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1 Abstract 

Signal transmission lies at the core of brain function. Understanding how information is 

transferred from one neuron to the other is the first step toward deciphering not just normal 

brain processing but the pathology of a diseased brain. This thesis investigates the role of 

three proteins (Piccolo, Bassoon and RIM-BP2) that are crucial for the neurotransmitter 

release machinery and of the BEACH protein, LRBA2 that drew attention as a candidate to 

study sensory signal processing because of the hearing deficit reported in LRBA2 KO mice. 

Through a combination of in vitro and in vivo electrophysiology, and fluorescence imaging, 

this thesis studies the molecular physiology of signal transmission at the synapses in the 

central and peripheral auditory system.  Piccolo and Bassoon were found to maintain vesicle 

replenishment, with Bassoon possibly having an additional role in regulating release 

probability at the central auditory synapse, the endbulb of Held. RIM-BP2 was indicated to 

be a key player in coupling presynaptic Ca2+ influx to the release of neurotransmitters, hence 

orchestrating ultrafast signal transmission at the endbulb of Held synapse. LRBA2 was found 

to be essential for proper hair bundle morphology of the sensory hair cells of the cochlea, 

and hence maintaining functional cochlear amplification and reliable transduction of the 

acoustic signal.  
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2. Introduction 

Brain function relies on information transfer from one neuron to the other, which occurs at 

specialized sites of contact called synapse. Although the information travels along a neuron 

in electrical form as action potentials, the transmission of signal at the synapse can be either 

electrical or chemical, giving rise to two forms of synapses.  

2.1 Electrical synapses 

Electrical synapses serve as conduits, termed ‘gap-junctions’ for bi-directional transfer of 

ions or small organic molecules between two cells (neuron-neuron, neuron-glial cell or glial 

cell-glial cell). Gap junctions comprise of special proteins called connexins, six of which 

combine to form a hemi-channel called connexon. Two connexons then interact to form a 

gap junction channel, electrically coupling two neurons. In an electrical synapse two neurons 

are separated by only 3-4 nm, with barely any synaptic delay between the signal transfer 

from one neuron to the other. They serve as fast, fail-proof transmission systems that help 

shape the activity of neuronal networks, transfer metabolites between cells and play a 

crucial role in the early stages of neuronal development (Connors and Long, 2004; Hormuzdi 

et al., 2004; Pereda, 2014). In the auditory system,  gap junctions, formed mostly between 

glia-like supporting cells and fibrocytes of the cochlea, are essential to develop and maintain 

proper cochlear function, as is evident by syndromic or non-syndromic deafness due to 

mutations in connexin genes (Jagger and Forge, 2015; Wang et al., 2015).  

2.2 Chemical synapses 

Most neuronal communication occurs at chemical synapses, where the presynaptic and the 

postsynaptic membranes are separated by a 20-50nm wide synaptic cleft. At a chemical 

synapse the incoming electrical signal in the form of action potential is converted into a 

chemical signal by the release of neurotransmitters into the synaptic cleft. These 

neurotransmitters are intercepted by the postsynaptic receptors that conduct ionic current 

that can eventually lead to the generation of a postsynaptic action potential, i.e. electrical 

signals. Both the pre- and postsynapse are equipped with sophisticated molecular 
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architecture to maintain synaptic transmission. In addition, existence of trans-synaptic 

nanocolumns has been proposed to co-ordinate the alignment of the pre- and postsynaptic 

compartments to maintain efficient and reliable transmission (Figure I. 1; Tang et al., 2016). 

 

Figure I. 1: Structure of a chemical synapse 

Illustration of the architecture a chemical synapse with pre- and postsynaptic compartments 
separated by a synaptic cleft where synaptic vesicles in the presynapse release neurotransmitters to 
be received by postsynaptic receptors. Image taken from (Sigrist and Petzoldt, 2016). 

2.3 Synaptic vesicle cycle 

The currency of communication at a chemical synapse is the neurotransmitters and the basic 

unit of neurotransmitter release is the ‘quantum’ (del Castillo and Katz, 1954) or ‘mini’. Each 

of the stochastic, spontaneous fusion events with a narrow amplitude distribution, 

corresponds to a quantum of neurotransmitter released (Fatt and Katz, 1950). The synaptic 

vesicle (SV) is the morphological equivalent of a quantum of neurotransmitters. SVs are 

spherical membrane-bound secretory organelles, about 50nm in diameter, densely packed 

with a plethora of transmembrane and membrane-associated proteins (Takamori et al., 
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2006). An evoked event with larger amplitude than the ‘mini’ represents multiple quanta 

released synchronously. 

For synaptic transmission, vesicles undergo rounds of release and recycling (Figure I. 2), 

elaborated in the following sections. The release by vesicle fusion occurs at specialized 

regions in the presynapse called active zones (AZ). For release, SVs are docked at the AZ 

membrane, primed, and fusion machinery (trans-SNARE complex; explained in section 1.3.2) 

is assembled to finally fuse the SVs with the presynaptic membrane releasing 

neurotransmitters. Docking, priming and trans-SNARE complex assembly represent the 

morphological, functional and molecular manifestations of the same process to make the 

SVs release ready (Imig et al., 2014). The recycling step begins with endocytosis of fused 

membrane at regions surrounding the AZ, called peri-active zones (Haucke et al., 2011). 

Several mechanisms have been described for SV endocytosis: Ultrafast endocytosis 

(Watanabe et al., 2013), Kiss and run (Alabi and Tsien, 2013), Clathrin mediated endocytosis 

(McMahon and Boucrot, 2011), Bulk endocytosis (Clayton and Cousin, 2009) and Clathrin 

independent endocytosis followed by clathrin mediated SV reformation (Soykan et al., 

2017). 
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Figure I. 2: Synaptic vesicle cycle 

Synaptic vesicles undergo a cycle of release and recycling to maintain neurotransmitter release at the 
presynapse. The vesicles from the pool are tethered to the AZ membrane, which are then docked 
and primed, and finally fuse with the presynaptic membrane to release neurotransmitter. Different 
mechanisms described for endocytosis are represented as: (A) Ultrafast endocytosis (B) Clathrin 
mediated endocytosis, (C) Bulk endocytosis and (D) Clathrin independent endocytosis followed by 
clathrin mediated SV reformation. 

2.3.1 Synaptic vesicle pools 

Synaptic vesicles are formed as precursor vesicles at the trans-Golgi network and then 

transported by kinesin motor proteins along microtubules traversing the length of the 

neuronal axon to reach the presynapse (Okada et al., 1995), where they are filled with 

neurotransmitter molecules (Farsi et al., 2016; Nelson and Lill, 1994). Overtime, the 

population of synaptic vesicles at the presynapse has come to be viewed as being organized 

into distinct vesicle pools. The three pool model (Alabi and Tsien, 2012; Harata et al., 2001; 
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Rizzoli and Betz, 2005; Schikorski and Stevens, 2001), that has stood the test of time, 

defines: (1) the readily releasable pool (RRP) which makes up 1-2% of all vesicles, (2) 

recycling pool, making up 10-20% of the vesicle store and (3) reserve pool accounting for the 

remaining 80-90% of the vesicles.  

Membrane-attached (docked) vesicles are considered as the morphological correlate of the 

fusion competent vesicles composing the RRP (Imig et al., 2014). Electrophysiologically, the 

RRP represents the first line of response when the synapse is stimulated. The RRP is 

depleted rapidly, within a few milliseconds of electrical stimulation (Elmqvist and Quastel, 

1965; Schneggenburger et al., 1999). RRP can be further distinguished into two sub-

categories (Sakaba and Neher, 2001a): (1) a fast pool (~ 0.9ms time constant of release), (2) 

a slow pool (~4ms time constant of release) where the time constants are derived from 

mature, p16-p19 calyx of Held synapse (Chen et al., 2015). Recently, a third superprimed 

synaptic pool has been proposed, where SVs are in a state of elevated release probability 

and are released even before the fast pool (Taschenberger et al., 2016). 

Upon RRP depletion, the recycling pool maintains release under moderate physiological 

stimulation and is continuously recycled (Rizzoli and Betz, 2005). Recycling pool is 

maintained by vesicle endocytosis, and the vesicles therein undergo cycles of release till they 

mature into the release-reluctant immobile reserve pool (Denker and Rizzoli, 2010). The 

reserve pool is only released under intense stimulation and may act as a buffer for synaptic 

proteins involved in vesicle recycling, preventing their escape into the axon (Denker et al., 

2011).   

2.3.2 Synaptic vesicle exocytosis 

The primary step in the synaptic vesicle cycle is the exocytosis of fusion-ready releasable 

vesicles. At most synapses fusion of vesicular membrane with presynaptic plasma membrane 

is driven by a cycle of association and dissociation of SNAREs (soluble NSF attachment 

receptor proteins). The V-SNARE (vesicular SNAREs on the vesicular membrane; 

Synaptobrevin) and T-SNAREs (target SNAREs on presynaptic membrane; SNAP-25 and 

Syntaxin1) assemble in a α-helical trans-SNARE complex that forces the two membranes 
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together. SM proteins (Sec1/Munc18) wrap around this SNARE complex via interaction with 

Syntaxin1, and are essential partners for SNARE proteins in vesicle fusion. Initially, Munc18 is 

bound to closed conformation of Syntaxin1 that occludes the SNARE motif. Priming of SVs 

vesicles involves change of Syntaxin1 to open conformation to initiate trans-SNARE complex 

assembly (Gerber et al., 2008). 

This primed pre-fusion assembly of SNARE/SM proteins complex acts as a substrate for Ca2+ 

triggered fusion. Upon the arrival of action potential at the presynaptic terminal, VGCCs 

open and cause influx of Ca2+. This Ca2+ influx is detected by the Ca2+ sensor Synaptotagmin 

that then binds to the core fusion assembly and is thought to bring about the full zippering 

of the SNARE complex, leading to fusion-pore opening. Upon fusion completion, the two 

membranes completely merge, converting the trans-SNARE complex to cis-SNARE complex, 

which is then dissociated by ATPase, NSF (N-ethylmaleimide sensitive factor) into reactive 

monomeric SNARE proteins ready to undergo another cycle. 

The molecules and steps involved in synaptic vesicle fusion are illustrated in (Figure I. 3) and 

the summary was derived from recent studies presented and reviewed in the field (Kaeser 

and Regehr, 2014; Südhof, 2013; Südhof and Rizo, 2011).  
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Figure I. 3: Schematic of SNARE/SM protein cycle illustrating the vesicle fusion machinery 

(A) Representation of the presynapse highlighting a synaptic vesicle, the presynaptic membrane, and 
the repertoire of proteins involved in vesicle fusion. Syb: Synaptobrevin, Stx: Syntaxin1, Syt: 
Synaptotagmin, Cpx: Complexin. Image adapted from (Kaeser and Regehr, 2014) (B) Cycle of 
SNARE/SM protein association and dissociation in the vesicle fusion scheme. Image taken from 
(Südhof, 2013). 

Apart from Ca2+ triggered synchronous release, there are two other modes of 

neurotransmitter release (Kaeser and Regehr, 2014): asynchronous release and spontaneous 

release. While synchronous release is tightly coupled to the action potential, asynchronous 

release occurs with a longer, variable delay after the stimulus. Spontaneous release occurs 

as random events in the absence of any action potential. Although, all three modes of 



Introduction 

10 

 

release share the same core fusion machinery, the Ca2+ regulation of asynchronous and 

synchronous release is less clear. It is also suggested that the pool of vesicles contributing to 

these modes might be distinct from that contributing to synchronous release (Fredj and 

Burrone, 2009; Raingo et al., 2012; Sara et al., 2005). However, there is another school of 

thought that rejects this hypothesis and maintains that the vesicles released through the 

three modes of release come from the same pool (Groemer and Klingauf, 2007; Hua et al., 

2010; Wilhelm et al., 2010). 

2.3.3 Synaptic vesicle endocytosis 

Since, the release sites are located away from the protein synthesis machinery, local 

recycling of vesicles becomes necessary to replenish the depleted pool of vesicles, during 

prolonged activity. Additionally, to maintain sustained exocytosis in response to repetitive 

stimuli, fused vesicle membrane needs to be endocytosed to clear release sites, as the 

availability of release sites rather than vesicle supply might prove to be the bottle-neck for 

sustained exocytosis (Neher, 2010).  

Synaptic vesicle recycling essentially involves two steps: (1) membrane retrieval after SV 

fusion and (2) SV reformation from the retrieved membrane which includes correct sorting 

of SV proteins to achieve a functional composition of SV.  Mechanisms proposed for 

endocytic membrane retrieval include (Figure I. 2): (1) Kiss-and-run, where the fusion pore 

transiently opens and closes rapidly without full vesicle collapse, hence preserving the 

molecular composition of vesicles (Alabi and Tsien, 2013) and supporting fast kinetics of SV 

recycling (He et al., 2006), remains controversial. (2) Clathrin mediated endocytosis (CME; 

Figure I. 2B), where the SV components are retrieved directly from the plasma membrane as 

clathrin-coated vesicles which are subsequently uncoated and enter the recycling vesicle 

pool. CME however, operates on a time scale of tens of seconds and hence, is not very 

compatible with maintaining vesicle recycling under high frequency stimulation. (3) Ultrafast 

endocytosis (Figure I. 2A), is postulated to be the mode of SV retrieval under physiological 

temperatures within 50-100ms after stimulation (Watanabe et al., 2013). Membrane 

invagination corresponding to as many as 4 SVs may be endocytosed. (4) Bulk endocytosis 

(Figure I. 2C), is proposed to occur following strong stimulation with membrane being 
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retrieved as large endocytic structures (Clayton and Cousin, 2009). Following both ultrafast 

and bulk endocytosis, the endosome-like vacuoles are resolved into individual SVs in a 

clathrin dependent manner (Jung et al., 2015a; Kononenko et al., 2014; Watanabe et al., 

2014), that rejoin the synaptic vesicle cycle. 

A recent study (Soykan et al., 2017) states that at physiological temperature SV endocytosis 

occurs over several time scales ranging from less than a second to several seconds 

depending on the number of SVs fused. The endocytic membrane is retrieved in a clathrin 

independent manner mediated by Formin-dependent actin assembly, in the form of 

endosome like vacuoles (ELVs) (Figure I. 2D). These ELVs are subsequently, reformed into 

SVs either in a clathrin-dependent manner or via other SV budding events (Wu et al., 2014). 

2.4 Cytomatrix of the active zone 

Synaptic vesicle release occurs at specialized regions in the presynapse, called active zones 

(AZ). At the AZ, there exists an electron-dense network of proteins called the cytomatrix of 

the active zone (CAZ) proteins. CAZ proteins comprise of multi-domain protein families: 

Munc13s, Rab3-interacting molecules (RIMs), RIM-binding proteins (RIM-BPs), CAST/ELKS 

proteins, Piccolo/Aczonin and Bassoon, and Liprins-α. Domain structures and interactions 

between these proteins are illustrated in Figure I. 4. These proteins are thought to regulate 

key aspects of the neurotransmitter release machinery: such as maintaining releasable SV 

pools by docking, tethering and priming of SVs, localizing VGCC (Voltage gated Ca2+ channels) 

to release sites for efficient stimulus-exocytosis coupling and modulating synaptic strength 

by regulating short-term plasticity. The different roles of CAZ proteins in synaptic function 

are introduced in the light of the research performed for the thesis. 

2.4.1 CAZ as organizers of the synapse: formation, scaffolding and maintenance 

The assembly of the presynaptic active zone begins at the trans-Golgi network, where 

components of the AZ such as Piccolo, Bassoon, Syntaxin, SNAP-25 and N-cadherin are 

loaded on ~80nm dense core transport vesicles called Piccolo-Bassoon transport vesicles 

(PTVs) (Zhai et al., 2001). These transport vesicles then travel to the nascent synapses where 

AZ network is assembled through interactions with trans-synaptic adhesion molecules like 



Introduction 

12 

 

neurexins and neuroligins (Siddiqui and Craig, 2011; Waites et al., 2005). It was shown in 

cultured hippocampal neurons that two to three PTVs integrate to build an active zone 

(Shapira et al., 2003). A recent study indicates that CAST/ELKS also exit the Golgi network 

with Piccolo and Bassoon, while Munc13 and synaptic vesicle proteins employ a distinct set 

of transport vesicles and RIM1α joins Golgi-derived transport vesicles in a post-Golgi 

compartment (Maas et al., 2012).   

 

Figure I. 4: Cytomatrix of the active zone 

(A) Representation of the presynapse highlighting CAZ proteins in relation to the SV fusion 
machinery. Image adapted from (Kaeser and Regehr, 2014). (B) Domains structures and interactions 
of the CAZ proteins. ZF: Zinc finger domain, CC: Coiled-Coiled domain, SH3: SRC homology domain, 
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FN: Fibronectin domain, VGCC: Voltage gated Ca2+ channel, SV: Synaptic vesicle, Syb: Synaptobrevin, 
Syt: Synaptotagmin, Stx: Syntaxin. Image not to scale.  

CAZ proteins interact with each other to form the scaffold for maintaining the structural 

functional organization of the active zone (Figure I. 4; Gundelfinger and Fejtova, 2012; 

Schoch and Gundelfinger, 2006). Through their CC domains Piccolo and Bassoon bind to the 

CC domain of CAST/ELKS (Takao-Rikitsu et al., 2004). CAST/ELKS in turn bind to RIM1 and 

through it to Munc13-1 forming a ternary complex (Ohtsuka et al., 2002). 5 CAZ proteins: 

Munc13-1, RIM1, Bassoon, Piccolo and CAST/ELKS all converge on an interaction node 

centered on N-terminal domain of Munc13-1 (Wang et al., 2009). Other major interactions 

include Bassoon binding to RIM-BP which in turn binds to VGCC (Davydova et al., 2014), and 

RIM interacting with RIM-BP and VGCC (Han et al., 2011; Hibino et al., 2002; Kaeser et al., 

2011). Together these protein-protein interactions form a network regulating the 

functioning of the presynaptic active zone. 

The sensory system provides examples of the importance of CAZ proteins for structural and 

functional integrity of the active zone. In the absence of Bassoon, the presynaptic ribbon is 

not attached properly to the presynaptic density in inner hair cells (Khimich et al., 2005) and 

retinal photoreceptors (Dick et al., 2003; tom Dieck et al., 2005). While the loss of Piccolino 

(shorter isoform of Piccolo, predominant at ribbon synapses) alters the maturation and 

ultrastructure of the ribbon at the retinal photoreceptor cells (Regus-Leidig et al., 2014). 

Another major function for regulating synaptic function and stability is to ensure synaptic 

protein turnover and hence, their timely degradation. Piccolo and Bassoon maintain synaptic 

integrity by regulating presynaptic ubiquitination and proteostasis (Waites et al., 2013). 

Recently, it has been shown that Bassoon specifically controls presynaptic autophagy 

(Okerlund et al., 2017). 

2.4.2 CAZ: Orchestration of Neurotransmitter release 

As introduced in section 2.3.2 synaptic vesicle exocytosis at most synapses involves an 

intricate fusion machinery employing SNARE proteins. However, the SNARE complex 

requires the CAZ proteins to tether, dock and prime the SVs to be released. Munc13s are 
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crucial for docking and priming of SVs and rendering them release ready (Imig et al., 2014). 

Munc13s mediate priming of SVs through their MUN domain (Basu et al., 2005; Stevens et 

al., 2005), which likely activates priming of SVs by opening Syntaxin1 for SNARE complex 

assembly (Ma et al., 2011; Richmond et al., 2001). Munc13s however, cannot regulate SV 

priming on their own. Munc13s form homodimers via their N-terminal C2A domains, which 

inactivates their priming function. RIMs activate their priming function by reversing this 

autoinhibition by forming a RIM-Munc13 heterodimer via their N-terminal Zn finger domain 

(Deng et al., 2011; Dulubova et al., 2005; Lu et al., 2006). The priming action mediated by 

Munc13s and RIMs might be more complicated than this, given that the N-terminal of 

Munc13 acts as an interaction node for 3 other CAZ proteins (Bassoon, Piccolo and 

CAST/ELKS) apart from RIM (Wang et al., 2009). RIMs in addition, are important for dock SVs 

via its interaction with Rab3 (Gracheva et al., 2008) and have been implicated in vesicle 

tethering (Fernández-Busnadiego et al., 2013a; Jung et al., 2015b).  

CAZ proteins also orchestrate neurotransmitter release by positioning VGCC to the active 

zone and hence, bring the source of Ca2+ close to the SVs to be released. RIMs tether the 

VGCC to the active zone (Grabner et al., 2015; Han et al., 2011; Jung et al., 2015b; Kaeser et 

al., 2011; Kintscher et al., 2013)  via its PDZ domain (Kaeser et al., 2011) and through its C-

terminus interaction with CaVß subunits (Gebhart et al., 2010; Kiyonaka et al., 2007). RIMs in 

addition interact with RIM-BP, which in turn bind to the Ca2+ channels themselves (Hibino et 

al., 2002). RIMs also directly modulate Ca2+ channel inactivation (Gebhart et al., 2010; Kaeser 

et al., 2012). Aside from RIMs and RIM-BPs, Bassoon has been recently found to specifically 

position P/Q type Ca2+ channels in the vicinity of SV release sites through its interaction with 

RIM-BP (Davydova et al., 2014). Bassoon’s role in Ca2+ channel clustering was also reported 

for ribbon-type synapses in inner hair cells (Frank et al., 2010) and in retinal photoreceptor 

cells (tom Dieck et al., 2005). 

Mover, a small SV associated protein, identified based on its interaction with Bassoon 

(Kremer et al., 2007) has been shown to negatively regulate SV exocytosis (Körber et al., 

2015a). It is still unclear how Bassoon might exert its role in SV exocytosis through its 

interaction with Mover.  
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Piccolo has also been implicated as a negative regulator of SV exocytosis (Leal-Ortiz et al., 

2008). Additionally, Piccolo has two C2 domains: C2A and C2B, both of which were reported 

to bind to Cav1.2 L-type voltage-dependent Ca2+ channels (Shibasaki et al., 2004). C2A 

additionally, acts as a low-affinity Ca2+ sensor for exocytosis (Garcia et al., 2004; Gerber et 

al., 2001). Hence, Piccolo can also be a candidate in moderating release by influencing Ca2+ 

dynamics.  

