
 

 

Importance of CXCL12 and CXCR4 in radiotherapy 

of head and neck cancer, considering the association 

with HPV-infection 

 

Doctoral thesis 

In partial fulfillment of the requirements for the degree 

“Doctor of Philosophy (PhD)” 

 

in the Molecular Medicine Study Program 

at the Georg-August University Göttingen 

submitted by 

Narges Tehrany 

born in  

Teheran, Iran 

Göttingen, 2015 



 

 

Members of the Thesis Committee: 

 

Prof. Dr. Peter Burfeind 

Institute of Human Genetics, University Medical Center Göttingen 

 

Prof. Dr. Holger Reichardt 

Department of Cellular and Molecular Immunology, University 

Medical Center Göttingen 

 

PD. Dr. med. Hendrik A. Wolff 

Department of Radiotherapy and Radiation Oncology, University 

Medical Center Göttingen 

 

 

 

 

Date of Disputation: 11.08.2015 

 

 



 

 

 

 

AFFIDAVIT 

 

Herewith I declare that my doctoral thesis entitled: "Importance of 

CXCL12 and CXCR4 in radiotherapy of head and neck cancer, 

considering the association with HPV-infection" has been written 

independently with no other sources and aids than quoted. 

 

        ---------------------------- 

Göttingen,                 Narges Tehrany



Table of Contents  

 

i 

 

Table of Contents 

Acknowledgement ................................................................................................................................. v 

List of publication ................................................................................................................................ vii 

List of Abbreviations ............................................................................................................................ viii 

1. Introduction ..................................................................................................................................... 1 

1.1 Head and neck squamous cell carcinoma (HNSCC) ............................................................... 1 

1.1.1 Definition and incidence of HNSCC ...................................................................................... 1 

1.1.2 Risk factors for HNSCC ......................................................................................................... 2 

1.1.3 Prognostic factors in HNSCC patients ................................................................................... 3 

1.1.4 Survival of HNSCC patients and tumour recurrence ............................................................. 3 

1.1.5 Treatment of HNSCC ............................................................................................................. 4 

1.2 Active HPV-participation in HNSCC ........................................................................................... 6 

1.2.1 Human Papillomavirus (HPV) ............................................................................................... 6 

1.2.2 Molecular evidence for the role of HPV in HNSCC tumour progression .............................. 6 

1.3 The role of the microenvironment in tumour development ........................................................... 9 

1.3.1 Metastasis: a multistep process ............................................................................................ 11 

1.3.1.1 Three theories of seeding and colonisation in organ-specific metastasis ...................... 12 

1.3.2 Chemokines .......................................................................................................................... 14 

1.3.2.1 CXCL12 and its receptor CXCR4 ................................................................................. 15 

1.4 Aims of the present study ............................................................................................................ 19 

2. Materials and methods ....................................................................................................................... 21 

2.1 Materials ...................................................................................................................................... 21 

2.1.1 Laboratory equipment .......................................................................................................... 21 

2.1.2 Experimental and detection kits ........................................................................................... 22 

2.1.3 Buffers and media for cell culture ........................................................................................ 23 

2.1.4 Consumption materials ......................................................................................................... 24 

2.1.5 Antibodies ............................................................................................................................ 25 

2.1.6 Software and online tools ..................................................................................................... 25 

2.2 Methods for In vivo analysing HNSCC biopsies ......................................................................... 26 

2.2.1 Clinical specimens from HNSCC patients ........................................................................... 26 

2.2.1.1 HNSCC patient treatment and analysis of toxicity ........................................................ 26 

2.2.2 Immunohistochemistry (IHC) .............................................................................................. 27 

2.2.2.1 Scoring of the immunohistochemistry staining ............................................................. 27 

2.2.3 HPV DNA analysis............................................................................................................... 28 

2.2.3.1 HPV DNA extraction .................................................................................................... 28 

2.2.3.2 Sample DNA quality assessment ................................................................................... 28 

2.2.3.3 PCR analysis .................................................................................................................. 29 



Table of Contents  

 

ii 

 

2.2.3.4 Nested-PCR ................................................................................................................... 30 

2.2.3.5 Sequencing and HPV subtyping .................................................................................... 31 

2.2.4 Statistical analysis ................................................................................................................ 32 

2.3 Methods for In vitro analysing HNSCC and control cell lines .................................................... 33 

2.3.1 Cell cultures .......................................................................................................................... 33 

2.3.1.1 Cell lines ........................................................................................................................ 33 

2.3.1.2 Culture conditions and media ........................................................................................ 34 

2.3.1.3 Passage of adherent cell lines (subculture) .................................................................... 35 

2.3.1.4 Counting cells with the Neubauer counting chamber .................................................... 35 

2.3.1.5 Cryopreservation and thawing of cells .......................................................................... 36 

2.3.2 Real-time PCR ...................................................................................................................... 37 

2.3.3 Western blot analysis ............................................................................................................ 37 

2.3.3.1 Protein extraction........................................................................................................... 37 

2.3.3.2 Bradford assay ............................................................................................................... 38 

2.3.3.3 Gel electrophoresis ........................................................................................................ 39 

2.3.3.4 Western blotting ............................................................................................................ 40 

2.3.4 Immunocytochemistry (ICC) ................................................................................................ 41 

2.3.4.1 Preparation of Cytospin slides ....................................................................................... 41 

2.3.4.2 Immunocytochemical CXCL12 staining method .......................................................... 42 

2.3.5 Colony formation unit assay (CFU assay) ............................................................................ 42 

2.3.5.1 Seeding procedures ........................................................................................................ 43 

2.3.5.2 Cell irradiation ............................................................................................................... 45 

2.3.5.3 Colony fixation and crystal violet staining .................................................................... 45 

2.3.5.4 Counting of colonies...................................................................................................... 45 

2.3.5.5 Cell survival curves ....................................................................................................... 45 

2.3.5.6 Data analysis .................................................................................................................. 46 

2.3.6 Cell viability assay - Cell Titer Blue
®
 (CTB assay) ............................................................. 46 

2.3.6.1 Determination of optimal incubation time and radiation dose within CTB assay ......... 47 

2.3.6.2 Investigating various treatments on cell viability .......................................................... 49 

2.3.6.3 Data analysis .................................................................................................................. 49 

2.3.7 Migration assay .................................................................................................................... 50 

2.3.7.1 Determination of optimal concentrations of CXCL12 and AMD3100 ......................... 51 

2.3.7.2 Influence of irradiation and CXCL12 on cell migration ............................................... 51 

2.3.7.3 Influence of AMD3100 on CXCR4-positive migrating cells ........................................ 52 

2.3.7.4 Data analysis .................................................................................................................. 53 

3. Results ............................................................................................................................................... 54 

3.1 In vivo analysis of HNSCC biopsies ........................................................................................... 54 

3.1.1 General HNSCC patient data ................................................................................................ 54 



Table of Contents  

 

iii 

 

3.1.2 Analysis of CXCL12, CXCR4 and p16
INK4A

 expression at the protein level by 

immunohistochemical staining ...................................................................................................... 55 

3.1.2.1 Association of CXCL12, CXCR4 and p16
INK4A

 expression with pre-treatment 

parameters ................................................................................................................................. 58 

3.1.2.2 Correlation between CXCL12, CXCR4 and p16
INK4A

 expression in HNSCC tumours 61 

3.1.3. Correlation between p16
INK4A

 expression and HPV status in HNSCC tissue samples ........ 63 

3.1.4 Treatment outcome and high-grade acute organ and hematotoxicity in HNSCC patients ... 65 

3.1.4.1 Correlation of cytoplasmic expression of CXCL12, CXCR4 and p16
INK4A 

with acute 

toxicity during treatment ........................................................................................................... 66 

3.1.5 Association of CXCL12, CXCR4 and p16
INK4A

 expression with survival data of HNSCC 

patients........................................................................................................................................... 70 

3.1.5.1 Impact of CXCL12 and CXCR4 expression on patient survival ................................... 70 

3.1.5.2 Impact of p16
INK4A

 expression and the occurrence of HGAOT during R(C)T on HNSCC 

patient survival .......................................................................................................................... 74 

3.2 The role of CXCL12 and CXCR4 in the migration of irradiated HNSCC and control cell lines 

(in vitro analysis) ............................................................................................................................... 76 

3.2.1 Characterisation of the cell lines .......................................................................................... 76 

3.2.1.1 CXCL12 and CXCR4 mRNA expression ..................................................................... 76 

3.2.1.2 CXCR4 protein expression ............................................................................................ 76 

3.2.1.3 CXCL12 immunocytochemistry ................................................................................... 78 

3.2.1.4 Investigation of the radiosensitivity of the cell lines ..................................................... 79 

3.2.1.5 Metabolic activity of the cell lines under different treatment conditions ...................... 82 

3.2.1.5.1 Preliminary experiments ......................................................................................... 82 

3.2.1.5.2 Main experiment: Analysis the cell viability of cells under different treatment 

conditions .............................................................................................................................. 85 

3.2.2 The role of CXCL12 and CXCR4 in the migration of  HNSCC and control cells ............... 87 

3.2.2.1 Preliminary experiments ................................................................................................ 87 

3.2.2.2 Migratory response of HNSCC and control cells with different level of CXCL12 and 

CXCR4 expression .................................................................................................................... 90 

4. Discussion ......................................................................................................................................... 93 

4.1 Summary of results ...................................................................................................................... 93 

4.2 The crucial role of HPV/P16
INK4A

 in prognosis and survival of HNSCC patients ...................... 95 

4.2.1 HPV detection ...................................................................................................................... 95 

4.2.2 HPV/p16
INK4A

-associated HNSCC and prognosis of patients .............................................. 98 

4.2.3 Combined effect of p16
INK4A

 expression and the occurrence of HGAOT on patients’ 

survival .......................................................................................................................................... 99 

4.3 Analysis of the prognostic roles of CXCL12 and CXCR4 ........................................................ 102 

4.4 Migration of HNSCC cell lines along a CXCL12 gradient ....................................................... 105 

4.4.1 Characterisation of the employed cell lines ........................................................................ 105 

4.4.2 Effect of irradiation on the migration behaviour of HNSCC and control cell lines among a 

CXCL12 gradient ........................................................................................................................ 107 



Table of Contents  

 

iv 

 

4.5 Future directions ........................................................................................................................ 108 

5. Conclusion ....................................................................................................................................... 110 

6. Bibliography .................................................................................................................................... 113 

Curriculum Vitae ................................................................................................................................. 136 

 

 



Acknowledgement 

 

v 

 

Acknowledgement 

Completing a thesis is a scientific challenge. Without the generous guidance and the help of 

several individuals who in one way or another contributed and extended their valuable 

assistance in the preparation and completion of this study, it cannot be successfully done.  

I am deeply grateful to Prof. Dr. Peter Burfeind, for his useful suggestion, aspiring guidance, 

encouragement, criticism and trust.  

I also express my warm thanks to Prof. Dr. Holger Reichardt, for his scientific discussions 

and suggestions. 

I gratefully acknowledged PD. Dr. med. Hendrik Wolff, for his personal attention, academic 

and financial support. For giving me the opportunity to perform such an important and also 

exciting research in his research group. He positively encouraged and constructively prodded 

me along, and for this, I am very thankful. 

Special thanks go to laboratory leader Ms. Margret Rave-Fränk, for her constructive advices, 

valuable suggestion and patient correction of my thesis. Her expertise and advice were very 

beneficial for the progress of my project. 

Thanks are also addressed to Dr. med. Julia Kitz and Dr. Li Li for collaborating with me and 

giving me the opportunity to do some of my experimental work in their laboratory, in the 

Department of Pathology. Dr. Li, I really appreciate the scientific discussion we had. Thank 

you to Dr. Kitz for our social and research conservation. 

This research project would not have been possible without the support of members of the 

Radiotherapy and Radiation Oncology laboratories, for technical help and for sharing their 

time with me, and also for the friendship and constant support: Juliane Kasten-Krapp, 

Alexandra Bitter and Sandra Hoffmeister. In addition, the laboratory staffs of the Department 

of Pathology for the warm welcome help and support: Judith Wolf-Salgo and Anke Klages. 

A special thanks to my parents, my sister and friends for supporting me through this 

endeavour; my father, for his support and interest in my work through all the time, my dear 

mother, no words will describe her importance in my life, who continuously inspired me and 



Acknowledgement 

 

vi 

 

encourage me to go beyond my limit, and my sister for her endless love and persistent 

confidence in me. 

Last but not least, I would like to thank my husband, for his faithful love, kindness, constant 

patience and support he has shown during the past three years, which has taken me to finalize 

this thesis. 



