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1. INTRODUCTION 

 
1.1 Pain  

The ability to sense the world is essential for adequate response to environmental stimuli, 

which determines survival of the organism and, consequently, drives evolution. Different 

sensory modalities enable the detection of specific stimuli, with the traditionally recognized 

five senses, also known as sound, sight, touch, smell, and taste, operating continuously and 

oftentimes even “unperceived” to decode any input and therefore direct essentially any 

response and action. Among them, the most primitive and indeed the most essential to 

survival is the sense of touch, better referred to as somatosensation. The somatosensory 

system is complex and encompasses different submodalities, namely:  

 Touch: detection of mechanical stimulation of the body; 

 Proprioception: detection of mechanical displacement of muscles and joints; it 

contributes to sense the position of the body and limbs; 

 Thermosensation: detection of a wide range of temperatures, from cold to heat; 

 Nociception: detection of noxious (painful) stimuli, of mechanical, thermal and 

chemical nature; 

Nociception is probably the most enigmatic of these submodalities, mainly because of the 

dual nature that is associated to pain. On the one hand in fact, pain has, as the other 

submodalities, a fundamental physiological role, as it is protective against stimuli that have 

the potential to harm the body, and triggers protective and defensive mechanisms aimed at 

ceasing the threatening condition. Because this pain is involved with the sensing of noxious 

stimuli, it is referred to as nociceptive or acute pain, a high-threshold pain only activated in 

response to stimuli intense enough to potentially create damage (Basbaum et al., 2009; 

Woolf, 2010). The paramount importance of acute pain is exemplified in people born with 

congenital insensitivity to pain, which is caused by rare mutations in the genes coding for the 

voltage-gated sodium channels Nav1.7 (Cox et al., 2006), Nav1.9 (Leipold et al., 2013) or 

neurotrophin receptor TrkA (Indo et al., 1996). These individuals experience harmful 

conditions without any protective reaction, undergoing bone fractures, self-mutilations, 

amputations, and often die early in life as a result of injuries. The importance of acute pain is 

also revealed in cases of peripheral neuropathy, where sensory denervation of joints leads to 

severe damage and deformities due to lack of pain sensitivity (Haus et al., 2010; Mabilleau 

and Edmonds, 2010).  

 

On the other hand however, pain is also the first reason that people seek medical attention. 

Pain can extend beyond its protective usefulness, becoming pathological and chronic. In this 

case, pain is maladaptive and is believed to result from abnormal functioning of the nervous 

system, becoming a disease state in its own right (Costigan et al., 2009).  In Europe, chronic 

pain of moderate to severe intensity is estimated to affect almost 20% of the adult 

population, which results in serious damage to the quality of the patients‘ social and working 
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life, in addition to a huge economic burden (Breivik et al., 2006). Effective treatment of many 

chronic pathological pain conditions has not been achieved so far and faces major 

challenges. Current pain therapeutics are either not effective in some clinical settings, or 

they are too often characterized by extremely narrow safety windows and intolerable side 

effects. In the light of these difficulties, it is of primary importance finding new therapeutic 

targets for the development of novel, more effective, and better-targeted analgesics. A 

special focus is needed in order to identify ways to interfere selectively with the pathological 

side of pain, while preserving the physiological function of acute pain, and therefore an 

individual’s ability to detect noxious stimuli. 

 

 

 

1.2 Nociception and the pain pathway 

In order to figure out how to potentially target pain, we need to understand how the 

sensation of pain is generated. In 1986, the International Association for the Study of Pain 

(IASP) defined pain as “a sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage” (Merskey, 1994). Pain is a 

complex experience made up of sensory, affective, motivational and cognitive dimensions, 

which is physiologically associated, but different from, nociception. Nociception refers to the 

neurophysiological consequences induced by a noxious stimulation, and starts with the 

detection of such stimulus through specialized primary afferent neurons which innervate 

both the skin and internal organs, the so-called nociceptors.  

 

The term nociceptor was coined in the early 1906 by Sir Charles Scott Sherrington, whose 

pioneering studies led him to the conclusion that the skin is provided with a set of nerve 

endings with the specific function of sensing potentially harmful stimuli (Sherrington, 1903). 

Sherrington’s “specificity theory” was contrasting the then widely believed notions that pain 

was caused by a central summation upon excessive sensory stimulation, and that nerve 

endings were all alike (Woolf and Ma, 2007). The nociceptor is nowadays widely recognized 

for its specific function in triggering the nociceptive process, and extensive knowledge has 

been developed about the different properties and specific characteristics that mark distinct 

populations. Nociceptors, like other primary somatosensory neurons, show a 

pseudounipolar morphology, with their cell bodies located in dorsal root ganglia (DRG, for 

most of the trunk and limbs innervation), trigeminal ganglia (TG, for cephalic innervation), 

jugular ganglia and nodose ganglia (vagal innervation of head and viscera)(Kollarik et al., 

2010). They possess a single process that originates from the cell body and bifurcates into a 

peripheral axon that innervates the target tissue, and a central axon that synapses on 

second-order neurons in the dorsal horn of the spinal cord (for DRG neurons) or in the 

trigeminal subnucleus caudalis (for TG neurons)(Basbaum et al., 2009; Dubin and 

Patapoutian, 2010). Nociceptive neurons are rather heterogeneous and can be classified 

based on different properties, for instance the diameter of the axon, which correlates well 

https://en.wikipedia.org/wiki/Charles_Scott_Sherrington
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with the speed of transmission of action potentials and whether the fiber is myelinated. This 

aspect is also reflected in the specific qualities of pain signaled. The initial fast-onset pain, 

usually perceived as burning, pricking and well-localized, is mediated by medium-diameter 

Aδ-fiber nociceptors, whose axons are thinly myelinated with conduction velocities of 

approximately 5–30 m/s (Djouhri and Lawson, 2004). Most nociceptors, however, have small 

diameter non-myelinated axons, called C-fibers (Woolf and Ma, 2007) with conduction 

velocities of 0.4–1.4m/s (Djouhri and Lawson, 2004). They signal a slower-onset pain, with 

throbbing, burning and poorly localized qualities.  

 

Nociceptors are unique in their ability to sense noxious stimuli of physical and chemical 

nature, which is possible because they express specific receptors and ion channels that are 

the real primary detectors of the noxious stimulus. The range of stimuli they respond to is 

also a direct reflection of the specific receptors they express. Such molecular transducers act 

in free nerve endings to encode the noxious stimulus into a signal that is then transmitted to 

the somata of the neurons (in DRGs or TGs) and eventually conveyed to second-order 

neurons and local interneurons in the dorsal horn of the spinal cord (Fig.1). Here, different 

fibers terminate in anatomically and electrophysiologically distinct laminae (Basbaum and 

Jessell, 2000). Specifically, Aδ nociceptors project to lamina I as well as to the deeper lamina 

V, whereas C-fiber nociceptors synapse more superficially mainly to laminae I and II (Snider 

and McMahon, 1998). Projection neurons within laminae I and V constitute the main output 

from the dorsal horn to higher order systems, travelling through five major ascending 

pathways: the spinothalamic, spinoreticular, spinomesencephalic (or spinoparabrachial), 

cervicothalamic, and spinohypothalamic tracts (Basbaum and Jessell, 2000). These 

nociceptive pathways convey the information to different cervical structures, with the 

different nuclei of the thalamus representing the principal relay structures of sensory 

information. The lateral and medial nuclear thalamic groups are involved in the reception, 

integration, and transfer of the signal primarily to the somatosensory cortices and other 

cortical structures (Basbaum and Jessell, 2000).  The insula receives impulses from several 

pathways and its projections are directed at the limbic system, mainly amygdala and some 

areas of the prefrontal cortex (PFC). The anterior cingulate cortex (ACC) coordinates inputs 

from parietal areas with frontal cortical regions that integrate the perception of bodily 

threats and contributes to the response priorities of pain behavior (Almeida et al., 2004).  

 

In general, there does not seem to be a single brain region essential for pain perception 

(Apkarian et al., 2005). Instead, pain seems to be the result of complex activation of a wide 

number of structures, some of which contribute to the sensory-discriminative components 

(as the somatosensory cortex) while others are more associated with the affective-

emotional aspects (such as the insula, the anterior cingulate cortex and the limbic system) 

(Basbaum and Jessell, 2000). These structures work in an orchestrated way in the 

deconvolution of the sensory stimulation, but also in its modulation, which then affects pain 

response. Several mechanisms of descending pain regulation have been discovered, among 

which a serotonergic and a monoaminergic systems which originate in the periaqueductal 
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grey matter and the locus ceruleus (and other medullar nuclei), respectively. But the best 

known is definitely the endogenous opioid system: opioid peptides and their receptors are 

widely distributed throughout the body and constituted the major target of exogenous pain 

suppression from the ancient Sumerians in 3300 BC to our times (Basbaum and Jessell, 

2000). Clearly such a strategy of targeting widely expressed molecules involved in several 

functions is inevitably linked to a cascade of side-effects, to which we can add a dangerous 

addictive potential (Ueda and Ueda, 2009).  

 

A seemingly more reasonable strategy to target pain is to target cellular processes and 

mechanisms that are as much as possible specific for pain, so that interfering with such 

mechanisms would ideally spare other physiological functions from unwanted 

consequences. From looking at the different steps in the pain pathway, the nociceptor 

clearly stands out for its unique ability in sensing the noxious stimulus and triggering the 

nociceptive process, and is therefore a desirable target where to find mechanisms that are 

as much as possible nociception-specific. 

 

 
Figure 1. The pain pathway.  

Noxious stimuli of physical and chemical nature are detected by primary afferent nociceptors, which encode 

them into a signal that is transmitted first to their somata and then to second-order neurons in the dorsal horn 

of the spinal cord. DRGs harbor the cell bodies of these neurons, many of which are small diameter non-
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myelinated C-fibers, with low conduction velocities. Thinly-myelinated afferents correspond to faster-signaling 

Aδ nociceptors, while big-diameter myelinated neurons mainly convey touch and proprioception signals. In the 

spinal cord, the sensory information is integrated locally and then conveyed to higher-order circuitry in the 

brain, primarily the thalamus and then cortical structures. Adapted from (Bourinet et al., 2014). 

 

 

 

1.3 The nociceptor in chronic pathological pain 

A great number of cases of chronic pain are associated with altered excitability and activity 

of primary afferent neurons, potentially caused by pathological processes that follow 

inflammation (inflammatory pain) or nerve injury (neuropathic pain). The etiology of such 

processes can be diverse, including physical trauma, metabolic disease, infections and 

chemotherapy. (Sousa-Valente et al., 2014). Made for distinguishing innocuous from noxious 

stimuli, nociceptors exhibit a high threshold of activation. However, in response to injury and 

inflammation the nociceptors’ activation characteristics can be modulated in a process 

known as peripheral sensitization, which represents a form of functional plasticity of the 

nociceptor (Woolf and Ma, 2007). Basically, at the site of inflammation/injury a variety of 

signaling molecules and cellular mediators are released as a result of disruption of cells, 

infiltration and activation of immune cells and induction of enzymes, which together make 

up an “inflammatory soup” that acts on primary afferent neurons to modify their response 

properties. Cytokines, chemokines, growth factors, prostaglandins, proteases, all contribute 

to changes in the chemical milieu of the nociceptor resulting in a reduced threshold of 

activation and increased responsiveness to stimuli. These phenomena translate respectively 

into allodynia (response to innocuous stimuli) and hyperalgesia (exaggerated pain response 

to noxious activation), which are thought to contribute to the etiology of clinically relevant 

chronic pain syndromes (Patapoutian et al., 2009). As a consequence, activity-dependent 

changes in the spinal cord lead to increased neurotransmitter release and enhanced 

excitability of second-order sensory neurons which may promote central sensitization (Ji et 

al., 2003).   

 

The wide variety of sensitizing agents acting in parallel in this process makes potential 

blockage of their effects a rather poor option for the reduction of pain (analgesia). 

Nonetheless, blockage of prostaglandin synthesis by inhibition of cyclooxygenase (COX) 

enzymes has been the basis of most non-steroidal anti-inflammatory drugs (NSAIDs). Whilst 

non-selective inhibition of COX produces a significant analgesic effect, they are molecules 

widely expressed in the body and therefore, their clinical use is limited by serious side 

effects (Kidd and Urban, 2001). Many other pharmacological agents designed to achieve 

analgesia by either decreasing neuronal excitation or increasing inhibition suffer from the 

same issues and a strategy targeting molecules and their molecular scaffolds, which are 

selectively expressed or highly enriched in the primary detectors of noxious stimuli is highly 

desirable. As already mentioned, the nociceptor houses specialized receptors and ion 

channels that endow it with the unique ability to sense physical and chemical stimuli and 
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translate them into a signal that will then be propagated along the pain neuraxis and 

culminate into pain perception. These molecules are the real primary detectors of the 

noxious stimulus and are highly enriched in nociceptive neurons (Basbaum et al., 2009). In 

fact, to date many of these receptors and ion channels have become important targets in 

the search for new pain therapies (Wood et al., 2004) and the biggest advances in 

understanding their identity and function were certainly led by the discovery of Transient 

Receptor Potential (TRP) ion channels as the largest superfamily of sensors for temperature 

and chemesthesis (Bandell et al., 2007; Dhaka et al., 2006).   

 

 

 

1.4  Transient receptor potential (TRP) ion channels 

1.4.1 General information 

TRP channels are present in a large variety of multicellular organisms, and the mammalian 

TRP channel superfamily encompasses 28 members, which are subdivided into 6 subfamilies 

based on their sequence homology: TRPA (ankyrin), TRPC (canonical), TRPM (melastatin), 

TRPML (mucolipin), TRPP (polycystin) and TRPV (vanilloid) (Benemei et al., 2015). A more 

distant TRPN group (also known as no mechanoreceptor potential C or NOMPC) has not 

been found in mammals, but is expressed in flies, worms and cold-blooded vertebrates 

(Moiseenkova-Bell and Wensel, 2011; Montell, 2001). In addition, even yeasts and other 

fungi have been reported to express a TRP channel subfamily known TRPY (yeast) 

(Moiseenkova-Bell and Wensel, 2011). TRP proteins share a common structure, which 

consists of six putative transmembrane domains (TM) with a pore-forming loop (P) between 

the fifth (S5) and sixth segments (S6) (Nilius et al., 2007). The N- and C-termini are both 

intracellular and seem to contribute to the regulation of channel assembly and function. 

Functional TRP channels are constituted of four pore-forming subunits that have been 

shown to potentially assemble as both homo-tetramers and hetero-tetramers (Benemei et 

al., 2015; Zheng, 2013). Several specific properties have been used to differentiate and 

classify TRP subfamilies, among which the number of ankyrin repeats, coiled-coil regions and 

TRP signature motifs. TRP proteins form ion channels that are mostly non-selective for 

monovalent and divalent cations, but several exceptions have been reported such as TRPM4 

and TRPM5, which show a great selectivity for monovalent cations, and TRPV5 and TRPV6 

that are instead highly selective for Ca2+ ions (Smani et al., 2015).  

 

To date, much evidence has accumulated demonstrating an important role of TRP channels 

in cellular processes in both a physiological and pathophysiological context. They function as 

ligand-gated, second messenger-operated or receptor-operated channels coupling such 

events to the transmembrane flow of ions down their electrochemical gradients. The influx 

of Na+ and Ca2+ ions inside the cell may in turn contribute to membrane depolarization and 

the activation of Ca2+-dependent pathways in a variety of systems and organs (Clapham, 

2003). In excitable cells, variations in transmembrane potential determine in fact action 
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potential generation and muscle contraction (Ramsey et al., 2006). Furthermore, 

dysregulation of TRP channel activity and function, which might be linked to abnormal 

expression levels, impaired trafficking or mutations, has been associated with a large 

number of disorders, thus revealing the crucial biological relevance of these channels (Smani 

et al., 2015). 

 

 

 

1.4.2 Role in sensory transduction 

Many TRP channels are peculiar in their functional properties that allow them to function as 

cellular sensors (Clapham, 2003). The first clue that they could be involved in sensory 

transduction emerged from the first identification of a TRP ion channel in Drosophila 

melanogaster (Montell and Rubin, 1989).  It was observed that a fly mutant displayed a 

transient instead of sustained response to stimulation with bright light, hence the name of 

the protein family. Among different organisms, TRP channels show disparate functions, 

which are partially shared among closely related species. For instance, yeasts use a TRP 

channel to perceive and respond to hypertonicity (Zhou et al., 2003). Nematodes like C. 

elegans instead possess TRP channels in their ‘noses’ at the tips of neuronal dendrites where 

they are needed for detection and avoidance of noxious chemicals (de Bono et al., 2002). In 

mammals TRP channels have demonstrated a clear role as major players in chemesthesis, 

osmoregulation and thermosensation.  

 

Thermosensation is a fascinating chapter which advances have been precipitated by the 

identification of seven highly temperature-sensitive ion channels (the so-called thermoTRPs) 

as candidate temperature sensors. They are expressed in sensory nerve endings and in the 

skin, where they couple activation by distinct thermal ranges to transmembrane ion flow 

(Ferrandiz-Huertas et al., 2014). So far, five heat-activated channels (TRPV1-4 and TRPM3) 

and two cold-activated channels (TRPM8 and TRPA1) have been reported to contribute to 

mammalian thermosensation, even though the debate is still open (Dhaka et al., 2006; 

Ferrandiz-Huertas et al., 2014; Patapoutian et al., 2003). All seven, when expressed in 

heterologous expression systems (like HEK293 cells or Xenopus oocytes), showed the 

amazing property of making the cells temperature-sensitive within their specific activation 

window. Each thermoTRP has in fact unique characteristics, as indicated by different 

thresholds of activation, which combined cover the whole spectrum of temperature 

sensation in mammals (Fig.2). While the precise molecular determinants of temperature 

detection are still unknown, the identification of structural elements in these channels 

indicates an important role of the intracellular N- and C- termini in determining the 

temperature range of activation (Bandell et al., 2007). The ability to sense internal and 

environmental temperatures thanks to these channels are fundamental not only for 

maintenance of homeostasis, but also for avoidance of harmful noxious temperatures. 

(Dhaka et al., 2006; Lumpkin and Caterina, 2007).  
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Several TRP channels (among which most of the thermoTRPs) have also shown a clear role in 

chemesthesis, here referred to as the chemical sensitivity of the skin and membranes to 

endogenous and exogenous molecules and that is perceived as pungency, irritation, cooling, 

warmth, or heat. Examples of chemesthesis include the irritating effects of concentrated 

saline solutions on the nasal mucosa, or painful sensations evoked by inhaling vehicle 

exhaust gas. Other examples are the irritation and pain caused by eating hot chili peppers, 

due to the active ingredient capsaicin, which is known to directly activate the TRPV1 channel 

(Caterina et al., 1997).  

 

 

 
 

Figure 2. Thermosensitive transient receptor potential channels (thermoTRPs).  

Several members of the TRP channels superfamily showed to mediate temperature sensation by coupling 

activation by temperature to flow of ions through the membrane. They all share a common topology with six 

transmembrane domains (S1–S6) and a pore loop between S5 and S6. N- and C-termini are intracellular and 

four subunits associate into functional channels. ThermoTRPs show distinct thermal activation ranges from 

noxious cold (TRPA1) to potentially harmful heat (TRPV1 and TRPV2). Most thermoTRPs showed also a role in 

chemesthesis, sensing a variety of natural chemicals known to induce the respective thermal sensations in 

humans. Adapted from (Ferrandiz-Huertas et al., 2014). 
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1.4.3 TRP channels and pain 

The superfamily of TRP channels constitutes the largest group of molecular sensory 

transducers so far known to be involved in pain signaling in mammals, with ten members 

(TRPV1to4, TRPA1, TRPM2-3-8, TRPC1-6) that showed a clear role in nociceptive processing, 

as listed in table 1. 

 

TRP channel References 

TRPV1 (Caterina et al., 2000; Caterina et al., 1997)  

TRPV2 (Caterina et al., 1999; Nagy and Rang, 1999) 

TRPV3 (Peier et al., 2002b; Smith et al., 2002) 

TRPV4 (Alessandri-Haber et al., 2003; Liedtke et al., 2000) 

TRPA1 (Obata et al., 2005; Story et al., 2003) 

TRPM2 (Haraguchi et al., 2012; Kudoh et al., 1997) 

TRPM3 (Lee et al., 2003; Vriens et al., 2011) 

TRPM8 (Bautista et al., 2007; Knowlton et al., 2010) 

TRPC1 (Alessandri-Haber et al., 2009; Zitt et al., 1996) 

TRPC6 (Alessandri-Haber et al., 2009; Boulay et al., 1997) 

 

Table 1. Transient receptor potential (TRP) ion channels known to be involved in mammalian nociception. 

 

Among these channels, some of them as TRPV1, TRPM8 and TRPA1 have drawn special 

attention because they have been shown to be highly expressed in nociceptors, where they 

play major roles as transducers of noxious stimuli and modulators of nociceptive signaling. 

Activation of these channels is involved in acute pain signaling and furthermore their 

regulation and sensitization significantly contribute to pathological pain conditions (Sousa-

Valente et al., 2014). 

 

 

 

1.4.3.1 TRPV1 

In the elucidation of the molecular mechanisms of noxious temperature sensation, limited 

progress was made until 1997, when the TRPV1 channel was cloned by the Julius’ lab 

(Caterina et al., 1997). TRPV1 is a member of the vanilloid subfamily of TRP channels that 

showed a clear enrichment in nociceptive neurons, and reported properties of a noxious 

heat–activated channel with a thermal activation threshold close to 43°C (Caterina et al., 

1997; Julius, 2013). TRPV1 is also responsible for the irritation and pain caused by hot chili 

peppers, due to the active ingredient capsaicin, which is a direct and specific agonist. Indeed 

TRPV1-deficient (knock out) mice showed partial deficits in the detection of acute thermal 

stimuli, which confirms a role for this channel in heat-evoked pain, and complete 
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abolishment of capsaicin-induced pain responses (Caterina et al., 2000; Caterina et al., 

1997). In addition to heat and natural compounds, TRPV1 can be activated and modulated 

by lipids, voltage and phosphorylation (Pingle et al., 2007).  

 

Importantly, many cellular mediators produced in the context of tissue injury and 

inflammation (components of the mentioned inflammatory soup) can dramatically affect 

TRPV1 function, reducing its threshold of activation and, as a result, increase nociceptor 

excitability. TRPV1 is therefore a fundamental component of the cellular mechanisms that 

lead to peripheral sensitization and, consequently, drive the clinically relevant 

manifestations of pain hypersensitivity (hyperalgesia and allodynia) (Basbaum et al., 2009; 

Caterina et al., 2000; Davis et al., 2000). TRPV1-deficient mice indeed showed attenuated 

thermal hyperalgesia induced by inflammatory molecules such as bradykinin and nerve 

growth factor (NGF) (Caterina et al., 2000; Chuang et al., 2001; Davis et al., 2000).  In 

addition, injection of oleoylethanolamide, an endogenous TRPV1 agonist, induces 

nocifensive (pain-related) behavior in mice that is absent in TRPV1-deficient animals and can 

be blocked by the TRPV1 antagonist capsazepine (Wang et al., 2005).  Modulation of TRPV1 

has therefore clear potential for pain therapy and pharmacological blockade or knock-down 

of TRPV1 displayed analgesic activity in different animal pain models (Chu et al., 2011; Szabo 

et al., 2005). In 2010 capsaicin patches (Qutenza®) have been approved in the USA for the 

treatment of post-herpetic neuralgia and a recent study involving a total of over 2000 

participants claimed that high-concentration capsaicin patches could be effective even for 

the treatment of HIV-induced neuropathy (Derry et al., 2013). However, since TRPV1 

inhibition lowers the sensitivity to noxious heat, this might lead to an increased susceptibility 

to injury and it has been associated to a risk of increased body temperature (hyperthermia) 

(Brederson et al., 2013; Gavva et al., 2008). 

 

 

 

1.4.3.2 TRPM8 

TRPM8 has been shown to respond to a variety of natural and synthetic cooling agents, such 

as menthol, eucalyptol and icilin, as well as to cold stimuli, with an activation temperature 

proximal to 26°C (Dhaka et al., 2006). TRPM8 shares TRPV1 topology, forming a 

homotetrameric nonselective cation channel permeable to calcium ions (McCoy et al., 2011; 

Peier et al., 2002a). In sensory neurons TRPM8 is enriched in a subpopulation of primary 

afferents which, interestingly, does not overlap the neuronal subset which instead expresses 

TRPV1 and TRPA1, suggesting the existence of “labelled lines” in sensory transduction and 

signaling. (Almaraz et al., 2014). TRPM8-deficient mice exhibited profound deficits in their 

ability to discriminate between cold and warm surfaces, or to respond to evaporative 

cooling, demonstrating the essential role of TRPM8 in thermosensation (Bautista et al., 

2007). Furthermore, injury-evoked cold hypersensitivity is impaired in animal models of both 

inflammatory and neuropathic pain, advancing the prospect that therapeutic modulation of 
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TRPM8 may provide relief to patients who suffer from altered sensitivity to cold (Colburn et 

al., 2007). TRPM8 antagonism showed analgesic potential in a rat model of neuropathic pain 

(Calvo et al., 2012; Parks et al., 2011) and has been associated with a reduction of cold 

hypersensitivity following tissue injury (Knowlton et al., 2010). Nonetheless, to date no 

TRPM8 modulator has advanced to clinical trials. 

