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Abstract

Climate change is one of the most pressing issues of our time and mitigating it requires a reduction

of CO2 emissions. A big step towards achieving this goal is increasing the share of renewable energy

sources, as the energy sector currently contributes 35% to all greenhouse gas emissions. However,

integrating these renewable energy sources challenges the current power system in two major ways.

Firstly, renewable generation consists of more spatially distributed and smaller power plants than

conventional generation by nuclear or coal plants, questioning the established hierarchical structures

and demanding a new grid design. Restructuring becomes necessary because wind and solar plants

have to be placed at favorable sites, e.g., close to coasts in the case of wind. Secondly, renewables

do not provide a deterministic and controllable power output but introduce power �uctuations that

have to be controlled adequately. Many solutions to these challenges are build on the concept of smart

grids, which require an extensive information technology (IT) infrastructure communicating between

consumers and generators to coordinate e�cient actions. However, an intertwined power and IT system

raises great privacy and security concerns.

Is it possible to forgo a large IT infrastructure in future power grids and instead operate them

purely based on local information? How would such a decentrally organized system work? What

is the impact of �uctuation on short time scales on the dynamical stability? Which grid topologies

are robust against random failures or targeted attacks? This thesis aims to establish a framework of

such a self-organized dynamics of a power grid, analyzing its bene�ts and limitations with respect to

�uctuations and discrete events.

Instead of a centrally monitored and controlled smart grid, we propose the concept of Decentral

Smart Grid Control, translating local power grid frequency information into actions to stabilize the

grid. This is not limited to power generators but applies equally to consumers, naturally introducing a

demand response. We analyze the dynamical stability properties of this framework using linear stability

methods as well as applying numerical simulations to determine the size of the basin of attraction. To

do so, we investigate general stability e�ects and sample network motifs to �nd that this self-organized

grid dynamics is stable for large parameter regimes. However, when the actors of the power grid

react to a frequency signal, this reaction has to be su�ciently fast since reaction delays are shown

to destabilize the grid. We derive expressions for a maximum delay, which always desynchronizes

the system based on a rebound e�ect, and for destabilizing delays based on resonance e�ects. These

resonance instabilities are cured when the frequency signal is averaged over a few seconds (low-pass

�lter). Overall, we propose an alternative smart grid model without any IT infrastructure and analyze

its stable operating space.

Furthermore, we analyze the impact of �uctuations on the power grid. First, we determine the

escape time of the grid, i.e., the time until the grid desynchronizes when subject to stochastic per-

turbations. We simulate these events and derive an analytical expression using Kramer's method,

obtaining the scaling of the escape time as a function of the grid inertia, transmitted power, damping

etc. Thereby, we identify weak links in networks, which have to be enhanced to guarantee a stable

operation. Second, we collect power grid frequency measurements from di�erent regions across the

world and evaluate their statistical properties. Distributions are found to be heavy-tailed so that large

disturbances are more common than predicted by Gaussian statistics. We model the grid dynamics
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using a stochastic di�erential equation to derive the scaling of the �uctuations based on power grid

parameters, identifying e�ective damping as essential in reducing �uctuation risks. This damping may

be provided by increased demand control as proposed by Decentral Smart Grid Control.

Finally, we investigate discrete events, in particular the failure of a single transmission line, as

a complementary form of disturbances. An initial failure of a transmission line leads to additional

load on other lines, potentially overloading them and thereby causing secondary outages. Hence, a

cascade of failures is induced that propagated through the network, resulting in a large-scale blackout.

We investigate these cascades in a combined dynamical and event-driven framework, which includes

transient dynamics, in contrast to the often used steady state analysis that only solves static �ows in

the grid while neglecting any dynamics. Concluding, we identify critical lines, prone to cause cascades

when failing, and observe a nearly constant speed of the propagation of the cascade in an appropriate

metric.

Overall, we investigate the self-organized dynamics of power grids, demonstrating its bene�ts and

limitations. We provide tools to improve current grid operation and outline a smart grid solution that

is not reliant on IT. Thereby, we support establishing a 100% renewable energy system.
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Chapter 1

Motivation

Climate change, energy transition and the role of electricity

One of today's greatest challenges to humankind is to mitigate climate change and its e�ects [65]. To

cope with this challenge, the Paris conference 2015 saw leaders of nearly all countries agree to limit

global warming to 1.5°C [153]. However, reaching this ambitious goal requires a signi�cant reduction

of greenhouse gas emissions, especially CO2, which is, for example, released in large quantities to

satisfy energy demands [42]. These demands arise in several, mainly disconnected consumption areas.

Electrical energy, for example, is directly used by numerous devices and machines in private and

industrial contexts to light up buildings, power engines, run computers and much more. In addition,

energy provided by burning oil or gas is used in cars, trucks and trains for transportation purposes as

well as in the heating sector. While these three sectors of energy consumption are mainly independent

today, we expect that heating and transportation sectors will rely more on electricity in the future [10].

For instance, the introduction of electrical cars makes the transport sector more depended on the

electricity generation. Similarly, the usage of heat pumps to heat up or cool down buildings couples

the heating sector to the electric one [35], in addition to already common solar or electrical district

heating [84]. Therefore, reducing CO2 emissions and switching to a sustainable energy supply, crucially

depends on reforming and restructuring the power grid to supply enough energy for all sectors while

avoiding greenhouse gas emissions. To achieve this, it is central to incorporate as much renewable

energy generation into the grid as possible [42,147] with wind and solar power being the most promising

contributors to reach a sustainable energy supply [32,67].

However, integrating these sources into the existing grid raises many challenges [21,158,159], ranging

from the design of the grid to the necessity of new control frameworks due to sources being distributed,

far away and �uctuating. Furthermore, the power grid has become a large and complex system,

intertwining countries and crossing borders [44], making an isolated analysis of a single country almost

impossible (see also Fig. 1.1).

8



9 Chapter 1. Motivation

Figure 1.1: Europe at night observed by a satellite. The map shows no borders, as light is not stopped
at the border of a country. Similarly, the electricity powering the light is transmitted across borders.
In recent years, previous national power grids got coupled into one very complex Continental European
power grid. The picture is assembled from recordings of the Suomi NPP satellite from April 2012 and
October 2012, displaying the light emitted from settlements. Reproduced from [100], published under
CC-BY-2.0.

Power grid research as a physicist

The current power grid, especially in Western states, is very reliable and stable. Recent reports by grid

operators proudly state how the grid service is lost for less than a couple of hours per year [24,43,47].

So why do we need additional basic research on this topic when the ongoing energy transition has been

handled very well so far?

First, more subtle measures than outages indicate increasing stress on the grid. For example, the

total power re-dispatch, i.e., the redistribution of power within the network to avoid overload, increased

signi�cantly within the last years [1, 174]. Furthermore, a recent study points out that currently no

framework exists that operates with 100% renewable energy generation and reliably meets demand

criteria using realistic demand forecast while being resilient [60]. In addition, the power grid operators

themselves do not seem ready to implement a fully renewable system, as the scienti�c director for

research and development at EDF (Électricité de France S.A.), one of the largest energy companies

world-wide, said in July 2016: �[Today, a] 100% renewable energy system is still hard to manage. It

is technically impossible and economically unsustainable.� [152].

Facing increasing loads and without a plan for implementing a 100% renewable power grid, we

believe that basic research is necessary to pave the way towards such a sustainable system [23,116,154].

So far, the technical adaptations made by the grid operators have been mostly su�cient to adapt

the power grid to the changing needs. Nevertheless, some conceptional steps are missing before a

sustainable energy system can be established. As physicists, we do not intend to instruct operators

on how to precisely operate the grid using speci�c scenarios, instead we aim to provide fundamental

insights into options and constraints of the system, using a powerful and versatile analytical toolbox.
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Research in this area is not only of direct interest for applications to power grid systems but is

also relevant from a basic science point of view. Power grids are very interesting complex dynamical

systems displaying collective nonlinear dynamics, including oscillation and synchronization phenomena

that are observed and studied in numerous other �elds [114]. For example, the well-known Kuramoto

model [77,78], explaining essential mechanisms underlying synchronization, is very similar to the power

grid dynamics when neglecting inertia.

The broad interest of physicists to work on questions regarding power grids arose within the last

10 to 15 years, likely driven by progress in computation power and general political interest in the

topic. A few early works on power grids by physicists are by Cruicitti et al. [34] in 2004, Kinney et

al. in 2005 [71] and Anghel et al. in 2007 [8], which mainly focused on the topological properties

of power grids. However, the topic became of widespread interest in the physics community based

on Filatrella et al. in 2008 [55], introducing small systems and simulations, Rohden et al. in 2012

[121], investigating the role of network topology, Motter et al. [98] and Dör�er et al. [39], both 2013,

providing synchronization and stability conditions, which were followed by numerous articles, see

e.g., [38,39,79,87,88,89,91,92,98,103,122,123,129,130,131,132,133,170,171,172,173,179] demonstrating

the interest in the �eld and the large amount of open questions.

Challenges facing the power grid

Let us review some of the challenges facing the power grid when including a high share of renewable

power generation. We will not be able to cover all aspects within this thesis so that we will mostly

neglect economic aspects concerning the reformation of the energy market [52, 59] and very long time

scales, e.g., seasonal e�ects [61]. Instead, we focus on e�ects on the short time scale, where �uctuations,

discrete events, e.g., line failures, lead to a desynchronization and thereby outage of the grid. In

addition, we study how supply and demand may be matched all time, using demand control in smart

grids.

Fluctuations. Traditional coal or gas �red power plants have a deterministic and controllable power

output, so that the output can be increased during an energy shortage and decreased during phases

of excess energy [62, 86]. In contrast, the power output by renewables is often not deterministic but

depends, for instance, on solar irradiation, wind and cloud conditions. Therefore, the power �uctuates

on di�erent time scales from several days [61] to less than a second [93]. Each time scale poses

its individual challenges. Several days without wind and solar generation (due to cloudy weather

conditions) require long-term storage [3], while a sudden increase of energy within a second has to be

balanced by a fast control [20]. Beyond acting on multiple time scales, �uctuations by renewables also

display highly non-Gaussian statistics. This includes jump noise in solar power generation, due to gaps

in the clouds [9], and heavy tails in wind power generation, partially due to the turbulent nature of

wind itself [93, 94].

In this thesis, we focus on short time �uctuations using a dynamical model for the power grid on

the time scale of sub-seconds to a few seconds. We consider two main questions posed by �uctuations

to the grid: Can �uctuations destabilize the dynamics of the grid and thereby lead to a blackout? And

secondly: How do �uctuations impact the bulk (average) power grid frequency?
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The �rst question concerns the capability of �uctuations to desynchronize a heavily loaded grid [75]

by driving it out of its steady state after a �nite escape time. The second question concerns regulations

by grid operators that state that voltages and frequencies have to stay within strict bounds to protect

machines [45]. Therefore, we investigate how �uctuations of renewables impact the statistics of the

power grid frequency.

Discrete events. In contrast to continuous �uctuations, singular discrete events, like the tripping of

an important transmission line or the shutdown of a large power plant, are much rarer but might have

severe impacts on the dynamical stability of the grid. In extreme cases, an initial failure of one line

increases the load on the remaining grid and causes multiple secondary failures and �nally a wide area

blackout [108]. We expect the frequency of these events to increase with increasing load of the network

due to large distances between power generation and consumption areas, e.g., with wind generation at

the coasts and demand in urban areas [1,2]. Major blackouts due to discrete failures include the often

cited Italian blackout in 2003, as well as more recently, the Indian blackout in 2012 and the South

Australian blackout in 2016.

In September 2003, the Italian power grid and Internet communication network demonstrated their

essential interdependence. The shutdown of a power plant unpowered a communication node, which in

turn disconnected the communication grid, causing additional shutdowns of power plants and failures

of more communication nodes. Eventually, a large cascade of these events unpowered most of the

Italian grid, a�ecting a total of about 56 million people, due to power grid and information technology

(IT) infrastructure failing interdependently [25].

On the 30th and 31st of July 2012, the largest blackouts in the history of mankind took place

in India, a�ecting about 600 to 700 million people [113]. Before the failure, the grid was highly

loaded and instead of heavy rain falls, the monsoon season to this point of time had been drier than

expected, resulting in less power generated in hydro plants [28]. Similar to many other blackouts, the

failure was traced back to the failure of a single element, typically a transmission line or power plant,

which resulted in the subsequent failure of additional lines within a short time frame due to automatic

disconnections [28]. As a consequence of the blackout, trains were stopped, causing millions of stranded

passengers. Hospitals had to rely on nurses operating life-saving equipment manually while surgeries

were canceled [113]. Production halted, while major cities su�ered from failing air conditioning and

tra�c jams, e.g., in New Delhi and Kolkata [80,113].

Finally, on September 28 in 2016, the whole grid of South Australia went down when a severe

storm knocked out a large number of high voltage pylons leading to additional automatic shutdowns

and �nally a blackout of the whole state of South Australia. In total about 1.7 million people [13] were

without electricity and the grid needed a black start, i.e., start without using power from any running

power plant [148].

Such large scale blackouts have huge economical and societal costs [19, 138] and might even be

worse in the future [112] because our societies increasingly rely on the well-functioning of the electricity

supply. Hence, it is of utmost importance to understand how cascading failures take place, how they

propagate through the grid and how they might be stopped to protect the �uniquely critical� energy

system [104].

Although many cascading failures took place within a short time frame of seconds [26, 28, 101],
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existing studies on cascades [33, 34, 68, 71, 115, 120, 173] mainly used static �ow analysis, which is

suitable on time scales of minutes to hours, demanding a dynamical description.

Demand control and smart grids. Power grids were designed to generate electric power at a high

voltage, feed it into the high voltage transmission grid to then distribute the power to customers at

lower voltage levels, see Chapter 2 and [62,76]. However, solar and wind plants cannot be located close

to the demand locations but require favorable weather conditions to achieve a high average generation.

Due to the large distance between generation and consumption, additional transmission lines become

necessary to deliver the power to the consumption sites [2]. Furthermore, the power supplied by the

numerous distributed solar and wind plants put on roofs or in backyards already results in a power �ow

from former consumer grids, i.e., distribution grids, at low voltage into the high voltage transmission

grid [66]. This direction of power �ow poses a substantial challenge to the control of the grid as

most regulations target the high voltage transmission grid and not the low voltage distribution grid,

where additional control will be needed [45]. Finally, the conventional framework for power grids

assumes that consumers have no restrictions and may modify their demand as they see �t, so that

the generators have to mirror consumption behavior and increase supply when demand rises [177].

However, renewable sources cannot supply a constant or 100% controllable power output [9, 61, 93].

Therefore, to balance supply and demand it was proposed to make consumption more �exible and let

consumers follow the generation of renewables using demand response or demand control [109].

To cope with distributed and �uctuating generation on low voltage levels, further coordination of

generation as well as consumption on the lower voltage distribution grid becomes necessary, in addition

to existing control on the high voltage transmission grid. Additional control and communication is often

proposed to be handled by a Smart Grid that integrates consumers and distributed generators into the

system manageable by the grid operators [6]. Such a system relies on an extensive IT infrastructure

to read o� demand data, predict generation by renewables and communicate the desired strategy for

consumption and generation [54,66].

However, from our point of view, reading and communicating demand data raises severe privacy

concerns. In addition, any IT infrastructure has to withstand random failure of components, which

already lead to the large scale blackout in Italy [25], see also above. In addition, recent cyber attacks

[106,111] demonstrated that even large companies (e.g. banks and logistic enterprises) are vulnerable

to hacking attempts. Therefore, we question the idea of basing the critical electricity supply [76] even

more on the functioning of potentially hackable IT and consequently consider alternatives.

Synopsis and structure of this thesis

In this thesis, we investigate various aspects of self-organized dynamics of power grids by omitting

external or global control actions. Instead, we assume a purely local reaction of each actor in the grid.

The chapters cover topics ranging from smart grids to continuous �uctuations and discrete perturba-

tion events, based on individual manuscripts.
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In Chapter 2, we provide additional information on network science and the basics of power grid

organization and modeling, extending this introduction. This is mainly intended to provide a frame-

work for the following chapters, not a thorough treatment of the topics it touches upon. In addition, we

review some often used tools treating ordinary di�erential, delay di�erential and stochastic equations

complementing the brevity of the following original manuscripts.

In Chapter 3, we introduce the concept of Decentral Smart Grid Control as a self-organized control

scheme for power grids, without the need for a central IT infrastructure. The control uses power grid

frequency measurements at each network node to adapt the power generation or consumption, thereby

providing a concrete proposal for self-organized smart grids applicable to consumers and generators

alike. We analyze the dynamical stability properties of this system, considering both instantaneous

reaction, which improves the grid's stability, and delayed reaction to the signal, which results in re-

sonance risks. Finally, we introduce an averaging mechanism for the frequency signal to stabilize

the system against resonance instabilities. The dynamical analysis is restricted to small networks of

N = 2...4 nodes.

Chapter 4 extends results obtained in Chapter 3 by applying Decentral Smart Grid Control to a few

additional network motifs with N = 4...9 nodes. In addition, we explore a destabilizing e�ect for large

delays on any potential network topology using analytical methods only. Furthermore, we study larger

networks using numerical tools. Thereby, we detect a transition from the system being multistable to

one globally stable attractor.

In Chapter 5, we characterize the power grid stability when subject to uncorrelated Gaussian noise,

which leads to a desynchronization of the grid after a �nite time, i.e., to a blackout. We investigate

this escape time both numerically and analytically using Kramer's escape rate mapped to the network

problem. By doing so, we identify critical lines in the network that are most prone to be overloaded and

provide the scaling of the escape time as a function of the grid's parameters like inertia, transmitted

power, damping etc.

Chapter 6 also investigates �uctuations in power grids, focusing on daily �uctuations instead of

blackouts. To this end, we investigate power quality, i.e., we determine how much the grid frequency

deviates from f = 50 Hz or f = 60 Hz. We do so by analyzing power grid frequency measurements

from around the world, highlighting heavy tails in their distributions. Applying a dynamical power

grid model, we derive a Fokker-Planck equation of the grid frequency. By solving it, we derive the

scaling of the frequency �uctuations as a function of the inertia, the size of the grid and the e�ective

damping (e.g., as provided by decentralized control). Finally, we apply superstatistics to frequency

�uctuations, providing an alternative explanation for heavy tails in the distributions.

In Chapter 7, we investigate another type of disturbances to power grids, namely discrete events like

the failure of a single transmission line, leading to potentially large cascading failures. Compared to

the majority of the existing literature, we do not apply a static �ow approach but consider cascades

using a dynamical framework, thereby revealing important e�ects, which are often missed. Investiga-

ting di�erent network topologies, we develop a predictor identifying critical links for the dynamical

stability of the grid and observe a propagation of the cascade within the grid.

Chapter 8 closes this thesis with a summary and discussion of the obtained results, putting them

into context of existing work.
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Chapters 3-7 constitute independent publications and all contain a separate bibliography. Another list

of references for Chapters 1, 2 and 8 is given at the end of the thesis.



Chapter 2

Fundamentals

This chapter provides a brief introduction to basic concepts used in later chapters. We cover all

necessary terminology and theory to enable the reader to follow the occasional brief calculation in the

original manuscripts. However, we do not provide a thorough coverage of any of the �elds we touch

on, so readers are encouraged to check the cited literature for further information.

2.1 Networks

The primary focus of this thesis is on power grids, which are best described as complex networks

constituted of generators, consumers, transmission lines, transformers etc. Here, we introduce the

basic concepts of network theory mainly following [102].

First, we note that network science has been and continues to be a highly interdisciplinary topic.

Social scientist are interested in social interaction networks, while biologists describe networks as di�e-

rent as food webs, gene regulatory networks or the brain. Infrastructure like train and street networks

are essential for today's society. And in recent years, computer science became more important than

ever for our daily lives in the form of the internet, a huge and complex network, see also Fig. 2.1.

Hence, network science is of great importance for many �elds resulting often in non-unique terminology

since di�erent �elds introduced di�erent terms to describe the same concept. We restrict ourselves to

a couple of synonyms throughout this thesis.

A network (also graph/(power) grid) is a collection of nodes (also vertices/actors) that are con-

nected via edges (also links/lines). We count the nodes of a network with indices i = 1, 2, ..., N and

denote the edges as i − j or (i, j) with a total of |E| edges. Concepts like self-edges, i.e., a node

connected to itself, or multi-edges, i.e., more than one edge between two nodes, are not explicitly used

in this thesis.

Adjacency matrix. The connectivity of a network is easily described by the adjacency matrix

A ∈ RN×N that is de�ned as

Aij =





1 if i and j are connected via an edge,

0 else.
(2.1)

15
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Figure 2.1: The internet is a complex network. Shown is the Internet structure where vertices repre-
sent similar IP addresses and connections represent typical paths of data packages on this network.
Reproduced from [107], published under the CC-BY-NC-4.0.
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Figure 2.2: Small sample networks. a: A �ve node unweighted graph with a total of seven edges is
shown. b: A �ve node network with seven directed and weighted edges is depicted, where thicker
edges have higher weights and arrows indicate the direction of the edge.

For a network formed of N nodes, the adjacency matrix is hence a N ×N matrix, which is typically

very sparse for su�ciently large networks [5]. Fig. 2.2a shows a small sample network with adjacency

matrix

A =




0 1 1 1 0

1 0 0 1 1

1 0 0 1 1

1 1 1 0 0

0 1 1 0 0



. (2.2)

This adjacency matrix is unweighted, i.e., all edges described in the network are equal. Instead, an

edge could be weighted, e.g., to di�erentiate between a highway and a small lane or a thick and thin

transmission cable. A weighted adjacency matrix still has entries that are zero, implying no connection,

and general non-zero entries where the entry of the matrix is the weight of the link. Furthermore, we

can also introduce directed links that start at one node and end at another symbolizing, e.g., a one

way street, by setting aij > 0 but aji = 0, for example

A =




0 8.73 0 0 0

0 0 6.27 14.07 10.33

2.89 0 0 0 0

0 16.86 0 0 16.14

0 0 0 0 0



, (2.3)

see Fig. 2.2b.

One alternative to the adjacency matrix is an edge list, i.e., edges are listed in the form 1−2, 2−3,

2 − 4, 2 − 5, 3 − 1, 4 − 2, 4 − 5 for the graph in Figure 2.2a, where the weight needs to be stored

for each edge in case of weighted graphs. Edge lists are often used for memory-e�ciency in computer

calculations, especially when networks are sparse, i.e., have few links [176].

Graph measures. The adjacency matrix allows easy calculation of many important graph metrics,

including degree, centrality and node distances. Consider an unweighted and undirected network of N

nodes and |E| edges. Each node has a degree ki, which is de�ned as the number of edges connected to
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it:

ki =

N∑

j=1

Aij . (2.4)

In case of an unweighted but directed network we have to distinguish between in-degree kini =
∑N
j=1Aji

and out-degree kouti =
∑N
j=1Aij . In addition, the degree distribution p (k) gives the probability to �nd

a node with degree k in the network. It is in particular interesting when comparing di�erent network

ensembles.

Next, we de�ne a path in the network between nodes a and b as the sequence of nodes visited to

get from a to b. Using Fig. 2.2b as an example graph, one path from node 1 to node 5 would be

p = (1, 2, 4, 5) and an alternative is given by p̃ = (1, 2, 5). The second path seems more intuitive and

�shorter�. We quantify the length of a path as l (p) =
∑
iApipi+1 where i goes from 1 to number of

vertices -1 in p, i.e., for our example this results in l (p) = A12 + A24 + A45 and l (p̃) = A12 + A25.

Traveling in a street network or sending packages through the Internet should often be as fast as

possible, i.e., one is interested in �nding the shortest path, also known as geodesic path or distance.

All paths between nodes a and b that have the smallest length are shortest paths, see also Fig. 2.3.

Ranking the importance of nodes is often done using the concept of centrality. Two simple concepts

of centrality include degree centrality and betweenness centrality. The degree centrality uses the degree

k of each node as a centrality measure, i.e., nodes that have many edges are considered to be very

central. Conversely, the betweenness centrality counts how often each vertex is used when considering

all possible shortest paths in the network. Thereby, nodes with few edges that connect two large

sub-networks are very central in this sense, see Fig. 2.4.

Finally, we will also use the concept of a clustering coe�cient, which captures the share of connected

triangles. In a social network this is the probability that two friends of mine are also friends. One way

to de�ne the clustering coe�cient is to compute

C =
3 (number of triangles)

(number of connected triples)
, (2.5)

where a triangle is a set of three fully connected vertices (a, b, c) with edges a− b, b− c, c− a present

while a triple only requires edges a− b and b− c (permuting indices is allowed), see [102] for details.

Alternative distance measure. We introduced the concept of shortest paths above, which de�ne

a graph distance using the adjacency matrix A. When describing cascades in Chapter 7, we will need

the concept of e�ective distances introduced by Brockman and Helbing [22] for epidemic spreading.

We de�ne e�ective distances between two vertices i and j as

dij = 1− log

(
Aij∑N
k=1Aik

)
, (2.6)

and all nodes that do not share an edge, i.e., Aij = 0, have e�ective distance dij = ∞. To compute

the length of paths, we again use the concept of shortest paths but use dij instead of Aij . Using

highly weighted edges in the original graph description A resulted in very high distances. In contrast,

the e�ective distance de�ned in Eq. (2.6) is small between highly connected nodes and large, if the
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a

b
j

i

Figure 2.3: Illustration of shortest paths on a sample network. The highlighted path is the shortest
path between nodes a and j with a distance of d = 3 (unweighted). Furthermore, this illustrates the
basic idea of edge distances. The edges a− b and i− j have the distance based on all possible shortest
paths between all involved nodes, see Eq. (2.7). Here the distance is da−b,i−j = dbi + dab.

a b

Figure 2.4: Example graph with two nodes showing high betweenness centrality. The nodes a and b are
part of a 20 node sub-graph each, both having degree k = 2 within their respective graph. However,
the edge connecting both nodes is the only connection between the two subgraphs. Therefore, the
nodes a and b and the edge a− b is highly central, as also quanti�ed by a high betweenness.
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weights are comparatively small. Note further that the e�ective distance is an asymmetric measure

with dij 6= dji in general.

In addition, we need to de�ne the distance of two edges for this weighted graph. Let dij be the

distance measure between two vertices. We then de�ne the distance between edge a− b and edge i− j
as

da−b,i−j = min
v1∈{a,b},v2∈{i,j}

dv1v2 + dab, (2.7)

i.e., it is the minimum of the shortest path lengths of the paths a → i, a → j, b → i and b → j plus

the e�ective distance between the vertices a and b, see Fig. 2.3 for an illustration and Chapter 7 for

the application.

Network Models. When investigating the properties of networks we would like to derive general

statements that are not only true for one speci�c simulation [143] but hold for every network or at least

a large class of potential networks. However, if a fully analytical approach is not available, one can

simulate multiple realizations of a speci�c network ensemble for comparison and some insight [122].

But what is an appropriate way to generate a random network?

There exist numerous network models. To name just a few: The Erd®s-Rényi model uses a �xed

number of nodes N and assigns either a �xed number of links |E| connecting nodes at random or each

potential link is realized with a �xed probability p [49]. The Watts-Strogatz model starts with a regular

graph where for example every node on a ring is connected to its next neighbors and continues by

re-wiring each link with a �xed probability [165] leading to the small world e�ect. In these network

every node is at a small distance from any other node in the grid due to non-local shortcuts in the

connectivity, see Fig. 2.5. In addition, the clustering coe�cient in these networks is large. Even more

prominent might be the Barabasi-Albert model, which starts with one node, then adds one node at a

time and connects them preferentially to nodes with already many connections, leading to a �rich-get-

richer� phenomenon [14]. Finally, there exist speci�c power-grid related network ensembles, which aim

to construct a network with network measures similar to real power grids [139].

Note however, that the di�erences of these various network ensembles are much more pronounced

when comparing large networks with thousands of nodes N ∼ 103 − 105 while this thesis mainly

considers smaller networks of N ∼ 10 for illustration purposes and N ∼ 100 to model national grids

in Europe. Therefore, we typically do not focus as much on di�erent graph ensembles as, e.g. [122].

Dynamics on networks. So far, we have covered only structural properties of networks like degrees,

distances and network ensembles. Here, we extend the treatment of networks by the dynamics of

variables on the network itself.

Consider a network of N nodes with adjacency matrix A. Furthermore, let each node i in the

network be characterized by the state xi, which may be multi-dimensional, i.e., each node might have

D di�erent variables xi =
(
x1
i , x

2
i , ..., x

D
i

)
. A single state component is noted as xµi with the superscript

µ describing the di�erent variables of a node (µ = 1, ..., D, Dimension D) and the subscript i denoting

the di�erent nodes (i = 1, ..., N). A general dynamical system (allowing at most pairwise interactions)
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a b

Figure 2.5: Small world networks introduce shortcuts in regular networks. a: A regular twelve node
network is shown where each node is coupled to its four nearest neighbors. b: The regular network
from a is transformed into a small world network by re-wiring each link with probability p = 0.15,
introducing shortcuts into the network leading to the small world e�ect.

on such network is then written as

d
dt

xi = fi (xi) +

N∑

j=1

Aijgij (xi,xj) , (2.8)

where fi is the intrinsic dynamics of the node while gij gives the interaction dynamics. In many cases,

we assume that the functional form of both intrinsic and interaction dynamics are identical for all

nodes, leading to the simpli�ed form

d
dt

xi = f (xi) +

N∑

j=1

Aijg (xi,xj) . (2.9)

A �xed point x∗i of this system is de�ned by

0 = f (x∗i ) +

N∑

j=1

Aijg
(
x∗i ,x

∗
j

)
. (2.10)

To obtain the stability of such a �xed point with respect to small perturbations we linearize the

dynamics of xi around x∗i :

xi ≈ x∗i + δxi, (2.11)

resulting in the linear dynamics of the small perturbations δxi:

d
dt
δxi = Jδxi, (2.12)
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with Jacobian matrix J, which for our dynamical system is given as [150]

J =




∂
∂x1

1

(
d
dtx

1
1

)
· · · ∂

∂xD1

(
d
dtx

1
1

)
∂
∂x1

2

(
d
dtx

1
1

)
· · · ∂

∂xDN

(
d
dtx

1
1

)

...
. . .

...

∂
∂x1

1

(
d
dtx

1
N

) . . . ∂
∂xDN

(
d
dtx

1
N

)

∂
∂x1

1

(
d
dtx

2
1

) . . . ∂
∂xDN

(
d
dtx

2
1

)

...
. . .

...
∂
∂x1

1

(
d
dtx

D
N

)
· · · ∂

∂xD1

(
d
dtx

D
N

)
∂
∂x1

2

(
d
dtx

D
N

)
· · · ∂

∂xDN

(
d
dtx

D
N

)




. (2.13)

We set the variables to their �xed point values xi = x∗i , so that all entries in J are numerical. Then,

we compute the eigenvalues of J as λ1, λ2, ...λN ·D. If any of these eigenvalues have a positive real part,

the �xed point is linearly unstable and the system diverges from it. If however, the real parts of all

eigenvalues are negative, the system is linearly stable and decays back to the �xed point after small

perturbations.

2.2 Power Grids

How is the power grid organized? Why do we use AC power equipment instead of DC equipment? What

are appropriate models to describe the power grid's dynamics? We review these questions together

with a general introduction to power grids here. Furthermore, we give a derivation of a dynamical and

static model describing the grid with and without voltage dynamics.

2.2.1 General Properties of Power Grids

Here, we brie�y review some important elements and properties of the power grid system with a

focus on the elements crucial for this thesis and refer the interested reader to specialized books on

control [76], markets [52,59] or power grid models [86,103] for further details.

Brief history. AC vs. DC transmission

About 150 years ago Thomas Edison invented the �rst practical electric light bulb illuminating buil-

dings with electricity [137]. Edison was committed to use electricity based on the principle of a

directed current (DC). However, DC lines typically only used one voltage since transformation to dif-

ferent voltage levels was not easy. This lead to numerous electric lines being needed, one for each

voltage, see Fig. 2.6 for the situation in New York in 1890.

In contrast, the entrepreneur Westinghouse developed an electricity system based on alternating

current (AC) together with the help of Nikola Tesla at the end of the 19th century [29]. Transformation

of AC power to di�erent voltage levels was much easier than it was the case with DC. The con�ict of

the two opposing concepts lead to the war of currents [29] during which DC was advertised by Edison

as a save solution while the high voltage transmission of the alternating current was proclaimed to be

too dangerous. In the end, the potential to transport power over large distances at high voltage to the
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Figure 2.6: In 1890, New York needed many power transmission lines. At this time at least one line
was needed for each voltage and household. Since the applied DC was not easy to transform, many
lines were build. Reproduced from [167], published under public domain.

cities and using transformers to convert it to lower voltages for consumption prevailed, leading to the

AC design to be widely adapted [29].

Today, we combine AC and DC approaches seeing them as complimentary instead of competitive

due to huge advancements in power electronics [96]. While large parts of the transmission power grid

use AC, high voltage directed current (HVDC) transmission lines are used for long-range transport or

to couple di�erent synchronous regions like Continental Europe and Great Britain [70]. Furthermore,

solar and wind power are often supplied as DC and then converted to AC to be fed into the grid [18].

Power grid organization

Power generation. Our modern power generation still relies on the same principle as used by

Tesla in the 1890th, namely Faraday's law [29]. It states that a changing magnetic �eld introduces a

electromotive force, i.e., electric currents in a wire [126]. Given this observation, there are di�erent

options of how the magnetic �eld may change. One option is to place a static conductor in the �eld

of an electromagnet and vary the magnetic �eld strength without any movement. Alternatively, the

magnetic �eld is held constant and instead the conductor is moved, e.g. rotated, within the �eld.
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Figure 2.7: Schematic of a three phase generator displaying the two axes of the rotor (d and q) and
the three axes of the stator (A,B,C). Reproduced from [86] with permission.

Conversely, it is also possible to move the magnet and keep the conductor static. The last approach is

used in modern synchronous generators, which often use three poles, as shown in Fig. 2.7 [86].

A three pole synchronous generator consists of a stator and a rotor driven by mechanical forces,

e.g., water �ow in a hydro plant or steam in a combustion plant. The rotor is equipped with windings

along its main direction, which is called direct axis or d-axis. Conversely, the axis perpendicular to

it, more speci�cally, 90° later in the rotation, is the quadrature axis or q-axis. The stator has three

pairs of windings giving rise to the three axes A,B,C. The rotor windings are powered with a DC �eld

to induce a magnetic �eld (�ux), which penetrates the stator windings. The rotation of the magnetic

�eld of the rotor changes periodically in the stator windings and thereby induces an AC current in the

stator [86].

For our purposes, we do not need to specify all �uxes and �elds in the rotor and stator respectively.

Instead, we focus on some key variables and parameters to characterize a given machine: For a spinning

machine, the mechanical frequency ω of the rotor is very important because it is closely linked to the

frequency of the induced alternating current (AC) in the stator. More precisely, we assume here that

the voltage phase angle in complex notation and the mechanical angle γ depicted in Fig. 2.7 are

identical, as justi�ed for the equilibrium state with small disturbances [7,86]. Voltage phase angle and

frequency are linked via the time derivative

d
dt
γ = ω. (2.14)

During steady-state operation voltages, currents and �uxes in the machine are almost periodic and

small disturbances from the steady state are modeled via the swing equation, see below. The grid

frequency is then close to its reference value of f = 60 Hz (North America, Parts of South America,

Parts of Asia) or f = 50 Hz (other countries). On the contrary, when large disturbances, e.g. short-

circuits, are considered, the voltages are dynamically changing over time and the reactances between

the di�erent axes also play an important role, especially on the q and f axes. We assume most of these

quantities to be constants and at most consider a model where the voltage in the q-axis is allowed to
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vary over time, see 3rd order model below.

The electric energy provided by spinning generators has to be consumed immediately or needs to

�ow into batteries or hydro storage. The only storage that the generators themselves provide is the

stored kinetic energy of their rotation, which is proportional to their respective inertia I. To keep

the frequency close to its reference values, a sophisticated control architecture and specialized reserve

power markets have been established, which also use the spinning reserve of connected machines [86].

Alternatives to synchronous machines. Classical mechanical synchronous machines, as menti-

oned above, provide substantial inertia for the grid. This was long seen as an obvious contribution.

However, integrating renewable generation into the power grid changes the situation signi�cantly. Cur-

rent technology to couple solar or wind power into the power grid relies on inverters, i.e., even the

rotation of the wind turbine is �rst converted to a DC, transmitted to a converter and then fed as AC

into the grid [62]. Thereby, replacing synchronous machines with inverters, i.e., power electronics wit-

hout any mechanical rotor, that are connected to a DC power source, like a battery or solar cell, keeps

the total power in the grid constant while decreasing the inertia. Unfortunately, inertia is generally

bene�cial for the system stability so that we have to �nd an solution to the decreasing inertia [160].

One solution is to use inverters in the grid-following mode, given there is a grid frequency to follow

in the �rst place [134]. Alternatively, inverters operate as grid-forming, i.e., they are used to establish

a frequency, which other inverters can then follow [134]. The downside of the second kind is that they

need very large amounts of energy very fast in order to keep the grid stable [27]. Furthermore, there

are critics pointing to the �nite measuring times of inverters posing a problem for stability [40].

In addition to inverters forming or following a frequency, there are also attempts in building a

virtual synchronous machine with non-zero inertia that acts towards the grid as if it was a mechanical

synchronous machine but is driven by power electronics and uses batteries or solar panels as power

sources [18]. This research area is very important for today's power engineering and control community

[160].

Based on these approaches, we model the grid focusing on AC mechanics (today's standard) and

investigate how a decreasing inertia and potential delays of the control may a�ect the grid stability.

Voltage levels. When consuming energy on a local level, e.g., by turning on the light, using the

fridge or connecting a laptop to a power plug, we are drawing energy from the system that has to

be generated somewhere. Traditionally, most of the power generation is performed at the extra high

voltage level so that losses during long-distance transport are minimized [62,86,177]. To connect this

extra high voltage to the local low voltage grid and �nally our power plugs, a hierarchical structure is

used, as shown in Fig. 2.8. Most conventional generators, like nuclear power plants and combustion

plants, are connected to the extra high voltage and high voltage levels, which also connect neighboring

regions and a few very large costumers using large amounts of electricity. Since these extra high

voltages (typically 220 kV or 380 kV in Europe) cannot be connected to most consumers, domestic or

industrial, the voltage is reduced at transformers feeding into the sub-transmission or supra-regional

distribution grid (of about 36 to 150 kV), which is connected to some generators and large consumers

but does typically not transmit energy over long distances or across borders. Additional transformers

convert the voltage down to about 1 to 36 kV in regional distribution systems, �nally leading to the
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local distribution grid, which connects, e.g., to private households [151]. Since the liberalization of

the energy market [177], the generation, transmission and distribution are all handled by di�erent

companies. Relevant for this thesis is the role of the Transmission System Operator (TSO) who is in

charge of controlling the transmission grid, ensuring its stability and providing a certain power quality,

i.e., keeping frequency and voltage within certain bounds [86].

Note also that this traditional design works top-down, assuming that most of the energy is generated

at higher voltage levels, then transmitted and transformed to lower voltage levels where it is consumed.

This e�ectively leads to a power �ow from high voltage levels to low voltage levels. In contrast,

installing large amounts of distributed solar and wind generators that are coupled to the low voltage

(distribution) grid, leads already today to occasional power �ow from lower voltage levels to higher

ones [66]. Hence, controlling and regulating the grid completely based on a top-down scheme becomes

less feasible.

In the context of distribution grids, the term microgrid is also often used when discussing future

grid design. It describes a group of electric devices, both generators and consumers, that form their

own small grid that has the option to completely disconnect from the large trans-regional transmission

grid [40,81]. Compared to the current hierarchical structure of the grid, microgrids emphasize a local

balance of supply and demand, to prevent a disruption of the power grid to a�ect the whole system [81].

Synchronous zones. When we connect our laptop to a local power plug the energy we receive is

not necessarily provided by the closest power plant but by the whole grid we are connected to. But

where does this grid start and where does it end? During the last decades, power grids became more

connected, i.e., while initially each state had its own power grid they are getting more intertwined

[62, 177]. This is exempli�ed in Figures 2.9 and 2.10 that display the European and North American

power grid zones respectively. Each zone is characterized by its own grid frequency, which is kept

close to its reference value of f = 50 Hz or f = 60 Hz by the Transmission System Operators

(TSOs) [45,46]. In Europe, all TSOs are organized in the European Network of Transmission System

Operators (ENTSO-E), developing and implementing network codes, coordinating TSO activities, grid

extensions and more.