2.4.3 CAZ: Setup for synaptic vesicle endocytosis 

Electrophysiological recordings have demonstrated that exocytosis is followed by 

endocytosis, at sensory synapses like the ribbon synapse (von Gersdorff and Matthews, 

1994; Moser and Beutner, 2000) and at central synapses like the Calyx of Held (Wu et al., 

2007). Recent studies (Hosoi et al., 2009; Hua et al., 2011; Wahl et al., 2013; Watanabe et al., 

2013, 2014) postulated that endocytosis occurs right at the edge of the active zone and 

hence, it is conceivable that the endocytic machinery is functionally and physically linked to 

the AZ.  

One candidate for this exo-endocytosis coupling is Ca2+. A Ca2+ dependence of recovery after 

stimulation has been shown at the ribbon synapses of the cochlear hair cells (Moser and 

Beutner, 2000; Spassova et al., 2004), endbulb of Held (Wang and Manis, 2008; Yang and Xu-

Friedman, 2008) and the calyx of Held (Hosoi et al., 2009; Sakaba and Neher, 2001a; Wang 

and Kaczmarek, 1998). Although, the sensor for Ca2+ modulating endocytosis has been much 

debated, the Ca2+ channels that mediate exocytosis are common to endocytosis as well 

(Midorikawa et al., 2014; Xue et al., 2012; Yamashita et al., 2010). As introduced earlier, the 

CAZ proteins are intricately involved in tethering VGCC at the presynaptic plasma membrane 

and hence, regulate Ca2+ signaling at the AZ. 

Yet another candidate for the exo-endocytosis coupling is actin. Actin is a prime suspect in 

endocytic membrane retrieval (Sakaba and Neher, 2003; Soykan et al., 2017; Watanabe et 

al., 2013). Actin can be conceived to provide structural basis for guiding SVs back to the 

recycling pool. The CAZ protein Piccolo interacts with actin binding proteins like Profilin and 

Daam1 and has been shown to regulate F-actin assembly in an activity-dependent manner 
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(Wagh et al., 2015; Waites et al., 2011). Piccolo also interacts with actin-binding protein 

Abp1 (Fenster et al., 2003), which in turn interacts with endocytic GTPase Dynamin (Kessels 

et al., 2001). Dynamin catalyzes membrane scission of Ω-shaped clathrin coated pits to form 

SVs (Figure I. 2). Another interaction partner for Piccolo is the protein GIT (Kim et al., 2003), 

which directly binds to endocytic adaptor protein Stonin2 (Podufall et al., 2014). GIT protein 

has also been shown to regulate release probability at the presynapse (Montesinos et al., 

2015). Hence, Piccolo could potentially contribute to the exo-endocytosis coupling.  

2.5 Synaptic plasticity 

When stimulated repeatedly, a synapse typically does not respond with uniform strength 

overtime. It alters its postsynaptic response in an activity and time dependent manner, 

leading to either depression or facilitation of synaptic strength. This dynamic change in the 

strength of synaptic response is termed plasticity. For the scope of this thesis, only short-

term plasticity, functioning over tens of milliseconds to seconds, and the presynaptic factors 

contributing to it, will be introduced.  

Presynaptic factors contributing to short-term synaptic plasticity include: changes in 

presynaptic residual Ca2+ levels, changes in the vesicle pools available for release or changes 

in the release machinery itself. As introduced earlier, the CAZ proteins regulate all these 

aspects and hence, contribute to the modulation of synaptic strength. This is corroborated 

by the changes in short-term plasticity observed in mutations of CAZ proteins. This is 

exemplified by the enhancement of short-term depression at endbulb of Held (Schulz et al., 

2014) and at cerebellar mossy fiber to granule cell synapse (Hallermann et al., 2010a) in the 

absence of Bassoon or the impaired short-term plasticity at hippocampal CA1 synapses in 

the absence of RIM1α (Schoch et al., 2002). While glutamatergic RIM1α deficient synapses 

showed an increase in facilitation, GABAergic synapses showed reduced facilitation in the 

absence of RIM1α. The absence of RIM1α enhances short-term facilitation at cerebellar 

parallel fiber synapses as well (Kintscher et al., 2013). Munc13 is also report to alter short-

term depression when mutated to be insensitive to Ca2+-Calmodulin interaction (Lipstein et 

al., 2013).  
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Short-term plasticity plays a crucial role in information processing (Abbott and Regehr, 2004; 

Deng and Klyachko, 2011). To mention a few, it can mediate sensory adaptation (Chung et 

al., 2002; Furukawa and Matsuura, 1978; Goutman and Glowatzki, 2007; Moser and Beutner, 

2000) and contrast adaptation (Chance et al., 1998; Oesch and Diamond, 2011), and act as a 

dynamic filter optimized for specific transmission patterns or frequencies (Fortune and Rose, 

2001; Klyachko and Stevens, 2006). Specifically in the auditory system short-term plasticity 

at central auditory synapses seems important for sound localization (Cook et al., 2003; Kuba 

et al., 2002) and intensity coding (MacLeod, 2011), while others have questioned its 

relevance in auditory processing (Kuenzel et al., 2011). 

The quantification of the strength of synaptic response is derived from the quantal theory 

(del Castillo and Katz, 1954; Fatt and Katz, 1952), which postulated that in response to 

stimulation multiple units or ‘quanta’ of neurotransmitters are released. Quantum or 

quantal size (q) is posited to be the content of one synaptic vesicle derived from the 

amplitude of miniature excitatory post synaptic current (mEPSC; Fatt and Katz, 1950). 

Simplifying the model of neurotransmitter release, where N is the number of vesicular 

release sites at a presynaptic terminal, and Pr is the release probability, which is the product 

of probability of occupancy of a vesicle at a release site and probability of successful fusion 

of a vesicle at the release site (Neher, 2017); strength of a synapse can be determined in 

terms of the postsynaptic current (PSC) through: 

𝑃𝑆𝐶 = 𝑁 × 𝑃𝑟 × 𝑞 

This relationship can be used as a framework to determine changes in Pr, and N by 

measuring PSC and q experimentally (Neher, 2017; Schneggenburger et al., 1999, 2002). 

2.6 Auditory system: Model system to study synaptic transmission 

The lower auditory pathway is specialized for fast signal transmission with high temporal 

fidelity (Kopp-Scheinpflug and Tempel, 2015; Moser et al., 2006; Trussell, 1999; Wichmann, 

2015) and harbors synapses that are structurally and functionally adapted to cope with this 

challenge. The need for fast and efficient vesicle cycling makes these synapses ideal models 
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for the study of CAZ proteins. Figure I. 5 shows a schematic of the first few synapses in the 

auditory system.  

The mechanical signal of the sound waves is transduced into electrical signal by the hairs 

cells in the organ of Corti in the cochlea. The organ of Corti has two types of hair cells: one 

row of inner hair cells (IHCs) and 3-4 rows of outer hair cells (OHCs). Both types of hair cells 

are characterized by highly organized arrays of actin-rich microvilli (stereocilia), at their 

apical pole.  This ‘hair bundle’ is equipped with mechano-electrical transduction (MET) 

channels that are gated by the movement of the stereocilia. Upon physical hair bundle 

deflection by the sound-driven travelling wave, the coordinated opening of mechanically-

gated ion channels in the stereociliary tips mediate hair cell depolarization. This 

depolarization leads to synchronized electromotile contraction of OHCs, which enables them 

to mechanically amplify the sound-induced vibrations (Brownell, 1990; Liberman et al., 2002; 

Zheng et al., 2000). In the IHCs, on the other hand, the depolarization, causes Ca2+ influx 

through voltage-dependent Ca2+ channels at the basal pole, which triggers vesicle fusion at 

ribbon-type active zones to release glutamate into the synaptic cleft (Nouvian et al., 2006). 

There are about 5-20 ribbons in the IHCs, each apposed by a single postsynaptic bouton of 

the spiral ganglion neurons (SGNs), which relay the signal from the ribbon synapse as action 

potentials to the cochlear nucleus in the brain stem (Meyer et al., 2009; Rutherford et al., 

2012). 

Entering the cochlear nucleus, the central axons of the SGNs bifurcate into ascending and  

descending branches (Fekete et al., 1984). The ascending fibers converge on to two major 

cell types in the anterior ventral cochlear nucleus (aVCN): stellate cells (SC) and bushy cells 

(BC) (Wu and Oertel, 1984). While SCs receive bouton-like glutamatergic inputs (Cant, 1981), 

bushy cells primarily receive large calyceal synapses called endbulbs of Held (Cant and 

Morest, 1979; Held, 1893). Bushy cells are further subdivided into two groups: spherical 

bushy cells (SBC) and globular bushy cells (GBC). In mice, GBC typically receive 4-6 smaller 

modified endbulbs of Held (Rouiller et al., 1986), while SBC receive 2-3 larger endbulbs (Cao 

and Oertel, 2010; Nicol and Walmsley, 2002). This convergence of multiple inputs to one 

postsynaptic cell in the aVCN results in an enhanced phase-locking to sound frequency as 
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compared to the SGNs (Howard and Rubel, 2010; Joris et al., 1994; Trussell, 1999), which 

have one to one, ribbon to postsynapse connectivity (Liberman, 1982). 

The BCs of aVCN provide input to the next nuclei of the auditory pathway some of which are 

involved in processing sound localization in the horizontal plane. Binaural cues of interaural 

time differences (ITDs) and interaural level differences (ILDs) are processed in parallel in 

many mammals. While ILDs are mostly important for high frequency sounds due to poor 

attenuation of low frequencies, ITDs become relevant for low frequencies (Grothe et al., 

2010). ITDs are processed in the medial superior olive (MSO), which receives excitatory 

inputs from both ipsi- and contralateral SBCs. Thus, MSO can identify the direction of the 

source of the sound by determining the ITD between the acoustic inputs from each ear 

(Fitzpatrick et al., 1997; Yin and Chan, 1990). The lateral superior olive (LSO) on the other 

hand, detects ILDs for sound localization. GBCs send their projections across the brainstem 

midline to the principle cells of the contralateral medial nucleus of the trapezoid body 

(MNTB) forming large glutamatergic calyx of Held synapses. The principle cells of MNTB then 

send inhibitory glycinergic projections to the LSO. LSO also receives excitatory input from 

ipsilateral SBCs. Thus, the monosynaptic ipsilateral excitation and disynaptic contralateral 

inhibition converges on the LSO. LSO acts as a coincidence detector of binaural signals where 

the ILDs are represented as differences in the timing of excitatory and inhibitory inputs (von 

Gersdorff and Borst, 2002). 
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Figure I. 5: The auditory pathway 

Image taken from Yu and Goodrich, 2014. 

Thus, there is a high functional demand on the auditory system to maintain fast and 

temporally precise synaptic transmission (Wichmann, 2015). The first three synapses of the 

auditory pathway: IHC ribbon synapse, endbulb of Held and the calyx of Held, act as relay 

centers fulfilling these demands and are hence, ideal to reveal any defect in the 

neurotransmitter release machinery arising from molecular perturbations. Another 

advantage is that every compartment of the three synapses is accessible for physiological 

recording for assessing synaptic transmission: inner hair cells (Moser and Beutner, 2000), 

postsynaptic bouton of the SGNs (Glowatzki and Fuchs, 2002), endbulb of Held (Lin et al., 

2011), postsynaptic BCs (Cao and Oertel, 2010), and calyx of Held together with its 

postsynaptic cell (Chen et al., 2015).  

The auditory pathway as a model also allows correlating the synaptic data to the systems 

physiology and processing of acoustic information, to assess synaptic transmission in the 

context of its sensory function. The auditory brainstem response (ABR) is a recording of the 

auditory evoked potentials in response to sound stimulus, recorded from the scalp in a 
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stimulus-locked manner. ABR waves reflect the electrical activity at different stations along 

the auditory pathway (Melcher and Kiang, 1996; Melcher et al., 1996a, 1996b), hence 

providing a measure of signal processing in the whole system.  

2.7 Aim of the study 

This study aims to elucidate the molecular machinery driving neurotransmission at auditory 

synapses specialized for ultrafast and high-fidelity signal transmission. Towards this goal, the 

function of three CAZ proteins: Piccolo, Bassoon and RIM-BP2 is investigated at the central 

auditory synapse of endbulb of Held. In addition, a BEACH protein LRBA2, whose deficiency 

leads to hearing impairment, is studied to unveil its role in sensory information processing at 

the ribbon synapses of the cochlear hair cells. 
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3 Materials and methods 

3.1 Animals  

Piccolo and Bassoon study: Mice with cre-mediated excision (Lakso et al., 1996) of exon 14 of 

the Pclo gene and insertion of a neomycin resistance cassette in the adjacent 3’ intron 

(PicMut; Mukherjee et al., 2010), and their wildtype littermates (PicWT) were studied. The 

mouse line was derived by heterozygous breeding with C57Bl/6J genetic background. For a 

subset of experiments (recovery, Figure 1b. 13) PicBsn animals, with only one intact allele of 

the Bsn gene in addition to Piccolo mutation, were used. These were derived by 

heterozygous breeding of PicMut with BsnΔEx4/5 mice (exons 4 and 5 of Bassoon gene 

deleted; (Altrock et al., 2003a)).  

RIM-BP2 study: Mice with cre-mediated excision of exon 17 of the Rimbp2 gene (RIM-BP2 

KO; Grauel et al., 2016) and their wildtype littermates were studied. In a subset of 

experiments, data from C57Bl/6 wildtype mice were pooled with littermate controls. The 

homologous recombination for KO mouse generation was carried out by genOway. The 

mouse line was derived by heterozygous breeding with C57Bl/6N genetic background.  

LRBA2 study: LRBA2 KO mice (laboratory code for the line, Lrba2-A-C9) were constructed by 

constitutive deletion of coding exon 3 of Lrba2 gene, generating a frameshift mutation 

(Figure M. 1). The mutation was generated in C57BL/6N ES cells, and subsequently 

propagated in the same background (five or more backcrosses at the time of analysis).  

 

Figure M. 1: LRBA2 KO generation 

Cre-mediated excision of exon 3 of Lrba2 gene leads to a frameshift mutation and deletion of LRBA2 
expression.  
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Mice of either sex, were studied from postnatal day 15 to 21 for the first two studies and for 

the LRBA2 study the age is mentioned in the figure legends. Animals were genotyped, and 

re-genotyped post experiments, using PCR. All experiments were performed in compliance 

with the guidelines dictated by the German animal welfare act and were approved by the 

board for animal welfare of the University Medical Center Göttingen and the animal welfare 

office of the state of Lower Saxony. 

To facilitate easy visualization the following colour code is used in the thesis to present data 

from different genotypes. Wildtype data are presented in black, PicMut in red, PicBsn in 

green, RIM-BP2 KO in blue and LRBA2 KO in magenta (Figure M. 2). 

 

Figure M. 2: Colour code used in the thesis for different genotypes 

Wildtype data are presented in black, PicMut in red, PicBsn in green, RIM-BP2 KO in blue and LRBA2 
KO in magenta. 

3.2 in vitro electrophysiology 

Slice preparation: Acute parasagittal slices (150µm) from the cochlear nucleus were obtained 

(Figure M. 3) as described previously (Schulz et al., 2014). Briefly, after sacrifice by 

decapitation, brains were dissected out and quickly immersed in ice-cold low Na+ and low 

Ca2+ cutting solution containing (in mM): 50 NaCl, 26 NaHCO3, 120 sucrose, 1.25 

NaH2PO4.H2O, 2.5 KCl, 20 glucose, 0.2 CaCl2, 6 MgCl2, 0.7 Na L-ascorbate, 2 Na pyruvate, 3 

myo-inositol, 3 Na L-lactate with pH adjusted to 7.4 and osmolarity of around 310mOsm/l. 

After removal of the meninges from the ventral face of the brainstem, the two hemispheres 

were separated by a midsagittal cut and the forebrain was removed at the pons-midbrain 

junction. The brain blocks containing brain stem and cerebellum were then glued 

(cyanoacrylate glue; Loctite 401, Henkel) to the stage of a Leica (Wetzlar, Germany) VT 
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1200S vibratome such that the medial side was glued on, the ventral side was facing the 

blade and the lateral side was facing upwards, submerged in ice-cold cutting solution. For 

sectioning, the blade was positioned at the height of cerebellar flocculus and sections were 

cut at a blade feed rate of 0.02mm/s with an amplitude of 1.50mm. Slices were incubated 

for 30min in artificial cerebrospinal fluid (aCSF) maintained at 35oC, and then kept in aCSF at 

room temperature (22-24oC) until recording. The composition of aCSF was identical to the 

cutting solution except for (in mM): 125 NaCl, 13 glucose, 1.5 (2 for RIM-BP2) CaCl2 and 1 

MgCl2 and contained no sucrose. The pH of the solution was adjusted to 7.4 and osmolarity 

was around 310mOsm/l. All solutions were continuously aerated with carbogen (95% O2, 5% 

CO2).  

 

Figure M. 3: Illustration of the sagittal slice preparation of the aVCN 

(A) Ventral aspect of a mouse brain. Dotted line indicates the midsagittal cut and the solid line 
demarcates the level at which aVCN is present. (A’) Coronal section of the mouse brain with the solid 
line showing the target region for slicing. (B) Sagittal section of the mouse brain highlighting the 
cochlear nucleus, attached to the cerebellum. (B’) Example of a cochlear nucleus slice as seen under 
the microscope (10x magnification) while recording. A’ and B adapted from Paxinos and Franklin, 
2001. #:  aVCN (anterior ventral cochlear nucleus), DC: dorsal cochlear nucleus, CB: cerebellum, *: 8th 
cranial nerve (auditory vestibular nerve). Arrows indicate orientation - A: anterior, D: dorsal V: 
ventral.  
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Electrophysiology: Patch-clamp recordings were made from BCs of aVCN using EPC10 USB 

patch-clamp amplifier controlled by the Patchmaster software (HEKA Elektronik, 

Lambrecht/Pfalz, Germany). Sampling interval and filter settings were 25µs and 7.3kHz 

respectively. Cells were visualized by differential interference contrast (DIC) microscopy 

through a 40x water-immersion objective (NA 0.8; Zeiss, Oberkochen, Germany) using an 

Axioscope 2 FS plus microscope (Zeiss, Oberkochen, Germany). All experiments were 

conducted at a temperature of 33-35oC, maintained by constant superfusion (flow rate 3-

4ml/min) of aCSF, heated by an inline solution heater (SH-27B with TC-324B controller; 

Warner Instruments, Hamden, CT, USA) and monitored by a thermistor placed between the 

inflow site and the slice, in the recording chamber.  

Patch pipettes were pulled with P-87 micropipette puller (Sutter Instruments Co., Novato, 

CA, USA) from borosilicate glass capillaries with filament (GB150F, 0.86x1.50x80mm; Science 

Products, Hofhiem, Germany). Open tip pipette resistance was 1.5-3 MΩ when filled with 

intracellular solution containing (in mM): 115 K-gluconate, 10 HEPES, 8 EGTA, 10 

Na2Phosphocreatine, 4 ATP-Mg, 0.3 GTP-Na, 4.5 MgCl2, 10 NaCl and 1 N-(2,6-dimethylphenyl 

carbamoylmethyl)triethylammonium chloride (QX-314; Alomone Labs, Jerusalem, Israel) to 

block sodium channels, with a pH of 7.35 and an osmolarity of 300mOsm/l. Additionally, 

1mM of fluorescent dye Alexa-488 (Invitrogen) was added to the recording pipette and cell 

structure was examined during experiments using a HXP 120 mercury lamp, with an FITC 

filter set (Semrock). Cells were voltage-clamped at a holding potential of -70mV, corrected 

for a liquid junction potential of 12mV. Mean series resistance was around 5MΩ and was 

compensated up to 70% with a 10µs lag. Presynaptic auditory nerve fibers were minimally 

stimulated with a monopolar electrode in a patch pipette filled with aCSF, placed at a 

distance of at least one cell diameter from the cell being recorded. Stimulating currents of 

10-20µA were delivered through a stimulus isolator (A360 World Precision Instruments, 

Sarasota, FL, USA). During recordings, for the Piccolo and Bassoon study, bath solution 

(aCSF) was supplemented with: 1mM Kynurenic acid sodium salt (Abcam Biochemicals, 

Cambride, UK), a low-affinitiy AMPAR antagonist, to prevent receptor 

saturation/desensitization, 100µM Cyclothiazide (CTZ; BioTrends, Wangen, Zurich), a 

positive allosteric AMPAR modulator, to prevent receptor desensitization, 10µM Bicuculline 
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methchloride, a GABAA receptor antagonist and 2µM Strychnine hydrochloride, a glycine 

receptor antagonist. For RIM-BP2 study, aCSF was supplemented with 10µM Strychnine 

hydrochloride only. Unless stated otherwise, chemicals were purchased from Sigma-Aldrich 

(St. Louis, USA).  

3.3 Immunohistochemistry and confocal imaging 

Brainstem immunohistochemistry: Animals were transcardially perfused with 2% freshly 

prepared ice-cold paraformaldehyde (2% PFA, 2N NaOH, 15% picric acid, 0.1M phosphate 

buffer). The fixed brain was then removed and brainstem was dissected with a coronal cut 

few millimetres nasal to the junction between occipital cortex and cerebellum. The brain 

block was washed overnight in 30% sucrose solution in PBS. For sectioning, the brain block 

was embedded in Tissue Tek Cryomatrix (Thermo Fisher Scientific, Waltham, MA, USA) and 

then fixed on the stage of the cryostat (Figocut E cryotome, Reichert-Jung, Depew, NY, USA) 

such that the caudal aspect was facing upwards and the dorsal side was towards the blade. 

