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1 Introduction

1.1 Motivation
In mixtures phase separation arises when temperature, pressure or concentrations of
mixtures are changed, such that a new macroscopic phase emerges (Stanley, 1971;
Yeomans, 1992). Typically the domains of the new phase take the form of small
droplets, bubbles or solid particles immersed in a fluid or solid matrix. Initially
the domains are small, but under equilibrium conditions their average size grows
while their number diminishes at the same time (Ostwald ripening)(Becker (1985,
pp. 58), Ratke and Voorhees (2002)). In many natural processes as well as technical
applications the thermodynamic parameter controlling the phase separation changes
continuously, rather than abruptly. Hence, it provides a continuous driving of the
demixing and domain growth by the driving is competing with ripening.
In the present thesis I will address the evolution of the size distribution of the domains
by experimental, numerical and theoretical studies. The results will be interpreted
from the perspective of their implications for the description of the formation of
steady rain (Jameson and Kostinski, 2002) and recipes for the synthesis of colloidal
particles. In the latter a chemical precursor reaction or external addition of material
provides the monomers for the growth of particles (cf. the review of Sowers et al.
(2013)).
Other examples, where continuously driven phase separation emerges as a key ingre-
dient of phase separation are hot-water geysers (Ingebritsen and Rojstaczer, 1993;
Toramaru and Maeda, 2013) and cold-water geysers (Han et al., 2013), as well as
lake (Zhang, 1996; Zhang and Kling, 2006) and volcano (Wylie et al., 1999; Cashman
and Sparks, 2013) eruptions. In these cases there are episodic eruptions, that arise
because gravity acts like a feedback that enhances bubble growth, in the late stages
of bubble growth. For instance the presence of bubbles in the conduit of a cold water
geyser lowers the solubility of CO2 at the bottom, thus increasing the production of
bubbles. This feedback mechanism leads to a runaway and resets the system. We
denote this as episodic precipitation.
Remarkably, rain formation in clouds can also be considered as an instance of episodic
precipitation. Here atmospheric vapour condenses continuously due to adiabatic
cooling of rising humid air parcels. Apart from pressure and temperature changes
that drives the phase separation, also entrainment of dry air at the border of clouds
influences the growth of cloud droplets (see de Rooy et al., 2013; Tölle and Krueger,
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1 Introduction

Figure 1.1: Illustration of the evolution of the size distribution in a cloud during the onset
of the collision-coalescence process. Reprinted from Shaw (2003).

2014, for recent discussions). All these processes interact to set the time scale for
rain formation. I will address the implications of my work for episodic eruptions,
colloid synthesis and clouds in chapter 7.
These phenomena have in common that a steady flux of second phase material is
caused by the continuously driven phase separation. The flux first rises supersatura-
tion and after nucleation of second phase particles, it leads to growth in the presence
of the material source. Depending on the source strength a rich crossover behaviour
from coarsening to size focussing emerges in the evolution of the size distribution.
Precipitation emerges when aggregates, i.e. droplets, bubbles or solid particles that
are immersed in a fluid, grow to a size where their motion is affected by buoyancy.
At this point their motion changes from Brownian diffusion to Stokes settling, and
the probability for collisions with other aggregates increases dramatically. As a
consequence aggregate growth is boosted (Houghton, 1959; McGraw and Liu, 2003;
Grabowski and Wang, 2013), collective effects emerge in their motion (Cau and
Lacelle, 1993; Kalwarczyk et al., 2008; Stevens and Feingold, 2009; Woods, 2010), and
virtually all volume condensed on the aggregates is precipitating out of the fluid in a
finite time (Cau and Lacelle, 1993; Aarts et al., 2005; Kostinski and Shaw, 2005). In
fig. 1.1 Shaw (2003) provides a sketch of the evolution of the droplet-size distribution
in a cloud. This figure allows me to highlight fundamental questions in cloud physics
that are the topic of the present thesis in a broader context. The narrow peak at
small radii (∼ 20µm) represents cloud droplets, that form a stable non precipitating
cloud. They behave like Brownian particles and are not (yet) affected by gravity.
Until this size the diffusive growth of droplets shares features observed in the size
focussing of particle-size distributions in colloid synthesis (Wallace and Hobbs, 2006;
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1.2 Phase transitions and demixing

Clark et al., 2011). How does a material source change the coarsening behaviour
of a polydisperse distribution? Due to the material flux of condensing vapour the
droplets in the first peak grow: the peak shifts slightly to the right. At some point
the largest droplets in the tail of the distribution start to feel gravity. Subsequently,
they rapidly take over the distribution and form a second peak of rain droplets, that
eventually fall out as precipitation. To understand this crossover one really has to
look at the tail of the distribution of large cloud droplets. Clark et al. (2011) have
recently established a description of the evolution of the first two moments of the
size distribution. However, this is not sufficient for the clouds where particles in
the tail of the distribution play such an eminent role (Kostinski and Shaw, 2005). I
will therefore provide a theoretical description for the full distribution and all of its
moments.
Recalling episodic precipitation of geysers one can imagine that once the droplets of
a cloud precipitated a new life cycle starts for the air that formed the cloud. This
immediately rises the question of the emerging time scale in episodic precipitation.
At what time will it rain next when the driving persists?
In the remaining part of this introduction I provide the basic concepts and ideas
collected from different fields of physics, that will be combined and extended in the
following chapters to give a consistent picture of size distributions and time scales in
droplet growth for continuously driven phase separation.

1.2 Phase transitions and demixing

Phase diagrams are commonly used to describe phase transitions and phase separation.
They are is a nice graphical means to indicate the state of a mixture by a phase
coexistence curve or binodal line. In the present thesis I deal with mixtures of two
components and mainly with temperature induced phase separation, thus only binary
phase diagrams in the temperature (T ) and concentration (Φ) space are further
discussed. The phase coexistence curve separates two regions: For all temperatures
and compositions that lie outside the phase coexistence curve the two components
mix homogeneously. The area inside the coexistence curve is called miscibility gap
or phase coexistence region. For average compositions in the miscibility gap two
different macroscopic phases emerge with compositions specified by the border of
the phase coexistence region, see fig. 1.2.
The shape of the phase coexistence curve is connected to the free energy of the
thermodynamic system. Since the entropic contribution favours mixing for higher
temperatures the phase coexistence curve has the shape of a cap in a generic phase
diagram. The miscibility gap becomes broader if temperature decreases. The
maximum, where the two branches of the phase coexistence curve meet, is called
the critical point. It is characterised by a critical temperature Tc and a critical

3
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(a) T ∗

Φr

Φl

(b) hat shaped

Φ

T

Tc

T ∗

ΦcΦl Φr

(c) u shaped

Φ

T

Tc

T ∗

ΦcΦl Φr

Figure 1.2: (a) For a temperature T ∗ beyond the critical temperature the mixture separates
into two macroscopic phase with the compositions Φl and Φr. The mass density of the
respective phases decides which phase is at the top. Panels (b) and (c) show a hat-shaped
and a u-shaped phase diagram, respectively. The critical point is described by the critical
temperature Tc and the critical composition Φc. The mixtures phase separate upon cooling
(b) or heating (c).

composition Φc. Due to entropic contributions to the free energy, mixtures can show
a u-shaped miscibility gap with a lower critical point, or even a loop-shaped miscibility
gap (Yelash and Kraska, 1999; Walker and Vause, 1987). For the experiments on
phase separation that will be reported later, I use isobutoxyethanol and water
(IBE+W) mixtures. They have an u-shaped miscibility gap. This mixture is very
convenient: it can be mixed at room temperature and phase separates under heating,
see fig. 1.2(c). A similar mixture of butoxyethanol and water has been used for
an experimental analog for mid-ocean ridge hydrothermal systems (Emmanuel and
Berkowitz, 2006). A second mixture of methanol and hexane (M+H) is also used, it
phase separates for cooling, see fig. 1.2(b).
A phase transition happens, if the temperature for a given average composition
is changed across the phase coexistence curve. Doing the temperature variation
quasi-statically, allows the determination of the transition temperature, and varying
the compositions the phase coexistence curve can be measured.
For the dynamics of phase separation three different scenarios can be distinguished
based on the applied temperature protocol (Vollmer, 2008). In fig. 1.3 I use the
u-shaped phase diagram with a lower critical point for visualization. Phase separation
arises for a mixture with composition Φ when the temperature of the mixture is
increased beyond the temperature Tb(Φ) marked by the binodal line. Let the system
equilibrate at a temperature T1 > Tb(Φ) such that there are two macroscopic phases
(see fig. 1.3). A further increase of temperature leads to a change in composition
and therefore to a change of the volume fraction of the two macroscopic phases.
Each temperature protocol corresponds to a ramp rate ξ, characterized by rate of

4
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Φ
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(a)

Φ

T

T1

t

T

T1

(b)

Φ

T

T1

T2

t

T

T1

T2

(c)

Figure 1.3: Phase separation scenarios for different temperature protocols T (t), see upper
part of the figure. (a) very slow temperature change, (b) intermediate change and (c)
temperature quench. The lower part of the figure shows the phase coexistence curves (blue)
in the phase diagrams and the corresponding evolution of the compositions (red).

the excess volume fraction that comes out of solution, if the mixture is equilibrated.
Therefore I refer to the ramp rate ξ also as the rate of volume fraction.
A quasi-static change in temperature is illustrated in fig. 1.3(a): in this setting the
supersaturation relaxes by diffusion over the length scale L of the system. Therefore,
the red line in the lower panel of fig. 1.3(a) does not differ substantially from the
phase coexistence curve. To observe this scenario the rate of the production of
supersaturation, ξ, has to be much smaller than the rate of diffusive transport,
characterised by its diffusion coefficient D. In our experiments we have have L =
10−2 m and D = 10−10m2s−1. The upper bound for the ramp rate is (Vollmer, 2008)

ξ � D

L2 = 10−6 s−1 . (1.1)

Typical ramp rates in our experiments are ξ = 10−5s−1. Note that these are very
slow temperature changes that are challenging to realize in a laboratory setting.
However, in order to achieve quasi-static temperature changes even smaller rates are
required.
The other extreme scenario is a sudden change of temperature, see fig. 1.3(c). Here
the change of temperature is sufficiently fast to neglect changes in composition, during
the experimental realization of the jump. This quench is followed by relaxation at
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1 Introduction

constant temperature. Depending on the temperature change nucleation or spinodal
decomposition is observed along the horizontal lines (Bray, 1994). This will relax
the composition of the coexisting domaines to the respective equilibrium values of
the binodal line. In either case this rapid relaxation is followed by coarsening of
the domain structure. For many years phase separation was studied for isothermal
conditions by these quench experiments.
Episodic precipitation arises in a scenario that lies between the very slow temper-
ature change and the quench. It is observed for temperature changes that exceed
the bound ξ & D/L2 provided in eq. (1.1). Fixing the ramp rate ξ leads to well
defined experimental conditions in terms of driven phase separation. This is done
by adjusting the temperature protocol to the slope of the phase coexistence curve,
keeping the change in composition constant. The slope of the phase coexistence
curve increases for increasing temperature, thus also the slope of the temperature
ramp in fig. 1.3(b) increases. The full details will be provided in section 2.3. As
illustrated in fig. 1.3(b) the compositions evolve in a step like manner for such con-
tinuous driving. The composition stays the same for a while, when the temperature
increases. As a consequence supersaturation builds up and eventually droplets will
nucleate. Subsequently, on the length scale of droplet distances the supersaturation
is relaxed by diffusion, and the composition moves back to the phase coexistence
curve. Removing of droplets by coalescence and sedimentation leads to a reset of the
system. Supersaturation will build up again. This leads to an oscillatory response of
continuously driven phase separation.
In fig. 1.4 this behaviour is demonstrated for the phase separation of the mixture of
IBE+W. The mixture forms two layers: less dense IBE-rich phase floating over the
layer of the W-rich phase, see snapshots in fig. 1.4(a)–(f). In response to the temper-
ature ramp both layers show an alternating variation in turbidity , fig. 1.4(a)–(f).
Representing this evolution in a space-time plot, fig. 1.4(g), illustrates a variation of
turbidity with a period ∆ti between the ith and (i+ 1)st precipitation event.
The accompanying periodic alternation in the turbidity and the particle-size distri-
bution are characteristics of episodic precipitation. The effect is robust. Episodic
response has been observed in the particle-size distribution (Lapp et al., 2012) and
in calorimetric data (Vollmer et al., 1997; Vollmer and Vollmer, 1999; Auernhammer
et al., 2005; Mirzaev et al., 2010) in a vast range of binary mixtures (Vollmer et al.,
1997; Auernhammer et al., 2005; Mirzaev et al., 2010; Lapp et al., 2012), including
olive oil and methylated spirit (Vollmer et al., 2007). It arises in the upper as well as
in the lower layer of the mixtures.
Vollmer et al. (2007) suggested a minimal model for the oscillation cycle. Benczik
and Vollmer (2010) considered a reactive flow model to investigate the episodic
precipitation in binary fluid demixing. Both models do not provide quantitative
predictions of the time scale of the period ∆t. In the present thesis such a prediction
will be the topic of chapter 5.

6



1.3 Ostwald ripening and Lifshitz-Slezov-Wagner theory

Figure 1.4: Episodic precipitation in binary mixtures. Panels (a)–(f) show false-colour plots
of the turbidity distribution in snap shots of the phase separation of an isobutoxyethanol/water
mixture subjected to a ramp rate, ξ = 2.5× 10−5 s−1. Averaging in horizontal direction and
arranging the resulting vertical turbidity profiles next to each other produces a space-time
plot of the time evolution of the turbidity, panel (g). The length scale is provided on its
ordinate axis, and the scales in the pictures (a)–(f) can be inferred by noticing that panel (g)
shows the full height of the samples. In chapter 2 I provide full details on the experimental
setup and method.

1.3 Ostwald ripening and Lifshitz-Slezov-Wagner theory

The growth rate of a droplet depends on the supersaturation in the surrounding
of the droplet. In an assembly of droplets they influence each other. Ostwald
(1900) first described the evolution of such an assembly at constant temperature:
The mean radius grows and the number of aggregates decreases, whereas the total
volume of aggregates is constant. The redistribution of aggregate volume is driven
by minimizing the interfacial energy of the system.
This dynamics involves a delicate balance of the evaporation of small aggregates, and
redistributing their volume to achieve further growth of large aggregates. The radius
dependent growth rate of the aggregates can be found by dimensional analysis. The
change of aggregate volume is proportional to the diffusion constant, D, characterising
the transport of material. By dimensional arguments it is also proportional to a
length scale. This length scale should involve the radius of the droplets. Moreover,

7



1 Introduction

there must be a critical radius, Rc, such that larger droplets grow, and smaller
droplets shrink. This suggests the following evolution of an aggregate with radius Ri

R2
i Ṙi ∼ D(Ri −Rc) = RcD

(
Ri
Rc
− 1

)
. (1.2)

Introducing a length scale σ, that accounts for dimensionless prefactor in eq. (1.2),
one obtains for the radius growth rate

Ṙi = Dσ

R2
i

(
Ri
Rc
− 1

)
. (1.3)

The length scale σ depends on the material parameters, that set the material transport.
It is denoted as the Kelvin length. As expected, σ is proportional to the interfacial
tension γ which provides the energy penalty driving coarsening. A derivation of
eq. (1.3) based on the explicit solution of the diffusion equation is given e.g. in
Landau and Lifshitz (1983) and Bray (1994). It leads to eq. (1.3) with

σ = 2 γVmΦ
RT

. (1.4)

The equation for the growth rate, eq. (1.3), together with the conservation of aggregate
volume allows us to determine the value of the critical radius Rc. Since the overall
volume

V = 4π
3

N∑
i=1

R3
i (1.5)

is conserved, we obtain

0 = V̇ = 4π
N∑
i=1

R2
i Ṙi = 4πDσ

(
N〈R〉
Rc

−N
)

(1.6)

where 〈R〉 = 1
N

∑N
i Ri is the average radius. Therefore, eq. (1.6) is fulfilled only for

Rc = 〈R〉. Independently, Lifshitz and Slyozov (1961) and Wagner (1961) derived
this relation as well as scaling laws for the decay of the number of aggregates, the
resulting growth speed of the mean aggregate radius, and they determined the shape
of the asymptotic size distribution. Their results are known as the LSW-theory of
Ostwald ripening. Modern expositions derive their results from the point of view
of dynamic scaling theory (Voorhees, 1985; Bray, 1994; Barenblatt, 2003), i.e. as
a scaling solution of the continuity equation for the aggregate number density per
radius n(R, t)

∂n

∂t
+ ∂

∂R

(
Ṙn
)

= 0 . (1.7)
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1.4 Ripening with material flux

Here n is a conserved quantity, because only evaporation at zero size (boundary
term) and growth is considered, i.e. the aggregates do not coalesce.

1.4 Ripening with material flux

In the examples discussed in section 1.1 the aggregate assembly does not evolve at a
constant aggregate volume fraction. Rather it increases due to driving of the phase
separation. Here we consider the same equation for the growth rates as discussed
for the LSW theory, eq. (1.3), but for V̇ = ξV, rather than V̇ = 0. The ramp rate
ξ denotes the change in aggregate volume fraction and V the sample volume. This
kind of conservation law gives

ξV = V̇ = 4π
N∑
i=1

R2
i Ṙi = 4πDσ

(
N〈R〉
Rc

−N
)

(1.8)

⇒ k := 〈R〉
Rc

= 1 + ξV
4πDσN = 1 + ξ

4πDσn (1.9)

with n = N/V being the number density of aggregates. The ratio k of the average
aggregate radius and the critical radius has also been identified by Clark et al. (2011)
as the relevant parameter that governs the evolution of the aggregate size distribution
with overall volume growth. When there is a net growth of overall volume, the
control parameter k is increased by the ratio of the growth rate ξ, and the diffusive
relaxation of supersaturation 4πDσn. Substituting the critical radius in the equation
of the growth rate, eq. (1.3), by Rc = 〈R〉/k, (see eq. (1.9)) we find the following set
of equations for the evolution of the aggregate radius Ri

Ṙi = σD

R2
i

(
k
Ri
〈R〉
− 1

)
. (1.10)

The growth of the aggregate radii, Ri, is coupled in a mean-field way via the
dependence of the equations on the average aggregate radius 〈R〉, and via k also to
the number density, n, of the aggregates (cf. eq. (1.9)).
Equation (1.10) combines the growth law of aggregates for k = 1, i.e. the starting
point of the LSW theory, and for k > 1, i.e. the case of ripening with overall volume
growth, that leads to episodic precipitation, emerging for larger values of k. In
chapter 4 we will see that qualitative changes emerge in the evolution of the size
distribution, when increasing k from k & 1 towards larger values.
Early successes in the theoretical modelling of aggregate-size distributions focused on
describing the diffusive transport of material to the aggregates (LaMer and Dinegar,
1950). In many applications the volume fraction of the aggregates grows during the
ripening—either due to feeding by a chemical reaction, or because temperature or

9
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(a)

(b)

(c)

Figure 1.5: Size focussing in colloid synthesis. (a) Monodisperse silver particle for pho-
tographic films obtained with a material flux into thy system. (b) Silver particles grown
without a sustained material flux, given for comparison. Reprinted from Klein and Moisar
(1963). (c) Relation of the width of the distribution characterised by the standard deviation
σ and the diameter of the aggregate 〈D〉 for different values of k. The value of ξ in the figure
corresponds to k− 1 = ξ/(4πDσn) in our notation, i.e. it agrees with our notation of ξ up to
non-dimesionalization. Reprinted from Clark et al. (2011).

pressure changes lead to a change of the equilibrium volume fraction of the aggregates.
Reiss (1951) pointed out that the resulting sustained growth of the volume fraction of
the aggregates can lead to focusing of the aggregate size distribution (see Kwon and
Hyeon, 2011; Clark et al., 2011; Sowers et al., 2013, for recent discussions). An early
application of the focussing of the size distribution was the synthesis of monodisperse
silver particles for photographic films, see fig. 1.5(a,b).
Recently Clark et al. (2011) obtained a relation between the width of the size
distribution and the mean diameter of the aggregates, depending on the value of
control parameter ξ/(4πDσn) = k− 1, see fig. 1.5(c). They based their analysis on a
projection of the dynamics to Gaussian size distributions: The width and the mean
diameter of the aggregates are allowed to evolve whereas the shape of the distribution
is fixed to be a Gaussian. For ξ = 0 the distribution becomes broader, as observed
in Ostwald ripening, whereas size focussing is observed for ξ/(4πDσn) & 1 i.e. for
k & 2.

1.5 Collisions and sedimentation

All phenomena that show episodic precipitation must have a mechanism that enhances
aggregate growth in a such way that precipitation can occur in a finite time. In the
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1.5 Collisions and sedimentation

(a) (b)

Figure 1.6: (a) Generalized Erlang distributions show the distribution of times for N
coalescence events, where τ is the average waiting time for the first coalescence. (b) Speedup
factor φ as a function of the number of coalescence events N for different factions of droplets
that collect the smaller droplets, as indicated by the legend. Reprinted from Kostinski and
Shaw (2005).

following I concentrate on the initiation of warm rain. Here ideas and mechanism
were developed in the cloud physics community that I will adapt to the modelling of
my experiments in the following chapters.
Consider a cloud consisting of 10µm cloud droplets (see fig. 1.1 at initial times).
A droplet growing to the size of 1mm needs to coalescence with one million other
10µm-sized droplets. In practice a fraction of 10−6 of the largest droplets in the tail
of the distribution take over the distribution by collecting all the volume distributed
in the smaller droplets. To discuss this kind of droplet growth I follow Kostinski
and Shaw (2005). Rather than applying Smoluchowski integro-differential equations
they gained insight in this process by adopting a collector drop scenario of one drop
falling through a cloud of identical smaller droplets – a scenario initially introduced
by Telford (1955).
Starting at 10µm a randomly selected "fortunate" droplet has its first coalescence
much earlier than the average time for the first coalescence τ . Since it is larger now,
it is more likely than others to encounter another coalescence. Indeed, the time
between two coalescence events is proportional to the cross section of the droplet, its
sedimentation speed and the collection efficiency. Kostinski and Shaw (2005) assume
the following relation of the time τ between the nth and the (n+ 1)th coalescence
event on the volume of the droplet v = n · v0

τn ∼ (n · v0)−2 , (1.11)
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where v0 denotes the volume of one of the small droplets, that are collected. The
time between the coalescence events decays rapidly. Thus only the first terms really
contribute to the time of N coalescence events. The distribution of waiting times is
virtually the same for all N > 128, fig. 1.6(a). The curve for the time to the first
coalescence is an exponential distribution with a mean time τ . In the framework of
inhomogeneous Poisson processes the distribution of times for N coalescence events
is a convolution of the exponential distributions with decaying mean times, yielding
the generalized Erlang distributions, shown in fig. 1.6(a). These distributions rapidly
converge – there is only a small difference between the distributions of N = 8 and
N = 128, and almost no difference between the distributions corresponding to N = 32
and N = 128. Hence, if a droplet manage to collect a few other droplets, the process
of growth is started and the time for the approximately other 100 coalescence events
is not much longer. Once a droplet has encountered 10 collisions, another 100 will
follow soon, i.e. on a time scale much smaller than τ , and at that point the collision
frequency diverges. The resulting finite time runaway leads to an efficient and fast
initiation of rain.
In fig. 1.6(b) the speedup in growth rate is shown as a function of the number of
coalescence events N . It is given for different fractions of droplets, that are able to
collect the volume of a cloud. The curves for 10−5 and 10−6 droplet fraction are in
agreement with droplet concentrations in warm rain initiation (Kostinski and Shaw,
2005). In this case, the growth rate is 10 times faster than the mean growth rate.

1.6 Outline

The present thesis has four parts. Following the introduction (chapter 1) I describe
the adopted tools and methods (chapters 2 and 3). Subsequently, different aspects of
episodic precipitation in binary mixtures are addressed in chapters 4 to 6. These
case studies are complementary and build partially on their mutual insights. Finally,
the results are combined and interpreted in the context of their application to other
systems (chapters 7 and 8).

In chapter 2 I provide the experimental techniques and methods used throughout
the thesis. From the beginning I could use an experimental setup designed for mea-
suring the evolution of the size distribution. It was developed by Tobias Lapp during
his PhD thesis (Lapp, 2011) and by myself during my diploma thesis (Rohloff, 2011).
The setup has been described in detail in Lapp (2011), and in the joint publication
Lapp et al. (2012). Here, I focus therefore on the description of an extension of the
setup that allows us now to measure the turbidity, and on my efforts to characterize
the temperature ramps in much more detail.

12



1.6 Outline

In chapter 3 I describe an efficient algorithm to integrate an assembly of aggregates,
that is used in chapter 4 to study the impact of overall volume growth on Ostwald
ripening. This exposition follows our publication Vollmer et al. (2014).

Chapter 4 has two parts. The first one deals with the size distributions of Brownian
aggregates with an overall volume growth. The theory for large k values and the
results for the uniform initial distribution has also been published in Vollmer et al.
(2014). In addition the evolution of a bell-shaped and a bimodal distribution is shown
to study the impact of the initial distribution.
The second part addresses the impact of sedimentation on the droplet size distribu-
tions. Here I provide a consistent interpretation of the data and I identify the cause
of the emerging bimodal distribution as sedimentation. These results of the second
part have been obtained in collaboration with Marcel Ernst, who worked together
with me during his Bachelor thesis (Ernst, 2014).