In normal operation, all nodes within a synchronous zone have exactly the same frequency. Ho-

wever, disturbances can induce oscillating deviations from the steady state with frequencies in the

sub-second regime called inter-area oscillations [72]. Coupling between two connected synchronous zo-

nes, e.g, between Continental Europe and Great Britain, is typically realized via high voltage directed

current (HVDC) power transmission so that both zones can have di�erent grid frequencies during the

transmission. Contrary, transmission within a synchronous region is mainly done via AC lines. The

extent of transmitted power is easily illustrated by a few �gures: In 2014, the ENTSO-E members

consumed a total of Etotal ≈ 3174 TWh and exchanged a total of Eexchange ≈ 432.5 TWh [44], i.e.,

about 13.6 % worth of the total consumption was exchanged between di�erent countries. Returning to

our laptop this means, connecting it in Germany may very well result in additional electrical energy to

�ow from Spain via France to Germany through the ENTSO-E grid to provide the necessary power.
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Figure 2.8: The power grid is organized in levels of decreasing voltage. Higher voltages are used for
transmission within and across countries while lower voltages connect domestic consumers to the grid.
Each level, in particular the transmission level, has synchronous generators feeding power via converters
into the grid. The levels are connected via additional �xed and tunable converters. Reproduced
from [86] with permission.
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Figure 2.9: The European grid consist of a few large synchronous regions, which are organized by
regional groups (RG). The largest synchronous zone is the one of Continental Europe, followed by the
grid of the United Kingdom and the Nordic grid. Although part of the Nordic regional group, Iceland
has its own synchronous grid, as do several small islands. Reproduced from [168], published under
CC-BY-SA-3.0.
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Source: North American Reliability Corporation
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Figure 2.10: North America is organized into four major synchronous zones: The Western Intercon-
nection (light orange), the Texas Interconnection (green), the Quebec Interconnection (dark blue) and
the Eastern Interconnection (rest). The Eastern Interconnection is by far the largest, similarly sized
to the Continental European one [161]. Reproduced from [169], published under CC-BY-SA-3.0.
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Control and trading. Electric energy in an AC grid cannot be easily stored in the grid itself so

that demand and supply have to match at all times. Establishing large synchronous regions helps

because the balancing power does not need to be provided locally but can be drawn from some point

in the inter-connected grid [86]. To ensure balance, we need to consider di�erent time scales: On

the time scale of 1 day there is a forecast of the expected demand, e.g., based on previous statistics

for workdays vs. weekends. Power providers then bid on a day-ahead spot market to supply their

power to the lowest price possible for the grid [74]. During the day of operation power, is also traded

to adjust to the actual demand using an intra-day spot market acting on a time scale of few hours

to several minutes [74]. In addition to market constraints, the power network needs to be able to

carry these currents, introducing constraints based on the capacity. Finally, grid operators enforce the

N-1 criterion, which means that the grid has to be able to operate stably even if any single element

(of its total N elements) fails. This introduces security constraints to the previously mentioned cost

optimization problem [177]. To ful�ll all these economic, network and security constraints typically

an Optimal Power Flow problem is solved, which solves the optimization under constraints, leading to

slightly larger prices compared to the case without security constraints [177]. Alternatively, the power

is dispatched following purely economic rules and the constraints are implemented via a re-dispatch

by the grid operator [1].

Suppose there is a large fault, e.g., a large power plant suddenly disconnects from the grid, leading

to a rapidly decreasing frequency. In such a case, the trading mechanisms discussed so far are too slow

to react because blackouts take place on time scales of seconds compared to the minutes or hours that

trading needs [19]. Therefore, additional measures are needed to stabilize the grid. After any fault

there is no active control yet for about 1 second but the inertia of the rotating machines keeps the

frequency close to its reference value [86]. During the following seconds, primary control activates

in dedicated power plants. Its purpose is to prevent a too abrupt change of frequency, i.e., stop the

frequency decrease by supplying additional energy. The frequency then approaches a new steady state,

which is not necessarily the reference frequency. To restore the grid to the reference frequency, the

secondary control is activated a few minutes after the fault. Finally, tertiary control also exists in

some schemes acting on even slower time scales as a long-term reserve [86], see also Fig. 2.11 for an

illustration of the control mechanisms.

During the course of this thesis, we do not model explicit e�ects of long-term trading and only

consider primary control (and real-time prices in Chapter 3) since we are mainly interested in the self-

organized, i.e., uncontrolled, response of the complex system power grid. In addition, we are primarily

modeling short time scales of typically seconds during which there is no trading and little to no control

actions are taken aside from primary control.

2.2.2 Power Grid Models

Power injected in a node

Let us derive the equations determining the power �ows and dynamics in a power grid.

Consider two nodes a and b. Let Ua be the voltage at node a, written in polar decomposition as

Ua = Eae
iθa , (2.15)
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Figure 2.11: Power grid control is divided into di�erent time scales [64]. We display a typical response
of the bulk frequency after a large power plant is disconnected (e.g., due to an outage): The �rst
few seconds are uncontrolled and only the inertia prevents large changes. Within the next seconds,
the primary control stabilizes the frequency drop to a new equilibrium value. Finally, the secondary
control restores the frequency back to its reference value during the following minutes.

with voltage phase angle θa, complex unit i and voltage amplitude Ea. The current Iab from b to a is

simply given by Ohm's law as

Iab = −yab (Ua − Ub) , (2.16)

with admittance (inverse impedance) yab of the line (a, b). Instead of admittance, the nodal admittance

matrix Y is often used, which is de�ned as the Laplacian of the admittance y [86]:

yab = Gab + iBab =




−Yab if a 6= b
∑
b Yab if a = b

, (2.17)

with conductance G and susceptance B. In terms of the nodal admittance matrix Y , the current is

expressed as

Iab = Yab (Ua − Ub) . (2.18)

The complex power Sab from b to a is then given as [89]:

Sab = UaI
∗
ab (2.19)

= UaY
∗
ab (U∗a − U∗b ) (2.20)

= Eae
iθaY ∗ab

(
Eae

−iθa − Ebe−iθb
)

(2.21)

= Y ∗ab
(
E2
a − EaEbei(θa−θb)

)
(2.22)

= Y ∗ab
(
E2
a − EaEb [cos (θa − θb) + i sin (θa − θb)]

)
. (2.23)

Due to energy conservation (Tellegen's theorem), we get the power injected into node a by summing
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over all potentially neighboring nodes b

Sa =

N∑

b=1

Sab =

N∑

b=1

Y ∗ab
(
E2
a − EaEb [cos (θa − θb) + i sin (θa − θb)]

)
. (2.24)

Applying this and splitting the apparent power into its real part, i.e., active power P and its imaginary

part, i.e., reactive power Q gives

Sa = Pa + iQa (2.25)

=

N∑

b=1

[GabEaEb cos (θa − θb) +BabEaEb sin (θa − θb)] (2.26)

+i

N∑

b=1

[GabEaEb sin (θa − θb)−BabEaEb cos (θa − θb)] . (2.27)

Switching indices a→ i and b→ j to be comparable with the following publications1, the active (real)

and reactive (imaginary) transmitted powers incoming to node i read

Pi =

N∑

j=1

EiEj [Gij cos (θi − θj) +Bij sin (θi − θj)] , (2.28)

Qi =

N∑

j=1

EiEj [Gij sin (θi − θj)−Bij cos (θi − θj)] . (2.29)

Finally, we note that conductances G are typically smaller than susceptances B by a factor of B/G ≈
5...10 [177].

Power �ow equations

The power �ow equations are often used in engineering literature to determine the �ows on the lines,

especially for security purposes [76, 177]. Active and reactive power are modeled using Eqs. (2.28)

and (2.29). The left hand side of each equation is the active/reactive power e�ectively generated at

this node. In total each node (or bus) of the power grid is characterized by four quantities: active

power Pi, reactive power Qi, voltage amplitude Ei and voltage phase angle θi. However, with only two

equations per node, two of those four have to be �xed for each node, leading to di�erent bus types:

At the slack (swing) bus the voltage amplitude Ei and voltage phase angle θi are speci�ed, while

Pi and Qi are unspeci�ed to compensate power loss in the system. Typically, this bus is one of the

generators, stabilizing the grid. In addition, there are voltage-controlled buses (PV), which are usually

generator nodes for which active power Pi and voltage amplitude Ei are �xed while the equations are

solved for Qi and θi. Finally, there exist load buses (PQ) with given active power Pi and reactive

power Qi, but unknown voltage amplitude Ei and voltage phase angle θi [177].

1We wanted to avoid confusion of index and imaginary unit i in this derivation.
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Dynamical equations

In contrast to the power �ow equations, the swing equation only considers the long-distance transmit-

table power, i.e., the active power given by Eq. (2.28), neglecting any reactive powers, which is often

compensated locally [76]:

P trans
i =

N∑

j=1

EiEj [Gij cos (θi − θj) +Bij sin (θi − θj)] . (2.30)

Furthermore, let us derive an equation of motion for each node i, which we characterize by its angular

velocity ωi and its voltage phase angle θi. The law of energy conservation at each generator i reads:

Pmech
i = P diss

i + P acc
i + P trans

i , (2.31)

i.e., the mechanical power driving a generator Pmech
i has to equal the dissipated power P diss

i plus the

accumulated kinetic power P acc
i plus the transmitted power. Let us describe the angular motion of

generator i by

φi (t) = Ωt+ θi (2.32)

with reference angular velocity Ω = 2π× 50 Hz or Ω = 2π× 60 Hz and relative machine angle θi. The

energy dissipated at this generator is then

P diss
i = Di

(
dφi
dt

)2

, (2.33)

with damping Di [55, 86, 89]. A simple argument for this form is that friction forces F diss are propor-

tional to velocities and powers are proportional to velocity times force

F diss ∼ dφ
dt
, (2.34)

P diss ∼ F diss dφ
dt
, (2.35)

P diss ∼
(
dφ
dt

)2

. (2.36)

Next, the energy stored in the rotation of the inertial machine is given by

P acc
i =

d
dt
Ekin
i =

1

2
Mi

d
dt

(
dφi
dt

)2

, (2.37)

with moment of inertia Mi. Let us assume that deviations from the reference frequency are small

compared to the reference ˙|θ| � Ω, i.e., the grid operates close to its steady state. Then, plugging Eq.
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(2.32) into the damping Eq. (2.33) yields

P diss
i = Di

(
Ω +

(
dθi
dt

))2

(2.38)

≈ DiΩ
2 + 2DiΩ

(
dθ
dt

)
. (2.39)

Doing the same for the inertial power of Eq. (2.37) yields

P acc
i =

1

2
Mi

d
dt

(
Ω +

(
dθi
dt

))2

(2.40)

=
Mi

2

(
2Ω

d2θi
dt2

+ 2
dθi
dt

d2θi
dt2

)
(2.41)

≈ MiΩ
d2θi
dt2

. (2.42)

Substituting all power terms into the energy conservation law (2.31) gives the equation of motion

MiΩ
d2θi
dt2

= Pmech
i −DiΩ

2 − 2DiΩ
dθi
dt
− P trans

i , (2.43)

which is the swing equation. Plugging in the transmitted power gives

MiΩ
d2θi
dt2

= Pmech
i −DiΩ

2 − 2DiΩ
dθi
dt

(2.44)

−
N∑

j=1

EiEj [Gij cos (θi − θj) +Bij sin (θi − θj)] .

This thesis focuses on e�ects of the transmission grid for which ohmic losses are negligible [7]. Using

this simpli�cation, we set Gij = 0 in Eq. (2.44) and de�ne the following abbreviations:

Pi =
Pmech
i −DiΩ

2

MiΩ
, (2.45)

γi = 2
Di

Mi
, (2.46)

Aij =
Bij
MiΩ

. (2.47)

Thereby, the equations of motion simplify to

d
dt
θi = ωi, (2.48)

d
dt
ωi = Pi − γiωi +

N∑

j=1

AijEiEj sin (θj − θi) . (2.49)
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In the following, we consider two explicit dynamical models often used in this thesis, which are based

on this simpli�ed swing equation.

2nd order model. So far, our variables include the voltage phase angle θ and angular velocity ω.

While the voltage amplitude Ei could also change over time, this is typically not the case for extra high

voltage transmission grids [76] so that we assume constant and identical voltage amplitudes throughout

the grid Ei = E0 ∀ i ∈ {1, ..., N}. Using this simpli�cation leads to the 2nd order swing equation in

the following form

d
dt
θi (t) = ωi (t) , (2.50)

d
dt
ωi (t) = Pi − γiωi (t) +

N∑

j=1

Kij sin (θj (t)− θi (t)) , (2.51)

with coupling constant

Kij = AijE
2
0 =

BijE
2
0

MiΩ
. (2.52)

Note that the susceptance matrix B is symmetric since the current is free to �ow in both directions

along a transmission line. Furthermore, we typically assume similar inertia valuesMi through the grid

leading to also symmetric coupling Kij .

3rd order model. Now let us consider that the voltage amplitudes Ei are not constant but change

over time. Then, the system is characterized by the following equations of motion after renormalization

of E [11, 85,86,135]:

d
dt
θi (t) = ωi (t) ,

d
dt
ωi (t) = Pi − γωi (t) +

N∑

j=1

Ei (t)Ej (t)Bij sin (θj (t)− θi (t)) , (2.53)

d
dt
Ei (t) =

1

TE
·


Ef (t)− Ei (t) +Xi

N∑

j=1

Ej (t)Bij cos (θj (t)− θi (t))


 ,

with the voltage time scale TE < 1s, the susceptance matrix Bij including self-coupling terms Bii,

voltage set-point Ef = 1 and the voltage droop X, which is the di�erence of the static and transient

reactance along the d-axis Xi = X
(d)
i − X(d)′

i . For Xi = 0 and Ei (0) = 1 the voltage remains at

the �xed point E∗i = 1 at all times and reproduces the second order model. In contrast, for Xi > 0

deviations from the second order model are observed. Note also that the voltage dynamics is typically

slower than the angle and angular velocity dynamics, allowing to neglect it for short time scales.
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∞+1
θ

ω

Figure 2.12: Illustration of one generator coupled to the in�nite grid. The generator has power
P = 1/s2, angle θ relative to the bulk and angular velocity ω.

2.2.3 In�nite Grid

Let us apply the basics of power grid models and methods reviewed so far on a simple test case, the

in�nite grid model [86, 92]. There, we assume that one generator with power P = 1/s2 is connected

to the bulk grid, which is assumed to be so large that its angle and frequency are �xed, see Fig. 2.12.

Following the simpli�ed second order swing equation, its equation of motion is

d
dt
θ = ω, (2.54)

d
dt
ω = P − γω −K sin (θ) , (2.55)

with voltage angle θ relative to the (in�nite) bulk grid, angular velocity ω, coupling constant K,

mechanical power P and damping γ. For this example, we set these parameters toK = 8/s2, P = 1/s2,

γ = 0.1/s.

We obtain the �xed point of this system by setting d
dtθ = 0 and d

dtω = 0 in Eqs. (2.54) and (2.55).

This leads to

ω∗ = 0, (2.56)

θ∗1 = arcsin

(
P

K

)
, (2.57)

θ∗2 = π − arcsin

(
P

K

)
, (2.58)

with two solutions for the angle θ. We note that for K < P there is no �xed point as the capacity

between the generator and the bulk is too small to transmit the generated power.

Next, we perform a linear stability analysis of the two �xed points (ω∗, θ∗1) and (ω∗, θ∗2). Computing

the Jacobian for the system yields

J =

(
0 1

−K cos (θ∗) −γ

)
. (2.59)

The characteristic equation for the Jacobian is

p (λ) = λ2 + γλ+K cos (θ∗) , (2.60)
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Figure 2.13: Trajectories of the in�nite grid system close to the two �xed points. We initialize
the system close to its two �xed points with

(
ω1 (0) = 0.01/s, θ1 (0) = arcsin

(
P
K

))
(blue curves) and(

ω2 (0) = 0.01/s, θ2 (0) = π − arcsin
(
P
K

))
(orange curves) and observe that the �rst �xed point is sta-

ble while the second is not. The inset shows that the system returns to the �xed point angle θ∗1 with
small oscillations. Parameters are K = 8/s2, P = 1/s2, γ = 0.1/s.

which is solved to give the eigenvalues

λ1/2 = −γ
2
±
√
γ2

4
−K cos (θ∗). (2.61)

The �xed point is stable if both eigenvalues have a negative real part, i.e., if K cos (θ) > 0. Using

parameters K = 8/s2, P = 1/s2, γ = 0.1/s, the eigenvalue expressions read for both �xed points

K cos (θ∗1) ≈ 7.94/s2, (2.62)

K cos (θ∗2) ≈ −7.94/s2, (2.63)

λ
θ∗1
1/2 ≈ −0.05± 2.82i, (2.64)

λ
θ∗2
1/2 ≈ ±2.87, (2.65)

i.e., �xed point (ω∗, θ∗1) is stable, while �xed point (ω∗, θ∗2) is unstable. We illustrate the dynamics

of the grid close to each �xed point in Fig. 2.13, where we observe the stability of the �rst and the

instability of the second �xed point.

2.3 Stochastic Equations

In Chapters 5 and 6, we investigate the power grid when subject to random noise. We use stochastic

di�erential equations, which give the equation of motion for the state x (t), and Fokker-Planck equa-

tions, i.e., equations of motion for the probability density function p (x) of the stochastic state x (t).
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Here, we present some basics on stochastic calculus.

Let us consider the one-dimensional equation of motion

dx
dt

= a (x, t) + b (x, t) ξ (t) , (2.66)

where ξ is a random variable, which satis�es

〈ξ (t)〉 = 0, (2.67)

〈ξ (t) ξ (t′)〉 = δ (t− t′) , (2.68)

i.e., its mean value is zero and it is uncorrelated unless measured at identical times. ξ is then called

white noise [56,118].

Equation (2.66) is a Langevin equation and intuitively extends (deterministic) ordinary di�erential

equations (ODEs) into stochastic di�erential equations (SDEs). First, we note that no real process

exactly ful�lls the conditions for the noise ξ. Having mean zero is possible but realistic processes have

a �nite correlation time, instead of a delta peak. Next, we have to think how a trajectory of x (t)

would look like. For ODEs, we would simply integrate the di�erential

x (t)− x (0) =

∫ t

0

dx
ds

(s)ds. (2.69)

However, to compute this integral, we need to compute

y (t) =

∫ t

0

ξ (s)ds, (2.70)

which turns out to be the Wiener process y (t) = W (t) [56]. Hence, ξ (t) is the derivative of the Wiener

process. However, the Wiener process does not have a time-derivative and the Langevin equation (2.66)

is strictly speaking only de�ned when integrating both sides, as in (2.69). Treating expressions like

(2.66) and (2.69) mathematically rigorously, requires the de�nition of stochastic integrals and the

introduction of the Itô calculus, for which we refer to [31, 56, 119]. During this thesis, we use the

Langevin equation due to its intuitive notation, keeping in mind that it should be interpreted as an

integral equation or connected to a Fokker-Planck equation as described below. Finally, we note that

there are two main interpretations for stochastic equations and integrals, one by Stratonovich and one

by Itô [162]. In case of additive noise, i.e. b (x) ≡ b0, which is the case for all our calculations, both

interpretations yield exactly the same results. For any equations that are more general, we adopt the

notation following Itô.

2.3.1 Fokker-Planck Equations

The Langevin equation (2.66) can be connected to a partial di�erential equation of the probability

density function of the random variable x (t), called a Fokker-Planck equation [56,118]:

∂p

∂t
(x, t) = − ∂

∂x
[a (x, t) p (x, t)] +

1

2

∂2

∂x2

[
b (x, t)

2
p (x, t)

]
. (2.71)
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In general, multidimensional problems use a state vector x, changing the constants a and b to a vector

a, with components ai, and matrix B, with components Bij , respectively. The equation of motion is

then given by
dx
dt

= a (x, t) +B (x, t) ξ (t) , (2.72)

or written in component form

dxi
dt

= ai (x, t) +

N∑

j=1

Bij (x, t) ξj (t) i ∈ {1, ..., N} , (2.73)

and gives the following Fokker-Planck equation [56]:

∂p

∂t
(x, t) = −

N∑

i=1

∂

∂xi
[ai (x, t) p (x, t)] +

1

2

N∑

i,j=1

∂

∂xi

∂

∂xj

[
B (x, t)BT (x, t) p (x, t)

]
, (2.74)

which is written in in component form as

∂p

∂t
(x, t) = −

N∑

i=1

∂

∂xi
[ai (x, t) p (x, t)] +

1

2

N∑

i,j=1

∂

∂xi

∂

∂xj

[(
N∑

k=1

Bjk (x, t)Bik (x, t)

)
p (x, t)

]
. (2.75)

2.3.2 Ornstein-Uhlenbeck Process

One especially important process is the Ornstein-Uhlenbeck process for which we provide the general

solution here. Consider an overdamped particle moving in a quadratic potential V (x) = a
2x

2 with

positive constant a > 0. We neglect inertial forces so that the equation of motion reads

dx
dt

(t) = −∂V
∂x

(x) = −ax (t) .

When this particle is subject to Gaussian noise ξ with amplitude ε, the stochastic equation of motion

becomes

dx
dt

(t) = −ax (t) + εξ (t) ,

which is the Ornstein-Uhlenbeck process. Following [56, 118], the Fokker-Planck equation for this

process is
∂p

∂t
(x, t) =

∂

∂x
(a · x · p (x, t)) + ε2

∂2p

∂x2
(x, t) (2.76)

and the general dynamical solution to the Ornstein-Uhlenbeck process is given by

p (x, t) =

∞∑

n=0

√
a

2nn!π
√
ε
e
− a√

ε
x2

Hn

(
x

√
a√
ε

)
e−natAn, (2.77)

with amplitudes

An =

∫ ∞

−∞
p (x, 0)Hn

(
x

√
a√
ε

)
(2nn!)

− 1
2 dx, (2.78)
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where Hn is the Hermite polynomial of nth order. As usual, boundary conditions are chosen so that

the probability density function and its spatial derivative vanish at in�nity

lim
|x|→∞

p (x, t) = 0, (2.79)

lim
|x|→∞

∂

∂x
p (x, t) = 0. (2.80)

Often, we will only be interested in the simpler, stationary solution

pstationary (x) =

√
a

2πε2
e−

a
2ε2

x2

, (2.81)

obtained via the limit t → ∞. Furthermore, the non-normalized auto-correlation is given by an

exponentially decaying function [56]

〈x (t)x (t+ ∆t)〉 =
ε

2a
exp [−a∆t] . (2.82)

2.4 Distributions

In Chapter 6, we investigate di�erent probability distributions to represent the statistics of the power

grid frequency. Here, we brie�y review two of the most important distributions, Lévy-stable and

q-Gaussian distributions and begin by quantifying some moments of distributions.

2.4.1 Moments

The power grid frequency data that we recorded is often skewed or displays heavy tails, see also Chapter

6. To quantify this statement, we de�ne the �rst four (normalized) moments of a distribution [58,166].

Given M measurements of a discrete stochastic variable x, as x1, x2,...,xM , its n-th moment is

de�ned as

µn :=
1

M

M∑

i=1

xni . (2.83)

The �rst moment of a distribution is the mean µ1 ≡ µ. Instead of the second moment, we often use

the square root of the centralized second moment, i.e., the standard deviation σ, which is de�ned as

σ :=

√√√√ 1

M

M∑

i=1

(xi − µ)
2
. (2.84)

These two quantities are common when characterizing Gaussian distributions. In addition, we use the

normalized third and fourth moments, the skewness β and kurtosis κ, respectively, which are de�ned
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Figure 2.14: Probability density function (PDF) of stable distributions. a: Linear scale of the PDF.
b: Log-Scale of the PDF. For αS = 2, the distribution is a Gaussian distribution, regardless of βS . For
αS < 2, the distribution has heavy tails (see especially the log-scale) and is skewed if β 6= 0 (positive
skewness in the case of βS = 1). Other parameters are µS = 0 and σS = 1.

as

β :=
1

M

M∑

i=1

(
xi − µ
σ

)3

, (2.85)

κ :=
1

M

M∑

i=1

(
xi − µ
σ

)4

. (2.86)

A Gaussian distribution is symmetric and hence the skewness β equals zero. A non-zero skewness

implies a distribution that is not symmetric around the mean but is more pronounced in one direction,

see e.g. Fig. 2.14. The kurtosis meanwhile quanti�es how much of the distribution is found in its tails.

A Gaussian distribution has κGauss = 3 while a higher value of the kurtosis indicates an increased

likelihood of large deviations, leading to a higher probability density in the tails, i.e., heavy tails.

2.4.2 Lévy-stable Distributions

Lévy-stable, α-stable or just stable distributions are often observed in nature [93, 110], displaying

heavy tails and skewness. We introduce them mainly following [128]. First, we note that Gaussian

distributions are a special case of stable distributions.

Let X be a random variable. It follows a stable distribution, if there exists a positive Cn and real

Dn for each n ≥ 2 such that

X1 +X2 + ...+Xn ∼ CnX +Dn, (2.87)

where X1, X2,..., Xn are independent copies of X and X ∼ Y denotes that X and Y follow the same

distribution. If X is following a stable distribution, then Cn = n1/αS [128].

We list some key properties, where we often omit the special case αS = 1 because it is of no special

interest for us. The interested reader is directed to [128] or literature on Cauchy distributions.
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The characteristic function of a stable distribution is given as

Sk (αS , βS , σS , µS) =





exp
[
−σαS |k|αS

(
1− iβsign (k) tan

(
παS

2

)
+ iµk

)]
, if α 6= 1,

exp
[
−σ |k|

(
1 + iβsign (k) tan

(
παS

2

)
+ iµk

)]
, if αS = 1.

(2.88)

A univariate (single variable) stable distribution is described by four parameters. The stability para-

meter αS ∈ (0, 2] determines the tails of the distribution. For αS < 2, the distributions do not have a

de�ned variance and for αS ≤ 1 they do not have a mean since the corresponding integrals do not con-

verge. Furthermore, the tails of the probability density function follow a power law p (x) ∝ |x|−αS−1.

Finally, a stable distribution resembles a Gaussian distribution for αS = 2 and a Cauchy distribution

for αS = 1. The remaining parameters are the skewness parameter βS ∈ [−1, 1], the scale parameter

σS ∈ (0,∞) and the location parameter µS ∈ (−∞,∞). For αS > 1, the location parameter µS gives

the mean of the distribution. We will often set it to zero. For αS = 2, i.e., the Gaussian case, the

standard deviation of the distribution is determined by the scale parameter as σ =
√

2σS . We al-

ways express stable distributions in terms of their characteristic function since the probability density

function does not have a closed form, see Fig. 2.14 for examples.

Consider two independent random stable variables Xi ∼ Sk
(
αiS , β

i
S , σ

i
S , µ

i
S

)
, i = 1, 2. Their sum

is again a stable distribution, if α1
S = α2

S = αS . Their sum is distributed according to X1 + X2 ∼
Sk (αS , βS , σS , µS) [128], with

σS =
((
σ1
S

)αS
+
(
σ2
S

)αS)1/αs
, βS =

β1
S(σ1

S)
αS+β2

S(σ2
S)
αS

(σ1
S)
αS+(σ2

S)
αS , µS = µ1

S + µ2
S . (2.89)

Let X be a stable distribution X ∼ Sk (αS , βSσS , µS) and a be a non-zero real constant. Then

aX ∼ Sk (αS , sign (a)βS , |a|σS , aµS) , if αS 6= 1. (2.90)

With these properties, we can calculate the distribution of a large sum of stable distributions Xi:

N∑

i=1

εiXi. (2.91)

First, we note that the factor ε can be easily absorbed in the scale parameter: Xi ∼ Sk
(
αiS , β

i
S , σ

i
S , µ

i
S

)

⇒ εiXi ∼ Sk
(
αiS , β

i
S , εiσ

i
S , εiµ

i
S

)
, where we assume that the constant εi > 0. To shorten notation,

we set σiS = 1. Let us start with two variables, which are identically distributed but multiplied by

a di�erent factor ε1X1 ∼ Sk (αS , βS , ε1, ε1µS) and ε2X2 ∼ Sk (αS , βS , ε2, ε2µS) and whose sum is

distributed as (using Eq. (2.89))

X1 +X2 ∼ Sk
(
αS , [ε

αS
1 + εαS2 ]

1/αS , βS , (ε1 + ε2)µS

)
. (2.92)

Using this as our induction basis, we formulate our induction hypothesis to be

N∑

i=1

εiXi ∼ Sk


αS ,

[
N∑

i=1

εαSi

]1/αS

, βS ,

N∑

i=1

εiµS


 , (2.93)
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Figure 2.15: Probability density function (PDF) of q-Gaussian distributions. a: Linear scale of the
PDF. b: Log-Scale of the PDF. For q = 1, the distribution is a Gaussian distribution, while it has
heavy tails for q > 1 and only bounded support for q < 1. We use the parameter β = 1.

where εiXi ∼ Sk (αS , βS , εi, εiµS). We proof this by performing the inductive step, de�ning
∑N
i=1 εiXi =:

Y ∼ Sk
(
αS , βS , εY , µ

Y
S

)
:

N∑

i=1

εiXi + εN+1XN+1 = Y + εN+1XN+1 ∼ Sk
(
αS ,

[
εαSY + εαSN+1

]1/αS
, βS , µ

Y
S + εN+1µS

)
,(2.94)

∼ Sk


αS ,

[[
N∑

i=1

εαSi

]
+ εαSN+1

]1/αS

, βS ,

N∑

i=1

εiµS + εN+1µS


 , (2.95)

N+1∑

i=1

εiXi ∼ Sk


αS ,

[
N+1∑

i=1

εαSi

]1/αS

, βS ,

N+1∑

i=1

εiµS


 . (2.96)

In the special case that all constants εi are equal, i.e., εi = ε ∀i we get

N∑

i=1

εiXi ∼ Sk
(
αS , εN

1/αS , βS , NεµS

)
. (2.97)

2.4.3 q-Gaussian Distributions

A q-Gaussian distribution is another generalization of a Gaussian distribution, which we use in con-

junction with the concept of superstatistics [16] in Chapter 6. These distributions were introduced by

Tsallis when generalizing statistical mechanics [156,157]. We do not cover this �nonextensive statistical

mechanics� but only use q-Gaussians as a good description of our data in the context of superstatistics.

The probability density function of a q-Gaussian is given as

p (x) =

√
β

Cq
eq
(
−βx2

)
, (2.98)

where β ∈ (0,∞) and q ∈ (−∞, 3) are shape parameters, eq is the q-exponential de�ned as

eq (x) = [1 + (1− q)x]
1

1−q (2.99)
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and Cq is the normalization factor, see Fig. 2.15 for examples.

For q = 1 the q-Gaussian distribution becomes a Gaussian distribution with standard deviation

σ = β.

Connection to superstatistics. Suppose we have a dynamical system, characterized by its variable

x (t), that follows a stochastic equation of motion given as

dx
dt

= −ax (t) + bξ (t) , (2.100)

with Gaussian white noise ξ (t), and constants a > 0 and b > 0. We have previously seen (Section

2.3.2) that this is the Ornstein-Uhlenbeck process and that the variable x (t) is distributed according

to a Gaussian distribution.

To extend this to superstatistics [15, 16], we have to allow the constants a and b to change over

some long time scale T , which has to be long compared to the intrinsic relaxation of the system

τ := 1/a� T . To be more speci�c, let us assume that the expression β := a/b2 changes over time and

follows a χ2 distribution:

p (β) =
1

Γ
(
n
2

)
(

n

2β0

)n/2
βn/2−1 exp

(
− nβ

2β0

)
, (2.101)

with degree n, mean β0 and Gamma function Γ. Next, assume that the changes of β are much slower

than the relaxation time scale, de�ned by τ = 1/a, during which the system settles down for one �xed

β. Then, the conditional probability to �nd the system in state x at �xed β is

p (x|β) =

√
β

2π
exp

(
−1

2
βx2

)
, (2.102)

and the marginal probability distribution (probability to observe x independent of the value of β) is

p (x) : =

∫
p (x|β) p (β)dβ (2.103)

=
Γ
(
n
2 + 1

2

)

Γ
(
n
2

)
(
β0

πn

)1/2
1

(
1 + β0

n x
2
)n/2+1/2

, (2.104)

which is a q-Gaussian and can be re-written as

p (x) ∼ 1
(

1− β̃ (1− q)x2
)1/(q−1)

, (2.105)

with q = 1 + 2/(n + 1) and β̃ = 1/(3 − q)β0. That means a process following Eq. (2.100) with a/b2

distributed according to a χ2 (log-normal or inverse χ2 do also work approximately [16,17]) distribution

will give a q-Gaussian distribution when recording for a long time t� T .

How do we �nd out if a recorded time series is based on a superposition of multiple processes

with changing parameters a and b? Following [17], we may extract the important time scales and the
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e�ective damping β as follows. Let c (∆t) be the autocorrelation function of our data as a function

of time delay ∆t. Then, it should display an exponential decay, similar to an Ornstein-Uhlenbeck

process:

c (∆t) ∼ exp (−a∆t) ,

which de�nes the short time scale of the system as τ = 1/a. For the long time scale T , we assume that

the recorded data is more heavy-tailed than a Normal distribution, i.e., it has a kurtosis κ > 3 [166].

Given a time series x (t) with a mean x̄, we compute the local kurtosis as

κ (∆t) =
1

tmax −∆t

∫ tmax−∆t

0

dt0

〈
(x− x̄)

4
〉
t0,∆t〈

(x− x̄)
2
〉2

t0,∆t

, (2.106)

where 〈...〉t0,∆t =
∫ t0+∆t

t0
...dt and then choose T so that κ (T ) = 3, i.e., on average recordings of length

T have no excess kurtosis. To be in accordance with the superstatistical approach, we require τ � T .

Next, we �x this T and extract the e�ective damping β as

β (t0) =
1

〈x2〉t0,T − 〈x〉
2
t0,T

. (2.107)

If the distribution of β follows a χ2, inverse χ2 or log-normal distribution, then the superstatistical

approach is well justi�ed [15].

2.5 Simulations

Here, we provide a few technical notes on the implementation of numerical procedures.

2.5.1 Ordinary Di�erential Equations

The nonlinear swing equation (2.44) cannot be solved analytically for all network topologies so that

we often use numerical methods to obtain trajectories of the system. In all cases reported here,

Mathematica, Versions 9, 10 or 11 were used and the ODE solver NDSolve [176] was applied to

solve the di�erential equation. This solver uses a �LSODA approach, switching between a non-sti�

Adams method and a sti� Gear backward di�erentiation formula method � [175]. For testing purposes,

the results of this solver were compared with explicit Euler or Runge-Kutta written in Mathematica

and di�erent languages. The results matched quantitatively so that we expect the solver to have no

in�uence on our results.

2.5.2 Delay Di�erential Equations

In Chapters 3 and 4 we analyze a delay di�erential equation, which may for example arise due to signal

processing or communication delays [99] or when considering that power intake cannot be switched

instantaneously, but many modern devises display a power ramp, see Fig. 2.16. A comprehensive
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Figure 2.16: Delays arise due to communication delay and ramps. Here we display the potential power
consumption of a device that is switched on but only consumes power after a certain delay τ . After
the signal is received, the power consumption slowly ramps up from 0% to 100%. The time delay τ
depends on the speci�c device with modern batteries being fast but not instantaneous [51,181].

introduction to delayed di�erential equations (DDE) is provided by Roussel [125], which we follow

closely here. A more thorough treatment is o�ered in [41,57].

Consider a di�erential equation with one constant delay τ described by the general form

ẋ(t) = f (x(t),x(t− τ)) , (2.108)

where f is the dynamics of the potentially multi-dimensional state x. One important di�erence com-

pared to ordinary di�erential equations (ODEs) is that ODEs require an initial condition x(0) to be

solved while DDEs need an initial function or history function x(t) for t ∈ [−τ, 0].

Method of steps. The method of steps provides a straightforward way of solving a DDE. Let us

consider the one-dimensional example with one delay τ = 1 given by

ẋ(t) = x(t− 1). (2.109)

Assume that the initial function is x(t ≤ 0) = 1, i.e., the state of our system has been x = 1 for all

negatives times, including zero. The left hand side of Eq. (2.109) provides the change of x for all times

t. Let us integrate it for the interval t ∈ [0, 1], obtaining the trajectory for this interval as

x[0,1] (t) = x[−1,0](t) +

∫ t

0

x[−1,0](s− 1)ds (2.110)

= 1 +

∫ t

0

1ds (2.111)

= 1 + t. (2.112)
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Figure 2.17: Delay di�erential equations are easily solved by the method of steps for di�erent history
functions. The equations ẋ (t) = x (t− 1) is used with x (t ≤ 0) = 1 (light green) and x (t ≤ 0) = t
(dark blue) as history functions.

This solution is then plugged in into Eq. (2.109) once more for the interval t ∈ [1, 2]:

x[1,2] (t) = x[0,1] (t = 1) +

∫ t

1

(1 + (s− 1))ds (2.113)

= 2 +
s2

2

∣∣∣∣
s=t

s=1

(2.114)

=
3

2
+
t2

2
. (2.115)

We display the the trajectory of this (light green) initial function compared to the case of x (t ≤ 0) = t

(dark blue) in Fig. 2.17. Note that the solution is continuous but not continuously di�erentiable since

for the green curve the �rst derivative does not exist at t = 0. However, the longer the trajectory gets

the smoother it becomes: At t = 1 the �rst derivative exists but the second does not and so on.

In general, the solution of Eq. (2.109) for the interval [ti, ti + 1] is given as

x[ti,ti+1](t) = x[ti−1,ti](t = ti) +

∫ t

ti

x[ti−1,ti](s− 1)ds. (2.116)

For di�erent DDEs, the integral needs to be adjusted by plugging in the left hand side of the dynamical

equation into the integral.

Linear stability of DDE. We already discussed linear stability analysis in Section 2.1, which we

now extend to the case of delay in the di�erential equation. First, we approximate the state by the

�xed point plus a small perturbation

xi ≈ x∗i + δxi (2.117)
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and assume again that these perturbations grow or decay exponentially:

d
dt
δxi (t) = δxi (0) exp (λt) . (2.118)

Then, we compute the Jacobian matrix as indicated in Eq. (2.13), ignoring all terms that include

a delay. Next, we repeat this but only include terms with the delay τ . Thereby, we obtain the

non-delayed Jacobian matrix J0 and the delayed one Jτ . With these two matrices, the characteristic

equation is given as ∣∣J0 + e−λτJτ − λI
∣∣ = 0, (2.119)

where I is the identity matrix. Due to the term e−λτ this is no longer a polynomial equation in λ but

a transcendental equation with in�nitely many solutions in general [41,57].

Numerical computation of eigenvalues. The characteristic equation (2.119) has in�nitely many

solutions but we are interested whether there are any eigenvalues with a positive real part Re (λ) > 0

because those would destabilize the system. Here, we describe our procedure, which we developed for

Chapter 4.

We initialize our search for eigenvalues by choosing one �xed sampling delay τsample > 0 for the

characteristic equation (2.119). Then, we numerically obtain solutions of this equation using Newton's

method with several thousand di�erent initial guesses in the complex plain. From this list we delete

duplicates and end up with about 10-100 unique eigenvalues for a system of 2 nodes. Next, we change

the delay by a small amount τ = τsample± 0.01 s and use the eigenvalues previously obtained as initial

conditions for this new delay. This procedure is continued until τ = 0 for the lower bound and τ = τmax

for the upper bound. It is crucial to sample at non-zero delay because at τ = 0 there are only a �nite

number of solutions and in�nitely many solutions exist as soon as τ > 0. Most of these solutions have

a very small real part close to τ ≈ 0 and are missed if the sampling delay is chosen to be too small.

Also note that we only plot the real parts of the eigenvalues and only those determine whether the

system is unstable or not; however, it is crucial for the tracking to keep the imaginary part as well.

Consider a power grid consisting of one consumer and one generator coupled via one transmission

line. In Chapters 3 and 4 we modify the power grid equations to include a term with delay of the form

d
dt
θi (t) = ωi (t) , (2.120)

d
dt
ωi (t) = Pi − γiωi (t) +

N∑

j=1

Kij sin (θj (t)− θi (t))− γcontrolωi (t− τ) . (2.121)

We illustrate our eigenvalue sampling approach on this dynamical system in Fig. 2.18.

2.5.3 Stochastic Di�erential Equations

In Chapters 5 and 6, we apply stochastic processes to investigate the robustness of the grid with respect

to power �uctuations. Let us consider a one dimensional equation of motion given by the Langevin

equation
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Figure 2.18: Illustration of sampling delay. We start sampling many eigenvalues at τsampling = 3s then
these values are used as initial conditions for Newton's method �nding the roots of the transcendental
characteristic equation. The values are based on a two node power grid system with one generator
and one consumer with parameters P = ±0.5/s2, K = 1/s2, damping γ = 0.1/s, control parameter
γcontrol = 0.25/s

d
dt
x (t) = ay (t) + bξ (t) , (2.122)

with constant parameters a and b, state x (t) and noise ξ (t). We consider both Gaussian and non-

Gaussian noise for ξ (t) but always assume noise sources without temporal correlations. To obtain a

speci�c trajectory based on this equation, we discretize time into intervals of length ∆t and compute

∆x = a · x (t) ·∆t+ Y ·
√

∆t,

x (t+ ∆t) = x (t) + ∆x, (2.123)

t = t+ ∆t,

with Y as our random variable drawn from a previously de�ned distribution (e.g. Gaussian or α-Lévy-

stable distribution) [56]. Note that the noise is scaled with
√

∆t instead of ∆t. This way of solving

stochastic di�erential equations is known as the Euler-Maruyama method [73].
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Abstract
Stable operation of complexflow and transportation networks requires balanced supply and demand.
For the operation of electric power grids—due to their increasing fraction of renewable energy sources
—a pressing challenge is tofit the fluctuations in decentralized supply to the distributed and tempo-
rally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer
demand data, centrally evaluate themgiven current supply and send price information back to custo-
mers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection
and large required investments, it remains unclear how such central smart grid options guarantee
overall stability. Here we propose aDecentral Smart GridControl, where the price is directly linked to
the local grid frequency at each customer. The grid frequency provides all necessary information
about the current power balance such that it is sufficient tomatch supply and demandwithout the
need for a centralized IT infrastructure.We analyze the performance and the dynamical stability of the
power gridwith such a control system.Our results suggest that the proposedDecentral Smart Grid
Control is feasible independent of effectivemeasurement delays, if frequencies are averaged over suffi-
ciently large time intervals.