Advancing from caudal to nasal, 30µm coronal sections (Figure M. 4) were cut (chamber 

temperature: -20oC, object temperature: -22oC) and discarded until the appearance of the 

7th cranial nerve. Subsequent sections, containing aVCN were collected onto electrostatically 

charged microscope slides (SuperFrost Plus, ThermoFisher Scientific, MA, USA). For parallel 

processing, one slice of each genotype was collected per slide. Thereafter, the slices were 

washed for 10min in PBS and incubated in Goat Serum Dilution Buffer (GSDB; 16% normal 

goat serum, 450mM NaCl, 0.3% Triton X-100, 20mM phosphate buffer, pH 7.4) for 1h, 

followed by incubation in primary antibodies (see below) diluted in GSDB, for 3h, in a wet 

chamber at room temperature. After washing 2 x 10min with wash buffer (450mM NaCl, 

0.3% Triton X-100, 2mM phosphate buffer) and 2 x 10min with PBS, the slices were 

incubated with secondary antibodies (see below) diluted in GSDB, for 1h, in a light-protected 

wet chamber at room temperature. The slices were then washed 2 x 10min with wash 

buffer, 2 x 10min with PBS and 1 x 10 min in 5mM phosphate buffer, and finally mounted 

with a drop of fluorescence mounting medium based on Mowiol 4-88 (Carl Roth, Karlsruhe, 

Germany) and covered with a thin glass coverslip.  
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Figure M. 4: Illustration of the sagittal slice preparation of the aVCN 

(A) Ventral aspect of a mouse brain with the solid line indicating the point at which the coronal 
sections were cut in the mouse brain. (A’) Sagittal section of the mouse brain with the solid line 
showing the target region for slicing. (B-B’) Coronal section of the mouse brain showing the aVCN 
and the 7th cranial nerve used as a landmark. A’-B’ adapted from Paxinos and Franklin, 2001. #:  aVCN 
(anterior ventral cochlear nucleus), BS: brainstem, CB: cerebellum, *: 7th cranial nerve (facial nerve). 
Arrows indicate orientation - A: anterior, D: dorsal V: ventral. 

Inner hair cell immunohistochemistry: Apical turns of freshly dissected organ of Corti were 

fixed in 4% formaldehyde for 10 min and processed as described for fixed brain slices. 

Primary antibodies: rabbit anti-Piccolo (Antibody #1; 1:200), guinea pig anti-Piccolo 

(Antibody #2; 1:200), mouse anti-Otoferlin (1:1000; Abcam Biochemicals, Cambridge, UK), 

guinea pig anti-VGLUT1 (1:500), rabbit anti-VGLUT1 (1:1000), mouse anti-Gephyrin (1:500), 

mouse anti-Sap7f407 to Bassoon (1:500; Abcam, Cambridge, UK), guinea pig anti-Bassoon 

(1:500), mouse anti-calretinin (1:300; Swant, Marly, Switzerland), guinea pig anti-VGAT 

(1:600), rabbit anti-Munc13-1 (1:200), rabbit anti-RIM1 (1:200), rabbit anti-RIM2 (1:200), 

rabbit anti-CAST (1:200). Unless stated otherwise, primary antibodies were purchased from 

Synaptic Systems, Göttingen, Germany.  

Secondary antibodies: AlexaFluor488-, AlexaFluor568- and AlexaFluor647-labeled antibodies 

(1:200; Invitrogen). 
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Confocal images were acquired using a laser-scanning confocal microscope (Leica TCS SP5; 

Leica Microsystems) equipped with 488 nm (Ar) and 561/633 nm (He-Ne) lasers and 63x/1.4 

NA oil-immersion objective. Samples of genotypes: PicWT and PicMut were processed and 

imaged in parallel with the same settings. 

3.4 in vivo recordings 

Auditory brainstem response (ABR): Animals were anesthetized intraperitoneally with a 

combination of ketamine (125mg/kg) and xylazine (2.5mg/kg) and their core temperature 

was maintained at 37°C using a rectal temperature-controlled heating blanket (Hugo Sachs 

Elektronik; Harvard Apparatus). Additionally, their heart rate was constantly tracked to 

monitor the anesthesia. The electrode configuration of three subcutaneous needles was the 

following: the active electrode was positioned underneath the pinna, the reference 

electrode on the vertex and the ground electrode near the tail. For stimulus generation, 

presentation, and data acquisition TDT System II (Tucker-Davis Technologies) run by BioSig32 

software (TDT) was used. Sound pressure levels were provided as dB SPL RMS (tonal stimuli) 

or dB SPL peak equivalent (PE, clicks) and were calibrated using a ¼ inch microphone (D 

4039, Brüel and Kjaer GmbH). ABRs were obtained as an average of 2 repetitions of 2000 

responses to tone bursts (10ms plateau, 1ms cos2 rise/fall) of increasing frequencies: 4, 6, 8, 

12, 16, 24 and 32kHz presented at 40Hz or clicks of 0.03ms presented at 20Hz or 100Hz in 

the free field ipsilaterally using a JBL 2402 speaker (JBL GmbH & Co.). The potential 

difference between vertex and mastoid subdermal needles was amplified (50,000 times), 

filtered (low pass: 4kHz, high pass: 400Hz) and sampled at a rate of 50kHz for 20ms. ABR 

threshold was determined with 10dB precision, as the lowest stimulus intensity that evoked 

a reproducible response waveform in both traces by visual inspection.  

Distortion product otoacoustic emissions (DPOAE): The ED1/EC1 speaker system (Tucker-

Davis) was used to generate two continuous primary tones at frequency1 (f1: 10, 13.3, 

18.9kHz) frequency2 (f2) in the relation: f2=1.2×f1 and the respective sound intensities 

followed the rule: Intensity2=Intensity1+10dB. The two primary tones were coupled into the 

ear canal by a custom-made probe containing an MKE-2 microphone (Sennheiser) and 

adjusted to the desired sound intensities at the position of the ear drum as mimicked in a 
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mouse ear coupler. The microphone signal was amplified and digitalized (DMX 6 Fire; 

Terratec), and analyzed by fast Fourier transformation (MATLAB; MathWorks). 

Recordings from single spiral ganglion neurons (SGNs): Mice were anesthetized (urethane 

1.32 mg/kg, xylazine 5mg/kg, and buprenorphine 0.1mg/kg injected intraperitoneally), 

tracheotomized and placed in a custom-made head-holder. Their body temperature was 

maintained by heating the soundproof chamber to 26°C and by a custom-designed heat 

plate controlled by a rectal temperature probe. An opening was made in the left occipital 

bone and the cerebellum was partially removed. Subsequently, SGNs were stereotactically 

approached through the cochlear nucleus with a high-impedance glass electrode filled with 

3M NaCl and 2% methylene blue. 50ms noise burst search stimuli of 80dB for wild-type and 

90-100dB for LRBA2 KO were presented at 5Hz through a loudspeaker (JBL2402) to elicit 

spiking of auditory neurons. Upon detection of a sound-responsive unit, spontaneous firing 

rates were determined in silence for 10 – 30s. Tuning curves were obtained by varying 

stimulus intensities and frequencies of 15ms tone bursts, to estimate the best threshold of 

hearing and the characteristic frequency with a 1/32 octave and 2dB precision (Jing et al., 

2013). In LRBA2 mutants, the automatic algorithm often failed because thresholds were too 

close to the maximum speaker output. In these cases, the best frequency was determined 

manually and the threshold was defined as the lowest intensity to which rates clearly 

increased over spontaneous rate in the rate-intensity function which employed 25 

repetitions of 50ms tone bursts at 5Hz for each 5dB step. Post-stimulus time histograms to 

50ms tone burst stimulation or paired stimuli (forward masking) were obtained at the 

characteristic/best frequency at sound intensities at which spike rates were mostly 

saturated: 30dB above threshold in WT and at least 10dB above threshold in KO.  

SGNs were differentiated from cochlear nucleus neurons by (i) the electrode position 

(>1200µm below the surface of cochlear nucleus), (ii) their primary-like PSTHs to 

suprathreshold 50ms tone bursts presented at the characteristic/best frequency and (iii) 

their irregular firing pattern, as confirmed by a coefficient of variance of inter-spike interval 

of steady state firing response, >0.5.  
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Electrocochleography: was performed by Dr. N. Strenzke. Mice were prepared for recording 

as stated for the SGN recordings. The Tucker Davis System III hardware was used, operated 

by custom-written Matlab software and a JBL2402 loudspeaker. For electrocochleography, 

the left bulla was opened to place a silver ball electrode on the round window membrane 

and responses to 100 clicks or 12ms tone bursts were amplified (50 times, custom-built 

amplifier) and sampled at a rate of 50kHz for 20ms. The summating potential (notch filtered 

for stimulus frequency) and cochlear microphonic amplitudes (low-pass filter: stimulus 

frequency/4) were determined as the mean or peak to peak amplitude in a window 7-11ms 

following stimulus onset, respectively. 

3.5 Data analysis 

Electrophysiology data were analyzed using Igor Pro (Wavemetrics, Lake Oswego, OR, USA), 

Mini Analysis (Synaptosoft Inc., Fort Lee, NJ, USA) and GraphPad Prism software (La Jolla, CA, 

USA). Confocal images were analyzed using NIH ImageJ software (Schneider et al., 2012), 

Imaris (Bitplane AG, Zurich, Switzerland) and custom Matlab (Mathworks) programs. 

Endbulb terminals were tracked and counted visually using ImageJ from calretinin-stained 

confocal image stacks. Figures were assembled for display using Adobe Illustrator (Adobe 

Systems, Munich, Germany). Means are presented ± S.E.M. Statistical significance between 

groups was determined by either unpaired Student’s t-test (in case of normally distributed 

data with comparable variances between the groups) or Wilcoxon rank sum test (when data 

distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-

Bera test and variances were compared with F-test. For multiple comparison, parametric 

data were tested for significance by 1-way ANOVA with post-hoc correction with Tukey’s 

multiple comparison test. Non-parametric data were tested for significance by Kruskal-Wallis 

test with post-hoc correction with Dunn’s multiple comparison test. *, **, ***, **** indicate 

p < 0.05, 0.01, 0.001 and 0.0001 respectively.



 

31 

 

 



 

32 

 

 

Chapter 1 

 

 

 Role of Piccolo in high frequency transmission at a central 

auditory synapse – the endbulb of Held 
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1a Introduction 

Active zones (AZs) are specialized regions at the presynaptic terminals where 

neurotransmitter release occurs. AZs feature an electron-dense meshwork of proteins called 

the Cytomatrix of the AZ (CAZ). CAZ comprises of multi-domain protein families like: 

Munc13s, Rab3-interacting molecules (RIMs), RIM-binding proteins (RIM-BPs), CAST/ELKS 

proteins, Piccolo/Aczonin and Bassoon, and Liprins-α (Gundelfinger and Fejtova, 2012). The 

two largest members (>400kDa) of the CAZ, Piccolo (Fenster et al., 2000) and Bassoon (tom 

Dieck et al., 1998), are vertebrate-specific and structurally similar. They play an integral role 

in AZ assembly and scaffolding (Gundelfinger et al., 2016; Südhof, 2012), synaptic vesicle 

(SV) clustering (Mukherjee et al., 2010), presynaptic protein ubiquitination and degradation 

(Waites et al., 2013), and CtBP1-mediated activity-regulated gene expression via synapse-to-

nucleus signaling (Ivanova et al., 2015, 2016). Piccolo (Figure 1b. 1A) and Bassoon, share 10 

highly conserved regions, Piccolo Bassoon Homology domains (PBH) (tom Dieck et al., 1998; 

Fenster et al., 2000; Wang et al., 1999) containing Zn finger and coiled-coiled (CC) domains, 

which might explain partial overlap in function. However, despite their close homology, 

Piccolo has additional features that may ascribe unique functions to it, divergent from 

Bassoon.  

As introduced earlier in section 2.3.3. Piccolo uniquely interacts with actin-binding proteins 

like Profilin2 (Waites et al., 2011; Wang et al., 1999) and Daam1 (Wagh et al., 2015), and 

hence regulates dynamic assembly of F-actin within the presynaptic terminal (Wagh et al., 

2015; Waites et al., 2011). Actin has been a longstanding candidate for regulation of SV 

dynamics involved in exocytosis and endocytosis (Lee et al., 2012; Nguyen et al., 2012; 

Sakaba and Neher, 2003; Soykan et al., 2017; Watanabe et al., 2013). Hence, interactions 

with actin might indicate a role of Piccolo in translocating SV within the nerve terminal 

thereby regulating SV dynamics and synaptic transmission. Piccolo also interacts with its N-

terminal glutamine-rich (Poly Q) motif to Abp1 (Fenster et al., 2003), which binds to 

endocytic GTPase Dynamin (Kessels et al., 2001). And through a region between its first and 

second CC domains, Piccolo interacts with GIT1 (Kim et al., 2003), which is associated with 

endocytic adaptor protein Stonin2 (Podufall et al., 2014). In addition, to its potential role 
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through actin-assembly, Piccolo’s interactions with Abp1 and GIT1 also link it to the 

regulation of vesicle endocytosis. Unlike Bassoon, Piccolo additionally has a C-terminal PDZ 

domain and two C-terminal C2 domains (C2A and C2B). The PDZ domain has been linked to 

exocytosis in pancreatic β-cells (Fujimoto et al., 2002; Shibasaki et al., 2004). Both C2 

domains were reported to bind to Cav1.2 L-type voltage-dependent Ca2+ channels (Shibasaki 

et al., 2004). Moreover, the C2A domain was indicated to act as a low-affinity Ca2+ sensor for 

exocytosis, making Piccolo a candidate for detecting Ca2+ build-up during high frequency 

stimulation (Garcia et al., 2004; Gerber et al., 2001; Schoch and Gundelfinger, 2006). While 

several hypotheses have been put forward for the function of Piccolo, it remains challenging 

to unravel its physiological role(s). One study based on RNAi implicated Piccolo as an 

inhibitor of exocytosis (Leal-Ortiz et al., 2008), while the other, that generated the mouse 

mutant (Mukherjee et al., 2010) employed in this study revealed a role in SV clustering in 

conjunction with Bassoon, but failed to unmask any major exocytosis phenotype.  

Here, the consequences of genetic Piccolo disruption were studied at the first central 

auditory synapse - the endbulb of Held synapse (von Gersdorff and Borst, 2002; Yu and 

Goodrich, 2014), formed by the spiral ganglion neurons (SGNs) synapsing onto the bushy 

cells (BCs) of the anterior ventral cochlear nucleus (aVCN) (Figure 1b. 1B). These large 

calyceal synapses typically employ more than 100 AZs for reliable and temporally precise 

signal transmission at frequencies of hundreds of Hertz (Trussell, 1999; Wang et al., 2011). 

Given the high functional demand, these synapses seem ideally poised for unveiling any 

discrepancies in synaptic transmission due to molecular perturbation. Here a combination of 

electrophysiological analysis and studies of the molecular composition of the AZ in endbulbs 

of Piccolo-deficient mice, indicates a role of Piccolo in promoting SV replenishment to the 

RRP and a, likely compensatory, up-regulation of Bassoon at Piccolo-deficient synapses. 

Apart from deciphering unique function(s) of Piccolo independent of Bassoon at the active 

zone, this study briefly looks at the changes in synaptic transmission, with an additional 

Bassoon manipulation (Altrock et al., 2003b). Unlike Piccolo, Bassoon has been the focus of 

extensive investigation focused solely on its function and not just its role in conjunction with 

Piccolo (Ivanova et al., 2016; Mukherjee et al., 2010; Waites et al., 2013).  
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In sensory synapses, Bassoon is essential for tethering the synaptic ribbon at the active 

zones both at retinal photoreceptors (Dick et al., 2003; tom Dieck et al., 2005) and cochlear 

inner hair cells (Khimich et al., 2005). Bassoon was also found to maintain the Ca2+ channel 

clustering and synaptic vesicle pool at the presynapse (Frank et al., 2010), and hence 

establish reliable signal transmission to the auditory nerve fibers (Buran et al., 2010; Jing et 

al., 2013). In central synapses, Bassoon has been shown to localize P/Q type Ca2+ channels at 

the active zone (Davydova et al., 2014), and its absence was associated with increase in the 

number of silent synapse in hippocampal cultures (Altrock et al., 2003b), and impaired 

vesicle replenishment (Hallermann et al., 2010b; Schulz et al., 2014). Most recently, Bassoon 

has been proposed to be a regulator of presynaptic autophagy (Okerlund et al., 2017). 

In context of the extensive research on the function of Bassoon, and its role together with 

Piccolo this study focuses on bringing forth the function of Piccolo in synaptic transmission. 

Since, the two proteins compensate for each other’s absence (Schulz et al., 2014 and this 

study), studying Piccolo deficiency at the synapse, followed by a partial Bassoon loss in 

addition; the aim is to identify the non-overlapping functions of the proteins. 

1b Results 

1b.1 Perturbation of Piccolo expression in central but not peripheral auditory synapses 

This study employed constitutive Piccolo mutants with a targeted deletion of exon 14 of Pclo 

gene and insertion of neomycin resistance cassette in the adjacent 3’ intron, described 

previously (hereafter dubbed “PicMut”), which lowers the protein levels of Piccolo to 

approximately 5% in the brain (Mukherjee et al., 2010). A shorter, ~330kDa, C-terminal 

truncated Pclo splice variant, Piccolino (Figure 1b. 1A), is the predominant Pclo isoform at 

the ribbon synapse of inner hair cells (IHC) (Regus-Leidig et al., 2013), directly preceding the 

endbulb of Held (Figure 1b. 1B). Labeling with antibody #2 (directed against a central 

epitope, Figure 1b. 1A), showed that IHC ribbon synapses in PicMut still express Piccolino 

(Figure 1b. 1C), while the full-length variant, Piccolo, was absent (identified by antibody #1 

directed against a C-terminal epitope, Figure 1b. 1A, C’). 
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Figure 1b. 1: Selective expression of Piccolo (Aczonin) in central synapses  

(A) Domain structure of Piccolo (dark green line) and its shorter isoform Piccolino (light green line). 
Magenta lines illustrate the position of antigenic peptides used to raise Piccolo antibodies employed 
in this study. Antibody #1 binding to the C-terminus, selectively identifies Piccolo, while antibody #2 
binding to the central region recognizes both Piccolo and Piccolino. (B) Scheme of the site of 
investigation (not drawn to scale): the endbulbs of Held are formed by the auditory nerve fibers 
(central neurites of SGN) on bushy cells of the aVCN. SGNs receive their input from ribbon-type AZs 
of inner hair cells (IHC, blue box) of the organ of Corti. Spherical bushy cells (SBC) and Globular bushy 
cells (GBC) receive different numbers of endbulbs. SGNs form bouton-like synapses on stellate cells 
(SC). (C) Preservation of Piccolino in the organ of Corti of PicMut mice: Maximal projection of 
confocal images show immunofluorescent puncta of Piccolino (C, antibody #2) in otoferlin (Otof)-
labeled IHCs of the organ of Corti, while no Piccolo signal (C’, antibody #1) is found. Scale bar – 5µm. 
(D) Reduced fluorescence intensity of Piccolo (antibody #1) puncta at the BCs of aVCN in PicMut 
(N=3; n=8) mice compared to PicWT (N=3; n=14) mice as obtained in maximum projections of 
confocal images. Our estimates for endbulb AZs built on identification of excitatory AZs by co-
localization of Piccolo puncta with Vglut1 (maximal center of mass distance 0.4µm in xy and 1.2µm in 
z) and distinction of inhibitory AZs by their co-localization with Gephyrin (center of mass distance 
0.3µm in xy and 0.9µm in z). N, number of animals; n, number of BCs. Error bars represent S.E.M. 
(**** - p-value < 0.0001, Wilcoxon rank sum test). (E)  Reduced expression of Piccolo in PicMut: 
Maximum projection of confocal image stack of a bushy cell in PicWT (left) and PicMut (right) labeled 
for Piccolo (antibody #1), Vglut1 (excitatory synapses) and Gephyrin (inhibitory synapses). Scale bar – 
5µm. 
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Recordings of (ABR) showed normal thresholds and unaltered amplitudes of the spiral 

ganglion compound action potential, reflected in wave I of the ABRs, indicating normal 

cochlear sound encoding (Figure 1b. 2).  

 

Figure 1b. 2: Auditory brainstem response (ABR) indicates preserved cochlear function but 
alteration in signal propagation at the cochlear nucleus in PicMut 

(A) Grand averages (line) ± S.E.M. (shaded area) of ABR waveform responses to 80dB click stimuli at a 
stimulus rate of 20Hz of PicWT (N=7) and PicMut (N=6) mice at P21-23. N is the number of animals. 
(B) Comparison of ABR wave amplitudes. In PicMut, wave I (compound action potential of spiral 
ganglion) has unaltered amplitude, but wave II thought to arise from activity in the cochlear nucleus 
demonstrates reduced amplitude. Interestingly, the later waves arising from downstream stations in 
the auditory pathway seem unaltered. 

In contrast to IHCs, the excitatory AZs of the endbulb of Held synapse in the aVCN showed a 

near complete loss of Piccolo staining (10 % of control levels) indicating a major reduction of 

Piccolo expression at these central auditory synapses (D-E). The excitatory AZs at the aVCN 

were identified by co-localization of Piccolo with Vglut1, vesicular glutamate transporter1, 

(maximal center of mass distance 0.4µm in xy and 1.2µm in z), while inhibitory AZs were 

distinguished by co-localization with Gephyrin (maximal center of mass distance 0.3µm in xy 

and 0.9µm in z). This did not strictly differentiate AZs of endbulbs from those of 
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glutamatergic bouton endings, which, however, are much fewer in number (Gómez-Nieto 

and Rubio, 2009; Nicol and Walmsley, 2002). Therefore, and since Vglut1 is primarily 

associated with terminals of SGNs (Heeringa et al., 2016), estimates here were strongly 

dominated by endbulb AZs. Functionally, wave II of the ABRs, thought to arise from activity 

in the cochlear nucleus (Melcher and Kiang, 1996; Melcher et al., 1996a, 1996b) 

demonstrated reduced amplitude, suggesting a functional impairment of synaptic 

transmission from SGNs to the aVCN neurons (Figure 1b. 2). Interestingly, later ABR waves 

seemed unaltered suggesting potential compensation of Piccolo deficiency.  

