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Preface 
 

 

The thalamic pulvinar, the largest and one of the most diversely interconnected 

subcortical regions in primates is a mysterious one, and perhaps, one of the most difficult 

brain regions to describe functionally. Streams of interest on the region have sparked and 

faded from time to time. Early last century, for example, a lesion study hinted a potential 

link of pulvinar (together with other thalamic nuclei) to goal-directed behavior in primates 

(Walker, 1938). In his study, Walker reported complete degeneration of pulvinar cells after 

ipsilateral hemidecortication of a chimpanzee. Based on his, and previous findings of 

cortical and pulvinar size increase in primates, he speculated that there could be a link 

between complex upper limb behavior and the notable growth of cortex and thalamic nuclei 

in primates.  

 

Recent ongoing efforts from several branches of neuroscience are providing a more 

comprehensive view of thalamic nuclei within the rich circuitry of the brain. These new 

functions of the thalamus span well beyond the relay of information from peripheral organs 

to the cortex as it was once thought to be. The functions of the pulvinar, however, remain 

underexplored. Taking another look at the pulvinar in action during goal-directed behaviors 

might help us illuminate questions that have lingered in the mind of neuroscientists for 

several decades.   
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i.1 Visual processing streams  

 

The primate brain has grown and developed during evolution as have our complex 

interactions with the environment. Primates, particularly humans, have extensive 

association cortices whose defining feature is the lack of direct inputs from sensory areas or 

projections to motor command centers. Association areas are interconnected to each other, 

but also share projections to subcortical regions; in particular, dense connectivity has been 

reported to dorsal sub regions of the pulvinar nuclei of the thalamus (Asanuma et al., 1985; 

Kaas and Lyon, 2007; Buckner and Krienen, 2013). The functions observed in association 

cortices often reflect integration of information that is used to generate future actions.  

 

A large part of the information to be integrated by association cortices comes via the visual 

system. Vision is represented across several cortical and subcortical regions in the brain, in 

the cortex only, over 30 areas are known to represent visual features (Ungerleider and 

Haxby, 1994). The visual information not only allows us to scrutinize and categorize our 

surroundings but also to interact with them in an efficient way. Many brain regions are 

involved in distinct aspects of visual processing e.g. its meaning, retrieval, and emotional 

content. Other areas are involved in the use of such information for the planning and 

execution of actions (Goodale and Milner, 1992). Of particular interest for primates are the 

parietal and frontal cortices, as they have been identified to be linked in the  planning of eye 

and hand movements (Snyder et al., 1997, 2000a; Battaglia-Mayer et al., 2003; Caminiti et 

al., 2015)   

 

The widely accepted canonical nature of the visual system (Mishkin et al., 1983; 

Ungerleider and Haxby, 1994) has allowed vision researchers to study simple to 

increasingly complex features of the visual world across the information flow hierarchy. In 

general terms, the early visual pathway drives information from the visible part of the 

electromagnetic spectrum, detected by the ganglion cells in the retina, through the optic 

tract to the lateral geniculate nucleus of the thalamus, while in parallel, other fiber bundles 
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project to tectal and pretectal areas of the midbrain. These multiple projections are thought 

to be part of a system that also optimizes motor commands (Guillery, 2003, 2005). From 

the thalamus, the information continues through optic radiations to its first cortical target, 

the striate visual cortex.  

 

The primary visual cortex routes visual information to two functionally distinct visual 

streams (Figure i.1): The first stream includes the primary visual area (V1), V2, V4, as well 

as occipital temporal and inferior temporal cortices while 2) a second stream includes 

mainly occipital parietal cortices, V1 and V2 in addition to areas V3, MT, MST, and 

regions in the posterior parietal cortex and superior temporal sulcus. The functional 

characterization of the ventral and dorsal streams was made possible largely by the 

observation of deficits after brain to distinct brain regions in both humans and monkeys.  

Damage to regions in the ventral stream was found to cause extensive deficits in object 

discrimination and retrieval, while damage to areas in the dorsal stream mainly impaired 

performance in tasks with spatial-relevant components (Mishkin et al., 1983; Ungerleider 

and Haxby, 1994). Initially, the classification of the distinct visual areas was proposed to 

heavily depend on the presence of strong perceptual or spatial properties in the area, i.e. the 

widely known “what” and “where” pathways. Further study of perceptual and motor 

deficits in patients with parietal and temporal damage contributed to refining the role of the 

dorsal stream as one with not only spatial components but action-oriented properties, i.e. 

the ¨how¨ pathway (Goodale and Milner, 1992; Goodale et al., 2005).  
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Figure i.1 Organization of the visual streams in the macaque brain 

 

Visual inputs travel from the retina via the optic tract to the LGNd, and then to V1 via optic 

radiations. From early visual areas V1 and V2, the visual information diverges in two 

pathways. The first one modulated by the physical properties of objects which contribute to the 

creation of semantic representations of our visual surroundings at multiple processing levels in 

the visual hierarchy (ventral stream). The second stream is more sensitive to spatial and goal-

directed properties of our visual environment (dorsal stream). An additional input to the dorsal 

stream emerges from the retina and bypasses the LGNd, relaying information to V3/MT 

through the SC and pulvinar or directly via pulvinar. Composite figure from and with 

permission of (de Haan and Cowey, 2011) and (Goodale, 2011). LGNd, Dorsal lateral geniculate 

nucleus; MT, Medial temporal area; V1, Visual area 1 (primary visual cortex) 

 

In addition to the often encountered canonical nature of the visual system (Mishkin et al., 

1983; Ungerleider and Haxby, 1994), there are processes for which the parallel recruitment 

of different cortical areas, in addition to the known sequential processing in  the visual 

streams might be required (de Haan and Cowey, 2011). As our brains need not only to 

integrate complex visual inputs but also to generate visually-guided motor commands, a 

visuo-motor network that dynamically and rapidly is able to recruit neural populations 

across several brain regions seems to be a cost-effective solution. Brain regions with 

extensive bidirectional connections with the central nervous system are of relevance, as 

they might act as hubs that facilitate the generation and integration of visually-guided 

actions. 
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Multiple brain regions are involved in the active exploration of the environment. A 

structure with a central position, both physically and more importantly, functionally, is the 

thalamic complex. The thalamus is in a privileged position to participate in information 

modulation, as all sensory modalities (except for the olfactory) possess a thalamic relay.  

  

i.2 Thalamus 

 

The thalamus, a group of several nuclei of diencephalic origin is crucially involved 

in the relay of information from peripheral sensory organs to the cortex and in addition, in 

the transfer of information between different cortical areas. The relevance of the thalamus, 

at least an obvious one, is that most sensory inputs coming from the sensory organs will 

reach the cortex through it. An exception are the olfactory inputs which relay directly to the 

olfactory bulb, a structure whose functions resemble those of thalamic nuclei (Kay and 

Sherman, 2007). In other words, our representation of the world is, at some level, relayed 

and modulated through the thalamus.  

 

Relay neurons in the thalamus display two types of channel gates, Na+ and T-type Ca2+ 

gates (Sherman, 2009). Depending on their gate type, thalamic neurons also present 

different refractory periods and resting potentials. This diversity of gate types contributes to 

the complex burst and tonic firing patterns in thalamic neurons, these firing patterns likely 

add up computation power to the processes involving these nuclei. 

 

Inputs to the thalamus differ in nature. In general, thalamic inputs can be classified in one 

of two categories: drivers and modulators (Sherman and Guillery, 2002; Guillery, 2005; 

Sherman, 2009). A driver input is one that carries a message from one region to another. A 

modulator, on the other hand, has the function of modifying the message carried by a driver 

without having a message on its own. Modulators represent most of the synaptic inputs to 

the thalamus from the cortex. Driver information can come from peripheral systems, as the 
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retinal inputs that reach the lateral geniculate nucleus (LGN) for vision, or directly from the 

cortex, creating cortico-thalamo-cortical loops.  

 

Inputs to the thalamus from the cortex or peripheral nervous system end up in two types of 

nuclei, first order and higher order nuclei. First order thalamic nuclei carry information that 

will reach the cortex for the first time, either from sensory organs or from other sub-cortical 

structures. A classic example of first order thalamic nuclei is the LGN, whose driving input 

comes directly from the ganglion cells in the retina. In contrast, higher order thalamic 

nuclei receive driving inputs directly from the cortex and not from the peripheral nervous 

system. An example of higher order thalamic nuclei is the pulvinar complex, whose 

anatomical connectivity largely comprises cortical areas belonging to the ventral and dorsal 

visual streams. Even though both, first and higher order thalamic nuclei, receive cortical 

inputs, the nature of such inputs varies. The LGN as well as other first order (and higher 

order) thalamic nuclei receive inputs from layer 6 of the cortex, which are of modulatory 

nature, while the pulvinar and other higher order thalamic nuclei additionally receive inputs 

from layer 5, which carries driving information via the thalamus to cortical areas and also 

branches off to subcortical motor regions such as the basal ganglia, and the amygdala.  

 

For some time now, there has been an effort to leave behind the preconception of thalamic 

nuclei acting solely as relay areas, and they are now seen to be involved in other functions, 

such as a central role in cortico-cortical communication (Sherman and Guillery, 2002; 

Guillery, 2005; Sherman, 2009; Saalmann and Kastner, 2015; Sherman, 2016). It has also 

been shown that sensory-motor pathways involving the thalamus present an additional 

pathway to motor centers, e.g. spinal cord and the brain stem (Sherman and Guillery, 2011) 

(Figure i.2). The duplication of information might be the basis for the optimization of 

complex sensory-motor commands. Under the perspective of optimization and integration, 

of interest is the thalamic pulvinar, connected to practically all areas in the primate cortex, 

which can serve as a good proxy for the study of complex and goal-directed processing 

taking place in the thalamus. It is important to note however that a large portion of the 

anatomical work providing insights in thalamic function (from Sherman, Guillery and 
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colleagues) has been performed in rodents, and further exploration of thalamic properties in 

primates are still highly valuable. 

 

Figure i.2 Corticocortical and cortico-thalamo-cortical pathways 

 

Information from the periphery travels to the cortex and to motor centers via the thalamus. For 

first and high order thalamic nuclei (orange circle and magenta hexagons respectively) there 

are projections from cortical layers 6, and 5 and 6 respectively. An additional pathway sends 

projections directly to motor centers (brain stem and spinal cord). From (Sherman and 

Guillery, 2011). FO, first order thalamic nuclei; HO, high order thalamic nuclei; black solid 

arrows, feedforward connections; black dotted arrows, feedback projections (these are also 

modulatory inputs to thalamus); green solid arrows, inputs to the thalamus 

 

i.3 Pulvinar complex 

 

The thalamic pulvinar is located in the posterior pole of the thalamus. In primates, it 

shares broad connectivity to association areas in the cortex. The pulvinar has greatly 
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expanded during primate evolution in comparison to other thalamic nuclei. It represents 

about a quarter of the total mass of the thalamus. The development of both association areas 

in the cortex and the pulvinar has been proposed to be linked to enhanced cognitive 

functions in primates (Stepniewska, 2004). Even though the pulvinar has expanded in 

primates, pulvinar-resembling structures, particularly of visual nature, can be found in all 

mammals under different names, e.g. the lateral posterior nucleus (Kaas and Lyon, 2007). 

 

Pulvinar is regarded as a high order thalamic nucleus; however, in some animals it has been 

found that pulvinar also receives input from peripheral systems. In the galago, the 

superficial layers of the superior colliculus carry information from the optic tract to the 

caudal pulvinar (Harting et al., 1973). Along the same line, there have been observed in the 

common marmoset anatomical connections from the retina to the inferomedial subdivision 

of the pulvinar. In the macaque retinal inputs have been traced to the inferior pulvinar 

(O’Brien et al., 2001). These findings are interesting as they position the pulvinar not only 

as a high order but also a first order thalamic nucleus (Warner, 2010). As the evolutionary 

development of the pulvinar came hand in hand with the parallel development of the 

neocortex in primates (Ogren, 1982) and complex behaviors, it is interesting to hypothesize 

about which of pulvinar populations were of most recent development. 

 

A recurrent problem for the characterization of pulvinar functions arises from the extensive 

connectivity of pulvinar to the cortex, and its lack of clear anatomical organization (Figure 

i.3). There have been efforts to understand how the pulvinar is organized at a microscopic 

and macroscopic level. Early on, the pulvinar was anatomically divided into: 1) an anterior 

region connected to somatosensory cortical areas, the oral or anterior pulvinar. More 

caudally, the pulvinar was divided to 2) inferior, 3) lateral, 4) and medial nuclei. The more 

ventral and lateral regions of the pulvinar are mainly connected to early visual cortical 

areas. Mediodorsally, the pulvinar shows stronger connectivity to a multitude of cortical 

areas in the parietal, frontal, orbital, and cingulate cortices (Grieve et al., 2000).  

 

The division of pulvinar to a ventral and a dorsal region is anatomically facilitated by a 

dense branch of fibers known as the “brachium” of the superior colliculus. This separation 
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however is not clear-cut, as according to certain parcellations (Gutierrez et al., 2000; Kaas 

and Lyon, 2007), the inferior pulvinar slightly extends above the brachium. The dorsal 

pulvinar is the least understood of the two largely due to the complexity of its anatomical 

organization. The dorsolateral pulvinar is connected to parietal cortex and dorsolateral 

prefrontal cortex. The dorsomedial pulvinar is connected to extrastriate area V4, inferior 

temporal cortex, and posterior parietal cortex as well as auditory and somatosensory areas. 

In addition, the dorsomedial pulvinar also connects to higher order processing areas such as 

the superior polysensory cortex and the amygdala (Gutierrez et al., 2000; Kaas and Lyon, 

2007).  

 

Recently, immunohistochemistry has helped refine anatomically-described segmentations 

of pulvinar made possible by cytoarchitectonics, as it can aid to the targeting of specific 

molecules and neurotransmitters from the area of interest, which potentially share similar 

functional properties (Stepniewska, 2004). By its chemoarchitecture, up to nine different 

subdivisions have been identified in pulvinar. Regardless of the classification method, it 

has been consistently reported that there is a gradient of connectivity in the pulvinar. The 

ventrolateral region is bidirectionally connected to early striate and extrastriate visual areas 

while the most dorsomedial regions are connected to higher processing cortical areas.  
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Figure i.3 Subdivisions of the macaque pulvinar 

 

Localization of the thalamic pulvinar and main connectivity of its dorsal subdivisions in the 

macaque. Left: sagittal (top) and coronal (bottom) views of the location of the pulvinar complex 

in the macaque brain. Right: pulvinar subdivisions and connectivity of the dorsal subdivisions.  

Macaque brain sagittal template from: (Culham and Kanwisher, 2001). Pulvinar modified 

from: (Stepniewska, 2004; Kaas and Lyon, 2007). Macaque brain coronal template from:  

https://scalablebrainatlas.incf.org/macaque/CBCetal15. Connectivity also from (Asanuma et al., 

1985; Romanski et al., 1997; Cappe et al., 2009). BrSC, Brachium of the superior colliculus; 

PMm, medial subdivision of medial pulvinar; PMl, lateral subdivision of medial pulvinar; 

PLdm, dorsomedial subdivision of lateral pulvinar; PLvl, ventrolateral subdivision of lateral 

pulvinar; PIcl, central lateral nucleus of the inferior pulvinar; PIcM, central medial nucleus of 

the inferior pulvinar; PIm, medial nucleus of the inferior pulvinar; PIp, posterior nucleus of the 

inferior pulvinar. 

 

In addition to its bidirectional projections to the cortex, the pulvinar also receives inputs 

from the superior colliculus. The superficial layers of the superior colliculus project to the 

more ventral parts of pulvinar while intermediate layers project to the dorsal regions 

(Grieve et al., 2000).  
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Regarding pulvinar’s development, pulvinar seems to have different ontogenetic origin in 

humans and monkeys (Rakić and Sidman, 1968; Ogren and Rakić, 1981). In humans, the 

ontogenetic development of pulvinar starts late compared to other thalamic nuclei, with the 

largest stream of pulvinar cell increase around the gestational weeks 31 to 37. The late 

development of pulvinar comes as the result of late migration of telencephalic cells from 

the corpus ganglio thalamicus, a temporary brain structure in the human fetus. Reports 

from experiments using supravital incorporation of triated thyamidine into DNA in human 

embryonic cells of 18.5 week fetuses, showed that the ependymal of the third ventricle of 

the diencephalon ceases neuron production while the human pulvinar is only recently 

developing (Rakić and Sidman, 1969). In other words, the diencephalic structure 

participating in pulvinar’s development does not account for the large mass of cell bodies 

that it encompasses in humans.  

 

In the Rakić study of 1968 it was shown that the ganglionic eminence of the telencephalon, 

which gives rise to the basal ganglia, also sends migrating cells to a temporary structure, 

the corpus gangliothalamicus. In the corpus gangliothalamicus a second stream of pulvinar 

development begins later; at 13 weeks there is a small pulvinar which development 

accelerates from weeks 16 to 37 (Rakić and Sidman, 1969). This late stream of 

telencephalic pulvinar cells has been found only in humans, as experiments using Macaca 

mulatta have shown that all cells in their pulvinar are of diencephalic origin (Ogren and 

Rakić, 1981).  

 

The difference in developmental origin of pulvinar poses an interesting question of how 

much is possible to extrapolate structural and functional findings of the macaque pulvinar 

to the one in humans. Still, even with differences in ontogeny, the pulvinar in different 

primate species seems to have similar connectivity properties, which agree with a shared 

evolution and recent separation from a common primate ancestor no more than 25 million 

years ago (Buckner and Krienen, 2013).  

 

Speculation of pulvinar relevance and function has been around for some time. The 

chimpanzee’s pulvinar, both in absolute and relative terms, has an intermediate size 
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between macaques and humans. Connectivity data obtained after chimpanzee 

hemidecortication has shown complete degeneration of three main subnuclei of the pulvinar 

after 69 days of survival (Walker, 1938). This is anatomical evidence of a shared 

connectivity between the neocortex and the pulvinar. Even when in this study other nuclei 

in the thalamus suffered similar degeneration, this was not a generalized effect. Additional 

reports have demonstrated pulvinar connectivity to high order brain areas such as the 

temporal lobe, assessed by retrograde degeneration of medial pulvinar after localized 

cortical lesions. These results have been shown to be true in non-human primates, as well 

as in humans as noted by pathology observations (Simpson, 1952).  

 

The rich connectivity of the pulvinar, particularly of the dorsal region with the fronto-

parietal network, makes the pulvinar outstandingly interesting to explore in the context of 

visually influenced goal-directed behavior. Even with its anatomical connectivity to high 

level processing areas, still not much is known about pulvinar´s role in relation to its 

cortical counterparts.  
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i.4 Pulvinar functions 

 

It is a hard task to characterize a structure such as the pulvinar. Different, thoughtful 

and elegant experimental designs have been used and their findings have been broad but not 

conclusive. A multitude of functions have been correlated to pulvinar, mainly involving the 

use of visual information. For the ventral pulvinar, its functional properties seem to reflect 

visual properties coming from its inputs in early visual cortices. For the dorsal pulvinar on 

the other hand, its functions seem to be broad, and behavior dependent.  

 

Some of the most relevant findings of pulvinar function for this thesis are described in this 

section; however, it is worth pointing out that especially when talking about cell encoding 

properties, a great diversity is the common denominator. 

 

The ventral subdivision of the pulvinar presents visual related activity (Petersen et al., 

1985; Robinson et al., 1991) congruent to its connectivity to striatal, extra striatal, and to 

superficial layers of the superior colliculus. Such activity seems to exist under the influence 

of a retinotopically organized reference frame that is additionally modulated by the eye 

position (Robinson et al., 1990). It is important to note that even in this subdivision of the 

pulvinar, connected to early visual areas, and to a lesser extent, to higher order brain 

regions, the influence of reference frames (other than eye-centered) is already present. It 

would be interesting to explore if there is any specificity of the influence of reference 

frames in ventral and dorsal subdivisions of the pulvinar according to their connectivity. If 

connectivity plays a role in the coordinate system influencing pulvinar it would not be 

surprising that for example dorsal pulvinar shared similar characteristics as posterior 

parietal or frontal cortices. Biological systems are usually not compartmentalized in 

functions however, for example, area 7a and LIP in the macaque, strongly connected to 

dorsal pulvinar, share similar gaze position influences in firing rate to ventral pulvinar 

(Asanuma et al., 1985; Andersen et al., 1990).  
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At least two retinotopic maps in the ventral pulvinar have been found, in the ventrolateral 

nucleus of the lateral pulvinar, and in the central lateral nucleus of the inferior pulvinar. 

The retinotopic maps in the lower part of the pulvinar mainly represent contralateral upper 

visual quadrants. Still, it is possible to find non-retinotopically organized regions. These 

regions correspond to the posterior, medial and central medial nuclei of the inferior 

pulvinar which are connected to the dorsal stream. Retinotopic maps have not been found 

in dorsal pulvinar. Even with a gradient that favors ventral pulvinar connections to the 

ventral stream and dorsal pulvinar to the dorsal stream, there are areas in both subdivisions 

connected to the opposite stream.  

 

In the greater galago, Otolemur garnettii, pulvinar exerts strong influences in early stages 

of visual processing (Purushothaman et al., 2012). By pharmacologically inactivating 

lateral pulvinar neurons with matching receptive fields in supra granular layers of V1, V1´s 

receptive fields become unresponsive to visual stimulation. Additionally, lateral pulvinar 

has differential modulatory effects on V1´s receptive fields according to their level of 

overlap. When pulvinar-V1´s receptive fields overlap there is an enhancement of 

responsivity in V1. When pulvinar receptive field is stimulated but only partially matches 

V1´s receptive field, the V1 cell modifies its receptive field to one resembling the one in 

pulvinar. If on the other hand the receptive field of V1 is stimulated but does not match the 

one with excited pulvinar there is a suppression in V1, demonstrating strong modulation of 

pulvinar in early visual cortices.  

 

It has been proposed that two subcortical regions are involved in the control of attention, 

the superior colliculus and the pulvinar (Shipp, 2004).  There is evidence that ventral 

pulvinar regulates information transmission between cortical areas by regulating brain 

oscillations. In an attentional task, pulvinar exerted influence in cortical alpha oscillations 

in areas V4 and TEO as assessed by conditional Granger causality (Saalmann et al., 2012). 

After ventral pulvinar inactivation, cortical area V4 showed a reduction of gamma 

frequency oscillations during an attentional task as well as of visual stimulation responses. 

Additionally, inactivation of pulvinar increased low frequency oscillations in V4 in the 

range of 0.5 Hz to 20 Hz (Zhou et al., 2016) which the authors suggest could be linked to a 
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role of pulvinar on alertness. Taken together these results provide correlational and causal 

evidence on the influence of pulvinar-driven oscillations on attentional and alertness 

processes. 

 

Petersen and collaborators (Petersen et al., 1985) characterized the neuronal activity of 

multiple regions of  the pulvinar nuclei in the macaque. They found that the inferior and 

lateral pulvinar, and the dorsomedial pulvinar had marked differences in their 

responsiveness to visual stimuli and to behavioral tasks. The dorsomedial pulvinar had 

longer latencies to visual stimuli and a stronger modulation to attentional tasks when 

compared to the more ventral subdivisions. A later study from Petersen and collaborators 

(Petersen et al., 1987) looked at the causal participation of the dorsomedial pulvinar in 

behavioral tasks. Monkeys were tested in fixation, saccade, and target detection tasks using 

bar releases. As the experimenters aimed to see if dorsomedial pulvinar was causally linked 

to attentional performance they used GABA agonists and antagonists (muscimol and 

bicuculline respectively) to assess changes in attention. Using a task which involved a 

congruent or incongruent spatial presentation of cues and targets before and after the 

injection of drugs, it was observed that muscimol had an impeding role in attentional shifts 

while bicuculline had a facilitatory effect. The findings from the electrophysiological and 

causal studies from Petersen and collaborators suggest that the functions of the different 

subdivisions of pulvinar well correspond to the established ventral and dorsal visuo-motor 

streams.   

 

Opposite to the strong influence of visual inputs to the ventral pulvinar, in the dorsal 

pulvinar of monkeys goal-directed behavior seems to play a larger role than vision. In the 

caudal lateral part, receptive fields tend to be large (>12°) and often extend from foveal 

vision to the periphery (Benevento and Miller, 1981). Receptive fields are commonly found 

in the contralateral hemispace to the recorded pulvinar and in fewer cases they are bilateral 

or ipsilateral. Visual responsivity of pulvinar neurons vary, neurons have been found to 

either be enhanced or suppressed in their firing rate, and even vary according to the type of 

visual stimulation (monocular or binocular). 
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The importance of goal-directed behavior for dorsal pulvinar is exemplified by findings in 

oculomotor tasks. In the dorsolateral and medial parts of the pulvinar of macaques, 

neuronal firing is modulated during purposeful saccades in either light or dark conditions, 

but not during spontaneous saccades (Benevento and Port, 1995). In this saccade or stay 

task there was firing attenuation to visual stimuli when the saccade was not required, on the 

other hand, when monkeys were presented with the same visual stimuli, but a saccade was 

not part of the task contingency, such attenuation was not present.  The observation of goal 

dependent modulation in dorsal pulvinar will be of great importance in the context of 

results described in Chapter II. It seems from Benevento & Port’s results, as well as from 

our own, that the task contingencies strongly influence the type of tuning that pulvinar cells 

display.  