Chapter 5 is concerned with the time scale of the oscillation period emerging in
episodic precipitation. First, I provide the data of oscillations periods in IBE+W
mixture that has been obtained in collaboration with Tobias Lapp (Lapp, 2011),
and in M+H mixtures from turbidity measurements. Subsequently, I address the
influence of flow on the oscillation period. This work has been done in collaboration
with Julian Vogel, who joined my project for a Bachelor thesis (Vogel, 2013). The
model of the precipitation cycle builds upon the formulation of Lapp (2011). It
was inspired by Michael Wilkinson’s idea to use Ostwald ripening as the growth
mechanism for small droplets (Wilkinson, 2014). However, the overall volume growth
leads us to adopt the theory of droplet growth for large k values that is described
in chapter 4. This leads to a quantitative agreement with our experimental data
(Rohloff et al., 2015), whereas Ostwald ripening fails (Rohloff et al., 2014).

In chapter 6 I explore the impact of periodic driving. Here Marcel Ernst provided
numerical data and Julian Vogel lied the basis with his experimental observations.
Julian was assisted by Darcy Jacobson, a RISE summer student, whom I have
supervised. The model for the precipitation cycle described in chapter 5 for constant
driving is extend for a periodic driving. The analytic approximation of the theory
as well as numerical data predict regions of synchronisation, that are also observed
experimentally. Additionally the impact of high frequency driving is investigated.

In chapter 7 I come back to the examples of rain formation, colloid synthesis and
geysers, that were used to motivate my work in section 1.1. I discuss them here
based the insights and results of the previous chapters.

Finally, I conclude the thesis in chapter 8.
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2 Experimental techniques and methods

In this chapter I describe the experimental setup and the procedures of data analysis
used in this thesis. Starting point is the description of the experimental setup for
measuring turbidity of the sample and the size distributions during phase separation.
Then the binary mixtures are characterised by their phase diagrams, which are
subsequently used to calculate temperature ramps for driving the phase separation
in a controlled way. Finally the optical setups and the data analysis is described for
measuring the turbidity and the size distributions, respectively.

2.1 Experimental setup for investigating binary fluid
demixing

The experiments on demixing reported in this thesis focus on the oscillatory behaviour,
which occurs for slow continuous changes of temperature. The oscillatory behaviour
manifests itself in an oscillating turbidity of the sample which can even be observed
by eye, as well as oscillations in the size distribution. The presence of many droplets
as a result of the demixing causes the scattering of light and the sample will appear
turbid and give bright images. I will therefore refer to the turbidity as the gray value
of the images. For measuring the period of the oscillations it is sufficient to record
the turbidity, which is easily monitored for the whole sample and straight forward
to extract from the images. On the other hand, I record images with a sufficient
magnification to identify individual droplets. The detection of droplet sizes allows
to obtain the time evolution of the size distribution of droplets. Both techniques
differ mainly in the setup of the optics for the illumination and the image acquisition.
Therefore, I will discuss first the general setup, that both techniques have in common.
Subsequently, the optical setups and the data processing are discussed separately in
sections 2.4 and 2.5.
For the investigation of the demixing a few millilitre of the fluid mixture is placed in
a fluorescence cell 117.100F-QS made by Hellma GmbH (see fig. 2.1 (1) and (1a)).
The cell is immersed in a thermostated water bath in order to drive the demixing
by changing the temperature. The temperature control of the water bath has two
components: an immersion cooler Haake EK20 (5), which cools with a constant
power and a computer controlled thermostat Huber CC-E (4), which heats the water
to a preset temperature. Additionally the temperature near the sample is measured
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2 Experimental techniques and methods

Figure 2.1: Experimental setup. Sample (1), thermostat (4) and cooler (5) are immersed
into the water bath. Illumination light source (2) and camera (3) are placed at two sides of
the water bath, and the magnetic stirrer (6) below.

with a PT100 sensor. The temperature is controlled with an accuracy of 15 mK.
Images are taken with a BM-500CL monochrome progressive scan CCD camera (3).
The sample is illuminated with a light source (2), which depends on the respective
setup and will be described later. A magnetic stirrer (6) enables homogenisation
of the fluid mixture between two experimental runs. It also allows us to study the
influence of an external flow caused by the stirring of the magnetic stirring bar, see
section 5.1.2.
The whole setup, the temperature as well as the camera and the magnetic stirrer,
are controlled by the computer via a LabVIEW program.
In this form I found the setup ready for experiments at the beginning of my PhD.
However, I redesigned the thermostating unit (thermostat and cooler) to make it
proof against freezing with a temperature dependent switch to turn off the cooling
automatically, if the temperature of the water bath drops below a threshold of 5°C.
The LabVIEW program to run the experiments has typically three steps:

• Homogenisation: The binary fluid is homogenised by shaking by hand outside
the water bath or by the magnetic stirrer at a temperature sufficiently far in
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2.2 Phase diagrams of binary fluid mixtures

the one phase region of the phase diagram.

• Relaxation: The temperature is changed to T0 across the phase coexistence
curve into the two-phase region of the phase diagram. This temperature is held
constant for about 180 min. This time is sufficient for forming two layers with
equilibrium compositions.

• Temperature ramp: Starting from the equilibrated sample at T0 the temperature
of the water bath is changed according to a preset temperature ramp. The
ramp can be provided either in dimensionless times or in units of seconds. The
temperature of the thermostat is set every second, images are recorded at a
specified frame rate in the range of 1Hz to 0.05Hz.

A second mode of operation of the LabVIEW program is the determination of
the transition temperature of binary mixtures. This has been used extensively to
determine the phase diagram of isobutoxyethanol and water (Rohloff, 2011). The
basic idea is to change the temperature across the phase coexistence curve and
monitor the turbidity(Dean et al., 2010). An abrupt change in turbidity indicates
the phase transition.

2.2 Phase diagrams of binary fluid mixtures

In this thesis I report on experiments with two mixtures: isobutoxyethanol/water
(IBE+W) and methanol/hexane (M+H). Both mixtures are characterized in the
following by their phase diagrams fig. 2.2.
Mixtures of M+H are one of the classical model systems of binary phase separation
(Huang et al., 1974; Abbas et al., 1997; Sam et al., 2011). The two fluids are
fully miscible above 34.45°C. Mixtures of IBE+W are an experimentally-friendly
system, that phase separates upon heating. The mixture can be homogenised at
room temperature. Mixtures of water and butoxyethanol have become popular
as an experimentally-friendly system that phase separates upon heating (see e.g.
Emmanuel and Berkowitz (2006)). For our present purposes IBE and water, is even
preferential since the critical point of the mixtures, Tc = 25.61°C, lies more than
10°C below the one of the butoxyethanol mixture. This further enhances the range of
experimentally accessible temperatures (that must always lie well below the boiling
point of water). In Rohloff (2011) and Lapp (2011) polynomial fits are used to fit
the experimental data for the phase coexistence curve. I use a forth or sixth order
polynomial to fit each branch of the coexistence curve,

T (Φ) = Tc +
6∑

n=2
an(Φ− Φc)n . (2.1)
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Figure 2.2: Phase diagrams of (a) IBE+W and (b) M+H. The respective concentrations
are given in mass fraction of IBE and M. The data points are shown by blue symbols and
the polynomial (eq. (2.1)) and scaling fits (eq. (2.2)) of the phase coexistence curve by red
and green solid lines, respectively. The data points of the IBE+W mixture denote own
measurements and the data of M+H has been adapted from Auernhammer et al. (2005).

The first order term is set to zero to have a zero slope at the critical point, and Tc
and Φc denote the values of the temperature and the composition at the critical
point. The fit parameters for IBE+W and M+H are given in table 2.1. The critical
compositions in mass fractions are Φc = 0.310 for IBE+W and Φc = 0.313 for M+H.
In a recent paper Wilkinson (2014) suggested that critical scaling exponents might
be relevant to describe the data of the oscillation periods (chapter 5). To explore
this connection Rohloff et al. (2015) adopted a more profound function for the phase
coexistence curve. For this purpose the procedure of Aizpiri et al. (1990) is used to

IBE+W M+H
Φc 0.310 0.313

Tc (°C) 25.51 34.20
left right left right

a2 51.2 122.2 -159.7 -23.0
a3 979.8 -750.7 -1339 -373.9
a4 995.3 2574.2 -8155 73.7
a5 120779 - - -
a6 647056 - - -

Table 2.1: Parameters of the polynomial fit of the phase diagram of IBE+W and M+H
according to eq. (2.1).

18



2.3 Driving the demixing by temperature ramps

IBE+W M+H
β 0.25 0.325
Tc (K) 298.76± 0.12 307.88± 0.15
Φc 0.3093± 0.0032 0.3143± 0.0008
B 0.547± 0.002 0.726± 0.002
D 0.26± 0.015 0.323± 0.005

Table 2.2: Fit parameters of the coexistence curve for IBE+W and M+H according to
eq. (2.2).

express the left and right branch of the coexistence curve by

Φr/l = Φc ±Bθβ +Dθ2β with θ =
∣∣∣∣1− T

Tc

∣∣∣∣ (2.2)

in terms of the reduced temperature θ. Here, again the critical point is at the
temperature Tc and the concentration Φc. However, now the shape of the phase
boundary is described by the nontrivial scaling exponent β. Its universal value at
the critical point β = 0.325 has been calculated by renormalization group theory
(Stanley, 1971).
The fit parameters for the two mixtures are collected in table 2.2. For M+H eq. (2.2)
provides an excellent fit for β = 0.325. In contrast for IBE+W it is not possible
to get a reasonable fit for β = 0.325. It is reported (Nakata et al., 1982) that the
universal scaling exponent only applies for θ < 10−3 which is below the temperature
range relevant for our experiments. Therefore, I choose β = 0.25 to gain a faithful
description.

2.3 Driving the demixing by temperature ramps

The demixing of the binary liquids in my experiments is driven by a continuous change
of the temperature. A temperature change involves a change in the equilibrium
composition, which eventually results in a change of the volume fractions of droplets
and bulk. In the present section I discuss how the form of the phase coexistence
curve is connected to the driving ξ.

2.3.1 Calculating ξ from the form of the phase-coexistence curve

Earlier work on the thermodynamic driving of the demixing of binary liquids concen-
trated more on a theoretical view coming from a nonlinear diffusion equation (Cates
et al., 2003; Auernhammer et al., 2005). Here I will take an approach motivated
from the experimental side which allows me to connect the driving force directly to

19



2 Experimental techniques and methods

the production of droplet volume fraction as a result of the demixing process 1. The
connection of the driving to the change in droplet volume fraction was previously
specified in Rohloff (2011) and Lapp (2011). However, here I revisit the derivation
on a more profound basis.
The derivation of the ramp rate ξ starts with considering a volume containing droplets
with a volume fraction vd and a composition Φd surrounded by fluid of the bulk
composition Φb. The average composition Φ in this volume is

Φ = vdΦd + (1− vd)Φb . (2.3)

Changing the temperature will change the equilibrium compositions of droplets and
bulk but the average composition will stay the same, so that

0 = Φ̇ = vdΦ̇d + Φdv̇d + (1− vd)Φ̇b − Φbv̇d . (2.4)

Introducing the following definitions

ζ0 = Φ−1
0

dΦ̄
dt (2.5a)

ξ0 = Φ−1
0

dΦ0
dt (2.5b)

ϕ = Φ− Φ̄
Φ0

(2.5c)

where Φ̄ = 1
2 (Φb + Φd) , (2.5d)

Φ0 = 1
2 (Φb − Φd) , (2.5e)

eq. (2.4) rearranges to:
v̇d = 1

2 (ζ0 + ξ0ϕ) . (2.6)

This means that the change in droplet volume fraction due to a change in temperature
has two contributions. The first one ζ0 comes from the asymmetry of the phase
diagram, i.e. the change of the midpoints Φ̄ of the miscibility gap, whereas the
second one ξ0 comes from the change of the width Φ0 of the miscibility gap. ϕ is
the reduced average composition, it is 1 for Φ = Φb and smaller for values inside the

1For all practical purposes the demixing process starts with the creation of supersaturation, which
then relaxes after nucleation of droplets by the diffusion of the minority phase to the droplet,
forming a volume fraction in its literal sense. In this derivation all volume which is off the
equilibrium volume distribution will be denoted as volume fraction of droplets, no matter if it is
still dissolved as supersaturation or already belonging to droplets.
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Figure 2.3: Φ̇0/Φ̇b from eq. (2.7) for IBE+W (solid lines) and M+H (dashed lines) and for
the driving held constant in the upper layer (red) and the lower layer (blue) of the mixture.

miscibility gap.
The local bulk composition is then characterised by the local reduced composition
which is now space and time dependent ϕ(x, t). Its evolution is described by a
diffusion equation which contains a source term of 2v̇d (Auernhammer et al., 2005;
Vollmer et al., 2007). From the view point of the transport equation it is desirable
to fix the source term v̇d rather than fixing ξ0 or ζ0 as done in Auernhammer et al.
(2005).
In order to gain an expression for the source term, eq. (2.6), depending on the
compositions Φd and Φb the definitions in eq. (2.5) are inserted back into eq. (2.6).
This provides

v̇d = 1
2Φ0(T )

dΦb

dt −
vd
Φ0

dΦ0
dt = Φ̇b

2Φ0

(
1− 2vd

Φ̇0

Φ̇b

)
≈ 1

2Φ0(T )
dΦb

dT
dT
dt . (2.7)

In the last step I used the fact that in our experiments the droplet volume fraction vd
is small, in the order of a few percent and the ratio Φ̇0/Φ̇b is of order 1, see fig. 2.3.
In order to denote the driving which is described by v̇d also with ξ to use the same
terminology as in Cates et al. (2003); Vollmer and Vollmer (1999); Auernhammer
et al. (2005); Vollmer et al. (2007); Lapp et al. (2012) I identify the change in droplet
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volume fraction with the driving2 ξ

ξ = 1
2Φ0(T )

dΦb

dT
dT
dt . (2.8)

If it is necessary to specify the bulk phase to which the driving ξ refers, there will be
an index ξl or ξr referring to the left or right branch of the coexistence curve of the
phase diagram describing the composition of the respective bulk phase. Otherwise
the index will be dropped. Note that ξl + ξr = ξ0, which was kept constant in former
work on demixing (Auernhammer et al., 2005).

2.3.2 Calculating temperature ramps
To design temperature protocols for the demixing of binary liquids with a controlled
time dependent driving ξ, eq. (2.8) is rearranged to give an equation for the slope of
the temperature ramp

dT
dt = 2 ξ(t) Φ0(T )

(dΦb

dT

)−1
. (2.9)

For a constant driving ξ one can take advantage of dimensionless units, i.e. to rescale
the time with the time of one measurement tend, so that the integration has to be
done only once. Appropriate rescaling3 of time τ = t/tend and ramp rates ξ̃ = ξtend
reveals that the integration has to be done only once for all ξ values:

dT
dτ = 2 ξ̃Φ0(T )

(dΦb

dT

)−1
. (2.10)

In table 2.3 the ξ̃ values4 are shown which match the boundary condition of Tstart =
25.80◦C and Tend = 50.00◦C for IBE+W and Tstart = 33.50◦C and Tend = 10.00◦C
for M+H.

2.3.3 Influence of phase-diagram representation on driving ξ
As described in section 2.2 there are two representations of the phase diagram, the
first one uses a polynomial fit of the phase coexistence curve and was used for the

2Note that the signs in this formula have also been adjusted. Equation (2.8) presupposes that the
composition is measured with respect to the majority phase of the droplets; otherwise a minus
sign is needed. In other words, ξ is positive if the temperature change drives the mixture deeper
into the miscibility gap.

3Another choice of the dimensionless time is τ = ξt. Both choices differ by the factor of ξ̃. Here I
continue with the description how I actually implemented the temperature ramps although in
retrospective view the next time I would take the other choice.

4The values of ξ̃ are found by trial and error when integrating eq. (2.10).
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2.3 Driving the demixing by temperature ramps

IBE +W poly scaling
ξ̃r 1.03000 0.39205
ξ̃l 0.60238 0.21347
ξ̃0 1.63240 0.60552
M+H
ξ̃r 0.71520 0.3282
ξ̃l 0.42495 0.19904
ξ̃0 1.14015 0.52724

Table 2.3: ξ̃ values for the calculation of the temperature ramps for the mixtures of IBE+W
and M+H and the polynomial and scaling representations of the phase diagrams.

calculation of temperature ramps, which were used for most of the experimental runs
reported in this thesis. The second one uses a scaling fit, and would be the choice
for a description from the theory side. By inspection of the phase diagrams given in
fig. 2.2 there are only small differences in the compositions or temperatures. How
would these differences translate in deviations in the driving?
The ratio of both drivings ξscaling and ξpoly are independent of the driving strength:

ξscaling
ξpoly

=
( 1

2Φs
0

dΦs
b

dT
dT
dt

)( 1
2Φp

0

dΦp
b

dT
dT
dt

)−1

= Φp
0

Φs
0

dΦs
b

dT

(
dΦp

b

dT

)−1

. (2.11)

Here Φs and Φp denote the compositions in the scaling and poynomial representation
of the phase diagram, respectively. This ξ-conversion factor depends only on temper-
ature and is shown in fig. 2.4 as a function of the reduced temperature. Surprisingly,
the ξ-conversion factor shows deviations up to a factor of two, although the scaling
and polynomial representations in 2.2 differ not much.
To have consistent presentation of the data in this thesis, the values of ξ for mea-
surements which used temperature ramps based on the polynomial representation of
the phase diagram are multiplied with the ξ-conversion factor ξscaling/ξpoly.

2.3.4 Calculating ξ from measured temperature ramps

The need for calculating the driving ξ from the temperature log files of the experimen-
tal runs, came up when I checked the quality of time dependent driving, especially
for periodic driving with a square wave.
An easy way is to just compare the temperatures. But for a real comparison, it
is necessary to calculate the driving, ξ, from the measured temperatures in the
experimental runs. This is done by evaluating eq. (2.8), which is not so straight
forward because the derivative of noisy data (measured temperature ramp) is needed.
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Figure 2.4: Conversion factor ξscaling/ξpoly for IBE+W (left) and M+H (right) in the lower
(red) and upper layer (blue) of the sample.

There are some approaches to deal with the derivative of noisy data (Chartrand,
2011; Rudin et al., 1992; Stickel, 2010; Ahnert and Abel, 2007). For my purpose to
estimate the derivative of the temperature ramp the approach of Chartrand (2011)
worked best. Here the derivative f ′ = u is calculated by minimizing the following
functional:

F (u) = α

∫ L

0
|u′|+ 1

2

∫ L

0
|Au− f |2 (2.12)

A is an integration operator. The first term is the regularisation term. It makes
the derivative smooth. The second term penalizes discrepancy between the data f
and the reconstructed data (Au) from its derivative u. α is a weighing factor: for
high values the derivative is smooth and for small values the noisy derivative from
finite-difference calculations is obtained. The minimization is done by evolving the
corresponding Euler-Lagrange equation to stationarity5

du
dt = α

d
dx

u′

|u′|
−AT (Au− f) (2.13)

It is very useful to have the weighing factor α, because in the beginning of the
temperature ramps the noise is higher as compared to the end.
To deal with the decreasing level of noise the temperature ramp is cut into 10 pieces,
for which the derivative is calculated with a value of α, that decreases linearly
between 100 and 1. These parameters work well for ramp rates of ξ = 2× 10−5s−1.
They have been determined by eye.

5The implementation in Matlab is based on: http://octave.1599824.n4.nabble.com/Solving-large-
matrix-equations-td1635345.html
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2.4 Turbidity measurements

measurement cell

camera 

water bath

20°
axis of the 

incident light

Figure 2.5: Setup for turbidity measurements. The measurement cell is immersed in the
water bath to control the temperature. The light of a cold light source forms an angle of
20°with the axis of the camera. If the mixture in the measurement cell is turbid light is
scattered into the camera, providing bright pictures, whereas the images are dark when the
mixture is clear.

2.4 Turbidity measurements

In this part I will describe the optical setup for the measurement of the turbidity and
the analysis of the images leading to a space-time representation and the extraction of
the oscillation periods. The idea and procedure was first described by Auernhammer
et al. (2005). Starting point was the the setup for determining the transition
temperature of binary mixtures (see section 2.2). It is used to extract the oscillation
periods for the mixtures of IBE+W and M+H in various settings.

2.4.1 Setup for turbidity measurements

A sketch of the optical setup for the measurement is shown in fig. 2.5. The sample is
illuminated by a KL 2500 LCD Schott cold light source in a dark field illumination.
It turned out that an angle of about 20° between the axis of illumination and camera
provides optimal results. The camera is operated for this case with a commercial
objective.
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2 Experimental techniques and methods

2.4.2 From turbidity to oscillation periods
Here I describe the data processing from individual snapshots taken by the camera
to the extraction of the oscillation period for the example of IBE+W subjected to
a ramp rate ξ = 2.5 × 10−5s−1. In fig. 2.6(a)–(f) individual snapshots are shown.
They clearly show an oscillating turbidity: some images are almost complete dark,
while others show bright parts coming from the scattered light. The fact that there
is not so much variation of the turbidity in horizontal direction, makes it possible to
condense the time evolution of the turbidity in a space-time plot fig. 2.6(g). This is
done by averaging the images in horizontal direction, leaving a line of the turbidity
in vertical direction, which are put next to each other. Making a cut through the
space-time plot gives an oscillating signal of the turbidity, fig. 2.6(h). The oscillation
periods are extracted by detecting the maxima of the oscillating turbidity6. They
are then conveniently presented in a form like in fig. 2.6(i).

2.5 Measuring size distributions
The experimental tools and subsequent image processing for determining the size
distribution of droplets in binary phase separation were developed before. So I give
only a very brief overview, a detailed description can be found in Rohloff (2011);
Lapp (2011); Lapp et al. (2012).
In fig. 2.7 a sketch of the experimental setup is shown. The sample is illuminated by
a mercury short arc lamp (LOT-Oriel 100W). A green filter (GF) selects the two
green lines from the emission spectrum and lenses L1 and L2 form a light sheet. The
camera detects the red filtered (RF) red fluorescence light coming from the emission
of the droplets, labelled with the fluorescent dye Nile Red. With this technique the
droplets will appear as bright disks on a dark background as shown in fig. 2.8(left).7
The radius and the position of the bright disks in the individual images are detected
using the image processing toolbox of Matlab. If the time interval between the images
is sufficiently small the droplets can be tracked through the image series. Since the
droplets react to gravity by sedimentation according to the Stokes velocity, they are
used as tracer particles to determine the flow field of the bulk fluid as reported in
Lapp et al. (2012) (see fig. 2.8(left)). The information of position and radius of the
droplets in each image makes it possible to display the time evolution of the size
distribution as in fig. 2.8 (right).

6This procedure was used to detect the oscillation period for the experiments in chapter 6 while
in chapter 5 the distance of two minima in the turbidity near the meniscus was used as the
oscillation period.