1. Introduction

Amajor challenge in realizing a future sustainable power supply is the volatile character ofmany renewable
sources [1–3]. The power generation of wind turbines and photovoltaics fluctuates strongly on different time
scales: in addition to the obvious variations between the seasons and during a single day [4], strong fluctuations
occur onmuch shorter time scales, for instance due to the turbulent character of wind [5]. Tomatch generation
and demand in a fully renewable power grid for the current demand characteristics at every point of time, would
thus require large storage facilities. Current estimates for the storage capacity range up to 400TWh for the entire
European gridwith 100% renewables and no stand-by power plants [4]. In addition to potential environmental
effects, as, e.g., the large landscape consumption for pumped hydro storage facilities, this would requiremassive
capital investments.

To reduce these enormous numbers, it has been proposed to regulate the consumer demand tomatch the
fluctuating power generation [6]. This is amassive paradigm shift in the operation of power grids, asmainly the
generation is regulated in current power grids [7, 8]. In the new system, the price of electric energy shall be
adapted to the current generation to provide a stimulus for the consumers to adapt their demand.Most
proposals for such a smart grid are based on a sophisticated information and communication technology
infrastructure. All ‘smart’ powermeters communicate with a central computer in order to negotiate the price
and control their demand (see, e.g., [9]).However, such a centralized systemwould also raise questions of cyber
security and privacy protection [10, 11]. Evenmore, it has been shown that interdependent systems, such as this,
can become vulnerable to cascading failures [10, 12].
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An alternative, decentralized approach has beenfirst proposed already years ago, but received amajor
interest only recently. The key idea is that the grid frequency provides all information needed to control the grid.
The frequency increases in times of excess generation, while it decreases in times of underproduction [13, 14]. In
current power grids, the primary control of conventional power plants is already based on the frequency:
generation is increasedwhen the frequency decreases and vice versa [15]. In a future, fully renewable grid the
consumers could take over this role and regulate their demand autonomously on the basis of the grid frequency.
Tomake this economically favorable, it was proposed that the price of electric energy for each local consumer is a
direct function of the local grid frequency [16]. Is such a decentralized approach capable of ensuring stable
network dynamics?

Here we analyze systemswith prices locally computed as a direct function of local frequency, taking into
account averaging time intervals and effective time delays.We demonstrate that the approach holds risks at
certain time delays if the averaging interval is short. Intriguingly, for sufficiently large averaging interval,
network dynamics is stable, independent of the delays. Ourmodeling results thus suggest thatDecentral Smart
GridControl provides an efficientmeasure of ensuring grid stability.

The article is structured as follows. First, we introduce amathematicalmodel for the frequency dynamics of a
power grid, describe our concept of aDecentral Smart GridControl to realize the dynamic demand response
(DR) in section 2 and discuss several economic aspects in section 3. The dynamics and stability of a fully
interdependent techno-economical system are then analyzed in detail in section 4.We uncover potential
systemic risks and showhow they can bemastered by a proper implementation of the control.

2.DR viaDecentral SmartGridControl

DR is generally based on a flexible consumer price for electric powerwhich is adapted to the current power
generation. In periods of higher demand than generation, prices are high, giving an incentive to the consumers
to reduce their consumption. Current approaches for the implementation ofDR aremostly based on centralized
information and communication infrastructure [8, 9], i.e., all information about production and consumption
is collected decentralized, transmitted to one central IT-unit which then sends commands for further
consumption and production to the decentralized actors. Such a systemwould require largefinancial
investments and raises concerns about data protection and system vulnerability [10–12]. However, such an
expensive IT-infrastructuremay not be needed, as the grid frequency already encodes the necessary information
and is accessible everywhere in the grid.

To analyze the essential frequency dynamics of a large-scale power grid and its coupling to pricing
informationwe consider an oscillatormodel based on the physics of coupled synchronous generators and
synchronousmotors, which recently attracted a strong interest in physics [17–23]. Thismodel is very similar to
the ‘classicalmodel [15] and the structure preservingmodel [24] frompower engineering, which are routinely
used to simulate the dynamics of power grids on coarse scales.

The state of each rotatorymachine j is characterized by the rotor angleθ t( )j relative to the grid reference
rotating atΩ π= ×2 50 Hz orΩ π= ×2 60 Hz, respectively, and its angular frequency deviation from the
referenceω θ= td dj j . Everymachine has itsmoment of inertiaMj and is driven by amechanical power

P t( )j
mech , which is positive for a generator and negative for a consumer. In addition, everymachine is driven by

the electric power transmitted via the adjacent transmission lines which have a coupling strengthKij. The
dynamics of themachine j is then given by the equation ofmotion as

∑
θ

κ
θ

θ θ+ = − −
=

( )M
t t

P t K
d

d

d

d
( ) sin . (1)j

j
j

j
j

k

N

jk k j

2

2
mech

1

For amore detailed discussion and short derivation of the equations ofmotion, see appendix A.
For the sake of simplicity, we assume that all damping constants κ κ=j andmoments of inertia =M Mj are

identical for awhile. The overall angular frequency deviation ω ω〈 〉 = ∑:
N j j
1

is then determined by the equation

ofmotion

ω κ ω Δ+ =M
t N

P
d

d

1
, (2)

where Δ = ∑P Pj j
mech is the total power balance in the grid. Equation (2) can be solved analytically with the

result

2
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ω ω Δ
κ

= + −κ κ− −( ) ( )t t
P

N
( ) e 1 e . (3)t M t M

0

For → ∞t , the overall angular frequency deviation ω〈 〉 converges to the value Δ
κ
P

N
. This relaxation is typically fast;

most perturbations are cleared in less than a second [15]. Inweakly connected grids inter-area oscillations can
last for aminute [3, 26].Hence, the angular frequency deviation ω〈 〉 is directly proportional to the power balance
of the entire system. In general, the angular frequency is the same throughout the gridω ω= 〈 〉j and can easily be
measured, such that it can be used to control the gridwithout additional communication infrastructure.

Themissing step to realize aDecentral Smart GridControl is to come upwith a one-to-one relation between
the local grid angular frequency deviationω j and the current electricity price ωp ( )j j . A device thatmeasures the

local grid angular frequency and calculates the current price according to this pre-defined function ωp ( )j j is

cheap and can be implemented in a decentralizedway, see [28] for large-scale frequencymonitoring. Electric
devices with an on-off load characteristic (e.g. washing, refrigeration, thermal heat pumps, electric cars) could
automatically shift their consumption to times of high grid frequency, relieving the grid in low frequency times.
Ensured by a properly chosen price function ωp ( ), this grid service can be economically reasonable for the
consumer and also for the electricity provider, because the grid operatorwould have potentially less costs for
primary, secondary and tertiary control. A drastic price increase at low frequencies and cheap electricity at high
frequenciesmight also change the active consumer behavior. The needed technology is readily available, since
micro combined heat and power systems or photovoltaic systems, already have a comparable control system
included [8, 27].

In particular, we propose aDecentral Smart GridControl that realizes a dynamicDR in power grids and
analyze some of its core economic and dynamic consequences. Themechanical powerP t( )j

mech in the equation
ofmotion (1) is the difference of the generated and consumed power at the jth node of the network. Both
generation and consumption depend on the current energy price p, which is described by supply S(p) and
demand curvesD(p), such that wefind

= −( ) ( )P t S p t D p t( ) ( ) ( ) . (4)j j j j j
mech

A supply function S(p) gives the amounts of goods offered, if this good is traded for a certain price p. Here, this is
the amount of power supplied by a generator, if the obtained price is p. Similarly, the demandD(p) gives the
amount of power a consumerwould like to consume for a given price p. Generally, the supply curve is
monotonically increasingwith p, while the demand curve ismonotonically decreasing. The two curves are
exogenous to themodel, in fact they are determined by the strategy of the generators, theweather and the
preferences of the consumers.

We suggest aDecentral Smart GridControl that calculates the price on the basis of the local angular
frequency deviationω j [16]; butmeasuring and updating the angular frequency in a real grid takes a certain
time. Therefore, the price generally depends on a time-averaged angular frequency deviationω t( )j . Assuming
that the angular velocity ismeasured over an interval offixed period lengthT, we define

∫ω ω= ′ ′
−

t
T

t t( )
1

( )d . (5)j
t T

t

j

Weconsider two technical scenarios for the control. First, we consider a control system that adapts only in
discrete time steps of lengthT such that the local prices are given by

ω= ⌊ ⌋( )p p t T T: ( ) , (6)j j

where⌊ ⌋· denotes rounding towardsminus infinity. Second, it can take a certain delay time τuntil the control
system adapts such that the local prices are given by

ω τ= −( )p p t: ( ) . (7)j j

Weassume that the price only depends on the frequency and that supply and demand curves are given and keep
their formon the time scales (seconds) described in this article. Hence, the design of an appropriate price
function ωp ( ) is an important step for the implementation of aDR viaDecentral Smart GridControl.

3. Economic aspects

3.1. Benefits ofDR
DRmay have huge benefits in future energy systems see, e.g., [7, 8, 25, 29, 30]. Here, we briefly summarize the
most important economic aspects, following [7], which hold regardless of the technical implementation: (1)

3
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consumersmay reduce their electricity bill by shifting their demand to periods of low prices. (2) In addition, DR
may reduce the global costs of the power system as it allows for amore efficient use of the existing infrastructure
and avoids costs for additional infrastructure. (3)DRmay improve system stability by avoiding dangerous peaks
of the demand and thus reduce the probability of power outages. (4) Finally, DRmay improvemarket
performance and reduce the price volatility. In addition to these points, DR is particularly important for future
power grids because its implementation can potentially allow a higher penetrationwith renewable energies [31].

3.2. The grid as amarket
In the current proposal of aDecentral Smart Grid Control there is no central computer which controls the
demand of the consumers and no central exchange to determine the electricity price. The control is realized in a
decentralizedway using local frequencymeasurements, thus requiring no long-distance communication. Is this
sufficient to provide an efficientmarket, i.e., to reach an economic equilibrium?

To answer this questionwefirst note that the stable stationary operation of a power grid requires that all
machines rotate in synchrony, i.e., the frequencymust be the same everywhere

ω ω= ∈ …t j N( ) for all {1, , }. (8)j
!

Otherwise the powerflowbetween two nodes j and k

θ θ= −( )P t K t t( ) sin ( ) ( ) , (9)jk jk k j

would be oscillating and average out over time. The synchronous statemust be dynamically stable for small
disturbances to be damped out [15, 32] and the gridmay self-organize to a synchronous state with steady power
flows [18, 22, 33]. Substituting the conditionω ω= 〈 〉t( )j into the equations ofmotion (1) shows that the
synchronous state is determined by the equation

∑κ ω θ θ= − − − ∈ …
=

( ) ( ) ( )S p D p K j Nsin for all {1, , }. (10)j j j j j
k

N

jk k j

1

Summing up the equations for all j and using =K Kij ji yields

∑ ∑ ∑κ ω= +( ) ( )S p D p . (11)
j

j j
j

j j
j

j

This shows that a dynamical equilibriumof the grid also implies the economic equilibriumof themarket, i.e.,
the supply equals the demand including transmission losses.Hence, we have to analyze the dynamic stability of
the combined techno-economical system to evaluate its stability properties. This will be done in detail in
section 4.

For now,we assume that the grid is in equilibriumwith ω〈 〉 = 0 at a price Ωp . To analyze the stability of this
equilibrium,we linearize the supply and demand curves close to the equilibrium:





= + −

= + −

Ω Ω

Ω Ω

=

=

Ω

Ω

( ) ( )

( ) ( )

( )

( )

S p S p
S

p
p p

D p D p
D

p
p p

d

d

d

d
. (12)

j j j
j

p

s

j

j j j
j

p

d

j

:

:

j

j

Themodeling ormeasurement of supply and demand curves then reduces to themeasurement of the elasticity
of supply and demand. Generally, the supply increases with the price while the demand decreases such that

⩾s 0j and ⩽d 0j and thus in particular

− >s d j0 for all . (13)j j

Here, we used course-graining, i.e., not every consumer is represented by one demand function but several
consumers are aggregated to formone node in the network and hence supply and demand curves are assumed to
be smooth.

3.3. Price and frequencyfluctuations
The new aspect of our proposal of aDecentral Smart GridControl is the direct encoding of the electricity price in
the grid frequency. Thus, the grid frequencymust be allowed to vary in certain boundaries so that fluctuations of

4
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the price are directly related tofluctuations of the frequency. Currently, frequency variations are limited due to
technical reasons [34]. In the European grid±200 mHz are acceptable in normal operation and up to
±800 mHz can occur in extreme cases for short times before emergencymeasures such as load shedding are
initiated [35]. This sets the order ofmagnitude at which the frequencymay vary. Accordingly, we consider a
frequency range of ±(50 0.5) Hz.

Infigure 1we analyze the possible variations of the price and the frequency inmore detail. Panel (a) shows a
histogramof plausible values of the consumer price, if this price is strictly coupled to the variable spotmarket
price forGermany in 2012 [36]. To obtain plausible consumer prices, we add 9 ct kWh−1 for distribution and
service, 7 ct kWh−1 fees plus 19%VATon the total. The variations of the electricity price directly relate to
variations of the grid frequency as described above.We consider a linear price curve for all nodes

ω ϵ ω= − ×Ω( )p p , (14)j j

with =Ωp 24.1ct kWh−1, as shown in panel (b1). For a slopeϵ = 10 (ct kWh−1)/2πHz, the price curvemaps the

operational range ω Ω π+ ∈( ) 2 [49.5, 50.5]j Hz to a price interval ∈ −p [19.1, 29.1] ct kWh 1, which covers
98%of the observed fictitious consumer prices. A histogramof the resulting frequency variations is shown in
panel (c1). In 2%of all time slots prices outside of this interval were recordedwhich can even become negative.

To treat such events accordingly, a nonlinear functionmust be chosenwhichmaps afixedfinite frequency
interval to all possible prices, i.e., to the real line. Still, the slope of this function should be bounded around the
operational pointΩ = 50 Hz. These requirements are satisfied by an inverse sigmoidal function. As a particular
example, we here consider the function

⎛
⎝⎜

⎞
⎠⎟ω α ω

πβ
= −Ω

−( )p p
2

tanh , (15)j
j1

whichmaps all angular frequency deviations in the intervalω πβ πβ∈ − +( , )j to a price ∈ −∞ + ∞p ( , ). The
operational range can thus befixed beforehand, and emergencymeasures can be specified, if frequencies outside
this range aremeasured. Choosingα βϵ= yields the same slope of the price curve around the reference
frequency as the linear price function (14). Indeed, using β = 1Hz the statistics of the observed frequencies in
figure 1 hardly change in comparison to the linear price function, see panels (b2) and (c2). The corresponding
frequencies change significantly only for extreme price events, which nowmap to the operational range
ω Ω π+ ∈( ) 2 [49.5, 50.5]j Hz as desired. A similar statistic is found for other sigmoidal functions. The precise
formof such a nonlinear price function can be designed by the grid operators on the basis of actualmarket and
consumption data.

We note thatfigure 1 is based on theGerman spotmarket prices, which showhuge fluctuations compared to
other energymarkets [39]. Furthermore, onemajor effect of a comprehensiveDRwould be to suppress extreme

Figure 1. InDR viaDecentral Smart Grid Control, variations of the electricity prices imply variations of the grid frequency. (a)
Histogramof plausible fullyflexible consumer prices deduced from spot prices at the European energy exchange [36]. (b) Price-
frequency relation according to (b1) equation (14), with slopeϵ π= −10 (ct kWh ) (2 Hz)1 and (b2) equation (15), with
α π= −10 (ct kWh ) (2 )1 and β = 1 Hz, respectively. (c)Histogramof the corresponding frequency fluctuations.
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price fluctuations anyway [7, 14].Hence, we expect that the fluctuations shown in thefigure represent extremes,
and that theywould be significantly smaller in energy systemswithDR and (virtual) storage.

4.Dynamics and stability

Dynamical stability is a basic requirement for power grid operation [3, 15]. ForDR viaDecentral Smart Grid
Control, a stable dynamic equilibrium ensures that the energy system is also in an economic equilibrium as
shown above. However, stability propertiesmay becomemuchmore involved due to the interdependency of the
technical and the economical subsystem. Interdependenciesmay introduce new systemic risks to dynamical
network systems [12, 37].

The interaction of theDR systemwith the grid depends crucially on their time scales. In contrast to current
energymarkets, the price can be adapted in almost real time, limited only by the time needed for a frequency
measurement. Here, we analyze the dynamical stability of the full techno-economic system and identify new
systemic risks for different scenarios and discuss how tomaster these risks.

4.1. Instantaneous adaption
Wefirst investigate aDR that is fast compared to the grid dynamics. Assuming an instantaneous adaption of the
demand, i.e., τ= =T 0 in equations (6) and (7), the effective powerP t( )j

mech in equation (1) becomes a
function of the current angular frequency deviationω j. In particular, we consider a linear relation of price and
angular frequency deviation

ϵω= −Ωp p t: ( ). (16)j j

Linearizing the supply and demand curves around Ωp as in equation (12) yields

∑
θ

κ
θ

ϵ
θ

θ θ+ = − − − − −Ω Ω
=

( ) ( ) ( ) ( )M
t t

S p D p s d
t

K
d

d

d

d

d

d
sin . (17)j

j
j

j
j j j j

j

k

N

jk k j

2

2
1

By equation (13), an instantaneous economic response thus increases the effective damping constant to

κ κ ϵ κ= + − >( )s d . (18)j j j j j
eff

Therefore, it always lowers the return times after perturbations, see equation (3).

4.2. Slow adaptation in discrete time steps
A second,more realistic scenario is that theDecentral Smart GridControl ismuch slower than the grid
dynamics.Here, we consider a discrete time control system,where the price function is the same for all nodes
and given by (6). Both supply and demand are updated periodically with periodicity κ≫ ∑ ∑T Mj j j j.

Assuming that the grid is dynamically stable for the given parameters, the angular frequency deviationwill relax
to

∑ω Δ
κ

Δ=
∑

= −P
P S p D pwith ( ) ( ). (19)

j j j

j j

On this basis, a newmarket price ′p is calculated. Assuming an affine-linear price function as in equation (14)
and using the linearized supply and demand curves (12), we find

ϵ
κ

′ − = −
∑ − ∑

∑
−Ω Ω( )p p

s d
p p . (20)

j j j j

j j

This yields an oscillating dynamics of themarket price, which is stable if and only if

ϵ ϵ
κ

< =
∑

∑ − ∑s d
, (21)

j j

j j j j
cr

setting a strict upper limit for the slope of the price function. The potential instability for ϵ ϵ> cr is caused by an
overreaction of the suppliers and consumers tomarket incentives. Similar rebound effects can generally occur in
DR systems [8], such that this problem is not specific to the current proposal.

An example for the possible dynamics of the techno-economical system is shown infigure 2 for amodel grid
with three generators and three consumers with values inspired by the IEEE 9-bus test grid (see panel (e)).We
assume that the price elasticities

6
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= =
Ω Ω

E
S p

S p
E

D p

D p

d d
and

d d
(22)S

j

j
p

D
j

j
p

are the same for all nodes and given by = +E 0.3S and = −E 0.3D in agreementwith empirical results [38–40].
The price and subsequently the demand and supply are adapted after a time step ofT=60 s.We assume an
equilibriumprice =Ωp 24 ct kWh−1 and a damping constant κ = ×s M0.2j j with Ω= ×M 10 kgmj

4 2 . All
transmission lines have the same transmission capacityK=200MW. For these parameters, the system is stable if
and only if ϵ ϵ π< ≈ 3 (ct kWh) (2 Hz)cr . Otherwise the prices and the grid frequencywill diverge after a small
perturbation as shown infigure 2.

Wenote that this result canbe interpreted as an application of the famous cobweb theorem from
microeconomics [41] toDecentral SmartGridControl. The generalized equilibriumcondition (11) canbe seen as
the intersection of the loss curve κ ω∑ 〈 〉j and thenet supply curveΔ ω ω ω〈 〉 = ∑ 〈 〉 − 〈 〉P S p D p( ) ( ( )) ( ( ))j j j .

The loss takes the role of an effective demand functionwith fast relaxation,while the net supply is adaptedmuch
slower. The cobwebmodel then states that the economic systemwill relax to an equilibrium, if the slope of the loss
curve is larger than the slope of thenet supply curve, which yields the stability condition (21).

4.3.Delayed adaptation: risks from resonances
New risksmay emergewhen theDecentral Smart GridControl acts on similar time scales as the dynamics of the
grid such that the two systembecome truly interdependent.Wefirst consider the case of a delayed feedback, i.e.,
we consider the price function (7)with τ ⩾ 0 butwithout averaging (T=0), i.e., consumersmeasure their local
frequency and try to adapt as fast as possible but need their intrinsic time τ to react. To obtain analytic solutions
for the interdependent techno-economical system, we use a very simple system:we linearize the supply and
demand curves (12) and consider only two nodeswith equal technical and economical parameters, i.e.,

=M M1 2, κ κ=1 2, =s s1 2 and =d d1 2. Defining our new variables as the phase difference Δθ θ θ= −1 2 and the
angular frequency difference of the two nodes Δω ω ω= −1 2, the equations ofmotion read

Δθ Δω

Δω αΔω Δθ γΔω

=

= − − − τ

t

t
P K

d

d
d

d
2 2 · sin( ) , (23)

wherewe introduced the abbreviationsα κ= M , =K K M12 , γ ϵ= −s d M( )1 1 , = − −Ω ΩP S p D p2 ( ( ) ( )1 1

+Ω ΩS p D p M( ) ( ))2 2 and Δω Δω τ= −τ t( ). In the following, time ismeasured in seconds,α and γ in s−1 and
P andK in s−2. This notation is similar to the one used in [19]. Delayed differential equations need a history
function as initial condition, whichwe chose to be Δω Δω< = +t t( 0) · (1 0.1 tanh ( 2))0 for our dynamical

Figure 2.Dynamics of amodel gridwithDecentral Smart Grid Control in discrete time steps ofT=60 s. System stability depends
crucially on the slope of the price curve, being stable for (a, b) ϵ π ϵ= <−1 (ct kWh ) (2 Hz)1

cr and unstable for (c, d)
ϵ π ϵ= >−5 (ct kWh ) (2 Hz)1

cr .We plot the dynamics of (a, c) the local prices pj and (b, d) the local frequencies Ω ω π+( ) 2j

starting from an initial price =p 250 ct kWh−1 above the equilibriumprice =Ωp 24 ct KWh−1. The angular frequency deviationsω j

vary only very little fromnode to node as shown in the inset in panel. (b) These residual oscillations relax on longer time scales such
that the system in (a, b) converges to a fixed point withω ω= 〈 〉j and ω= 〈 〉p p ( )j . Themodel grid is depicted in panel, (e) where

generators colored in red and consumers in blue. The remaining systemparameters are given in themain text.
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simulations. Furthermore, we used standardmathematica routines [42] to solve the ordinary and delayed
differential equations.

The delayed adaption of supply and demand can both stabilize and destabilize the grid dynamics as shown in
figure 3. The physical reason of this effect can be easily understood. The frequency-adaptive ‘effective’ power

γΔω= − τP t P( ) 2eff in equation (23) can be seen as a resonant driving acting on an oscillating system. Such a
driving termwill either damp or amplify the oscillations depending onwhether the driving is in-phase or out-of-
phase. The phase shift of this driving term is directly given by the delay τ, such that the stability of the system
depends crucially on the value of τ. To illustrate this result, we compare the dynamics for two different values of τ
infigure 3. For τ = 0.75 s1 the driving is in-phase, the oscillations are amplified and the grid becomes unstable
with potentially fatal results, whereas τ = 1.5 s2 stabilizes the system.

To obtain a global view of the stability and the role of the systemparameters we analyze the dynamical
stability around the steady-state operation of the grid given by the fixed point

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟Δθ Δω =( ) P

K
*, * arcsin , 0 . (24)

Asolution exists only if the transmission capacity is larger than thepowerwhichhas tobe transmitted, >K P
[32]. The linear stability of adynamical system is determinedby the eigenvalues of the Jacobianmatrix. For a
delayed system[43–45],wehave tocalculate the Jacobianofboth thenon-delayed system,basedonequation (23),

⎛

⎝

⎜⎜⎜⎜
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⎝⎜
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⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠

⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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∂
∂

= − −( )J
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K

d

d

d
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d

d

d

d

0 1

2 cos * , (25)0

and the derivatives for the delayed term
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Figure 3.Decentral Smart GridControl can stabilize or destabilize the grid. Panels (a)–(d) show the frequency difference Δω π(2 ) and
effective power γΔω= − τP P2eff for an elementary two-node network as a function of time for two different delays, according to
(23). For the delay τ = 0.75 s1 the effective power becomes large simultaneously to the frequency difference, i.e., the generator
producesmore energy than needed, when the frequency is already too high, see (a) and (b).Hence, the system gets destabilized
completely. On the contrary, the effective power and frequency difference are shifted by half a period for τ = 1.5 s2 such that the
system is stabilized, see (c) and (d). Initial conditions were Δθ = 00 , Δω = 10 Hz and the parameters γ = −0.25 s 1,α = −0.1 s 1,

= −P 1 s 2, = −K 8 s 2 were applied.
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wherewe consider exponential solutions, see [45]. The stability eigenvalues λ are then determined by the
solution of the characteristic equation

λ λ αλ Δθ λγ+ − = + + + =λτ
τ

λτ− −( )( )J J Kdet e 2 cos * e 0. (27)0
2

Small perturbations induce an oscillatorymotionwith eigenfrequency λIm ( ) and period π λ2 Im ( ). The
amplitude grows or decreases exponentially as λe tRe ( ) such that λ >Re ( ) 0 is the condition for a dynamic
instability. This is possible only if the frequency adaption is strong enough compared to the damping of the
system,

λ γ α⩾ ⩾Re ( ) 0 is possible only if , (28)

as shown below.When the delay τ changes, we observe a periodic pattern of stable and unstable parameter values
as shown infigures 4 and 5. As explained above, destabilization occurs in the case of an in-phase drivingwhich
happenswhen τ is an integermultiple of the period of the eigenoscillations of the system.

To proof these statements wefirst note that λ <Re ( ) 0 for γ = 0 or τ = 0 as long asα > 0.We now consider
the parameter valueswhere λRe ( ) changes its sign such that the systembecomes unstable. Decomposing the
characteristic equation (27) into real and imaginary parts and setting λ =Re ( ) 0 yields the conditions

λ Δθ γ λ τ λ− + + =( )KIm ( ) 2 cos * Im ( ) sin( Im ( )) 0, (29)2

α λ γ λ τ λ+ =Im ( ) Im ( ) cos( Im ( )) 0. (30)

The second equation can be solved for τwith the result

τ α γ π
λ

= − + ∈n narccos( )
2

Im ( )
, . (31)

One directly sees the periodicity in the delay τ, where the period π λ2 Im ( ) is equal to the period of the
eigenoscillations of the system. Furthermore, the α γ−arccos( ) is real only if γ α⩾ , which yields a necessary
condition for the destabilization by delay. Note that this statement is equivalent to the one from section 4.2,
namely the damping of the systemhas to be larger than the price influence to always guarantee stability.

In addition to the local stability analysis, we also consider the grid dynamics after a large perturbation.We
integrate the equations ofmotion for a long time period until =t 600 smax with initial conditions randomly
drawn froma subset of the phase space π π= − × −Q [ , ] [ 30, 30] Hz, see also [46], and evaluatewhether the
system relaxes to a stable operation, i.e., whether it converges to the fixed point (24), or not. As a criterion for

stable operationwe assume an angular frequency deviation of Δω = ⩽( )t t 0.1 Hzmax . The results are

visualized infigure 5, panels (a)–(c), wherewe plot the stability in a color code (light green: stable, dark blue:
unstable) as a function of the initial location in phase space for different values of τ. The results confirm the
finding of the linear stability analysis. Depending on the value of τ the global stability is altered dramatically. For
τ = 0.8 s thefixed point is linearly unstable and the systemdoes not relax for almost all initial conditions. On the
contrary, a delay of τ = 5 s leads to an almost perfect stability; the grid converges for almost all initial states.
Notably, the regions of initial conditions leading to stable or unstable behavior are not clearly separated because
the actual boundary of these regions has a rather complex geometric structure already in the non-delayed case.

Figure 4.The stability exponent λRe ( )plotted as a function of the delay τ for an elementary two-node network. The dynamic becomes
unstable, i.e., λ ⩾Re ( ) 0, for certain values of the delay time τ periodically spaced on the real axis, if γ α⩾ . Parameters are γ = −0.1 s 1,
α = −0.1 s 1, = −P 1 s 2 and = −K 8 s 2 and the root with highest real part of equation (27)was obtained numerically usingNewtonʼs
method.
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The global stability of afixed point of a dynamical system can be quantified by the volume of its basin of
attraction. The ‘basin size’VBasin can be determined numerically using aMonte Carlomethod as the ratio of
initial conditions converging to a stable operation to the total number of initial conditions. Figure 5 panel (d)
shows how the basin volume depends on the delay time τ in comparison to the linear stability exponent λRe ( ).
As expected,VBasin tends to zero in the case of linear instability, λ ⩾Re ( ) 0.Maxima ofVBasin of different height
are observed in the stable parameter regions, including an almost perfect stabilization for τ ≈ 5 s. However,
thesemaxima do not coincide with theminima of λRe ( ).As both the linear stability and the basin volume
predict similar delays to be problematic for the system,we focus on the computationally easier to handle linear
stability in the following.

4.4. Stabilization by averaging
Measuring the local grid frequencywill generally take some time in a real-world system.We thus consider the
dynamics of the elementarymodel grid for the price function (7) including both delay τ ⩾ 0 and averaging over
a period ⩾T 0. The equation ofmotion for the angular frequency difference Δω Δθ= td d then reads

∫Δω αΔω Δθ γ Δω τ= − − − ′ − ′
−t

P K
T

t t
d

d
2 2 sin( ) ( )d . (32)

t T

t

The integration can be carried out in a straightforwardway by using (23) such thatwe obtain themodified
delayed dynamical system

Δω αΔω Δθ γ Δθ τ Δθ τ= − − − − − − −
t

P K
T

t t T
d

d
2 2 sin( ) [ ( ) ( )]. (33)

To evaluate the stability of the steady state (24), we have to calculate the eigenvalues λ for a systemwith both the
delay τ and the delay τ= +∼

T T . The Jacobian of the non-delayed system is given by (25) as above and for the

delay terms only Δω = −
Δθ

γ∂
∂ τ ( )t T

d

d
and Δω = +

Δθ
γ∂

∂ ( )t T

d

dT̃
are non-zero. The stability eigenvalues λ are then

given by the roots of the characteristic equation [43]

Figure 5.The global stability of a two-node networkwithDecentral Smart Grid Control is quantified by the volume of the basin of
attraction and compared to linear stability. Bothmeasures predict instability for similar delays τ. A visualization of the basin of
attraction for different values of the delay τ is shown in panels (a)–(c). Light green dots represent initial conditions that converge to the
fixed pointwhile dark blue dots assume a limit cycle or converge too slowly. Parameters are γ = −0.25 s 1,α = −0.1 s 1, = −P 1 s 2,

= −K 8 s 2 and 10 000 different initial conditionswere used. In panel (d) the basin volumeVBasin (discrete plot, light green) is plotted as
a function of τ in comparison to the stability exponent λRe ( ) (dark blue).We used the same parameters but only 1000 different initial
conditions.
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λ λ αλ γ= − + + − + − =λτ λ τ− − +( )p K
P

K T
( ) 2 1 e e 0. (34)T2

2

2
( )

Figure 6 shows the real part of the stability eigenvalue λRe ( ) as a function of the delay τ and the averaging
timeT. Instabilities are observed for certain values of τ, ifT is small as discussed above. But for a sufficiently high
T, the system stays stable regardless of the time τ. The actual values of the stability exponent λRe ( ) for large

γ≫T are comparable to the one of the systemwithout any price adaptation.
The results shown here are very interesting: while a delay in adaptation poses a stabilization risk to the grid,

averaging themeasured signal for a certain time removes the short timefluctuations that could resonantly drive
the system and thereby guarantee a stable operation state. Still, the nodes can adapt to changes of the generation
on all time scales slower thenT, which provides an effectiveDRmanagement system.

4.5. The role of the network topology
The larger the grid becomes, themore complex behavior it is able to show.Here,we consider anetworkwith four
nodes to test our results. Two consumers ( = − <P S D M( ) 0) are supplied by twogenerators
( = − >P S D M( ) 0). Each generator is coupled to a consumer tobalance the powerproduction/consumption.
In addition, the generators are coupled to eachother.As abovewe assume that all technical and economic
parameters are the same for all nodes of thenetwork. The equations ofmotion canbe read in appendixB.

Risks from resonant driving emerge in a gridwith delayed response andT=0 as discussed above. The grid
becomes unstable in certain regions of parameter space which are periodically spaced on the τ-axis. In a complex
network, there are generallymany different eigenmodeswith different frequencies. The parameter regions
where thesemodes can be excited generally overlap, such that the grid becomes unstable formost values of the
delay τ as shown in the dark blue curves of panels (c), (d) infigure 7. Only for a very fast response τ → 0 the
dynamic is stabilized.

We conclude that either a delayed adaptionmust be avoided, or alternatively, an averaging over a sufficiently
long periodTmust be introduced aswell. Figure 7 panel (b) shows the stability exponents λRe ( ) as a function of
τ andT for the four-node network. IncreasingT to valueswell above τ restores stability also for ‘dangerous’
values of τ as shown in the light green curves of panels (c), (d) in the figure.

5. Conclusion and outlook

In summary, we have proposedDecentral Smart GridControl, a direct and decentralized frequency-price
coupling to achieve a reliableDR in the collective network dynamics of power grids. The required information,
the grid frequency, is easily accessible from everywhere in the system. As a consequence, DR viaDecentral Smart

Figure 6. Frequency averaging stabilizesDecentral Smart Grid Control for delayed feedback. Averaging over an interval of sufficient
lengthT guarantees stability for all τ > 0. The figure displays a scheme of the system in panel (a) and the stability exponent λRe ( ) for
the system according to characteristic equation (34) as a function of delay τ as well as the averaging lengthT in panel (b). A transparent
layer is added at λ =Re ( ) 0.Cuts for two different butfixed averaging timesT in panel (c) and for two different but fixed delays τ in
panel (d) are added. Parameters are γ = −0.25 s 1,α = −0.1 s 1, = −P 1 s 2 and = −K 8 s 2 andNewtonʼsmethod is used to obtain λ.
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GridControl offers a huge potential with both technical and economic benefits, in particular in grids with a large
fraction of renewable sources.

First, the load information needs not be collected and evaluated centrally so that additional infrastructure for
collection and for sending back central price information, is not required. This removes privacy and data
security issues and should drastically lower the costs of hardware required for future power grids. The only
technical device requiredwould be a frequencymeter at each customer complementedwith a simple price
function either programmed or implemented in hardware. Second, our results suggest that for sufficiently short
feedback delays, as well as for longer delays with sufficient averaging, joint grid and economic stability is
guaranteed. Stated simply, such grid would be a stablemarket: a stable dynamic equilibrium implies economic
equilibrium. In contrast, whether joint economic and dynamic stability could be guaranteed in any other,more
centralizedDR setting, is, to the knowledge of the authors, yet unknown.

Decentral Smart GridControl does need somemodifications of the current system. For instance, the
currently implemented strict rules for frequency regulation need to be relaxed to allow for some (small)
variability, see section 3.3.Moreover,meters and price response algorithms need to be implemented at the
customers’ side, whichmight need convincing arguments. However, such decentralized controlmight still be
much simpler to implement politically as customers need not fear data privacy issues and grid operators would
not be required to installmassive, network-wide and highly reliable hardware and computing power.

Generally, determining dynamic stability is typically involved for any interdependent socio-technical or
techno-economic system, especially when the time scales of the system (here, the grid) and the control are
similar.We have uncovered several new systemic risks in potential control options for dynamicDR in smart
grids. The above results indicate that essential risksmay bemastered by an appropriate design of the control in
terms of decentralized and direct frequency-price coupling. This speaks forDecentral rather thanCentral Smart
GridControl of dynamicDRs.

We recommend to considerDecentral Smart GridControl as a viable and possibly inexpensive alternative to
centralmeasures ofDR. Since at least small and possibly unknown delays seempossible, prices should be
calculated directly on the basis of a sliding average of the local grid frequency.
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in panel (a) and the stability exponent λRe ( ) for the system as a function of delay τ aswell as the averaging lengthT in panel (b). A
transparent layer is added at λ =Re ( ) 0.Cuts for two different butfixed averaging timesT in panel (c) and for two different butfixed
delays τ in panel (d) are added. Parameters are γ = −0.25 s 1,α = −0.1 s 1, = −P 1 s 2 and = −K 8 s 2 andNewtonʼsmethod is used to
obtain λ.
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AppendixA. Swing equation

In themain part, we analyze a coarse-grained oscillatormodel based on the physics of coupled synchronous
generators and synchronousmotors, recently derived and numerically evaluated by Filatrella et al [17] and
extended to complex networks by Rohden et al [18]. To achieve the large-scale network reduction, we aggregate
coherent synchronous generators. Coherency of two generatorsmeans that there is no difference in their
rotating angular frequency at any point in time. Together with the associated loads in that area, this coherent
group is replaced by a single rotatingmachinewith the index ∈ …j N{1, , }, which summarizes the physical
properties of that group. In the language of network science, one group corresponds to one node of the network.
Themoment of inertiaMj of that rotatingmachine and itsmechanical power inputPj

mech sumup linearly from
all generators and loads of the coherent group [15]. In some groups there ismore power generated than
consumed such that >P 0j

mech . If there ismore power consumed than produced, we have <P 0j
mech . The

transmission network delivers power fromnodeswith power excess to nodes with power need.
The state of a coherent group of rotatingmachines is determined by its angular frequency and the rotor or

power angleθ t( )j relative to the reference axis rotating at the nominal grid angular frequencyΩ π= ×2 50 Hz
orΩ π= ×2 60 Hz. Correspondingly,ω θ= td dj j gives the angular frequency deviation from the reference
Ω. The dynamic is governed by the swing equation [15, 17, 24]

θ
κ

θ
+ = −M

t t
P P

d

d

d

d
, (A.1)j

j
j

j
j j

2

2
mech el

wherePj
el is the electrical power that is transmitted to or fromother rotatingmachines and κ j measures the

damping, which ismainly provided by damperwindings. (Commonly, the symbolD is used for the damping
coefficient in the swing equation. In order to avoid confusionwith the demand function introduced in themain
text, we here use the symbol κ instead.) If themechanical power at a node j is constantly higher than the
corresponding electrical power Δ = − >P P P( 0)j j j

mech el , then the angular frequency deviationω j increases until
the localmismatch in power ΔPj dissipates due to damping.Note that all formulae use the angular frequencies
while the numbers are divided by π2 for the plots to obtain frequencies.

To analyze the dynamics of the grid beyond the overall angular frequency deviation ω ω〈 〉 = ∑:
N j j
1 , we

must take into account the details of the electrical coupling of the rotatingmachines along the edges of the
transmission grid. The apparent power at the grid node j is given by

∑=
=

S V I , (A.2)j j

k

N

jk

1

*

with the complex-valued voltageVj and the currents

= −( )I y V V , (A.3)jk jk j k

where yjk is the admittance of the transmission line between nodes j and k. In power engineering one generally
uses the nodal admittancematrixY, whose elements are defined as

⎧
⎨⎪
⎩⎪∑

=
− ≠

=
ℓ ℓ

Y
y j k

y j k

for

.
(A.4)jk

jk

j

The apparent power at node j is thenwritten in the compact form

∑=
=

S V Y V . (A.5)j j

k

N

jk k

1

* *

Weneglect the ohmic resistance of the transmission lines as they are typicallymuch smaller than the shunt
admittances [47], hence the admittance =Y Bijk jk is purely imaginary. Furthermore, we assume that the

magnitude of the voltage is constant throughout the grid, =V V| |j 0 for all nodes ∈ …j N{1, , }. Then, the
apparent power simplifies to

⎡⎣ ⎤⎦∑ θ θ θ θ= − + −
=

( ) ( )S V B sin icos . (A.6)j

k

N

jk k j k j

1

0
2

The electric powerPj
el is given by the real part of this expression. Substituting this result into the swing

equation (A.1) thus yields the equations ofmotion
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∑
θ

κ
θ

θ θ+ = − −
=

( )M
t t

P t V B
d

d

d

d
( ) sin . (A.7)j

j
j

j
j

k

N

jk k j

2

2
mech

1

0
2

The factor =K V B:jk jk0
2 thus gives themaximally transmittable power between nodes k and j. Therefore, we call

it the coupling strength. It is zero, if two rotatingmachines are not coupled along a direct transmission line.
Due to the second order term, equation (A.1) describes an oscillatory systemof phase angles. As the phases

oscillate, also the local angular frequency deviationsω θ=t t t( ) d ( ) dj oscillate, a phenomenonwell-known in
power engineering [15, 21]. In the direct neighborhood of an equilibriumpoint in state space the oscillations are
nearly harmonic and can be decomposed into a set of eigenmodes, corresponding eigenfrequencies and
corresponding eigenvectors. The eigenfrequencies depend crucially on the connectivity of the power grid. In a
densely connected grid, oscillations are typically fast (>1Hz), while the so-called inter-area oscillations in
weakly coupled grid are significantly slower. For instance, inter-area oscillations between Turkey and the rest of
the European power grid with a period of up to 7 s have recently been observed [26].

We note that thismodel is derived from the physics of rotatingmachines [15], or alternatively by assuming
frequency-dependent loads [24]. This description includes hydro power aswell as power plants based on nuclear
and fossil fuel, which dominate todayʼs grid. It is expected that a rising penetration of renewable energy sources
will decrease the effective inertia in the future, whichmay however be compensated by advanced power
electronic devices [48]. The future development of these aspects is still under debate and beyond the scope of the
present article.