 

Another oculomotor study exemplifying the diverse tuning properties of dorsal pulvinar 

showed that around sixty percent of the cells in dorsomedial pulvinar are responsive to 

saccades in light (Robinson et al., 1986). Most of the cells responded with excitatory 

modulation, while some presented either inhibitory or biphasic modulation. Saccade related 

cells often had visual responsivity and some also responded to saccades in the dark. It has 

also been reported that both dorsal and ventral pulvinar, but not LGN, encode for the 

perceptual offset of a target evoked by a generalized flash suppression paradigm (Wilke et 

al., 2009). There seems to be a selective and more cognitively-driven modulation in 

pulvinar firing than in LGN. 

 

As stated before, dorsal pulvinar neurons are responsive to visual stimulation, but more 

than that, they are sensitive to the behaviorally relevant parts of it. A recent line of research 

has focused on the effects of visual stimuli that might have been of evolutionary relevance 

for primate-specific behavior in pulvinar. It has been observed that neurons in the medial 

and dorsolateral pulvinar of monkeys are more responsive and show shorter visual response 

latencies when subjects are presented with threatening stimuli in comparison to neutral 

stimuli (Van Le et al., 2013). These neuronal properties could have the purpose of 

facilitating the generation of an appropriate motor response. 
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A few studies have focused on the functions of the pulvinar in humans, mostly by means of 

neuroimaging. Using fMRI it has been shown that in inferior pulvinar of humans there is 

contralateral representation of visual stimuli, whether attended or unattended (Cotton and 

Smith, 2007), resembling findings of the visually responsive and retinotopically organized 

inferior pulvinar in the macaque. Additionally, a different fMRI study (Li et al., 2012) 

showed that pulvinar activation and connectivity is likely to be linked to attention related 

changes in children. Subjects with ADHD which performed a sustained visual attention 

task displayed decreased connectivity of both left and right pulvinar to the right prefrontal 

lobe. Also, the connectivity between right pulvinar and both occipital cortices was 

increased, suggesting a circuit of attention that requires pulvinar function. Not only visual 

representation and attention have been linked to pulvinar function. Arend and collaborators 

have explored different behavioral aspects of patients after pulvinar damage. They have 

found that that the medial subdivision of the pulvinar is related to emotional features of 

working memory updating (Arend et al., 2015). They have also proposed a  separation of 

temporal and spatial deficits depending on the anterior-posterior location of the damage, i.e. 

greater spatial deficits after anterior pulvinar damaged and greater temporal deficits after 

posterior pulvinar damage (Arend et al., 2008). It is particularly difficult to investigate 

deficits that are specific to pulvinar in humans because patients with such lesions 

commonly have damage extending to other thalamic nuclei or even to the cortex. Van der 

Stigchel and collaborators tested pulvinar-damaged patients with a distractor task. There, 

there was decreased filtering of distractors in the contralesional hemispace when 

simultaneously presented with an ipsilesional target, as well as increased reaction times for 

target captures in both hemispaces. Additional deficits were found while exploring saccade 

inhibition. In this task, normal subject saccade trajectories usually go “away” from 

distractors when acquiring targets. Here, it was found that there was reduced inhibition to 

distractors presented in the contralesional hemispace (Van der Stigchel et al., 2010).   

 

In addition to correlation studies using single cell recordings, a few inactivation studies 

have been performed to study the causality of pulvinar function on behavior. Interestingly, 

in the two studies that will be described below, the effects seemed to be context-dependent. 

First, researchers inactivated the dorsal region of the pulvinar with either muscimol or 
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THIP while monkeys performed 1) visually-guided, direct or delayed, instructed or choice, 

saccades to peripheral targets, 2) reaches to food items with either the ipsilesional, 

contralesional, or either hand, relative to the inactivated pulvinar and 3) visual exploration 

in an illuminated room (Wilke et al., 2010). It was observed that after inactivation there is 

facilitation of reaction times to saccades to the ipsilateral hemispace of the lesion. In 

addition, there is increased target selection of ipsilesional targets even when the acquisition 

of non-preferred targets in single-target trials is unaffected. These inactivation effects 

suggest that dorsal pulvinar is indeed not causally involved in visual perception but that it 

participates in target selection. In the same study, during free visual exploration, the 

ipsilesional hemispace was explored for longer periods of time, which might reflect 

reduced desirability of the contralesional hemispace. Furthermore, when choosing between 

hands, after pulvinar inactivation, monkeys preferred reaching and grasping items by using 

their ipsilesional hand rather than the contralesional one, and items in the ipsilesional 

hemispace were more often acquired first. Grasping made with the contralesional hand was 

observed to be more impaired than when using the ipsilesional hand, Errors in grasping 

included abnormal hand pre-shape when reaching for food items, and frequent drop of such 

items.  

 

As a follow up, the authors performed a memory-guided saccade choice paradigm study, 

where monkeys’ dorsal pulvinar was inactivated with THIP as they were allowed to choose 

between target options with different reward amounts (Wilke et al., 2013). The observation 

of ipsilesional bias after inactivation was present as in the previous study, however, the 

deficit was alleviated by offering higher-reward targets in the contralesional hemispace. 

Again, these effects seemed to be particular of the choice condition, since monkeys were 

still able to perform saccades to the contralesional hemispace in single target trials. To 

differentiate between desirability or motivational and saliency effects of the reward the 

authors performed an additional experiment. In this experiment they modified the 

luminance of the two saccade targets without modifying the reward that each target 

provided. They observed that even though there was partial alleviation of the deficit, the 

effect was not as large as when the parameter modulated was the reward amount. It is 

important to note that the authors did not try to match the bias created by the luminance 
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change and reward modulation, which makes a direct comparison of results difficult, 

especially under the light that both modulations caused at least at some degree, an 

alleviation of the ipsilesional bias. Wilke and collaborators’ findings suggest that goal-

directed related mechanisms and not bottom-up ones better explain the deficits observed 

after pulvinar disruption. 

 

Finally, two groups have worked on the characterization of the neuronal properties of 

pulvinar during reach behavior, one in monkeys and one in humans.  

 

In Macaca fascicularis, the lateral posterior-pulvinar complex has reach-related neurons 

(Acuña et al., 1986). But even when the lateral posterior nucleus and the pulvinar present 

reach-related neurons, they do not show similar characteristics. While lateral posterior 

neurons were found to be largely active not only during active but also during passive 

reaches, pulvinar firing rate was only increased while the monkeys were actively 

performing the task. The pulvinar cells responsive to reaches in this study were located 

mainly in the oral and lateral pulvinar, and in smaller proportion in the medial pulvinar. In 

Cebus apella the oral, lateral and medial pulvinar are also responsive to reaches and hand 

manipulation (Acuña et al., 1983), particularly, cells were modulated when the object to be 

reached and grasped was of behavioral interest, like a piece of fruit or a target that would be 

followed by reward. In Macaca nemestrina, a small group of cells in the pulvinar-lateral 

posterior complex precede activity in the parietal and motor cortices, potentially indicating 

intentionality to perform a movement (Cudeiro et al., 1989) 

 

There is one early electrophysiological study from preoperative recordings of medial 

pulvinar units from seven patients (Martin-Rodriguez et al., 1982). The authors recorded 

spontaneous spike activity, as well as LFPs during manual manipulations. The authors 

found different patterns of pulvinar bursts depending on if the patients performed active or 

passive grasping. Forty six percent of the units (13/28) showed firing modulation during 

voluntary handle presses but not during passive presses. These results in humans are in line 

with the findings of Acuña’s group in monkeys. 
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The purposeful performance of reaches could be an appropriate tool to study higher 

pulvinar functions. Thus, a general understanding of reach-related circuits and the 

transformations of the visual information guiding it might prove to be enlightening.  

 

i.5 Eye-hand representations and interactions 

 

Our ability to perform goal-directed actions requires a broad brain circuitry. A 

simple task such as turning a page from a newspaper requires in broad terms: 1) Spatial 

information about the location of the newspaper. 2) Information about our own position in 

respect to the newspaper to reach and grasp it. 3) Spatial transformations from a purely 

retinotopic representation of the newspaper in the visual cortex to one that considers the eye 

position in the orbit, the head position in respect to the body, the body in respect to the 

hand, and the hand in respect to the object. 4) And a central motor system that delivers 

precise signals to motor neurons in the periphery and can be updated by feedback according 

to the current state of the action.  

 

The reach system of primates, often guided by visual information, as the rest of the brain, 

was optimized by interactions with our environment. In lemurs for example, the 

development of occipital and temporal lobes is linked to an increased use of their visual 

system as arboreal organisms requiring intensive processing of visual information (Harting 

et al., 1973).  Likewise, efficient prehension is achieved by our primate-shared skills for 

reaching and grasping, for which we do not rely only on visual inputs, but also on the 

functional and semantic properties of the objects to be manipulated. It has being proposed 

that the temporal cortex could be linked in the determination of causality of object-function 

interactions, while parietal areas is more involved in a broader manipulation of unfamiliar 

tools (Johnson-Frey, 2003). Brain areas linked to efficient usage of objects are widely 

represented in frontal, parietal and temporal cortices (Frey, 2007). Actions that involve 

complex behavior where semantic information is needed to interact with the objects to be 

grasped have been found to be lateralized to the left hemisphere in humans in areas such as 
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the inferior frontal, inferior parietal, and posterior temporal cortices. Shared skills in 

humans and other primates for the planning and execution of reaches make the reach 

system an attractive one to study purposeful actions in a monkey model. Reaches might 

function under general primate-specific rules, not as strongly influenced by further 

specializations like semantic information of the object to be grasped as proposed for 

humans (Johnson-Frey, 2003; Frey, 2007).  

 

Within the flow of information for the planning of visually- and internally-guided 

purposeful movements the parietal cortex is of special interest. Areas in the posterior 

parietal cortex (PPC) encode effector specific movements i.e. eye movements in the lateral 

intraparietal area (LIP) (Colby et al., 1996; Snyder et al., 1997), visually-guided reaches in 

area V6A (Galletti et al., 1997) and parietal reach region PRR (Snyder et al., 1997), and 

grasping, area 7 (Taira et al., 1990), and AIP (Sakata et al., 1995; Murata et al., 1996, 

2000). In parallel, areas in the prefrontal cortex with broad connectivity to the motor cortex 

and to parietal areas are involved in effector specific motor preparation (Caminiti et al., 

2015). 

 

Visual information coming from the environment is represented in a retinotopic fashion in 

the primary visual cortex. In other words, there is a relation between neighboring parts of 

the visual field and their representation in neighboring areas in the retina responsive to 

these visual stimuli. As visual information travels through the dorsal stream, this 

representation will be transformed to account for the location of the image in relation to the 

eye position, the eye position to the head, the head to the body, and the body to the physical 

location of the object. All these transformations seem to be well distributed across the 

primate’s brain circuitry. 

 

In visually-guided reaches, it is especially relevant to assess at which level of the visuo-

motor hierarchy the spatial transformations take place. It has been proposed that association 

areas might account for such transformations. Eye- and hand-movement-related activity can 

be found in the parietal cortex, and the spatial transformations influencing such movements 

have been explored. It has been shown that area LIP has a retinotopic organization which is 
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influenced by the gaze position of the observer, showing transformations accounting for 

more than pure visual information (Andersen et al., 1990). Oculo-motor activity in areas 7a 

and LIP of the macaque are modulated by the current and even future gaze location of the 

target in respect to the cell’s receptive field (Andersen et al., 1985; Duhamel et al., 1992). 

Furthermore, a large proportion of movement related neurons in the ventral premotor cortex 

(PMv), around 40%, are modulated by the direction of gaze during the execution of 

memory-guided reaches (Mushiake et al., 1997). There, the modulation of neuronal firing 

was influenced by the position of the target in respect to the eye fixation and not to the 

position of the target in respect to the center of the trunk of the subject.  

 

These findings could be seen as a consequence of strong visual influences acting on 

posterior parietal cortex, which seem to integrate retinal and orbital signals, as during 

reaches, parietal cells better correlate with eye-centered than with limb-centered reference 

frames (Batista et al., 1999). Importantly, as neuronal signals travel upstream to motor and 

premotor regions like dorsal premotor cortex, the reference frames better represent the 

specific effector that will be used for performing a reach, i.e. using a  body centered 

reference frames (Beurze et al., 2010). 

 

Effector specificity is very relevant in association areas, neurons in PPC are highly specific 

and even encode the limb used when one of two arms is instructed to perform a reach 

(Chang and Snyder, 2012). This limb specific preference is higher for the limb contralateral 

to the recorded hemisphere (approximately one third versus one sixth of cells for the 

contralateral and ipsilateral limb respectively). Interestingly, this firing rate enhancement 

has also been correlated to the reaction time of contralateral but not ipsilateral reaches. 

 

Movement related neurons in the posterior parietal cortex reflect intentional components of 

performing an effector-specific movement (Snyder et al., 1997). The neuronal coding of a 

preferred direction for a saccade or a reach in monkeys trained to perform dissociated 

saccades and reaches can be dissociated for one of the effector-specific movements. This 

result shows that activity in the posterior parietal cortex best reflects motor intention than 

visual stimuli or spatial attention. Finally, neurons in effector-specific regions of the 
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parietal cortex that encode properties of different effectors but do not reflect planning of 

such movements could indicate a crosstalk between effectors that is potentially relevant for 

eye-hand coordination or to help represent movement goals (Snyder et al., 2000b). 

 

Some relevant behavioral observations are that for our reach system to efficiently work, it 

requires to integrate visual, and proprioceptive information (Prablanc et al., 1979b). In a 

series of experiments in humans set to test how the availability of visual information 

modifies the execution of eye- and arm-movements, Prablanc and collaborators made 

several valuable observations. Both eye and hand reaction time increase with eccentricity of 

the targets to acquire, and for targets located farther than 30 deg the coordination properties 

of eye and limbs seem to differ, i.e. eye movements tend to start later than the reach. Also, 

there is a decreasing performance depending on the availability of visual information of the 

target and the hand while performing a reach. If the hand and eye are visible during the full 

trial there is a better performance than if the information is available only from the start of 

the movement and finally better than performing a reach with proprioceptive information 

only (Prablanc et al., 1979a, 1979b). Visual information optimizes the reach and this 

optimization can be further improved by adding visual information of the effector used to 

the proprioceptive inputs. The idea of multimodal integration as a way to improve goal-

directed behavior has recently been confirmed by Dadarlat and colleagues (Dadarlat et al., 

2014). By stimulating primary somatosensory cortex, it has been shown that monkeys have 

more accurate reaches when they use a combination of artificial proprioceptive and visual 

information than when using either type of information in an individual manner. 

 

Under most conditions reach behavior is linked to oculomotor behavior, and there are 

influences of one on the other. An interesting example of these influences has been shown 

with a look and point, versus look and grasp paradigm in humans, where the purpose of a 

limb movement influenced saccadic performance (Bekkering and Neggers, 2002). Subjects 

presented with a rectangular sample block with a certain color and with orientation were 

required to find a match among distractors for either one or both parameters and either 

grasp the target or point at it. Subjects did more saccade orientation errors, more saccades 

to non-matching orientation distractors, when the task required them to point in comparison 
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to when they were asked to grasp the object. In contrast, subjects had similar errors to 

saccade to erroneous colors regardless of if the task required them to point or grasp the 

target. These results show that the cognitive weight of the arm movement can improve the 

performance of saccadic behavior. The involvement of a reach also dominates which 

targets will be looked at (Horstmann and Hoffmann, 2005). It has been shown that the 

selection to a target with a coordinated reach-saccade is more strongly correlated to the 

selection to a target doing dissociated reaches than using dissociated saccades. These 

findings stress the notion that a saccade is not an independent movement once it’s coupled 

to a reach. Also, it has been shown that humans’ reach reaction time to a congruent side of 

the reaching limb is shorter and deviate less from the target center than when the reach is 

performed to the contralateral side (Carey and Liddle, 2013). The parameter that better 

explains such ipsilateral reaction time advantage is the hemispace to which the reach is 

performed and not the hemifield. This result shows that the biomechanical restrains to the 

ipsilateral hemispace are smaller than the ones to the contralateral hemispace, regardless of 

where the visual stimuli are presented.  

 

I have stressed the tight interactions of different effectors involved in visuomotor behavior, 

and how several regions in association cortices are involved in the planning and generation 

of visually-guided reaches. A convincing case to link neural and behavioral findings on 

reach-related behavior is the observation of visuo-motor deficits after parietal disruption 

like the ones reported by Hwang and collaborators in a monkey model of optic ataxia 

(Hwang et al., 2012). Optic ataxia is a deficit often present in patients who suffered damage 

to the parietal cortex (Andersen et al., 2014). Optic ataxia´s defining characteristic is an 

increased difficulty to perform extra foveal reaches, while foveal reaches appear less 

impaired, and it often involves damage to the parietal cortex in human patients. 

 

In addition to the classic characteristics of optic ataxia, patients with posterior parietal 

damage present difficulties for rapid visuomotor control (Gaveau et al., 2008). In a task 

looking at the role of timing on reach performance control subjects and optic ataxia patients 

were asked to acquire a target whose location was synchronously updated either with the 

onset or offset of a saccade. If the visual update occurred by the onset of the saccade 
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controls could reprogram their movement while optic ataxia patients could not; presenting 

1) hypometric saccades followed by additional corrective saccades or 2) delayed saccades 

with slightly better accuracy. In contrast, when the target update happened at the offset of 

the saccade, both controls and patients presented the same deficits as the patients in the first 

experiment, showing that optic ataxia is likely linked to a disruption in the update of visual 

information. It has also been reported that in optic ataxia the absolute location of the target 

is not the determining factor for the strength of the deficit (Khan et al., 2005). By asking 

patients to either reach to a remembered target in the ipsilateral or contralateral side, 

subjects had more reach errors to the contralesional side of space. However, when subjects 

were asked to make a reach to a remembered location from an updated eye position in the 

opposite hemispace it was observed that the errors depended on where the target was 

relative to the updated location of the eye. This finding showed how parietal cortex plays a 

role in the integration of dynamic multi-effector actions. In summary, ataxia seems to 

reflect a disruption in the dynamic integration of eye position and reach planning, and it’s 

heavily dependent on damage to brain regions within the dorsal stream 

 

 

I have elaborated on how the parietal cortex is part of a complex limb and eye movement 

network. I have focused on this lobule and not on the prefrontal cortex as the parietal cortex 

is located earlier in the visuo-motor hierarchy, thus being strongly influenced by early 

sensory and proprioceptive inputs (Snyder et al., 1997; Caminiti et al., 2015). Parietal 

cortex is tightly linked to several brain areas linked to eye and hand movement generation, 

and some of these connections are likely to have relays via the dorsal pulvinar. This 

connectivity suggests that similar functions might be encountered in both regions. Finding 

how the least understood region of this circuitry, the dorsal pulvinar, functions and interacts 

with the cortex will help us to add more pieces to our understanding of how goal-directed 

behavior is generated in the primate brain. 
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i.6 Chasing function || Research rationale 

 

Even though the initial purpose of my thesis was to explore the role of the dorsal 

pulvinar in eye-hand coordination, pulvinar is a region of possibilities for cognitive 

exploration and as it’s often the case in science, a finding leads to new questions. To 

address my main aim, I narrate different aspects of pulvinar function in three independent 

but interconnected chapters.  

 

In Chapter I, we1 aimed to confirm pulvinar’s involvement in saccade target selection. For 

this purpose, we electrically stimulated dorsal pulvinar, which is known to bias saccades to 

the ipsilesional hemispace when inactivated (Wilke et al., 2010, 2013). Our findings, 

however, revealed a more complex and time-dependent effect that varied with the time of 

the stimulation. There was indeed a target selection bias effect, but this effect ranged from 

increasing choices to the ipsiversive hemifield when stimulating early in the trial to the 

expected contraversive choice increase when stimulating closer to the saccade execution. 

The choice findings were accompanied by biphasic reaction time effects that were specific 

for dorsal pulvinar as compared to other pulvinar subdivisions. These results suggest that 

the participation of dorsal pulvinar in purposeful behavior might be more complex than 

previously thought. To test this hypothesis, we made an initial assessment of the 

electrophysiological properties of pulvinar cells during saccades. We found a great variety 

of firing rate modulation properties in dorsal pulvinar. Neurons were modulated around the 

saccade onset, during the saccade, or around the offset, as well as during the movement 

preparation. This activity could be larger to the contralateral or ipsilateral hemispace and 

could be of facilitatory or suppressive nature with a great diversity of receptive fields. A 

similar range of neuronal responses as the ones in our study has been reported in early 

studies (Benevento and Port, 1995). In addition to the inspection of pulvinar properties 

during saccades to single targets we recorded the same units while monkeys performed 

saccade choices and saccades to single targets from different starting fixation positions to 

                                                           
1 Chapter 1 is a joint project with equal contribution of Adán Ulises Domínguez-Vargas and Lukas Schneider 
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deepen our knowledge on the participation of the region in target selection and spatial 

transformations. 

 

In Chapter II and III I tackle the unified question of if and how pulvinar is involved in 

visually-guided reaches from two fronts. Chapter II is devoted to characterizing the 

electrophysiological properties of dorsal pulvinar neurons during volitional eye- and hand-

movements. Previous studies have provided some evidence of pulvinar’s involvement in 

motor behavior in different species. Such studies include models like Felis catus (Wei and 

Marczynski, 1979), Macaca nemestrina (Acuña et al., 1986; Cudeiro Mazaira et al., 1989; 

Acuña et al., 1990), Cebus apella  (Acuña et al., 1983), Macaca fascicularis (Magariños-

Ascone et al., 1988), and in human (Martin-Rodriguez et al., 1982). Even when previous 

studies have approach the question of how pulvinar encodes motor commands or the 

interactions between motor and visual (or auditory) stimulation, the topic is far from being 

fully resolved. In this study, the functional properties of pulvinar cells during coordinated 

and dissociated eye-hand tasks will be described, and it will probe if the region is involved 

not only in the representation of movements and visual inputs but potentially in the 

integration of such behavior. I will describe hand-specific tuning when a particular hand is 

expected to perform the movement and in some cases, complex interaction of eye and hand 

movements.  

 

Finally, in Chapter III I will revisit the results of a study from our group (Wilke et al., 

2010), with a similar array of tasks as for Chapter II  to provide quantifiable data on the 

effects of dorsal pulvinar inactivation on the coordination of eye and hand movements.  
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Introduction 

 

Goal-directed actions in primates often involve eye, arm and hand movements. 

Early visual areas follow a similar representation of the visual space as it was captured by 

the retina i.e. they show retinotopy. Later, this information is integrated with proprioceptive 

and spatial properties of the location of the objects in respect to the agent performing the 

action. To perform an efficient movement e.g. a visually-guided reach, we need information 

about the position of the target in respect to the retina, the eye in the orbit, the head on the 

body, and the limb position in space, and this information needs to be constantly updated as 

the visuo-motor plan evolves to program an efficient movement path, and kinematics 

(Batista et al., 1999; Snyder, 2000; Buneo et al., 2002; Crawford, 2004; Beurze et al., 

2010). As primates, a large portion of our neural circuitry is devoted to vision and motor 

execution. It is not surprising that different brain areas represent spatial information using 

different reference frames as the hierarchy shifts from sensory to motor.  

 

The thalamic pulvinar is positioned in a privileged spot, as it shares projections with a 

variety of visual and high order cortices as well as with subcortical brain regions. Ventrally 

it’s connected to early striatal and extra striatal cortices, as well as to the superficial layers 

of the superior colliculus. Dorsally it mainly projects to areas in the fronto-parietal network 

and intermediate layers of the superior colliculus (Asanuma et al., 1985; Grieve et al., 2000; 

Stepniewska, 2004; Kaas and Lyon, 2007; Bridge et al., 2016). Fronto-parietal cortices are 

modulated during the planning and execution of goal-directed actions, with spatial signals 

encoded in an eye-, head-, or body-centered reference frames (Boussaoud and Bremmer, 

1999; Andersen and Cui, 2009; Beurze et al., 2010).  

 

Neurons in the posterior parietal cortex (area 7 and LIP) of macaques, known to present 

retinotopic representations of space, are also influenced by the current location of the gaze 

while the monkeys perform behavioral tasks (Andersen and Mountcastle, 1983; Andersen 

et al., 1990). This influence on the firing rate tends to be linear, and dependent on the 
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eccentricity and direction of the gaze location. The linear increase in the sensitivity of the 

response that does not influence the properties of what the neurons respond to is termed 

gain field (Salinas and Abbott, 2001). Gain fields are now known to be a generalized 

phenomenon across different cortical areas and are thought to reduce computations in areas 

influenced by different reference frames (Zipser and Andersen, 1988). In association areas 

LIP and MIP it has been observed that there can be mixed influences to visual and auditory 

stimulation with both eye- and head-centered reference frames (Mullette-Gillman et al., 

2009). Not only cortical but also subcortical structures are part of the spatial 

transformations circuitry. It has been reported for example that the central thalamus also 

participates in the relay of eye position signals from subcortical structures to the cerebral 

cortex (Tanaka, 2007). 