7This is the case for the lower layer of IBE+W. In the upper layer Nile Red will dissolve preferentially
in the bulk fluid, giving rise to dark disks on a bright background in the images.
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Figure 2.6: Snapshots and space-time plot showing the time evolution of the turbidity in a
sample of IBE+W for a ramp rate ξl = 2.5× 10−5s−1. Panels (a)–(f) show snapshots of the
sample. The cell has a cross section of 10 × 10 mm2 and snapshots are provided in the true
aspect ratio. The turbidity evolves mainly in the lower layer. Above the upper layer, there is
air, which is not shown. In panel (g) the turbidity information of the snapshots is condensed
in a space-time plot, where the height corresponds to the height of the snapshots shown in
panels (a)–(f). (h) Section through the space-time plot at a height of 4mm, i.e. along the
white line indicated in panel (g). (i) Oscillation period ∆ti extracted from the oscillating
turbidity as the time between between the ith and the (i+ 1)st maximum.
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Figure 2.7: Experimental setup showing the optics for the determination of droplet size
distributions. Reproduced from Rohloff (2011).
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Figure 2.8: Detected droplets and the velocity field of the background flow and the evolution
of the size distribution for the lower layer of IBE+W and a ramp rate of ξl = 1.05× 10−5s−1.
Left: Snapshot at t = 2.76h with the detected droplets (red) and positions in the subsequent
image (green). The displacement field of the bulk flow is shown by yellow arrows. Right:
The number density of droplets per radius is given in µm−4 and color coded on a logarithmic
scale. Images are reproduced from Rohloff (2011).
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3 Numerical methods

In this chapter I describe numerical methods to investigate competitive growth in an
assembly of aggregates. In the literature there are at least two approaches to model
the evolution of the aggregate sizes. One is the formulation of kinetic equations
as described for example in Slezov and Schmelzer (1994). The other approach is
to develop and integrate mean-field models. This latter approach was adopted in
Yao et al. (1993) to investigate Ostwald ripening. In the present work I also follow
this latter approach: I modify the mean-field description of Ostwald ripening to
incorporate the effects of external material flux.
I consider an assembly of aggregates undergoing competitive growth with a sustained
overall volume growth, due to a material flux into the system. The discussion is
based on our paper Vollmer et al. (2014). Each member of the assembly is described
by its radius Ri, i = 1 · · ·N , which obeys (see section 1.4)

Ṙi = Dσ

R2
i

(
k
Ri
〈R〉
− 1

)
, k = 1 + ξV

4πDσN . (3.1)

Here the diffusive accretion of material of the N aggregates is described by the term
Dσ and k characterises the strength of growth coming from the material flux, ξ,
into the assembly compared to a pure ripening scenario, where the total volume is
conserved. V is the sample volume and 〈R〉 = 1

N

∑
iRi the average radius of the

aggregate assembly.
The growth of aggregates is coupled by the occurrence of the zeroth and first moment
of their size distribution in the equation of motion eq. (3.1), i.e., by the number of
aggregates N and the average radius 〈R〉. Since aggregates can evaporate/dissolve
the number of aggregates is not constant in general. There are some limits where an
analytic treatment is possible (see section 4.2 for the large k limit and section 1.3
for k = 1). For all other cases one has to rely on the numerical integration of the
eq. (3.1).
The first part of this chapter is concerned with the nondimensionalisation of eq. (3.1),
and the second part with the initial distributions, whose evolution I have investigated.
In the final part I describe the integration scheme adopted to follow the aggregate
size distribution of such an assembly in time.
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3 Numerical methods

3.1 Dimensionless units

3.1.1 Time and length scales

In the following I concentrate on the case of a non-vanishing and constant driving
ξ. The case of Ostwald ripening, where ξ = 0, will emerge as a limiting case to be
discussed later. I consider a setting, where the total volume V of the aggregates
changes linearly in time. So it is straight forward to measure the time in terms of
the total volume of the aggregate assembly. The volume change is characterised by
the change in aggregate volume fraction ξ so that

dV
dt = Vξ . (3.2)

Let V (t = 0) = V0, then the integration of equation 3.2 leads to

V (t) = V0 + Vξt . (3.3)

The total volume will be measured with respect to the initial volume V0. A time
scale t0 for measuring time is defined as the time until the initial volume has doubled
(see fig. 3.1):

2V0 = V (t0) = V0 + Vξt0 ⇒ V0 = Vξt0 (3.4)

With the definition of k = 1 + ξV
4πDσN the time scale t0 is expressed in terms of k0

and N0:
t0 = V0

Vξ
= V0

4πDσN0(k0 − 1) (3.5)

Note that t0 is negative for a decreasing overall volume (ξ < 0). So volume and time
scales are related like:

V (t)
V0

= V0 + Vξt
V0

= 1 + t

t0
⇒ t

t0
= V (t)

V0
− 1 . (3.6)

Since time is measured in terms of the overall volume, this also translates a time
derivative into a volume derivative. The time derivative of a quantity X with respect
to the rescaled time t/t0 is:

dX
dt t0 = dX

dV
dV
dt t0 = dX

dV V0 or dX
dt = dX

dV ·
V0
t0

3.5= dX
dV 4πDσN0(k0 − 1)

(3.7)
where the derivative of eq. (3.6) (dV

dt = V0
t0
) is used. When time is measured in terms

of the overall volume, eq. (3.6), the time scale t0 depends on the initial value of k.
For comparing the evolution of aggregate assemblies with different k0, it is useful to
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Figure 3.1: Sketch for the definition of the time scale t0 in the cases of ξ > 0 in red and
ξ < 0 in blue. The dashed line describes an extrapolation of the volume of the aggregate
assembly into the past to a total volume of 2V0.

define a dimensionless time τ which does not depend on k0. With eq. (3.5) I get

τ = t

(k0 − 1)t0
= t · 4πDσN0

V0
(3.8)

The length scale L is derived from the initial volume V0 as the volume averaged
initial radii of the aggregates:

V0 = 4π
3 N0〈R(t = 0)3〉 ⇒ L := 〈R(t = 0)3〉1/3 =

( 3
4π

V0
N0

)1/3
(3.9)

Moreover, the dimensionless ramp rate ξ is

ξ = ξV
4πDσ such that k = 1 + ξ

N
. (3.10)

3.1.2 Dimensionless equation

To write eq. (3.1) in dimensionless units

xi = Ri
L

and τ = t

(k0 − 1)t0
(3.11)
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3 Numerical methods

are chosen as the dimensionless radius xi of aggregate i and time τ . Inserting this
into eq. (3.1) and using the definition of t0 in eq. (3.5), leads to

dxi
dτ = dRi

dt
(k0 − 1)t0

L
= Dσ

x2
iL

2
(k0 − 1)t0

L

(
k
xi
〈x〉
− 1

)
= 1

3x2
i

(
k
xi
〈x〉
− 1

) 1
L3

3V0
4πN0︸ ︷︷ ︸
L3

. (3.12)

For the cube of the aggregate radius Qi = x3
i we thus find the evolution equation

dQi
dτ := dx3

i

dτ = k
xi
〈x〉
− 1 . (3.13)

3.2 Initial distributions

In this part I describe the initial distributions used for the integration and show
how to compute them. The initial distributions can be calculated analytically if
the inverse of the cumulative distribution function (CDF) of the desired probability
density function (PDF) is known. For other distributions the inverse has to be
calculated numerically or by interpolating a lockup table of the function. The CDF
C(R) of the corresponding PDF P (R) is obtained by integration

C(R) =
∫ R

Rmin

P (R)dR (3.14)

This is a monotonic function rising from C(R) = 0 for R ≤ Rmin to C(R) = 1 for
R ≥ Rmax. To get a list of N0 aggregate radii the CDF has to be discretised. This is
done by identifying C = (i− 1)/(N0 − 1) with i = 1 · · ·N0. Solving for R then leads
to the desired list of aggregate sizes which can be used as the initial distribution. For
the following distributions the equations for the calculation of the initial distribution
are given explicitly, because they are used throughout the thesis.

3.2.1 Uniform distribution

The uniform distribution of R ∈ [Rmin, Rmax] has the following PDF and CDF

P (R) = 1
Rmax −Rmin

, C(R) = R−Rmin
Rmax −Rmin

. (3.15)
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3.2 Initial distributions

The corresponding initial condition, obtained by inverting the descretised CDF, is

Ri = Rmin + (Rmax −Rmin) i− 1
N0 − 1 (3.16)

The resulting distributions are shown in fig. 3.2 for Rmin = 0.05 and Rmax = 7.92.
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Figure 3.2: Uniform initial distribution for Rmin = 0.05 and Rmax = 7.92. (a) CDF and
(b) PDF.

3.2.2 Bell-shaped distribution

A bell shaped distribution with R ∈ [0, 2R̄] is obtained from the hyperbolic cosine
function

P (R) = 1
2 tanh(R̄)

1
cosh2(R− R̄)

(3.17)

C(R) = 1
2

(
tanh(R− R̄)

tanh(R̄)
+ 1

)
. (3.18)

The corresponding initial distribution is then given by

Ri = R̄+ artanh
(

tanh(R̄)
(

2 i− 1
N0 − 1 − 1

))
(3.19)

In fig. 3.3 the resulting distributions are shown for R̄ = 4.84.

3.2.3 Bimodal distribution

The bimodal distribution is built in a similar way as the bell-shaped distribution.
Here I use the superposition of two inverse squared hyperbolic cosine functions for
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Figure 3.3: Bell-shaped initial distribution for R̄ = 4.84. (a) CDF and (b) PDF.
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Figure 3.4: Bimodal initial distribution for R1 = 3 and R2 = 7. (a) CDF and (b) PDF

the PDF for R ∈ [0, 2R2]

P (R) = 1
tanh(2R2−R1)+2 tanh(R2)+tanh(R1)

(
1

cosh2(R−R1)
+ 1

cosh2(R−R2)

)
(3.20)

C(R) = tanh(R−R1) + tanh(R−R2) + tanh(R1) + tanh(R2)
tanh(2R2 −R1) + 2 tanh(R2) + tanh(R1) . (3.21)

In fig. 3.4 the PDF and CDF are shown for R1 = 3 and R2 = 7.
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3.3 Integration scheme

3.3 Integration scheme

The integration of the N coupled ordinary differential equations (3.13) is done
numerically by a self written routine in C. Integrating the cubes, Qi, of the respective
radii according to eq. (3.13) avoids numerical instabilities for very small radii, which
would arise for the integration of eq. (3.12) due to a diverging dxi/dτ for zero radius.
The evaporation of aggregates is treated self-consistently, so that the overall volume
grows linearly in time. This is achieved by updating the volumes Qi via a predictor-
corrector scheme. The volume of the evaporated aggregates is recursively transferred
to the surviving aggregates, thus ensuring that the overall volume will grow linearly
in time. For the bookkeeping of the evaporating aggregates it is used that the order
of aggregate sizes will not change in time, if they are ordered according to their sizes.
This is an immediate consequence of k > 0 and the structure of eq. (3.13): Consider
two aggregates of different sizes with Qi > Qj then

d
dτ (Qi −Qj) = k

〈x〉
(xi − xj) > 0 . (3.22)

Hence, the difference in size will grow in time, which preserves the order among the
aggregates.
The integration scheme is depicted in fig. 3.5. Starting point of the integration of an
initial distribution (see section 3.2) is the total volume increment δV which translates
into a time increment δτ :

δV =
N∑
i=1

δx3
i

3.13= N(k − 1)δτ 3.10= ξδτ . (3.23)

Then k and 〈x〉 are calculated from the zeroth and first moment of the aggregate
size distribution and all aggregate volumes Qi are updated according to a discrete
version of eq. (3.13)

Qi(τ + δτ) = Qi(τ) +
(
k
xi
〈x〉
− 1

)
δτ . (3.24)

Now every aggregate is checked if it has evaporated during the integration step,
i.e. Qi(τ + δτ) ≤ 0. In this case these aggregates are taken out, the number of
aggregates is updated and the initial volume of the evaporated aggregates is added
to the initial volume increment δV . This volume will also be redistributed among
the surviving aggregates. This loop is repeated until no aggregate evaporates in
the proposed integration step. Aggregate radii and time are updated and the next
integration step is done, until the final overall volume is reached.
To minimize inaccuracies coming from the treatment of the evaporation and the
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initialize

calculate δV , eq. (3.23)

calculate k, eq. (3.1)

set trial {Qi(τ + δτ)}

all
Qi(τ + δτ) > 0

?

accept trial
update τ , {Ri := Q

1/3
i }

go on?

end

evaporation:
update δV , N

yes

no

no

yes

Figure 3.5: Integration scheme for the integration of an assembly of aggregates {Ri}. The
aggregate number N , the volume increment δV and k are adjusted self-consistently when
aggregates evaporate.
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redistribution of the volume, the integration step has to be small enough, that not
more than one aggregate will evaporate in each integration step. To guarantee that
and allowing the algorithm to perform at a sufficient speed, an adaptive time stepping
is implemented. To avoid the overhead of adaptive step size control, the time steps
are chosen equidistant on a logarithmic scale for an assembly with a growing overall
volume (k > 1). Thus a certain number of integration steps is needed to increase the
volume by one order of magnitude and allows the integration to run long enough to
study asymptotic behaviour. For a decreasing overall volume (k < 1) the time steps
are chosen to be constant, since the number of steps is limited anyway by Vend = 0.
The self-consistent treatment of the evaporation introduces a small error, because
the smallest aggregate is not followed exactly to zero size. Rather the remaining
volume in that integration step is redistributed among all other aggregates. In this
sense the integration does not follow exactly eq. (3.13). This error is small for a large
number of aggregates and a large k value. To be exact here, the smallest aggregate
has to be followed by adaptive integration steps to zero size. Then the number of
aggregates has to be decreased by one and the integration can be continued in the
same way until the next aggregate evaporates.
This would also be the way to treat the Ostwald ripening case, where V = const
and therefore ξ = 0. Here the integration scheme depicted in fig. 3.5 cannot be
followed because δV = 0. So the integration of the assembly has to be done from
one evaporating aggregate to another one and decreasing the number in between.
Choosing a fixed number of integration steps between to evaporation events will then
lead to a very similar efficient integration of the evolution of the assembly.
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4 Size Distributions
In the present chapter I investigate how the size distribution of an assembly evolves
when its overall volume grows in time. In chapter section 4.1 I present numerical
data for three different initial distributions. This discussion is based on the numerical
methods developed in chapter 3. In section 4.2 a theory is developed for the evolution
of the size distribution in the limit of large values of k. The theory is compared to
the evolution of the uniform initial size distribution. This part is based on our paper
Vollmer et al. (2014). So far the discussion focussed on the theoretical description of
the evolution of aggregate size distributions in the absence of gravity. In section 4.3 I
discuss the evolution of size distributions measured during continuously driven phase
separation in binary mixtures. In the experiments gravitational settling dominates
the evolution of the size distribution for droplets larger than Brownian particles.
Hence, a growth law for large droplets is established based on the collection of
smaller droplets by large droplets during gravitational settling. The resulting size
distribution matches with the distributions measured experimentally.

4.1 Ripening with overall volume growth: numerical results
In fig. 4.1 the evolution of the size distribution is shown for four different values of ξ,
which correspond to the initial values of k = 5, 10, 50 and 100. To explore the impact
of the shape of the initial condition, I show the evolution for three different initial
conditions: in fig. 4.1(a) the evolution for a bell-shaped initial distribution according
to eq. (3.18), in fig. 4.1(b) a bimodal distribution (eq. (3.21)) and in fig. 4.1(c) a
uniform initial distribution (eq. (3.15)). For all distributions the probability density
function (PDF) is shown as a function of the radius of the aggregates, normalized
by the mean value of the respective initial distribution. In each panel of fig. 4.1
there are four quadruples of functions, that show the time evolution for the four
different initial k values. The initial PDF is shown on the very left by a black
line. The three subsequent quadruples correspond to later times, when the overall
volume of the aggregate assembly has increased by a factor of 10, respectively so
that the right quadruples show the assemblies for an overall volume, that amounts
to 1000 times the initial volume. Depending on the shape of the distribution the
initial volumes of the corresponding assemblies are different: the initial volume for
the bell-shaped distribution is 1.103, for the bimodal distribution 1.586 and for the
uniform distribution 1.976, respectively. Since the volume of the distribution in
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Figure 4.1: Evolution of the PDF for a bell-shaped (a), a bimodal (b) and a uniform initial
condition (c). For better comparison the initial conditions (black lines) are chosen such, that
the mean value is one. The subsequent three quadruples of lines correspond to the PDF at
times, where the overall volume has increased by a factor of 10, respectively. The initial k
value is color coded as indicated by the legend.

fig. 4.1 is increased by a factor of 10 as time proceeds, the mean radius becomes larger
for the larger initial volume, if one compares the position of the different distributions.
All distributions in one quadruple are shown for the same overall volume of the
aggregate assembly, i.e. for the same dimensionless time in the simulations. At this
point we make five observations that will be further substantiated in the following
section.

• The width of the distribution decreases as time evolves, i.e. the distribution
become more and more monodisperse. This is best seen for the bell-shaped
distribution (fig. 4.1(a)), but one easily verifies this behaviour also for the other
distributions.

• At early time the distributions for k = 5 and 10 in fig. 4.1(c) develop a tail
toward the small aggregates, and they feature larger average aggregate sizes
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at late times. This is a hallmark of the evaporation of aggregates. The tail is
due to aggregates that shrink and evaporate when their radius approaches zero.
The larger average size is required to achieve the prescribed overall volume
with a smaller number of aggregates.

• The PDF for k = 50 and 100 look almost the same. Indeed this holds for the
uniform initial distribution in fig. 4.1(c) for all k & 50, where no aggregates
evaporate. The shape for the different initial k values for the bell-shaped and
the bimodal distributions differ not so much, because here a much smaller
fraction of aggregates evaporate as compared to fig. 4.1(c).

• From the inspection of the numerical data one verifies that for all k > 1 the
growth at late times proceeds at a fixed aggregate number. Subsequently,
evolution proceeds at a fixed value of k, and the difference in shape with respect
to the PDF for larger values of k does not evolve any longer.

• Typical features of the distributions are preserved for all times, e.g. the two
peaks of the bimodal distribution. We do not observe a relaxation to an
universal distribution.

The evolution of the size of individual aggregates and their evaporation is discussed
in section 4.2.2. In section 4.2.3 I address the time evolution of the size distributions.
To gain further insight in the evolution of the size distributions it is instructive
to show them as a function of the reduced radius R/〈R〉, see fig. 4.2. Here the
distributions are shown for three different times: the initial time (left), intermediate
time, where the overall volume has increased by a factor of 10 (middle) and for
late time, where the overall volume has increased by a factor of 100 (right). We
clearly see from fig. 4.2, that the distributions become narrower as time goes on, as
already observed in fig. 4.1. Note that the range of the radius axis has been rescaled
for better visibility in fig. 4.2. In contrast the universal asymptotic distribution of
the LSW theory which describes the evolution of an aggregate assembly for k = 1
(constant overall volume) stays the same (Lifshitz and Slyozov, 1961):

p

(
R

〈R〉

)
=

34 2−5/3 e
(
R
〈R〉

)2
exp

(
− 1.5

1.5−R/〈R〉

)
(
R
〈R〉 + 3

)7/3 (3
2 −

R
〈R〉

)11/3 for 0 ≤ R

〈R〉
≤ 3

2 . (4.1)

We already observed that the evolution of the distributions looks almost the same
for initial values of k & 50. For k � 1 the evolution equation, eq. (1.10), of the
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Figure 4.2: Evolution of the PDF for initial k values of (a) k = 5, (b) k = 10 and (c)
k = 50, respectively. The different shapes of the distributions are color coded: bell-shaped
(dashed green), bimodal (dotted blue) and uniform (solid red). The distributions are given
as a function of the reduced radius R/〈R〉. The left panels show the initial distribution.
The middle and right panels show the distributions at times where the overall volume has
increased by a factor of 10 and 100 respectively. In all panels the universal distribution of
LSW theory eq. (4.1) is provided as a solid black line. Beware, the different ranges of the
radius axis. The range is decreased by a factor of 4 between the respective plots.
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aggregate assembly is easily integrated:

Ṙ = Dσ

R2

(
k
R

〈R〉
− 1

)
(4.2)

Ṙ ≈ Dσ

R

k

〈R〉
for k � 1 (4.3)

d
dtR

2 = 2Dσk
〈R〉

= f(t) (4.4)

The time derivative of R2 in eq. (4.4) has to be only a function of time. If this time
dependent function is chosen to be the time derivative of 〈R2〉, then

R2 − 〈R2〉 = const (4.5)

is a constant of motion. This suggests to plot the size distributions as a function
of R2 − 〈R2〉. Indeed we see in fig. 4.3, that the size distributions for k = 50 and
100 collapse for all times including the initial distribution when they are given as a
function of R2 − 〈R2〉. For k = 5 and 10 there is a broadening of the distribution in
this coordinates. However, this is expected since we derived the constant of motion
in the limit of k � 1.
From eq. (4.3) it is easy to see why the distribution become narrower in the course
of time. The growth rate Ṙ is a monotonically decreasing function of the radius,
i.e the smaller aggregates grow faster than the larger ones. This exactly leads to
the narrowing of the size distribution. For the synthesis of monodisperse particles
this observation goes back to Reiss (1951). This mechanism is also discussed in
the context of diffusively growing cloud droplets (Wallace and Hobbs, 2006) and in
designing synthesis routs for monodisperse size distributions in material science (Yin
and Alivisatos, 2005; Radmilovic et al., 2011; Hoyt, 2011).
As a summary, we gained a qualitative understanding of the impact of k, that describes
the strength of an external material flux onto the aggregates of the assembly. We
observed ceasing of evaporation, size focussing and no relaxation to a universal size
distribution. In view of eq. (4.3) it is promising to gain insight of the dynamics from an
analytic treatment in the limit of large k-values. On the other hand there is also need
to understand the evolution of the size distribution for values of k ≈ 3 · · · 5, because
this is a typical range of experimental conditions in the synthesis of monodisperse
colloids (see fig. 1.5(c) and section 7.1).

4.2 Theory for large k values

In this section a quantitative understanding of the evolution of the size distribution
for large k is developed based on an analytic treatment of the equation of motion of
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Figure 4.3: Evolution of the PDF for initial k values of (a) k = 5, (b) k = 10, (c) k = 50
and (d) k = 100, respectively. The left panels show the evolution for the bell-shaped, the
middle for the bimodal and the right panels for the uniform initial distribution (black lines).
The coloured lines show the distributions for time increments, where the overall volume
is increased by a factor of 10 between subsequent lines. The distributions are shown as a
function of R2 − 〈R2〉 such that 〈R2

0〉 = 1.03 for the bell-shaped, 1.19 for the bimodal and
1.33 for the uniform distribution, respectively.
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the aggregate assembly which is derived in section 1.4

Ṙi = Dσ

R2
i

(
k
Ri
〈R〉
− 1

)
with k = 1 + ξV

4πDσN . (4.6)

Remarkably it is possible to describe also the dynamics at late times for values of
about k ≈ 5.
The discussion is based on our paper Vollmer et al. (2014). We will start this section
by a close look at the moments of the aggregate size distribution, followed by the
analysis of the evolution of the reduced radius R/〈R〉. Finally we describe the
evolution of the size distribution for the uniform initial distribution. The theory is
compared to the evolution of the uniform initial distribution.

4.2.1 Moments of the aggregate size distribution

To gain insight into the long-time behaviour of the evolution of an assembly of
aggregates it is instructive to discuss the time evolution of the cumulants of the size
distribution. Doing so we will assume that the number of aggregates, N , remains
constant in the evolution. This has been reported by Sugimoto (1992); Tokuyama and
Enomoto (1993); Clark et al. (2011) and we further discuss the change in aggregate
number in section 4.2.2.1.

4.2.1.1 The evolution of 〈R3〉

By averaging eq. (4.6) we gain the mean volume growth rate of the assembly

d
dt〈R

3〉 = 3Dσ(k − 1) (4.7)

that is indeed constant for a constant k value. Integration leads to〈
R3
〉

= 3V
4πN = 3σD (k − 1) (t− t0) , (4.8)

where t0 denotes the time, when the initial volume has doubled.

4.2.1.2 The average aggregate radius 〈R〉

For a constant number of particles the time derivative of the average aggregate radius

〈R〉 = 1
N

∑
i

Ri ,
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Figure 4.4: Evolution of 〈R〉2 d
dt 〈R〉 for different values of k, as indicated in the legend.

When, for k & 5 the average aggregate volume has increased by a factor of two (i.e. t = 2t0)
one may safely assume that 〈R〉2 d

dt 〈R〉 = σD (k − 1) as predicted by eq. (4.9). The inset
shows the mismatch of the numerical data and the improved prediction, eq. (4.12a).

based on eq. (4.6) is given by

⇒ d
dt〈R〉 = 1

N

∑
i

Ṙi = 1
N

∑
i

σD

R2
i

[
k
Ri
〈R〉
− 1

]

= σD

〈R〉2
[
k
〈
R−1

〉
〈R〉 −

〈
R−2

〉
〈R〉2

]
.

Since the size distribution becomes monodisperse in the long-time limit the products〈
R−1〉 〈R〉 and 〈R−2〉 〈R〉2 eventually approaches one. In this limit the characteristic
aggregate volume, (4π/3) 〈R〉3, follows exactly the same law, eq. (4.8), as the growth
of the average aggregate volume (4π/3)

〈
R3〉,

〈R〉2 d
dt〈R〉 = σD (k − 1) for large t . (4.9)

This is demonstrated in fig. 4.4 by showing that the ratio 〈R〉2 d
dt〈R〉/[σD (k − 1)]

settles to one after some initial transient.
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4.2.1.3 Deviation of 〈R〉3 from
〈
R3〉

Equations (4.8) and (4.9) state that in the long run the expectation values 〈R〉3 from〈
R3〉 acquire the same slope as functions of time. In order to also gain insight into
the difference of the two functions, we first consider the expectation value

〈
R4〉.

We use R = 〈R〉+ (R− 〈R〉) and the forth power of this expression to observe that〈
R4
〉
−
〈
R2
〉2

= −
(〈
R2
〉

+ 〈R〉2
) 〈

(R− 〈R〉)2
〉

+ 6 〈R〉2
〈

(R− 〈R〉)2
〉

+ 4 〈R〉
〈

(R− 〈R〉)3
〉

+
〈

(R− 〈R〉)4
〉

' 4 〈R〉2
〈

(R− 〈R〉)2
〉
. (4.10)

Here we neglected the cubic term 4 〈R〉
〈

(R− 〈R〉)3
〉
as well as the quartic terms〈

(R− 〈R〉)4
〉
and

〈
(R− 〈R〉)2

〉2
. These expectation values are sub-dominant con-

tributions for a sharp distribution, where (R − 〈R〉) � R for the vast majority of
aggregates. (Asymptotically, they are smaller by a factor of order 〈R〉−2.)
The result, eq. (4.10) provides an important insight into the leading order contribution
to
〈
R3〉− 〈R〉3, 〈

R3
〉

=
〈

[〈R〉+ (R− 〈R〉)]3
〉

' 〈R〉3 + 3〈R〉
〈

(R− 〈R〉)2
〉

' 〈R〉3 + 3
4 〈R〉

〈(
R2 −

〈
R2
〉)2

〉
where we used eq. (4.10) in the last step. Rearranging the equation we find〈

R3
〉
− 〈R〉3 = 3Ω2

4 〈R〉 (4.11a)

with Ω2 =
〈(
R2 −

〈
R2
〉)2

〉
. (4.11b)

The inset of fig. 4.4 shows that for t� t0 the leading order correction to eq. (4.9)
decays like t−4/3. This amounts to the time dependence of the derivative of 〈R〉−1 ∼
t−1/3. In view of eq. (4.11a) this suggests that Ω2 approaches a constant value to a
very good approximation.
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Making use of this finding the time derivative of eq. (4.11a) can be determined
straight-forwardly, yielding

〈R〉2 d
dt〈R〉 = σD (k − 1) + Ω2

4 〈R〉4 〈R〉
2 d

dt〈R〉

⇔ 〈R〉2 d
dt〈R〉 = σD (k − 1)

(
1− Ω2

4 〈R〉4
)−1

. (4.12a)

The thick dotted line in the main panel of fig. 4.4 shows the resulting prediction for
the leading order corrections to eq. (4.9) when one assumes that Ω2 never noticeably
deviates from its initial value

Ω2 = 1
5
R5

max −R5
min

Rmax −Rmin
−
(

1
3
R3

max −R3
min

Rmax −Rmin

)2

(4.12b)

determined for the uniform initial aggregate size distribution, eq. (3.15). For the
specified values Rmax = 3 and Rmin = 0.02 it takes the value Ω2 ' 7.19. This
parameter-free prediction lies right on top of the data for k = 100.