Appendix B. Four node system

In section 4.5we used a four node system. The equations ofmotion for this system are

θ Δω

Δω αΔω θ θ θ θ γ θ θ

Δω αΔω θ θ γ θ θ

Δω αΔω θ θ θ θ γ θ θ

Δω αΔω θ θ γ θ θ

= ∈ …

= − + − + − − −

= − + − − −

= − + − + − − −

= − + − − −

τ

τ

τ

τ

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

t
j

t
P K K

T

t
P K

T

t
P K K

T

t
P K

T

d

d
for all {1, , 4}

d

d
· sin · sin

d

d
· sin

d

d
· sin · sin

d

d
· sin , (B.1)

j j

T

T

T

T

1 1 1 2 1 3 1 1 1 ˜

2 2 2 1 2 2 2 ˜

3 3 3 1 3 4 3 3 3 ˜

4 4 4 3 4 4 4 ˜

withθ θ τ= −τ t( )j j andθ θ τ= − −t T( )jT j˜ for all j.
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Corrigendum: Decentral smart grid control (2015New J. Phys.17
015002)
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The originalmanuscript (Schaefer et al 2015New J. Phys. 17 015002) contains three typographical errors that we
have corrected below. The scientific results were not affected by the typographical errors and all numerical
simulationswere carried out using the correct equations.

1.Demand response via decentral smart grid control

Equation (1) should read

∑
θ

κ
θ

θ θ+ = + −
=

( )M P t K
d

dt

d

dt
( ) sin , (1)j

j
j

j
j

k

N

jk k j

2

2
mech

1

i.e., there is a ‘+’ sign in front of the sum.

4.Dynamics and stability

4.3.Delayed adaptation: risks from resonances
Equation (31) should read

τ
α γ

λ
π
λ

= − + ∈ n n
arccos( )

Im( )

2

Im( )
, . (2)

This does not change the periodicity of the solution since λIm( ) is constant and not a function of τ.

4.4. Stabilization by averaging
Finally, equation (34) should read

λ λ αλ γ= + + − + − =λτ λ τ− − +( )p K
P

K T
( ) 2 1 e e 0. (3)T2

2

2
( )

The original equation used an erroneousminus sign.
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Network Dynamics, Max Planck Institute for Dynamics and Self-Organization

(MPIDS), 37077 Göttingen, Germany

Carsten Grabow

Potsdam Institute for Climate Impact Research, 14412 Potsdam,

Germany

Sabine Auer

Potsdam Institute for Climate Impact Research, 14412 Potsdam,

Germany and

Department of Physics, Humboldt University Berlin, 12489 Berlin,

Germany

Jürgen Kurths

Potsdam Institute for Climate Impact Research, 14412 Potsdam,

Germany

Department of Physics, Humboldt University Berlin, 12489 Berlin,

Germany

Institute of Complex Systems and Mathematical Biology, University of Aberdeen,

Aberdeen AB24 3FX, UK and

Department of Control Theory, Nizhny Novgorod State University,

606950 Nizhny Novgorod, Russia

Dirk Witthaut
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(Dated: 11 February 2016)

Renewables will soon dominate energy production in our electric power system. And

yet, how to integrate renewable energy into the grid and the market is still a subject

of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a

robust and decentralized approach to balance supply and demand and to guarantee a

grid operation that is both economically and dynamically feasible. Here, we analyze

the impact of network topology by assessing the stability of essential network motifs

using both linear stability analysis and basin volume for delay systems. Our results

indicate that if frequency measurements are averaged over sufficiently large time in-

tervals, DSGC enhances the stability of extended power grid systems. We further

investigate whether DSGC supports centralized and/or decentralized power produc-

tion and find it to be applicable to both. However, our results on cycle-like systems

suggest that DSGC favors systems with decentralized production. Here, lower line

capacities and lower averaging times are required compared to those with centralized

production.

PACS numbers: 05.45.Xt: Oscillators, coupled, 89.75.-k: Complex systems, 84.70.+p:

High-current and high-voltage technology: power systems; power transmission lines

and cables, 88.05.Lg: Cost, trends in renewable energy

2

70 Chapter 4. Taming Instabilities by Decentralized Control



I. INTRODUCTION

The ongoing climate change is forcing us to shift our power generation from fossil power

plants towards renewable generation1. In the last years, renewable energy technology devel-

opment and policy support led to a tremendous increase in the share of Renewable Energy

Sources (RES). In 2014, Germany covered 27.8% of its gross electricity consumption with

RES2. Still, large conventional power plants dominate the power grids: transmission lines

connect large plants with regional consumers in a locally star-like topology. With more

renewable power sources entering, the grid topologies become more decentralized and more

recurrent due to the distributed generation3. In such a scenario, consumers may act as pro-

ducers and consumers at the same time, so-called prosumers4 and electricity transport is no

longer unidirectional.

A known challenge of many renewable sources is their volatile nature5–7. Fluctuations

occur on different time scales, including seasonal, inter-day8 and intra-second fluctuations9.

This requires radical changes in the control and design strategies of electric power grids as

well as market innovations to ensure cost effectiveness. Therefore, a need for more flexibility

options for power market supply and balancing energy10 arises because the fluctuating RES

cannot guarantee power supply with the certainty conventional plants could. In this regard,

it is most important to identify options that are both cost efficient and system stabilizing.

So far, the framework of power market design and power grid stability with its long planning

horizons does not satisfy the need for sufficient flexibility options11.

Different smart grid approaches have been proposed to present ways to match supply

and demand in such a fluctuating power grid. However, economic and political feasibility

and market integration are often missed out. A key idea of various smart grid concepts

is to regulate the consumers’ demand12, a massive paradigm shift compared to the current

power grid operation schemes13,14. Many proposals for smart grids are based on sufficient

information and communication technology infrastructure, see, e.g.,15 or16. However, such

a centralized system would raise questions of cyber security and privacy protection17,18 and

several studies highlight the cost burden these proposals implicate19.

In contrast, an alternative approach without massive communication between consumers

and producers directly utilizes the grid frequency to adjust production and consump-

tion. The frequency increases in times of power excess while it decreases in times of
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underproduction20,21. A novel smart grid concept, Decentral Smart Grid Control (DSGC),

was introduced in22, based on earlier ideas by20, and its mathematical model proposed and

analyzed in23. Using DSGC prosumers control their momentary demand on the basis of

the grid frequency which can easily be measured everywhere with cheap equipment. Ref.23

demonstrates that DSGC enhances the stability of the power grid dynamics if the frequency

measurements are averaged over sufficiently long time intervals. Yet, so far, only very small

networks were investigated. Hence, the impact of grid topologies on power grid dynamics

with DSGC constitutes a widely open research question.

Here we analyze the impact of network topology by assessing the stability of essential

network motifs using both linear stability analysis of delay systems and determining basin

volume. Furthermore, we address the question, how grid stability changes when generation

is decentralized. The article is structured as follows. First, we present a dynamical model

for power grid dynamics and present the concept of Decentral Smart Grid Control (DSGC)23

to control a power grid in section II. In section III, we briefly summarize linear stability

and basin volume measures for such delayed systems. The stability results of DSGC are

then presented for a star motif in section IV A where we discuss the destabilizing resonance

and rebound effects and how stable grid operation remains possible. Using linear stability

analysis, we investigate the effect of decentralized power generation in cyclic and square

lattice grid motifs in section IV B. The results suggest that DSGC works successfully for

centralized as well as decentralized production, where grids with decentralized production

require lower line capacities than centralized ones.

II. COUPLED OSCILLATOR MODEL WITH DECENTRAL SMART GRID

CONTROL

To model the frequency dynamics of a large-scale power grid, we consider an oscillator

model based on the physics of coupled synchronous generators and synchronous motors,

see24–30 for details. This model is similar to the ”classical model”31 and the ”structure pre-

serving model”32 from power engineering.

The state of each machine i ∈ {1, ..., N} is characterized by the rotor angle θi(t) relative

to the grid reference rotating at Ω = 2π × 50 Hz or Ω = 2π × 60 Hz, respectively, and its

angular frequency deviation ωi = dθi/dt from the reference. Each machine is driven by a

4

72 Chapter 4. Taming Instabilities by Decentralized Control



mechanical power Pi(t), which is positive for a generator and negative for a consumer. In

addition, every machine transmits electric power via the adjacent transmission lines which

have a coupling strength Kij. This coupling strength expresses the maximal possible power

that may theoretically be transmitted through the power lines. The dynamics of the machine

i is then given by the equation of motion as

d2θi
dt2

= Pi − αi
dθi
dt

+
N∑

j=1

Kij sin(θj − θi) ∀i ∈ {1, ..., N}, (1)

where αi is a damping constant. We neglect ohmic loads which should be small compared

to shunt admittances33 for the dynamics we consider. We take the moment of inertia to be

identical for all machines and hence eliminate such moments of inertia in the equation of

motion for simplicity of presentation. Equation (1) as well as the upcoming equations (5)

and (6) are discussed in more detail in23.

Decentral Smart Grid Control (DSGC) is based on Demand Response that aims to stabi-

lize the power system by encouraging consumers to lower their consumption in times of high

load and low production and increase consumption in times of low load but high production.

Instead of paying a constant price for electric power, consumers are presented with a linear

price-frequency relation pi(
dθi
dt

)

pi(
dθi
dt

) = pΩ − c1 ·
dθi
dt

(2)

to motivate grid-stabilizing behavior. Although consumer reaction might be very complex,

we assume a linearized power-price relation P̂i(pi)

P̂i(pi) ≈ Pi + c2 · (pi − pΩ) (3)

by the consumers close to the stable operational state. Plugging (2) into (3) and defining

γ = c1 · c2 leads to a linear response of consumed and produced mechanical power P̂i(t) as

a function of frequency deviation dθi/dt:

P̂i(t) = Pi − γi
dθi
dt

(t) ∀i ∈ {1, ..., N}, (4)

where γi is proportional to the price elasticity of each node i, i.e., measures how much a

producer or consumer is willing to adapt their consumption or production, see also23. In

general, such an adaptation will not be instantaneous but will be delayed by a certain time τ
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FIG. 1. Using linear relations the power becomes a linear function of the frequency

deviation dθi/dt. (a): We assume a linear price-frequency relation to motivate consumers to sta-

bilize the grid. For example, if the production is larger than consumption, the power grid frequency

increases. Hence, decreasing prices should motivate additional consumption. (b): Although con-

sumers might react non-linearly towards price-changes (dark blue), we assume a linear relationship

(light green) close to the operational frequency Ω which corresponds to dθi/dt = 0.

by a measurement and the following reaction. We can now substitute the function P̂i(t− τ)

from (4) for the fixed value Pi in the uncontrolled system (1) and obtain the equation of

motion

d2θi
dt2

= Pi − αi
dθi
dt

+
N∑

j=1

Kij sin(θj − θi)− γi
dθi
dt

(t− τ) ∀i ∈ {1, ..., N}, (5)

with DSGC including a delayed power adaptation. In23 it was already shown that such a

delayed system poses risks to the stability of the power grid for certain delays τ . Hence,

an extension using frequency measurements averaged over time intervals of lengths T were

introduced to stabilize the power grid regardless of the specific delay. Such averaging yields

d2θi
dt2

= Pi − αi
dθi
dt

+
N∑

j=1

Kij sin(θj − θi)−
γi
T

∫ t

t−T

dθi
dt

(t′ − τ)dt′ (6)

= Pi − αi
dθi
dt

+
N∑

j=1

Kij sin(θj − θi)−
γi
T

(θi(t− τ)− θi(t− τ − T )) ∀i ∈ {1, ..., N}.(7)

For what follows, we choose homogeneous averaging time T for all machines, as well as

similar delays τ for all nodes. In addition, we use homogeneous capacities Kij = K for

all lines to simplify the calculations. In the section IV we apply equations (5) and (6) to
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different network topologies and evaluate their stability as a function of the delay τ with

different averaging times T . We hereby treat the averaging time T as a control parameter

that can be chosen when setting up the system, while the delay τ remains as an exogenous

parameter introduced by the consumers and producers.

III. ASSESSING ROBUST OPERATION

Here, we discuss how linear stability analysis and measuring basin volume yield infor-

mation about robust operation, in dependence of delay τ and for different averaging times

T . First, we introduce the fixed point of the system, then discuss linear stability analysis

of delayed systems and finally point out difficulties when assessing basin volume of a power

grid system with delay.

a. Fixed points. To study the stability and the role of the system parameters, we

analyze the dynamical stability around the steady-state operation of the grid given by the

fixed point
(
θi(t),

dθi
dt

(t)

)
= (θ∗i , ω

∗
i ) ∀i ∈ {1, ..., N}, (8)

as obtained by solving

d2

dt2
θi =

d

dt
θi = 0 ∀i ∈ {1, ..., N}. (9)

Since ωi = dθi/dt we directly obtain ω∗i = 0 for all i. Hence, we only need to determine the

angles θ∗i . A fixed point can only exist, if the grid has a sufficient transmission capacity Kij

to transmit the power from the producers to the consumers34. The minimal Kij for which a

stable fixed point exists is called critical coupling26.

b. Linear stability. Linear stability of a dynamical system is determined by the eigen-

values of its characteristic equation. For systems without delay this is a polynomial obtained

from the Jacobian of the system but for a delayed system it becomes a quasi-polynomial

with infinitely many solutions35,36. We obtain the characteristic equation by calculating the

Jacobian of both the non-delayed system, based on equation (5) with τ = 0,

J0 =




∂
∂θi

(
d
dt
θj
)

∂
∂ωi

(
d
dt
θj
)

∂
∂θi

(
d
dt
ωj
)

∂
∂ωi

(
d
dt
ωj
)


 ∈ R2N×2N , (10)

7

75 Chapter 4. Taming Instabilities by Decentralized Control



and the derivatives for the delayed terms involving τ ,

Jτ =




∂
∂θτ,i

(
d
dt
θj
)

∂
∂ωτ,i

(
d
dt
θj
)

∂
∂θτ,i

(
d
dt
ωj
)

∂
∂ωτ,i

(
d
dt
ωj
)


 ∈ R2N×2N , (11)

where we abbreviated θτ,i = θi(t− τ) and ωτ,i = dθi
dt

(t− τ) and i, j ∈ {1, ..., N}. We hereby

consider exponentially decaying or growing solutions35. The stability eigenvalues λ are then

determined by the solutions of the characteristic equation

p(λ) = det(J0 + e−λτJτ − λ1l ) = 0. (12)

For the delayed system with averaging, i.e., equation (6), we simply calculate the delayed

Jacobian for the two delays τ and T̃ = T + τ . Hence, the characteristic equation is given by

p(λ) = det(J0 + e−λτJτ + e−λT̃JT̃ − λ1l ) = 0. (13)

We obtain the symbolic expression for the characteristic equation using Mathematica37 which

is then also used to numerically determine roots of the characteristic equation, via Newton’s

method. Equations (12) and (13) have infinitely many solutions but only a finite number of

those can have a positive real part and those determine the instability of the system38.

Our method of finding these eigenvalues works as follows: We start at an arbitrary

delay τ = τsampling > 0 and let Mathematica find approximately 10,000 roots by choosing

random complex initial conditions for Newton’s algorithm. Afterwards, we delete double

entries. The obtained eigenvalues are taken as the initial conditions for Newton’s algorithm

for the next larger delay τ = τsampling + 0.01s. These eigenvalues then serve as the initial

conditions for the next delay step etc. Similarly, we obtain eigenvalues for smaller delays

like τ = τsampling − 0.01s by using again the eigenvalues from τsampling as initial conditions.

Linear stability analysis quantifies whether a fixed point is stable to small perturbations

and constitutes a fundamental aspect of stability in dynamical system. Assessing the sta-

bility of the system with respect to larger perturbations requires further analysis.

c. Basin volume. The global stability of a fixed point of a dynamical system can be

quantified by the volume of its basin of attraction. An estimate for the basin volume Vbasin

is determined numerically using a Monte Carlo method as the ratio of initial conditions

converging to a stable operation state to the total number of initial conditions, as proposed

in39. Note that delayed systems are infinite-dimensional35 and do need an initial function
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instead of a single initial condition. We treat this problem by setting the initial function to

be identical to the initial condition for all times smaller than zero, i.e,

θ(t ≤ 0) = θ(t = 0), ω(t ≤ 0) = ω(t = 0). (14)

Thereby, we can effectively choose initial conditions as they completely define the initial

function. In the following we take M = 1000 randomly chosen initial conditions into account

in order to estimate the basin volume’s dependence on the delay time τ .

We are mainly interested in how fluctuations or disturbances in the energy generation

will influence the system’s dynamics. Hence, we first perturb the producer’s node phase

angle and angular velocity around its component of the fixed point (see fig. 2a for the

network topology). In the next series of simulations, we perturb one randomly selected

customer node around its component of the fixed point. Perturbations are uniformly chosen

at random from the intervals ∆θi ∈ [−π, π] and ∆ωi ∈ [−30, 30] Hz for the initial angles

and initial frequencies respectively, similar to29,40. We run the simulations for a simulation

time of tsim = 1500s. These long and computationally costly simulation times are necessary

because we observed that for specific values of delay time τ , e.g., τ = 1.4s, perturbations

may decay relatively quickly toward the fixed point but later still escalate.

Note that we only consider so-called single node basin volumes, i.e., we only perturb

the component the a fixed point of one node. In theory, all nodes could be perturbed

simultaneously which results in a more complete sample of the phase space. Unfortunately,

the total phase space volume grows exponentially with the number of nodes, making it

infeasible to sample the full phase space.

IV. RESULTS

We now present results about networks with Decentral Smart Grid Control. First, we

present and compare the results of linear stability and basin volume analysis of a four node

star motif. This motif constitutes one of the main building blocks of power grids, since,

in principle, its effective topology locally resembles a star, the central node being a large

power plant that supplies the regional consumers in its vicinity6,26. Hereby, we discuss

the destabilizing effects of resonances and the ”rebound effect” for large delays. Using basin

volume we present how intermediate delays τ benefit the stability. Finally, we consider larger
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networks and demonstrate how decentralization enhances stability. The parameters of the

swing equation are calculated from standard literature values31,40. In current (European)

power plants the initial delays have to be smaller than 2 seconds according to European

regulations41, in practice they will be significantly smaller. However, in future power grids

additional communication delays42 of the order of several hundred milliseconds might arise

in addition to unknown delays caused by demand response and additional power electronics.

Hence, we consider a large range of potential delays τ ∈ (0, 5)s looking for the boundary of

acceptable delays.

A. Stability of the star motif

3
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FIG. 2. Resonances and large delays τ destabilize the four node system. (a): An

elementary building block in a power grid with centralized production is shaped like a star. Shown

is a motif whose linear stability and basin volume we study. The network is formed of one producer

(green) in the center with power Pproducer = 3/s2 and three consumers (red) with power Pconsumer =

−1/s2 each. (b): Plotted are the eigenvalues with the largest real part as functions of delay τ . For

no averaging (dark blue curve), stable and unstable regions exist. For an averaging of T = 2s, the

system is stable for all delays below a critical τc ≈ 8s. In (6) parameters α = 0.1/s, K = 8/s2 and

γ = 0.25/s were applied.

d. Delays induce destabilizing resonances. Networks with star topology (fig 2a) exhibit

stability properties that depend crucially on the delay and the averaging applied (fig. 2b).

Without any averaging (fig. 2b dark blue curve), there are delays τ for which the fixed point

is linearly unstable, i.e., there are eigenvalues with a positive real part Reλ ≥ 0. Those
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eigenvalues exhibit a periodic behavior with respect to the delay τ . Operating the power grid

at a delay τ for which we find a positive real part, e.g., τ ≈ 1s, is equivalent to resonantly

driving the power grid away from the fixed point instead of damping it towards stable

operation. These destabilizing delays are linked to the eigenfrequency of the oscillators in

the power grid. If the delay is half the eigenoscillation duration, then it increases amplitudes

of perturbations instead of damping them. This destabilization only occurs for α < γ because

the resonant driving has to be larger than the intrinsic damping of the system, see also23.

Introducing sufficiently large averaging times into the control cures these instabilities (fig.

2b light green curve); the unstable regions vanish for all delays τ < 7s.

e. Rebound effect for large delays. For delays larger than a critical delay τ > τc ≈ 8.7s

the system always gets destabilized, i.e., there is an eigenvalue with Re(λ) > 0. This

rebound effect acts on a longer time scale than the intrinsic oscillations of the power grid

system and originates from an over-reaction of the attempted damping as we explain below.

The existence of such a rebound effect is independent of averaging T (fig. 2). We determine

the critical delay without averaging τc to be

τc =
arccos

(
−α
γ

)

√
γ2 − α2

+
2πn√
γ2 − α2

, n ∈ Z. (15)

This result is obtained by the following considerations. We define the sum of all angles as

Σθ :=
∑N

i=1 θi and obtain its equation of motion by using eq. (5) as

d2

dt2
Σθ(t) = −α d

dt
Σθ(t)− γ d

dt
Σθ(t− τ). (16)

The characteristic equation of this equation reads

p (λ) = −α− γe−λτ − λ = 0, (17)

where we eliminated a zero eigenvalue λ = 0 which arises due to the possibility to shift all

angles by a constant. For τ = 0 the eigenvalue λ = −α − γ is negative as α > 0 and γ > 0

and hence the system is stable with respect to the sum Σθ. For larger delays τ > 0 we set

λ = i · ξ to obtain the delays for which the stability changes. We get

−α− γe−iξτ − iξ = 0. (18)
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Applying complex expansion and separating into real and imaginary parts we obtain

−α− γ cos(ξτ) = 0 (19)

γ sin(ξτ)− ξ = 0. (20)

These equations can be solved for τ and ξ to yield the critical delay as in eq. (15). Note that

a critical delay τc only exists, if the price adaptation is larger than the intrinsic damping

of the system γ > α. Following straight-forward calculations we can prove that eigenvalues

obtained from eq. (17) always destabilize the system, i.e., their real parts are positive for

all delays larger than the critical one,

Re(λ(τ)) > 0 ∀τ > τc. (21)

These results hold for all network topologies, since we needed no assumptions regarding the

coupling matrix Kij or the power production Pi. Predicting the precise scaling of the critical

delay as a function of the averaging time T is not easily possible but an approximation for

small ξT is obtained as

τc(T ) ≈

√
T 2γ2 − 4 arctan

[
(α+γ)
√
T 2γ2−4

(2+Tγ)
√
α2−γ2

]

√
α2 − γ2

, (22)

which is a decreasing function in T for parameters α, γ, T > 0. Hence, increasing averaging

time T causes the rebound effect to occur for smaller delays τ .

We conclude that the delay τ has to be smaller than a critical value τc to ensure stability.

This critical value depends only on the intrinsic damping α and the price adaptation γ and

decreases for increasing averaging T , while it is valid for all network topologies. Hence, to

avoid problems with large delays, we have to enforce all actors of the power grid to react

within less then this critical delay τc or need to ensure that intrinsic damping is larger

than the price adaptation: α > γ. For the next section, we restrict ourself to the interval

τ ∈ [0, 5]s to avoid this destabilizing rebound effect.

f. Intermediate delays benefit stability. With the help of linear stability we observed

that delays induce destabilizing resonances which can be suppressed by prosumers respond-

ing to averaged frequency data. At the same time large delays destabilize the system by

introducing a rebound effect. These results are supplemented by information from basin

volume analysis. For DSGC with averaging (fig. 3b and c), we demonstrate how interme-

diate delays τ are beneficial for the stability of the system. The basin volume increases
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FIG. 3. Stability and basin size for the star topology (see fig. 2). Intermediate delays

result in large basin volume if averaging is switched on. Shown are the real parts of the

eigenvalues for the 4 node star motif (dark blue) as well as the basin volume of the producer (dark

red) and of one consumer (orange) as functions of the delay τ for different averaging times: Ta = 0s,

Tb = 1s, Tc = 2s. Parameters α = 0.1/s, K = 8/s2 and γ = 0.25/s were applied. For delay τ = 2.1s

simulations were repeated 21 times, averaged and the standard deviation is shown as a typical error

bar.
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with greater delay Vbasin(τ > 0) > Vbasin(τ = 0) until, for delays τ ≈ 4s, we obtain close to

perfect stability with Vbasin ≈ 1 both for an averaging Tb = 1s and Tc = 2s. In the previous

paragraph we demonstrated that high averaging times and large delays always destabilize

the power grid. Hence, we observe a trade-off in curing resonances with averaging and avoid-

ing the rebound effect for delays larger than a critical value τc. Furthermore, basin volume

reveals that disturbances in a consumer node are less likely to destabilize the system than

perturbations of the producer (compare dark red and light orange curves in fig. 3). This

is intuitively clear as there is only one producer and the topology increases its importance

even more.

We conclude that Decentral Smart Grid Control can be applied to the star motif if an

averaging time of at least T = 2s is used or the price elasticity is smaller than the intrinsic

damping γ < α. Additionally, intermediate delays τ ≈ 4s incorporate the trade-off between

curing either destabilizing resonances or rebound effects. They increase the basin volume of

the system and thereby benefit the overall stability of the power grid.

B. Effect of decentralized production

In this section we demonstrate that switching from central to decentralized production

improves the linear stability in the power grid topologies we investigate for small and in-

termediate delays. Specifically, we analyze linear stability for moderately sized lattice and

cycle networks for different central and decentralized power production.

For a cycle network decentralization enhances stability significantly (fig. 4). For a power

line coupling of K = 8/s2 centralized and decentralized production result in similar stability

(fig. 4b and e). However, when choosing the critical coupling of the cycle network, i.e.,

the minimal coupling needed so that there exists a fixed point26, K = 4/s2, the cycle with

central production cannot be stabilized for all considered delays, while this is possible for

decentralized production (fig. 4c and f).

A lattice-like topology for power grids allows stable operation with central power produc-

tion (fig. 5). Choosing large couplings of K = 8/s2 (fig. 5b and e) or even K = 4/s2 (fig. 5c

and g), decentralized and centralized production result in very similar stability. Even when

operating at the critical coupling of the lattice-like topology K = 2/s2, the central power

production can be stabilized for sufficiently large averaging time T = 4s (fig. 5d and h).
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FIG. 4. Central power production in a circle network requires larger capacity K than

in decentralized power grids. Shown are the ranges of delay τ for which the power grid motifs

with central production (a) or decentralized production (d) are linearly stable. Panels (b) and

(e) present ranges for a high capacity K = 8/s2, whereas (c) and (f) for K = 4/s2. Overall, the

regions of stability tend to become larger, the larger the average time T . Parameters α = 0.1/s

and γ = 0.25/s were applied.

Note that we chose γi = 0.25/s for all nodes in the networks. Hence, the large producer

with Plarge = 8/s2 adapts relatively less compared to the smaller producers with Psmall = 2/s2.

Nevertheless, the overall adaptation of the whole network is

∆P =
N∑

i=1

γi · |∆ω|, (23)

with |∆ω| being the maximal angular frequency deviation. Hence, the maximal adaptation

∆P is independent of the power distribution.

We conclude that a centralized power production requires larger transmission capacities

compared to a decentralized power production to guarantee stable power grid operation. An

averaging time of T ≈ 4s stabilizes the power grid with Decentral Smart Grid Control for

all considered delays. Note that our decentralized production utilized short distances to the

consumers. Decentralized power production tends to allow smaller averaging times, thereby
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FIG. 5. Central and decentralized power production in a lattice-like topology lead to

similar stability. In contrast to the cycle network, the lattice-like topology is stable for lower

couplingK. Shown are the ranges of delay τ for which the power grid motifs with central production

(a) or decentralized production (e) are linearly stable. Panels (b) and (f) present ranges for a high

capacity K = 8/s2, (c) and (g) for an intermediate capacity K = 4/s2, finally (d) and (h) for

K = 2/s2. Overall, the regions of stability tend to become larger, the larger the average time T .

Parameters α = 0.1/s and γ = 0.25/s were applied.

offering a greater safe operating space. In addition, a highly connected topology like a lattice

outperforms the less connected cycle in terms of stability.

V. SUMMARY AND DISCUSSION

In this article we applied the concept of ”Decentral Smart Grid Control” (DSGC), as

proposed in23, to different motifs and small networks. We first determined both the linear

stability and the basin volume of a 4-node-star motif in dependence on the delay time τ

(see equation 5) and for fixed averaging times T (see equation 6). Linear stability analysis
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reveals two destabilizing effects for the power grid: First, resonance catastrophes destabilize

the system periodically. This instability can be cured by applying sufficient averaging (fig.

2). Secondly, a rebound effect emerges for large delays and destabilizes the system regardless

of averaging. The rebound effect sets an upper limit for the delay τ = τc and magnitude

of adaptation response γ as it has to be smaller than the intrinsic damping of the system

α. Basin volume analysis gives further probabilistic insight on how well DSGC tames grid

instabilities. For large averaging times T and intermediate delays τ , basin volume approaches

unity (fig. 3). Hence, for DSGC exists a trade-off in curing resonances with averaging and

larger delays and avoiding the rebound effect for delays larger than a critical value τc.

Summarizing the results from linear and basin volume analysis, adaptation has to be

smaller than the intrinsic damping of the system (γ < α) or the demand response time

needs to be located in a delay window of safe operation (τ < τc). For values above the

critical delay τc the system becomes always destabilized, regardless of the averaging time.

At the same time, averaging and increasing delay is beneficial for system stability in terms

of basin volume. These results have strong implications on how parameters has to be set for

real world applications of DSGC.

In the last section of this article, we demonstrated the usefulness of DSGC with central-

ized as well as with decentralized power production: While it works in both cases, central

production requires larger line capacities K. For the lattice-like topology, this effect can be

compensated by using longer averaging times. But decentralized power production is clearly

advantageous.

Next research steps include considering heterogeneous networks, i.e. the use of different

τ , γ, T values for individual nodes, modifying the averaging method, e.g., to a discrete time

window and extending the DSGC framework to larger network topologies. In this context,

there remain a couple of open questions that will have to be investigated in more detail,

namely: What is the reason that we observe delays τ for which Vbasin(τ) > Vbasin(τ = 0),

in particular for larger averaging times? Do we need even larger averaging times T when

we go to larger networks? How large is the safe operating space to cure instabilities by

resonances while avoiding the rebound effect for different networks? These are all widely

open questions.

In this article, we have demonstrated that Decentral Smart Grid Control constitutes a

promising control concept, in particular for future power grids that will be more decentralized
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than the present one.
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Shifting our electricity generation from fossil fuel to renewable energy sources introduces large fluctuations to
the power system. Here, we demonstrate how increased fluctuations, reduced damping, and reduced intertia may
undermine the dynamical robustness of power grid networks. Focusing on fundamental noise models, we derive
analytic insights into which factors limit the dynamic robustness and how fluctuations may induce a system
escape from an operating state. Moreover, we identify weak links in the grid that make it particularly vulnerable
to fluctuations. These results thereby not only contribute to a theoretical understanding of how fluctuations act
on distributed network dynamics, they may also help designing future renewable energy systems to be more
robust.

DOI: 10.1103/PhysRevE.95.060203

Introduction. The development of a sustainable energy
supply is one of the major technical, economical, and societal
challenges of the coming decades. To mitigate climate change,
the majority of existing fossil-fuel power plants will be
replaced by renewable energy sources, in particular wind and
solar power [1,2]. This requires a comprehensive reengineering
of the electric power grid as well as a better understanding of
the operation, dynamics, and stability of complex networked
systems [3–6].

The operation of wind turbines and photovoltaics is essen-
tially determined by the weather such that the power generation
fluctuates strongly on all time scales [7]. Large storage and
backup infrastructures are needed to balance power generation
and demand on time scales of hours to months [8]. In addition,
the high-frequency fluctuations can be enormous, in particular
due to the turbulent character of wind power [9,10]. At the
same time, large fossil-fuel plants are closed down such
that the effective inertia and damping decreases, making
the power grid more vulnerable to instabilities by transients
[11].

Here we analyze how high-frequency fluctuations threaten
the dynamical robustness of electric power grids. The stable
operation of a grid requires all generators and loads to remain
phase locked. We analyze the robustness of this phase-locked
state, mapping the grid dynamics to an escape problem in a
high-dimensional stochastic dynamical system. This analysis
reveals essential factors which limit the operability of future
power grids. Furthermore, we uncover how the network topol-
ogy determines the robustness of the grid and identify potential
escape routes and vulnerable links in complex networks.

Synchronization and robustness of electric power grids.
Consider first the dynamics of coupled synchronous genera-

*Current address: Department of Micro- and Nanotechnology,
Technical University of Denmark, 2800 Kongens Lyngby, Denmark.

tors and consumers j ∈ {1, . . . ,N}. Each unit’s dynamics is
described by the swing equation [12–14] for the mechanical
rotor angle δj and the phase velocity ωj relative to the grid
reference frequency � = 2π × 50 (or 60) Hz,

δ̇j = ωj , (1)

2Hj

�
ω̇j + 2�Djωj = Pj − P

(el)
j , (2)

where the right-hand side is the net power acting on the
machine. The swing equation is made dimensionless by
dividing all terms by the rated power of the machine, which
is referred to as the “per unit system” in engineering [12].
The inertia constant Hj then gives the stored kinetic energy
at synchronous speed which is proportional to the moment
of inertia of the j th machine and Dj is a damping constant.
If not mentioned otherwise, we assume a typical value of
inertia Hj = H = 4 s and a damping constant of Dj = D =
4 × 10−5 s2 [15,16].

The input power Pj driving a machine can be subject
to strong fluctuations on various time scales induced by
renewable resources [9] or consumer behavior [17]. We thus
analyze the robustness of the phase-locked state to stochastic
fluctuations ξj (t), i.e., we set

Pj (t) = P̄j + ξj (t). (3)

The electric power P
(el)
j exchanged over a transmission

line is determined by the difference of the voltage phase
angle of the two terminal nodes. For a common two-pole
machine the voltage phase angle equals the mechanical phase
angle such that the transmitted real power reads Kij sin(δi −
δj ). The capacity parameter Kij , describing the maximally
transmittable power on the transmission line between nodes i

and j , is determined by the susceptance Bij of the line and the
voltage levels Ei and Ej at the two units as Kij = BijEiEj .
We note that K gives the physical limit of the transmitted real

2470-0045/2017/95(6)/060203(5) 060203-1 ©2017 American Physical Society
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FIG. 1. Fluctuating power input may desynchronize a syn-
chronous generator. (a),(b) When the input power P fluctuates, the
generator can lose synchrony to the grid after an escape time τ .
(c) The generator dynamics corresponds to the motion of a particle
in a tilted washboard. The fluctuations can drive the particle over
the potential barrier of height �U . (d) Kramer’s escape rate theory
predicts the escape process for Gaussian white noise. Theoretical
prediction, Eq. (5), (black lines) perfectly predicts the mean escape
times τ̄ for intermediate damping (D = 4 × 10−5 s2) as checked by
direct numerical simulations (symbols). The averaged escape time
crucially decreases with increasing load P of the system. (e) Weaker
damping D undermines system robustness, which can become a major
problem in future power grids. (Parameters: H = 4 s,K = 1, and
P̄ = 0.95, if not stated otherwise.)

power in the lossless case of our dynamical model. Ohmic
losses can lead to an overheating of lines on longer time scales
leading to the definition of thermal capacity, which includes a
security limit by the grid operators [12,18].

In a complex network of lines and generators the total
electric power transmitted from machine j is thus given
by P

(el)
j = ∑

i Kij sin(δi − δj ). Stable operation of the grid
requires all units to be in a phase-locked state where δi − δj is
fixed. Otherwise, the transmitted electric power P

(el)
j (t) would

oscillate and average out over time [14,15,19–21]. Throughout
this Rapid Communication we assume a heavily loaded grid,
where phase differences are comparably large in the stable
phase-locked state. Such a situation is yet uncommon, but will
become increasingly likely in the future [22]. Other scenarios
are analyzed in the Supplemental Material [23], including less
heavily loaded transmission lines, inverters without inertia
H [24], and higher-order power grid models including voltage
dynamics [12,25].

Robustness of a single generator. First, consider a single
generator coupled to a large bulk grid. The steady-state
operation of the generator is described by a stable phase-locked
state, a fixed point of the swing equation with a constant phase
difference δ relative to the grid. Fluctuations of the input
power P can destabilize the grid as illustrated in Figs. 1(a)
and 1(b). As soon as the generator leaves the basin of attraction
of the stable phase-locked state after some time τ it rapidly

desynchronizes. Such a serious contingency requires immedi-
ate emergency measures to avoid a global network failure.

We analyze desynchronization due to white noise by
Kramer’s escape rate theory [26–29] as follows: The equation
of motion for the generator is equivalent to a driven dissipative
particle moving in a tilted washboard potential [30], i.e.,
δ̈ + (�2D/H )δ̇ = (�/2H )[−dU/dδ + ξ (t)] with the effec-
tive potential [31]

U (δ) = −P̄ δ − K cos(δ). (4)

Thus, to escape the basin of attraction around a local minimum
of U (δ) the particle must overcome a potential barrier of height
�U [see Fig. 1(c)], which is determined by the transmitted
power P and the capacity K . For Gaussian white noise ξ (t)
with standard deviation σ the mean escape time is given by [27]

τ̄ = 2πλ√
U ′′(δmin)|U ′′(δmax)| exp

(
2γ �U

σ 2

)
, (5)

with effective damping γ = 2D� and 2λ = γ +√
γ 2 + (8H/�)|U ′′(δmax)| for intermediate damping and

U ′′(δmin) and U ′′(δmax) being the second derivatives of the
potential evaluated at the local minimum and the saddle point
of the potential U (δ), respectively [27]. Numerical simulations
averaged over 2000 escape processes for each value of σ show
excellent agreement with this prediction [see Fig. 1(d)].

Major concerns about the stability of future power
grids arise from the increased transmission needs and lines
loads [22] as well as a possible lack of effective inertia and
damping when conventional generators are replaced by renew-
ables [11]. Heavily loaded lines are indeed very susceptible to
desynchronization as shown in Fig. 1(d). Increasing the load
P rapidly decreases the escape time τ̄ . Similarly, a decrease
of the effective damping factor D implies a rapid decrease of
τ̄ [Fig. 1(e)]. In contrast, the inertia H has a minor effect only,
as it enters the escape rate (5) only through the nonexponential
prefactors [23].

We note that this stability assessment defined by Kramer’s
escape rate is complementary to existing studies investigating
large-scale perturbation in power grids in terms of Lyaponiv
exponents [32], basin stability [33], or cascading failures
[34–36]. Our stochastic approach focuses on small perturba-
tions eventually driving the grid out of synchrony in contrast
to singular large disturbing events.

Escape dynamics in phase space. The essential factors in
Kramer’s formula (5) are the amplitude of the noise σ , the
effective damping γ , and the height of the potential barrier
�U . The theory of random dynamical systems [29] implies
that in the limit of weak noise (σ → 0) the system escapes the
basin of attraction in the vicinity of a saddle point, where the
potential gap to the stable fixed point is smallest. An exemplary
escape process in phase space is shown in Fig. 2 for the single
generator system. Intriguingly, we observe that at any nonzero
noise level σ > 0, the trajectory leaves the basin near but not
exactly at the saddle point (red dot). Only in the limit of small
perturbations, i.e., σ → 0, does the system leave the fixed
point exactly at the saddle.

The saddle point itself is characterized by a vanishing
velocity dδ/dt = 0. However, all simulated trajectories leave
the basin with a nonvanishing velocity dδ/dt > 0 (i.e.,
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FIG. 2. Where does the system escape? (a) Exemplary escaping
process of the basin of attraction in phase space. The state trajectory
(thin black line) crosses the boundary of the basin of attraction (red
line) in the vicinity of but not at the saddle point (red disk). The stable
fixed point is indicated by a green disk. (b),(c) Probability distribution
of exit points, i.e., the crossing points of the trajectory and the basin
boundary. Numerical results (histogram) compared to the theoretical
prediction, Eq. (6) (dashed black line). With increasing noise the
distribution becomes broader, i.e., a crossing at some distance from
the saddle point (red disk) becomes more probable. (Parameters:
K = 1 and P̄ = 0.95 as in Fig. 1.)

“above” the saddle point in the phase space portrait shown in
Fig. 2). More precisely, the probability density of the trajectory
on the basin boundary in phase space is given by a Weibull
function [37]

p(δ) = N δ exp

(
−λ2δ2

2σ 2
− 2�

H

|U ′′(δmax)|δ2

2σ 2

)
, (6)

where N is a normalization constant. This theoretical predic-
tion is equally well confirmed by the numerical simulations as
shown in Fig. 2 on the right. With increasing noise amplitude
the distribution gets broader, i.e., the escape velocity increases.

Escape via the weakest link. To maintain a stable operation
it is essential to know not only under which conditions, but also
how power system operation may become unstable. We first
consider a simple system of two identical generators coupled
to a bulk power grid with transmission lines of different
capacity, both being subject to independent and identically
distributed Gaussian white noise [see Fig. 3(a)]. Either of the
two generators can become unstable, such that the grid can
escape the basin of attraction of the stable phase-locked state
via two different routes. Scaling of the mean escape time is
still described by Kramer’s rate for intermediate damping,
when we take into account that the lower potential barrier
along both routes determines the escape [see Fig. 3(b)]. The
two-dimensional potential is then given as

U (δ1,δ2) = −P̄1δ1 − K1 cos(δ1) − P̄2δ2 − K2 cos(δ2).