1b.2 Changes in molecular composition of the active zone upon Piccolo disruption 

Further semi-quantitative immunohistochemistry was performed to analyze the effect of 

Piccolo disruption on the number of the endbulb of Held synapses and their AZs, as well as 

on the molecular composition of the AZs. For this analysis, PicWT and PicMut samples were 

strictly processed and imaged in parallel with the same settings. The number of endbulbs 

converging on to BCs was quantified by visually tracing and counting calretinin-stained 

endbulbs (Figure 1b. 3A) (Lohmann and Friauf, 1996), not differentiating between globular 

and spherical BCs. BCs of both genotypes received 3-4 endbulbs on average (3.67 ± 0.26 for 

PicWT and 3.56 ± 0.24 for PicMut, Figure 1b. 3B), which agrees with the number reported in 

the literature (Cao and Oertel, 2010; Schulz et al., 2014) for mice after onset of hearing (p15-

p21).  

Next, the number of excitatory AZs per endbulb was quantified. In stacks of confocal 

sections of BCs, the number of puncta immunofluorescent for the AZ markers (such as 

Bassoon, RIM1, RIM2 or Munc13-1), gave the total AZ count. Subtracting the number of 

immunofluorescent puncta juxtaposed with Gephyrin immunofluorescence (inhibitory AZ 

number, see above) from the total count of AZs yielded the number of excitatory AZs, which 

was unaltered in the PicMut synapses (455.16 ± 18.66 for PicWT and 426.40 ± 17.93 for 

PicMut, Figure 1b. 3D). Dividing this number by the average count of endbulbs gave the 

number of AZs per endbulb which was also comparable between the genotypes (124.14 for 

PicWT and 120.34 for PicMut) and agreed with previous reports (Nicol and Walmsley, 2002; 
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Schulz et al., 2014). Hence, there was no discernible change in the convergence of endbulbs 

to BCs or the number of AZs therein. 

 

Figure 1b. 3: Number of endbulbs and endbulb AZ per bushy cell in aVCN 

(A) Confocal section of a bushy cell in PicWT labeled with Bassoon (Bsn; AZ marker), Calretinin 
(endbulbs of Held) and Vgat (inhibitory presynaptic terminals). (B) Number of endbulbs converging 
onto a bushy cell was quantified by visually tracing and counting calretinin-stained endbulbs. PicWT 
(N=2; n=12) and PicMut (N=2; n=9) receive comparable number of endbulbs (n.s. – p-value > 0.05, 
Student’s t-test). (C) Confocal section of a bushy cell in PicWT labeled with RIM2 (AZ marker), Vglut1 
(excitatory synapses) and Gephyrin (Geph, inhibitory synapses). (D) Number of endbulb AZ 
(approximated from the # of excitatory AZs) per bushy cell quantified by subtracting the number of 
inhibitory AZs (AZ marker puncta juxtaposed with Gephyrin) from the total number of AZ marker 
puncta. Endbulb AZ number in PicWT (N=9; n=43) and PicMut (N=9; n=47) was comparable (n.s. – p-
value > 0.05, Wilcoxon rank sum test). Data information: N, number of animals; n, number of BCs. 

To study the changes in molecular composition the immunofluorescence intensities of the 

CAZ proteins Bassoon, RIM1, RIM2 and Munc13-1 were quantified. All CAZ proteins 

exhibited a spot-like fluorescence pattern around the BCs depicting AZs.  

Immunofluorescence intensities of Vglut1 and Gephyrin, used for identifying excitatory AZs, 

remained unchanged (Figure 1b. 4).  
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Figure 1b. 4: Unchanged immunofluorescence intensity of Vglut1 and Gephyrin in PicMut 
aVCN 

(A) Quantification of fluorescence intensity of Vglut1 (staining excitatory synapses) in the confocal 
images used to analyze molecular composition of CAZ proteins in BCs of the aVCN (n.s. – p-value > 
0.05, Wilcoxon signed rank test). (B) Quantification of fluorescence intensity of Gephyrin (staining 
inhibitory synapses) in the confocal images used to analyze molecular composition of CAZ proteins in 
BCs of the aVCN (n.s. – p-value > 0.05, paired Student’s t-test). Data information: For paired samples 
of both Vglut1 and Gephyrin N=9; n = 17. N, number of animals; n, number of BCs. 

Bassoon, a close homologue of Piccolo (Fenster et al., 2000), demonstrated significantly 

increased immunofluorescence intensity at both excitatory and inhibitory synapses (Figure 

1b. 5A, B) in PicMut mice. Immunofluorescence intensities of RIM1 and RIM2 seemed overall 

weaker in PicMut mice, whereby RIM1 fluorescent intensity was significantly reduced at 

putative endbulb AZs and RIM2 at AZs of inhibitory synapses (Figure 1b. 5C-F). Munc13-1 

immunofluorescence was slightly higher at AZs of inhibitory synapses in PicMut mice, while 

the intensity was not altered at endbulb AZs. It can be concluded that Piccolo disruption 

leads to a reduction in the abundance of RIM1 at AZs of endbulb synapses while Bassoon is 

upregulated, potentially as a compensatory mechanism. 
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Figure 1b. 5: Molecular composition altered at aVCN synapses in PicMut 

(A, C, E, G) Maximal projection of confocal image stacks of BCs in PicWT (left) and PicMut (right). 
Slices were labelled for different CAZ proteins: Bassoon (A), RIM1 (C), RIM2 (E) and Munc13-1 (G) and 
co-stained for Vglut1 (excitatory synapses) and Gephyrin (inhibitory synapses). (B, D, F, H) 
Quantification of fluorescence intensity of CAZ proteins at endbulbs and inhibitory synapses of BCs: 
Bassoon fluorescence intensity (B) was significantly increased at AZs of both endbulbs and inhibitory 
synapses in the mutant, RIM1 (D) fluorescence intensity was significantly lower at the endbulb AZs in 
mutant but tended to be lower at inhibitory AZs as well. RIM2 (F) fluorescence intensity tended to be 
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reduced at all AZs, but this reached significance only at inhibitory AZs. Munc13-1 (H) fluorescence 
intensity tended to be slightly increased, which reached significance only at inhibitory AZs. Data 
information: N, number of animals; n, number of BCs. All scale bars – 5µm. All data presented as box 
and whisker plots (median, lower/upper quartiles, 10-90 percentiles). Statistical significance between 
groups was determined by either unpaired Student’s t-test (in case of normally distributed data with 
comparable variances between the groups) or Wilcoxon rank sum test (when data distribution did 
not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test and variances 
were compared with F-test. * - p-value < 0.05, **** - p-value < 0.0001. PicWT and PicMut samples 
were strictly processed and imaged in parallel with the same settings. 

 

1b.3 Piccolo disruption reduces the amplitude of evoked EPSCs at the endbulb of Held 

while leaving the eEPSC kinetics and miniature EPSCs unaltered 

To determine the functional consequences of Piccolo disruption at the endbulb of Held 

synapse, synaptic transmission was studied in acute sagittal slices of the brainstem of PicMut 

and PicWT mice by recording EPSCs from BCs at postnatal days 15-21. BCs were 

distinguished from stellate cells (another major cell type in the aVCN) by the faster kinetics 

of their postsynaptic currents (Isaacson and Walmsley, 1995) and their characteristic short-

term plasticity (Figure 1b. 10) (Chanda and Xu-Friedman, 2010). In addition to such 

functional identification, each recorded cell was filled with fluorescent dye Alexa 488 via the 

patch pipette for morphological distinction. BCs are spherical in appearance with one 

primary dendrite terminating in a dense bush-like dendritic tree (Figure 1b. 6) (Wu and 

Oertel, 1984), distinct from stellate cells, which are asymmetrical in shape and have multiple 

dendrites branching off in various directions giving them a star-like appearance.  
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Figure 1b. 6: Morphological distinction between bushy cells and stellate cells of the aVCN 

(A) Images of bushy cells (BC) filled with fluorescent dye Alexa 488 and fixed after the recording 
illustrating typical BC morphology, spherical with one primary dendrite ending in a dense bush-like 
dendritic tree. (B) Images of stellate cells (SC) filled with fluorescent dye Alexa 488 and fixed after the 
recording illustrating typical SC morphology, asymmetrical with multiple far-ranging dendrites 
branching off in different directions. 

 

First the miniature EPSCs (mEPSC) were studied, in the presence of 1mM kynurenic acid 

(Kyn; Elmslie and Yoshikami, 1985) and 100µM cyclothiazide (CTZ; Yamada and Tang, 1993), 

to check if quantal size or kinetics of single vesicle release were altered at Piccolo-deficient 

endbulbs. mEPSCs were recorded as spontaneous events (Lu et al., 2007) in whole-cell 

recordings of BC that were voltage-clamped at -70mV (Figure 1b. 7, Table 1b. 1). We did not 

observe differences in the mEPSC amplitude (Figure 1b. 7B), kinetics (Figure 1b. 7B’-B’’’) and 

frequency (Figure 1b. 7B’’’’; p > 0.05 for all 3 quantities, Figure 1b. 7B-B’’ Student’s t-test, 

Figure 1b. 7B’’’- B’’’’ Wilcoxon rank sum test).  
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Table 1b. 1: Miniature EPSC (mEPSC) amplitude and kinetics unchanged in PicMut 

Parameter PicWT PicMut p-value 

Amplitude (pA) 60.82 ± 2.29 59.17 ± 2.10 0.60 
10-90 Rise time (ms) 0.119 ± 0.003 0.116 ± 0.003 0.62 
FWHM (ms) 0.24 ± 0.01 0.26 ± 0.01 0.27 
Decay time (ms) 0.24 ± 0.01 0.28 ± 0.01 0.14 
Frequency (Hz) 4.04 ± 0.41 4.11 ± 0.48 0.63 

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test.  PicWT N = 23; n = 23, PicMut N = 17; n = 25 (N, number of 
animals; n, number of BCs). 

 

Figure 1b. 7: Miniature EPSC amplitude and kinetics preserved in PicMut synapses 
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(A) Representative traces of mEPSC: Continuous recording (left) and exemplary individual mEPSCs 
(right) for PicWT (A) and PicMut (A’). (B) Analysis of mEPSC: mEPSC amplitude (B), decay time (B’), 
full-width at half-maximum (FWHM; B’’) rise time (B’’’), and frequency (B’’’’) remain unaltered. Each 
data point represents the mean estimate of a given BC. Normally distributed data presented as mean 
(grand average of the means of all BCs) ± S.E.M. (B, B’, B’’; n.s. – p-value > 0.05, Student’s t-test). 
Non-normally distributed data presented as box and whisker plots (grand median (of the means of all 
BCs), lower/upper quartiles, 10-90 percentiles; B’’’, B’’’’; n.s. – p-value > 0.05, Wilcoxon rank sum 
test). PicWT N = 23; n = 23, PicMut N = 17; n = 25 (N, number of animals; n, number of BCs). 

 

Next, evoked synaptic transmission was investigated in the presence of 1mM Kyn and 

100µM CTZ to avoid saturation and desensitization of AMPA receptors (Chanda and Xu-

Friedman, 2010), respectively. Evoked EPSCs (eEPSC) were elicited by minimal electrical 

stimulation of the auditory nerve fibers by a monopolar electrode placed in the proximity of 

the recorded BC, whereby each stimulus is aimed to elicit one action potential in one 

endbulb (Yang and Xu-Friedman, 2008). To evaluate the importance of using Kyn and CTZ, 

paired pulse ratio (PPR) at the endbulb of PicWT and PicMut, in the presence and absence of 

the two drugs was compared. In this protocol, the recorded BC was presented with paired 

stimuli of two pulses separated by varying inter stimulus intervals of 3, 5 and 10ms. PPR is 

the ratio of the amplitude of EPSC elicited by the second pulse to the amplitude in response 

to the first pulse (EPSC2/EPSC1). Endbulbs of PicWT showed increased PPR in the presence of 

Kyn and CTZ only at an inter stimulus interval of 3ms, while at longer intervals of 5 and 10ms, 

the PPR was unchanged. Increased PPR implies a relief from receptor 

desensitization/saturation upon the application of the two drugs. This is in agreement with 

the previous studies (Chanda and Xu-Friedman, 2010; Yang and Xu-Friedman, 2008) 

reporting receptor desensitization at the endbulb for intervals <10ms. In contrast to the 

wildtype, endbulbs of PicMut mice showed an increased PPR at all three inter stimulus 

intervals in the presence of Kyn and CTZ. Since, the mutant demonstrated possible receptor 

desensitization, it was imperative to eliminate potential postsynaptic factors to focus on the 

presynaptic component of the study.  
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Figure 1b. 8: Paired pulse ratio (PPR) recorded with and without 1mM Kynurenic acid (Kyn) 
and 100µM Cyclothiazide (CTZ) demonstrating receptor desensitization and (or) saturation 
in PicMut  

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). **** p-value < 0.0001, ** p-value < 0.01, * p-value < 0.05. 
**** - Significance between PicMut with and without Kyn and CTZ; *- Significance between PicWT 
with and without Kyn and CTZ. For sample size refer to Table 1b. 2 

 

Table 1b. 2: Quantification of PPR recorded with and without 1mM Kynurenic acid (Kyn) 
and 100µM Cyclothiazide (CTZ) 

Inter 
stimulus 
interval 

PicWT 
+1mM Kyn 
+100µM CTZ 

PicWT p-value PicMut 
+1mM Kyn 
+100µM CTZ 

PicMut p-value 

3ms 
0.91 ± 0.06 

(15) 
0.79 ± 0.04 

(11) 
0.02 

1.05 ± 0.06 
(12) 

0.68 ± 0.04 
(14) 

1.30 x10-5 

5ms 
0.91 ± 0.05 

(23) 
0.83 ± 0.03 

(14) 
0.13 

0.95 ± 0.04 
(19) 

0.72 ± 0.02 
(28) 

9.19 x 10-6 

 
10ms 

0.91 ± 0.02 
(30) 

0.85 ± 0.02 
(15) 

0.08 
0.83 ± 0.03 

(31) 
0.73 ± 0.02 

(28) 
0.008 

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test. Sample size (number of BCs recorded) given in 
parentheses. 
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Importantly, the analysis eEPSC evoked by single stimulations (Figure 1b. 9, Table 1b. 2) 

revealed reduced eEPSC amplitude in BCs of PicMut mice (Figure 1b. 9B; p < 0.01, Wilcoxon 

rank sum test). The synaptic delay of eEPSCs and their kinetics of rise and decay remained 

unaltered (Figure 1b. 9C-F; p > 0.05, Student’s t-test).  

 

Figure 1b. 9: Reduced evoked EPSC amplitude in PicMut 

(A) Average traces of evoked EPSC (eEPSC) in PicWT (black) and PicMut (red) showing a reduced 
eEPSC amplitude in the mutant. Inset: Average PicMut eEPSC trace scaled to the peak of the average 
wildtype trace demonstrating unaltered eEPSC kinetics in the mutant. Positive peak at onset of trace 
reflects the stimulation artifact. (B) Reduced eEPSC amplitude in PicMut (N = 19; n = 36) as compared 
to PicWT (N = 21; n = 35). Each data point represents the mean estimate of a given BC, box and 
whisker plots present grand median (of the means of all BCs), lower/upper quartiles, 10-90 
percentiles). **p-value < 0.01, Wilcoxon rank sum test. (C-F) eEPSC kinetics: rise time (C), full-width 
at half-maximum (FWHM; D) and decay time (E), and synaptic delay (F) were not significantly altered 
in PicMut (N= 19; n = 29) as compared to PicWT (N = 19; n = 28). Data presented as grand average (of 
the means of all BCs) ± S.E.M. (n.s. – p-value > 0.05, Student’s t-test). Data information: N, number of 
animals; n, number of BCs. 
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Table 1b. 3: Reduced evoked EPSC amplitude in PicMut 

Parameter PicWT PicMut p-value 

Amplitude (nA) 4.43 ± 0.37 3.15 ± 0.25 0.002** 
10-90 Rise time (ms) 0.19 ± 0.01 0.21 ± 0.01 0.10 
FWHM (ms) 0.64 ± 0.03 0.72 ± 0.03 0.07 
Decay time (ms) 0.56 ± 0.02 0.63 ± 0.03 0.06 
Synaptic delay (ms) 0.89 ± 0.02 0.90 ± 0.02 0.63 

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). PicWT N = 19; n = 29, PicMut N = 19; n = 28 (N, number of 
animals; n, number of BCs). 

1b.4 Reduced RRP size and a slower recovery from short-term depression in Piccolo 

mutants 

Quantal size (mEPSC amplitude) being unaltered, the RRP size, release probability and pool 

dynamics were studied next to investigate the cause of the reduced eEPSC amplitude. For 

this, responses to high frequency train stimulation: 50 consecutive stimuli delivered at 100, 

200 and 333Hz (in the presence of 1mM Kyn and 100µM CTZ) were employed. At all three 

frequencies, both PicMut and PicWT mice exhibited comparable short-term depression 

(Figure 1b. 10A-A’). Both genotypes, demonstrated similar kinetics of short term depression 

during train stimulation (Tau (τ), Table 1b. 4, Figure 1b. 10B-D). The paired pulse ratio (PPR) 

was not significantly altered at inter-stimulus intervals of 5ms and 2ms, but was lower at 

10ms in PicMut (0.83 ± 0.03 PicMut vs. 0.91 ± 0.02 for PicWT, p < 0.05, Student’s t-test, 

Table 1b. 4). The extent of depression assessed as the amplitude in the steady state reached 

after 30 train pulses was comparable (EPSC30-50/EPSC1, Table 1b. 4, Figure 1b. 10B-D).  
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Table 1b. 4: Comparison of pool size, vesicle replenishment, release probability and short-
term depression at the endbulb of Held synapse in PicWT and PicMut 

Frequency Parameter PicWT PicMut p-value 

 q 60.82 pA 59.17 pA 0.59 
 

100Hz 
RRP (# vesicles) 300.76 ± 31.28 245.01 ± 24.22 0.22 
Repl.(#vesicles/ms) 1.79 ± 0.14 1.31 ± 0.11 0.007** 
Pr 0.26 ± 0.07 0.25 ± 0.02 0.59 
PPR 0.91 ± 0.02 0.83 ± 0.03 0.048* 
EPSC30-50/EPSC1 0.32 ± 0.03 0.28 ± 0.02 0.29 
τ (ms)  42.79 ± 3.31 48.72 ± 5.18 0.70 

 
200Hz 

RRP (# vesicles) 393.05 ± 46.09 265.40 ± 32.16 0.03* 
Repl.(#vesicles/ms) 2.11 ± 0.26 1.63 ± 0.15 0.21 
Pr 0.21 ± 0.02 0.20 ± 0.02 0.71 
PPR 0.91 ± 0.05 0.95 ± 0.04 0.56 
EPSC30-50/EPSC1 0.20 ± 0.03 0.21 ± 0.02 0.74 
τ (ms) 25.32 ± 2.76 29.11 ± 3.17 0.37 

 
333Hz 

RRP (# vesicles) 322.47 ± 37.88 267.59 ± 24.83 0.24 
Repl.(#vesicles/ms) 2.15 ± 0.22 2.08 ± 0.21 0.80 
Pr 0.24 ± 0.04 0.21 ± 0.03 0.44 
PPR 0.91 ± 0.06 1.05 ± 0.06 0.29 

EPSC30-50/EPSC1 0.13 ± 0.02 0.13 ± 0.02 0.78 
τ (ms) 14.43 ± 1.95 15.73 ± 1.81 0.63 

q: quantal size, taken from mEPSC amplitude; RRP: readily releasable pool; Repl.: replenishment rate 
of vesicles; Pr: release probability; EPSC30-50/EPSC1: average amplitude of EPSC 30 to 50 normalized to 
the amplitude of EPSC1; τ: time constant of a single exponential fit to the decay of evoked EPSC 
amplitudes during train stimulation. Data presented as mean (grand average of the means of all BCs) 
± S.E.M. Statistical significance between groups was determined by either unpaired Student’s t-test 
(in case of normally distributed data with comparable variances between the groups) or Wilcoxon 
rank sum test (when data distribution did not satisfy the criteria). Normality of distribution was 
tested with Jarque-Bera test and variances were compared with F-test. Sample size for RRP, Repl., Pr, 
EPSC30-50/EPSC1 and τ: 100 Hz-  PicWT N = 19; n = 28, PicMut N = 19; n = 29, 200Hz- PicWT N = 13; n = 
21, PicMut N = 13; n = 19, and 333Hz- PicWT N = 9; n = 13, PicMut N = 9; n = 11. N, number of 
animals; n, number of BCs.is the same as for Figure 1b. 10. Sample size for PPR same as for Table 1b. 
2 
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Figure 1b. 10: Analyzing vesicle pool dynamics during high-frequency stimulation at 
Piccolo-deficient endbulb of Held synapses 

(A) Average traces of EPSCs evoked in response to 100Hz train stimulation, recorded from PicWT (A) 
and PicMut (A’) synapses, illustrating fast kinetics and short-term depression characteristic for bushy 
cell EPSCs, which remain preserved in the mutant. (B-D) Comparable short-term depression 
(normalized eEPSC amplitude vs stimulus number) in PicWT (black) and PicMut (red) in response to 
high-frequency train stimulation at 100Hz (B), 200Hz (C) and 333Hz (D). (B’-D’) Absolute eEPSC 
amplitude vs stimulus number in PicWT (black) and PicMut (red) in response to high-frequency train 
stimulation at 100Hz (B’), 200Hz (C’) and 333Hz (D’). (B’’-D’’) To estimate the readily releasable pool 
size, replenishment rate and release probability, EPSCs from trains were plotted cumulatively against 
stimulus number and the linear fit to the last ten steady-state amplitudes was back-extrapolated to 
the y-axis, for 100Hz (B’’), 200Hz (C’’) and 333Hz (D’’). Data information: (B-D’’) Data presented as 
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mean trace (grand average of the means of all BCs) ± S.E.M. Sample size for 100Hz:-  PicWT N = 19; n 
= 28, PicMut N = 19; n = 29, 200Hz:- PicWT N = 13; n = 21, PicMut N = 13; n = 19, and 333Hz:- PicWT 
N = 9; n = 13, PicMut N = 9; n = 11. N, number of animals; n, number of BCs. 