4.2.1.4 The variance of the distribution

Equations eq. (4.10) and eq. (4.11b) provide the variance of the aggregate size
distribution 〈

R2
〉
− 〈R〉2 ' Ω2

4 〈R〉2 . (4.13)

Remarkably, the standard deviation decays like 〈R〉−1. Based on the approximation
that the aggregate size distribution amounts to a Gaussian at all times this results has
previously been obtained by Clark et al. (2011). However, in contrast to eq. (4.13) they
have predicted a decay scaling like for the variance 〈R〉−2+2/(k−1). In section 4.2.3.2
we will show that this discrepancy arises from the fact that Ω2 has a very slight time
dependence: it increases like 〈R〉1/(k−1). For large k this correction is negligible such
that it was not captures by the present analysis.
The central results of this section are eqs. (4.9) and (4.12a). They express that one
can accurately integrate the average radius 〈R〉 without need to refer to the evolution
of the individual aggregates: the average 〈R〉 need not be calculated self-consistently
as an average over the aggregates, but it has its own evolution equation, eq. (4.12a).
The solution of this equation explicitly solves the global constraint that couples
the set of equations 4.6. This is remarkable because it allows us to reduce the N
dimensional system of non-linear coupled equations (4.6) for the aggregate radii, Ri
into N identical one-dimensional differential equations that only differ by their initial
conditions. Henceforth, we concentrate on this equation and suppress the index i.
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4.2.2 Reduced aggregate radius

In order to gain insight into the evolution of the aggregates we consider the reduced
aggregate radius ρ = R/〈R〉. Using eq. (4.6) the time derivative of ρ can be written
as

ρ̇ = d

dt

R

〈R〉
= Ṙ

〈R〉
− ρ

d
dt〈R〉
〈R〉

= σD

〈R〉 R2 [k ρ− 1]− ρ
d
dt〈R〉
〈R〉

= − σD

〈R〉3
ρ−2

[
〈R〉2 d

dt〈R〉
σD

ρ3 − k ρ+ 1
]

(4.14)

According to eq. (4.9) (or fig. 4.4) the factor 〈R〉2 d
dt〈R〉/(σD) approaches k− 1 after

a short initial transient. Consequently,

ρ̇ ' − σD

〈R〉3
(k − 1) ρ3 − k ρ+ 1

ρ2

= −σD (k − 1)
〈R〉3

(ρ− 1) (ρ− ρ−) (ρ− ρ+)
ρ2 (4.15a)

with

ρ±(k) = −1
2 ±

1
2

√
k + 3
k − 1 . (4.15b)

The right-hand side of eq. (4.15a) involves a cubic polynomial in ρ (fig. 4.5). For all
k > 1 it gives rise to three fixed points of the reduced radius: the average aggregate
radius ρ = 1, a non-trivial radius ρ+, and an nonphysical fixed point ρ− at negative
values of ρ. Discussing their positions and stability for different reduced temperature
ramp rates provides detailed insight into the dynamics.

For k = 1 we recover classical Ostwald ripening. The radius ρ+ diverges, and the
constraint on the overall aggregate volume gives rise to an asymptotic aggregate
size distribution where the largest aggregates are of radius ρmax = 3/2.

For 1 < k < 3/2 eq. (4.15a) has an unstable fixed point at ρ = 1, i.e. for R = 〈R〉.
Aggregates that are smaller than the average radius shrink and they evaporate
eventually when they reach the radius ρ = 0. Aggregates larger than ρ+ shrink,
too, until they reach the stable aggregate radius ρ+. On the other hand,
aggregates in the range of 1 < ρ < ρ+ grow at the expense of the shrinking
ones, also striving to reach the aggregate radius ρ+. When all aggregates are
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Figure 4.5: The cubic polynomial in the numerator of eq. (4.15a). For all k > 1 its three
roots give rise to three fixed points of the reduced radius, ρ that are located at ρ = 1 and
ρ = ρ±. For k = 3/2 there is a bifurcation where the roots ρ = 1 and ρ+ change stability.

smaller than ρ+ and ρ+ � 3/2 we expect a similar LSW scaling theory to be
applicable as in the Lifshitz-Slyozov-Wagner case k = 1 (see Slezov (2009) for
some pioneering work discussing this situation). In the following we concentrate
here on the case k > 3/2, where the LSW theory does not apply.

At k = 3/2 the fixed points ρ = 1 and ρ+ cross, and they exchange their stability.
Beyond this value aggregate evaporation ceases when all remaining aggregates
have a size ρ > ρ+.

For k > 3/2 eq. (4.15a) has a stable fixed point for ρ = 1, and an unstable fixed
point at ρ+ which rapidly approaches k−1 for k & 5. After a brief initial
transient no aggregates evaporate any longer, and the distribution becomes
strongly peaked around the average aggregate radius 〈R〉. This is indeed what
we have observed in fig. 4.1.

4.2.2.1 Evaporation of aggregates

Aggregates that are smaller than 〈R〉 by a factor of ρ+ shrink and evaporate when
they reach zero size. For large values of k and reasonably smooth initial aggregate
densities this can only be a small fraction of aggregates. Consequently, n does
not change much when these aggregates disappear. To support this view we show
in fig. 4.6 that to an excellent approximation the number of aggregates bound to
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Figure 4.6: Evolution of the aggregate number. The inset shows the time evolution of the
number of aggregates for different values of k. All systems are initialised with N0 = 103

aggregates with a uniform size distribution, eq. (3.15). Eventually, they settle down to
a constant aggregate number Nf . The main panel compares the number of evaporated
aggregates N0 −Nf to the prediction that it should amount to

∫ ρ+
0 n(%, t = t0) d%.

evaporate amounts to the number of aggregates in the initial distribution that lie
below ρ+.
The fate of a general initial distribution for an initial value of k in the range
1 < k ≤ 3/2 can be discussed based on fig. 4.12. For 1 < k ≤ 3/2 the aggregates
with a radius smaller than average shrink, and eventually they evaporate. While
doing so the number density, n, decreases. According to eq. (1.9) this results in an
increase of k. This growth of k continues until all aggregates have a size ρ > ρ+,
i.e. their size lies above the the red line in fig. 4.12. At that time k takes a value
k & 3/2, and in the subsequent long-time limit, k is a constant of motion.
No aggregates should evaporate for Rmin/〈R〉 > ρ+(kc) ' k−1, i.e. for kc > 75 for
the initial conditions specified by eq. (3.15). In practice, the numerical simulations
show that the values is slightly smaller. System subjected to a temperature ramp
where k > 64, i.e. for ξ & 250πσDn evolves at a constant number density, n, of
aggregates, and hence at a constant value of k. When dealing with numerical data
we always indicate the initial value of k, and self-consistently take into account its
change in the plots. Our focus of attention will be the asymptotics of the shape of
the aggregate size distribution.
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4.2.2.2 Evolution of the reduced aggregate radius

For all k & 3/2 and sufficiently late times the evolution of the reduced aggregate
radius, ρ, can be determined explicitly by integrating eq. (4.14). Introducing the
function

a = 〈R〉3/ [3σD (k − 1)] (4.16)

and focusing on values ρ ' 1 we write

3 (k − 1) a ρ2 ρ̇ = −(k − 1) ȧ ρ3 + (k − 1)ρ+ (ρ− 1)

' −(k − 1) ρ
[
ȧ ρ2 − 1

]
⇔ 2

3 a−1/3 = d
dt
(
a2/3ρ2

)
. (4.17)

This equation allows us to evaluate the derivative

d
dtR

2 = [3σD (k − 1)]2/3 d
dt
(
a2/3 ρ2

)
= 2σD (k − 1)

〈R〉
(4.18a)

which agrees with the time derivative of
〈
R2〉 up to a tiny correction

d
dt
〈
R2
〉

=
〈

2R Ṙ
〉

= 2σD (k − 1)
〈R〉

[
1 + 1− 〈R〉

〈
R−1〉

k − 1

]
. (4.18b)

Altogether, eqs. (4.18a) and (4.18b) imply that

d
dt
(
R2 −

〈
R2
〉)

= 0 . (4.19)

There can be no merely time-dependent function appearing on the right-hand side of
this equation because the expectation value

〈
R2 −

〈
R2〉〉 must vanish at any time.

The result, eq. (4.19), states that at late times aggregates always grow in such a way
that the difference, R2 − 〈R〉2, is preserved. This has immediate implications on the
aggregate size distribution which will be discussed in the next section.
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4.2 Theory for large k values

4.2.3 Evolution of the aggregate size distribution
According to eq. (3.22) the order of the aggregate radii is preserved by the dynamics:
when aggregate i is smaller than aggregate j initially, this holds also at all later times.
Based on this observation and the explicit integration of the evolution equation of the
aggregate radius, eq. (4.19) one can immediately derive the aggregate size distribution.
This is most easily done based on the cumulative aggregate size distribution function
(CDF), introduced in section 3.2.

4.2.3.1 Initial distribution, and its evolution based on eq. (4.19)

For convenience of the discussion of the asymptotic shape of the CDF, we immediately
remove the aggregates from the initial distribution that will evaporate. According
to the arguments underpinned by fig. 4.6 this amounts to the aggregates smaller
than Rc = 〈R0〉 ρ+(k), where 〈R0〉 = (Rmax +Rmin)/2 = 1.51 is the average radius
with respect to the initial aggregate size distribution eq. (3.15). When no aggregates
evaporate we set Rc = Rmin. With this adaption, the CDF characterising the initial
distribution, C(R0), takes the form

C(R0) =


0 for R < Rc ,

R−Rc
Rmax−Rc for Rc < R < Rmax ,

1 for Rmax < R .

(4.20)

To avoid the involved notation required to explicitly distinguish the different branches
of the function, we henceforth only specify its non-trivial branch, and keep in mind
that the function should be set to zero when the expression drops below zero, and
set to one when it rises beyond one.
In order to apply eq. (4.19) it is convenient to rewrite eq. (4.20) as a function of

x = R2 −
〈
R2
〉

(4.21)

In that case the non-trivial dependence for Rc < R < Rmax takes the form of a
square-root dependence

C(x) =
[
x+

〈
R2

0
〉]1/2 −Rc

Rmax −Rc
. (4.22)

The initial condition C(x) of the CDF, provided as a function of x, is shown by solid
black lines in fig. 4.7.
To determine the time dependence of the CDF we note that according to eq. (4.19)
the value of x is preserved during the evolution. Consequently, the CDF should not
change in time when it is plotted as a function of x.
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Figure 4.7: The four panels show the CDF of the aggregates for (a) k = 100, (b) k = 50,
(c) k = 10, and (d) k = 5, respectively. The distributions are shown as a function of
x = R2 −

〈
R2〉 as suggested in eq. (4.21). The initial conditions are highlighted by thick

black lines. The coloured lines show the time evolution for the respective initial k value.
This is the same data as in fig. 4.3(right panels) but shown as a CDF.

This description of the CDF properly captures main feature of its time evolution:
we observed in fig. 4.3 that the CDFs tend to preserve their form when plotted as a
function of R2 −

〈
R2〉. For all k & 50 this provides an accurate description of the

numerical data. On the other hand, for decreasing k the tails of the distributions
towards the smaller aggregate sizes tend to become less steep, and in addition there
is a noticeable broadening of the distributions in the course of time. These deviations
arise from the fact that for ρ ' 1 we systematically underestimates the slope of ρ̇
due to suppressing the term (ρ− 1)/(k − 1) on the right hand side of eq. (4.17).
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4.2 Theory for large k values

4.2.3.2 Accounting for broadening and shape changes

For late times, where eq. (4.9) applies, we can gain insight into the broadening of
the distribution by integrating eq. (4.15) rather than eq. (4.17).
We use eq. (4.16) to write eq. (4.15a) in the form

ρ̇ = − 1
3 a

(ρ− 1) (ρ− ρ−) (ρ− ρ+)
ρ2 (4.23)

and introduce a function g(ρ) that obeys the differential equation

dg
dρ = ρ2 g

(ρ− 1) (ρ− ρ−) (ρ− ρ+) . (4.24)

Combining eqs. (4.23) and (4.24) allows us to rephrase the evolution of ρ in the form

ġ

g
= g−1 dg

dρ ρ̇ = −1
3 a = − ȧ

3 a , (4.25)

where we used in the last step that ȧ = 1 in the long-time asymptotics considered
here. Equation 4.25 implies that

d
dt
(
g a1/3

)
= 0 . (4.26)

In order to interpret this finding we have to find the function g. The differential
equation eq. (4.24) has solutions of the form

g = C (ρ− 1)α1 (ρ+ 1 + ρ+)α− (ρ− ρ+)α+ , (4.27a)

where the constant number C represents the integration constant. Inserting eq. (4.27a)
into eq. (4.24) provides a linear set of equations for the exponents (α1, α−, α+) that
is solved by

α1 = 1
(2 + ρ+) (2 + ρ−) = k − 1

2 k − 3 , (4.27b)

α− = ρ2
−

(2 + ρ+) (1 + 2ρ+) '
1
2 −

1
4k + 5

8k2 − . . . , (4.27c)

α+ = ρ2
+

(2 + ρ−) (1 + 2ρ−) ' −
1
k2 + . . . . (4.27d)

Equation 4.26 together with the definition of a, eq. (4.16), entails that the cumulative
distribution function is a function of 〈R〉 g. Moreover, by comparison to fig. 4.8
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Figure 4.8: The four panels show the CDF of the aggregates for (a) k = 100, (b) k = 50, (c)
k = 10, and (d) k = 5, respectively. The insets show the CDF as a function of x = R2−

〈
R2〉

as suggested in eq. (4.21), and the main panels the dependence on x̃ which has been defined
in eq. (4.29). The initial conditions are highlighted by thick black lines. The coloured lines
show the time evolution for the respective initial k value. As a function of x̃ they approach
an asymptotic distribution ("final").

one finds that in leading order of the long-time asymptotics, where
〈
R2〉 = 〈R〉2

(cf. eq. (4.13)), the cumulative distribution function must depend on R2 − 〈R〉2 =
〈R〉2 (ρ2 − 1). This dependence can be faithfully recovered from (〈R〉 g)1/α1 by
observing that α−1

1 = 2− (k − 1)−1. Moreover, making use of α1 + α+ + α− = 1 one
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4.2 Theory for large k values

easily shows that α−/α1 = 1− (k − 1)−1 − α+/α1. These relations provide

(〈R〉 g)α
−1
1 = 〈R〉2−(k−1)−1 (ρ2 − 1)

(
1 + ρ+

ρ+ 1

)
(ρ+ 1 + ρ+)−(k−1)−1

(
ρ− ρ+

ρ+ 1 + ρ+

)α+/α1

(4.28a)

' 〈R〉−(k−1)−1 (
R2 − 〈R〉2

) [
1 +O

(
(k − 1)−1

)]
. (4.28b)

In line with our interpretation of the data shown in the insets of fig. 4.8 equa-
tion eq. (4.28b) predicts a sustained broadening of the distribution via the factor
〈R〉−1/(k−1) that leads to increasingly pronounced effects for smaller values of k.
Moreover, for not too large values of k the higher-order corrections specified by the
last three factors in eq. (4.28a) affect the relation between R2 −

〈
R2〉 and its initial

value R2
0−

〈
R2

0
〉
such that the shape of the distribution need not longer be preserved.

The slowly expanding variable

x̃ =
(〈R0〉
〈R〉

)(k−1)−1 (
R2 −

〈
R2
〉)

(4.29)

accounts for the sustained broadening of the CDF via the factor 〈R〉−(k−1)−1 , and
at early times it appropriately fixes the mean position of the CDF, as observed in
eq. (4.21).
Except for the early times for the cases k ≤ 10 the cumulative distribution function
eq. (4.22) as a function of the argument x̃ provides an accurate description of
distributions at all times. This is demonstrated by the data collapse shown in the
main panels of fig. 4.8. In particular, x̃ faithfully accounts for the broadening of
the distribution that was severely underestimated previously. Moreover, the factors
in eq. (4.28a) that have been suppressed in the choice eq. (4.29) account for the
change of the shape of the distribution: the dashed black lines show the shape of the
distribution that results when these factors are accounted for.

4.2.3.3 Scaling of the centred moments of the size distribution

The observation that the aggregate size distribution is invariant when plotted as
a function of x̃ has immediate consequences for the centred moments of the size
distribution function. First of all it implies that 〈x̃n〉 is invariant in time such that

Ωn :=
〈(
R2 −

〈
R2
〉)n〉

∼
( 〈R〉
〈R0〉

)n/(k−1)
(4.30)
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For small k the factor 〈R〉2/(k−1) provides a small, but noticeable growth of Ω2 that
is reflected in the broadening of the distributions shown in the insets of fig. 4.8.
In order to calculate the centred moments we note that

R− 〈R〉 =
(
R2 −

〈
R2〉)− (R− 〈R〉)2 +

〈
(R− 〈R〉)2

〉
2〈R〉

= 1
2〈R〉

[(
R2 −

〈
R2
〉)

+O
(
〈R〉−2

)]
Consequently,

〈(R− 〈R〉)n〉 '
〈(

R2 −
〈
R2〉

2 〈R〉

)n〉
= Ωn

(2 〈R〉)n

In view of the asymptotic scaling, eq. (4.30), of Ωn this implies

〈(R− 〈R〉)n〉 ∼ 〈R〉−n+n/(k−1) . (4.31)

In particular, we hence obtain the result anticipated in section 4.2.1.4: the standard
deviation of the aggregate size distribution decays like

√
〈R2〉 − 〈R〉2 = Ω2

1/2

2 〈R〉 ∼ 〈R〉
−1+(k−1)−1

. (4.32)

4.3 Size distributions in the experiment

This section deals with the measured size distributions of droplets in binary phase
separation. What is the impact of droplets which are too large to be considered as
Brownian particles anymore and move under the influence of gravity? To disentangle
the contribution of droplet growth coming from a constant ramp rate ξ and the
effects of sedimentation, we performed jump experiments: droplets are grown with
a constant ramp rate, and when they are large enough to sediment the driving is
turned off, i.e. the ramp rate jumps to ξ = 0. The temperature is kept constant for
the remaining time of the measurement.
The measurements are conducted in the lower layer of IBE+W mixtures, with 0.26
mass fraction of IBE. The size distribution of the droplets are determined with the
setup and procedure described in section 2.5. The droplets are grown with a ramp
rate of ξ = 2.5× 10−5s−1 before the jump. The temperature ramps are calculated
for a starting temperature of 26°C. The experiments are done in collaboration with
Marcel Ernst. I use here the same data initially described in his Bachelor’s thesis
(Ernst, 2014), but base my analysis on a new interpretation of the time where the
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4.3 Size distributions in the experiment

size distribution becomes bimodal.
In the first part of the present section I describe the evolution of the measured size
distribution. Subsequently I address the impact of sedimentation on the evolution
of the size distribution for vanishing ramp rate. Finally the experimental data is
compared to the model.

4.3.1 Experimental observations

In fig. 4.9(a) the time evolution of the size distribution is shown for a measurement
where the ramp rate jumps to ξ = 0 after 2000 s, as indicated by the vertical red
line. After a short offset more and more droplets become visible. They grow in
size and their distribution becomes broader. After the jump the number of large
droplets decreases and the distribution becomes smaller again. In the end a small
amount of droplets is left with a radius of about 10µm. To gain insight into this
evolution the number density per radius n(r, t) is given for equidistant times before
(fig. 4.9(b)) and after (fig. 4.9(c)) the jump. The given size distributions in fig. 4.9(b)
and fig. 4.9(c) correspond to the temporal average over three time bins in fig. 4.9(a).
Before the jump a peak at around 10µm develops, it grows and shifts slightly to the
right. This shift is due to the growth of the droplets in the assembly. However, also
the number density1 n(t) increases as the peak develops. In the previous section we
have seen that the number density of a growing assembly should be constant for
large values of k and that is decays for small values. The maximum value n(t) in
fig. 4.11 corresponds to a number density n = 1012m−3. Together with the material
constants for 27°C, that are provided in the appendix, this amounts to a value
of k = 1.5 × 106. Hence, we expect that the assembly evolves with a constant
number density. The radius of the smallest droplets in the size distributions is 5µm.
This amounts to the radius of the droplets, which are reliably detectable in the
measurement. Therefore, it is very likely that there are droplets with a smaller radius
and that they become visible in the size distributions only when their radius has
grown to a size larger than 5µm. Hence, as time goes on, more and more droplets are
considered in the size distribution and the number of droplets seems to increase. To
understand this increase, although we expect a constant number density, we plot the
apparent size distribution, which corresponds to the size distributions measured in
the experiment, in fig. 4.9(d) by the dashed blue line. This apparent size distribution
can be interpreted as a product of the size distribution of the assembly of growing
droplets with a constant number density (red lines in fig. 4.9(d)), and a function
which describes the radius dependent probability of the droplet detection (green line
in fig. 4.9(d)).

1The number density n(t) =
∫
n(r, t)dr described the number of droplets per unit volume. It

corresponds to the area under the n(r, t) curves shown in fig. 4.9(b,c). Be aware of the logarithmic
density axis in those plots.
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Figure 4.9: (a) Experimental data of the time evolution of the size distribution. The
number density per radius is colour coded using a logarithmic scale and given in units of
µm−4. The red vertical line at 2000 s indicates the jump of the ramp rate to ξ = 0. Panels
(b) and (c) show the number density per radius for equidistant times (see legends where
time is provided in seconds) before and after the jump, respectively. Here time is colour
coded: from blue in the beginning to red at the time of the jump, and then in panel (c) back
from red to blue. (d) Sketch of the observed size distribution (dashed blue) as a product of
the assembly distribution (solid red) and the probability of droplet detection (solid green).
Pairs of red and blue lines show the actual (red) and observed (dashed blue) distributions at
different times, where the mean size moves to larger radii. The sketch motivates the rise in
apparent number density observed in the first three curves in panel (b).
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Let us now return to the interpretation of the data shown in fig. 4.9(b). Around
500 s before the jump (yellow line for 1547 s) a second peak at about 20µm starts
to develop. Shortly after the jump (the line at 2444 s) the droplet number density
decreases and eventually there only remain droplets for sizes around 10µm (blue
lines in fig. 4.9(c)).
I attribute the rise of the second peak to the appearance of droplets which are large
enough to be affected by gravity. They have considerable settling velocities and can
also grow by collecting smaller droplets in their way through the sample. After the
jump both peaks of the bimodal size distribution decrease. The peak of the smaller
droplets decays, because they are collected by the large sedimenting droplets. The
peak of the large droplets decays, because they leave the measurement volume.
In conclusion, we can follow in fig. 4.9 the growth of an assembly of droplets.
However, a detailed comparison with the predictions from the theory for large k
values, section 4.2, is difficult, because the assembly can be tracked only over a short
range of radii, where the droplet motion is not yet affected by gravity. The optical
detection of droplets is bounded at the lower side at about 5µm, and the peak of
20µm is identified with the effects of sedimenting droplets. Hence, I investigate in
the following the evolution of the size distribution, where the droplets settle in the
gravitational field and grow by collection of smaller droplets.

4.3.2 Growth law for sedimenting droplets

When the droplets are large enough, i.e. when the motion induced by the density
difference between the bulk fluid and the droplet becomes larger than the Brownian
motion, they start to sediment. Since the Reynolds number, based on the settling
velocity and the diameter of the droplets, is much smaller than one, the droplets
move with the Stokes settling velocity. This velocity is the result of a force balance
between buoyancy and Stokes drag. According to Stokes’ formula the velocity of a
slowly settling droplet is (Taylor and Acrivos, 1964; Guyon et al., 2001)

u = κr2 with κ = 2
9
g∆ρ
µb

µd + µb

µd + 2
3µb

, (4.33)

where g is the gravitational acceleration, ∆ρ the density contrast, µb is the dynamic
viscosity of the bulk phase, and µd is the viscosity of the material in the droplets.
For rigid spheres one has µd � µb such that the latter factor in eq. (4.33) takes a
value of one.
With the sedimentation velocity u a growth law is obtained for large droplets growing
by collection of smaller droplets, while moving their way through the fluid. The
volume growth rate of a droplet is proportional to its geometrical cross section πr2

and the settling velocity κr2. Here the approximation is made, that the settling
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velocity of the smaller droplets is negligible. To a good approximation they are still
Brownian particles when they are collected by the larger droplets. The small droplets
which are in the path of the big droplet, are not taken into account individually but
are assumed to be present with a volume fraction φ0. Putting all parts together, the
volume growth rate of a large droplet growing by collecting smaller droplets is

4πr2 dr
dt = πr2 κr2φ0 ⇔ dr

dt = κr2φ0
4 . (4.34)

4.3.3 Evolution of the size distribution with sedimentation

To implement the sedimentation of droplets in the size distribution, n(r, t), the
droplet flux of sedimenting droplets is added to the continuity equation of the
size distribution. The loss of droplets due to sedimentation happens with a radius
dependent rate of κr2/L which is the ratio of the sedimentation speed and the system
size L. Adding the contribution of the sedimentation to the continuity equation,
eq. (1.7), leads to

∂n

∂t
= − ∂

∂r

(dr
dt n

)
− κr2

L
n . (4.35)

In this equation the term dr
dt in the brackets refers to the growth law of the droplets,

eq. (4.34). Together with the dimensionless units

x = r

L
and τ = t

T
= t κL (4.36)

I get the following dimensionless form of eq. (4.35) with ñ = nL4

∂ñ

∂τ
= −φ0

4
∂

∂x

(
x2ñ

)
− x2 ñ . (4.37)

for a constant volume fraction of small droplets φ0 eq. (4.37) can be solved by a
separation ansatz ñ = g(x)h(τ). This leads to

1
h

dh
dτ = −φ0

4g
d

dx(x2g)− x2 = C (4.38)

with a constant C. The time dependent function h(τ) is easily solved by

h(τ) = h0 exp(Cτ) . (4.39)

In order to solve the x dependent part I write g(x) = 1
x2 e

f(x), and get a differential
equation for f(x)

df
dx = − 4

φ0

(
1 + C

x2

)
(4.40)
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which is solved by
f(x) = −4x

φ0
+ 4C
φ0x

. (4.41)

Hence, the solution for the radius dependent part is

g(x) = g0
x2 exp

(
−4x
φ0

+ 4C
φ0x

)
(4.42)

⇒ ñ(x, τ) = ñ0
eCτ

x2 exp
[ 4
φ0

(
C

x
− x

)]
(4.43)

To determine the integration constants ñ0 and C the total number density ñ(τ) is
determined

ñ(τ) =
∫ ∞
xmin

ñ(x, τ)dx = ñ0e
Cτ
∫ ∞
xmin

1
x2 exp

[ 4
φ0

(
C

x
− x

)]
dx . (4.44)

For xmin > 0 the integral has a finite value. Solving eq. (4.44) for the term ñ0 e
Cτ

and substituting it in eq. (4.43) leads to

⇒ ñ(x, τ) = ñ(τ)
x2 exp

[ 4
φ0

(
C

x
− x

)] (∫ ∞
xmin

1
x2 exp

[ 4
φ0

(
C

x
− x

)]
dx
)−1

.

