
i=1

Ti(x) ≥
j−1∑
i=1

Qi(x) + 2Qj(x), x ∈ C, j = 1, . . . , n. (7.6)

The claim in 7.6 trivially holds for j = 1. Assume it holds for some j < n. For the
inductive step it suffices to show that for an arbitrary x ∈ Rn one of

Tj+1(x) ≥ 2Qj+1(x) (7.7)

or

Qj(x) ≥ 2Qj+1(x) (7.8)

holds. Indeed, in case (7.7) holds at x, then adding this inequality to (7.6) yields

j+1∑
i=1

Ti(x) ≥
j−1∑
i=1

Qi(x) + 2Qj(x) + 2Qj+1(x) ≥
j∑
i=1

Qi(x) + 2Qj+1(x)

In the other case, (7.8) holds at x. Then

j+1∑
i=1

Ti(x) ≥
j∑
i=1

Ti(x) ≥
j∑
i=1

Qi(x) +Qj(x) ≥
j∑
i=1

Qi(x) + 2Qj+1(x).

Now let us show by case distinction on x ∈ Rn why (7.7) or (7.8) holds. Again, we
introduce a partition

S↓i := {x ∈ C : xi < 0},
S↔i := {x ∈ C : 0 ≤ xi < 2x2

i−1},
S↑i := {x ∈ C : 2x2

i−1 ≤ xi},

for i = 1, . . . , n− 1. Now fix x ∈ C and consider the cases

1. x ∈ S↓j+1. Thus xj+1 < 0, and as x ∈ C, we may use monotonicity of exponentials
to find

Tj+1(x) =
(
−|xj+1| − x2

j

)2 ≥ x2
j+1 ≥ |xj+1|2

2−(j+1) ≥ 2Qj+1(x),

so 7.7 holds.
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2. x ∈ S↔j+1. Thus |xj|2 > 1
2
|xj+1| and raising both sides to the 22−(j+1)-th power,

|xj|2
2−j ≥ 1

222−(j+1)
|xj+1|2

2−(j+1)

(7.9)

As 2− (j + 1) ≤ 0, we have 1

22
2−(j+1) ≥ 1

4
. Hence, dividing both sides of 7.9 by 8j,

we see that (7.8) holds.

3. x ∈ S↑j+1. Equivalently, xj+1 − x2
j ≥ 1

2
xj+1, thus by monotonicity again,

Tj+1(x) ≥ 1

4
x2
j+1 ≥

1

4
|xj+1|2

2−(j+1) ≥ 2Qj+1(x),

that is, (7.7) holds.

Hence, (7.6) holds for j + 1 and all x ∈ C, so the induction step is proved.

Lemma 7.26. Let

D := {x ∈ Rn : |xi| < 1 for some i ∈ [n]}.

Then o(gn|D) ≥ 22−n for gn as in (7.5).

Proof. Suppose not. Thus there is a sequence {xm}m∈N ⊂ D with ‖xm‖∞ → +∞ for
m→∞, and

gn(xm) = x2
m,1 +

n∑
i=2

(
xm,i − x2

m,i−1

)2 ≤ c‖xm‖22−n

∞ , m ∈ N.

Especially,

x2
m,1 ≤ c‖xm‖22−n

∞ ,
(
xm,i − x2

m,i−1

)2 ≤ c‖xm‖22−n

∞ , i = 2, . . . , n. (7.10)

We arrive at a contradiction if we can show by induction that there are Nn−1 ≥ . . . ≥ N0

with

|xm,n−j| ≥
1

2j
‖xm‖2−j

∞ , m ≥ Nj, j = 0, . . . , n− 1. (7.11)

Indeed, once the induction is complete, inequality (7.11) holds for all j and all m ≥ Nn−1,
and as ‖xm‖∞ grows without bound, (7.11) forces xm to leave the set D, contradicting
the assumption xm ∈ D for all m.

For the basis of the induction, we use the second inequality in (7.10) to find |x2
m,i−1−

xm,i| ≤ c1/2‖xm‖21−n
∞ and thus

x2
m,i−1 ≤ |xm,i|+ c1/2‖xm‖21−n

∞

by the reverse triangle inequality. Using
√
a+ b ≤

√
a +
√
b for a, b ≥ 0, the last

inequality yields

|xm,i−1| ≤ |xm,i|1/2 + c1/4‖xm‖2−n

∞ ≤ ‖xm‖1/2
∞ + c1/4‖xm‖2−n

∞
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By assumption on xm, ‖xm‖ grows without bound, so there is N−1 ∈ N with ‖xm‖ ≥ 1

for m ≥ N−1, and then ‖xm‖2−n
∞ ≤ ‖xm‖1/2

∞ . Thus

|xm,i−1| ≤
(
1 + c1/4

)
‖xm‖1/2

∞ . (7.12)

Also, there is N0 ≥ N−1 with
(
1 + c1/4

)2
< ‖xm‖∞ for m ≥ N0, which together

with (7.12) implies |xm,i−1| < ‖xm‖∞ for m ≥ N0 and i = 2, . . . , n, that is,

|xm,n| = ‖xm‖∞ for m ≥ N0,

a rewording of the basis of the induction.
For the inductive hypothesis, suppose (7.11) holds for some j < n− 1. We now prove

the inductive step. Using the reverse triangle inequality on (7.10) the other way, we find

x2
m,j−1 ≥ |xm,j| − c1/2‖xm‖21−n

∞ , j = 2, . . . , n. (7.13)

With (7.13) and the inductive hypothesis,

x2
m,n−(j+1) ≥ |xm,n−j| − c1/2‖xm‖21−n

∞ ≥ 1

2j
‖xm‖2−j

∞ − c1/2‖xm‖21−n

∞ (7.14)

On the other hand, as ‖xm‖∞ grows without bound, there is Nj+1 ≥ Nj with

‖xm‖∞ ≥
(
2j+1c1/2

)1/(2−j−21−n)

⇐⇒ ‖xm‖2−j−21−n

∞ ≥ 2j+1c1/2

⇐⇒ ‖xm‖2−j

∞ ≥ 2j+1c1/2 · ‖xm‖21−n

∞

⇐⇒ 1

2j+1
‖xm‖2−j

∞ − c1/2 · ‖xm‖21−n

∞ ≥ 0

⇐⇒ 1

2j
‖xm‖2−j

∞ − c1/2 · ‖xm‖21−n

∞ ≥ 1

2j+1
‖xm‖2−j

∞

for m ≥ Nj+1. With (7.14) we deduce

x2
m,n−(j+1) ≥

1

2j
‖xm‖2−j

∞ − c1/2‖xm‖21−n

∞ ≥ 1

22(j+1)
‖xm‖2−j

∞

and hence

|xm,n−(j+1)| ≥
1

2j+1
‖xm‖2−(j+1)

∞ ,

proving the induction step.

Lemma 7.27. For gn as in (7.5), o(gn) ≤ 22−n.
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Proof. Assume o(gn) > 22−n. Using Observation 7.1 and continuity of gn, there are
c1 > 0, c2 ≥ 0 and ρ > 22−n with

gn(x) ≥ c1‖x‖ρ1 − c2 ∀x ∈ Rn. (7.15)

Let {am}m∈N be a sequence of reals with limm→∞ am = +∞, and define {xm}m∈N ⊂ Rn

with components (xm)1 := am and

(xm)2 := ((xm)1)2 , (xm)3 := ((xm)2)2 , . . . , (xm)n := ((xm)n−1)2 .