The size of the RRP, the release probability (Pr) and the SV replenishment rate were 

estimated by applying cumulative analysis (Schneggenburger et al., 1999) to the EPSC trains. 

In this method, EPSC amplitudes from trains are plotted cumulatively against the stimulus 

number. A line fit to the steady-state points (last 10 of the 50 points) is back-extrapolated to 

the y-axis, and the y-intercept divided by the mEPSC amplitude estimates the RRP size, while 

Pr is estimated by the ratio of vesicle content of EPSC1 to that of the RRP. The slope of the 

linear fit itself, approximates the rate of vesicle replenishment during the train. The analysis 

(Table 1b. 4), revealed a significantly reduced RRP size in the mutant at 200Hz stimulation, 

whereas at 100Hz and 333Hz only a non-significant trend towards RRP size reduction was 

found. Another finding was the reduced rate of vesicle replenishment in the mutant that 

reached significance at 100Hz stimulation. The estimate of Pr was not significantly changed 

upon Piccolo disruption at any stimulation frequency. Asynchronous release following the 

train stimulation was unchanged: the rate of mEPSCs was not different in first 100ms after 

the end of 100Hz trains between BCs of both genotypes. 

 

Figure 1b. 11: Unchanged asynchronous release at endbulb synapse in PicMut aVCN 

(A) Representative traces of asynchronous release events after 100Hz train stimulation in PicWT (A) 
and PicMut (A’). Positive peaks at the beginning of each trace are the stimulus artifacts before the 
last EPSC of the train, which is followed by mEPSC corresponding to asynchronous release. (B) 
Asynchronous activity at the endbulb of Held synapse is quantified as number of mEPSC events per 
100ms after the cessation of 100Hz train stimulation. Asynchronous activity remains unchanged at 
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the PicMut endbulbs (n.s. – p-value > 0.05, Student’s t-test). Data information: PicWT (N=7; n=9) and 
PicMut (N=6; n=10). N, number of animals; n, number of BCs. EPSC bars represent S.E.M. 

To further verify the finding of slower vesicle replenishment in PicMut endbulbs, recovery 

from short-term depression was studied, by measuring eEPSC amplitudes elicited by single 

stimuli presented at varying time intervals after a conditioning 100Hz train of 50 pulses 

(Figure 1b. 12A). Recovery is displayed as the eEPSC amplitudes normalized to the amplitude 

of the first eEPSC of the conditioning train (Figure 1b. 12B). A double exponential function 

was used to fit the time course of recovery. PicMut endbulbs showed a significantly slower 

recovery during the initial phase (longer time constants for the fast component of the 

double exponential fits: 101.9 ± 35.4 ms for PicMut vs. 30.2 ± 14.8 ms for PicWT). The 

kinetics of the slow components were comparable (2.98 ± 0.57 s for PicMut vs. 3.05 ± 0.23 s 

for PicWT).  

 

Figure 1b. 12: Recovery from short-term depression is slowed at Piccolo-deficient endbulb 
of Held synapses. 
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(A) Trace of a PicWT endbulb synapse to illustrate the recovery protocol. Following a conditioning 
100Hz train of 50 stimuli, recovery from short-term depression was assessed by single test pulses 
presented after (in ms) 25, 50, 75, 100, 250, 500 (further in s) 1, 2, 4, 6, 10, 12 and 16. Inset shows 
the responses to the first 5 stimuli in detail. (B) Recovery plotted as mean (± S.E.M.) EPSC amplitude 
in response to test pulses normalized to the first EPSC amplitude of the conditioning train. Dashed 
lines are double exponential fits. The time constants (τ) are provided on the graph, amplitude ratios 
of the two recovery components (fast/slow) were 0.15 and 0.55 for PicWT and PicMut respectively. 
Inset shows the first 5 responses in detail. ** p-value < 0.01, * p-value < 0.05. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test. 

1b.5 In the absence of Piccolo, partial loss of Bassoon has no effect on spontaneous 

release, but influences evoked transmission, short-term depression and recovery from 

depression at the endbulb of Held 

In addition to the mutation of Piccolo, the effect of disrupting (deleting exons 4 and 5, 

BsnΔEx4/5) (Altrock et al., 2003b) one allele of Bassoon on vesicle replenishment rate was also 

studied. The mutant is henceforth referred to as PicBsn. In previous studies (Schulz et al., 

2014), heterozygosity for BsnΔEx4/5 did not have any phenotype on synaptic transmission. 

However, in the absence of Piccolo, even partial loss of Bassoon seemed to aggravate the 

slowing of vesicle replenishment (141.2 ± 50.7ms for the fast component of the double 

exponential fit in PicBsn synapses). The difference to PicMut, however, did not reach 

significance (Figure 1b. 13B). 
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Figure 1b. 13: Recovery from short-term depression is slowed at PicBsn endbulb of Held 
synapses. 

(A) Trace of a PicWT endbulb synapse to illustrate the recovery protocol. Following a conditioning 
100Hz train of 50 stimuli, recovery from short-term depression was assessed by single test pulses 
presented after (in ms) 25, 50, 75, 100, 250, 500 (further in s) 1, 2, 4, 6, 10, 12 and 16. Inset shows 
the responses to the first 5 stimuli in detail. (B) Recovery plotted as mean (± S.E.M.) EPSC amplitude 
in response to test pulses normalized to the first EPSC amplitude of the conditioning train. Dashed 
lines are double exponential fits. The time constants (τ) are provided on the graph, amplitude ratios 
of the two recovery components (fast/slow) were 0.15, 0.55 and 0.67 for PicWT, PicMut and PicBsn 
respectively. Inset shows the first 5 responses in detail. **** p-value < 0.0001, *** p-value < 0.001, * 
p-value < 0.05.  - Significance between PicWT and PicMut;  - Significance between PicWT and 
PicBsn;  - Significance between PicMut and PicBsn.  Parametric data were tested for significance by 
1-way ANOVA with post-hoc correction with Tukey’s multiple comparison test. Non-parametric data 
were tested for significance by Kruskal-Wallis test with post-hoc correction with Dunn’s multiple 
comparison test. 
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Table 1b. 5: Quantification of recovery from short-term depression 

Time (in s) PicWT PicMut PicBsn 

0.025 0.51 ± 0.03 (18) 0.34 ± 0.05 (15) 0.22 ± 0.03 (10) 
0.050 0.55 ± 0.04 (16) 0.33 ± 0.05 (12) 0.27 ± 0.04 (10) 
0.075 0.56 ± 0.04 (16) 0.43 ± 0.07 (14) 0.35 ± 0.05 (10) 
0.100 0.60 ± 0.04 (15) 0.44 ± 0.06 (15) 0.37 ± 0.05 (10) 
0.250 0.60 ± 0.04 (16) 0.59 ± 0.06 (14) 0.46 ± 0.06 (10) 
0.500 0.63 ± 0.04 (13) 0.61 ± 0.03 (17) 0.60 ± 0.05 (10) 
1.000 0.70 ± 0.03 (11) 0.67 ± 0.03 (20) 0.63 ± 0.04 (10) 
2.000 0.79 ± 0.03 (12) 0.74 ± 0.02 (18) 0.69 ± 0.02 (10) 
4.000 0.91 ± 0.03 (11) 0.89 ± 0.03 (20)  0.80 ± 0.03 (10) 
6.000 0.96 ± 0.03 (13) 0.93 ± 0.02 (24) 0.92 ± 0.03 (10) 
10.00 0.99 ± 0.03 (10) 0.99 ± 0.03 (12) 0.95 ± 0.03 (10) 
12.00 1.01 ± 0.03 (13) 0.99 ± 0.04 (14) 0.92 ± 0.03 (10) 
16.00 1.03 ± 0.04 (12) 0.96 ± 0.02 (14) 1.00 ± 0.02 (10)  

Data presented as mean (grand average of the means of all BCs) ± S.E.M. of EPSC amplitude in 
response to test pulses normalized to the first EPSC amplitude of the conditioning train. Number of 
cells that were recorded from, in parentheses. 

The aggravation of slowed recovery from vesicle depletion upon Bassoon disruption in 

addition to Piccolo mutation, provided the impetus to investigate synaptic transmission in 

PicBsn mice. For a comprehensive analysis all three modes of release (Kaeser and Regehr, 

2014):  spontaneous, asynchronous and evoked, were studied, just like for PicMut mice. All 

recordings were made in the presence of 1mM Kynurenic acid and 100µM Cyclothiazide to 

eliminate postsynaptic factors influencing the inference.  

mEPSC, recorded as spontaneous events from postsynaptic BCs were comparable between 

PicWT and PicBsn. The analysis did not reveal any differences in the mEPSC amplitude, 

kinetics or frequency of events (p-value > 0.05 for all 3 quantities, Figure 1b. 14B-B’’’ 

Student’s t-test, Figure 1b. 14B’’’’ Wilcoxon rank sum test). 

Table 1b. 6: Miniature EPSC amplitude and kinetics unchanged in PicBsn 

Parameter PicWT PicBsn p-value 

Amplitude (pA) 60.82 ± 2.29 60.82 ± 3.21 0.99 
10-90 Rise time (ms) 0.119 ± 0.003 0.117 ± 0.004 0.68 
FWHM (ms) 0.24 ± 0.01 0.26 ± 0.01 0.40 
Decay time (ms) 0.24 ± 0.01 0.25 ± 0.01 0.61 
Frequency (Hz) 4.04 ± 0.41 3.47 ± 0.72 0.37 
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Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test. PicWT N = 23; n = 23, PicBsn N = 5; n = 13 (N, number of 
animals; n, number of BCs). 

 

Figure 1b. 14: Miniature EPSC amplitude and kinetics preserved in PicBsn synapses 

(A) Representative traces of mEPSC: Continuous recording (left) and exemplary individual 
mEPSCs (right) for PicWT (A) and PicBsn (A’). (B) Analysis of mEPSC: mEPSC amplitude (B), 
decay time (B’), full-width at half-maximum (FWHM; B’’) rise time (B’’’), and frequency (B’’’’) 
remain unaltered. Each data point represents the mean estimate of a given BC. Normally 
distributed data presented as mean (grand average of the means of all BCs) ± S.E.M. (B-B’’’; 
n.s. – p-value > 0.05, Student’s t-test). Non-normally distributed data presented as box and 
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whisker plot (grand median (of the means of all BCs), lower/upper quartiles, 10-90 
percentiles; B’’’’; n.s. – p-value > 0.05, Wilcoxon rank sum test). PicWT N = 23; n = 23, PicBsn 
N = 5; n = 13 (N, number of animals; n, number of BCs). 

Next, evoked transmission was analyzed. eEPSC elicited by single stimulations demonstrated 

a normal eEPSC amplitude for single AP stimulation, hence contrasting the reduction we 

found upon Piccolo mutation alone (Table 1b. 7, Figure 1b. 15A). The kinetics of rise and 

decay also remained unchanged (Table 1b. 7, Figure 1b. 15C-E). The only difference detected 

was that the synaptic delay was slightly shorter at PicBsn endbulbs (Table 1b. 7, Figure 1b. 

15F). 

Table 1b. 7: eEPSC amplitude and kinetics intact in PicBsn synapses but shorter synaptic 
delay 

Parameter PicWT PicBsn p-value 

Amplitude (nA) 4.43 ± 0.37 4.10 ± 0.25 0.62 
10-90 Rise time (ms) 0.19 ± 0.01 0.21 ± 0.01 0.12 
FWHM (ms) 0.64 ± 0.03 0.66 ± 0.04 0.71 
Decay time (ms) 0.56 ± 0.02 0.59 ± 0.03 0.53 
Synaptic delay (ms) 0.89 ± 0.02 0.82 ± 0.01 0.013* 

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by unpaired Student’s t-test. For ePSC amplitude PicWT N = 21; n = 
35, PicBsn N = 6; n = 17. For kinetics and synaptic delay PicWT N = 19; n = 28, PicBsn N = 6; n = 17 (N, 
number of animals; n, number of BCs). 
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Figure 1b. 15: eEPSC amplitude and kinetics intact in PicBsn synapses but shorter synaptic 
delay 

(A) Average traces of evoked EPSC (eEPSC) in PicWT (black) and PicBsn (green) showing reduced 
eEPSC amplitude in the mutant. Inset: Average PicBsn eEPSC trace scaled to the peak of the average 
wildtype trace demonstrating unaltered eEPSC kinetics in the mutant. Positive peak at onset of trace 
reflects the stimulation artifact. (B) Reduced eEPSC amplitude in PicBsn (N = 6; n = 17) as compared 
to PicWT (N = 21; n = 35). Each data point represents the mean estimate of a given BC, with thick 
bars representing grand average (of the means of all BCs) ± S.E.M. (C-F) eEPSC kinetics: rise time (C), 
full-width at half-maximum (FWHM; D) and decay time (E) were not significantly altered in PicBsn (N= 
6; n = 17) as compared to PicWT (N = 19; n = 28). Synaptic delay (F) was shorter at PicBsn endbulbs. 
Data presented as grand average (of the means of all BCs) ± S.E.M. (n.s. – p-value > 0.05, * p-value 
<0.5, Student’s t-test). Data information: N, number of animals; n, number of BCs. 

Although, the single eEPSCs were largely unaltered, investigating responses to pairs of 

stimuli revealed a lower paired pulse ratio (PPR) at the endbulbs of PicBsn mice at three (3, 5 

and 10ms) inter stimulus intervals. PPR at 5 and 10ms were significantly lower, and at 3ms 

the difference was at the edge of statistical significance (p-value = 0.053; Wilconxon rank 

sum test; Table 1b. 8, Figure 1b. 16). 
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Table 1b. 8: Reduced paired pulse ratio at endbulbs of PicBsn 

Inter stimulus interval 
(ms) 

PicWT PicBsn p-value 

3 
0.91 ± 0.06 

(15) 
0.79 ± 0.04 

(13) 
0.053 

5 
0.91 ± 0.05 

(23) 
0.75 ± 0.03 

(14) 
0.03 * 

10 
0.91 ± 0.02 

(30) 
0.70 ± 0.03 

(16) 
6.67x10-5 **** 

Data presented as mean (grand average of the means of all BCs) ± S.E.M.  Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test. Sample size (number of BCs recorded) given in 
parentheses. 

 

Figure 1b. 16: Reduced paired pulse ratio at endbulbs of PicBsn  

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test. **** p-value < 0.0001, * p-value < 0.05. For sample size 
refer to Table 1b. 8 

A lower PPR is indicative of a higher release probability which was not seen in PicMut mice 

(except for a mild difference at 10ms; Table 1b. 4). To further analyze the effects of Bassoon 

disruption in addition to the absence of Piccolo, responses to high frequency train 

stimulations were studied, to assess the RRP size, release probability and pool dynamics. The 
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evoked response was quantified using cumulative analysis as described previously in section 

1b.4. Short-term depression at the endbulbs, as determined by τ (time constant of decay of 

the response to train stimulation) and EPSC30-50/EPSC1 (extent of depression), was slightly 

stronger at endbulbs of PicBsn mice than in PicWT, with maximum difference observed for 

100Hz stimulation (Figure 1b. 17B).  

Response to train stimulation decayed faster (smaller τ) in PicBsn endbulbs at 100Hz, but the 

effect diminished with increasing stimulation frequency (Table 1b. 9, Figure 1b. 17B-D). The 

steady state amplitude (the extent of depression, EPSC30-50/EPSC1) also tended to be lower in 

PicBsn endbulbs at all three frequencies, reaching statistical significance at 100 and 333 Hz. 

This contrasts with the phenotype observed with Piccolo mutation alone, where no 

discernible change in short-term depression was noted.  

Though the additional Bassoon manipulation altered the short-term depression at the 

endbulb, release probability (Pr) estimates were still comparable to the wildtype.  

Table 1b. 9: Comparison of pool size, vesicle replenishment, release probability and short-
term depression at the endbulb of Held synapse in PicBsn and PicWT 

Frequency Parameter PicWT PicBsn p-value 

 q 60.82 pA 60.82 pA  0.99 
 

100 Hz 
RRP (# vesicles) 300.76 ± 31.28 264.43 ± 40.40 0.35 
Repl.(#vesicles/ms) 1.79 ± 0.14 1.49 ± 0.22 0.24  
Pr 0.26 ± 0.07 0.28 ± 0.02 0.37 
EPSC30-50/EPSC1 0.32 ± 0.03 0.23 ± 0.02 0.03 * 
τ (ms)  42.79 ± 3.31 31.24 ±3.45 0.009 ** 

 
200 Hz 

RRP (# vesicles) 393.05 ± 46.09 347.02 ± 54.09 0.58 
Repl.(#vesicles/ms) 2.11 ± 0.26 1.75 ± 0.30 0.38 

Pr 0.21 ± 0.02 0.23 ± 0.02 0.52 
EPSC30-50/EPSC1 0.20 ± 0.03 0.14 ± 0.01 0.13 
τ (ms) 25.32 ± 2.76 19.96 ± 1.94 0.12 

 
333 Hz 

RRP (# vesicles) 322.47 ± 37.88 389.48 ± 62.17 0.37 
Repl.(#vesicles/ms) 2.15 ± 0.22 1.79 ± 0.46 0.08 
Pr 0.24 ± 0.04 0.21 ± 0.01 0.89 
EPSC30-50/EPSC1 0.13 ± 0.02 0.07 ± 0.02 0.02 * 
τ (ms) 14.43 ± 1.95 13.28 ± 1.02 0.39 

q: quantal size, taken from mEPSC amplitude; RRP: readily releasable pool; Repl.: replenishment rate 
of vesicles; Pr: release probability; EPSC30-50/EPSC1: average amplitude of EPSC 30 to 50 normalized to 
the amplitude of EPSC1; τ: time constant of a single exponential fit to the decay of evoked EPSC 



Chapter 1: Piccolo and Bassoon  

62 

 

amplitudes during train stimulation. Data presented as mean ± S.E.M. Statistical significance between 
groups was determined by either unpaired Student’s t-test (in case of normally distributed data with 
comparable variances between the groups) or Wilcoxon rank sum test (when data distribution did 
not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test and variances 
were compared with F-test. Sample size for 100 Hz- PicWT N = 19; n = 28, PicBsn N = 6; n = 17, 200Hz- 
PicWT N = 13; n = 21, PicBsn N = 5; n = 15, and 333Hz- PicWT N = 9; n = 13, PicBsn N = 6; n = 14. N, 
number of animals; n, number of BCs.  

 

Figure 1b. 17: Analyzing vesicle pool dynamics during high-frequency stimulation at 
Piccolo-deficient endbulb of Held synapses with partial Bassoon deficiency 

(A) Average traces of EPSCs evoked in response to 100Hz train stimulation, recorded from PicWT (A) 
and PicBsn (A’) synapses, illustrating characteristic fast kinetics and short-term depression of bushy 
cell EPSCs. (B-D) Short-term depression (represented as normalized amplitude vs stimulus number) 
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slightly stronger in PicBsn (green) as compared PicWT (black), in response to high-frequency train 
stimulation at 100Hz (B), 200Hz (C) and 333Hz (D).  (B’-D’) Absolute eEPSC amplitude vs stimulus 
number in PicWT (black) and PicBsn (green) in response to high-frequency train stimulation at 100Hz 
(B’), 200Hz (C’) and 333Hz (D’). (B’’-D’’) To estimate the readily releasable pool size, replenishment 
rate and release probability, EPSCs from trains were plotted cumulatively against stimulus number 
and the linear fit to the last ten steady-state amplitudes was back-extrapolated to the y-axis, for 
100Hz (B’)), 200Hz (C’’) and 333Hz (D’’). Data information: sample size for 100 Hz- PicWT N = 19; n = 
28, PicBsn N = 6; n = 17, 200Hz- PicWT N = 13; n = 21, PicBsn N = 5; n = 15, and 333Hz- PicWT N = 9; n 
= 13, PicBsn N = 6; n = 14. N, number of animals; n, number of BCs. 

Finally, the change in asynchronous release following the train stimulation was quantified as 

the rate of mEPSCs occurring in first 100ms after the end of 100Hz trains. Endbulb of Held 

synapses in the PicBsn mice tended to have more asynchronous activity as compared to 

wildtype synapses, but this did not yet reach statistical significance (Figure 1b. 18).  

 

Figure 1b. 18: Endbulbs of Held in PicBsn aVCN tend to have more asynchronous release 

(A) Example traces of asynchronous release events after 100Hz train stimulation in PicWT (A) and 
PicBsn (A’). Positive peaks at the beginning of each trace are the stimulus artifacts before the last 
EPSC of the train, which is followed by mEPSC corresponding to asynchronous release. (B) 
Asynchronous activity at the endbulb of Held synapse is quantified as number of mEPSC events per 
100ms after the cessation of 100Hz train stimulation. PicBsn endbulbs (N=4; n=13) showed a trend 
towards higher asynchronous activity as compared to PicWT (N=7; n=9) (p-value = 0.06, Student’s t-
test). N, number of animals; n, number of BCs. Error bars represent S.E.M.