(4.45)
With eq. (4.36) the solution can also be written in a non-dimensionless form with
a = −κLC and rn =

(∫∞
rmin

1
r2 exp

(
− 4r
φ0L
− 4a

φ0κr

)
dx
)−1

n(r, t) = n(t) rn
r2 exp

(
− 4r
φ0L

− 4a
φ0κr

)
(4.46)

n(t) = n0e
−at (4.47)

where n0 is the total number density for t = 0.

4.3.4 Comparison with theory

In this section I compare the measured size distributions (fig. 4.9) to the solution
for the number density n(r, t) in eq. (4.46). On the one hand eq. (4.46) predicts a
collapse of the distributions for different times, when they are rescaled with r2/n(t).
Indeed the size distribution collapse, see fig. 4.10(c)–(d). The red and orange curves
lie on top of each other. They correspond to distributions at times where the
distribution is bimodal and large sedimenting droplets are present. Distinct from
that population, also the blue and greenish curves collapse and form the peak of the
Brownian particles.
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Figure 4.10: Evolution of the number density n(r, t) as a function of radius (a) before and
(b) after the jump, respectively, and rescaled number density according to eq. (4.46) (c) before
and (d) after the jump, respectively. The time is indicated in the legend, it changes from
blue to red at the jump back to blue. The solid black line shows the decaying exponential
function exp(−4r/7.7µm)m that is obtained by a fit of the data in the intermediate part
(red and yellow curves) for radii larger than rp ≈ 20µm.

On the other hand the solution for the number density n(r, t), eq. (4.46), depends on
several parameters: the decay rate a for the number density n(t), the length scale
of the system L, the volume fraction of collected droplets φ0 and the normalization
constant rn. The Stokes’ settling parameter κ is a function of temperature (see
appendix). In the following I extract all these parameters from the measurement and
show that they have reasonable values.
I start with determining the decay rate a of the number density n(t) according to
eq. (4.47). In fig. 4.11 the number density is shown for the measurement shown in
fig. 4.9(a)–(c) together with an exponential fit in the decreasing part, where eq. (4.47)
applies. This gives a decay rate of a = 9× 10−4s−1, that amounts to a time of about
1000 s in which the droplets leave the measurement volume. This is a reasonable
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Figure 4.11: The decay of the total number density n(t) (blue symbols) is fitted with an
exponential function (black line) to determine the decay rate, a = 9 × 10−4s−1. The red
crosses represent the data points of the whole measurement.

time scale, because for a typical sedimentation speed of around 10−5ms−1 droplets
can move in that time a distance of about 1 cm, which is the height of the fluid layer.
As the next parameter I determine the length scale L. The number density n(r, t),
eq. (4.46), is described by a function with one maximum. That maximum corresponds
the second maximum of the bimodal size distributions in fig. 4.9(c). At the maximum
a relation between the position of the peak rp, the decay rate a and the length scale
L emerges, because at rp the derivative of the exponent in eq. (4.46) with respect to
r should vanish

0 = d
dr

( 4r
φ0L

+ 4a
φ0κr

)
r=rp

(4.48)

⇒ L =
κr2

p

a
. (4.49)

With rp ≈ 20µm and κ(27°C) = 4× 104m−1s−1 (see appendix) and a = 9× 10−4s−1

the length scale L is found to be L = κr2
p/a ≈ 1.8cm. As expected L takes a value

of the order of the sample height, i.e. 1 cm for the present experiment.
Finally I determine the volume fraction of collected droplets φ0. For large radii the
second term in the exponent of eq. (4.46) can be neglected and the number density
n(r, t) decreases exponentially with respect to the radius. Thus fitting the decay
length allows the determination of the parameter pair φ0 · L. The rescaled data in
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fig. 4.10 is fitted for r > rp with a decaying exponential function2. With φ0·L = 7.7µm
we estimate the volume fraction of collected droplets to be φ0 = 7.7µm/L ≈ 4×10−4.
To estimate if φ0 = 4 × 10−4 is a reasonable value I compare it to the volume
fraction of Brownian particles in order to calculate the collection efficiency ε, for
collisions of large droplets with smaller ones. The overall volume fraction in the
present experiment is about φtot ≈ 1 × 10−2 · · · 3 × 10−2. From the two peaks in
the size distribution (fig. 4.10) at about 10µm and 20µm we conclude that there
is a factor of 23 = 8 between the volume of Brownian particles and the volume of
droplets that sediment and collect the Brownian particles. This gives a collection
efficiency of ε = φ0/(φtot/8) ≈ 0.3. This value lies right in the range, 0.1 ≤ ε ≤ 1, of
collection efficiencies reported for other systems (Beard and Ochs, 1993).

4.4 Discussion and summary
Here I discuss the findings and insights of the present chapter. I start with the theory
for large k and conclude with the experimental observation of the size distribution.

4.4.1 Theory
In section section 4.2.2 we found three fixed points in the dynamics of the reduced
aggregate radius ρ = R/〈R〉. Figure 4.12, where the two fixed points for ρ > 0 are
shown, summarizes nicely the different parts of the dynamics with respect to k. A
distribution as a function of the reduced radius lies on a vertical line at the respective
k value. The arrows indicate the time derivative of the reduced radius and show how
the distributions will evolve.
For k = 1 the dynamics is governed by an unstable fixed point at ρ = 1. This is
the case of Ostwald ripening, where the number of aggregates decays like t−1 and a
universal distribution can be found, that has a time independent shape as a function
of the reduced radius, see section 1.3.
For k = 3/2 the two fixed points exchange their stability and for k > 3/2 the
dynamics is governed by the stable fixed point at ρ = 1. This leads to size focussing,
because larger aggregates grow slower that smaller ones. All aggregates with a radius
smaller than 〈R〉ρ+, i.e. all aggregates with sizes that lie below the unstable fixed
point, ρ+, will evaporate.
For Ostwald ripening the decease in the number of aggregate does not affect the
value of k, because ξ = 0 (see eq. (4.6)). This changes, if ξ > 0. Here a decrease of
the aggregate number N will lead to an increase of k. Thus whenever aggregates

2In principle the second term of the exponent in eq. (4.46), that is dominant for small radii has to
be taken into account, because the fit starts right behind the maximum, where the two terms are
equal. However, for an estimation of the parameter and in view of the scatter in the experimental
data the present approximation is well justified.
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Figure 4.12: Phase portrait of the evolution of the reduced aggregate radius ρ = R/〈R〉.
The green line denotes a fixed point at ρ = 1, and the red line the position of another fixed
point, ρ+. A thin straight black line has been added to show that ρ+ rapidly approaches
k−1 for k & 5.

evaporate the k value grows, until evaporation ceases and k saturates at a constant
value. Hence, the dynamics of Ostwald ripening is unstable to material flux.
Whenever the distribution evolves at a constant number of aggregates the shape of the
distribution is time invariant, when the distribution is given as a function of R2−〈R2〉
or for smaller k values with a higher order term according to eq. (4.29). Hence,
no universal distribution is approached, but the shape of the initial distribution is
preserved in that coordinates, except for changes at small radii due to evaporation
(see fig. 4.3).
To understand the appearance of size focussing for k > 1 it is instructive to look at the
radius dependent growth rates for different values of k. In fig. 4.13 the dimensionless
growth rates are shown as a function of the reduced radius. Positive values indicate
a growing aggregate and negative values a shrinking one. From analysis of eq. (4.6)
one finds that the growth rate is zero for ρ = 1/k and has a maximum at ρ = 2/k.
For a given distribution it is now easy to find a k value, such that no aggregates will
evaporate, i.e. where even the smallest aggregate lies beyond the maximum of the
growth rate: ρmin > 2/k. For this case the growth rate is a monotonically decreasing
function of the radius. This implies that small aggregates grow faster that larger
ones. Since the order of aggregate size is preserved, the distribution has to become
narrower: the width of the distribution must decrease.
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Figure 4.13: Dimensionless growth rate as a function of the reduced aggregate radius
(according to eq. (4.6)) for different values of k as indicated in the legend.

4.4.2 Experiments
Experimental observations of the size distribution of growing droplets in driven
binary phase separation reveal that they grow as a bell-shaped distribution when
they behave like Brownian particles. We observe a crossover to growth by collection.
Droplets, whose motion is already affected by buoyancy, collect smaller ones. In the
size distribution a second peak of the sedimenting droplets emerges, leading to a
bimodal distribution. Eventually the distribution decays and becomes mono-modal
again, leaving behind only a small amount of droplets, that behave like Brownian
particles. This behaviour can also be observed in experiments, where the jump to
zero driving happens at later times and the sedimentation of droplets goes along
with an increase of droplet volume fraction, due to the driving.
As a summary the presence of gravity leads to an enhanced growth of large droplets,
therefore introducing a mechanism of removing droplets from the assembly, see
section 1.5. On this level we understand the evolution of the size distribution for one
precipitation cycle. A sustained continuous driving will lead to repeated cycles and
poses the question how to understand the time scales of droplet growth based on the
findings of this chapter.
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5 Oscillation periods for constant ramp
rates

The previous chapters provided the basis to investigate the parameter dependence of
the oscillations occurring in continuously driven binary phase separation. I start with
reporting on measurements of the oscillation period ∆t for constant ramp rates ξ.
Subsequently, I investigate the influence of external flow. Based on these findings
and the results of chapter 4, I develop and expand a model for the oscillation period
(Lapp, 2011), and equip it with a more fundamental basis. The chapter culminates
in a parameter-free data collapse for all data onto the master curve predicted by the
model.

5.1 Experimental results for the oscillation period

5.1.1 Measuring the oscillation period

Fig. 5.1 compiles data of ∆t for a vast range of heating rates, 10−6s−1 < ξ < 10−3s−1,
and four different scenarios of phase separation in a binary mixture: a) the emergence
and sedimentation of water-rich droplets in an isobutoxyethanol-rich phase; b) the
emergence and rising of isobutoxyethanol-rich droplets in a water-rich phase; c) the
emergence and sedimentation of methanol-rich droplets in a hexane-rich phase; and
d) the emergence and rising of hexane-rich droplets in a methanol-rich phase.
Different data points for a given ramp rate are due to the drift of ∆t when pertinent
material constants change upon moving further away from the critical point. In the
appendix I provide the temperature dependence of the material constants, which
in turn translates to a time dependence when inverting the protocol T (t) of the
temperature ramp. For all data the height of the layer was h ≈ 1 cm. Measurements
for samples with varying heights between h = 0.25 cm and 5.5 cm for the lower layer
of IBE+W mixture showed that ∆t is hardly affected by h (Lapp, 2011). The data
points for the IBE+W mixture1 (left) are obtained by particle tracking (as described
in section 2.5), and those for M+H (right) refer to subsequent minima of turbidity

1The data points were obtained in collaboration with Tobias Lapp and also used in his Ph.D thesis
(Lapp, 2011). However, the representation of the data in fig. 5.1 is based on a new parametrization
of the ramp rates ξ for which I now use the scaling representation of the phase diagram (see
section 2.2).
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Figure 5.1: The oscillation period, ∆t, plotted vs. the ramp rate ξ. The four panels show
∆t for (a) water-rich droplets in an IBE-rich continuous phase, (b) IBE-rich droplets in a
water-rich continuous phase, (c) methanol-rich droplets in a hexane-rich continuous phase,
and (d) hexane-rich droplets in a methanol-rich continuous phase, respectively. The colours
and symbols encode different ranges of ramp rates ξ: open green circle, ξ < 6 × 10−6 s−1;
blue cross, 10−6 s−1 < ξ ≤ 1.3× 10−5 s−1; red plus, 1.3× 10−5 s−1 < ξ ≤ 3× 10−5 s−1; open
black square, 3× 10−5 s−1 < ξ ≤ 6× 10−5 s−1; green square, 6× 10−5 s−1 < ξ ≤ 3× 10−4 s−1;
and blue circle, 3× 10−4 s−1 < ξ.

in measurements described in section 2.4. I verified that both methods provide the
same results. However, the data obtained from droplet tracking tend to be more
accurate.

5.1.2 Influence of flow

Movies of the experiments (see supplementary online information of Rohloff et al.
(2015)) clearly show that there is considerable convection in the background flow when
the droplets sediment. The influence of this background flow in the bulk fluid has
first been addressed by Vollmer et al. (2007). They used a three-storied hourglass-like
cuvette as a sample cell (see inset of fig. 5.2) and measured the oscillation period in
each of the three compartments. The motion of the bulk fluid depends on the shape
and size of the cell. However, in spite of the considerable changes of the flow, they
found no influence on the oscillation period (see fig. 5.2).
Here I will report on measurements conducted in collaboration with Julian Vogel,
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Figure 5.2: Measurements of the oscillation period of a polystyrene cyclohexane mixture.
The different open symbols correspond to the oscillations in the lower (�), middle (�) and
upper (4) part displayed hour-glass shaped of the container (4 cm high). The boxes � show
control measurements in a rectangular cuvette. Reproduced from Vollmer et al. (2007).

where the flow is systematically influenced by stirring with a magnetic stirrer at
the bottom of the lower layer. To not destroy the oscillations completely we had
to use a small stirring bar: an almost spherical one of 2mm diameter and 2mm
length. As described in section 2.4 the oscillation period is extracted from turbidity
measurements of IBE+W mixtures. Figure 5.3 shows the oscillation periods for
stirring rates2 of ω = 1 to 3Hz together with with the reference data of undisturbed
oscillations, ω = 0Hz. Within experimental scatter the oscillation periods are not
affected by the stirring.
I conclude that the oscillation period is not influenced by the flow in accordance with
earlier experiments of Vollmer et al. (2007). In addition to this qualitative finding,
I add here the following observations from our experiments, where the strength of
the flow has been varied independently from other parameters by tuning the stirring
rate. In fig. 5.4 three space-time plots are shown for increasing stirring rate. For
the measurement of 1 Hz the oscillations are not visible in the first part of the
measurement: up to 120 min, there only is a slight turbidity while oscillations emerge
at later times. For the stirring rate of 5 Hz the lower layer is turbid throughout
the whole measurement, all oscillations are gone. However, the flow induced by
the stirring is not yet strong enough to influence the meniscus. Consequently, we
still observe oscillations in the upper layer. In the lower layer the constant driving
produces droplets, which are present throughout the whole measurement. Moreover,
the droplet volume is still transferred to the upper phase. Hence, the position

2Our present stirring device does not allow stirring rates smaller than 50 revolutions per minute,
i.e. 0.833 Hz.
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Figure 5.3: (a) Snapshot of sample during the experiment. At the bottom the 2mm large
stirring bar is visible. (b) Oscillation periods in the lower layer of an IBE+W mixtures for
different stirring rates. For all data a ramp rate ξpoly = 2.5× 10−5s−1 was used3. The dotted
line serves as guide to eye, and the inset show the same data points for the last 50min of the
measurement.

of the meniscus decreases in a response to the growth in height of the upper layer.
The flux of droplet volume from the lower to the upper layer happens here in a
steady fashion. This suggests that the stirring interferes with the mechanism, which
periodically clears up the sample and removes droplets from the lower layer, i.e. the
explosive droplet growth by collection of small droplets.
To estimate the magnitude of frequency of the stirring bar, at which the induced
flow disturbs the growth by collection, I compare two time scales. The first one is
the time scale of the large scale convection induced by the stirring: tc = lc/vc, where
lc ≈ 10−2m is the height of the fluid layer and vc ≈ ω · 10−3m the velocity at the
surface of the stirring bar with a perimeter of about 10−3m. For the second time
scale I consider the time in which a large droplet collects the small one: ts = Λ/vs.
It is calculated based on the settling velocity vs and a typical droplet distance Λ. For
a droplet with a radius of 20µm and a settling parameter κ = 4× 104m−1s−1 (see
appendix) eq. (4.33) gives a settling velocity of vs ≈ 10−5ms−1. A typical droplet
distance is inferred from the number density n: Λ = n−1/3. For n ≈ 1012m−3 (see
e.g. fig. 4.11) we obtain Λ = 10−4m. If the flow has the same direction as the
sedimentation speed, the distance of the two droplets decreases and they meet in

3The experiments in fig. 5.3 and fig. 5.4 were done with temperature ramps base on the polynomial
and the scaling representation of the phase diagram, respectively. The experiments have
approximately the same duration. This is achieved by choosing ξscaling/ξpoly = 2/2.5 = 0.8, see
fig. 2.4 where the value of 0.8 corresponds roughly to the averaged driving.
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Figure 5.4: Space-time plots for different stirring rates measured in IBE+W mixtures for
ξscaling = 2 × 10−5s−1: (a) 0Hz, (b) 1Hz, and (c) 5Hz. The bright vertical stripe at the
bottom is due to the stirring bar (cf. fig. 5.3(a)), that changes the average grey level at the
bottom 2mm of the pictures.

the time ts. If the direction of the flow is reversed, then the distance will increase.
The reversal of the bulk flow happens on the time scale of the convection tc. Thus,
for ts > tc the collection mechanism is disturbed by the external flow. Putting all
numbers together, leads to

ω >
lcvs

Λ10−3m ≈ 1Hz . (5.1)

This is the frequency at which the flow is expected to suppress the oscillations.
Remarkably, the oscillations are indeed suppressed for ω = 1Hz, but only for the first
100min (see fig. 5.4(b)). This is due to the temperature dependence of the settling
velocity. It increases when the temperature is moved away from the critical point,
and the mass density contrast of the droplets increases. Therefore, it is still possible
to observe oscillations for frequencies of ω = 3Hz for times t > 300min, where the
temperature has increased sufficiently (see fig. 5.3). To get a more accurate relation
between the stirring frequency and the time until the oscillations are suppressed,
particle image velocimetry (PIV) or particle tracking can be applied to characterise
the external flow. This investigation should ideally be done in a setup where one
superimposes the inherent background flow with a still better defined flow pattern as
it is yet possible with the stirring bar.
In summary, the flow destroys the oscillations, if it becomes too large. However,
whenever oscillations are present, their period is not influenced by the flow. This has
immediate consequences on the modelling for the oscillation period, which will be
developed in the following section.

5.2 Calculating the oscillation period for constant k values

In this section a model for the oscillation period is developed. It will be based on
the growth laws for the largest droplets of the size distribution.
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5.2.1 Evolution of the radius of the largest droplets

I start with general considerations motivating the setup of the model.

1. Spatial degrees of freedom need not be considered to describe the evolution of
the largest droplets. In the previous section 5.1.2 it was shown that neither
the naturally present convection nor an external flow (when not destroying
the oscillation), has an impact on the time scale of the oscillation period.
Furthermore, for the nonlinear reactions terms characterising phase separation
the convective mixing efficiently eliminates spatial inhomogeneities of the
droplet size distribution (Benczik and Vollmer, 2010, 2012). Indeed, based on
visual inspection of the accompanying movies, we estimate the mixing time
scale to be of the order of seconds. It is about three orders of magnitude smaller
than the period ∆t.

2. It is sufficient to consider the characteristic size of the largest droplets rather
than the full droplet size distribution. For diffusively growing droplets the
size distribution is sharply bounded towards large droplets. Consequently,
the largest droplets in the system have a well-defined size and there are
only few of these droplets (Slezov, 2009; Clark et al., 2011; Vollmer et al.,
2014). When buoyancy starts to effect their motion these large droplets collect
smaller droplets, grow rapidly, and eventually clear the system from droplets
by precipitation (Kostinski and Shaw, 2005).

3. I will show in the following that a quantitative description of ∆t can be
achieved when only considering droplet growth by diffusive accretion, that
relaxes supersaturation provided by the constant driving, ξ, and the collection
of small droplets by sedimenting large ones. The processes are illustrated in
fig. 5.5, and I will now discuss them in turn. For later reference I will also
revisit the predictions of a scenario where small droplets grow predominantly
by Ostwald ripening (Wilkinson, 2014).

5.2.1.1 Growth by accretion of material provided by the constant driving, ξ

The dynamics of large droplets crossing the meniscus (Aarts et al., 2005) and droplet
nucleation (Binder and Stauffer, 1976; Farjoun and Neu, 2011) provide microscopic
droplets in the fluid. Subsequently, the supersaturation in the bulk relaxes by
diffusion of the minority component onto the droplets. The diffusive accretion of
material on the droplets relaxes the supersaturation provided by the driving, ξ, which
thus induces droplet growth.
In the experiments the temperature ramp is adjusted in such a way that the volume
fraction of droplets grows linearly in time with a speed ξ (cf. section 2.3). In chapter 4
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Figure 5.5: Dominant growth mechanisms (insets) and the bottleneck in droplet growth
(main panel). As a function of droplet size r the growth speed ṙ of droplets shows a sharp
minimum at a size r∗. Smaller droplets grow by diffusion. The growth of larger droplets is
accelerated by sedimentation that promotes the collection of small droplets.

the growth of droplet assemblies under these conditions was investigated. It was
shown for large values of k, which are observed in our experiments (cf. section 4.3.1),
that the number density of droplets is preserved. Droplets of a characteristic radius r
and number density n occupy a volume fraction n 4πr3/3. When the droplet volume
fraction increases with speed ξ and the number density n is conserved, diffusive
growth provides a temporal change of the droplet radius

d
dt

4π n r3

3 = ξ ⇒ ṙ = ξ

4πn
1
r2 . (5.2)

Alternatively, this growth law can be obtained as large k approximation of the
diffusive growth law (see eq. (1.10))

Ṙ = σD

R2

(
k
R

〈R〉
− 1

)
, k = 1 + ξ

4πσDn . (5.3)

It was shown in section 4.3.1 that k takes values of the order to 106 under the
conditions considered here, and that R ' 〈R〉 in the late stages of competitive
droplet growth at large k. Hence, eq. (5.3) reduces to eq. (5.2).

5.2.1.2 Growth by Ostwald ripening

Droplet growth by classical Ostwald ripening is described by eq. (5.3) for k = 1
and the solutions approach an asymptotic scaling solution where 0 ≤ R/〈R〉 ≤ 3/2
(Lifshitz and Slyozov, 1961). Evaluating eq. (5.3) for k = 1 and large droplets with
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radius r yields
ṙ = δ

Dσ

r2 , (5.4)

where δ accounts for the (R/〈R〉 − 1) term in (5.3). Lifshitz and Slyozov (1961)
predicted that R/〈R〉 ≤ 3/2 such that δ ' 1/2 for the largest droplets in the system.
Wilkinson (2014) uses δ = 1, in accordance with observations at finite droplet volume
fractions (Marder, 1987). For very large volume fractions values up to δ ' 1.5
have been observed experimentally (Snyder et al., 2001), and δ ' 2 can be reached
when the diffusive collection of supersaturation becomes anisotropic due to flow
effects (Ratke and Host, 1991).
Upon introducing the definition (5.3) of k into eq. (5.2) it becomes apparent that the
diffusive growth of the largest droplets in the system follows the same ṙ ∼ Dσr−2

scaling irrespective of whether supersaturation is provided by the constant driving, ξ

ṙ = ξ

4πn
1
r2 = (k − 1) Dσ

r2 (constant driving) (5.5a)

or by evaporation of small droplets in Ostwald ripening,

ṙ = δ
Dσ

r2 (Ostwald). (5.5b)

The scenarios differ qualitatively in the evolution of the droplet number which remains
constant in the former case, such that also k takes a constant value, while it decays
like one over time for Ostwald ripening. However, as the growth of the largest droplets
is concerned, the growth laws, eqs. (5.5a) and (5.5b), only differ by the numerical
value of the constant factors k − 1 and δ, respectively. In section 4.3.1 it was shown
that k takes values of the order of 106 for the experiments discussed here. Hence
Ostwald ripening is expected not to be a relevant process. Remarkably, however,
a theoretical treatment of the parameter dependence of ∆t based on eq. (5.4), as
provided by Wilkinson (2014), will provide the same results as the present analysis,
except for quantitative differences arising from the vastly different numerical values
taken by δ and k. In the following I will only deal with the case of constant driving.
The analogous results for an experimental system where Ostwald ripening appears
to be important can be obtained by substituting (k − 1) by δ.

5.2.1.3 Growth by collection of smaller droplets

When the droplets become sufficiently large, they drift under the influence of buoyancy
forces as described in section 4.3.2. Large droplets collide with smaller ones and
collect their volume. The according growth law is derived in eq. (4.34). In the present
setting the overall volume fraction of droplets grows linearly in time φ = ξt. We
introduce the collection efficiency ε, that describes how much volume is effectively
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collected by the large droplets. Therefore we get from eq. (4.34) the collisional growth
rate

ṙ = εκξt

4 r2 . (5.6)

Observe that r refers to the radius of the largest droplets in the system — a minute
minority of droplets that accounts for only a small part of the droplet volume fraction.