Observe that (xm)1 = ((xm)n)22−n and (xm)n → +∞ for n→∞. Then

gn(xm) = (xm)2
1 +

(
n−1∑
i=2

02

)
= (xm)2

1 = (xm)22−n

n ≥ c1‖xm‖ρ1 − c2

by definition of xm and by (7.15), and we may estimate further

≥ c1‖ (0, . . . , 0, (xm)n) ‖ρ1 − c2 = c1|(xm)n|ρ − c2 = c1(xm)ρn − c2

which contains the contradictory inequality

(xm)22−n

n ≥ c1(xm)ρn − c2, m ∈ N. (7.16)

Indeed, as (xm)n → +∞ for m→∞ and c1 > 0, ρ > 22−n, inequality (7.16) eventually
be violated.
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7.5. Minimal order of coercivity and outlook

7.5.1. Minimal order of coercivity

In Section 7.4 we have seen explicit examples of slowly growing coercive polynomials
where either the number of variables n or the degree d are fixed. It is thus only a
natural question to ask how small the order of growth can get when both the number
of variables and the degree of the polynomial are fixed. In other words, we consider for
n ∈ N and d ∈ 2N the number

o(n, d) = inf {o(f) : f ∈ R[X1, . . . , Xn]d is coercive} .

We call o(n, d) the minimum possible order of coercivity of a coercive polynomial in
n variables of degree d. It is not known to us whether there is a closed formula for
o(n, d) or if at least o(n, d) > 0 for all n ∈ N and d ∈ 2N. Also, we do not know if
our example families fk and gn from Section 7.4 are minimal examples in the sense that
o(fk) = o(2, 4k) or o(gn) = o(n, 4).

Table 7.1 summarizes the special cases and examples discussed in this article. A star
(∗) indicates arbitrary values; that is, n ∈ N or d ∈ 2N.

n d Upper bound on o(n, d) Attainment Reference
∗ 2 2 yes Example 7.4
1 ∗ d yes cf. Section 7.1
2 4k 1/k ? Proposition 7.19

≥ 2 4 22−n ? Proposition 7.23

Table 7.1.: Upper bounds on the minimum possible order of coercivity o(n, d).

7.5.2. Future directions

In [BS15a] a class of coercive polynomials is identified where coercivity can be verified by
analyzing properties of the underlying Newton polytopes at infinity. Then, in [BS15b],
it is shown that for each polynomial from the aforementioned class one always has
o(f) = s(f) = c(f) ∈ 2N with c(f) denoting the so-called degree of convenience of f
– which is the length of the shortest intercept of the Newton polytope at infinity with
the n coordinate axes. So, for coercive polynomials with a fractional order of growth,
for example such as those from Section 7.4, it would be an interesting question whether
their order of growth is encoded in their Newton polytopes as well.
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7.6. Deciding coercivity

This section is devoted to the following problem: Given a polynomial f ∈ R[X1, . . . , Xn],
decide whether it is coercive. Our first result is that the decision problem is decidable.
We use quantifier elimination to derive an exponential complexity result. Secondly, we
explore how knowledge of a minimal order of coercivity can be used to prove coerciv-
ity using sos programming. Thirdly, we explore whether coercivity can be decided on
exponential curves. Lastly, we show that we may compose f with a homeomorphism
ϕ : Rn → Rn and decide if f is coercive by deciding whether f ◦ ϕ is coercive.

7.6.1. Decidability and complexity of the decision problem

In this section we show that coercivity of polynomials is a decidable problem and give
a complexity result. To this end, we restate the definition of coercivity from (1.6) with
quantifiers and the (squared) 2-norm as follows:

∀c ∈ R ∃r ∈ R ∀x ∈ Rn :

(
n∑
i=1

x2
i − r ≥ 0 =⇒ f(x)− c ≥ 0

)
. (7.17)

An expression as in (7.17) is an example of a formula in the language of ordered fields
in the variables C, R, X1, . . ., Xn; for a precise definition of this language see Ch. 2.3
in [BPR05].1 As all appearing variables are quantified, this formula does not contain
free variables. There is a theorem that states that the language of real closed fields – real
closed fields are a special type of an ordered field that enjoy the property that for every
univariate polynomial with coefficients in these fields a sign change at a and b implies a
zero in between; R is an example – admits quantifier elimination:

Theorem 7.28 (see, e.g., Theorem 2.77 in [BPR05]). Suppose we are given a formula
Φ(Y ) in the language of ordered fields, where Y = (Y1, . . . , Yk) are the free variables of
the formula, over a real closed field R. Then, there is a quantifier free formula Ψ(Y )
over R such that for every y ∈ Rk the formula Φ(y) is true if and only if the formula
Ψ(y) is true.

As (7.17) does not contain free variables, it is called a sentence and, by quantifier
elimination, it is R-equivalent to true or false. For such sentences over real closed fields,
solution algorithms exist. To specify the running time, we need some more notation.
Let P ⊂ R[X1, . . . , Xk] be a finite set of polynomials. A P-atom is one of P = 0, P > 0,
P < 0, P 6= 0 for a polynomial P ∈ P . Then, a P-formula is a formula (in the language
of ordered fields) written with P-atoms, cf. p. 417 in [BPR05]. Moreover, let Π denote a
partition of the list of variables (X1, . . . , Xn) into blocks X[1], . . . , X[ω], where the block
X[i] has size ki, 1 ≤ i ≤ ω, and

∑ω
i=1 ki = k. Then, a (P ,Π)-formula is a formula of the

form
Ψ(Y ) = (Qu1X[1]) · · · (Qu[w])F (X, Y )

1Roughly speaking, the formulas of this language consist of equations and inequalities of polynomials
with coefficients in R, boolean combinations thereof, and existential and universal quantifiers.
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where each Qui is one of the quantifiers ∃ or ∀, Y = (Y1, . . . , Yl) and F (X, Y ) is a
quantifier free P-formula, cf. p. 537 in [BPR05]. Consider the following complexity
result for an algorithm that decides the truth of a sentence.

Theorem 7.29 (see, e.g., Theorem 14.14 in [BPR05]). Let P be a set of at most s
polynomials each of degree at most d in k variables with coefficients in a real closed
field R, and let Π denote a partition of the list of variables (X1, . . . , Xk) into blocks
X[1], . . . , X[ω], where the block X[i] has size ki, 1 ≤ i ≤ ω. Given a (P ,Π) sentence Π,
there exists an algorithm to decide the truth of Ψ with complexity

s(kω+1)···(k1+1)dO(kω)···O(k1)

in D, where D is the ring generated by the coefficients of P.

Here, complexity in a structure D is the (worst-case) number of operations in D as a
function of the input sizes, see Chapter 8.1 in [BPR05].

We may now state our complexity result.

Proposition 7.30. The decision problem

Given a polynomial f ∈ R[X1, . . . , Xn] with deg f ≥ 2, is it coercive? (7.18)

can be solved by an algorithm with complexity

(2 deg f)O(n)

in D, where D is the ring generated by the coefficients of P.

Proof. In our setting, P = {f − C,
∑n

i=1 X
2
i −R} ⊂ R[X1, . . . , Xn, C,R]. For the for-

mula (7.17) we may choose a partition with ω = 3 and k1 = n, k2 = k3 = 1, i.e., Π =
((X1, . . . , Xn), C,R). Hence (7.17) is a (P ,Π)-formula, and with d = max{deg f, 2} =
deg f , s = |P| = 2, we get using Theorem 7.29

s(1+1)·(1+1)·(n+1)dO(1)·O(1)·O(n) = sO(n)dO(n) = (sd)O(n) = (2 deg f)O(n).

Note that the addendum “complexity in D” also means that we do not need to worry
about the technicalities arising through the encoding of and computing with real numbers
if we restrict f to, say, rational coefficients.