 

1c Discussion 

The role of Piccolo in high frequency transmission was studied at the endbulb of Held 

synapses of the auditory pathway. Piccolo disruption elicited changes in the molecular 

composition of the AZ, some of which might partially compensate for Piccolo deficiency 
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(Bassoon) while the reduction of RIM1 might contribute to the observed deficit in vesicle 

replenishment. Through electrophysiology, evidence is provided for a role of Piccolo in 

maintaining the RRP size and efficiency of recovery from short-term depression.  

1c.1 Changes in molecular composition of endbulb AZs upon Piccolo disruption 

Deletion of exon 14 of Pclo along with insertion of a neomycin resistance cassette drastically 

reduced Piccolo expression as observed by semi-quantitative analysis by 

immunofluorescence. The reduction of Piccolo immunofluorescence on average amounted 

approximately to 90%, which is close to what was found by Western blotting of brain 

homogenate (95%; (Mukherjee et al., 2010)). Therefore, manipulation of Piccolo employed 

at the endbulb synapse was incomplete and, hence, the analysis likely underestimated the 

role of the protein. This calls for a refined genetic deletion that targets all splice variants. 

However, this drawback of the currently used Pclo manipulation also offered an advantage: 

the C-terminus, affected by the mutation, is absent from its shorter variant, Piccolino (Regus-

Leidig et al., 2013, 2014), the predominant Piccolo isoform at the ribbon synapses of the 

IHCs. The data illustrate that the Piccolino expression remains intact at the IHCs of PicMut. 

ABR recordings corroborated the notion of intact IHC synapses and indicated overall normal 

cochlear function (Figure 1b. 2). This provided a unique opportunity to selectively study the 

effects of Piccolo disruption at the endbulb without any bias from the preceding synapse 

that was confounding the previous analysis of Bassoon function at the endbulb synapse 

(Schulz et al., 2014). 

The gross morphology of the endbulb synapse was not affected by Piccolo disruption: the 

number of the auditory nerve fibers converging onto BCs and the number of AZs per 

endbulb remained unaltered. Since, Piccolo interacts directly or indirectly with most other 

CAZ proteins (Wang et al., 2009), how the molecular composition of AZ is affected upon its 

disruption was studied. Semi-quantitative expression analysis was employed by integrating 

immunofluorescence of excitatory and inhibitory AZs onto BCs. Since excitatory AZs were 

required to co-localize with Vglut1 that is thought to distinguish endbulb terminals from 

Vglut2-positive bouton endings (Heeringa et al., 2016), it is reasonable to consider the 

analysis of excitatory AZs to mostly report properties of endbulb AZs. Out of the 4 CAZ 
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proteins (Bassoon, RIM1, RIM2 and Munc13-1) investigated, expression levels of Bassoon 

and RIM1 were significantly altered at endbulb AZs. It is interesting to note, that the two 

proteins that were altered, share regions of homology with Piccolo (Wang et al., 1999). RIM 

and Piccolo share similarity in their Zn finger domain, PDZ domain and two C-terminal C2 

domains and Bassoon shares 10 highly conserved PBH domains (tom Dieck et al., 1998; 

Fenster et al., 2000; Wang et al., 1999). RIM1 level was reduced while the Bassoon level was 

increased. It can be speculated that the reduction in RIM1 level could be a consequence of it 

being not integrated properly at the synapse in the absence of its interaction with Piccolo, as 

Piccolo is thought to play an integral role in AZ assembly and scaffolding (Gundelfinger et al., 

2016). Bassoon, on the other hand, thought to have partially overlapping functions with 

Piccolo (Waites et al., 2013), could be upregulated in PicMut as a compensatory mechanism. 

This is line with a previous report (Schulz et al., 2014), where Piccolo expression was 

upregulated in Bassoon deficient synapses, likely to compensate for the loss of some of 

Bassoon’s function. 

1c.2 Piccolo disruption mildly affects synaptic transmission at the endbulb of Held 

So far a unifying picture of the role of Piccolo in synaptic transmission has been missing. 

While one study implicated Piccolo as a negative regulator of SV exocytosis (Leal-Ortiz et al., 

2008), other ones claimed Piccolo plays no role in SV release (Mukherjee et al., 2010) or, 

together with Bassoon, contributes to maintenance of the structural integrity of the AZ 

(Waites et al., 2013). In the present study of the endbulb of Held synapse, an amplitude 

reduction of eEPSCs evoked by single action potentials was observed. Kinetics, on the other 

hand, were not changed either for eEPSCs or for mEPSCs. The unaltered mEPSC amplitude 

(quantal size) rules out post-synaptic changes in abundance or properties of AMPA 

receptors. In contrast, global disruption of Bassoon increased the quantal size (Schulz et al., 

2014). This was suggested to reflect homeostatic upscaling of excitatory synaptic contacts in 

response to reduced SGN input to BCs due to impaired synaptic sound encoding in the 

cochlea. Excluding postsynaptic alterations and changes in vesicular glutamate content 

based on the unaltered mEPSCs, leaves two possibilities, either a reduction in release 

probability (Pr) or RRP size to explain the reduced eEPSC amplitude.  
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The cumulative analysis of eEPSC trains (Schneggenburger et al., 1999) indicated a reduced 

RRP size as the primary reason for the reduced eEPSC amplitude. Pr, on the other hand, 

seemed largely unaltered as per cumulative analysis and paired-pulse ratio (smaller only for 

10ms). Vesicle replenishment was slower during high frequency stimulation and after 

cessation of the stimulus, where the fast phase of recovery was slowed by a factor of three. 

The impaired replenishment likely contributes to the reduced RRP, as the rate of vesicle 

supply to the RRP might not balance that of consumption by spontaneous release (Pangrsic 

et al., 2010) and/or the rate of unpriming (Smith et al., 1998). Piccolo’s contribution to 

vesicle replenishment could be attributed to its interaction with actin regulatory protein like 

Daam1, required for F-actin assembly (Wagh et al., 2015), that may regulate conversion of 

reluctant SVs to the fast releasing RRP (Lee et al., 2012). Moreover, the reduction in RIM1 

might contribute as RIMs play a crucial role in making vesicles fusion competent (Deng et al., 

2011; Fernández-Busnadiego et al., 2013b; Gracheva et al., 2008; Han et al., 2011; Jung et 

al., 2015b; Kintscher et al., 2013; Wang et al., 1997) and hence in determining the RRP size 

(Han et al., 2015). With its extended reach into the cytosol, tens of nanometers beyond the 

dense projections of the CAZ (Limbach et al., 2011), Piccolo might escort SVs from further 

away in the presynaptic cytosol and deliver them to RIM to make them release ready. The 

reduction in RIM1 expression reported in this study could be in line with this synaptic 

interplay. Future electron microscopy analysis will be helpful to assess potential 

morphological correlates of the reduced RRP. Interestingly, a trend towards further slowing 

of the fast phase of recovery from short-term depression was observed upon disrupting one 

allele of Bassoon, in addition to the mutation of Piccolo. Nevertheless, finding reduced 

vesicle replenishment upon disruption of either Bassoon (Hallermann et al., 2010b; Schulz et 

al., 2014) or Piccolo suggests that neither protein is sufficient to maintain wildtype 

performance of SV replenishment, even despite a likely compensatory, up-regulation of the 

respective other gene.  

This implies partially overlapping function, probably even at the same AZs as the majority of 

them contain both proteins (Dondzillo et al., 2010; Schulz et al., 2014), although Piccolo and 

Bassoon may promote replenishment through different molecular pathways. As discussed 

above, Piccolo might employ an interplay of F-actin assembly, interaction with other CAZ 
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proteins like RIM and its Ca2+ sensing domain. Bassoon on the other hand, might tether SVs 

via interactions with the SV associated protein Mover (Ahmed et al., 2013; Körber et al., 

2015b) and could also assist in positioning of Ca2+ channels (Davydova et al., 2014) and SVs 

close to each other.  

The conclusion of partially overlapping roles of Piccolo and Bassoon in vesicle replenishment 

has also been derived in a parallel study on the calyx of Held using virus-mediated knock-

down of Piccolo (Partthier et al). Future work will be required to dissect the precise 

molecular mechanisms by which Piccolo acts in vesicle replenishment. This should also 

target roles of Piccolo in SV endocytosis and low-affinity Ca2+ sensing. Piccolo binds actin 

associated proteins like Abp1 (Fenster et al., 2003), and GIT1 (Kim et al., 2003), both of 

which have been linked to SV endocytosis. As stated earlier, Piccolo plays a role in dynamic 

assembly of F-actin, which is needed for retrieval of SVs both by bulk (Nguyen et al., 2012) 

and ultrafast (Watanabe et al., 2013) endocytosis. The finding that only the fast component 

of recovery was affected would imply a rapid mechanism, such as ultrafast endocytosis or 

release-site clearance (Haucke et al., 2011), to be involved. The C2A domain of Piccolo acts as 

a low- affinity Ca2+ sensor (Garcia et al., 2004; Gerber et al., 2001), which is ideal to sense 

Ca2+ build-up during high-frequency activity at the synapse. At the endbulb of Held, Ca2+ 

drives the fast component of recovery (Wang and Manis, 2008; Yang and Xu-Friedman, 

2008) and Piccolo is an interesting candidate as the sensor driving this Ca2+ dependent rapid 

recovery.  

1c.3 Segregation of the roles of Piccolo and Bassoon at the active zone 

Disruption of either Piccolo or Bassoon leads to impaired vesicle replenishment (this study 

and (Schulz et al., 2014)). Therefore, Piccolo mutant mice with additional heterozygosity for 

a partial deletion of the Bassoon gene (PicBsn mice, Bsn: deletion of exons 4 and 5 (Altrock 

et al., 2003b)), were further probed for vesicle replenishment to elucidate potential 

overlapping functions of Bassoon and Piccolo. The phenotype observed was intermediate 

between the changes in neurotransmission seen in Piccolo- (reported in the study) and 

Bassoon-deficient endbulbs (Schulz et al., 2014), while Bassoon heterozygosity did not exert 

any synaptic deficits by itself (Schulz et al., 2014). However, at the endbulb of Held, Bassoon 
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heterozygotes in the absence of Piccolo demonstrate a reduced PPR indicative of an 

increased release probability, faster and greater extent of depression to train stimulation, 

and a tendency for higher asynchronous release upon cessation of high frequency 

stimulation.   

One thing that seems surprising, is that the eESPC amplitude and RRP size, which were 

reduced in Piccolo deficient endbulbs, seem comparable to the PicWT values in PicBsn mice. 

In Bassoon KO, eEPSC amplitude was comparable to that of the wildtype because of 

homeostatic upscaling of excitatory synaptic contacts in response to reduced SGN input to 

BCs due to impaired synaptic sound encoding in the cochlea. However, this is not valid for 

PicBsn mice, as the cochlea does not suffer from Piccolo deficiency. Thus, one allele of 

Bassoon is sufficient to sustain neurotransmission at the cochlear ribbon synapses. This is 

reflected in the unaltered mEPSC amplitude, as opposed to an increase observed at 

endbulbs of Bassoon KO (Schulz et al., 2014). I speculate that normal eEPSC amplitude at 

PicBsn endbulbs, is likely due to their increased release probability.  

However, the RRP estimation is contrary to expectation, as a reduced RRP was reported for 

both Bassoon  (Schulz et al., 2014) and Piccolo deficient (this study) endbulbs individually.  

Here it should be noted that the RRP estimation for comparison between PicWT and PicBsn 

endbulbs might be compromised because of a lower steady-state amplitude (greater extent 

of decay) and a faster decay of depression in response to train stimulations in PicBsn 

endbulbs. The cumulative analysis (Schneggenburger et al., 1999) used to calculate RRP, 

reports the decrement of pool during stimulation and not the pool itself (Neher, 2015). Thus, 

because of greater depression in the PicBsn synapses as compared to PicWT endbulbs, there 

might be a larger estimate of RRP size than in the PicWT. Since, the release probability, 

decay kinetics and extent of depression were comparable in PicMut and PicWT endbulbs, 

even the subtle difference in RRP size might have been revealed. This error in RRP estimation 

could be overcome by either employing corrections for the change in release probability at 

the start and end of the response to train stimulation (Neher, 2015) or employing another 

analysis that does not calculate RRP by the decrease in response but the size of pool that 

exists before the stimulation, like the Elmqvist-Quastel estimation (Elmqvist and Quastel, 
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1965; Neher, 2015). Alternatively, more challenging approach of calculating RRP by 

presynaptic capacitance changes can be employed (Lin et al., 2011).  

Taken together, partial lack of Bassoon in Piccolo deficient synapses seems to add changes in 

the release probability to the phenotype observed in PicMut mice. It is interesting to 

speculate that Piccolo and Bassoon indeed, maintain synaptic vesicle clustering at the 

synapse (Mukherjee et al., 2010), but while they both have collaborative role in vesicle 

replenishment, Bassoon might have a role in regulation of release as well. This hypothesis 

opens questions and a need for further investigations to probe the changes in interactions 

and compositions of the CAZ proteins, and the active zone ultrastructure in the absence of 

two of its largest proteins. 



 

70 

 

 

Chapter 2 

 

 

 RIM-BP2 as a regulator of neurotransmitter release at a 

central auditory synapse – the endbulb of Held 

  



 

71 

 



Chapter 2: Introduction 

72 

 

2a Introduction 

Neurotransmitter release: Need for Speed 

As the action potential invades the presynaptic compartment of the synapse, the VGCC are 

opened, resulting in a transient increase in local Ca2+ concentration at the presynaptic active 

zone. This Ca2+ reaches the calcium sensors (e.g. Synaptotagmin1/2/9 in CNS synapses) on 

the primed synaptic vesicles, setting in motion the machinery (SNAREs/SM proteins/other 

auxiliary proteins) for membrane fusion and eventual release of neurotransmitters from 

fused synaptic vesicles. The hallmark of this Ca2+ triggered release is its speed. Ca2+ triggers 

neurotransmitter release within a few hundred microseconds (e.g. Meinrenken et al., 2003). 

And the prerequisite for this speed is proximity of the source of Ca2+ to the vesicular release 

site. In fact, the distance of synaptic vesicles from VGCC determines the time course of their 

release (Chen et al., 2015), likely explaining the division of the pool of vesicles into fast and 

slow releasing sub-pools (Sakaba and Neher, 2001b).  

Cytomatrix of the Active Zone:  Coupling synaptic vesicles to VGCC 

As discussed in the introduction (section 2) and chapter 1, the network of proteins at the 

active zone (AZ), the cytomatrix of the active zone (CAZ), plays an integral role in regulating 

neurotransmitter release. The CAZ proteins are involved in AZ formation (Maas et al., 2012; 

Shapira et al., 2003; Zhai et al., 2001) and maintenance (Waites et al., 2013), docking and 

priming of the pool of vesicles to be released (Augustin et al., 1999; Deng et al., 2011; 

Gracheva et al., 2008; Imig et al., 2014; Koushika et al., 2001; Schoch et al., 2002), and in 

clustering and positioning of the VGCC close to the synaptic vesicles (Frank et al., 2010; Han 

et al., 2011; Kaeser et al., 2011).  

RIMs have been known to bind VGCC through their PDZ domain (Kaeser et al., 2011) and 

hence are essential for Ca2+ channels positioning at the AZ (Grabner et al., 2015; Han et al., 

2011; Jung et al., 2015b; Kaeser et al., 2011; Kintscher et al., 2013). In addition to binding to 

the RIMs Ca2+ channels also bind to SH3 domain of RIM-BPs, which in turn are also interact 

with RIMs (Hibino et al., 2002). RIMs, as is well known, are essential for synaptic vesicle 
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docking and priming (Betz et al., 2001; Deng et al., 2011; Dulubova et al., 2005; Gracheva et 

al., 2008; Han et al., 2011; Koushika et al., 2001; Schoch et al., 2002; Wang et al., 1997). 

Basically, VGCC-RIM-RIM-BP can be envisaged as a tripartite complex linking the vesicles to 

the vicinity of Ca2+ channels, to be released (Figure 2a. 1).  

 

Figure 2a. 1: Illustration of interactions between RIM-BPs with Bassoon, RIM and VGCC 

The interactions of RIM-BPs with other CAZ proteins (RIM and Bassoon) and the VGCC is proposed as 
the link coupling Ca2+ influx to synaptic vesicle release. Image taken from (Davydova et al., 2014). 

More recently, Bassoon has joined this medley of proteins coupling synaptic vesicles to Ca2+ 

channels. Bassoon was reported to have a role in positioning and clustering of VGCC (Frank 

et al., 2010) but recently it was found to specifically regulate the positioning of P/Q- type 

Ca2+ channels at the AZ through its interactions with the SH3 domain of RIM-BP (Davydova et 

al., 2014). Since Bassoon has been implicated in recruitment of SVs to release sites (Frank et 

al., 2010; Hallermann et al., 2010b; Schulz et al., 2014), the triad of VGCC-Bassoon-RIM-BP is 

yet another bridge linking the SVs to Ca2+ channels (Figure 2a. 1). What stands out here is 

that the two proposed complexes regulating Ca2+ channels to SV proximity have RIM-BP at 

the central node. 
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Vertebrates express three RIM-BP genes: while RIM-BP1 and 2 are primarily found in the 

brain, RIM-BP3 is expressed outside of the brain (Mittelstaedt and Schoch, 2007). Studies 

from the drosophila neuromuscular junction (NMJ) AZ have shown that the absence of 

drosophila homolog of RIM-BP (DRBP) has severe structural and functional deficits (Liu et al., 

2011; Müller et al., 2015). The studies conducted in mammalian synapses, however, did not 

report any dramatic effects of RIM-BP deletion at the synapse. The work from hippocampal 

synapses reported a subtle reduction in release probability in the absence of RIM-BP2 which 

led to increased facilitation at the synapse (Grauel et al., 2016). They also revealed an 

impaired VGCC clustering at the AZ, which it in turn led to loosening of the coupling between 

Ca2+ channels and SV. They also found RIM-BP1 to exert no additional effect and RIM-BP2 to 

be the dominant isoform at hippocampal synapses. 

A more elaborate study from the calyx of Held reported a very subtle phenotype (Acuna et 

al., 2015). They studied calyceal synapses deficient in both RIM-BP 1 and 2, and reported a 

reduced reliability of synaptic transmission and an increased distance between the Ca2+ 

channels and the SVs based on increased sensitivity to the ‘slow’ Ca2+ chelators EGTA. More 

recently, the same group proposed a functional redundancy between RIMs and RIM-BPs 

(Acuna et al., 2016) further undermining the role RIM-BP play in the orchestration of Ca2+ 

triggered neurotransmitter release.  

In this study, constitutive RIM-BP2 knock-out mice have been used to elucidate its function 

at the hub of the release machinery. Again, the endbulb of Held synapse has been employed 

to study the physiological repercussions of RIM-BP2 deletion. As stated earlier (section 1a), 

given the high functional demands, these synapses are ideal to reveal any deficit in the 

synaptic machinery. Although, the studies in the calyx of Held (Acuna et al., 2015, 2016) did 

not reveal major implications of RIM-BP deficiency, it should be noted that they study was 

conducted in immature (P9-11) animals, hence potentially underestimating the impact. 

Here, at mature endbulbs of Held, RIM-BP2 deficiency seems to drastically change the 

characteristic short-term depression of the synapse to short-term facilitation, likely 

representing a reduction in release probability consistent with a deficit in coupling VGCC to 

vesicular release sites.
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2b Results 

2b.1 Knocking-out RIM-BP2 reduces the amplitude and alters the kinetics of evoked EPSCs 

at the endbulb of Held but leaves miniature EPSCs unaltered 

To study the physiological implications of the loss of RIM-BP2 on synaptic transmission, the 

endbulb of Held was employed to study all three modes of release (Kaeser and Regehr, 

2014): spontaneous, evoked and asynchronous. Starting with spontaneous, mEPSC were 

recorded as spontaneous events from postsynaptic bushy cells in the aVCN, as described in 

section 1b.3. The only difference is that in this study all recordings were made without 

Kynurenic acid or Cyclothiazide. The reason for this will be elaborated upon while discussing 

the short-term plasticity changes in the mutant in section 2c.1.  

mEPSC were unaltered at the endbulb of Held in the absence of RIM-BP2. No difference was 

observed in the mEPSC amplitude (Table2b. 1, Figure 2b. 1B’’’’), kinetics (Table2b. 1, Figure 

2b. 1B-B’’) or frequency (Table2b. 1, Figure 2b. 1B’’’). This is agreement with the recent 

reports from hippocampal cultures and slices (Grauel et al., 2016) and the calyx of Held 

(Acuna et al., 2015). 

Table 2b. 1: No change in mEPSC at the endbulb of Held in the absence of RIM-BP2 

Parameter WT RIM-BP2 KO p-value 

Amplitude (pA) 130.54 ± 12.06 112.48 ± 4.03 0.22 
10-90 Rise time (µs) 93.03 ± 2.80 93.72 ± 2.18 0.85 
FWHM (µs) 181.02 ± 8.01 187.91 ± 4.19 0.46 
Decay time (µs) 157.10 ± 9.64 167.50 ± 5.21 0.36 
Frequency (Hz) 7.65 ± 1.28 8.01 ± 1.09 0.83 

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test. WT N = 4; n = 10, RIM-BP2 KO N = 7; n = 19 (N, number of 
animals; n, number of BCs). 
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Figure 2b. 1: No change in mEPSC at the endbulb of Held in the absence of RIM-BP2 

A) Representative traces of mEPSC: Continuous recording (left) and exemplary individual 
mEPSCs (right) for WT (A) and RIM-BP2 KO (A’). (B) Analysis of mEPSC: mEPSC amplitude (B), 
decay time (B’), full-width at half-maximum (FWHM; B’’) rise time (B’’’), and frequency (B’’’’) 
remain unaltered. Each data point represents the mean estimate of a given BC. Normally 
distributed data presented as mean (grand average of the means of all BCs) ± S.E.M. (B-B’’’; 
n.s. – p-value > 0.05, Student’s t-test). Non-normally distributed data presented as box and 
whisker plots (grand median (of the means of all BCs), lower/upper quartiles, 10-90 
percentiles; B’’’’; n.s. – p-value > 0.05, Wilcoxon rank sum test). WT N = 4; n = 10, RIM-BP2 
KO N = 7; n = 19 (N, number of animals; n, number of BCs). 