 
TRPA1 will be covered in more detail as it is the main focus of this study. 

 

 

 

1.5  TRPA1  

1.5.1 Gene and protein structure 

TRPA1 was for the first time identified in 1999 by Jaquemar and colleagues and originally 

baptized ANKTM1 by the Patapoutian lab as it contains multiple ankyrin repeats in the N-

terminal part (Jaquemar et al., 1999; Story et al., 2003).  The Trpa1 gene is well conserved 

and several TRPA1 homologues have been discovered in the animal kingdom. In addition to 

mammals, it is present in many vertebrates and invertebrates, including rodents, flies and 

worms. However, in contrast to mammals that contain only one Trpa1 gene, many other 

classes from the animal kingdom express different TRPA1 homologues (Nilius et al., 2012). 

TRPA1 is a protein of about 1,100 aminoacids (120–130 kDa), with only one splice variant 

identified in mouse (Zhou et al., 2013). TRPA1 shows a topology similar to the other TRP 

channels, with six transmembrane domains and a pore loop between S5 and S6 and 

cytoplasmic N- and C- termini (Fig.3). The peculiarity of TRPA1 is an exceptionally long region 

within the N-terminus containing 14-18 ankyrin repeat domains (ARs), which could be 

involved in protein–protein interactions and channel trafficking to the plasma membrane 

(Nilius and Flockerzi, 2014). Deletions of TRPA1 ARs have been shown, in fact, to negatively 

affect the insertion of the channel into the plasma membrane (Nilius et al., 2011). The N-

terminal region contains also several important cysteine residues, which can interact and 

form disulfide bridges within and between monomers (Cvetkov et al., 2011). In its functional 

configuration, four TRPA1 subunits associate into tetramers, usually homo-tetramers. 

(Nassini et al., 2014). Recently, the Julius’ lab determined a ~4 Å resolution of TRPA1 

obtained by Cryo-electron microscopy, which furnished important structural insights, as well 

as shedding some lights on potential regulatory mechanisms, much needed for the design of 

selective channel modulators (Paulsen et al., 2015). Like most family members, TRPA1 is a 

non-selective cation channel with an inward depolarizing current mainly due to Na+ and Ca2+ 

ions (Nilius et al., 2007).  
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1.5.2 Activation 

Mammalian TRPA1 is a promiscuous channel that can be activated by a plethora of 

endogenous mediators and natural compounds. Environmental chemicals that target TRPA1 

include allyl isothiocyanate, better known as mustard oil (MO), cinnamaldehyde, and allicin, 

which are the pungent active ingredients that characterize mustard seeds, cinnamon, and 

garlic, respectively. Many airborne irritants also directly activate TRPA1, among them heavy 

metals and isocyanates produced during industrial manufacturing (Bautista et al., 2013). 

Another TRPA1 agonist is acrolein, that in addition to be found in tear gas, cigarette smoke 

and vehicle exhaust gas, it can be formed endogenously under conditions of inflammation 

(Bautista et al., 2006).  

 

TRPA1 is targeted also by a wide number of endogenous metabolites and inflammatory 

molecules. One example is reactive oxygen species (ROS), which levels dramatically increase 

in response to tissue damage and can initiate lipid peroxidation (Bautista et al., 2013).  These 

processes lead to the formation of different reactive carbonyl species, among which 4-

oxononenal (4-ONE) and 4-hydroxynonenal (4-HNE), which in turn target TRPA1 directly 

(Taylor-Clark et al., 2008a; Trevisani et al., 2007). Another characteristic of inflammatory 

states is the formation of reactive nitrogen species (RNS). Among RNS, nitric oxide (NO) is 

the most potent TRPA1 activator and it is an important component of the mechanisms that 

underlie pain sensitization upon inflammation and injury (Nilius et al., 2012). At sites of 

injury and inflammation COX enzymes mediate the production of a variety of prostaglandins, 

which mediate inflammatory responses. One prostaglandin D2 derivative, 15d-PGJ2, 

specifically activates TRPA1 expressed in HEK cells as well as in mouse sensory neurons 

(Cruz-Orengo et al., 2008; Taylor-Clark et al., 2008b). Interestingly, also some commonly 

used anesthetics, both general (as isoflurane) and local (as lidocaine), are able to activate 

TRPA1 (Leffler et al., 2011; Matta et al., 2008).  

 

Several studies indicated for TRPA1 a gating model involving both voltage-dependent 

activation and inactivation of TRPA1, with the pore helix playing an essential role in the 

process (Samad, 2011; Wan et al., 2014). TRPA1 activation is coupled to influx of calcium 

(among other ions) into the cells, which itself has been shown to modulate the channel. 

Calcium plays two opposing roles in regulating TRPA1 activity. TRPA1 currents in response to 

pungent chemicals like mustard oil are rapidly potentiated and subsequently inactivated in 

the presence of extracellular calcium (Doerner et al., 2007; Wang et al., 2008b; Zurborg et 

al., 2007). On the other hand, TRPA1 activity can be blocked by intracellular calcium 

(Akopian et al., 2007; Nagata et al., 2005; Wang et al., 2008b; Zurborg et al., 2007) Several 

reports showed that TRPA1 contributes to acute cold responses (Karashima et al., 2009; 

Kwan et al., 2006; Story et al., 2003) even though its role as an acute cold sensor has not 

been always confirmed (Caspani and Heppenstall, 2009). A recent report demonstrated that 

human TRPA1 expressed in artificial membranes is intrinsically cold sensitive and supports 
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the hypothesis that TRPA1 plays a role in cold perception also in humans (Moparthi et al., 

2014). 

 

 

 

 
 

 

Figure 3. A schematic view of TRPA1 structure and activation modalities.  
Two TRPA1 subunits are shown, although the channel is comprised of four. Each subunit contains six 
transmembrane domains (S1-S6) with a pore helix between S5 and S6. Ankyrin repeats (AR) characterize the N-
terminal region, and a coiled-coil structure the C-terminus. TRPA1 is targeted by a variety of endogenous 
molecules with pro-inflammatory properties, environmental irritants, a plethora of natural compounds and 
potentially noxious cold. Channel activation is coupled to pore opening and transmembrane calcium flow. 
Adapted from (Clapham, 2015). 
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1.5.3 Expression 

TRPA1 is localized to both neuronal and non-neuronal tissues as the inner ear, skin and 

pancreas. Among them, TRPA1 shows a high enrichment in sensory neurons of dorsal root 

ganglia (DRG), trigeminal ganglia (TG), and nodose ganglia, where it functions as a major 

player in nociception (Nilius et al., 2012). In DRGs, TRPA1 is expressed in unmyelinated (C-

fiber) and thinly-myelinated (Aδ) primary afferents, with only occasional identification in 

large myelinated axons. More than 25 % of TRPA1 containing neurons are peptidergic and 

release Substance P and Calcitonin gene-related peptide (CGRP), while the remaining 

neurons were identified as non-peptidergic neurons by immunoreactivity with the plant 

lectin Isolectin B4 (IB4; ~45 %). The dorsal horn of the spinal cord and trigeminal sensory 

nuclei are immunoreactive for TRPA1, indicating the location of nociceptive synapses into 

second-order neurons (Nilius et al., 2012). In sensory neurons, TRPA1 is also usually 

coexpressed with TRPV1 channels, in Peripherin-positive small diameter neurons of DRGs 

and TGs (Kobayashi et al., 2005; Story et al., 2003). In fact, ablation of TRPV1 neurons with 

resiniferatoxin (a superpotent TRPV1 agonist) in mice results in loss of response to both 

capsaicin and mustard oil (Pecze et al., 2009), suggesting a high degree of colocalization of 

TRPA1 and TRPV1 in sensory neurons. 

 

 

 

1.5.4 Role in pain 

There is now widespread agreement that TRPA1 plays an important role as a primary 

detector of noxious stimuli, by sensing a wide variety of exogenous and endogenous 

molecules with pro-inflammatory and pro-algesic properties. (Andrade et al., 2012; Bautista 

et al., 2013). The creation of TRPA1-deficient animals and the development of specific 

antagonists have confirmed TRPA1 as a major player in acute and inflammatory pain. Several 

studies in TRPA1-deficient mice identified clear behavioral deficits in response to mustard 

oil, formaldehyde and profound deficiencies in some models of inflammatory hyperalgesia 

and airway irritation (Bautista et al., 2006; Kwan et al., 2006). TRPA1 has been implicated in 

the development and maintenance of hypersensitivity in a number of animal pain models. In 

models of inflammatory pain, rodents treated with TRPA1 antagonists or TRPA1-deficient 

animals have displayed a clear attenuation of mechanical hyperalgesia evoked by injection of 

tumor necrosis factor α (TNFα), Complete Freund’s Adjuvant (CFA), or monoiodoacetate 

(Fernandes et al., 2011; Laing and Dhaka, 2015; McGaraughty et al., 2010). To further claim 

the importance of TRPA1 in pain signaling, gain of function mutations in the gene coding for 

TRPA1 have been associated with the only human channelopathy with pain phenotype so far 

linked to the TRP superfamily. This rare disease, called familial episodic pain syndrome 

(FEPS), is characterized by bouts of excruciating pain especially in the upper body, triggered 

by mild stress and cold temperatures (Kremeyer et al., 2010). It is now well established that 

TRPA1 contributes to the pathophysiology of headache by dural mechanisms. TRPA1 on 

meningeal nerve endings is involved in headache episodes induced by exposure to 
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environmental irritants, but is has also a potential role in migraine. TRPA1 is expressed in a 

population of dural primary neurons and activation of meningeal TRPA1 produces behaviors 

that recapitulate those observed in migraine attacks (Edelmayer et al., 2012; Nassini et al., 

2014). While a clear-cut role for TRPA1 in acute noxious cold sensation cannot be 

unambiguously demonstrated yet, several studies have demonstrated TRPA1 contributions 

to the state of hypersensitivity to cold temperature (cold allodynia) that occurs in the 

settings of tissue and nerve injury. TRPA1 antagonism specifically reduced cold 

hypersensitivity in rodent models of inflammatory and neuropathic pain (del Camino et al., 

2010; Karashima et al., 2009). TRPA1 is also critically involved in pain induced by anticancer 

treatment with platinum-based compounds, as cisplatin and oxaliplatin, which oftentimes 

lead to cold and mechanical hypersensitivity (Nassini et al., 2011). Antimitotic drugs, such as 

paclitaxel, are also known to induce peripheral neuropathy. Application of paclitaxel has 

been shown to stimulate ROS formation that in turn potentiates TRPA1 activation. These 

effects could be prevented by TRPA1 inhibition with specific antagonists (Materazzi et al., 

2012). Furthermore, TRPA1 antagonism has proved effective in attenuating the mechanical 

allodynia and cutaneous nerve fiber loss in a rat model of streptozotocin-induced diabetes 

(Koivisto et al., 2012). 

 

Together, these findings advocate a role for TRPA1 in the mechanisms underlying peripheral 

neuropathy, and in general support TRPA1 as an interesting therapeutic target for 

pharmacological intervention aimed at quelling pain. Inhibition of TRPA1 with HC-030031, a 

specific TRPA1 antagonist, effectively inhibited formalin-induced pain (McNamara et al., 

2007) and displayed analgesic potential in a rat model of neuropathic pain (Eid et al., 2008). 

Several companies have showed interest in TRPA1 and reported diverse selective 

antagonists, among them Abbott, Merck and Janssen. Abbott for instance developed a 

molecule named A-967079, which inhibited spontaneous and mechanically evoked firing of 

neurons in uninjured, inflamed, and osteoarthritic rats (McGaraughty et al., 2010), in 

preclinical studies. However, as for TRPV1, direct inhibition of channel function would result 

in deficits also in acute pain sensation that is undesirable and asks for better-targeted 

interventions able to specifically regulate and fine-tune TRPA1 activity. 

 

 

 

1.5.5 Regulation 

Beyond direct activation by its ligands, TRPA1 function can be sensitized or modulated via 

mechanisms implicated in phenomena of hypersensitivity, which in turn contribute to 

clinically-relevant chronic pain conditions (Hucho and Levine, 2007; Patapoutian et al., 

2009). Modulators are diverse and include the inflammatory mediators mentioned above, 

lipid metabolites and intracellular signaling pathways (Hucho and Levine, 2007). Among 

them, it has been reported that NGF participates in the functional up-regulation of TRPA1 in 

sensory neurons (Diogenes et al., 2007) and that bradykinin and proteinase-activated 
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receptor 2 (PAR2) can sensitize TRPA1 via phosphorylation and via activation of PLC, which in 

turn releases TRPA1 from phosphatidylinositol-4,5-bisphosphate (PIP2)-mediated inhibition 

(Chen et al., 2011; Dai et al., 2007; Wang et al., 2008a). A recent study reported on the 

modulation of TRPA1  by the extracellular miRNA let7-b which, via functional coupling to the 

toll-like receptor-7 (TLR7), induced direct activation and excitation of nociceptive sensory 

neurons to evoke pain (Park et al., 2014).  

 

In addition, the abundance of TRPA1 channels at the plasma membrane of sensory neurons 

has been identified as a crucial contributor to TRPA1 signaling; in this line the induction of 

TRPA1 membrane trafficking has been described upon activation of the channel by MO, or 

PKA/PLC signaling, which might contribute to the sensitization of TRPA1-mediated 

nocifensive behaviors of mice upon acute activation and inflammatory signals, respectively 

(Schmidt et al., 2009). TRPA1 membrane abundance is also affected by the coexpression 

with TRPV1, which seems to counteract pharmacological desensitization of TRPA1 by 

preventing channel internalization (Akopian et al., 2007; Ruparel et al., 2008).  Recently, a 

TRPA1 splice isoform named TRPA1b has been identified and showed to colocalize, interact 

and furthermore increase the expression of TRPA1 channels to the plasma membrane and, 

consequently, affect mouse pain behavior (Zhou et al., 2013).  

 

These studies highlight the impact the regulation of TRPA1 channels can exert on neuronal 

activity. In general, comprehensive knowledge on the mechanisms of TRPA1 regulation is still 

missing, especially about the potentially relevant contribution of the whole network of 

proteins interacting with TRPA1. 

 
 

 

1.6  Protein complexes as modulators of receptor function in pain 

Among the mechanisms of regulation of ion channels and receptors, a special focus is due to 

the major contribution of protein-protein interactions. Diverse cellular processes and 

molecular mechanisms are brought about by the concerted organization of dynamic 

interactions among proteins, which crucially modulates the properties of the single binding 

partners. Assembly into multi-protein complexes has indeed been shown also for different 

ion channels in the pain pathway, and it has been linked to modifications of intrinsic 

channels properties (e.g. open-probability, activation threshold, (in)activation kinetics), 

trafficking, expression and post-translational modifications (Rouwette et al., 2015). These 

events then translate in altered neuronal excitability as well as facilitation and inhibition of 

synaptic transmission, which ultimately contribute to modulate pain perception and 

response in both physiological and pathophysiological contexts (Costigan et al., 2009; Gold 

et al. 2006). For example, membrane trafficking, synaptic targeting and degradation of 

AMPA-type glutamate receptors are regulated by a network of protein interactions, which 

ultimately effects synaptic plasticity (Anggono and Huganir, 2012; Schwenk et al., 2012). In 
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analogy, protein complexes associated with NMDA-type glutamate receptors are critically 

involved in the pathophysiology of chronic inflammatory pain (Tappe et al., 2006), and 

targeting such interactions showed therapeutic potential (Liu et al., 2008). In this context it is 

worth mentioning the interaction of GASP1 with type 1 cannabinoid receptor (CB1), which 

mediates cannabinoid-induced internalization and exposes a molecular basis of analgesic 

tolerance to cannabinoids (Tappe-Theodor et al., 2007). These studies advocate a major 

contribution of protein-protein interactions to the function of key players in nociceptive 

singaling, which ultimately contributes to determine pain response.   

 

Among TRP channels involved in nociception, much relevant literature is now available 

about dozens of protein complexes associated with TRPV1. Many of these interactors have 

been reported to modulate TRPV1 activity, and interfering with the binding proved in some 

cases to effectively attenuate hypersensitivity in animal pain models (Fischer et al., 2013; 

Kim et al., 2008). The most recent work from Hanack and colleagues on the complex 

between TRPV1 and the GABAB1 receptor subunit suggested that modulating the interaction 

has the impressive potential to selectively revert the sensitized state of TRPV1 channels 

implicated in pathological pain, while preserving TRPV1 acute pain signaling (Hanack et al., 

2015).  

 

In the case of TRPA1 however, much less is known about the network of associated protein 

complexes. Curiously, the still most relevant physical and functional interaction reported is 

with TRPV1, which largely coexpresses with TRPA1 in sensory neurons. (Salas et al., 2009; 

Staruschenko et al., 2010). The functional properties of the two channels are mutually 

modulated by the association (Akopian et al., 2007) and, on top of that, they have also been 

reported to form heteromers (Fischer et al., 2014). Very recently, a transmembrane adaptor 

protein called Tmem100 has been described to bind both TRPA1 and TRPV1 channels in 

sensory neurons. Mechanistically, Tmem100 seems to weaken their association and 

selectively potentiate TRPA1 activity; strikingly, a Tmem100 mutant showed the opposite 

effect, inhibiting TRPA1 response and attenuating both inflammatory pain and 

chemotherapy-induced neuropathy (Weng et al., 2015). In addition to TRPV1, TRPA1 has 

been reported to bind the PKA anchor protein AKAP5 and the human tumor suppressor CYLD 

(Stokes et al., 2006; Zhang et al., 2008). The latter is a ubiquitin hydrolase that seems to 

control TRPA1 cellular levels by a potential post-translational mechanism (Stokes et al., 

2006). In conclusion, it is indeed surprising that up to date only little is known about TRPA1-

associated protein complexes, and the lack of knowledge in this respect represents a clear 

call to action. 
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1.7 Aims of the study 

A thorough understanding of the mechanisms underlying nociception is paramount to 

interpret the maladaptive changes that characterize chronic and pathological pain states. 

Much evidence now advocates TRPA1 as a major player in noxious stimuli transduction and 

pain signaling in vertebrates. Being highly enriched in nociceptors, where they serve as 

primary sensors to integrate polymodal stimuli and trigger nociceptive signaling, TRPA1 

channels represent ideal targets for developing new therapeutic strategies for pain 

conditions. While relevant literature is already available about TRPA1 activation modalities, 

still very little has been reported about the regulation of this channel, which ultimately 

affects its activity and function in both physiological and pathophysiological contexts. While 

several mechanisms have been proposed to affect protein function, the molecular network 

of protein interactions regulating TRPA1 (the so-called TRPA1 interactome) is only poorly 

understood.  

 

This study was therefore aimed at shedding some lights on the mechanisms of TRPA1 

regulation, with a special focus on identifying and characterizing novel TRPA1-protein 

complexes, as potentially crucial modulators of TRPA1 function and nociceptive signaling. 

The valuable knowledge we obtained contributes not only to a better understanding of 

TRPA1 channels in more detail, but also to nociceptive signaling in general; ultimately, this 

study might even contribute to reveal novel therapeutic targets for specific TRPA1-related 

pain conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

2. MATERIALS AND METHODS 

 

Reagents 
 

Product Company 

10X PBS (Phosphate-buffered saline) pH 7.4 Life Technologies 

10X HBSS (Hank’s balanced salt solution) Life Technologies 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) Life Technologies 

DMEM (Dulbecco’s modified eagle medium), GlutaMAX Life Technologies 

DMEM (Dulbecco’s modified eagle medium)/F-12, GlutaMAX Life Technologies 

OPTIMEM medium Life Technologies 

RPMI (Roswell Park Memorial Institute) medium Life Technologies 

Growth factors (NGF, GDNF, BDNF, NT-3, NT-4) R&D Systems 

Poly-D-lysine Millipore 

Papain Worthington 

Penicillin/Streptomycin Life Technologies 

Laminin Life Technologies 

Collagenase Worthington 

Horse serum Life Technologies 

FBS (fetal bovine serum) Life Technologies 

Donkey serum Dianova 

Goat serum Dianova 

BSA (bovine serum albumin) Sigma-Aldrich 

Mustard oil (allyl isothiocyanate, AITC, MO) Sigma-Aldrich 

Capsaicin Sigma-Aldrich 

CFA (Complete Freund’s Adjuvant) Sigma-Aldrich 

ATP (adenosine 5′-triphosphate) magnesium salt Sigma-Aldrich 

DMSO (dimethyl sulfoxide) Sigma-Aldrich 

Nocistatin  Tocris 

PFA (paraformaldehyde) Science Services 

NP-40 (IGEPAL CA-630) Sigma-Aldrich 

DDM (Dodecyl-β-D-maltoside) Roth 

Triton X-100 Roth 

Sodium deoxycholate  Roth 

Complete protease inhibitor cocktail tablets Roche 

Fura-2 AM Life Technologies 

DTT (DL-Dithiothreitol) Sigma-Aldrich 

OCT (optimal cutting temperature) compound Sakura 

Agarose Roth 

Sucrose Merck 

https://en.wikipedia.org/wiki/Roswell_Park_Memorial_Institute_medium
http://www.sigmaaldrich.com/catalog/product/sial/d0632?lang=en&region=US
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EDTA (ethylenediaminetetraacetic acid) Roth 

EGTA (ethylene glycol tetraacetic acid) Roth 

Glycerol Roth 

Milk powder Roth 

NaCl Roth 

Tris-HCl Roth 

CsCl Sigma-Aldrich 

NaOH Roth 

KCl Roth 

MgCl2 Roth 

Glucose Roth 

CaCl2 Roth 

 

 

Methods 
 

2.1 Annexin A2 (AnxA2) regulates TRPA1-dependent nociception 

The gross part of the text relative to this section is based on (Avenali et al., 2014).  

 

2.1.1 Protein identification by mass spectrometry analysis and database search 

Proteins were identified by MS using an LTQ-Orbitrap mass spectrometer (Thermo Fisher 

Scientific) essentially as described previously (Gomez-Varela et al., 2012) except that tandem 

MS data were used to search a mouse-specific database with an appended reverse sequence 

copy (EBI-IPI database version 3.32). Proteins were only considered if they were identified by 

two or more peptides in both independent TRPA1 affinity purifications from trigeminal 

ganglia (TG) lysates and were absent in the two independent replicates of the control 

experiment (IgG). Scaffold (version Scaffold_4.0.5; Proteome Software) was used to validate 

MS/MS-based peptide and protein identifications. Peptide identifications were accepted if 

they could be established at >95% probability by the Peptide Prophet algorithm (Keller et al., 

2002). Protein identifications were accepted if they could be established at >95% probability 

and contained at least two identified peptides. The mass spectrometry-based identification 

and data analysis were performed before the start of my PhD project by the Genomics 

Institute of the Novartis Research Foundation (GNF), La Jolla, CA. 

 

 

 

2.1.2 Cloning of the AnxA2 N-term deletion construct (ΔAnxA2) 

The cDNA of mouse AnxA2 was used as a template for a PCR designed to delete the first 15 

aa of the N terminus of AnxA2 using the following primers: GATCATTCTACACCCCCAAG and 

TCAGTCATCCCCACCACACAG. Primers were designed with BamHI and EcoRV restriction sites 

https://www.gnf.nibr.com/
https://www.gnf.nibr.com/
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to insert the PCR product into pcDNA3-PV-IRES-EGFP (a kind gift from Nils Brose, Max Planck 

Institute of Experimental Medicine, Göttingen, Germany). PCR reactions were performed 

using 150 ng template DNA, in 1X Pfx reaction buffer (Life Technologies), 300 µM dNTP mix 

(Thermo Scientific), 0.3 µM of each specific primer, 1 mM MgSO4 (Invitrogen), 1 U of 

Platinum Pfx DNA polymerase (Life Technologies). The thermocycler (Bio-Rad T100) was 

programmed as indicated: an initial denaturation step of 3 minutes at 94 °C, followed by 25 

cycles of amplification including  94 °C for 15 s, 55 °C for 30 s, 68 °C for 70 s, and at the end 

68 °C for 10 minutes. After the PCR reaction, the products were visualized using agarose gel 

electrophoresis, product bands excised and DNA purified using NucleoSpin gel and PCR 

clean-up kit (Macherey-Nagel) following manufacturer’s instructions. Digestion of vector and 

insert was performed by incubation with FastDigest restriction enzymes EcoRV and BamHI 

(Thermo Scientific) in 1X green buffer (Thermo Scientific) for 35 minutes at 37 °C. In order to 

prevent self-ligation, the vector was then dephosphorylated by treatment with FastAP 

thermosensitive alkaline phosphatase (Thermo Scientific) for 35 minutes at 37 °C. 