5.2.1.4 The bottleneck of droplet growth

The diffusive growth mechanisms, eq. (5.5), work very well for small droplets due to
the factor r−2, and they becomes less and less efficient when r grows. In contrast,
growth by collecting small droplets, eq. (5.6), does not contribute to the growth as
long as all droplets are small, while it leads to runaway growth of the large droplets
when their motion is affected by buoyancy. Hence, I assert that the sum of the
dominant diffusive-growth contribution, eq. (5.5a), and the contribution accounting
for the collection of smaller droplets, eq. (5.6),

ṙ = (k − 1) σD
r2 + εκξt

4 r2 (5.7)

faithfully describes the growth of the largest droplets in the system. The growth law,
eq. (5.7), shows a bottleneck of growth at the bottleneck radius, r∗, where the droplet
growth speed, ṙ, takes its smallest value, ṙ(r∗, t∗) = (2/3) (r∗)−2 (see fig. 5.5),

r∗ = r(t∗) =
(4(k − 1)σD

εκ ξ t∗

)1/4
. (5.8)

The bottleneck is approached at the time t∗ required for droplets to grow from
zero radius to the radius r∗. Integrating eq. (5.5a) from r = 0 to r = r∗ yields
r∗3 = 3(k − 1)σDt∗. Together with eq. (5.8) this equation provides the following
expressions for the bottleneck time t∗ and the bottleneck radius r∗,

t∗ =
(

26

34
[(k − 1)Dσ]−1

(εκξ)3

)1/7

, r∗ =
(

12 [(k − 1)Dσ]2
εκξ

)1/7

. (5.9)

Henceforth, I measure time in units of t∗, droplet radii in units of r∗, and, for
conciseness of the notation, I denote the resulting dimensionless units still as (r, t).
In terms of these dimensionless variables eq. (5.7) takes the form

ṙ = 1
3 r2 + t r2

3 , (5.10)

such that the growth velocity ṙ(r, t) takes its minimum at (r, t) = (1, 1).
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5.2.2 Calculating the period ∆t

As long as buoyancy does not yet affect the motion of the largest droplets in the
system, the droplets grow diffusively by collecting supersaturation. In leading order
for small droplets one can then neglect the growth contribution tr2/3 in eq. (5.10).
For an initial droplet size r(t = 0) = 0 this entails

ṙ ' 1
3 r2 ⇒ rS(t) ' t1/3 , (5.11a)

where the index S in rS(t) stresses that the approximation applies as long as droplets
are small, rS . 1. As shown by the dotted line in fig. 5.6(a) this approximation
provides a good estimate for values t < 1/2.
Similarly, for large droplets the contribution (3r2)−1 to the growth is sub-dominant
in eq. (5.10) such that in leading order

ṙ ' r2 t

3 ⇒ rL(t) ' 6
∆t2 − t2 . (5.11b)

Here, the index L in rL(t) indicates that this solution applies when the droplets are
large, rL & 1. The growth law, eq. (5.11b), features a finite-time singularity when t
approaches ∆t. At the latest at this late time, the large droplets will rapidly fall out
of the measurement window, such that the system is reset to its initial state r ' 0.
On the one hand, the dash-dotted line in fig. 5.6(a) shows that eq. (5.11b) provides
a very good description of the numerical data for t & t∗ for the choice ∆t = 2.44.
On the other hand, the expression eq. (5.11b) can not be matched continuously to
eq. (5.11a) because for ∆t = 2.44 the latter expression produces smaller values for
r(t) for all t. Rather, a continuous and differentiable interpolation from eq. (5.11a)
to eq. (5.11b) requires to choose

r(t) '
{
t1/3 for t ≤ 1 ,
6 (7− t2)−1 for t ≥ 1 .

(5.12)

The resulting first order estimate for r(t) is shown by the dashed blue line in fig. 5.6(a).
It diverges at ∆t =

√
7 ' 2.646, thus overestimating the time ∆t required to reach

the finite-time singularity observed in the numerical data by about 8%. A more
accurate description of the numerical solution of eq. (5.10) is obtained by taking into
account the leading order corrections of eqs. (5.11a) and (5.11b). A refined estimate
for the droplet growth is obtained by using rS(t) to approximate the sub-leading
contribution to the growth of r3 by tr4 ' t7/3. The resulting solution of eq. (5.10)
becomes

d
dtr

3 ' 1 + t7/3 ⇒ rs(t) '
(
t+ 3

10 t10/3
)1/3

. (5.13a)
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Figure 5.6: Finite-time divergence of droplet growth. (a) Comparison of the numerical
solution of eq. (5.10) (grey squares) to the analytical approximations, eq. (5.12) (dashed blue
line) and eq. (5.14) (solid red line), respectively. The green dotted line shows the leading
order approximation for small droplets, eq. (5.11a), and the brown dash-dotted lines the
description of the divergence of the size of large droplets, eq. (5.11b), evaluated for ∆t = 2.44.
The analytical description of the droplet growth, (solid red line), is also shown in panel (b)
which shows how eq. (5.14) is obtained by matching the expressions eqs. (5.13a) and (5.13b)
for small and large droplets, respectively.

This expression provides an excellent fit to the numerical data for t . t∗, as shown
by the the dotted green line in of fig. 5.6(b). For the large droplets a more accurate
prediction is obtained by using rL(t) to approximate the (3r2)−1 term in eq. (5.10),

− d
dtr
−1 = t

3 + 1
3 r−4 ' t

3 + 1
3

(
∆t2 − t2

6

)4

⇒ rl(t,∆t) '
[

∆t2 − t2
6 (5.13b)

+(∆t− t)5

3 · 64

(
t4

9 + 5 t3 ∆t
9 + 23 t2 ∆t2

21 + 65 t∆t3
63 + 128 ∆t4

315

)]−1

.

When evaluated at ∆t = 2.467 the expressions eqs. (5.13a) and (5.13b) match
continuously and differentiable at the point (tm, rm) = (0.9304, 1.0526), [fig. 5.6(b)]

r(t) '
{
rs(t) for t ≤ tm = 0.9304 ,
rl(t,∆t = 2.4667) for t ≥ tm = 0.9304 .

(5.14)

The thick solid red lines in both panels of fig. 5.6 show the expression eq. (5.14) over
the full t-range. It provides an excellent description of the numerical solution of
eq. (5.10) that is shown by grey squares. In particular, the position of the predicted
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5 Oscillation periods for constant ramp rates

finite-time singularity, ∆t = 2.467, is only off by one percent from the numerically
obtained value, ∆t = 2.44.
In conclusion, the parameter dependence of the time scale, ∆t, for the growth from
vanishingly small to very large droplets is provided by the time, t∗, required to grow
to the bottleneck size, r∗. Based on eq. (5.9) and the fit of ∆t in eq. (5.11b) to match
the asymptotics of the numerical data shown in fig. 5.6, I find

∆t ' 2.44 t∗ ' 2.36
(

[kDσ]−1

(εκξ)3

)1/7

(5.15a)

' 3.39
(

n/ξ

(εκξ)3

)1/7
(5.15b)

where I inserted the definition 5.3 of k to perform the last step. Note that k � 1 for
our experiments (see section 4.3.1). A first hint that this prediction might be faithful
is obtained by observing that the parts of a period where we observe high and low
turbidity in fig. 2.6 are of comparable extent. This is consistent with the theoretical
prediction that the singularity arises at ∆t = 2.44 t∗. In the following section this
prediction will be compared to experimental data.

5.3 Comparison to experimental data

Here I compare the predicted dependence on the material parameters of the oscillation
period, eqs. (5.15a) and (5.15b), to the experimental data shown in section 5.1. Our
starting point is a data set where both the oscillation period and the number density,
n, is known. This part is followed by data, from turbidity measurements, where
the number density is not known. Finally the data of the stirring experiments are
compared to the prediction.

5.3.1 Master plots for droplet tracking data

For the comparison of the prediction for the oscillation period ∆t, eqs. (5.15a)
and (5.15b), with experimental data, I use here data where the time evolution of
the droplet density was followed by particle tracking such that both, ∆t and n, are
known from the experiment (see section 2.5). The data determining the temperature
dependence of κ, D and σ is provided in the appendix. Hence, the collection efficiency,
ε, remains as the only free parameter of the prediction, eqs. (5.15a) and (5.15b). In
fig. 5.7(a) the relation between ∆t, n, ξ and κ is plotted according to eq. (5.15b). The
theoretical curves show the prediction eq. (5.15b) for the constant values, ε = 0.1,
0.3, and 1, respectively. These values correspond to the middle and the respective
most extreme values observed for other systems (Beard and Ochs, 1993), where the
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Figure 5.7: Master plots for the lower layer of IBE+W, where period ∆t and the number
density n are known from particle tracking. All panels show the same data set for different
combinations of parameters. The symbols encode different ramp rates ξ as introduced in
fig. 5.1. (a) The oscillation periods ∆t collapse when plotted as a function of nκ−3ξ−4. The
solid lines represent the prediction, eq. (5.15b), where ε = 0.3 is used for the thick line and
the thinner lines above and below correspond to the choices ε = 0.1 and ε = 1, respectively.
(b) The data also collapse as a function of the reduced temperature θ when ∆t k1/7ξ3/7 is
plotted. As before the solid lines correspond to the different choices of the collection efficiency
ε. Panel (c) shows the dependence of k on the reduced temperature θ. The dashed line
represents a typical value k = 5.4 × 105. (d) Replacing the temperature dependence of k
with a typical value k = 5.4× 105 allows a data collapse and a prediction of the temperature
dependence of ∆t, even without referring to the number density n, eq. (5.16).
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5 Oscillation periods for constant ramp rates

collection efficiency ε was reported to take values in the range 0.1 ≤ ε ≤ 1. See
also section 4.3.4 where the collection efficiency for our system is estimated to be
ε ≈ 0.3. All data points lie in the narrow band around the prediction, well within
the uncertainty of ε. There only is a slight systematic mismatch of the slope. We
attribute this trend to a weak temperature dependence of ε. The mismatch arises
from a correlation of κ and ε.
The coefficients D, σ and κ in eq. (5.15a) are functions of material constants. They
show a strong temperature dependence that arises from the disappearance of the
interfacial tension and the mass density contrast at the critical temperature, Tc, of
the phase transition. This, in turn, entails the disappearance of σ and κ which are
proportional to the interfacial tension and the mass density contrast, respectively
(see appendix). Hence, eq. (5.15a) suggests that ∆t k1/7ξ3/7 should be a function of
the reduced temperature θ = |T − Tc|/Tc. The proposed data collapse as a function
of the reduced temperature is shown in fig. 5.7(b). Again the uncertainty in ε induces
a vertical displacement of the prediction on the logarithmic scale. The values for
k are shown in fig. 5.7(c), they are distributed over two orders of magnitude and
decrease for increasing reduced temperature θ.

5.3.2 Master plots for turbidity data
However, the period ∆t depends on k only with the power of 1/7 (see eq. (5.15a)).
This weak dependence will change the prediction of the period by a factor of about
1001/7 ≈ 2. When suppressing the temperature dependence of k in eq. (5.15a), i.e.
when replacing k by a typical value see fig. 5.7(d). From eq. (5.15a) we get

∆t = α(Dσκ3)−1/7ξ−3/7 with α = 2.36k−1/7ε−3/7 . (5.16)

Choosing ε = 0.3 and a typical value of k = 5.4 × 105 results in α = 0.6, which
is used for the prediction in fig. 5.7(d). The parameter α takes typical values for
each type of mixture and has to be determined by fitting, if the number density is
not available. In fig. 5.8 this has been done for the data points compiled in fig. 5.1.
We find a remarkable collapse, when ∆t ξ3/7 is plotted as a function of the reduced
temperature, and the resulting temperature dependence is faithfully described by the
master curves, eq. (5.16), for α = 0.6 (IBE+W) and α = 0.9 (M+H), respectively.

5.3.3 Influence of flow
As a last part of the comparison of the experimental data with the prediction I
plot the data set of the stirring measurements together with the master plot of the
lower layer of IBE+W (see fig. 5.8(b)). Also the data for the measurements of the
oscillation period with different stirring rates (fig. 5.3) collapse in a presentation
like fig. 5.8 and lie right on top of the data points for unstirred measurements, see
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Figure 5.8: Temperature dependence of ∆t ξ3/7 for IBE+W and M+H mixtures. Data
points are shown for the upper (top) and the lower layer (bottom) of mixtures of IBE+W
(left) and M+H (right), respectively. We use the same symbols and colours as in figure 5.1,
and show the theoretical prediction, (5.16), by solid lines. The same value of α is found for
the upper and the lower layer of the mixtures, α = 0.6 for IBE+W (left), and α = 0.9 for
M+H (right).

fig. 5.9. The prediction is plotted for α = 0.69, which describes the data very well.
The different value of α is chosen based on a typical k = 2 × 105, which is more
representative for the ramp rate of ξ = 2.5× 10−5s−1 (see red +) in fig. 5.7(c).
In summary the model based on the two growth contributions sketched in fig. 5.5 gives
rise to the bottleneck time scale, which sets the oscillation period. The experimental
data for two types of mixtures and the data, where the influence of stirring was
investigated, collapse onto the predicted master curve.

5.4 The relevance of Ostwald ripening: A quantitative test

The collapse of the experimental data for the oscillation period in figs. 5.7 and 5.8 and
the quantitative agreement with the predictions of our model eqs. (5.15a) and (5.16)
allows for a comparison with growth model of Ostwald ripening. I conclude the
present chapter by a discussion of the two possible ways of modelling the growth
contribution for small droplets. Ostwald ripening (section 5.2.1.2) and the accretion
of material provided by the constant driving (section 5.2.1.1) lead to the same
prediction of the scaling of the oscillation period ∆t. The difference lies only in the
prefactors, which give rise to different values for the oscillation period ∆t and also
for the bottleneck radius r∗.
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Figure 5.9: Temperature dependence of ∆t ξ3/7 for the lower layer of the IBE+W mixture.
The grey dots show the data of fig. 5.8(b). The grey solid line shows the prediction of the
model, eq. (5.16), with α = 0.69 and the dashed line the prediction with α = 0.6. The
coloured symbols show the data points for different stirring rates as indicated in the legend.
Here the same data and symbols are used as for fig. 5.3.

5.4.1 Values of α for binary mixtures

The solid lines in fig. 5.8 faithfully provide the θ dependence of ∆t even though
eq. (5.16) only accounts for the temperature dependence of the material constants, and
disregards the temperature dependence of ε and k, that should be present according
to our discussion of fig. 5.7 in section 5.3.1. Consequently, the dimensionless prefactor
α is the only free parameter in eq. (5.16). Typical values of ε are 0.1 . ε . 1 (Beard
and Ochs, 1993), and 105 . k . 107 for the IBE+W system (see fig. 5.7(c)). For
k = 5.4 × 105 and ε = 0.3 one indeed finds the value α = 0.6 adopted in fig. 5.8.
There is only a minor variability of α in spite of the substantial range of values
taken by ε and k: the (1/7)th and (3/7)th power in eq. (5.16) strongly suppress these
dependencies.
In contrast, eq. (5.16) provides α = 4.36 for Ostwald ripening when adopting ε = 0.3,
as before, and inserting δ ' 1/2 for the factor k. This prediction for ∆t is too large
by a factor of about seven.

5.4.2 Bottleneck radius

Figure 5.10 shows the time evolution of the distribution of the droplet volume fraction
v(r, t) of droplets of radius r. Panel a) provides an overview in terms of a radius
vs. time plot where v(r, t) is indicated by false colour. Each of the panels b)–d) shows
twelve curves that describe the evolution of the distribution during one oscillation.
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Figure 5.10: Evolution of the droplet size distribution for the lower layer of the IBE+W
mixture subjected to a ramp rate of ξ = 1.05 × 105s−1. (a) A radius-time plot of the
distribution of the droplet volume fraction v(r, t) clearly captures the oscillations in time.
(b)–(d) explicitly provide the radial distribution of the volume fraction for the fourth, fifth
and sixth oscillation. To suppress fluctuations the distributions are determined as temporal
averages over one of twelve time intervals of equal length in each oscillations. Within each
period the distributions at different times are labelled by a colour coding ranging from blue
to red, as specified in the legend. The thicker green lines, number 7, correspond to the time
where the bottleneck is crossed.

In the beginning of each period there is a pronounced peak for small radii (blue
lines). The maximum of the distribution shifts to larger radii as the distribution
evolves, it develops a shoulder (curve 3–5), becomes bimodal (thick green curve 7),
and then the number of large droplets rapidly decays (curves 8–12). I attribute the
decay to precipitation. The arising of the shoulder reflects the broadening of the
distributions when the largest droplets have crossed the bottleneck (Beard and Ochs,
1993; Kostinski and Shaw, 2005). From this perspective the minimum arising in
the bimodal droplet spectra should amount to the bottleneck radius, r∗. For the
data of measurements in the lower layer of IBE+W, that are shown in fig. 5.10, the
bottleneck radius is thus found to lie in the range r∗ ' 15 . . . 20µm [cf. the thick
green curves, number 7, in fig. 5.10.b)–d)].
The observed values for the bottleneck radius match exactly with the radius calculated
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5 Oscillation periods for constant ramp rates

based on eq. (5.9). Indeed, for the data shown in fig. 5.7 we find values for r∗ that
decrease from 20µm for small values of nκ−3ξ−4 to 10µm for the largest considered
values. In contrast, when evaluating the bottleneck radius in the case of Ostwald
ripening, eq. (5.9), for the lower layer of IBE+W, ξ = 1× 10−5s−1 and ε = 0.3 one
finds values between 0.1µm and 0.8µm for the whole range of reduced temperatures.
These values are two orders of magnitude smaller than the values inferred from the
experiments, fig. 5.10.
It is also instructive to compare the bottleneck radius r∗ to the droplet radius,
rPe, where the Pèclet number, Pe, of the droplet motion crosses one. Calculating
Pe = uL/Dd based on the sedimentation velocity u = 2∆ρ g r2

Pe/(9η), the droplet
diameter L = 2rPe, and the Brownian droplet diffusivity Dd = kB T/(6πη rPe) yields

Pe = 8π
3

∆ρ g
kB T

r4
Pe . (5.17)

It takes values Pe ' 1 for droplet radii rPe = [kB T/(8π∆ρ g)]1/4 ' 1.2µm. In line
with expectation, the prediction for the bottleneck radius r∗ is of the same order of
magnitude, even though somewhat larger than rPe, when properly accounting for the
contribution to the initial droplet growth by the constant ramp rate. In contrast,
they are predicted to be up to one order of magnitude smaller than rPe, when only
accounting for Ostwald ripening. These severe discrepancies between observations
and predictions rule out Ostwald ripening as a relevant contribution to growth in
our experiments.

5.4.3 Temperature dependence of ∆t
In contrast to a suggestion in the literature (Wilkinson, 2014) I am reluctant to
attribute the θ dependence of ∆t ξ3/7 to the critical scaling of the material con-
stants entering eq. (5.16), i.e. the dependence on D, σ = 2γV 2

mC∞/(RT ) and
κ = 2g∆ρ/(9µ). The reason is fourfold:

(i) the values of θ in the experiments clearly lie outside the critical range. This is
documented in the appendix where I report a much more involved θ dependence
of the material constants than the power-law singularities describing the scaling
for small reduced temperatures θ;

(ii) in addition to D, σ and κ also the collection efficiency ε shows a noticeable
temperature dependence, as observed in fig. 5.7(a) and (b);

(iii) the parameter k entering the definition, eq. (5.16), of α has a noticeable
temperature dependence (see fig. 5.7(c));

(iv) for the mixtures under consideration the dependence of ε and k cancels partially.

86



5.5 Summary

Consequently, the close correspondence of the θ dependence of the prediction
eq. (5.16), and the one obtained by considering α to be a constant and D, σ
and κ to vary according to the power laws valid very close to critical point might
very well be a coincidence. A proper discussion of the temperature dependence of
∆t should first address the intriguing observation that k takes surprisingly large
values in the present experiments, and that the observed values vary so little that
their dependence need not be considered to obtain a good estimate of the oscillation
period, fig. 5.8.

5.5 Summary
In this chapter a low dimensional model has been developed for the oscillation period
of episodic precipitation in binary mixtures. Spatial degrees of freedom were not
addressed because of sufficient inherent mixing of fluid volume due to convection. The
strength of the temperature ramp is characterized by the dimensionless parameter k−1
that amounts to the ratio of droplet volume growth in response to the temperature
change and the growth on expense of other, smaller droplets (Ostwald ripening).
In our experiments k takes very large values: k & 105. Thus, the temperature
ramp decouples the evolution equation of droplet sizes, such that the model for the
oscillation period is left with an effective radius describing the largest droplets in
the system. As a consequence, the two growth mechanisms, that are developed at
the level of size distributions in the previous chapter, can be simplified to give an
analytically treatable model. The model suggests a master plot that facilitates a
data collapse of all of our experimental data, and it provides a theory curve that
describes the data without adjustable parameters.

87





6 Periodic Driving

In this chapter I explore the impact of periodic driving ξ(t) with ξ(t+ ∆text) = ξ(t)
on phase separation in binary mixtures. On the one hand many processes where
continuously driven phase separation plays a role show fluctuations or even large
scale convection, e.g. in clouds that produce variations in the driving. On the other
hand, the description of systems with such a more complicated driving provides a
test of the model for episodic precipitation: Can it describe also dynamic features
like phase locking, with respect to the period of the driving?
The chapter has two parts. I start with the model for episodic precipitation that
has been established in chapter 5 and study the impact of the oscillatory driving.
Subsequently, I report on measurements where the oscillatory driving has been
realized experimentally, and compare the observations to the predictions of the
model.

6.1 Phase locking and Arnold tongues
In the present section we establish a model for the oscillation period of oscillatory
demixing with time-periodic driving,

ξ(t) = ξav [1 +A π0(t)] . (6.1)

The form of the perturbation is described by the function π0(t) that is period in time
with period ∆text. The time averaged driving is ξav, and the relative strength of the
driving is controlled by the amplitude A.

6.1.1 The state variables and their evolution equations

I start with recalling the model for constant driving ξ, see eq. (5.7)

ṙ = ξ

4πn
1
r2 + εκξt

4 r2 . (6.2)

In the following I use the model formulated in terms of droplet volume v = 4π
3 r

3.
The term ξt in the second contribution to eq. (6.2) has to be generalized to φ(t),
such that its time derivative φ̇(t) equals ξ(t). Consequently, we have two variables
v(t) and φ(t) that characterize the state of periodically driven episodic precipitation.
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They obey the following evolution equations

v̇(t) = 4πr2(t) ṙ(t) = ξ(t)
n(t) +

(
34

44π

)1/3

εκφ(t)v4/3(t) , (6.3a)

φ̇(t) = ξ(t) . (6.3b)

6.1.2 Dimensionless units

For further investigations we use a dimensionless form of eq. (6.3). We measure time
in units of ∆text, and the number density and volumes in terms of a characteristic
density n0 that is chosen such that ξav∆text/ [n(t = t0)/n0] = 1 at the beginning
of integration, t = t0. The evolution equations 6.3 for the non-dimensionalised
quantities reduce then to

v̇ = ξ(t) + 3α φ(t) v4/3(t) , (6.4a)

φ̇ = ξ(t) , (6.4b)

with ξ(t) = 1 +A π0(t) (6.4c)

α =
( 3

44π

)1/3 εκ ξav ∆t2ext

n
1/3
0

. (6.4d)

Here, the volume fraction φ has been augmented with a factor ξav∆text in order to
avoid non-trivial factors in eq. (6.4b). Moreover, the factor n has been suppressed in
the denominator of the ξ term in eq. (6.4a). This is admissible, because the number
density n is preserved as long as there is only diffusive growth, i.e. as long as the first
term dominates the right hand side of eq. (6.4a). At later times, when the growth is
dominated by collection of small droplets, the second contribution dominates, and
the omission does not matter. Altogether, one thus arrives at eqs. (6.4b) and (6.4c)
with an average driving of unit strength. In the remainder of this section we integrate
eq. (6.4) based on the approximation introduced in section 5.2.2 to obtain the
parameter dependence of the oscillation period ∆t(A = 0). Here, this will allows us
to obtain analytic expressions for ∆t(A) with A 6= 0. In section 6.1.5, I compare the
resulting theoretical predictions with the results of numerical integration.

6.1.3 Oscillation period for A = 0

For constant driving the oscillation period can faithfully be described as the time
scale needed of droplets of zero size, v0 = 0, to reach infinite size. For A = 0 we may
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start integrating at time t0 = 0, because the phase of the external driving does not
matter.
For small droplets the first contribution dominates v̇ such that v(t) ' φ(t) = t. For
1 = ξ = 3α φ(tc) v4/3(tc) ' 3α t7/3

c , there is a crossover to growth dominated by the
second term of eq. (6.4a). Consequently, for times t > tc = vc, we find

v−1/3 = v−1/3
c − α

∫ t

tc
φ(t) dt = t−1/3

c − α

2
(
t2 − t2c

)
. (6.5)

At time t = p, i.e. after one period of the cycle, the volume diverges, and v−1/3

approaches zero. Consequently, the parameter α is connected to the oscillation
period, p, of the unperturbed dynamics via1

α = 1
3

( 7
p2

)7/6
, (6.6)

where the crossover relation 1 = 3αt7/3
c is used to eliminate tc in eq. (6.5).

Next, we explore how the period changes upon varying A for settings with different p.

6.1.4 Oscillation period for A > 0

In our experiments we switch the driving between two different ramp rates, ξmax
and ξmin. This amounts to a driving with average ramp rate ξav = (ξmax + ξmin)/2,
amplitude A = (ξmax − ξmin)/(2ξav), and a shape π0(t) that takes the form of a

1The relation between α and p in eq. (6.6) in the present notation is exactly the parameter
dependence of the oscillation period ∆t, derived in eq. (5.15b) of the previous chapter. This can
be seen by recalling that p = ∆t(A = 0)/∆text. Using eqs. (6.4d) and (6.6) we write

∆t
∆text

= p =
√

7 (3α)−3/7 =
√

7
(

44π

34
n0

(εκξav)3∆t6ext

)1/7

.