For the analysis of evoked transmission, first the eEPSCs in response to single pulse 

stimulations were analyzed. This revealed reduced eEPSC amplitude in BCs of RIM-BP2 KO 

mice as compared to wildtype (Figure 2b. 2A, B) , as was observed for hippocampal synapses 

(Grauel et al., 2016) and at the calyx of Held (Acuna et al., 2015). Additionally, eEPSC kinetics 
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were altered. Apart from rise time, half-width and decay times were both increased by 21% 

and 25% respectively (Figure 2b. 2A’, D-E). Increased half-width was also observed at the 

calyx of Held (Acuna et al., 2015), but not the increase in decay time. RIM-BP2 even 

demonstrated a small but significant increase in synaptic delay at the endbulb of Held 

(Figure 2b. 2A,F), which was also reported for the calyx of Held (Acuna et al., 2015). For data 

analysis (Table 2b. 2, Figure 2b. 2) comprises of data points from RIM-BP2 KO littermate 

controls and C57/Bl6 wildtypes. The average traces (Figure 2b.2 A-A’) for illustration of the 

phenotype depict only the dataset from RIM-BP2 KO and littermate WT.  

 

Figure 2b. 2: Reduced eEPSC amplitude and slower kinetics with increased synaptic delay 
at endbulbs of Held in RIM-BP2 KO mice 

(A) Average traces of evoked EPSC (eEPSC) in littermate WT (black; N = 4; n = 6) and RIM-BP2 (blue; 
(N = 6; n = 17) showing a reduced eEPSC amplitude in the mutant (A). Average RIM-BP2 eEPSC trace 
scaled to the peak of the average wildtype trace demonstrating altered eEPSC kinetics in the mutant. 
Positive peak at onset of trace reflects the stimulation artifact. (B) Reduced eEPSC amplitude in RIM-
BP2 KO (N = 6; n = 17) as compared to WT (N = 17; n = 22). Each data point represents the mean 
estimate of a given BC, with thick bars representing grand average (of the means of all BCs) ± S.E.M. 
(C-F) eEPSC kinetics: rise time (C) was unaltered; full-width at half-maximum (FWHM; D) and decay 
time (E) were significantly prolonged in RIM-BP2 KO (N= 7; n = 18) as compared to WT (N = 16; n = 
21). Synaptic delay (F) was also increased at RIM-BP2 endbulbs. Each data point represents the mean 
estimate of a given BC. Normally distributed data presented as mean (grand average of the means of 
all BCs) ± S.E.M. (C-D; *** – p-value < 0.001, Student’s t-test). Non-normally distributed data 
presented as box and whisker plots (grand median (of the means of all BCs), lower/upper quartiles, 
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10-90 percentiles; B, C,F; n.s. – p-value > 0.05, ** – p-value < 0.01, * – p-value < 0.05 Wilcoxon rank 
sum test). N, number of animals; n, number of BCs. 

Table 2b. 2: Reduced eEPSC amplitude and slower kinetics with increased synaptic delay at 
endbulbs of Held in RIM-BP2 KO mice 

Parameter WT RIM-BP2 KO p-value 

Amplitude (nA) 6.57 ± 0.47 4.54 ± 0.75 0.004** 
10-90 Rise time (ms) 0.19 ± 0.02 0.18 ± 0.01 0.49 
FWHM (ms) 0.38 ± 0.01 0.46 ± 0.02 0.0005*** 
Decay time (ms) 0.28 ± 0.02 0.35 ± 0.02 0.0004*** 
Synaptic delay (ms) 0.82 ± 0.03 0.89 ± 0.02 0.013* 

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Statistical significance 
between groups was determined by either unpaired Student’s t-test (in case of normally distributed 
data with comparable variances between the groups) or Wilcoxon rank sum test (when data 
distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-Bera test 
and variances were compared with F-test. For sample size refer to Figure 2b.2. 

2b.2 Absence of RIM-BP2 changes short-term depression characteristic for the endbulb of 

Held to short-term facilitation 

To characterize the changes in short-term plasticity at the endbulb of Held in RIM-BP2 mice, 

responses to high frequency train stimulation were studied. BCs in the mouse aVCN normally 

demonstrate characteristic short-term depression in response to train stimulation (Chanda 

and Xu-Friedman, 2010). However, upon analysis, at RIM-BP2 KO endbulbs the PPR, 

calculated as the ratio of the amplitude of second EPSC in the train to that of the first EPSC 

of the train (EPSC2/EPSC1), was significantly increased by at least 35% at all three frequencies 

(Table 2b. 3, Figure 2b. 3). Other studies corroborate this increase in PPR in the absence of 

RIM-BP2 (Acuna et al., 2015; Grauel et al., 2016).  

The bushy cell short-term depression was effectively replaced by an initial short-term 

facilitation due to the lack of RIM-BP2 at the synapse. Though, after the initial facilitation, 

the KO response decayed to a steady-state level comparable to that of the wildtype (EPSC30-

50/EPSC1; Table 2b. 3, Figure 2b. 3).  

Despite, the convergence of steady-state response in RIM-BP2 and WT, the decay of 

response in the mutant was significantly slower at all three frequencies (τ (ms); Table 2b. 3, 

Figure 2b. 3).  
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Table 2b. 3: Short-term depression replaced by facilitation at endbulbs of Held in RIM-BP2 
KO mice 

Frequency Parameter WT RIM-BP2 KO p-value 

100Hz 
PPR 0.84 ± 0.03 1.15 ± 0.01 1.85x10-5**** 
EPSC30-50/EPSC1 0.39 ± 0.03 0.54 ± 0.06 0.092 
τ (ms)  43.56 ± 5.01 126.20 ± 20.41 0.00012*** 

200Hz 
PPR 0.81 ± 0.03 1.10 ± 0.07 0.0007*** 
EPSC30-50/EPSC1 0.27 ± 0.02 0.27 ± 0.04 0.92 
τ (ms) 20.66 ± 2.44 44.89 ± 7.02 0.0012** 

333Hz 
PPR 0.81 ± 0.04 1.15 ± 0.15 0.0056** 
EPSC30-50/EPSC1 0.18 ± 0.02 0.17 ± 0.03 0.78 
τ (ms) 8.90 ± 0.89 15.38 ± 2.21 0.016* 

Data presented as mean (grand average of the means of all BCs) ± S.E.M. Data information: WT 
comprises of data points from RIM-BP2 KO littermate controls and C57/B6 wildtypes. Sample size for 
100 Hz:- WT N = 17; n = 22, RIM-BP2 N = 6; n = 17, 200Hz:- WT N = 17; n = 21, RIM-BP2 N = 7; n = 15, 
and 333Hz:- WT N = 12; n = 16, RIM-BP2 N = 5; n = 10. N, number of animals; n, number of BCs. 
Statistical significance between groups was determined by either unpaired Student’s t-test (in case of 
normally distributed data with comparable variances between the groups) or Wilcoxon rank sum test 
(when data distribution did not satisfy the criteria). Normality of distribution was tested with Jarque-
Bera test and variances were compared with F-test. **** p-value < 0.0001, *** p-value < 0.001, * p-
value < 0.05. 

 

Figure 2b. 3: Short-term depression replaced by facilitation at endbulbs of Held in RIM-BP2 
KO mice 

(A) Average traces of EPSCs evoked in response to 100Hz train stimulation, recorded from WT (A) 
illustrating characteristic fast kinetics and short-term depression of bushy cell EPSCs and RIM-BP2 KO 
(A’) synapses, demonstrating the change in short-term depression to facilitation. (B-D) Short-term 
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plasticity (represented as normalized amplitude vs stimulus number) changes in RIM-BP2 (blue) as 
compared littermate WT (black), in response to high-frequency train stimulation at 100Hz (B), 200Hz 
(C) and 333Hz (D). Data represented as average trace ± S.E.M. For illustration of the phenotype only 
the datasets from RIM-BP2 KO and littermate WT are shown (B-D). Data information: for 100Hz:- WT 
N = 4; n = 6, RIM-BP2 N = 6; n = 17, 200Hz:- WT N = 4; n = 6, RIM-BP2 N = 7; n = 15, and 333Hz:- WT N 
= 3; n = 5, RIM-BP2 N = 5; n = 10. N, number of animals; n, number of BCs. 

2b.3 RIM-BP2 deficiency slows down the speed of recovery from short-term depression 

and leads to increased asynchronous release after stimulation at the endbulb of Held 

Recovery after vesicle depletion was studied, by measuring eEPSC amplitudes elicited by 

single stimuli presented at varying time intervals after a conditioning 100Hz train of 50 

pulses (Figure 2b. 4A). Recovery is displayed as eEPSC amplitudes normalized to the 

amplitude of the first eEPSC of the conditioning train (Figure 2b. 4B). A single exponential 

function was used to fit the time course of recovery. Normally, a double exponential 

function fits the time course of recovery from vesicle depletion at the endbulb of Held 

(Schulz et al., 2014; Yang and Xu-Friedman, 2008). However, in this case the time course of 

recovery in RIM-BP2 was fit better with a single exponential function. Hence, both the WT 

and KO time courses of recovery were described by single exponential fits to facilitate 

comparison. The endbulbs of RIM-BP2 KO mice show a slower recovery after vesicle 

depletion. However, this inference needs to be validated with further experiments due to 

the limited sample size. Other studies, in hippocampal synapses (Grauel et al., 2016) and the 

calyx of Held (Acuna et al., 2015), did not report a similar deficit in the recovery but a study 

from Drosophila neuromuscular junction reported a role of RIM binding protein (drbp) in 

vesicle resupply (Müller et al., 2015).  
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Figure 2b. 4: Slower recovery from short-term depression at endbulbs of Held lacking RIM-
BP2 

(A) Trace of a WT endbulb synapse to illustrate the recovery protocol. Following a conditioning 100Hz 
train of 50 stimuli, recovery from short-term depression was assessed by single test pulses presented 
after (in ms) 25, 50, 75, 100, 250, 500 (further in s) 1, 2, 4, 6, 10, 12 and 16. Inset shows the 
responses to the first 5 stimuli in detail. (B) Recovery plotted as mean (± S.E.M.) EPSC amplitude in 
response to test pulses normalized to the first EPSC amplitude of the conditioning train. Dashed lines 
are single exponential fits. The time constants (τ) are provided on the graph. WT comprises of data 
points from RIM-BP2 KO littermate controls and C57/B6 wildtypes. WT N = 19; n = 22, RIM-BP2 KO N 
= 3; n = 9. 

Asynchronous release was analyzed as the rate of mEPSC events occurring in the first 100ms 

after the end of 100Hz train stimulation. As compared to wildtype, the endbulbs of RIM-BP2 

KO mice show significantly higher asynchronous activity as compared to WT following the 

cessation of synchronous release in response to high frequency train stimulation (Figure 2b. 

5). 
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Figure 2b. 5: Increased asynchronous release at the endbulbs of Held in RIM-BP2 aVCN 

(A) Example traces of asynchronous release events after 100Hz train stimulation in WT (A) and RIM-
BP2 (A’). Positive peaks at the beginning of each trace are the stimulus artifacts before the last EPSC 
of the train, which is followed by mEPSC corresponding to asynchronous release. (B) Asynchronous 
activity at the endbulb of Held synapse is quantified as number of mEPSC events per 100ms after the 
cessation of 100Hz train stimulation. Asynchronous activity increased at the RIMP-BP2 KO endbulbs 
(* – p-value < 0.05, Wilcoxon’s rank sum test). Data information: WT (data points from RIM-BP2 KO 
littermate controls and C57/B6 wildtypes) WT N = 7; n = 10, RIM-BP2 N = 6; n = 18. Error bars 
represent S.E.M. 

2c Discussion 

Ca2+ evoked neurotranmsitter release is remarkably fast (Borst and Sakmann, 1996) and is 

elicited within a few hundred microseconds after the action potential invades the 

presynaptic terminal (Meinrenken et al., 2003). This speed requires a tight coupling of 

voltage-gated Ca2+ influx and neurotransmitter release from SVs. To ensure this coupling 

VGCC are placed in close spatial proximity to the release-ready vesicles at the active zones 

(Eggermann et al., 2012). The data suggest that RIM-BP2 acts as a molecular linker 

contributing to this Ca2+ influx- exocytosis coupling. 

2c.1 Loss of RIM-BP2 changes short-term plasticity at the endbulb of Held and impairs 

evoked release 

The most striking observation at the endbulb of Held in the absence of RIM-BP2 was the 

increase in PPR and consequent change of short-term depression to initial facilitation. It 

should be noted that the recordings were made in the absence of Kynurenic acid or 
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Cyclothiazide, so the post-synaptic processes of receptor desensitization and saturation 

cannot be excluded. However, it can be reasoned that since the second EPSC facilitates, the 

release in the first EPSC did not saturate/desensitize the receptors in case of the RIM-BP2-

deficient endbulbs. Rather, the synaptic phenotype might have even been underestimated, 

as a higher increase in PPR could result in the absence of receptor desensitization and 

saturation. 

Since, the response to train stimulation failed to reach a steady-state plateau during the 

duration of the stimulus, cumulative analysis (Schneggenburger et al., 1999) could not be 

used to estimate release probability or RRP size (Neher, 2015). In this scenario, measuring 

excoytosis by calculating changes in presynaptic membrane capacitance (Sun and Wu, 2001) 

or by assessment of postsynaptic response to pool depleting presynaptic depolarization 

(Sakaba and Neher, 2001a), might provide better estimation of RRP and release probability. 

Nevertheless, the increased PPR, and the slower kinetics and reduced extent of synaptic 

depression during train stimulation, point to a reduced release probability at the endbulb of 

Held in RIM-BP2 KO mice. The consequence of this reduced release probability is also seen in 

the reduced evoked EPSC amplitude. Even though one cannot eliminate the possibility of a 

reduced RRP that might contribute to a reduced EPSC amplitude, other studies (Acuna et al., 

2015; Grauel et al., 2016) did not reveal any reduction in RRP at the calyx of Held synapse 

and hippocampal synapses respectively. Hence, it is safe to assume a reduced release 

probability as a major contributor to the reduced EPSC amplitude.   

Beyond the lower amplitude, the single AP-evoked EPSC in the RIM-BP2 KO endbulbs also 

demonstrated an increased synaptic delay and slower kinetics (increased half-width and 

slower decay time). While, the synaptic delay is indicative of malfunction of the release 

apparatus, the slower kinetics could also be due to changes in postsynaptic receptors. 

However, unaltered kinetics of mEPSCs rule out postsynaptic contributions. Thus, both the 

synaptic delay and the slow kinetics seem to be presynaptic in origin.  

Indeed, our preliminary results (data not shown) and Grauel et al., 2016 show that the KO 

phenotype was rescued by increasing extracellular Ca2+ concentration. This could imply that 
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the Ca2+ influx or the topography of presynaptic Ca2+ channels is impaired. Alternatively, the 

sensitivity of the release machinery to Ca2+ is reduced or the fusion competence of synaptic 

vesicles might be impaired at KO synapses. Given the interaction of RIM-BP2 with Ca2+ 

channels and with vesicular release sites via RIM, I favor the interpretation that the coupling 

of Ca2+ influx to exocytosis is compromised at RIM-BP2 deficient synapses. Acuna et al., 2015, 

through unchanged presynaptic Ca2+ currents claimed that the Ca2+ influx is unaffected at the 

calyx of Held. If the Ca2+ influx in unperturbed also at RIM-BP2 deficient endbulb synapses, 

the loss of sensitivity to Ca2+ might still be mediated through an increased coupling distance 

between the Ca2+channels and the fusion machinery e.g. via changes in Ca2+ channel 

clustering at the synapse. Indeed Acuna et al., 2015 demonstrated a loosening of spatial 

coupling of Ca2+ channels to release sites based on higher sensitivity of release to slow Ca2+ 

buffer EGTA. However, this study was conducted at immature synapses (P10-12). Since there 

is a developmental change from loose spatial coupling of N-and P/Q type Ca2+ channels to 

release machinery in immature synapses, to a tightly coupled P/Q-type Ca2+ channels 

(Fedchyshyn and Wang, 2005), it might have underestimated the change in coupling 

distance brought about by the disruption of RIM-BPs. Indeed, the preliminary analysis of Ca2+ 

channel clusters at release sites of mature calyx of Held, by SEM analysis of SDS-PAGE replica 

(Nakamura et al., 2015), performed our collaborators Harada and Shigemoto, revealed a 

change in Ca2+ channel clustering at the presynapse  (Harada and Shigemoto, unpublished 

data).  

The interpretation of the unchanged in Ca2+ current at immature RIM-BP-deficient calyces of 

Held synapses (Acuna et al., 2015) needs caution. RIM-BPs and RIMs regulate the spatial 

arrangement N- and P/Q-type Ca2+ channels (Hibino et al., 2002; Kaeser et al., 2011), while 

Bassoon and RIM-BPs specifically localize P/Q-type Ca2+ channels. N-type Ca2+ channels are 

present at immature synapses but not at mature ones which solely rely on P/Q-type 

channels (Scholz and Miller, 1995). Therefore, the loss of RIM-BPs alone maybe not affect 

Ca2+ influx at immature calyces, as RIMs also bind to the VGCC directly and can maintain Ca2+ 

channel clustering, and hence Ca2+ current  at the synapse (Han et al., 2011; Kaeser et al., 

2011). Consistent with this notion, only the elimination of both RIMs and RIM-BPs diminishes 

the presynaptic Ca2+ current (Acuna et al., 2016). Since Bassoon does not bind directly to 
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P/Q-type Ca2+ channels, predominant at mature synapse, but only through RIM-BPs 

(Davydova et al., 2014), the loss RIM-BPs may elicit a more drastic change in Ca2+ channel 

clustering and presynaptic Ca2+ influx in mature preparations. Hence, the change in 

presynaptic Ca2+ current should be revisited in mature synapses.  

2c.2 Loss of RIM-BP2 increases asynchronous release which may slow down recovery from 

short-term depression 

Asynchronous release more than doubled at RIM-BP2 KO endbulbs as compared to the 

wildtype. Although, the previous RIM-BP study (Acuna et al., 2015) did not report an 

increase in asynchronous component of release it showed a decrease in the ratio of fast to 

slow component of release during RRP depletion. This implies a reduction in the vesicles 

released from fast pool and a shift to the release from the slow pool. Since, the slow pool 

makes up the vesicles released asynchronously (Sakaba, 2006), it follows the observation 

that the RIM-BP2 deficient synapses show an increased asynchronous release at the cost of 

synchronous release. 

This protracted release following high-frequency stimulation might be a contributing factor 

towards a slower recovery from short-term depression observed in the KO mice. The 

recovery at RIM-BP2 KO endbulbs was defined by a single exponential fit rather than the 

typical double exponential functions (Schulz et al., 2014; Yang and Xu-Friedman, 2008). This 

loss of the fast component, which corresponds to the recovery of slow pool (Sakaba and 

Neher, 2001a) and is calcium dependent (Yang and Xu-Friedman, 2008), may be a result of 

increased asynchronous release and loss of Ca2+ regulation in the absence of RIM-BP2. Other 

studies (Acuna et al., 2015; Grauel et al., 2016) did not report a recovery deficit, but there 

the recovery measurements were started from 100ms and 5s respectively, as opposed to 

25ms, in this study at the endbulb of Held. However, further experiments are needed to 

confirm this hypothesis. 
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3a Introduction 

BEACH proteins and LRBA 

Lipopolysaccharide-responsive beige like anchor protein or LRBA is one of nine members of 

the BEACH domain containing protein (BDCP) family Figure 3a. 1. The BEACH domain is a 

conserved ~300 amino acid domain (Jogl et al., 2002) that gets its name from the 

combination of ‘Beige and Chediak-Higashi’. It was the region within the lysosomal 

trafficking regulator (LYST) protein, found to be mutated in the Chediak-Higashi syndrome 

and beige was the name of the mouse model for it (Nagle et al., 1996). Other than the 

BEACH domain, BDCPs have pleckstrin homology (PH)- like domains, WD40 repeats and 

concanavalin A (ConA)- like lectin domains for bio-membrane and protein-protein 

interactions (Burgess et al., 2009; Jogl et al., 2002).    

 

Figure 3a. 1: Domain structures of BEACH domain containing proteins (BDCPs) 

Domain structures of all nine BEACH domain containing proteins (BDCPs) drawn to scale. Figure 
taken from Cullinane et al., 2013. 

Even after nearly 20 years since their discovery, the role BDCPs in molecular and cellular 

functions remains unidentified. However, their importance in cellular mechanisms like 

vesicular transport, apoptosis, membrane dynamics and receptor-ligand signaling is reflected 

by the complex phenotypes manifested by BDCP mutations. Mutations in the BEACH domain 

of LYST cause Chediak–Higashi syndrome, characterized by enlarged lysosomes and related 
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organelles (Burkhardt et al., 1993; Nagle et al., 1996). Another BEACH protein, Neurobeachin 

(NBEA) was recently reported to be relevant for synaptic transmission by regulating the 

transport of neurotransmitter receptors to the synapse (Nair et al., 2013). 

A physiological importance of LRBA has been revealed by studies reporting that its 

upregulation may facilitate cancer growth (Wang et al., 2004) and its deleterious mutations 

cause autoimmunity syndrome (Lo et al., 2015; Lopez-Herrera et al., 2012). Although, LRBA 

has elevated expression in immune cells, it is also expressed in many other tissues (Wang et 

al., 2001), where its function is even less understood.  

Following the detection of possible hearing impairment in LRBA2-KO mice, during a 

phenotyping screen at the German Mouse Clinic (GMC), this study was undertaken to 

elucidate the role of LRBA in auditory function. 