List of publication 

 

vii 

 

 

List of publication 

 

 

 

I. Narges Tehrany, Julia Kitz, Margret Rave-Fränk, Stephan Lorenzen, Li Li, Stefan 

Küffer, Clemens F. Hess, Peter Burfeind, Holger M. Reichardt, Martin Canis, Tim 

Beißbarth, Hendrik A. Wolff. “High-grade acute organ toxicity and p16
INK4A

 

expression as positive prognostic factors in primary radio(chemo)therapy for 

patients with head and neck squamous cell carcinoma”. Strahlentherapie und 

Onkologie, 2015; DOI 10.1007/s00066-014-0801-3 

 

 

http://www.google.de/url?url=http://link.springer.com/journal/66&rct=j&frm=1&q=&esrc=s&sa=U&ei=OdswVdeyOszhap-EgNgN&ved=0CBoQFjAB&sig2=AWuVrPrNmdRUwyTx4uvCxQ&usg=AFQjCNH0BMx2oJ5RBrZ8rc8-1cjZpnCtSA
http://www.google.de/url?url=http://link.springer.com/journal/66&rct=j&frm=1&q=&esrc=s&sa=U&ei=OdswVdeyOszhap-EgNgN&ved=0CBoQFjAB&sig2=AWuVrPrNmdRUwyTx4uvCxQ&usg=AFQjCNH0BMx2oJ5RBrZ8rc8-1cjZpnCtSA


List of Abbreviations 

 

viii 

 

List of Abbreviations 

 

°C Degree Centigrade 

A Purinbase Adenin 

AJCC The American Joint Committee on Cancer 

ATCC The American Type Culture Collection 

bp Base pair (s) 

BSA Bovine serum albumin 

C Pyrimidinbase Cytosine 

CD Cluster of differentiation 

CFU assay Colony-formation unit assay 

CT Chemotherapy 

CTB assay Cell Titer Blue
® 

assay 

CTC Common Toxicity Criteria 

DFS Disease free survival 

DNA Deoxyribonucleic acid 

DMF The dose-modifying factor 

DMFS Distant metastasis-free survival 

DMSO Dimethyl sulphoxide 

dNTPs Deoxynucleoside-5’-phosphate 

EDTA Ethylenediamine tetraacetic acid 

EGFR Epidermal growth factor receptor 



List of Abbreviations 

 

ix 

 

ELISA The enzyme-linked immunosorbent assay 

EMT Epithelial-to-mesenchymal transition 

ERK  Extracellular signal-regulated kinases  

et al. et alteres 

FCS Fetal calf serum 

FFPE Formalin fixed, paraffin embedded 

FFS Failure-free survival 

g Gram 

G Purinbase Guanosin 

GDP Guanosine diphosphate 

GPCRs G-protein-coupled receptors 

Gy Gray (unit of ionizing radiation dose) 

HGAHT High-grade acute hematotoxicity 

HGAOT High-grade acute organ toxicity 

HIF-1 hypoxia-inducible factor-1 

HIV-1 Human immunodeficiency virus-1 

HNSCC Head and Neck Squamous Cell Carcinoma 

HR-HPV High-risk human papilloma virus 

IFN-γ Interferon γ 

ICC immunocytochemistry 

IHC immunohistochemistry 

IL-6 Interleukin-6 

ISH in situ hybridization 



List of Abbreviations 

 

x 

 

kDa Kilo Dalton 

L litre 

LCR Long control region 

LRC Loco-regional control rates 

LRFS Local recurrence-free survival 

HIF-1 Hypoxia-inducible factor-1 

HPV Human Papilloma Virus 

mA Milliampere 

MAPK Mitogen-activated protein kinases 

min Minute 

ml Millilitre 

mm Millimetre 

mM Millimolar 

MMP Matrix metalloproteinase 

mRNA Messenger Ribonucleic acid 

ng nanogram 

nm Nanometre 

OD Optical density 

OPSCC Oropharyngeal squamous cell carcinoma 

ORF Open reading frame 

OS Overall survival 

OSCC Oral squamous cell carcinoma 

PBS Phosphate buffered saline 



List of Abbreviations 

 

xi 

 

PCR Polymerase chain reaction 

RCT Radiochemotherapy 

PE The plating efficiency 

pH Negative decimal logarithm of the hydrogen ion concentration 

pRb Retinoblastoma protein 

rpm Rounds per minute 

RT Radiotherapy 

SCC Squamous cell carcinoma 

SDF-1 Stromal cell-derived factor-1 

SDS sodium dodecyl sulphate 

SE Standard error 

SF The surviving fraction 

T Pyrimidinbase Thymidine 

TGF-β1 Transforming growth factor beta 1 

TNF-α Tumour necrosis factor-α 

TNM staging Tumour, Node and Metastasis staging 

UICC The Union Internationale Contre le Cancer 

V Volt 

VEGF Vascular endothelial growth factor 

vs. versus 

WB Western blot 

WHO The World Health Organization 

µ Micro = 10
-6

 



Introduction 

 

1 

 

1. Introduction 

1.1 Head and neck squamous cell carcinoma (HNSCC)  

1.1.1 Definition and incidence of HNSCC 

Tumours of the head and neck region develop from the mucosal lining of the upper 

aerodigestive tract and include malignant tumours of the nasal cavity and the paranasal 

sinuses, the nasopharynx, the hypopharynx, the larynx, the trachea, the oral cavity and the 

oropharynx (Figure 1.1). Histologically, most of malignant tumours of the head and neck 

region are squamous cell carcinomas (SCC) (Epstein et al. 2008). The remainder are 

adenocarcinomas, adenoid cystic carcinomas, non-Hodgkin’s lymphomas, melanomas and 

sarcomas (Böcker et al. 2004).
  

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Anatomy of the head and neck illustrating the location of paranasal sinuses, na sal 

cavity, oral cavity, tongue, salivary glands, larynx, and pharynx  (including nasopharynx, 

oropharynx, and hypopharynx). The Figure was taken From the National Cancer Institute 

www.cancer.gov/cancertopics/factsheet/Sites-Types/head-and-neck). 

http://www.cancer.gov/cancertopics/factsheet/Sites-Types/head-and-neck
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Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common carcinoma in 

the Western world (Ferlay et al. 2008). In 2002, the World Health Organization (WHO) 

estimated that there were about 600,000 new cases of head and neck cancer each year which 

affected primarily the oral cavity (389,000 cases), the larynx (160,000) and the pharynx 

(65,000) and 300,000 persons died from these cancers each year worldwide (Boyle and Levin 

2008). 

Recently, a marked increase in the prevalence of tonsillar and oropharyngeal carcinoma 

associated with human papillomavirus (HPV) has been observed. In a population-based study, 

the incidence of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) had 

increased by 225% between 1988 and 2004, while the incidence of HPV-negative 

oropharyngeal carcinoma had decreased by 50% in the same period (Chaturvedi et al. 2011). 

1.1.2 Risk factors for HNSCC 

HNSCC is primarily caused by exposure to alcohol and tobacco products. Tobacco-related-

products include cigarettes, cigars, and smokeless tobacco. The combination of both alcohol 

and tobacco increases the risk for HNSCC 13-fold compared with exposure to each agent 

alone (Gillison 2007). Smoking and alcohol have historically been the classic risk factors for 

approximately 42% of head and neck cancers. However, despite a shift in HNSCC 

epidemiology in recent decades, the incidence of oropharyngeal cancer has risen among 

younger persons with little or no history of smoking (Mehta et al. 2010, Cmelak 2012). It is 

now known that these tumours are caused by sexual transmitted HPV (Marur et al. 2010). 

HPV-associated oral cancers generally arise from the lingual and palatine tonsils in the 

oropharynx (Gillison 2004).  

Besides sexual behaviour, exposure to marijuana was also strongly associated with the high-

risk type of HPV infection, HPV-16 (Gillison et al. 2008). HPV infection in combination with 

alcohol and tobacco consumption may act synergistically to increase the HNSCC risk (Smith 

et al. 1998). Besides the above mentioned exogenous risk factors, oral hygiene (Guha et al. 

2007), certain inherited disorders and also a more general genetic susceptibility may 

predispose to HNSCC (Hopkins et al. 2008).  
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1.1.3 Prognostic factors in HNSCC patients 

There are numerous factors which affect the prognosis of HNSCC. The primary site of tumour 

and the TNM (tumour, node, and metastasis) stage are the most important prognostic factors 

(Kowalski and Carvalho 2001). In addition, the infection with HPV has been known to be of 

significant prognostic importance and HPV-positive HNSCC patients showed a better 

prognosis (Gillison et al. 2008). 

Molecular markers of prognosis have been studied but none has yet entered routine clinical 

reporting. Several candidates have been suggested. Based on a large study by Poeta et al.,  

patients with tumour expressing wild-type p53 had better five-year overall survival (OS) 

compared to tumours which were positive for p53 mutation (Poeta et al. 2007). In a meta-

analysis of 12 studies, the tumours with expression of vascular endothelial growth factor 

(VEGF) had twice the risk of specific cancer mortality (Kyzas et al. 2005). Some other 

studies showed that tumour hypoxia, in particular the increased expression of hypoxia-

inducible factor-1α (HIF-1 α), associated with adverse prognosis and local tumour 

aggressiveness (Aebersold et al. 2001, Yeo et al. 2004). Moreover, patients with high 

expression of epidermal growth factor receptor (EGFR) had poor prognosis and has also been 

linked to radiotherapy and drug resistance (Dai et al. 2005, Silva et al. 2007). The role of the 

CXCL12/CXCR4 axis in HNSCC has been investigated in some studies, and for the subgroup 

of oral squamous cell carcinoma (OSCC) a correlation between CXCR4 expression and OS 

was described (Salcedo et al. 1999, Katayama et al. 2005, Uchida et al. 2007), as well as a 

correlation between CXCR4 expression and lymph node or distant metastasis (Salcedo et al. 

1999, Katayama et al. 2005, Ishikawa et al. 2006, Keeley et al. 2010, Ueda et al. 2010). 

CXCL12 expression was found to be higher in metastatic lymph nodes than in the primary 

tumour, and the intra-tumour CXCL12 levels correlated with the OS (Clatot et al. 2011). 

Although many biomarkers correlate with metastasis and mortality of HNSCC, none is 

appropriately independent or has prognostic value to be used routinely. 

1.1.4 Survival of HNSCC patients and tumour recurrence 

Despite improvements in surgical techniques, chemotherapy (CT) and radiotherapy (RT), the 

five-year survival rate for patients with HNSCC has remained relatively stable at less than 

50% and has not changed since the 1960’s (Forastiere et al. 2001, Bose et al. 2013). Low 
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survival rates are mainly due to a disease recurrence, which can lead to treatment failure and 

subsequent death. After tumour resection minimal leftover of tumour cells may remain 

adjacent to the lesion that are undetectable during histopathological assessment (van Houten 

et al. 2002) and cancer cells that were not removed are still present during post-treatment, 

which can lead to a recurrence of the disease. 

Early detection of HNSCC is the most critical step in reducing morbidity and mortality. About 

one third of the patients present with stage I or stage II disease have a cure rate of up to 90% 

and 70%, respectively (Argiris et al. 2008). After surgery, patients with late-stage disease 

often present with a local recurrence or a distant tumour
 
(Argiris et al. 2008). In advanced 

HNSCC cases the tumour can metastasise to the lymph nodes causing cancer cell growth in 

the neck
 
(Argiris et al. 2008). The survival rate of head and neck cancer patients decreases by 

at least 50% if lymph nodes positive for the tumour
 
are detected (Sanderson and Ironside 

2002). The most common anatomical sites of distant metastases are the lungs, followed by 

bones and the liver (Leon et al. 2000, Ferlito et al. 2001).  

Most HNSCC patients present with cervical lymph node metastasis (Beasley et al. 2002). As 

an independent prognostic factor, cervical lymph node metastasis has a great impact on the 

OS of patients with HNSCC (Burusapat et al. 2015). Cervical metastasis is perhaps the most 

significant oncological factor in the prognosis of HNSCC, and if they are detected and treated 

early have a favourable prognosis (Burusapat et al. 2015). However, once distant metastases 

occur, the patients have an extremely poor prognosis. The mean survival time after the 

diagnosis of distant metastases is about six months and 90% of patients die within two years 

(Calhoun et al. 1994). 

1.1.5 Treatment of HNSCC 

The management of patients with HNSCC is currently a significant oncological challenge. 

The overall aim is to achieve increasingly higher survival rates. The consequences of 

treatment failure that often occur in late-stage disease such as facial disfigurement, loss of 

speech and impairment of the vital survival functions of swallowing and breathing can cause 

serious medical and psychosocial problems. Because of these psychosocial stress factors, the 

patients also are at risk of developing severe depression (Haddad et al. 2006).  
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The bases of treatment of HNSCC are surgery, RT, CT and to a lesser extent novel targeted 

therapies. Treatment modalities vary depending on the stage of the disease at the time of 

diagnosis and tumour histology (Chin et al. 2006). For early stage HNSCC without regional 

metastases, one treatment modality is sufficient, usually wide surgical excision or curative RT 

(Chin et al. 2006, Pai and Westra 2009). However, approximately 60% of the patients are 

diagnosed in stage III. For late-stage primary tumours with or without regional metastases, 

treatment usually consists of a combination of surgery and post-operative RT or 

radiochemotherapy (RCT) (Chin et al. 2006, Perez-Ordonez et al. 2006, Pai and Westra 

2009). However, when comparing the evidences available to determine the optimal 

therapeutic approach, it is clear that no single therapeutic approach offers a clear benefit over 

the others (Corvo 2007). Actually, ten percent of the patients presenting with metastases 

(Horner and Krapcho 2009) and about 50% of the patients treated for advanced disease will 

have a recurrence (Clark et al. 2005, Boyle and Levin 2008).  

Aside from the outcome, the quality of life is also influenced by the therapeutic approaches. 

The long-term side-effects affecting the quality of life vary depending on the treatment, i.e. 

RT, CT or both. For instance, irradiation frequently causes organ or hematotoxicity. In studies 

on patients with inoperable HNSCC without distant metastases Wolff et al. showed a 

significant connection between high-grade acute organ toxicity (HGAOT) during primary 

R(C)T and OS and locoregional tumour control, compared to patients undergoing these 

treatments without developing acute organ toxicity (Wolff et al. 2010a). The same significant 

correlation was also observed for patients with locally advanced HNSCC when were treated 

with adjuvant RCT (Wolff et al. 2011b). In a study on locally advanced rectal cancer Wolff 

and co-workers also reported a statistically significant correlation between HGAOT during 

preoperative RCT and complete tumour regression (Wolff et al. 2010b). Similar results were 

also observed in patients with breast cancer by Kuhnt et al. (Kuhnt et al. 1998). In addition, 

Wolff et al. showed a significant correlation between HGAOT and OS and locoregional 

control in patients with anal carcinoma (Wolff et al. 2010c). They reported that patients with 

HGAOT have a five-year OS rate of 97% compared to 30% for patients without HGAOT.  