Immediately after the end of the incubation, samples were run on agarose gel to stop the 

alkaline phosphatase reaction and visualize the products. Bands were then excised and 

products purified again using NucleoSpin gel and PCR clean-up kit (Macherey-Nagel) 

following manufacturer’s instructions. For ligation, insert and vector (molar ratio 3:1) were 

mixed with 1 U of T4 DNA ligase (Life Technologies) in 1X ligase buffer (Life Technologies) for 

2 h at 25 °C. Subcloning efficiency DH5α E. coli competent cells (Life Technologies) were used 

for bacterial transformation. A mix of 50 µl cells and 5 µl ligated DNA product was incubated 

for 30 minutes on ice, then heat-shock transformation was performed by incubation at 42 °C 

for 25 s in a water bath, followed by 2 minutes on ice. Immediately after, 950 µl SOC 

medium (Invitrogen) were added, and the cells incubated at 37 °C for 1 h with shaking at 250 

rpm. Cells were then centrifuged at 6000 rpm for 1 minute, the pellet resuspended in 200 µl 

SOC medium and finally plated on LB agar (Roth) plates containing 100 μg/ml ampicillin 

(Roth). Plates were incubated at 37 °C overnight with shaking at 250 rpm. From the LB agar 

plate, 6 single colonies were picked and cultured in 5 ml of LB medium containing 100 μg/ml 

ampicillin. After overnight incubation at 37 °C with shaking at 250 rpm, 1 ml of the culture 

was used for plasmid purification using PureLink quick plasmid miniprep kit (Macherey-

Nagel) following manufacturer’s instruction. Amount and purity of the eluted DNA were 

assessed by spectrophotometric analysis, and sequences verified by sequencing. 

 
 

 

2.1.3 HEK293T cell culture and transfection  

HEK293T cells were maintained at 37 °C, 5% CO2 in DMEM+GlutaMAX containing 10% FBS 

and penicillin/streptomycin. Upon transient transfection using FuGENE HD (Promega) 

following manufacturer’s instructions, cells were plated on coverslips (for calcium imaging 

and electrophysiology) or MatTek dishes (for live labeling) coated with poly-D-lysine (1 
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mg/ml) and laminin (20 µg/ml). Twenty-four hours after plating cells were used for 

biochemistry, electrophysiology, or calcium imaging. 

 

 

 

2.1.4 Protein affinity purification from tissue lysates and coimmunoprecipitation 

from cell lysates 

HEK293T cells were transfected with cDNA encoding for mouse TRPA1-myc, AnxA2, ΔAnxA2, 

p11, TRPV1, or empty plasmid (Mock) and were plated in 10 cm cell culture dishes. After 24 

h cells were collected in PBS, centrifuged, and the cell pellet was resuspended in lysis buffer 

(150 mM NaCl, 50 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, 10% glycerol, 1% NP-40, 0.5% sodium 

deoxycholate, complete protease inhibitor cocktail). TG were freshly extracted from male 

wild-type mice (6–12 weeks old), and homogenized in lysis buffer using a glass dounce 

homogenizer. After centrifugation (10,000 rpm, 10 minutes) the resulting supernatant from 

TG lysates was incubated at 4 °C for 5 h with 20 µg of TRPA1 antibodies (rabbit, E1 or E3; 

(Schmidt et al., 2009)) or 20 µg of rabbit IgG coupled to magnetic beads (Protein G 

Dynabeads; Life Technologies). The supernatant from HEK293T cell lysates was incubated at 

4 °C overnight either with 20 µg of myc antibody (9E11 mouse; Santa Cruz Biotechnology), 

10 µg of TRPA1 antibody (Schmidt et al., 2009), or with 20 µg of TRPV1 antibody (goat; Santa 

Cruz Biotechnology) coupled to magnetic beads. After five washes in lysis buffer, beads were 

eluted by incubation for 10 minutes at 70 °C in 40 µl of elution buffer containing the 

following: 1X lithium dodecyl sulfate sample buffer (Life Technologies) and 1X NuPAGE 

sample-reducing agent (Life Technologies). The resulting mixtures were resolved by 1D 

NuPAGE using the MES running buffer (Life Technologies). In case of tissue samples each 

resolved lane was cut into 16 equal gel slices, which were analyzed separately by mass 

spectrometry. In the case of cell lysates protein gels were used for western blotting followed 

by immunodetection. 

 

 

 

2.1.5 Western blotting 

Protein gels of cell lysates were blotted on nitrocellulose or PVDF membranes using the iBlot 

System (Life Technologies) and afterwards blocked for 30 minutes in 5% milk powder in PBS. 

Membranes were then incubated overnight at 4 °C with primary antibodies to myc (9E11 

mouse; 1:100; Santa Cruz Biotechnology), Annexin A2 (rabbit; 1:100; Abcam), p11 (goat; 

1:40; R&D Systems), and TRPV1 (goat; 1:100; Santa Cruz Biotechnology) in 1% milk powder 

in PBS. After 3 washes in PBS, membranes were incubated for 2 h at room temperature with 

proper secondary antibodies anti-mouse Alexa680 (donkey; 1:8000; Life Technologies), anti-

rabbit Alexa680 (donkey; 1:8000; Life Technologies), anti-goat Alexa680 (donkey; 1:8000; 

Life Technologies) or anti-rabbit IR Dye 800 (donkey; 1:8000; Li-Cor). After 3 additional 

washes, detection of immunolabeled protein was performed using infrared imaging 
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(Odyssey; Li-Cor). Western blots were independently repeated three times. Only for 

presentation purposes were size, brightness, and contrast levels of paired blots (i.e., 

experiments done in parallel and probed with the same antibody) adjusted using Photoshop 

CS6 (Adobe). 

 

 

 

2.1.6 Dissociated mouse dorsal root ganglion neuron culture  

Dorsal root ganglia (DRG) were isolated from all spinal levels of 6-10 weeks old, male WT 

C57BL/6J mice. The mice were euthanized by CO2 inhalation followed by decapitation 

according to guidelines stated in the German Animal Welfare Act. The skin covering the 

spinal cord was removed and the spinal column with its adjacent connective tissue dissected 

out. The vertebral arches were sequentially removed to expose the spinal cord. The dorsal 

root ganglia were then carefully extracted from each of the intervertebral foramina. The 

tissue was first collected in serum free medium (DMEM/F12+GlutaMAX) then transferred 

into a falcon tube with 12 mg/ml collagenase. After 1 h of incubation at 37 °C, the tissue was 

triturated with a P1000 pipette. The DRGs were further dissociated via incubation with 10 

U/ml papain for 30 minutes at 37 °C. The DRGs were then centrifuged (1000 rpm; 1 minute) 

following which the supernatant was removed and the mix triturated again in serum-free 

media. To remove cell debris, a column of 0.15 g/ml BSA was added to the cell suspension 

and centrifuged (1000 rpm; 10 minutes). After the centrifugation, cell debris, media and BSA 

layer were removed carefully with a Pasteur pipette. For WT DRG cultures, cells were 

directly plated on 1 mg/ml poly-D-lysine and 20 μg/ml laminin-coated coverslips following 

resuspension in growth medium (DMEM/F12+GlutaMAX supplemented with 10% horse 

serum and growth factor mix containing: 100 ng/ml NGF, 50 ng/ml GDNF, 50 ng/ml BDNF, 50 

ng/ml NT-3, and 50 ng/ml NT-4).  After 10 minutes incubation of the cell suspension drop at 

37 °C, 1ml of growth medium was added. Cells were used 24 h after plating for calcium 

imaging experiments. 

 

 

 

2.1.7 Nucleofection of DRG cultures 

Transfection of neurons was achieved by nucleofection of cDNA into freshly isolated DRG 

neurons using the P3 Primary Cell 4D Nucleofector X Kit with the 4D-Nucleofector X Unit 

according to the manufacturer’s instructions (Lonza AG). (1) For calcium imaging rescue 

experiments 0.8 µg of mAnxA2-pCMVSport6 or empty pCMVSport6 were used, each in 

combination with 0.2 µg of pmaxGFP (Lonza AG), which was to visualize transfected neurons. 

(2) For live labeling 0.8 µg of mTRPA1-IRES-YFP was used and for rescue experiments an 

additional 1 µg of mAnxA2-pCMVSport6 or empty pCMVSport6 was used. (3) For 

electrophysiology 0.5 µg of mTRPA1-IRES-YFP was used. After nucleofection, neurons were 

allowed to recover in RPMI medium for 10 minutes at 37 °C before plating in growth 



29 

 

medium. Two hours after transfection half of the growth medium was exchanged with fresh 

medium and neurons were grown for 36–48 h. 

 

 

 

2.1.8 Electrophysiology 

Whole-cell voltage-clamp recordings were performed in transfected HEK293T cells or 

transfected DRG cultures at room temperature with standard patch pipettes (3–5 MΩ 

resistance) made of borosilicate glass capillaries. Current signals were recorded with an EPC-

9 patch-clamp amplifier (HEKA). Stimulus delivery and data acquisition were performed 

using Pulse software (HEKA). Current–voltage (I/V) curves were performed using voltage 

steps of 400 ms duration ranging from -100 to +175 mV followed by an invariant pulse at -75 

mV (400 ms). The holding potential was set to 0 mV. To repress inactivation of voltage-

dependent currents (Macpherson et al., 2007; Meseguer et al., 2014), these recording were 

made in Ca2+-free solutions [intracellular solution (in mM): 140 NaCl, 5 CsCl, 10 EGTA, and 10 

HEPES, pH 7.4, adjusted with NaOH; bath solution (in mM): 140 NaCl, 3 KCl, 1.3 MgCl2, 10 

HEPES, 1 EGTA, and 10 glucose]. Mustard oil (MO)-dependent currents in both TRPA1-

transfected HEK293T cells and TRPA1-transfected DRG neurons were recorded using an 

extracellular Ca2+-containing solution to preserve and study agonist desensitization 

properties (Macpherson et al., 2007); intracellular solution (in mM): 135 KCl, 2 MgCl2, 2 

MgATP, 5 EGTA, and 10 HEPES, pH 7.4; bath solution (in mM): 127 NaCl, 3 KCl, 1 MgCl2, 10 

HEPES, 2.5 CaCl2, and 10 glucose, pH 7.3]. The effect of MO on I/V curves was studied using 

voltage ramps of 500 ms ranging from -100 to +100 mV, applied every 5 s. The holding 

potential was set at -70 mV. Data analysis and representation were done using FitMaster 

(HEKA) and Igor Pro (WaveMetrics), respectively. Electrophysiology recordings were 

performed by Pratibha Narayanan. 

 

 

 

2.1.9 Ratiometric calcium imaging 

Ratiometric calcium imaging was performed essentially as described previously (Coste et al., 

2010) using an inverted microscope (Zeiss Axio Observer Z1). Briefly, cells were washed 

three times with calcium imaging buffer consisting of 1×HBSS (1.3 mM Ca2+) supplemented 

with 10 mM HEPES. A working solution of the ratiometric Ca2+ indicator dye Fura-2 was 

prepared resuspending 50 µg of Fura-2 AM cell permeant (Life Technologies) in 50 µl DMSO 

and adding additional 50 µl Pluronic F-127 (Life Technologies) and then diluting the mix 

1:200 in imaging buffer. Cells were incubated with the dye for 30-60 minutes at 37 °C, 

according to the manufacturer´s recommendations. Cells were then washed again three 

times prior to imaging. Fura-2 fluorescence was measured by illuminating the cells with an 

alternating 340/380 nm excitation light. Fluorescence intensity was measured at 510 nm for 

both excitation wavelengths and the intracellular Ca2+ concentration expressed as the 
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A340/A380 ratio. All experiments were conducted at room temperature 24-48 h after plating. 

For experiments testing cellular response to MO upon AnxA2 overexpression, HEK293T cells 

were stimulated with 0.1 μM/1 μM/10 μM/30 μM/100 μM MO for 2 minutes, followed by 2 

minutes of washout and final stimulation with 100 μM ATP to control for cellular health. For 

experiments testing response of DRG cultures from both genotypes, neurons were 

stimulated with the following protocol: 2.5 minutes with 12 μM MO; 5 minutes washout; 2 

minutes 50 μM MO; 5 minutes washout; 1.5 minutes 0.5 μM Capsaicin. For experiments 

assessing the pharmacological desensitization of TRPA1, the following stimulus protocol was 

applied: (1) application of 50µM MO for 2 minutes followed by a second 2 minutes 

application of 50 µM MO 2 minutes later (homologous desensitization) and (2) application of 

0.5 µM Capsaicin for 1.5 minutes followed by 2 minutes application of 50 µM MO 5 minutes 

later (heterologous desensitization; the longer interval between stimuli was necessary for 

recovery of intracellular calcium levels after Cap application). For data analysis, threshold for 

activation was set at 20% above the baseline obtained from averaging five time points 

immediately before addition of each stimulus. All experimental groups to be compared were 

processed in parallel using the same culture preparation. At least two coverslips from three 

independent culture preparations were analyzed per experimental paradigm. 

 

 

 

2.1.10 Immunohistochemistry 

Mice (ages 6–12 weeks) and rats (ages 6–8 weeks) were killed with CO2. DRG were carefully 

dissected, collected in 4% PFA/PBS, and fixed overnight at 4 °C. After cryoprotection in 30% 

sucrose/PBS overnight tissues were frozen in optimal cutting temperature compound, 

sectioned as step serial sections with a cryostat at 10 µm width, mounted on SuperFrost Plus 

slides, and stored at -80 °C. Frozen slides were thawed at room temperature for 30 minutes, 

washed three times in PBS with 0.4% Triton X-100 (PBT), blocked for 30 minutes in PBT 

containing 5% goat or donkey serum, and incubated overnight at 4 °C with primary 

antibodies diluted in blocking solution. The following antibodies were used: 1:50 rabbit anti-

TRPA1, custom-made E1 or E3 (Schmidt et al., 2009), or 1:100 rabbit anti-TRPA1 (Aviva 

Systems Biology); 1:100 rabbit anti-TRPV1 (Alomone Labs); 1:100 rabbit anti-Annexin A2 

(Abcam); 1:40 goat anti-p11 (R&D Systems); 1:100 chicken anti-Peripherin (Abcam); and 

1:200 rabbit anti-NF200 (Sigma-Aldrich). The antibody used on rat sections was 1:50 mouse 

anti-Annexin A2 (BD Biosciences). The sections were then washed five times in PBS and 

incubated for 2 h at room temperature with secondary antibodies conjugated to Alexa Fluor 

488, Alexa Fluor 546 or Alexa Fluor 647 (Life Technologies) diluted 1:250 in blocking solution. 

Sections were then washed five times in PBS and mounted in SlowFade Gold reagent (Life 

Technologies). 
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2.1.11 Image acquisition and analysis of immunohistochemistry 

Digital images of stained cryosections were obtained by fluorescence microscopy (either 

using a Zeiss Axio Observer Z1 epifluorescence microscope or the Leica SP5 confocal laser 

scanning microscope). Images for all experimental groups were taken using identical 

acquisition parameters. All groups to be compared were processed simultaneously using the 

same culture or tissue preparation. Raw images were analyzed by using NIH ImageJ 

essentially as described previously (Schmidt et al., 2009). In cryosections neurons were 

considered TRPA1-positive if the mean fluorescence intensity (measured in arbitrary units, 

AU) was higher than the mean background fluorescence plus four times the SD measured 

from at least 10 random unstained cells. For TRPA1 labeling the analysis was performed 

using three different TRPA1 antibodies (as described above), which gave similar results. 

Neurons were considered positive for the other labels if the mean fluorescence intensity 

(measured in AU) was higher than the mean background fluorescence plus three times the 

SD measured from at least 10 random unstained cells. Only sections that were at least 70 µm 

apart were considered to avoid double counting neurons. Only for presentation purposes 

were brightness, contrast, and curve levels of paired images adjusted using Photoshop CS6 

(Adobe). 

 

 

 

2.1.12 RNA isolation and quantitative PCR (qPCR) 

Total RNA was isolated from freshly dissociated DRG neurons of AnxA2-/- and WT mice by 

NucleoSpin RNA XS (Macherey-Nagel) according to the manufacturer’s instructions. One 

thousand nanograms of total RNA were then used for first-strand cDNA synthesis using 

QuantiTect reverse transcription kit (Qiagen). First, genomic DNA (gDNA) was eliminated 

adding gDNA wipe-out buffer and incubating the mix at 42 °C for 6 minutes in a thermal 

cycler (Bio-Rad T100). Reverse transcription (RT) master mix (Quantiscript RT buffer, RT 

primer mix, Quantiscript reverse transcriptase) was then added, followed by incubation at  

42 °C for 30 minutes and  95 °C for 3 minutes to finally obtain cDNA. TRPA1 gene expression 

was assessed in both genotypes by real-time qPCR using the SYBR green system (Power SYBR 

Green PCR Master Mix; Life Technologies) in a LightCycler 480 instrument (Roche). The 

melting curve analysis of amplified product was used to confirm the specificity of qPCR 

assay. All samples were run in triplicate and control reactions were run without template 

and with the reverse-transcription reaction reagents as negative controls. Threshold cycle 

(Ct) values, the cycle number in which SYBR green fluorescence rises above background, 

were normalized to two reference genes (β-actin and GAPDH) and recorded as a measure of 

initial transcript amount. Primer sequences 5’-3’ are the following: 

 

TRPA1 (fw: CCATGACCTGGCAGAATACC; rev: TGGAGAGCGTCCTTCAGAAT); 

β-actin (fw: GATCAAGATCATTGCTCCTCCTG; rev: CAGCTCAGTAACAGTCCGCC);  

GAPDH (fw: CAATGAATACGGCTACAGCAAC; rev: TTACTCCTTGGAGGCCATGT). 
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2.1.13 TRPA1 live labeling 

TRPA1 live labeling was essentially performed as described previously (Schmidt et al., 2009). 

Freshly dissociated neurons of AnxA2-/- mice and WT littermates were nucleofected with 

TRPA1-IRES-YFP, AnxA2, or empty plasmid for rescue experiments and maintained in culture 

for 36 h. Surface TRPA1 was live labeled by incubating neurons with TRPA1 antibodies (1:25) 

for 60 minutes followed by five washes in neuronal medium and incubation with secondary 

antibodies conjugated to Alexa Fluor 546 (Life Technologies) at a dilution of 1:200. Neurons 

were washed with PBS, fixed in 2% PFA/PBS for 20 minutes, and imaged on a Zeiss Axio 

Observer Z1 epifluorescence microscope. All groups to be compared were processed in 

parallel using the same culture preparation. The image analysis was performed as described 

previously (Schmidt et al., 2009) with the following change: as a reference for background 

signal we added ROIs in the non-labeled area along the ROI, which delineated the periphery 

of each neuron. This enabled us to determine a threshold value of intensity (in AU) above 

which the label was considered positive for each individual neuron. Only for presentation 

purposes were brightness, contrast, and curve levels of paired images (i.e., corresponding 

WT and AnxA2-/- cells) adjusted using Photoshop CS6 (Adobe). 

 

 

 

2.1.14 Mouse behavior 

All animals were housed in a temperature-controlled environment under a 12 h light/dark 

cycle with food and water provided ad libitum. Behavioral tests were performed by 

individuals blind to genotype. In these tests 6- to 12-week-old WT and AnxA2-/- littermates 

were used and the mice were matched for gender. AnxA2-/- mice were kindly provided by 

Katherine A. Hajjar (Ling et al., 2004). Mice were acclimatized for 30 minutes (injection 

paradigms) or 120 minutes (thermal and mechanical paradigm) in a transparent Plexiglas 

box. For injections, 10 µl of experimental agent were injected subcutaneously into the 

plantar surface of one hindpaw. Nocifensive behaviors were assessed by measuring the time 

spent licking, flicking, or lifting the injected paw for 10 minutes. Vehicle injection (PBS) did 

not elicit any significant pain behavior in either genotype (data not shown). Mechanical and 

thermal sensitivity were measured according to standard procedures (Minett et al., 2011) 

and according to the manufacturer’s manual (Ugo Basile). 

Mechanical sensitivity was determined upon paw withdrawal to application of a graded 

force (0–10 g in 40 s for basal acute sensitivity and 0–7.5 g in 40 s for the inflammatory pain 

paradigm) via a dynamic aesthesiometer (Ugo Basile) to the plantar surface of both 

hindpaws. Paw withdrawal latencies were averaged from at least four readings per paw.  

To determine thermal sensitivity two different tests were used: heat and cold sensitivity. 

Heat sensitivity. The paw withdrawal latency to infrared heat (set at 40) was measured using 

a plantar test apparatus (Hargreaves apparatus; Ugo Basile). Paw withdrawal latencies for 

each test were averaged from at least four readings per paw. 
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Cold sensitivity. A custom-made cold plate was set at 1.5 °C and the latency to the onset of 

nocifensive behaviors (licking, flicking, or lifting of the injected paw) and escape behaviors 

(jumping) were measured. If mice did not show nocifensive behaviors (as observed often 

after vehicle injection) they were removed from the cold plate after 5 minutes and scored 

with a latency of 330 s. All groups to be compared were assessed in parallel. All animal 

experiments were approved and performed in compliance with the institutional guidelines 

and the guidelines of the Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit of 

Lower Saxony. 

 

 

 

2.1.15 Statistical analysis 

The nonparametric Mann–Whitney test or the two-tailed unpaired Student‘s t test were 

used for single comparisons, and one-way ANOVA was used for multiple comparisons. All 

values refer to mean ± SEM; n indicates the sample number, p denotes the significance 

(*<p0.05, **<p0.01, ***<p0.001) and refers to the respective control in each experimental 

group if not noted otherwise.  

 

 

 

2.2 TRPA1 interactome undergoes dramatic changes during 

inflammatory pain  

2.2.1 Inflammatory pain paradigm and TRPA1 immunoprecipitation from tissue 

lysates 

Inflammatory pain was induced in male C57BL/6J mice (6-12 weeks old) by injection of 10 µl 

of Complete Freund’s Adjuvant (CFA) into the plantar surface of the left hindpaw, with PBS-

injected mice serving as control. Mice were sacrificed 24 h after the injection by CO2 

inhalation followed by decapitation according to guidelines stated in the German Animal 

Welfare Act. Ipsilateral lumbar DRGs (L1 to L5) were dissected and collected in PBS with 

protease inhibitors. Tissue was subsequently homogenized in 500 µl/sample ice-cold 

solubilization buffer (100 mM NaCl, 50 mM Tris-HCl pH 7.4, 320 mM sucrose, 1mM DTT, 1% 

DDM, complete protease inhibitor cocktail) using first a glass dounce homogenizer and 

subsequently shearing the lysate passing it 10 times through a 20G needle and 10 times 

through a 25G needle. DRGs from 20 mice per condition were necessary for each 

experimental replicate, and tissue from TRPA1-/- animals (ipsilateral and contralateral lumbar 

DRGs from 10 non-injected mice) was processed in parallel. Lysates were then incubated for 

1 h at 4 °C on a tube rotator (VWR International) followed by centrifugation for 10 minutes 

at 2500xg at 4 °C. A pre-clearing step was performed incubating each lysate with 50 µl 

magnetic beads (Protein G Dynabeads; Life Technologies) for 1 h at 4 °C on a tube rotator. 

Beads were then removed and the lysate incubated with 24 µg of TRPA1 antibodies (rabbit, 
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E1; (Schmidt et al., 2009)) for 4 h at 4 °C on a tube rotator. Magnetic beads (100 µl/sample) 

were then added to the lysates and incubated overnight at 4 °C on a tube rotator. After one 

short washing step with ice-cold solubilization buffer, beads were then eluted by incubation 

for 10 minutes at 70 °C in 40 µl of elution buffer containing the following: 1X TG PRiME 

sample buffer (Serva) and 10 mM DTT. 