 

Also in the thalamus, there are reports of ventral pulvinar being relevant for spatial 

transformations. Robinson and collaborators (Robinson et al., 1990) found that visual 

responses in ventral pulvinar can be modulated by gaze position. The reference frame under 

which visual information is represented in dorsal pulvinar, is however still an open 

question. Answering this question could provide insights on how subcortical structures 

highly connected to association areas participate in spatial transformations for action-based 

behaviors. 

 

Although there are several association cortices and subcortical regions involved in motor 

preparation, the processes taking place in such regions are rich and diverse, a few examples 

being: 1) The selection of motor plans in the frontoparietal network (Pesaran et al., 2008; 

Pastor-Bernier and Cisek, 2011; Shadlen and Kiani, 2013). 2) The integration of perceptual 

and motor properties found in the caudate nucleus (Yamamoto et al., 2012). 3) Target 

selection in saccade and reach tasks being related to dorsal pulvinar function (Wilke et al., 

2010), 4) And the cognitive nature of such function (Wilke et al., 2013). Focusing on dorsal 

pulvinar, it has also being shown that dorsal pulvinar is involved in perceptual 

categorization tasks (Komura et al., 2013). Furthermore, it has been observed that electrical 

stimulation of dorsal pulvinar has time-dependent effects on saccade choices (see Chapter 

I).  
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Causal evidence suggests that dorsal pulvinar is involved in target selection. How is it 

involved in target selection at a neuronal level? And is dorsal pulvinar’s firing influenced 

by the multiple coordinate systems that have been found to influence association areas? 

Here, we performed two additional experiments to characterize electrophysiological 

properties in dorsal pulvinar during purposeful oculomotor behavior. In the first 

experiment, single cells from dorsal pulvinar were recorded during a memory-guided 

saccade task in which the starting gaze position was shifted to one of three different 

locations before monkeys performed a center out saccade to one of eight peripheral 

positions relative to the fixation spot. Firing rates were analyzed in respect to the starting 

location, movement direction or physical location of the target, to speculate about 

pulvinar’s place in visuo-motor transformation hierarchy. In a second experiment, single 

cells from dorsal pulvinar were recorded while monkeys performed a free-choice task like 

the one in Chapter I, to assess the role of the pulvinar in the processing of competing visual 

information and eye movement plans. 
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Materials and methods 

 

The reader is referred to the Materials and Methods in Chapter I for aspects of animal 

preparation, as well as for general properties of the stimuli and electrophysiological 

analysis as Monkey C and L were also used for these experiments.  

 

For the target selection task neurons from the left dorsal pulvinar of Monkey L are also 

included. For specifics of chamber planning in Monkey L’s left pulvinar the reader is 

referred to the Materials and Methods in Chapter II.  

 

Gaze modulation experiment 

 

Trials were performed in pseudorandomized interleaved trials varying the initial fixation 

gaze position of the monkey (Figure Ib.1). Monkeys had to perform memory-guided center 

out saccades to targets selected from a rectangular array with eight peripheral target 

positions. From the gaze center, peripheral targets were located -15 °, 0°, or 15° 

horizontally and -10°, 0°, or 10° vertically. 

 

At the beginning of each trial, monkeys had to acquire a dim red fixation spot with a 1° 

diameter, within a 5° radius window. Once the fixation spot was acquired it brightened up 

and the monkey had to hold fixation for 0.5 s. Next, one peripheral cue was flashed for 280 

ms at the location of a future saccade. Monkeys were required to maintain fixation 

throughout the cue period and the subsequent memory period of 1 s. The fixation spot 

offset served as a Go signal, allowing the monkeys to saccade to the instructed location. 

After a saccade to, and the fixation hold of the remembered location for 200 ms, the target 

became visible and bright. Monkeys were required to hold their gaze position for 0.5 s for 

the trial to be considered successful. Between trials there was an inter trial interval of 2.5 s 

for successful trials, and 2 s for failed trials. Monkeys had to perform 10 hits to each target 

location per fixation offset accounting on average for 240 hit trials per block 
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Figure Ib.1 Gaze position modulation display and expectations 

 

Dorsal pulvinar neurons were recorded while monkeys performed memory saccades from the 

fixation spot to one of eight targets in the periphery. Bottom panel: the full array of targets and 

the fixation spot were either centered or shifted 15° to the left or right of the monkey’s midline 

(cyan, blue and green frames respectively), creating three arrays of partially overlapping 

targets. The arrays allowed the examination of firing rate changes due to: the position of the 

target on the retina, by additional components such as the physical location of the target on the 

screen, the position of the eye relative to the head, or by their interactions. Upper panels: 

hypothesized firing rates of pulvinar when influenced by the retinotopic position of the cue, and 

by additional non-purely retinotopic factors. 

 

Neuronal population 

 

For the gaze modulation dataset 179 and 166 units for monkey L and C were recorded from 

their left and right pulvinar respectively. From those, 144 and 95 units were identified as 

stable during the recording and were classified as single units by inspection of spike 

clusters (comparing principal component 1 and 2 and principal component 1 vs timestamp). 

From those, 138 and 83 had a minimum spike count and trial number criteria (50 

spikes/unit, 60 trials/task) and are reported here.  

 

Analysis of firing activity 
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Neurons were sorted offline using Offline Sorter v.4.0.0 and v.2.8.8 (Plexon, USA) using 

either a waveform template algorithm, a principle component analysis with k-means 

clustering algorithm, manual contour definitions, or a combination. Spike density functions 

for each trial were derived by convolution of the discrete spike arrival times with a 

Gaussian kernel (SD 20 ms).  For each trial, and each epoch of interest (Table 1b.1), firing 

rates were computed by counting the spikes in each epoch and dividing the sum by the 

epoch duration. Ten behaviorally relevant epochs were selected for analysis.  

 

Table 1b.1 Epochs of interest 

 

For each of the epochs of interest (top row) the table shows a reference event (bottom row) and 

the time window relative to the event for the epoch definition and calculation of average firing 

rates. 

 

Electrophysiological analysis of gaze modulation task 

 

For each task epoch, a two-way ANOVA with factors initial fixation and target position 

relative to the fixation spot was performed to look for main effect of fixation, movement 

direction and interactions. In addition, a second two-way ANOVA with factors initial 

fixation (initial gaze) and physical target position on the screen was performed.  

 

Memory-guided saccade choice task rationale  
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To address the question of dorsal pulvinar modulation by the presence of an additional 

stimulus and an additional movement option a two-alternative free choice paradigm (subset 

from data of Chapter I) was performed. 

 

The task sequence has been reported in Chapter I and is identical to control choice trials 

from the memory saccade task in the microstimulation experiment, except for use of three 

additional target pairs with a 12 deg eccentricity. 

 

In summary, a total of 420 single and multiunits were recorded for the memory-guided 

saccade task (365 right pulvinar) and 296 for the visually-guided task (230 right pulvinar).  

 

 

Electrophysiological analysis of free choice task 

 

Additionally to the 365 and 230 units recorded from Monkey’s L and C right pulvinar, 55 

and 66 units were added to the dataset from Monkey L’s left pulvinar for the memory-

guided and visually-guided saccade tasks respectively.  Units maintained a spatial label to 

the recorded hemisphere after being compiled to assess either contralateral or ipsilateral 

stimulus influences in firing rate according to the recorded pulvinar. 

 

To assess influences of target selection options, a non-paired two-tailed t-test was 

performed for each epoch, comparing the responses to the (not necessarily significantly) 

preferred hemispace in instructed trials with choice trials where the same hemispace was 

selected (to test the effect of an additional movement option in the memory late and pre-

saccadic period). In this analysis epochs where visual stimulation was present need to be 

taken cautiously as firing rate changes involve not only a difference in the action planning 

but also the physical differences of the input. To compare the firing rate of trials with 

choice trials to the ipsilateral and contralateral hemispace to the recorded dorsal pulvinar 

paired two-tailed t-tests were used. 
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Results 

 

Gaze modulation effects 

 

Does pulvinar encode space in purely retinotopic (gaze-centered) manner, or spatial 

transformations exert a strong influence on dorsal pulvinar firing? To address this question, 

monkeys performed a task in which their initial gaze position before performing a memory 

saccade was shifted 15° to the left or right from a central location. Figure Ib.1 shows the 

raster and peri-stimulus time histograms (PSTHs) of three example units during the fixation 

hold period. The trials were compiled by initial gaze in this representation. In all three 

subpanels, the PSTH during the fixation period “Fix” is expected to look similar regardless 

of the initial gaze location when there are no postural effects influencing pulvinar. The 

neuron in Figure Ib.1A presents a decrease of firing rate as the fixation is shifted to the 

right (contralateral increase to the recorded hemisphere). This neuron represents units 

where postural effects exert influence an in pulvinar. The neuron in Ib.1B preferred the 

right initial gaze position and was less modulated at other eccentricities. This cell was also 

recorded from the left hemisphere. The neuron in Ib.1C recorded in the right hemisphere of 

monkey C had an increased firing when fixating to the right. Even with a significant initial 

position preference in different units, from single cell examples it was difficult to observe 

an apparent contralateral or ipsilateral preference to the recorded hemisphere. 
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Figure Ib.1 Example neurons with gaze position preference during the fixation hold 

epoch 

 

 

Each colored raster plot and PSTH per panel represents action potentials and peri stimulus 

time histogram (PSTH) in 20 ms bins for trials with same initial gaze position in three example 

neurons, locations being: -15° horizontal, 0° vertical (blue), 0° horizontal, 0° vertical (cyan), and 

15° horizontal, 0° vertical (green). Each panel displays the initial fixation until the onset of the 

movement cue. Color conventions and periods of interest are consistent across plots for this 

dataset. Light red traces are the horizontal gaze positions across trials; dark traces are the 

vertical ones. A. For this unit as the monkey’s initial gaze went from the left to the right there 

was a decrease of firing rate with the strongest firing at the -15° horizontal, 0° vertical 

position. B and C. Units with a higher firing rate for the 15° horizontal, 0° vertical fixation 

position. Additionally, in (C) there was firing suppression around the saccade. Fix, fixation 

 

From the cells with a main effect of gaze position during fixation hold in the ANOVA 

(gaze position) 46% (102 out of 221 units) showed gaze position modulation. Of these 48% 

(49 out of 102 units) showed a monotonous increase of firing during that period. The 

increase was 59% towards the ipsilateral side and 41% to the contralateral. This population 

might reflect cells in which there is a gain field like modulation when retinotopic influences 

are present. 

 

To confirm the effect of movement direction on the firing of neurons as suggested by 

findings in Chapter I, trials per neuron were resorted to represent matching trials by 
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movement vector relative to the initial gaze. This resulted in a matrix with a similar number 

of relative movement directions starting from the fixation spot.  

The neuron in Figure Ib.2 shows retinotopic tuning during the cue presentation with no 

further influence of gaze position. The modulation is most evident in the top panel.  

Figure Ib.2 Retinotopic cue modulation  

 

Each panel represents one of the eight available movement directions sorted by initial fixation 

position: leftward (blue traces and raster), central (cyan traces and raster), and rightward 

(green traces and raster). This unit was retinotopically influenced during the cue period. The 

cue-related firing enhancement was mainly to the 0° horizontal, 10° vertical movement 

direction regardless of the initial gaze position. In addition, there was suppression for the to 

the 15° horizontal, 0° vertical, movement directions. 

 

On the other hand, Figure Ib.3 shows a neuron with firing rate enhancement during the cue 

period (top right, and right panels). This enhancement was not only retinotopic but also 

modulated by the current gaze position, commonly known as gain field.  
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Figure Ib.3 Example neuron with an effect of gaze position 

 

This unit was responsive during the cue period to the 15° horizontal, 10° vertical movement 

direction and to the 15° horizontal, 0° vertical movement direction. Crucially, not only the 

visual stimulation modulated this neuron, but also the initial gaze position. 

 

Another potential scenario is that cells in dorsal pulvinar encode the physical location of a 

cue, and thus, the planning of a movement is influenced by its fixed location. To observe 

this modulation a last sorting based on the physical location of the target on the screen was 

performed. On a single-cell level however, this type of encoding was not visually apparent. 

 

To assess how the population of units was represented in each of the categories observed by 

visual inspection, two two-way ANOVAs with factors fixation and movement direction, 

and fixation and physical target location were performed per epoch. The results of the 

ANOVAs with factors fixation and movement direction (inner circle in the pie plot from 

Figure Ib.4) revealed that during the cue period, 43% of all cells tested were modulated, 

15% of the units were modulated in a retinotopic fashion, while 14% were modulated by 

the gaze position. This agrees with findings seen across several visuo-motor areas 

influenced by a retinotopically based reference frame. Additionally, 14% of the cells also 
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had an interaction of effects or both main effects. This indicates that dorsal pulvinar does 

not only encode visual information in a retinotopic reference frame but might also be 

influenced by gaze position, potentially facilitating the generation of gain fields. The largest 

percentage of task modulation was found during “target visible hold” after the monkey was 

given visual feedback of correct performance. In this period, there was a considerable 

interaction of the gaze position and the movement direction; this was possibly due to both 

the preferred gaze position plus the influence of the recently executed saccade. The second 

ANOVA (outer circle in the pie plot) revealed that, as predicted by visual inspection, only a 

small percentage of units were modulated by the physical location of the target in space. 

Only a small proportion of the cells during the cue period were uniquely modulated by the 

absolute target location. Supporting the idea of dorsal pulvinar sharing similar properties 

with the posterior parietal cortex, a retinotopic coordinate system influenced by gaze 

location and/or additional reference points dependent on the effector used.  

Figure Ib.4 Summary: dorsal pulvinar neurons are not purely retinotopic 

 

For each of the behaviorally relevant epochs the inner circle in the pie plot contains the results 

of a two-way ANOVA with factors Fixation (F) (initial gaze) and Movement direction (M) 

showing effects for F, M, both main effects F+M, and interactions (F+M+FxM, F+FxM, 

M+FxM, and FxM), or no effects. The outer circle shows the main effects of target position (T) 



53 
 

or its interactions with fixation. Inner circle: During cue presentation and subsequent memory 

period there was a large modulation of the starting gaze position (14% and 17% “cue” and 

“early memory”) and by the movement direction (15% and 20% “cue” and “early memory”). An 

early main effect of movement direction shows that there is influence of a retinotopic-based 

reference frames in these cells. After the saccade, during the target hold period there was in 

addition to the main effects of fixation and movement direction an interaction (F+M+FxM) of 

14%, potentially due to the cells´ retinotopic encoding influenced by the starting gaze position 

of the recently executed movement. Outer circle: There was almost no cell percentage 

influenced by the absolute location of the target. Around the saccade the maximum percentage 

of cells modulated purely by the physical location of the target was 4%. The overall encoding of 

these cells was mostly an interaction of initial fixation position and movement direction, 

suggesting an intermediate processing stage for dorsal pulvinar in spatial transformations.  

 

Target selection 

 

Does the possibility of freely choosing among two saccade options influence the visual or 

motor firing rate in dorsal pulvinar during saccades?  To address this question, a control 

experiment was performed where monkeys’ dorsal pulvinar neurons were recorded during 

an equally rewarded free-choice saccade task. Responses to saccades to single targets were 

reported in Chapter I. 

 

First, the baseline-subtracted average population PSTHs for instructed and choice memory- 

and visually-guided saccade trials were plotted to allow a direct comparison of potential 

spatial tuning differences when more than one cue/target are available. Figure Ib.5 shows 

the population firing for the memory-guided saccade task. During the cue presentation, 

there was an increased firing if a cue was presented in the contralateral hemispace to the 

recorded pulvinar. Furthermore, in the cue period there was a short increment of firing rate 

when monkeys chose the contralateral hemispace in comparison to when the ipsilateral 

hemispace was chosen. Trials with ipsiversive instructed cues had smaller firing differences 

to baseline than the other three conditions. Later, the firing was enhanced by the direction 

the movement and mostly after the saccade offset. There were no apparent differences 

between single- or two-target trials to saccade either to the contralateral or ipsilateral 

hemispaces. The effects observed in dorsal pulvinar during the memory-guided task reflect 
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1) a broad contralateral spatial preference during the cue and early memory periods and 2) a 

post motor influence on firing determined by the previous action but not by the visual 

stimuli that evoked such action.  

Figure Ib.5 Memory-guided saccade task´s PSTHs for instructed and choice trials 

 

Baseline corrected population PSTH (solid traces), and SE (shaded bars) of instructed and 

choice trials. Spikes were sorted according to the target location for instructed trials and to the 

chosen target in choice trials. Red horizontal traces are significant differences per bin between 

hemispaces for instructed trials derived from two-tailed non-paired t-tests. Blue horizontal 

traces are significant differences per bin between choices to the contralateral hemispace and to 

the ipsilateral hemispace derived from two-tailed paired t-tests. During the cue presentation, 

there was enhanced firing to cues if they were present in the contralateral hemispace. During 

cue presentation there was also an increase of firing when monkeys chose a contralateral 

target in comparison to when they chose an ipsilateral one. When a single stimulus was shown 

in the ipsilateral hemispace there was only a modest increase in firing in comparison to 

baseline. In other words, as long as there was a target in the contraversive side of space the 

cells were unaffected by the presence or absence of an ipsilateral stimulus. During the memory 

period, there was a modest increase of firing for instructed and chosen contraversive targets, as 

well as for chosen ipsiversive targets. Around and after the saccade the firing reflected the 

hemispace of the movement and not its instructed or choice nature.  Later, after the saccade 

the PSTHs for instructed and choice trials largely overlapped. Analysis periods: Facq, fixation 

acquisition; Fhol, fixation hold; MemE, memory early; MemL, memory late; PreS, pre saccade; 

PeriS, peri saccade; Thol, target hold 
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In the visually-guided saccade task, (Figure Ib.6), the population had a similar response as 

in the memory task (Figure Ib.5) by the presence of a contralateral target. For instructed 

ipsiversive trials there was no big influence of the target in the firing modulation. The 

modulation around the saccade had a similar pattern, larger firing rate to contralateral 

targets than to ipsilateral targets. It is important to mention that as the onset of the target 

functions as the “Go” signal, the constant visual stimulation is inevitably a confound for the 

analysis of independent internally-generated processes in this specific task. 

Figure Ib.6 Visually-guided saccade task´s PSTHs for instructed and choice trials 

 

Conventions as in Figure Ib.5. For neurons recorded during direct saccades, at the Go signal 

there was a strong firing rate enhancement when the target was presented in the contralateral 

hemispace of the recorded pulvinar in comparison to a sole ipsilateral presentation.  There was 

a strong visuo-motor influence of the preferred hemispace on pulvinar firing, however, the 

dissociation between visually-triggered and internally-generated planning or motor signals is 

not possible in this condition. Cue + Go, target onset which functions simultaneously as a Go 

signal; Tacq, target acquisition.  
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Discussion 

 

In this addendum to Chapter I we aimed to address two important questions about the 

electrophysiological properties of dorsal pulvinar during oculo-motor behavior.  

First: Are neurons in dorsal pulvinar, modulated in a 1) purely retinotopic reference frame? 

or 2) is dorsal pulvinar influenced by the current gaze position of the monkey? 

 

The second question: Is there a neuronal correlate of target selection for oculo-motor 

behavior in dorsal pulvinar? Namely, is there visual competition, or choice selectivity 

during the cue period? This question was motivated by previous causal perturbation studies 

where after pulvinar disruption either by pharmacological inactivation (Wilke et al., 2010, 

2013) or by electrical microstimulation (Chapter I) there were among other effects, changes 

in target selection patterns for saccade behavior. Directly assessing if target selection is in 

any way represented in dorsal pulvinar has not been tested before.   

 

D.Ibis.1 A subset of dorsal pulvinar neurons showed encoding in not purely 

retinotopic reference frame 

 

Visual neurons in the inferior and lateral subdivisions of ventral pulvinar of the macaque 

are modulated by gaze position (Robinson et al., 1990). No similar data exist characterizing 

gaze influences on visual responsivity in the dorsal pulvinar. For this experiment we were 

particularly interested in the dorsal region as it shares a broader connectivity to parietal and 

frontal cortices in monkeys (Grieve et al., 2000; Kaas and Lyon, 2007), and in humans2 

(Leh et al., 2008) than ventral pulvinar. We hypothesized that dorsal pulvinar could likely 

display complex modulations to visual stimulation influenced by gaze position. With the 

purpose of gaining intuition on the topic, we recorded single neurons while monkeys 

performed a standard center-out memory saccade task. Critically, at the beginning of each 

trial the monkeys held their gaze at one of three possible fixation spots, straight ahead, to 

                                                           
2 In this study the authors did not distinguish between dorsal and ventral pulvinar. 
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the left, or to the right of the monkeys’ primary gaze. The saccades were made to one of 

eight peripheral targets from a rectangular array, some of these locations overlapped across 

fixation conditions, creating an array of similar movement directions with distinct and 

partially overlapping target spatial locations.     

 

Figure Ib.4 shows that neurons in dorsal pulvinar had a firing rate increase dependent on 

the 1) position of the visual cue on the retina (15% at “cue”, main effect Movement 

direction), 2) an interaction of the movement direction and the initial gaze position, or both 

main effects (14% at “cue”), or in a smaller percentage a 3) an increased firing rate by the 

physical location of the target (2% at “cue”, main effect Target location). There were also 

cells influenced in their firing solely by the gaze position (8% at “cue”, main effect 

Fixation).  Along this line it has been shown that there is an influence of gaze position on 

visual responsivity in  parietal cortex (Andersen and Mountcastle, 1983). This effect now 

referred as ¨gain field¨ is suggested to facilitate the execution of actions (specifically, 

actions performed with limbs) computed in a different coordinate system (Zipser and 

Andersen, 1988). Also in early visual areas such as V3a, with connectivity to ventral 

pulvinar, neurons´ firing rate has been shown to be influenced by the eye position (Galletti 

and Battaglini, 1989), which could explain why gain fields are also encountered in the more 

visual part of pulvinar. In area V3a there is additionally preferential enhancement of firing 

to contralateral gaze shifts relative to the recorded hemisphere. The directionality of gain 

fields in our dataset is something we will explore in the future, although cells with a 

monotonic firing increase during the fixation hold period did not show hemispatial 

preference (41% and 59% of the cells to the contralateral and ipsilateral hemispace 

respectively). 

 

Dorsal pulvinar neurons influenced by the gaze position only ranged from 3% to 23% 

across epochs (median 14%, excluding cells modulated during the fixation acquisition) and 

can be regarded as postural units. The large percentage of units with an effect of movement 

direction during the cue and early periods of the task reflects that pulvinar preferentially is 

influenced not only by retinotopic reference frames but also gaze-, head-, or body-centered 

systems. It has been shown that in brain areas involved in movement planning the reference 
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frame in which visual signals are processed commonly depend more on the position of the 

targets in the retina (Snyder, 2000) than in the head or body (Flanders et al., 1992). Using 

common types of coordinate systems across brain areas is a more economical solution 

when independent and constantly updated actions are planned and involve a high number of 

computations with different effectors.  

Looking back at the Andersen and Mountcastle (1983) study, the gain field effect was only 

present when the monkeys were actively engaged in the task. Spatial transformations in the 

primate brain seem to depend on if there is an upcoming action. Background firing in area 

LIP of parietal cortex also differs dependent on the type of action expected to be performed 

(Colby et al., 1995). We have some evidence of dorsal pulvinar cells encoding 

preferentially for specific hands before the trial has started if the hand to be used can be 

predicted (See Chapter II). It is interesting to wonder if different coordinate frames would 

influence pulvinar’s firing patterns when there is the expectancy of upcoming actions using 

multiple effectors.  

 

Among the limitations of this experiment a relevant one is that due to technical limitations 

our target array did not fully overlap for all target locations when starting from different 

gaze positions. With such overlap, a target per target comparison could have been 

performed to assess more precisely if the physical location of the cues causes a change on 

the firing rate of dorsal pulvinar neurons. Interpreting such comparison in our current setup 

however could still prove to be a hard task. Classic visual electrophysiology studies relied 

on the visibility of illuminated targets in otherwise completely darkened rooms. Our current 

setup requires that the targets are presented in monitors. The use of monitors creates a dim 

but visible background illumination which might provide unwanted reference points to the 

monkeys which could lead to confounds. Finally, our study required the monkeys to have 

their head restrained. To achieve a better dissociation between a retinotopic and a head-, 

body-, or object-centered coordinate systems additional experiments with no head fixation, 

and head position manipulation are required. It has been shown even in areas like the 

superior colliculus that the manipulation or free movement of the head has influences on 

neural firing (Walton et al., 2007; DeSouza et al., 2011). The effects related to the head 
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position would help us create a better picture of the interactions between eye and head 

movement potentially represented in dorsal pulvinar. 