7.6.2. Deciding coercivity via the minimal order of coercivity

The worst-case running time of the algorithm in Proposition 7.30 is exponential in n and
software-based quantifier elimination is rather slow in practice. However, if the value
for o(n, d) – the minimal order of coercivity as introduced in Section 7.5 – is known
(by a general formula or otherwise) and positive, we can use sos programming to certify
coercivity. As a preparatory step, consider the following proposition.
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Proposition 7.31. Let f ∈ R[X1, . . . , Xn] of degree d. Also, assume that o(n, d) =
ρ > 0. Choose any p, q ∈ N, p even and q odd, with ρ > p/q. Then, the following are
equivalent:

1. f is coercive.

2. f is p/q-coercive.

3. f q/‖x‖pp → +∞, ‖x‖p → +∞.

4. For all c1 > 0 exists c2 ≥ 0 such that f q(x) ≥ c1‖x‖pp − c2, x ∈ Rn.

5. There are c1 > 0 and c2 ≥ 0 such that f q(x) ≥ c1‖x‖pp − c2, x ∈ Rn.

6. g := f q −
∑n

i=1 X
p
i ∈ R[X1, . . . , Xn] is bounded from below.

Proof. Note that, as o(n, d) > 0 by assumption, such p and q exist. If we can show
that 1⇒ 2⇒ 3⇒ 4⇒ 5⇒ 1 and then 4⇒ 6 and 6⇒ 5, all statements are equivalent.
1 ⇒ 2. As o(n, d) = ρ > 0 we must have o(f) ≥ ρ, and so f must be ρ′-coercive for
all 0 ≤ ρ′ < ρ, especially f is p/q-coercive. 2 ⇒ 3. Since all norms are equivalent on

Rn, f is p/q-coercive if and only if f/ (‖x‖p)
p
q → +∞, ‖x‖p → +∞. Also, a function

h : Rn → R is coercive if and only if hr is coercive, r ∈ N odd. 3 ⇒ 4. This follows from
continuity and Lemma 7.1. 4⇒ 5. This is trivial. 5⇒ 1. By Observation 7.2, o(f q) ≥ p,
hence f q is coercive and thus f , too. 4 ⇒ 6. Let c1 = 1 and choose c2 accordingly.
Now g is bounded from below by −c2. 6 ⇒ 5. If g is bounded from below by C ∈ R,
statement 5 holds for c1 = 1 and c2 = −C.

Now, Statement (6) of Proposition 7.31 can be used as follows:

Corollary 7.32. Let the assumptions of Proposition 7.31 hold. If the sos program

max λ

s.t. f q −
n∑
i=1

Xp
i − λ is sos in R[X1, . . . , Xn]

λ ∈ R

has a feasible solution λ, f is coercive.

Proof. Let λ ∈ R be a feasible solution. As being sos implies nonnegativity,

f q(x)−
n∑
i=1

xpi − λ ≥ 0

for all x ∈ Rn. In other words, g = f q −
∑n

i=1X
p
i is bounded from below by λ. The

claim follows from Proposition 7.31 (6).
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7.6.3. Deciding coercivity on curves

This section solves an open problem in the article [BS15a]. We show that coercivity of
a polynomial f ∈ R[X1, . . . , Xn] cannot be decided by restricting f on certain curves.
To this end we introduce some notation from the reference. Let

Y :=

y ∈ Rn :
∏
i∈[n]

yi 6= 0

 ,

and put
H := {h ∈ Rn : hi ≥ 0 for all i ∈ [n]} .

Furthermore, put
Ω := Y ×B.

Given y, β in Rn, define a curve xy,β : R→ Rn via

xy,β(t) := (y1e
β1t, . . . , yne

βnt).

Finally, for f ∈ R[X1, . . . , Xn], we define

Ωf :=

{
(y, β) ∈ Rn × Rn : lim

t→+∞
f(xy,β(t)) = +∞

}
.

Now, we have the following result:

Proposition 7.33 (Lemma 2.2 in [BS15a]). If f ∈ R[X1, . . . , Xn] is coercive on Rn,
then Ω ⊂ Ωf .

The reverse statement does not hold, as the following proposition shows.

Proposition 7.34. Let f ∈ R[X1, X2] given by

f = (X2 −X1 − 1)2(X2
1 +X2

2 ).

Then f is not coercive but Ω ⊂ Ωf .

The proof needs a little preparation. The notion of an asymptotic direction of a curve
captures some of the behavior of the curve at infinity. Asymptotic directions are elements
of the Euclidean unit sphere Sn−1

2 = {x ∈ Rn : ‖x‖2 = 1}.

Definition 7.35. Let γ : R→ Rn be continuous with limt→+∞ ‖γ(t)‖2 = +∞. We say
the curve γ has the asymptotic direction ω ∈ Sn−1

2 if

lim
t→+∞

γ(t)

‖γ(t)‖2

= ω,

or D(γ) = ω for short.
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We can now compute the asymptotic directions of the curves xy,β in n = 2 dimensions.
To this end let sign(y) be the sign of y ∈ R where sign(0) := 0.

Lemma 7.36. Let n = 2 and (y, β) ∈ Ω. Then an asymptotic direction for xy,β exists.
More precisely, for β we have exactly one of the following cases:

a) β1 = 0. Then D(xy,β) = (0, sign(y2)) and xy,β is a line parallel to the x2-axis.

b) β2 = 0. Then D(xy,β) = (sign(y1), 0) and xy,β is a line parallel to the x1-axis.

c) β1 < 0. Then D(xy,β) = (0, sign(y2)).

d) β2 < 0. Then D(xy,β) = (sign(y1), 0).

e) β1 = β2 > 0. Then D(xy,β) = y
‖y‖2 and xy,β is a line through the origin.

f) β1 > β2 > 0. Then D(xy,β) = (sign(y1), 0).

g) β2 > β1 > 0. Then D(xy,β) = (0, sign(y2)).

Proof. Note that by definition of Y , yi 6= 0 for all i ∈ [n] throughout this proof. As
β ∈ B, we have β1 ≤ 0 ⇒ β2 > 0 and β2 ≤ 0 ⇒ β1 > 0. Hence, a), b), c) and d)
follow by standard arguments, we show c) as an example. Indeed, the first component
of xy,β(t)/‖xy,β(t)‖2 converges to zero for t→ +∞ as the nominator is bounded and the
denominator is unbounded. The second component is

y2e
β2t√

y2
1e

2β1t + y2
2e

2β2t
=

y2e
β2t

|y2|eβ2t
1√

y21
y22
e2(β1−β2)t + 1

=
sign(y2)√

y21
y22
e2(β1−β2)t + 1

,

and the denominator converges to 1 for t→ +∞, as β1 < 0 and β2 > 0.
Also, e) is clear. To see f), we observe

(y1e
β1t, y2e

β2t) = eβ2t(y1e
(β1−β2)t, y2),

and by absolute homogeneity of the norm, the factor eβ2t has no influence on the asymp-
totic direction. So we may neglect it, and the asymptotic direction is the same as in b),
i.e. D(xy,(β1,β2)) = D(xy,(β1−β2,0)) = (sign(y1), 0). The proof for g) is similar.

The following lemma allows us to prove Proposition 7.34. Roughly speaking, the
lemma says that if the asymptotic direction of a curve γ exists and is not parallel to
one of the two “asymptotic directions” of the zero locus of g(x1, x2) := (x2− x1− 1)2, g
cannot get arbitrarily small on γ(t) for t large.