(7)

In the limit of weak noise the escape problem is fully
determined by the path with the smallest potential barrier �U .
To illustrate this we vary the capacity K2 of the transmission
line connecting generator 2 to the bulk grid while the capacity
K1 of the other line remains fixed. For K2 < K1 the robustness
is dominated by generator 2, whose connection is weaker. The
exponent in Kramer’s formula (5) then crucially depends on the
value of K2. Indeed, the exponent obtained from the numerical

(a)

FIG. 3. The easiest escape route determines the escape time τ̄ .
(a) Two identical generators are coupled to a third node representing
the bulk grid via transmission lines with capacity K1 = 1 (constant)
and K2 (variable), respectively. The transmitted power on both lines
is P̄1,2 = 0.95. Power fluctuates on all nodes independently. (b) The
mean escape time τ̄ as a function of the noise amplitude σ . Disks
represent numerical values; the solid lines are fits to extract the
scaling exponent. (c) In this scenario, the exponent in Kramer’s rate is
determined by the lowest barrier �U , Eq. (7) of the two-dimensional
potential landscape, which is determined by min{K1,K2}, i.e., the
weaker of the two transmission line capacities. Thus it increases with
K2 as long as K2 � K1 but depends only on K1 for K2 > K1. A
comparison of numerical results obtained from exponential fits to the
data (disks) and the analytical value of the potential barrier �U (with
constant c) shows very good agreement. (d) Imbalance of the two
escape routes: p2 − p1 with p1,2 being the probability that link 1 or 2
is overloaded first, as a function of K2/K1 and the noise amplitude.
For weak noise there is a sharp transition at K2/K1 = 1, which smears
out for stronger noise. Panels (b)–(d) use a rescaled noise σ̃ = 40σ .

simulations again matches the theoretical predictions well
in terms of the potential barrier �U [see Fig. 3(c)]. If we
increase K2 beyond K1, the other transmission line becomes
the Achilles’ heal of the grid. The potential barrier and hence
the exponent in Kramer’s formula thus no longer depend on K2.
Yet, the nonexponential prefactor in the formula (5) increases
by increasing K2 further because the relative transmission line
load of the overall system decreases. When the noise becomes
stronger, the sharp transition between the two possible escape
routes gradually blurs, such that the more strongly connected
generator can become unstable too [see Fig. 3(d)].

Robustness of complex power grids. In power grids with
a less simple structure, it is essential to understand how the
topology determines robustness and to identify possible routes
of instability. This enables a precise improvement of the grid
and the elimination of weak links. Figure 4(a) shows the stable
fixed point in a grid with four generator and eight consumer
nodes. The consumer dynamics also follows Eq. (2), but with
Pj < 0. A fluctuating input can lead to a loss of synchrony
and eventually to a system-wide failure. But where does this
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FIG. 4. Vulnerable links predicted by the topology of saddle
points. Top: (a) The stable phase-locked fixed points in a model power
grid with four generators (filled circles) and eight consumers (open
circles). Shown is the phase difference δi − δj along the transmission
lines. (b) Probability that a transmission line is overloaded first
(|δi(t) − δj (t)| crosses π/2) when the grid becomes unstable due
to a fluctuating power input. Four vulnerable transmission lines
are identified. Bottom: The vulnerable transmission lines can be
traced back to four different saddle points with comparably low
potential barrier. All saddle points have exactly one transmission line
(darkest line in each plot) with |δi − δj | > π/2, corresponding to the
vulnerable lines identified in (b). The color scale shows the phase
differences as in panel (a). The networks consist of four generators
(•, Pj = +2P0) and eight consumers (◦, Pj = −P0); all lines have
capacity K = 24/19 × P0.

instability emerge and which of the transmission lines is most
vulnerable?

We simulate the dynamics with all machines subject to
independent and identically distributed white noise and record
which transmission line becomes overloaded first, i.e., we
record for which link (i,j ) the phase difference |δi − δj | first
crosses π/2. In this way we identify four transmission lines
which are vulnerable. Strikingly, these vulnerable lines are not
necessarily the ones which are most heavily loaded in the first
place. The loss of synchrony in a complex grid is a collective
process, which cannot fully be understood from fundamental
properties of single nodes or lines [38,39].

Instead, Kramer’s theory tells that the saddle points of the
entire dynamical system are decisive: As above, the grid leaves
the basin of attraction of the stable phase-locked state in the
vicinity of the saddle points. In a complex network, many
saddle points may exist. But for the application of Kramer’s
theory we only need to consider those saddle points with the
lowest potential barrier, as escape through all other saddle
points is exponentially suppressed. For the system studied
here, these saddle points are calculated systematically using a

method introduced in [40]. This method classifies the saddle
points by the number of links (i,j ) where the phase difference
|δi − δj | exceeds π/2. Typically, the higher this number, the
higher is the potential barrier.

For the sample network depicted in Fig. 4 for illustration,
this method yields four saddle points with a comparably
low potential barrier, all contributing to the escape process
(four lower panels). All four saddles have exactly one line
where the phase difference |δi − δj | exceeds π/2. The static
analysis thus yields four vulnerable lines which exactly
match the lines where overloads have been recorded in the
numerical simulations. Even more, Kramer’s rate with the
respective barrier heights again predicts the exit probabilities
(not shown).

Conclusion. In this Rapid Communication we have ana-
lyzed how high-frequency fluctuations impact the dynamical
robustness of electric power grids. Focusing on Gaussian
white noise yielded analytical access, thereby providing deeper
insights into the collective dynamics of fluctuation-driven
networks. To characterize the robustness of this stochastic
system, we derived the scaling of escape times as a function of
the grid load, inertia, damping, and the noise amplitude. These
analytic results are applicable in the dimensioning of future
renewable power grids, where effective inertia and damping
must be provided by power electronic devices. Remarkably, the
inertia H enters the escape time only algebraically, whereas
the damping enters exponentially. While the assumption of
Gaussian white noise is common when investigating power
grids under uncertainty, we go beyond the typical restriction to
case studies [41] by providing analytical insight. Furthermore,
we demonstrated how power networks may escape the regime
of stable operation. The grid escapes in the vicinity of (saddle)
fixed points with a low potential barrier. Interestingly, these
can typically be assigned to a single overloaded link, thus
revealing the weak links of the grid.

Complementary work on power grid fluctuations [25]
addresses the impact of intermittent noise and incorporates
features of real wind turbines. Such settings avert the analytic
treatment in terms of Kramer’s escape theory. The analytic
approach presented in this Rapid Communication reveals
which factors limit the robustness of power grid operation
to fluctuating inputs. The results may thus not only provide
efficient methodology to analyze fluctuation-driven oscillatory
systems but may also help planning grid extensions to assure
dynamic stability and robustness in future highly renewable
power systems.
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I. OVERVIEW

Power grids are complex systems and may be described
on di�erent levels of detail [1]. A cornerstone model of
power system dynamics is the swing equation - a second
order di�erential equation describing the mechanical ro-
tation of synchronous machines. The mechanical phase
angle typically equals the voltage phase angle, such that
it also determines the power �ows in the grid. This model
is studied in the main text for heavily loaded lines. In
this Supplemental Material we provide additional argu-
ments why this model is appropriate and explore di�erent
parameter regimes, in particular less heavily loaded lines
and the e�ects of a decreasing inertia.
Furthermore, we analyze the robustness of di�erent

power system models against noise. Wind turbines and
photovoltaics are usually connected to a grid via power
electronic inverters. Power electronic devices can act
as virtual synchronous machines described by the swing
equation, otherwise they should be described as �rst-
order Kuramoto oscillators [2�4]. The swing equation is
known to describe the short-term dynamical stability of
a power system. On longer time scales the assumption of
a constant voltage may no longer be satis�ed [5]. In this
Supplemental Material we study grids without inertia in
terms of a �rst-order model and state the appropriate es-
cape rate formula. In addition, we investigate the e�ects
of voltage variability numerically in terms of the third-
order model. For simplicity of presentation, we focus on
the scenario of one machine connected to the bulk grid.

II. POWER GRID MODELS

First, we de�ne an e�ective potential U in terms of the
voltage phase δ as

U (δ) = −P · δ −K cos (δ) , (1)

with e�ective power produced P and capacity parameter
of a line K, which describes the maximal transmittable

power of that line. In terms of this potential, the swing
equation, i.e., the equations of motion for the voltage
phase δ and its angular velocity ω becomes

d

dt
δ = ω

d

dt
ω = −Ω2D

H
ω +

Ω

2H

(
−∂U
∂δ

(δ) + ξ

)
, (2)

with the reference angular velocity Ω = 2π ·50 Hz, damp-
ing D, inertia H and Gaussian white noise ξ with stan-
dard deviation σ. Parameters used (if not stated other-
wise) are D = 4 · 10−5s2, H = 4s , P = 0.95, K = 1. In a
fully renewable power grid, which is dominated by wind
and solar power production, there will be fewer rotating
machines than today and the inertia H will be smaller.
In the extreme case all rotating machines are replaced
by inverters feeding wind and solar power into the grid.
However, it has been demonstrated that inverters can be
used to act similar to synchronous machines by provid-
ing virtual inertia, see e.g. [6, 7]. Again, the dynamics
of the inverters is preferentially modelled by using the
swing equation (2).
Furthermore, we note that the swing equation (2) is

also used in coarse grained models [1, 8]. In those mod-
els, multiple machines are aggregated into a coherent sub-
group. Each node, representing one sub group, is then
described as an oscillatory machine with e�ective power
P , damping D and inertia H. The dynamics is again
described by the swing equation.
If we model a system without physical or virtual iner-

tia, each node is best described as a Kuramoto oscillator
[2�4] with the equation of motion being

d

dt
δ =

1

2DΩ

(
−∂U
∂δ

(δ) + ξ

)
. (3)

In the main text we assumed the voltage amplitude to
stay constant even in the scenario of a heavily loaded
grid. Here, we consider the third order model [1, 5, 9, 10]
which allows the voltage amplitude E to vary over time:
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d

dt
δ = ω

d

dt
ω = −Ω2D

H
ω +

Ω

2H
(P − EE0B0 sin (δ) + ξ)

d

dt
E =

1

TE
· (Ef − E +X (E0 cos (δ) + EB11)) , (4)

with the voltage time scale TE = 1/2, bulk voltage

E0 = 1, Ef = 1, B0 = 1, B11 = −
√

1− P 2 and the
voltage droop X. For X = 0 and E (t = 0) = 1 the volt-
age remains at the �xed point E∗ = 1 at all times and
reproduces the second order model while for X > 0 de-
viations from the second order model can be observed.
Typical parameter values are taken from [9].

III. CALCULATION OF ∆U

In the main text and also in upcoming equations (8)
and (11) we use the potential di�erence ∆U . It is calcu-
lated as follows. First, we determine the minimum and
maximum of the potential U (1) as

δmin = arcsin

(
P

K

)
(5)

δmax = π − arcsin

(
P

K

)
(6)

respectively. Plugging these into (1) and calculating
∆U = U (δmax)− U (δmin) we obtain

∆U = −P ·
(
π − 2 arcsin

(
P

K

))
+ 2
√
K2 − P 2. (7)

IV. MEAN ESCAPE TIME

We simulate the system consisting of one generator
coupled to the bulk and extract the scaling of the escape
time τ̄ , depending on the noise amplitude σ, the inertia
H and the voltage droop X for the �rst, second and third
order model. For the sake of consistency and compara-
bility, we de�ne the escape time as that instance when
the system passed δcrit = π/2 and did not return to the
�xed point. Although this does not correspond exactly
to the boundary of the basin of attraction, it enables us
to compare these three di�erent models.

A. 2nd Order: Scaling with respect to inertia

Decreasing inertia H in the swing equation (2), de-
creases the escape time τ and thereby the stability of the
system, see �g. S.1. This dependency is well-described
in Kramer's escape theory

τ2nd =
2πλ√

U ′′ (δmin)U ′′ (δmax)
exp

(
2γ∆U

σ2

)
(8)

with

γ = 2DΩ (9)

and

2λ = γ +
√
γ2 + (8H/Ω) |U ′′ (δmax)| (10)

as stated in the main manuscript.

B. 2nd Order: Less loaded lines

In the main text we only considered highly loaded lines
with P ≈ 0.95K, i.e., the lines were close to maximum
load. In �g. S.2 we display that Kramer's escape theory
also holds for less loaded scenarios. We observe a good
agreement of the numerical results and the analytical pre-
diction by eq. (8). The noise amplitude σ needs to be
increased signi�cantly compared to less loaded scenarios,
see, e.g. �g. S.1, to arrive at similar escape times τ̄ .

C. First order model

In contrast to the 2nd order model, the 1st order model
has only one globally stable �xed point at δ∗ = arcsin (P )

and we observe transitions from δ∗ to δ̃∗ = n · 2π + δ∗

with n ∈ Z. In a real system, the fast change of the angle
δ would almost certainly destabilize the system as the
power �ow along the line given by F = K sin (δ∗) would
change dramatically during the course of this transition
and would most likely violate security regulations [1]. We
obtain Kramer's escape rate for the �rst order model [11]
as

τ1st =
2π√

U ′′ (δmin)U ′′ (δmax)
exp

(
1

4D2Ω2
· 2∆U

σ2

)

(11)
and demonstrate perfect agreement of theory and simu-
lations in �g. S.3.

D. Third order model

The �xed point for the angle δ in the third order system

is given as δ∗ = arcsin
(

P
E0·E∗

)
[9]. For su�ciently small

values of the voltage droop X, the voltage amplitude E
tends to the stable �xed point E∗ = 1. With increasing
X this �xed point gets destabilized and the mean escape
time τ̄ of the system decreases. This e�ect might change
for larger values of X. Our theory using Kramer's escape
rate correctly predicts the stability as long as the voltage
changes are su�ciently slow or small, see �g. S.4.
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Figure S.1. The mean escape time τ̄ decreases with decreasing inertia. We simulated 2000 trials using D = 4 ·10−5s2, P = 0.95
as parameters for one generator coupled to the bulk grid. Kramer's formula (black line) shows an excellent agreement with the
numerical results (a). The logarithm of the escape time log (τ̄) is linear in 1/σ2 (b), as predicted by eq. (8).
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Figure S.2. Kramer's escape theory also describes less loaded scenarios. We simulated 2000 trials using H = 4s, D = 4 · 10−5s2

and P = 0.5 as parameters for one generator coupled to the bulk grid. Kramer's formula (black line) shows an excellent
agreement with the numerical results (a). The logarithm of the escape time log (τ̄) is linear in 1/σ2 (b), as predicted by eq. (8).
Note that for similar escape times τ̄ the noise amplitude has a much larger absolute value compared to more heavily loaded
scenarios.
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Figure S.3. The mean escape time τ̄ is well predicted for a �rst order model. The black line is Kramer's escape time for the
1st order model, as given in eq. (11) and is in excellent agreement with the numerical data (a). The logarithm of the escape
time log (τ̄) is linear in 1/σ2 (b), as predicted by eq. (11). We simulated 2000 trials using D = 4 · 10−5s2 and P = 0.95 as
parameters for one generator coupled to the bulk grid.
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Figure S.4. The mean escape time τ̄ decreases with increasing voltage droop X. We simulated 2000 trials using D = 4 · 10−5s2,
P = 0.95, H = 4 s, τE = 2, E0 = 1, Ef = 1 and B11 = −

√
1− P 2 as parameters for one generator coupled to the bulk grid.

The black line is the prediction based on the 2nd order (swing equation) model (a) derived in the main text and in eq. (8).
Note that even with voltage coupling X > 0, the escape time scales qualitatively with τ ∼ exp

(
c/σ2

)
, as in Kramer's theory

(b).
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Multiple types of �uctuations impact the collective dynamics of power grids and thus challenge
their robust operation. Fluctuations result from processes as di�erent as dynamically changing
demands, energy trading, and an increasing share of renewable power feed-in. Here we analyze the
fundamental dynamics of these power grid frequency �uctuations. Analyzing frequency time series
for a range of power grids, including grids in North America, Japan and Europe, we �nd a substantial
deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present
a coarse framework to analytically characterize the impact of arbitrary noise distributions as well as
a superstatistical approach which systematically interprets heavy tails and skewed distributions. We
identify energy trading as a signi�cant contribution to today's frequency �uctuations and e�ective
damping of the grid as a controlling factor enabling to reduce �uctuation risks, with enhanced e�ects
for small power grids.

The Paris conference 2015 set a path to limit climate
change to the best of our abilities. To reach this goal, in-
tegrating renewable and sustainable energy sources into
the electrical power grid is essential [1]. Wind and solar
power are the most promising contributors to reach a sus-
tainable energy supply [2], but their integration into the
existing electric power system remains an enormous chal-
lenge [3�5]. In particular, their power generation varies
on all time scales from several days [6] to less than a
second [7], displaying highly non-Gaussian �uctuations
[8]. This variability must be balanced by storage facili-
ties and backup plants requiring an advanced control of
the electric power grid.
The central observable in power grid monitoring, oper-

ation and control is the grid frequency f [9]. In case of an
excess demand, kinetic energy of large synchronous gen-
erators is converted to electric energy, thereby decreasing
the frequency. Dedicated power plants measure this de-
crease and increase their generation to stabilize the grid
frequency within seconds to minutes (primary control)
[9, 10]. On longer time scales, additional power plants
are activated to restore the nominal grid frequency (sec-
ondary control). The increase of renewable generation
challenges this central control paradigm as generation
becomes more volatile and the spinning reserve decreases
[11]. How to provide additional e�ective/virtual inertia
is under heavy development [12, 13]. In addition, �uctu-
ating demand [14] and �xed trading intervals [15] already
contribute to frequency deviations.
A detailed understanding of the �uctuations of power

grid frequency essentially underlies the design of e�ec-

∗ Contributed equally

tive control strategies for the future grids. Many studies
for simplicity assume simple Gaussian noise [14, 16�19],
while non-Gaussian e�ects are only rarely studied [20�
23]. Gaussian approaches neglect the possibility of heavy
tails in the frequency distributions and thus strong devi-
ations from the set frequency posing serious contingen-
cies particularly relevant for security assessment. Even in
studies considering non-Gaussian e�ects, the connection
to real data is missing [20], realistic but isolated wind
and solar data are only numerically evaluated [22, 23] or
the focus is on static power dispatch [14, 19, 21] opposing
to real-time dynamics.

It is crucial to understand how collective grid dynam-
ics are driven by the �uctuations originating from varying
power demands, �uctuating input generation and trad-
ing. While realistic models describing the actual noise
input of wind and solar power exist [22, 23], the impact
of �uctuations on grid dynamics has been studied for
selected speci�c scenarios, regions or technologies only
[24, 25]. Furthermore, a systematic quantitative com-
parison of di�erently sized synchronous regions based on
their frequency �uctuations is needed. It is important
to forecast �uctuation statistics in grids of any size, es-
pecially when setting up small isolated systems, e.g., on
islands or disconnected microgrids [26].

In this article, we analyze the frequency �uctuations
observed in several electric power grids from three conti-
nents. We determine and characterize the non-Gaussian
nature of these �uctuations existing across grids in both
the 60Hz and 50Hz operation regimes. Furthermore,
we propose an analytically accessible model successfully
describing these data in one consistent framework by
systematically incorporating the non-Gaussian nature of
�uctuations and verify its predictions. The analysis
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Figure 1. Fluctuations in frequency around the reference frequency (50Hz) a: Box plot of the 2015 data by RTE
describing the Continental European power grid. b: Zoom-in on the �rst 70 minutes of the frequency measurements, exposing
substantial changes in average and degree of �uctuations at 15 minutes trading intervals . Each box contains data of one year
for the same time instance (averaged per minute in a). The yellow bars contain the 25% and 75% quartile and the gray bars
are the whiskers giving the maximum and minimum values.

yields trading as a key factor for non-Gaussianity. Ex-
tracting the e�ective damping for di�erent synchronous
regions via autocorrelation measures, our work highlights
that the e�ective grid damping as well as the size of the
grid itself serve as controlling factors to make grid dy-
namics more robust. Finally, we demonstrate how super-
statistics explain heavy tailed and skewed distributions
as superimposed Gaussian distributions.

THE STATISTICS OF FREQUENCY
FLUCTUATIONS

The bulk frequency of a power grid �uctuates around
its nominal frequency of 60 Hz (Most Parts of America,
Western Japan, Korea, Philippines) or 50 Hz (Eastern
Japan and other countries). To understand and quantify
these �uctuations, we analyze data sets for the power grid
frequency of the ENTSO-E Continental European (CE)
[27, 28], the Nordic [29], Mallorca [30] and Great Britain
(GB) [31] grids, the 50 Hz and 60 Hz regions of Japan
[32] as well as the Eastern Interconnection (EI) in North
America [33], see Supplementary Note 1 for more detailed
data breakdown. The data consists of power grid fre-
quency measurements at one location in the given region
(two for Continental Europe) at a sampling rate between
ten measurements per second and one measurement per
�ve minutes.

Frequency Distributions

A �rst glance at an average recording of the grid fre-
quency reveals that it coincides extremely well with the
nominal grid reference frequency, highlighting the e�-
ciency of today's frequency control, see Fig. 1. Only

rarely do we observe large deviations from the nominal
frequency. These large disturbances often occur when a
new power dispatch has been settled on by trading (ev-
ery 15 minutes) introducing jumps and �uctuations of
the frequency. The total variance of the frequency �uc-
tuations in a given region thereby depends on the size of
the grid � larger grids are more inertial and thus have a
smaller variance.

While the central limit theorem suggests that su�-
ciently long time series approximate Gaussian distribu-
tions, we observe that the tails of the distribution are
not well described by a Gaussian distribution in all grids.
For the Continental European, Nordic, Mallorcean and
Japanese grids large deviations from the nominal fre-
quency are more frequent than for a Gaussian distribu-
tion of given variance, leading to heavy tails, quanti�ed
by an excess kurtosis, see Methods. The grids of Great
Britain and the Eastern Interconnection however, are sig-
ni�cantly skewed, i.e., they are asymmetric around the
reference frequency so that deviations towards lower fre-
quencies are more likely than to higher ones.

Performing a maximum likelihood analysis using a
variety of standard probability distributions, we iden-
tify Lévy-stable [34] and q-Gaussian distributions [35]
as good descriptions for all grids, see Fig. 2 and Sup-
plementary Note 1. Both distributions generalize the
central limit theorem to include heavy tails and point
to two di�erent microscopic mechanisms underlying the
frequency dynamics: q-Gaussians arise when the power
�uctuations are Gaussian on short time scales, but with a
variance and/or mean changing on longer time scales. In
contrast, Lévy-stable distributions arise when the under-
lying power �uctuations are heavy-tailed or skewed itself.
We investigate both settings in more detail below.
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Figure 2. Non-Gaussian nature of the frequency distri-
bution. Displayed is the 2015 data set by 50Hertz describing
the Continental European power grid where �tted normal,
stable and q-Gaussian distributions are compared with the
histogram data using a log scale for the probability density
function (PDF). Deviations from a normal distribution be-
come obvious in the tails of the actual data which are more
pronounced than expected for a normal distribution. The
stability parameter of the stable distribution is αS ≈ 1.9 and
the deformation parameter of the q-Gaussian distribution is
q ≈ 1.2. Note that the stable distribution uses four, the q-
Gaussian three and the Normal distribution two parameters.

Correlation Functions

In addition to the aggregated data, we investigate the
autocorrelation of the recorded trajectories, extracting
important events and the characteristic time scales dur-
ing which the system de-correlates. Analyzing the au-
tocorrelation for the Continental European grid reveals
pronounced correlation peaks every 15 minutes and es-
pecially every 30 and 60 minutes, see Fig. 3. These
regular correlation peaks appear in all grids and are eas-
ily explained by the trading intervals in most electricity
markets [15], which are often 30 or 15 minutes. Further-
more, this is also in line with the observation of large
deviations in the frequency trajectories, see Fig. 1, so
that trading has an important impact on frequency sta-
bility. At the beginning of a new trading interval, the
production changes nearly instantaneously and the com-
plex dynamical power grid system needs some time to
relax to its new steady operational state.
The autocorrelation of a time series typically decays

over a characteristic correlation time that provides infor-
mation about the underlying process. For the �rst min-
utes of each trajectory, we observe an exponential decay

c (∆t) ∼ exp (−∆t/τ) , (1)

with a typical correlation time τ , as the expected for
elementary stochastic processes without memory such as
the Ornstein-Uhlenbeck process [36].
We extract the inverse correlation time 1/τ for each

available data set and obtain values within the same or-

Figure 3. Decay of the autocorrelation of the frequency
dynamics. Plotted are autocorrelation measures as a func-
tion of time lag ∆t for the 50Hertz data set for Central Europe
(CE) of 2015, the Great Britain grid (GB) of 2015, the East-
ern Interconnection (EI) data for 1 day of 2015 and the Nordic
grid data of 2015. After an initial decay of the autocorrelation
and peaks emerge every 15 minutes due to trading intervals,
especially pronounced for the GB and CE grids, consistent
with Fig. 1. Using a log-plot in the inset allows to extract
the damping of the grid based on the assumption of expo-
nential decay, Equation (1). Note that the CE, GB and EI
grids all display similar decay during the initial 5 minutes.
In contrast, the Nordic grid displays a fast decay and then a
slower one. The plot uses one full year of data for each region
to generate the autocorrelation plots. Especially the trading
peaks are typically not visible when only 24h of recordings
are considered (as in the case of EI).
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Figure 4. Damping of di�erent regions. The box plots
display the damping estimates based on the autocorrelation
decay �tted by an exponential function, see Equation (1).
The data are obtained by evaluating individual days of all
years available and splitting the one day of EI into 10 minute
trajectories. The box covers the 25% and 75% quartile with
the white line being the median while the whiskers give the
maximum and minimum values.

der of magnitude for all grids, see Fig. 4. The Japanese
data set only has measurements every �ve minutes, hence
we refrain from estimating an autocorrelation. Later, we
interpret the inverse correlation time 1/τ as the e�ective
damping in a synchronous region (including primary con-
trol). With this in mind it is not surprising that all grids
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return similar values for τ as the synchronous machines
do not di�er signi�cantly in the considered regions.

STOCHASTIC POWER FLUCTUATIONS

The variations of the grid frequency are driven by the
�uctuations of power generation and demand. To link
the evolution of the grid frequency with the power in-
jections we make use of the well-established swing equa-
tion [9, 10, 37�42]. Aggregating over the grid, we obtain
a Fokker-Planck equation that models the observed fre-
quency �uctuations and allows an analytical description
of power grid frequency �uctuations.

Power Grid Dynamics

We analyze frequency dynamics of a power grid on
coarse scales. Every node in the grid corresponds to a
large generator (power plant) or a coherent subgroup and
is characterized by the phase θi and the angular veloc-
ity ωi = 2π (fi − fR). Here fi denotes the frequency of
the nodes i = 1 . . . N and fR = 50Hz or fR = 60Hz,
respectively, is the reference frequency at the grid. The
equations of motion of the phase and velocity are then
given by

d

dt
θi = ωi, (2)

Mi
d

dt
ωi = Pi + εiξi −Diωi +

N∑

j=1

Kij sin (θj − θi) ,

where we have at each node i: inertia Mi, voltage angle
θi, mechanical power Pi, random noise ξi with noise am-
plitude εi, damping Di and the coupling matrix Kij is
determined by the transmission grid topology.
The power grid must always be at or close to a stable

operating state which is given as the equilibrium point
of the swing equation (2). The equilibrium point ful�lls
ω∗
i ≈ 0 which is equivalent to all machines working at

the reference frequency fR = 50Hz or fR = 60Hz.
At the stable operation point the frequencies at all

nodes are equal: ωi = ω̄. Deviations are only observed
during system-wide failures or transiently after serious
contingencies or major topology changes [9, 10]. To ob-
tain the e�ective equation of motion of the bulk angular
velocity ω̄, we assume a homogeneous ratio of damping
and inertia throughout the network, γ = Di/Mi [43] as
well as symmetric coupling Kij = Kji and assume that

the power is balanced
∑N
i=1 Pi = 0 on average [41]. Set-

ting M :=
∑
iMi, the dynamics of the bulk angular ve-

locity ω̄ :=
∑N
i=1Miωi/M is governed by the Aggregated

Swing Equation as follows (see also [11]):

d

dt
ω̄ = −γω̄ + ε̄ξ̄ (t) . (3)

This aggregated swing equation no longer requires pre-
cise knowledge of the parameters of a given region but
depends crucially on the e�ective damping γ and the
noise ε̄, which itself depends on the statistics of the input
noise ξi, see Methods and Supplementary Note 2. We
note that the damping γ integrates contributions from
damper windings and primary control actions alike. Fi-
nally, both damping γ or the noise amplitude ε̄ could
easily change over time, e.g., due connection of certain
grids or day/night di�erences. We cover this scenario in
the section on superstatistics.

Stochastic Dynamics

The bulk angular velocity ω̄ (and thereby the grid fre-
quency) is not following a deterministic evolution but is
in�uenced by stochastic e�ects, given by the aggregated
power �uctuations ξ̄. Hence, we characterize a given grid
by the probability distribution function (PDF) of the
bulk angular velocity p (ω̄), similar to the frequency dis-
tribution plotted in Fig. 2. A wide distribution, i.e. one
with high standard deviation, or one with heavy tails,
i.e., high kurtosis, displays large deviations more often
and is thereby less stable than a narrower distribution.
The central decision when modeling stochastic dynam-

ics is how to describe the noise ξ which is generated from
some probability distribution. Explicit choices of noise
distributions are covered here and in Supplementary Note
2. Given the distribution of ξ, we then formulate and
solve a Fokker-Planck equation [36] to obtain an analyt-
ical description of the distribution of ω̄.

Gaussian noise

The simplest noise model assumes ξi as independent
Gaussian noise based on the often-used central limit the-
orem. It states that the sum of independent random
numbers drawn from any �xed distribution with �nite
variance approaches a Gaussian distribution if the sam-
ple is su�ciently large [36]. The Fokker-Planck equation
describing the time-dependent probability density func-
tion p (ω̄, t) follows then as

∂p

∂t
= γ

∂

∂ω̄
(ω̄p) +

1

2

N∑

i=1

ε2i
M2

∂2p

∂ω̄2
, (4)

which is the well-known Ornstein-Uhlenbeck process [36].
We are interested in the stationary distribution p (ω̄) of
(4) to describe the grid in the steady state, given by

p (ω̄) =

√
γM2

π
∑N
i=1 ε

2
i

exp

[
−ω̄2 γM2

∑N
i=1 ε

2
i

]
, (5)

see also Methods and Supplementary Note 2 for details.
Crucially, Equation (5) is again a Gaussian distribution

of p (ω̄), i.e., a Gaussian distribution for the power feed-in
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�uctuations results in a Gaussian frequency distribution.
Assuming we know the damping γ, noise amplitudes εi
and the total inertia M , we are able to compute the ex-
pected frequency distribution analytically. Furthermore,
the Ornstein-Uhlenbeck autocorrelation exactly follows
an exponential decay with characteristic time determined
by the damping τ = 1/γ, .i.e., our estimates for the cor-
relation time τ obtained above determine the damping of
the grid.

Non-Gaussian noise

Under which conditions do we need to include non-
Gaussian e�ects in the stochastic modeling? When ap-
plying the central limit theorem, one explicitly assumes
�nite variance. Hence, to describe deviations from nor-
mal distributions including heavy tails and skewed dis-
tributions, we need to base the input noise ξ on a non-
Gaussian noise generating process [44]. This requires
generalized Fokker-Planck equations which are solved for
the stochastic system (3) by

p (ω̄, t) = F−1

[
exp

(
− 1

γ

ˆ k

0

1

z
ln

(
Sz·e−γt

Sz

)
dz

)]
,

(6)
where Sk is the characteristic function of an arbitrar-
ily distributed and uncorrelated noise generating process
and F−1 is the inverse Fourier transform [44].
In the stationary state, the characteristic function of

the bulk angular velocity ω̄ is given by

Fk = exp

[
1

γ

ˆ k

0

ln (Sz)

z
dz

]
. (7)

Lévy-stable noise

Lévy-stable distributions are a particularly good �t for
the frequency data and lead to easy-to-analyse analyti-
cal results. These distributions include heavy tails and
skewed distributions, as often observed in nature [8]. A
stable distribution [34] is described by its characteristic
function:

Sk (αS , βS , σS) = exp
[
−σαSS |k|

αS · (8)
(

1− sgn (k) iβS · tan
παS

2

)]
,

with stability parameter αS ∈ (0, 2], skewness parameter
βS and scale parameter σS . For simplicity, we set the
location parameter to zero µS = 0.
Using power �uctuations ξ based on a stable distribu-

tion Sk (σS) in the stochastic Equation (3) results in a
stable distribution of the power grid frequency. Only the
scale parameter of the input distribution σinS changes to

the new value σoutS as follows

σinS =
1√
2M

[
N∑

i=1

εαSi

]1/αS

→ σoutS =
σinS

(γαS)
1/αS

, (9)

while the skewness βS (asymmetry) and the stability pa-
rameter αS (heavy-tail-ness) are preserved. We empha-
size this remarkable and unique property of stable dis-
tributions: The input power �uctuations are distributed
according to a stable distribution and so is the output
frequency. The same happens for Gaussian distributions
since they are a subclass of stable distributions. In con-
trast, we investigate non-stable distributions in the Sup-
plementary Note 2.
Usually, we cannot in�uence the noise εi acting on the

power grid but by increasing the e�ective damping γ or
the inertia M , the �nal distribution of frequencies be-
comes narrower and hence extreme �uctuations of the
grid frequency are less likely.

Smaller regions need larger damping

With the previous results, we are able to quantify the
intuitive statement that larger regions have more inertia
and hence narrower distributions by explicitly comparing
the scale parameters (proportional to standard deviations
in the case of αS = 2) of two di�erent regions as follows:

σoutS 2 = σoutS 1

m1

m2

(
γ1N

αS−1
1

γ2N
αS−1
2

)1/αS

, (10)

assuming identical stability parameters αS and average
inertia mµ = Mµ/Nµ µ ∈ {1, 2}. Equation (10) shows
that a small region N2 < N1 needs larger damping than

a larger region γ2

!
> γ1 or has a broader distribution with

σoutS 2 > σoutS 1 , i.e., a higher risk of large deviations from
the stable operational range. The scaling is given by
the scale parameter σS ∼ N (αS−1)/αS , where the simple
square root law is recovers only in the case of Gaussian
distributions (αs = 2). Also, it reveals that decreasing
inertia proportionally increases the scale parameter.
Furthermore, we calculate the expected noise ampli-

tude by using (9) as

ε = σoutS m
(
αSγN

αS−1
)1/αS

. (11)

Based on pure frequency measurements, every quantity is
easily available for each synchronous region: We estimate
the output scale parameter σoutS and stability parameter
αS from the histogram data. We assume that the number
of nodes N is directly proportional to the total electricity
production of a region per year. Since a process driven
by stable noise has no de�ned autocorrelation function
(second moments are not de�ned), we approximate its
autocorrelation with the Ornstein-Uhlenbeck process and
thereby derive an estimate for the damping γ. With these

106 Chapter 6. Scaling of Power Grid Frequency Fluctuations



6

Mallorca EI Nordic CE GB

2.0 5.0 6.0 10.5 17.5

0.0

0.1

0.2

0.3

0.4

0.5

Percentage of wind and solar generation

E
st
im
at
ed
n
o
is
e
am
p
liu
d
e
ϵ
[1
/s
]

Figure 5. Noise amplitudes for European and Ameri-
can grids. The noise amplitude tends to increase with the
shares of intermittent renewables. The noise amplitude ε for
each grid is calculated assuming that it is identical at each
node εi = ε and assuming homogeneous inertia. The power
production is normalized with respect to the Eastern Intercon-
nection (EI) generation for the ENTSO-E grids of Continen-
tal Europe (CE), Mallorca, Nordic and Great Britain (GB).
Frequency data of all regions and Equation (11) is used to
compute the noise amplitude ε which we expect to be similar
in all regions, providing a self-consistency check of our theory.
The box plot is obtained by using di�erent damping, standard
deviation estimates, etc. for each day of multiple years. The
data for the Nordic grid [29] has large uncertainty due to the
two di�erent correlation time scales.

estimates and Equation (11) we plot the noise amplitudes
for di�erent regions in Fig. 5.
The estimated noise amplitude tends to increase with

increasing share of intermittent renewable generation
(wind and solar) in a given region [45, 46]. Nevertheless,
this relationship is not very strict and frequency distur-
bances at trading intervals, see Fig. 1 demonstrate, that
at least today trading and demand �uctuations are con-
tributing substantially to frequency �uctuations.

SUPERSTATISTICS

Instead of modeling the underlying stochastic process
as non-Gaussian, we may interpret the observed statistic
as a superposition of multiple Gaussians, leading to su-
perstatistics, explaining heavy tails and skewness [47, 48].
For our superstatistical approach we use Equation (3)

with Gaussian noise ξ

d

dt
ω̄ = −γω̄ + ε̄ξ (t) , (12)

which yields a Gaussian distribution, see (5). What
changes when the damping γ is not longer constant over
time? Both control actions and physical damping con-
tribute to γ and change over time when certain power
plants are connected and others are shut down. Sim-
ilarly, the noise amplitude ε̄ of the system depends on

which consumers are currently active, what the time of
the day it is, which renewables are connected and more.
Hence, it is appropriate to replace our static parameters
γ and ε by dynamical parameters that change over time
with a typical time scale T . When applying superstatis-
tics, we assume that the time scale T is large compared
to the intrinsic time scale of the system, which is given
by the autocorrelation time scale, namely T � τ = 1/γ.
Then, the stochastic process �nds an equilibrium with
an approximately Gaussian distribution determined by
the current noise and damping. When these parameters
change, the frequency distribution becomes a Gaussian
distribution with di�erent standard deviation.
In Fig. 6a we demonstrate how just a few Gaussian

distributions with di�erent standard deviations give rise
to an excess kurtosis and in the Supplementary Note 3 we
show how two Gaussian distributions with shifted means
result in a skewed distribution.

Extracting time scales from time series

We extract the long time scale T from the data and
compare it to the intrinsic short time scale of the system.
The short time scale τ = 1/γ is based on the exponential
decay of the autocorrelation of the time series of ω̄ yield-
ing a range of τ ≈ 200...550 s for all grids. The long time
scale T is governed by the idea that the superstatistical
ensemble has heavier tails than a normal distribution but
that for a given typical time scale T an equilibrium distri-
bution emerges that is approximately Gaussian. Given
a time series x (t) with mean x̄, we compute the local
kurtosis κ (∆t) for di�erent time intervals ∆t and choose
the large time scale T by κ (∆t = T ) = 3 [47]. Similarly,
we compute the time for which the average skewness is
zero to extract the long time scale for the Great Britain
or Eastern Interconnection grids, see Methods and Sup-
plementary Note 3 for details and Fig. 6 for an example
for Japan.
All synchronous regions return large but di�erent long

time scales. We determine the long time scales to be
of the order of T ≈ 1 . . . 5h with small values in Mal-
lorca and the Eastern Interconnections and large values
in Continental Europe and Japan, hinting to distinct un-
derlying mechanisms how damping and noise change in
each region. Compared to the intrinsic short time scale
τ ∼ 200...550 s, the long time scale T is larger by at least
one order of magnitude. Hence, the superstatistical ap-
proach is justi�ed, i.e., it is valid to interpret the heavy
tails as a result of superimposing Gaussians.
Finally, we perform another consistency check of the

superstatistical approach and extract the distribution of
the e�ective friction γe� [47], see Methods. Based on
general results on superstatistics, we expect the e�ective
friction to follow a χ2, inverse χ2 or log-normal distribu-
tion, which then leads to an approximate q-Gaussian dis-
tribution of the frequency, see Supplementary Note 3 for
a derivation. In the case of the Japanese 60Hz region the
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Figure 6. Superimposed Gaussian distributions leading to heavy tails. a: When the stochastic process follows two
di�erent Gaussian distributions (orange and green) and the data is aggregated (gray histogram), resulting in a heavy-tailed
distribution which is not Gaussian. Consequently, Gaussian �ts (blue curve) tend to underestimate its tails. Assuming such a
structure for the real frequency measurements, the frequency recordings are split into trajectories of length ∆t each and the
kurtosis is computed. b: The average kurtosis of the Japanese 60Hz data set in dependence of the length of ∆t. For very small
∆t the distribution has lighter tails than a Gaussian while using the full data set or large ∆t leads to the earlier observed heavy
tails. The long time scale T , during which the distribution changes, is determined as κ (∆t = T ) = 3.
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Figure 7. Self-consistency test of superstatistics. Plot-
ted is the histogram of the e�ective friction γe� based on
the Japanese 60Hz frequency measurements which is well-
described by a log-normal distribution. Such a distribution
of the e�ective friction γe�, directly leads to q-Gaussian dis-
tributions of the aggregated data, see Supplementary Note 3.
Other data sets are also approximated by log-normal distri-
butions, see Supplementary Note 3.

distribution of γe� is well-described by a log-normal dis-
tribution again supporting the superstatistics approach,
see Fig. 7.

DISCUSSION

In summary, we have analyzed power grid frequency
�uctuations by applying analytical stochastic methods to
time series of di�erent synchronous regions across conti-
nents including North America, Japan and di�erent Eu-
ropean regions. Based on bulk frequency measurements,

we have identi�ed trading as a signi�cant source of �uctu-
ations (Figs. 1 and 3). Although frequency �uctuations
and power uncertainty are often modeled as Gaussian
distributions [14, 16�19], we pinned down and quanti�ed
signi�cant deviations from a Gaussian form, including
heavy tails and skewed distributions (Fig. 2).