 

D.Ibis.2 Dorsal pulvinar is modulated by the location of a cue in the preferred 

hemispace and to a target to be chosen in the preferred hemispace. 

 

To assess the potential modulation of the selection of one freely chosen target in 

comparison to a movement to an instructed single target in dorsal pulvinar we trained two 

monkeys to perform a standard free-choice task in a visually- or memory-guided context. 

We did not aim to modulate their natural bias to any of the target options. The targets were 

always rewarded equally, as well as presented equidistantly from the viewing gaze of the 

monkeys. 

 

There was contralateral spatial tuning to the recorded pulvinar (Figure Ib.5). This increase 

in amplitude was true in instructed and less in choice trials. As reported in Chapter I there 

was a general preference for cues presented in the contralateral hemispace. In addition, 

during the cue period in choice trials there was higher firing rate when monkeys later chose 

the contralateral target than when they chose the ipsilateral one, suggesting choice 

processing during the cue period. However, this pattern was largely lacking during the 

memory period. For visually-guided trials (Figure Ib.6) there was a similar response 

favoring contralateral targets, however due to the lack of a memory period we cannot make 

many interpretations of that dataset. 

 

It has been suggested for other subcortical regions like the superior colliculus (Krauzlis and 

Dill, 2002; Port and Wurtz, 2009) that target selection and saccade generation are 

intertwined and might be non-separable. If a tight choice-saccade link in the time domain is 

needed for dorsal pulvinar to influence decisions, it might explain the lack of an apparent 

change in firing rate during the late memory period and the higher firing during the cue 

period for choice trials where the contralateral target was later chosen. 
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Given reports of the role of pulvinar in attentional processes (Petersen et al., 1987; 

Desimone et al., 1990; Snow et al., 2009; Saalmann et al., 2012). It would be interesting to 

explore the differences of perceptual decisions and free choices in the dorsal pulvinar. It 

has been observed in FEF in perceptual tasks requiring monkeys to select targets from 

distractors that the firing of simultaneously recorded neurons with matching receptive fields 

cooperate by spike timing synchrony. Perceptual tasks would also be useful to address 

difficulties of estimating decision times in a free choice task, as most of the current 

definitions of when decisions occur at a neuronal level refer to the statistical difference in 

receptive field firing rate between a correct and incorrect targets (Cohen et al., 2010) 

 

Given that our task always presented one target in the contralateral and another in the 

ipsilateral hemispace, and that dorsal pulvinar neurons show large receptive fields and a 

preference to the contralateral hemispace, it might be worth to assess choice-related firing 

in vertically arranged target options in each hemispace individually, so that horizontal 

preference is not an additional variable that might preclude the observation of choice 

encoding in dorsal pulvinar. 

 

Among the analysis that is still required we need to address on a cell by cell basis if there 

was a different response during the cue period when a target inside the neuron’s receptive 

field was presented with an additional target outside of the receptive field. This comparison 

will allow us to look for signs of visual competition or enhancement when multiple target 

options are available. This analysis will require offline estimation of receptive fields, as 

there was no mapping performed before the recordings. Additionally, choice selectivity on 

a cell by cell basis during the cue and memory periods need to be assessed. 

 

Taken together these findings provide evidence of dorsal pulvinar largely encoding spatial 

properties of visual stimuli not only using a retinotopic reference frame, but one that is 

influenced by the current gaze position or by additional spatial reference points according 

to the behaviorally relevant epochs of the task. Additionally, further electrophysiological 

analyses of the influence of choice on saccade-related neuronal activity will enhance our 

understanding of how target selection is represented in the dorsal pulvinar.   



61 
 

Acknowledgements 

 

 

We would like to thank Uwe Zimmermann for spike sorting of a subset of data of Monkey 

C. We thank Ira Panolias, Sina Plümer, Klaus Heisig, and Dirk Prüße for technical support. 

We also thank Stefan Treue, Alexander Gail, Hansjörg Scherberger, members of the 

Decision and Awareness Group, Sensorimotor Group and the Cognitive Neuroscience 

Laboratory for helpful discussions. Supported by the Hermann and Lilly Schilling 

Foundation, German Research Foundation (DFG) grants WI 4046/1-1 and Research Unit 

GA1475-B4, KA 3726/2-1, CNMPB Primate Platform, and funding from the Cognitive 

Neuroscience Laboratory. 
 

  



62 
 

References 
 

Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990) Eye position effects 

on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J 

Neurosci 10:1176–1196. 

Andersen RA, Cui H (2009) Intention, Action Planning, and Decision Making in Parietal-

Frontal Circuits. Neuron 63:568–583. 

Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the 

excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 

3:532–548. 

Asanuma C, Andersen RA, Cowan WM (1985) The thalamic relations of the caudal 

inferior parietal lobule and the lateral prefrontal cortex in monkeys: Divergent 

cortical projections from cell clusters in the medial pulvinar nucleus. J Comp 

Neurol 241:357–381. 

Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered 

coordinates. Science 285:257–260. 

Beurze SM, Toni I, Pisella L, Medendorp WP (2010) Reference Frames for Reach Planning 

in Human Parietofrontal Cortex. J Neurophysiol 104:1736–1745. 

Boussaoud D, Bremmer F (1999) Gaze effects in the cerebral cortex: reference frames for 

space coding and action. Exp Brain Res 128:170–180. 

Bridge H, Leopold DA, Bourne JA (2016) Adaptive Pulvinar Circuitry Supports Visual 

Cognition. Trends Cogn Sci 20:146–157. 

Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations 

for reaching. Nature 416:632–636. 

Cohen JY, Crowder EA, Heitz RP, Subraveti CR, Thompson KG, Woodman GF, Schall JD 

(2010) Cooperation and Competition among Frontal Eye Field Neurons during 

Visual Target Selection. J Neurosci 30:3227–3238. 

Colby CL, Duhamel J-R, Goldberg ME (1995) Oculocentric spatial representation in 

parietal cortex. Cereb Cortex 5:470–481. 

Crawford JD (2004) Spatial Transformations for Eye-Hand Coordination. J Neurophysiol 

92:10–19. 



63 
 

Desimone R, Wessinger M, Thomas L, Schneider W (1990) Attentional Control of Visual 

Perception: Cortical and Subcortical Mechanisms. Cold Spring Harb Symp Quant 

Biol 55:963–971. 

DeSouza JFX, Keith GP, Yan X, Blohm G, Wang H, Crawford JD (2011) Intrinsic 

Reference Frames of Superior Colliculus Visuomotor Receptive Fields during 

Head-Unrestrained Gaze Shifts. J Neurosci 31:18313–18326. 

Flanders M, Tillery SIH, Soechting JF (1992) Early stages in a sensorimotor 

transformation. Behav Brain Sci 15:309–320. 

Galletti C, Battaglini PP (1989) Gaze-dependent visual neurons in area V3A of monkey 

prestriate cortex. J Neurosci 9:1112–1125. 

Grieve KL, Acuña C, Cudeiro J (2000) The primate pulvinar nuclei: vision and action. 

Trends Neurosci 23:35–39. 

Kaas JH, Lyon DC (2007) Pulvinar contributions to the dorsal and ventral streams of visual 

processing in primates. Brain Res Rev 55:285–296. 

Komura Y, Nikkuni A, Hirashima N, Uetake T, Miyamoto A (2013) Responses of pulvinar 

neurons reflect a subject’s confidence in visual categorization. Nat Neurosci 

16:749–755. 

Krauzlis RJ, Dill N (2002) Neural correlates of target choice for pursuit and saccades in the 

primate superior colliculus. Neuron 35:355–363. 

Leh SE, Chakravarty MM, Ptito A (2008) The Connectivity of the Human Pulvinar: A 

Diffusion Tensor Imaging Tractography Study. Int J Biomed Imaging 2008:1–5. 

Mullette-Gillman OA, Cohen YE, Groh JM (2009) Motor-Related Signals in the 

Intraparietal Cortex Encode Locations in a Hybrid, rather than Eye-Centered 

Reference Frame. Cereb Cortex 19:1761–1775. 

Pastor-Bernier A, Cisek P (2011) Neural Correlates of Biased Competition in Premotor 

Cortex. J Neurosci 31:7083–7088. 

Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit 

between frontal and parietal cortex. Nature 453:406–409. 

Petersen SE, Robinson DL, Morris JD (1987) Contributions of the pulvinar to visual spatial 

attention. Neuropsychologia 25:97–105. 

Port NL, Wurtz RH (2009) Target selection and saccade generation in monkey superior 

colliculus. Exp Brain Res 192:465–477. 



64 
 

Robinson DL, McClurkin JW, Kertzman C (1990) Orbital position and eye movement 

influences on visual responses in the pulvinar nuclei of the behaving macaque. Exp 

Brain Res 82:235–246. 

Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S (2012) The Pulvinar Regulates 

Information Transmission Between Cortical Areas Based on Attention Demands. 

Science 337:753–756. 

Salinas E, Abbott LF (2001) Chapter 11 Coordinate transformations in the visual system: 

how to generate gain fields and what to compute with them. In: Progress in Brain 

Research, pp 175–190. Elsevier. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0079612301300122 [Accessed January 

11, 2017]. 

Shadlen MN, Kiani R (2013) Decision Making as a Window on Cognition. Neuron 80:791–

806. 

Snow JC, Allen HA, Rafal RD, Humphreys GW (2009) Impaired attentional selection 

following lesions to human pulvinar: evidence for homology between human and 

monkey. Proc Natl Acad Sci 106:4054–4059. 

Snyder LH (2000) Coordinate transformations for eye and arm movements in the brain. 

Curr Opin Neurobiol 10:747–754. 

Stepniewska I (2004) The Pulvinar Complex. In: The Primate Visual System (Kaas J. & C 

CE, ed), pp 53–80. London: CRC Press. 

Tanaka M (2007) Spatiotemporal Properties of Eye Position Signals in the Primate Central 

Thalamus. Cereb Cortex 17:1504–1515. 

Walton MMG, Bechara B, Gandhi NJ (2007) Role of the Primate Superior Colliculus in the 

Control of Head Movements. J Neurophysiol 98:2022–2037. 

Wilke M, Kagan I, Andersen RA (2013) Effects of Pulvinar Inactivation on Spatial 

Decision-making between Equal and Asymmetric Reward Options. J Cogn 

Neurosci 25:1270–1283. 

Wilke M, Turchi J, Smith K, Mishkin M, Leopold DA (2010) Pulvinar Inactivation 

Disrupts Selection of Movement Plans. J Neurosci 30:8650–8659. 

Yamamoto S, Monosov IE, Yasuda M, Hikosaka O (2012) What and Where Information in 

the Caudate Tail Guides Saccades to Visual Objects. J Neurosci 32:11005–11016. 

Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates 

response properties of a subset of posterior parietal neurons. Nature 331:679–684. 

 



65 
 

  



66 
 

Chapter II 

 

 

 

 

Electrophysiological correlates of pulvinar function 

during reach behavior 
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Abstract 

 

The pulvinar, the largest thalamic complex in primates has largely expanded during 

primate evolution, along with association cortices. Its dorsal part is anatomically connected 

to the fronto-parietal network, involved in the planning and generation of purposeful eye, 

arm, and hand movements. Early studies have identified neural correlates of reach-related 

behavior in pulvinar cells in different species. Such reports however are very sparse, even 

though insightful and revealing. Thus, the formulation of a hypothesis of dorsal pulvinar 

involvement in visually-guided reaches is largely speculative. Here, we recorded neurons 

from dorsal pulvinar of two Macaca mulatta performing delayed, visually-guided foveal 

and extrafoveal reaches and saccades with active hand engagement to characterize pulvinar 

response properties during purposeful visuo-motor behavior. We found spatial influence on 

firing rates with preferences to the contralateral or ipsilateral hemispace (to the recorded 

hemisphere), which varied according to the period of interest in the task. We found that the 

firing pattern for saccades was mostly suppression during the movement and strong 

enhancement after saccade offset. The enhancement of firing rate for reaches appeared 

before the movement onset and lasted during the reach. We found cells responsive to the 

usage of a specific effector, two effectors, specific hand usage, and space-hand interactions. 

In addition, we found that after repeatedly using one hand for performing the tasks in 

right/left hand blocks, some cells showed a hand-specific tuning even before start of the 

trial. These results add evidence to dorsal pulvinar involvement in visually-guided reach 

planning and execution, besides the now known visuospatial encoding.   
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Introduction 

 

Primates excel at visuo-motor tasks. Of special interest is how and at which levels 

visual information is integrated with proprioceptive inputs to later be transformed into 

motor commands. Several cortical regions have been shown to take part in the planning and 

execution of grasping and reaches, e.g. areas 7, V6A and MIP (Taira et al., 1990; Galletti et 

al., 1997; Snyder et al., 2000a). Reaches are a good proxy to study goal-directed behavior, 

as they likely involve actions of similar skillfulness across most primate species. On the 

other hand grasping can be influenced by the semantic properties of the object of interest in 

humans, and such influence does not seem to be present in all primate species (Johnson-

Frey, 2003; Frey, 2007). Furthermore, reaches provide a behavioral output rich enough for 

the analysis of spatial and temporal properties that can be traced to their neural generators.  

 

Under natural conditions, primates perform volitional reaches guided by visual information. 

This guidance is additionally integrated with body, head and eye movements. Since the 

introduction of periods that dissociate purely visual influences from motor actions 

(Hikosaka and Wurtz, 1983) the visuo-motor circuitry of behaving macaques has been an 

important focus of study of system neuroscientists. It has been found for example that the  

oculomotor system involves a rich circuitry of frontal and parietal association cortices, as 

well as subcortical brain regions (Schiller et al., 1987; Snyder et al., 1997; Barash, 2003). 

For the generation of reaches several cortical association areas have been identified 

(Caminiti et al., 2015) however, less is known about the role of subcortical regions.  

 

Neurons in association cortices are modulated during the planning and execution of reaches 

and saccades. As association cortices, the thalamic pulvinar has greatly and 

disproportionally expanded during primate evolution. The pulvinar is anatomically 

connected to the cortex in a ventro-dorsal gradient to the ventral and dorsal streams 

(Asanuma et al., 1985; Stepniewska, 2004; Kaas and Lyon, 2007; Bridge et al., 2016).  
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Dorsal pulvinar is strongly connected to the fronto-parietal network. It has been linked to 

processes like spatial attention (Petersen et al., 1987), target selection using saccades 

(Wilke et al., 2010; Dominguez-Vargas et al., 2017), modulation by motivational 

components (Wilke et al., 2013), confidence in perceptual categorization (Komura et al., 

2013) and purposeful reach and grasping behavior (Wilke et al., 2010). Pulvinar neurons 

display reach-related firing in: Macaca fascicularis (Acuña et al., 1986; Magariños-Ascone 

et al., 1988), Cebus capucinus (Acuña et al., 1983), Macaca nemestrina (Cudeiro et al., 

1989) and humans (Martin-Rodriguez et al., 1982). Common denominators in these studies 

are a higher responsiveness to active reaches in comparison to passive manipulations of the 

arm, and stronger firing rate for reaches to objects of interest. In Macaca nemestrina the 

firing rate enhancement of pulvinar due to reaches comes before that of parietal and motor 

cortices, which could mean reach preparation in pulvinar (Cudeiro et al., 1989). Also in the 

Cudeiro et al. study it was shown that neurons were more responsive to reaches in the 

lateral and oral pulvinar in comparison to the medial subdivision. It was also noted that 

pulvinar´s responsivity to visual stimulation does not follow a retinotopic representation 

(Acuña et al., 1983), this is particularly true in the mediodorsal pulvinar (Kaas and Lyon, 

2007). Most importantly, in the Cebus capucinus study from Acuña and colleagues, in 

humans (Martin-Rodriguez et al., 1982) and in Macaca nemestrina (Cudeiro et al., 1989), 

the intentionality of performing a movement was crucial to modify the firing rate of 

pulvinar neurons, suggesting the critical relevance of pulvinar in goal-directed actions. 

Furthermore, another study (Wilke et al., 2010) showed that inactivation of pulvinar causes 

deficits in reach-to-grasp tasks, the deficits were suggested to resemble optic ataxia- and 

visual extinction-like symptoms in Macaca mulatta, although their design did not allow to 

delineate the deficit with such precision. Optic ataxia (OA) is of interest as it involves the 

planning and execution of visually-guided movements. The defining characteristic of OA is 

that there is difficulty to successfully perform extrafoveal reaches, while foveal reaches are 

less impaired (Andersen et al., 2014). The exploration of multiple eye-hand coordination 

and dissociation conditions while using causal techniques in dorsal pulvinar are still needed 

to elucidate if the region is causally involved in optic ataxia or other visuo-motor behaviors 

requiring a cognitive control and will be addressed in Chapter III. 
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The available literature about reach encoding in the dorsal pulvinar is scarce and additional 

characterization of pulvinar engagement during visually-guided reach planning and 

execution is needed. Many open questions remain: Is the population of dorsal pulvinar 

neurons preferentially modulated by visual stimulation, planning of upcoming movements, 

or the execution of visually-guided movements? Would all dorsal pulvinar population fire 

to the same events or would it reflect the diverse connectivity of pulvinar? Would saccades 

and reaches be encoded similarly? Would the presence of more than one active effector 

influence the activity of dorsal pulvinar? Would there be hand specific tuning? 

 

Here, we analyzed single cell recordings from the dorsal pulvinar of two macaques trained 

to perform delayed visually-guided foveal and extrafoveal reaches as well as saccades with 

hand engagement to characterize the functions of dorsal pulvinar during purposeful actions. 
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Materials and methods 

 

Ethics, experimental approval and disclosures 

 

All experimental procedures were conducted in accordance with the European Directive 

2010/63/EU, the corresponding German law governing animal welfare, and German 

Primate Center institutional guidelines. The procedures were approved by the responsible 

government agency (LAVES, Oldenburg, Germany).  

 

During training or experimental days, monkeys worked for water/juice until satiated. On 

weekends or non-training days, monkeys had unlimited access to liquids (water and 

fruits/vegetables). Food with low water content was unrestricted and available at all time.  

 

Monkey L’s right pulvinar was studied in a previous report and the following procedures 

have partially been reported Chapter I. That study looked at the effects of electrical 

microstimulation on oculomotor behavior and free-choice decision-making. For such study, 

the right pulvinar of L was stimulated using bipolar trains of current ranging from 100 μA 

to 300 μA in 48 experimental sessions.  

 

Animal preparation 

 

Two adult male rhesus macaques (Macaca mulatta) L and F weighing 9 kg and 11 kg 

respectively were used. In an initial surgery, under aseptic conditions, anesthetized and 

monitored, monkeys were implanted with a PEEK MRI-compatible headpost. The headpost 

was embedded in a bone cement head-cap (Palacos with Gentamicin, BioMet, USA) 

anchored by ceramic screws (Rogue Research, Canada). Markers were drilled in the head-

cap for the planning of recording chambers. The chamber planning was performed using an 

MRI-guided navigation software (Ohayon and Tsao, 2012). In a second surgery monkey L 

was implanted with two 22 mm inner diameter PEEK MRI-compatible chambers in both 
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hemispheres plus a craniotomy in the right hemisphere to allow pulvinar access (right 

hemisphere: center at -3.12P / 20.2L mm, tilted: -18P / 37L, left hemisphere: center at -4.3P 

/ 21.7L mm, tilted: -18P / 38L L). Monkey F was implanted with a 22 mm chamber and 

craniotomy in the left hemisphere (center at -6.4P / 12.4L mm, tilted: -15P / 32L L). 

Monkey L underwent a third craniotomy surgery to give access to the left pulvinar. The 

dura mater and surrounding tissue were routinely kept sealed by a silicon elastomer (Kwik-

sil, World Precision Instruments, USA) to reduce tissue growth above the dura mater.  The 

tissue exposed inside the chambers was monitored by frequent exudate samples and 

maintained by a routine cleaning procedure.  

 

Recording chambers were cleaned every third day in addition to before and after every 

recording session. A silicon elastomer protecting the tissue above the dura matter was 

removed and the chamber was flushed several times with saline solution. The chamber 

inner walls were cleaned with 3% H2O2 moistened swabs. A 7.5% Povidone-Iodine-based 

antiseptic solution Braunol (B. Braun Melsungen AG, Germany) was placed inside the 

chamber for 10 minutes before it was rinsed with saline solution. The chamber inner walls 

were then cleaned with alcohol moistened swabs. Surgical soap Lavasorb (Fresenius Kabi, 

Germany) was placed inside the chamber and remained there for additional 10 minutes. The 

chamber was again flushed, and finally new elastomer was placed over the tissue covering 

the dura matter before it was sealed. 

 

MR imaging 

 

Monkeys were scanned in a 3 Tesla MRI scanner (Siemens Magnetom TIM Trio at the 

University Medical Center Göttingen or Siemens Magnetom Prisma at the German Primate 

Center Functional Imaging building). Similar MRI sequences were obtained as the ones 

reported in Chapter I. 

 

Pulvinar targeting 
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The dorsal pulvinar was localized on anatomical basis using MR images. The upper, medial 

and lateral boundaries were readily localized by changes in contrast of grey and white 

matter in T1 and T2 weighted images. The lower boundary was defined by the beginning of 

the brachium of the superior colliculus. Even though some parcellation schemes also show 

a small portion of ventral (inferior) pulvinar above the brachium (Gutierrez et al., 2000; 

Stepniewska, 2004; Kaas and Lyon, 2007), the brachium-based dorsal/ventral division is 

the best anatomical pulvinar segmentation reference without histological confirmation.  

 

General experimental setup  

 

Monkeys sat in a vertical primate chair facing a display with their heads restrained by a 

PEEK head holder attached to the implanted headpost in a darkened room with an eye-to-

screen distance of 30 cm (Figure II.1). Infrared cameras were placed inside the room to 

monitor jaw movements. To maintain stable recordings a motion detection system model 

MD2001 single channel analog video motion detector (Pelco, USA) was used. The motion 

detector triggered a TTL pulse whenever motion was present, resulting in aborted trials.   

 

Stimuli presentation and behavioral recording 

 

Task controller and stimuli were programmed in Matlab (The MathWorks, Inc. USA) using 

the Psychophysics Toolbox (Brainard, 1997). Stimuli were presented on a 27’’ LED 

display (60 Hz refresh rate, model HN274H, Acer Inc. USA). Reaches were performed to a 

transparent surface acoustic wave touchscreen model SCN-IT-FLT27.8-001-006 

(IntelliTouch, ELO touchsystems). The touchscreen was placed in front of the 27’’ stimuli 

display. Horizontal and vertical coordinates of finger position were recorded as analogue 

channels of a data acquisition card after passing a custom-made digital to analog converter. 

Real-time eye tracking was performed using a 220 Hz ViewPoint system, model MCU02 

(Arrington Research Inc. USA) running on a separate PC. The infrared camera was placed 

just above the task display to get a close to straight angle from the gaze position. Before 

training and experimental sessions, a linear calibration was performed using the task 

controller to adjust the offset and gain of the eye signals.  
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Figure II.1 Experimental setup 

 

 

The monkeys performed reaches and saccades inside an isolated booth next to a control room 

where the experimenter remotely recorded their behavioral and neuronal signals. The room’s 

illumination was turned off and only 0.16 cd/m2 of luminance from the monitor at monkey’s 

viewing distance of 30 cm was available. Jaw motion was monitored to ensure that non-task 

related movements were kept at a minimum. Hand sensors (L and R, placed close to monkeys’ 

left and right hands) were used to prevent the monkey from using un-cued hands. Eye, touch, 

initial hands resting position, and neuronal signals were recorded during the experimental 

sessions. 

 

Eye-hand movement rationale 

 



76 
 

To assess neuronal properties of dorsal pulvinar cells during visually-guided behavior, 

monkeys were trained to acquire ipsilateral or contralateral targets using their gaze or their 

ipsilateral or contralateral hand (in respect to the recorded hemisphere).   

 

Trial sequence reach task 

 

For monkey F, all tasks were performed as pseudorandomized interleaved trials of effector 

and required hands. For monkey L, the task was performed with the required hand blocked 

or interleaved. Also in monkey L task types were either blocked or interleaved. 

 

Delayed visually-guided tasks 

 

For all task types (Figure II.2), a trial started with the monkey resting both hands in two 

sensors positioned in front of them for 0.5 s. Next, two dim fixation spots appeared in the 

center of the display: a small and dim 0.5° radius red circle (eye fixation) above a larger and 

dim 4° radius green or blue circle (hand fixation) located at the horizontal center of the 

screen at monkey’s gaze height. A green hand fixation cued monkeys to use their right arm; 

a blue one cued the left arm. If an un-cued hand was lifted from the sensor at any time 

during the trial such that trial was immediately aborted and went back in the pool of 

pseudorandomized conditions. Monkeys were required to look at the eye fixation and touch 

the hand fixation within 1.5 s from presentation; then the fixation circles would brighten up 

and the monkeys had to maintain fixation for 0.5 s to start the contingency-specific part of 

the trial. A dim peripheral stimulus at 24° to the right or left of the central fixation circles 

cued the location and effector of a future movement: a red circle indicated a future saccade, 

a green/blue circle a future reach. In addition to purely horizontal targets, two targets with 

the same eccentricity of 24° were presented 20° of angular degrees above or below the 

horizontal gaze center for a total of three target locations to the left and three to the right. 

