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Abstract

In this thesis, we study the four-dimensional Ricci flow with the help of local invariants.

If (M4, g(t)) is a solution to the Ricci flow and x ∈ M, we can associate to the point x a

one-parameter family of curves, which lie on a smooth quadric in P(Tx M⊗C). This allows

us to reformulate the Cheeger-Gromov-Hamilton Compactness Theorem in the context of

these curves. Furthermore we study Type I singularities in dimension four and give a

characterization of the corresponding singularity models in the context of these curves as

well.
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1. Introduction

The Ricci flow is a geometric evolution equation which deforms Riemannian metrics on

manifolds by their Ricci tensor, an equation which turns out to exhibit many similarities

with the heat equation. It was introduced by Richard Hamilton in 1982 in his seminal paper

[9]. Hamilton’s program was to use Ricci flow in order to approach Thurston’s Geometriza-

ton Conjecture. His first result towards this direction was accomplished in this first paper,

where Hamilton classified closed 3-manifolds with positive Ricci curvature using Ricci flow.

Hamilton’s theorem states that under the normalized (volume-preserving) Ricci flow on a

closed 3-manifold with positive Ricci curvature, the metric converges exponentially fast in

every Ck-norm to a constant positive sectional curvature metric. Four years later Hamilton

managed to classify in [10] 4-manifolds with positive curvature operator as well. In 2002

and 2003, Grisha Perelman posted three papers on arXiv [24], [25] , [26] and completed

Hamiltons work towards proving the Geometrization Conjecture.

The Ricci flow is a type of nonliner heat equation for the metric and it is expected, that it

develops singularities. The most basic examples of Ricci flow singularities are the shrinking

round sphere and the neckpinch singularity discussed in Chapter 2 of [2]. Understanding

the formation of singularities is a very crucial step. This step was done by Hamilton in

[12]. This paper discusses (among other topics) singularity formation, the classification

of singularities, applications of estimates and singularity analysis to the Ricci flow with

surgery. To study singularities one should take dilations about sequences of points and

times where the time tends to the singularity time T. The limit solutions of such sequences,

if they exist, are ancient solutions. One distinguishes singularities in two types: those

formed at T < ∞ and those formed at T = ∞. One can show that in the first case the

curvature blows up in finite time. There is further categorization of finite time singularities

in Type I and Type IIa. Type I singularities blow up in finite time at the rate of the standard
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1. Introduction

shrinking sphere. Type IIa singularites are formed slowly in the sense, that in terms of

the curvature scale, the time to blow up is longer than that of the Type I. The prototype

of a Type IIa singularity is the degenerate neckpinch. Given a singularity type, the way

of picking suitable sequences of points and times about which we dilate, lead to ancient

limits, called singularity models. In this text we will only focus on Type I singularities.

We would like to make the notion of the convergence mentioned above a little bit more

precise. It has its roots in the converge theory developed by Cheeger and Gromov. Hamilton

proved in [13, Theorem 1.2] a compactness theorem, which is today known as the Cheeger-

Gromov-Hamilton Compactness Theorem. It roughly states, that any sequence of complete

solutions to the Ricci flow having curvatures uniformly bounded from above and injectivity

radii uniformly bounded from below, contains a convergent subsequence and the limit

exists in an ancient time interval. Showing the bound on the injectivity radius has been

a huge obstacle for Hamilton, but the problem was solved by Perelman in [24]. Perelman

showed that if the solution becomes singular in finite time his No Local Collapsing Theorem

provides such an estimate. In other words, he showed that if T < ∞, then there exists

κ > 0 such that the singularity model is κ-noncollapsed at all scales. A nice exposition on

Perelman’s arguments can be found in [4].

There is some special class of solution to the Ricci flow called Ricci solitons. Ricci solitons

correspond to self-similar solution to the Ricci flow and change only by scaling and pullback

by diffeomorphisms. They are a natural extension of Einstein metrics, are possible singular-

ity models of the Ricci flow and are critical points of Perelman’s λ-entropy and µ-entropy.

There exists a special kind of Ricci solitons, which are called gradient Ricci solitons. Ricci

solitons can be categorized by their behaviour in steady, shrinking or expanding. Hamilton

and Ivey proved in [12] and [17] respectively, that on a compact manifold, a gradient steady

or expanding Ricci soliton is necessarily an Einstein metric. More generally, any compact,

steady or expanding Ricci soliton must be Einstein. This follows from Perelman’s result in

[24], that any compact Ricci soliton is necessarily a gradient Ricci soliton. Furthermore by

the results of Hamilton and Ivey in [11] and [17] respectively, in dimension n ≤ 3, there are

no compact shrinking Ricci solitons other than the sphere and its quotients. The classifica-

tion of 3-dimensional gradient shrinking Ricci solitons was done by the works of Perelman

[25], Ni-Wallach [22] and Cao-Chen-Zhu [5]. They showed that a 3-dimensional gradient

2



1. Introduction

shrinking Ricci soliton is a quotient of either S3 or R3 or S2 ×R. This means that the only

noncompact nonflat 3-dimensional gradient shrinking Ricci solitons are the round cylinder

and its quotients. In this text we will focus on the 4-dimensional gradient shrinking Ricci

solitons. In dimension 4 there is no full classification of the gradient shrinking Ricci soli-

tons. There is some classification done under curvature assumptions by Ni and Wallach

[23] and Naber [20]. A conjecture, normally attributed to Hamilton, is that a suitable blow

up sequence for a Type I singularity converges to a nontrivial gradient shrinking Ricci soli-

ton [12]. In the case where the blow up limit is compact, the conjecture was confirmed

by Sesum [28, Theorem 1.1]. In the general case, blow up to a gradient shrinking soliton

was proved by Naber [20, Theorem 1.4]. However, it remained an open question whether

the limit soliton Naber constructed is non trivial (i.e. flat). Enders, Müller and Topping

eliminated in [6, Theorem 1.4] this possibility.

In this thesis we try to contribute in the direction of understanding the 4-dimensional

gradient shrinking Ricci solitons, which can appear as singularity models for Type I sin-

gularities. This is done by considering local invariants for a 4-dimensional Riemannian

manifold and trying to interpret the limiting solitons in the language of these local invari-

ants. Let’s be more precise.

In Chapter 2 we describe a construction of A. N. Tyurin. Tyurin showed in [29], that for

any 4-dimensional Riemannian manifold (M4, g) and fixed point x ∈ M, one can define

in natural way three quadratic forms in Λ2Tx M. These are given by the exterior power

evaluated at a volume form, the second exterior power of the Riemannian metric g and

the curvature tensor of the Riemannian connection respectively. After complexifying, their

projectivization defines three quadrics in P(Λ2Tx M⊗C). For any point x ∈ M at which the

quadratic forms are linearly independent, the intersection of these three quadrics defines a

singular K3 surface. After performing a resolution of the singular points the resolved K3 is

a double branched cover of a smooth quadric in P(Tx M⊗C). In many cases the branching

locus corresponds to a curve of bidegree (4, 4) in the product of two projective lines. The

branching curve denoted by Γx will be our local invariant for the 4-dimensional manifold

M. Its coefficients will be determined by the components of the Riemann curvature tensor.

Note that four years later, V. V. Nikulin in [21] extended the result to the case of pseudo-

Riemannian manifolds with a Lorentz metric.

3



1. Introduction

In Chapter 3 we demonstrate an introduction to the basic theory of the Ricci flow and

give some examples. Furthermore we introduce Ricci solitons and their canonical form.

In Chapter 4 we do some explicit calculations, compute examples of local invariants for

some 4-dimensional gradient shrinking Ricci solitons.

In Chapter 5 we prove Proposition 5.2.1, which gives the evolution of the coefficients of

the branching curve under the Ricci flow.

In Chapter 6 we prove Theorem 6.2.8, which states, that convergence of manifolds in

the Cheeger-Gromov sence implies convergence for branching curves. This is the main

theorem of our text. We use this result and combine it with the result of Enders, Müller and

Topping mentioned above, in order to obtain a characterization of the gradient shrinking

Ricci solitons, which can appear as singularity models for Type I singularities. We call this

result Corollary 6.2.9. The fact that we only deal with Type I singularities can be explained

by the following facts. In the Type I case Perelman’s No Local Collpasing Theorem holds

and thus by performing a blow up analysis we can pass to the limit. As a result, we can use

the branching curves construction, in order to characterize the limiting curve. One should

also have in mind, that the blow up analysis for Type II and Type III singularities is very

limited, especially in the four dimensional case. The interested reader could take a look for

example at John Lott’s paper [18], where he gives an extension of Hamiltons Compactness

Theorem, that does not assume a lower injectivity radius bound, in terms of Riemannian

groupoids .
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2. A local invariant of a four-dimensional

Riemannian manifold

In this chapter we explain Tyurin’s arguments, reproduce the construction and demonstrate

it explicitely in a way that suits our needs. This chapter is organized as follows: In the first

section we define the quadrics and describe the intersection of the first two. In the next

section we intersect with the third quadric and decribe the branching curve. In the last

section we make the argument about the surface of type K3 more precise and describe it in

terms of its exceptional divisors.

2.1. The geometry of three quadrics in P(Λ2Tx M⊗C)

Let (M, g) be a four-dimensional Riemannian manifold. We denote by Tx M the tangent

space at the point x ∈ M. We are going to define three quadratics forms on Λ2Tx M.

The quadratic form vx :

We define the map

Λ2Tx M×Λ2Tx M → Λ4Tx M

(u, h) 7→ u ∧ h.

Recall, that the volume form volM on M is a nowhere vanishing section of Λ4T∗x M. We

identify Λ4Tx M with R by evaluating u ∧ v on the volume form, i.e. volM(u ∧ v). So we

obtain a bilinear form vx : Λ2Tx M×Λ2Tx M → R. This is a well defined bilinear form and

does not depent on the choice of basis on Λ2Tx M.

Let now {xi}4
i=1 denote local coordinates around x, such that { ∂

∂xi }4
i=1 is a basis for Tx M

and {dxi}4
i=1 is the dual to it. Then { ∂

∂xi ∧ ∂
∂xj }1≤i<j≤4 and {dxi ∧ dxj}1≤i<j≤4, are bases for

5



2. A local invariant of a four-dimensional Riemannian manifold

Λ2Tx M and (Λ2Tx M)∗ ' Λ2T∗x M respectively. Let u, h ∈ Λ2Tx M be given by

u = ∑
1≤i<j≤4

uij ∂

∂xi ∧
∂

∂xj (2.1)

and

h = ∑
1≤i<j≤4

hij ∂

∂xi ∧
∂

∂xj (2.2)

with respect to this basis. Then

Λ2Tx M×Λ2Tx M → Λ4Tx M (2.3)

(u, h) 7→ (u12h34 − u13h24 + u14h23

+u23h14 − u24h13 + u34h12)
∂

∂x1 ∧
∂

∂x2 ∧
∂

∂x3 ∧
∂

∂x4 .

Recall, that the Riemannian volume form is given by
√
|det(g)|dx1 ∧ dx2 ∧ dx3 ∧ dx4. Then,

the bilinear form vx is now given by

vx : Λ2Tx M×Λ2Tx M → R

(u, h) 7→
√
|det(g)|(u12h34 − u13h24 + u14h23 + u23h14 − u24h13 + u34h12).

The associated quadratic form vx : Λ2Tx M→ R is now given by

vx(u) = 2
√
|det(g)|(u12u34 − u13u24 + u14u23). (2.4)

The quadratic form Λ2gx :

We need at this point the notion of the Kulkarni-Nomizu product. This product is defined

for two symmetric (2, 0)-tensors and gives as a result a (4, 0)-tensor. Specifically, if k and l

are symmetric (2, 0)-tensors, then the product is defined by

(k 7 l)(u1, u2, u3, u4) := k(u1, u3)l(u2, u4) + k(u2, u4)l(u1, u3)

−k(u1, u4)l(u2, u3)− k(u2, u3)l(u1, u4).

Consider now the Riemannian metric gx and let u = u1 ∧ u2 and h = h1 ∧ h2. We define

a symmetric bilinear form Λ2gx on Λ2Tx M by defining it on totally decomposable vectors

6



2. A local invariant of a four-dimensional Riemannian manifold

as follows

Λ2gx : Λ2Tx M×Λ2Tx M → R

(u, h) 7→ 1
2
(gx 7 gx)(u1, u2, h1, h2)

= gx(u1, h1)gx(u2, h2)− gx(u1, h2)gx(u2, h1).

and extending it bilinearly to a bilinear form on the whole Λ2Tx M. This is a well defined

bilinear form and does not depent on the choice of basis on Λ2Tx M. This can be also found

in the book [27].

For u and h like in (2.1) and (2.2) we obtain, that in components

Λ2gx(
∂

∂xi ∧
∂

∂xj ,
∂

∂xk ∧
∂

∂xl ) = det

gik gjk

gil gjl

 =
1
2
(gx 7 gx)ijkl .

So we obtain a quadratic form

Λ2gx(u) =
1
2 ∑

1≤i,k<j,l≤4
(gx 7 gx)ijkluijukl . (2.5)

The quadratic form Rx :

Let now Rmx denote the (4, 0)-Riemann curvature tensor at x ∈ M. We define a symmet-

ric bilinear form Rx on Λ2Tx M by defining it on totally decomposable vectors as follows

Rx : Λ2Tx M×Λ2Tx M → R

(u1 ∧ u2, h1 ∧ h2) 7→ Rmx(u1, u2, h2, h1).

and extending it bilinearly to a bilinear form on the whole Λ2Tx M. This is a well defined

bilinear form and does not depent on the choice of basis on Λ2Tx M. This can be also found

in the book [27].

In the basis { ∂
∂xi ∧ ∂

∂xj }1≤i<j≤4 (compare (2.1) and (2.2)) we obtain,

Rx : Λ2Tx M×Λ2Tx M → R

(
∂

∂xi ∧
∂

∂xj ,
∂

∂xk ∧
∂

∂xl ) 7→ R(ij)(kl) = Rijlk,

7



2. A local invariant of a four-dimensional Riemannian manifold

where Rijlk = Rm( ∂
∂xi , ∂

∂xj , ∂
∂xl , ∂

∂xk ). Notice the convention R(ij)(kl) = Rijlk, which is used in

the whole text. The associated quadratic form is given by

Rx(u) = ∑
1≤i,k<j,l≤4

Rijlkuijukl . (2.6)

2.1.1 Remark. There is a reason behind choosing to introduce the quadratic forms with

respect to this special basis coming from local coordinates. It is a very common fact when

working with the Ricci flow, that the evolution equations of the various geometric quantities

are writen with respect to local coordinates.

From now on vector spaces are turned into complexified ones. The quadratic forms (2.4),

(2.5) and (2.6) define three quadrics in P(Λ2Tx M⊗C) ∼= P5, given by

P(vx) = {[u] ∈ P(Λ2Tx M⊗C) : u12u34 − u13u24 + u14u23 = 0}, (2.7)

P(Λ2gx) = {[u] ∈ P(Λ2Tx M⊗C) :
1
2 ∑

1≤i,k<j,l≤4
(gx 7 gx)ijkluijukl = 0} (2.8)

and

P(Rx) = {[u] ∈ P(Λ2Tx M⊗C) : ∑
1≤i,k<j,l≤4

Rijlkuijukl = 0}. (2.9)

We would like to take now a closer look at the Grassmannian Gr2(Tx M ⊗ C) of two-

dimensional linear subspaces of Tx M⊗C. We prefer to look at it as the variety Gr1(P(Tx M⊗

C)) of lines in P(Tx M⊗C), where P(Tx M⊗C) ∼= P3 . Let

w =
4

∑
i=1

wi ∂

∂xi

and

w̃ =
4

∑
j=1

w̃j ∂

∂xj ,

where w, w̃ ∈ Tx M⊗ C. Then [w] = [w1, w2, w3, w4] and [w̃] = [w̃1, w̃2, w̃3, w̃4] correspond

to points in P(Tx M⊗ C). Their projective span, denoted by P-span([w], [w̃]) represents a

line in P(Tx M⊗C).

8



2. A local invariant of a four-dimensional Riemannian manifold

Let pl denote the Plücker embedding

pl : Gr1(P(Tx M⊗C)) → P(Λ2(Tx M⊗C)) (2.10)

P-span([w], [w̃]) 7→ [w ∧ w̃].

In other words, the Plücker embedding maps a line in P(Tx M⊗C) to a point in P(Λ2(Tx M⊗

C)). Since

w ∧ w̃ = (w1w̃2 − w2w̃1)
∂

∂x1 ∧
∂

∂x2 + (w1w̃3 − w3w̃1)
∂

∂x1 ∧
∂

∂x3 +

+(w1w̃4 − w4w̃1)
∂

∂x1 ∧
∂

∂x4 + (w2w̃3 − w3w̃2)
∂

∂x2 ∧
∂

∂x3 +

+(w2w̃4 − w4w̃2)
∂

∂x2 ∧
∂

∂x4 + (w3w̃4 − w4w̃3)
∂

∂x3 ∧
∂

∂x4 ,

the coordinates of [w ∧ w̃] in the basis { ∂
∂xi ∧ ∂

∂xj }1≤i<j≤4 are given by

[w1w̃2 − w2w̃1, w1w̃3 − w3w̃1, w1w̃4 − w4w̃1, w2w̃3 − w3w̃2, w2w̃4 − w4w̃2, w3w̃4 − w4w̃3].