Lemma 7.37. Let γ : R→ R2 be continuous with limt→+∞ ‖γ(t)‖2 = +∞ and D(γ) =

ω ∈ S1
2. Put g := (X2 −X1 − 1)2. If ω 6= ± (1,1)

‖(1,1)‖2 there is t0 ∈ R with

g(γ(t)) ≥ 1, t ≥ t0.
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Proof. Suppose the contrary and let γ = (γ1, γ2). Thus, for every n ∈ N there is tn ≥ n
with

(γ2(tn)− γ1(tn)− 1)2 < 1. (7.19)

Now we add zero to find

(γ1(tn), γ2(tn)

‖γ(tn)‖2

=
(γ1(tn), γ2(tn)− γ1(tn)− 1 + γ1(tn) + 1)

‖γ(tn)‖2

.

We observe, using equation (7.19) and γ(t)→∞ for t→∞, that

lim
n→∞

γ2(tn)− γ1(tn)− 1

‖γ(tn)‖2︸ ︷︷ ︸
=:An

→ 0, lim
n→∞

1

‖γ(tn)‖2︸ ︷︷ ︸
=:Bn

= 0.

This implies

ω = lim
n→∞

γ(tn)

‖γ(tn)‖2

= lim
n→∞

(
γ1(tn)

‖γ(tn)‖2

,
γ1(tn)

‖γ(tn)‖2

+ An +Bn

)
= lim

n→∞

(γ1(tn), γ1(tn))

‖γ(tn)‖2

= (ω1, ω1),

hence ω2 = ω1. However, as ω ∈ S1
2, this forces ω = ±(1, 1)/‖(1, 1)‖2, contradicting the

assumption on ω.

Proof of Proposition 7.34. To see that f(x1, x2) = (x2−x1−1)2(x2
1 +x2

2), is not coercive,
we observe that f = 0 on the line x2 = x1 + 1. To prove that Ω ⊂ Ωf we need to show

lim
t→+∞

πf (y, β, t) = lim
t→+∞

f(xy,β(t)) = +∞, (y, β) ∈ Ω.

It is enough to show that (x2−x1−1)2 ≥ 1 on xy,β(t) for large t, as the term x2
1+x2

2 grows
without bound for large t on the curve xy,β(t). We make the same case distinction on all
possible values of β. In view of Lemmata 7.36 and 7.37, it is now clear that all choices of
β except possibly β1 = β2 > 0, that is case e), imply coercive behaviour of f on xy,β(t).
So let β1 = β2 > 0, hence xy,β suffices D(xy,β) = y/‖y‖2. Lemma 7.37 tells us that we
only need to consider the cases y/‖y‖2 = ±(1, 1)/‖(1, 1)‖2. However, we also know that
xy,β is a line through the origin, more precisely of the form (xy,β)2(t) = (xy,β)1(t) – hence
|(xy,β)2(t) − (xy,β)1(t) − 1| = 1 for all t, and f is coercive along xy,β(t) in this case as
well.

7.6.4. Invariance of coercivity under homeomorphisms

The aim of this section is to prove a small observation. When deciding coercivity of
a function f : Rn → R, polynomial or not, it is sometimes advantageous to change
coordinates and then decide coercivity. We show in the following that a general class of
changes of coordinates are admissible: Homeomorphisms. Recall that, provided (X, τX),

157



(Y, τY ) are topological spaces, a map ϕ : X → Y is a homeomorphism if ϕ is bijective
and ϕ and ϕ−1 are continuous.

Note that f : Rn → R is coercive if and only if for every sequence {xk}k∈N ⊂ Rn with
‖xk‖ → +∞, we have f(xk)→ +∞. For the proof of the following result, we introduce a
notation: Given a sequence {xk}k∈N, the common notation for a subsequence is {xkl}l∈N.
However, for readability, we use xk;l.

Proposition 7.38. Let f : Rn → R be any map and ϕ : Rn → Rn be a homeomorphism.
Then f is coercive if and only if f ◦ ϕ−1 is coercive.

Proof. It is enough to show that for any sequence {xk}k∈N ⊂ Rn, the following holds:
‖xk‖ → +∞ for k → ∞ if and only if ‖ϕ−1(xk)‖ → +∞ for k → ∞. By a symmetry

argument, it is enough to show that ‖xk‖
k→∞−−−→ +∞ implies ‖ϕ(xk)‖

k→∞−−−→ +∞. Suppose
this implication does not hold for one such sequence {xk}k∈N. Thus, the sequence ϕ(xk)
has a bounded subsequence ϕ (xk;l). By the Bolzano-Weierstraß theorem, every bounded
sequence in Rn has a convergent subsequence. Hence, there is a further subsequence
xk;l;m such that ϕ(xk;l;m) converges to some z ∈ Rn. Let K be a compact neighborhood
of z. Hence, K contains ϕ(xk;l;m) for eventually all m ∈ N. In other words, there is a
subsequence xk;l;m;p with ϕ(xk;l;m;p) ∈ K for all p ∈ N. As ϕ is bicontinuous, ϕ−1(K) is
compact and contains the entire sequence {xk;l;m;p}p∈N. However, this means xk;l;m;p is
bounded, contradicting ‖xk‖ → ∞.
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8. Summary and extensions

In this chapter, we briefly summarize our contributions and point out future research.

Section 8.1 contains the summary.

Section 8.2 outlines future research. We discuss an application of the S-lemma to find
tight underestimators for quadratic integer optimization. Also, a subgradient method
approach with the aim of making constrained problems tractable by rewriting them as
unconstrained problems with a penalty term is discussed. Then, we digress to robust
polynomial optimization problems for which we suggest quantifier elimination methods.
Finally, we sketch how extensions of semidefinite programming translate to extensions
of sos programs.
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8.1. Summary

The nexus of this work consists of half-spaces, seminorm balls and ellipsoids containing
the feasible set of MINLP, as well as norm bounds on the optimal solutions of MINLP.
Norm bounds can also be thought of as norm balls containing the feasible set intersected
with a suitable sublevel set. All four approaches are henceforth referred to as geometric
objects.

Our primary motivation for working with norm and seminorm balls as well as ellip-
soids is to make the integer variables of MINLP accessible to branch and bound. The
primary motivation for using half-spaces is their success in linear and convex (integer)
programming. A further advantage of the geometric objects is that they represent an
outer approximation of the – complicated – sets F and FI by an – easy – convex set.
In other words, the approaches yield a convexification. We have also investigated how
the norm and seminorm balls containing F can be shrunk using Diophantine arguments,
resulting in nonlinear cuts for F . For the case of half-spaces, we have analyzed how
integrality information can be used to find another half-space that potentially cuts off
points in F \ FI , that is hence a linear cut for F .

In this work, each of the four geometric objects is to be chosen optimally (with a
clear purpose in mind) out of a class of similar objects. In the case of half-spaces,
we minimize the distance of the corresponding hyperplane to a known feasible solution
to end up with a tight inequality. In the case of norm and seminorm balls, we fix
the center and shape (by choosing a norm or seminorm) and minimize the radius –
or, equivalently, the volume – to end with as few solutions in it as possible. In the
case of ellipsoids, more degrees of freedom were involved since we allowed for a whole
shape class and a certain region for the center, and minimized the volume. We have
formulated each task as an auxiliary program for MINLP and have given conditions for
the existence of feasible and optimal solutions of the auxiliary programs. These results
are important from a theoretical perspective. In practice, such auxiliary programs are
still difficult optimization problems themselves and can only be solved computationally
under additional assumptions. Since the auxiliary problems are interesting in their own
right, we have often formulated them with a deputy set S ⊂ Rn for additional generality.