Obtaining an analytical description of a complex sys-
tem allows deeper insight into it. Hence, condensing the
analysis of frequency �uctuations in power grids via a sec-
ond order nonlinear dynamics, the swing equation, and
neglecting spatial correlations, we derived (generalized)
Fokker-Planck equations for the bulk angular velocity ω̄.
We obtained precise predictions on how power �uctua-
tions impact the distribution of �uctuations of the grid
frequency. Furthermore, our approach identi�es, besides
grid size, an increasing e�ective damping as a controlling
factor for reducing �uctuation-induced risks. By incorpo-
rating smart grid control mechanisms [49] or increasing
generator droop control [9], modifying e�ective damping
may therefore reliably reduce the likelihood of large �uc-
tuations in the power grid [50]. Finally, our analytical
theory is able to compare di�erently sized power grids,
predicting �uctuations based on the size and inertia of the
grid (Equation (10)). Crucially, our mathematical frame-
work goes beyond the simple N−1/2 scaling of Gaussian
noise. This should enable grid operators to achieve a de-
sired quality of service for the frequency by applying the
appropriate e�ective damping based on the size of their
synchronous region especially when facing a decreasing
inertia M .

Our results o�er two approaches to model power grids
under uncertainty: First, an optimization could include
the non-Gaussian nature of the distribution by incorpo-
rating non-Gaussian noise, e.g. in the form of Lévy-stable
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noise. Alternatively, we demonstrated that the distribu-
tions are also well explained by a superstatistics approach
where the non-Gaussian nature of the distributions arises
by superimposing di�erent Gaussian distributions. Es-
pecially when modeling shorter time scales of one hour
or below, a Gaussian approach is supported by our re-
sults. Studies aiming to cover time scales of full months
or years, however, have to account for changing mean
and variance of the assumed Gaussian distribution or ex-
plicitly model non-Gaussian distributions, going beyond
current Gaussian approaches [14, 16�19].

METHODS

Statistic moments

We quantify the extremity of the tails by the kurtosis
κ, i.e., the normalized fourth moment, of the distribution,
which we compute to be κCE ≈ 4. In contrast, a Gaussian
distribution has κGauss = 3 such that any higher value
indicates an increased likelihood of large deviations.
In contrast the skewness β is the normalized third mo-

ment of the distribution and a non-zero skewness implies
a distribution that is not symmetric around the mean but
has more pronounced tails in one direction.

Normally distributed noise

We assumed that the noise ξ at each node is distributed
following a Normal distribution, i.e.,

ξ ∼ N (0, 1) (13)

where N (µ, σ) denotes a Normal distribution with mean
µ and standard deviation σ. The collective noise ε̄ξ̄ acting
on the bulk frequency is then easily broken down into a
normal distribution

ε̄ξ̄ =

N∑

i=1

εiξi ∼

√√√√
N∑

i=1

ε2i ξ, (14)

where X ∼ Y denotes that the random variables X and
Y follow the same distribution [34].

Fokker-Planck equations

In the main text we made use of a general time-
independent solution of a Fokker-Planck equation. Given
a general stochastic system whose dynamics is given by

d

dt
X = a (X) +

√
b (X)ξ, (15)

where ξ is white Gaussian noise based on a Wiener pro-
cess, its stationary Fokker-Planck equation is given by

d

dx
[a (x) p (x)]− 1

2

d2

dx2
[b (x) p (x)] = 0, (16)

which can be solved to give

p (x) =
N

b(x)
exp

[
2

ˆ x

0

a(s)/b(s)ds

]
. (17)

In the case of a (x) = −a0x and b (x) = b0 the �nal
distribution is a Gaussian distribution.

Generalized Fokker-Planck equations

Assuming that our system is described by a Langevin
equation of the form (15) and is subject to Lévy-
stable distributed noise with characteristic function
Sk (αS , βS , σS) with stability parameter αS , skewness pa-
rameter βS and scale parameter σS , then the generalized
Fokker-Planck equation [44] is given by

∂p

∂t
(x, t) = − ∂

∂x
[a (x, t) p (x, t)] (18)

+σαSS
∂αS

∂ |x|αS [b (x, t)
αS p (x, t)]

+σαSβS tan
(παS

2

) ∂αS−1

∂ |x|αS−1 [b (x, t)
αS p (x, t)] .

The fractional derivative of a function h (x) is de�ned as

∂αS

∂ |x|αS h (x) = −F−1 [|k|α hk] . (19)

Superstatistics

In the superstatistical approach we have a time series
x (t) with a mean x̄ and compute the local kurtosis as
follows:

κ (∆t) =
1

tmax −∆t

ˆ tmax−∆t

0

dt0

〈
(x− x̄)

4
〉
t0,∆t〈

(x− x̄)
2
〉2

t0,∆t

,

(20)

where 〈...〉t0,∆t =
´ t0+∆t

t0
...dt. We do so for several values

of ∆t and choose T so that κ (∆t = T ) = 3, i.e., averaging
over a time scale T , there is no excess kurtosis.
The e�ective friction γe� which is changing over time

is then computed as:

γe� (t0) =
1

〈x2〉t0,T − 〈x〉
2
t0,T

. (21)

Following [47] we expect γe� to follow a log-normal or
alternatively a χ2 or inverse χ2 distribution as those lead
to q-Gaussian distributions of x, see Supplementary Note
3.
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SUPPLEMENTARY NOTE 1

Power grid frequency data presentation

We have a closer look at the data sets of power grid frequency measurements. Our available data includes ENTSO-E
Continental European (CE) [1, 2], Great Britain (GB) [3], Mallorca [4] and Nordic [5] grids, the 50 Hz and 60 Hz
regions of Japan [6] as well as one day of the Eastern Interconnection (EI) [7]. Production data of the regions was
taken from [6, 8�10].

Table S.1. The mean frequency is kept close to the reference frequency in all grids while standard deviations di�er signi�cantly.
We list the estimates for mean, standard deviation (SD), skewness and kurtosis of distributions for di�erent European (Con-
tinental Europe (CE), Great Britain (GB), Nordic, Mallorca), Japanese and Eastern Interconnection (EI) data sets and years

Source year/ region mean µ [Hz] standard deviation σ [Hz] skewness β kurtosis κ

CE (50Hertz )[1]
2014 49.9995 0.0202 0.047 4.04
2015 49.9999 0.0200 -0.024 4.10

CE (RTE)[2] 2015 50.0003 0.0202 -0.007 3.89

Nordic (FinGrid) [5]
2015 50.000 0.0434 0.033 3.11
2016 50.000 0.0456 0.046 3.10

GB (Nationalgrid)[3]
2014 49.9997 0.0545 0.232 3.02
2015 49.9997 0.0544 0.258 2.91

Japan (OCCTO) 2016 [6]
50 Hz 50.0003 0.0304 0.018 3.17
60 Hz 60.0025 0.0376 0.000 4.01

Mallorca [4] 2015 49.9999 0.0415 -0.014 4.99
EI (1d)[7] (2014) 59.9967 0.0175 0.316 2.97

Distribution measures and histograms

As an introduction to the data, we list mean µ, standard deviation σ, skewness β (βGaussian = 0) and kurtosis
κ (κGaussian = 3), i.e., the normalized �rst four moment of the distributions in Table S.1. Analyzing the �gures
reveals that all distributions are close to their nominal frequency of 50/60 Hz. Furthermore, all other grids have
either a higher kurtosis than expected from a normal distribution (Continental Europe, Nordic, Mallorca, Japan) or
are skewed (Great Britain, Eastern Interconnection). Next, we visualize these distributions as histograms compared
to their best-�tting normal distribution in Fig. S.1.

For the Continental European (CE) grid we have two data bases, one by the German transmission system operator
(TSO) 50Hertz and the other by the French TSO RTE. Although the measurements were taken at di�erent locations
of the connected grid, they return close to identical statistics.

Preprocessing of data sets We had to perform some pre-processing especially with the 50Hertz data set and the
data from Mallorca: The original data set [1] contains entries set to 0, 52 or 48 Hz, while the Mallorca data included a
few very large and small values. In the case of 50Hertz, they con�rmed measurements problems leading to these small
and large values. Hence, we delted entries larger than 51Hz or smaller than 49 Hz. We associate these large deviations
with blackouts or nealry blackouts, which are no longer covered by our theory. However, even after excluding these
extreme values, the 50Hertz data had some very large jumps within 1 second to a larger value by ∆f ∼ 0.5Hz which
we found to be most likely also artifacts. Hence, we decided to scan the data for jumps larger than ∆fmax = 0.1Hz
and delete these if they were isolated, i.e., values before and after this value are at least di�erent by ∆fmax. This
way the statistical measures, e.g. variance and kurtosis, of the 50Hertz data set approached the RTE data set, as
expected for the same synchronous region.

When computing the noise amplitude ε for di�erent regions in Figure 5, we assumed that the Eastern Interconnection
has a total inertia of M = 1000 to increase the absolute value of the estimated noise.
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Figure S.1. All data sets show deviations from normal distributions. We plot the histograms for the data of Great Britain
(GB), Mallorca, Japan and Eastern Interconnection (EI) together with their estimated normal distribution. a: GB with linear
scale, b: GB with log-scale, c: Mallorca region with linear scale, d: Mallorca region with log-scale, e: Japan 60Hz region with
linear scale, f : Japan 60Hz region with log-scale, g: EI with linear scale, h: EI with log-scale. Each histogram is either more
heavy-tailed than a Normal distribution or skewed.
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Estimated distributions

Noticing deviations from normal distributions both in Table S.1 and Fig. S.1, we perform a maximum likelihood
analysis, see e.g. [11], of the available data and thereby determine which standard distribution �ts the data best.
This is done with the assumption that one well chosen distribution would be able to �t all data sets (with di�ering
parameters for each grid). Given a probability density function p (x) and a data set Y = {y1, y2, ..., yN}, we calculate
the likelihood that Y is drawn from the distribution p by calculating

Lp,Y = ΠN
i=1p (yi) . (1)

The maximum likelihood estimate is based on comparing at least two di�erent distributions, e.g., p1 (x) and p2 (x) by
computing the likelihoods for both distributions. Next, we have a look at the likelihood ratio

Lp1,Y
Lp2,Y

, (2)

which is the most powerful tool to distinguish two distributions [11]. We then accept p1 over p2 if the ratio is
larger than 1. We use the Mathematica EstimatedDistribution [12] routine testing several build-in distributions
against the data: HyperbolicDistribution[λ,a,b,c,d], StableDistribution[a,b,c,d], NormalDistribution[a,b], LogNormalD-
istribution[a,b], SkewNormalDistribution[a,b,c], LogLogisticDistribution[a,b], StudentTDistribution[a,b,c], ParetoDis-
tribution[a,b,c,d], SechDistribution[a,b], ExponentialPowerDistribution[a,b,c], JohnsonDistribution["SU", a,b,c,d] and
TsallisQGaussianDistribution[a,b,c]. As an example, we note down the estimated stable distributions for some grids
in Table S.2. Note also that especially the (generalized) hyperbolic and stable distributions use many parameters to
�t the distributions.
For the heavy-tail distributions (Continental Europe, Nordic, Japan, Mallorca) normal distributions perform worse

than stable distributions which get outperformed by q-Gaussian distributions in terms of likelihood (which get outper-
formed by a small margin by generalized hyperbolic distributions). However, skewed distributions (Great Britain and
Eastern Interconnection) are best �tted by skew normal distributions but can be approximated by stable distributions
as these also describe skewed distributions. Hence, we focused mainly on stable and q-Gaussian distributions in the
main text.

Table S.2. Estimated stable distributions with StableDistribution[type,αS ,βS ,µS ,σS ] with stability parameter αS , skewness
parameter βS , location µS and scale parameter σS for di�erent regions

Source year/ region Stable Distribution
Continental Europe (50Hertz )[1] 2015 StableDistribution[1, 1.898, 0.006, 49.9999, 0.0132]
Great Britain (Nationalgrid)[3] 2015 StableDistribution[1, 1.969, 0.997, 50.0001, 0.0378]

Japan (OCCTO) 2016 [6]
50 Hz StableDistribution[1, 1.988, 0.237, 50.0003, 0.0213]
60 Hz StableDistribution[1, 1.986, 0.387, 60.0025, 0.0263]

Eastern Interconnection(1d)[7] (2014) StableDistribution[1, 1.938, 0.999, 59.9969, 0.0121]
Nordic [5] 2015 StableDistribution[1, 1.987, 0.999, 49.9997, 0.0306]
Mallorca [4] 2015 StableDistribution[1, 1.832, 0.509, 50.0000, 0.0238]
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Figure S.2. Stable distributions account for skewed distributions. Plotted is the Log plot of the histogram of the Great Britain
2015 data and its best normal as well as stable distribution �t. The skewed stable distribution is a better description both for
low and high frequencies than the normal distribution.
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SUPPLEMENTARY NOTE 2

Additional Fokker-Planck results

We extend the Fokker-Planck results obtained in the main text by calculating the standard deviation and noise am-
plitude assuming Gaussian noise and adding treatment for primary control with deadzones, time-dependent solutions
of stable noise input as well as describing how to treat arbitrary distributions. Deadzones arise naturally in power
grid control [13] where it is only possible to determine the frequency to a �nite precision. Hence, one could argue
that the non-Gaussian nature of the observed distribution could be explained by Gaussian noise combined with the
nonlinear control.

Ordinary Fokker-Planck equations

Assuming that the power grid is dominated by Gaussian noise, we formulated the Fokker-Planck equation for the
bulk angular velocity ω̄ as

∂p

∂t
= γ

∂

∂ω̄
(ω̄p) +

1

2

N∑

i=1

ε2i
M2
· ∂

2p

∂ω̄2
, (3)

which is solved by the probability density function

p (ω̄) =

√
γM2

π
∑N
i=1 ε

2
i

exp

[
−ω̄2 γM2

∑N
i=1 ε

2
i

]
, (4)

with damping γ, the number of nodes N , noise amplitude ε, summed inertia M =
∑
iMi.

Standard deviation predictions The standard deviation of the bulk angular velocity ω̄, assuming that all nodes
have the same noise amplitude εi ≈ ε and unit inertia Mi = 1 ∀i, is given by

σ =

√
ε2

2Nγ
. (5)

This standard deviation is dependent on the number of nodes N in the grid, i.e., synchronous regions with less
production, i.e., with fewer nodes will have a broader distribution and hence higher risk of large �uctuations.

Deadzones The power grid frequency (and angular velocity) cannot be determined to arbitrary precision, giving
rise to deadzones of control, i.e., for a small interval ω = 0 ± ∆ωD there is no (primary) control activated at the
swinging machines. Could those deadzones explain the non-Gaussian distributions in the frequency assuming Gaussian
noise but nonlinear control? These deadzones are typically of the order ∆ωD ≈ 2π (10...200mHz) [13, 14], see Fig.
S.3 for an illustration where we split the damping γ into intrinsic damping γD that arises from damper windings
etc. and the (primary) control damping γC which is only active outside of the deadzone. Given our solution of the
Fokker-Planck equation, we calculate the probability density function for piecewise linear control to be

p (ω) =

√
γC

2∆ωD +
√
π





exp
[
−γC (∆ωD + ω)

2
]

ω < −∆ωD,

1 else,

exp
[
−γC (∆ωD − ω)

2
]

ω > ∆ωD,

(6)

where we used γD = 0. Performing a maximum likelihood analysis to estimate the deadzone ωD, we reach the
conclusion that the most likely value for the deadzone parameter is ωD ≈ 0, i.e., we do not need a deadzone to model
our real power grid frequency data. Furthermore, stable distributions still outperform Gaussian noise in terms of
likelihood even when deadzones are included, see Fig. S.4.
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Figure S.3. Deadzones of control lead to piecewise linear power(frequency) functions. We plot the e�ective power Peff =
P0 + control as a function of frequency using piecewise linear functions modeling deadzones of primary control γC > 0, with
intrinsic damping γD > 0 (green) and without (orange).
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Figure S.4. Stable distributions outperform Gaussian noise with deadzones. We compare stable distributions (blue) with
a piecewise linear probability density function modeling deadzones of primary control and the real 50Hertz 2015 data set
(histogram). a: We plot the histogram of the real data together with the PDFs of the best-�tting stable distribution and a
piecewise linear. b: We repeat the plot with a log-scale of the PDF. Parameters are ∆ωD = 3 mHz and NγC/ε

2 = 1500.
We note that increasing the damping γC increases the peak at 50 Hz but also results in �atter tails. Hence, we improve one
property at the expense of the other as the piecewise linear distribution tends to have a peak lower than the data (and the
stable distribution) and �atter tails.

Generalized Fokker-Planck equation

In the main text we derived the solution of the generalized Fokker-Planck equation as

p (x, t) = F−1

[
exp

(
− 1

γ

ˆ k

0

1

z
ln

(
Sz·e−γt

Sz

)
dz

)]
, (7)

where Sk is the characteristic function of the (arbitrarily distributed but uncorrelated) noise generating process and

F−1 [uk] =
1

2π

ˆ ∞

−∞
eikxukdk (8)

is the inverse Fourier transform [15]. Using the characteristic function of the �nal distribution Fk and the characteristic
function of the input noise distribution Sk, we note the following important relations:

Fk = exp

[
1

γ

ˆ k

0

ln (Sz)

z
dz

]
, (9)

Sk = exp

[
γ · k · ∂

∂k
lnFk

]
. (10)
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Time-dependent solution We formulate the time-dependent solution given the quadratic potential U (x) = γx2/2
and assuming stable noise input. We compute

Sz·e−γt

Sz
= exp

[
−σαSS |z|

αS
(
e−γαSt − 1

)]
(11)

and can now compute the �nal characteristic function

Fz (t) = exp

[
− 1

γ

ˆ k

0

1

z
ln

[
Sz·e−γt

Sz

]
dz

]
(12)

= exp

[
σαSS
γ

(
e−γαSt − 1

)ˆ k

0

|z|αS
z

dz

]
(13)

= exp

[
− (1− e−γαSt)

γαS
σαSS |z|

αS

]
(14)

= Sz

(
αS , 0, σS ·

(
(1− e−γαSt)

γαS

)1/αS
)
. (15)

So we get a time-dependent scaling parameter

σS (t) = σS ·
(

(1− e−γαSt)
γαS

)1/αS

, (16)

which is zero at the initial condition, consistent with the ansatz in [15]: σS (0) = 0, i.e., the probability density
function is a delta function p (t = 0, ω̄) = δ (ω̄). For t → ∞, the scaling parameter approaches the value derived in
the main text as follows:

σS (t)→ σS ·
(

1

γαS

)1/αS

, as t→∞. (17)

In this calculation we assumed zero mean and neglected skewness since it does not change.
Generalized hyperbolic distribution The generalized hyperbolic distribution (describing among others, generalized

inverse Gamma and StudentT distributions) returned one of the highest likelihoods for the Continental European
data and hence is worth special attention. Assuming that the �nal distribution is given as a generalized hyperbolic
distribution, we have

Fk =

(√
αHH2δ

)λ (√
k2 + αHH2δ

)−λ
Kλ

(√
k2 + αHH2δ

)

Kλ

(√
αHH2δ

) , (18)

where Kλ is the modi�ed Bessel function of the second kind, λ and αH are shape parameters, δ the scale parameter
[16] and we set the location parameter µ and skewness parameter β to 0, in accordance to our estimate. Setting the
above as our �nal distribution, we get an initial noise input distribution as

Sk = exp

(
− k2αHδ ·Kλ+1

(√
k2 + αHH2δ

)
√
k2 + αHH2 ·Kλ

(√
k2 + αHH2δ

)
)
, (19)

which unfortunately is not a well known standard distribution. However, we relate the variances of the input and
output distributions assuming εi = ε as

(
σ2
FK

σ2
Sk

)

Hyperbolic

=
ε2

2γN
, (20)

which demonstrates how increasing the damping γ or the number of nodes N decreases �uctuations. On the other
hand, increasing the noise amplitude ε increases the �nal distribution width. Furthermore, this is exactly the relation
of two variances we get when assuming Gaussian noise, see (5) and setting σSk = 1.
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Composite distributions Using generalized Fokker-Planck equations, we also treat composite distributions in the
case that the power �uctuations are generated by multiple stochastic processes. Suppose that we are aware that
our input noise ξ is not generated from a single but from a composite process Z, i.e., ξ ∼ Z with the composite

noise as a sum of processes Z =
∑M
i=1Xi, where any weighting factors in the sum are absorbed in the individual

distributions. A sum of di�erent independent processes is also known as a convolution and is easily handled in terms
of the characteristic equations of the distributions

SZ =

M∏

i=1

Xi, (21)

see e.g. [11].

As an example we consider the sum of a normal distribution X and an α-stable distribution Y

Z = X + Y, (22)

with

X ∼ N (µN , σN ) , (23)

Y ∼ SαS (βS , µS , σS) , (24)

SX (k) = exp

[
iµNk −

σ2
Nk

2

2

]
, (25)

SY (k) = exp
[
iµSk − |σSk|αS

(
1− iβSsign (k) tan

(παS
2

))]
. (26)

The composite distribution Z has the characteristic function

SZ (k) = SX (k) · SY (k) = exp

[
ik (µN + µS)− σ2

Nk
2

2
− |σSk|αS

(
1− iβSsign (k) tan

(παS
2

))]
. (27)

Note that stable distributions are closed under convolution if they have the same stability parameter αS . In our
example this would only be true for αS = 2 which resembles two normal distributions. Otherwise, the distribution of
Z is neither a normal nor a stable distribution. We simplify (27) by setting the skewness parameter to zero βS = 0
and assuming both distributions have 0 mean µN = µS = 0 as follows

SZ, β=0 (k) = exp

[
−σ

2
Nk

2

2
− |σSk|αS

]
. (28)

We now apply the solution of the generalized Fokker-Planck equation (7) to get the characteristic equation of the
�nal distribution as

F (k) = exp

[
1

γ

ˆ k

0

ln (Sz)

z
dz

]
(29)

= exp

[
−σ

2
Nk

2

4γ
− |σSk|

αS

γαS

]
. (30)

The probability density function does not have a closed form but we plot some examples of such a composite distri-
bution in Fig. S.5.
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Figure S.5. The generalized Fokker-Planck equation also handles composite distributions. a: We depict the �nal PDF of a power
grid with input noise consisting of a (0-mean) normal distribution N (0, σN ) and a (0-mean, 0-skewness) stable distribution
S (αS , 0, 0, σS). b: We repeat this with a log-scale of the PDF. We �x the standard deviation of the normal distribution at
σN = 0.1 but test di�erent values for stability parameter αS and the scale parameter σS of the stable distribution. Especially
in the Log-Plot we observe clearly the power-law tails of the composite distribution, noting that stable distributions are normal
distributions for αS = 2.
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SUPPLEMENTARY NOTE 3

Superstatistics

In the main text we introduced the idea of superstatistics as presented in [17�19] where the total distribution is
seen as several aggregated Gaussian distributions with changing damping γ and noise amplitude ε. We present an
illustration of the concept in Fig. S.6 where we combine two Gaussian distributions to form a distribution that is
both skewed and heavy-tailed.
To extract the long time scale we need to determine the kurtosis given a certain interval length ∆t: For heavy-tailed

distributions this ∆t is the time interval for which the averaged kurtosis of individual intervals of length ∆t is equal
to κ = 3. Similarly, for skewed distributions, such as the Great Britain grid, we determine the long time scale by
looking for the longest interval such that the skewness averaged over all intervals equals 0, see Fig. S.7.
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Figure S.6. Few Gaussian distributions give rise to skewed and/or heavy-tailed distributions. We display two Gaussian
distributions (green and orange) from which we take 2000 samples each to form a histogram. This histogram is no longer
well-described by another Gaussian distribution, as can be seen when comparing histogram and most likely Normal plot (blue).
Instead the resulting data is skewed with skewness β ≈ 0.45 and has a kurtosis of κ ≈ 3.26, compared to κGaussian = 3.
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Figure S.7. We determine the long time scale T . a: For skewed distributions (Great Britain (GB), Eastern Interconnection
(EI)) the long time scale is the time for which the averaged skewness has a minimum. b-c: For heavy-tailed distributions
(Continental Europe (CE) and Japan 60Hz) the long time scale is the time for which the averaged kurtosis is approximately
κ (∆t = T ) ≈ 3.

Computing e�ective friction As soon as we computed the long time scale T for a given data set, we extract the
distribution of the e�ective friction γe� which is changing over time as

γe� (t0) =
1

〈x2〉t0,T − 〈x〉
2
t0,T

, (31)

where 〈...〉t0,∆t =
´ t0+∆t

t0
...dt. Following [17�19] we expect γe� to follow a log-normal or alternatively a χ2 or inverse

χ2 distribution.
In the main text the Japanese data follows a log-normal distribution very well, while we observe larger deviations

from the predicted log-normal distribution for the 50Hertz data set, see Fig. S.8.
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Figure S.8. The variance of Gaussian noise follows approximately a log-normal distribution. Plotted are the histograms of the
e�ective friction γe� value based on the 50Hertz 2015 trajectory compared to the best-�tting log-normal distribution. a: Full
year of 2015. b: First million (of 30 mill.) data points only, i.e. approximately 10 days. We notice that the data using a shorter
trajectory give the better �t to a log-normal distribution. Most likely this is due to several time scales entering the frequency
trajectory. Correlations exist on the half an hour, hour, day, weeks and more time scales. Hence, modeling the varying noise
with one long time scale is limited and using the full trajectory reveals this problem.

How to derive q-Gaussians Here we derive how a χ2 distribution of the e�ective friction γe� leads to a q-Gaussian
distribution of the frequency, following [17].
Consider the Langevin equation

ẋ = −γx+ εξ, (32)

with noise amplitude ε and damping γ. Now de�ne the e�ective friction γe� = γ
ε2 and assume that it is following a

χ2 distribution:

p (γe�) =
1

Γ
(
n
2

)
(
n

2γ0

)n/2
γ
n/2−1
e� exp

(
−nγe�

2γ0

)
, (33)

with degree n, mean γ0 and Gamma function Γ. Next, assume that the changes of γe� are much slower than the
relaxation time scale de�ned by 1/γ during which the system settles down for one �xed γe�. Then, the conditional
probability to �nd the system in state x at �xed γe� is

p (x|γe�) =

√
γe�
2π

exp

(
−1

2
γe�x

2

)
, (34)

and the marginal probability distribution (probability to observe x independent of the value of γe�) is

p (x) : =

ˆ

p (x|γe�) p (γe�) dγe� (35)

=
Γ
(
n
2 + 1

2

)

Γ
(
n
2

)
( γ0

πn

)1/2 1
(
1 + γ0

n x
2
)n/2+1/2

, (36)

which is a q-Gaussian and can be re-written as

p (x) ∼ 1
(
1 + 1

2 γ̃ (q − 1)x2
)1/(q−1)

, (37)

with q = 1 + 2/(n+ 1) and γ̃ = 2/(3− q)γ0.
Let us review the consequences for our data-driven approach. When we record a χ2 distribution for the e�ective

friction γe�, it strongly supports the q-Gaussian modeling of the bulk angular velocity ω̄.
However, we did not �t our distribution of γe� with a χ2 distribution but used a log-normal distribution instead.

Unfortunately, we cannot derive the q-Gaussian distribution analytically based on a log-normal distribution but we
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can compare the predicted PDF or p (ω̄) when convoluting a log-normal distribution with the histogram and the
estimated q-Gaussian. Figure S.9 displays this comparison for the 60Hz Japan data which works very well: The
q-Gaussian based on the original data and the PDF based on the convolution of the log-normal distribution are close
to identical, see also [19] for more discussion on the role of log-normal distributions in superstatistics.
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Figure S.9. The log-normal distribution of γe� predicts nearly the q-Gaussian estimate for the 60Hz Japanese grid. We plot
the histogram data of the Japanese 60 Hz region, together with its q-Gaussian estimate. In addition, we compute the expected
PDF given that the Gaussian distributions change based on a γe� following a log-normal distribution. All quantities match
very well.
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SUPPLEMENTARY NOTE 4

Monte-Carlo simulations

We validate our predicted probability density functions (PDF) based on the Fokker-Planck equation

p (ω̄) =

√
γM2

π
∑N
i=1 ε

2
i

exp

[
−ω̄2 γM2

∑N
i=1 ε

2
i

]
(38)

and the generalized Fokker-Planck equation

p (x, t) = F−1

[
exp

(
− 1

γ

ˆ k

0

1

z
ln

(
Sz·e−γt

Sz

)
dz

)]
, (39)

by simulating the swing equations on realistic power grid networks which are subject to either Gaussian or stable
noise. As topologies we chose the elementary two node system (one producer connected to one consumer), a 10 node,
see Fig. S.10 and the Tokyo-Tohoku power grid topology, see Fig. S.11.

Figure S.10. We test the (generalized) Fokker-Planck predictions with simulations on a toy power grid. Here we show the 10
node system with producers (green) and consumers (red). We set γ = 0.1, P− = −1/s2 for consumers and P+ = 1/s2 for
producers with homogeneous coupling of K = 4/s2.

Consumer

Branch point

Producer

Tokyo Tohoku

Figure S.11. We test the (generalized) Fokker-Planck predictions with simulations on a realistic power grid. Here we show
the joined Tokyo (Triangle) and Tohoku (squares) grid with producers (green), branches (black) and consumers (red) [20].
We set γ = 0.1 and P− = −1/s2 for consumers and P+ ≈ 2.38/s2 for producers, with admittance matrix and positions of
producers/consumers in the grid given by [20]. For our simulations, we increase the coupling by a factor of k = 15.

Swing equation simulations Assuming symmetrical coupling Kij = Kji, balanced power
∑
i Pi = 0 and homoge-

neous damping to inertia ration γ we have the following equation of motion
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d

dt
ω̄ = −γω̄ + ε̄ξ, (40)

with mean noise amplitude ε̄ and noise ξ. To solve this equation, we discretize time into intervals of length ∆t and
compute

∆ω̄ = −γ · ω̄ (t) ·∆t+X ·
√

∆t,

ω̄ (t+ ∆t) = ω̄ (t) + ∆ω̄, (41)

t = t+ ∆t,

with X as our random variable drawn from a previously de�ned distribution (normal or stable).
Comparison of data and simulations In order to reproduce the data of the ENTSO-E Great Britain grid, we

estimate the stability parameter of the measurements to be as αS,GB ≈ 1.97, the scale parameter as σS,GB = 0.2420
and calculate the damping based on the autocorrelation to be γGB = 0.00215/s. We are able to reproduce both our
estimate and the original data in the histograms, see Fig. S.12 and in the autocorrelation function, see Fig. S.13.
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Figure S.12. Simulations reproduce the heavy-tailed ensembles. a: We compare the histograms of the original frequency
measurements (transformed to angular velocity ω) with simulations and the estimated stable distribution (based on the original
data) using the Great Britain 2015 data. b: We repeat the plot with a log-scale of the PDF.
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Figure S.13. Simulations reproduce the autocorrelation. We compare the autocorrelation function of the original frequency
measurements (transformed to angular velocity ω) with simulations and the estimated exponential decay using the Great Britain
2015 data.

125 Chapter 6. Scaling of Power Grid Frequency Fluctuations



15

[1] 50Hertz Transmission GmbH. Entso-e netzfrequenz, 2010-2016.
[2] Réseau de Transport d'Electricité (RTE). Network frequency, 2014-2016.
[3] National Grid. Frequency data, 2014-2016.
[4] EB Tchuisseu, D Gomila, D Brunner, and P Colet. E�ects of dynamic-demand-control appliances on the power grid

frequency. arXiv preprint arXiv:1704.01638, 2017.
[5] Fingrid. Nordic power system frequency measurement data, 2015-2016.
[6] Organization for Cross-regional Coordination of Transmission Operators, Japan (OCCTO). Japanese grid frequency, 2016.
[7] Power Information Technology Lab, University of Tennessee, Knoxville and Oak Ridge National Laboratory.

FNET/GridEye, 09 2014. 1 day data set "20140905", contact powerit@utk.edu.
[8] U.S. Department of Energy. Eia-411: Coordinated bulk power supply and demand program report, 2016.
[9] ENTSO-E. Monthly production for a speci�c year for 2015, 2016.
[10] ENTSO-E. Statistical factsheet 2015, 2016.
[11] Gerhard Bohm and Günter Zech. Introduction to statistics and data analysis for physicists. DESY, 2010.
[12] Wolfram Research Inc. Mathematica. Champaign, Illinois, 2014.
[13] J. Machowski, J. Bialek, and J. Bumby. Power System Dynamics: Stability and Control. John Wiley & Sons, 2011.
[14] Math H Bollen and Irene Gu. Signal processing of power quality disturbances, volume 30. John Wiley & Sons, 2006.
[15] SI Denisov, Werner Horsthemke, and Peter Hänggi. Generalized fokker-planck equation: Derivation and exact solutions.

The European Physical Journal B, 68(4):567�575, 2009.
[16] Matthias Fischer. Generalized hyperbolic distributions. In International Encyclopedia of Statistical Science, pages 589�590.

Springer, 2011.
[17] Christian Beck. Dynamical foundations of nonextensive statistical mechanics. Physical Review Letters, 87(18):180601,

2001.
[18] Christian Beck and EGD Cohen. Superstatistics. Physica A: Statistical mechanics and its applications, 322:267�275, 2003.
[19] Christian Beck, Ezechiel GD Cohen, and Harry L Swinney. From time series to superstatistics. Physical Review E,

72(5):056133, 2005.
[20] Motoki Nagata, Naoya Fujiwara, Gouhei Tanaka, Hideyuki Suzuki, Eiichi Kohda, and Kazuyuki Aihara. Node-wise

robustness against �uctuations of power consumption in power grids. The European Physical Journal Special Topics,
223(12):2549�2559, 2014.

126 Chapter 6. Scaling of Power Grid Frequency Fluctuations



Chapter 7

Dynamically Induced Cascading

Failures in Supply Networks

Citation

Benjamin Schäfer, Dirk Witthaut, Marc Timme and Vito Latora (2017) Dynamically Induced Casca-

ding Failures in Supply Networks

© 2017 Benjamin Schäfer, Dirk Witthaut, Marc Timme and Vito Latora

This chapter is the submitted version of the article: Benjamin Schäfer, Dirk Witthaut, Marc Timme

and Vito Latora (2017) Dynamically Induced Cascading Failures in Supply Networks, which is cur-

rently under review at Nature Communications. It is also available as a pre-print on arXiv:https:

//arxiv.org/abs/1707.08018 where a link to any �nal version will be provided.

Original Contribution

Conception of the research was done with V. Latora. I performed all calculations and simulations. I

produced all numerical data and generated all �gures. I set up the Supplemental Material, including all

�gures. I wrote large parts of all text sections in the main manuscript and the Supplemental Material,

with support of all authors.

127

https://arxiv.org/abs/1707.08018
https://arxiv.org/abs/1707.08018


Dynamically Induced Cascading Failures in Supply Networks

Benjamin Schäfer,1 Dirk Witthaut,2, 3 Marc Timme,1, 4, 5 and Vito Latora6, 7

1Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
2Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems

Analysis and Technology Evaluation (IEK-STE), 52428 Jülich, Germany
3Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany

4Institute for Theoretical Physics, Technical University of Dresden, 01062 Dresden Germany
5Center for Advancing Electronics Dresden (cfaed),

Technical University of Dresden, 01062 Dresden Germany
6School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

7Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123 Catania, Italy

Reliable functioning of infrastructure networks is essential for our modern society. Cascading
failures are the cause of most large-scale network outages. Although cascading failures often exhibit
dynamical transients, the modeling of cascades has so far mainly focused on the analysis of sequences
of steady states. In this article, we focus on electrical supply networks and introduce a framework
that takes into consideration both the event-based nature of cascades and the details of the network
dynamics. We �nd that transients in the �ows of a supply network play a crucial role in the emer-
gence of collective behavior. We show that such dynamically-induced cascades may systematically
propagate across a network at a nearly constant propagation speed. This is illustrated using the
topologies of the national power grids of Spain, France and Great Britain. We �nally propose a
forecasting method to identify critical lines and components in advance or during an exceptional
situation. Overall, our work highlights the relevance of dynamically induced failures on the syn-
chronization dynamics of national power grids of di�erent European countries and it provides novel
methods to predict and limit cascading failures.

Our daily lives heavily depend on the functioning of
many natural and man-made networks, ranging from
neuronal and gene regulatory networks over communi-
cation and transportation networks to electrical power
grids [1, 2]. Understanding the robustness of these net-
works with respect to random failures and to targeted
attacks is of outmost importance for preventing system
outages with severe implications [3]. Recent examples,
as the 2003 blackout in the Northeastern United States
[4], the major European blackout in 2006 [5] or the In-
dian blackout in 2012 [6] have shown that initially local
and small events can trigger large area outages of electric
supply networks a�ecting millions of people, with severe
economic and political consequences [7]. For this rea-
son, cascading failures have been studied intensively in
statistical physics, and di�erent network topologies and
non-local e�ects have been considered and analyzed [8�
13]. Complementary studies have employed simpli�ed
topologies that admit analytical insights, for instance in
terms of percolation theory [14] or minimum coupling
[15]. Results have shown, for instance, the robustness
of scale-free networks [3, 16, 17], or the vulnerability of
multiplex networks [18�20].

Although real-world cascades often include dynamical
transients of grid frequency and �ow with very well de-
�ned spatio-temporal structures, so far models of cas-
cading failures have mainly focused on event-triggered
sequences of steady states [8, 10, 11, 21�24] or on pu-
rely dynamical descriptions of desynchronization without
considering secondary failure of lines [25�29]. In parti-
cular, in supply networks such as electric power grids,
which are considered as uniquely critical among all infra-

structures [30, 31], the failure of transmission lines du-
ring a blackout is determined not only by the network
topology and by the static distribution of the electricity
�ow, but also by the collective transient dynamics of the
entire system. Indeed, during the severe outages men-
tioned above, cascading failures over the electric power
grids happened on time scales of dozens of minutes over-
all, but often started by the failure of a single element
[32]. Conversely, sequences of individual line overloads
took place on a much shorter time scale of seconds [4, 5],
the time scale of systemic instabilities, emphasizing the
role of transient dynamics in the emergence of collective
behaviors. Notwithstanding the importance of the tran-
sients, the causes, triggers and propagation of cascades
induced by transient dynamics has been considered only
in a few works [9], and still needs to be systematically
studied [33].

In this article, we propose a general framework to ana-
lyze the impact of transient dynamics on the outcome of
cascading failures taking place over a complex network.
Namely, we go beyond purely topological or event-based
investigations and develop a dynamical model for supply
networks that incorporates both the event-based nature
of cascades and properties of network dynamics, inclu-
ding transients, which, as we will show, can signi�cantly
increase the vulnerability of a network [9]. These tran-
sients describe the dynamical response of system varia-
bles, such as grid frequency and power �ow, when one
steady state is lost and the grid changes to a new ste-
ady state. Combining microscopic nonlinear dynamics
techniques with a macroscopic statistical analysis of the
system, we will �rst show that, even when a supply net-
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work seems to be robust because in the large majority of
the cases the initial failure of its lines does only have local
e�ects, there exist a few speci�c lines which can trigger
large-scale cascades. We will then analyze the vulnera-
bility of a supply network by looking at the dynamical
properties of cascading failures. To identify the critical
lines of the network we introduce and analytically derive
a �ow-based classi�er that is shown to outperform mea-
sures solely relying on the network topology, local loads
or network susceptibilities (line outage distribution fac-
tors). Finally, we demonstrate that cascades propagate
through the network at a characteristic speed if distance
is measured in an appropriate way, using e�ective dis-
tance measures [34].

The article is organized as follows. In Section I we
describe a general framework that is commonly adopted
to model the real-time dynamics of a power transmission
network on coarse scales. In Section IIA we discuss the
importance of dynamical transients in the development
of a cascade of subsequent failures induced by an initial
shock to the system, and we introduce our model of cas-
cading failures that properly takes these into account.
We then show how the model works on a small synthe-
tic network and when applied to some real case studies
considering the real topology of the national power grids
of various European countries. In particular, in Section
II B we focus on the analysis of the statistical proper-
ties of the cascades, while in Section IIC we introduce
and discuss a method to identify the critical lines of a
network, i.e. those lines inducing cascading failures. Fi-
nally, in Section IID we investigate the details of how a
cascade propagates.

I. MODELING POWER GRIDS

When it comes to model the dynamics of a power trans-
mission network, the swing equation is a simple way to
deal with the key features of the system as a whole, na-
mely its synchronization properties. Thereby, we avoid
dealing directly with a complete dynamical description
in terms of complicated power grid simulation software
or static power-�ow models which are routinely used to
simulate speci�c scenarios on large-scale power grids by
power engineers. The swing equation retains the dynami-
cal features of AC power grids, by describing each of the
elements of an electric power network as a rotating ma-
chine characterized by its angle and its angular velocity
at a given time. In practice, a rotating machine either
represents a large synchronous generator in a conventio-
nal power plant or a coherent subgroup, i.e., a group of
strongly coupled small machines and loads which are tig-
htly phase-locked in all cases. The angle of each machine
is assumed to be identical to the angle of the complex
voltage vector, so that the angle di�erence of two ma-
chines determines the power �ow between them to trans-
port, for example, energy from a producer to a consumer.