Although the differences in the biological and clinical characteristics of HPV-associated 

HNSCC and HPV-negative tumours have been known for several years, the treatment 

approaches have not taken this into account in the case of HPV-positive HNSCC patients. 

Some retrospective studies reported that patients with HPV-positive tumours have a better 

overall or disease-specific survival rate than those with HPV-negative tumours (Ringstrom et 
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al. 2002, Klussmann et al. 2003, Hafkamp et al. 2008) regardless of the employed therapy 

(Fakhry et al. 2008, Fallai et al. 2009, Lassen et al. 2009, Ang et al. 2010).  

There are still no sufficient prospective clinical trials clarifying whether changes in treatment 

modalities, such as reducing the intensity of the therapy, can influence the quality of life of 

those patients with HPV-positive tumours and at the same time can maintain or further 

improve survival rates. 

1.2 Active HPV-participation in HNSCC 

1.2.1 Human Papillomavirus (HPV) 

HPV are small, non-enveloped, epitheliotropic, circular double-stranded DNA viruses 

(Schiffman et al. 2007). There are more than 150 different known types of HPV (Bernard 

2010) that can be divided into two groups according to their risk for humans, i.e. “high-risk” 

HPV types (potentially oncogenic) and “low-risk” HPV types (rarely or never oncogenic) 

(Chow et al. 2010). According to the literature the group of high-risk HPV types includes 

HPV-16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 and 59 (IARC 2011). Particularly HPV-16 and 

18 are known to cause malignant transformation of normal cervical epithelial cells (Clifford et 

al. 2003). Accordingly, some studies analysed the role of HPV as an aetiological agent in a 

subset of HNSCC (Kreimer et al. 2005, Strati and Lambert 2007, Allen et al. 2010). Based on 

currently available evidence, oral HPV infection is sexually transmitted to the upper 

aerodigestive tract, by oral genital contact (D'Souza et al. 2007). For instance, Anaya-

Saavedra et al. in a study of 62 patients and 248 controls showed that the presence of HPV 

DNA in the oral cavity was significantly related with a younger age of first sexual contact and 

increasing numbers of lifetime sexual partners (Anaya-Saavedra et al. 2008). In addition, 

HPV-6 and HPV-11 as low-risk HPV types have also been detected in some HNSCC patients, 

which may indicate that these low-risk HPV types are not truly benign (Kreimer et al. 2005). 

1.2.2 Molecular evidence for the role of HPV in HNSCC tumour progression 

The HPV genome is approximately 8 kbp in length with eight open reading frames (ORFs), 

which encode the early genes (E1, E2, E4, E5, E6 and E7) and two late genes (L1 and L2) 

(Letian and Tianyu 2010). While the early expressed proteins are involved in replication, 
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transcription or the regulatory function of the HPV genome, the L1 and L2 genes convey the 

information for the capsid proteins. The transcription of the early and late genes is controlled 

by the non-coding LCR (long control region), which contains the origin of replication, 

promoters, binding sites for core transcription factors, enhancer and repressor proteins (Chow 

et al. 2010) (Fig. 1.2).  

After entering the host cell, the E1 and E2 genes, which are required for the replication of 

viral DNA, are expressed (Motoyama and Ladines-Llave 2004, Zur Hausen 2006) to permit 

an episomal form of the viral genome to be maintained (Wilson et al. 2002). HPV E4 is 

expressed at a later phase of the viral life cycle, when the virus particles assembled (Zur 

 

 

Figure 1.2: The organization of HPV-16. The HPV-16 DNA genome (7905 bp in size, circular 

double-stranded DNA) consists of two coding regions of early genes (E1 -E7; yellow), which are 

expressed early in the viral life cycle and the late genes (L1 and L2; green) that encode the structural 

capsid proteins. Two important proteins, E6 and E7 are known as oncoproteins. The E6 protein 

promotes cell proliferation and also inhibits apoptosis. The E7 protein is the main cause of the 

transformational potential of special high-risk HPV types. The non-coding region, the long control 

region (LCR), is located between L1 and E6 ORFs, which is responsible for the regulation of DNA 

replication and transcription. The figure was taken from (Villa 2006). 
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Hausen 2006). The E6 and E7 proteins are the critical molecules in viral replication and both 

are the major mediators of carcinogenesis in the high-risk HPV types. The L1 and L2 proteins 

are expressed late in the infection cycle and spontaneously form an icosahedral virus capsid 

consisting of 72 capsomeres (Baker et al. 1991). Before this happens it comes to the 

conformation of the virions, and completed viruses are then released from the outer layer of 

the epithelium (Hummel and Hudson 1992). 

The oncogenic E6 and E7 proteins are responsible for the progression of malignancy (Goia et 

al. 2010). The E6 protein of the high-risk HPV types, but not of the low-risk HPV types, has 

oncogenic potential. HNSCC with active HPV participation usually has an intact p53 

gene(Balz et al. 2003). However, the synthesised protein is inactivated by the E6 oncoprotein. 

As a result, cell proliferation will be favoured and apoptosis inhibited. Carcinomas without 

HPV involvement, however, often show mutations in the p53 locus (Wiest et al. 2002, 

Braakhuis et al. 2004) and are associated to a greater degree with tobacco and alcohol 

consumption (Brennan et al. 1995). However, the inactivation of p53 in HNSCC have no 

distinct significance role for tumour progression and prognosis (Bosch et al. 2004). 

Retinoblastoma protein (pRb), which is inactivated by the viral oncoprotein E7, also plays a 

central role in the carcinogenesis of HPV-associated HNSCC. However, a loss of function of 

the Rb gene, e.g. by mutation in HPV-negative HNSCC, is rare (Todd et al. 2002). If pRb is 

inactivated by HPV E7, the transcription factor E2F is permanently released to promote cell 

cycle progression (Dyson et al. 1989). This pathway is firmly regulated by a set of cyclin-

dependent kinase inhibitors, among them p16
INK4A

. In addition, the Rb protein is important for 

the negative regulation of p16
INK4A

 (Reimers et al. 2007). In functionally inactivated pRb 

cells, p16
INK4A 

is also synthesised in large quantities without any intervention in the cell cycle 

inhibition (Figure 1.3). Overexpression of p16
INK4A

 has often been used as an important 

marker for HPV E7 activity, and increased expression of p16
INK4A

 is frequently found in 

HPV-associated HNSCC (Klussmann et al. 2003, Weinberger et al. 2006, Reimers et al. 

2007, O’Regan et al. 2008). Since p16
INK4A

 overexpression is very seldomly seen in HPV-

negative HNSCC and because of the functional inactivation of pRb by E7 that results in 

p16
INK4A

 up-regulation, p16
INK4A 

positivity is considered to be a surrogate marker for HPV-

positive HNSCC (Sano et al. 1998).  
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1.3 The role of the microenvironment in tumour development 

It has become obvious that changes in the stromal microenvironment are important for the 

homeostasis of normal tissues and also for the progression, migration, invasion and metastasis 

of tumour cells (Bissell et al. 2002). Moreover, the secreted extracellular matrix that includes 

inhibitors, proteases, chemokines and growth factors affects both tumour and stromal cell 

behaviour (Mueller and Fusenig 2004). Interestingly, experiments by Polyak et al. have 

revealed that the initial modification leading to carcinoma development can occur either in 

epithelial cells or in adjacent stromal cells (Polyak et al. 2009). Furthermore, the stroma can 

both suppress and induce cancer progression (Bissell and Hines 2011).  

 

 

Figure 1.3: Schematic view of HPV infection of a mucosal cell.  The human pathogenic virus enters 

the host cell by endocytosis, after which it causes a persisting infection as a viral episome or integrates 

into the genome of the host cell. From both forms of the viral DNA, viral oncoprote ins such as E6 and 

E7 are expressed. This causes degradation of p53 and inhibition of pRb, respectively. E7 oncoprotein 

with dissociation of pRb and E2F causes a subsequent up -regulation of p16 INK4A. Various methods are 

established to detect HPV DNA, E6 and E7 oncogene or p16 INK4A expression with regard to the stage of 

HPV biologic activity. The figure was taken from (Allen et al. 2010). 
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The tumour microenvironment is composed of a non-cellular fraction consisting of collagen, 

elastin, fibronectin, fibrin, and a very heterogeneous cellular fraction. The latter mainly 

contains fibroblasts, epithelial cells and immune cells, which interact with each other and the 

adjacent tumour cells (Li et al. 2007). The interaction between tumour cells and stroma occurs 

in various ways. Tumour cells can influence the stroma directly by changing the surrounding 

extracellular matrix or indirectly by modulating the metabolism of stromal cells (Zigrino et al. 

2005). These direct or indirect effects are mediated by the release of soluble factors such as 

chemotactic factors by the tumour cells, which in consequence cause an active change in the 

cellular composition of the stroma (Zigrino et al. 2005). The stroma cells in turn affect the 

progression and the survival of the tumour cells by paracrine secretion. Furthermore, this 

cellular communication alters the cellular and molecular composition of a particular tumour 

microenvironment in a manner that supports cancer cell proliferation and increases the 

invasiveness and metastatic potential of tumour cells (Bhowmick and Moses 2005, Li et al. 

2007, Itano et al. 2008). Some stroma-derived soluble cytokines, such as tumour necrosis 

factor-α (TNF-α) and interleukin-6 (IL-6), may be exploited by the tumour cells in a manner 

that supports anti-apoptotic mechanisms and even fosters intratumoural angiogenesis, thus 

promoting local and systemic tumour dissemination or metastasis (Szlosarek et al. 2006, 

Knupfer and Preiss 2007).  

The proportion of the stroma varies from tumour to tumour, but in any case it plays a crucial 

role in tumour progression, and significantly influences the growth, invasiveness, metastatic 

behaviour and also the sensitivity of the tumour to the various types of therapy (Fukumura 

and Jain 2007, Tse and Kalluri 2007). Fibroblasts and immune cells represent a significant 

portion of the tumour environment, which by producing a broad spectrum of growth factors 

and chemokines can directly stimulate tumour cell growth and even their own precursor cells, 

so that they themselves respond with abnormal growth and proliferation pattern (Li et al. 

2007). It is also notable that the interstitial tissue of a solid tumour may exert an anti-

tumourigenic influence on the tumour cells. Particularly, interferon-γ (IFN-γ), a stroma-

derived soluble cytokine, is an example for reducing tumour mass formation by controlling 

inflammatory processes (Dranoff 2004).  
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1.3.1 Metastasis: a multistep process  

The important role of the stroma in the development of metastatic tumours was described 

towards the end of 20
th

 century. At that time the idea was established that tumours, depending 

on their nature, metastasise into some preferred organs. The conclusive role was ascribed to 

the microenvironment and can be read in Paget’s “Seed and Soil” hypothesis (Paget 1989). To 

recognize the importance of the development of metastases in tumour progression, we have to 

bear in mind that 90% of deaths from cancers are due to metastases (Sporn 1996). Since 

metastasis is the foremost cause of cancer morbidity and mortality (Jemal et al. 2010), 

understanding the development of metastasis is important to improve the patients’ survival 

rate. 

Metastasis is a multistep process, which is based on the complex interaction of various 

molecular mechanisms and a highly organized, non-randomized and organ-specific process 

(Howell and Grandis 2005). In a first step, by changes in cell-cell contacts and loss of 

adhesion, some cells from the primary tumours succeed in evading from the solid structure 

(Chambers 2001). Later, the invasive tumour cells individually or in a cell assembly become 

motile and either penetrate the blood system or enter a lymphatic vessel, a process which is 

referred to intravasation (Chambers 2001, Bogenrieder and Herlyn 2003, Howell and Grandis 

2005). In this step, proteolysis of the extracellular matrix and the directed migration/invasion 

of tumour cells play an essential role (Bogenrieder and Herlyn 2003). In a third step, the 

migrating tumour cells follow the routes of lymph or blood vessels until they reach a 

secondary organ, e.g. a lymph node, or lung or liver tissue, which they can invade (Figure 

1.4). After successful extravasation in the target organ, the invasive capacity, proliferation and 

angiogenesis of those cancer cells are key processes for the development of a metastasis 

(Chambers 2001, Bogenrieder and Herlyn 2003, Howell and Grandis 2005). Subsequently, 

those tumour cells can start to colonize the new environment to form a secondary neoplasm, 

or they might deactivate the cell cycle for some time which causes a delayed metastatic 

relapse (Hedley and Chambers 2009). Importantly, effective colonisation by migrated primary 

tumour cells in target organs crucially depends on the interaction between the tumour cells 

and the microenvironment (soil) of the distant organs (Paget 1989). 
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Although a number of known physiological molecules are important for stimulating tumour 

cell motility and invasion, the exact molecular mechanisms that mediate the directed 

migration/metastasis of tumour cells into a specific organ are largely unknown (Bogenrieder 

and Herlyn 2003, Wong and Hynes 2006).  

1.3.1.1 Three theories of seeding and colonisation in organ-specific metastasis 

Organ selectivity of migrated primary tumour cells is recognised for seeding and colonisation. 