For polynomial data, that is, for MIPP, we have approximated the problems as sos
programs, and provided convergence results. Since sos methods are rooted in real alge-
bra, convergence usually involves assumptions formulated in the language of that field
of mathematics, the Archimedean property in our case. We have used known results to
illustrate this property in terms of MIPP and have shown that sufficient conditions arise
naturally in the context of optimization.

One such condition is coercivity. A whole chapter is devoted to the study of coer-
cive polynomials in terms of their order of growth, and we have related the order of
growth to the stability of the coercivity property with respect to perturbations of its
coefficients. Also, we have discussed several approaches to the decision problem itself:
Given a polynomial, is it coercive?
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For the solution process, we have also outlined a way of finding underestimators for
mixed-integer unconstrained polynomial optimization. The underestimators and norm
bounds have been implemented in a branch and bound framework for unconstrained
integer polynomial optimization and show a good performance.

We have used tools from various mathematical fields. To name some: Analysis for
the existence (of feasible and optimal solutions) and approximation results as well as
coercivity arguments; Diophantine arguments from number theory for nonlinear cuts; the
Positivstellensatz for sos programming and quantifier elimination for complexity results,
both from real algebraic geometry; semidefinite programming; point-set topology for
boundary and compactness arguments; spectral arguments for matrices and, last but
not least, geometric arguments involving volume and convexity.

We want to close this summary with the following thought. The negative results
concerning the hardness of seemingly easy special cases of MINLP from the literature
in Section 1.6 might at first sight deter from mixed-integer nonlinear programming.
However, as indicated in Section 1.3, many encouraging positive results emerged. It is
our hope that this work contributes to the feeling that MINLP can be approached with
numerous tools from various areas of mathematics.

Attached to this summary is Table 8.1. It compares and contrasts the results for our
four geometric objects, listed in the first column, by considering them as valid, possibly
nonlinear, inequalities as outlined throughout this work. The next four columns indicate
using a X sign whether the result is a valid inequality for F , the relaxed feasible set, FI ,
the feasible set, or one of the two intersected with a sublevel set Lf≤(f(q)), abbreviated
to L≤ in the table, where q is a feasible solution. It goes without saying that a method
that computes a valid inequality for F yields a valid inequality for F ∩Lf≤(f(q)), trivially
by set containment, or by adding another constraint in the computation – but, and this
is an important detail, not vice versa. Similarly for FI and F – a valid inequality for
F is yields a valid inequality for FI , but a valid inequality for FI only yields a cut
for F . The “Section” column points towards the section of the result. The column
labeled “Method” reports the type of the auxiliary program or method involved. The
column “Problem” states to which problem class the result contributes. All sos methods
require polynomial data. “Prerequisite” lists significant assumptions, for example, a
known feasible solution. Finally, the “Comment” column comments on the result. If we
prove existence of feasible and optimal solutions of the auxiliary program but do not
supply a computational method, it is mentioned here, and so we mention approximating
hierarchies.
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8.2. Extensions

In this section we present some extensions of our work that are left for future research.
Note that additionally to the ideas presented here, we have already indicated in some of
the previous chapters directions of future research.

8.2.1. Quadratic integer optimization

This extension is considered with the task to find quadratic underestimators for a
quadratic objective f : Rn → R, an important special case of the underestimation
problem in Section 6.2. More precisely, for the minimization problem

min f(x)

s.t. x ∈ FI
(IP)

we are interested in finding a quadratic function g : Rn → R that underestimates f
on a sublevel set. We saw in Section 6.2 that this is a weaker requirement than global
underestimation and potentially leads to stronger bounds which, in turn, are more useful
in a branch and bound setting. So suppose q ∈ Rn is our incumbent solution, we are
interested in g that suffice

f(x) ≤ f(q)⇒ g(x) ≤ f(x) (8.1)

for all x ∈ Rn.
We use the S-Lemma to derive an underestimator. The S-lemma is a theorem of the

alternative for quadratic functions similar to Farkas’ lemma in the linear case.

Theorem 8.1 (S-Lemma, see, e.g., Theorem 2.2 in [PT07]). Let a, b : Rn → R quadratic
functions and suppose there is x̄ ∈ Rn with b(x̄) < 0. Then, the following statements are
equivalent:

1. There is no x ∈ Rn with

a(x) < 0,

b(x) ≤ 0.

2. There is a nonnegative number y ≥ 0 s.t.

a(x) + yb(x) ≥ 0 ∀x ∈ Rn.

We remark that characterization 1 of Theorem 8.1 is equivalent to

∀x ∈ Rn : (b(x) ≤ 0⇒ a(x) ≥ 0) .

Then, we have the following:
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Proposition 8.2. Let f, g : Rn → R be quadratic functions, q ∈ Rn which is not a
continuous minimizer of f . Then underestimation of f by g as in (8.1) holds if and only
if there is y ≥ 0 with

(1 + y)f − g − yf(q) ≥ 0 ∀x ∈ Rn. (8.2)

Proof. Put
a := f − g, b := f − f(q).

To apply the S-Lemma (Theorem 8.1), we need x̄ ∈ Rn with b(x̄) = f(x̄) − f(q) < 0.
Since q is not a continuous minimizer, we can choose x̄ = q. The claim follows from the
S-lemma with

f − g + y(f − f(q)) = a(x) + yb(x)

Let us explain why (8.2) is a useful characterization. If the decision variables to choose
the (yet unknown polynomial) g enter the equation linearly, the expression (8.2) is linear
in the coefficients of g and in y which make g accessible to optimization approaches that
require constraints that are linear in the decision variables. We can thus optimize over
the class of underestimators on a sublevel set, as was the case for SLS in Section 6.2.

8.2.2. Subgradient methods

Let f ∈ R[X1, . . . , Xn], and suppose we have a method to solve

min f(x)

s.t. x ∈ Zn
(UIPP)

for example, if f has a positive definite leading form, we may use our branch and bound
scheme from Section 6.3. The topic of this extension is to investigate if this extends to
linearly constrained problems:

w∗ = min f(x)

s.t. Ax ≤ b

x ∈ Zn
(LIPP)

where A ∈ Rm×n, b ∈ Rm such that P := {x ∈ Rn : Ax ≤ b} is a compact polyhedron -
hence LIPP has an optimal solution.

General idea

We first rewrite LIPP with equality constraints, introducing slack variables:

w∗ = min f(x)

s.t. Ax+ z = b

x ∈ Zn, z ∈ Rm
+

(LIPP′)
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We may now relax LIPP′ as follows:

w(M, q) = min f(x) +M · ‖Ax+ z − b‖2q
2

x ∈ Zn, z ∈ Rm
+

(R1)

with M ∈ R and q ∈ N.

Observation 8.3. Program R1 is indeed a relaxation to LIPP′ for all M ∈ R. In
particular, w(M, q) ≤ w∗ for all M ∈ R.

Proof. The feasible set of R1 is clearly a supset of LIPP′. Denote the objective of R1 by
f̃ = f̃M,q. To see f̃(x, z) ≤ f(x), fix M and q and let (x, z) ∈ Zn×Rm

+ feasible for LIPP′.

Then Ax+ z − b = 0, so f̃(x, z) = f(x). Hence f̃ is a relaxation (for all M and q). The
second claim is a well-known property of relaxations.

Lemma 8.4 (Monotonicity of w). Fix q and let M ≤M ′. Then w(M, q) ≤ w(M ′, q).

Proof. Since f̃M,q(x, z) ≤ f̃M ′,q(x, z), minimization preserves the inequality and we get
w(M, q) ≤ w(M ′, q).