We will denote these coordinates by [u12, u13, u14, u23, u24, u34]. Oberve that they correspond

to the 2× 2 minors of the matrix 
w1 w̃1

w2 w̃2

w3 w̃3

w4 w̃4

 .

We will show now, that Gr1(P(Tx M⊗C)) can be naturally realized as a quadric hyper-

surface in P(Λ2(Tx M⊗C)). Recall that a vector u ∈ Λ2(Tx M⊗C) is called totally decom-

posable if there exist linear independent vectors w, w̃ ∈ Tx M ⊗ C, such that u = w ∧ w̃.

Observe that

pl(Gr1(P(Tx M⊗C)) = {[u] ∈ P(Λ2(Tx M⊗C)) : u ∈ Λ2(Tx M⊗C) is totally decomposable}.

2.1.2 Lemma. The vector u ∈ Λ2(Tx M⊗C) is totally decomposable if and only if u ∧ u = 0, in

coordinates

u12u34 − u13u24 + u14u23 = 0.

9



2. A local invariant of a four-dimensional Riemannian manifold

Proof. Let u ∈ Λ2(Tx M⊗C) be totally decomposable, i.e. u = w ∧ w̃. Then

u ∧ u = w ∧ w̃ ∧ w ∧ w̃ = 0.

We can write u as

u = u12 ∂

∂x1 ∧
∂

∂x2 + u13 ∂

∂x1 ∧
∂

∂x3 + u14 ∂

∂x1 ∧
∂

∂x4 +

+u23 ∂

∂x2 ∧
∂

∂x3 + u24 ∂

∂x2 ∧
∂

∂x4 + u34 ∂

∂x3 ∧
∂

∂x4 .

Then by a simple computation we obtain, that

u ∧ u = 2(u12u34 − u13u24 + u14u23)
∂

∂x1 ∧
∂

∂x2 ∧
∂

∂x3 ∧
∂

∂x4 .

Thus u ∧ u = 0 imples that u12u34 − u13u24 + u14u23 = 0. Therefore, if u is totally decom-

posable, then it satisfies that u12u34 − u13u24 + u14u23 = 0.

Conversely, let

u = u12 ∂

∂x1 ∧
∂

∂x2 + u13 ∂

∂x1 ∧
∂

∂x3 + u14 ∂

∂x1 ∧
∂

∂x4 +

+u23 ∂

∂x2 ∧
∂

∂x3 + u24 ∂

∂x2 ∧
∂

∂x4 + u34 ∂

∂x3 ∧
∂

∂x4

be a vector satisfying

u12u34 − u13u24 + u14u23 = 0. (2.11)

Then u∧ u = 0. Now we want to show, that u is totally decomposable. For this we consider

the following cases.

(i) Suppose first, that u12, u13 6= 0. Then using equation (2.11) we can show that

u =
(

u12 ∂

∂x1 +
u23u12

u13
∂

∂x2 +
u23u14 − u13u24

u13
∂

∂x4

)
∧
( ∂

∂x2 +
u13

u12
∂

∂x3 +
u14

u12
∂

∂x4

)
.

(ii) Let u12 = u13 = 0. Then equation (2.11) yields u14u23 = 0. So we have u14 = 0 or

u23 = 0 or both are zero. If in this case u14 = u23 = 0 we can write u a

u = u24 ∂

∂x2 ∧
∂

∂x4 + u34 ∂

∂x3 ∧
∂

∂x4 = (u24 ∂

∂x2 + u34 ∂

∂x3 ) ∧
∂

∂x4 .

10



2. A local invariant of a four-dimensional Riemannian manifold

If u14 = 0, u23 6= 0, then we decompose u as

u = (u23 ∂

∂x2 − u34 ∂

∂x4 ) ∧
( ∂

∂x3 +
u24

u23
∂

∂x4

)
.

If u14 6= 0, u23 = 0 we can write u as

u = (u14 ∂

∂x1 + u24 ∂

∂x2 + u34 ∂

∂x3 ) ∧
∂

∂x4 .

So u is totally decomposable.

(iii) If u12 = 0. u13 6= 0, equation (2.11) gives us u13u24 = u14u23 and u can be decomposed

as

u = (u13 ∂

∂x1 + u23 ∂

∂x2 − u34 ∂

∂x4 ) ∧
( ∂

∂x3 +
u14

u13
∂

∂x4

)
.

(iv) If u13 = 0, u12 6= 0, equation (2.11) gives us that u12u34 = −u14u23 and u can be

decomposed as

u = (u12 ∂

∂x1 − u23 ∂

∂x3 − u24 ∂

∂x4 ) ∧
( ∂

∂x2 +
u14

u12
∂

∂x4

)
.

Thus we see that in all the cases u is totally decomposable.

So indeed Gr1(P(Tx M⊗C)) is embedded as a quadric hypersurface in P(Λ2(Tx M⊗C)).

Taking now into account (2.7) we observe that we can identify pl(Gr1(P(Tx M⊗C))) with

the quadric P(vx).

The quadric surface P(gx) :

Now the metric gx defines a quadratic form Tx M⊗C→ C by

gx(w) =
4

∑
i,j=1

gijwiwj,

where gij = gji. It defines a quadric surface

P(gx) = {[w] ∈ P(Tx M⊗C) :
4

∑
i,j=1

gijwiwj = 0}.

This quadric is non-degenerate, since the quadratic form gx is non-degenerate. So its rank

11



2. A local invariant of a four-dimensional Riemannian manifold

equals four and it corresponds to a smooth quadric in P(Tx M⊗C).

2.1.3 Remark. Recall, that if a quadric is mapped to a quadric under a projective trasforma-

tion, then the rank of the coefficient matrix is not changed. Thus one can classify quadrics

in complex projective spaces up to their rank. Precisely, in P3 there are four of them: rank

4 corresponds to a smooth quadric, rank 3 to a quadric cone, rank 2 to a pair of planes and

rank 1 to a double plane.

We need at this point some theory on spinor bundles. We will recall some facts on spin

and spinC structures on 4-manifolds. Heuristically, one can see spin and spinC structures

as generalizations of orientantions. The tangent bundle TM gives rise to a principal O(4)-

bundle of frames denoted by PO(4). The manifold is said to be orientable if this bundle

can be reduced to a SO(4)-bundle denoted by PSO(4). We define the group Spin(4) =

SU(2)× SU(2) to be the double cover of SO(4). This is the universal cover. If we make a

further reduction, we obtain a principal Spin(4)-bundle denoted by PSpin(4). We have then,

that the map

ξ : PSpin(4) → PSO(4)

is a double covering and say that the manifold is spin. To find the complex analogue we

replace SO(4) by the group SO(4)× S1 and consider its double cover. We define the group

SpinC(4) = (Spin(4)× S1)/{±1} = Spin(4)×Z2 S1.

This is the desired double cover of SO(4)× S1. Finally we define M to be spinC, if given

the bundle PSO(4), there are principal bundles PS1 and PSpinC(4), with a SpinC(4) equivariant

bundle map, a double cover

ξ ′ : PSpinC(4) → PSO(4) × PS1 .

It is a known fact, that in dimension four any orientable manifold has a (non-unique) spinC

structure. The spinC representation now allows us to consider the associated vector bundle

S, called the spinor bundle for a given spinC structure. This is a complex vector bundle. In

the four-dimensional case this vector bundle splits into the sum of two subbundles S+, S−,

12



2. A local invariant of a four-dimensional Riemannian manifold

such that

S = S+ ⊕ S−.

Further details on this theory can be found in the book [8].

Let P(S+
x )
∼= P1 and P(S−x ) ∼= P1 denote the projectivizations of the fibers of the spinor

bundles S+ and S− over x respectively. Consider now the Segre embedding

P(S−x )×P(S+
x ) → P(S−x ⊗ S+

x )[
ρ−
]
×
[
ρ+
]
7→

[
ρ− ⊗ ρ+

]
.

One can show, that S−x ⊗ S+
x
∼= Tx M⊗C.

Let now {ei}4
i=1 be a local orthonormal frame for Tx M ⊗ C. We will be working with

this frame from now on, because it is more convient for computational reasons. The Segre

embedding with respect to the basis {ei}4
i=1 is given by

σ : P(S−x )×P(S+
x ) → P(Tx M⊗C)

([a1, a2], [b1, b2]) 7→ [a1b1 + a2b2, i(a2b2 − a1b1),−i(a1b2 + a2b1), a2b1 − a1b2]

=: [w1, w2, w3, w4]. (2.12)

This is a well defined map. In order to pick coordinates on P(S−x ) and P(S+
x ) one should

observe the projection of ξ ′ onto the first factor:

PSpinC(4) → PSO(4).

A point in the fiber of PSO(4) over x is a basis for Tx M and a point in the fiber of PSpinC(4)

over x is a basis for the spinor Sx = S+
x ⊕ S−x .

2.1.4 Remark. Recall that the ”classical” Segre embedding is given by

Σ : P1 ×P1 → P3

([a1, a2], [b1, b2]) 7→ [a1b1, a2b2, a1b2, a2b1] =: [W1, W2, W3, W4].

The image is just the quadric surface W1W2 −W3W4 = 0 and the rank of the quadric is

13



2. A local invariant of a four-dimensional Riemannian manifold

four, i.e. it’s a smooth quadric. The associated symmetric matrix is

Σ =


0 1/2 0 0

1/2 0 0 0

0 0 0 −1/2

0 0 −1/2 0


Let now

B =


1 i 0 0

1 −i 0 0

0 0 i −1

0 0 i 1

 ,

so that BtΣB = I4. Then

B−1


W1

W2

W3

W4

 =


w1

w2

w3

w4

 .

One we can easily observe that the image of the Segre embedding is just the quadric

surface (w1)2 + (w2)2 + (w3)2 + (w4)2 = 0 and the rank of the quadric is four, i.e. it s a

smooth quadric. Thus P(gx) can be written with respect to the orthonormal basis {ei}4
i=1

for Tx M⊗C as

P(gx) = {[w] ∈ P(Tx M⊗C) : (w1)2 + (w2)2 + (w3)2 + (w4)2 = 0}. (2.13)

The quadric P(gx) has two rulings by lines and a unique line of each ruling passes

through each point of the quadric. More precisely: fix a point [a1, a2] ∈ P(S−x ). Then

t+ := σ({[a1, a2]} ×P(S+
x ))

is a line in P(Tx M⊗C). Similarly for fixed [b1, b2] ∈ P(S+
x ),

t− := σ(P(S−x )× {[b1, b2]})

14



2. A local invariant of a four-dimensional Riemannian manifold

is also a line in P(Tx M⊗C). So the quadric contains two families of lines denoted by F−
and F+ respectively such that,

F− =
⋃

[b1,b2]∈P(S+
x )

{t−}, F+ =
⋃

[a1,a2]∈P(S−x )

{t+}.

If we choose any point of t+, we can find a unique line of the family F− passing through

it. Analogously for every point of t− we can find a unique line of F+ passing through it.

Furthermore it holds that no two lines from the same family intersect and that any two

lines belonging to different families intersect in a unique point of the quadric. The lines

P(S±x ) are called the rectilinear generators of the quadric and

P(gx) = σ(P(S−x )×P(S+
x )). (2.14)

The Plücker Embedding:

Every t− or t+ is a line in P(Tx M⊗C). We will compute their images under the Plücker

embedding. By setting first [b1, b2] = [1, 0] and then [b1, b2] = [0, 1] in (2.12) we can easily

see, that

t+ = P-span([a1,−ia1,−ia2, a2], [a2, ia2,−ia1,−a1]).

We compute, that (a1e1 − ia1e2 − ia2e3 + a2e4) ∧ (a2e1 + ia2e2 − ia1e3 − a1e4) equals

2ia1a2e1 ∧ e2 + i{(a2)2 − (a1)2}e1 ∧ e3 − (a1)2 − (a2)2e1 ∧ e4

−(a1)2 − (a2)2e2 ∧ e3 + i{(a1)2 − (a2)2}e2 ∧ e4 + 2ia1a2e3 ∧ e4.

Thus we obtain, that the coordinates of pl(t+) in the basis {ei ∧ ej}1≤i<j≤4 of Λ2(Tx M⊗C)

are

[2ia1a2, i{(a2)2 − (a1)2},−(a1)2 − (a2)2,−(a1)2 − (a2)2, i{(a1)2 − (a2)2}, 2ia1a2].

On the other hand by setting first [a1, a2] = [1, 0] and then [a1, a2] = [0, 1] in (2.12), we have

that

t− = P-span([b1,−ib1,−ib2,−b2], [b2, ib2,−ib1, b1]).

15



2. A local invariant of a four-dimensional Riemannian manifold

In this case the coordinates of pl(t−) in the basis {ei ∧ ej}1≤i<j≤4 of Λ2(Tx M⊗C) are

[2ib1b2, i{(b2)2 − (b1)2}, (b1)2 + (b2)2,−(b1)2 − (b2)2, i{(b2)2 − (b1)2},−2ib1b2].

It is well known, that in dimension 4 the Hodge ∗-operator induces a natural decompo-

sition of Λ2Tx M on an oriented manifold M given by

Λ2Tx M = Λ2
+Tx M⊕Λ2

−Tx M,

where Λ2
+Tx M and Λ2

−Tx M correspond to the eigenspaces +1 and −1 respectively. Further-

more elements of Λ2
+Tx M and Λ2

−Tx M are called self-dual and anti-self-dual respectively.

We will perform a change of basis for Λ2Tx M⊗C. We would like to express the coordinates

of pl(t+) and pl(t−) in the basis B of Λ2(Tx M⊗C) given by

f±1 =
1√
2
(e1 ∧ e2 ± e3 ∧ e4)

f±2 =
1√
2
(e1 ∧ e3 ∓ e2 ∧ e4)

f±3 =
1√
2
(e1 ∧ e4 ± e2 ∧ e3).

One can observe, that { f+i }3
i=1 is basis for Λ2

+Tx M⊗C, where ∗ f+i = fi, i = 1, 2, 3 and that

{ f−i }3
i=1 is basis for Λ2

−Tx M⊗C, where ∗ f−i = − fi, i = 1, 2, 3. By using the change of basis

matrix 

√
2

2 0 0 0 0
√

2
2

0
√

2
2 0 0 −

√
2

2 0

0 0
√

2
2

√
2

2 0 0
√

2
2 0 0 0 0 −

√
2

2

0
√

2
2 0 0

√
2

2 0

0 0
√

2
2 −

√
2

2 0 0


we compute, that the coordinates [u12, u13, u14, u23, u24, u34] in the basis B of Λ2(Tx M⊗C)

are given by

[u1, u2, u3, u4, u5, u6] := [u12 + u34, u13 − u24, u14 + u23, u12 − u34, u13 + u24, u14 − u23].
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2. A local invariant of a four-dimensional Riemannian manifold

Thus the coordinates of pl(t+) in the basis B of Λ2(Tx M⊗C) are

[2ia1a2, i{(a2)2 − (a1)2},−(a1)2 − (a2)2, 0, 0, 0] (2.15)

and the coordinates of pl(t−) in the basis B of Λ2(Tx M⊗C) are

[0, 0, 0, 2ib1b2, i{(b2)2 − (b1)2}, (b1)2 + (b2)2]. (2.16)

By (2.15) and (2.16) one can easily see, that F+ and F− are embedded conics in P(Λ2Tx M⊗

C) given by the equations


u4 = u5 = u6 = 0

(u1)2 + (u2)2 + (u3)2 = 0
(2.17)

and 
u1 = u2 = u3 = 0

(u4)2 + (u5)2 + (u6)2 = 0
(2.18)

respectively. We will denote these conics by C+ and C−. Obviously each of the two conics

is sitting in a plane in P(Λ2Tx M⊗C). The first plane is P(Λ2
+Tx M⊗C) and the second is

P(Λ2
−Tx M⊗C). They are given by the equations

u4 = u5 = u6 = 0 (2.19)

and

u1 = u2 = u3 = 0 (2.20)

respectively. Obviously P(Λ2
+Tx M⊗C) ∩P(Λ2

−Tx M⊗C) = ∅.