Monkeys were instructed to respond when either one or both fixation spots disappeared in 

the center of the screen after a delay of 1.28 s. For reaches, if only the hand fixation 

disappeared monkeys had to make a reach while keeping their gaze at the eye fixation 

(dissociated reaches). If both fixations disappeared monkeys had to make a reach while they 
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could freely look around for the rest of the trial (free gaze reaches). For eye movements, 

monkeys had to make a saccade while keeping their hands at the hand fixation (dissociated 

saccades). Once the movement took place, the targets would brighten up, and the monkeys 

had to maintain their gaze/hand position for 0.5 s on the target. After each successful or 

failed trial, there was a 2.5 s or 2 s inter trial interval respectively. In total, monkeys had to 

achieve 10 hits to each target location for the block to be completed. The luminance of the 

dim/bright targets for saccade, left arm and right arm cues were: 9.4 cd/m2 33 cd/m2; 34 

cd/m2 87 cd/m2; and 22.5 cd/m2 94 cd/m2 respectively with a 0.16cd/m2 background. 

 

Figure II.2. Tasks layout 

 

A trial started when the monkey rested both hands in touch sensors. Then two fixation spots, a 

red for eye, and either a green or blue for the right or left hand respectively appeared.  

Monkeys could perform a peripheral movement only after at least one of the central fixations 

spots was extinguished, signaling which effector to use to acquire a peripheral target. Monkeys 

had to prepare a dissociated saccade (arm resting in the center of the monitor for the duration 
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of the trial) or a reach. The reach could be a free gaze (likely foveally-guided) or a dissociated 

reach (eye fixation in the center).  

 

Saccade definitions 

 

A saccade was detected whenever there was a change in eye trace instant velocity larger 

than 200°/s in Euclidean distance. Saccade offsets reflected the time when saccade 

velocities dropped below 50°/s. Saccade velocities were derived from interpolated (220 Hz 

to 1 kHz) and smoothed eye position traces with a 15 ms moving average rectangular 

window, which was then smoothed again with a second 15 ms moving average rectangular 

window.  

 

Saccade latency was defined as the time between fixation spot(s) offset and the moment 

when the first saccade was detected during the target acquisition period in each trial. 

Saccade duration was defined as the time between saccade onset and offset. Saccade peak 

velocity was defined as the maximum instant velocity across the duration of the saccade of 

interest. 

 

Reach definitions 

 

Reach latency (reaction time) was defined as the time between fixation spot(s) offset and 

the moment when the hand lost contact with the touchscreen during the target acquisition 

period in each trial. Reach duration was defined as the time from the reach latency to the 

next touchscreen contact.  

 

Statistics 

 

For all tasks, for behavioral analysis successful trials to targets to the left and to the right 

hemi spaces were combined. All data analysis was performed using MATLAB R2012b and 

the Statistics Toolbox. To test for changes in mean movement latency, duration, velocity, 

and accuracy we used independent t-tests.  
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Electrophysiological recordings 

 

For the reach dataset 285 units recorded from monkey L (220 and 65 from left and right 

hemisphere, respectively) and 172 units from monkey F. From these 233 (182 left, 51 right, 

monkey L) and 145 (monkey F) were used after an exclusion criterion according to the unit 

stability and/or its classification as a single cell. An additional exclusion criterion was also 

used:  if there were less than 60 trials per hand per task or there were less than 50 spikes per 

unit the unit was not analyzed. This led to a final dataset of 220 (168 left, 52 right) and 129 

units for monkey L and F, respectively. For population analyses we combined the data from 

both hemispheres of monkey L. The total count of units per task was: Monkey L 180 

dissociated saccades (97 blocked hands), 193 dissociated reaches (97 blocked hands), 159 

free gaze reaches (87 blocked hands), and 129 for monkey F for all tasks. 

 

Analysis of firing rate 

 

Neurons were sorted offline using Offline Sorter v.4.0.0 and v.2.8.8 (Plexon, USA) using 

either a waveform template algorithm, a principle component analysis with k-means 

clustering algorithm, manual contour definitions, or a combination. Spike density functions 

for each trial were derived by convolution of the discrete spike arrival times with a 

Gaussian kernel (SD 20 ms).  Epochs of interest are described in Table II.1.  
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Table II.1 Epochs of interest, reach-saccade dataset 

 

 

For each of the epochs of interest (top row) the table shows a reference event (middle row) and 

the time window relative to it for the calculation of average firing rates. All firing rate epoch 

comparisons were done taking the reference event for each trial and comparing it to a baseline 

(bottom panel). 

 

For population analysis, trials in the same hemispace relative to the recorded hemisphere 

were combined. For each unit, if for a given neuron information from both hands was 

available, a three-way ANOVA including hand, hemispace and epoch as factors was 

performed, otherwise a two-way ANOVA using hemispace and epoch as factors was used. 

The hemispace with the higher firing rate was marked if there was a significant difference 

determined by unpaired t-tests. A similar approach was used to determine hand specific 

tuning. Enhancement or suppression of neuronal firing was defined for each epoch relative 

to a baseline specified independently for each epoch (see Table II.1) using paired t-tests 

comparing firing rates for ipsilateral and contralateral hemifields independently and 

regardless of hand. Enhancement or suppression was reported if either ipsilateral, 

contralateral, or both types of trials showed significant difference from baseline, regardless 

of the used hand. In cases where one hemifield showed significant enhancement, while the 

other had suppression, the unit was reported to have a bidirectional response.  
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For baseline-corrected population PSTHs, the average firing rate during the late period of 

the inter-trial interval that immediately preceded the trial start (fixation spot onset) was 

subtracted from the spike density function, separately for each trial. Responses for each unit 

were derived by averaging raw firing rates across all trials for the respective condition.   
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Results 

 

Single cell examples 

 

To address the questions of if dorsal pulvinar participates in the planning and/or execution 

of upper limb movements, the integration of eye and hand movements, or even in the 

dissociation of movement plans into specific effectors, a series of tasks were performed by 

two monkeys. In these tasks, the monkeys were required to do natural free-gaze (i.e. likely 

foveally-guided) or dissociated (only one effector performing the action) eye-hand 

movements. Dorsal pulvinar neurons displayed an array of responses e.g. visual 

modulation, spatial tuning, pre, peri and post movement enhancement or suppression and 

combinations. Given that many units were recorded during all three tasks: dissociated 

saccades, dissociated (extrafoveal) reaches, and free gaze (likely foveal) reaches, it was 

possible to visually inspect putative firing differences due to different effectors.  Figures 

II.3 to II.9 illustrate some of the most salient characteristics of single cell examples. 

 

Figure II.3 Visual unit 

 

Raw average peri-stimulus time histograms (PSTHs) per task per hemispace during delayed 

visually-guided tasks. Each row shows PSTHs from one of the three tasks presented to the 
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monkeys: dissociated saccades (top row), dissociated reaches (middle row), and free gaze 

reaches (bottom row). Trials performed to targets to the left and to the right of the fixation 

were pooled together (per hemispace) and according to the hand used for a maximum of four 

traces per panel. The color code used here is consistent across single cell plots: rightward trials 

using right hand (yellow trace), leftward trials using right hand (olive trace), leftward trials 

using left hand (magenta trace) and rightward trials using left hand (blue trace). Panels in 

each row are divided to represent the alignment to: onset of fixation hold, onset of the cue, and 

the onset of the movement, saccade for dissociated saccades and free gaze reaches, and reach 

for dissociated and free gaze reaches. Labels above the top panel mark the location of relevant 

task or behavioral events. Vertical red and green line-pairs are the onset plus average duration 

of saccade and reach respectively. This representation is consistent across single cell examples.  

This example neuron increased its firing rate by visual inputs presented in the left hemispace. 

Top, for dissociated saccades there was enhancement of firing by the presentation of a cue to 

the left. After a rightward saccade, either the left or right hand remained to the left of the fovea 

(containing the receptive field of the unit), which made the “tuning” shift as after the eye 

movement to the right. Middle, in dissociated reaches as the hand moves to the left but the eye 

stays at the display’s center it makes the cell’s receptive field to keep its tuning properties 

consistent for the trial duration. Bottom panel, in free gaze reaches the cue tuning remains like 

the other tasks. At the time of the movement, once the saccade happens and brings the stimuli 

away from the receptive field and to the fovea there is a drop in the firing rate to baseline level. 

Note that a small peak during “fixation acquisition” is there for all tasks when fixing left hand. 

This peak revealed to be visually influenced by the movement of the hand from the resting 

sensor to the center of the monitor as it passed through the cell’s receptive field. 

 

Figure II.3 shows the average firing of a unit whose modulation was clearly visual and 

tuned to the contralateral hemispace (left visual field, right dorsal pulvinar recorded for this 

unit). During dissociated saccades, where the monkey was required to keep its contralateral 

or ipsilateral hand at the center of the display (left or right hand for this example cell) cue 

tuning was enhanced to the left hemispace. This pattern was consistent in all tasks. There 

was either an apparent shift of tuning after a saccade to the right (the hand is still at the 

fixation, so the receptive field tuned to a left cue is now responsive to the largely leftward 

location of the hand). If a reach was performed but no saccade the tuning was maintained to 

the left hemispace. If there was a free gaze (likely foveal) reach, the left receptive field of 
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the neuron stopped being stimulated as soon as the target was foveated, which made the 

unit to stop firing.  

 

A few movement-specific units like the one in Figure II.4 were suppressed during the 

reach both to the fixation spot and to the peripheral targets and had hand specific 

enhancement or suppression during movement preparation.  

 

Figure II.4 Unit suppressed by reaches 

 

For all tasks, there was suppression of firing while the monkey reached from the resting 

sensors to the central fixation spot regardless of the hand used. Later, saccade and reach cue 

presentation had an enhancing influence on the firing rate of the unit. This effect was highest 

close to the onset of the reach (middle panel), and suppressed during the actual movement. A 

similar effect was present when eye movements could accompany the reach (bottom panel). 

Such firing rate decrease did not happen during the saccade task (top panel) but a similar 

suppression was also seen in the post saccade period. 

 

The unit from Figure II.5 was enhanced by a dissociated saccade, suppressed by an 

extrafoveal reach and enhanced by a foveal reach but only after the reach was performed 

i.e. not modulated by the saccade.  
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Figure II.5 Interaction of saccade and reach, suppression for reach only

 

For all panels, this unit’s firing increased at the start and end of the reach to the fixation spot. 

During dissociated saccades (upper panel), there was a clear peri saccade increase of firing rate 

for leftward saccades. During dissociated reaches (middle panel), there was suppression of the 

firing rate around the movement. During free gaze reaches (bottom panel) there was reach and 

post reach enhancement of firing.   

 

A unit modulated only by visually-guided reaches is shown in Figure II.6. This unit was 

space specific and responded for the free gaze condition before and until the end of the 

visually-guided reach.  
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Figure II.6 Firing rate enhancement for combined effector movements 

 

For all panels, there was enhancement of firing during reaches to the initial fixation spot. This 

increase was similar for both hands. Later and for all tasks, there was no modulation during 

the cue presentation and the delay period. For the free gaze reach condition (bottom panel) 

there was enhancement of firing rate to the left hemispace well before the reach was 

performed. 

 

Other complex interactions between effector and space are shown in Figure II.7 where an 

increase of firing occurred for dissociated saccades, in contrast to the dissociated reach and 

free gaze reach tasks. Additionally, the firing rate was higher for the ipsilateral hand (left 

hand for this unit).  
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Figure II.7 Space, hand, task and epoch delay related firing 

 

For all tasks, this unit was responsive to the presentation of a cue in the right hemispace. The 

firing to cue was different for future reach and saccade movements. Due to non-matching 

luminance for the saccade and reach cue the higher firing for the saccade cue due to the 

difference in luminance for these stimuli, however, the reach cue would likely evoke the largest 

response as its luminance was higher (see Methods). For dissociated saccades (top panel) the 

unit’s modulation continued to increase until the saccade execution. This enhancement was 

higher when using the left hand than when using the right one. For both reach tasks, after the 

initial transient firing increase at cue’s presentation there was a decrease back to baseline 

during the delay and movement execution.  

 

Figure II.8 Shows the influence of hemispace during the preparation and execution of a 

movement to the contralateral hemispace when the ipsilateral hand (left) is used both for 

reaches and saccades. For this cell, the largest responsivity was not purely visual as there 

was no fast firing rate increase to the onset of the initial fixation spot or cue, but there was a 

strong slow ramping up of firing during the delay period and well until the offset of the 

reach.  
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Figure II.8 Early preparation of a movement for a specific side and effector

 

For all tasks, there was a ramping up of firing after the cue’s presentation until the end of the 

movements.  This firing rate increase was specific for the left arm and the right hemispace. The 

enhanced firing was present for saccades and reaches. 

 

Finally Figure II.9 shows a high firing unit during the free gaze reach task. The unit’s 

firing increased preferentially for the contralateral hand (right) to a reach to the fixation and 

later increased to plan a likely foveally-guided reach to the right hemispace with the 

ipsilateral hand. The unit was enhanced until shortly before the movement for all 

conditions.   

 



89 
 

Figure II.9 Interactions 

 

This unit was recorded for the dissociated reach condition only. It had firing rate enhancement 

at fixation onset; this effect was stronger when the monkey used its right arm. During the 

fixation hold and before cue onset the firing was suppressed, mostly while fixating with the 

right arm. Suppression during the central fixation (with a residual effect of hand still 

apparent) was followed by increase of firing during cue presentation and a ramping up of firing 

for movements to the right using the left hand.  

 

Reach population grouping 

 

To assess how the different visual and motor responses were represented in the population 

firing of dorsal pulvinar two groups were made. For the first group, data from both 

monkeys where they performed the tasks with a randomized use of hands were combined 

(157 units, two monkeys combined). A second group was done to assess the effects of 

instructing the arm to be used in blocks (87 units recorded during the free gaze task and 97 

units recorded during the dissociated saccade and reach tasks for monkey L only, as for 

monkey F the tasks were always performed with interleaving the hand and task).  

 

Table II.2 and II.3 summarize behavioral patterns found in monkey L and F for reaches 

and saccades respectively. This summary encompasses both subgroup datasets (where the 

hands were blocked and interleaved) as from the moment when the hand was in the central 
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fixation spot monkeys’ behavior is expected to be similar. Importantly, for monkey L in 

five sessions each block contained one effector type only, which could cause faster mean 

reaction times as the monkey potentially knows beforehand what movement to perform. In 

general, Monkey L had a tendency for longer reach latencies than monkey F in all 

conditions regardless of hand, hemispace, and task contingencies (p<0.05 in all conditions 

but dissociated reaches to the left hemispace with the left hand p=0.07).   

 

Some of the general observations regarding the differences between monkeys were that 

Monkey F took up to 70 ms longer to finalize a reach in comparison to monkey L, who had 

mean reach duration of 171 ms + 7 ms (+ SE) across conditions. Saccades latencies ranged 

between 170 ms and 210 ms across conditions and monkeys, with durations between 50 ms 

and 60 ms.   

 

Table II.2 Behavioral summary per monkey for reaches 

 

Descriptive statistics for behavioral parameters in monkey L and F and inferential statistics 

between monkeys L and F with effect size F-L. For delayed reach tasks. inferential tests were 

performed to assess the similarity of reach latency and duration across monkeys. Reaches 

performed to the left hemispace are in the upper panel (magenta shaded) while reaches to the 

right hemispace are in the bottom panel (orange shaded). Trials performed with the left hand 

are shaded in cyan while trials performed with the right hand are shaded in green. The p-

values were derived from two-tailed non-paired t-tests across sessions for all electrophysiology 

recording sessions (bold p<0.05, italics p<0.1). Reaches that occurred before 200 ms from the 

Go signal were excluded from all behavioral analysis as they are considered express 

movements. In general monkeys had substantial differences in both latency and duration of 

reaches. The periods of interest for spike analysis were defined relative to the movement or 

using periods suitable to both monkeys according to their behavior. LH, left hand; RH, right 

hand; SE, standard error of the mean, df, degrees of freedom 
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Table II.3 Behavioral summary per monkey for saccades 

 

Like Table II.2, descriptive statistics for behavioral parameters in monkey L and F and 

inferential statistics for delayed saccade tasks between monkeys L and F with effect size F-L. 

Saccades performed to the left hemispace are in the upper and lower left panels (magenta 

shaded) while saccades to the right hemispace are in the middle and lower right panel (orange 

shaded). Trials that involved the left hand are shaded in cyan while trials involving the right 

hand are shaded in green. The p-values were derived from two-tailed non-paired t-tests across 

sessions for all electrophysiology recording sessions (bold p<0.05, italics p<0.1). Saccades that 

occurred before 80 ms from the Go signal were excluded from this analysis as they are 

considered express movements. In general monkeys had differences in both latency and 

duration of saccades when the usage of a hand was required for completing the trial. 

 

 

Raw PSTHs during saccade and reach behavior 

 

The baseline-subtracted raw (with no tuning property as preselection) average PSTH of 

dorsal pulvinar units in the interleaved hand design are plotted for the three eye-hand tasks. 

Figure II.10 panel A shows population (n=157) properties during the dissociated saccade 

task. The PSTH traces are colored according to the recorded hemisphere. The largest 

population response was due to visual stimulation to the contralateral hemispace. In 

addition, peri and strong post saccade suppression and enhancement respectively were 

present for movements to both hemispaces and regardless of the engaged arm. As for all 

subsequent PSTHs, the alignment was done to the beginning of the fixation holding period. 

With this alignment, an initial peak of firing when using the contralateral hand (magenta 
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versus yellow traces) seemed to reflect an earlier response for the usage of the contralateral 

hand. However, realigning that period to the onset of the fixation spots in monkey F 

revealed that the peak to the fixation spot occurred at a similar time (as seen in Figure II.10 

panel B). For this comparison Monkey F was chosen because it had the largest hand 

reaction time difference between ipsilateral and contralateral hand, 286 ms vs 367 ms. 

 

Figure II.10 Dissociated saccades raw PSTH 

 

Main panels (A-B): Baseline corrected population PSTH (solid traces), and SE (shaded bars) 

combined for cells recorded during the dissociated saccade task. Trials were sorted according to 

the hemispace and hand used relative to the recorded hemisphere. Straight lines above the 

PSTH signify spatial tuning for the ipsilateral and contralateral hand (green and blue traces 

respectively) and hand tuning to the ipsilateral and contralateral hemispace (orange and 

magenta traces respectively). Subpanels are aligned to the fixation hold, cue onset and 

movement onset. Grey bars in the bottom signify analyses windows. Red bars in the bottom 

signify saccade analyses windows. C: PSTH line color conventions. Colors are referred in 

respect to the recorded hemisphere: Yellow for ipsilateral hand ipsilateral hemispace, Olive for 

ipsilateral hand contralateral hemispace, Blue for contralateral hand ipsilateral hemispace and 

Magenta for contralateral hand contralateral hemispace. A) For dissociated saccades, there 

was a clear firing enhancement by the cue onset as well as a spatial preference to the 
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contralateral hemispace. In addition, after the fixation onset, there was what appeared to be a 

delay in the onset of ipsilateral hand influence on the firing rate. This effect was however not 

present when realigning the PSTH to the fixation onset as in B. Around the saccade there was 

suppression of firing prior to the onset of the saccade, followed by peri and post saccade firing 

enhancement. 

 

In the dissociated reach task (Figure II.11) there was similar tuning to the contralateral 

presentation of a cue. In addition, there was enhancement of firing during the late portion of 

the delay period, which was strengthened during and until after reach offset. In contrast to 

the dissociated saccade task, the firing enhancement around the reach time appeared earlier 

(in opposition to suppression before and during the saccade and post saccade 

enhancement). This finding suggests a potential participation of dorsal pulvinar in the 

planning of reaches.  

 

Figure II.11 Dissociated reaches raw PSTH 

 

During dissociated reaches, there was cue-related firing rate enhancement to the contralateral 

hemispace. The main difference to dissociated saccades was an earlier onset of firing rate 
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increase to perform a reach. In addition, the firing was sustained until the offset of the reach, 

and there was no suppression of firing around the movement as for dissociated saccades. Green 

bars in the bottom signify reach analyses windows. Other conventions as in Figure II.10. 

 

Finally, during free gaze reaches, where the monkey could perform a foveally-guided 

reach, the tuning largely resembled the saccade tuning (movement panel aligned to saccade 

in Figure II.12) as well as having a modest modulation for reaches to the contralateral 

hemispace using the contralateral hand. These results are consistent with our previous 

finding of strong spatial contralateral tuning in the cue response in Chapter I and Ibis. In 

addition, these results confirm the presence of reach related neurons in dorsal pulvinar, 

whose firing comes earlier and has a different pattern than the firing preceding saccade-

only behavior.  

 

Figure II.12 Free gaze reaches raw PSTH 

 

In the free gaze reach task, there was no evident firing rate suppression before saccade onset. 

Also, when compared with dissociated reaches (Figure II.11) the firing rate enhancement 

returned to baseline earlier, which could reflect a mixed influence of both saccades and reaches 
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in dorsal pulvinar. Red and Green bars in the bottom signify saccade and reach analyses 

windows respectively. Other conventions as in Figure II.10. 

 

 

PSTHs grouped by spatial tuning properties 

 

The combined dataset from both monkeys from hand interleaved trials was resorted to 

represent dorsal pulvinar subpopulations which were spatially-tuned at different task-

relevant epochs (main effect of space for the epoch of interest in the corresponding 

ANOVA). For reaches, the period selected was the peri reach. Reach-related firing 

enhancement was found in subpopulations tuned to each hemispace (n=36 and n=22 cells 

tuned to the contralateral and ipsilateral hemispaces respectively, Figure II.13) well before 

the onset of the reach. It is important to note that for dissociated reaches it is possible that 

the planning of small saccades within the fixation window contributed to firing changes 

before the reach. This is an unlikely possibility however, as saccade related changes in 

dorsal pulvinar had a different pattern which was not sustained until after the reach offset. 

 

Figure II.13 Dorsal pulvinar neurons spatially tuned in the peri reach epoch 

 

This and subsequent population plots represent cells that had a significant increase of firing 

rate in the epoch of interest (here, around the reach). For units with an ANOVA main effect of 

space in this epoch, the hemispace for which the neuron had the highest firing determined the 
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spatial preference. The spatial preference could be either contralateral or ipsilateral (top and 

bottom panels respectively) to the recorded hemisphere. In dissociated reaches with spatial 

tuning in the peri reach period, neurons displayed a larger increase of firing around the cue 

onset to the contralateral hemispace. In addition, there was enhanced firing before, during and 

after the reach for reaches to both hemispaces. 

 

For the dissociated saccade task when aligning to the peri saccade epoch (Figure II.14) 

only a modest enhancement of firing in units which preferred the contralateral hemispace 

was observed. For units which preferred the ipsilateral hemispace there was in addition to 

the enhancement to the ipsilateral hemispace a marked suppression of firing rate when the 

stimulus was presented in the contralateral hemispace. 

 

Figure II.14 Dorsal pulvinar neurons spatially tuned in the peri saccade epoch 

 
Firing rate enhancement in neurons with spatial preference in the peri saccade period showed 

a strong suppression to the non-preferred hemispace in the same time window, followed by 

enhancement after the saccade. This suppression is more apparent when looking at cells 

classified as enhanced to the ipsilateral hemispace around the saccade period when looking at 

the contralateral hemispace PSTHs.  

 

When the alignment was made to the post saccade period (Figure II.15) there was firing 

enhancement for both contralaterally and ipsilaterally tuned units after the movement. 
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Interestingly, for cells tuned for the ipsilateral hemispace as soon as the saccade happened 

there was a quick drop of firing for trials to the contralateral hemispace. 

 

Figure II.15 Dorsal pulvinar neurons spatially tuned in the post saccade epoch 

 

In pulvinar units with a spatial preference in the post saccade period, there was a firing 

enhancement to each of the hemispaces, but stronger to the preferred hemispace. In neither 

this nor the peri saccade subset there was significant cue response to the ipsilateral or 

contralateral hemispaces. 

 

Cell counts  

 

ANOVAs with main factor hemispace and epoch were performed to further characterize the 

spatial and tuning properties of pulvinar cells during the three recorded tasks. Figure II.16 

revealed that during the dissociated saccade task 25% of the cells had spatial tuning during 

the cue presentation (inner circle in the pie plot, 20% contralaterally tuned, 5% 

ipsilaterally).  
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Figure II.16 Spatial tuning for the dissociated saccade task, interleaved hands 

 

Cell percentage summary showing hemispace and firing modulation type for each epoch of 

interest in the dissociated saccade task. The inner pie plot contains the percentage of units 

with a main effect of hemispace (ipsilateral or contralateral to the recorded pulvinar) while the 

outer pie shows the nature of the modulation i.e. enhancement, suppression, or both effects per 

subpopulation. There was increased firing to the contralateral hemispace both during cue 

presentation and during the delay period as well as in the movement period. There was 

suppression of firing around the time of the saccade for spatially- but also for non-spatially-

tuned units. After saccade offset there was a large enhancement of firing in the three 

subpopulations. This representation is consistent across similar summaries. 