Breast cancer cells for instance prefer to metastasise to the bones, the lungs and the brain, 

whereas colorectal cancer cells commonly colonise the liver. Three different concepts have 

been proposed that attempt to explain organ-specific metastasis.  

 

 

Figure 1.4: Schematic diagram of the metastatic cascade.  Some malignant tumour cells break away 

from the primary tumour and leave their primary site of growth (local invasion, intravasation) followed 

by systemic translocation (survival in ci rculation, arrest at a distant organ site, extravasation) and last 

but not least adjust to survive in distant tissue (metastatic formation). This figure was taken from 

(Valastyan and Weinberg 2011). 
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Growth factor theory 

This theory assumes that tumour cells can theoretically “seed” into all organs via the 

circulation. However, they can only colonise such organs that provide them with the 

appropriate growth factors (Chambers 2001).   

Adhesion theory 

This theory states that the extravasation of tumour cells is controlled by certain adhesion 

molecules, which are expressed by the endothelium in an organ-specific manner (Qian et al. 

2001). 

Chemoattractant theory  

This theory assumes that tumour cells can metastasise to certain organs on the basis of 

chemokine gradients, which means that the tendency for specific organs is determined by the 

local expression of chemoattractants (Figure 1.5) (Liotta 2001, Müller et al. 2001, Homey et 

al. 2002).  

Chemokines can attract and activate various. For which reason migrating tumour cells that 

express special chemokine receptors are guided to the site of future metastasis formation as a 

consequence of chemokine gradients. For instance, breast cancer patients that express the 

chemokine receptor CXCR4 have a poor prognosis (Zlotnik 2008). It has been shown that 

CXCR4-positive tumour cells migrate to organs that naturally express high quantities of its 

ligand, CXCL12 (also known as SDF-1; stromal cell-derived factor-1), such as lung, liver and 

bones (Figure 1.5). Actin polymerization and also pseudopod formation are the results of 

CXCR4-mediated signalling and the cause of invasion of primary tumour cells (Müller et al. 

2001). In addition, Müller et al. showed that in a xenograft mouse model neutralising  

CXCL12 or CXCR4 leads to a reduction of breast cancer metastasis (Müller et al. 2001). 
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1.3.2 Chemokines 

Cytokines are 15 to 25 kDa peptide mediators that are involved in paracrine and autocrine cell 

communication. Chemokines are small signal proteins with highly conserved three-

dimensional structures and members of the large family of chemotactic cytokines that can be 

synthesized by almost all cells in the human organism after stimulation.  

 

 

Figure 1.5: The functional relevance of chemokines and chemokine receptors in organ -specific 

metastasis according to the findings of Müller et al. (Müller et al. 2001). Malignantly transformed 

breast epithelial cells possess a highly chemokine receptor-enriched surface; such as CXCR4. 

Chemokines that bind to these kinds of receptors with a high affinity, e.g. CXCL12, are produced in 

high quantities only by certain organs such as bone marrow, liver and lung. Once malignant primary 

breast cancer cells locally invade the vascular and lymphatic system, they are attracted to organs 

producing high amounts of chemokines. This hypothesis reflects the relative organ -specific metastasis 

of malignant cells. The figure was taken from Nature (Liotta 2001). 
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Chemokines are categorized into four main families, CL, CCL, CXCL and CX3CL, based on 

the number and location of cysteine residues at the C-terminus end, where X represents any 

amino acid and L stands for ligand (Murphy 2002). According to the 2003 IUIS/WHO 

classification, the chemokines are designated corresponding to their subfamily as CCL1-28, 

CXCL1-17, XCL1-2 and CX3CL1. 

Chemokines mediate their biological effects through G-protein-coupled receptors (GPCRs), 

which belong to the group of seven-transmembrane domain receptors (Holmes et al. 1991). 

These chemokine receptors have a chain length of 340 to 370 amino acids. The N-terminus 

lies outside the cell membrane, three extracellular and three intracellular loops span the cell 

membrane and the C-terminus is located in the cytosol (Singh et al. 2007). Most chemokine 

receptors bind several chemokines of the same subfamily with different affinities. Some 

chemokine receptors such as CXCR4 interact with its ligand, in this case CXCL12, with high 

affinity (Bleul et al. 1996b). 

The main function of chemokines and their corresponding receptors is to induce chemotaxis 

of blood cells, i.e. initiate the targeted migration of cells along a gradient to the site of the 

highest chemokine concentration (Zlotnik and yoshie 2000, Schier 2003). Chemokines are 

also known to be crucial regulators in the migration of other cell types. O´Harye et al. showed 

that chemokines play a key role in the progression of tumour development and also as an 

important chemoattractant aid in forming the tumour’s microenvironment. Moreover, 

chemokines ensure survival and proliferation of metastasised cells (O´Harye et al. 2008). 

Furthermore, chemokines such as CXCL12 are essential for embryogenesis, organogenesis, 

haematopoiesis (Nagasawa et al. 1996, Ma et al. 1998, Zou et al. 1998, Bagri et al. 2002, 

Doitsidou et al. 2002), organ-specific metastasis (Müller et al. 2001) and (tumour) 

angiogenesis (Liang et al. 2007). The major focus of the present study is the chemokine 

receptor CXCR4 and its ligand CXCL12. 

1.3.2.1 CXCL12 and its receptor CXCR4 

CXCL12 (also known as SDF-1, stromal cell-derived factor-1) belongs to the CXC 

chemokine subfamily and was originally isolated from a stromal cell line of murine bone 

marrow (Tashiro et al. 1993). The gene encoding an 8 kDa protein with 72 amino acids is 

located on chromosome 10. CXCL12 is the natural ligand for the two GPCRs; CXCR4 (Bleul 

et al. 1996b) and CXCR7 (Burns et al. 2006). CXCL12 is constitutively expressed by almost 
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all organs and tissues (Shirozu et al. 1995, Yu et al. 2006), including endothelial cells 

(Nagasawa et al. 1994, Imai et al. 1999, Ponomaryov et al. 2000, Ceradini et al. 2004), 

fibroblasts/osteoblasts, heart (Askari et al. 2003), brain (Zou et al. 1998) and kidney 

(Schrader et al. 2002). However, the highest concentration of CXCL12 is found in the bone 

marrow (Ponomaryov et al. 2000). 

The main biological function of CXCL12 is the ability to induce processes, such as 

chemotaxis, adhesion, cell motility, and the secretion of MMPs (matrix metalloproteinases) 

and angiogenic factors (Kucia et al. 2004). Thus endothelial cells can be stimulated directly 

by CXCL12 to migrate and promote angiogenesis (Salcedo and Oppenheim 2003). 

The receptor CXCR4 consists of 352 amino acids (40 kDa) and is highly conserved. The gene 

encoding CXCR4 is located on chromosome 2 (Horuk 2001). CXCR4 was discovered and 

cloned in leukocytes (Loetscher et al. 1994). In 1996 its role as cofactor for the absorption 

and penetration of HIV-1 (human immunodeficiency virus-1) was reported (Feng et al. 1996). 

In the same year it was found that it binds CXCL12 with high affinity, after which it was 

named CXCR4 (Bleul et al. 1996b). Many studies have shown that CXCR4 is expressed in 

almost all tissues and cell types as opposed to other chemokine receptors. In addition to cells 

of the haematopoietic system (Wang et al. 1998, Kowalska et al. 1999), CXCR4 is expressed 

in endothelial cells (Gupta et al. 1998, Tachibana et al. 1998, Volin et al. 1998, Murdoch et 

al. 1999a), epithelial cells (Murdoch et al. 1999b) and, in particular, in CD34
+
 progenitor 

cells (Aiuti et al. 1997) and also in tumour cells (Müller et al. 2001, Libura et al. 2002, Kucia 

et al. 2004, Hartmann et al. 2005). Even cells of the central nervous system and the 

gastrointestinal tract are positive for CXCR4 (Zou et al. 1998, Nagasawa 2001). 

CXCR4 is responsible for a wide range of effects in a variety of cell types. This includes 

CXCL12-directed chemotaxis of monocytes, T-lymphocytes and haematopoietic stem cells 

(Bleul et al. 1996b, Aiuti et al. 1997, Kim and Broxmeyer 1998). In addition, CXCR4 plays a 

role in the pathogenesis of a number of diseases, such as arteriosclerosis and multiple 

sclerosis (Zernecke et al. 2005, Calderon et al. 2006). In breast cancers expressing CXCR4, 

tumour progression and metastasis are much faster than in CXCR4-negative tumours (Müller 

et al. 2001). Furthermore, it was shown that CXCR4 is involved in the invasion and 

angiogenesis of pancreatic cancer (Matsuo et al. 2009).  

CXCL12 binding to CXCR4 leads to a conformational change of the chemokine receptor that 

can act as a nucleotide exchanger (a guanine nucleotide exchange factor) for the Gα protein, 
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which assists in the exchange of GDP (guanosine diphosphate) for GTP (guanosine 

triphosphate) on the Gα subunit (Percherancier 2005). These events cause the activation of 

various signalling pathways (MEK1/2, MAPK, AKT), which eventually lead to increased IL-

6 and VEGF secretion and induction of chemotactic migration along a CXCL12 gradient in 

various cell types (Kucia 2005). 

CXCR4 has been reported to be overexpressed in various types of cancers, including breast 

cancer (Müller et al. 2001), ovarian (Jiang et al. 2006), colorectal (Kim et al. 2005), and oral 

cancer (Almofti et al. 2004, Ishikawa et al. 2006). In colorectal cancer, the occurrence of 

lymphatic or distant metastases was significantly associated with CXCR4 expression 

(Ottaiano et al. 2006, Yoshitake et al. 2008). In OSCC patients, a statistically significant 

connection between CXCR4 expression and lymph node metastasis was reported, while 

treatment with CXCL12 increased the invasiveness of CXCR4-positive OSCC cells (Ishikawa 

et al. 2006). However, Zlotnik et al. noted that a CXCL12/CXCR4 gradient is correlated with 

distant metastatic spread rather than with lymph node metastasis (Zlotnik 2004).  

There have been attempts to inhibit CXCR4 as a therapeutic target since the significance of 

this receptor in diverse disease entities was discovered. AMD3100 (Plerixafor
®

) is a bicyclam 

molecule (Figure 1.6), which was originally developed as a specific antagonist of CXCR4 for 

the treatment of HIV infection by blocking the entry of HIV into target cells (CD4
+
 T-cells).  

 

 

Figure 1.6: Chemical structure of the AMD3100 (Plerixafor). AMD3100 is a metal-chelating, 

bicyclic, reversible CXCR4 inhibitor that binds to CXCR4 and leads to allosteric modulation and 

effective blockade of CXCL12 binding (Wong et al. 2008). 
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AMD3100 inhibits the binding of CXCL12 to CXCR4 by activating a G-protein coupled with 

CXCR4 and thus acts as a partial CXCR4 agonist in vitro (Zhang et al. 2002). It binds with 

high affinity to CXCR4, independent of the cell type expressing CXCR4, but does not interact 

with other chemokine receptors (Hatse et al. 2002). In addition, AMD3100 prevents 

intracellular calcium signalling and chemotactic response caused by CXCL12 in various cell 

types (Schols et al. 1997, Donzella et al. 1998). Moreover, several studies have shown that 

AMD3100 decreased metastasis formation in mice (Smith et al. 2004) as well as the 

recurrence of glioblastoma in a mouse model after RT (Kioi et al. 2010). Uchida et al. also 

showed that subcutaneous administration of AMD3100 inhibited the formation of lymph node 

metastases after an HNSCC cell line expressing CXCR4 was inoculated into the masseter 

muscle of nude mice (Uchida et al. 2010).  
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1.4 Aims of the present study 

1. High-grade acute organ toxicity (HGAOT) as a potent prognostic marker for HNSCC 

patients and p16
INK4A

 overexpression as a known surrogate marker for HPV-positive HNSCC 

patients have been investigated. However, no studies have been performed to analyse both of 

them in combination. The aim of this part of the study was to analyse their combined impact 

on patient survival. 

 To analyse the prevalence of HPV infection by screening the HPV DNA status in 

tumour biopsies from 233 HNSCC patients treated between 1992 and 2011  

 To analyse the HPV subtype by nested-PCR-product sequencing  

 To analyse the expression of p16
INK4A 

in the 233 pre-treatment HNSCC biopsies by 

means of IHC staining in correlation with clinical outcomes and survival data 

 To analyse the impact of both HGAOT and HGAHT during/after R(C)T and p16
INK4A 

expression on the survival data of HNSCC patients 

2. Some of the studies investigating CXCR4- and CXCL12-dependent tumour development 

and metastasis in lymph node and/or distant organs comprise only a small number of patients 

in the HNSCC collective. The second aim of this work was therefore to gain more reliable 

results by further investigating the impact of primary tumour levels of CXCL12 and CXCR4 

expression in 233 pre-treatment HNSCC biopsies by means of immunohistochemistry 

staining.  

 

 To analyse the impact of CXCL12 and CXCR4 expression on pre-treatment patient’ 

data 

 To analyse the impact of CXCL12 and CXCR4 expression on patient survival 

 To analyse the impact of CXCL12 and CXCR4 expression on regional lymph node or 

distant metastasis 
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3. Although migration of primary tumour cells is one of the most important components in the 

formation of metastases, little is known about the chemotactic effects of CXCL12-induced 

HNSCC cell migration under irradiated condition. Hence the aim of this part of the study was 

to analyse this effect in HNSCC cell lines with different CXCL12 and CXCR4 expression 

patterns. 