The projectivized tangent bundle:

Let now T := TP(gx) denote the tangent bundle of the quadric P(gx) and P(T ) its

projectivization. Then one can write

P(T ) = {(t+ ∩ t−, l) : l ⊂ P(Tx M⊗C) is a line tangent to P(gx) at the point t+ ∩ t−},

which is an algebraic subvariety of P(gx)×Gr1(P(Tx M⊗C)) ⊂ P(Tx M⊗C)×Gr1(P(Tx M⊗

17



2. A local invariant of a four-dimensional Riemannian manifold

C)). We will now apply the Plücker embedding on the second factor. We define the map

idP(gx) × pl : P(gx)×Gr1(P(Tx M⊗C))→ P(gx)× pl(Gr1(P(Tx M⊗C))).

Then

(idP(gx)×pl)
(
P(T )

)
:= {(t+∩ t−, pl(l)) : l ⊂ P(Tx M⊗C) is a line tangent to P(gx) at the point t+∩ t−}.

Thus (idP(gx) × pl)
(
P(T )

)
is naturally an algebraic subvariety

(idP(gx)×pl)
(
P(T )

)
⊂ P(gx)×pl(Gr1(P(Tx M⊗C))) ⊂ P(Tx M⊗C)×P(Λ2Tx M⊗C) ∼= P3×P5.

If we now denote by

π : (idP(gx) × pl)
(
P(T )

)
→ pl(Gr1(P(Tx M⊗C)))

(t+ ∩ t−, pl(l)) 7→ pl(l)

and

τ : (idP(gx) × pl)
(
P(T )

)
→ P(gx)

(t+ ∩ t−, pl(l)) 7→ t+ ∩ t−

the natural projections, we are interested in the geometry of π
(
(idP(gx) × pl)

(
P(T )

))
. We

would like to give a description in P(Λ2Tx M⊗C) of the image of the set of lines tangent

to the quadric P(gx) at the point t+ ∩ t− under the Plücker embedding. All these lines lie

on one plane and pass through one point, so in P(Λ2Tx M⊗ C) they form a line given by

P-span(pl(t+), pl(t−)). Thus

π
(
(idP(gx) × pl)

(
P(T )

))
= {pl(l) ∈ P-span(pl(t+), pl(t−)) : pl(t+) ∈ C+, pl(t−) ∈ C−}

(2.21)

and

dim
[
π
(
(idP(gx) × pl)

(
P(T )

))]
= dim(C+) + dim(C−) + 1 = 3,
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2. A local invariant of a four-dimensional Riemannian manifold

because π
(
(idP(gx) × pl)

(
P(T )

))
is the join of the varieties C+ and C−. We can now de-

scribe (idP(gx) × pl)
(
P(T )

)
by

(idP(gx) × pl)
(
P(T )

)
= {(t+ ∩ t−, pl(l)) : pl(l) ∈ P-span(pl(t+), pl(t−))}. (2.22)

We are going to show now that the variety π
(
(idP(gx) × pl)

(
P(T )

))
is singular and

we will determine its singular locus. By (2.17), (2.18) and (2.21) we see that the variety

π
(
(idP(gx) × pl)

(
P(T )

))
is defined by the equations


(u1)2 + (u2)2 + (u3)2 = 0

(u4)2 + (u5)2 + (u6)2 = 0.
(2.23)

The system of equations (2.23) shows that the singular points of π
(
(idP(gx)×pl)

(
P(T )

))
are given by

Sing
(

π
(
(idP(gx) × pl)

(
P(T )

)))
= C+ ∪ C−.

Let’s explain why. We will fix a coordinate system on P-span(pl(t+), pl(t−)). Let T+ and T−

denote the vector space representations of pl(t+) and pl(t−) in the basis B of Λ2(Tx M⊗C)

respectively. Then

T+ = 2ia1a2 f+1 + i{(a2)2 − (a1)2} f+2 + [−(a1)2 − (a2)2] f+3 + 0 f−1 + 0 f−2 + 0 f−3

and

T− = 0 f+1 + 0 f+2 + 0 f+3 + 2ib1b2 f−1 + i{(b2)2 − (b1)2} f−2 + [(b1)2 + (b2)2] f−3 .

We have then, that

span(T+, T−) = {λT+ + µT− : λ, µ ∈ C}

is a plane in Λ2Tx M⊗C. So we obtain a projective coordinate system on P-span(pl(t+), pl(t−)).
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2. A local invariant of a four-dimensional Riemannian manifold

A point on this line has coordinates in the basis B of Λ2(Tx M⊗C) given by

[2λia1a2, λi{(a2)2 − (a1)2}, λ{−(a1)2 − (a2)2}, 2µib1b2, µi{(b2)2 − (b1)2}, µ{(b1)2 + (b2)2}]

(2.24)

for scalars λ and µ. Obviously, by (2.23) the Jacobian matrix of the polynomials defining

the variety is

2u1 2u2 2u3 0 0 0

0 0 0 2u4 2u5 2u6


and its rank at the point pl(t+) or pl(t−) is equal to one, i.e. lower than on any other point

of P-span(pl(t+), pl(t−)).

2.2. The intersection of three quadrics

Consider the intersection

Sx = P(vx) ∩P(Λ2gx) ∩P(Rx)

= pl(Gr1(P(Tx M⊗C))) ∩P(Λ2gx) ∩P(Rx)

of the three quadrics in P(Λ2Tx M⊗C). We consider a line l tangent to the quadric P(gx).

By the discussion in the previous section it corresponds to a point in pl(Gr1(P(Tx M⊗C))).

The condition that the line l is tagent to the quadric P(gx) is equivalent to the condition

that pl(l) ∈ P(Λ2gx). So

π
(
(idP(gx) × pl)

(
P(T )

))
= pl(Gr1(P(Tx M⊗C))) ∩P(Λ2gx).

This means that,

Sx = π
(
(idP(gx) × pl)

(
P(T )

))
∩P(Rx).

Therefore Sx must have singularities

Sing(Sx) ⊃ Sing
(

π
(
(idP(gx) × pl)

(
P(T )

)))
∩P(Rx) = (C+ ∩P(Rx)) ∪ (C− ∩P(Rx)).
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2. A local invariant of a four-dimensional Riemannian manifold

2.2.1 Definition. The variety Sx is called the local invariant of the Riemannian manifold

(M, g) at the point x.

2.2.2 Remark. Notice, that if Rx = κΛ2gx, κ ∈ C∗, the manifold at the point x is a manifold

of constant curvature in any two dimensional direction. In such a case, Sx is not defined

and we shall not consider such points on M.

In the folowing we assume that the quadric P(Rx) intersects the non-singular points of

π
(
(idP(gx) × pl)

(
P(T )

))
transversally and intersects the singular locus C+ ∪ C− transver-

sally as well. It follows by [14], Proposition 17.18 that Sx is the complete intersection of the

quadrics P(vx), P(Λ2gx), P(Rx).

2.2.3 Remark. Recall that two varieties intersect transversally if they intersect transversally at

each point of their intersection, i.e. they are smooth at this point and their separate tangent

spaces at that point span the tangent space of the ambient variety at that point. In other

words if X and Y are projective subvarieties of Pn, then X and Y intersect transversally if

at every point u ∈ X ∩Y, TuX⊕ TuY = TuPn. Thus transversality depends on the choice of

the ambient variety. In particular, transversality always fails whenever two subvarieties are

tangent.

Recall that the complete intersection of three quadrics in P5 is a K3 surface (more details

on that can be found in the Appendix A). Thus Sx is a (singular) K3 surface. The quadric

P(Rx) interesects the singular locus C+ ∪C− transversally and each intersection P(Rx)∩C+,

P(Rx) ∩ C−, consists of four ordinary double points (the transversal intersection of quadric

and conic gives a 0-dimensional variety of degree 4). We wil denote the set of these points

by Sing(Sx) = {pl(t1
+), pl(t2

+), pl(t3
+), pl(t4

+), pl(t1
−), pl(t2

−), pl(t3
−), pl(t4

−)}.

Consider now the the algebraic subvariety

S̃x = π−1(P(Rx)) ⊂ P(Tx M⊗C)×P(Λ2Tx M⊗C).

The next step is to show, that S̃x is the resolution of the singular points of Sx. We consider

the map

π̃ : S̃x → Sx.
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2. A local invariant of a four-dimensional Riemannian manifold

Then S̃x is the resolution of the singular points of Sx, if and only if

S̃x \ π̃−1(Sing(Sx)) ∼= Sx \ Sing(Sx).

By the definiton of π̃−1 this is indeed an isomorphism.

We would like to compute now π̃−1(Sing(Sx)), or in other words to find the blow ups of

the singular points pl(ti
+), pl(tj

−), 1 ≤ i, j ≤ 4.

2.2.4 Remark. Let’s recall the notion of the blow up of a complex surface at a point. Let

q ∈ U ⊂ X be an open neighborhood and (x, y) local coordinates such that q = (0, 0) in this

coordinate system. Define

Ũ := {((x, y), [z, w]) ∈ U ×P1 : xw = yz}.

We have then the projection onto the first factor

pU : Ũ → U

((x, y), [z, w]) 7→ (x, y).

If (x, y) 6= (0, 0), then p−1
U ((x, y)) = (((x, y), [z, w])). Furthermore we have p−1

U (q) = {q} ×

P1. This implies that the restriction

pU : p−1
U (U \ {q})→ U \ {q}

is an isomorphism and p−1
U (q) ∼= P1 is a curve contracted by pU to a point. Now let us

take the gluing of X and Ũ along X \ {q} and Ũ \ {q} ∼= U \ {q}. In this way we obtain

a surface X̃ together with a morphism p : X̃ → X. Notice that p gives an isomoprhism

between X \ {q} and X̃ \ p−1(q) and contracts the curve P1 ∼= p−1(q) to the point q. The

morphism p : X̃ → X is called the blow-up of X along q. The curve p−1(q) ∼= P1 is called

exceptional curve or exceptional divisor of the blow-up.

We obtain that

Ei := π̃−1(pl(ti
+)) = {(ti

+ ∩ t−, pl(ti
+)) : t− ⊂ F−} ∼= P1, (2.25)
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2. A local invariant of a four-dimensional Riemannian manifold

Fj := π̃−1(pl(tj
−)) = {(t+ ∩ tj

−, pl(tj
−)) : t+ ⊂ F+} ∼= P1, (2.26)

for 1 ≤ i, j ≤ 4. Observe that this means, that π̃ is the blow-up of Sx along pl(ti
+), pl(tj

−) for

1 ≤ i, j ≤ 4 and the curves Ei, Fj, for 1 ≤ i, j ≤ 4 are the exceptional divisor of the blow-up.

In other words, π̃ contracts the curves Ei to the points pl(ti
+) and the curves Fj to the points

pl(tj
−) for 1 ≤ i, j ≤ 4.

The branching curve Γx :

We will show that the map

τ̃ : S̃x → P(gx)

is a double branched cover at a generic point, where τ̃ is the restriction of τ to S̃x. The term

”double branched cover” means, that there exists a closed subset Br of P(gx), such that τ̃

restricted to S̃x \ Ram, where Ram := τ̃−1(Br) is a topological double cover of P(gx) \ Br.

Points in Br and Ram are called branching points and ramification points respectively. The

term ”generic” stands for the fact that as we will see sometimes τ̃ represents a branched

double cover followed by a blow-up. Before describing the preimage τ̃−1(t+ ∩ t−) we would

like to be more precise.

The block decomposition of the Riemann curvature operator in dimension four is given

by

Rm =

A B

Bt C

 ,

where A and C correspond to the operators associated to

W+ +
scal
24

g 7 g

and

W− +
scal
24

g 7 g

respectively and B is the operator associated to the curvature-like tensor

1
2

◦
Ric 7 g =

1
2

(
Ric− scal

4
g
)

7 g.
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2. A local invariant of a four-dimensional Riemannian manifold

Recall, that in dimension four

Rm = W+ + W− +
1
2

◦
Ric 7 g +

scal
24

g 7 g,

where W+, W− denote the Weyl parts of the curvature and
◦

Ric the traceless Ricci tensor.

Consider now the block decomposition above and let u = u1 + u2 ∈ Λ2
+(Tx M ⊗ C) ⊕

Λ2
−(Tx M⊗C). Then

Rx(u) = Λ2gx(Rm(u), u)

= Λ2gx(A(u1), u1) + Λ2gx(B(u2), u1) + Λ2gx(Bt(u1), u2) + Λ2gx(C(u2), u2)

= Λ2gx(A(u1), u1) + 2Λ2gx(B(u2), u1) + Λ2gx(C(u2), u2).

Now the quadric P(Rx) is given by

P(Rx) = {[u] = [u1 + u2] ∈ P(Λ2Tx M⊗C) : Λ2gx

(
A(u1), u1

)
+

+2Λ2gx

(
B(u2), u1

)
+ Λ2gx

(
C(u2), u2

)
= 0}.

We would like to describe the intersection of P(Rx) with P-span(pl(t+), pl(t−)). As

explained previously, a point on the line P-span(pl(t+), pl(t−)) is expressed as [λT++µT−].

Let us set u1 = λT+ ∈ Λ2
+(Tx M⊗C) and u2 = µT− ∈ Λ2

−(Tx M⊗C). We obtain, that

Λ2gx

(
A(λT+), λT+

)
+ 2Λ2gx

(
B(µT−), λT+

)
+ Λ2gx

(
C(µT−), µT−

)
= 0

⇒ λ2Λ2gx

(
A(T+), T+

)
+ 2λµΛ2gx

(
B(T−), T+

)
+ µ2Λ2gx

(
C(T−), T−

)
= 0

⇒ λ2Λ2gx

((
W+ +

scal
12

IdΛ+

)
(T+), T+

)
+ 2λµΛ2gx

(
B(T−), T+

)
+

+µ2Λ2gx

((
W− +

scal
12

IdΛ−
)
(T−), T−

)
= 0

⇒ λ2Λ2gx

(
W+(T+), T+

)
+ λ2 scal

12
Λ2gx

(
T+, T+

)
+ 2λµΛ2gx

(
B(T−), T+

)
+

+µ2Λ2gx

(
W−(T−), T−

)
+ µ2 scal

12
Λ2gx

(
T−, T−

)
= 0

⇒ λ2Λ2gx

(
W+(T+), T+

)
+ 2λµΛ2gx

(
B(T−), T+

)
+ µ2Λ2gx

(
W−(T−), T−

)
= 0,
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2. A local invariant of a four-dimensional Riemannian manifold

where W+ and W− correspond to the operators associated to W+ and W− respectively.

Notice, that in the last implication we are using the fact, that π
(
(idP(gx) × pl)

(
P(T )

))
=

pl(Gr1(P(Tx M⊗C))) ∩P(Λ2gx).

By assuming that µ 6= 0 and setting s = λ
µ we obtain a quadratic equation in the variable

s given by

Λ2gx

(
W+(T+), T+

)
s2 + 2Λ2gx

(
B(T−), T+

)
s + Λ2gx

(
W−(T−), T−

)
= 0. (2.27)

We can consider the previous equation naturally, as an equation that determines Sx. The

discriminant of the equation is given by

∆ = 4
(

Λ2gx(B(T−), T+)
)2
− 4Λ2gx

(
W+(T+), T+)Λ2gx

(
W−(T−), T−

)
.

Thus there are three possible cases for the intersection of the quadric and the line.

(i) If ∆ 6= 0, then the intersection consists of exactly two distinct points:

• P-span(pl(t+), pl(t−))∩P(Rx) = {pl(l), pl(l′)}, where pl(l), pl(l′) 6= pl(t+), pl(t−).

Then

π̃−1(pl(l)) = (t+ ∩ t−, pl(l)), π̃−1(pl(l′)) = (t+ ∩ t−, pl(l′))

and

τ̃−1(t+ ∩ t−) = {π̃−1(pl(l)), π̃−1(pl(l′))}

are two distinct points. Both these points are nonsingular points of S̃x.

• P-span(pl(ti
+), pl(t−)) ∩ P(Rx) = {pl(ti

+), pl(l)}, for some i = 1, ..., 4, where

pl(l) 6= pl(ti
+), pl(t−). Then

τ̃−1(ti
+ ∩ t−) = {(t+ ∩ t−, pl(ti

+)), π̃−1(pl(l))},

are two distinct points. Both these points are nonsingular points of S̃x.

• P-span(pl(t+), pl(tj
−)) ∩ P(Rx) = {pl(tj

−), pl(l)}, for some j = 1, ..., 4, where

pl(l) 6= pl(t+), pl(tj
−). Then

τ̃−1(t+ ∩ tj
−) = {(t+ ∩ t−, pl(tj

−)), π̃−1(pl(l))},
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2. A local invariant of a four-dimensional Riemannian manifold

are two distinct points. Both these points are nonsingular points of S̃x.

• P-span(pl(ti
+), pl(tj

−)) ∩P(Rx) = {pl(ti
+), pl(tj

−)}, for some i, j = 1, ..., 4. Then

τ̃−1(ti
+ ∩ tj

−) = {(ti
+ ∩ tj

−, pl(ti
+)), (t

i
+ ∩ tj

−, pl(tj
−))},

are two distinct points. Both these points are nonsingular points of S̃x.