 

 

 

2.2.2 Protein identification by mass spectrometry analysis and database search 

Eluted proteins were separated on precast TG PRiME Tris/glycine 8-16% gradient gels (Serva) 

and visualized by colloidal Coomassie staining. Entire gel lanes were cut into 24 equally-sized 

gel pieces and subjected to automated in-gel digestion with trypsin as described previously 

(Schmidt et al., 2013). Tryptic peptides were dried down in a vacuum centrifuge, re-dissolved 

0.1% trifluoro acetic acid and spiked with 2.5 fmol/μL of yeast enolase 1 tryptic digest 

standard (Waters Corporation) for quantification purposes (Silva et al., 2006). After 

nanoscale UPLC separation, tryptic peptides were subjected to mass spectrometry analysis 

using a Synapt G2-S quadrupole time-of-flight mass spectrometer equipped with ion mobility 

option (Waters Corporation). Positive ions in the mass range m/z 50 to 2000 were acquired 

with a typical resolution of at least 20,000 FWHM (full width at half maximum) in the ion 

mobility-enhanced data-independent acquisition (DIA) mode (Geromanos et al., 2012; Silva 

et al., 2005) with drift time-specific collision energies (Distler et al., 2014). For protein 

identification, continuum LC-MS data were processed (including lock mass correction) and 

searched using Waters ProteinLynx Global Server version 3.0.2 (Li et al., 2009). A custom 

database was compiled by adding the sequence information for yeast enolase 1 and porcine 

trypsin to the UniProtKB/Swiss-Prot mouse proteome and by appending the reversed 

sequence of each entry to enable the determination of false discovery rate (FDR). UniProtKB 

release 2014_10 (16,686 entries) was used for replicate experiment 1 and 2, while 2015_01 

(16,695 entries) was used for replicate experiment 3. Precursor and fragment ion mass 

tolerances were automatically determined by PLGS 3.0.2 and were typically below 5 ppm for 

precursor ions and below 10 ppm (root mean square) for fragment ions. 

Carbamidomethylation of cysteine was specified as fixed and oxidation of methionine as 

variable modification. One missed trypsin cleavage was allowed. The FDR for protein 

identification was set to 1% threshold. For post-identification analysis, the freely available 

software ISOQuant (http://www.isoquant.net) was used to merge the 24 LC-MS datasets per 

gel lane and to calculate the absolute in-sample amounts for each detected protein 

according to the TOP3 quantification approach (Distler et al., 2014; Kuharev et al., 2015). 

Based on the peptides identified in the first PLGS database search round described above, 

the stringency for reporting a protein was increased further by considering only peptides 

with a minimum length of six amino acids, which were identified with scores above or equal 

to 5.5. FDR for both peptides and proteins was set to 1 % threshold and only proteins 

reported by two and more peptides were quantified using the TOP3 method. This part was 
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performed by the Proteomics Group at Max Planck Institute of Experimental Medicine (Head 

Dr. Olaf Jahn). 

 

 

 

2.2.3 Data analysis 

For mass spectrometry analysis, the final volume of tryptic digestion reactions could vary 

based on the protein concentration of the sample, hence a first level of normalization was 

applied to rule out this variable. In fact, the amount of each detected protein was multiplied 

by the ratio between the total volume of the digest and the volume later injected into the 

LC-MS/MS system. For comparable analysis of the amount of all detected proteins within 

each single biological replicate, data were normalized to account for potential differences in 

the amount of bait (TRPA1) identified between the CFA and VEH samples. Specifically, in the 

sample where less bait was detected, the amount of each identified protein would be 

multiplied by the ratio of “higher bait amount/lower bait amount” between the two 

samples. Then, this normalized value was used to calculate the ratio of the amount in each 

sample (VEH or CFA) relative to the TRPA1 KO one (VEH/KO and CFA/KO), as well as the 

ratios CFA/VEH and VEH/CFA. Subsequently, for selection of proteins coimmunoprecipitating 

with TRPA1 with high specificity and strong evidence, we set the following stringent criteria: 

(1) detected in each of the three biological replicates; (2) in each replicate, identified with 

amount at least three times greater than what found in the relative TRPA1 KO sample. Only 

candidates fulfilling both the above criteria were considered as high confidence TRPA1-

binding partners and used for further statistics and bioinformatics analysis. We then further 

classified such candidates as: 

-Only identified in CFA: if fulfilling above criteria in three replicates in CFA samples only; 

-Only identified in VEH: if fulfilling above criteria in three replicates in VEH samples only; 

-Identified in both: if fulfilling above criteria in three replicates in both VEH and CFA. 

Gene ontology analysis was performed by uploading gene IDs into the functional annotation 

tool of the DAVID (Database for Annotation, Visualization and Integrated Discovery) 

bioinformatics resource, to assign genes with their affiliate terms and to order them by 

enrichment (Huang da et al., 2009a, b). In order to visualize molecular interaction networks 

based on known and predicted associations among proteins we uploaded Uniprot accession 

numbers of all proteins in each dataset into STRING (Search Tool for the Retrieval of 

Interacting Genes/Proteins) (Jensen et al., 2009). The whole analysis was made by choosing 

datasets of mouse (mus musculus). 
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2.3 NIPSNAP1 and Nocistatin modulate TRPA1 channels 

Most experiments were performed by Master student Oli Abate Fulas under the author´s 

teaching and supervision; therefore part of the methods is adapted from Oli´s Master thesis. 

 

2.3.1 HEK293T cell culture and transfection  

HEK293T cells were maintained at 37 °C, 5% CO2 in DMEM+GlutaMAX containing 10% FBS 

and penicillin/streptomycin. Transient transfections were performed using FuGENE HD 

(Promega) following manufacturer’s instructions, and cells plated on 1 mg/ml poly-D-lysine 

and 20 μg/ml laminin-coated coverslips. For testing the specificity of NIPSNAP1 antibody 0.5 

µg of NIPSNAP1-myc-DKK (Origene) was used. For calcium imaging and 

immunocytochemistry experiments measuring the effect of NIPSNAP1 overexpression, 0.6 

µg of TRPA1-myc cotransfected with 0.5 µg of either NIPSNAP1-myc-DKK or empty vector 

were used. Cells were used for calcium imaging or immunocytochemistry 24 h after plating. 

 

 

 

2.3.2 Dissociated mouse dorsal root ganglion neuron culture  

Performed exactly as reported under section 2.1.6. 

 

 

 

2.3.3 Nucleofection of DRG cultures 

Transfection of neurons was achieved by nucleofection of cDNA into freshly isolated DRG 

neurons using the P3 Primary Cell 4D Nucleofector X Kit with the 4D-Nucleofector X Unit 

according to the manufacturer’s instructions (Lonza AG). For NIPSNAP1 knock-down a final 

concentration of 500 nM of NIPSNAP1 siRNA mix or scramble control siRNA were used to 

transfect cells. NIPSNAP1 siRNA mix details: 

 

Name Cat. # Target sequence Company 

Mm_Nipsnap1_3 SI01327837 ACGAATCATGATTCCTCTGAA Qiagen 

Mm_Nipsnap1_4 SI01327844 TTCCTACATAATGTGGTTAAA Qiagen 

Mm_Nipsnap1_5 SI04919999 TCCGTCATCTCCAGGACATAA Qiagen 

Mm_Nipsnap1_6 SI04920006 CACCACTTATGGGCCTACAAA Qiagen 

 

For immunocytochemistry experiments testing the effect of NIPSNAP1 overexpression for 

TRPA1 expression, neurons were cotransfected with 0.5 µg of TRPA1-IRES-YFP and 0.5 µg of 

either NIPSNAP1-myc-DKK or empty vector. For live labeling experiments cultures were 

transfected with 0.5 µg of TRPA1-IRES-YFP. After nucleofection, neurons were allowed to 

recover in RPMI medium for 10 minutes at 37 °C before plating in growth medium. Two 
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hours after transfection half of the growth medium was exchanged with fresh medium and 

neurons were grown for 24-72 h, based on the experiment. 

 

 

2.3.4 RNA isolation and quantitative PCR (qPCR) 

Total RNA extraction was performed on DRG neurons 72 h after nucleofection with 

NIPSNAP1 siRNA or scramble control using NucleoSpin RNA XS (Macherey-Nagel) according 

to the manufacturer’s instruction. Two hundred and fifty nanograms of total RNA were then 

used for first-strand cDNA synthesis using QuantiTect reverse transcription kit (Qiagen).  

First, genomic DNA (gDNA) was eliminated adding gDNA wipe-out buffer and incubating the 

mix at 42 °C for 2 minutes in a thermal cycler (Bio-Rad T100). Reverse transcription (RT) 

master mix (Quantiscript RT buffer, RT primer mix, Quantiscript reverse transcriptase) was 

then added, followed by incubation at 42 °C for 30 minutes and  95 °C for 3 minutes to finally 

obtain cDNA. NIPSNAP1 gene expression was assessed by real-time qPCR using the SYBR 

green system (Power SYBR Green PCR Master Mix; Life Technologies) in a LightCycler 480 

instrument (Roche). The melting curve analysis of amplified product was used to confirm the 

specificity of qPCR assay. All samples were run in triplicate and control reactions were run 

without template as negative controls. Threshold cycle (Ct) values, the cycle number in 

which SYBR green fluorescence rises above background, were normalized to two reference 

genes (β-actin and GAPDH) and recorded as a measure of initial transcript amount. Primer 

sequences 5’- 3’ are the following: 

 

NIPSNAP1 (fw: GGGTGCTGTGCGCTTCTATT; rev: TCCAGACATTCGGGCTTCAC); 

β-actin (fw: GATCAAGATCATTGCTCCTCCTG; rev: CAGCTCAGTAACAGTCCGCC); 

GAPDH (fw: CAATGAATACGGCTACAGCAAC; rev: TTACTCCTTGGAGGCCATGT). 

 

 

 

2.3.5 Immunocytochemistry 

DRG cultures or HEK293T cells were first fixed for 20 minutes in 4% PFA and blocked with 

10% donkey serum and 0.4% Triton X-100 in PBS for 1 h at room temperature, followed by 

incubation with primary antibody overnight at 4 °C in 1% donkey serum 0.1% Triton X-100 in 

PBS. Cells were then washed five times with PBS and incubated with secondary antibodies 

(1:250) for 2 h at room temperature in 1% donkey serum 0.1% Triton X-100 in PBS. Cells 

were washed again five times with PBS before mounting with SlowFade Gold reagent (Life 

Technologies). For quantification of knock-down efficacy, NIPSNAP1 siRNA- and control 

siRNA-nucleofected DRG cultures were labeled with primary anti-NIPSNAP1 (rabbit; 1:100; 

Abcam) and secondary anti-rabbit Alexa488 (donkey; Life Technologies). For testing antibody 

specificity, HEK293T cells transfected with NIPSNAP1-myc-DKK cDNA were coimmunostained 

with primary anti-NIPSNAP1 (rabbit; 1:100; Abcam) and anti-myc (mouse; 1:100; Santa Cruz 

Biotechnology) and secondary anti-rabbit Alexa488 (donkey; Life Technologies) and anti-
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mouse Alexa647 (donkey; Life Technologies). For testing effect of NIPSNAP1 overexpression 

for TRPA1 expression, DRG cultures transfected with TRPA1-IRES-YFP and either NIPSNAP1-

myc-DKK or empty vector were costained with primary anti-TRPA1 (rabbit; 1:50) and anti-

GFP (chicken; 1:500; Life Technologies) and secondary anti-rabbit Alexa546 (donkey; Life 

Technologies) and anti-chicken Alexa647 (goat; Life Technologies). For the same purpose, 

HEK293T cells cotransfected with TRPA1-myc and either NIPSNAP1-myc-DKK or empty vector 

were colabeled for TRPA1 with anti-TRPA1 (rabbit; 1:100) and for NIPSNAP1 with anti-Flag 

(mouse; 1:100; Sigma Aldrich) and secondary anti-rabbit Alexa488 (donkey; Life 

Technologies) and anti-mouse Alexa546 (donkey; Life Technologies).  

 

 

 

2.3.6 Immunohistochemistry 

Mice (ages 6–12 weeks) were killed with CO2. DRG were carefully dissected, collected in 4% 

PFA/PBS, and fixed overnight at 4 °C. After cryoprotection in 30% sucrose/PBS overnight 

tissues were frozen in optimal cutting temperature compound, sectioned as step serial 

sections with a cryostat at 10 µm width, mounted on SuperFrost Plus slides, and stored at -

80 °C. Frozen slides were thawed at room temperature for 30 minutes, washed three times 

in PBS with 0.4% Triton X-100 (PBT), blocked for 30 minutes in PBT containing 5% goat or 

donkey serum, and incubated overnight at 4 °C with primary antibodies diluted in antibody 

solution (1% donkey or goat serum and 0.1% Triton X-100 in PBS).  Sections were stained 

with anti-NIPSNAP1 (rabbit; 1:200; Abcam) and 1:100 anti-Peripherin (chicken; 1:100; 

Abcam). The next day, after washing five times in PBS, corresponding secondary fluorescent 

antibodies: anti-rabbit Alexa488 (donkey; 1:250; Life Technologies) and anti-chicken 

Alexa555 (donkey; 1:250; Life Technologies) were applied and incubated for 2 h at room 

temperature in antibody solution. Sections were then washed five times in PBT and mounted 

in SlowFade Gold reagent (Life Technologies).  

 

 

 

2.3.7 Image acquisition and analysis of immunostainings 

Digital images of the stained cultures and DRG cryosections were obtained by an 

epifluorescence microscope (Zeiss Axio Observer Z1). Images for all experimental groups 

were taken using identical acquisition parameters. All groups to be compared were 

processed simultaneously using the same culture or tissue preparation.   Raw images were 

analyzed by using NIH ImageJ essentially as described previously (Schmidt et al., 2009). Cells 

were considered positive for their labeled protein (NIPSNAP1, TRPA1 or Peripherin) if the 

mean fluorescence intensity (measured in arbitrary units, AU) was higher than the mean 

background fluorescence plus three times the SD measured from at least 5 random 

unstained cells for the immunocytochemistry, and 10 random unstained cells for 

immunohistochemistry.  
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2.3.8 Ratiometric calcium imaging 

Ratiometric calcium imaging was performed essentially as described previously (Coste et al., 

2010) using an inverted microscope (Zeiss Axio Observer Z1). Briefly, cells were washed 

three times with calcium imaging buffer consisting of 1×HBSS (1.3 mM Ca2+) supplemented 

with 10 mM HEPES. A working solution of the ratiometric Ca2+ indicator dye Fura-2 was 

prepared resuspending 50 µg of Fura-2 AM cell permeant (Life Technologies) in 50 µl DMSO 

and adding additional 50 µl Pluronic F-127 (Life Technologies) and then diluting the mix 

1:200 in imaging buffer. Cells were incubated with the dye for 30-60 minutes at 37 °C, 

according to the manufacturer´s recommendations. Cells were then washed again three 

times prior to imaging. Fura-2 fluorescence was measured by illuminating the cells with an 

alternating 340/380 nm excitation light. Fluorescence intensity was measured at 510 nm for 

both excitation wavelengths and the intracellular Ca2+ concentration expressed as the 

A340/A380 ratio. All experiments were conducted at room temperature 24-72 h after plating. 

Experiments on the subject of examining the effect of Nocistatin on TRPA1-mediated 

response were performed with this protocol: 2 minutes application of 10 μM 

Nocistatin/vehicle followed by 2 minutes application of 10 μM Nocistatin/vehicle in 25 μM 

MO and then incubation for 4 minutes. Subsequently, 50 μM MO, 1 μM capsaicin and 60 

mM KCl were applied in the mentioned order for 2 minutes each with 5 minutes of 

intervening washes between the stimuli. For experiments dealing with the influence of 

Nocistatin on TRPV1: pre-incubation with 10 μM Nocistatin (applied for 2 minutes) was 

followed by application of 10 μM Nocistatin/vehicle in 0.1 μM capsaicin and incubation for 4 

minutes. After 5 minutes of washing 1 μM capsaicin was applied for 2 minutes. HEK293T 

cells overexpressing TRPA1 and either NIPSNAP1 or empty vector were assessed for TRPA1 

response via application of 1 μM/10 μM/30 μM MO for 2.5 minutes followed by washing 

with imaging buffer for 5 minutes and subsequent application of 100 μM MO for 3 minutes. 

For data analysis, threshold for activation was set at 20% above the baseline obtained from 

averaging five time points immediately before addition of each stimulus. All experimental 

groups to be compared were processed in parallel using the same culture preparation. At 

least two coverslips from three independent culture preparations were analyzed per 

experimental paradigm.  

 

 

 

2.3.9 TRPA1 live labeling 

TRPA1 live labeling was essentially performed as described previously (Schmidt et al., 2009). 

Freshly dissociated neurons were nucleofected with TRPA1-IRES-YFP and maintained in 

culture for 36 h. Cells were then incubated with 10 µM Nocistatin or vehicle for 4 minutes at 

room temperature, washed and immediately after surface TRPA1 was live labeled by 

incubation with TRPA1 antibodies (1:25) for 60 minutes followed by five washes in neuronal 

medium and incubation with secondary antibodies conjugated to Alexa Fluor 546 (Life 

Technologies) at a dilution of 1:200. Neurons were washed with PBS, fixed in 2% PFA/PBS for 
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20 minutes, and imaged on a Zeiss Axio Observer Z1 epifluorescence microscope. All groups 

to be compared were processed in parallel using the same culture preparation. The image 

analysis was performed as described previously (Schmidt et al., 2009) with the following 

change: as a reference for background signal we added ROIs in the non-labeled area along 

the ROI, which delineated the periphery of each neuron. This enabled us to determine a 

threshold value of intensity (in AUs) above which the label was considered positive for each 

individual neuron.  

 

 

 

2.3.10 Statistical analysis 

The two-tailed unpaired Student‘s t test was used to evaluate statistical significance. All 

values refer to mean ± SEM; p denotes the significance (*<p0.05, **<p0.01) and refers to the 

respective control in each experimental group if not noted otherwise.  
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3. RESULTS 
 

 

3.1  Annexin A2 (AnxA2) regulates TRPA1-dependent nociception 

The gross part of the text relative to this section is based on (Avenali et al., 2014).  

 

3.1.2 AnxA2 is a binding partner of TRPA1 in mouse sensory neurons 

A crucial determinant of TRPA1 activity and function could be represented by the network of 

protein complexes associated to the channel, the so-called TRPA1 interactome. In this line 

we aimed to identify TRPA1-binding candidates by affinity purification of the native TRPA1 

channels from mouse sensory neurons. The choice of working with native channels was 

result of important considerations: on the one hand, this means dealing with the need of a 

significant amount of tissue, but on the other hand, it has considerable advantages with 

respect to, for instance, systems where the channel is overexpressed, namely a reduction of 

false negative hits and more reliable candidate list. In this line sensory neurons were 

dissected from mice and whole cell lysates obtained by mild detergent solubilization. This 

procedure is critical and needs to be carefully optimized in terms of the stringency of the 

buffer and the washing steps that will follow. We needed to obtain a reasonable amount of 

the bait (TRPA1) that, by its own nature and as other transmembrane proteins, is 

hydrophobic, and therefore difficult to isolate. On the one hand, with too harsh conditions 

we would end up disrupting complexes and potentially losing weak and transient 

interactions, likely biologically relevant. On the other hand, being too mild would result in 

insufficient amount of TRPA1 protein and incomplete removal of non-binding proteins, 

which will be then detected during mass-spectrometry analysis, making the candidate list 

hard to interpret. From cell lysates, TRPA1 channels were affinity purified with specific 

TRPA1 antibodies and rabbit IgG serving as control. An antibody with high specificity and 

affinity for the target protein is an essential tool for the success of coimmunoprecipitation 

experiments; accordingly, a custom-made antibody has been used, which performance and 

specificity in tissue from TRPA1-deficient mice had been already proved in previous 

publications (Schmidt et al., 2009). Eluates of coimmunopreciptation were separated by 1D-

PAGE, gel lanes were excised, subjected to “in-gel” digestion with trypsin, and samples 

submitted to mass-spectrometry analysis. This procedure enabled the detection of 

endogenous TRPA1 channels validating such approach (Fig. 4). In addition to the bait, a 

consistent list of potential interacting partner was obtained and the selection of candidates 

for further characterization was based on stringent criteria. We only considered proteins 

that: (1) appeared in both independent biological replicates of the experiment; (2) were 

identified with a minimum of two unique peptides; and (3) were absent in both independent 

control replicates. This strategy led to the identification of Annexin A2 (AnxA2) as a binding 

partner of TRPA1 in mouse sensory neurons (Fig. 4). AnxA2 is a member of the Annexin 
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superfamily of calcium- binding proteins and is involved in different membrane transport 

processes (Gerke et al., 2005; Rescher and Gerke, 2004).  

 

 

 
 
Figure 4: AnxA2 coimmunoprecipitates with native TRPA1 from mouse sensory neurons. 
The table depicts the MS/MS results (identified peptides and number of total spectra) of two independent 
TRPA1-affinity purifications and corresponding controls. The mass spectrometry analysis was performed by the 
Genomics Institute of the Novartis Research Foundation (GNF), La Jolla, CA. From (Avenali et al., 2014). 

 
 

 

3.1.2 AnxA2 coimmunoprecipitates with TRPA1 in a heterologous expression 

system  

In order to validate AnxA2 as a TRPA1-binding protein we tried to recapitulate the 

interaction in a well-established and widely accepted heterologous expression system, 

namely HEK293T cells. We transfected HEK293T cells with myc-tagged TRPA1 (TRPA1-myc) 

and mouse AnxA2 cDNA, and performed TRPA1 immunoprecipitation. Nicely, we could 

detect AnxA2 in the eluate when both anti-myc (Fig. 5A) and anti-TRPA1 antibodies (data not 

shown) were used for immunoprecipitation. HEK293T cells transfected with TRPA1-myc and 

the empty vector were used as a negative control (TRPA1+Mock; Fig. 5A). These data 

supports the MS results indicating that this interaction can be reproduced in a non-neuronal 

context and suggest that it could be potentially direct, or at least that does not involve a 

neuronal cell-specific mediator. To get better insights into the nature of the interaction, we 

attempted to identify the AnxA2 domain involved in the association with TRPA1 and 

therefore cloned a truncated version of AnxA2, called ΔAnxA2. This construct lacks the first 

15aa of the native protein, a region already implicated in AnxA2-protein-protein 

interactions, and did not immunoprecipitate with TRPA1 upon overexpression in HEK293T 

cells (Fig. 5A). These findings suggest that the first 15 residues of AnxA2 are critical to the 

binding to TRPA1 channels, either directly or via yet to be identified proteins. AnxA2 can be 

found associated with its best characterized binding partner p11 (also referred to as 

S100A10), a member of the EF-Hand superfamily of calcium-binding proteins. p11 itself has 

been reported to interact and modulate the activity of several ion channels (Donier et al., 

https://www.gnf.nibr.com/
https://www.gnf.nibr.com/
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2005; Okuse et al., 2002; Svenningsson et al., 2006), among them some TRP channels, like 

TRPV4 (Ning et al., 2012), TRPV5, and TRPV6 (van de Graaf et al., 2003). We therefore found 

of interest to test whether p11 binds TRPA1 and potentially acts as a mediator of the 

interaction with AnxA2. However, immunoprecipitation experiments in HEK293T cells 

transfected with TRPA1 and p11 did not reveal any interaction between the two (Fig. 5B), 

and this is in line with our proteomics data in sensory neurons that did not identify p11 as a 

potential TRPA1-interacting protein. In sensory neurons TRPA1 is well known to be 

coexpressed to a large extent with the heat and capsaicin receptor TRPV1. The activity of the 

two channels influences each other and general nociceptor excitability, and they have also 

been reported to interact and form heteromers (Fischer et al., 2014; Staruschenko et al., 

2010). Interestingly, immunoprecipitation in HEK293T cells expressing TRPV1 and AnxA2 did 

not show any physical association between the two (Fig. 5C), which points to a certain 

degree of specificity for the interaction of AnxA2 with TRPA1. 