 

Later, during the delay period the tuning was equalized to the contralateral (9%) and 

ipsilateral (11%) hemispaces. For contralaterally tuned neurons (outer circle in the pie plot) 

there was in firing enhancement except for time before and around the saccade where units 

were strongly suppressed (6%) or showed no firing modulation. Non-spatially tuned cells 

were largely suppressed around the saccade (21% suppression versus 6% enhancement). 
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This suppression was reduced during the target hold period (15% and 21% suppression and 

enhancement respectively). The main difference of dissociated reaches (Figure II.17) to 

saccades (Figure II.16) was a large enhancement around the reach time that was present 

for ipsilaterally-, contralaterally- and non-spatially-tuned units (8% enhancement from 14% 

of ipsilaterally tuned neurons, 16% from 23%, contralaterally tuned, and 25% from 63% 

non-tuned units) in the peri reach period. Spatial tuning patterns were similar across tasks.  

 

Figure II.17 Spatial tuning for the dissociated reach task, interleaved hands 

 

Cell counts summary per hemispace and tuning types, for each epoch of interest in the 

dissociated reach task. There was a large enhancement of spatially- and non-spatially- tuned 

cells prior and during the reach opposite to findings in the dissociated saccade task (Figure 

II.16). The firing enhancement later decreased during the target holding period. This 

difference between firing across tasks might reflect a different involvement of pulvinar in the 

planning and execution of saccades and reaches in the visuo-motor hierarchy.   
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Importantly, in the free gaze reach task (Figure II.18) both tuning effects were present, 

large suppression around the saccade and enhancement around the reach.  

 

Figure II.18 Spatial tuning for the free gaze task, interleaved hands 

 
Cell counts summary per hemispace and tuning types, for each epoch of interest in the free 

gaze reach task. Dorsal pulvinar neurons had firing rate changes according to the movement 

type. In the pre and peri saccade periods there was a larger suppression than enhancement 

with an increased proportion of bidirectional modulation in contralaterally tuned units. In the 

peri reach period there was a large enhancement in spatially tuned and non-tuned units to 

both hemispaces.  

 

Figures II.19-21 show for the interleaved hand design the main effects of hand and 

hemispace as well as their interactions during, dissociated saccades, reaches, and free gaze 

reaches respectively. The largest influence on the firing rate of cells prior to the onset of a 

cue was contralateral hand tuning in the fixation period in dissociated saccades (12%), 

dissociated reaches (8%), and free gaze reaches (8%). Also, there was a modest number of 

units enhanced to movements with engagement of the ipsilateral hand in Fhol. Contralateral 
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spatial tuning dominated during the cue presentation and was similarly tuned for the 

contralateral and ipsilateral hemispace around the delay period.  

 

Figure II.19 Hand-space tuning for the dissociated saccade task, interleaved hands 

 

Cell counts summary with hemispace, hand and interactions, for each epoch of interest in the 

dissociated saccade task, using interleaved hands. The inner pie plot contains the percentage of 

units with a main effect of hemispace (ipsilateral or contralateral to the recorded pulvinar), 

hand, or hand and hemispace. The outer pie shows the nature of the interactions, i.e. all 

uncrossed conditions: ipsi hand, ipsi space, and contra hand, contra space larger; or all crossed 

conditions: ipsi hand, contra space, and contra hand, ipsi space larger. A large percentage of 

the tuning was explained by single main effects. Particularly, the modulation to the 

contralateral hemispace and the usage of the contralateral hand had large influence on the 
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firing of a large proportion of cells. Interaction effects were minimal and benefitted both 

crossed and uncrossed conditions.  

 

Figure II.20 Hand-space tuning for the dissociated reach task, interleaved hands 

 

Cell counts summary with hemispace, hand and interactions, for each epoch of interest in the 

dissociated reach task, using interleaved hands. The largest difference when comparing to the 

dissociated saccade task was a larger proportion of interactions around the movement in the 

pre and peri reach conditions. The interaction in both periods was preferentially crossed, 

suggesting spatial- and effector-related influences on dorsal pulvinar. For this task involving a 

purposeful reach there were units modulated by hemispace (contralateral) and with the 

ipsilateral hand. Conventions as in Figure II.19 
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Figure II.21 Hand-space tuning for the free gaze reach task, interleaved hands 

 

Cell counts summary with hemispace, hand and interactions, for each epoch of interest in the 

free gaze reach task, using interleaved hands. For trials where the monkey performed a reach 

which it could foveate the effects were like the described independently per effector, both for 

the spatial tuning properties and for the hand preference. Conventions as in Figure II.19 

 

Figures II.22-24 show for monkey L ANOVA results from the blocked hand design (main 

effects of hand and hemispace as well as their interactions during the three visuo-motor 

tasks). The main difference with the interleaved hand design was that during the full 

duration of the trial there was a large proportion of neurons with hand preference tuning 

(e.g., around 30% during the Fixation hold period for all tasks). This hand preference was 

not for a specific hand relative to the recorded hemisphere. Apart from this strong hand 

preference, the tuning of the cells largely resembled results from the interleaved hand task. 
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Figure II.22 Hand-space tuning for the dissociated saccade task, blocked hands 

 

Cell counts summary with hemispace, hand and interactions, for each epoch of interest in the 

dissociated saccade task, for blocked hands. As in Figure II.19, the inner pie plot contains the 

percentage of units with a main effect of hemispace (ipsilateral or contralateral to the recorded 

pulvinar), hand, or hand and hemispace. The outer pie shows the nature of the interactions, i.e. 

all uncrossed conditions: ipsi hand, ipsi space, and contra hand, contra space larger; or all 

crossed conditions: ipsi hand, contra space, and contra hand, ipsi space larger. A large 

proportion of the neurons preferred the usage of either the ipsilateral or contralateral hand to 

the recorded hemisphere across the duration of the trial. This preference was also present 

before the hand was cued, as it would be predictable per block of trials. In this task, dorsal 

pulvinar cells had a slightly larger representation of the ipsilateral hand.  
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Figure II.23 Hand-space tuning for the dissociated reach task, blocked hands 

 

Cell counts summary with hemispace, hand and interactions, for each epoch of interest in the 

dissociated reach task, using blocked hands. As in the interleaved hand task, there was a 

larger interaction of (mostly) crossed conditions around the movement, meaning an interaction 

of a hand and the contralateral hemispace to it.  



106 
 

Figure II.24 Hand-space tuning for the free gaze reach task, blocked hands 

 

Cell counts summary with hemispace, hand and interactions, for each epoch of interest in the 

free gaze reach task, using blocked hands. As in the dissociated tasks there was a large hand 

preference from early stages of the trial. There were similar firing rate modulation patterns 

around the movements as in the dissociated tasks.  
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Discussion 

 

In this chapter, we aimed to gain a better understanding of how dorsal pulvinar is involved 

in the execution of visually-guided reaches. As put in the Research rationale, the 

assessment of the electrophysiological properties of pulvinar during purposeful reaches is 

the first of two methods we used to address such question. The causal role of pulvinar in 

eye-hand behavior will be explored in Chapter III.   

 

There are no recent systematic reports of the neuronal correlates of pulvinar function during 

the execution of reaches. However, early reports provided promising evidence of reach to 

grasp related activity across monkey species (Acuña et al., 1983, 1983, 1986; Magariños-

Ascone et al., 1988; Cudeiro et al., 1989), as well as in humans (Martin-Rodriguez et al., 

1982).  

 

Dorsal subnuclei in the pulvinar are connected to different areas in the fronto-parietal 

network (Grieve et al., 2000; Stepniewska, 2004; Kaas and Lyon, 2007), and thus reach 

activity is likely to exist there. Whether this happens to be a reflection of the reach plans 

and actions originated elsewhere in the motor planning regions in the brain, or in the 

pulvinar itself as suggested by the temporal properties of such tuning (Cudeiro et al., 1989) 

is still a matter of debate as recent reports addressing this question are lacking.  

 

As we have shown in Chapter 1 and Ibis, dorsal pulvinar neurons are tuned to both the 

contralateral and less markedly to the ipsilateral hemispace to the recorded hemisphere. In 

addition, dorsal pulvinar neurons are modulated by saccades and by fixation; the visual or 

motor responsiveness of some cells is influenced by the gaze position at the time of visual 

stimulation and saccade execution. Similar modulation during preparation in a gaze 

centered frame exists in movement planning cortical areas like the posterior parietal cortex 

(Andersen and Mountcastle, 1983; Andersen et al., 1985; Colby et al., 1995; Snyder, 2000; 

Crawford, 2004).  It is possible that dorsal pulvinar does not only participate in spatial 
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transformations for oculomotor behavior, but to also participate in the coordination of 

spatial transformation between distinct effector systems, or even in the generalized 

planning of movements. 

 

Visual-, saccade- and reach-related firing has been reported in dorsal pulvinar. This is 

consistent with findings from our own results. We recorded dorsal pulvinar neurons from 

two monkeys while they performed delayed visually-guided saccade and reach tasks. These 

tasks demanded either the 1) central fixation of one of the hands to the touch display while 

they saccade to the periphery, a 2) central fixation of the eyes while they made a peripheral 

reach, or 3) the performance of a free gaze (likely foveal) reach.  

 

The rationale behind using foveally-guided reach tasks was that one of the questions we 

aimed to address and have started exploring in this chapter is to assess if during periods of 

visual stimulation, reach planning or execution there is additional firing rate changes due to 

the presence of a second effector, and which is the nature of this combined activity.  

  

D.II.1 Dorsal pulvinar’s tuning is stronger for space than for hand in randomized 

(interleaved hands) conditions. 

 

Across tasks, we found a significant contralateral spatial tuning during the cue presentation, 

regardless of the hand used (21% of the cells tuned contralaterally from ANOVA 

significant units). Hand tuning was weaker in this period. This is evidence of dorsal 

pulvinar’s strong spatial selectivity during early visual processing and early planning of an 

action. While the largest modulation for hand tuning was during the fixation hold period 

“Fhol” we exemplify the results from the cue period as it was the first period with spatial 

information. In this period, for dissociated saccades, reaches, and free gaze reaches there 

was a tuning of 18%, 17% and 18% of the units being spatially selective to the contralateral 

hemispace, and 4%, 0% and 3% to the ipsilateral space; while there was 3%, 4%, and 4%, 

and 3%, 4%, and 4% of units for the contralateral and ipsilateral hands respectively (n=157, 

interleaved hands dataset). Contralateral tuning preferences have been reported in the 

posterior parietal cortex during reach tasks (Hwang and Andersen, 2011; Hadjidimitrakis et 
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al., 2014). It is possible that the change in the influences of firing rate according to the trial 

epoch is a sign of pulvinar diverse and dynamics functions in the planning of actions. 

 

D.II.2 Dorsal pulvinar’s firing modulation varied according to the effector used and 

the current task epoch; enhancement during reach preparation and suppression 

before and during eye movements 

 

For all tasks, an overall contralateral spatial preference was observed, although it was not 

the only finding. We observed epoch specific firing enhancement or suppression modulated 

by the task being performed. In dissociated saccades (Figure II.16) as the trial approached 

the execution of the movement (e.g. peri-saccade period “PeriS”) the firing rate in a 

significant proportion of cells was suppressed. From the subpopulation of non-tuned 

neurons 23% and 8% neurons were enhanced or suppressed in the cue period versus 6% 

and 21% in the peri-saccade period respectively. This suppression might be caused by the 

selective activity of dorsal pulvinar neurons according to the effector. 

Interestingly, a large enhancement of pulvinar firing happened only after the saccade 

occurred in the target hold period: 21% and 15% of non-spatially-tuned neurons were 

enhanced and suppressed relative to the reference period (Fixation hold). If this was an 

isolated result it would be fair to hypothesize that pulvinar is related to visual updating after 

a saccade has occurred. This explanation however, does not fully fit with our findings 

reported in Chapter I. There, we described that the disruption of the saccade behavior by 

the injection of current not only affected target selection but also saccade execution. It is 

possible that suppressed units in the pre saccade period interact with the smaller population 

that was enhanced in the same period for the execution of a saccade. The large firing 

enhancement observed after the saccade offset might be 1) signaling of the end of a saccade 

or 2) a corollary discharge for updating visual information as it has been proposed for 

saccade related cells in PRR whose largest enhancement mainly happens after the saccade 

(Snyder et al., 2000a).  

 

For reaches there was no peri-reach suppression but an enhancement of the firing close to 

the time of the reach onset. In some single units, it was possible to see ramping up of firing 
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rate from the cue onset until the end of the movement which agreed with the results in the 

population cell counts. The firing enhancement was present well before the reach onset 

until the reach offset, similar to what was found in a small subset of dorsal pulvinar neurons 

in Macaca nemestrina (Cudeiro et al., 1989) and in PRR/MIP (Galletti et al., 1997; Snyder 

et al., 1997). Pre reach firing rate enhancement was consistent, however, this effect seems 

smaller than reach planning firing in the posterior parietal cortex  (Snyder et al., 1997, 

2000a).  

 

D.II.3 Dorsal pulvinar is modulated by the interaction of the effectors involved in an 

action 

 

At the single cell level, interesting interactions between effectors are to be mentioned. 

Some cells such as the one in Figure II.6 showed clear enhancement for coordinated 

movements but not for the dissociated saccade or reach conditions. Other cells were 

suppressed for decoupled movements, but enhanced for combined movements (Figure 

II.5), among other variations. The existence of these different cell response types might 

indicate that there is participation of dorsal pulvinar in the integration of visually-guided 

reaches at different levels of movement generation. 

 

D.II.4 Dorsal pulvinar shows strong hand preference if the hand usage is predictable 

 

It has been observed in LIP that neurons “anticipate” and present different background 

firing according to the task to be performed even before a stimulus is available (Colby et 

al., 1995). In our study, we found that if the usage of an arm was expected in a block, 

tuning for a contralateral or ipsilateral arm were present in a large portion of cells in 

monkey L (Figure II.22-24). It has been reported that many cells in PRR/MIP, which is 

interconnected with the dorsal pulvinar, encode reaches with either contralateral or 

ipsilateral hand, with a mild contralateral preference on a population level (Chang et al., 

2008).  
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Single cell examples and population data i.e. after subtracting background firing in the 

blocked hand condition (not shown), suggest that hand tuning can be found in dorsal 

pulvinar. This modulation was additionally influenced by spatial tuning and task epoch. 

Taken together our results show that dorsal pulvinar is involved in the preparation, 

execution and potentially integration of saccades and reaches, as shown by their complex 

modulation patterns.  
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Abstract 

 

The dorsal pulvinar in primates is strongly connected to cortices of the fronto-

parietal network. Previous studies have found reach and saccade related activity in dorsal 

pulvinar. Furthermore, findings from our group have shown that after dorsal pulvinar 

inactivation monkeys display a wide range of deficits from target selection to reach and 

grasp deficiencies, hinting at important roles of pulvinar in purposeful visuo-motor 

behavior. Here, we aimed to quantitatively characterize the aftereffects of pulvinar 

disruption using an array of visually-guided foveal and extrafoveal reach tasks as well as 

saccade tasks with the active involvement of the hand. Using MRI-guided reversible 

pharmacological inactivation of dorsal pulvinar with the GABA-A agonist THIP we 

quantified the effects of dorsal pulvinar silencing in a monkey. The main observed deficits 

were a decrease in the correct usage of the contralesional hand to the inactivated 

hemisphere, which translated to decreased hit rate, as well as a slow hand selection of the 

contralesional hand. In addition, we found less efficient execution of reaches to the 

contralesional hemispace after inactivation. There was a decreased eye-hand reaction-time 

correlation while eye movement properties were largely unaffected. These results suggest 

that dorsal pulvinar has a large involvement in the preparation of visually-guided reaches. 

Changes in saccade execution after inactivation might be compensated by other of the 

several regions known to participate in their planning. 
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Introduction 

 

The dorsal aspect of the thalamic pulvinar, one of the largest and more densely 

connected subcortical structures to association cortices in the primate brain, i.e. frontal and 

parietal areas (Grieve et al., 2000; Gutierrez et al., 2000; Kaas and Lyon, 2007), might 

participate in the integration of eye and hand movements. Reach-related neurons have been 

found  in the oral and lateral pulvinar across monkey species (Acuña et al., 1983, 1990). In 

Macaca nemestrina reach signals precede parietal and motor cortices signals, suggesting a 

role of pulvinar in the planning of reaches (Cudeiro et al., 1989). In addition, neurons in 

dorsal and ventral pulvinar are modulated by the planning and execution of eye movements 

as well as by saliency and attentional processes (Petersen et al., 1985, 1987; Robinson et 

al., 1986; Robinson and Petersen, 1992). The strong influence of visual, as well as of eye- 

and arm-movement signals in pulvinar could reflect involvement of the nucleus, 

particularly of its dorsal region, in the planning and execution of visually-guided reaches, 

the integration of visual information and proprioceptive signals for the execution of 

reaches, or the coordination of the oculomotor and reach systems.  

 

Data from our group (Wilke et al., 2010, 2013) has shown that dorsal pulvinar inactivation 

with GABAergic agonists THIP, and muscimol (Krogsgaard-Larsen et al., 2002) causes 

strong disruption of saccades, reaching and grasping, some of which appear to be of 

cognitive nature. After inactivation, when monkeys were required to perform visual 

exploration, they developed bias to explore the ipsilesional hemispace for longer periods. 

There was an increased selection of ipsiversive saccade targets without impairments to 

acquire single contraversive targets. Finally, monkeys seemed exhibited deficiencies in 

reaching and grasping for food objects, especially when they used their contralesional arm 

and performed reaches to the contralesional hemispace. Here, we aimed to quantify the 

after-effects of pulvinar inactivation in tasks which require the coordination or dissociation 

of eye and hand, to gain further traction on the role of the thalamic pulvinar in coordinated 

and purposeful actions. 
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Materials and methods 
  

Ethics and experimental approval and general notes 

 

All experimental procedures were conducted in accordance with the European Directive 

2010/63/EU, the corresponding German law governing animal welfare, and German 

Primate Center institutional guidelines. The procedures were approved by the responsible 

government agency (LAVES, Oldenburg, Germany).  

 

For general aspects of animal preparation, and experimental setup the reader is referred to 

Materials and Methods from Chapter I (main section) and Chapter II as they have been 

reported there. 

An adult male rhesus macaque (Macaca mulatta) L weighing 9 kg was used. Monkey L’s 

pulvinar nucleus was studied in two previous reports. The first study looked at the effects of 

electrical microstimulation in oculomotor behavior and free-choice decision-making 

(Chapter I), while the second study explored the function of pulvinar in different aspects of 

eye-hand encoding and integration (Chapter II). In the microstimulation study the right 

pulvinar of L was stimulated using currents ranging from 100 μA to 300 μA over 48 

sessions. In the electrophysiology study both right and left pulvinar of monkey L were 

recorded acutely using Thomas Recording 5 channel mini matrix (36 successful recording 

sessions in the right hemisphere, 46 in the left hemisphere).  

 

Behavioral tasks 

 

Monkey L performed blocks of pseudorandomized, interleaved visually-guided direct 

saccades, dissociated saccades, dissociated reaches and free gaze reaches (Figure III.1), 

with either the right or left hand (Figure III.2) to single targets. 

 



124 
 

Figure III.1    Tasks layout 

 

Four behavioral tasks were presented to the monkey in control and inactivation sessions.  The 

monkey could perform a peripheral movement only after at least one of the fixations were 

extinguished, signaling which effector was allowed for acquiring the peripheral target. The 

monkey had to prepare a dissociated saccade (arm resting in the center of the monitor for the 

duration of the trial), a saccade only (both hands in sensors during the duration of the trial) or 

a reach. The reach could be a free gaze (most likely foveally-guided) or a dissociated reach (eye 

fixation in the center).  

 

Direct visually-guided tasks 

 

General aspects of the task were like the ones described in Chapter II, with the difference 

of 1) The instruction to perform the center-out eye or hand movement was done by the 
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onset of the peripheral cue(s) and the simultaneous offset of one or both fixations, 2) The 

peripheral stimuli were positioned at either 12° or 24° to the left or right of the central 

fixations but there were no fixed vertically offset targets. Either purely horizontally 

displaced targets (5 inactivation sessions) or horizontally displaced targets within a 4° 

radius variability window (1 inactivation session) were presented. For eye movements, the 

monkey had to make a saccade while keeping its hand at the resting sensors. Once the 

targets were acquired they would brighten up, and the monkey had to maintain its 

gaze/hand position for 0.5 s on the target. After each successful or failed trial, there was a 2 

s inter trial interval. In total, the monkey had to achieve 10 hits to each target condition.  

 

Figure III.2   Visually-guided direct tasks 

 

Reaches to the ipsilateral or contralateral hemispace were performed using the ipsilateral or 

contralateral arm depending on a green or blue fixation spot at the beginning of each trial.  
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Pulvinar localization and injection diffusion estimation 

 

Before the experimental sessions, inside a custom-made MR compatible horizontal chair, 

Monkey L was sedated and put inside the MR scanner. T1- and T2-weighted MR images 

were taken before the MR contrast agent gadolinium (Magnevist, Berlex Imaging, 

Montville, USA) was co-injected with saline solution into dorsal pulvinar (Figure III.3). 

The injection rate was set to a constant 0.5 μl/min until 3.3 μl were injected. Immediately 

after injection, MR images were taken to assess the diffusion of the contrast agent in the 

area around pulvinar to plan future inactivation sessions. The gadolinium injection was 

performed using a sterile 31 gauge, 60 mm long cannula attached to a high precision 

microinjection syringe pump (Harvard Apparatus, USA). The cannula was placed inside a 

custom-made 27 gauge metallic guide tube resting on a 22 mm circular grid (with help of a 

silica stopper) and fixed to the chamber of the monkey’s right hemisphere (Figure III.4 

and Table III.1). This setup allowed for a smooth and movement free targeting and 

injection to areas around the dorsal pulvinar. 

 

Figure III.3    Injection approach  

 

An in-house built guide tube (with or without (w/o) an attached injection canal to ease the pass 

of a 31G cannula) was placed in the appropriate grid hole to target dorsal pulvinar through 
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which a microinjection cannula connected to a microinjection system delivered the liquid 

solution. 

Figure III.4    Injection sites 

 

 

T1 weighted MR images of injection sites in the pulvinar of Monkey L. Images are displayed in 

neurological orientation (image’s right is head’s right). Left: coronal slice showing spread of 

gadolinium co-injected with isotonic solution Image was taken after five inactivation sessions 

and the gadolinium spread is like the expected during inactivation. A lesion in the lateral 

border of dorsal pulvinar is observed as a black circular blob. Right: Close up of the right 

pulvinar showing gadolinium spread mostly encompassing the dorsal subdivisions of the 

pulvinar.  

Table III.1    Volume injection of GABA-A agonist THIP 

Inactivation 

session 

THIP 

injected 

volume (μl) 

(& total 

volume if 

multiple 

injections) 

Rate of 

volume 

injected  

(μl/s) 

Waiting 

time after 

injection 

start before 

run 1  

(min) 

(& total hits) 

Waiting 

time after 

injection 

start before 

run 2 

(min)  

(& total hits) 

Waiting 

time after 

injection 

start before 

run 3 

(min) 

(& total hits) 

Baseline 

in same 

session 

L20160610 3.2 0.5 27 (307) 67 (278) - Yes 
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L20160615 2, 2, 3 (7) 0.5, 1,1 49 (560) - - Yes 

L20160624 2.7,0.3 (3) 1,1 30 (560) - - Yes 

L20160701 5 0.5 42 (560) 129 (560) - No 

L20160708 4 0.5 40 (560) 113 (560) 193 (460) No 

L20160805 3 0.5 41 (560) 131 (556) - No 

In six inactivation sessions THIP was injected at a rate of 0.5 μl/min to 1 μl/min. Total volumes 

varied from 3 μl to 7 μl (mean 4.2 μl + 1.57 μl).  

 

Behavioral parameters 

 

For all analyses saccades with reaction times shorter than 80 ms from target presentation 

and reaches with reaction times shorter than 200 ms were excluded. This criterion removed 

6 trials from control sessions and 53 trials from the inactivation sessions (34 from the 

session six). 

 

Saccade definitions 

 

A saccade was detected whenever there was a change in eye trace instant velocity larger 

than 200°/s of Euclidean distance. Saccade offsets reflected the time when saccade 

velocities dropped below 50°/s. Saccade velocities were derived from interpolated (220 Hz 

to 1 kHz) and smoothed eye position traces with a 15 ms moving average rectangular 

window, which was then smoothed again with a second 15 ms moving average rectangular 

window.  

Saccade latency was defined as the time between fixation spot(s) offset and the moment 

when the first saccade was detected during the target acquisition period in each trial. 

Saccade duration was defined as the time between saccade onset and offset. Saccade peak 

velocity was defined as the maximum instant velocity across the duration of the saccade of 

interest. 
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Reach definitions 

 

Reach latency was defined as the time between fixation spot(s) offset and the moment when 

the hand lost contact with the touchscreen during the target acquisition period in each trial. 