(ii) If ∆ = 0, but not all coefficients are equal to zero, then the line has exactly one double

point in common with the quadric P(Rx), which is possible if and only if the line is

tangent to the quadric at that point:

• P-span(pl(t+), pl(t−)) ∩ P(Rx) = {pl(l)}, where pl(l) 6= pl(t+), pl(t−). This is

the case that P-span(pl(t+), pl(t−)) is tangent to the quadric P(Rx) at the point

pl(l). Then

τ̃−1(t+ ∩ t−) = {π̃−1(pl(l))}.

Obviously in this case t+ ∩ t− corresponds to a branching point and π̃−1(pl(l))

is a ramification point.

(iii) If ∆ = 0 and all coefficients are simultaneously equal to zero, then the line lies entirely

in P(Rx):

• P-span(pl(ti
+), pl(tj

−)) ⊂ P(Rx), for some i, j = 1, ..., 4. Then

τ̃−1(ti
+ ∩ tj

−) = {π̃−1(pl(l)) : pl(l) ∈ P-span(pl(ti
+), pl(tj

−)) \ {pl(ti
+), pl(tj

−)}} ∪

∪{(ti
+ ∩ tj

−, pl(ti
+))} ∪ {(ti

+ ∩ tj
−, pl(tj

−))} =: P1
ti
+∩tj

−
,

where P1
ti
+∩tj

−

∼= P-span(pl(ti
+), pl(tj

−))
∼= P1, since π̃ maps the curve τ̃−1(ti

+ ∩

tj
−) one to one onto the singular line P-span(pl(ti

+), pl(tj
−)). Here ti

+ ∩ tj
− corre-

sponds again to a branching point and in this special case the branching curve

Γx ⊂ P(gx) at the point ti
+ ∩ tj

− is singular.

Thus the branching curve is described by

Γx = {([a1, a2], [b1, b2]) ∈ P(S−x )×P(S+
x ) : (2.28)(

Λ2gx(B(T−), T+)
)2
−Λ2gx

(
W+(T+), T+

)
Λ2gx

(
W−(T−), T−

)
= 0}.

26



2. A local invariant of a four-dimensional Riemannian manifold

The next propositions can be found in Nikulin’s paper [21].

2.2.5 Remark. The branching curve will serve as our local invariant in this text. Precisely, we

will use this local invariant in oder to obtain a characterization for the singularity models

for Type I singularities for four dimensional Ricci flows. The type of the curve is invariant

under the choice of basis for Tx M ⊗ C. For example, as we will see in Chapter 4, the

branching curve associated to a point of S3 ×R, is a 4-typle diagonal and that of S2 × S2, is

a double rectangle.

2.2.6 Proposition. Assume that the branching curve Γx has only finite number of singular points.

Then τ̃ : S̃x → P(gx) is a branched double cover for all points t+ ∩ t− ∈ Γx, except for the singular

points, at which τ̃ is a branched double cover followed by a blow-up.

Recall that for a covering map τ̃ : S̃x → P(gx), there exists a homeomorpish σ̂ : S̃x → S̃x,

such that τ̃ ◦ σ̂ = τ̃, that is to say σ̂ is a lift of τ̃. The map σ̂ is called a deck transformation.

2.2.7 Proposition. Assume that the branching curve Γx has only finite number of singular points.

Then the deck transformation σ̂ of the branched double cover is everywhere defined on S̃x.

Then there are given on S̃x nonsingular rational curves (exceptional curves) Ēi := σ̂(Ei) ∼=

P1 and F̄j := σ̂(Fj) ∼= P1, where 1 ≤ i, j ≤ 4.

2.3. The Picard sublattice

2.3.1 Remark. We should recall some basic knowledge from algebraic geometry. A Weil

divisor D on a nonsingular surface S̃x is a formal linear combination

D = ∑
i

diCi

of irreducible curves. A curve itself can be regarded as a divisor, seen as a formal linear sum

of its irreducible components. Div(S̃x) denotes the set of all divisors and has the structure

of a free, abelian group. The divisor is called effective and we denote it by D ≥ 0 if all

coefficients di are non-negative and not all zero. On the other hand the tensor product and

the dual endow the set of all isomorphism classes of holomorphic line bundles on S̃x with

the structure of an abelian group. This group is called the Picard group and is denoted by
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2. A local invariant of a four-dimensional Riemannian manifold

Pic(S̃x). There is a natural group homomorphism

Div(S̃x) → Pix(S̃x)

D 7→ OS̃x
(D),

where OS̃x
(D) denotes the line bundle associated to the divisor D. More details on how

this association is constructed can be found in the book [1] on page 27. Two divisors D and

F are called linearly equivalent and we write D ∼ F if OS̃x
(D) ∼= OS̃x

(F). It can be shown

that Pic(S̃x) can be equivalently defined as

Pic(S̃x) = Div(S̃x)/ ∼ .

The next notion we will need, is the notion of a linear system. The complete linear system

of D ∈ Div(S̃x) is defined by

|D| = {F ∈ Div(S̃x) : F ≥ 0, D ∼ F},

which means that |D| is the set of all effective divisors on S̃x, which are linearly equivalent

to D. We call a linear subspace of |D| a linear system on S̃x. The base locus of |D| is given

by

Bs(|D|) =
⋂

F∈|D|
F.

Finally, there exists a one-to-one correspondence between regular maps Φ : S̃x → Pn to

projective space and linear systems on S̃x. To the regular map Φ we can associate the linear

system Φ∗|H|, where H = Pn−1 ⊂ Pn is the hyperplane divisor.

Consider the maps Φ5 : S̃x → P(Λ2Tx M⊗ C), Φ3 : S̃x → P(Tx M⊗ C), p+ ◦Φ3 : S̃x →

F+, p− ◦Φ3 : S̃x → F−, where p+ : P(gx) → F+ and p− : P(gx) → F− are projections. By

the Remark 2.3.1 we obtain four linear systems H5, H3, H+ and H− respectively.

We denote by h5, h3, h+, h−, ptk
+∩tm

−
∈ Pic(S̃x) and ei, f j, ēi, f̄ j ∈ Pic(S̃x) the classes of

divisors of H5, H3, H+, H−, P1
tk
+∩tm

−
and Ei, Fj, Ēi, F̄i respectively, where 1 ≤ i, j ≤ 4 and

some k, m ∈ {1, ..., 4}. An introduction to the basic theory of K3 surfaces can be found in

the Appendix A.
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2. A local invariant of a four-dimensional Riemannian manifold

The following Theorem can be found in [21].

2.3.2 Theorem. For the nonsingular K3 surface S̃x hold:

(i) The elements h5, ei, f j for 1 ≤ i, j ≤ 4, generate in Pic(S̃x) a primitive sublattice

Λ =
{

h5, {ei : 1 ≤ i ≤ 4}, { f j : 1 ≤ j ≤ 4}, h+ =
1
2

(
h5−

4

∑
i=1

ei

)
, h− =

1
2

(
h5−

4

∑
j=1

f j

)}
.

Furthermore

h2
5 = 8, e2

i = −2, f 2
j = −2,

h5 · ei = 0, ∀i, h5 · f j = 0, ∀j,

ei · el = 0, ∀i 6= l, f j · fl = 0, ∀j 6= l,

ei · f j = 0, ∀i, j .

The elements h3, ēi, f̄ j ∈ Λ and

h3 = h+ + h−,

ēi = f − ei −∑
j

pti
+∩tj

−
,

f̄ j = e− f j −∑
i

pti
+∩tj

−
.

(ii) If the elements ptk
+∩tm

−
exist, then it holds:

ptk
+∩tm

−
· h5 = 1, ptk

+∩tm
−
· ei = δki,

ptk
+∩tm

−
· f j = δmj, p2

tk
+∩tm

−
= −2 .

The sublattice spanned by Λ and the elements pt+∩t− has rank equal to rank(Λ)+ 1. If distinct

elements pt+∩t− exist, then they are mutually orthogonal.

(iii) The complete linear systems |h5|, |h3|, |h+|, |h−|, |pt+∩t− |, |ei|, | f j|, |ēi|, | f̄ j| coincide with the

original ones H5, H3, H+, H−, Pt+∩t− and Ei, Fj, Ēi, F̄j and the linear systems |h5|, |h3|, |h+|,

|h−| have no basis points.

2.3.3 Remark. Notice that h5 plays the role of polarization, so the K3 surfaces we are dealing

with are always lattice polarized K3 surfaces with a polarization of degree 8. The interested

29



2. A local invariant of a four-dimensional Riemannian manifold

reader can found details on lattice polarized K3 surface and their coarse moduli space in

the last section of the Appendix.
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3. Ricci flow basics

In this chapter we introduce the Ricci flow equation and give some basic examples of Ricci

flows. The Ricci flow was introduced by Hamilton in 1982 in his seminal paper [9]. After

the work of Perelman it was proven to be a very powerful tool towards the classification

of 3-dimensional Riemannian manifolds and was used in order to prove Thurston’s Ge-

ometrization Conjecture. In the second section of this chapter we introduce Ricci solitons,

which are special solutions to the Ricci flow and often arise as singularity models of the

Ricci flow after performing some rescaling arguments, which will become clear in Chapter

6.

3.1. The Ricci flow equation and examples

Let (M, g0) be a smooth Riemannian manifold . The Ricci flow is a PDE that describes the

evolution of the Riemannian metric tensor:

∂

∂t
g(t) = −2Ric

g(0) = g0,

where g(t) is a one-parameter family of metrics on M and Ric := Ricg(t) denotes the Ricci

curvature with respect to g(t). The minus sign makes the Ricci flow a heat-type equation,

so it is expected to ”average out” the curvature. In order to get a feeling of the evolution

equation, we will look at some simple examples.

3.1.1 Example (Einstein metrics). Suppose that the initial metric g0 is Ricci flat, i.e. Ricg0 = 0.

In this case the metric will remain stationary for all subsequent times. Concrete examples

are the Euclidean space Rn and the flat torus Tn = S1 × ...× S1. Suppose now that the

initial metric is an Einstein metric, i.e. Ricg0 = κg0, κ ∈ R. A solution g(t) with g(0) = g0 is
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3. Ricci flow basics

given by

g(t) = (1− 2κt)g0.

If κ > 0, κ = 0 or κ < 0 we call the solution shrinking, steady or expanding respectively.

The simplest shrinking solution is that of the unit sphere (Sn, g0) endowed with the round

metric. It holds that Ricg0 = (n− 1)g0, so

g(t) = (1− 2(n− 1)t)g0

is a maximal solution to the Ricci flow defined on the time interval (−∞, T), where T =

1
2(n−1) . That is, under the Ricci flow Sn stays round and shrinks homothetically at a steady

rate. Observe that at time T (called the singularity time) the sphere shrinks to a point. By

contrast, the simplest expanding solution is that of the hyperbolic space Hn endowed with

the hyperbolic metric of a constant sectional curvature −1. In this case Ricg0 = −(n− 1)g0,

so

g(t) = (1 + 2(n− 1)t)g0

is a solution to the Ricci flow and the manifold expands homothetically for all times.

3.1.2 Example (Quotient metrics). Let M = N/G be a quotient of a Riemannian manifold N

by a discrete group of isometries G. Then it will remain so under the Ricci flow, as the Ricci

flow on N preserves the isometry group. For example RPn = Sn/Z2 shrinks to a point in

finite time, as does its cover Sn.

3.1.3 Example (Product Metrics). Let M × N be a product manifolds endowed with the

product metric. Under the Ricci flow the metric will remain a product metric and each

factor evolves independently. For example for Sn × S1, the first factor shrinks to a point in

finite time, while the second factor stays stationary.

3.2. Ricci solitons

Before we discuss Ricci solitons we list at first the types of long-existing solutions of the

Ricci flow.

3.2.1 Definition. An ancient solution to the Ricci flow is a solution that exists on a past time
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interval (−∞, ω). An immortal solution is a solution that exists for a future time interval

(α, ∞). An eternal solution is a solution that exists for all time (−∞, ∞).

From taking limits of dilations of singularities we obtain long-existing solutions. This

will become clear in Chapter 6.

3.2.2 Definition. A triple (Mn, g, X) is called a Ricci soliton if there exists a complete vector

field X on M and κ ∈ R, such that

Ric+
1
2
LXg = κg. (3.1)

We distinguish the following cases. If κ = 0, then it is called a steady Ricci soliton, if

κ < 0 an expanding Ricci soliton and if κ > 0 a shrinking Ricci soliton. In the case where X

vanishes identically, we just have the case of Einstein metrics.

3.2.3 Definition. A triple (Mn, g, f ) is called a gradient Ricci soliton, if there exists a gradi-

ent vector field X = ∇g f = grad f for some f ∈ C∞(M) (called the potential function) and

κ ∈ R, such that

Ric+∇g∇g f = κg. (3.2)

3.2.4 Remark. Recall, that ∇g∇g f = Hess( f ) = 1
2L∇g f g.

We distiguish the following cases. If κ = 0, then it is called a gradient steady Ricci soliton,

if κ < 0 a gradient expanding Ricci soliton and if κ > 0 a gradient shrinking Ricci soliton.

In the case where f = const, we just have the case of Einstein metrics.

Similar to Einstein metrics, Ricci solitons give rise to special solutions to the Ricci flow.

Suppose that (M, g(t)) is a solution of the Ricci flow. One says g(t) is a self-similar solution

of the Ricci flow if there exist scalars σ(t) and diffeomorphisms φ(t) on M, such that

g(t) = σ(t)φ(t)∗(g0). (3.3)

A metric of this form changes only by diffeomorphisms and rescaling. The following

Lemma can be found in [2] on page 23.

3.2.5 Lemma. If (Mn, g(t)) is a solution to the Ricci flow having the special form

g(t) = σ(t)φ(t)∗(g0),
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then there exists a vector field X on Mn, such that (Mn, g0, X) solves

Ricg0 +
1
2
LXg0 = κg0.

Conversely given any solution (Mn, g0, X) of the Ricci soliton equation, there exists one-parameter

families of scalars σ(t) and diffeomorhisms φ(t) such that (Mn, g(t)) becomes a solution of the Ricci

flow when g(t) is defined by

g(t) = σ(t)φ(t)∗(g0).

3.2.6 Remark. A gradient Ricci soliton satisfying the equation

Ricg0 +∇g0∇g0 f0 = κg0

corresponds to the self similar solution

g(t) = (1− 2κt)φ(t)∗(g0),

where φ(t) is the one-parameter family of diffeomorphisms generated by X(t) = ∇ f0
1−2κt .

Hamilton showed in [12] the following result, which can also be found in [3] on page 156.

We present an outline of the proof.

3.2.7 Lemma. Let (Mn, g0, f0) be a complete, gradient Ricci soliton. Then

scalg0 + |∇g0 f0|2g0
− 2κ f0 = C0, (3.4)

for some constant C0.

Proof. A computation shows, that

∇iscalg0 = 2Rij∇j f0.

This computation can be found in the book [3] on page 156. We will verify that the covariant
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derivative of the left hand side of (3.4) equals zero:

∇i(scalg0 + |∇ f0|2g0
− 2κ f0) = ∇iscalg0 + 2∇i∇j f0∇j f0 − 2κ∇i f

= 2Rij∇j f0 + 2∇i∇j f0 − 2κ∇i f0

= 2(Rij +∇i∇j f0 − κgij)∇j f0

= 0.

We will restrict ourselves to the case of gradient shrinking Ricci solitons. For a gradient,

shrinking Ricci soliton it is always possible to rescale the metric by 2κ and shift the function

f0 by the constant −C0, so that the soliton equation becomes

Ricg0 +∇g0∇g0 f0 =
1
2

g0

and the identity (3.4) takes the form

scalg0 + |∇g0 f0|2g0
− f0 = 0.

We call such a soliton a normalized gradient shrinking Ricci soliton.

We say that the gradient soliton is complete if (Mn, g0) is complete and the vector field

∇g0 f0 is complete.

The following result gives the canonical form for the associated time-dependent version

of a normalized gradient shrinking Ricci soliton. We demonstrate the proof, which can be

found in [3] on page 154 as well.

3.2.8 Theorem. Let (Mn, g0, f0) be a complete normalized gradient shrinking Ricci soliton. Then

there exists a solution g(t) of the Ricci flow with g(0) = g0, diffeomorphisms φ(t) with φ(0) = idM,

functions f (t) with f (0) = f0 defined for all t with

σ(t) = 1− t > 0,

such that the following hold:
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3. Ricci flow basics

(i) φ(t) : Mn → Mn is the one-parameter family of diffeomorphisms generated by X(t) = ∇g0 f0
1−t ,

(ii) g(t) = (1− t)φ(t)∗(g0) on (−∞, 1),

(iii) f (t) = f0 ◦ φ(t) = φ(t)∗( f0).

Futhermore,

Ricg(t) +∇g(t)∇g(t) f (t) =
1

2(1− t)
g(t),

∂

∂t
f (t) = |∇g(t) f (t)|2g(t).