 

 

 
 

 
Figure 5: AnxA2 coimmunoprecipitates with TRPA1 in a heterologous expression system. 
A–C, Representative Western blots (WB) of immunoprecipitation (IP) experiments in HEK293T cells 
recombinantly expressing the indicated constructs. A, AnxA2 is detected in eluates (E) of immunoprecipitations 
only upon cotransfection of TRPA1-myc and AnxA2 (TRPA1-myc+AnxA2) but not in control conditions (TRPA1-
myc+Mock). A deletion construct of AnxA2 lacking the first 15 aa (ΔAnxA2) did not coimmunoprecipitate with 
TRPA1 (TRPA1 myc+ΔAnxA2). Immunoprecipitations were performed with myc antibodies. B, P11 did not 
coimmunoprecipitate with TRPA1 in our assay (TRPA1-myc+p11). Immunoprecipitations were performed with 
myc antibodies. C, AnxA2 did not coimmunoprecipitate with TRPV1 in cotransfected HEK293T cells (TRPV1 + 
AnxA2) while TRPV1 itself is readily immunoprecipitated. Immunoprecipitations were performed with TRPV1 
antibodies. I, input. Western blots were probed as indicated. From (Avenali et al., 2014). 
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3.1.3 AnxA2 does not affect biophysical properties of recombinant TRPA1 

channels 

The physical association of AnxA2 to TRPA1 might have functional consequences for TRPA1 

activity and function. The channel might undergo conformational changes or be subjected to 

chemical modification (e.g. phosphorylation) that would affect its response to activating 

stimuli. To test this hypothesis we asked whether AnxA2 affects the biophysical properties of 

TRPA1 channels expressed in HEK293T cells, a well-established system to assess TRPA1 

activity (Bandell et al., 2004; Jordt et al., 2004; Macpherson et al., 2007; Meseguer et al., 

2014). TRPA1 is a promiscuous channel responsive to a wide variety of agonists, both 

endogenous and exogenous, and it is also intrinsically voltage-dependent to a certain 

degree. We studied both channel properties by whole-cell patch clamp recordings. First, we 

transfected HEK293T cells either with TRPA1 (TRPA1+Mock) or with TRPA1 and AnxA2 

(TRPA1+AnxA2) and measured the voltage-dependent activation properties of TRPA1 

channels upon membrane depolarization (Meseguer et al., 2014; Zhou et al., 2013). As 

shown in figure 6, AnxA2 expression did not change the intrinsic voltage-dependent 

activation profile of TRPA1 channels (Fig.6A,B). TRPA1 current density measured at -75 mV 

(following depolarization at +175 mV) was not affected by AnxA2 overexpression (TRPA1 + 

Mock: 71.8 ± 6.9 pA/pF; TRPA1 + AnxA2: 75.3 ± 8.1 pA/pF). Furthermore, neither activation 

nor inactivation time constants were different when AnxA2 was present (TRPA1 + Mock: 

19.3 ± 4.3 ms and 46.7 ± 3.1 ms; TRPA1 + AnxA2: 19.3 ± 5.5 ms and 52.6 ± 6.1 ms, for 

activation and inactivation, respectively). We then studied TRPA1 activation properties 

following stimulation with mustard oil (MO), a well-known specific TRPA1 agonist (Bandell et 

al., 2004; Bautista et al., 2006; Macpherson et al., 2007; Zhou et al., 2013). 

Electrophysiological analysis showed that neither the MO-dependent I/V relationship nor 

activation and inactivation time constants were altered by AnxA2 overexpression (Fig.6C,D). 

Next, we asked whether the cellular responses to TRPA1 activation by the specific agonist 

MO is affected by AnxA2 overexpression (Fig.6E,F). Figure 6F shows that the dose 

dependency of MO-evoked increase of [Ca+2]i is very similar in both conditions, and together 

with the electrophysiology data show that AnxA2 overexpression does not alter properties 

of recombinant TRPA1 in HEK293T cells. 
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Figure 6: AnxA2 neither affects TRPA1 voltage dependence nor cellular responses to the TRPA1 agonist MO. 
A, B, AnxA2 does not affect the voltage dependence of TRPA1. A, Whole-cell currents in response to voltage 

steps applied to HEK293T cells expressing TRPA1 (TRPA1+Mock) or TRPA1+AnxA2. B, Average ± SEM voltage 

dependence of TRPA1 peak tail currents at -75 mV for indicated transfections. For each transfection condition 

data were separately normalized to the current obtained after the maximum depolarization level (+175 mV). C, 

Representative currents elicited by I/V ramps after mustard oil (MO) application of 25 µM MO for indicated 

transfections. D, Left, representative MO-induced current at -70 mV (holding potential). Right, Average ± SEM 

time constants of MO-induced activation and inactivation measured by a mono-exponential fit to the currents 

obtained at -70 mV for indicated transfections (n>12 cells per condition; n.s.; Student’s t-test). E, AnxA2 does 

not affect cellular responses to the TRPA1 agonist MO. Representative images of ratiometric [Ca+2]i 

measurements in HEK293T cells expressing TRPA1 (TRPA1+Mock) or TRPA1 and AnxA2 (TRPA1+AnxA2). GFP 

was cotransfected to visualize transfected cells for further analysis. The image shows the cellular response to 

10 µM MO (MO). One hundred micromolar ATP was applied after MO to control for cellular health; ≥500 cells 

analyzed for each MO concentration; n.s.; Student’s t-test. Scale bar, 10 µm. F, Dose dependency of MO-
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evoked increase of cellular [Ca+2]i. All data are represented as mean ± SEM. Electrophysiology recordings were 

performed by Pratibha Narayanan. From (Avenali et al., 2014). 

 

 

 

3.1.4 AnxA2 is coexpressed with TRPA1 in nociceptors 

In order to gather more information and investigate deeper the potential influence of AnxA2 

association for TRPA1 function, we moved to a physiological cellular setting, i.e., sensory 

neurons of dorsal root ganglia (DRG). Within DRGs, different subpopulation of primary 

afferents can be classified, which properties reflect, among others, the range of stimuli 

transduced and the speed of signal transmitted.  Non-myelinated small diameter neurons 

generally transmit nociceptive signals and can be identified by the expression of the 

intermediate filament Peripherin. (Patapoutian et al., 2009). Myelinated neurons show 

instead bigger diameter, mostly signal innocuous stimuli, and express the heavier 

Neurofilament 200 (NF200). To get insights into AnxA2 localization we characterized its 

expression pattern in rodent DRGs. First of all we confirmed the specificity of the commercial 

AnxA2 antibody, as indicated by the absence of signal in tissue from AnxA2 deficient mice 

(Ling et al., 2004) compared to WT littermates (Fig.7A,B). Then, we measured AnxA2 

expression and observed it in 30.1 ± 1% of mouse DRG neurons, of which 66 ± 1.7% showed 

coexpression with Peripherin (Fig.7A). This enrichment of AnxA2 in a subpopulation of small 

non-myelinated neurons is consistent with previous reports (Naciff et al., 1996). Since AnxA2 

binds to TRPA1, the two proteins should be coexpressed in sensory neurons. For 

colocalization studies we had to obviate to the problem that both TRPA1 and AnxA2 

antibodies had been raised in the same species. For this reason we shifted to using a mouse 

AnxA2 antibody in rat tissue.  In rat DRGs AnxA2 showed an expression profile very similar to 

the mouse counterpart, with 27 ± 0.7% positive neurons, of which 68 ± 1.9% coexpressed 

Peripherin (Fig.7C). Only a small fraction (5 ± 0.5%) showed colocalization with NF200, 

marker for big myelinated neurons (Fig.7D). Importantly, TRPA1 expression was comparable 

with previous reports using the same antibodies (Schmidt et al., 2009) or different ones 

(Bautista et al., 2005) and could be detected in 16.2 ± 1.5% of rat DRG neurons. In line with 

our hypothesis, the costaining with AnxA2 revealed an interesting degree of colocalization in 

rat DRGs, with 53 ± 1.4% of TRPA1-positive neurons also expressing AnxA2 (Fig.7E). It is 

relevant to note that the actual degree of coexpression cannot be unambiguously 

determined, as these TRPA1 antibodies have been shown to preferentially label neurons 

with relatively high TRPA1 expression (Huang et al., 2012; Schmidt et al., 2009). These data 

altogether demonstrate that AnxA2 is expressed in a nociceptive subpopulation of DRG 

neurons, where it shows relevant colocalization with TRPA1. 
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Figure 7. AnxA2 is coexpressed with TRPA1 in nociceptors.  

A, B, Representative images of immunohistochemistry on cryosections of mouse DRG colabeled for AnxA2 and 

Peripherin in WT mice (A) and AnxA2-/- (B) littermates; ≥3000 neurons analyzed; Scale bar, 20 µm. C–E, 

Representative images of immunohistochemistry on cryosections of rat DRG colabeled for AnxA2 and 

Peripherin, NF200, or TRPA1, respectively; ≥5000 neurons analyzed. White arrows indicate examples of 

neurons coexpressing AnxA2 and TRPA1. Scale bar, 40µm. From (Avenali et al., 2014). 
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3.1.5 AnxA2-/- mice exhibit increased TRPA1 expression in sensory neurons 

Probably the most commonly used and direct way to get insights into the role and function 

of a protein is via a loss of function approach and investigating the resulting phenotype. In 

this line we aimed to determine the consequences of AnxA2 deletion for DRG neurons, 

therefore, we assessed potential variations in different neuronal subpopulations by 

measuring the expression of specific markers. Immunohistochemistry in DRG cryosections 

revealed an interesting increase in the number of TRPA1-positive neurons in AnxA2-/- mice 

compared with WT littermates (WT: 8.1 ± 0.4%; AnxA2-/-: 13.6 ± 0.5%; Fig.8). At the same 

time however, we could not detect any significant change for either neurofilament 

characterizing myelinated and non-myelinated neurons, namely NF200 and Peripherin 

(Fig.8). No appreciable difference was measured also in the number of cells immunoreactive 

for TRPV1, the heat and capsaicin receptor that, as already discussed, is highly coexpressed 

and in many ways related to TRPA1 (Fig.8). Noteworthy, the values we obtained in terms of 

TRPA1 expression in DRGs of naïve mice are in line with what reported by other publications 

using the same antibodies (Huang et al., 2012; Schmidt et al., 2009). In conclusion, these 

data suggest a specific increase of TRPA1-positive cells in DRG neurons from AnxA2-/- mice, 

without general alteration in the expression of other markers. Additionally, qPCR-based 

measurement of TRPA1 mRNA levels did not show any difference between genotypes (data 

not shown), suggesting an alternative mechanism, potentially post-translational, at the base 

of the difference in TRPA1 label in sensory neurons from AnxA2-/- mice.  
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Figure 8. AnxA2-/- mice exhibit more TRPA1-

positive DRG neurons.  

A,B, Representative images (A) and 

quantification (B) of immunohistochemistry on 

DRG cryosections from AnxA2-/- mice and WT 

littermates labeled for TRPA1, Peripherin, 

NF200, and TRPV1 as indicated; ≥3000 

neurons analyzed; p=0.0009. Student’s t test. 

Scale bar, 20µm. All data are represented as 

mean ± SEM. From (Avenali et al., 2014). 

 

 

 

 

3.1.6 TRPA1 responses are sensitized in a subset of AnxA2-/- sensory neurons 

The interpretation of the immunohistochemistry analysis results showing more TRPA1-

positive neurons in AnxA2-/- mice is open to different interpretations: on the one hand, it 

could be the result of de novo expression of TRPA1 in additional neurons compared to WT; 

on the other hand, it could be due to an increase of TRPA1 levels in neurons already 

expressing the channel. In the latter case in fact, this increase would facilitate the detection 

by TRPA1 antibodies and result in a higher number of measured immunoreactive cells. In 

addition, as previously mentioned, our TRPA1 antibodies have already been described to 

exhibit limited sensitivity and therefore preferentially label neurons with high TRPA1 

abundance (Huang et al., 2012; Schmidt et al., 2009). To address this dilemma, we turned to 

an antibody-independent approach to investigate TRPA1 channels activity: ratiometric 

calcium imaging in cultured sensory neurons. This technique allows the study of the 
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dynamics of intracellular calcium levels and in our case can be exploited to monitor the 

activity of calcium-permeable channels (like TRPA1 and TRPV1) in response to specific stimuli 

(Bautista et al., 2006; Schmidt et al., 2009). In our case we used mustard oil (MO), a TRPA1 

specific agonist (Bautista et al., 2006; Jordt et al., 2004), to compare the consequences of 

TRPA1 activation between AnxA2-/- mice and WT littermates. Within DRG neurons, TRPA1 

expression varies among cells and spinal levels, and it is quite heterogeneous (Schmidt et al., 

2009; Vandewauw et al., 2013), therefore we decided to stimulate the cells with different 

concentrations of MO: 1) a low or subsaturating concentration (12 µM) able to activate only 

neurons showing high TRPA1 expression; 2) a saturating one (50 µM) that will activate all 

TRPA1-expressing cells, and therefore allow quantitative comparison of the total population 

between genotypes.  As figure 9 shows, we measured a significant increase in the number of 

neurons responding to the subsaturating MO pulse in AnxA2-/- cultures respect to WT. At the 

same time however, the number of responders to the saturating pulse of MO, activating all 

TRPA1 expressing cells, was not different between genotypes. These data show that in 

AnxA2-/- DRGs there is a neuronal subpopulation that is more responsive to MO, while the 

total population of TRPA1-expressing cells is not changed respect to WT. Moreover, we 

observed that cellular responses to capsaicin, a TRPV1-specific agonist, are not changed 

between genotypes. This, together with the facts that the amplitude of responses to the 

stimuli (Fig.9D) are not affected, and that TRPA1 desensitization mediated by MO 

(homologous) or capsaicin (heterologous) are unchanged (data not shown), suggest that 

deletion of AnxA2 might have a specific effect on TRPA1 in a subpopulation of nociceptive 

neurons. To further support these findings, and confirm that this effect was specifically 

dependent on AnxA2, we performed a rescue experiment to re-establish AnxA2 function in 

deficient neurons. To this end, we transfected AnxA2-/- DRG cultures with mAnxA2 or control 

plasmid (Mock). Strikingly, AnxA2 re-expression restored the WT phenotype in AnxA2-/- DRG 

cultures, meaning the number of responders to the subsaturating pulse of MO was now 

comparable to WT, and at the same time the responsiveness to the saturating MO 

concentration or capsaicin (Fig. 9E) and the response amplitudes were similar between 

conditions (Fig. 9F). Together these results support a role of AnxA2 in the modulation of 

TRPA1 channels in a subpopulation of nociceptive neurons, while the total prevalence of 

TRPA1-expressing cells in not altered. 
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Figure 9. TRPA1 responses are sensitized in a subset of AnxA2-/- sensory neurons.  

A–F, AnxA2-/- DRG cultures are more sensitive to low MO concentrations as measured by ratiometric calcium 

imaging. A, The graph depicts the percentage of responders to 12 µM, 25 µM, or 50 µM MO (12 µM, AnxA2-/-: 

21.5 ± 1.5 compared with WT: 11.4 ± 1.7%, p=0.0008, Student’s t test; n≥500 neurons for each MO 

concentration from N=3 independent cultures each). B, Representative averaged traces from all neurons in one 

coverslip (including responders and non-responders to applied stimuli) upon application of indicated stimuli. C, 

Quantification of the percentage of neurons responding to each stimulus (MO; 12 µM, see data in A; 50 µM, 

AnxA2-/-: 34.5 ± 1.9 compared with WT: 32 ± 2.7%, n.s.; Cap 0.5 µM, AnxA2-/-: 22.6 ± 2.8 compared with WT: 

19.9 ± 2.9%, n.s.; ≥500 neurons per condition, N=3 independent cultures each). D, Quantification of response 

amplitudes to each stimulus (measured as peak increase over baseline). E, F, Quantification of the percentage 

of neurons responding to each stimulus (E) and the response amplitudes (F ) in Mock-transfected WT neurons 

(WT Mock), Mock-transfected AnxA2-/-neurons (AnxA2-/- Mock), and AnxA2-/- neurons transfected with AnxA2 

cDNA (AnxA2-/- rescue). Twelve micromolar MO (WT Mock: 17.1 ± 2.2, AnxA2-/- Mock: 25.9 ± 3.4, AnxA2-/-

rescue: 12.4 ± 2.8; *p0.05, **p0.01, ANOVA with Newman–Keuls test; ≥250 neurons per condition; N=3 

independent cultures each). Cap, capsaicin. From (Avenali et al., 2014). 

 

 

 

3.1.7 AnxA2 limits TRPA1 plasma membrane expression in sensory neurons 

In AnxA2-/- DRG cultures more neurons responded to the low MO pulse respect to WT, but 

the response to the high MO concentration was unchanged. Considering the heterogeneous 

expression of TRPA1 in DRG, this outcome could reflect an increase in the number of 
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channels at the plasma membrane in some neurons, which would explain the enhanced 

responsiveness to MO. At full-blowing high saturating concentration of MO, all TRPA1-

expressing cells would be responding to the stimulation, thereby masking this difference.  To 

test this hypothesis we aimed to identify and quantify selectively TRPA1 channels at the cell 

surface of sensory neurons by live labeling TRPA1 with specific antibodies targeting 

extracellular epitopes of the channel. Unfortunately these very same reagents are not 

suitable to effectively label the low abundant native TRPA1 population in DRG cultures under 

normal conditions. To overcome this technical problem, we first nucleofected WT and 

AnxA2-/- DRG neuron cultures with recombinant mTRPA1. Live labeling results showed that, 

in line with our hypothesis, AnxA2-/- neurons displayed an increase of signal at the plasma 

membrane, indicating more TRPA1 channels at the cell surface (Fig.10A). Very nicely, this 

effect could be rescued by re-expression of AnxA2 in deficient neurons, which restored the 

membrane signal to a level comparable to WT cultures (Fig.10B). In further support to these 

data, we performed whole cell patch clamp recordings to measure the entity of TRPA1-

mediated currents upon stimulation with the specific agonist MO. Indeed, we measured 

bigger currents in AnxA2-/- DRG neurons compared with WT neurons (again cultures were 

nucleofected with recombinant mTRPA1 to keep same conditions of live labeling 

experiments). Time constants of activation and deactivation did not seem to be affected and 

showed similar values between genotypes (Fig.10C,D). Altogether these data support a 

model whereby AnxA2 limits TRPA1 expression at the plasma membrane of sensory neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. AnxA2 restricts TRPA1 membrane levels in cultured DRG neurons.  

A, B, DRG cultures from AnxA2-/-mice and WT littermates were nucleofected with mTRPA1 (top) or 

conucleofected with AnxA2 cDNA (AnxA2-/- rescue; control: AnxA2-/- Mock; bottom) and subjected to live 
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labeling to selectively visualize TRPA1 channels at the plasma membrane. Representative images (A) and 

quantification (B) of live labeling (TRPA1 nucleofection: p=0.0004, Mann–Whitney test; n=50 cells per 

genotype, N=5 independent cultures each; AnxA2/Mock conucleofection: p=0.0115, Mann–Whitney test; n=40 

cells per genotype, N=4 independent cultures each). Scale bar, 10 µm. All data are represented as mean ± SEM. 

C, Representative whole-cell current traces of MO-gated currents at -70 mV in DRG neurons nucleofected with 

mTRPA1 (black trace: WT; gray trace: AnxA2-/-). The upper bar indicates the addition of 5 µM MO to the 

recording chamber. D, Left, Average ± SEM of current density after MO application measured at the current 

peak in each genotype (p=0.007, Student’s t test; n>12 neurons; N=3 cultures each). Right, Time constants of 

MO-induced activation and inactivation measured by a mono-exponential fit to the currents obtained at -70 

mV for each genotype (n.s.; n>12 neurons; N=3 cultures each). Electrophysiology recordings were performed 

by Pratibha Narayanan. From (Avenali et al., 2014). 

 

 

 

3.1.8 TRPA1-dependent nocifensive behaviors are enhanced in AnxA2-/- mice 

Previous studies have reported a correlation between TRPA1 expression in sensory neurons 

and the degree of nocifensive responses in certain animal pain models (Obata et al., 2005; 

Schmidt et al., 2009; Zhou et al., 2013). Therefore, we asked whether the regulation of 

TRPA1 membrane level by AnxA2 has functional consequences for nociceptive signaling in 

vivo.  In this line we investigated the result of AnxA2 knock-down for the response of mice to 

acute mechanical, thermal and chemical stimulation. Mechanical sensitivity was measured 

using a dynamic plantar aesthesiometer, which applies a ramp of defined force to the mouse 

hindpaw by means of a blunt probe. The time from application of the stimulus to the 

reaction of the animal was recorded, and, as shown in figure 11A resulted in no significant 

difference between WT and AnxA2-/- littermates. Thermal sensitivity was assessed in a 

similar way, but using a Hargreaves plantar test apparatus which uses an infrared source of 

heat in place of the mechanical probe. Nonetheless this test showed again similar responses 

in mice of both genotypes (Fig.11A). Next, we tested the mouse response to selective TRPA1 

activation, by injecting the animal with a solution of the specific agonist MO into the plantar 

surface of the left hindpaw, and assessed the resulting nocifensive response. Specifically, this 

means observing the animal in a certain time window following the injection (10 minutes in 

this case) and quantifying the time the animal spends licking, flicking or lifting the injected 

paw as a result of the perceived pain. Very interestingly and in line with the in vitro data, 

AnxA2-/- mice showed to be more sensitive to MO injection, resulting in a significant increase 

in nocifensive behavior respect to WT littermates (Fig.11B). Notably, this effect was 

dependent on the concentration of MO injected, with high MO concentrations (60 mM) 

eliciting equally pronounced nocifensive responses in AnxA2-/- and WT mice (Fig.11B). At this 

high concentration we observed strong and long-lasting nocifensive behavior also in WT 

mice, which can be related to what we observed in calcium imaging studies, where full 

activation of all cells expressing TRPA1 would potentially mask the phenotype observed at 

lower concentrations. In fact, stimulation with saturating MO concentrations would cause all 

TRPA1-expressing neurons, independently of TRPA1 abundance, to be strongly activated and 

consequently result in similar neuronal and behavioral responses in WT and AnxA2-/- mice, as 
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indicated by our results. We also probed TRPV1-mediated nociception performing injections 

of the respective specific agonist capsaicin and, importantly, found no difference in the 

elicited nocifensive response between genotypes (Fig.11B). Several studies demonstrated a 

contribution of TRPA1 to specific hypersensitivity states in conditions of inflammatory pain 

(Bautista et al., 2006; da Costa et al., 2010; del Camino et al., 2010; Obata et al., 2005; Petrus 

et al., 2007; Zhou et al., 2013). Therefore, we investigated the possible impact of AnxA2 on 

TRPA1 function during inflammatory pain using the well-established Complete Freund’s 

Adjuvant (CFA) model in mice (da Costa et al., 2010; Obata et al., 2005; Petrus et al., 2007; 

Zhou et al., 2013). In this model CFA is injected into the plantar surface of one of the mouse 

hindpaws and leads to long-lasting inflammation and development of hypersensitivity to 

thermal (to hot and cold temperatures) and mechanical stimuli. At least in the first 48 h 

following the injection, TRPA1 has been shown to contribute to cold hypersensitivity (da 

Costa et al., 2010; Obata et al., 2005), while it is dispensable for heat hypersensitivity 

(Bautista et al., 2006; Petrus et al., 2007) and its role for innocuous mechanical 

hypersensitivity is still debated (da Costa et al., 2010; Petrus et al., 2007; Zhou et al., 2013). 

As expected CFA injection reduced the withdrawal latency of the animals on a cold plate, 

indication of cold allodynia; however, consistent with the view of AnxA2 modulating TRPA1 

activity, AnxA2-/- mice showed enhanced hypersensitivity to cold respect to WT littermates, 

indicated by the even lower latency times recorded (Fig.11C).  In addition, figure 11D shows 

how CFA induced allodynia in the mice also in response to heat and mechanical stimulation, 

but in this case to a similar degree in both genotypes. Contralateral (non-injected) paws 

were not affected and did not develop hypersensitivity after CFA injection (Fig.11D). These 

results clearly demonstrate that AnxA2 modulation of TRPA1 extends to the in vivo context, 

where specifically TRPA1-dependent nocifensive behavior is affected in mice. 
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Figure 11. Enhanced TRPA1-dependent nocifensive behaviors in AnxA2-/- mice.  

A, Quantification of the latency of withdrawal of both hindpaws when WT mice and AnxA2-/- littermates were 

subjected to radiant heat (Heat) or punctuate mechanical pressure (Heat: n=10 mice each; Mechanical: n=9 

mice each; n.s., Student’s t test). B, Quantification of the response duration of acute nocifensive behavior over 

10 minutes after injection of different concentrations of MO (10 mM: WT 11.8 ± 1.9 s compared with AnxA2-/- 

18.5 ± 1.6 s, n=10 mice each; p=0.0126, Student’s t test; 30 mM:  59.9 ± 15.9 s, n=8 mice compared with AnxA2-

/- 177.4 ± 28.5 s, n=11 mice; p=0.0009, Student’s t test; 60 mM: WT compared with AnxA2-/-, n=7 mice each; 

p=0.5064, n.s., Student’s t test), and after injection of 3 µg Cap (WT compared with AnxA2-/-; n=9 mice each; 

p=0.4040, n.s., Student’s t test). C, D, WT mice and AnxA2-/- littermates were unilaterally injected with CFA to 

elicit inflammatory pain. C, Quantification of the latency of nocifensive/escaping behaviors when mice were 

placed on a cold plate 24 h after vehicle injection (V; n=8 mice each; n.s.) and CFA-injection (WT CFA: 165.7 ± 

17.1 s, n=15 mice; AnxA2-/- CFA: 75.2 ± 19.3 s, n=13 mice; **<p0.01 comparing values of CFA of the injected 

paw between genotypes; #<p0.05 and ###p<0.001 comparing values of V and CFA of the injected paw within 

each genotype, ANOVA with Bonferroni’s multiple-comparison test). D, Quantification of the latency of 

withdrawal of the injected hindpaw and non-injected hindpaw when mice were subjected to radiant heat (left) 

or punctuate mechanical pressure (right) after vehicle injection (n=8 mice each; n.s.) and CFA-injection (Heat: 

n=5 mice each; n.s. between genotypes; Mechanical: n=9 mice each, n.s. between genotypes; ####p<0.0001 

comparing values of V and CFA of the injected paw within each genotype, ANOVA with Bonferroni’s multiple-

comparison test). Non-injected paws did not develop hypersensitivity after CFA and did not differ between 

genotypes. All data are represented as mean ± SEM. Cap, capsaicin. From (Avenali et al., 2014). 