Lemma 8.5 (Convergence of the values w(M)). Fix q. Then for M →∞,

w(M) ↑ w̄ ≤ w∗

Proof. Convergence to w̄ follows from monotonicity and boundedness of the function
w(M). As w(M, q) ≤ w∗ by Observation 8.3, w̄ ≤ w∗ follows.

Note that the polynomial objective f̃(x) = f(x) +M · ‖Ax+ z− b‖2q
2 has even degree

if f has even degree.

Remark 8.6. It turns out that in either case, a problem is that the highest order term
of ‖Ax + z − b‖2q

2 (as a polynomial in x, z) is positive semidefinite, but not positive
definite: Indeed, the highest order term is given by ‖Ax + z‖2q

2 and is positive definite
(that is, ‖Ax+ z‖2q

2 > 0 for (x, z) 6= 0) if and only if

‖Ax+ z‖2
2 = (xT , zT )

(
A 1

)(x
z

)
> 0

for (x, z) 6= 0. This is not the case, even for a full rank of A, which can be seen with the
choice z = −Ax.

One motivation is the following:

Guess 8.7. In R1, limM→+∞w(M) = w∗ and finite convergence might hold, i.e., there
is a M ≥ 0 with w(M) = w∗ for M ≥M .
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However, both seems not so likely: Program LIPP′ is equivalent to

w∗ = min f(x)

s.t. ‖Ax+ z − b‖2q
2 = 0

x ∈ Zn, z ∈ Rm
+

(LIPP′′)

and R1 is then the Lagrangian relaxation of LIPP′′. The Lagrangian relaxation could
then be approached with a subgradient or bundle method – assuming that we have a
method to solve the subproblems for fixed M . It turns out that the maximum value of
the minima w(M) of the Lagrangian relaxation is not larger than the minimum value of
f on conv(P ∩Zn) by Fact 18 from [Lem01], as in linear integer programming. In other
words, we only get a bound on the continuous minimum of f on the set conv(P ∩ Zn).

We leave further evaluations of the approach as future work.

8.2.3. Towards robustness

This extension is a first step towards robust mixed-integer polynomial optimization: We
show how continuous relaxations of these problems can be solved with quantifier elimina-
tion. Quantifier elimination was introduced in Section 7.6.1, and we refer to [BTEGN09]
for an introduction into robust optimization.

For polynomials f, F1, . . . , Fk, G1, . . . , Gl ∈ R[X1, . . . , Xn,Ξ1, . . . ,Ξm], we consider the
family of problems

min f(x, ξ)

s.t. Fi(x, ξ) ≤ 0, ∀i ∈ [k],

x ∈ Rn

parameterized by the uncertainty parameter ξ ∈ U = {ξ ∈ Rm : Gi(ξ) ≤ 0 ∀i ∈ [l]}.
The so-called robust counterpart (see, e.g., [BTEGN09]), or RC for short, is then

min
x

sup
ξ
f(x, ξ)

s.t. Fi(x, ξ) ≤ 0 ∀ξ ∈ U, ∀i ∈ [k],

or, equivalently
min
t

t

s.t. t− f(x, ξ) ≥ 0 ∀ξ ∈ U
Fi(x, ξ) ≤ 0 ∀ξ ∈ U, ∀i ∈ [k],

(RC)

The task is now to rephrase the above using first-order formulas. To this end define

Ψ1(t, x, ξ) =

(
l∧

j=1

Gi(ξ) ≤ 0

)
⇒

(
t− f(x, ξ) ≥ 0

k∧
i=1

Fi(x, ξ) ≤ 0

)

166



If Ψ is a formula with free variables Z1, . . . , Zl, a realization (see, e.g., Chapter 1.1 in
[BPR05]) of Ψ is the set

Reali(Ψ,Rl) := {y ∈ Rl : Ψ(y)}.

The feasible solutions to RC are the realizations of

Ψ2(t, x) := ∀ξ Ψ1(t, x, ξ).

We are interested in all t ∈ R such that Ψ2(t, x) holds. In other words, we want to know
the realizations of

Ψ3(t) = ∃xΨ2(t, x) = ∃x∀ξΨ1(t, x, ξ).

By quantifier elimination, Ψ3 is equivalent to a quantifier free formula in one variable,
thus the realization is a semi-algebraic set over R. In other words, the realization consists
of a finite union of single points and intervals!

Theorem 8.8. Program RC can be solved algorithmically.

Proof. By Theorem 7.29, quantifier elimination terminates after finitely many opera-
tions.

Example 8.9. For parameters ξ1, ξ2 ∈ [−2, 2], consider the problem

min
x

f(x, ξ) = ξ4
1 + (ξ2

1 − ξ2)x2
1 + ξ2

1x2

s.t. x1, x2 ∈ [−1, 1].

To solve the RC, consider the case x2 ≥ 0. Since the problem is then strictly convex in
both ξ1 and ξ2, it follows that at the ξ-supremum, we necessarily have |ξ1| = |ξ2| = 2.
The case ξ2 = 2 can be excluded, thus the problem takes the form supξ f(x, ξ) =
16 + (4− (−2))x2

1 + 4x2 = 16 + 6x2
1 + 4x2 for x2 ≥ 0, hence the minimum with respect

to x is in this case 16.
In the other case x2 < 0, it is still obvious that ξ2 = −2 at the supremum. The other
part of the sum is a quartic and may be rewritten as ξ2

1(ξ2
1 + x2

1 + x2). The quartic is
positive iff ξ2

1 > x2
1 +x2, and since |xi| ≤ 1, this is clearly the case if |ξ1| >

√
2. Thus, the

quartic attains its maximum again at |ξ1| = 2, giving supξ f(x, ξ) = 16 + 6x2
1 + 4x2, and

the minimum with respect to x is attained at x = (0,−1), with value 16 + 0− 4 = 12.
To solve the same problem with Mathematica1

Ψ1(t, x, ξ) =− 2 ≤ ξ1 ≤ 2 ∧ −2 ≤ ξ2 ≤ 2

⇒ −1 ≤ x1 ≤ 1 ∧ −1 ≤ x2 ≤ 1 ∧ t− ξ4
1 − (ξ2

1 − ξ2)x2
1 − ξ2

1x2 ≥ 0

and may apply quantifier elimination to Ψ2(t, x) = ∀ξΨ1(t, x, ξ) by calling the routine
Resolve[Ψ(t, x, ξ), Reals] which gives the equivalent conditions

Ψ′2(t, x) = −1 ≤ x1 ≤ 1 ∧ −1 ≤ x2 ≤ 1 ∧ t ≥ 16 + 6x2
1 + 4x2

1We use Mathematica 9.0. Wolfram Research, Inc., Mathematica, Version 9.0, Champaign, IL (2012).
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Then Ψ3(t) = ∃xΨ2(t, x) yields, eliminating the quantifier, the equivalent formulae

Ψ′3(t) = t ≥ 12 ∨ t ≥ 20,

which is of course equivalent to Ψ′3(t)⇔ t ≥ 12. So Mathematica gives the same result:
The robust optimal solution is 12.

Degree issues

A further question is whether in special cases – say, linear uncertainties – the degree
of the quantifier eliminated problem remains stable. However, the following examples
show that this is difficult.

Example 8.10. In this one dimensional example, let

f(x, ξ) = −ξx− ξ2

subject to x, ξ ∈ [−1, 1]. The t − f formulation requires ∀ξ : ξ2 + ξx + t ≥ 0 and
ξ, x ∈ [−1, 1], which is by QEPCAD2 equivalent to x2 ≤ 4t and x ∈ [−1, 1].