Proof. We define σ(t) = 1 − t. Since the vector field ∇g0 f0 is complete. there exists a

1-parameter family of diffeomorphisms φ(t) : Mn → Mn generated by the vector fields

X(t) =
∇g0 f0

1− t
,

defined for all σ(t) > 0. Furthermore define f (t) = f0 ◦ φ(t) and g(t) = σ(t)φ(t)∗g0. Then

∂

∂t

∣∣∣
t=t0

g(t) = − 1
σ(t0)

g(t0) + σ(t0)
∂

∂t

∣∣∣
t=t0

(φ(t)∗(g0)).

We compute, that

σ(t0)
∂

∂t

∣∣∣
t=t0

(φ(t)∗(g0)) = σ(t0)L(φ(t0)−1)∗
∂
∂t

∣∣
t=t0

φ(t)
φ(t0)

∗(g0)

= L∇g(t0) f (t0)
g(t0).

This follows from the fact, that

∂

∂t

∣∣∣
t=t0

φ(t) =
∇g0 f0

σ(t0)
= φ(t0)

∗(∇g(t0) f (t0)).

We now evaluate at t instead of t0 and obtain

∂

∂t
g(t) = − 1

σ(t)
g(t) + L∇g(t) f (t) f (t).
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3. Ricci flow basics

Now

−2Ricg(t) = φ(t)∗(−2Ricg0) = φ(t)∗(−g0 + L∇g0 f0 g0)

= − 1
σ(t)

g(t) + L∇g(t) f (t)g(t).

So we obtain , that

∂

∂t
g(t) = − 1

σ(t)
g(t) + L∇g(t) f (t)g(t) = −2Ricg(t).

Finally we calculate

∂ f
∂t

(x, t) =
( ∂

∂t
φ(t)

)
( f0)(x) =

1
σ(t)
|∇g0 f0|2(φ(t)(x))

= |∇g(t) f (t)|2g(t).

3.2.9 Remark. It really doesn’t matter what the end time is. One is allowed to shift the time,

so that g(−1) = g0, φ(−1) = idM and f (−1) = f0. Then one would obtain g(t) defined in

the time interval (−∞, 0). This remark should make clear any ambiguity, when we discuss

the result of Enders, Müller and Topping [6] in Chapter 6.

More details on Ricci solitons can be found in the books [2], [3], [4].
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4. Examples of local invariants

In this chapter we will compute the local invariants for solutions (M, g(t)). The first local

invariant is the branching curve and the second one is the K3 surface. We look at the

examples of S3 ×R, S2 × S2, S2 ×R2, P2 and S4.

4.1. The example of (S3×R, g(t))

4.1.1. The branching curve

The initial metric g0 (with respect to spherical coordinates on the S3 factor) is given by

g0 = dφ2
1 + sin2 φ1dφ2

2 + sin2 φ1 sin2 φ2dφ2
3 + dx2.

Recall that the Ricci flow evolves each factor of a product metric seperately and if we use

the formula for the evolution of the round metric on the sphere, we obtain that a solution

to the Ricci flow is given by

g(t) = (1− 4t)dφ2
1 + (1− 4t) sin2 φ1dφ2

2 + (1− 4t) sin2 φ1 sin2 φ2dφ2
3 + dx2.

The set
{

∂
∂φ1

, ∂
∂φ2

∂
∂φ3

, ∂
∂x

}
constitutes a basis for Tx M. We obtain a time-dependent orthonor-

mal frame, with respect to which the metric becomes diagonal by setting

{
ea =

1√
1− 4t

∂

∂φ1
, eb =

1√
1− 4t sin φ1

∂

∂φ2
, ec =

1√
1− 4t sin φ1 sin φ2

∂

∂φ3
, ed =

∂

∂x

}
,
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4. Examples of local invariants

where eα := eα(x, t), α = a, b, c, d. Then

{
ea ∧ eb =

1
(1− 4t) sin φ1

∂

∂φ1
∧ ∂

∂φ2
, ea ∧ ec =

1
(1− 4t) sin φ1 sin φ2

∂

∂φ1
∧ ∂

∂φ3
,

ea ∧ ed =
1√

1− 4t
∂

∂φ1
∧ ∂

∂x
, eb ∧ ec =

1
(1− 4t) sin2 φ1 sin φ2

∂

∂φ2
∧ ∂

∂φ3
,

eb ∧ ed =
1√

1− 4t sin φ1

∂

∂φ2
∧ ∂

∂x
, ec ∧ ed =

1√
1− 4t sin φ1 sin φ2

∂

∂φ3
∧ ∂

∂x

}
is an orthonormal frame for Λ2Tx M and

{
f±1 =

1√
2
(ea ∧ eb ± ec ∧ ed) =

1√
2(1− 4t) sin φ1

∂

∂φ1
∧ ∂

∂φ2
± 1√

2
√

1− 4t sin φ1 sin φ2

∂

∂φ3
∧ ∂

∂x
,

f±2 =
1√
2
(ea ∧ ec ∓ eb ∧ ed) =

1√
2(1− 4t) sin φ1 sin φ2

∂

∂φ1
∧ ∂

∂φ3
∓ 1√

2
√

1− 4t sin φ1

∂

∂φ2
∧ ∂

∂x
,

f±3 =
1√
2
(ea ∧ ed ± eb ∧ ec) =

1√
2
√

1− 4t
∂

∂φ1
∧ ∂

∂x
± 1√

2(1− 4t) sin2 φ1 sin φ2

∂

∂φ2
∧ ∂

∂φ3

}
.

The Christoffel symbols are given by

Γ 1
22 = − cos φ1 sin φ1, Γ 2

12 =
cos φ1

sin φ1
, Γ 3

13 =
cos φ1

sin φ1

Γ 1
33 = − cos φ1 sin φ1 sin2 φ2, Γ 2

21 =
cos φ1

sin φ1
, Γ 3

23 =
cos φ2

sin φ2

Γ 2
33 = − cos φ2 sin φ2, Γ 3

31 =
cos φ1

sin φ1
,

Γ 3
32 =

cos φ2

sin φ2
.

The components of the (3, 1)-Riemann curvature tensor are given by

R 1
122 = sin2 φ1, R 2

121 =
cos2 φ1 − 1

sin φ1
, R 3

131 =
cos2 φ1 − 1

sin φ1
,

R 1
212 = − sin2 φ1, R 2

211 = 1, R 3
311 = 1,

R 1
133 = sin2 φ1 sin2 φ2, R 2

233 = sin2 φ1 sin2 φ2, R 3
232 = − sin2 φ1,

R 1
313 = − sin2 φ1 sin2 φ2, R 2

323 = − sin2 φ1 sin2 φ2, R 3
322 = sin2 φ1.
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4. Examples of local invariants

The components of the (4, 0)-Riemann curvature tensor are given by

R1221 = (1− 4t) sin2 φ1, R1212 = −(1− 4t) sin2 φ1,

R2121 = −(1− 4t) sin2 φ1, R2112 = (1− 4t) sin2 φ1, ,

R1331 = (1− 4t) sin2 φ1 sin2 φ2, R2332 = (1− 4t) sin4 φ1 sin2 φ2,

R3131 = −(1− 4t) sin2 φ1 sin2 φ2, R3232 = −(1− 4t) sin4 φ1 sin2 φ2

and

R1313 = −(1− 4t) sin2 φ1 sin2 φ2,

R3113 = (1− 4t) sin2 φ1 sin2 φ2,

R2323 = −(1− 4t) sin4 φ1 sin2 φ2,

R3223 = (1− 4t) sin4 φ1 sin2 φ2.

Then

Rabba =
1

1− 4t
, Rabab = −

1
1− 4t

, Racac = −
1

1− 4t
,

Rbaba = −
1

1− 4t
, Rbaab =

1
1− 4t

, Rcaac =
1

1− 4t
,

Racca =
1

1− 4t
, Rbccb =

1
1− 4t

, Rbcbc = −
1

1− 4t
,

Rcaca = −
1

1− 4t
, Rcbcb = −

1
1− 4t

Rcbbc =
1

1− 4t
.

We are now in position to compute the scalar curvature.
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4. Examples of local invariants

Raa = R b
baa + R c

caa =
2

1− 4t

Rbb = R a
abb + R c

cbb =
2

1− 4t

Rcc = R a
acc + R b

bcc =
2

1− 4t
.

Thus scal = 6
1−4t and scal

12 = 1
2(1−4t) . Furthermore

Λ2gx(Rm( f+1 ), f+1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb + ec ∧ ed)),

1√
2
(ea ∧ eb + ec ∧ ed))

=
1
2
(Rabba + Rabdc + Rcdba + Rcddc)

=
1

2(1− 4t)
.

Λ2gx(Rm( f+2 ), f+2 ) = Λ2gx(Rm(
1√
2
(ea ∧ ec − eb ∧ ed)),

1√
2
(ea ∧ ec − eb ∧ ed))

=
1
2
(Racca − Racdb + Rbdca + Rbddb)

=
1

2(1− 4t)
.

Λ2gx(Rm( f+3 ), f+3 ) = Λ2gx(Rm(
1√
2
(ea ∧ ed + eb ∧ ec)),

1√
2
(ea ∧ ed + eb ∧ ec))

=
1
2
(Radda − Radcb + Rbcda + Rbccb)

=
1

2(1− 4t)
.
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4. Examples of local invariants

Λ2gx(Rm( f−1 ), f+1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb − ec ∧ ed)),

1√
2
(ea ∧ eb + ec ∧ ed))

=
1
2
(Rabba + Rabdc − Rcdba − Rcddc)

=
1

2(1− 4t)
.

Λ2gx(Rm( f−2 ), f+2 ) = Λ2gx(Rm(
1√
2
(ea ∧ ec + eb ∧ ed)),

1√
2
(ea ∧ ec − eb ∧ ed))

=
1
2
(Racca − Racdb + Rbdca − Rbddb)

=
1

2(1− 4t)
.

Λ2gx(Rm( f−3 ), f+3 ) = Λ2gx(Rm(
1√
2
(ea ∧ ed − eb ∧ ec)),

1√
2
(ea ∧ ed + eb ∧ ec))

=
1
2
(Radda + Radcb − Rbcda − Rbccb)

= − 1
2(1− 4t)

.

Λ2gx(Rm( f−1 ), f−1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb − ec ∧ ed)),

1√
2
(ea ∧ eb − ec ∧ ed))

=
1
2
(Rabba − Rabdc − Rcdba + Rcddc)

=
1

2(1− 4t)
.

Λ2gx(Rm( f−2 ), f−2 ) = Λ2gx(Rm(
1√
2
(ea ∧ ec + eb ∧ ed)),

1√
2
(ea ∧ ec + eb ∧ ed))

=
1
2
(Racca + Racdb + Rbdca + Rbddb)

=
1

2(1− 4t)
.
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4. Examples of local invariants

Λ2gx(Rm( f−3 ), f−3 ) = Λ2gx(Rm(
1√
2
(ea ∧ ed − eb ∧ ec)),

1√
2
(ea ∧ ed − eb ∧ ec))

=
1
2
(Radda − Radcb − Rbcda + Rbccb)

=
1

2(1− 4t)
.

This means that the matrices of the bilinear forms

Λ2gx

(
W+(·), ·

)
= Λ2gx

((
A− scal

12
IdΛ+

)
(·), ·

)
and

Λ2gx

(
W−(·), ·

)
= Λ2gx

((
C− scal

12
IdΛ−

)
(·), ·

)
are given by


0 0 0

0 0 0

0 0 0


and the matrix of the bilinear form Λ2gx

(
B(·), ·

)
by


1

2(1−4t) 0 0

0 1
2(1−4t) 0

0 0 − 1
2(1−4t)

 .

We are now going to compute the branching curve. Obviously

Λ2gx

(
W+(T+), T+

)
= Λ2gx

(
W−(T−), T−

)
= 0

and

Λ2gx

(
B(T−), T+

)
= − 2

1− 4t
a1a2b1b2 +

1
1− 4t

(a1)2(b2)2 +
1

1− 4t
(a2)2(b1)2,
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4. Examples of local invariants

where

T− = 2ib1b2 f−1 + i{(b2)2 − (b1)2} f−2 + [(b1)2 + (b2)2] f−3

and

T+ = 2ia1a2 f+1 + i{(a2)2 − (a1)2} f+2 + [−(a1)2 − (a2)2)] f+3 .

We compute that [
Λ2gx

(
B(T−), T+

)]2
=

1
(1− 4t)2 (a1b2 − a2b1)4.

Thus

Γx = {([a1, a2], [b1, b2]) ∈ P(S−x )×P(S+
x ) : (a1b2 − a2b1)4 = 0}.

This curve is never smooth and has multiplicity four. Notice, that in this the branching

curve represents geometrically a quadruple diagonal.

4.1.2. The K3 surface

In the notation of (2.27), the K3 surface is described by the polynomial

Λ2gx

(
W+(T+), T+

)
s2 + 2Λ2gx

(
B(T−), T+

)
s + Λ2gx

(
W−(T−), T−

)
= 0(

− 2a1a2b1b2 + (a1)2(b2)2 + (a2)2(b1)2
)

s = 0.

4.2. The example of (S2× S2, g(t))

4.2.1. The branching curve

The initial metric g0 (with respect to spherical coordinates on both S2 factors) is given by

g0 = dφ2
1 + sin2 φ1dφ2

2 + dψ2
1 + sin2 ψ1dψ2

2.

Now a solution to the Ricci flow is given by

g(t) = (1− 2t)dφ2
1 + (1− 2t) sin2 φ1dφ2

2 + (1− 2t)dψ2
1 + (1− 2t) sin2 ψ1dψ2

2.
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4. Examples of local invariants

The set
{

∂
∂φ1

, ∂
∂φ2

∂
∂ψ1

, ∂
∂ψ2

}
constitutes a basis for Tx M. We obtain an orthonormal frame,

with respect to which the metric becomes diagonal by setting

{
ea =

1√
1− 2t

∂

∂φ1
, eb =

1√
1− 2t sin φ1

∂

∂φ2
, ec =

1√
1− 2t

∂

∂ψ1
, ed =

1√
1− 2t sin ψ1

∂

∂ψ2

}
Then

{
ea ∧ eb =

1
(1− 2t) sin φ1

∂

∂φ1
∧ ∂

∂φ2
, ea ∧ ec =

1
(1− 2t)

∂

∂φ1
∧ ∂

∂ψ1
,

ea ∧ ed =
1

(1− 2t) sin ψ1

∂

∂φ1
∧ ∂

∂ψ2
, eb ∧ ec =

1
(1− 2t) sin φ1

∂

∂φ2
∧ ∂

∂ψ1
,

eb ∧ ed =
1√

1− 2t sin φ1 sin ψ1

∂

∂φ2
∧ ∂

∂ψ2
, ec ∧ ed =

1√
1− 2t sin ψ1

∂

∂ψ1
∧ ∂

∂ψ2

}
is an orthonormal frame for Λ2Tx M and

{
f±1 =

1√
2
(ea ∧ eb ± ec ∧ ed), f±2 =

1√
2
(ea ∧ ec ∓ eb ∧ ed), f±3 =

1√
2
(ea ∧ ed ± eb ∧ ec)

}
.

The Christoffel symbols are given by

Γ 1
22 = − cos φ1 sin φ1, Γ 2

12 =
cos φ1

sin φ1
, Γ 3

44 = −cos ψ1

sin ψ1
Γ 4

34 =
cos ψ1

sin ψ1

Γ 2
21 =

cos φ1

sin φ1
, Γ 4

43 =
cos ψ1

sin ψ1

The components of the (3, 1)-Riemann curvature tensor are given by

R 1
122 = sin2 φ1, R 2

121 =
cos2 φ1 − 1

sin φ1
, R 3

344 = sin2 ψ1, R 4
343 =

cos2 ψ1 − 1
sin ψ1

,

R 1
212 = − sin2 φ1, R 2

211 = 1, R 3
434 = − sin2 ψ1, R 4

433 = 1.

The components of the (4, 0)-Riemann curvature tensor are given by

R1221 = (1− 2t) sin2 φ1, R1212 = −(1− 2t) sin2 φ1,

R2121 = −(1− 2t) sin2 φ1, R2112 = (1− 2t) sin2 φ1, ,
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4. Examples of local invariants

and

R3443 = (1− 2t) sin2 ψ1, R3434 = −(1− 2t) sin2 ψ1,

R4343 = −(1− 2t) sin2 ψ1, R4334 = (1− 2t) sin2 ψ1, ,

Then

Rabba =
1

1− 2t
, Rabab = −

1
1− 2t

,

Rbaba = −
1

1− 2t
, Rbaab =

1
1− 2t

, ,

and

Rcddc =
1

1− 2t
, Rcdcd = − 1

1− 2t
,

Rcdcd = − 1
1− 2t

, Rcddc =
1

1− 2t
, ,

We are now in position to compute the scalar curvature.