 

 



56 

 

3.2  TRPA1 interactome undergoes dramatic changes during 

inflammatory pain 

3.2.1 Identification of TRPA1-protein complexes in different conditions 

The identification and characterization of AnxA2 as a protein interacting with TRPA1 and 

modulating its activity supports our hypothesis that protein-protein interactions are indeed 

important determinants of TRPA1 function. In addition, this work paves the way for a more 

thorough investigation of the potential dynamic changes in TRPA1-associated protein 

complexes in different pain states. We therefore aimed to identify how different interacting 

partners and/or quantitative changes within the same complex could contribute to the 

modulation of TRPA1 channels function in specific pain conditions. This multi-step approach 

starts with the careful selection of animal pain models, as the basis for performing the 

interactomics screening. Numerous pain paradigms modeling features of clinically relevant 

conditions (e.g. inflammatory and neuropathic pain) have been developed for mouse and rat 

studies. As previously discussed TRPA1 has been reported in several studies to contribute to 

the modulation of hypersensitivity during inflammatory pain (Bautista et al., 2006; da Costa 

et al., 2010; del Camino et al., 2010; Obata et al., 2005; Petrus et al., 2007; Zhou et al., 2013); 

in addition to the results we obtained supporting TRPA1-involvement in CFA-induced 

allodynia (paragraph 3.1.8), these considerations led us to choose this animal pain model for 

the interactomics screening (Fig.12A). In this line mice were subjected to CFA injection into 

the plantar surface of one hindpaw, and the development of inflammation was controlled. 

The hypersensitivity that accompanies this inflammatory state peaks at 24 h (as measured by 

dynamic planar aesthesiometer at different time points), at which time the animals were 

sacrificed for tissue collection. Lumbar DRG containing the cell bodies of neurons innervating 

the ipsilateral paw (L1 to L5) were dissected and whole cell lysates obtained by detergent 

solubilization. Native TRPA1-protein complexes were harvested by immuno-affinity 

purification using TRPA1-specific antibodies, processed as described in detail in the methods 

section, and submitted to state-of-the-art quantitative mass spectromertry analysis. DRG 

from mice subjected to vehicle injection (VEH) were used as control. As a further control for 

potential unspecific binding of some proteins in the immunoprecipitation step, the same 

procedure was performed using tissue from TRPA1-/- mice, where the bait is therefore 

absent, and which results will be used in the analysis step (described below) to remove false-

positive hits. The data-independent acquisition (DIA) proteomics approach we chose for 

sample analysis has several advantages over the so-called “shotgun mass spectrometry“, 

namely more depth of acquisition and significantly reduced under-sampling.  In addition, we 

aimed at not only qualitatively investigating our samples, but also identify quantitative 

changes in TRPA1-protein complexes, which requires the choice of an appropriate 

quantification method. We chose label-free intensity-based quantification that, in 

comparison to techniques based on stable isotope labeling, presents major advantages as 

low sample demand, no costs for labeling reagents, and a high coverage of both, the 

individual protein sequences and the overall proteome. One factor of utmost importance for 
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reliable label-free quantification is sample preparation, which has to be accurately 

performed in order to minimize variability, as the samples are not mixed at any time (in 

contrast to approaches based on stable isotope labeling). To address this issue, sample 

preparation was done in parallel for all experimental conditions within each biological 

replicate. Subsequently, peptide intensity-based quantification was performed according to 

the so-called Top3 method, where each in-gel digest is spiked with a control digest of known 

concentration and analyzed by LC-MS in the data-independent acquisition mode. This whole 

procedure was validated by the consistent identification of endogenous TRPA1 channels in 

both VEH and CFA samples, whereas the samples from TRPA1-/- animals were void of it 

(Fig.12B). Three separate biological replicates were completed. 

 

A 

 
  

B                                                                 

 
 

 

 

Figure 12. Identification of TRPA1-protein complexes during inflammatory pain 

A, Representation of the experimental workflow followed for the interactomics screening of TRPA1-protein 

complexes during inflammatory pain. B, The table depicts the MS/MS results (identified peptides and sequence 

coverage) of three independent TRPA1-affinity purifications and corresponding controls. C, Cartoon 

representing an idealized outcome of the study, with TRPA1 associated with different binding partners in the 

different conditions. Three biological replicates were performed. Mass spectrometry analysis was performed in 

collaboration with Olaf Jahn (Proteomics Group, Max-Planck Institute of Experimental Medicine, Göttingen). 

Figures adapted from (Aebersold and Mann, 2003) and www.siemenslab.de/research_TRP.html. 
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3.2.2 Mass spectrometry screening reveals significant changes in TRPA1-protein 

complexes during inflammatory pain 

Mass spectrometry is an extremely powerful tool able to get plentiful information about the 

composition of a sample and can generate long lists of identified proteins, but proper and 

accurate analysis is essential for robust reliability of the data. In order to get datasets of 

proteins with strong evidence of binding to the bait, we decided to set stringent criteria for 

the analysis of the mass spectrometry results. Only proteins fulfilling both the following 

criteria were considered as high-confidence TRPA1-interacting partners for further analysis: 

1) Detected in each of the three biological replicates; 

2) In each replicate, identified with amount at least three times greater than what 

found in the relative TRPA1 KO sample. 

We then classified the proteins fulfilling the criteria above as: 

 Only identified in CFA: if fulfilling above criteria in three replicates in CFA samples 

only; 

 Only identified in VEH: if fulfilling above criteria in three replicates in VEH samples 

only; 

 Identified in both: if fulfilling above criteria in three replicates in both VEH and CFA 

samples. 

In this way we obtained a list of selected proteins binding TRPA1 specifically in the context of 

inflammatory pain (CFA model) that we could differentiate from the control condition. These 

findings revealed a dramatic alteration of TRPA1 interactome, as shown in figure 13A. The 

Venn diagram shows very little overlap between the two conditions (VEH and CFA) indicating 

that TRPA1 interactome critically reshapes, with many binding partners substituted by 

others that are likely to modulate TRPA1 activity and function in specific ways. A complete 

list of all selected proteins can be found in Appendix. In order to get a better overview and 

more information on the obtained data, we performed a gene ontology (GO) analysis using 

the DAVID functional annotation tool to assign genes with their affiliate GO terms and to 

order them by enrichment (Huang da et al., 2009a, b). Figure 13B shows protein ontology 

categories for “biological process (BP)” and “cellular component (CC)” represented by 

proteins identified in the “Only in CFA” dataset. GO analysis for the “Only in VEH” dataset is 

not reported as it did not show any significant enrichment. 
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Figure 13. TRPA1 interactome undergoes dramatic changes during inflammatory pain 

A, Venn-diagram shows the number of identified candidates in either condition. All considered candidates fulfill 

the following criteria: >3x enriched compared to KO in all replicates; detected in all 3 replicates in each 

respective condition. B, Gene ontology (GO) analysis using the DAVID functional annotation tool shows 

significantly enriched (p<0.05) categories for “biological process (BP)” and “cellular component (CC) 

represented by proteins identified in the “Only in CFA” dataset. 

 

 

 

Identifying known and predicted associations among proteins of the same dataset is a 
relevant piece of information and can be visually represented by STRING (Jensen et al., 2009) 
association networks as in figure 14. 
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Figure 14. STRING association networks of single datasets 

STRING confidence network views are based on known and predicted functional associations between proteins 
of the datasets “Only in VEH” (A) and “Only in CFA” (B). 
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A common way to visualize the large datasets generated by quantitative proteomics 

experiments is using the so-called volcano plots, which display the distribution of identified 

proteins according to the p-value (-log10 transformed) and the fold change (log2 

transformed). Analyzing volcano plots allows to easily highlight hits that show large fold 

changes and low p-values, and can therefore be helpful in the selection of high priority 

candidates for follow-up and validation (Oveland et al., 2015). Therefore, in parallel to our 

analysis based on the above-mentioned criteria, we found worthwhile to try to visualize our 

complete dataset in this way, relating the p-value of the comparison of CFA and VEH 

conditions with the respective fold change. For our specific dataset, the realization of such a 

kind of plot intrinsically implies that all proteins have been detected in the three biological 

replicates in both conditions. Since it was not the case for many, we had to obviate to this 

issue by setting a value of 0.001 (one order of magnitude lower than the limit considered for 

detection) to all non-identifications. The graph obtained (Fig.15) displays each single protein 

identified in the three biological replicates as a spot which coordinates are derived from the 

fold change of CFA respect to vehicle conditions, and the level of significance (p-value). In 

order to identify the most interesting candidates we defined arbitrary cut-off values as: 

(1) CFA/VEH ratio ≥1.3 (corresponding to log2 CFA/VEH ≥ 0.38; red vertical line): the 

protein shows enrichment in CFA. 

(2) CFA/VEH ratio ≤0.7 (corresponding to log2 CFA/VEH ≤ -0.51; cyan vertical line): the 

protein shows enrichment in VEH. 

We can observe that an important number of protein showed enrichment in either 

condition, and if we then relate this information to the p-value (p<0.05; -log p-value > 1.30; 

horizontal dashed line), it is clear that a fraction reaches statistical significance (39 hits). If 

we then compared this fraction with the results of our previous analysis, we clearly see that 

the overlap is very limited. In fact only 4 proteins out of 55 identified in first analysis (ONLY 

in VEH + ONLY IN CFA, see fig.13A), the ones shown as red spots in figure in figures 15, show 

a significantly low p-value (p<0.05). 

  

 
Figure 15. Volcano plot of quantitative proteomics data 

Each protein identified in the three biological replicates is represented by a single spot. On the Y axis is 

reported the –log10 of the comparison between CFA and VEH values from the single replicates. On the X axis is 
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reported the log2 of the ratio between mean CFA and mean VEH, each calculated from the average of the three 

biological replicates. A value of 0.001 (one order of magnitude lower than the limit considered for detection) 

was set to all non-identifications. The red vertical line represents a value of 0.38 (corresponding to CFA/VEH 

ratio 1.3) and the cyan vertical line a value of -0.51 (corresponding to CFA/VEH ratio 0.7). The horizontal dashed 

line represents a value of 1.3 (corresponding to p-value 0.05). Red spots indicate hits that show significant 

regulation according to the volcano plot, and also fulfill criteria set in previous analysis (fig.13A). The cyan spot 

represents a hit that shows significant regulation according to the volcano plot, but does not fulfill criteria set 

in previous analysis (fig.13A). 

 

This shows the limitations of using such a way of analyzing our dataset. In fact, the p-value 

can easily become not significant where it happens that data present quite some variability, 

or a protein fails to be identified in certain conditions. This can indeed be the case for the 

dataset generated by our experiment, where sample preparation is long and complex, and 

even involves in vivo behavioral paradigms. Because of this intrinsic variability, a relevant 

part of the proteins were in fact identified only in some conditions. Theoretically, we could 

avoid applying the 0,001 value to all non-identifications and measure only the proteins 

identified in all three biological replicates in both conditions, but in this way we would end 

up with only a fraction of the hits and not a faithful representation of the data in our hands. 

This suggests that for the visualization of our dataset the use of a p-value would have only 

limited benefit. In addition, a visualization of the data in this way results in the loss of a 

crucial piece of information that was instead included in our previous analysis, which is the 

TRPA1 KO (KO) condition. This is reflected by the fact that all the other proteins in figure 15 

that show p-value lower than 0.05 (35 out of 39), and so look potentially interesting from the 

volcano plot, do not fulfil the criteria to be selected in our previous analysis. One example is 

the candidate represented by the cyan spot in figure 15, which indeed shows a significant 

difference between CFA and VEH conditions, but a suboptimal profile when related to the 

TRPA1 KO. We could therefore try to incorporate this piece of information for either VEH or 

CFA conditions, with the ratio CFA/VEH (or the reciprocal) showing enrichment, both 

reported as log2 of fold changes for better visualization (Fig.16). 

 

A             B 

 
Figure 16. Alternative scatter plots of quantitative proteomics data 

A,B, Each protein identified in the three biological replicates is represented by a single spot. On the Y axis is 

reported the log2 of the ratio between mean CFA and mean KO (A) or mean VEH and KO (B). On the X axis is 
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reported the log2 of the ratio between mean CFA and mean VEH (A) or the reciprocal (B). All ratio values were 

calculated from the average of the three biological replicates. A value of 0.001 (one order of magnitude lower 

than the limit considered for detection) was set to all non-identifications. The red vertical line represents a 

value of 0.38 (corresponding to CFA/VEH or VEH/CFA ratio 1.3). The horizontal dashed line represents a value 

of 1.58 (corresponding to CFA/KO or VEH/KO ratio 3). The red spot represents a hit that show relevant 

regulation according to this plot, but does not fulfill criteria set in previous analysis (fig.13A). 

 

 

To define a protein as identified only in the respective condition (VEH or CFA) but not in KO, 

an arbitrary cut-off was set: 

(1) CFA/KO ratio ≥ 3 corresponding to log2 CFA/KO ≥ 1.58; horizontal dashed line): only 

in CFA. 

(2) VEH/KO ratio ≥ 3 corresponding to log2 CFA/KO ≥ 1.58; horizontal dashed line): only 

in VEH. 

These plots show a consistent number of proteins that present enrichment in either 

condition (ratio CFA/VEH or Veh/CFA ≥1.3; red line) and were significantly identified in the 

respective condition relative to TRPA1 KO.  However, these plots present some issues. In fact 

the ratio values displayed represent mean values calculated as the average of the amount 

identified in each of the three biological replicates (again with 0.001 in case of non-

detection). In this way a protein like the one represented by the red spot in figure 16A would 

seem interesting, but instead looking more carefully into raw values we realize that it has 

been identified only once in CFA (in a relatively high amount) which does not support it as a 

priority hit in our case. In this way we are in fact not appreciating the information that would 

come from observing each single replicate, as we did in first analysis. While there is not a 

perfect way to analyze and display data like these, we can gather information from them all 

and use it in combination for the best possible selection of high priority candidates for 

follow-up and validation. 

 

 

 

3.3 NIPSNAP1 and Nocistatin modulate TRPA1 channels 

Most experiments were performed by Master student Oli Abate Fulas under the author´s 

teaching and supervision and are summarized in Oli´s Master thesis (indicated in every figure 

where applicable). 

 

3.3.1 NIPSNAP1 is abundantly expressed in nociceptors of mouse DRGs 

In a separate set of experiments we focused our attention on a protein called 4-

Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 

(NIPSNAP1), which function is largely still unknown. In a screening for expression profile of 

several proteins in mouse DRGs, interestingly NIPSNAP1 antibody detected expression in 

42.2 ± 1.8% of sensory neurons. What really stood out was the degree of colocalization we 

measured with a well-known marker of small-diameter non-myelinated nociceptors, namely 
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the intermediate neurofilament Peripherin. In fact, 64.4 ± 1.4% of Peripherin-positive 

sensory neurons showed NIPSNAP1 expression (Fig.17), which could potentially suggest a 

still-unknown role of this protein in a subset of mouse nociceptors.  

 

 

 

 
 Figure 17. NIPSNAP1 is abundantly expressed in 
nociceptive neurons of mouse DRGs. 
A, B, Representative images (A) and quantification (B) 
of Immunohistochemistry on cryosections of mouse 
DRG colabeled for NIPSNAP1 and Peripherin. Scale bar, 
50 μm. ≥12000 neurons analyzed. All data are 
represented as mean ± SEM. Data from experiments 
performed by Master student Oli Abate Fulas under 
the author’s supervision. Figure A adapted from Oli’s 
Master thesis. 

 
  

 
To validate the results of the immunohistochemical assays it was of primary importance 

testing the specificity of the antibody used to detect NIPSNAP1; in this line we transfected 

HEK293T cells with a vector expressing a myc-tagged construct of NIPSNAP1 and then 

coimmunostained the cells with antibodies against both NIPSNAP1 and myc. The stainings 

showed a beautiful colocalization of the signal from the two antibodies, confirming that this 

NIPSNAP1 antibody specifically recognizes its target protein (Fig.18). 
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Figure 18. Validation of NIPSNAP1 antibody specificity 
Immunocytochemistry of NIPSNAP1 in HEK293T cells transfected with a vector expressing a myc-tagged 
construct of NIPSNAP1. The signals from NIPSNAP1 and myc antibodies overlap perfectly while non-transfected 
cells do not show any NIPSNAP1 signal. These results validate the specificity of the antibody against NIPSNAP1. 
Scale bar, 10 µm. Experiments were performed by Master student Oli Abate Fulas under the author’s 
supervision. 

 
 
 

3.3.2 Overexpression of NIPSNAP1 decreases TRPA1 expression in sensory 

neurons 

The role of NIPSNAP1 in a nociceptive subset of mouse DRG neurons can be manifold. 

Despite the handful of studies on NIPSNAP proteins and their potential roles, there is recent 

evidence indicating that NIPSNAP1 associates with TRPV6 channels in mouse liver cells, 

which results in a dramatic inhibition of the channel function, with currents virtually 

abolished  (Schoeber et al., 2008). NIPSNAP2, another member of the NIPSNAP family has 

instead been shown to modulate L-type Ca(2+) channels, and downstream CREB signaling, in 

a neuronal cell line (Brittain et al., 2012). These studies potentially suggest a role for the 

proteins of the NIPSNAP family in the regulation of ion channels. As already discussed, 

TRPA1 channels play an essential role as primary detectors of noxious stimuli in primary 

afferent nociceptors, where they are highly enriched (Patapoutian et al., 2009; Story et al., 

2003). Therefore it was interesting to note that the enriched expression of NIPSNAP1 in a 

subpopulation of small non-myelinated nociceptive neurons is likely to match, at least to a 

certain extent, the subset which expresses TRPA1. Unfortunately direct colocalization 

studies of the two proteins were not possible as both NIPSNAP1 and TRPA1 antibodies were 

raised in the same species. Hence we first aimed at investigating the consequences of 

NIPSNAP1 protein modulation for TRPA1 expression. The most common way to test the 

function of a protein is via a loss of function approach and knocking down its expression. 

However, different members of the NIPSNAP family are expressed in the nervous system 

(Buechler et al., 2004; Nautiyal et al., 2010; Schoeber et al., 2008; Tummala et al., 2010), one 

example being NIPSNAP2, which shares 75% homology with NIPSNAP1 (Nautiyal et al., 2010) 

and which, as mentioned,  has already been reported to modulate ion channels (Brittain et 

al., 2012). This concerned us about the possibility that, following NIPSNAP1 knock-down, 

compensatory mechanisms by other family members could mask a potential phenotype. For 

this reason we preferred to use a gain of function approach and tested the effect of 
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NIPSNAP1 overexpression for TRPA1 protein expression in sensory neurons via 

immunocytochemistry. Currently available TRPA1 antibodies are not suitable to effectively 

label the low-abundant native TRPA1 population in DRG cultures under normal conditions, 

therefore we nucleofected cultures of both genotypes with recombinant mTRPA1 and either 

NIPSNAP1 or empty vector. Very interestingly we measured a significant decrease in the 

number of TRPA1-immunoreactive cells in cultures overexpressing NIPSNAP1 (Mock: 35.7 ± 

1.6%; NIPSNAP1 OE: 28.4 ± 0.8%) as shown in figure 19. Importantly, this effect was not just 

an artifact due to saturation of the cell’s translational machinery upon NIPSNAP1 

overexpression, as the expression level of a cotransfected GFP marker was not affected. 

These data suggest a potential intriguing role of NIPSNAP1 in modulating TRPA1 expression 

in sensory neurons.  

 

 

 
 

 
 
Figure 19. DRG neuron cultures show less TRPA1-positive cells upon NIPSNAP1 overexpression 
A,B, Representative images (A) and quantification (B) of immunocytochemistry of mouse DRG neurons cultured 

for 24 h after transfection with TRPA1+Mock (Mock) or TRPA1+NIPSNAP1 (NIPSNAP1 OE) and stained with 

TRPA1 specific antibody; p=0.0158; Student’s t test; ≥2000 neurons analyzed per condition from N=3 

independent cultures. C,D, Representative images (C) and quantification (D) of GFP-positive cells. Scale bar, 

20µm. All data are represented as mean ± SEM. OE, overexpression. 
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3.3.3 NIPSNAP1 decreases TRPA1 expression and activity in a heterologous 

expression system 

Motivated by these results, we speculated that this decrease in TRPA1-positive cells would 

be reflected by cellular calcium responses upon TRPA1 activation by the specific agonist MO. 

If the effect of NIPSNAP1 on TRPA1 activity is modest, it would be hard to reveal it by testing 

TRPA1 responses from the highly heterogeneous population of sensory neurons in DRG 

cultures. Therefore, in order to better study the contribution of NIPSNAP1 to TRPA1 activity 

and avoid the complications coming from DRG cultures that already express NIPSNAP1 and 

potentially other family members (Buechler et al., 2004; Nautiyal et al., 2010; Schoeber et 

al., 2008; Tummala et al., 2010), we aimed to employ a system where we could more 

selectively manipulate and study NIPSNAP1. HEK293T cells is a heterologous expression 

system that is widely used in the field, well established for overexpression studies of TRPA1 

and, as shown by the immunocytochemistry results in figure 18, does not show any 

detectable NIPSNAP1 expression. These features made of it a preferable candidate system 

for us to study the effect of NIPSNAP1 overexpression on TRPA1 activity. In this line we first 

of all wanted to confirm the same phenotype observed in sensory neurons, so we 

overexpressed mTRPA1 and either NIPSNAP1 or empty vector and, indeed, obtained 

comparable results, meaning a decrease of TRPA1-positive cells upon NIPSNAP1 

overexpression. While TRPA1 + Mock cotransfected HEK293T cells showed 27.7 ± 1.6% 

TRPA1-positive cells, this amount was reduced to just 16.2 ± 4.7% upon NIPSNAP1 

overxpression (Fig.20A,B). Next, we questioned whether this phenotype resulted in changes 

in TRPA1-mediated calcium responses by ratiometric calcium imaging. In order to test this, 

we used a protocol consisting of a first stimulation with a low concentration of MO (1, 10 or 

30 μM), followed by a saturating pulse (100 μM) that would activate all TRPA1-expressing 

cells. The results of these experiments showed that the response to the 1 μM MO 

application (normalized to the response to 100 μM MO) was significantly lower for 

NIPSNAP1-cotransfected cells (31.8 ± 2.4%) compared to mock-transfected ones (59.1 ± 

7.8%). On the contrary, the response elicited by higher concentrations of MO (10, 30, 100 

μM) remained similar between conditions (Fig.20C-F). These calcium imaging results indicate 

that overexpression of NIPSNAP1 does not induce changes in the number of cells that 

express TRPA1, but rather decreases cellular response to TRPA1 agonist, which is potentially 

due to changes in expression and/or activity of the channel. Together these findings suggest 

that TRPA1 plasma membrane expression and/or TRPA1 activation are affected by NIPSNAP1 

overexpression. 
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Figure 20. NIPSNAP1 decreases TRPA1 expression and activity in HEK293T cells 
A,B, Representative images (A) and quantification (B) of immunocytochemistry of TRPA1 in HEK293Tcells 
cotransfected with TRPA1 and either NIPSNAP1 (TRPA1+NIPSNAP1) or empty vector (TRPA1+Mock); p=0.047; 
Student’s t-test; Scale bar, 20 μm. C-F, Ratiometric calcium imaging shows that HEK293T cells coexpressing 
TRPA1 and NIPSNAP1 are less sensitive to low MO concentration. Representative traces (C) showing response 
to 1 µM MO; quantification of the percentage of neurons responding to each MO concentration (E) normalized 
to the total number of responders to 100µM MO (D); 1 μM MO (p=0.012); 10 μM MO (p=0.315); 30 μM MO 
(p=0.848); 100 μM (p=0.631). F, Comparison of mean amplitudes of calcium response to each MO 
concentration in HEK293T cells transfected with TRPA1 and either NIPSNAP1 or mock; Student’s t test; ≥370 
cells analyzed from N≥3 independent cultures; All data are represented as mean ± SEM. Data from experiments 
performed by Master student Oli Abate Fulas under the author’s supervision. Figure A adapted from Oli’s 
Master thesis. 
 