Reach duration was defined as the time from the reach latency to the next touchscreen 

contact. Reach inaccuracy was defined as either the signed mean offset independently for 

vertical and horizontal offsets, or as the Euclidean distance: the square root of the sum of 

squared means for each axis. Reach imprecision was the standard deviation of the reach 

offsets across trials to each target, either independently for both axes or as the square root 

of the sum of squared standard deviations for each axis.  

 

Statistics 

 

For all tasks, successful trials to targets to the left and right hemispaces were combined 

regardless of eccentricity. All data analysis was performed using MATLAB R2012b and 

the Statistics Toolbox. To test for changes in mean movement latency, duration, velocity, 

precision, and accuracy as a result of inactivation independent t-tests were used. Means as 

well as t-values, and p-values are reported in tables III.2 and III.3 for all relevant 

comparisons. Reaction times of saccades and reaches in the free gaze reach condition were 

assessed using Pearson’s correlation.  
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Results 

 

The dorsal pulvinar of a monkey was inactivated in six sessions using the GABA-A agonist 

THIP to quantify effects in saccade and reach performance in tasks that allowed or 

prevented the use of foveal guidance for visually-guided reaches. Table III.2 and III.3 

summarize the descriptive and inferential statistics in the control (before inactivation) and 

after inactivation conditions for reaches and saccades respectively.  

 

In control conditions, which could come from runs right before inactivating dorsal pulvinar 

(3/6 sessions) or from the day before inactivation (3/6 sessions), the reaction times of the 

saccade-only task were in the range of previously reported in Chapter I, 166 ms + 4 ms 

(SE) and 155 ms + 6 ms for left (contralesional once inactivated) and right hemispaces 

respectively. There were mixed effects of hand engagement for the performance of 

dissociated saccades. When the monkey performed saccades during the dissociated saccade 

task to the left hemispace using the left hand the reaction times were shorter (152 ms + 2 

ms, p<0.01) than in the saccade only task, but not when the monkey used its right hand 

(166 ms + 6 ms, p>0.05). For the right hemispace when the monkey used its left hand the 

reaction times were larger (179 ms + 3 ms, p<0.01) and also when the monkey used its 

right hand (189 ms + 6 ms, p<0.01). During the free gaze condition saccade reaction time 

for the left space with the left hand was 163 ms + 3 ms and 159 ms + 2 ms for the right 

hand. For the right space using its left hand the reaction time was 164 ms + 4 ms and for the 

right hand was 168 ms + 2 ms.  

 

Visually-guided (likely foveal) reaches had reaction times of 376 ms + 7 ms and 372 ms + 

7 ms to the left side using its left and right hands respectively, and 437 ms + 7 ms and 368 

ms + 5 ms to the right side using its left and right hands respectively. For extrafoveal 

reaches the reaction times were no significantly different before and after inactivation with 

neither hand and to neither hemispace. Unexpectedly the distance to target for reaches to 
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the left with the right hand was more accurate when reaching without foveal guidance than 

with it (1.42° + 0.15° and 2.58° + 0.14° respectively, p<0.01). 

 

A negative correlation of residual saccade and reach reaction times was significant in two 

out of six sessions for the left hemispace using the left hand (r=-0.96, p<0.01; and r=-0.61, 

p<0.01) and had a correlation trend in one session (r=-0.46, p=0.07). For movements to the 

left using the right hand there was a positive correlation in four out of six sessions (r=0.71, 

p<0.05; r=0.69, p<0.05; r=0.58, p<0.05; r=0.56, p<0.05). Similarly, a positive correlation 

was found in two sessions when the monkey reached to the right hemispace using its left 

hand (r=0.71, p<0.05, and r=0.54, p<0.05). Finally, only one session for movements to the 

right hemispace using the right hand had a positive correlation coefficient for saccade and 

reach reaction times (r=0.8, p<0.01). 

 

The graphical representation of the main findings from table Tables III.2 and III.3 on the 

effects of THIP injection in visually-guided behavior of monkey L are presented in Figures 

III.5 to III.16. 

 

Table III.2 Inactivation effects on reaches 

 

Descriptive statistics for behavioral parameters in monkey L before and after dorsal pulvinar 

inactivation (control and inactivation) and inferential statistics between control and 



132 
 

inactivation sessions with effect size (Inactivation – Control); during direct reach tasks to the 

contralesional and ipsilesional hemispaces (magenta and orange shaded panels respectively). 

Reaches performed with the contralesional hand are blue shaded while reaches performed with 

the ipsilesional hand are green shaded. The p-values are derived from two-tailed non-paired t-

tests across sessions for six inactivation sessions (bold p<0.05, italics p<0.1). Reaches that 

occurred before 200 ms from the Go signal were excluded from this analysis as they were 

considered express movements.  

 

Table III.3 Inactivation effects on saccades 

 

Descriptive and inferential statistics similar to Table III.2 during delayed saccade tasks. 

Saccades performed with involvement of the contralesional hand are in the upper and lower 

left panels (magenta shaded) while saccades performed with ipsilesional hand involvement are 

in the middle and lower right panels (orange shaded). The p-values are derived from two-tailed 

non-paired t-tests across sessions (bold p<0.05, italics p<0.1). Saccades that occurred before 80 

ms from the Go signal were excluded from this analysis as they are considered express 

movements.  
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Inactivation effects 

 

After dorsal pulvinar inactivation there were two apparent effects involving hand selection 

and sensor release latency. Figure III.5 shows the probability of wrong hand selection after 

the initial fixation spots appeared at the display’s center. After inactivation, there were 

increased number of attempts to use the ipsilesional hand when the contralesional hand was 

cued (5% erroneous attempts and 10% in control and inactivation conditions respectively, 

p<0.001). Correspondingly, errors of incorrectly releasing the ipsilateral sensor decreased, 

as the monkey attempted to use this hand more often regardless of the cued hand (7% 

erroneous attempts and 3% in control and inactivation conditions respectively, p<0.001). 

This agrees with previous findings of monkeys’ decreased selection of the contralesional 

hand to reach and grasp for objects if they are free to use any hand (Wilke et al., 2010). 

When the monkey correctly selected the hand to be engaged in the trial there was an 

increased reaction time for the initiation of the reach to the center of the screen with the 

contralesional hand (Figure III.6) (445 ms + 10 ms vs 473 ms + 7 ms before and after 

inactivation respectively, p<0.05) but not for the ipsilesional hand (379 ms + 8 ms and 375 

ms + 4 ms before and after inactivation respectively, p>0.05). In free gaze reaches there 

was an increased latency for movements to the contralesional hemispace with the 

ipsilesional hand (Figure III.7) (Effect size Inactivation - Control (I-C) 27 ms, p=0.02). A 

similar but milder effect was found when the monkey reached to the ipsilesional hemispace 

using its ipsilesional hand (Effect size I-C 15 ms, p=0.07). The duration of the reach 

(Figure III.8) when the monkey had to perform an extrafoveal reach to the contralesional 

hemispace with the contralesional hand was larger after inactivation (Effect size I-C 27 ms, 

p=0.03).  

 

Figure III.5 Hand selection error  
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Hand selection errors per hand (blue and green circles for contralesional and ipsilesional hands 

respectively) defined as the probability of using wrong (an un-cued) hand before and after 

inactivation (light and dark colors respectively). Control data comes from blocks of trials in 

either the same day and before the inactivation took place (n=3), or from an immediate session 

before (n=3). For contralesional hand trials there was an increase of wrong ipsilateral sensor 

releases (p<0.001). For ipsilesional hand trials there was a decrease of wrong contralesional 

sensor releases (p<0.001). For all panels, statistical differences between groups were tested 

using a Fisher´s exact test across trials. * p<0.05, ** p<0.01, *** p<0.001; con, control; ina, 

inactivated 

 

Figure III.6 Sensor release reaction time 

 

Effects of dorsal pulvinar inactivation on sensor release reaction time. Sensor release reaction 

time after inactivation was larger for the contralesional hand. For the ipsilesional hand, there 

were no effects of dorsal pulvinar inactivation. For this representation, all trial types were 

compiled as at this stage no task-specific information (besides the hand usage) was provided to 

the monkey. The color conventions are as in Figure III.5. For all panels, statistical differences 

between groups were tested using a two-tail independent t-test across sessions. Insert shows 

the cumulative distribution function of reaction times per condition. * p<0.05, ** p<0.01, *** 

p<0.001 
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Figure III.7 Reach reaction time 

 

Upper panel: Mean and SE reach reaction time, from the fixation towards peripheral targets 

sorted by hemispace (magenta and orange shades for contralesional (Cntr) and ipsilesional 

(Ipsi) hemispaces respectively). Color conventions and testing as in Figure III.5. Bottom panel: 

Cumulative distribution of reaction times across trials for control and inactivation sessions 

displayed by hemispace but maintaining the four potential eccentricities, -24°, -12°, 12°, 24°. 

Closer target trials are shown as dim and dotted traces while far ones are shown continuous 

and bolder. If statistical differences were found for an eccentricity this one is also displayed in 

the corresponding panel and with the matching brightness. Representation of reach and 

saccade are consistent across plots (for saccade plots eye movements in the saccade-only task 

are displayed in shades of red).  

There were larger reaction times after inactivation in the free gaze reach task, specifically to 

the contralesional hemispace when using the ipsilesional hand for both close and far targets. In 

addition, there was reaction time delay for reaches to the ipsilesional hemispace with the 

ipsilesional hand for far targets. 
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Figure III.8 Reach duration.  

 

Reaches performed with the contralesional hand had a larger duration across conditions. This 

effect was significant when the monkey could not foveate the target in the same hemispace as 

the hand used. When separating the data by eccentricity, the effect was true for far 

eccentricities only. 

 

Even though the precision of reaches was unaffected after the THIP injection (Figure III.9 

middle and top panel) there was a small drop in accuracy for free gaze reaches which was 

significant for the ipsilesional hemispace with the contralesional hand (bottom panel), 

where there was an overshooting in the vertical plane. There was a drop of performance for 

extrafoveal reaches to the contralesional hemispace using the contralesional hand (Figure 

III.10). This effect was present both for close and far targets (p<0.05, and p<0.001 

respectively)  
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Figure III.9 Reach accuracy 

 

Upper panel: endpoint spread or “precision” as the Euclidean distance. Middle panel: endpoints 

of reaches in the extrafoveal (dissociated) and likely foveal (free gaze) reach conditions. The 

ellipses represent the horizontal and vertical endpoint mean standard deviations per target 

across sessions. Bottom panel: endpoint inaccuracy as the Euclidean distance. There was no 

difference in precision for any of the tasks after inactivation. The reach inaccuracy to target, 

however, increased when the monkey used the contralesional hand to reach for the target in 

the ipsilesional hemispace. 

 

Figure III.10 Reach hit rate 

 

Probability of successful trials in the foveal and extrafoveal reach tasks. When the monkey 

could guide its reaches by visual information, there was a performance above 95% across all 
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conditions and there was no difference in success probability before and after inactivation 

(p>0.05). Performance for reaches in the dissociated task dropped after inactivation, 

particularly for reaches to the contralesional hemispace using the contralesional hand, where 

there were 24% more errors after inactivation (p<0.01). 

 

For saccades (Figure III.11) there were longer reaction times in the free gaze reach task to 

the ipsilesional hemispace when the contralesional hand was engaged (Effect size I-C 12 

ms, p=0.04). In addition, there was a greater velocity (Figure III.12) when performing 

dissociated saccades to the ipsilesional hemispace while the ipsilesional hand was engaged 

(Effect size I-C 24.7°/s, p<0.001). For the rest of the conditions, duration, accuracy, and 

precision (Figures III.13 and III.14) there were no effects after inactivation. However, it 

was observed in one session that three hours after inactivation rightward nystagmus 

occurred, and the last trials of a run were collected with this condition. 

 

Figure III.11 Saccade reaction time 

 

In the saccade-only task, there were no effects of inactivation in reaction times. Saccades to the 

contralesional side had a weak trend to be delayed (p=0.11). For dissociated saccades, there 

were no reaction time effects of inactivation. For free gaze movements, saccades to the 

ipsilesional hemispace were delayed when also using the contralesional hand.  
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Figure III.12 Saccade velocity 

 

Saccade peak velocity tended to be higher after inactivation. There was a significant increase 

for the dissociated saccade task when the movements where performed to the ipsilesional 

hemispace using the ipsilesional hand. 

  

Figure III.13 Saccade duration 

 

The duration of saccades was unaffected by the inactivation regardless of the eccentricity of the 

target, the presence of a hand engaged in the trial, and the condition type. 

 



140 
 

Figure III.14 Saccade accuracy 

 

Similar conventions as in Figure III.9. Saccade Euclidean distance accuracy and precision was 

unaffected after inactivation. This was true for when combining data per hemispace and for 

target-wise comparisons.  

 

Two effects related to eye-hand coordination disruption were observed. First, by 

subtracting the saccade reaction time to the reach in the free gaze reach condition an 

increase in the difference was present for the contralesional hemispace when using the 

ipsilesional hand (Figure III.15). In addition, the eye-hand trial by trial correlation of 

reaction time residuals dropped for both the ipsilesional and contralesional hands (Figure 

III.16).  
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Figure III.15 Reaction time difference (Reach – saccade) 

 

Eye-hand coordination as seen by the relationship of saccade and reach reaction time. The 

average saccade reaction time per session was subtracted from the reach reaction time to 

observe if the effects found for reaches were accompanied by similar changes in saccades. There 

was a larger reaction time difference in the free gaze reach condition to the contralesional 

hemispace with the engagement of the ipsilesional hand. Although there was a similar pattern 

for the rest of the conditions, these did not reach significance.  

 

Figure III.16 Saccade-reach correlations 

 

Correlation coefficients from trial by trial residuals of reach and saccade reaction times. The 

RT data was linearly detrended per condition and per session. Saccades which started earlier 

than 80 ms after target onset, and reaches that started earlier than 200 ms after target onset, 

were excluded as they were considered express movements. Left: correlation of residuals for 

saccades and reaches to the contralesional hemispace (green and blue: ipsilesional and 

contralesional hand, respectively; light and dark shading: control and inactivation conditions 
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respectively). There was a loss of correlation trend when the monkey used the contralesional 

hand after inactivation. Right: correlation of residuals for saccades and reaches to the 

ipsilesional hemispace. There was a slight decrease of correlation when the monkey used the 

ipsilesional hand and a loss of correlation when it used its contralesional hand. 

 

The effects that we observed after the injection of THIP in dorsal pulvinar were mainly on 

the selection and execution of reaching movements. Saccades were largely unaffected in 

their latency, duration, velocity and accuracy. However, there were changes in eye-hand 

coordination which could indicate a disruption in either the integration of such movements 

supported by dorsal pulvinar function or just because one of the effectors i.e. reaches was 

impaired and this caused changes in the estimation of coordination even when not both 

effectors were affected. 
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Discussion 

 

In this chapter, we aimed to revisit and expand previous findings from our group in which 

after dorsal pulvinar inactivation there were a series of deficits when monkeys performed 

reach to grasp tasks as well as saccades and visual exploration. The effects observed in this 

study made the authors to speculate that the dorsal pulvinar might be a subcortical center 

involved in eye and hand coordination (Wilke et al., 2010).  

 

We have presented in Chapter II that dorsal pulvinar neurons have strong firing well before 

the onset of purposeful reaches and only after the offset of saccades in dissociated saccade 

(e.g. Figures II.13 II.15 and II.18). Similar findings have been reported in of a subset of 

cells of the pulvinar latero-posterior nuclei where pulvinar neurons respond up to 495 ms 

before reach onset (Cudeiro et al., 1989). On the other hand, during saccade tasks, pulvinar 

neurons also show suppression before and around the movement, when no hand was 

involved (Chapter I) or when a hand was engaged in the task (Chapter II). These findings, 

in addition to open question from previous reports of inactivation effects (Wilke et al., 

2010, 2013) (e.g. mixed effects regarding the presence or absence of contralesional increase 

of reaction times), make the re-exploration of behavioral deficits caused by dorsal pulvinar 

inactivation necessary. 

 

The effects of inactivating dorsal pulvinar in the 2010 study resembled deficits found in 

patients with two separate conditions, optic ataxia, and hemispatial neglect.  Optic ataxia is 

characterized by difficulties to perform peripherally visually-guided reaches, particularly 

when there are time constraints to perform the action (Rossetti et al., 2003). By temporary 

silencing the posterior parietal cortex of monkeys it has been possible to cause deficits that 

resemble those of ataxic patients (Hwang et al., 2012). This makes the characterization of 

potentially similar deficits caused by subcortical damage so relevant. Neglect on the other 

hand is a deficit where there is lack of awareness of the contralesional hemispace after 

damage to one of the brain hemispheres and often involves the parietal cortex (Karnath et 
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al., 2002). Visual extinction, a condition similar to neglect manifests only when two target 

options are presented, one in each hemispace, only then the contralesional hemispace is 

ignored. In our study we did collect data during choice conditions, but we do not present 

the results in the context of this thesis. 

 

In the current study, we addressed methodological concerns that facilitate the dissection 

and nature of the observed deficits in the previous report from our group. 

However, as additional data from the studied monkey and a second dataset are to be added 

we will try to keep this discussion succinct to effects likely to be true after additional data 

has been collected.  

 

We discuss preliminary results from one monkey trained to perform direct visually-guided 

foveal and extrafoveal reaches as well as saccades and dissociated saccades to targets in a 

touch display. 

 

D.III.1 Impairment in hand selection 

 

One of the conditions used by Wilke and collaborators (Wilke et al., 2010) was to present 

monkeys either with a free choice between arms to perform a reach to grasp food pieces, or 

the forced use of one of the hands by placing a barrier between the non-wanted hand and 

the food pieces. So, a free choice plus a motor component where involved in the task, or 

only the latter. In our study, we trained the monkey to perform a movement with the arm 

that was cued by the color of the fixation spot. The initial performance of the monkey to 

release the correct sensor for the contralesional hand dropped from 95% to 90% and the 

usage of the ipsilesional hand improved from 93% to 97% across trials. In addition, there 

was an increase of sensor release reaction time when the monkey used correctly the 

contralesional arm (contralesional hand 445 ms + 10 ms to 473 ms + 7 ms before and after 

inactivation respectively, p<0.05; and no effect in ipsilesional hand 379 ms + 8 ms and 375 

ms + 4 ms, p>0.05). It is likely that the system guiding movement the contralesional hand 

was impaired. As seen in Chapter II we did not find a general hand preference when 

looking at firing rate, but we did find units with preference to either hand. The arm specific 
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effect in reaction time could have alternatively involved other processes tangentially 

manifested in the sensor release latency. These effects could have been related for example 

to a decrease of the desirability, or awareness of the contralesional effector. It has been 

suggested that motivational factors modulate the effect of inactivation in saccade tasks 

(Wilke et al., 2013), and a similar behavioral effect might be present when there is a hand 

instruction. Alternatively, changes in attentional processes could also be the cause of these 

behavioral effects. It has been reported that the lateral pulvinar participates in attentional 

processes (Desimone et al., 1990) but this effects have been reported by the competition of 

two stimuli. If the selection of an effector, or other processes benefiting from embodied 

actions, share circuits with decision making systems, attentional changes might also be 

observed after pulvinar inactivation. Embodiment has been shown to exist during free 

choices in monkeys and perceptual decision in humans (Filimon et al., 2013; Kubanek and 

Snyder, 2015). If dorsal pulvinar shares or reflects properties of posterior parietal cortex, it 

is possible that its modulation is linked to action selection, integrated on basis of visual 

properties and the action goal. A way to address how the motor and attentional networks 

are represented in dorsal pulvinar would be by observing BOLD activity while monkeys 

perform goal-directed actions before and after inactivation of pulvinar using fMRI. 

 

D.III.2 Mixed effects after pulvinar inactivation 

 

After inactivation of dorsal pulvinar we encountered different deficit levels for reaches and 

saccades. For saccades, there were no significant effects when dividing our dataset by 

hemispace for reaction time, duration, imprecision magnitude and velocity. For reaches on 

the other hand the reaction time of the ipsilesional hand significantly increased in the free 

gaze task when reaching to the contralesional hemispace (Figure III.7). The overall effect 

in reach duration was an increase in the dissociated reach task to the contralesional space 

using the contralesional hand. This suggests that the spatial component of the task is 

strongly represented in the pulvinar as also shown by our electrophysiological findings. The 

difference in saccade and reach effects seem to agree with a stronger participation of 

pulvinar in the generation of reaches than in saccades.  
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It has been found that inactivation of the parietal reach region (PRR) produces similar 

effects to the ones found in patients with optic ataxia, such as decreased accuracy to the 

contralesional side, specifically undershooting (Khan et al., 2005; Hwang et al., 2012; 

Andersen et al., 2014). We hypothesized that pulvinar inactivation could cause similar 

deficits in accuracy. However, we did not find such effects. The only difference between 

inactivation and control sessions was a slight overshoot in the upward direction for the free 

gaze reach task when the monkey performed a reach to the ipsilesional hemispace with the 

contralesional hand (Figure III.9). In our data we did not find undershooting in extrafoveal 

reaches after inactivation as we would expect from optic ataxia. Furthermore, striking 

differences between foveal and extrafoveal performance after inactivation were lacking. In 

other words, the changes in performance according to hemispace, direction of effect, or task 

type do not reflect ataxia-like deficits.  

 

We also observed a decrease in the hit rate for performing dissociated reaches. This 

decrease was largely caused by the break fixations during the delay period towards the cue. 

In previous studies measuring reaction times of saccades there have been either increased 

latencies to the contralateral hemispace or decreased to ipsilateral targets. Although we did 

not find significant effects to any of the directions across sessions the average reaction 

times for both hemispaces have the corresponding directionalities, increased reaction time 

for contralateral saccades and decrease for ipsilateral.  

 

D.III.3 Dorsal pulvinar reduces eye-hand coordination 

 

In order to perform visually-guided reaches primates need to prepare a motor plan using the 

target location in respect to the current position and orientation of the limbs (Desmurget 

and Grafton, 2000; Gaveau et al., 2003). This motor plan is optimized by the availability of 

visual information and the evaluation of motor errors between target and limb computed in 

the posterior parietal cortex (Gaveau et al., 2003). The availability of visual information of 

the limb and target strongly influences the performance of reach tasks (Prablanc et al., 

1979a, 1979b). In our study we found deficits after dorsal pulvinar inactivation not only on 

extrafoveal but also on foveal reaches and thus, we looked at the reaction time difference of 
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saccades and reaches and at the eye-hand reaction time correlation of residuals. Both 

parameters were disrupted by the inactivation. By subtracting the reaction time of the 

saccade to the reach we observed an increased reaction time difference to the contralesional 

hemispace using the ipsilesional hand. This was likely influenced by the increase reaction 

time of reaches after inactivation for that condition but not for saccades. The trial by trial 

reaction time correlation of residuals for reaches and saccades was lower (Spearman 

correlation coefficient r=0.17, p=0.09 to r=0.06, p=0.42 for the contralesional hemispace 

with the contralesional hand; r=0.34, p<0.01 to r=0.25, p<0.01 for the ipsilesional 

hemispace with the ipsilesional hand; r=0.23, p=0.02, and r=0.12 p=0.1 to the ipsilesional 

hemispace with the contralesional hand).  

A final aspect to consider is the drug spread. Even when in our own assessments the drug 

diffusion seen with Gadolinium shows a reliable spread of the drug in dorsal pulvinar it is 

standard to be cautious about the time range from which the data collected is used for the 

analysis, to ensure that the effects found are mostly related to functions of the area of study 

(see (Purushothaman et al., 2012)). A comparison of effects separated in several periods 

after the inactivation and the online monitoring of drug diffusion over a long period of time 

might be of use to test for effects specificity.  
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The aim of this thesis was to explore the putative participation of the dorsal 

subdivision of the thalamic pulvinar during eye-hand coordination. Several new questions 

arose during the development of our research. These questions led to a series of behavioral, 

electrophysiological, and causal experiments and to the collection of multiple but 

conceptually interconnected datasets, addressing now a more global question: What is the 

role of dorsal pulvinar in goal-directed behavior? The results of this thesis have been 

described and discussed in previous Chapters. Taken together, our findings provide novel 

evidence of the participation of dorsal pulvinar in goal-oriented behavior, namely target 

selection, spatial transformations, saccade and reach generation and likely their integration. 

These results opened many experimental questions, some of them already being addressed 

by our ongoing research. In the following section, I will briefly revisit our main findings 

and expand on the limitations from each study exploring pulvinar function. 

 

Main findings 

 

Target selection and saccade behavior 

 

In Chapter I we aimed to understand how dorsal pulvinar might be involved in saccade 

generation and oculomotor target selection. This was motivated by studies from our group 

(Wilke et al., 2010, 2013), where inactivating dorsal pulvinar biased target selection to the 

ipsilateral hemispace from the inactivated hemisphere. To address this question, we applied 

trains of biphasic pulses of electrical stimulation in dorsal pulvinar starting at different task 

periods: before, around or after the onset of the target for a visually-guided saccade task. 