 To investigate, in three HNSCC and two control cell lines, 

 the expression profiles of CXCL12 and CXCR4 at the mRNA and protein 

levels  

 the radiosensitivity of cells using a colony-forming assay, including treatment 

with CXCL12 and AMD3100 

 the metabolic activity of cells by means of CellTiter
®
-Blue cell viability assay 

after treatment with CXCL12, AMD3100 and radiation 

 To investigate the impact of CXCL12 on the migration of HNSCC and control cell 

lines by means of Boyden -chamber migration assay  

 To investigate the influence of different doses of radiation on cell migratory 

behaviour in cells with different patterns of CXCL12 and CXCR4 expression 

 To investigate the migration-inhibiting effect of AMD3100 in CXCR4-

expressing  HNSCC cell lines  
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2. Materials and methods 

2.1 Materials  

2.1.1 Laboratory equipment 

Table 2.1: List of laboratory equipment used during the work  

Name of product Name of the company 

(city or country of origin) 

Clean bench 

 

Heraeus (Hanau, Germany) 
Incubator 

Tube centrifuge 

Refrigerator (4-8°C) 
Liebherr (Biberach, Germany) 

Freezer (-20°C) 

Deep freezer (-80°C) Sanyo (Osaka, Japan) 

Light microscope  Carl Zeiss (Jena, Germany) 

Light microscope with camera Olympus BX40 (Japan) 

Pipethelper "Pipetboy comfort" Integra Biosciences (Fernwald, Germany) 

Wallec 1420 VICTOR 
TM 

plate reader PerKinElmer (Turku, Finland) 

Cytospin 4 cytocentrifuge Thermo Scientific (Rockford, USA) 

Vortex shaker Heidolph (Schwabach, Germany) 

Luminometer Tecan (Crailsheim, Germany) 

Ice-machine Ziega (Isernhagen, Germany) 

Ultrasonic homogenizer Bandelin (Berlin, Germany) 

Small cup centrifuge  
Eppendorf AG (Hamburg, Germany) 

Thermomixer comfort 

Unsterile clean bench Norddeuche Laborbau (Kaltenkirschen, Germany) 

Western Blot migration set Mini-

PROTEAN Tetra System  
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2.1.2 Experimental and detection kits 

Table 2.2: List of experimental and detection kits used during the work  

Name of product Name of the company 

 (city or country of origin) 

CellTiter-Blue®Cell Viability Assay Promega (Madison, USA) 

Bradford colorimetric protein assay Bio-Rad (Hercules, USA) 

Electrophoresis transfer pack Trans-Blot 

Turbo 

Bio-Rad (Hercules, USA) 

Electrophoresis power supply Power Pac 

300 

 

Bio-Rad (Hercules, USA) 

Electroblotting transfer system Trans-Blot 

Turbo 
TM

 

TGX 
TM

 Transfer Gel 

CoolCell ® cell freezing container Biocision (Burusapat et al.) 

Rotary shaker Zeipel (Bovenden-Lenglern, Germany) 

Balance Sartorius GmbH (Göttingen, Germany) 

microtome Microm HM400(Walldorf, Germany) 

Automated slide stainer Ventana BenchMark (Tucson, USA) 

NanoDrop ND-2000 spectrophotometer Thermoscientific (Pittsburgh, USA) 

Automated capillary electrophoresis 

QIAxcel 

Qiagen (Hilden, Germany) 

Labcycler  Sensoquest (Göttingen, Germany) 

Real-time PCR machine HT7900, Applied Biosystems (Foster City, 

California, USA) 

Spectrophotometer LabelGuard cuvette, Implen (Munich, Germany) 

Microcentrifuge for PCR tubes 
Star Lab (Korea) 

Air Clean 600 PCR workstation  
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Western Blot immunodetection 

WesternBreez® Chromogenic kit Invitrogen (San Diego, USA) 

ZytoChem-Plus HRP Polymer-Kit Zytomed Systems GmbH (Berlin, Germany) 

IHC- detection Kit Dako K5005 (Denmark) 

QIAamp® DNA Mini Kit (250) Qiagen (Hilden, Germany) 

SuperHot Master Mix (2x) Bioron (Ludwigshafen, Germany) 

Wizard® SV Gel and PCR Clean-Up System Promega (Madison, USA) 

Transwell chamber assay Greiner Bio-one (Frickenhausen, Germany) 

Diff-Quick kit Medion Diagnostics (Düdingen, Switzerland) 

RNeasy mini kit  Qiagen (Hilden, Germany) 

Super-Script II reverse transcriptase Invitrogen (Carlsbad, California, USA) 

Recombinant RNase inhibitor 
USB (Cleveland, Ohio, USA) 

HotStart-IT SYBR Green qPCR-Master mix 

2.1.3 Buffers and media for cell culture 

Table 2.3: List of used buffers and media for cell culture during  the work 

Name of product Name of the company (city or country of 

origin) 

DMEM (Dulbecco’s Minimum Essential 

Medium) 

Biochrom (Berlin, Germany) 

RPMI 1640 medium Biowest (Nuaille, France) 

FCS (fetal calf serum) Biochrom (Berlin, Germany) 

Ampicillin Ratiopharm (Ulm, Germany) 

PBS Biochrom (Berlin, Germany) 

Trypsin Biochrom (Berlin, Germany) 

Running buffer for SDS-PAGE SERVA (Heidelberg, Germany) 
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2.1.4 Consumption materials 

Table 2.4: List of consumption materials used during the work  

Name of product Name of the company (city or country of 

origin) 

Freezing resistant plastic vials  

Greiner Bio-One (Frickenhausen, Germany) Plastic sterile 15 and 50 ml tubes 

Sterile/unsterile 10 and 25 pipettes 

Sterile 50 and 200 ml flasks 

Neubauer counting chamber  Paul Marienfeld (Lauda-Königshofen, Germany) 

Pipette  Eppendorf AG (Hamburg, Germany) 

Sterile pipette tips  

Sterile 96-well black plates with clear bottom  Costar (New York, USA) 

Glass microscopic slide (superfrost plus) Thermo Scientific (Braunschweig, Germany) 

Glass microscopic slide (cut edges frosted end) Thermo Scientific (Braunschweig, Germany) 

Glass coverslips Thermo Scientific (Braunschweig, Germany) 

Sterile cell scraper  Sarstedt (Newton, USA) 

Sterile insulin injections  Braun (Bad Arolsen, Germany) 

Sterile PCR tubes  Sarstedt (Germany)  

96-well multiply PCR plate Sarstedt (Germany) 
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2.1.5 Antibodies 

Table 2.5: List of antibodies used during the work  

Name of product Methods Name of the company  

(city or country of origin) 

Anti-P53 IHC monoclonal mouse anti-human p53 protein 

Clone DO-7 Code Nr.: M7001 

DakoCytomation (Denmark) 

Anti-CXCL12 

 

IHC, ICC monoclonal mouse IgG1; Clone No.: 79018 

R&D system (Abingdon, UK) 

Anti-CXCR4 IHC, WB Rabbit monoclonal antibody; Ab 2074 

Abcam (Cambridge, UK) 

Anti-p16 
INK4A

 IHC monoclonal mouse IgG2a ; Clone: JC8  

SC-56330 

Santa Cruz Biotechnology (Texas, USA) 

Anti-actin WB Monoclonal Anti-ß-Actin antibody produced in 

mouse ; Lot Nr: 121M4846 

Sigma-Aldrich (Missouri, USA) 

2.1.6 Software and online tools 

Table 2.6: List of software and online tools used during the work  

Software Source 

Microsoft Office Excel Microsoft (Albuquerque) 

Kaleidergraph® Version 4.1 Synergy Software (Reading, USA) 

Chromas Lite version 2.1.1. Technelysium (Australia) 

ImageJ National Institutes of Health (Bethesda, MD) 

STATISTICA 9 StatSoft (Tulsa, USA) 

Basic Local Alignment Search Tool 

(Balermpas et al.) 

NCBI (Bethesda, USA) 

http://www.ncbi.nlm.nih.gov 

http://en.wikipedia.org/wiki/National_Institutes_of_Health
http://www.ncbi.nlm.nih.gov/
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2.2 Methods for In vivo analysing HNSCC biopsies 

2.2.1 Clinical specimens from HNSCC patients 

A total of 233 patients with head and neck cancers were evaluated in this study. The 

histological diagnosis was SCC in all cases. All 233 tumour samples included in the study 

were fixed in formalin and embedded in paraffin (FFPE). The patients had been diagnosed 

with primary inoperable HNSCC without distant metastases. Tissue samples had been taken 

between 1992 and 2011 in the Department of Otorhinolaryngology of University Medical 

Centre Göttingen. The specimens and clinicopathological data were used with the approval of 

the local Ethics Committee. The clinical data of 183 patients have already been published 

(Wolff et al. 2010a), and these data were updated for this investigation. The 

clinicopathological data provide general patient information such as gender, age, site of 

primary tumour, diagnosis, histopathology, treatment, side-effects of therapy and follow‐up 

data such as date and cause of death (Table 3.1). 

2.2.1.1 HNSCC patient treatment and analysis of toxicity 

The patients suffering from head and neck cancer evaluated in the current study were treated 

in accordance with respective clinical and technical standards. In the period from 06/1994 to 

11/1999, 138 patients underwent a normofractionated definite (primary) RT (2 Gy/day, 5 

times/week) as parallel-opposed lateral portals. In the period from 12/1999 to 10/2008, 45 

patients were given a normofractionated (2 Gy/day, 5 times/week) 3-D conformal external-

beam RT with a total dose of 70 Gy in each case (Wolff et al. 2011b). Integrated intensity-

modulated radiotherapy (IMRT) with single fractions of 2.2 Gy to the primary tumour and the 

involved lymph nodes up to a total of 66 Gy and single fractions of 1.8 Gy to the drainage 

sites on both sides of the neck up to a total of 54 Gy daily (5 times/week) (Tehrany et al. 

2015) was applied to 50 patients, from 11/2008 to 11/2011. In addition to the RT a 

supplementary concomitant CT consisting of 5-fluorouracil plus mitomycin C or of cisplatin 

alone was administered to 171 patients. 

Toxicity was monitored in the Department of Radiotherapy and Radiation Oncology of 

University Medical Centre Göttingen, weekly during treatment and every second week 
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following the end of therapy until the disappearance of acute toxicity. Subsequently, chronic 

toxicity was monitored at least yearly. Toxicity was classified according to the CTC score for 

acute effects (Cox et al. 1995, Trotti et al. 2000, Trotti et al. 2003) and according to the “Late 

Effects on Normal Tissue” scoring system for chronic toxicity (Rubin et al. 1995, Hendry et 

al. 2006). Before data analysis, acute organ toxicity or acute hematotoxicity grade 3 or higher 

was chosen as the cut-off value for high-grade acute toxicity because patients with toxicity 

grade 3 or higher have a strongly impaired quality of life. For further analysis, acute toxicity 

was scored as high-grade acute organ toxicity (HGAOT) or high-grade acute hematotoxicity 

(HGAHT) if one or more items were scored as CTC grade 3 or higher. The acute organ 

toxicity items in this study were mucositis, skin reaction, dysphagia and nausea, while the 

acute hematotoxicity was observed as anaemia, leukopenia and thrombocytopenia. 

2.2.2 Immunohistochemistry (IHC) 

Immunohistochemical staining of CXCR4, CXCL12, p16
INK4A

 and p53 was performed on 2 

µm slices of FFPE tissue samples from 233 pre-treatment HNSCC biopsies. Tissue sections 

were deparaffinized with three washes in xylene for five minutes each and rehydrated with 

distilled water through an ethanol series. Tissue antigens for CXCL12 and p16
INK4A

 were 

retrieved in boiled citrate buffer (2.1 g/L citric acid, pH 6.0) with incubation for 40 minutes. 

This step was not necessary for CXCR4 and p53. The tissue sections were then incubated in a 

blocking solution (2% BSA) to eliminate non-specific binding. The specimens were then 

incubated for two hours at room temperature with their specific primary antibodies (see listed 

antibodies in Table 2.5). Afterwards, the specimens were incubated for 20 minutes at room 

temperature with a biotinylated secondary antibody (Dako K5005). After extensive rinsing, 

they were developed using the streptavidin-biotin-peroxidase complex technique (Dako 

K5005). Negative control (absence of primary antibodies) and positive controls (FFPE human 

cell lines of known CXCR4, CXCL12 and p16
INK4A

 reactivity) were included for each 

staining. The quality of samples was confirmed by immunohistochemical staining for p53. 

2.2.2.1 Scoring of the immunohistochemistry staining 

The sections were examined microscopically by a pathologist and me without knowledge of 

the clinicopathologic data. The expression of targeted proteins was evaluated using a visual 

grading system based on the percentage of positive stained cells and the intensity of staining 
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(graded on a scale of 0 to 3; 0: no staining; 1: weak staining; 2: moderate staining; 3: strong 

staining). The expression of targeted proteins was scored positive when more than 5% cells 

(cut-off) stained positively (Fregonesi et al. 2003). In addition, expression of p16
INK4A

 was 

separately graded as described: negative (0-5% of nuclei and cytoplasm positive), focal or 

patchy (5-30% of nuclei and cytoplasm with weak and scattered positivity), and diffuse 

(>30% of labelled cells with strong positivity). A weighted score was assumed to each case by 

multiplying the percentage of stained cells by the staining intensity scores (Xia et al. 2011). 