More formally, let us suppose to have N rotatory
machines, each corresponding to a node of a network.
Each machine i, with i = 1, 2, . . . , N is characterized
by its mechanical rotor angle θi(t) and by its angular
velocity ωi := dθi/dt relative to the reference frame of
Ω = 2π · (50 or 60) Hz. Furthermore, machine i either
feeds power into the network, acting as an e�ective gene-
rator with power Pi > 0, or absorbs power, acting as an
e�ective consumer (corresponding to the aggregate con-
sumers of an urban areas) with power Pi < 0. The swing
equation reads [28, 35, 36]:

d

dt
θi = ωi (1)

Ii
d

dt
ωi = Pi − γiωi +

N∑

j=1

Kij sin (θj − θi) ,

where γi is the homogeneous damping of an oscillator,
Ii is the inertia constant and Kij is a coupling matrix
governing the topology of the power grid network, and
the strength of the interactions. In the following, we will
both consider heterogeneous coupling Kij or we will as-
sume homogeneous coupling Kij = Kaij , where aij are
the entries of the unweighted adjacency matrix that des-
cribes the connectivity of the network. For simplicity,
we assume homogeneous damping γi = γ and inertia
Ii = 1 for all i ∈ 1, ..., N . To derive Eq. (1) one has
to assume that the voltage amplitude Vi at each nodes
is time-independent, that ohmic losses are negligible and
that the changes in the angular velocity are small compa-
red to the reference ωi � Ω, see e.g, [30, 35] for details.
All these assumptions are ful�lled as long as we model
short time scales on the high-voltage transmission grid
[36] which will be su�cient for our study. The coupling
matrix Kij is an abbreviation for Kij = BijViVj where
Bij is the susceptance between two nodes [30]. The swing
equation is especially well suited to describe short time
scales, as they appear in typical large-scale power grid
cascades [4, 5, 7], however, we also discuss other models
returning qualitatively similar results in Supplementary
Note 3.
The desired stable state of operation of the power grid

network is characterized by all machines running in sy-
nchrony at the reference angular velocity Ω, i.e., ωi = 0
∀i ∈ {1, ..., N}, implying

∑
i Pi = 0. Thereby, we deter-

mine the �xed point by solving for the angles θ∗i in:

0 = Pi +

N∑

j=1

Kij sin
(
θ∗j − θ∗i

)
. (2)

The grid in its synchronous state is phase-locked, i.e.,
all angle di�erences do not change in time. This is impor-
tant since the angle di�erence determines the �ow along
a line, and �uctuating angle di�erences would imply �uc-
tuating conducted power which can in turn lead to the
shutdown of a plant [30, 36]. Furthermore, transmission
system operators demand the frequency to stay within
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strict boundaries to ensure stability and constant phase
locking [37].
Phase-locking and other synchronization phenomena

arise in many di�erent domains and applications, and
have attracted the interest of physicists across �elds [38].
One of the simplest synchronization models is the Kura-

moto model which has been used, among other applica-
tions, to describe synchronization phenomena in �re�ies,
chemical reactions and simple neuronal models [39�42].
The swing equation shows similarities with the Kuro-
moto model, including the sinusoidal form of the coupling
function and the existence of a minimal coupling thres-
hold to achieve synchronization [27]. However, the swing
equation includes a second derivative due to the inertial
forces in the grid. Both equations share the same �xed
points but the swing equations display dissipative forces
and limit cycles that are not present in the Kuramoto
model.

II. RESULTS

A. The dynamics of cascading failures

Failures are common in many interconnected systems,
such as communication, transport and supply networks,
which are fundamental ingredients of our modern socie-
ties. Usually, the failure of a single unit, or of a part of
a network, is modeled by removing or deactivating a set
of nodes or lines (or links) in the corresponding graph
[43]. The most elementary damage to a network consists
in the removal of a single line, since removing a node is
equivalent to deactivate more than one line, namely all
those line incident in the node. For this reason, in the
following of this work, we concentrate on line failures.
In practice, the malfunctioning of a line in a transpor-
tation/communication network can either be due to an
exogenous or to an endogenous event [44, 45]. In the �rst
case, the line breakdown is caused by something external
to the network. Examples are the lightning strike of a
transmission line of the electric power grid, or the sag-
ging of a line in the heat of the summer. In the case of
endogenous events, instead, a line can fail because of an
overload due to an anomalous distributions of the �ows
over the network. Hence, the failure is an e�ect of the
entire network.
Complex networks are also prone to cascading failures.
In these events, the failure of a component triggers the
successive failures of other parts of the network. In this
way, an initial local shock produces a sequence of mul-
tiple failures in a domino mechanism which may �nally
a�ect a substantial part of the network. Cascading failu-
res occur in transportation systems [46, 47], in computer
networks [48], in �nancial systems [49], but also in sup-
ply networks [18]. When, for some either exogenous or
endogenous reason, a line of a supply network fails, its
load has to be somehow redistributed to the neighboring
lines. Although these lines are in general able to handle

their extra tra�c, in a few unfortunate cases they will
also go overload and will need to redistribute their incre-
ased load to their neighbors. This mechanism can lead
to a cascade of failures, with a large number of transmis-
sion lines a�ected and malfunctioning at the same time.
One particular critical supply network is the electrical
power grid displaying for example large-scale cascading
failures during the blackout on 14 August 2003, a�ecting
millions of people in North America, and the European
blackout that occurred on 4 November 2006. In order

to model cascading failures in power transmission net-
works, we propose to use the framework of the swing
equation in Eq. (1) to evaluate, at each time, the actual
power �ow along the transmission lines of the network
and compare it to the actual available capacity of the li-
nes. Typical studies of network robustness and cascading
failures in power grids adopted quasi-static perspectives
[8, 10, 11, 21�24, 50] based on �xed-point estimates of
the variables describing the node states. Such approach,
in the context of the swing equation, is equivalent to the
evaluation of the angles {θi} as the �xed point solution
of Eq. (1) or power �ow analysis [30]. In contrast, we use
here the swing equation to dynamically update the an-
gles θi (t) as functions of time, and to compute real-time
estimates of the �ow on each line. The �ow on the line
(i, j) at time t is obtained as:

Fij (t) = Kij sin (θj (t)− θi (t)) . (3)

Having the time evolution of the �ow along the line (i, j),
we compare it to the capacity Cij of the line, i.e., to
the maximum �ow that the line can tolerate. There are
multiple options how we can de�ne the capacity of a line
in the framework of the swing equation. One possibility
is the following. The dynamical model of Eq. (1) itself
would allow a maximum �ow equal to Fij = Kij on the
line (i, j). However, in realistic settings, ohmic losses
would induce overheating of the lines which has to be
avoided. Hence, we assume that the capacity Cij is set
to be a tunable percentage of Kij . In order to prevent
damage and keep ground clearance [36, 51], the line (i, j)
is then shut down if the �ow on it exceeds the value αKij ,
where α ∈ [0, 1] is a control parameter of our model. The
overload condition on the line (i, j) at time t �nally reads:

overload: |Fij(t)| > Cij = αKij , (4)

Notice that the capacity Cij = αKij is an absolute capa-
city, i.e., it is independent from the initial state of the sy-
stem. This is di�erent from the de�nition of a relative ca-
pacity, C̃ij := (1 + α)Fij (0), which has been commonly
adopted in the literature [9, 21, 52].
Having de�ned the �xed point of the grid, given by the

solution of Eq. (2), and the capacity of each line, we ex-
plore the robustness of the network with respect to line
failures. We �rst consider the ideal scenario in which all
the elements of the grid are working properly, i.e., all ge-
nerators are running as scheduled and all the lines are
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Figure 1. Dynamical overload reveals additional lines failures compared to static �ow analysis. (a) A �ve node power
network with two producers P+ = 1.5/s2 (green squares), three consumers P− = −1/s2 (red circles), homogeneous coupling
K ≈ 1.63/s2, and tolerance α = 0.6 is analyzed. To trigger a cascade, we remove the line marked with a lightening bolt
(2,4) at time t = 1s. (b) We observe a cascading failure with several additional line failures after the initial trigger due to
the propagation of overloads. (c) The common quasi-static approach of analyzing �xed point �ows would have predicted no
additional line failures, since the new �xed point is stable with all �ows below the capacity threshold. (d) Conversely, the
transient dynamics from the initial to the new �xed point overloads additional lines which then fail when their �ows exceed
their capacity (gray area).

operational. We say that the grid is N − 0 stable [53]
if the network has a stable �xed point and the �ows on
all lines are within the bounds of the security limits, i.e.
do not violate the overload condition Eq. (4), where the
�ows are calculated by inserting the �xed point solution
into Eq. (3). Next, we assume the initial failure of a sin-
gle transmission line. We call the new network in which
the corresponding line has been removed the N − 1 grid.
Since the a�ected transmission line can be any of the |E|
lines of the network, we have |E| di�erent N − 1 grids.
If the N − 1 grid still has a �xed point for all possible
|E| di�erent initial failures, and all of these �xed points
result in �ows within the capacity limits, the grid is said
to be N − 1 stable [30, 36, 51]. While traditional cas-
cade approaches usually test N − 0 or N − 1 stability
using mainly static �ows, our proposal is to investigate
cascades by means of dynamically updated �ows accor-
ding to the power grid dynamics of Eq. (3). This allows
for a more realistic modeling of real-time overloads and
line failures. In practice, this means to solve the swing
equation dynamically, update �ows and compare to the

capacity rule Eq. (4), removing lines whenever they ex-
ceed their capacity. Thereby, our N−1 stability criterion
demands not only the stable states to stay within the ca-
pacity limits but also includes the transient �ows on all
lines. See Supplementary Note 1 for details on our proce-
dure and comparison of our framework to other methods.

In order to illustrate how our dynamical model for cas-
cading failures works in practice, we �rst consider the
case of the network with N = 5 nodes and |E| = 7 li-
nes shown in Fig. 1. We assume that the network has
two generators, the two nodes reported as green squa-
res, characterized by a positive power P+ = 1.5/s2,
and three consumers, reported as red circles, with po-
wer P− = −1/s2. For simplicity we have adopted here
a modi�ed �per unit system� obtained by replacing real
machine parameters with dimensionless multiples with
respect to reference values. For instance, here a �per
unit� mechanical power Pper unit = 1/s2 corresponds to
the real value Preal = 100MW [30, 36]. Moreover, we as-
sume homogeneous line parameters throughout the grid,
namely, we �x the coupling for each couple of nodes i
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Figure 2. The e�ect of a cascade of failures strongly depends on the choice of the initially damaged line. (a) The network of the
Spanish power grid with distributed producers with P+ = 1/s2 (green squares) and consumers with P− = −1/s2 (red circles),
homogeneous coupling K = 5/s2, and tolerance α = 0.52 is analyzed. Two di�erent trigger lines are selected. (b) The number
of line failures as a function of time for the two di�erent trigger lines highlighted in panel (a) and for an average over all the
possible initial damages. Some lines do only cause a single line failure, while others a�ect a substantial amount of the network.
On average most line failures do take place within the �rst ≈ 20 seconds of the cascade.

and j as Kij = Kaij , with K = 1.63/s2. In order to
prepare the system in its stable state, we solve Eq. (2)
and calculate the corresponding �ows at equilibrium. We
then �x a threshold value of α = 0.6. With such a va-
lue of the threshold, none of the �ows is in the overload
condition of Eq. (4), and the grid is N − 0 stable. Next,
we perturb the stable steady state of the grid with an
initial exogenous perturbation. Namely, we assume that
line (2, 4) fails at time t = 1, due to an external distur-
bance. By using again the static approach of Eq. (2) to
calculate the new steady state of the system, it is found
that all �ows have changed but they still are all below
the limit of 0.6, as shown in Fig. 1(c). Hence, with
respect to a static analysis, the grid is N − 1-stable to
the failure of line (2, 4). Despite this, the capacity crite-
rion in Eq. (4) can be violated transiently, and secondary
outages emerge dynamically. As Fig. 1(d) shows, this is
indeed what happens in the example considered. Approx-
imately one second after the initial failure, the line (4, 5)
is overloaded, which causes a secondary failure, leading
to additional overloads on other lines and their failure in
a cascading process that eventually leads to the discon-
nection of the entire grid. The whole dynamics of the
cascade of failures induced by the initial removal of line
(2, 4) is reported in Fig. 1(d).

Dynamical cascades are not limited to small networks
as the one considered in this example, but also appear
in large networks. In order to show this, we have im-
plemented our model for cascading failures on a network
based on the real structure of the Spanish high voltage
transmission grid. The network is reported in Fig. 2
and has NSpanish = 98 nodes and |E|Spanish = 175 edges.

We select a set of distributed producers (green squares),
each with a positive power P+ = 1/s2, and consumers
(red circles), with negative power P− = −1/s2. As in the
case of the previous example, we adopt a homogeneous
coupling, namely we �x Kij = K · aij with K = 5/s2

for each couple of nodes i and j. We also �x a tolerance
value α = 0.52, such that none of the �ows is in the over-
load condition of Eq. (4), and the grid is initially N − 0
stable. We notice from the e�ects of cascading failures
shown in Fig. 2 that the choice of the trigger line sig-
ni�cantly in�uences the total number of lines damaged
during a cascade. For instance, the initial damage of line
1 (dashed red line) causes a large cascade of failures with
14 lines damaged in the �rst seven seconds, while the ini-
tial damage of line 2 (dashed blue line) does not cause
any further line failure, as the initial shock is in this case
perfectly absorbed by the network. Figure 2 also displays
the average number of failing lines as a function of time.
Here, we average over all lines of the network considered
as initially damaged lines. We notice that the cascading
process is relatively fast, with all the failures taking place
within the �rst TCascade = 20 s. This further supports the
adoption of the swing equation, which is indeed mainly
used to describe short time scales, while more complex
and less tractable models are required to model longer
times [36].

B. Statistics of Dynamical Cascades

To better characterize the potential e�ects of casca-
ding failures in electric power grids, we have studied the
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Figure 3. E�ects of cascading failures in the Spanish power grid under di�erent levels of tolerance. (a) The percentage of line
failures in our model of cascading failures (circles), under di�erent values of tolerance α is compared to the results of a static
�xed point �ow analysis (squares). The static analysis largely underestimates the actual number of line failures in a dynamical
approach. The di�erence between static and dynamical analysis is especially clear in the inset where we focus on the lowest
values of α at which the network is N − 0 stable. The gray area is N − 0 unstable, i.e., the network without any external
damage already has overloaded lines. (b) Percentage of unsynchronized (damaged) nodes after the cascade as a function of
the tolerance α. All analysis has been performed under the same distribution of producers and consumers as in Fig. 2, with
homogeneous coupling of K = 5s−2.

statistical properties of cascades on the topology of real-
world power transmission grids, such as those of Spain
and France [54]. In particular, we have considered the
two systems under di�erent values of the tolerance para-
meter α [21], and for various distributions of producers
and consumers on the network. As in the examples of
the previous section, we have also analyzed all the possi-
ble initial damages triggering the cascade. To assess the
consequences of a cascade, we have focused on the fol-
lowing two quantities. First, we analyze the number of
lines that su�ered an overload, and are thus shut down
during the cascading failure process. This number is a
measure of the total damage su�ered by the system in
terms of loss of its connectivity. Second, we record the
fraction of nodes that have experienced a desynchroniza-
tion during the cascade, which represents a proxy for the
number of consumers a�ected by a blackout (see Supple-
mentary Note 1 for details on the implementation). In
both the cases of a�ected lines and a�ected nodes, the
numbers we look at are those obtained at the end of the
cascading failure process.

Fig. 3 shows the results obtained for the case of the
network of the Spanish power transmission grid. The
same homogeneous coupling and distribution of produ-
cers and consumers is adopted as in Fig. 2. We have
considered each of the lines as a possible initial trigger of
the cascade, and averaged the �nal number of line failu-
res and unsynchronized nodes over all realizations of the
dynamical process. We have repeated this for multiple
values of the tolerance coe�cient α. As expected, a larger
tolerance results in fewer line failures and fewer unsyn-
chronized nodes, because it makes the overload condition
of Eq. (4) more di�cult to be satis�ed. As we decrease
the network tolerance α, the total number of a�ected li-
nes and unsynchronized nodes after the cascade suddenly

increases at a value α ≈ 0.5, where we start to observe
a propagation of the cascade induced by the initial ex-
ternal damage. Crucially, a dynamical approach, as the
one considered in our model, identi�es a signi�cantly lar-
ger number of line failures (circles) compared to a static
approach (squares). This is clearly visible in the inset
of the left hand side of Fig. 3, where we zoom to the
lowest values of α at which the network is N − 0 stable.
For instance, at α = 0.52 our model predicts that an
average of six lines of the Spanish power grid are a�ected
by the initial damage of a line of the network through a
propagation of failures. Such a vulnerability of the net-
work is completely unnoticeable by a static approach to
cascading failures based on the analysis of �xed points.
The static approach reveals in fact that on average only
another line of the network will be a�ected. We also note
that the increase in the number of unsynchronized nodes
for decreasing values of α is much sharper than that for
overloaded lines. Below a value of α ≈ 0.5 the number
of unsynchronized nodes jumps to 100%. This transi-
tion indicates a loss of the N − 0 stability of the system,
meaning that, already in the unperturbed state several
lines are overloaded according to the capacity criterion
in Eq. (4) and thus fail. To study only genuine e�ects of
cascades, in the following we restrict ourselves to the case
α > 0.5, where the grid is N − 0 stable, but not necessa-
rily N−1 stable. Furthermore, to assess the �nal impact
of a cascade on a network, we mainly focus on total num-
ber of a�ected lines [4, 5]. As discussed in Section IIA,
damages to lines are indeed the most elementary type of
network damages.

Furthermore, we have explored the role of centralized
versus distributed power production, and that of hete-
rogeneous couplings Kij , and also extended our analysis
to other network topologies of European national power
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Figure 4. Network damage distributions in the Spanish and French power grids under di�erent power allocations and types
of coupling. The histograms shown have been obtained under three di�erent settings. Panels (a) and (d) refer to the case of
distributed power, i.e., equal number of producers and consumers, each with P− = −1/s2 and P+ = 1/s2, and homogeneous
coupling with K = 5/s2 for the Spanish and K = 8/s2 for the French grid. Panels (b) and (e) refer to the case of centralized
power, i.e., consumers with P− = −1/s2 and fewer but larger producers with P+ ≈ 6/s2, and homogeneous coupling with
K = 10/s2 for Spanish and K = 9/s2 for the French grid. Panels (c) and (f) refer to a case of distributed power as in panel
(a) and (d), but with heterogeneous coupling, so that the �xed point �ows on the lines are approximately F ≈ 0.5K both for
the Spanish and the French grid. For all plots we use two di�erent tolerances α, where the lower one is the smallest simulated
value of α so that there are no initially overloaded lines (N − 0 stable).

grids, namely those of France and of Great Britain, see
Supplementary Note 2. In Fig. 4 we compare the re-
sults obtained for the Spanish network topology (three
top panels) to those obtained for the French network
(three bottom panels). With NFrench = 146 nodes and
|E|French = 223 edges the French power grid is larger in
size than the Spanish one considered in the previous �-
gures (NSpanish = 98 and |E|Spanish = 175) and has a
smaller clustering coe�cient. In each case, we have cal-
culated the total number of line failures at the end of
the cascading failure when any possible line of the net-
work is used as the initial trigger of the cascade. We
then plot the probability of having a certain number of
line failures in the process, so that the histogram repor-
ted indicates the size of the largest cascades and how
often they occur. Notice that the probability axis uses
a log-scale. For each network we have considered both
distributed and centralized locations of power producers,
and both homogeneous and heterogeneous network cou-
plings. The centralized production is thereby a good ap-
proximation to the classical power grid design with few
large fossil and nuclear power plants powering the whole
grid. In contrast, the distributed production scheme des-
cribes well the case in which many small (wind, solar,
biofuel, etc.) generators are distributed across the grid
[25]. Finally, the choice of heterogeneous coupling is mo-
tivated by economic considerations, since maintaining a

transmission network costs money and only those lines
that actually carry �ow are used in practice. In particu-
lar, we have worked under the following three di�erent
types of settings:

1. Distributed power and homogeneous couplings

Equal number of producers and consumers in the
network, each of them having respectively P+ =
1/s2 and P− = −1/s2. Homogeneous coupling
with Kij = Kaij and K = 5/s2 for the Spanish
(as in case of the previous �gures) and K = 8/s2

for the French grid. Results shown in panels (a)
and (d);

2. Centralized power and homogeneous couplings Con-
sumers with P− = −1/s2 and fewer but larger pro-
ducers with P+ ≈ 6/s2. Homogeneous coupling
with K = 10/s2 for the Spanish and K = 9/s2 for
the French grid. Results shown in panels (b) and
(e);

3. Distributed power and heterogeneous coupling Ho-
mogeneous distribution of producers and consu-
mers as in case 1. Heterogeneous distribution of
the Kij , so that the �xed point �ows on the lines
are approximately F ≈ 0.5K both for the Spanish
and the French grid (see Supplementary Note 1 for
details). Results shown in panels (c) and (f).
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In each of the above cases, we work in conditions such
that no line is overloaded before the initial exogenous da-
mage. We have performed simulations for two values of
the tolerance parameter α. For each of the two grids and
of the three conditions above, the lowest value α = α1

has been selected to be equal to the minimal tolerance
such that each the network is N − 0 stable (yellow histo-
grams). In addition, we have considered a second, larger
value of the tolerance, α2, showing qualitatively di�erent
behaviors (blue histograms). As found in other studies
[25�27, 29], the (homogeneous) coupling K has to be lar-
ger for centralized production compared to distributed
small producers to achieve comparable stability.

The �rst thing to notice from the histograms in Fig.
4(a) is that in most of the cases the initial failure of
a line does not cause any cascade at all, or very small
ones. This means that the Spanish grid is in most of
the cases N − 1 stable even in our dynamical model of
cascades. Nevertheless, for α1, there exist a few lines
that, when damaged, trigger a substantial part of the
network to be disconnected. This leads to the question
whether and how the distribution of producers or the
topology of the network impact the size and frequency of
the cascade. When comparing distributed (many small
producers) in panel (a) to centralized power production
(few large producers) in panel (b) we do not observe a
signi�cant di�erence in the statistics of the cascades. The
same holds when comparing di�erent network topologies,
such as the Spanish and the French grid in panels (d) and
(e).

Conversely, allowing heterogeneous couplings introdu-
ces notable di�erences to emerge in panels (c) and (f).
To obtain heterogeneous couplings, we have scaled Kij

at each line proportional to the �ow at the stable ope-
rational state (see Supplementary Note 1). Thereby, we
try to emulate cost-e�cient grid planning which only in-
cludes lines when they are used. However, our results
show that, under these conditions, the �ow on a line with
large coupling cannot easily be re-routed in our hetero-
geneous network when it fails [29]. For certain initially
damaged lines, this leads to very large cascades in grids
with heterogeneous coupling Kij . For instance, both the
Spanish and the French power grid show a peak of proba-
bility corresponding to cascades of about 150 line failures
when α = α1. But also in the case of α2 = 0.8, which
corresponds to a N − 1 stable situation under the ho-
mogeneous coupling condition, the Spanish grid exhibits
cascades involving from 50 to 100 lines in 5% of the cases
under heterogeneous couplings, see panel (c). The �nal
number of unsynchronized nodes after the cascade, used
as a measure of the network damage follows qualitatively
a similar statistics as shown in Fig. 4. Namely, distri-
buted and centralized power productions return similar
statistical distributions of damage, while under hetero-
geneous couplings the system behaves di�erently. Furt-
hermore, for each network, we have recorded the two ex-
treme situations in which either all nodes or the grid stay
synchronized, or the whole grid desynchronizes (see Sup-

plementary Note 2).
The results obtained in this section have important in-

dications for the stability of a power grid. We have shown
that a network which is initially stable (N − 0 stability),
and remains stable even to the initial damage of a line
(N − 1 stability) according to the standard static analy-
sis of cascades, can display large-scale dynamical casca-
des when properly modeled. Although these dynamical
overload events often have a very low probability, their
occurrence cannot be neglected since they may collapse
the entire power transmission network with catastrophic
consequences. In the examples studied, we have found
that some critical lines cause cascades resulting in a loss
of up to 85% of the edges (Fig. 4(c)). Hence, it is ex-
tremely important to develop methods to identify such
critical lines, which is the subject of the next section.

C. Identifying critical lines

The statistical analysis presented in the previous
section revealed that the size of the cascades triggered
by di�erent line failures is very heterogeneous. Most li-
nes of the networks investigated are not critical, i.e., they
are either N − 1 stable even in our dynamical model of
cascades, or cause only a very small number of secondary
outages. However, for heavily loaded grids, as reported
in Fig. 4, some highly critical lines emerge. Thereby, the
initial failure of a single transmission line causes a glo-
bal cascade with the desynchronization of the majority
of nodes, leading to large blackouts. The key question
here is whether it is possible to devise a fast method to
identify the critical lines of a network. This might prove
to be very useful when it comes to improving the ro-
bustness of the network. In this section, we introduce a
novel �ow-based indicator for the onset of a cascade and
demonstrate the e�ectiveness of its predictions by com-
paring them to results of the numerical simulation. In
particular, we show that our indicator is able to identify
the critical links of the network much better than other
measures purely based on the topology or steady state of
the network, such as the edge betweenness [12, 21, 22].

In order to de�ne a �ow-based predictor for the onset
of a cascading failure, let us consider the typical time
evolution of the �ow along a line after the initial remo-
val of the �rst damaged line (a, b). As illustrated in Fig.
5, we observe �ow oscillations after the initial line fai-
lure, which are well approximated by a damped sinusoi-
dal function of time. See also Supplementary Note 4 for
the time evolutions of the �ows for the case of the N = 5
node graph introduced in Fig. 1. Now, the steady �ows
of the network before and after the removal of the trigger
line are obtained by solving Eq. (2) for the �xed point
angles {θ∗i }, which depend on the node powers {Pi} and
on the coupling matrix {Kij}. Thereby, we obtain a set
of nonlinear algebraic equations which have at least one
solution if the coupling K is larger than the critical cou-
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Figure 5. Introducing a �ow-based estimator of the onset of
a cascade. When cutting an initial line, the �ows on a ty-
pical edge (i, j) of the network increase from F old(red line)
to F new (orange line). Based on numerical observations, the
transient �ow F (t) from the old to the new �xed point are
well approximated as sinusoidal damped oscillation. Kno-
wing the �xed point �ows, allows to compute the di�erence
∆F = F new−F old and estimate the maximum transient �ow
as Fmax ≈ F old + 2∆F . This estimation is typically slightly
larger than the real �ow because the latter is damped.

pling [27]. For su�ciently large values of the coupling
K there can be multiple �xed points [55]. In each case,
we determine a single �xed point with small initial �ows
by using Newton's method (see Supplementary Note 1
for details). From the values of the �xed point angles
{θ∗} we calculate the equilibrium �ow along each line,
for instance line (i, j), before and after the removal of
the trigger line, from the expression:

F *
ij = K sin

(
θ∗j − θ∗i

)
. (5)

Let us indicate the initial �ow along line (i, j) in the
intact network as F old

ij , and the new �ow after the removal
of the trigger line as F new

ij , assuming there still is a �xed
point. Given enough time, the system settles in the new
�xed point and the change of �ow on the line is ∆Fij =
F new
ij −F old

ij . Based on the oscillatory behavior observed
in cascading events, see Fig. 5 for an illustration, we
approximate the time-dependent �ow on the line close to
the new �xed point as:

Fij (t) ≈ F new
ij −∆Fij cos (νijt) e

−Dt, (6)

where νij is the oscillation frequency speci�c to the link
(i, j) and D is a damping factor. The maximum �ow
Fmax
ij on the line during the transient phase is then given

by:

Fmax
ij ≈ F old

ij + 2∆Fij . (7)

Hence, for our cascade predictor we propose to test whet-
her a line will be overloaded during the transient by com-
puting Fmax

ij from the expression above and by checking
whether Fmax

ij is larger than the available capacity Cij

of the link. While this provides a good approximation

of the real �ows, we need to compute the �xed point of
the intact network and that after the initial trigger line
is removed. This has to be repeated for each possible
initial trigger line, so that we need to compute |E| + 1
�xed points, with |E| being the number of edges. A possi-
ble way to simplify this procedure is to compute the �xed
point �ows of the intact grid F old

ij only, approximating the
�xed point �ows after changes of the network topology
by the Line Outage Distribution Factor (LODF) [56, 57].
Details on this method can be found in Supplementary
Note 1.
After starting the cascade by removing line (a, b), we

de�ne our analytical prediction for the minimal transient

tolerance
(
α
tr. (a,b)
ij

)
min

based on the maximum transient

�ow on line (i, j) given in Eq. (7):

(
α
tr. (a,b)
ij

)
min

= Fmax
ij (8)

such that, if α >
(
α
tr. (a,b)
ij

)
min

, then cutting line (a, b) as

a trigger will not a�ect line (i, j). Finally, we de�ne the
minimal tolerance

(
αtr. (a,b)

)
min

of the network as that
value of α such that there is no secondary failure after
the initial failure of the trigger line, i.e., the grid is N −1
secure. We have:
(
αtr. (a,b)

)
min

= max
(i,j)

(
α
tr. (a,b)
ij

)
min

= max
(i,j)

(
Fmax
ij

)
, (9)

where the maximum is taken with respect to all links
(i, j) in the network and one trigger link (a, b). If we
set α ≥

(
αtr. (a,b)

)
min

then, according to our prediction
method, we expect no additional line failures further to
the initial damaged line. Let us assume that the network
topology is given, for instance that of a real national po-
wer grid, and that the tolerance level is preset due to
external constrains like security regulations. Then, the
calculation of

(
αtr. (a,b)

)
min

allows to engineer a resilient
grid by trying out di�erent realizations of Kij . When
changes of Kij are small, the new �xed point �ows are
approximated by linear response of the old �ows [56] gi-
ving us an easy way to design the power grid to ful�ll
safety requirements.

To measure the quality of our predictor for critical lines
and to compare it to alternative predictors, we quantify
its performance by evaluating how often it detects criti-
cal lines as critical (true positives) with respect to how
often it gives false alarms (false positives). In our model
for cascading failures, a potential trigger line is classi�ed
as truly critical if its removal causes additional secondary
failures in the network according to the numerical simu-
lations of the dynamics [29]. Our �ow-based prediction
is obtained by �rst calculating the minimal tolerance of
the network

(
αtr. (a,b)

)
min

based on Eq. (9) and compa-
ring it with the �xed tolerance α of a given simulation.
If the obtained minimal tolerance is larger than the value
of tolerance used in the numerical simulation, than the
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Figure 6. Comparing the predictions of our �ow-based indicator of critical lines to other standard measures. Four di�erent
predictors are presented to determine whether a given line, if chosen as initially damaged, causes at least one additional line
failures. Our dynamical predictor (indicated as Transient) is based on the estimated maximum transient �ow (7). The predictor
based on the Line Outage Distribution Factor (LODF) [56, 57] uses the same idea but computes the new �xed �ows based on
a linearization of the �ow computation. Predictors based on betweenness and initial load classify a line as critical if it is within
the top σth × 100% of the edges with highest betweenness/load with threshold σth ∈ [0, 1]. Panel (a) shows the ROC curves
obtained for the Spanish grid with heterogeneous coupling and tolerance α = 0.7, while in panel (b) the AUC is displayed for
all network settings presented in Fig. 4. For each predictor all individual scores are displayed on the left and the mean with
error bars based on one standard deviation is shown on the right.

line is classi�ed as critical by our predictor and additio-
nal overloads are to be expected. More formally, we use
the following prediction rules:

(
αtr. (a,b)

)
min
≥ α+ σth ⇒ critical,

(
αtr. (a,b)

)
min

< α+ σth ⇒ not critical. (10)

with a variable threshold σth ∈ [−1, 1], which allows to
tune the sensitiviy of the predictor.

Analogously, we de�ne a second predictor based on
the Line Outage Distribution Factor (LODF) [56, 57].
In this case, the expected minimal tolerance is obtained
by approximating the new �ow by the LODF, instead of
computing them by solving for the new �xed points (see
Supplementary Note 1).

We compare our predictors based on the �ow dynamics
to the pure topological (or steady-state based) measures
that have been used in the classical analysis of cascades
on networks. The idea behind such measures is the follo-
wing. First, we consider the initial load on all potential
trigger lines (a, b): L(a,b) = Fab(t = 0), i.e., the �ow at
time t = 0 on the line, when the system is in its ste-
ady state. Intuitively, highly loaded lines are expected
to be more critical than less loaded ones. Hence, com-
paring each load L(a,b) to the maximum load on any line
in the grid Lmax := max(i,j) L

(i,j) leads to the following
prediction:

L(a,b) ≥
(
1− σth

)
Lmax ⇒ critical,

L(a,b) <
(
1− σth

)
Lmax ⇒ not critical, (11)

where σth ∈ [0, 1] is the prediction threshold.
Another quantity that is often used as a measure of the

importance of a network edge is the edge betweenness
[1, 2]. The betweenness b(a,b) of edge (a, b) is de�ned
as the normalized number of shortest paths passing by
the edge. A predictor based on the edge betweenness
b(a,b) is then obtained by replacing L(a,b) by b(a,b) in the
expressions above.

To evaluate the predictive power of our �ow-based cas-
cade predictors and to compare them to the standard
topological predictors, we have computed the number of
lines that cause a cascade by simulation and compared
how often each predictor correctly predicted the cascade
thereby deriving the rate of correct cascade predictions
(true positive rate) and rate of false alarms (false positive
rate). These two quantities are displayed in a Receiver
Operator Characteristics (ROC) curve, which reports the
true positive rate versus the false positive rate when va-
rying the threshold σth. The ROC curve would go up
straight from point (0, 0) to point (0, 1) in the ideal case
in which the predictor is able to detect all real cascade
events, while never giving a false positive. Conversely,
random guessing corresponds to the bisector. Finally,
any realistic predictor starts at the point (0, 0), i.e. ne-
ver giving an alarm regardless of the setting, and evolves
to the point (1, 1), i.e. always giving an alarm. The
transition from (0, 0) to (1, 1) is tuned by decreasing the
threshold σth determining when to give an alarm. The
ROC curves corresponding to the predictors introduced
above are shown in Fig. 6 (a). Notice that a prediction
based on the betweenness of the line is only as good as
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a random guess. In contrast, using the LODF and the
initial load provide much better predictions. Finally, the
analytical prediction outperforms any other method, well
approximating an a ideal predictor.
An alternative way to quantify the quality of a predic-

tor is by evaluating the Area Under Curve (AUC), that
is the size of the area under the ROC curve. An ideal
predictor would correspond to the maximum possible va-
lue AUC= 1, while a random guess produces an AUC
of 0.5. So the closer the value of AUC for a given pre-
dictor is to 1, the better are the obtained predictions.
AUC scores have been computed for di�erent networks,
settings and parameters. The results for the dynamical
�ow-based predictor, the predictor based on the LODF,
as well as the initial load and betweenness predictors, are
shown in Fig. 6(b). The values of the AUC scores repor-
ted correspond to all the di�erent settings described in
Fig. 4, allowing a more systematic comparison of pre-
dictors than that provided by a single ROC curve. Also
from this �gure it is clear that a prediction of the criti-
cal links based on their betweenness is on average only
slightly better than random guessing. Furthermore, this
result rises concerns on the indiscriminate use of the bet-
weenness as a measure of centrality in complex networks.
Especially when the dynamical processes of interest are
well known, this must be taken into account in the de�-
nition of dynamical centrality measures for complex net-
works [12, 58, 59]. The LODF and initial load predictors
perform relatively better on average, although they still
display large standard deviations. This means that, for
certain networks and settings they reach an AUC score
close to the perfect value of 1, while in some other cases
they only reach values of AUC equal to 0.8. Of these
two indicators, the initial load predictor results are more
reliable. Finally, our dynamical predictor, indicated in
�gure as �Transient� outperforms all alternative ones, in
every single parameter and network realization. The �-
gure indicates that the corresponding AUC scores reach
values very close to 1. Moreover, this indicator displays
the smallest standard deviation when di�erent networks
and parameter settings are considered. In conclusion,
this seems to be the best indicator for the criticality of a
link. However, the results show that, although the initial
load predictor performs worse than our dynamical one,
it might still be used when computational resources are
scarce as it provides the second best predictions among
those considered.

D. Cascade propagation

What we have shown so far is that network cascades,
i.e., secondary failures following an initial trigger, can
well be caused by transient dynamical e�ects. We have
proposed a model of supply networks that takes this into
account, and we have also developed a reliable method
to predict whether additional lines can be a�ected by an
initial damage, potentially triggering a cascade of failu-

res. However, knowing whether a cascade develops or
not does not answer another important question that is
to understand how the cascade evolves over the network,
and which nodes and links are a�ected and when. Intui-
tively, we expect that network components farther away
from the initial failure should be a�ected later by the cas-
cade. However, we have found that the graph distance
between a secondary failure and the initial shock is not a
strictly linear function of the arrival time of the cascade
(see Supplementary Note 5). A much better correlation
between distance from the initial shock and arrival time
of the failure is obtained by making use of an e�ective

distance, based on the characteristic of the �ow from one
node to its neighbors. This idea has been �rst intro-
duced in Ref. [34] in the context of disease spreading,
where the e�ective distance has been shown to be able
to capture spreading phenomena better than the stan-
dard graph distance. The e�ective distance between two
vertices i and j can be de�ned in our case as:

dij = 1− log

(
Kij∑N
k=1Kik

)
. (12)

Here, we used the coupling matrix Kij as a measure of
the �ows between nodes [34]. Notice that all couples of
nodes not sharing an edge, i.e. such that Kij = 0, have
in�nite e�ective distance dij =∞. At each node the cas-
cade spreads to all neighbors but those that are coupled
tightly, get a�ected the most and hence get assigned the
smallest distance dij . Furthermore, the e�ective distance
is an asymmetric measure, since dij 6= dji in general. The
quantity dij is a property of two nodes, while the most
elementary damage in our cascade model a�ects edges.
Hence, the concept of distance has to be extended from
couples of nodes to couples of links. For instance, in the
case of an unweighted network it is possible to de�ne the
(standard) distance between two edges as the number of
hops along a shortest path connecting the two edges. In
the case of a weighted graph we make use of the measure
of e�ective distance in Eq. (12) to de�ne a distance bet-
ween two edges as the minimal path length of all weighted
shortest paths between two edges. The distance between
two edges can then be obtained based on the de�nition
of distances between nodes {dij}. Given the trigger edge
(a, b), the distance from edge (a, b) to edge (i, j) is given
by:

d(a,b)→(i,j) = dab + min
v1∈{a,b},v2∈{i,j}

dv1v2 (13)

i.e., it is the minimum of the shortest path lengths of the
paths a → i, a → j, b → i and b → j, plus the e�ective
distance between the two vertices a and b.
Fig. 7 shows that the e�ective distance is able to cap-

ture well the properties of the spatial propagation of the
cascade over the network from the location of the ini-
tial shock. The �gure refers to the case of Spanish grid
topology with heterogeneous coupling (see Section II B).
The temporal evolution of one particular cascade event,
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Figure 8. The cascade propagates through the power grid
with approximately constant speed if an appropriate measure
of distance is de�ned. E�ective distances between the initial
trigger and secondary line outages are plotted as a function of
time. Each point in the plot corresponds to one edge, while
the straight line is the result of a linear �t. Results refer to
the Spanish power grid with the same parameters as those
used in Fig. 7.

which is started by an initial exogenous damage of the
edge marked as �Trigger�, is reported. Network edges are
color-coded based on the actual arrival time of the cas-
cade in panel (a), and compared to a color code based
instead on their e�ective distance from the trigger line in
panel (b). Edges far away from the trigger line, in terms
of e�ective distance, have brighter colors than edges close
to the trigger. Similarly, lines at which the cascade ar-
rives later are brighter than lines a�ected immediately.
The �gure clearly indicates that e�ective distance and ar-

rival time are highly correlated, i.e., the cascade propaga-
tes throughout the network reaching earlier those edges
that are closer according to the de�nition of e�ective dis-
tance. The relation between the e�ective distance of a
line from the initial trigger and the time it takes for this
line to be a�ected by the cascade is further investigated
in the scatter plot of Fig. 8. The reported �t indicates
that the two quantities are related by an approximate
linear relationship with regression coe�cient R ≈ 0.83.
This means that the cascade propagates with a nearly
constant speed through the network when an appropri-
ate measure of distance, such as the e�ective distance
de�ned above, is adopted [60]. In contrast, a measure
of distance solely based on the topology of the network,
such as a standard graph distance equal to the number
of edges in the shortest path, shows a weaker correlation
with the actual arrival time of the cascade (see Supple-
mentary Note 5).

III. DISCUSSION

In this work, we have proposed and studied a model
of supply networks highlighting the importance of tran-
sient dynamical behavior in the emergence and evolu-
tion of cascades of failures. The model takes into ac-
count the intrinsic dynamic nature of the system, in con-
trast to most other studies on supply networks, which
are instead based on a static �ow analysis. Di�erently
from the existing works on cascading failures in power
grids [8�11, 21�24, 50], we have exploited the dynamic
nature of the swing equation to describe the temporal
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behavior of the system, and we have adopted an abso-
lute �ow threshold to model the propagation of a cas-
cade and to identify the critical lines of a network. The
di�erences with respects to the results of a static �ow
analysis are striking, as N − 1 secure power grids, i.e.,
grids for which the static analysis does not predict any
additional failures, can display large dynamical cascades.
This result emphasizes the importance of taking dynami-
cal transients into account when analyzing cascades, and
should be considered by grid operators when performing
a power dispatch, or during grid extensions [5]. Notably,
our dynamical model for cascades not only reveals ad-
ditional failures, but also allows to study the details of
the spreading of the cascade over the network. We have
investigated such a propagation by using an e�ective dis-
tance measure quantifying the distance of a line (link
of the network) from the original failure, which strongly
correlates with the time it takes for the cascade to re-
ach this line. This naturally leads to the de�nition of a
propagation speed of the cascade. Being able to measure
the speed of the cascade can be highly relevant when de-
signing measures to stop or contain cascades, since the
propagation velocity determines how fast actions have to
be taken.