Additionally, we performed similar stimulations before or after the onset of a visual cue, or 

before or after a “Go” signal during a memory-guided saccade task. We also performed 

control stimulations at different depths in ventral pulvinar during visually-guided saccade 

tasks to test for the specificity of the effects we will describe. Finally, we characterized the 

visual and motor properties of dorsal pulvinar neurons during the execution of similar 

visually- and memory-guided saccade tasks. 
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Our findings revealed that dorsal pulvinar stimulation exerts influence in target selection 

and saccade generation. This influence was time, site, and task specific. First, in the 

visually-guided task we found that the selection of targets in the ipsilateral hemispace to the 

stimulated hemisphere was increased after early pulvinar stimulation i.e. when the 

stimulation started before the onset of the saccade target. Importantly, for all conditions, the 

stimulation trains lasted 200 ms, so in all conditions there was overlap of the stimulation 

with the visual stimuli onset, and in some cases with the normal saccade reaction time. 

Similar enhancement of ipsiversive target selection during early stimulation periods has 

been reported for perceptual decisions in the caudate nucleus (Ding and Gold, 2012), but 

not for free choices as in our study. Also for early stimulation periods, we found a decrease 

of reaction time to saccades to the ipsilateral hemispace but not for the contralateral 

hemispace.  

 

When we stimulated later, i.e. starting after the onset of the targets, we found an increased 

bias to targets in the contralateral hemispace as well as increased saccade reaction time to 

either hemispace. Delays of reaction times regardless of hemispace after late stimulation 

have been reported in oculomotor areas, e.g. frontal eye fields (Izawa, 2004) and superior 

colliculus (Munoz and Wurtz, 1993). The delay effect could be either facilitation of holding 

the current gaze position or an inhibition of saccade generation. The saccade delay for late 

stimulation was stronger for ipsilateral saccades. This delay as discussed in Chapter I, has 

been found in cortical but not subcortical brain regions. It is interesting to hypothesize that 

the resemblance of the effect of pulvinar stimulation to that of cortical structures might be 

related to similar roles in purposeful behavior. When the task was memory-driven, saccade 

reaction times were affected, but target selection was not. This could indicate that either 1) 

the presence of a visual influence is needed for the selection network to be affected, or that 

2) the time dissociation between the cue presentation and the Go signal disrupt an otherwise 

integrated motor and target selection system in the pulvinar which is not present 

individually. One way to address these possibilities would be to perform a similar 

behavioral paradigm where instead of a memory-guided saccade; a visually-guided but 

delayed saccade is required. This would allow having the same time dissociation with the 

availability of visual information.  
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Coming back to the target selection, one of our most interesting findings was that the 

stimulation effect was not purely contralateral, but a smooth transition from ipsilateral to 

contralateral preference. In addition, the electrophysiological tuning properties of the dorsal 

pulvinar also varied according to the period of interest. In general, we observed 

contralateral spatial tuning during cue period and more balanced spatial tuning during the 

peri saccade and target hold periods. This dynamic tuning was a repeated finding across our 

electrophysiological studies (See Chapter I, Ibis, and II). For stimulation happening closer 

to the saccade onset, the tuning was still contralateral, which could have created facilitation 

to select targets in the corresponding contralateral hemispace. The fact that the spatial 

tuning and the behavioral effects of microstimulation in the late stimulation periods 

correspond suggests that the stimulation enhanced normal firing activity (Clark et al., 2011) 

instead of disrupting it. 

 

In Chapter Ibis, we continued exploring the electrophysiological properties of dorsal 

pulvinar in oculomotor behavior. We addressed two specific questions, one looking at 

target selection and the second one at spatial transformations. 

 

Electrophysiological findings on target selection  

 

We aimed to asses if the target selection effects from Chapter I had a neural correlate in 

dorsal pulvinar. We recorded pulvinar responses while monkeys performed visually- and 

memory-guided free-choice tasks. At a population level, there was a short increase of firing 

rate for choices to the contralateral hemispace during the cue period in comparison to 

choices to the ipsilateral hemispace (Figure Ib.5). This suggests that there might be target-

selection influence from dorsal pulvinar on free choices when visual information is still 

available. In our stimulation experiment there was a change in target selection patterns only 

when the cue acted also as a Go signal, i.e. no memory processes involved. The 

electrophysiological evaluation of firing rate changes during the visually-guided task are 

however challenging as the visual inputs are always present along with the 

internally/generated processes of our interest. This visual confound makes it difficult to 

assess at which point the firing rate corresponds to each process. As discussed in Chapter 
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Ibis, it is possible that the time dissociation between the cue presentation and the Go signal 

account for differences in the firing patterns. Alternatively, if the constant availability of 

visual information during the target selection is the determining factor for dorsal pulvinar to 

participate in target selection in the visually-guided task, this might explain the lack of 

effects or firing rate modification in memory periods. There was lower firing in the single-

ipsilateral-cue condition than in the rest of the conditions, not only during the cue period, 

but also during the memory epochs. At this stage the neural firing enhanced in choice 

conditions is likely to represent the spatial preference instead of an early signal of target 

selection (Shadlen and Kiani, 2013). Dorsal pulvinar might participate in multiple visuo-

motor processes, e.g. target selection and saccade generation, which cannot be decoupled 

unless a temporal offset between individual processes. Alternatively, some processes 

involving dorsal pulvinar might emerge only when a specific set of conditions arise, e.g. a 

role in target selection when visual information is actively involved. It has also been shown 

that colliculi cells with projections to the pulvinar show target selection activity close to the 

onset of the stimuli, the action, and even before the target onset  (Port and Wurtz, 2009) and 

this target selection can hardly be dissociated from the action itself.  The execution of a 

visually-guided and delayed tasks will contribute to the disentanglement of the participation 

of dorsal pulvinar on target selection at a single cell level. 

 

Gaze effect 

 

Are the visual and oculomotor properties of dorsal pulvinar influenced by shifts in the gaze 

position? As the main purpose of this thesis was to explore the properties of dorsal pulvinar 

during eye and hand movements and their interactions, the coordination system under 

which they operate is a particularly interesting topic. The proficiency of primates to 

perform visually-guided reaches relies on an elegant system that transforms visual 

information captured by the retina with an organization similar to that of the visual field to 

one which considers the current position of the limb in respect to the object of our interest 

(Gaveau et al., 2003). These transformations are influenced by the properties of visuo-

motor hierarchies and also require the computation of the position of the orbit in the head, 

the position of the head on the body, and the body relative to the limb (Flanders et al., 
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1992). In association areas such as the parietal cortex, strongly connected to dorsal 

pulvinar, eye-centered coordinate systems are the most common (Snyder, 2000). However, 

as noted in the introduction of Chapter Ibis an eye-centered coordinate system is not the 

only one influencing the firing of neurons in association cortices. It has been reported for 

example that mixed reference frames influence the activity of visually (and auditory) 

signals in the posterior parietal cortex (Mullette-Gillman et al., 2009). 

 

We wanted to assess if dorsal pulvinar neurons encode visual information using a 

retinotopic coordinate system or potentially a more complex one. Indeed, we found a subset 

of dorsal pulvinar neurons that encode visual information in a purely retinotopic way. But 

more interestingly, we also found that pulvinar neurons were modulated by additional 

factors. Due to experimental constraints in which neurons might have been activated by 

spatial static cues from the dimly lit setup itself, and not only by the spatial location of the 

targets, the non-purely eye-centered firing rate modulation is difficult to categorize, but 

likely involves the monkeys’ gaze position, and the absolute location of the target. Gaze 

position firing rate modulation has been well documented in association areas (Andersen 

and Mountcastle, 1983; Andersen et al., 1985, 1990). The earliest reports of visually-driven 

firing influenced by the position of the eye in the orbit were done from studies in the 

parietal cortex (Andersen and Mountcastle, 1983). This influence has been hypothesized to 

help reduce computational costs of performing actions under separate coordinate systems 

(Zipser and Andersen, 1988). The fact that pulvinar neurons showed similar modulation by 

gaze position as parietal cortex does suggests the existence of shared functional roles 

between pulvinar and the high order cortical areas with shared connectivity.  

 

Electrophysiological properties during reaches 

 

In Chapter II we looked at pulvinar function during the planning and execution of reaches. 

We did so by recording single cells while monkeys performed delayed visually-guided 

dissociated, and free gaze reaches, in addition to dissociated saccades with engagement of 

each arm. We observed a large variety of neuronal response modulations on a single cell 

level. There were cells modulated by the visual stimuli only, by the space only, or by the 
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combination of hand and eye, among others. The main difference between saccade and 

reach related firing was in the timing and the directionality of the effects (even when there 

were subpopulations modulated differently at particular task periods). In general, while for 

dissociated saccades, there was suppression of firing before and around the saccade, 

followed by a large enhancement after saccade offset, for dissociated reaches there was a 

modest enhancement before and until the offset of the reach. Even when this was the 

overall population trend it was possible to identify dorsal pulvinar subpopulations with 

different tuning properties e.g. with pre saccade enhancement, this diversity can be seen in 

single cell examples from Figures II.3 to II.9.  

In some cells, ramping up of firing rate started soon after the onset of the cue and lasted 

until reach offset. Even on a population level the ramping up activity was visible a couple 

of hundred of milliseconds before the mean onset of the reach. Importantly, for free gaze 

reaches both main types of modulation were present, suppression followed by enhancement 

in saccades, and the enhancement for reaches. Could these firing rate patterns during 

saccades and reaches be part of a single process under natural conditions? In other words, 

could the post-saccade firing in pulvinar aid the optimization of a reach? It has been shown 

in the parietal reach region that saccade related activity exists (Snyder et al., 2000a), and 

that this activity, observed around and after the movement is potentially participating in the 

coupling of the saccade and reach systems. Our data from the dorsal pulvinar might prove 

to be a similar signature of eye-hand integration however additional analyses need to be 

performed, amongst these are the study of the properties of local field potentials and how 

they relate to actions potentials in dorsal pulvinar. Additionally, we need to look at brain 

networks using functional connectivity and combinations of disruptive techniques and 

observation of changes in neuronal activity.   

 

Behavioral findings after pharmacological reversible inactivation 

 

Finally, we collected preliminary data from one monkey performing tasks such as in 

Chapter II (and in addition a saccade only task) but without the delay component, before 

and after inactivation of dorsal pulvinar. This experiment was conceived as a follow up on a 

previous study from our group (Wilke et al., 2010). In that experiment heads were 
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unrestrained while monkeys performed reach to grasp movements to food objects; the 

experimenters reported apparent changes in the patterns of reach execution after 

inactivation. The monkeys did not seem to direct their heads and eyes to guide reaches as 

they did before the inactivation. It could have been that monkeys were unable to perform 

foveally-guided movements, or that postural, spatial or motor deficits were present after 

pulvinar disruption. In either case, an evaluation of their performance while explicitly 

instructing them to perform dissociated or coordinated movements was lacking. Our 

hypothesis supported by previous findings was that after inactivating dorsal pulvinar, 

potentially involved in the integration of eye and hand movements, there would be a 

decreased coordination of eye-hand movements and potentially of the overall performance 

of visually-guided, foveal reach tasks. Alternatively, if dorsal pulvinar was involved in the 

generation or execution of only one of the movements, reaches or saccades but not in their 

integration, we would expect a decrease in the performance of that specific movement with 

a mostly unaffected movement with a different effector.  

In the 2010 paper there were behavioral changes both for the execution of saccades and 

reaches, however our study found mainly changes in reach performance, although in one 

session after more than three hours of inactivation nystagmus was observed. 

There were four clear effects after inactivation: 1) an increased proportion of errors for the 

usage of the correct contralesional hand cued at the beginning of the trial; 2) an increased 

sensor release reaction time in cases where that hand was correctly selected; 3) a decrease 

of hit rate in the dissociated reach task with the contralesional hand to the contralesional 

hemispace and a 4) drop of performance for dissociated, extrafoveal reaches but not for free 

gaze, foveal reaches. This last finding suggests that the disruption of dorsal pulvinar does 

not affect foveally-guided reaches as much as it does the non-foveally-guided ones. At this 

point however, this is largely speculative as there was a lower hit rate for extrafoveal 

reaches in control sessions compared to foveal reaches, which might result in different 

effects post inactivation. We did not find reach undershooting in extrafoveal reaches, as it 

would be expected from patients with optic ataxia. The post inactivation effects we found 

could be due to the lack of online update of the hand position in respect to the targets in the 

affected hemispace. This however seems unlikely as most errors were caused by the break 

of eye fixation during the delay period in that condition and not by misreaches. This effect 
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could also be a manifestation of attentional disruptions. It has been shown that pulvinar 

damage increases the capture of contralateral distractors in patients (Van der Stigchel et al., 

2010) and pulvinar is involved in attentional processes in monkeys (Petersen et al., 1987; 

Desimone et al., 1990). However as mentioned before, the specificity of this deficit is not 

only linked to the hemispace, but inherently to the arm used. Damage to the parietal cortex 

also causes spatial deficits, some of which resemble clinical manifestations of ataxic 

patients (Rossetti et al., 2003; Hwang et al., 2012; Andersen et al., 2014). Up to which 

point is dorsal pulvinar involved in eye hand integration and coordination like association 

cortices is a question that will be the focus of our research in the immediate future.  

 

General conclusion 

 

We have provided evidence suggesting the participation of dorsal pulvinar in saccade 

generation (Chapters I, Ibis, and II), and target selection (Chapters I). Spatial tuning in 

dorsal pulvinar was mainly to the contralateral hemispace of the recorded hemisphere, but 

dependent on behavioral contingencies, e.g. neurons with strong contralateral tuning around 

cue periods and neurons with both contralateral and ipsilateral spatial tunings closer to 

saccade and reach execution (Chapters I, Ibis, and II). In addition, gaze position influenced 

cue-related activity in a subpopulation of dorsal pulvinar neurons. Other subpopulations 

encoded visual stimuli with a classical retinotopic reference frame (Chapter Ibis). Pulvinar 

participation in target selection during free choices might be dependent on the coupling or 

de-coupling of target presentation and the execution of oculomotor actions (Chapters I and 

Ibis). Dorsal pulvinar showed different patterns of firing rate for the execution of saccades 

and reaches. There was enhancement of firing prior and during the execution of reaches 

(Chapter II), and mainly suppression prior and during saccade execution, followed by 

enhancement at saccade offset (Chapters I, Ibis, and II). Pulvinar might exert different roles 

in the planning and execution of effector specific actions, or more appealingly, in the 

integration of multi-effector, or coordinated behavior. Although probably not directly (see 

Chapter II), dorsal pulvinar inactivation disrupted the use of the contralateral limb (see 

Chapter II and III for arm specificity findings or the lack of thereof). Finally, dorsal 

pulvinar disrupted the performance of non-foveally-guided (extrafoveal) reaches when the 
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action was directed with the contralesional hand and to the contralesional hemispace. The 

coordination of eye and hand movements appeared to be correlated to normal pulvinar 

function. In summary, this thesis contributes from multiple angles to the hypothesis of 

dorsal pulvinar playing a crucial in purposeful actions. It also opens several research lines 

that will help enrich our understanding of how visually-guided goal-oriented behavior is 

encoded in the primate brain.    

 

Limitations 

 

Characterizing the neuronal properties of a brain region with complex connectivity to 

cortical and subcortical brain areas such as the pulvinar (Clark and Northfield, 1937; 

Asanuma et al., 1985; Grieve et al., 2000; Shipp, 2003; Stepniewska, 2004; Cappe et al., 

2007; Kaas and Lyon, 2007; Cappe et al., 2009; Bridge et al., 2016) is not an easy task. The 

initial purpose of this study was to provide further insights about the nature of potential eye 

and hand movement disruptions motivated by findings from Wilke and collaborators 

(2010). As several additional lines of research were derived from our initial questions new 

experimental and interpretation considerations emerged. 

 

Looking at our microstimulation experiments the stimulation parameters themselves are 

worth considering (Tehovnik, 1996). As we produced trains with a fixed duration, 

frequency and polarity we also reduce the possibility of generalization of our results to 

studies in other brain areas using different methodology. A study addressing the 

characterization of behavioral changes produced by the sole manipulation of stimulation 

protocols for dorsal pulvinar would prove a great usefulness. Even when in our study we 

did not systematically vary all stimulation parameters we did not only evaluate how 

stimulation affected our area of interest, the dorsal pulvinar, but also the ventral pulvinar. 

Ventral pulvinar stimulation did not evoke the paradoxical effects on behavioral target 

selection nor reaction time patterns as in dorsal stimulation. This specificity supports the 

idea that the effects observed were particular of dorsal pulvinar and not an effect of the 

stimulation paradigm. Moreover, the reaction time effects and target selection changes were 

specific for the visually-guided and memory-guided tasks, suggesting that the cognitive 
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demands were important for observing specific behavioral changes. The current strength is 

crucial but widely variable across experiments as well as the effects evoked e.g. in the 

thalamus (Crommelinck et al., 1977; Maldonado et al., 1980). For our study, the current 

strength used was operationally defined to match the one used in our neuroimaging studies 

looking at pulvinar connectivity. However, the estimation of different stimulation strengths 

and frequencies that evoke behavioral responses would enrich the interpretation we can 

derive from the behavioral patterns evoked. 

 

In our gaze modulation experiment a technical concern was that opposite to early 

electrophysiological experiments addressing coordinate systems using tangent screens in 

fully darkened rooms, we used monitors to display the visual stimuli. Even when our 

monitors had a very low background luminance (0.16cd/m2), we cannot completely rule out 

the possibility that the brightness of the display could create additional reference points in a 

coordinate system relevant for pulvinar neurons. An additional and important limitation 

was that the tasks required the monkeys to be fixated with the head straight ahead to the 

monitor. In previous studies it has been shown that subcortical regions such as the superior 

colliculus respond not only to eye position modifications, but also to the location of the 

head in respect to the targets. Head and eye manipulation would have greatly improved our 

data interpretation as it reflects a more natural way in which primates interact with their 

surroundings. In our recordings from the eight independent movement types only a small 

subset of target locations was acquired from all three distinct starting gaze locations. These 

target locations were selected because of the distance range under which the eye 

movements could still be reliably tracked with our recording system and displayed on our 

27 inch monitor. A larger set of targets would allow performing target per target 

comparisons of the influence of target locations in a more comprehensive manner.   

 

For our main question we looked at electrophysiological properties of the dorsal pulvinar, 

previous reports have related pulvinar firing to reach behavior (Martin-Rodriguez et al., 

1982; Acuña et al., 1983, 1983, 1986; Magariños-Ascone et al., 1988; Cudeiro Mazaira et 

al., 1989). Importantly it has been shown that dorsal pulvinar does not present a retinotopy 

as areas in the ventral subdivisions (Benevento and Miller, 1981; Petersen et al., 1985; 
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Robinson et al., 1991). In our study, we did not perform an online estimation of receptive 

fields before the visuo-motor experiments. Additionally to the lack of retinotopy a technical 

reason not to estimate the receptive fields was due to the large number of trials required to 

assess receptive field of each neuron. As our tasks involve the execution of reaches, more 

demanding and time consuming than fixation or saccade only tasks, monkeys would not 

have performed enough trials for electrophysiological analysis. Along the same line, the 

isolation of neurons in dorsal pulvinar usually required a significant amount of time, which 

resulted in a small timeframe in which useful datasets could be collected. The lack of 

mapping represents a problem for data analysis as many established methods rely on clear 

responses inside and outside of the receptive fields for vision and decision-making 

experiments. We currently address this methodological concern by the offline evaluation 

and classification of cell subgroups based on their firing responsivity. As the firing patterns 

of dorsal pulvinar are likely to be as diverse as its connectivity, studying the response of 

different pulvinar subpopulations is undoubtedly advantageous. Currently only the 

electrophysiological characterization of dorsal pulvinar cells is being studied, however we 

did not only collect action potentials but also local field potentials. The relation between 

action potentials and oscillations will likely reveal different aspects of pulvinar function in 

visuomotor behavior. 

 

A particularity of our studies in target selection is that our model of decision relies on free 

choices and not on correct responses to perceptual discrimination. We think that one of our 

defining characteristics as primates is based in our free exploration and will, and so, free 

choices are a natural output of fully internally generated decisions in the brain. In this type 

of decisions however, is easy for the monkeys to develop a bias to the selection of specific 

targets. This bias makes it difficult to compare behavior performed across different task 

contingencies e.g. when looking at the firing rate across choice conditions per trial when 

there is a preference for a subset of targets. This problem could be addressed by modulating 

the expected values in value-based choices, although the validity of the term free choice 

would become more difficult to justify. 
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In the inactivation experiment we performed six THIP injections in dorsal pulvinar. The 

tissue damage by repeated injections could affect the normal function of the pulvinar over 

time or lead to gradual changes in brain networks making the estimation of behavioral 

changes before and after inactivation difficult. Also, the time frame for the observation of 

inactivation effects is critical, as the spread of THIP to neighboring regions might lead to 

spurious effects. It has been estimated that the solution spread in other subcortical tissues is 

around 1 mm/hr (Hikosaka and Wurtz, 1985). For our dataset, we considered trials up to 

four hours after injection to dorsal pulvinar´s center, which roughly fall within the limit of 

estimated spread (five millimeters diameter in pulvinar´s widest dimension). A separation 

of trials into different time windows might be helpful for a better characterization of effects 

according to the drug’s spread. 

 

In both the reach electrophysiology and inactivation studies we constantly recorded the eye 

position of the monkeys, however the kinematics of the arm were not, and thus a full 

characterization of purely reach-related deficits is not present. We currently rely solely on 

reach endpoints, making hypothesis related to reach execution or kinematics relationships 

between saccades and reaches not possible to address. 

 

Lastly, the large set of tasks and methodological approaches used for the realization of this 

thesis made the data collection a priority that now must be matched by several approaches 

of data analysis. This will add more levels of richness to our data. Among others, a 

systematic classification of our electrophysiological datasets is needed as pulvinar cells 

displayed a broad range of firing patterns. Additionally, we need to perform correlation 

tests to assess the links of our electrophysiological and behavioral datasets. We need to 

expand our behavioral analysis, as this is the foundation for the interpretation of all our 

datasets, particularly our causal experiment. Finally, looking at the properties of local field 

potentials in dorsal pulvinar and their relation to action potentials in the same region or 

other brain regions during goal-oriented behavior will provide insights to our current 

interpretation of pulvinar functions. 
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Project outlook 

 

Our findings leave a series of open questions to be addressed in the future regarding the 

variety of processes in which dorsal pulvinar has shown to be involved. Some of these 

processes in which pulvinar is involved are: saccade and reach generation and integration, 

target selection, and potentially spatial transformations. I will list a few of interesting 

questions some of which are currently being addressed by our own research or research 

from our collaborators: 

 

1) Are the dorsal pulvinar time-dependent microstimulation effects on target selection 

and saccade generation driven by motor vectors or by attentional and/or saliency 

properties in the region? 

As our microstimulation study looked at free gaze target selection it is interesting to 

speculate about how the influence of pulvinar would be if there was a correct target to be 

selected and additional targets were meant to distract. Would different periods of 

stimulation in the pulvinar enhance or suppress the saliency or attention of specific targets 

or specific hemispaces in a time dependent manner?  

 

 

2) Would the coordinate system for spatial transformations in dorsal pulvinar display 

similar characteristics if not only the eye but also a hand was involved in the task? 

Would pulvinar firing reflect the engagement of the arm for how it encodes 

reference frames? 

Because of pulvinar’s connectivity to the fronto-parietal network it is reasonable to think 

that it could also be influenced by reference frames that encode stimuli relative to the limbs 

and not to the retina or gaze. The modulation of the head and trunk position of the monkey 

would of course provide very valuable information about pulvinar’s function in spatial 

transformations, but in the immediate future the hand involvement would be an insightful 

addition to our datasets. 
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3) Expanding in our results from Chapter I, would target selection modulation in 

dorsal pulvinar neurons be similar when the visual information is available for the 

whole duration of the trials but there is de-coupling of the cue presentation to the 

action in oculomotor behavior? 

This question is a straightforward one to answer and of paramount importance for our 

current interpretation of how pulvinar is involved in oculomotor decision making.  

 

4) How does dorsal pulvinar interact with association cortices during the planning of 

purposeful actions? 

To answer this question an elegant approach would be to pharmacologically inactivate 

dorsal pulvinar unilaterally while the neuronal activity of areas in the ipsilateral fronto-

parietal network is recorded using multielectrode arrays to allow the evaluation of spike 

and LFP activity potentially modulated by the disruption of pulvinar as the monkey 

performs saccade and reach tasks. The disruption of the pulvinar might cause increase, 

decrease or mixed effects on LFP power at different frequencies. In addition, looking at the 

opposite dorsal pulvinar with single cell recordings would help complete the picture of how 

not only interareal interactions within hemisphere exist but also interhemispheric ones.  

 

5) How are brain networks modified by the unilateral and bilateral disruption of dorsal 

pulvinar? 

A combination of behavioral and inactivation experiments performed in the context of 

functional imaging would likely enrich our electrophysiological findings on a network 

level. 
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