Raa = R b
baa =

1
1− 2t

Rbb = R a
abb =

1
1− 2t

Rcc = R a
acc =

1
1− 2t

Rdd = R c
cdd =

1
1− 2t

.
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4. Examples of local invariants

Thus scal = 4
1−2t and scal

12 = 1
3(1−2t) . Furthermore

Λ2gx(Rm( f+1 ), f+1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb + ec ∧ ed)),

1√
2
(ea ∧ eb + ec ∧ ed))

=
1
2
(Rabba + Rabdc + Rcdba + Rcddc)

=
1

2(1− 2t)
.

Λ2gx(Rm( f−1 ), f−1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb − ec ∧ ed)),

1√
2
(ea ∧ eb − ec ∧ ed))

=
1
2
(Rabba − Rabdc − Rcdba + Rcddc)

=
1

2(1− 2t)
.

This means that the matrices of the bilinear forms

Λ2gx

(
W+(·), ·

)
= Λ2gx

((
A− scal

12
IdΛ+

)
(·), ·

)
and

Λ2gx

(
W−(·), ·

)
= Λ2gx

((
C− scal

12
IdΛ−

)
(·), ·

)
are given by


1

6(1−2t) 0 0

0 − 1
3(1−2t) 0

0 0 − 1
3(1−2t)


and the matrix of the bilinear form Λ2gx

(
B(·), ·

)
by


0 0 0

0 0 0

0 0 0

 .
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We are now going to compute the branching curve.

Λ2gx

(
W+(T+), T+

)
= − 2

3(1− 2t)
(a1)2(a2)2,

Λ2gx

(
W−(T−), T−

)
= − 2

3(1− 2t)
(b1)2(b2)2.

where

T− = 2ib1b2 f−1 + i{(b2)2 − (b1)2} f−2 + [(b1)2 + (b2)2] f−3

and

T+ = 2ia1a2 f+1 + i{(a2)2 − (a1)2} f+2 + [−(a1)2 − (a2)2)] f+3 .

Thus

Γx = {([a1, a2], [b1, b2]) ∈ P(S−x )×P(S+
x ) : (a1a2b1b2)2 = 0}.

Notice, that in this the branching curve represents geometrically a double rectangle.

4.2.2. The K3 surface

In the notation of (2.27), the K3 surface is described by the polynomial

Λ2gx

(
W+(T+), T+

)
s2 + 2Λ2gx

(
B(T−), T+

)
s + Λ2gx

(
W−(T−), T−

)
= 0

(a1)2(a2)2s2 + (b1)2(b2)2 = 0.

4.3. The example of (S2×R2, g(t))

4.3.1. The branching curve

The initial metric g0 (with respect to spherical coordinates on the S2 factor) is given by

g0 = dφ2
1 + sin2 φ1dφ2

2 + dx2 + dy2.
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In this case a solution to the Ricci flow is given by

g(t) = (1− 2t)dφ2
1 + (1− 2t) sin2 φ1dφ2

2 + dx2 + dy2.

The set
{

∂
∂φ1

, ∂
∂φ2

∂
∂x , ∂

∂y

}
constitutes a basis for Tx M. We obtain an orthonormal frame, with

respect to which the metric becomes diagonal by setting

{
ea =

1√
1− 2t

∂

∂φ1
, eb =

1√
1− 2t sin φ1

∂

∂φ2
, ec =

∂

∂x
, ed =

∂

∂y

}
Then

{
ea ∧ eb =

1
(1− 2t) sin φ1

∂

∂φ1
∧ ∂

∂φ2
, ea ∧ ec =

1√
1− 2t

∂

∂φ1
∧ ∂

∂x
,

ea ∧ ed =
1√

1− 2t
∂

∂φ1
∧ ∂

∂y
, eb ∧ ec =

1√
1− 2t sin φ1

∂

∂φ2
∧ ∂

∂x
,

eb ∧ ed =
1√

1− 2t sin φ1

∂

∂φ2
∧ ∂

∂y
, ec ∧ ed =

∂

∂x
∧ ∂

∂y

}
is an orthonormal frame for Λ2Tx M and

{
f±1 =

1√
2
(ea ∧ eb ± ec ∧ ed) =

1
(1− 2t) sin φ1

∂

∂φ1
∧ ∂

∂φ2
± ∂

∂x
∧ ∂

∂y
,

f±2 =
1√
2
(ea ∧ ec ∓ eb ∧ ed) =

1√
1− 2t

∂

∂φ1
∧ ∂

∂x
∓ 1√

1− 2t sin φ1

∂

∂φ2
∧ ∂

∂y

f±3 =
1√
2
(ea ∧ ed ± eb ∧ ec) =

1√
1− 2t

∂

∂φ1
∧ ∂

∂y
± 1√

1− 2t sin φ1

∂

∂φ2
∧ ∂

∂x

}
.

The Christoffel symbols in this case are given by

Γ 1
22 = − cos φ1 sin φ1, Γ 2

12 =
cos φ1

sin φ1
,

Γ 2
21 =

cos φ1

sin φ1
.

The components of the (3, 1)-Riemann curvature tensor are given by

R 1
122 = sin2 φ1, R 2

121 =
cos2 φ1 − 1

sin φ1
,

R 1
212 = − sin2 φ1, R 2

211 = 1.
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4. Examples of local invariants

The components of the (4, 0)-Riemann curvature tensor are given by

R1221 = (1− 2t) sin2 φ1, R1212 = −(1− 2t) sin2 φ1,

R2121 = −(1− 2t) sin2 φ1, R2112 = (1− 2t) sin2 φ1.

Then

Rabba =
1

1− 2t
, Rabab = −

1
1− 2t

,

Rbaba = −
1

1− 2t
, Rbaab =

1
1− 2t

.

The Ricci curvature is

Raa = R b
baa =

1
1− 2t

Rbb = R a
abb =

1
1− 2t

.

Thus the scalar curvature is given by scal = 2
1−2t and scal

12 = 1
6(1−2t) . Furthermore

Λ2gx(Rm( f+1 ), f+1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb + ec ∧ ed)),

1√
2
(ea ∧ eb + ec ∧ ed))

=
1
2
(Rabba + Rabdc + Rcdba + Rcddc)

=
1

2(1− 2t)
.

Λ2gx(Rm( f−1 ), f+1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb − ec ∧ ed)),

1√
2
(ea ∧ eb + ec ∧ ed))

=
1
2
(Rabba + Rabdc − Rcdba − Rcddc)

=
1

2(1− 2t)
.
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4. Examples of local invariants

Λ2gx(Rm( f−1 ), f−1 ) = Λ2gx(Rm(
1√
2
(ea ∧ eb − ec ∧ ed)),

1√
2
(ea ∧ eb − ec ∧ ed))

=
1
2
(Rabba − Rabdc − Rcdba + Rcddc)

=
1

2(1− 2t)
.

This means that the matrices of the bilinear forms

Λ2gx

(
W+(·), ·

)
= Λ2gx

((
A− scal

12
IdΛ+

)
(·), ·

)
and

Λ2gx

(
W−(·), ·

)
= Λ2gx

((
C− scal

12
IdΛ−

)
(·), ·

)
are given by


1

3(1−2t) 0 0

0 − 1
6(1−2t) 0

0 0 − 1
6(1−2t)


and the matrix of the bilinear form Λ2gx

(
B(·), ·

)
by


1

2(1−2t) 0 0

0 0 0

0 0 0

 .

We are now going to compute the branching curve.

Λ2gx

(
W+(T+), T+

)
= − 2

(1− 2t)
(a1)2(a2)2,

Λ2gx

(
W−(T−), T−

)
= − 2

(1− 2t)
(b1)2(b2)2,

Λ2gx

(
B(T−), T+

)
= − 2

1− 2t
a1a2b1b2.
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4. Examples of local invariants

where

T− = 2ib1b2 f−1 + i{(b2)2 − (b1)2} f−2 + [(b1)2 + (b2)2] f−3

and

T+ = 2ia1a2 f+1 + i{(a2)2 − (a1)2} f+2 + [−(a1)2 − (a2)2)] f+3 .

We compute that

[
Λ2gx

(
B(T−), T+

)]2
=

4
(1− 2t)2 (a1a2b1b2)2 = Λ2gx

(
W+(T+), T+

)
Λ2gx

(
W−(T−), T−

)
.

One observes, that in this case the branching curve doesn’t exist.

4.3.2. The K3 surface

In the notation of (2.27), the K3 surface is described by the polynomial

Λ2gx

(
W+(T+)T+

)
s2 + 2Λ2gx

(
B(T−), T+

)
s + Λ2gx

(
W−(T−), T−

)
= 0

(a1)2(a2)2s2 + 2a1a2b1b2s + (b1)2(b2)2 = 0.

4.4. The example of (P2, g(t))

4.4.1. The branching curve

The initial metric gFS is the Fubini-Study metric. A solution to the Ricci flow is given by

g(t) = (1− 2κt)gFS,

where κ > 0. By working exactly in the same way as is the previous examples one can

obtain that the matrix of the bilinear form

Λ2gx

(
W+(·), ·

)
= Λ2gx

(
(A− scal

12
IdΛ+)(·), ·

)
is given by
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4. Examples of local invariants


1

2(1−2κt) −
scal

12 0 0

0 1
2(1−2κt) −

scal
12 0

0 0 1
2(1−2κt) −

scal
12

 ,

that of

Λ2gx

(
W−(·), ·

)
= Λ2gx

(
(C− scal

12
IdΛ−)(·), ·

)
by


3

2(1−2κt) −
scal

12 0 0

0 −scal
12 0

0 0 −scal
12


and finally the matrix of the bilinear form Λ2gx

(
B(·), ·

)
by


0 0 0

0 0 0

0 0 0

 .

We are now going to compute the branching curve.

Λ2gx

(
W+(T+), T+

)
= 0,

Λ2gx

(
W−(T−), T−

)
= −

( 6
1− 2κt

− scal
3

)
(b1)2(b2)2.

where

T− = 2ib1b2 f−1 + i{(b2)2 − (b1)2} f−2 + [(b1)2 + (b2)2] f−3

and

T+ = 2ia1a2 f+1 + i{(a2)2 − (a1)2} f+2 + [−(a1)2 − (a2)2)] f+3 .

Thus there is no curve and the branching locus is the whole quadric P(gx).
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4. Examples of local invariants

4.4.2. The K3 surface

In the notation of (2.27), the K3 surface is described by the polynomial

Λ2gx

(
W+(T+), T+

)
s2 + 2Λ2gx

(
B(T−), T+

)
s + Λ2gx

(
W−(T−), T−

)
= 0

(b1b2µ)2 = 0.

4.5. The example of (S4, g(t))

In this section we show that the local invarants for the solution (S4, g(t)) do not exist. The

initial metric g0 (with respect to spherical coordinates on S4) is given by

g0 = dφ2
1 + sin2 φ1dφ2

2 + sin2φ1 sin2 φ2dφ2
3 + sin2 sin2 φ2 sin2 φ3dφ2

4.

A solution to the Ricci flow is given by

g(t) = (1− 6t)dφ2
1 +(1− 6t) sin2 φ1dφ2

2 +(1− 6t)sin2φ1 sin2 φ2dφ2
3 +(1− 6t) sin2 sin2 φ2 sin2 φ3dφ2

4.

Working exactly as in the previous examples ones can compute that matrices of the bilinear

forms Λ2gx

(
W+(·), ·

)
and Λ2gx

(
W−(·), ·

)
are given by


1

3(1−6t) 0 0

0 1
3(1−6t) 0

0 0 1
3(1−6t)


and the matrix of the bilinear form Λ2gx

(
B(·), ·

)
by


0 0 0

0 0 0

0 0 0

 ,
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4. Examples of local invariants

which implies that

Λ2gx

(
W+(T+), T+

)
= 0,

Λ2gx

(
W−(T−), T−

)
= 0,

with T− and T+ as in the previous examples. Thus in this case both the branching curve

and the K3 surface do not exist.
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5. Evolving the branching curve under the

Ricci flow

5.1. The evolution of the curvature operator

5.1.1. Uhlenbeck’s Trick

In this section we will demonstrate Uhlenbeck’s trick in order to derive the evolution equa-

tion for the curvature operator with respect to an evolving orthonormal frame. This tech-

nique was introduced in Hamilton’s paper [10] and can be found also in both books [2] and

[3]. We will use this evolution equation in the next section in order to compute the evolution

equation for the coefficients of the branching curve. First we recall the evolution equation

of the components Riemann curvature tensor with respect to some local coordinate system.

5.1.1 Proposition.

∂

∂t
Rijkl = ∆Rijkl + 2(Bijkl − Bijlk + Bikjl − Bil jk)

−
n

∑
p=1

(Rp
i Rpjkl + Rp

j Ripkl + Rp
k Rijpl + Rp

l Rijkp),

where

Bijkl := −
n

∑
p,q,r,s=1

gprgqsRipjqRkrls = −
n

∑
p,q=1

R q
pij R p

qlk .

Furthermore, note that B is quadratic in the Riemann curvature tensor and satisfies the following

algebraic identity

Bijkl = Bjilk = Bklij.

We assume that (Mn, g(t)) is a solution of the Ricci flow for t ∈ [0, T) and {eα} is a local

orthonormal frame in an open subset U ⊂ M, with respect to the initial metric g0. We will
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5. Evolving the branching curve under the Ricci flow

evolve this frame, so that it remains orthonormal with respect to g(t). For each x ∈ U we

define:

∂

∂t
eα(x, t) = Ric(eα(x, t)) (5.1)

eα(x, 0) = e0
α(x).

In this case Ric ∈ End(TM), i.e. is seen as a (1, 1)-tensor. For notational simplicity we will

just write eα instead of eα(x, t) from now on.

5.1.2 Proposition. If (Mn, g(t)) is a solution of the Ricci flow and {eα} is a local frame satisfying

(5.1), then
∂

∂t
g(eα, eβ) = 0.

This means that if {e0
α} is orthonormal with respect to g0, then {eα} remains orthonormal with

respect to g(t).

Proof.

∂

∂t
(

g(eα, eβ)
)

=
( ∂

∂t
g
)
(eα, eβ) + g

( ∂

∂t
eα, eβ

)
+ g
(
eα,

∂

∂t
eβ

)
= −2Ric(eα, eβ) + g(Ric(eα, eβ)) + g(eα,Ric(eβ)) = 0.

Let {xi}n
i=1 denote local coordinates on U. Then

eα =
n

∑
i=1

ei
α

∂

∂xi .

As a result

Rαβγδ = Rm(eα, eβ, eγ, eδ)

= Rm
( n

∑
i=1

ei
α

∂

∂xi ,
n

∑
j=1

ej
β

∂

∂xj ,
n

∑
k=1

ek
γ

∂

∂xk ,
n

∑
l=1

el
δ

∂

∂xl

)
=

n

∑
i,j,k,l=1

ei
αej

βek
γel

δRijkl .
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5. Evolving the branching curve under the Ricci flow

5.1.3 Proposition. Let (Mn, g(t)) be a solution to the Ricci flow then Rαβγδ evolves by

∂

∂t
Rαβγδ = ∆Rαβγδ + 2(Bαβγδ − Bαβδγ + Bαγβδ − Bαδβγ),

where

Bαβγδ = −
n

∑
ε,ζ,η,θ=1

gεη gζθ Rαεβζ Rγηδθ .

Proof. Observing that
∂

∂t
ei

α =
n

∑
l=1

Ri
le

l
α,

we compute

∂

∂t
Rαβγδ =

n

∑
i,j,k,l=1

∂

∂t
(ei

αej
βek

γel
δRijkl)

=
n

∑
i,j,k,l=1

[( ∂

∂t
ei

α

)
ej

βek
γel

δRijkl + ei
α

( ∂

∂t
ej

β

)
ek

γel
δRijkl + ei

αej
β

( ∂

∂t
ek

γ

)
el

δRijkl

+ ei
αej

βek
γ

( ∂

∂t
el

δ

)
Rijkl + ei

αej
βek

γel
δ

( ∂

∂t
Rijkl

)]
=

n

∑
i,j,k,l=1

[( n

∑
m=1

Ri
mem

α

)
ej

βek
γel

δRijkl + ei
α

( n

∑
m=1

Rj
mem

β

)
ek

γel
δRijkl

+ ei
αej

β

( n

∑
m=1

Rk
mem

γ

)
el

δRijkl + ei
αej

βek
γ

( n

∑
m=1

Rl
mem

δ

)
Rijkl

+ ei
αej

βek
γel

δ

(
∆Rijkl + 2(Bijkl − Bijlk + Bikjl − Bil jk)

−
n

∑
p=1

(Rp
i Rpjkl + Rp

j Ripkl + Rp
k Rijpl + Rp

l Rijkp)
)]

= ei
αej

βek
γel

δ

[
∆Rijkl + 2(Bijkl − Bijlk + Bikjl − Bil jk)

]
.