2.2.3 HPV DNA analysis 

2.2.3.1 HPV DNA extraction  

The 233 FFPE tumour biopsies were analysed for the existence of HPV DNA. Seven 5µm 

scrolls were cut from each of the 233 FFPE biopsies. In the first step, these samples were 

deparaffinised following the existing protocol in the Department of Pathology of University 

Medical Centre Göttingen and the DNA was then extracted from the samples using the 

Nucleic Acid-Isolation Kit (QIAamp DNA Mini Kit) according to the manufacture´s 

instruction. 

2.2.3.2 Sample DNA quality assessment 

The concentration of eluted DNA was measured with a NanoDrop ND-2000 

Spectrophotometer. The purity of the DNA samples was determined by the ratio 

A260nm/A280nm. The A260/A280 ratio provided an estimate of the purity of the nucleic acid, with 

a value of 1.8-2.0 representing pure preparation (Sambrook et al. 1989). The samples were 

stored for further analysis at -20°C. 

The quality of the DNA was confirmed by using 5 µl aliquots of each DNA sample for PCR 

analysis of the human beta-globin gene with the PC04 and GH20 primers (see listed used 

primers in Table 2.7) using the same program described for primary PCR of nested-PCR (see 

Chapter 2.2.2.4). The amplified gene fragment was 268 bp in size and visualised on the 

automated capillary electrophoresis QIAxcel system. The primer sequences were synthesized 

by Eurofins MWG, Ebersberg, Germany (http://eurofinsgenomics.com).  
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2.2.3.3 PCR analysis 

The polymerase chain reaction (PCR) method allows the amplification of specific DNA 

sequences from small amounts of DNA-containing material. In repetitive cycles of DNA 

denaturation, primer annealing and elongation, the DNA sequences are amplified. The 

reaction is catalysed by a thermostable DNA polymerase and uses dNTPs and several or two 

oligonucleotide primers for primary and nested-PCR, respectively. To increase the sensitivity 

and/or specificity of PCR, nested-PCR was used in this study. Nested-PCR consists of two-

PCR steps in sequence. Two different sets of PCR primers are used to amplify the same target 

sequence. The first primer mix (consist of 18 primer sequences) amplifies the target sequence 

as seen in any PCR experiment and the second pair of primers (nested-primers) bind within 

the first PCR product and produce a second PCR product that will be shorter than the first 

one. The logic behind this strategy is that nested-PCR offers an increase in sensitivity over the 

primary PCR.  

Table 2.7: List of used primers for PCR assays  

Primer designation Primer sequences 

PGMY 09/11 

PGMY 11-A 5´- GCA CAG GGA CAT AAC AAT GG -3´ 

PGMY 11-B 5´- GCG CAG GGC CAC AAT AAT GG -3´ 

PGMY 11-C 5´- GCA CAG GGA CAT AAT AAT GG -3´ 

PGMY 11-D 5´- GCC CAG GGC CAC AAC AAT GG -3´ 

PGMY 11-E 5´- GCT CAG GGT TTA AAC AAT GG -3´ 

PGMY 09-F 5´- CGT CCC AAA GGA AAC TGA TC -3´ 

PGMY 09-G 5´- CGA CCT AAA GGA AAC TGA TC -3´ 

PGMY 09-H 5´- CGT CCA AAA GGA AAC TGA TC -3´ 

PGMY 09-I 5´- G CCA AGG GGA AAC TGA TC -3´ 

PGMY09-J 5´- CGT CCC AAA GGA TAC TGA TC -3´ 

PGMY 09-K 5´- CGT CCA AGG GGA TAC TGA TC -3´ 

PGMY 09-L  5´- CGA CCT AAA GGG AAT TGA TC -3´ 
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2.2.3.4 Nested-PCR 

To screen the presence of HPV in the samples, a nested-PCR consisting of the PGMY 09/11 

primer mix (for the primary PCR) (Gravitt et al. 2000) and the GP5+/6+ primer set (for the 

secondary PCR) (de Roda Husman et al. 1995, Gravitt et al. 2000) targeting the L1-ORF of 

the HPV genome was used. The list of the primers used for nested-PCR and also β-globin 

PCR are summarised in Table 2.7.  

Primary PCR  

Briefly, the final 25 µl PCR mixture containing 5 µl DNA and 12.5 µl of master mix 

(BIORON) was amplified with 2 µl of the PGMY 09/11 primer mix (10 pmol each). 

Amplification was performed using the following cycling conditions: incubation at 94°C for 

three minutes followed by 40 cycles of one minute denaturation at 94°C, one minute 

annealing at 54°C, and one minute elongation at 72°C. The last cycle was followed by a final 

extension for five minutes at 72°C and then storage at 4°C. 

PGMY 09-M 5´- CGA CCT AGT GGA AAT TGA TC -3´ 

PGMY 09-N 5´- CGA CCA AGG GGA TAT TGA TC -3´ 

PGMY 09-P 5´- G CCC AAC GGA AAC TGA TC -3´ 

PGMY 09-Q 5´- CGA CCC AAG GGA AAC TGG TC -3´ 

PGMY 09-R 5´- CGT CCT AAA GGA AAC TGG TC -3´ 

HMB01 5´- GCG ACC CAA TGC AAA TTG GT -3´ 

GP5+/6+ 

Gp5+ 5´- TTTGTTACTGTGGTAGATACTAC -3´ 

GP6+ 5´- GAAAAATAAACTGTAAATCATATTC -3´ 

ß-globin 

PC04 5´- CAACTTCATCCACGTTCACC -3´ 

GH20 5´- GAAGAGCCAAGGACAGGTAC -3´ 
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Secondary PCR (nested-PCR)  

The end product of the first PCR was diluted 1:10, and one microliter of this sample and 7.5 

µl of the master mix (BIORON) were used for the nested-PCR using 1.2 µl GP5+/GP6+ 

primers in a 15 µl PCR mixture. The GP5+/GP6+ primers consisted of a fixed nucleotide 

sequence for each of the 18 primers of the first PCR and detected a wide range of HPV types 

by using a lower annealing temperature during PCR. The PCR cycling conditions were as 

follow: denaturing step at 95°C for five minutes, followed by 30 cycles of 95°C for one 

minute, then 40°C for two minutes and 72°C for one and half minutes. This last cycle was 

followed by a final extension period of ten minutes at 72°C. 

Positive (low-risk HPV-6 subtype) and negative (PCR-water (BIORON) instead of extracted 

DNA) controls were included during amplification. The amplified gene fragments of the 

primary and secondary PCRs were 450 bp and 140 bp, respectively, and were visualised on 

the automated capillary electrophoresis QIAxcel system. 

To avoid any contamination, the PCR mixture without DNA was pipetted in a room with an 

“air clean PCR workstation”. DNA was extracted under sterile conditions in a separate 

laboratory. DNA was added to the PCR reaction mixture in a third laboratory room.  

2.2.3.5 Sequencing and HPV subtyping 

The PCR products from any samples positive for the primary and/or secondary PCR were 

purified using the Wizard® SV Gel and PCR Clean-Up System. The purified PCR products 

were then subjected to automated DNA sequencing based on Sanger sequencing method 

(Sequence Laboratories Göttingen GmbH, Germany, www.seqlab.de). The purified PCR 

product used for sequencing consisted of six microliters of the eluted PCR product and one 

microliter GP5+ primer.  

Sequencing results were downloaded from the SeqLab website, and analysed using “Chromas 

Lite” software. Analysed sequences were compared to available databases, using the Basic 

Local Alignment Search Tool (Balermpas et al.) to determine approximate phylogenetic 

affiliations (NCBI, www.ncbi.nlm.nih.gov). 

http://www.seqlab.de/
http://www.ncbi.nlm.nih.gov/
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2.2.4 Statistical analysis 

Fisher’s exact test was used to test differences between groups on categorical variables. The 

patient survival times were calculated from the day of the histological diagnosis to death for 

any reasons (OS), to local recurrence (local recurrence-free survival (LRFS)) or to the end of 

study. Kaplan-Meier analysis was used to estimate OS, LRFS, disease-free survival (DFS), 

loco-regional control rates (LRC) as the absence of local and/or regional recurrence or 

progression, and distant metastasis-free survival (DMFS).  

Cox proportional hazards regression was used to analyse the impact of HPV infection, 

p16
INK4A

 expression and HGOAT on OS. With p16
INK4A

 and HGAOT a multivariate Cox 

regression versus OS was computed including an interaction term. The impact of CXCR4 and 

CXCL12 expression on patient survival was analysed by univariate Cox proportional hazards 

regressions. In addition, to test whether the association between marker expression and 

survival was independent of other possible prognostic factors or factors that might influence 

treatment outcome and which could bias the univariate analysis, an additional multivariate 

analysis (multivariate Cox regression) was performed.  

For the statistical tests the significance level was set as α = 5%. Statistical analyses were 

performed with free software (R, version 3.1; http: //www.r-project.org).  
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2.3 Methods for In vitro analysing HNSCC and control cell lines 

2.3.1 Cell cultures 

Three human HNSCC tumour cell lines and two control human cell lines were used for the in 

vitro experiments (see below). The cell lines were taken from stocks that were preserved in 

liquid nitrogen in the Department of Radiotherapy and Radiation Oncology at the University 

Medical Centre Göttingen. 

2.3.1.1 Cell lines 

Tumour cell lines 

ZMK-1 cell line 

This cell line is a poorly differentiated (grade 2) SCC of an oropharyngeal tumour from a 47-

year-old male patient obtained during tumour resection performed in 1996 by the Department 

of Oral and Maxillofacial surgery, University Medical Centre Göttingen. Cells from this 

tumour were isolated and cultivated in the Department of Radiotherapy and Radiation 

Oncology at the University Medical Centre Göttingen (Rave-Frank et al. 1996).  

FaDu cell line 

FaDu-cells are human epithelial cells that were isolated in 1968 from a SCC of the 

hypopharynx of a 56-year-old male Hindu patient (Rangans 1972). The cells were obtained 

from the American Type Culture Collection (ATCC). 

GR-145 cell line 

This cell line is a moderately differentiated (grade 2) SCC of an oropharyngeal tumour from a 

48-year-old male patient obtained during tumour resection performed in 1998 by the 

Department of Otorhinolaryngology at the University Medical Centre Göttingen. Cells from 

this tumour were isolated and cultivated in the Department of Radiotherapy and Radiation 

Oncology at the University Medical Centre Göttingen. 
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Control cell lines 

HaCat cell line 

This spontaneously transformed epithelial cell line is an aneuploid, but highly differentiated, 

immortalized human keratinocyte cell line, which was gained from a histologically normal 

skin specimen. This skin specimen was obtained from a distant peripheral tissue of a 

malignant melanoma acquired in 1988 from a 62-year old male patient (Boukamp et al. 

1988). This cell line was supplied by Cell Lines Service (CLS, www.cell-lines-service.de).  

DF-19 cell line 

Primary fibroblasts were obtained from a skin spindle taken from a healthy 30-year-old male. 

The cells were isolated and cultivated in 2003 in the Department of Radiotherapy and 

Radiation Oncology at the University Medical Centre Göttingen. 

2.3.1.2 Culture conditions and media 

To prevent contamination of the cell cultures with bacteria or fungi, all used materials such as 

Eppendorf reaction tubes and pipette tips were autoclaved for 15 minutes at 121°C. Devices 

not autoclaved were regularly cleaned with 70% ethanol. All solutions, i.e. all growth media, 

cell culture additives and other reagents, were supplied sterile by the manufacturers and were 

only opened and used under the sterile hood. 

The cell lines were cultured in sterile culture flasks with two different capacities, 50 or 250 ml 

at 37°C and in an atmosphere containing 5% CO2. A volume of cell medium of 10 ml for the 

50 ml flasks and 20 ml for the 250 ml flasks was sufficient to cover the cells growing 

adherently in a monolayer. Depending on the cell line, every three to five days the cell 

medium was changed. After reaching a confluency of 80 to 90% cells were dissociated by 

trypsinisation, and were subcultured and reseeded in new culture flasks. The compositions 

and contents of each cell line-related medium are itemized in the following Table 2.8.  

Reagents and media were stored at 4°C. Fetal calf serum (FCS), trypsin and antibiotics were 

kept at -20°C for long term storage. All reagents and media were warmed slowly to 37 °C 

before use. 

http://www.cell-lines-service.de/
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Table 2.8: Culture mediums used for the cell lines  

2.3.1.3 Passage of adherent cell lines (subculture) 

The cell cultures were passaged by trypsinisation when required. The culture medium was 

drained from the flasks and residual medium was removed by rinsing with 2-3 ml of 

Phosphate Buffered Saline (PBS) without calcium and magnesium. The cell layer was slowly 

covered with 1-2 ml trypsin-EDTA solution (0.5 % trypsin; 0.2 % EDTA in PBS), and the 

flask was returned to the incubator for 5 to 10 minutes. The HaCat cells were more strongly 

attached to the bottom of the culture flask and required a second step in dissociation. The 

HaCat cells were washed additionally with 1 ml EDTA solution after the PBS wash. One ml 

of trypsin-EDTA solution was then added and incubated as described above. At the end of the 

incubation time the flasks were removed and shaken gently by hand to dislodge the cells. 

The flasks were inspected under the microscope to determine whether all cells had been 

detached from the flask bottom. The cells were then resuspended in fresh growth medium. 

2.3.1.4 Counting cells with the Neubauer counting chamber 

A Neubauer chamber is a four millimetres thick, 30 by 70 mm crystal slide with a counting 

grid. There are single or double chamber slides. Only double chamber slides with separate 

counting areas were used in this study; the upper and the lower chamber.  