Sound encoding: Hair cells and Spiral ganglion neurons 

Sound encoding proceeds in the organ of Corti that sits on the basilar membrane in the 

cochlea of the inner ear (Figure 3a. 2A). The organ of Corti hosts mechanosensory hair cells 

that reliably transduce the mechanical vibrations elicited by the incoming sound waves into 

graded receptor potentials and finally into a neural code that represents sound information 

with high temporal precision and frequency selectivity. This demanding task relies on the 

interplay of two types of hair cells: (i) outer hair cells (OHCs) that amplify the sound-induced 

oscillations of the basilar membrane and fine-tune frequency resolution and (ii) inner hair 

cells (IHCs) – which are the true sensory cells of the organ and transmit information to the 

spiral ganglion neurons (SGNs).  

At their apical end, both types of hair cells have highly organized arrays of actin-rich 

microvilli (stereocilia), that form the characteristic hair bundle and harbor the components 

of the mechanotransduction machinery. Upon physical hair bundle deflection, the 

coordinated opening of mechanically-gated ion channels in the stereociliary tips mediates 

hair cell depolarization, which in turn leads to synchronized electromotile contraction of 

OHCs and presynaptic glutamate release from the 5-20 active zones in IHCs. Each IHC 

synapse carries a synaptic ribbon; a highly specialized structure which enables the turnover 
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of hundreds of vesicles per second with sub-millisecond temporal precision (Pangrsic et al., 

2010). The postsynaptic SGNs then transmit the signal to higher auditory brain centers as 

action potential firing. 

SGNs have been classified based on the extracellular recordings of firing from auditory nerve 

fibers (ANFs; central neurites of SGNs) (Figure 3a. 2B). This classification takes into 

consideration: (i) their spontaneous firing rate (SR; action potential firing in the absence of 

sound stimulus) (ii) sound intensity thresholds to pure tones presented at their characteristic 

frequency and (iii) the dynamic range of spiking in response to increasing sound intensity 

(rate-level function) (Liberman, 1978). One population of ANFs was characterized by low 

spontaneous rate of firing with high sound intensity thresholds and a broad dynamic range 

of spiking in response to increasing sound intensity. A second population of SGNs exhibited 

high spontaneous rate firing with low thresholds and a narrower dynamic range (Taberner 

and Liberman, 2005). Intriguingly, these SGN populations are also demarcated by their 

polarity of innervating IHC synapses. High spontaneous rate fibers primarily contact IHCs at 

the abneural side (pillar side) and low spontaneous rate fibers are preferentially located at 

the neural side (modiolar side) (Liberman, 1982). This heterogeneity in the firing pattern of 

SGNs has been subject to extensive research with both pre- and postsynaptic mechanisms 

contributing (e.g. Merchan-Perez and Liberman, 1996; Frank et al., 2009). The neural side 

seems to have larger presynaptic ribbons and more Ca2+ channels but operate on a more 

depolarized activation range (Ohn et al., 2016), that may contribute to the high threshold of 

firing of SGNs. 

Here, studying LRBA2 deficiency in the context of auditory processing revealed impaired 

cochlear amplification of sound intensity and frequency tuning, with a loss of low 

spontaneous rate fibers. 
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Figure 3a. 2: Organ of Corti and inner hair cell (IHC) with the classification of SGNs 

(A) Illustration of organ of Corti sitting on the basilar membrane. The three rows of OHCs provide 
cochlear amplification of sound intensity and fine-tuning of sound resolution. Image adapted from 
Fettiplace and Hackney, 2006 (B) IHCs are the true sensory units of the organ which convert sound 
into graded receptor potential that then transmits the signal to SGNs through graded release of 
glutamate at the ribbon synapses. Figure depicts the distinction in the pre- and postsynaptic 
morphology contributing to heterogeneity in SGN response. Abneural (pillar side) with small ribbon 
(green bulb), less Ca2+ channels (purple blocks at the base of the ribbon) and large bouton (red) 
innervated by high SR low threshold fibers, while neural (modiolar side) with opposite gradient is 
innervated by low SR high threshold fibers.
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3b Results 

3b.1 Progressive hearing loss and compromised cochlear amplification in LRBA2 KO mice   

A possible hearing impairment due to the loss of the BEACH protein, LRBA2 was first 

suggested upon finding reduced auditory startle responses during phenotypic screening of 

LRBA2 KO mice by the German Mouse Clinic (Figure 3b. 1).  

 

Figure 3b. 1: Reduced acoustic startle response amplitudes in LRBA2 KO compared to WT 
animals 

Data represented as average trace ± S.E.M. Animal number was 10 for both genotypes. Startle 
response was measured at the German mouse clinic (GMC). 

Further assessment of hearing in LRBA2-KO mice was done by recording auditory brainstem 

responses (ABR). Immediately after hearing onset at P14-15, ABR thresholds to tone bursts 

and click stimulation were moderately elevated in LRBA2-KO mice. However, the hearing 

impairment progressively deteriorated with age (Figure 3b. 2A-B).  

All ABR waves, reporting synchronous spiking in response to sound onset in SGNs (wave I) 

and neurons of the auditory brainstem (waves II-V) (Figure 3b. 2C), were markedly reduced 

in amplitude. In addition, ABR thresholds were elevated (Figure 3b. 2A) and ABR latencies 

were increased, indicating loss in acoustic sensitivity (Figure 3b. 2D). 
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Figure 3b. 2: Progressive hearing loss in LRBA2 mutants. 

(A) Auditory brainstem response (ABR) recordings from 2-3 weeks old (p14-19; filled circles, N=6 
each), 4-5 weeks old (open circles, N=8 KO/9WT) and six months old (cross, N=5KO/4WT) LRBA2-KO 
mice (magenta) and WT littermates (black). Thresholds exceeding the maximum loudspeaker output 
(80dB for tone bursts, 120dB for clicks) were assigned values of 90/130dB for calculation of the 
average. (B) ABR wave I has dramatically decreased amplitudes with a shallower growth function in 
the mutants, progressively deteriorating with age (C) Grand averages ± S.E.M. (shaded) of ABR to 
80dB click stimuli show a strong reduction of ABR waves I-V in LRBA2-KO mice (magenta, N=9) 
compared to WT (black, N=8, age group 5 weeks). (D) ABR latencies in LRBA2 KO mice (N=8) are 
increased compared to WT (N=9; age group 5 weeks) when comparing for same stimulus intensities. 
N represents the number of animals. ABRs were measured by technical assistants Nadine Hermann 
and Stefan Thom. 

Electrocochleography recordings corroborated the elevated thresholds and reported a 

reduction of the cochlear microphonic and summating potentials (Figure 3b. 3A-C), 

indicating an outer hair cell functional deficit. In addition to electrocochleography, outer hair 

cell function was also studied by distortion product otoacoustic emissions (DPOAE), which 

were greatly reduced in LRBA2 KO mice across all frequencies (Figure 3b. 3D). 

Electrocochleography and DPOAE together indicate that the loss in sound sensitivity is due 
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to impaired peripheral auditory function and involves a defect of cochlear amplification. 

However, the shallow growth of ABR wave I amplitude with intensity (Figure 3b.2B) after 

surpassing the hearing thresholds alludes to more than just OHC defect. 

 

Figure 3b. 3: Reduced cochlear amplification and outer hair cell dysfunction 

(A-C) Representative traces of (A) summating potentials and (B) cochlear microphonic potentials to 
90dB 16kHz tone bursts. (C) Quantification of the amplitude of cochlear microphonic potentials 
(open squares) and summating potentials (closed circles) for 16kHz tone bursts at varying intensities 
(N=8 each, age 4-5 weeks). (D) Reduced amplitudes of distortion product otoacoustic emissions 
(DPOAE) in LRBA2 KO animals (magenta, N=9) compared to WT littermates (black, N=8) are 
suggestive of an amplifier defect (age 4-5 weeks). N represents the number of animals. 
Electrocochleography was performed by Dr. Nicola Strenzke. DPOAEs were measured by technical 
assistants Nadine Hermann and Stefan Thom. 

3b.2 Hearing deficit in LRBA2 KO – in vivo analysis 

The sound encoding deficit in the absence of LRBA2 was further characterized by 

investigating single units of auditory nerve fibers (central neurites of spiral ganglion neuron, 

SGN) in vivo. Both spontaneous and sound-evoked action potential firing of postsynaptic 

SGNs were recorded in vivo. The distribution of spontaneous SGN firing rates was clearly 

biased towards high SR (spontaneous rate) fibers in LRBA2-KO mice. (Figure 3b. 4A; median 

SR; WT: 6.6; LRBA2-KO: 30.20).  



    Chapter 3: Results 

95 

 

After characterizing spontaneous firing for each fiber, frequency tuning was assessed by 

determining sound thresholds for varying tone burst frequencies. While fibers from wild-

type animals had normal, sharp tuning curves with low thresholds, LRBA2-KO fibers showed 

broadened tuning curves with poorly defined characteristic frequencies and highly elevated 

thresholds (Figure 3b.4B; median threshold; WT: 51dB; LRBA2-KO: 92dB). 

 

Figure 3b. 4: Reduced fraction of low-spontaneous-rate fibers and elevated sound 
thresholds and in LRBA2 KO animals.  

(A) Distribution of spontaneous firing rates of SGN from WT and LRBA2 KO mice aged 5-6 weeks. 
Mutants (magenta, n=54) show a reduction in the fraction of low spontaneous rate fibers compared 
to WT (black, n=49). (B) Sound thresholds of LRBA2 KO (magenta) SGNs are highly elevated and lack 
the asymmetric V-shaped frequency tuning curve that is typical of WT SGNs (representative 
examples). The maximum stimulus intensity (blue line) was initially restricted to 100dB to avoid noise 
damage. Since mutant SGNs typically did not respond at that intensity, it was increased up to 120dB 
in later experiments with LRBA2 KO. n represents the number SGN units. 

The rate level function (Figure 3b. 5) was obtained by quantifying the overall spike rate of 

the fiber units in response to increasing stimulus intensities presented at characteristic 

frequency of the unit (determined as well as it was possible given the poor frequency 

tuning). Of note is the significantly steeper rise in spike rates with stimulus level in LRBA2 KO 

than in the wildtype littermates (Figure 3b. 5B). Moreover, the dynamic range of LRBA2 KO 

SGNs tended to be reduced (Figure 3b. 5C). This is as expected for a defect in cochlear 

amplification. 
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Figure 3b. 5: Rate level function: Spike rate in response to sound stimulus steeper in LRBA2 
KO SGN units 

(A-C) SGN firing rates in response to tone bursts of varying intensities (A): Mutants show elevated 
thresholds, a steeper increase in firing rate (B, WT n=30, KO n=22, p=0.011, Student’s t test) and a 
trend for a reduced dynamic range (C, WT n=27, KO n=16, p=0.126, Mann-Whitney-U test). Each data 
point represents value from a single SGN unit. n represents the number SGN units. 

The evoked spike rates and time courses of adaptation in response to tone bursts at high 

intensities – at which spike rates were saturated – were identical between LRBA2 KO and 

wildtype littermate controls (Figure 3b. 6A). Also, presynaptic vesicle pool depletion and 

recovery, as assessed in a paired pulse paradigm, were normal in LRBA2 KO mice (Figure 

3b.6B). 

 

Figure 3b. 6: Evoked response to sound stimulus and recovery of response post stimulus is 
unchanged in LRBA2 KO SGN units 

(A) In response to 50ms tone burst stimulation (characteristic/best frequency, 30dB above threshold 
in WT, at least 10dB above threshold in KO), response patterns, peak and steady-state firing rates as 
well as first spike latencies were comparable between both genotypes (WT n=37, KO n=22). (E) Top: 
illustration of the stimulus paradigm: 100ms masker tone and 15ms probe tone separated by a silent 
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interval of variable duration. Both stimuli were presented at characteristic/best frequency, 30dB 
above threshold in WT, at least 10dB above threshold in KO. Bottom: Forward masking effect and 
time course of recovery were not significantly different between WT (n=20) and KO (n=14) SGNs. n 
represents the number SGN units. 

3c Discussion 

The data indicate that the progressive hearing loss observed in LRBA2 KO mice is mainly 

owing to the deficit of active cochlear amplification in the mutants. The reduced cochlear 

microphonic and summating potentials in electrocochleography and the reduced DPAOE, 

confirm the defect in OHC function. However, the shallow amplitude growth functions of 

ABR wave I suggest an additional impairment of IHC synaptic transmission, since pure OHC 

dysfunction, would be marked by an increased steepness (Pauli-Magnus et al., 2007). 

Direct measurements of the SGN spike responses (high threshold, poor frequency tuning, 

and steep spike rate growth with increasing intensity) were consistent with a primary defect 

of OHC function. However, the fraction of low-SR fibers was reduced in the mutants. Since, 

the number of IHC-SGN synapses in the mutants was unchanged (Figure 3c. 1; Vogl et al., 

unpublished), one might assume that the mutant IHC contacts as many low and high-SR 

fibers as the wildtype. The apparent loss of low-SR fibers could be a result of an 

experimental bias, such that a fraction of low-SR fibers, which typical have high sound 

thresholds (Liberman, 1978; Taberner and Liberman, 2005) were not identified by our search 

stimuli. Another possibility is that, the high intensities (at least 10-30dB higher than in the 

wildtype) employed for stimulation, noise-damaged low-SR fibers, which have been shown 

to be highly susceptible to noise-induced glutamate excitotoxicity (Furman et al., 2013).  

The disruption of stereociliary hair bundles in both the OHCs and IHCs was the most 

prevalent morphological alteration observed in the LRBA2 KO mice (Figure 3c. 1; Vogl et al., 

unpublished). The degeneration of stereocilia was attributed to the loss of LRBA2 dependent 

subcellular targeting of hair bundle proteins, Radixin (RDX) and its interaction partner 

adaptor protein Nherf2. RDX is the predominant ezrin-radixin-moesin (ERM) in cochlear hair 

cells, likely involved in mechanical stabilization of the hair bundle by linking the central actin 

filament core to the cell membrane (Sauvanet et al., 2015).  
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This degeneration of stereocilia potentially led to a reduction in the number of available MET 

channels and impaired hair cell depolarization upon hair bundle deflection, which in turn 

impaired transduction and led to a concomitant reduction in IHC receptor potentials. This 

could be another contributing factor to the observed reduction in low-SR fibers whereby, the 

amount of depolarization may not suffice to reach the activation threshold of synaptic 

voltage-dependent calcium channels at low-SR synapses and hence, fails to initiate synaptic 

release (Frank et al., 2009; Ohn et al., 2016).  

Thus, the combination of impaired OHC-mediated cochlear amplification and likely an 

additional IHC transduction deficit might have produced the observed auditory impairment.  

For the purpose of the thesis, only self-contribution to the LRBA2 study has been discussed 

in the light of the findings of the entire study undertaken in Vogl et al, unpublished. The 

structural phenotype observed in the organ of Corti has been summarized in Figure 3c. 1. 
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Figure 3c. 1: Hair bundles of LRBA2 KO hair cells develop a prominent central gap in their 
stereociliary array likely leading to impaired sound processing 

(A) WT hair cell depicting typical V-shaped hair bundle morphology (top view) and ribbons synapses 
(green) contacting postsynaptic boutons (red) of SGNs (profile). (B) LRBA2 KO with unaltered synapse 
connections and gross hair cell morphology. However, the top view reveals hair bundle degeneration 
in LRBA2 KO hair cells, with a prominent central gap in their stereociliary array. Top panel: SEM (by 
Natja Haag) images illustrating hair bundles in p15 mice. Middle panel: Confocal projection of hair 
bundles of p15-16 mice labelled with a fluorophore-conjugated phalloidin (by Christian Vogl).



   Outlook 

100 

 

4 Outlook 

Synaptic transmission is central to all the functions of the brain. Therefore, understanding 

and deciphering the principles and players in signal transfer across neurons is key to 

comprehend the basis of, for example sensory processing, motor function, learning and 

memory, as well as the disorders of the brain such as synaptopathies leading to sensory 

deficits and neuropsychiatric diseases, and the mode of action and effects of psychoactive 

drugs and neurotoxins. Since the CAZ proteins underlie synaptic transmission it is imperative 

to study their role to better understand the process itself. The studies presented here 

contribute to the elucidation of the role of key CAZ proteins: Piccolo, Bassoon and RIM-BP2, 

and of the BEACH protein LRBA2. Aside from the virtue of understanding of their 

physiological function the work also serves to decipher the implications of their malfunction. 

This is highly relevant as some of them have already been implicated in human disorders 

such as Piccolo in depression (Sullivan et al., 2008) and bipolar disorder (Choi et al., 2011), 

RIM-BPs in autism spectrum disorders (Bucan et al., 2009; Corominas et al., 2014; Pinto et 

al., 2010), and LRBA with cancer growth (Wang et al., 2004) and autoimmune syndromes (Lo 

et al., 2015; Lopez-Herrera et al., 2012).  

4.1 CAZ: from individual proteins to the network  

More than two decades of research has been dedicated into dissecting the function of each 

individual protein of the CAZ to build a comprehensive knowledge of the protein network. 

This study reveals the collaborative roles of Piccolo and Bassoon in maintaining synaptic 

vesicle replenishment following pool depletion, with Bassoon possibly having an additional 

role in regulating release probability at the synapse. This adds to the existing knowledge of 

the roles of the two proteins in maintaining synapse structure (Dick et al., 2003; tom Dieck et 

al., 2005; Khimich et al., 2005; Regus-Leidig et al., 2014), synaptic vesicle pool clusters 

(Mukherjee et al., 2010), maintaining protein turn-over and hence, synaptic integrity 

(Okerlund et al., 2017; Waites et al., 2013) and of Bassoon in fast reloading of synaptic 

vesicles (Hallermann et al., 2010b; Schulz et al., 2014).  
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Piccolo is the largest (550kDa; Fenster et al., 2000; Wang et al., 1999) among the CAZ family 

of proteins. Its N-terminus reaches into the cytoplasm for tens of nanometers, while its C-

terminus extending across the dense projections of the AZ to possibly close to the docked 

SVs, spans the length of the active zone (Gundelfinger and Fejtova, 2012; Limbach et al., 

2011). It is one of the precursors for synapse formation and interacts with the cytoskeletal 

proteins like actin, potentially regulating transport and endocytosis of SVs. Yet, its absence 

from the active zone elicited a rather subtle synaptic deficit. Though the RRP was reduced 

and the vesicle replenishment was hampered, the synapse was still able to respond to high 

frequency train stimulation (up to 333Hz was tested). Even the additional partial Bassoon 

loss, though aggravated the transmission deficit, did not cripple the synaptic machinery. 

However, it needs to be noted here, that the genetic disruption employed here, did not fully 

abolish the presence of Piccolo at the endbulb active zones. 

In the light of multifold interactions of CAZ proteins and given the perturbation of one of 

them, it was important to examine the abundance and interactions of the remaining CAZ 

proteins. Undertaking a comprehensive quantitative analysis of changes in molecular 

composition of the CAZ proteins, this study revealed that RIM1 and Bassoon, two interactors 

of Piccolo, were altered. While the downregulation of RIM1 might have contributed to the 

reduced pool of SVs seen in PicMut mice, Bassoon upregulation might be a means to 

compensate for the loss of some Piccolo’s functions. However, to get a holistic view of the 

network operations, interactions and compensation, and to decipher the molecular 

mechanisms and players behind them, it might be necessary to broaden the methodological 

approach. One way would be to employ mutations preventing interactions with other 

proteins, as was done in case of RIM (Kaeser et al., 2008, 2011) and Munc13 (Lipstein et al., 

2013) to pin down the molecular mechanism by which the protein exerts its function. 

Another way to analyze changes in interactions and hence the architecture of the synapse 

would be to employ immunogold EM (e.g. Limbach et al., 2011) or super-resolution light 

microscopy of CAZ proteins (Frank et al., 2010, Grauel et al., 2016)  at synapses deficient in 

the protein of interest.  
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This conundrum of dissecting independent functions of individual proteins that are part of a 

functional network is also presented in the RIM-BP2 study. Although the role of RIM-BP2 in 

coupling presynaptic Ca2+ influx to vesicular exocytosis is discussed as the most likely 

hypothesis in this thesis, the exact mechanism by which it arbitrates this function remains to 

be investigated. Since RIM-BP is a part of two different tri-protein interactions (RIM-BP-

VGCC-RIM (Hibino et al., 2002; Kaeser et al., 2011) and RIM-BP-VGCC-Bassoon (Davydova et 

al., 2014)), it will again be insightful to correlate physiological inferences to morphological 

and ultrastructural changes. A starting step would be the quantitative analysis of the 

changes in molecular composition of the CAZ protein at RIM-BP2 deficient synapse, as was 

done for Piccolo deficient synapses. Efforts are also underway to analyze the ultrastructural 

changes in Ca2+ channel clustering (by our collaborator Shigemoto) in the absence of RIM-

BP2.  

4.2 LRBA2: from systems function to molecular mechanism 

LRBA2 was investigated because of the impaired hearing observed in LRBA2 KO mice. 

Through systems and synaptic physiology, and structural studies, the etiology of this hearing 

deficit was narrowed down to deficits in cochlear amplification by the OHCs and perhaps 

even an IHC transduction defect. The LRBA2 study is a fine example of how functional deficit 

(progressive hearing loss) was related to a morphological correlate (degeneration of hair 

bundles of cochlear hair cells). A next step in a functional-morphological-molecular analysis 

would be pinning down the molecular mechanism that relies on LRBA2. Vogl et al. 

(unpublished), implicated two proteins (RDX and Nherf2) as effectors of LRBA2, whose faulty 

targeting at the hair bundles, might be the causative molecular mechanism imposed by the 

absence of LRBA2. This hypothesis is based on reduced expression of RDX in LRBA2 KO mice 

(Vogl et al., unpublished) and strikingly similar functional and morphological phenotype 

observed in RDX KO mice (Kitajiri et al., 2004). Hence, it might useful to check for LRBA2-RDX 

interactions by co-immunoprecipitation and pull-down assays and if the phenotype can be 

rescued by expression of this interaction node.
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