While the swing equation is able to capture interesting
dynamical e�ects previously unnoticed, it still constitu-
tes a comparably simple model to describe power grids
[36]. Alternative, more elaborated models would involve
more variables, e.g., voltages at each node of the network
to allow a description of longer time scales [61�64]. In ad-
dition, we only focused on the removal of individual lines
in our framework, instead of including the shutdown of
power plants, i.e., the removal of network nodes. These
simpli�cations are mainly justi�ed by the very same time
scale of the dynamical phenomena: All cascades obser-
ved in the simulation are very fast, terminating on a time
scale of about 10 seconds, which supports the choice of
the swing equation [30, 36]. Furthermore, such short time
scales are consistent with empirical observations of real
cascades in power grids, which were caused in a very
short time by overloaded lines. Conversely, power plants
(nodes of the network) were usually shut down after the
failure of a large fraction of the transmission grid [4, 5, 7].
The same holds for load shedding, i.e., disconnecting con-
sumers. In order to further support our conclusions, we
have also performed simulations with a 3rd order mo-
del that includes voltage dynamics (see Supplementary
Note 3), and we have found qualitatively similar results
to those obtained with the swing equation. Overall, our
work indicates that a dynamical second order model as
the one adopted in our framework is able to capture ad-
ditional features compared to static �ow analyses, while
still making analytical approaches possible. This allows
to go beyond the methods commonly adopted in the engi-
neering literature, which are often solely based on heavy
computer simulations of speci�c scenarios, e.g. [65].

Furthermore, concerning the delicate issue of pro-

tecting the grid against random failures or targeted at-
tacks, it is crucial to be able to identify critical lines
whose removal might be causing large-scale outages. As
we have seen, most of the lines of the networks studied
in this article cause very small cascades when initially
damaged. However, our results have also unveiled the
existence in each of these networks of a few critical lines
producing large outages, which in certain cases can even
a�ect the entire grid. Within our modeling framework,
we have been able to develop an analytical �ow predictor
that reliably identi�es critical lines and outperforms ex-
isting topological measures in terms of prediction power.
As an alternative to the analytical �ow predictor, when
a faster assessment of criticality is required, the stable
state �ows of the intact grid can be used, although they
are less reliable. We hope these two indicators can be-
come a useful tool for grid operators to test their current
power dispatch strategies against cascading threads.
In a time when our lives depend more than ever on

the proper functioning of supply networks, we believe it
is crucial to understand their vulnerabilities and design
them to be as robust as possible. The results presented
in this article represent only a �rst step in this direction
and many interesting questions remain to be investigated
and answered within our framework or similar approa-
ches. How is the propagation speed of a cascade linked
to the network topology? Which lines are a�ected by a
large cascade, and which parts of the network are able to
return to a stable state? What are the best mitigation
strategies to contain a cascade or to stop its propagation?
All these questions go beyond the scope of this article,
whose aim was mainly to provide a �rst broad analy-
sis of the importance of transients in the emergence and
evolution of cascades, but we hope our results will trig-
ger the interest of the research community of physicists,
mathematicians and engineers.
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This Supplementary Information follows the general narrative of the main manuscript, adding
to it by a detailed description of the applied methods and extending results to di�erent networks
and models. This includes a more detailed and technical description of the cascade implementation,
plots of further network topologies and formulas to calculate the Line Outage Distribution Factor
(LODF). Furthermore, we show that results presented in the main text do not change qualitatively
when investigating di�erent grid topologies or di�erent models of the power grid �ow. Finally, we
investigate the propagation of the cascade using the original graph distance and compare it to the
e�ective graph distance.
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SUPPLEMENTARY NOTE 1

Methods

Let us review the methods to analyze cascading failures in more detail. We provide additional technical details which
were used to produce the results presented here and in the main text, give de�nitions for the number of unsynchronized
nodes, discuss our choice of test grids and present the computation of Line Outage Distribution Factors (LODF).

Implementation of cascading mechanism

Motivated by the short time scale of cascading failures in the real world [1�3], we model the �ows, determined by
voltage phase angles, dynamically. To this end, we apply the swing equation [4, 5] given as:

d

dt
θi = ωi (SM1)

d

dt
ωi = Pi − γωi +

N∑

j=1

Kij sin (θj − θi) .

We solve this nonlinear di�erential equation using computational methods in order to analyze cascades. Each simu-
lation is started at the �xed point, which is de�ned for a given power network as

ω∗
i = 0 (SM2)

Pi +

N∑

j=1

Kij sin
(
θ∗j − θ∗i

)
= 0.

Due to the nonlinearity, the �xed point angles θ∗i cannot be expressed in a closed form. Note that the �xed point of
this equation is not unique but there exist multiple �xed points [6]. However, as long as the (homogeneous) coupling
K is close to the critical coupling K ∼ Kc there is only one �xed point, where Kc is the minimal coupling for a �xed
point to exist [7]. We determine the �xed point of the power grid using Newton's method. This is done by using an
initial guess of θ∗i = 0 and ω∗

i = 0 for all i ∈ {1, ..., N}. Next, we start the simulation at the �xed point , i.e., set the
initial conditions as

ωi(t = 0) = 0,

θi (t = 0) = θ∗i ,

and wait until the trigger time ttrigger = 1s to cut one line of the power grid, which we call the trigger line. If cutting
the line changes the �xed point, a transient dynamic towards the new �xed point sets in, otherwise the simulation
terminates.
We assume that real power grids are never operated at the absolute physical limit but that security margins will

cause lines to shut down if they exceed a critical �ow [4, 8]. For our algorithm, an additional line fails if the �ow
along a line de�ned as

Fij (t) = Kij sin (θj (t)− θi (t)) , (SM3)

exceeds the capacity of the line Cij which depends on a tolerance parameter α :

Fij > Cij (α) = αKij , (SM4)

where the tolerance parameter can be at most one: α ≤ 1. This procedure is in contrast to other works on cascade
that use a threshold dependent on the initial �ow in the network [9�11]. However, it seems much more appropriate
for power grids where the threshold at which a line has to be shut down does not depend on its initial load but on
its physical capacity [12]. Note that the �ow is changing over time and gets in�uenced by additional line failures as
�ow from other parts of the networks will get re-routed. We continue to track the �ow and the failure of overloaded
lines using an event-detector in our ODE solver [13] until tmax = 50 s where in all cases considered the cascade has
stopped and no more lines fail.
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Unsynchronized nodes

Besides the information which �ow Fij exceeded the threshold and hence which lines get overloaded, we also record
how many nodes are unsynchronized after the cascade stops. This de�nition is based on the assumption that a
frequency deviation of ∆f ∼ 20mHz is within the stable operation boundaries of the European grid [4, 14] and
therefore a node is recorded as unsynchronized if

|ω (tmax)| > 2π · 0.02 Hz,

i.e., the angular velocity at the end of the simulation tmax = 50 s has to be larger than this threshold. If some nodes
show a larger deviation from the reference frequency, they would most likely have to be disconnected from the grid,
e.g. via load shedding [4]. Thereby, the number of unsynchronized nodes provides a measures for the number of
a�ected consumers. In our case, the comparably strict threshold of ∆f = 20mHz was chosen to ensure that the
system is at a �xed point and not on a limit cycle with small amplitude.

Test grids

(a) (b)

Figure SM1. In addition to the Spanish topology presented in the main text, we use the French [15] and Great Britain [16, 17]
grid topologies when assessing cascade e�ects. (a) The French grid topology has weaker clustering than the Spanish grid. (b)
The grid of Great Britain has even lower clustering but many 4-cycles. We display both networks using distributed production
with consumers (red circles) P - = −1/s2 and producers (green squares) P+ = 1/s2.

Dynamical cascades are mainly investigated using the realistic power grid topologies of the Spanish, French [15]
and Great Britain [16, 17] high voltage power grids. Results for the number of line failures for the Spanish and French
grid are presented in the main text while this Supplementary Information provides the results of the line failures of
the British grid and results for the unsynchronized nodes of all grids. The Spanish topology is displayed in the main
text while French and Great Britain topologies with randomly distributed production are displayed in Fig. SM1.
All grids are considered with distributed small producer nodes with P+ = 1 as well as (centralized) large producer
nodes with P+ ≈ 6, i.e, each large producer is supplying approximately six consumer nodes. Finally, we also consider
heterogeneous coupling where the capacity of each line is chosen so that the line is approximately loaded to 50%.
To construct a heterogeneous coupling matrix Kij , we use an iterative procedure, adapting the capacity to the �ow.

The grid is initialized with distributed producers and homogeneous coupling Kold
ij = K which is K = 8/s2 for the

French topology and K = 5/s2 for both the Spanish and Great British topologies. Next, the initial loads on every
line (i, j) are computed and the new coupling is set to

Knew
ij = 0.99Kold

ij + 0.01Kold
ij F old

ij /0.5. (SM5)

Finally, Kold
ij is set to Kold

ij = Knew
ij and the next �xed point is computed together with its �xed point �ows F old

ij .
This procedure is iterated a total of 200 times. Thereby, the network approached a state where every line is loaded
to about 50% of its physical maximum Fij ≈ 0.5Kij .
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Computing the Line Outage Distribution Factor

To save computation time determining �xed points and hence new steady-state �ows, we use the Line Outage
Distribution Factor (LODF) [18, 19]. The LODF approximates line �ows after the trigger link (a, b) is removed as

Fab = 0, (SM6)

F new
ij ≈ F old

ij − F old
ab

K̃ij (Tja − Tjb − Tia + Tib)

1− K̃ab (Taa − Tab − Tba + Tbb)
, (SM7)

with a, b the indices of the trigger line and i, j the indices of any other line and auxiliary matrices

K̃ij = Kij cos
(
θ∗i − θ∗j

)
, (SM8)

Aij =

{
−K̃ij for i 6= j∑

l K̃lj for i = j
, (SM9)

with θ∗i the �xed point angle of the intact network and the matrix T is as the Moore-Penrose pseudoinverse of A. We
use this approximated �ow to predict which lines are critical in a network in the main text.
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SUPPLEMENTARY NOTE 2

Extended cascade analysis

The main text gave an analysis on the number of line failures of the Spanish and French grid, both displaying
mostly uncritical lines with a few highly critical lines. Here, we also review results for the British grid and investigate
the number of unsynchronized nodes after the cascade terminates as a measure of how many customers would be
a�ected by a blackout.

Great Britain analysis

So far, we have analyzed the cascade statistics of the Spanish and French power grid topologies which we now
complement with the usage of the Great Britain topology as given in Fig. SM1(b). We plot the histograms giving
the probability to observe a given number of line failures in Fig. SM2. Compared to the other topologies, the same
qualitatively behavior is observed. Most links do cause no or only small cascades, especially for homogeneous coupling.
On the contrary, some critical links cause large damage, in particular when applying heterogeneous coupling, see panel
(c) with tolerance α1 = 0.55.
Furthermore, the �ow-based predictor we derived in the main text, also performs very well on the British topology

as is shown in Fig. SM3. Speci�cally, it outperforms alternative predictors like ones based on the initial load of lines
or betweenness measures.
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Figure SM2. The power grid topology of Great Britain (GB) returns qualitatively similar results as the grids of Spain and
France: Most initially damaged lines result in small or no cascade while there exist some critical lines. (a) Distributed power,
i.e., equal number of producers and consumers each with P - = −1/s2 and P+ = 1/s2 and homogeneous coupling of K = 5/s2

is used. (b) Centralized power, fewer but larger producers with P - = −1/s2 and P+ ≈ 6/s2 and homogeneous coupling of
K = 12/s2 is investigated. (c) Same power distribution as in (a) with coupling on all lines scaled to have all lines approximately
loaded to half their maximum dynamical capacity F ≈ 0.5K. For all panels we plot two di�erent tolerances α, where the lower
one is the smallest simulated value of α so that there are no initially overloaded lines (N − 1 stable). Note that the probability
axis uses a log-scale. The grid has a total of NGB = 120 nodes and |E|GB = 165 edges.

Unsynchronized nodes

In the main text we have investigated the statistics of line failures for di�erent grids and noted that most trigger lines
cause no additional cascade or very small cascades. Here, we present the corresponding statistics for unsynchronized
nodes in Fig. SM4. We note a very similar behavior, i.e., either the whole grid is a�ected by a line cut, i.e., nearly
all nodes lose synchrony, or nothing happens and the grid keeps its steady state. Interestingly, we observe that this
all-or-nothing response is more pronounced in the case of homogeneous coupling (distributed and centralized power)
while heterogeneous coupling allows for more steps in between. This is opposite to the observations in the main text
where we used the number of line failures and homogeneous coupling resulted in a broader distribution. However, one
key message is unchanged: Only a few critical edges cause large cascades which we identify in the main text.
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Figure SM3. The analytical �ow-based predictor identi�es critical lines best, also in the case of British power grid topology.
Similar to the main text, four di�erent predictors are presented to judge whether a given line, if chosen as initially damaged,
will cause at least one additional line failure. The betweenness and initial load predictor classify a line as critical if it is
within the top x% of the edges with highest betweenness/load with x ∈ [0, 100]. In contrast, the transient predictor exploits
the oscillatory behavior to compute maximum transient �ows. Finally, the predictor based on the Line Outage Distribution
Factor (LODF) [18, 19] uses the same idea but approximates the new �xed �ows by the LODF. (a) The predictors are tested
against simulations via a Receiver-Operator-Characteristic (ROC) curve recording true positive rate and false positive rate of
all predictors for di�erent alarm thresholds. The analysis uses the Great Britain grid with heterogeneous coupling and tolerance
α = 0.6. (b) The Area Under (the ROC) Curve (AUC) of each predictor is displayed. This has been computed for the Great
Britain Grid with randomized producer positions using distributed and centralized power as well as heterogeneous coupling.
For each predictor all individual scores are displayed on the left and the mean with error bars based on one standard deviation
is shown on the right. Similar to the main text, the dynamical �ow-based predictor outperforms clearly all other predictors.
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Figure SM4. Nodal desynchronization probability in the Spanish and French power grids under di�erent power distributions
and types of coupling. The histograms shown have been obtained under three di�erent settings, see also main text. Panels
(a) and (d) refer to the case of distributed power, i.e., equal number of producers and consumers, each with P - = −1/s2 and
P+ = 1/s2, and homogeneous coupling with K = 5/s2 for the Spanish and K = 8/s2 for the French grid. Panels (b) and
(e) refer to the case of centralized power, i.e., consumers with P - = −1/s2 and fewer but larger producers with P+ ≈ 6/s2,
and homogeneous coupling withK = 10/s2 for Spanish and K = 9/s2 for the French grid. Panels (c) and (f) refer to a case
of distributed power as in panel (a) and (d), but with heterogeneous coupling, so that the �xed point �ows on the lines are
approximately F ≈ 0.5K both for the Spanish and the French grid. For all plots we use two di�erent tolerances, where the
lower one is the smallest simulated value of so that there are no initially overloaded lines (N − 0 stable).
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SUPPLEMENTARY NOTE 3

Comparison of models

While we have introduced the swing equation and its static �ows to assess cascades in the main text, let us consider
additional models here in a case study. The swing equation is a simple dynamical model, capturing the essential
dynamics of the power grid system [4, 12]. To illustrate this, we compare its cascading behavior with the ones
obtained by power �ow analysis and 3rd order dynamics. While power �ow analysis is often used to assess the static
grid behavior in engineering literature [4, 8, 12], the 3rd order model is an extension of the swing equation where the
voltage is dependent on time [4, 20�22]. First, we introduce these two models and continue then with a comparison
of the cascade using all models.

Power �ow equations

The power �ow or load �ow equations are a common tool to assess steady state power grid �ows in the engineering
literature [4, 8, 12]. They assume the angular velocity to be zero ω = 0 because only the steady state is analyzed.
The power grid network is characterized by the susceptance matrix Bij and the conductance matrix Gij which leads
to the following equations

Pi = Vi

N∑

j=1

(GijVj cos (θi − θj) +BijVj sin (θi − θj)) ,

Qi = Vi

N∑

j=1

(GijVj sin (θi − θj)−BijVj cos (θi − θj)) , (SM10)

where Pi is the active power at each node, Qi is the reactive power, θi is the equilibrium voltage phase angle and Vi is
the voltage amplitude. These are the variables the system is solved for at each node. Because only two equations are
available at each node, it is necessary to know two additional quantities per node that are �xed. Depending on which
quantities are known and which are unknown each node (or bus) is characterized as follows. At the slack (swing) bus
the voltage amplitude Vi and voltage angle θi are speci�ed, while Pi and Qi are unspeci�ed to compensate power loss
in the system. Typically, this would be one of the largest producers which is stabilizing the grid. In addition, there
are voltage-controlled buses (PV) which are usually generators nodes for which Pi and Vi are �xed while we solve the
equations for Qi and θi. Finally, there exist load buses (PQ) with constant active power Pi and reactive power Qi,
but unknown voltage amplitude Vi and voltage angle θi [8].
Compared to the swing equations presented in the main text, the power �ow equations include reactive power Q

and ohmic losses by considering conductances G. However, this approach only allows comparison of �xed points since
there is no dynamical evolution included.

Third order model equations

The third order model [4, 20�23] is similar to the swing equation but allows the voltage amplitude Vi at each node
i to vary over time, in addition to the angle θi and the angular velocity ωi:

d

dt
θi = ωi

d

dt
ωi = Pi − γωi +

N∑

j=1

ViVjBij sin (θj − θi)

d

dt
V =

1

TV
·


Vf − Vi +X

N∑

j=1

Vj cos (θj − θi)


 , (SM11)

with real power injection Pi, damping γ (see main text) as well as the voltage time scale TV = 1/2, the susceptance
matrix Bij including self-coupling terms Bii, voltage set-point Vf = 1 and the voltage droop X. For X = 0 and
V (t = 0) = 1 the voltage remains at the �xed point V ∗ = 1 at all times and reproduces the second order model while
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for X > 0 deviations from the second order model can be observed. Typical parameter values are taken from [20].
Note also that the voltage dynamics is typically slower than the angle and angular velocity dynamics, allowing to
neglect it for short time scales.

Comparison of cascade e�ects

After introducing power �ow and 3rd order model, let us compare the cascade described using these models with
the cascade described using the swing equation.
We implement the cascading algorithm by comparing the sine of the angle di�erence to our tolerance:

|sin (θi − θj)| > α⇒ line (i, j) fails. (SM12)

Alternatively, one could explicitly compute the �ows

Fij = BijViVj sin (θi − θj) , (SM13)

which then depends on the voltages Vi and Vj , which does not change the results signi�cantly. Using the angles as
a criterion on whether a line fails or not, allows for direct comparison with the swing equation which e�ectively also
uses Eq. (SM12) (multiplying both sides with Bij).
We compare the four di�erent models (static and dynamic swing equation, load �ow and 3rd order model) using

the 5 node sample network introduced in the main text in Fig. SM5. Note that the swing equation, Fig. SM5(c),
and the 3rd order power grid model, Fig. SM5(e,f), return qualitatively similar results. The precise nature of the
cascade di�ers and also depends on the parameter choice to extend the swing equation to the third order model.
Nevertheless, a dynamical oscillatory transient is observed that leads to overload in both cases. Similarly, the power
�ow equations, Fig. SM5(d), return qualitatively similar results to the static swing equations, Fig. SM5(b), while
the quantitative values di�er. Overall, steady state analysis gives largely di�erent results compared to the dynamical
models, neglecting transient overloads. Hence, we use the simplest model available to capture the necessary dynamics
of the power grid, namely the swing equation.
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Figure SM5. Power �ow and static swing equation as well as 3rd order model and dynamical swing equation return qualitatively
similar cascade results. (a) The N = 5 node sample system is plotted and used for illustration purposes. (b)-(f) plot the �ows in
the sample system when the node indicated by the arrow is cut at ttrigger = 1 s. A line is assumed to fail when the �ow reaches
the gray area of α = 0.6 which is our tolerance value. (b) The �ows are based on the static swing equation (SM2), i.e., the
�xed point solution of the swing equation. (c) The dynamical swing equation (SM1) is used for the �ow calculation. (d) Flows
are based on the power �ow Eq. (SM10) with Bii = −2/s2 and Gij = 4.5/s2 for non-diagonal entries with connectivity as seen
in (a) and reactive power of the consumers Q = −9.7/s2. (e)-(f) The �ows are dynamically updated using the 3rd order model
(SM11) with two di�erent values of the self-coupling Bii and voltage droop X. The grid uses two producers P+ = 1.5/s2 and
three consumers P− = −1/s2 and an susceptance of Bij ≈ 1.63 for non-diagonal elements. Qualitatively, static swing equation
and (static) power �ow equations return the same behavior. Similarly, 3rd order models and dynamical swing equation display
qualitatively the same behavior.
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SUPPLEMENTARY NOTE 4

Predicting cascades

It is crucial to avoid large scale blackouts. However, preventing them requires the identi�cation of critical lines
[2, 24]. In the main text, we present a cascade predictor assuming oscillations during the transition from the old to
the new �xed point. Here we justify this assumption. Let us consider the 5-node sample system, displayed in SM5(a).
We plot the �ows of all lines in Fig. SM6, assuming that only the trigger line (marked with a lightning bolt in Fig.
SM5(a)) is cut and all other lines are left intact. Thereby, we exclude secondary failures as they are otherwise used
in our cascading algorithm. Now, comparing Fig. SM6 with Fig. SM5 (c), where additional lines fail, we note that
lines (2,3) and (4,5) get overloaded �rst because of their respective transient dynamics. However, Fig. SM6 reveals
the oscillations around the new �xed point of the �ows which is not visible in Fig. SM5 (c) because lines fail when
exceeding the maximum �ow. Although the oscillations are not perfectly periodic, they are well approximated by
damped sinodal functions. Based on these sinodal oscillations, we construct a �ow based predictor in the main text,
successfully identifying critical links, see also Fig. SM3 for results for the British grid.
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Figure SM6. The �ows on all lines oscillate during the transition from the old to the new �xed point. Plotted are the absolute
values of the �ows of the 5 node sample system when line (2,4) gets cut at time t = 1s and no further line overload is considered.
We note that the two largest �ows at t = 2 seconds ((2,3) and (4,5)) are the �rst lines that get overloaded in the full cascade
algorithm. For illustration purposes, we include the new �xed point �ows of (4,5) as a dashed line. We observe oscillations of
the �ows approximately around their new �xed point �ows which inspired the de�nition of the �ow based cascade predictor.
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SUPPLEMENTARY NOTE 5

Propagation speed of cascades

Real world cascades often propagate through the power grid on a very fast time scale [1�3]. So, is it possible to
observe this propagation in the cascades we simulate using the swing equation? We investigated this in the main text
by introducing the e�ective distance measure, motivated in Ref. [25]. We observe indeed a linear relationship between
e�ective distance and time and thereby a constantly propagating cascade in the network.
To contrast the e�ective distance, we also show the results when using the (original) graph distance to determine

the speed using dij = 1/Kij and compare the correlation coe�cients as well as the speed estimate of both approaches,
see Fig. SM7. The linear �t using the naive graph distance [26] does not describe the data as well as it does in the
case of e�ective distance. Furthermore, when averaging over all potential trigger links, the distribution of regression
coe�cients R is broader and on average at lower values for �ts using the original graph distance, i.e., the linear
relationship is better achieved using the e�ective distance measure.
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Figure SM7. The e�ective distance measure describes the constantly propagating cascade with a better linear relationship
than the original graph distance. (a,b) Plotted are the distances of line failures with respect to the trigger line as a function
of time for the Spanish grid with heterogeneous coupling. Every point in the plot corresponds to one line failure. The red
line is a linear �t of the given points. We compare two di�erent distance measures: (a) We use the original graph distance
based on the weighted adjacency matrix, using dij = 1/Kij . (b) We calculate the e�ective distance in the network based on
[25]. (c,d) We record the squared regression R2 and estimated velocity v for all lines with at least 10 line failures. (c) E�ective
distance provides a signi�cantly better linear relation based on the regression coe�cient. (d) The averaged propagation speed
is v̄e�. ≈ 2.55 links/s for e�ective distance. We use the Spanish grid with distributed producers P+ = 1/s2, heterogeneous
coupling, as described above, tolerance α = 0.55.
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Chapter 8

Summary & Discussion

In this thesis, we investigate self-organized dynamics of power grids with respect to their feasibility in

future smart grid applications, their resilience to �uctuations and their security in terms of cascading

failures. Each of the previous chapters focused on one speci�c aspect of making self-organized grid

operation viable when facing grid re-structuring, �uctuating renewables and random failures. As

mentioned in the introduction, power grids show complex behavior on di�erent levels of hierarchy and

time scales such that a complete coverage of all questions is beyond the scope of a single PhD thesis.

Therefore, we have restricted our analysis by choosing an appropriate model for the high voltage

transmission grid and have mostly focused on short time scales.

Overall, we have aimed to answer the following questions: How could self-organized power grid

dynamics be implemented? What are the risks and bene�ts of such a self-organized approach with

respect to stability, �uctuations and cascades? Here, we review the advances made in this thesis by

splitting the discussion into several parts chosen by topic. First, we review progress made in formulating

a decentrally controlled smart grid. Next, we discuss the impact of continuous �uctuations both on

the stability of the grid and the power quality. Then, we examine our results on cascading failures in

power grids. We close this chapter by considering the limitations of the model and by formulating an

outlook of upcoming work and potential technical applications of the presented results.

Decentral Smart Grid Control. Renewable power plants are often smaller than previously used

conventional ones and have to be placed at locations with favorable weather conditions, leading to

power sources that are spread out more than before. This distributed and also highly �uctuating

power generation calls for a new power grid design and a new control scheme to cope with additional

�uctuations, see also the next paragraph on Continuous Perturbations. A common concept for a new

grid design is a smart grid, which gathers information from all grid participants and communicates an

optimal strategy regarding consumption, generation and control [6, 50]. Most smart grid concepts he-

avily rely on information technology (IT) infrastructure for communication, data storage and transfer.

From our point of view, this raises severe privacy and IT security concerns since by monitoring our

consumption, a power company e�ectively monitors most of our activities: They would know when

we use our electrical car, when and how much energy we use for heating, warm water, television etc.

In addition, relying on IT infrastructure introduces risks due to potential hacking attempts as they
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appeared within the past years and months, even hitting large companies and thereby disabling ATMs,

forcing hospitals to cancel surgeries [111] or costing the logistics sectors millions of dollars [106]. Furt-

hermore, di�erent smart grid concepts have been proposed, e.g., in [6,50,53,54], but we are not aware

of any analysis demonstrating the stability or even feasibility of such a system.

To contrast these existing schemes, we have presented a mathematical formulation in terms of

Decentral Smart Grid Control in Chapters 3 and 4, based on a concept proposed by T. Walter [163,164].

Similar to other smart grid concepts, it evolves around controlling consumers via demand response,

i.e., motivating consumers to adjust their power demand [4,109,155]. However, our proposal does not

need any IT infrastructure but relies solely on local frequency information to stabilize the grid. High

grid frequencies signal an abundance of power and should thereby encourage additional consumption

(and vice versa for low frequency). According to T. Walter [163, 164], this could be implemented by

locally coupling the electricity price to the frequency. The idea to use the grid frequency to control the

power grid has already been proposed earlier, see e.g [140,142]. However, a mathematical formulation

of this control concept and a stability analysis was missing.

Therefore, we have derived a mathematical form of the demand control motivated by economic

incentives in Chapter 3. To investigate the impact of this demand control on the dynamical stability,

we have included it in into an appropriate dynamical model, the swing equation, e�ectively introducing

an additional term, similar to added damping. With this expression, we have analyzed the stability

in a systematic way, using both analytical and numerical tools. When reacting instantaneously to

the frequency changes, the added control acts like an improved primary control stabilizing the system.

Furthermore, the grid is in an economic equilibrium of supply and demand when at the dynamical �xed

point. However, introducing a delay in the measurement or reaction of the consumer to a frequency

signal has been shown to potentially destabilize the system. Crucially, we have obtained analytical

insights both for the stability of an instantaneously controlled system as well as regarding the input of

delays, going beyond speci�c scenarios or simulations, for example, of a single IEEE test grid, as they

are often used as standard test cases in engineering literature [95]. In particular, we have illustrated

the principles of synchronization delays in Chapter 3, revealing which delays are harmful, and have

derived a maximum delay for any power grid system in Chapter 4. Furthermore, one highlight of the

numerical results is that by computing the basin of attraction, recently discussed as basin stability [92],

we have revealed a globally stable �xed point for certain delay conditions, i.e., perfect stability. While

explicit simulations have been restricted to comparably small networks of size N ∼ 10, our analytical

results are applicable to any network structure or size and thereby are more useful than additional

simulations could be.

Note that our study neglected ohmic losses and voltage dynamics since we have modeled the

transmission level, while demand control will also be relevant on the distribution level where these

e�ects become more relevant [86]. Also, we have assumed that the consumer behavior is very simplistic,

which could be extended by changing to an agent-based approach or considering a more detailed

response to price changes. However, many of these extensions will make an analytical treatment

impossible. So far, our work already stimulated additional research on the delays in secondary control

[37] or the implementation of electrical cars as control entities in the power grid [12].

Overall, Decentral Smart Grid Control is a simple and concrete smart grid concept that removes
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most privacy concerns and potential security issues by design since no communication is necessary.

Beyond purely implementing the framework mathematically, we have also investigated its stability.

Since it provides additional e�ective damping for the system, the grid becomes more robust against

perturbations, see the next paragraph.

Continuous perturbations. Power grids are subject to �uctuations due to demand variability,

power �uctuations of renewable energy generators and trading [82, 83, 105]. In particular, renewable

generation poses new risks by introducing jump noise in solar power [9] and heavy tails in wind

power [93]. However, a systematic understanding of the impact of these �uctuations on the power

grid is not yet established. Important questions include: Can �uctuations desynchronize the grid and

under which conditions? How do �uctuations impact the power quality and what are appropriate ways

to control the grid in the presence of �uctuations? Which noise distributions are suitable to model

uncertainties in power grids?

We answer some of these questions in Chapters 5 and 6. First, we have investigated the impact of

�uctuations on the stability in Chapter 5. If the grid is highly loaded and small �uctuations of the

power disturb it often enough, it desynchronizes after a �nite escape time. To assess the risks of this

escape, we have formulated a Fokker-Planck equation for the full power grid system and approximated

its solution using Kramer's escape rate. E�ectively, we have thereby mapped the power grid problem to

a stochastically driven Brownian particle in a tilted washboard potential. By that, we have obtained an

analytical expression for the escape rate in small systems, identifying increasing damping and adding

transmission capacity as main tools to prevent an escape. Furthermore, we have extended this to

networks, where we have identi�ed weak links that are most vulnerable to the desynchronization.

Complementary research includes work by Schmietendorf et al. [136], which also investigates escape

rates of the power grid subject to random noise. However, the authors use a more detailed model of

the noise based on solar and wind recordings, i.e., the escape process includes heavy tails and time

correlation of the noise leading to additional bursts not present in Gaussian noise. Unfortunately, this

prevents analytical results but only allows numerical investigations. Hence, the analytical scaling of

the escape time as a function of inertia, damping and other power grid parameters is accessible in our

simpli�ed framework but not in the more detailed one, which is numerically treated. Nevertheless,

the work by Schmietendorf et al. [136] points into the direction of future research. They �nd that

escape rates are dominated by correlation e�ects of the noise, not necessarily heavy tails of the noise.

Therefore, the next step to extend the results provided in Chapter 5 is to formulate the Fokker-Planck

equation for correlated Gaussian noise and extract escape times for that. Given that Fokker-Planck

equations with correlated noise are much harder to solve, this constitutes an entire new project.

Adding to the desynchronization studies, which constitute extreme events, Chapter 6 investigates

the impacts of these �uctuations on the daily power quality, i.e., how much the grid is driven away

from its steady operating grid frequency of f = 50 Hz or f = 60 Hz. Grid operators are quite

strict on how much the grid frequency is allowed to vary over time so that �uctuations in Continental

Europe are typically much less than ∆f = 200 mHz [45]. However, controlling the system does not

necessarily come with the understanding of how �uctuations of renewables and demand impact the

power quality. To provide this understanding, we have investigated e�ects of �uctuations in detail.

First, we have collected frequency data of di�erent regions in Europe, the USA and Japan for di�erent
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years. Analyzing these data has revealed non-Gaussian e�ects, rarely considered before [53,69,90,177,

182]. In particular, the frequency distributions are either heavy-tailed or skewed compared to Normal

distributions. For a mathematical understanding, we have formulated a Fokker-Planck equation for

the bulk (average) frequency of the grid. We have thereby derived the exact scaling of the �uctuations,

revealing damping as a key factor in reducing �uctuation risk. Finally, we have also shown how

superstatistics [16, 157] may be applied to power grid frequency �uctuations. Superstatistics explain

heavy-tailed distributions by a superposition of multiple Gaussian distributions. This complementary

approach might prove useful when optimizing �ows for microgrids [81] or renewables connected to the

full grid [117].

To conclude, e�ective damping bene�ts a system subject to �uctuations, both regarding desyn-

chronization and power quality. Thereby, Decentral Smart Grid Control, which provides additional

e�ective damping due the demand control, may be used in the future to counter-act �uctuations.

Discrete Perturbations. Most large-scale blackouts in recent history, regardless whether they took

place in North America [101], Europe [26], India [28] or Australia [148], involved a cascade of failures

after an initial perturbation of a stressed system. In the reports describing the course of the blackout,

each cascade starts after one critical element failed, resulting in a quickly evolving cascade phenomenon

that often leads to the blackout of the full grid [19, 25]. To avoid cascades, it is highly desirable to

identify critical links that may cause such a large scale blackout and design counter measures stopping

or containing cascades before they unpower the whole network. However, existing analysis on cascades

in power grids has often used static �ow analysis, missing out the dynamical features mentioned

above [33,34,68,71,115,120,173].

Therefore, we have investigated the nature of these cascading events including dynamical transients

of the power grid frequency and power �ows in Chapter 7. This analysis is complementary to the one

concerned with continuous perturbations studied in Chapters 5 and 6, which correspond to many

small events as they happen every day, while failures constitute extreme events that occur only rarely

but could have much more severe implications. In our treatment of cascades, we have developed a

combined dynamical and event-based framework, i.e., the failure of a transmission line is modeled

as a discrete event while the �ows on all lines are updated continuously in time, using a dynamical

description of the grid in form of the swing equation. Our framework has revealed additional line

failures and in general larger cascades compared to the static �ow analysis, stressing the relevance

of dynamical e�ects. Furthermore, we have performed a statistical analysis of cascades on di�erent

grid topologies, based on high voltage transmission grids of some European countries including Great

Britain and France. We have revealed that most links of the network cause no cascade or only small

ones while a few critical links exist, which may cause a complete desynchronization and disconnection

of the power grid. As it is crucial to identify these critical links, we have developed a predictor based

on the dynamical �ows of the network. In identifying critical links it outperforms any alternative

predictors based on static �ows [120] or the topology [63, 124]. Thereby, we provide a tool for grid

operators to predict where to strengthen the grid to avoid weak points. Finally, we have found that

observing the propagation of cascades in an appropriate metric, the e�ective distance [22], implies an

almost constant propagation speed of the cascade.

Despite the progress made, there remains at least one large issue, namely how to dynamically
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contain or stop cascading failures. The observed propagation speed (ccascade ≈ 1 line/s) sets a time

scale, during which preventive actions have to be taken (tens to hundreds of milliseconds). However, it

remains an open question what these actions are. Very recent, unpublished work [178] again highlights

the importance of the topic and the necessity to model it dynamically.

In conclusion, we demonstrate the importance of dynamics when investigating cascades in power

grids, identify critical links and observe a nearly constant propagation. Compared to other studies on

cascades, we use a dynamical treatment of �ows [33,34,68,71,115,120,173] and an absolute �ow thres-

hold of each line instead of relative ones [97,144], thereby revealing additional network vulnerabilities

and the propagation of the cascades through the network.

Choice of the model and limitations. Most of the analysis presented here has made use of the

swing equation, a non-linear second order ordinary di�erential equation. While this equation constitutes

a very low detailed approach to power grids, it critically allows analytical methods. In contrast, very

sophisticated power system simulation software, like PSS®E by Siemens [143] or PowerFactory by

DIgSILENT [36], allow a thorough and complete modeling of individual technical elements with all

their real parameters. However, these models are typically so complex that the stability analysis is

carried out by simulating individual failure scenarios on a few selected grids [11,30,127] or alternatively

applying brute-force simulations, where every possible failure in the network is tested [177]. Therefore,

a reduced model like the swing equation has the great advantage of allowing statements beyond speci�c

scenarios. For example, the swing equation, as introduced in [55, 121], might help to gain analytical

insight, see e.g., [89], while still covering realistic e�ects. In addition, it is often used in engineering

literature and text books [76, 86], providing a link between our work and the engineering community.

Alternative and more complex models, like �higher-order models� [11, 135], do include voltage e�ects

and consider additional dynamics of the electromagnetic �elds in the generator. However, we have not

found qualitative di�erences when comparing e�ects of the 2nd order and the 3rd order models, see

Chapters 5 and 7, justifying the easier approach when possible.

Still, we should mention the limitations of the model. We have assumed nearly constant voltage in

most calculations and have neglected ohmic losses. Both assumptions are well justi�ed in high voltage

transmission grids [86]. However, they are no longer necessarily valid for lower voltage transmission

or distribution grids, where at least ohmic losses are more important due to di�erent line parameters

and the lower voltage. Quantitative e�ects of higher order models [11] might be important for a very

realistic system analysis. But more importantly, very speci�c settings, e.g., the electronic response of

solar cells or plug-in electric vehicles, with their individual voltage-current dynamics are not considered

in our approach but would require a much more detailed model. Finally, the swing equation assumes a

swinging oscillator, in our case a synchronous machine. Inverters however, are important for coupling

renewable generation to the power grid and are no synchronous machines. Nevertheless, they may still

be operated as if they were such machines [134, 145, 146]. Our modeling approach does not explicitly

cover the details of this power electronics nor other e�ects of directed currents, e.g., when used in high

voltage directed current transmission (HVDC) [70].

Outlook and technical applications. What is the impact of the presented results? How may

they prove useful in establishing a 100% sustainable electricity supply? Where do we contribute to
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the progress of theoretical physics? As a theoretical thesis we mainly intend to highlight opportunities

and point out risks of certain power grid design principles instead of discussing, e.g., individual grid

extension projects. We thereby provide an essential foundation to build upon when implementing

control mechanisms or detecting vulnerable links. Broken down to the di�erent topics covered here,

this means:

Implementing self-organized dynamics in power grids, as proposed by Decentral Smart Grid Control

in Chapters 3 and 4, was not done so far, but a recent patent [164] suggests the potential application

in the near future. Price incentives for power grid control are easiest implemented in islanded grids,

e.g., microgrids [81,146]. Within a microgrid the price would then be constant but di�erent connected

microgrids could have di�erent prices. This leads to the concept of nodal pricing [141, 149], i.e.,

di�erent prices for di�erent sub-regions of a large synchronous region, e.g., the Continental European

grid. However, this is in stark contrast to current grid design and philosophy, at least in large parts

of Europe, where electricity is sold for one price in a large region, e.g., all of Germany [44, 45, 74].

Hence, Decentral Smart Grid Control might be best applied �rst in (geographical) islands, which

have their isolated power grid and where back-up generation currently is supplied via expensive Diesel

generators [163] and thereby cost reductions by this �exibility scheme are most signi�cant.

Within the current power grid system, we provide several useful tools, in particular for grid ope-

rators and planners. We have identi�ed critical links both in the context of large cascading failures in

Chapter 7 and in the context of continuous �uctuations of Chapter 5. While discussing grid extensi-

ons [48], critical links should thereby easily be avoided by construction of additional lines or increased

transmission capacity. Furthermore, the scaling of �uctuations given in Chapter 6 either allows to set

realistic power quality standards, given the parameters of the grid, or alternatively engineer the grid

to be able to reach a desired quality, e.g., when setting up a microgrid [81].

From a theoretical perspective, Decentral Smart Grid Control motivates a Kuramoto-like model

with a delay-term that is placed in the damping, instead of the coupling as mainly done before [180].

Furthermore, analysis of this model has revealed a fascinating, delay-dependent global attractor in

Chapter 4. In addition, we have extended superstatistics for the �rst time to skewed distributions

instead of only applying it to heavy tails [15, 16, 17]. Moreover, our investigation of cascading failures

have demonstrated the propagation of desynchronization through a network of oscillators.

Finally, any prediction should be tested against experimental data, if possible. While the derivation

of the scaling of frequency �uctuations in power grids in Chapter 6 has been build based on available

data, this is not possible for all topics. For example, our treatment of cascades in Chapter 7 has

been motivated by real cascading events [26, 28, 148] but experiments under realistic conditions seem

impossible since a large network would be needed and cascades could easily damage the equipment.

Therefore, recording as much data as possible during future cascading failures seems the only viable

option. In contrast, results obtained for Decentral Smart Grid Control and its delayed stability analysis

presented in Chapters 3 and 4, would be very interesting to investigate in an experimental setup.

Currently, we are collaborating with an experimental group using inverter technology [18] to validate

some of our theoretical �ndings. First, we want to experimentally validate the existence of Braess'

paradox [171] in power grids. Braess' paradox arises when adding a line, decreases the ability of the

grid to stabilize and transfer power. Although this phenomenon is not part of this thesis, its resulting
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overloads have to be avoided when planning grids. Next, we aim to implement a demand-response

following our proposal of Decentral Smart Grid Control. In particular, it is interesting to operate solar

cells or batteries in a test grid using our approach to further test its viability in realistic settings.

Especially, the impact of the delay on the stability, which was rarely studied so far [95], seems highly

relevant to be tested. In the context of delays, the previously discovered perfect stability, i.e., the

ability of the grid to synchronize regardless of its initial conditions, is very interesting to be realized

in an experiment. Finally, we will study the impact of �uctuations in an islanded microgrid, verifying

results from Chapters 5 and 6.

Overall, we hope that this thesis contributes to the understanding of power grids as complex

dynamical systems and will eventually support establishing a 100% sustainable power system.
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