A glass cover slip was placed over the grid of the chambers, and ten microlitre of cell 

suspension was pipetted into the chambers. Once both chambers were filled, the slide was 

placed under the light microscope. The number of viable cells in each of the 25 small squares 

Cell lines Culture conditions and contents 

ZMK-1 

FaDu 

GR-145 

DMEM and RPMI 1640 in ratio 1:1 including 10 % inactivated FCS and 1 ml 

Ampicillin (0.5 g/10 ml) 

 

HaCat 

DF-19 

DMEM including 10 % inactivated FCS and 1 ml Ampicillin (0.5 g/10 ml) 
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of the central square is counted in both chambers. The average number of cells is calculated 

and multiplied 1 x 10
4
 to give the number of cells in one millilitre of our cell suspension.  

2.3.1.5 Cryopreservation and thawing of cells 

Cryopreservation  

Cryopreservation is the best method to store mammalian cells. Cryoprotectants are added to 

the cell suspension to prevent the formation of Intra- and extracellular ice crystal that would 

cause cell death. Dimethyl sulphoxide (DMSO) is the standard cryoprotectant. Cultures that 

had reached 80 to 90% confluency were harvested by trypsinisation. The cell suspension was 

centrifuged at 1200 rpm for ten minutes, and the cell pellet was resuspended in freezing 

medium (culture medium containing 9% DMSO). Two millilitre aliquots of cell suspension 

containing 1 × 10
6
 viable cells per ml were put into 2 ml plastic cryovials. These were frozen 

in a CoolCell
®
 container at -80°C for four hours before transferring them to long-term archive 

storage at -150°C. 

Thawing of frozen cells 

Frozen cell vials were thawed in a 37°C water bath, until a liquid film had formed and the 

remaining solid block could be transferred to a flask containing ten millilitres of the 

appropriate medium, and the cells were allowed to attach. To remove residual DMSO, the 

medium was changed after approximately four hours or on the following day. 
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2.3.2 Real-time PCR 

The cells (1 x 10
6 

cells/ml) were washed in PBS before storing them in lysis buffer at -80°C. 

To extract and isolate RNA from our used cells for real-time PCR, RNeasy mini kit (Qiagen) 

was used according to the manufacturer’s instructions. The RNA amounts were then 

measured by a spectrophotometric method. Super-Script II reverse transcriptase was used to 

carry out reverse transcription to complementary DNA with 1 μg total RNA for one hour, 

under inhibition of RNase by adding 20 units recombinant RNase inhibitor per each samples. 

In a real-time PCR machine, the quantification of transcript numbers of target and reference 

genes was determined relatively by using HotStart-IT SYBR Green qPCR-Master Mix (USB). 

The amplification condition of the PCR was composed of 40 to 50 cycles (dependent on 

expression level). The annealing step lasted 20 s accomplished at 60°C and the elongation 

step was performed for 40 s at 72°C for each primer pair (Wolff et al. 2011a).  

The primer sequences were synthesized by MWG, Ebersberg, Germany (primer sequences 

given in Table 2.9). Data were normalized to weighted mean expression of HPRT1 using as 

reference gene (Wolff et al. 2011a).  

 

Table 2.9: primer pairs used for the analysis of CXCL12 and CXCR4 transcript expression  

2.3.3 Western blot analysis 

2.3.3.1 Protein extraction 

All steps of protein extraction were performed at 4°C. For cell lysis, growth medium was 

removed and the cells were washed twice with 5 ml cold PBS to remove all residual medium. 

Gen Primer sequences 

 Forward primer Reverse primer 

CXCL12 5´- GGT CGT GGTCGTGCTGGT -3´ 5´-CGG GCT ACA ATC TGA AGG G -3´ 

CXCR4 5´-TAC ACC GAG GAA ATG GGC TCA -3´ 5´- AGA TGA TGG AGT AGA TGG TGG G-3´ 

HPRT1 5´-TGA CAC TGG CAA AAC AAT GCA -3´ 5´-GGT CCT TTT CAC CAG CAA GCT -3´ 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040826/table/Tab3/
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The cells were then scraped off the flask bottom with a cell scraper and resuspended in PBS. 

This suspension was centrifuged at 1200 rpm for eight minutes at 4°C. After the 

centrifugation, the PBS supernatant was removed. 

500 μl of lysis buffer (see the composition of the lysis buffer in Table 2.10) was added to the 

cell sediment and stirred carefully. Ultrasound was used to facilitate cell lysis and protein 

release with the following parameters: four times with duration of 0.9 seconds and 42 % 

intensity.  

Table 2.10: Composition of the lysis buffer  

Substrate Molecular weight (MW) Dilutions 

20 mM Tris HCl (pH=7.5) 157.60 0.0315 g/100 ml water 

150 mM NaCl 58.60 0.0876 g/100 ml water 

1 mM MgCl2 203.30 0.002 g/100 ml water 

1 mM CaCl2 147.02 0.0014 g/100 ml water 

1% NP-40 - 1 ml/100 ml water 

10% glycerol - 10 ml/100 ml water 

10 ml lyse buffer 

+ 1 pill of Mini, EDTA-free, protein inhibitor 

The cell-buffer suspension was incubated on ice for ten minutes in order to let the foam 

subside. A series of five to six passages through a fine insulin cannula was done manually to 

increase protein release. This step was repeated after ten minutes. After the final passage, the 

suspension from each tube was transferred into a nonsterile, 1.5 ml plastic cup and 

centrifuged at 6000 rpm for ten minutes at 4 °C.  

The lysate was transferred to a fresh 1.5 ml cup for Bradford assay and western blot. Lysates 

were kept on ice until use or at -80°C for long-term storage. 

2.3.3.2 Bradford assay 

Protein concentrations in the samples, were determined by Bradford assay (Bradford 1976). 

Bovine serum albumin (BSA) was used to prepare a standard curve (with 0 to 2 mg/ml protein 
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concentration range). First a standard curve was prepared, by defining the standard 

absorbance values on the y-axis and their concentrations in mg/ml on the x-axis, in order to 

determine unknown protein concentrations. One millilitre Bradford solution (Bio-Rad) was 

added to each vial and mixed by inversion. The blank sample was 20 μl sterile water in one 

millilitre of Bradford solution. The absorbance of the prepared standard concentration 

samples were measured at 595 nm and the standard curve was drawn. For samples with 

unknown protein concentration, 20 μl of the samples was added to one millilitre Bradford 

solution and the absorbance was measured. The values were entered into the standard curve to 

obtain the protein concentration of the sample. 

The measurements were performed in duplicate to improve the accuracy of the determination. 

The results corresponded to the protein concentration in 20 µl of lysate. The amount of lysate 

required for loading the electrophoresis gel was calculated by dividing 20 µl of lysate volume 

by the concentration. In order to reach a final volume of 20 µl, we calculated the volume of 

sodium dodecyl sulphate (SDS) buffer that had to be added (see the SDS buffer consistence in 

Table 2.11). 

2.3.3.3 Gel electrophoresis  

Purified proteins were separated on precast 10-well polyacrylamide gels (TGX-gel). The gels 

were placed in the migration set that consisted of a tank, lid, and an electrode assembly. The 

separated proteins were further processed for western blotting using a Trans-Blot Turbo
TM

 

system.  

Adequate volumes of the protein lysate and SDS buffer-mercaptoethanol solution (see Table 

2.11) were mixed together. These mixtures were centrifuged for a few seconds by rapid 

acceleration. Afterwards they were incubated for five minutes at 95 °C.  

Samples were loaded into wells of the TGX-gel and run against protein standards. The gel 

electrophoresis was performed at 200 V and 30 mA. Once migration was over, the proteins 

were transferred from the gel onto a nitrocellulose membrane. 
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Table 2.11: SDS buffer consistence 

 

2.3.3.4 Western blotting 

After the proteins had been separated by electrophoresis, they were transferred by 

electroblotting to a nitrocellulose membrane. In electroblotting an electric current is used to 

propel the proteins from the gel onto the nitrocellulose membrane while maintaining their 

pattern. 

Electroblotting was done with the Trans-Blot Turbo
TM

 Transfer system following the 

manufacture’s instruction using a transfer time of three minutes. The protein-loaded 

membranes were then stained with the sodium salt of a diazo dye. The loading and transfer 

efficiency was analysed with this procedure. The dye was later washed out with water. 

Western blotting of the nitrocellulose membrane was performed after protein transfer. Prior to 

incubating the protein-loaded membranes with the primary antibody, the membrane-blocking 

step is crucial to avoid non-specific primary antibody binding in protein in free spaces. For 

this purpose a WesternBreez
®
 Chromogenic Western blot immunodetection kit was used. The 

membrane was blocked with blocking solution for 30 minutes on a rotatory shaker followed 

by two washes of five minutes with distilled water. 

Following this, the primary antibody was incubated on the membrane for one hour at room 

temperature or over-night at 4°C. For the present study, rabbit anti-CXCR4 monoclonal 

antibody (see Table 2.5) was used.  

Beta-actin, as a ubiquitous structural protein, was used to confirm equal loading of the protein 

lysates. Due to an almost identical molecular weight of the two targeted proteins (molecular 

weights of CXCR4 and β-actin proteins were approximately 40 and 42 kDa, respectively), 

western blotting was performed to detect each protein separately on two individual 

SDS buffer (pH= 7.4) 30 mM Tris-Base 

9 %  SDS 

15 % glycerine 

0.04 % bromphenol blue Na-salt 

10 %  2-mercaptoethanol 
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membranes. For this purpose monoclonal mouse anti-β-actin antibody was applied as primary 

antibody (Table 2.5). The primary antibodies were diluted in five millilitres of blocking 

solution in order to obtain the dilutions recommended by the manufacturers. For anti-CXCR4 

a dilution of 1:500 and for anti-β-actin a dilution of 1:10 000 was used. 

An incubation time of one hour was kept. After the membranes had been washed three times 

for five minutes each in ten millilitres of antibody wash to remove residual primary antibody, 

the membranes were re-incubated for 30 minutes in five millilitres of the secondary antibody 

solution. The choice of the secondary antibody depended on the primary antibody (i.e. mouse 

or rabbit). In order to remove residual secondary antibody the membranes were washed three 

times for five minutes followed by a final wash procedure of three two-minute washes with 

distilled water. 

In the last step, the membranes were incubated with 5 ml of chromogenic substrate for one to 

60 minutes without agitation. With our antibodies, 15 minutes were enough to visualise the 

bands.  

The membranes were then washed for a final three times in ten millilitres of distilled water for 

two minutes before placing them on a clean filter paper to dry in the open air at room 

temperature.  

The stained bands were visually compared to those of the marker loaded during 

electrophoresis to estimate size. The process was performed with the above mentioned β-actin 

protein-loaded membrane. Beta-actin was therefore also useful in detecting eventual errors 

such as incomplete transfers. 

2.3.4 Immunocytochemistry (ICC) 

The expression of CXCL12 in the studied cell lines was determined by immunocytochemical 

staining. The detection procedure consisted of cytocentrifugation prior to the staining itself. 

2.3.4.1 Preparation of Cytospin slides 

Cell staining began with preparation of the enriched suspension. To avoid stromal CXCL12 in 

background, the cells were starved in medium without FCS for 24 hours. After 24 hours, the 
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medium was discarded, and the cells were washed with PBS and incubated with trypsin. Then 

cells were transferred to a fresh Falcon
®
-tube with fresh medium. An appropriate cellular 

suspension was prepared and the cells were counted according to the procedure described in 

Chapter 2.3.1.4. For our purpose, 3 x 10
4
 cells/ml were needed for the preparation of each 

superfrost glass slide. 

The centrifuge consists of 12 “Cytospin-sample chambers”. For each superfrost glass slide, 

100 μl of each cellular suspension was added. The cells (3 x 10
3
 cells/ml) were centrifuged for 

five minutes at 1500 rpm using program 1 (predefined for this purpose according to the 

manufacturer´s protocol). After the cells had been centrifuged the slides were removed from 

the centrifuge and examined under a light microscope to confirm homogenous separation. 

Afterwards the slides were dried at room temperature over-night. 

2.3.4.2 Immunocytochemical CXCL12 staining method 

In order to prepare the glass slides with the cellular monolayer for the immunochemical 

staining procedure, they were fixed in -20°C acetone for 10 minutes and then washed in a 

Wash-Buffer for a few minutes. The samples were incubated for 45 minutes at room 

temperature with the primary monoclonal mouse anti-CXCL12 antibody (Table 2.5) diluted 

1:2000. After washing, the enhancement reagent “PostBlock” was applied and incubated at 

room temperature for 20 minutes. A second wash was followed by the application of the 

“HRP-polymer” with 30 minutes incubation at room temperature. Any excess of unbound 

HRP-polymer was thoroughly washed off after incubation. The addition of the chromogenic 

substrate started the enzymatic reaction of the peroxidase, which led to colour precipitation 

wherever the primary antibody was bound. 

For the final visualisation, a 20-power Olympus light microscope equipped with a camera was 

used to obtain photographic documentation of the observed images. If cells expressed 

CXCL12 this was seen as a red-brown staining either of the cell surface, cytoplasm or both. 

2.3.5 Colony formation unit assay (CFU assay) 

The colony-forming unit (CFU) assay is the basic method of tumour radiobiology to 

determine the clonogenicity of irradiated cells by their ability to form a colony in a defined 

growth environment. It is the “gold standard” for in vitro studies (Joiner and Kogel 2009). 
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In general, the in vitro CFU assay for radiosensitivity is based on seeding cells, irradiating 

them, and then after a suitable period of incubation counting the number of colonies. The 

plating efficiency (PE) is calculated by dividing the number of colonies by the number of 

seeded cells. 