One observes that now, the last four terms from the evolution equation of Rm in Propo-

sition 5.1.1 have been eliminated.

5.1.2. The structure of the evolution equation

Consider the curvature operator Rm ∈ End(Λ2Tx M) ∼= Λ2T∗x M⊗Λ2Tx M. In components

we have
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5. Evolving the branching curve under the Ricci flow

Rm(
∂

∂xi ∧
∂

∂xj , dxq ∧ dxr) = R (qr)
(ij) =

n

∑
q,r=1

gqpgrsR(ij)(ps).

Then the components of the square of the curvature operator, denoted by Rm2 ∈ End(Λ2Tx M)

are given by

(R2)
(kl)

(ij) =
n

∑
q,r=1

R (kl)
(qr) R (qr)

(ij)

=
n

∑
p,q,r,s=1

R (kl)
(qr) gqpgrsR(ij)(ps).

The associated bilinear form is determined by its components

(R2)(ij)(kl) =
n

∑
p,q,r,s=1

R(qr)(kl)g
qpgrsR(ij)(ps).

Thus the components of the associated (4, 0)-tensor are

(R2)ijkl = −
n

∑
p,q,r,s=1

Rqrkl gqpgrsRijps.

By using the symmetries of the curvature tensor, the first Bianchi identity Rijkl + Rikl j +

Ril jk and the definiton of Bijkl one can show, that

(R2)ijkl = 2(Bijkl − Bijlk).

We are now going to introduce the Lie algebra square. Let g be any Lie algebra endowed

with a scalar product 〈·, ·〉 and let {Fα} be a basis of g. The structure constants of g are

defined by

[Fα, Fβ] = ∑ c αβ
γ Fγ,

where [·, ·] is the Lie bracket of g. Let {Fα} denote the basis algebraically dual to {Fα} such

that Fβ(Fα) = δα
β.

Given a symmetric bilinear form L on g∗, we may regards L as an element of S2(g) whose
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5. Evolving the branching curve under the Ricci flow

components are given by

Lαβ = L(Fα, Fβ).

There is a commutative bilinear operation # : S2(g)× S2(g) → S2(g) given in the following

way. Let

L = ∑ LαβFα ⊗ Fβ

and

M = ∑ MγδFγ ⊗ Fδ.

Then

L#M = ∑ Lαβ Mγδ(Fα ⊗ Fβ)#(Fγ ⊗ Fδ)

:= ∑ Lαβ Mγδ[Fα, Fγ]⊗ [Fβ, Fδ]

= ∑ Lαβ Mγδc αγ
ε c βδ

ζ Fε ⊗ Fζ .

Then

(L#)εζ := (L#L)εζ = ∑ LαβLγδc αγ
ε c βδ

ζ .

The associated operator is given in coordinates by

(L#) ζ
ε = ∑〈Fζ , Fθ〉LαβLγδc αγ

ε c βδ
θ = ∑ LαβLγδc αγ

ε cζβδ.

For each x ∈ M we can give Λ2T∗x M the structure of a Lie algebra g isomorphic to so(n).

Thus we can view R as an element of S2(so(n)).

We can define the Lie algebra square Rm# of the curvature operator in components by

(R#)
(kl)

(ij) = ∑ R(pq)(uv)R(rs)(wx)c
(pq)(rs)

(ij) c(kl)(uv)(wx).

The components of the associated bilinear form are given by

(R#)(ij)(kl) = ∑ R(pq)(uv)R(rs)(wx)c
(pq)(rs)

(ij) c (uv)(wx)
(kl)
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5. Evolving the branching curve under the Ricci flow

and those of the associated (4, 0)-tensor by

(R#)ijkl = ∑ RpquvRrswxc (pq)(rs)
(ij) c (uv)(wx)

(lk) .

Then by using the definition of Bijkl and the fact that the structure constants are those for

so(n) one can show, that

(R#)ijkl = 2(Bikl j − Bil jk).

An explicit argument for that can be found in the book [2] on page 185.

As a result by the construction above we can write down an evolution equation for the

curvature operator with respect to an orthonormal frame which evolves to stay orthonor-

mal. This is given in the next theorem.

5.1.4 Theorem. If g(t) is a solution of the Ricci flow, the curvature operator evolves by

∂

∂t
Rm = ∆Rm+Rm2 +Rm#.

5.1.5 Remark. One has exactly the same evolution equation for the bilinear form R and the

(4, 0)-tensor Rm as well. This follows from the fact that we are working with an orthonor-

mal frame.

Hamilton showed in his paper [10], that in dimension four we have the following evo-

lution equations for the various parts of the curvature operator, with respect to the block

decomposition of the curvature operator Rm =

A B

Bt C

 mentioned in Chapter 2.

5.1.6 Corollary.

Let (M4, g(t)) be a solution to the Ricci flow. The evolution equation for the curvature

operator breaks up in to three equations:

∂

∂t
A = ∆A + A2 + 2A# + BBt,

∂

∂t
B = ∆B + AB + BC + 2B#,

∂

∂t
C = ∆C + C2 + 2C# + BtB.

61



5. Evolving the branching curve under the Ricci flow

5.1.7 Remark. Here the Lie algebra square is given by the adjoint matrix. Precisely A# =

det A · (At)−1, B# = det B · (Bt)−1, C# = det C · (Ct)−1.

5.2. The evolution equation for the coefficients of the branching

curve

We would like to compute the evolution of the coefficients of the branching curve (2.28)

under the Ricci flow. We polarize and define the following (4, 0)-tensor

η(u+, u−, h+, h−) = Λ2gx

(
B(u−), h+

)
Λ2gx

(
B(h−), u+

)
−Λ2gx

((
A− scal

12
IdΛ+

)
(u+), h+

)
Λ2gx

((
C− scal

12
IdΛ−

)
(u−), h−

)
,

where u+ + u−, h+ + h− ∈ (Λ2
+Tx M ⊗ C) ⊕ (Λ2

−Tx M ⊗ C) and η := η(x, t) Λ2gx :=

Λ2g(x, t), A := A(x, t), B := B(x, t), C := C(x, t).

5.2.1 Proposition. Then tensor η evolves under the Ricci flow as follows

[( ∂

∂t
−∆
)

η
]
(u+, u−, h+, h−) =

Λ2gx

((
AB + BC + 2B#)(u−), h+

)
Λ2gx

(
B(h−), u+

)
+

+Λ2gx

(
B(u−), h+

)
Λ2gx

((
AB + BC + 2B#)(h−), u+

)
−

−Λ2gx

((
A2 + 2A# + BBt − 1

6
|Ric|2IdΛ+

)
(u+), h+

)
Λ2gx

((
C− scal

12
IdΛ−

)
(u−), h−

)
−

−Λ2gx

((
A− scal

12
IdΛ+

)
(u+), h+

)
Λ2gx

((
C2 + 2C# + BtB− 1

6
|Ric|2IdΛ−

)
(u−), h−

)
−

−2Λ2gx

(
∇B(u−), h+

)
Λ2gx

(
∇B(h−), u+

)
+ 2Λ2gx

(
∇A(u+), h+

)
Λ2gx

(
∇C(u−), h−

)
.
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5. Evolving the branching curve under the Ricci flow

Proof. By using Corollary 5.1.2 we obtain that
(

∂
∂t η
)
(u+, u−, h+, h−) =

= Λ2gx

(( ∂

∂t
B
)
(u−), h+

)
Λ2g

(
B(h−), u+

)
+ Λ2gx

(
B(u−), h+

)
Λ2gx

(( ∂

∂t
B
)
(h−), u+

)
−Λ2gx

(( ∂

∂t
(A− scal

12
IdΛ+)

)
(u+), h+

)
Λ2gx

((
C− scal

12
IdΛ−

)
(u−), h−

)
−Λ2gx

((
A− scal

12
IdΛ+

)
(u+), h+

)
Λ2gx

(( ∂

∂t
(C− scal

12
IdΛ−)

)
(u−), h−

)
= Λ2gx

((
∆B + AB + BC + 2B#)(u−), h+

)
Λ2gx

(
B(h−), u+

)
+Λ2gx

(
B(u−), h+

)
Λ2gx

((
∆B + AB + BC + 2B#)(h−), u+

)
−Λ2gx

((
∆A + A2 + 2A# + BBt − (

1
12

∆scal +
1
6
|Ric|2)IdΛ+)

)
(u+), h+

)
Λ2gx

((
C− scal

12
IdΛ−

)
(u−), h−

)
−Λ2gx

((
A− scal

12
IdΛ+

)
(u+), h+

)
Λ2gx

((
∆C + C2 + 2C# + BtB− (

1
12

∆scal +
1
6
|Ric|2)IdΛ−)

)
(u−), h−

)
.

The result follows immediately. Notice that the ∇ terms come from the Leibniz rule for the

Laplacian of the product of two tensors.
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6. Type I singularities on 4-dimensional

manifolds

By the results of Naber [20] and Enders, Müller, Topping [6] on Type I singularities for the

Ricci flow, it follows that along any sequence of times converging to the finite extinction

time T, parabolic rescalings will subconverge to a normalized nonflat gradient shrinking

Ricci soliton. In this chapter we use the construction of Chapter 2 and apply it to this

result, in order to obtain a characterization of the nonflat gradient shrinking solitons in the

language of local invariants.

6.1. Cheeger-Gromov-Hamilton Compactness Theorem

In this section we will introduce the Compactness Theorem of Cheeger-Gromov-Hamilton.

This theorem is crucial when we try to analyze singularities in the Ricci flow. We will start

with some definitions. Further details and the proof of the Theorem can be found in [4].

6.1.1 Definition. A marked solution to the Ricci flow is a 4-tuple (Mn, g(t), x, F), where Mn

is a Riemannian manifold , x ∈ Mn is a choice of point, called the origin , t ∈ (α, ω) with

−∞ ≤ α < 0 < ω ≤ +∞ and F is a frame at x which is orthonormal with respect to the

initial metric g0.

6.1.2 Definition. Let K ⊂ Mn be a compact set and {gi}i∈N, g∞ Riemannian metrics on Mn.

For k ∈ {0} ∪N we say that gi converges in Ck to g∞ uniformly on K if, for all ε > 0 there

exists ι0 = ι0(ε) such that for ι ≥ ι0

sup
0≤m≤k

sup
x∈K
|∇m(gi − g∞)|g∞ < ε,

where the covariant derivative ∇ is with respect to g∞.
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6.1.3 Definition. We say that a sequence of open sets {Ui}i∈N in a manifold M is an ex-

haustion of Mn by open sets if for every compact set K ⊂ Mn there exists ι0 ∈ N such that

K ⊂ Ui for all ι ≥ ι0.

6.1.4 Definition. Let {Ui}i∈N be an exhaustion of Mn by open sets and let gi be Riemannian

metrics on Ui. We say that (Ui, gi) converges in C∞ to (Mn, g∞) uniformly on compact sets

in Mn if for any compact set K ⊂ Mn and any k > 0 there exists ι0 = ι0(K, k) such that

{gi}i≥ι0 converges in Ck to g∞ uniformly on K.

A solution g(t)of the Ricci flow, t ∈ I for some interval I, is said to be complete, if for

each t ∈ I the Riemannian metric g(t) is complete.

6.1.5 Definition. A sequence {(Mn
i , gi(t), xi, Fi)}i∈N, t ∈ (α, ω) of smooth, complete, marked

solutions to the Ricci flow converges to a complete, marked solution to the Ricci flow

(Mn
∞, g∞(t), x∞, F∞), t ∈ (α, ω), if

(i) there exists an exhaustion {Ui}i∈N of M∞n by open sets with x∞ ∈ Ui for all i ∈N,

(ii) there exists a sequence of diffeomoprhisms

φi : Ui → φi(Ui) ⊂ Mn
i ,

with φi(x∞) = xi and (φi)∗F∞ = Fi for all i ∈N and

(iii) (Ui, φ∗i

[
gi(t)|φ(Ui)

]
) converges in C∞ to (Mn

∞, g∞(t)) uniformly on compact sets in Mn
∞.

The next theorem is known in the literature as the Cheeger-Gromov-Hamilton Compact-

ness Theorem.

6.1.6 Theorem. Let {(Mn
i , gi(t), xi, Fi)}i∈N, t ∈ (α, ω) 3 0 be a sequence of smooth, complete,

marked solutions to the Ricci flow. If

(i) |Rmgi(t)|gi(t) ≤ C0 on Mi × (α, ω), for some constant C0 < ∞ idependent of i,

(ii) injgi(0)
(xi) ≥ δ, for some constant δ > 0,

then there exists a subsequence {ji}i∈N such that {(Mn
ji
, gji(t), xji , Fji)}i∈N converges to a complete

marked solution to the Ricci flow (Mn
∞, g∞(t), x∞, F∞), t ∈ (α, ω), as i→ ∞.
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6.2. Type I singularities and the branching curve

6.2.1 Definition. A complete solution (Mn, g(t)) to the Ricci flow defined on a finite time

interval [0, T), T < ∞ is called a Type I Ricci flow if there exists some constant C > 0 such

that for all t ∈ [0, T)

sup
M
|Rmg(t) |g(t) ≤

C
T − t

.

Furthermore we say that the solution g(t) develops a Type I singularity at time T.

We know that if the singularity time T is finite, then the curvature becomes unbounded

lim
t→T

(
sup

M
|Rmg(t) |g(t)

)
= ∞.

A complete proof for this argument can be found in [2]. The most well known examples

of Type I singularities are the neckpinch singularity modelled on a shrinking cylinder and

those modelled on flows starting at a positive Einstein metric or more general at a gradient

shrinking Ricci soliton with bounded curvature.

One can show that in the Type I case if we apply the parabolic maximum principle to the

evolution equation of |Rm |2 we obtain that

sup
M
|Rmg(t) |g(t) ≥

1
8(T − t)

,

for all t ∈ [0, T). The proof of this result can be found in [3] on page 295. A detailed

exposition on the maximum principles can be found in Chapter 4 of [2]. In the proof of the

statement above one uses a version of the parabolic maximum principle for scalars, which

applies to complete solutions of the Ricci flow and can be found on page 276 of [3].

6.2.2 Definition. A quantity A(t) is said to blow up at the Type I rate as t→ T is there exist

cosntants C ≥ c > 0 such that

c
T − t

≤ A(t) ≤ C
T − t

,

for all t ∈ [0, T).

6.2.3 Definition. A sequence of points and times {(xi, ti)} with xi ∈ Mn and ti → T is

66



6. Type I singularities on 4-dimensional manifolds

called an essential blow up sequence if there exists a constant c > 0 such that

|Rmg(ti) |g(ti)(xi) ≥
c

T − ti
.

6.2.4 Definition. A point x ∈ Mn in a Type I Ricci flow is called a Type I singular point if

there exists an essential blow-up sequence with xi → x on Mn. The set of all Type I singular

points is denoted by ΣI .

We will need the following lemmas in order to prove our result for Type I singularities.

6.2.5 Lemma. Let (M4, g) be a 4-dimensional Riemannian manifold and x ∈ M, such that the

branching curve Γx exists. Then Γx remains invariant under scalings of the metric by a constant

factor.

Proof. Let κ be some constant factor and and let g̃ = κg. Then we know that Λ2 g̃ = κ2Λ2g,

and R̃m = 1
κ Rm. Then the branching curve is given by

Γg̃
x = {([a1, a2], [b1, b2]) ∈ P(S−x )×P(S+

x ) :
(

κ2Λ2gx

(1
κ

B(T−), T+

))2
−

κ2Λ2gx

(1
κ
W+(T+), T+

)
κ2Λ2gx

(1
κ
W−(T−), T−

)
= 0}

= {([x0, x1], [y0, y1]) ∈ P(S−x )×P(S+
x ) : κ2

(
Λ2gx(B(T−), T+)

)2
−

κ2Λ2gx

(
W+(T+), T+

)
Λ2gx

(
W−(T−), T−

)
= 0}

= Γg
x.

6.2.6 Lemma. Let {(Mn, gi(t), x, Fi(t))}i∈N, t ∈ (α, ω) 3 0 be a sequence of smooth, complete,

marked solutions to the Ricci flow, where the time-dependent frame Fi(t) evolves to stay orthonormal.

If the sequence converges to a complete marked solution to the Ricci flow (M∞, g∞(t), x∞, F∞(t)),

t ∈ (α, ω) as i→ ∞, where F∞(t) evolves to stay orthonormal, then the sequence {(M, Rmgi(t), x, Fi(t))}i∈N,

t ∈ (α, ω) 3 0 converges to (M∞, Rmg∞(t), x∞, F∞(t)), t ∈ (α, ω) as i→ ∞.