Proof. This can be seen as follows: If we forget the constraint ξ ∈ [−1, 1] for a second,
the condition ∀ξ : ξ2 + ξx + t ≥ 0 can only be satisfied if the discriminant x2 − 4t is
non-negative, which explains the inequality x2 ≤ 4t. In fact, this does not change with
the constraint ξ ∈ [−1, 1] in place since the quadratic (in ξ) attains its minimum at
ξ = −x

2
∈ [−1, 1], which allows us to apply the same reasoning.

Example 8.11. Consider spherical constrained ξi, ξ
2
1 + ξ2

2 ≤ 1 and

f(x, ξ) = ξ1x1 + ξ2x2 s.t. xi ∈ [−1, 1].

Eliminating the ξi in the RC in t−f(x, ξ) ≥ 0 formulation, QEPCAD gives the equivalent
conditions

t2 ≥ x2
1 + x2

2 and xi ∈ [−1, 1]

whose realization in R3 cannot be represented by finitely many linear inequalities.

8.2.4. Extensions of sos programming

We have seen in Section 5.3 that it is possible to transfer generalizations of semidefinite
programming to yield a generalization of sos programming. It is the aim of this extension
to point out the underlying idea.

For notational simplicity, we allow an arbitrary objective and a set constraint on the
decision variables. Finally, we allow for additional (“hidden”) decision variables that
do not enter the objective. This allows for a simple proof of the transfer statement
(Proposition 8.12). The extension reads

2We use QEPCADB Version B 1.69, available from
https://www.usna.edu/CS/qepcadweb/B/QEPCAD.html.
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max f(y)

s.t.
m∑
j=1

yjAj +
m′∑
j=1

y′jBj � C (SDP-D+)

(y, y′) ∈ Ω× Rm′

for matrices C,A1, . . . , Am, B1, . . . , Bm′ ∈ Sn, a function f : Ω′ → R defined on Ω′ ⊂ Rm

with Ω ⊂ Ω′.
Now consider the following similar extension of sos programming

max f(y)

s.t. ci + y1ai1 + . . .+ ymaim ∈ Σn, i = 1, . . . , k, (SOSP+)

y ∈ Ω

where f : Ω′ → R is again a function with Ω ⊂ Ω′ ⊂ Rn and ci, aij ∈ Σ. Note that the
additional decision variables in SDP-D+ do not appear.

The aim of the remainder of this section is to prove the next proposition: Any gen-
eralization of semidefinite programming that allows for hidden variables transfers to a
generalization of sos programming. The proof uses the standard rewriting of sos con-
straints as semidefinite constraints (Theorem 1.30).

Proposition 8.12. Let f : Ω′ → R be a function with Ω′ ⊂ Rm. Furthermore, let a
subset Ω of Ω′ as well as k,m, n ∈ N be given. Also, let ci, aij ∈ Σ for i ∈ [k], j ∈ [m] be
given. Then, the Program SOSP+ with objective f and the given data can be reformulated
as a program of the form SDP-D+ with objective f .

Proof. In SOSP+, consider the i-th constraint polynomial

pi(y) := ci + y1ai1 + . . .+ ymaim.

Let d′i be the maximum of the degree of the polynomials ci, ai1, . . . , aim, and put di :=

dd′i/2e. Then, by Theorem 1.30, pi(y) is sos if and only if there is Qi ∈ S
(
n+di
di

)
with

p(y) = [X]TdiQi[X]di and Qi � 0. After expanding pi(y) in the basis [X]di and comparing
coefficients, this is equivalent to a linear system with unknowns (Qi)αβ and ym (and the
requirement Qi � 0). By Observation 1.29, this can be expressed as a single constraint
of the form

m∑
j=1

yjAij +

m′i∑
j=1

(y′i)jEij � Ci, (y, y′i) ∈ Rm × Rm′i

for n′i,m
′
i ∈ N and matrices Aij, Eij, Ci ∈ Sn

′
i . Hence, by the block diagonal argument

again (Observation 1.9), all k sos constraints in SOSP+ are equivalent to a constraint
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of the form
m∑
j=1

yjAj +
m′∑
j=1

y′jEj � C, (y, y′) ∈ Rm × Rm′

for n′,m′ ∈ N and matrices Aj, Ej ∈ Sn
′
. With these preparations, SOSP+ reads

max f(y)

s.t.
m∑
j=1

yjAj +
m′∑
j=1

y′jEj � C

m∑
j=1

yjBj ≺ D

y ∈ Ω

(y, y′) ∈ Rm × Rm′

which is of the form SDP-D+.

From the applied point of view, the following immediate consequence is of interest.

Corollary 8.13. An algorithm that can solve SDP-D+ yields an algorithm that can
solve SOSP+.

We expect that these extensions might prove useful in practice, and leave it as inter-
esting future research.
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A. Sublevel sets and tight inequalities

Suppose we are given a point q ∈ S, where S is typically one of the sets F or FI . A
natural question in our setting is how close a valid inequality for S can get to q. In
the best case, the inequality is tight at q, and a necessary condition for being tight at
q is that q lies on the boundary of S. On the other hand, it is well-known that the set
of optimal solutions is unchanged by intersecting FI with Lf≤(f(q)), or equivalently, by
adding the constraint f(x) ≤ f(q). In applications, this is sensible if it is known that
feasible solutions with better objective value that f(q) exist. Alternatively, this is useful
if one wants to verify (in a pruning substep or similar) that no feasible solutions with
better objective value exist.

In this section we show that, under mild assumptions, q is indeed on the boundary of
S intersected with Lf≤(f(q)). As this is a topological matter, we need a simple fact from
topology. The statement in the following lemma relates the boundaries of a space and
the boundary of a subspace. This fact seems to be mathematical folklore, we only give
a proof for completeness. For a topological space (X, τ) and Y ⊂ X endowed with the
subspace topology, we denote the boundary with respect to X and Y by bdX and bdY ,
respectively.

Lemma A.1. Let (X, τ) be a topological space.

1. Let M ⊂ X. Then z ∈ bdM if and only if all neighborhoods U of z contain points
of M and X \M .

2. Let M ⊂ Y ⊂ X. Then bdY (M) ⊂ bdX(M) ∩ Y .

Proof. For a proof of 1, see Definition 2 and Theorem 2 in Chapter 1.2 of [Gaa09]. To
see the other assertion, let x ∈ bdY (M) and V be a neighborhood of x in X. To show
x ∈ bdX(M) with assertion 1, we show V intersects M and X \M . Now U := V ∩ Y is
a neighborhood of x in Y . As x ∈ bdY (M), U ∩M 6= ∅, and V ∩M 6= ∅ follows from
U ⊂ V . Also, ∅ 6= U ∩ (Y \M) ⊂ V ∩ (Y \M) ⊂ V ∩ (X \M), so V intersects X \M .
This proves bdY (M) ⊂ bdX(M). As bdY (M) ⊂ Y , the claim follows.

In the following lemma, we denote the boundary with respect to the subspace S ⊂ Rn

by bdS.

Lemma A.2. Let S ⊂ Rn, q ∈ S and f : S → R (not necessarily continuous). Then,
the following are equivalent:

1. q ∈ bdS

(
Lf≤(f(q))

)
,

171



2. q is not a local maximizer of f .

Proof. By Lemma A.1 (1), q ∈ bdS

(
Lf≤(f(q)

)
if and only if all neighborhoods N of

q contain points x ∈ S with f(x) > f(q) and points y ∈ S with f(y) ≤ f(q). The
second requirement is trivial as every neighborhood N of the point q contains q. Thus

q ∈ bdS

(
Lf≤(f(q)

)
if and only if every neighborhood N of q contains points x ∈ S with

f(x) > f(q). Equivalently, q is not a local maximizer.