With the choice of n0 such that n0∆text = n/ξav one obtains

∆t =
√

7
(

44π

34
n

(εκ)3ξ4
av

)1/7

.

This matches exactly the expression of eq. (5.15b), when the
√

7 coming from the analyti-
cally treatable approximation, that has been adopted in the present chapter, is replaced by
the prefactor 2.44 which is obtained by numerical integration of the full equation. After all,
2.44(44π/34)1/7 = 3.39.
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32 π2(t)

Figure 6.1: Functions characterizing the periodic driving. The piecewise constant function
π0(t) (gray, eq. (6.7)), piecewise-linear function 4π1(t) (orange, eq. (6.9)) and piecewise-
parabolic function 32π2(t) (violet, eq. (6.11)).

square-wave function (see fig. 6.1),

π0(t) =
{
−1 for 0 ≤ τ < 1

2 ,

+1 for 1
2 ≤ τ < 1 ,

(6.7)

where τ is here the fractional part of t.
We start integrating at time t0 with zero droplet volume fraction, φ(t = t0) = 0.
According to eq. (6.4b) the volume fraction takes the following form at later times,

φ(t) = t− t0 +A [π1(t)− π1(t0)] . (6.8)

Here π1(t) is the periodic, piecewise-linear function with zero mean and π̇1(t) = π0(t)
that is also shown in fig. 6.1,

π1(t) =
{1

4 − t for 0 ≤ τ < 1
2 ,

−3
4 + t for 1

2 ≤ τ < 1 .
(6.9)

Finally, for the solution of eq. (6.4a) we will need the time integral of φ(t). For the
present driving it takes the form∫ t

tc
φ(t)dt = 1

2
(
t2 − t2c

)
− [t0 +A π1(t0)] (t− tc) +A [π2(t)− π2(tc)] , (6.10)
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which involves the piecewise parabolic function

π2(t) =


1
2 t

(
1
2 − t

)
for 0 ≤ τ < 1

2 ,
1
2

(
t− 1

2

)
(t− 1) for 1

2 ≤ τ < 1 .
(6.11)

In analogy to the case for A = 0 the evolution of v(t) proceeds in two steps. Integration
of eq. (6.4a) from zero droplet volume at time t0 we find the critical size vc for the
crossover to the regime where growth is dominated by collection,

vc = φ(tc) = tc − t0 +A [π1(tc)− π1(t0)] ,

as well as the crossover condition ξ(tc) = 3α v7/3
c , i.e.

vc = p√
7

[1 +Aπ0(tc)]3/7 .

Subsequent integration for large droplets yields

2
α
v−1/3(t) = 2

α
v−1/3
c − [t− t0 −A π1(t0)]2 + [vc −A π1(tc)]2 − 2A [π2(t)− π2(tc)] .

(6.12)

For v−1/3(t1) = 0 this can be solved for t1,

t1 = t0 +A π1(t0) +
[ 2
α
v−1/3
c + [vc −A π1(tc)]2 − 2A [π2(t1)− π2(tc)]

]1/2

= t0 +A π1(t0) +
[
p2 [1 +A π0(tc)]−1/7

(
1 + A

7 π0(tc)
)

−2A
(
π2(t1)− π2(tc) + p√

7
π1(tc) [1 +A π0(tc)]3/7

)
+A2 π2

1(tc)
]1/2

(6.13a)

with tc = t0 + p√
7

[1 +A π0(tc)]3/7 −A [π1(tc)− π1(t0)] (6.13b)

In principle the set of equations eq. (6.13) can be solved for t1 because the functions
π2(t1), is piecewise parabolic. However, for the purpose of identifying fixed points
of the dynamics it is sufficient to consider cases where t1 = t0 mod 1, and the A
and p dependence of these fixed points is faithfully described by the leading order
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Figure 6.2: Phase maps and Arnold tongues. (a) Phase map for A = 0.5 and three different
values of detuning, p = 0.9, 1.0, and 1.1. The filled and open circles mark stable and unstable
fixed points, respectively. (b) Phase map for A = 0.5 and p = 0.5. The stable and unstable
period-two cycles are marked by solid and broken black lines respectively. In panel (a) and
(b) the solid lines mark numerical results, and the corresponding dotted lines are theoretical
curves based on eq. (6.14). (c) The Arnold tongues represent a phase diagram indicating
for which combinations of A and p one encounters stable fixed points (regions with locking
to an integer value of p), period-two cycles (regions with locking to half integer values of
p), and period-three cycles (regions with locking to values p = j/3 where j is no multiple of
three). The green dashed lines bounding the 1:1 Arnold tongue are theoretical predictions,
eq. (6.15). Numerical data, where we found period 1, 2 and 3 cycles are marked by orange,
blue, and grey dots, respectively.

approximation of eq. (6.13),

t1(t0) ' t0 + p+A

[
π1(t0)− π1(tc)√

7
− π2(t0)− π2(tc)

p

]
(6.14a)

with tc = t0 + p√
7
. (6.14b)

The resulting expressions for p = 1 and p = 1/2 are plotted by broken lines in
fig. 6.2(a) and (b), respectively. They nicely agree with the numerical results that
are provided by solid lines.

6.1.5 Phase locking and Arnold tongues

The plots, fig. 6.2(a),(b), of the fractional part of t1 as function of t0 provide the phase
map for the evolution of the oscillations. Iterating the map, describes the evolution
of the phase where precipitation arises with respect to the external driving.For values
of p close to 1 the phase converges towards a stable fixed point in the interval [0; 1

2 ],
fig. 6.2(a). The presence of this fixed point indicates, that episodic precipitation
matches with the period of the external driving, and that the phase of the oscillations
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are locked at the value prescribed by the stable fixed point of the phase map.
Figure 6.2(b) shows a situation where there are two cycles of episodic precipitation
in each period of the external driving. This amounts the region in parameter space
where the phase map has a stable period-two cycle. The parameters, (p,A), where
there are j cycles of precipitation in i periods of the external driving are denoted
as the i : j Arnold tongue (Pikovsky et al., 2003). In fig. 6.2(c) we show the 1 : 1,
the 1 : 2, the 1 : 3 and the 2 : 3 Arnold tongues for episodic precipitation with the
time-periodic driving described by eqs. (6.1) and (6.7).
Let us take a closer look at the 1 : 1 Arnold tongue and its phase maps, fig. 6.2(a).
Equation (6.14) reveals, that to first order the parameter p results in a vertical
displacement of the phase map. Consequently, when p is increased, the fixed point
moves to the right, until it collides with its unstable partner at τ = 1

2 . In contrast,
the fixed point moves to the left when p is decreased, until it collides with its unstable
partner at τ = 0. For each amplitude A > 0 one thus determines the interval
[pl1:1(A); pr1:1(A)] where the phase map has a stable fixed point. Equation (6.14) also
reveals that the amplitude of the undulations in the phase map, i.e. the maximal
deviation from a linear function, is proportional to A. Consequently, the interval
[pl1:1(A); pr1:1(A)] shrinks to the point p = 1 for A = 0, and it grows monotonically
when |A| is increased. The boundaries of the interval can be determined by observing
that the saddle-node bifurcations where the stable and the unstable fixed points
collide arise at t0 = 0 and t0 = 1/2. Solving eq. (6.14) for the according p(A)
dependence with t0 = 0 and t1 = 1 for the left and t0 = 1/2 and t1 = 3/2 for the
right boundary of the 1:1 Arnold tongue leads to

pl1:1 =
1−

(
1
4 −

1
8
√

7

)
A

1 + 3
28 A

(6.15a)

pr1:1 =
1 +

(
1
4 −

1
8
√

7

)
A

1− 3
28 A

. (6.15b)

The expressions only differ by a change of the sign of A, due to the symmetry of the
equations of motion with respect to shifting t by half a period and reversing the sign
of A. They nicely describe the boundary of the 1 : 1 Arnold tongue for amplitudes
A < 0.5, see fig. 6.2(c). The saddle-node bifurcations marking the borders of the
1 : 2 Arnold tongues also arise at t0 = 0 and t0 = 1/2, respectively. Hence, one can
evaluate eq. (6.14) to determine the second return time t2(t1(t0)), and demand that
t2(t1(0)) = 0 in order to find the boundaries of the 1 : 2 Arnold tongue. This will be
discussed in more detail in forthcoming work.
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6.2 Experimental results
This section deals with the experimental observations of synchronisation in periodi-
cally driven phase separation in mixtures of IBE+W. I start with the experimental
realization of temperature ramps that produce approximately a square-wave driving.
Subsequently I show data for period 1-cycles, period 2-cycles and period 3-cycles,
followed by observations for p = 5, where the external driving period is only a small
fraction of the undisturbed period.

6.2.1 Realization of temperature ramps

The temperature ramps are calculated based on eq. (2.9). One challenge is to deal
with the decreasing of the oscillation period during a measurement, observed in
fig. 2.6. Typically the period of the undisturbed oscillator is fixed and it is easy to
define the period of the external forcing. In our case we also have to keep the ratio of
the external period and the period of the undisturbed oscillation constant, when we
want to study synchronisation. Hence, the period of ξ(t) has to decrease in the same
way as ∆t does. This is achieved by calculating the temperature ramps in such a way,
that the period of the external driving ∆text is adjusted to be ∆text = ∆t(T̄ )/p, where
T̄ is the mean temperature of ∆text. This is done iteratively during the numerical
integration of eq. (2.9) with the condition, that ∆text,n+1 = ∆t(T̄ )/p and T̄ (∆tn).
All experimental runs are done with an average driving2 of ξav = 2× 10−5s−1. They
start at T0 = 25.8°C and end at 50°C. For these parameters the iteration typically
converges after three iteration steps.
In fig. 6.3 three experimental realizations of the periodic driving are shown for
p = 1 and A = 0.5. The ramp rate ξ(t) is calculated according to section 2.3.4
from the temperature log files of the respective measurements. The ξ-values reflect
the fluctuations in the temperature and do not show a clear step function jumping
between ξmin and ξmax. On the other hand the determination of the ramp rate from
the fluctuating temperature involves a numerical derivative. This has been calculated
by total-variation regularization (Chartrand, 2011), to avoid noise amplification.
However, the correct quantification of the fluctuations in the derivative of noisy
data is very sophisticated, such that one should not put too much weight into the
fluctuations of the given ξ-values. The realization of the driving is sufficiently good
for the purpose of testing the robustness of the theory with respect to a time-periodic
and noisy driving, ξ(t).
The start of the low ξ-regions, which will be used as a reference time to define the
phase of the oscillations, is obtained by a time average of the ξ-values in a small
vicinity of ξav.

2Here the scaling representation of the phase diagram is used to calculate the temperature ramps.
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Figure 6.3: Ramp rates ξ(t) for a periodic driving of A = 0.5 and p = 1. The different
panels show three realisations of the same temperature ramp. The ramp rate has been
determined from the recorded temperature during measurement, see section 2.3.4.

6.2.2 1:1 Arnold tongues

For p = 1 the external driving period matches the period of the undisturbed os-
cillations. The oscillation periods are determined from turbidity measurements as
described in section 2.4. From the space-time plots the oscillations are extracted
from a horizontal line in the lower part of the lower layer, see fig. 6.4(left).
The next step towards the observation of synchronisation is to analyse the phases of
the two oscillating signals: the oscillations in the ramp rate ξ and the turbidity. In
fig. 6.4(right) both are plotted on top of each other. After two or three oscillations
the peaks in the turbidity lie always at the position, where the ramp rate changes
from a high value to a low one. This is already a good indication for synchronisation.
To make this observation more quantitative, the positions of the turbidity peaks are
determined relative to the beginning of a low-ξ region and normalised to the length
of the respective period of the driving. The resulting values τ ∈ [0, 1] are denoted as
the phase of the turbidity. One yields a phase map, when all phases are plotted as a
function of the previous phase τi+1(τi), where τi+1 denotes the phase following τi,
see fig. 6.5. In a phase map a 1:1 phase locking, corresponding to a period-1 cycle,
shows up if the data points lie only in one spot. This is the case for all measurements
shown in fig. 6.5.
In figure fig. 6.5(b) experimental data for p = 1 is shown together with the phase
map and the fixed points predicted by the model. The data points are concentrated
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Figure 6.4: Experiments for p = 1 and A = 0.5. (Left) Space-time plot of the turbidity
and the corresponding intensity (red line) at a height of 4mm above the bottom of the
measurement cell, as indicated by the white line in the space-time plot. The detected maxima
are marked with a gray square. The interrupted blue line at the bottom of the intensity
plot indicates the times where the ramp rate has the value ξmax. (Right) The intensity for
the three different realisations of the temperature ramp (see fig. 6.3). The ramp rate ξ(t) is
shown by blue lines as in fig. 6.3 together with the induced oscillation in the turbidity (red
lines) determined from the respective space-time plots. The lower panel corresponds to the
space-time plot shown in the left panel.

in the region of the stable fixed point. This agreement is achieved by shifting all
the phases by a constant offset ∆tshift = 0.15. In that sense this figure is used to
determine the free parameter, that arises when comparing the experiments with
the model. The model is based on the evolution of one typical droplet describing
the oscillations. One period is over if the radius diverges. On the other hand the
turbidity in the experiments is caused by a distribution of droplets. Fixing ∆tshift to
the value ∆tshift = 0.15 indicates that the peaks in the turbidity appear a little bit
before the droplet radius in the model diverges. For the following measurements this
free parameter is fixed to ∆tshift = 0.15 and all phases shown in the phase maps are
shifted by this value.
In the following I discuss the position of the fixed point for a constant amplitude
A = 0.5 but a varying period ratio p within the borders of the 1:1 Arnold tongue.
The position varies from 0 at the left border of the Arnold tongue to 0.5 at the
right border where the stable and unstable fixed point meet. In figure fig. 6.5(a)
and (c) the phase values for the intermediate cases of p = 0.9 and p = 1.1 are
shown together with two measurements, respectively. The data is noisy, especially
for p = 1.1. However, one can clearly see the predicted trend that the fixed point
moves to the right as p is increased.
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Figure 6.5: Phase maps for A = 0.5 and (a) p = 0.9, (b) p = 1 and (c) p = 1.1, respectively.
The different colors in each panel denote different experimental realisations. The thick black
line shows the prediction of the model, the open circle denote the unstable fixed point and
the filled circle the stable fixed point (it is hidden by the data points).

6.2.3 1:2 Arnold tongues

To study the behaviour of the 1:2 Arnold tongue we analyse measurements for
p = 0.5.The resulting space-time plot is shown in fig. 6.6(a). The turbidity arises
in pairs of peaks where a big one is followed by a smaller one. Since the time to
develop is shorter for the second peak, not so much droplet volume can be created
(the droplet volume fraction increases linear in time) and it therefore has a smaller
turbidity.
In the phase map fig. 6.6(c) the period-2-cycle is clearly visible. The data are again
shifted by 0.15 and we observe a good agreement for the dominant peak at τ ≈ 0.8
with the model predictions. In contrast, the small peak deviates from the predicted
value of the model, and it is severely affected by fluctuations. We attribute this to
the difficulty in the detection of the small peaks. Because the second peak is small
it is very difficult to detect in some measurements. For this reason Vogel (2013)
reported that it appears that the period had doubled.

6.2.4 1:3 Arnold tongues

To study the behaviour of the 1:3 Arnold tongue we perform measurements with
p = 1/3 and A = 0.5. We observe a reproducible synchronisation of the dominant
peak in the turbidity with the beginning of the high-ξ regions, see fig. 6.7(a). The
dominant peak is followed by two smaller peaks, which are sometimes hard to
detect and not possible to resolve at the end of the measurement. No quantitative
comparison is feasible.
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Figure 6.6: Experimental data for the 1:2 Arnold tongue. (a) Space-time plot and the
(b) corresponding oscillations for a measurement of p = 0.5 and A = 0.5. The oscillating
turbidity is obtained by cutting the space-time plot at the white line. The grey squares mark
the detected peaks of the turbidity. (c) Phase map for four measurements of p = 0.5 and
A = 0.5. The thick solid black line is the predicted curve by the model with a stable (solid)
and unstable (dashed) period-2-cycle.

6.2.5 5:1 Arnold tongues
To explore the impact of a high p value, I also show here a space-time plot for p = 5,
see fig. 6.7(b). In this case, where the external driving changes its value five times
in one oscillation period, the system averages over the perturbations. It shows the
same behaviour as for constant driving, see fig. 2.6.

6.3 Summary
In summary our model for episodic precipitation has been successfully extended to
periodic variations in the driving: the resulting predictions agree with experimental
observations. The predictions are derived by numerical analysis and complemented
by an approximate formulation that is treated analytically. For a small ratio of the
external and undisturbed periods, p, we observe phase locking, whereas the system
only feel the average driving if p & 5.
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Figure 6.7: Space-time plot and corresponding oscillations for a measurement of (a) A = 0.5
and p = 1/3 and (b) A = 0.5 and p = 5, respectively. The grey squares correspond to the
detected peaks in the turbidity, evaluated along the white line indicated in the space-time
plot. The interrupted blue line in the bottom indicates the times where the ramp rate takes
the value ξmax.
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7 Discussion

In the present chapter I revisit the examples of continuously driven phase separation
mentioned in chapter 1 of the present thesis in the light of the insights obtained
in the subsequent chapters. Section 7.1 is concerned with the implications of the
theory for ripening with overall volume growth (section 4.2) for the synthesis of
monodisperse colloids and nano-particles. In section 7.2 rain formation is discussed
by estimating the driving strength in clouds and applying the model for the time
scale developed in chapter 5. Finally geysers are discussed as an instance of episodic
precipitation.

7.1 Synthesis of monodisperse colloids and nano-particles

Fundamental work on the synthesis of monodisperse colloids goes back to LaMer and
Dinegar (1950) and Reiss (1951). The theoretical understanding of the mechanisms
that lead to highly monodisperse colloids and nano-crystals is still a topic of active
research (Rempel et al., 2009; Clark et al., 2011; Singh et al., 2012). A common
feature is a supply of monomers for the growth of particles. I start by giving an
estimate of the value of k to show that the theory developed in section 4.2 can also
describe experimentally relevant conditions.

7.1.1 Estimate values of k

For the synthesis of monodisperse silver particles (used for photographic films) the
material flux is well defined, and all material constants required to determine the
k-values have been documented. For the synthesis of AgBr and AgCl particles
Sugimoto (1992) and Sugimoto et al. (2000) provide material constants and aggregate
numbers that allow us to calculate k based on the increase of the total volume of the
aggregates, ξV, the diffusion coefficient D, and the Kelvin length σ,

k = 1 + ξ

4πDσn = 1 + Q0Vm
4πDσN , (7.1a)

where N is the number of aggregates in the sample volume V, and

ξ = VmQ0/V (7.1b)
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T [◦C] 40 50 60 70
D [m2/s] 9.94× 10−10 1.26× 10−9 1.56× 10−9 1.92× 10−9

C∞ [mol
m3 ] 1.01× 10−4 2.12× 10−4 4.34× 10−4 8.42× 10−4

N 3.20× 1017 1.25× 1017 4.60× 1016 2.20× 1016

k 1.63 1.62 1.69 1.62

Table 7.1: Representative material parameters for the synthesis of monodisperse AgBr
particles (adapted from Sugimoto, 1992) and the corresponding k values as calculated via
Eqs. (7.1). The molar volume of AgBr is Vm = 2.9× 10−5m3/mol, and its specific surface
energy is γ = 1.77× 10−1J/m2. All experiments were conducted with a mass supply rate,
Q0 = 10−3mol/s.

T [◦C] 25 30 35 40
D [m2/s] 1.44× 10−9 1.64× 10−9 1.86× 10−9 2.11× 10−9

C∞ [mol
m3 ] 5.04× 10−4 7.30× 10−4 1.04× 10−3 1.46× 10−3

n [m−3] 5.88× 1013 5.71× 1013 4.24× 1013 2.70× 1013

q0 [mol
m3s ] 5.95× 10−6 1.54× 10−5 3.86× 10−5 8.88× 10−5

ξ [s−1] 1.54× 10−10 3.99× 10−10 1.00× 10−9 2.30× 10−9

k 6.26 9.64 19.4 43.3

Table 7.2: Material parameters for the synthesis of monodisperse AgCl particles (adapted
from Sugimoto et al., 2000, table 3), and the resulting k-values as calculated via Eqs. (7.1).
For AgCl particles the molar volume is Vm = 2.59× 10−5m3/mol, and their specific surface
energy is γ = 1.009× 10−1J/m2.

is provided in terms of the molar volume, Vm, and the mass supply rate, Q0. Finally,
the specific surface energy γ, the buffer temperature T , the mean-field monomer
concentration C∞, and the molar gas constant R = 8.314 J/(mol K) provide the
Kelvin length as

σ = 2γV 2
mC∞
RT

. (7.1c)

Table 7.1 provides the resulting k-values for different representative sets of T,D,C∞
and N used for the synthesis of AgBr particles, and table 7.2 provides the k values
for the synthesis of AgCl particles. Also in the latter case the k values are obtained
from eq. (7.1), except that Sugimoto et al. (2000) provided the molar injection rate
q0 = Q0/V and the number density of droplets, n = N/V . The data shows that the
k values selected for the synthesis of monodisperse silver particles lie at k ' 1.6 for
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Figure 7.1: Evolution of the size focusing coefficient, that correspond to k− 1 in the present
notation. The observed decay was attributed to a decreasing precursor reaction rate for the
production of monomers. The symbols denote ratios of different precursor concentrations.
Reprinted from Clark et al. (2011).

AgBr-particles and in a range between 6 and 43 for AgCl. This choice was obtained
by tuning the temperature and the rates Q0 or q0 for optimal monodispersity of
the product. In all cases this resulted in k values larger than 3/2 such that one
can profit from the size focusing arising for k > 3/2. In principle, the values of k
should be chosen as large as possible to achieve the smallest standard deviation,
equation (4.32), and minimise the time required for the synthesis, equation (4.8). In
practice, it becomes harder to realise stable and reproducible experimental conditions
for large values of k, and the heat released in the growth might severely alter the
present theory for large growth rates. Follow-up work will have to explore these
effects.
For the synthesis of CdSe nanocrystal Clark et al. (2011) extracted the a size focussing
coefficient from experiments published by Chan et al. (2010). In fig. 7.1 I reproduce
the data for the size focussing coefficient ξ that corresponds to a dimensionless
form of our ramp rate ξ. In our notation it is equal to k − 1 = ξ/(4πDσn). The
corresponding k values start at k ≈ 5 at early times, t ' 50 s, and decay to 1 at times,
t & 600 s. This is a consequence of a decreasing reaction rate of the precursor reaction
that produces the monomers for nano-particle growth. Here I expect, that feeding of
the precursor reaction by external addition of material will lead to a constant value
of k. This in turn enhances size focussing and should lead to narrower distribution.
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7.1.2 Shape of the distributions and size focussing

Size focussing in particle synthesis and aggregate growth is nowadays an active field
of research and therefore there exist a wealth of literature. Nevertheless, the shape of
a distribution undergoing size distribution has never been analysed to my knowledge.
Only the first two moments of the distribution are in the focus. In chapter 4 I
predict that the asymptotic shape of the distribution depends on the shape of the
initial distribution. For values of k & 5, that are found in experimental realizations,
the distribution for all times can be scaled on top of the initial distribution. As a
consequence a bimodal distribution stays bimodal for all times, see figs. 4.1 and 4.2.
The two peaks move together due to size focussing, thus producing two narrow
peaks very close to each other. Especially this finding might be of interest to the
community.

7.2 Rain Formation

Rain emerges when the air masses in a cloud rise due to topographic constraints, or by
encountering a cold front (Mason, 1971; Rogers and Yau, 1989; Pruppacher and Klett,
1997). The drop of pressure in response to the rising of height leads to adiabatic
cooling of the air. This in turn changes the solubility of water in the air. Similarly
to the phase separation in the experiment on binary fluid demixing this induces a
continuous growth of cloud droplets until they reach a size where collisions due to
gravity and inertia speed up their growth and trigger rain formation (Bodenschatz
et al., 2010). Clement (2008) discussed the micro-physics of the droplet growth,
emphasising the importance of the heat of condensation and the impact of solutes in
the droplets. Here I augment his study by an estimate of the possible impact of the
continuous growth of the droplet volume fraction. I start with estimating the ramp
rate ξ for cloud droplet growth and the corresponding values of k.