* 
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3.3.4 Nocistatin specifically sensitizes TRPA1 responses in sensory neurons  

A compelling recent study uncovered the physical association between NIPSNAP1 and 

Nocistatin, a neuropeptide already known to be involved in pain transmission (Okuda-

Ashitaka et al., 2012), even though its precise molecular function and mechanisms remain 

still unclear. In light of our current findings on the potential modulation of TRPA1 by 

NIPSNAP1, we decided to investigate whether Nocistatin is involved as well in TRPA1 

regulation. In this line we used ratiometric calcium imaging to measure the effect of 

Nocistatin on TRPA1-mediated cellular responses in DRG neuron cultures. Ten micromolar 

Nocistatin (Ahmadi et al., 2001; Ahmadi et al., 2003; Zeilhofer et al., 2000) was pre-applied 

and coadministered with two different concentrations of MO in order to investigate cellular 

response to both subsaturating and saturating stimuli. Interestingly, we measured a 

significant increase in the number of responders to 25 µM MO in the Nocistatin-treated 

group (24.4 ± 2.2%) compared to vehicle-treated controls (11.5 ± 2.2%), as shown in figure 

21A,B. In contrast, we could not observe any effect of Nocistatin treatment on the response 

elicited by different concentrations of capsaicin (0.1 µM and 1 µM), which probes TRPV1-

dependent calcium influx (Fig.21C,D). These findings reveal an enhancement of TRPA1-

mediated calcium response upon Nocistatin application and, together with the facts that 

response to capsaicin and response amplitudes were not changed, suggest a certain degree 

of specificity for the action of Nocistatin on TRPA1-mediated nociceptive signaling.  
 

 
 

Figure 21. Nocistatin specifically modulates TRPA1-mediated calcium response in DRG neurons.  

A,B, Quantification of the percentage of neurons responding (A)  and mean amplitude of neuronal calcium 
response (B), after stimulation with 25μM MO or 50 μM MO along with 10 μM Nocistatin or vehicle. p=0.017; 
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Student’s t-test; ≥700 neurons analyzed from N=3 independent cultures. C,D, Nocistatin does not affect the 
percentage of responders (C) and mean amplitude response (D) to 0.1 μM and 1 μM capsaicin in DRG neuron 
cultures. All data are represented as mean ± SEM. Data from experiments performed by Master student Oli 
Abate Fulas under the author’s supervision. 

 
 
 

3.3.5 Nocistatin does not alter TRPA1 cell surface expression  

The increase we measured in TRPA1-mediated response upon Nocistatin treatment could be 

explained in different ways: (1) Nocistatin might directly sensitize TRPA1 or (2) Nocistatin 

could affect TRPA1 trafficking to the plasma membrane, where the channel is active and able 

to mediate calcium influx in response to activation. In this line, Nocistatin effect could be 

explained by an increase in TRPA1 plasma membrane expression, possibly due to enhanced 

trafficking to the membrane (this hypothesis implies that these new channels that reach the 

cell surface are functional), or decreasing internalization of the channels. To explore this 

possibility we aimed at live labeling selectively cell surface TRPA1 channels, an established 

procedure to study TRPA1 membrane levels in DRG neuron cultures (Schmidt et al., 2009). 

As already discussed in a previous chapter currently available TRPA1 antibodies are not 

suitable to effectively label the low-abundant native TRPA1 population in DRG cultures 

under normal conditions, therefore we first nucleofected cultures of both genotypes with 

recombinant mTRPA1, and then live labeled TRPA1 channels at the cell surface following 

Nocistatin treatment. Incubation with 10 µM Nocistatin in a way that recapitulates calcium 

imaging conditions, did not significantly alter TRPA1 label (Fig.22), indicating that TRPA1 cell 

surface expression is not changed and suggesting another mechanism through which 

Nocistatin enhances TRPA1-mediated calcium influx in sensory neurons.     

 

                                         
 

Figure 22. Nocistatin does not alter TRPA1 cell surface expression in cultured DRG neurons 

A, B, DRG neurons were nucleofected with mTRPA1, cultured for 24 h and treated with either 10 µM Nocistatin 

or vehicle, followed by live labeling to selectively visualize TRPA1 channels at the plasma membrane. 

Representative images (A) and quantification (B) of live labeling signal, similar between conditions; ≥30 cells 

analyzed. All data are represented as mean ± SEM. 
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3.3.6 Nocistatin’s effect on TRPA1 does not require NIPSNAP1  

As Nocistatin has been reported to interact with NIPSNAP1 (Okuda-Ashitaka et al., 2012), 

and with our results suggesting that both have potential modulatory activity on TRPA1-

mediated responses, we considered the possibility that the two binding partners act 

together in the regulation of TRPA1. Hypothetically, NIPSNAP1 might represent an 

intermediate element necessary for the increase in TRPA1-mediated responses induced by 

Nocistatin. In order to test this, we studied the consequences of NIPSNAP1 knock-down for 

Nocistatin-induced enhancement of MO responses via calcium imaging in DRG cultures. First 

and foremost, the efficacy of siRNA-mediated NIPSNAP1 knock-down was assessed at both 

mRNA (by qPCR) and protein level (by immunocytochemistry). From the qPCR studies we 

could evince that the relative expression of NIPSNAP1 mRNA declined by 75.7 ± 5% in 

cultures treated with NIPSNAP1 siRNA (Fig.23B). Accordingly, immunostainings showed that 

65.8 ± 2.7% of all neurons express NIPSNAP1 under control conditions, compared to 37.6 ± 

3.4% upon NIPSNAP1 knock-down (Fig.23A,C). These results, in addition to further affirm the 

specificity of the NIPSNAP1 antibody, prove the effectiveness of this protocol for NIPSNAP1 

protein knock-down. 

 
 
Figure 23. NIPSNAP1 siRNA effectively knocks down the expression of NIPSNAP1 in DRG neuron cultures.  

A, Representative images of immunocytochemistry for NIPSNAP1 on DRG neuron cultures 3 days after 

transfection with NIPSNAP1 siRNA (NIPSNAP1 KD)  or scramble control siRNA (Control). The extent of NIPSNAP1 

knock-down after treatment with NIPSNAP1 siRNA was measured by qPCR (relative to housekeeping gene 

GAPDH) (B) and immunocytochemistry (C) (red arrowheads show examples of NIPSNAP1-positive neurons). 

≥700 neurons analyzed from N=3 independent cultures. Scale bar, 10 μm. p=0.002; Student’s t test. All data are 
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represented as mean ± SEM. Data from experiments performed by Master student Oli Abate Fulas under the 

author’s supervision. Figure A adapted from Oli’s Master thesis. 

 

We could then examine TRPA1-mediated calcium response with and without coapplication 

of Nocistatin upon knock-down of NIPSNAP1. The knock-down of NIPSNAP1 did not seem to 

affect the Nocistatin-induced enhancement of responses to 25 µM MO, which was still 

visible in both siRNA- and mock-transfected DRG cultures (Fig.24). Specifically, the number 

of responders showed a trend that reflect what observed in WT cultures treated with 

Nocistatin, although, because of the poor health of the cultures, it did not reach statistical 

significance in this set of experiments. In contrast, responses to 50 µM MO were similar 

between conditions, as well as response amplitudes. These results suggest that NIPSNAP1 is 

not necessary for the enhancement of TRPA1-mediated responses induced by its binding 

partner Nocistatin and additional rounds of the experiment will be performed to confirm this 

piece of data.  

 

 
 
Figure 24. NIPSNAP1 knock-down does not seem to affect Nocistatin’s enhancement of TRPA1-mediated 
calcium response in DRG neuron cultures.  
A, Control siRNA-treated (Mock) DRG neurons show enhanced (p=0.134) calcium response to 25 μM MO upon 

coadministration of Nocistatin. B, The percentage of responders to 25 μM MO in NIPSNAP1-siRNA-transfected 

neurons (NIPSNAP1 KD) still shows an increase (p=0.124) upon Nocistatin treatment. C,D, Mean amplitude of 

response to either MO concentration is not altered in Mock-transfected (C) or NIPSNAP1 siRNA treated (D) 

cultures; ≥350 neurons analyzed per condition; Student’s t test. All data are represented as mean ± SEM. Data 

from experiments performed by Master student Oli Abate Fulas under the author’s supervision. 
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4. DISCUSSION 

 
The transient receptor potential A1 (TRPA1) channel is an essential component of the 

molecular mechanisms that originate and modulate pain signaling in vertebrates. In 

nociceptive neurons where it is highly enriched, TRPA1 plays a fundamental role as a primary 

detector of noxious stimuli, by sensing a wide variety of exogenous and endogenous 

molecules with pro-inflammatory and pro-algesic properties. (Andrade et al., 2012; Bautista 

et al., 2013). TRPA1 has been implicated in the development and maintenance of 

hypersensitivity in a number of animal pain models, and is critically involved in different pain 

states (Nassini et al., 2014; Nilius et al., 2012). Regulation of TRPA1 activity is indeed one of 

the factors that translate in the reduced threshold and enhanced responsiveness of sensory 

neurons that contribute to the pathophysiology of clinically-relevant chronic pain syndromes 

(Schmidt et al., 2009). Even though TRPA1 activation modalities have been studied 

extensively, comprehensive knowledge on the mechanisms of TRPA1 regulation is still 

missing. This is especially true for the whole network of protein interacting with TRPA1 (the 

so-called TRPA1 interactome), which might constitute a potentially relevant contributor to 

channel activity and function. Considering the crucial role of TRPA1 in pain signaling, it is 

mandatory to shed light on the elusive molecular machinery regulating TRPA1 channels in 

sensory neurons. The principal aim of this study was therefore to contribute to our 

understanding of the mechanisms of TRPA1 regulation by identifying and characterizing 

TRPA1-protein complexes and study their role for nociceptive signaling.  

 

 

 

4.1  Annexin A2 (AnxA2) regulates TRPA1-dependent nociception 

The gross part of the text relative to this section is based on (Avenali et al., 2014).  

 

A mass spectrometry-based proteomics approach led to the identification of the physical 

interaction of Annexin A2 (AnxA2) with native TRPA1 in mouse sensory neurons. We then 

used a combination of in vitro assays and in vivo mouse behavioral studies to demonstrate 

that AnxA2 is an endogenous modulator of TRPA1 membrane availability in sensory neurons, 

which in turn influences TRPA1-dependent animal pain response. Annexin A2 (or AnxA2) 

belongs to the Annexin superfamily of calcium-effector proteins, which encompasses several 

members with distinct architecture and broad range of functions. The biochemical hallmarks 

of the Annexins are the unique Ca2+ and lipid binding properties that endow them with the 

ability to associate with negatively charged phospholipids in a Ca2+-dependent and reversible 

manner. As a consequence, the functions of most Annexins are linked to their ability to 

interact with cellular membranes in a regulated fashion (Gerke et al., 2005). Like many other 

family members, AnxA2 is involved in a wide range of membrane trafficking processes and 

also contributes to the biogenesis of multivesicular bodies (Banks et al., 2011; Gerke et al., 
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2005; Luo and Hajjar, 2013). Many reports have highlighted the involvement of AnxA2 in 

delivering and retrieving various transmembrane proteins to and from the plasma 

membrane. For instance, AnxA2 is required for cAMP-induced aquaporin-2 (AQP2) 

translocation to the apical membrane in renal cells (Tamma et al., 2008), and its interaction 

with the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) mediates lipid-raft-dependent trafficking 

and therefore surface expression of the protein (Dathe et al., 2014). AnxA2 has also been 

reported to regulate β1 integrin internalization and degradation, suggesting an important 

role in modulating the cell-matrix adhesive properties of epithelial cells (Rankin et al., 2013). 

AnxA2 exerts its manifold functions in monomeric form or in heteromultimeric complexes 

with its best-known binding partner p11 (also designated S100A10), a member of the EF-

hand superfamily of calcium-binding proteins. The AnxA2-p11 complex plays a critical role in 

hemostasis: in endothelial cells it has been shown to bind tissue plasminogen activator 

accelerating the catalytic generation of plasmin. Plasmin in turn hydrolyzes insoluble fibrin, 

thus maintaining blood vessel patency. If this mechanism is impaired, fibrin accumulates and 

predisposition to blood clotting significantly increases (Kim and Hajjar, 2002). The AnxA2-p11 

complex also participates in Ca2+-evoked exocytotic events in adrenal chromaffin granules 

(Ali et al., 1989) and Weibel–Palade bodies of endothelial cells (Gerke et al., 2005). 

Interestingly, the complex has also been reported to bind and modulate the function of 

proteins and ion channels involved in nociception, such as TRPV4 (Ning et al., 2012) and 

Nav1.8 (Okuse et al., 2002). Our study identified AnxA2 as a direct interacting protein of 

TRPA1, as revealed by mass spectrometry-based screening and also from overexpression 

studies in a well-established heterologous expression system. HEK293T cells studies showed 

that p11 does not bind TRPA1 and that the AnxA2-TRPA1 interaction does not require a 

neuronal cell-specific mediator. These data, together with the fact that we did not detect 

p11 in proteomics results, suggest that AnxA2 might be interacting with TRPA1 in its 

homomeric form (without p11). This hypothesis is further supported by our identification of 

the AnxA2 domain involved in the interaction with TRPA1 in the first 15 residues of the 

AnxA2 protein; this region has indeed been demonstrated in previous studies to constitute  

the binding site of p11 (Kube et al., 1992) and suggests that TRPA1 and p11 could potentially 

even compete for binding AnxA2. Recently, a TRPA1 splice variant baptized TRPA1b has been 

described to interact and increase TRPA1 levels at the plasma membrane of sensory neurons 

(Zhou et al., 2013). Even though our data show that AnxA2 and TRPA1 physically interact 

independently of TRPA1b in a heterologous expression system, we cannot exclude the 

possibility that AnxA2 binds TRPA1b as well and regulates its function in sensory neurons. 

Currently available TRPA1 antibodies are in fact not suitable to differentiate among TRPA1 

isoforms and cannot help to address this question. This study identified and characterized a 

role of AnxA2 as an endogenous modulator of TRPA1 activity in nociceptive neurons in vitro 

and in vivo. The mechanisms underlying this regulation can be manifold. Our findings 

suggest that in sensory neurons the absence of AnxA2 translates in an increase of TRPA1 

plasma membrane expression and function in a subpopulation of nociceptive neurons, as 

indicated by immunohistochemistry, live labeling, electrophysiology and calcium imaging 

studies. Specifically, in AnxA2-/- neurons we observe enhancement of TRPA1-dependent 
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neuronal calcium responses and MO-gated currents, which correlate with an increase of 

TRPA1 channels at the surface of sensory neurons. As a confirmation that the observed 

phenotypes are due to the lack of AnxA2, its re-expression was able to counteract the 

increase in TRPA1 surface levels and neuronal sensitivity to the TRPA1 agonist MO measured 

in AnxA2-/- neurons. Previous studies demonstrated that the expression, activity and 

function of TRPA1 channels can be regulated by different signaling pathways involving 

inflammatory signals (Dai et al., 2007; Schmidt et al., 2009; Wang et al., 2008a), growth 

factors (Diogenes et al., 2007), microRNA (Park et al., 2014) and interaction with TRPV1 and 

the splice variant TRPA1b (Akopian et al., 2007; Staruschenko et al., 2010; Zhou et al., 2013). 

While mechanistically we demonstrated a clear role of AnxA2 in regulating TRPA1 plasma 

membrane expression, the potential contribution of AnxA2 to each of these processes 

remains to be investigated. Our in vivo studies showed that the enhanced TRPA1 plasma 

membrane expression in AnxA2-/- sensory neurons nicely correlates with enhanced TRPA1-

dependent pain behaviors in AnxA2-/-mice. These findings highlight the importance that 

controlling TRPA1 membrane availability might have for in vivo nociceptive signaling and are 

in accordance with previous studies (Obata et al., 2005; Schmidt et al., 2009; Zhou et al., 

2013). The results of our immunohistochemical experiments confirm early reports (Naciff et 

al., 1996), showing that AnxA2 is expressed in both TRPA1-positive and TRPA1-negative 

subpopulations of DRG neurons. Therefore it might modulate other proteins and signaling 

pathways in addition to TRPA1. In sensory neurons, TRPA1 is also usually coexpressed with 

the capsaicin receptor TRPV1, in small diameter peptidergic afferent fibers (Kobayashi et al., 

2005; Story et al., 2003). In fact, ablation of TRPV1 neurons with resiniferatoxin (a 

superpotent TRPV1 agonist) has been shown to induce loss of response to both capsaicin 

and mustard oil (Pecze et al., 2009), suggesting a high degree of colocalization of the two 

channels. This and other characteristics that make the two channels close relatives, led us to 

investigate the potential effect of AnxA2 on TRPV1 both in vitro and in vivo. Specifically we 

observed that: (1) from biochemical data in HEK293T cells AnxA2 does not physically bind to 

TRPV1; (2) cellular calcium responses to capsaicin were not altered in DRG cultures from 

AnxA2-/- mice compared to WT littermates; (3) in DRG cryosections the number of sensory 

neurons immunoreactive to TRPV1 was not changed; (4) mouse response to heat and 

nocifensive behaviors following intraplantar capsaicin injection were not different between 

genotypes. These results support a certain degree of specificity for the role of AnxA2 in 

regulating TRPA1-dependent nociception. Noteworthy, relevant evidence that nociceptive 

signaling is not generally perturbed in the absence of AnxA2 derives from the fact that 

baseline thermal and mechanical responses are not altered in AnxA2-/- mice. Moreover, the 

pain paradigms where we performed intraplantar injection of the specific agonist (MO or 

capsaicin) followed by assessment of nocifensive response require transmission via primary 

afferent nociceptors followed by supraspinal processing of the stimulus (Wang et al., 2013). 

Hence, the selective alteration of TRPA1-mediated behaviors argues against gross changes in 

supraspinal nociceptive signaling in AnxA2-/- mice. This is further supported by the fact that 

upon CFA-induced inflammatory pain, in these animals only specific hypersensitivity states 

(cold but not heat and mechanical allodynia) are affected. In conclusion, this study on the 
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characterization of AnxA2 as a novel TRPA1-interacting partner contributed to decipher the 

elusive composition of TRPA1-associated protein complexes. We demonstrated a role for 

AnxA2 as an endogenous modulator of TRPA1 activity in vitro and in vivo, and defined a 

mechanism capable of regulating TRPA1-mediated nociception in vertebrates. Furthermore, 

these results highlight the impact of protein-protein interactions in the modulation of TRPA1 

activity and nociceptive signaling. A crucial question that follows these conclusions relates to 

the possibility of dynamic changes of TRPA1 interactome in different conditions. In the next 

chapter we tried to contribute to addressing this question. 

 

 

 

4.2  TRPA1 interactome undergoes dramatic changes during 

inflammatory pain 

 

The study on the identification and characterization of AnxA2 as a novel modulator of TRPA1 

function paved the way for a more thorough investigation of the dynamic changes of TRPA1-

associated protein complexes.  Considering the established contribution of TRPA1 to the 

modulation of inflammatory pain states (Bautista et al., 2006; da Costa et al., 2010; del 

Camino et al., 2010; Obata et al., 2005; Petrus et al., 2007; Zhou et al., 2013), and our results 

supporting TRPA1-involvement in CFA-induced allodynia (paragraph 3.1.8), we performed an 

interactomics screening of TRPA1-protein complexes in mice subjected to the CFA-model of 

inflammatory pain. In our hypothesis, TRPA1 interactome could undergo substantial changes 

between a physiological and a pathophysiological context, and also among different pain 

states. This would potentially translate in dramatic alterations of TRPA1 activity and 

sensitization, which, as already discussed, is known to contribute to nociceptor excitability 

and ultimately to hypersensitivity and altered pain perception (Basbaum et al., 2009; 

Patapoutian et al., 2009). A qualitative comparison of specifically identified proteins would 

give insights into pain-related channel protein complexes, and might even uncover novel 

targets for pain treatment. Furthermore, a relevant part of the changes associated to a 

targeted alteration of a biological system can be appreciated only with access to quantitative 

information. Here is where quantitative proteomics comes into play, dramatically raising the 

quality and depth of the obtained data. Until just about a decade ago, quantitative studies 

were limited to investigation of changes in gene expression mainly using oligonucleotide 

chips, in so-called transcriptomics studies (Ong and Mann, 2005). However, in this way only 

changes at the mRNA level can be assessed, and parallel analyses even using advanced 

technology have generally reported that, globally, transcriptome and proteome exhibit poor 

correlation (Bonaldi et al., 2008; Kumar and Mann, 2009).  

 

In fact, proteins form the executive machinery that carry out most cellular functions, usually 

via stable or transient association into protein complexes. To date many proteomics studies 

have been performed to elucidate the components of multiprotein complexes (the 
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interactome) for several ion channels and receptors. Relevant studies contributed to the 

identification of cornichons proteins as auxiliary subunits of AMPA-type glutamate 

receptors, which have been shown to affect channel gating and expression in the rat brain 

(Schwenk et al., 2009); another study characterized the composition of NMDAR multiprotein 

complexes in the mouse brain, and their role in synaptic plasticity and learning (Husi et al., 

2000). In a very recent and relevant study, Hanack and colleagues used a proteomics 

approach to identify components of TRPV1-associated protein complexes and thus 

uncovered a new role for the GABAB1 receptor subunit in the modulation of TRPV1 

sensitization. They generated transgenic mice expressing an affinity-tagged version of 

TRPV1, and then used sensory neurons from these animals for coimmunoprecipitation and 

mass spectrometry analysis (Hanack et al., 2015). While this strategy proved successful in 

the identification of the GABAB1 receptor subunit as a novel binding partner and modulator 

of TRPV1 activity, this represent a major difference respect to the approach we adopted. We 

decided to use sensory neurons from naïve animals as the biological basis for the 

interactomics screening in order to selectively target native TRPA1 channel; while this 

necessarily demands more tissue, in this way we were more likely to detect real and 

biologically relevant interactions, respect to a system where the bait is overexpressed and, 

therefore, very likely not in physiological amounts. This factor might have a significant 

impact in the incidence of false positive identifications, which is likely to be less with our 

approach. Moreover, the absence of any exogenous affinity tag would further support this 

hypothesis. Several proteomics profiling studies advocate that gene expression and protein 

composition can undergo fundamental reorganization from physiological to pathological 

conditions (Huang et al., 2008; Melemedjian et al., 2013; Vacca et al., 2014; Zou et al., 2012) 

Nevertheless, to date only very few studies compared ion channel-multiprotein complexes 

between physiological and pathological conditions (Tu et al., 2010; Van den Oever et al., 

2008). Our mass spectrometry-based proteomics approach revealed the interactome of 

TRPA1 channels in the context of inflammatory pain induced by CFA. The large datasets 

generated by quantitative proteomics can be difficult to interpret and we performed 

extensive data analysis in order to get relevant information. Upon application of selective 

criteria and analysis of the raw data coming from each single biological replicate, we 

determined high-confidence TRPA1-binding partners specific for either condition (VEH and 

CFA), and measured very limited overlap between them (Fig.13A). We realized volcano plots 

and tested different variations thereof to visualize the results, finding positive as well as 

negative characteristics in the way the data were represented. While there is not a perfect 

way to analyze and display data like these, we can gather information from them all and use 

it in combination for the best possible selection of high priority candidates for follow-up and 

validation. For example, we could prioritize candidates already selected according to our 

criteria in first analysis, and which on top show a significant p-value, as the ones identified by 

red spots in the volcano plot (Fig.15). Very importantly, the changes we observed by mass-

spectrometry are now in the process of being validated with different orthogonal methods, 

among which are western blotting, immunostainings and proximity ligation assays (PLA). The 

gene ontology (GO) analysis indicate that an important fraction of the proteins interacting 
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with TRPA specifically during inflammatory pain is involved in protein transport and 

localization (Fig.13B). This is in line with a potential role in the trafficking of TRPA1 channels 

that can in turn determine its turnover, plasma membrane expression and function. 

Interestingly, we and others (Schmidt et al., 2009; Zhou et al., 2013) have already 

demonstrated a correlation between TRPA1 expression at the cell surface with nociceptor 

response and TRPA1-mediated nocifensive behavior in vivo (see chapter 3.1). The STRING 

association networks analysis allows the visualization of known and predicted interactions 

among proteins of the same database. On the one hand this information can help identifying 

potential pathways and cellular processes that are affected or modulated in the specific 

conditions. On the other hand it could also reflect an indirect association of some of these 

candidates to the bait. In fact, some proteins could interact and form complexes where only 

one member displays association to TRPA1, but upon coimmunoprecipitation they would be 

pulled-down together. While this indirect interaction could still be relevant and regulate 

TRPA1 function, it is unlikely that it could be reproduced for instance in a heterologous 

expression system where the intermediate link would be missing. These considerations, 

together with those described above and extensive literature search will drive orthogonal 

validation and the selection of the most interesting candidates for follow-up and 

investigation of the biological relevance of the interaction for nociceptive transmission.  