As the boundary with respect to S can be difficult to compute, we may reduce to the
boundary with respect to Rn if we drop the equivalence in the statement.

Proposition A.3. Let q ∈ S ⊂ Rn, f : Rn → R be a function and suppose q is not

a local maximizer of f |S. Then q ∈ bd
(
S ∩ Lf≤(f(q))

)
, where bd is the boundary with

respect to Rn.

Proof. Note first that q ∈ bd
(
S ∩ Lf≤(f(q))

)
if and only if for every neighborhood N of

q, N intersects the set S∩Lf≤(f(q)) and the complement Rn\
(
S ∩ Lf≤(f(q))

)
. As q is in

each of the sets N , S and Lf≤(f(q)), the first intersection requirement always holds. Now
let q not be a local maximizer of f restricted to S. Equivalently, for every neighborhood
N of q, there is x ∈ S ∩ N with f(x) > f(q). But this x lies in the complement of
S ∩Lf≤(f(q)). In other words, the second intersection requirement is fulfilled and hence

q ∈ bd
(
S ∩ Lf≤(f(q))

)
follows.

In a convex setting, intersecting with a sublevel set guarantees a supporting hyperplane
to q.

Corollary A.4. Suppose S ⊂ Rn is a convex set, q ∈ S and f : S → R is a quasiconvex
function. Suppose q is not a local maximum of f . Then there is a valid inequality for
S ∩ Lf≤(f(q)) which is tight at q.

Proof. Note that S ∩ Lf≤(f(q)) is convex as an intersection of two convex sets. By

Proposition A.3, q is on the boundary of S ∩ Lf≤(f(q)). From Theorem 1.14, there is

a supporting hyperplane H = H(a, b), a ∈ Rn \ {0}, b ∈ R to S ∩ Lf≤(f(q)), in other

words, a valid inequality for S ∩ Lf≤(f(q)) which is tight at q.
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B. Proofs

We prepare the proof of Lemma 2.2 using two intermediate steps. In the first step we
show that gauges on Rn behave well towards norms.

Lemma B.1. Let γ be a gauge and ‖ · ‖ be a norm on Rn. Then, γ is left-equivalent to
‖ · ‖, i.e., there is µ > 0 such that

γ(x) ≤ µ‖x‖2.

Furthermore, γ is continuous.

Proof. As 0 is in the interior of the defining set A, there is µ′ > 0 such that µB1(0; ‖·‖) ⊂
B1(0; γ). Hence γ(x) ≤ 1

µ′
‖x‖ for all x ∈ Rn. The first claim follows with µ := 1/µ′. To

see continuity, fix ε > 0 and x ∈ Rn. Subadditivity implies the inequality γ(x)− γ(y) ≤
γ(x − y) for all y ∈ Rn. By the first part, γ(x − y) ≤ 1

µ′
‖x − y‖ for all x, y ∈ Rn. For

all y ∈ Rn with ‖x − y‖ ≤ εµ′, γ(x) − γ(y) ≤ ε. Interchanging x and y and using the
fact that norms are absolutely homogeneous we get |γ(x)− γ(y)| ≤ ε, and continuity at
x follows.

It can also be shown that γ is right-equivalent to a given norm, but we do not need
this property.

We can show now that the distance measured by a gauge towards a fixed set is con-
tinuous.

Lemma B.2. Let γ be a gauge on Rn and A ⊂ Rn some nonempty set. Then, the map
Rn → R, x 7→ d(x,A) is continuous.

Proof. Let ε > 0 and x ∈ Rn. Let µ as in Lemma B.1 and y ∈ Rn with ‖x− y‖ ≤ ε/µ.
There is a ∈ A with γ(a− x) ≤ d(x,A) + ε. Now

d(y, A) ≤ γ(a− y) = γ(a− x+ x− y) ≤ γ(a− x) + γ(x− y) ≤ d(x,A) + ε+ γ(x− y)

= d(x,A) + ε+ µ‖x− y‖ ≤ d(x,A) + 2ε

for all y ∈ Rn with ‖x− y‖ ≤ ε/µ. By estimating d(x,A) analogously, we find

d(x,A) ≤ d(y, A) + 2ε,

which combines to |d(x,A) − d(y, A)| ≤ 2ε for all y ∈ Rn with ‖x − y‖ ≤ ε/µ. Hence
d(·, A) is continuous at x.
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We can now give the proof.

Proof of Lemma 2.2. There is a sequence (an, kn) ∈ A×K with γ(kn−an) = d(an, kn)→
d(A,K). By compactness, a subsequence kn;p converges to some k∗ ∈ K for p → ∞.
Assume first that A is compact, too. Hence, a subsequence an;p;q converges to some
a∗ ∈ A for q →∞, which results by continuity of γ (Lemma B.1) in

d(a∗, k∗) = γ(k∗ − a∗) = γ( lim
q→∞

(kn;p;q − an;p;q)) = lim
q→∞

γ(kn;p;q − an;p;q) = d(A,K).

Now let us drop the additional assumption that A is compact. Let ε > 0. To reduce this
to the compact case, it is enough to show that any pair of points (a′, k′) ∈ A×K with
d(a′, k′) ≤ d(A,K) + ε, that is, any potential distance minimizer, lies in the compact set
A∗×K, where A∗ is the set A∗ = A∩BγR(k∗), Bγr (p) is the closed gauge ball from (2.2),
and R is the number R := diam(K) + d(A,K) + ε and diam(K) is the diameter of the
set K, diam(K) := supx,y∈K γ(y − x). Let us verify all implicit statements. First note
that a′ ∈ A∗: Since

d(a′, k∗) = γ(k∗−a′) = γ(k∗−k′+k′−a′) ≤ γ(k∗−k′)+γ(k′−a′) ≤ diam(K)+d(A,K)+ε,

it follows that a′ ∈ BγR(k∗). Also note that R is finite: As γ is continuous, the map
K×K → R, (x, y) 7→ γ(y−x) attains its supremum by compactness of K×K. Finally,
we observe that the set A′ := A∩BγR(k) is indeed compact as the balls defined via γ are
closed and bounded.
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Summary of contributions

In this chapter we outline which parts of this work are joint work with coauthors and
which parts have been published.

Chapter 1. The literature review as well as some of the material in Sections 1.4, 1.5
and 1.6 have been published in the article [BHS17], an article by the author of this work,
Anita Schöbel and Ruth Hübner, as well as in the preprint [BB17] by the author of this
work and Tomáš Bajbar.

Chapters 2, 4 and 5. These chapters are new and make use of discussions with Anita
Schöbel. The proofs are the author’s work.

Chapters 3 and 6. Most of the results in these chapters have already been published in
the article [BHS17], which is joint work with Anita Schöbel and Ruth Hübner. Theorems
3.3, 3.4, 6.5, 6.6, Proposition 3.5, 3.7, 6.2, 6.4 and Observation 6.1 are stated in a more
general form than in the reference. Section 3.2.1 is new. The experiments were conducted
by the author.

Chapter 7. The material from the beginning of the chapter until Section 7.5 inclusive
is joint work with Tomáš Bajbar, available as the preprint [BB17]. Both authors con-
tributed equally to the writing of this preprint, and both authors are grateful to Lukas
Katthän for fruitful discussions on its subject. Section 7.6 is new and the author’s sole
work.

Section 8.2. The author of this work had the ideas for the material in Sections 8.2.1,
8.2.3 and 8.2.4. Section 8.2.2 makes use of discussions with Christoph Buchheim and
Anita Schöbel.
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