7.2.1 Growth of cloud droplets: estimating the value of k

Consider a small cloud parcel of volume V that is large as compared to droplet
diameters, but sufficiently small that it may be characterized by a fixed composition
and temperature T . Water droplets constitute a fraction, vd, of the volume, and
there is also water available in the form of water vapour in the continuous, air-phase
of the cloud.
The ideal gas law states that a molar density, nw, of the water vapour in air gives
rise to a partial pressure pw V = nw RT , where R = 8.314 J/(mol K) is the molar gas
constant. In the presence of water droplets, pw, amounts to the saturation vapour
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7.2 Rain Formation

pressure (Bolton, 1980),

psw = 6.112× 10−3 bar exp
( 17.67 T
T + 243.5◦C

)
, (7.2)

where T should be inserted in units of ◦C. This equation characterizes the phase
diagram of the water-air binary mixture. Henceforth, pw and nw denote the pressure
and composition at saturation, and we suppress the superscript s.
The molar mass of water, Mw = 18 g/mol, relates the mass, mw, of water vapour in
the continuous, air-phase of the cloud to the molar density, mw = Mw nw, such that

mw = Mw nw = Mw
pw V

RT
. (7.3)

Mass conservation relates the changes of the amount of water vapour in the gas
phase and the volume fraction of droplets via

dvd = −d mw

ρw V
= −d

(
Mw

ρw

pw
RT

)
(7.4)

where ρw = 103 kg/m3, is the density of water in the liquid phase. This equation
relates changes of the volume fraction of the water droplet in a cloud, vd, to changes
of the temperature, T , and the saturation pressure of water pw. In clouds the
temperature changes by adiabatic cooling, when the volume rises in height, z, and
temperature induced changes of the mass density, ρw, are small. Consequently,

ξ = v̇ = − dv
dT

dT
dt ' −v

( 1
pw

dpw
dT −

1
T

) dT
dz

dz
dt , (7.5)

where the adiabatic lapse rate, −dT/dz, takes values of the order of 10−2 K/m
(Wallace and Hobbs, 2006). In fig. 7.2(a) I provide the resulting values of ξ for an
upwind wind speed of ż = 1 m/s.
To estimate the according k values I first calculate the Kelvin length σ, eq. (1.4).
With the values (Mason, 1971, p. 614, for 10°C) of the interfacial tension of the
water-air interface, γ = 7.4 × 10−2N/m a molar volume Vm = 18 × 10−6m3/mol,
and an equilibrium volume fraction Φe = 10−5 we get σ = 10−14m. The values of k
corresponding to the calculated ramp rates, ξ, are given in fig. 7.2(b) for a number
density of n = 108m−3 estimated by Ditas et al. (2012) and a diffusion coefficient
D = 2.4× 10−5m2/s (Mason, 1971, p. 614). In warm clouds, where no ice must be
formed, T may be expected to take values above −10◦C. In this temperature range
the curve for k(T ) does not change noticeably when accounting for the temperature
dependence of the material constants such that k & 8.
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Figure 7.2: Ramp rate for warm clouds. (a) The ramp rate, ξ, as a function of the ambient
temperature T for a lapse rate −dT/dz = 10−2 K/m and upwind speed of ż = 1 m/s.
According to eq. (7.5) the ramp rate ξ is proportional to these numbers such that ramp rates
for other weather conditions can be estimates by adapting the lapse rate and the upwind
speed. (b) The corresponding values of k = 1 + ξ/(4πDσn).

7.2.2 Estimates of ∆t and the bottleneck radius

To estimate the time scale ∆t for common situations in warm rain (Beard and
Ochs, 1993; Moran and Morgan, 1997) I evaluate the prediction of ∆t, eq. (5.15b).
The material constants entering the settling velocity of the droplets are the density
contrast of water and air, ∆ρ ≈ 103kg/m3, and the dynamic viscosity of air, µ =
1.8 × 10−5kgm−1s−1 at 10◦C (Rogers and Yau, 1989, p. 103). Given that the
dynamic viscosity of air is much smaller than that of water, this provides a value
κ = 1.2 × 108m−1s−1 [cf. eq. (4.33)]. For ramp rates ξ = 2 × 10−9 · · · 2 × 10−8s−1,
a number density n = 108m−3 and a collection efficiency of ε = 0.3 we then find
time scales ∆t, eq. (5.15b), in the range of 10min to 40min, and bottleneck radii,
eq. (5.9), between 17µm and 24µm.
The values for the time scale ∆t agree with typical life times of clouds (Beard and
Ochs, 1993; McGraw and Liu, 2003) and also the predictions for the bottleneck radius
matches expectation (Shaw, 2003; Clement, 2008), see also fig. 1.1. This agreement
is remarkable because common estimates (Houghton, 1959; Falkovich et al., 2002;
Clement, 2008) based on diffusive ripening processes and growth by collection tend
to provide estimates that are rather too large.

7.2.3 Periodic driving

The process of cloud formation is much more complex, than a simple up draft of
humid air parcels, especially because convection is involved (Stevens, 2005). To
estimate the time scales of convection I consider a 1 km high cloud with wind speed
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of 1 to 10m/s. Neglecting asymmetries in the up and down winds we arrive at times
of 3 to 30 minutes for one turn over. This reaches the time of the precipitation cycle
for small wind speeds. Here the phase locking observed in chapter 6 might become
important. In fig. 6.4 precipitation (peak in the turbidity) emerges at the end of the
period with a large value of the driving. This would suggest that rain is produced
in the top part of the cloud. However, in view of the complexity of clouds the
predictions might better be first tested by comparison to model systems for clouds
like moist Rayleigh-Bénard-convection (Weidauer et al., 2010), or like experiments
in the group of Eberhard Bodenschatz of turbulent Rayleigh-Bénard-convection in a
two phase binary gas mixture (Winkel, 2014).
Future work should extent our model also to the case of shrinking droplets, because
down welling air parcels correspond to a negative driving, where droplets might
dissolve.

7.3 Geysers and lake eruptions

Here I briefly describe the mechanism of a CO2 cold-water geyser (Han et al., 2013)
to highlight the similarities in the growth of small bubbles with the present modelling
of episodic precipitation. Subsequently, I point at another mechanism and explain,
how gravity acts as a feedback on the droplet growth rate, that leads to a runaway
resulting in the eruption of the geyser.
The basic ingredients of a cold-water geyser are a long vertical channel or conduit
that is connected to atmospheric pressure at the top, and a source of CO2-rich water
at the bottom of the well. The solubility of CO2 depends on hydrostatic pressure and
thus on the vertical position in the channel. As the CO2-rich water fills the channel
from below, there is a certain height, where the water becomes supersaturated and
bubbles of CO2 nucleate. These tiny bubbles grow in the presence of a source of
CO2 by collecting supersaturation, as described for the growth of Brownian particles
(section 5.2.1.1). Here the growth does not differ qualitatively from that of cloud
droplets or monodisperse colloids.
When the bubbles are affected by gravity, they begin to rise. Like the cloud droplets
they can collect other bubbles and enhance their growth, but this mechanism is of
minor importance. Gas bubbles are compressible in contrast to liquid droplets, and
therefore their volume can grow by expansion due to decreasing hydrostatic pressure
on their way to the top of the channel. When the bubbles fill a considerable fraction
of the channel, the hydrostatic pressure at the bottom of the channel is decreased.
Also the solubility of CO2 decreases and more and more bubbles are generated, which
eventually leads to an eruption of the geyser. During the eruption almost all bubbles
are removed from the channel and the water level has decreased. Subsequently, the
channel is recharged with CO2-rich ground water. A new cycle can start.
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Similar to CO2 geyser some lakes also have a source of CO2 at the bottom. This
leads to CO2 saturated or even supersaturated water. Zhang and Kling (2006) and
Woods (2010) discussed the trigger of gas release in an eruption or a resorption of
the CO2 in upper parts of the lake, where the water is not saturated with CO2.
In conclusion, in a geyser small gas bubbles grow by accretion of supersaturation,
and for large bubbles there is a runaway growth due to pressure release in the bottom
of the well that leads to the eruption of the geyser. The second growth mechanism is
different to the runaway growth considered so far. However, I expect that the time
scale between eruptions can still be described via the general concept of modelling
time scales by two growth mechanisms separated by a bottleneck. A detailed analysis
I leave for further investigations.

7.4 Summary
The application of the concepts that have been developed in the present thesis
to describe continuously driven phase separation provide valuable new insights
for a wealth of different applications. Experimental conditions in the synthesis of
monodisperse colloidal particles lie above k = 3/2 where I observe size focussing. This
opens new ways in controlling the mechanism of size focussing. Applying the model
developed in chapter 5 to the formation of warm rain gives reasonable estimates
for the time scale until precipitation occurs and for the crossover from diffusive
growth to growth by collection. The example of the geyser showed that the general
concept of the the crossover between two growth mechanisms is useful also for the
understanding of other oscillatory phenomena.
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8 Conclusion

The presented research has shed light into and resolved a fair number of problems
that we were dealing with when I started my PhD thesis. However, of course every
answer raised at least one other question. Hence, I will summarize the highlights of
resolutions, and point at a few of the new questions.

Ripening versus size focussing

What is the impact of overall volume growth on ripening? How does it change
Ostwald ripening with its broad universal size distribution into an evolution of the
droplet-size distributions exhibiting size focussing? To study this crossover an efficient
numerical algorithm has been established that allows us to integrate an assembly
of droplets in the presence of a material source. The algorithm is designed to run
on a logarithmic time axis such that droplet growth can easily be followed over six
orders of magnitude in volume. This is necessary because of long transients for small
k values.
The insights from the numerical work were formulated in terms of an analytic theory
for large k ≈ 50 · · · 100, and the model was extended by higher order terms to work
also for k & 5. The numerical data agree perfectly with the theory. I observe size fo-
cussing for k > 3/2, in accordance with experiments on the synthesis of monodisperse
colloids (see section 7.1 and fig. 1.5). Moreover, all systems with an initial k > 1 are
predicted to approach k > 3/2. For k < 3/2 the growth of droplets is governed by an
unstable fixed point at the average radius, like in Ostwald ripening. At k = 3/2 an
exchange of stability bifurcation leads to a stable fixed point at the average droplet
radius, see fig. 4.12. This stable fixed point is the cause of size focussing observed
for k > 3/2.
The resulting shape of the distribution of an assembly of aggregates for k & 5 is
determined by the initial distribution, rather than approaching a universal shape as
described by LSW-theory. In fig. 4.1 this was demonstrated for three vastly different
types of initial distributions.
Future work will address a theoretical description of k . 1, i.e. the case where droplets
evaporate. Moreover, experiments should check the evolution of bimodal distributions.
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Figure 8.1: (a) Illustration of the evolution of the size distribution in a cloud during the
onset of the collision-coalescence process. Reprinted from Shaw (2003). (b) Emerging of
bimodal distributions in phase separation of an IBE+W mixture at the crossover where
sedimentation becomes dominant. The volume fraction per radius (that is proportional to
the mass in a given radius bin) is shown as a function of time. This data set was already
shown in fig. 4.10 with different axis. Here it is replotted to highlight the similarity of our
data to the schematic plot in panel (a) that addresses rain formation.

Brownian particles versus sedimentation

Ripening and size focussing address the growth of droplets, as long as they can
be considered Brownian particles. How does buoyancy effect droplet growth as
they become larger? How is the shape of the droplet-size distribution affected by
sedimentation? Size distributions in binary fluids had already been measured by
Rohloff (2011) and Lapp (2011). However, the influence of sedimentation on the
shape of the distribution remained unclear. Careful measurements, where the driving
was turned off during sedimentation, reveal bimodal distributions. The peak at larger
radii describes the evolution of the sedimenting droplets, growing by collection of
small droplets. This is in good agreement with an analytic solution of the continuity
equation of the droplet number density, where sedimentation is accounted for by a
loss term. Hence, I have established first experimental evidence in well-controlled
lab experiments fig. 8.1 that bimodal size distributions emerge in phase separating
binary fluids, as suggested also for the evolution of cloud droplets.
The setup for the determination of the size distribution was designed to investigate
the droplet sizes around and above the crossover. Further studies should address
the predictions for droplet growth well below the crossover size. This can be done
by using mass-density matched fluids to reduce the parameter κ and therefore shift
the bottleneck radius to higher radii, or with a new setup that allows the detection
of much smaller droplets. This will possibly also shine light on the mechanism
producing new droplets in each oscillation, that remains still uncertain.
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From sedimentation to episodic precipitation

Sedimentation has been identified as the dominant growth contribution of large
droplets. How does sedimentation lead to episodic precipitation? What sets the
time scale? Integrating the growth rate of sedimenting droplets leads to a finite
time runaway, i.e. the droplet volume diverges at finite times, see section 5.2.1.3 and
section 1.5. This provides a mechanism to remove almost all droplet volume and
reset the system, such that a new precipitation cycle can start.
The time scale of episodic precipitation is found to be set by the time to reach the
crossover from Brownian particle growth to growth by sedimentation. The k values
found for the reported measurements of continuously driven phase separation are of
the order of 105. This suggests to apply the theory of large k values for the growth
of Brownian particles. This new perspective allowed me to establish a model of
the precipitation cycle, where the oscillation period is in quantitative agreement
with the experimental data. The only free parameter in the model is the collection
efficiency, that is known from literature by the order of magnitude or from indirect
measurements, see section 4.3.4. For turbidity measurements, where the number
density of droplets is unknown, there is one fit parameter. However, the unknown
droplet number density enters the prediction only with a power of 1/7, such that its
uncertainty is strongly suppressed.
The model describes the dependence of the oscillation period on material parameters.
Measurements of oscillation periods in a second mixture of binary fluids confirmed
the universal description. Hydrodynamic and thermodynamic similarity allows the
application of the model to the formation of warm rain. The model provides reason-
able values for the time scale and the crossover radius between the diffusive growth
and the growth by collisions. Focussing on a right implementation of the driving for
cloud models seems more promising to get proper time scales rather than calling for
turbulence and inertial effects of the droplets to provide speed-up (Falkovich et al.,
2002; Bodenschatz et al., 2010).

Constant versus periodic driving

For the quantitative test of the prediction of the oscillation period I designed
temperature protocols for driving the phase separation that keep the ramp rate as
constant as possible. To achieve constant ramp rates I used a scaling representation
of the coexistence curve to calculate the temperature ramps. This is done to be
consistent with the description of the phase diagram by the theory of critical scaling.
On the other hand, applications in clouds exhibit fluctuations or even large scale
convection that leads to a periodic variation of the driving. This raises the question
how the period of the oscillation is affected by large amplitude periodic perturbations
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of the driving In order to study the periodic driving, I designed temperature protocols
for different ratios of the driving period to the undisturbed period. For close to
one ratios phase locking of the oscillation is observed whereas for a large ratio only
the average driving is important. The system averages over the perturbations and
behaves as in the case of constant driving. These experimental observations have
been confirmed by applying also a periodic driving to the model of the precipitation
cycle established for constant driving. The analytic approximation as well as the
numerical solution of the model fit very well to trends observed when varying the
period ratio. I expect that these findings will provide a useful input for improved
cloud parametrization in climate models (Sant et al., 2013).

In summary, the identification of crossovers and mechanisms that lead to focusing
or broadening of size distributions provided a point of view that was very fruitful
for the understanding of precipitation in continuously driven phase separation. I am
happy that it provided such a wealth of quantitatively new insights.
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Appendix: Material Constants

Figure 5.1 shows the period, ∆t, of episodic precipitation for different ramp rates,
ξ. Different data points for a given ramp rate are due to the drift of ∆t when the
pertinent material constants, D, σ, and κ(∆ρ, µb, µd) change upon moving further
away from the critical point. In the following we provide the temperature dependence
of these material constants. We cite the data here as they were provided in the original
literature (even when we are in doubt that they are accurate to six significant digits
for our samples). Upon doing so we denote the mass fraction as φm and the molar
fraction as φn, respectively. The resulting temperature dependence of the diffusion
coefficient D, the Kelvin length σ provided by eq. (1.4), and the sedimentation
prefactor κ provided by eq. (4.33), are summarised in fig. A.1 in order to give easy
access to the constants appearing in the predictions eq. (5.15a) and eq. (5.16). The
temperature dependence translates to a time dependence when inverting the protocol
T (t) of the temperature ramp.

A.1 Isobutoxyethanol and water

The theoretical curves in figs. 5.7 and 5.8 use data on material parameters from a
variety of sources (Steinhoff and Woermann, 1995; Aratono et al., 1990; Doi et al.,
2000; Menzel et al., 2003; Douheret et al., 2002). The index i ∈ {IBE,W} will be
used to refer to material properties of IBE and water, respectively, and in accordance
with the phase diagram, fig. 2.2(a), the concentration are always given in terms of
φ = φIBE.

A.1.1 Density (based on Doi et al., 2000)

The densities of the phases are determined by the composition, thermal expansion
and molar excess volume,

ρ(φm, T ) =
[
φm

ρIBE
+ 1− φm

ρW
+
(

φm

MIBE
+ 1− φm

MW

)
V n

E

]−1
, (A.1)

where ρi = ρi(T ) are the (temperature-dependent) densities of the pure substances,
Mi their molar masses, and V n

E = V n
E (φn) is the molar excess volume.
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Figure A.1: Material constants. (a) The diffusion coefficient D, (b) the Kelvin length
σ, and (c) the sedimentation prefactor κ as a function of the reduced temperature θ for
IBE+W (solid lines) and M+H (dashed lines). The thick blue and the thin red lines show
the dependence in the lower and the upper layer of the fluid mixtures, respectively.

ρi(T0) [g cm−3] αi [g cm−3 K−1]
water 0.997043 0.2571× 10−3

IBE 0.886255 0.968× 10−3

Table A.1: Densities and thermal expansion coefficients for water and IBE according to
Doi et al. (2000).

The molar masses,Mi are 18.01528 g/mol for water (PubChem, 2013d) and 118.17416 g/mol
for IBE (PubChem, 2013a), respectively.

The temperature dependence of the density, ρi(T ), of the pure substances is linearly
approximated around T0 = 25◦C,

ρi(T ) = ρi(T0)− αi (T − T0) (A.2)

with fit parameters for ρi and αi given in table A.1.
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A.1 Isobutoxyethanol and water

A [kgm−1 s−1] B C [(◦ C)−1] D [◦ C]
water 1.002× 10−3 1.3272 0.001053 105
IBE 3.4× 10−3 1.7 0.001 110

Table A.2: Data of Weast (1988-1989) for the fit coefficients for the viscosity of water and
IBE, defined by eq. (A.4). In both cases T0 = 20◦C is used as reference temperature.

Moreover, the molar excess volume is fitted according to Doi et al. (2000):

V n
E (φn) = φn (1− φn)

1−G φ

(
A1 +A2 φ+A3 φ

2
)

(A.3)

with φ = 1− 2φn

and G = 0.975 ,

A1 = −3.079 cm3/mol ,

A2 = 1.801 cm3/mol ,

A3 = 0.839 cm3/mol .

A slight temperature dependence of these fit parameters was reported in Doi et al.
(2000). However, it is so small that we need not take it into account here.
To get the dependence of the density difference on the reduced temperature the
dependence φ(θ) (coexistence curve) into eq. (A.1).

A.1.2 Viscosity (own measurements augmented by data of Weast,
1988-1989; Menzel et al., 2003)

We first provide the data of the pure phases, and then obtain the viscosity of the
mixture by appropriate interpolation.
Following Weast (1988-1989) we describe the temperature dependence of the pure
substances by

µi(T ) = Ai 10
Bi (T0−T )−Ci (T0−T )2

T+Di . (A.4)

In table A.2 we provide the values for pure water provided in Weast (1988-1989),
and parameters of a fit for IBE whose viscosity we determined with an Ubbelohde
viscometer type 537 10/I made by Schott. To interpolate the viscosities for a mixed
phase of given mass fraction φm we use the composition-dependent viscosities at
the reference temperature Tr = 25◦C for a homogeneous mixture in the single-phase
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regime (Menzel et al., 2003). The data is fitted with a fifth order polynomial

µ(φm, Tr) = −40.66 (φm)5 + 103.44 (φm)4 − 100.32 (φm)3

+ 39.35 (φm)2 + 0.17φm + 0.91 (A.5a)
= wµ(φm) µIBE(T = 25◦C) + [1− wµ(φm)] µW(T = 25◦C) , (A.5b)

where the latter equation defines the dimensionless, non-linear weight function wµ
that expresses µ(φm, T = 25◦C) as a function of the viscosities of the pure substances
µIBE(T = 25◦C) and µW(T = 25◦C), respectively.
Assuming that this weight function is not varying substantially in the temperature
range of our measurements, we can use the interpolation eq. (A.5b) to determine
the viscosity of the mixture also at other temperatures. After all, the temperature
dependence µIBE(T ) and µW(T ) were provided by eq. (A.4) with coefficients in
table A.2. To check the strong assumption entering this interpolation,

µ(φm, T ) = wµ(φm) µIBE(T ) + [1− wµ(φm)] µW(T ) , (A.6)

we measured the viscosity of the two coexisting phases at T = 40◦C. For both phases
the prediction of eq. (A.6) was accurate to within 2%. This is sufficient for our
purposes.

A.1.3 Diffusion coefficient (based on Steinhoff and Woermann, 1995)

The renormalisation group theory predicts that the diffusion coefficient vanishes when
the critical point is approached. On the other hand, the renormalisation group theory
is precise only in the vicinity of the critical point, and its application to interdiffusion
coefficients has been a source of controversy (Sengers, 1985; Das et al., 2006). For
this reason we choose to rely upon interpolations of experimental data. We do not
expect that our data follow the critical exponents because the temperatures in our
experiments lie outside the critical region. Hence, we fitted the data of Steinhoff and
Woermann (1995) with the following expression:

Di(θ) = Dc + δi θ (A.7)

with Dc = 6.4× 10−12m2/s, δIBE = 2.1× 10−9m2/s and δW = 4.1× 10−9m2/s.

A.1.4 Interfacial tension (based on Aratono et al., 1990)

The interfacial tension vanishes at the critical temperature, and its dependence at
higher temperatures can be represented by a power law

γ(θ) = γ0 θ
αγ , (A.8)

118



A.2 Methanol and hexane

a0 [g cm−3] a1 [g cm−3 K−1] a2 [g cm−3 K−2]
methanol 1.382 −3.135× 10−3 3.813× 10−6

hexane 0.6839 6.989× 10−4 −2.656× 10−6

Table A.3: Coefficients of the density (Abbas et al., 1997).

where a fit to the data of Aratono et al. (1990) yields γ0 = 7.3 × 10−4N/m and
αγ = 1.2.

A.1.5 Molar volume (based on Douheret et al., 2002)

According to Douheret et al. (2002) the molar volume V n can be approximated by

V n = φn V n
IBE + (1− φn) V n

W (A.9)

with V n
IBE = 124cm3/mol and V n

W = 15.98cm3/mol.

A.2 Methanol and hexane

In this subsection the index i ∈ {M,H} denotes material constants of the methanol
and hexane, respectively, and concentrations refer to methanol, φ = φM.

A.2.1 Density (based on Abbas et al., 1997; Orge et al., 1997)

The densities are again calculated according to eq. (A.1). In this case the molar mass
is 32.04186 g/mol for methanol (PubChem, 2013c) and 86.17536 g/mol for hexane
(PubChem, 2013b). The temperature dependence of the pure substances amounts to
(Abbas et al., 1997)

ρi(T ) = a0 + a1 T + a2 T
2 (A.10)

with coefficients given in table A.3. The excess volume is expressed as (Orge et al.,
1997)

V n
E (φn) = φn (1− φn)

[
B0 +B1φ+B2φ

2
]

(A.11a)

with φ = 1− 2φn

and B0 = 2.0741 cm3/mol,
B1 = 0.3195 cm3/mol,
B2 = 1.7733 cm3/mol.
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A.2.2 Viscosity (based on Assael and Polimatidou, 1994; Eicher and
Zwolinski, 1972; Orge et al., 1997)

We first provide the data of the pure phases, and then obtain the viscosity of the
mixture by appropriate interpolation.
The viscosity of pure methanol (Assael and Polimatidou, 1994) is

µM(T ) = A exp(B/T ) (A.12)

with A = 8.203× 10−6Pa s and B = 1251.4K.
For hexane our analysis is based on the kinematic viscosity νH provided in Eicher
and Zwolinski (1972)

νH(T ) = ν ′
(
T

T ′

)n
exp

(
B(T ′ − T )

(T ′ − T0)(T − T0)

)
(A.13)

with n = −2.24057, B = 4.78496K and T0 = 222.468K, reference viscosity ν ′ =
0.4604× 10−10m2/s, and reference temperature T ′ = 296.267K. Together with the
density of hexane, which is provided in eq. (A.10), this provides the dynamic viscosity
µH = ρH νH.
The viscosity of the mixture is obtained by interpolating based on the excess viscosity
provided in Orge et al. (1997)

µ(φn, T ) = φn µM(T ) + (1− φn)µH(T ) + φn (1− φn) [B0 +B1(1− 2φn)](A.14)

with B0 = −1.83× 10−4kgm−1 s−1

B1 = 0.91× 10−4kgm−1 s−1 .

A.2.3 Diffusion coefficient (based on Clark and Rowley, 1986)

The dependence of the diffusion coefficient D(φn, θ) on the concentration φn of the
mixture and on the reduced temperature θ can be approximated by (Clark and
Rowley, 1986)

D(φn, θ) = A0 +A1 φ
n +A2 (φn)2 +A3 (φn)3 +A4 (φn)4 +Aθ θ

0.68516(A.15)
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A.2 Methanol and hexane

with A0 = 3.2457× 10−9 m2/s,

A1 = −1.68497× 10−8 m2/s,

A2 = 3.63103× 10−8 m2/s,

A3 = −4.1949× 10−8 m2/s,

A4 = 2.223× 10−8 m2/s,

and Aθ = 2.5067× 10−9 m2/s .

Similarly to the expression eq. (A.7) the fit for the M+H mixture involves a constant
background contribution, and the singular contribution expected from the theory of
critical phenomena. Clark and Rowley (1986) fitted the composition dependence of
the background contribution by a forth-order polynomial in φn, and introduced the
term A5 θ

0.68516 to account for the singular contribution to the diffusion. The latter
term vanishes at T = Tc with the appropriate critical scaling exponent, 0.68516.

A.2.4 Interfacial tension (according to Abbas et al., 1997)
Data of interfacial tension (Abbas et al., 1997) are parametrised according to eq. (A.8)
with γ0 = 3.631× 10−2N/m and αγ = 1.65. This data lies beyond the critical region
of θ < 10−2.5 where scaling with a critical exponents is expected (Abbas et al., 1997).

A.2.5 Molar volume (according to Maruyama et al., 1995)
The molar volume is interpolated with eq. (A.9) with V n = 41.1cm3/mol for methanol
and V n = 133.2cm3/mol for hexane (Maruyama et al., 1995).
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