While this interactomics screening was performed at the peak of CFA-induced 

hypersensitivity for the mice (as measured by dynamic plantar aesthesiometer), we can 

speculate that the network of TRPA1-protein interactions might undergo significant changes 

over the course of the paradigm, especially once pain and hypersensitivity subside. The 

analysis of such dynamics might contribute to reveal mechanisms involved in the de-

sensitization of TRPA1 and would be focus of further investigation. One more point that 

needs to be underlined is the fact that our study is based on the use of sole male mice for 

the pain paradigm. This choice was justified by the widely held notion that the reproductive 

cycle renders females intrinsically more variable than males, and that employing same 

gender animals would avoid undesired additional variability. However, several reports are 

raising awareness about the need of considering both sexes in animal studies, which is 

relevant also in the pain field. For example, a recent study showed that mechanical pain 

hypersensitivity is mediated by different immune cells in male and female mice (Sorge et al., 

2015), and even proteomics studies reported sex-related differences during neuropathic 

pain (Vacca et al., 2014). While studies of both sexes necessarily result in additional 

expenses and workload, this issue had to be pointed out and will be considered for future 

studies. Nevertheless, our work significantly contributes to our understanding of TRPA1-

associated protein complexes and future studies will reveal the contribution of selected 

candidates for TRPA1-meediated nociceptive signaling. 
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4.2.1 Potential relevance of these findings  

Numerous reports have established that the activity and function of receptors and ion 

channels are crucially modulated by their association into protein complexes. Our study 

contributed to show that protein complexes can be dynamic and occur specifically under 

certain conditions. The identification and characterization of such protein complexes 

characterizing the specific (patho-)physiological state can provide relevant information 

about channel function, and moreover contribute to the development of novel therapeutic 

strategies. As already discussed, direct targeting of primary noxious stimuli detectors 

seemed to provide only limited benefits, due to related side-effects. One example is direct 

TRPV1 antagonism, which correlated to hyperthermia and impaired noxious pain sensation, 

which critically increases the susceptibility to injury (Brederson et al., 2013). Targeting 

specific channel-protein interactions holds therefore the possibility for a better-targeted 

intervention.  

 

In a strategy ultimately aimed at quelling pain, the modulation of protein complexes to alter 

ion channel activity can be approached in different ways, which relates to the nature of the 

interaction. Some proteins have in fact been reported to enhance the activity of a pro-

nociceptive ion channel. In such a case, either the removal of the binding partner or the 

“uncoupling” of the interaction are desirable, which would lead to decreased pain behavior. 

On the other hand, protein complexes might contribute to limit channel activity, as we 

showed to be the case for AnxA2. In this case, the strategy would be to ameliorate the 

interaction, increasing the affinity or the number of binding partners (Rouwette et al., 2015). 

The identification of pain state-specific channel-protein complexes will give valuable insights 

into the molecular mechanisms of these conditions; furthermore, such knowledge could be 

exploited to selectively interfere with altered ion channel activity during pathological pain 

states, while preserving the physiological protective ability to detect noxious stimuli. This 

study and future ones regarding dynamic changes of TRPA1-associated proteins in different 

pain states could therefore open the possibility to develop targeted therapeutics for TRPA1-

related pain disorders.  

 

 

 

4.3  NIPSNAP1 and Nocistatin modulate TRPA1 channels 

In a parallel line of research we focused our attention on a protein called 4-

Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 

(NIPSNAP1), which showed an interesting expression profile in mouse DRG neurons.  In this 

line we performed a series of in vitro experiments aimed to investigate a potential role of 

NIPSNAP1 in TRPA1 regulation. Our results suggest that NIPSNAP1 is a protein expressed in 

nociceptors of DRGs where it possibly regulates the membrane expression and/or activity of 

TRPA1. In an attempt to further characterize this functional association, we investigated also 

the role of Nocistatin, a recently uncovered NIPSNAP1-binding partner and well known pain-
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modulator (Okuda-Ashitaka et al., 2012), for TRPA1-mediated nociception. This work 

revealed that both proteins have the potential to affect TRPA1 activity, while the 

characterization of the specific underlying mechanisms will be focus of further investigation. 

NIPSNAP1 belongs to the largely uncharacterized NIPSNAP family of proteins which 

comprises three additional members: NIPSNAP2, NIPSNAP3 and NIPSNAP4 (Okuda-Ashitaka 

et al., 2012). The peculiar nomenclature derives from the fact that some portions of the 

proteins structure resemble a 4-nitrophenylphosphatase domain and non-neuronal SNAP25-

like protein (Seroussi et al., 1998). The physiological functions of the NIPSNAP family remain 

elusive, even though the distinct genetic location of NIPSNAP1 sequence suggests a potential 

involvement in vesicular transport (Seroussi et al., 1998). NIPSNAP1 showed predominant 

expression in the brain, spinal cord, liver, and kidney (Okuda-Ashitaka et al., 2012). In the 

brain, it is especially enriched in synaptic membranes, cell surface and mitochondria of 

neuronal cells, but not glia. (Nautiyal et al., 2010). Over the past few years, NIPSNAP1 has 

been associated to a number of metabolic and nervous system pathologies. For instance, it 

has been reported to bind the amyloid precursor protein that is implicated in Alzheimer 

disease (Tummala et al., 2010), and NIPSNAP1 levels are increased during generalized 

seizures induced by kainate (Satoh et al., 2002). Despite the handful of studies on NIPSNAP 

proteins and their potential roles, there is recent evidence indicating that NIPSNAP1 

associates with TRPV6 channels in mouse liver cells, which results in a dramatic inhibition of 

the channel function, with currents virtually abolished (Schoeber et al., 2008). NIPSNAP2, 

another member of the NIPSNAP family has instead been shown to modulate L-type Ca(2+) 

channels, and downstream CREB (cAMP response element-binding protein) signaling, in a 

neuronal cell line (Brittain et al., 2012). These studies potentially suggest a role for the 

proteins of the NIPSNAP family in the regulation of ion channels. Although NIPSNAP1 

expression has already been described in different brain regions (Nautiyal et al., 2010), no 

report had previously reported of its distribution in the peripheral nervous system. Our 

immunohistochemical studies established that NIPSNAP1 is abundantly expressed in sensory 

neurons of mouse DRGs and furthermore demonstrate enrichment in a nociceptive 

subpopulation coexpressing the marker Peripherin. This expression pattern potentially 

suggests a still-unknown role of NIPSNAP1 in a subset of mouse nociceptors which is likely to 

match, at least to a certain extent, the subset which expresses TRPA1. We therefore aimed 

at investigating a potential role of NIPSNAP1 in TRPA1 regulation, by testing the outcomes of 

NIPSNAP1 modulation in vitro in sensory neuron cultures. Concerned by potential 

compensatory mechanisms that would possibly mask a phenotype following selective 

NIPSNAP1 knock-down, we aimed at overexpressing the protein in DRG cultures. 

Interestingly, immunostainings revealed a decrease in the number of TRPA1-immunoreactive 

neurons upon NIPSNAP1 overexpression, suggesting a potential intriguing role of NIPSNAP1 

in modulating TRPA1 expression in sensory neurons. We then proposed that these changes 

could be reflected by TRPA1-mediated cellular calcium responses, which directly reflect the 

number and activity of TRPA1 channels expressed at the plasma membrane. If the 

modulation of TRPA1 by NIPSNAP1 is modest, the high heterogenity of sensory neuron 

populations in DRG cultures would complicate the identification of a possible phenotype. 
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Therefore we translated these findings to a heterologous expression system (HEK293T cells) 

where we could maintain better control over the cellular environment and more easily 

manipulate NIPSNAP1 expression. In agreement with DRG data, we measured lower number 

of TRPA1-positive cells upon NIPSNAP1 overexpression. We then correlated the decresed 

TRPA1-immunoreactivity measured upon NIPSNAP1 overexpression with a reduction of 

neuronal response to specific TRPA activation. Noteworthy, the total number of TRPA1-

expressing cells did not show any difference between conditions. As already mentioned, the 

TRPA1 antibody used has been reported to preferentially label cells with relatively high 

expression of TRPA1 (Schmidt et al., 2009); this therefore suggests that the observed 

difference is related to this subpopulation of TRPA1-expressing cells. This phenotype could 

be explained by an action of NISPNAP1 at different levels, ultimately affecting TRPA1 

expression and function. Hypothetically, NIPSNAP1 could directly interact with TRPA1, 

targeting the channel for degradation. This process may in turn require one or more 

accessory proteins, acting as an intermediate link. Alternatively, NIPSNAP1 could be affecting 

other cellular pathways, possibly even at pre-translational level, which would ultimately 

result in a decreased TRPA1 expression. In an attempt to address some of these questions 

and evaluate a potential direct interaction between NIPSNAP1 and TRPA1, we performed 

coimmunoprecipitation experiments in HEK293T cells transfected with both proteins. 

Unfortunately, preliminary results from these efforts (data not shown, experiments 

performed by Oli Abate Fulas and Julia Sondermann) are inconclusive and do not allow us 

clear statements about the molecular relation between the two proteins. At the same time, 

NIPSNAP1 could also be directly inhibiting TRPA1 activity, mechanism that has already been 

suggested for its modulating action on TRPV6 channels (Schoeber et al., 2008).   

 

An intriguing recent study has shed some lights on a novel potential role of NIPSNAP1 in pain 

transmission by uncovering its interaction with Nocistatin, a neuropeptide that is produced 

from the same precursor protein as Nociceptin/orphanin FQ (N/OFQ) (Okuda-Ashitaka et al., 

2012). Nocistatin is well known to be involved in nociceptive signaling: in vivo it counteracts 

N/OFQ-induced allodynia and hyperalgesia, and directly modulates inflammatory pain 

responses in a dose-dependent manner (Nakano et al., 2000; Okuda-Ashitaka et al., 1998; 

Okuda-Ashitaka et al., 2012; Zeilhofer et al., 2000). The study from Okuda-Ashitaka and 

colleagues reported the interaction between Nocistatin and NIPSNAP1 and described that 

the inhibition of Nociceptin-induced allodynia by Nocistatin measured in WT mice was 

completely lacking in NIPSNAP1-deficient animals (Okuda-Ashitaka et al., 2012). In the light 

of these findings, we attempted to further investigate the functional association between 

NIPSNAP1 and TRPA1 by examining Nocistatin. Interestingly, calcium imaging experiments 

revealed that stimulation with Nocistatin significantly enhances TRPA1-mediated calcium 

responses in sensory neuron cultures. These results are in line with previous reports showing 

a pro-nociceptive effect of Nocistatin, which facilitates nociceptive flexor reflexes (Xu et al., 

1999) and enhances nocifensive behavior in the rat formalin test (Zeilhofer et al., 2000). A 

study from Inoue and colleagues suggested that part of these effects is mediated by 

neurotransmitter release from a population of capsaicin-sensitive (and therefore TRPV1-
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expressing) neurons (Inoue et al., 2003). Interestingly, a subset of these neurons is also 

bound to express TRPA1 as the two channels are known to be largely coexpressed (Pecze et 

al., 2009; Story et al., 2003). Despite almost a decade has passed and extensive literature 

accumulated about Nocistatin and its role in pain, the specific molecular mechanisms and 

target(s) of its action are still elusive (Okuda-Ashitaka and Ito, 2015). These considerations, 

together with the fact that cellular responses to TRPV1 activation by capsaicin were not 

affected, led us to hypothesize a potential involvement of TRPA1 as one of the target 

receptors through which Nocistatin modulates pain transmission. Our data showed that MO-

gated neuronal calcium responses are enhanced by Nocistatin. Mechanistically, this effect 

did not seem to be mediated by alteration of the plasma membrane expression of the 

channel, as showed by live labeling of surface TRPA1. While we cannot exclude a different 

phenotype at higher concentrations, Nocistatin did not induce cellular calcium influx on its 

own (data not shown), and therefore it is likely not gating TRPA1 directly. It is possible that 

Nocistatin’s effect is mediated by an enhancement of TRPA1 activity at the cell surface: this 

could be the result of either direct action on the channel (as an allosteric modulator) or in 

turn mediated by alteration of other intracellular signaling pathways that regulate TRPA1 

activity (Lapointe and Altier, 2011). Whether biophysical properties of the channel are 

modulated by treatment with Nocistatin will be focus of further investigation. In this context 

we also hypothesized that Nocistatin-induced enhancement of cellular responses to MO 

might require NIPSNAP1, as this is known to be the case for the inhibition of Nociceptin-

induced allodynia exerted by Nocistatin (Okuda-Ashitaka et al., 2012). However, calcium 

imaging studies upon NIPSNAP1 knock-down showed a trend that reflects what observed in 

WT cultures treated with Nocistatin, suggesting that NIPSNAP1 is dispensable for the 

observed phenotype.  

 

In conclusion we uncovered a potential role for both NIPSNAP1 and Nocistatin as 

endogenous modulators of TRPA1 activity in vitro in sensory neurons. While our studies 

suggest that NIPSNAP1 and Nocistatin act independently to affect TRPA1 activity, future 

studies will contribute to characterize the underlying mechanisms and also the potential 

relevance for TRPA1-mediated nociception in vivo. 
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5. SUMMARY 
 

The transient receptor potential A1 (TRPA1) channel is essential for vertebrate pain. TRPA1 

plays a fundamental role as a primary detector of noxious stimuli of physical and chemical 

nature, and is critically involved in different pain states. Even though TRPA1 activation 

modalities have been studied extensively, the network of protein interactions regulating 

TRPA1 (the so-called TRPA1 interactome) is only poorly understood. Considering the crucial 

role of TRPA1 in pain signaling, it is mandatory to shed light on the elusive molecular 

machinery regulating TRPA1 channels in sensory neurons. This project was therefore aimed 

at getting insights into the mechanisms of TRPA1 regulation by identifying TRPA1-protein 

complexes and characterizing their biological meaning in the context of nociception.   

 

A mass spectrometry-based proteomics approach led to the discovery of the physical 

association of Annexin A2 (AnxA2) with native TRPA1 in mouse sensory neurons. AnxA2 is 

enriched in a subpopulation of sensory neurons and coexpressed with TRPA1. Furthermore, 

we observed an increase of TRPA1 membrane levels in cultured sensory neurons from 

AnxA2-deficient mice. Functional studies suggest that AnxA2 limits the availability and 

consequently the activity of TRPA1 channels at the plasma membrane of sensory neurons. 

Moreover, our in vitro observations were reflected in enhanced nocifensive responses of 

AnxA2 knock-out mice specifically upon TRPA1 activation in vivo. TRPA1 channels have been 

shown to contribute to hypersensitivity to cold stimuli during inflammation. We therefore 

investigated the possible impact of AnxA2 on TRPA1 function also in this context employing 

the well-established complete Freund´s adjuvant (CFA) model of persistent inflammation in 

mice. AnxA2-deficient mice showed enhanced hypersensitivity on a cold plate upon CFA 

injection, whereas the hypersensitivity to heat and mechanical stimulation were not 

affected. In conclusion, we characterized AnxA2 as a novel TRPA1-associated protein which 

specifically regulates TRPA1 channels in vitro and in vivo.  

 

These findings pave the way for a more thorough investigation of the dynamic changes in 

TRPA1-associated protein complexes in different conditions. In this context we submitted 

mice to the established Complete Freund’s Adjuvant (CFA)-model of inflammatory pain and 

isolated TRPA1-protein complexes from sensory neurons. Samples were submitted to state-

of-the-art quantitative mass spectrometry analysis to compare complexes between CFA and 

control mice and therefore identify dynamic changes in TRPA1 interactome. This work 

revealed a dramatic alteration of TRPA1-associated protein complexes in the context of 

inflammatory pain, and the functional characterization of selected candidates that will 

follow this study might uncover new players in the development and maintenance of 

inflammatory pain. 

 

In a separate set of experiments we focused our attention on a protein called 4-

Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 
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(NIPSNAP1), which function is largely still unknown. NIPSNAP1 showed to be expressed in 

nociceptive neurons of mouse dorsal root ganglia and functional studies suggested that it 

can modulate TRPA1 expression and/or function upon overexpression. A role of NIPSNAP1 in 

nociceptive transmission has been recently uncovered by the identification of its physical 

association with Nocistatin, a neuropeptide involved in pain signaling. In this context we 

investigated Nocistatin and found that it enhances TRPA1-mediated cellular calcium 

responses in DRG neurons. Mechanistically, this effect does not seem to be mediated by a 

modulation of TRPA1 plasma membrane expression, and NIPSNAP1 knock-down did not 

affect it. Future studies will contribute to characterize the underlying mechanisms and also 

the potential relevance for TRPA1-mediated nociception in vivo. 
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Appendix. List of proteins identified in the interactomics screening for TRPA1-protein 

complexes in inflammatory pain according to the Venn diagram and the criteria shown in 

figure 13A. 

 

A) Proteins belonging to the dataset “Only in CFA” 

 

Description Gene 

name 

Uniprot 

accession 

Ras-related protein Rab-7a OS=Mus musculus GN=Rab7a PE=1 

SV=2 

Rab7a P51150 

AP-2 complex subunit alpha-1 OS=Mus musculus GN=Ap2a1 

PE=1 SV=1 

Ap2a1 P17426 

Protein transport protein Sec31A OS=Mus musculus GN=Sec31a 

PE=1 SV=2 

Sec31a Q3UPL0 

Dual specificity protein phosphatase 15 OS=Mus musculus 

GN=Dusp15 PE=2 SV=3 

Dusp15 Q8R4V2 

ATP synthase subunit f, mitochondrial OS=Mus musculus 

GN=Atp5j2 PE=1 SV=3 

Atp5j2 P56135 

Serine/arginine-rich splicing factor 2 OS=Mus musculus GN=Srsf2 

PE=1 SV=4 

Srsf2 Q62093 

Myelin P2 protein OS=Mus musculus GN=Pmp2 PE=2 SV=2 Pmp2 P24526 

Rho-related GTP-binding protein RhoG OS=Mus musculus 

GN=Rhog PE=2 SV=1 

Rhog P84096 

AP-2 complex subunit sigma OS=Mus musculus GN=Ap2s1 PE=1 

SV=1 

Ap2s1 P62743 

F-actin-capping protein subunit beta OS=Mus musculus 

GN=Capzb PE=1 SV=3 

Capzb P47757 

Alpha-actinin-1 OS=Mus musculus GN=Actn1 PE=1 SV=1 Actn1 Q7TPR4 

40S ribosomal protein S25 OS=Mus musculus GN=Rps25 PE=1 

SV=1 

Rps25 P62852 

60S acidic ribosomal protein P1 OS=Mus musculus GN=Rplp1 

PE=2 SV=1 

Rplp1 P47955 

Tropomyosin beta chain OS=Mus musculus GN=Tpm2 PE=1 SV=1 Tpm2 P58774 

Unconventional myosin-If OS=Mus musculus GN=Myo1f PE=1 

SV=1 

Myo1f P70248 

Histone H1.5 OS=Mus musculus GN=Hist1h1b PE=1 SV=2 Hist1h1b P43276 

60S ribosomal protein L36a OS=Mus musculus GN=Rpl36a PE=1 

SV=2 

Rpl36a P83882 

Myosin light chain 6B OS=Mus musculus GN=Myl6b PE=2 SV=1 Myl6b Q8CI43 

Proteasome subunit alpha type-2 OS=Mus musculus GN=Psma2 

PE=1 SV=3 

Psma2 P49722 
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ATP synthase subunit delta, mitochondrial OS=Mus musculus 

GN=Atp5d PE=1 SV=1 

Atp5d Q9D3D9 

60S ribosomal protein L38 OS=Mus musculus GN=Rpl38 PE=2 

SV=3 

Rpl38 Q9JJI8 

Ferritin light chain 1 OS=Mus musculus GN=Ftl1 PE=1 SV=2 Ftl1 P29391 

Ubiquitin-associated protein 2-like OS=Mus musculus 

GN=Ubap2l PE=1 SV=1 

Ubap2l Q80X50 

60S ribosomal protein L35a OS=Mus musculus GN=Rpl35a PE=1 

SV=2 

Rpl35a O55142 

Syntenin-1 OS=Mus musculus GN=Sdcbp PE=1 SV=1 Sdcbp O08992 

60S ribosomal protein L13 OS=Mus musculus GN=Rpl13 PE=2 

SV=3 

Rpl13 P47963 

Epidermal growth factor receptor substrate 15 OS=Mus 

musculus GN=Eps15 PE=1 SV=1 

Eps15 P42567 

Collagen alpha-1(XIV) chain OS=Mus musculus GN=Col14a1 PE=2 

SV=2 

Col14a1 Q80X19 

Glutathione S-transferase Mu 1 OS=Mus musculus GN=Gstm1 

PE=1 SV=2 

Gstm1 P10649 

Apolipoprotein O OS=Mus musculus GN=Apoo PE=2 SV=1 Apoo Q9DCZ4 

Integral membrane protein 2C OS=Mus musculus GN=Itm2c 

PE=2 SV=2 

Itm2c Q91VK4 

 

 

B) Proteins belonging to the dataset “Only in VEH” 

 

Description Gene 

name 

Uniprot 

accession 

Inosine-5'-monophosphate dehydrogenase 1 OS=Mus musculus 

GN=Impdh1 PE=2 SV=2 

Impdh1 P50096 

Kinesin-like protein KIF3A OS=Mus musculus GN=Kif3a PE=1 

SV=2 

Kif3a P28741 

Ubiquitin-like modifier-activating enzyme 1 OS=Mus musculus 

GN=Uba1 PE=1 SV=1 

Uba1 Q02053 

Leucine-rich repeat flightless-interacting protein 1 OS=Mus 

musculus GN=Lrrfip1 PE=1 SV=2 

Lrrfip1 Q3UZ39 

1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon OS=Mus 

musculus GN=Agpat5 PE=2 SV=2 

Agpat5 Q9D1E8 

PRA1 family protein 3 OS=Mus musculus GN=Arl6ip5 PE=1 SV=2 Arl6ip5 Q8R5J9 

Nucleosome assembly protein 1-like 4 OS=Mus musculus 

GN=Nap1l4 PE=1 SV=1 

Nap1l4 Q78ZA7 

Serine/arginine-rich splicing factor 10 OS=Mus musculus Srsf10 Q9R0U0 
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GN=Srsf10 PE=1 SV=2 

Serpin H1 OS=Mus musculus GN=Serpinh1 PE=1 SV=3 Serpinh1 P19324 

Eukaryotic initiation factor 4A-III OS=Mus musculus GN=Eif4a3 

PE=2 SV=3 

Eif4a3 Q91VC3 

Eukaryotic translation initiation factor 2 subunit 3, X-linked 

OS=Mus musculus GN=Eif2s3x PE=1 SV=2 

Eif2s3x Q9Z0N1 

RNA-binding protein 39 OS=Mus musculus GN=Rbm39 PE=1 

SV=2 

Rbm39 Q8VH51 

ATPase Asna1 OS=Mus musculus GN=Asna1 PE=1 SV=2 Asna1 O54984 

Ras GTPase-activating protein-binding protein 1 OS=Mus 

musculus GN=G3bp1 PE=1 SV=1 

G3bp1 P97855 

Junctional adhesion molecule C OS=Mus musculus GN=Jam3 

PE=1 SV=2 

Jam3 Q9D8B7 

Plastin-2 OS=Mus musculus GN=Lcp1 PE=1 SV=4 Lcp1 Q61233 

40S ribosomal protein S17 OS=Mus musculus GN=Rps17 PE=1 

SV=2 

Rps17 P63276 

Clathrin interactor 1 OS=Mus musculus GN=Clint1 PE=1 SV=2 Clint1 Q99KN9 

Ras-related protein Rap-1b OS=Mus musculus GN=Rap1b PE=2 

SV=2 

Rap1b Q99JI6 

Dedicator of cytokinesis protein 7 OS=Mus musculus GN=Dock7 

PE=1 SV=3 

Dock7 Q8R1A4 

Syntaxin-8 OS=Mus musculus GN=Stx8 PE=1 SV=1 Stx8 O88983 

BAG family molecular chaperone regulator 2 OS=Mus musculus 

GN=Bag2 PE=1 SV=1 

Bag2 Q91YN9 

Myosin light chain 3 OS=Mus musculus GN=Myl3 PE=1 SV=4 Myl3 P09542 

26S protease regulatory subunit 4 OS=Mus musculus GN=Psmc1 

PE=1 SV=1 

Psmc1 P62192 

 

 

C) Proteins belonging to the dataset “In both” 

 

Description Gene 

name 

Uniprot 

accession 

Ras-related protein Rab-8B OS=Mus musculus GN=Rab8b PE=1 

SV=1 

Rab8b P61028 

39S ribosomal protein L11, mitochondrial OS=Mus musculus 

GN=Mrpl11 PE=2 SV=1 

Mrpl11 Q9CQF0 

Serine/threonine-protein phosphatase PGAM5, mitochondrial 

OS=Mus musculus GN=Pgam5 PE=2 SV=1 

Pgam5 Q8BX10 
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