Proof. Let {Ui}i∈N be an exhaustion of M∞ by open sets with x∞ ∈ Ui for all i ∈ N. Fur-

thermore let φi : Ui → φi(Ui) ⊂ M be a sequence of diffeomorphisms with φi(x∞) = x

and (φi)∗F∞(t) = Fi(t) for all i ∈ N and t ∈ (α, ω). We know that (Ui, φ∗i

[
gi(t)|φ(Ui)

]
) con-

verges in C∞ to (M∞, g∞(t)) uniformly on compact sets in M∞. But uniform convergence
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of φ∗i

[
gi(t)|φ(Ui)

]
to g∞(t) in Ck for any k ≥ 2 implies immediately uniform convergence of

φ∗i

[
Rmgi(t)|φ(Ui)

]
to Rmg∞(t) in Ck−2. This comes from the fact, that the components of the

Riemann curvature tensor are determined by the second (spatial) derivatives of the com-

ponents of the Riemannian metric tensor. Thus one can deduce that (Ui, φ∗i

[
Rmgi(t)|φ(Ui)

]
)

converges in C∞ to (M∞, Rmg∞(t)) uniformly on compact sets in M∞.

6.2.7 Remark. There is a reason behind the fact that we choose to work with an evolving

orthonormal frame, which evolves to stay orthonormal. We want to prove the next Theo-

rem, which states, that convergence of metrics implies convergence of curves. This extra

assumption guarantees us the desired extra control over the convergence of curves. One

should also observe, that the Theorem 6.1.6 can be reformulated in the context of evolving

orthonormal frames directly. This will be a crucial step in the proof of Corollary 6.2.9.

6.2.8 Theorem. Let {(M4, gi(t), x, Fi(t))}i∈N, t ∈ (α, ω) 3 0 be a sequence of smooth, com-

plete, marked solutions to the Ricci flow, where the time-dependent frame Fi(t) evolves to stay or-

thonormal and assume, that the sequence converges to a complete marked solution to the Ricci flow

(Mn
∞, g∞(t), x∞, F∞(t)), t ∈ (α, ω) as i→ ∞, where F∞(t) evolves to stay orthonormal as well. Let

{Γgi(t)
x }i∈N be the sequence of one-paramenter families of branching curves associated to x ∈ M and

Γg∞(t)
x∞ the one-parameter family of branching curves associated to x∞ ∈ M∞ (if this exists). Then

Γgi(t)
x converges to Γg∞(t)

x∞ as i→ ∞, in the sense that the coefficients of the curves converge.

Proof. By the Lemma 6.2.6 we know that the Cheeger-Gromov convergence can be extended

to the case of Riemann curvature tensors as well. The coefficients of the branching curve

are given by polynomials of components of Rm. By the elemantary fact that a polynomial

is a continuous function the result follows.

We will need at this point the notion of the parabolic rescaling (or parabolic dilation) of

Ricci flows. The Ricci flow has scaling properties, that are essential for blow up analysis for

singularities. Let (Mn, g(t)) be a Ricci flow on [0, T). Given a scaling factor λ > 0, if one

defines a new flow ĝ(t) = λ−1g(T + λt), for t ∈ [−λ−1T, 0), then

∂

∂t
ĝ(t) = −2Ricĝ(t)

and so ĝ(t) is also a Ricci flow. Under this scaling, the Ricci tensor is invariant, but sectional
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curvatures and scalar curvature are scaled by the factor λ. The connection also remains

invariant. The main use of this rescaling will be to analyse singularities that develop under

the Ricci flow. In such a case the curvature tends to infinity, so we perform a rescaling

of the flow where the curvature is becoming large, in such a way that we can pass to a

limit, which will be a new Ricci flow encoding some of the information contained in the

singularity. This is a very successful strategy in many branches if geometric analysis.

6.2.9 Corollary. Let (M4, g(t)) be a Type I Ricci flow on [0, T) and x ∈ ΣI . Furthermore let Γg(t)
x

be the one-paramater family of branching curves associated to x. Let us choose a sequence of scaling

factors λi, such that λi → 0. We define the rescaled Ricci flows (M4, gi(t), x, Fi(t)) by

gi(t) = λ−1
i g(T + λit), t ∈ [−λ−1

i T, 0),

where the time-dependent frame Fi(t) evolves to stay orthonormal. Then the one-parameter family of

curves Γgi(t)
x is Γg(T+λit)

x and subconverges to the one-parameter family of curves Γg∞(t)
x∞ (if this exists)

of a nontrivial normalized gradient shrinking Ricci soliton (Mn
∞, g∞(t), x∞, F∞(t)), t ∈ (−∞, 0) in

canonical form, where F∞(t) evolves to stay orthonormal.

Proof. By the Lemma 6.2.5 the branching curves are invariant under scalings of the metric by

a constant factor. Thus Γgi(t)
x = Γg(T+λit)

x . By the Compactness Theorem of Cheeger-Gromov-

Hamilton 6.1.6, there exists a subsequence {ji} such that (M4, gji(t), x, Fji(t)) converges to a

complete, pointed ancient solution to the Ricci flow (M4
∞, g∞(t), x∞, F∞(t)) on (−∞, 0). By

the result of Enders-Müller-Topping ([6], Theorem 1.4) this singularity model is given by a

nontrivial normalized gradient shrinking Ricci soliton in canonical form. The result follows

immediately from Theorem 6.2.8.

6.2.10 Remark. As the Corollary shows, the (limiting) branching curve can serve as an in-

variant of the singularity model for Type I singularities in dimension four. It still remains

open which normalized nontrivial gradient shrinking Ricci solitons can occur as singularity

models in the four dimensional case. Thus by studying limiting curves of Type I singulari-

ties, we get indications for the possible singularity models for Type I singularities in the four

dimensional case. Precisely, we hope that this approach (or even more the sophisticated K3

surfaces approach, which will be discussed in a forthcoming paper) will contribute in the
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direction of determing the generic singularity models in dimension four. In the next, we

will discuss what we understand under the notion of stability.

Following the discussion in the Introduction, one of the keys to understand the nature of

singularities, that develop in the Ricci flow is to adequately classify the set of singularitiy

models that may arrise. The signularity formation in the three dimensional case has been

fairly well understood. It follows by the Hamilton-Ivey pinching estimate ([12] and [17]),

that the only possible three dimensional singularity models have nonnegative sectional

curvature. This is a highly restrictive condition. On the other hand, Máximo showed in

[19], that in dimension four, the singularity models for finite singularities can have Ricci

curvature of mixed sign. As a result the only restriction on the curvature remaining for

n ≥ 4 is nonnegative scalar curvature, which is unfortunately a too week restriction to be

useful.

Thus in dimension greater that three, a full classification of the possible singularity mod-

els is rather impractical. A more promising alterative would be to classify the generic or at

least the stable singularity models. A singularity model developing certain original data is

labeled stable, if flows starting from all sufficient small perturbations of that data develop

singularities with the same singularity model. Furthermore, a singularity model is labeled

generic, if flows that start from an open dense subset of all possible initial data develop sin-

gularities having the same singularity model. Clearly, a singularity model can be generic

only if it is stable. More details can be found in [16].

It is conjectured by experts, that the only candidates for generic singularity models in

dimension four are S4, S3 ×R, S2 ×R2. These singularity models are known to be generic.

There is another soliton, which is now known yet if it is generic or not. This the (L2
−1, h),

which is the blow down soliton constructed by Feldman, Ilmanen ann Knopf in [7]. If the

blow down soliton is generic, then it will be also in the list.

A possible application of our construction could be to contribute in the direction of de-

termining the generic sigularity models in dimension four. The idea would be find to a four

dimensional manifold, such that its singularity model is the blow down soliton. Following

our Corollary, this would imply a convergence result for branching curves. We could make

a small perturbation of the initial data and compute the associated family of branching

curves at the singular point. If now the new family of branching curves doesn’t converge to
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the family of branching curves associated to the blow down soliton, then we could deduce,

that the blow down soliton is not a generic singularity model.

We believe strongly, that by choosing the K3 surface as an invariant instead of the branch-

ing curve, we can obtain even better results. The reason is, that the K3 surfaces approach

is more a sophisticated tool and their moduli space is well understood. Recall, that the

interested reader can find more details on the coarse moduli space for lattice polarized K3

surfaces in the Appendix. This will be part of our forthcoming work. The hope is, that these

invariants will provide us with a better understanding of the generic singularity models for

Type I singularities for the four dimensional Ricci flow.
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This is a short introduction to the theory of K3 surfaces. We list the results without giving

any proofs. The interested reader can look up the proofs of the statements below in the

books [1] or [15]. The first book is a very good reference for the general theory of algebraic

surfaces and the second one is a comprehensive reference for the theory K3 surfaces.

A.1. Definition and examples

A.1.1 Definition. A complex algebraic K3 surface is a projective, connected complex surface

X with KX ∼= OX (trivial canonical bundle KX) and H1(X,OX) = 0.

Recall that the canonical line bundle is given by KX = Λ2T∗X(1,0). In other words it is

the highest exterior power of the holomorphic cotangent bundle. Holomorphic sections of

KX correspond to holomorphic top-degree forms.

A.1.2 Remark. From now on by a K3 surface we will mean a complex algebraic K3 surface.

Let’s take a look at some examples of K3 surfaces.

A.1.3 Example. (K3 surfaces of degree 4,6 and 8) Let X be a smooth complete intersection

of type (d1, .., dn−2) in Pn, i.e. X is a surface which is the transversal intersection of n− 2

hypersurfaces of degree d1, ..., dn−2 respectively. Without loss of generality we may assume

that di ≥ 2 for every i. Then X becomes a K3 surface only when

(i) n = 3 and d1 = 4, i.e. X is a quartic surface in P3

(ii) n = 4 and (d1, d2) = (2, 3), i.e. X is the complete intersection of a quadric and a cubic

in P4

(iii) n = 5 and (d1, d2, d3) = (2, 2, 2), i.e. X is the complete intersection of three quadrics in

P5.
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A. K3 surfaces

A.2. Lattices

A.2.1 Definition. A finitely generated, free Z-module L of rank n together with a symmet-

ric, non-degenerate bilinear form

〈·, ·〉 : L× L→ Z,

is called a lattice of rank n. With respect to a choice of basis for the Z-module, the symmetric

bilinear form may be represented by a matrix denoted again with L . The lattice L is called

unimodular if det(L) = ±1 and it is called even, if

〈x, x〉 ≡ 0(mod2),

i.e. the associated quadratic form takes only even values. If 〈x, x〉 > 0 for all x 6= 0 it

is called positive-definite. A lattice is definite if it is either positive or negative definite,

otherwise it is called indefinite. The signature of L is that of the quadratic form L⊗R over

R.

A.2.2 Example. (The hyperbolic plane U) As a Z-module it is Z2 and if e1, e2 is the standard

basis, the Gram matrix [〈ei, ej〉]i,j is just

U =

0 1

1 0

 .

It is an even, unimodular rank 2 lattice of signature (1, 1).

A.2.3 Example. (The root lattice E8) As a Z-module, E8 = Z8 and on the canonical basis the

Gram matrix [B(ei, ej)]i,j is just the Cartan matrix of the root system E8 and is explicitely
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given by

E8 =



2 0 −1 0 0 0 0 0

0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2



.

The lattice E8 is even, unimodular and positive definite. Changing all signs yields −E8, a

negative definite lattice.

A.3. Topological and analytical invariants

We would like to compute the Euler number e(X). For a K3 surface X holds by definition

h0(X,OX) = 1 and h1(X,OX) = 0. By Serre duality we have that h2(X,OX) = h0(X,OX) =

1. So the Euler characteristic is

χ(X,OX) =
2

∑
i=0

(−1)ihi(X,OX) = 2.

Now by Noether’s formula

χ(X,OX) =
1
12

(K2
X + e(X))

and by using the fact that K2
X = 0 we obtain that the Euler number is

e(X) = 24.

The next Proposition gives us the singular cohomologies for a K3 surface. In particular

we have the following result.

A.3.1 Proposition. Let X be a K3 surface. Then

• H0(X, Z) ∼= H4(X, Z) ∼= Z
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• H1(X, Z) ∼= H3(X, Z) ∼= 0

• H2(X, Z) is torsion free and is a free abelian group of rank 22. Furthermore if we equip it

with the cup product pairing it becomes an even, indefinite, unimodular lattice of signature

(3, 19).

We automaticaly obtain that H0(X, Z) ∼= Z because X is connected and H4(X, Z) ∼= Z

because X is oriented. The proof for the rest of the statements can be found in [1].

From the previous Propositon we have that

bi(X) = rank(Hi(X, Z)),

so that b0 = b4 = 1 and b1 = b3 = 0. We showed before that e(X) = 24 and from the

standard theory for algebraic surfaces one has

e(X) = ∑(−1)ibi(X).

So one obtains that b2(X) = rank(H2(X, Z)) = 22.

A.3.2 Theorem. Every K3 surface is Kähler.

A.3.3 Proposition. For a K3 surface the Hodge diamond is given by

1

0 0

1 20 1

0 0

1

A.3.4 Proposition. Let X be a K3 surface. Then H2(X, Z) endowed with the cup product pairing

forms a lattice, isometric to the K3 lattice

ΛK3 := (−E8)⊕ (−E8)⊕U ⊕U ⊕U.

A.3.5 Remark. So the lattice ΛK3 has rank 22 and signature (3, 19).
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A.3.6 Theorem. Every K3 surface is simply connected.

A.4. Moduli of K3 surfaces

The isomorphism H2(X, Z) ∼= ΛK3 is not unique.

A.4.1 Definition. A marking on X is a choice of isometry φ : H2(X, Z)→ ΛK3.

Let ω ∈ H2,0(X) = H0(X, Ω2
X) be any class. Then (ω, ω) = 0 and (ω, ω̄) > 0. So, if φ is a

marking for X and φC its complexification, then φC(H2,0(X)) defines a point in

Ω := {[ω] ∈ P(ΛK3 ⊗C) : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}.

Ω is a 20-dimensional quasi-projective variety called the period space of K3 surfaces. The

point defined by φC(H2,0(X)) is the period point of the marked K3 surface (X, φ).

A.4.2 Theorem (Surjectivity of the period map). For each [ω] ∈ Ω, there is some marked K3

surface (X, φ) such that [ω] = φC(H2,0(X)).

In other words, every point of Ω occurs as the period point of some marked K3 surface.

Also, as a corollary of the so called weak Torelli theorem for K3 surfaces, we have an

injectivity statement.

A.4.3 Theorem. If (X, φ) and (X′, φ′) are marked K3 surfaces with

φC(H2,0(X)) = φ′C(H2,0(X′)) ∈ Ω,

then X and X′ are isomoprhic.

Indeed, the period space Ω is a fine moduli space for marked K3 surfaces and it is

observed that dimC(Ω) = 20.

We will now introduce lattice polarized K3 surfaces.

A.4.4 Proposition. For a K3 surface holds

Pic(X) ∼= NS(X).
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Here NS(X) denotes the Neron-Severi group.

It is well known that that for a projective surface holds that

NS(X) = H2(X, Z) ∩ H1,1(X) ⊂ H2(X, Z).

So Pic(X) ∼= NS(X) becomes a sublattice of H2(X, Z), called the Picard lattice (or Néron-

Severi lattice). The Picard number ρ(X) = rank(NS(X)) = rank(Pic(X)) is at most the

dimension of H1,1(X).

A.4.5 Proposition. Let X be a K3 surface. Then

0 ≤ ρ(X) ≤ 20

and the signature of the intersection form on NS(X)⊗Z R is (1, ρ(X)− 1).

Let Λ be a lattice of signature (1, r− 1), that can be primitively embedded in the K3 lattice

ΛK3. A lattice polarized K3 surface of degree 2k, for k > 0 is a K3 surface X together with

a primitive embedding

ι : Λ ↪→ Pic(X),

such that ι(Λ) contains a psudo-ample element h ∈ Pic(X), such that h2 = 2k.

There is coarse moduli space of lattice polarized K3 surfaces with is constructed as fol-

lows. Fix an embedding Λ ↪→ ΛK3 and define

ΩΛ = {[ω] ∈ P(ΛK3 ⊗C) : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0, 〈ω, m〉 = 0, ∀m ∈ Λ}.

ΩΛ is called the period space of lattice polarized K3 surfaces of degree 2k. As before,

we have surjectivity and injectivity results and this time, the coarse moduli space for lattice

polarized K3 surfaces (forgetting the marking) is constructed as the quotient

MK3,Λ := ΩΛ/{γ ∈ Aut(ΛK3) : γ(Λ) = Λ}.

Notice that dimC(MK3,Λ) = 20− rank(Λ).
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[16] J. Isenberg, D. Knopf, and N. Šešum, Non-Kähler RIcci flow singularities that converge to Kähler-Ricci solitons,

available at arXiv:math/1703.029.02918v2.

78

arXiv:math/1703.029.02918v2


BIBLIOGRAPHY

[17] T. Ivey, Ricci solitons on compact three-manifolds, Diff. Geom. Appl. 3 (1993), 301-307.

[18] J. Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Annalen 3 (2007), 627-666.
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