Following determination of PE, the fraction of cells surviving a given treatment (SF) was 

calculated by normalizing PE after a given dose to that of the control non-irradiated plates:  

The cytotoxic effect of radiation on cells is commonly described by a cell survival curve. The 

survival curves were evaluated for three tumour and one control cell lines irradiated in a range 

of doses from 0 to 4 or 6 Gy. Since the number of colonies became too low for trustworthy 

quantification, higher doses of irradiation could not be used. Because the number of seeded 

cells is not directly proportional to the number of resulting colonies, even in control samples, 

increase in number of seeded cells failed to overcome this dose limitation. The survival 

fraction as a function of dose was plotted on a logarithmic scale (y axis), against dose on a 

linear scale (x axis), resulting in a survival curve.  

2.3.5.1 Seeding procedures 

A single-cell suspension was prepared for each cell line (except for DF-19 cell line because of 

its poor colony forming capacity and the tendency to differentiate during the incubation 

period) following the procedure described above (see Chapter 2.3.1.4). Depending on the 

different radiation doses to be tested the single-cell suspension was divided into aliquots. One 

group of cells was defined as a control for the assay and was kept without irradiation and 

eventually without any kind of particular treatment. For treatment with CXCL12 or 
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AMD3100, appropriated concentrations of CXCL12 or AMD3100 solution were prepared in 

the medium of each cell lines (see Table 2.8). 

Suspensions with the desired total number of cells were prepared in 15 ml sterile plastic tubes. 

The cells underwent subsequent X-ray irradiation in the laboratory. The doses were 

previously defined as 0.5, 2, 4, or 6 Gy with a dose rate of 1 Gy/min. The control cells were 

not irradiated. 

After irradiation, the cell suspensions were dispensed in 50 ml culture flasks in quadruplicate 

for each treatment condition. Depending on the employed radiation dose, 300 to 3000 cells 

were seeded per flask. 

Treatment with CXCL12  

When treated with CXCL12, the cells were incubated for two hours in a medium lacking FCS 

and were then trypsinised. Suspensions of 2 x 10
5
 cells/ml were prepared in medium lacking 

FCS. The cells were irradiated (0 to 6 Gy) and 500 microlitres of each cell suspension was 

incubated in 48-well plates. Each well, except the control well (cells in medium), was treated 

with 100 ng/ml CXCL12 (cells in medium with CXCL12). The plate was incubated for 48 

hours at 37°C in a 5% CO2-atmosphere. After the incubation period, the cells were trypsinised 

and counted and 300 to 3000 cells/flask were seeded in a quadruplicate for each treatment 

condition. 

Treatment with CXCR4 antagonist (AMD3100) 

For treatment with AMD3100, we used two CXCR4-positive cell lines, ZMK-1 and FaDu. 

The cells were first incubated for two hours in medium lacking FCS and then trypsinised. 

Suspensions of 2 x 10
5
 cells/ml were prepared in medium lacking FCS. The cells, except the 

control cells, were treated with 5 µg/ml AMD3100 for 30 minutes and then incubated at 37°C 

and 5% CO2. The cells were irradiated (0 to 4 Gy) and 1 ml of each cell suspension was 

incubated in a 48-well plate for 26 hours at 37°C and 5% CO2. After incubation, the cells 

were trypsinised and counted and 300 to 2000 cells/flask were seeded in a quadruplicate for 

each treatment condition.  

After seeding into the culture flasks, cells were incubated at 37°C and 5% CO2 for a period 

between 8 to 14 days depending on the cell growth capacity of each line. All plates were 
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regularly observed under the microscope and colony growth was evaluated. The colonies were 

then fixed and stained as described in Chapter 2.3.5.3.  

2.3.5.2 Cell irradiation 

A RS 225 X-ray Research System (Gulmay Medical Systems, Camberley, Surrey, UK) was 

used for irradiation. The cells were irradiated with a tube voltage of 200 kV and a current of 

15 mA filtered by a 0.5 mm thick copper sheet at a temperature of 22 to 24 °C. The table 

height, defined as a distance between the table and the radiation source, was altered according 

to the preferred dose rate. This height was 500 mm and 351 mm for a dose rate of 1 Gy/min 

and 2 Gy/min, respectively.  

2.3.5.3 Colony fixation and crystal violet staining  

After the cell culture medium was removed from the culture flasks, four millilitres of 70% 

ethanol were pipetted into each flask and left there for 20 minutes. The ethanol was removed 

and the flasks were dried in an incubator over-night. The fixed cells were stained with 0.1% 

crystal violet solution. Four millilitres of the crystal violet solution were added to each flask. 

After 20 minutes the solution was removed and excess stain was washed away with water. 

This procedure made the colonies visible and easily counted. Sterile conditions were not 

required for fixation and staining.  

2.3.5.4 Counting of colonies 

Plates with stained colonies were examined under the light microscope. A cluster of blue-

stained cells was considered a colony if it comprised at least 50 cells. It was important to keep 

this cut-off constant to avoid variations between experiments. All the cells of the colony were 

the progeny of a single cell. 

2.3.5.5 Cell survival curves 

To establish cell survival curves, the fixed and stained colonies were counted and the values 

of the surviving fraction for each treatment condition were calculated as described above. 

Each experiment and different treatment condition was repeated three times and the cells from 
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each were seeded in quadruplicate. Afterwards mean values (expressed as points in the 

curves) were calculated and standard errors (SE) were plotted as error bars. If the error bars 

are not visible on the graph, they are smaller than the size of the point. Using Kaleidagraph® 

(version 4.1) the calculated surviving fractions were transformed graphically into a semi-

logarithmic scale representation. The abscissa represents the radiation doses on a linear scale, 

and the ordinate represents the surviving fractions on a logarithmic scale. The shape of the 

survival curve is unique for each cell line helping to evaluate cell behaviour under different 

irradiation conditions associated with or without other treatment regimens. 

2.3.5.6 Data analysis 

Survival curves, each referring to its specific control, were fitted to the data points using a 

linear-quadratic approach with: 

           

where D represents the applied radiation dose and α and β are proportionality factors. The 

dose-modifying factor (DMF) was calculated by the ratio of the radiation dose in the absence 

or presence of CXCL12 and AMD3100 to achieve the same cell survival rate.  

2.3.6 Cell viability assay - Cell Titer Blue
®
 (CTB assay) 

The CTB assay is a cell viability assay that provides a homogeneous, fluorometric method to 

monitor cell viability and cell metabolic activity in multiwell plates. The assay is based on a 

redox reaction. Viable, metabolically active cells, can convert resazurin (dark blue with little 

intrinsic fluorescence activity) into its highly fluorescent product, resorufin (pink, highly 

fluorescent molecule) (Promega, Technical Bulletin, revised 6/09, Figure 2.1). The intensity 

of the fluorescence is proportional to the number of viable cells and their metabolic activity. 

Sterile 96-well black plates with clear bottoms were used for analysis.  
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Figure 2.1: Conversion of resazurin with little fluorescence activity to resorufin with highly 

fluorescence activity by viable cells.  The intensity of the fluorescence produced is proportional to 

the number of viable cells and their metabolic activities. (The figure was taken from Promega product-

guide-page: www.promega.de/resources/product-guides-and-selectors/protocols-and-applications-

guide/cell-viability) 

 

2.3.6.1 Determination of optimal incubation time and radiation dose within CTB 

assay 

Test 1: Optimal incubation time 

Before setting up the 96-well plates for the cell viability assay, four different incubation times 

(26, 48, 72, and 96 hours) were tested to find the best possible incubation time. This 

experiment was performed only for control cell line HaCat and tumour cell line ZMK-1.  

First, a suspension of HaCat and ZMK-1 cells was prepared and maintained in a 15 ml plastic 

tube. One tube contained a suspension of the control cells without irradiation; after preparing 

the cell suspension, the second tube was irradiated. The irradiation was performed as 

described in Chapter 2.3.5.2. A total dose of 4 Gy was delivered with a dose rate of 1 Gy/min. 

After the irradiation the cells were seeded into wells; 5000 cells per well for HaCat and 6000 

cells per well for ZMK-1 (see Table 2.12, green area). 
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Test 2: Optimal radiation dose 

Suspensions containing the necessary number of cells were prepared and maintained in 15 ml 

plastic tubes. One tube contained cells for the control group (no irradiation); the other tubes 

were irradiated. After delivering with a dose rate of 2 Gy/min total doses of 2, 4, 6, 8, 10 and 

12 Gy the cells were seeded into wells, with 5000 cells/well for HaCat and 6000 cells/well for 

ZMK-1 (see Table 2.12, green area). 

Test 3: Combination of optimal incubation time and radiation dose 

Due to non-optimal incubation times for observing the effect of irradiation on cell viability, 

the assay was repeated for all five cell lines with a longer incubation time, i.e. for one week. 

For this test, a radiation dose of 8 Gy was selected as the optimal dose. For observing the 

effect of irradiation on cell viability, we decided to reduce the cell density to 2000 cells per 

well. In this last test, the cells were seeded in wells and the plate was then irradiated. Two 

plates were prepared; one 8 Gy irradiated plate, and one non-irradiated plate. 

With the purpose of completing and homogenizing the volume per well, a total volume of 100 

μl of each cell suspension per well was added to each well. The outer wells on all sides were 

loaded with cell-free medium (cell-free medium: M, Table 2.12). The contents of the wells in 

the first column (column 1, blue area B1-G1) were used as blank samples to determine 

background fluorescence. The green area represents the different conditions investigated. For 

each experiment and condition the test was done in triplicate (Table 2.12). 

 1 2 3 4 5 6 7 8 9 10 11 12 

A M M M M M M M M M M M M 

B M 

1 2 3 4 5 6 7 8 9 10 

M 

C M M 

D M M 

E M 

11 12 13 14 15 16 17 18 19 20 

M 

F M M 

G M M 

H M M M M M M M M M M M M 

Table 2.12: Schematic representation of a 96-well plate seeded with cells and medium 
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The prepared plates (irradiated and non-irradiated) were incubated for one week under 

standard incubation conditions (37°C and 5% CO2). At the end of the incubation period, the 

plate was removed from the incubator, 20 μl of CTB Reagent was added cells in culture as 

well as 6 wells in the column 1 (Blank wells) following the manufacturer’s guides, and the 

plate incubated again for one hour at 37°C before reading the 96-well plate on a fluorometer 

at 560 nm excitation and 590 nm emission. 

2.3.6.2 Investigating various treatments on cell viability 

The notion of optimal radiation dose and incubation time permits to optimise the experimental 

process. If more treatment combinations are required in the same experiment, e.g. irradiation, 

CXCL12 and/or AMD3100, one plate is not irradiated and the other is irradiated allowing 

each treatment condition to be analysed with and without irradiation. 

To begin with, a cell suspension containing 2 x 10
4
 cells/ml was prepared and divided in four 

15 ml plastic tubes. The first tube was treated with 100 ng/ml of CXCL12, a second tube with 

5 µg/ml of AMD3100, a third tube with both of them. The last tube did not contain any drug. 

All tubes were incubated for 30 minutes at 37°C and 5% CO2. From each tube 100 µl of the 

cell suspension (2000 cells/well) was pipetted in two sterile 96-well black plates with clear 

bottoms; each experimental condition was performed in triplicate. One of this 96-well-plate 

was irradiated. A total dose of 8 Gy was delivered with a dose rate of 2 Gy/min. 

After a one-week incubation time, the plates were removed from the incubator and CellTiter-

Blue
®
 Reagent was added to the wells. The plates were gently shaken for ten seconds and 

returned to the incubator for one more hour at 37 °C for one hour. The experiment was 

performed twice for each cell line and the data were analysed following the procedure 

described below (see following Chapter 2.3.6.3). 

2.3.6.3 Data analysis 

The fluorescence analysis was performed with a Wallec1420 VICTOR
TM

 plate reader. The 

dye was excited with a 560 nm wavelength and the emissions measured at 590 nm. The 

obtained data were imported into Microsoft Office and the following calculations were 

performed: background fluorescence was subtracted from the raw fluorescence results of all 
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wells. The averages and the standard deviations of the triplicate determinations were 

calculated. 

2.3.7 Migration assay 

One of the most commonly used migration assays is the Boyden chamber/Transwell assay 

(Figure 2.2). This method is used to quantify the migration of cells exposed to 

chemoattractants such as chemokines. The chamber includes two compartments separated by 

a microporous filter (8 µm) through which the cells migrate.  

The relevant chemoattractant solution is placed in the lower chamber to create a chemotactic 

gradient while the cells to be tested are incubated in the upper chamber. After an appropriate 

incubation time, the upper surface of the filter is scraped twice with cotton swabs to remove 

non-migrating cells. Migrated cells on the lower surface of the membrane are fixed and 

stained by Diff-Quick
®
 kit. Five to seven random photographs were taken of each membrane 

with an Olympus light-microscope coupled with a camera, and the cells in each photograph 

were counted and quantified using the “ImageJ” software.  

 

 

Figure 2.2: A ThinCertTM  cell culture insert is placed in the well of a multiwell cell culture plate, 

thus forming a migration chamber.  The migration chamber consists of an upper and lower 

compartment with a porous PET membrane in-between. Cells may actively migrate from the upper to 

the lower compartment. The figure was taken and modified from  (Oppegard et al. 2010). 

http://pubs.rsc.org/en/content/articlehtml/2009/ib/b814567a#fig2
javascript:popupOBO('GO:0042056','B814567A')
javascript:popupOBO('CL:0000738','B814567A')
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2.3.7.1 Determination of optimal concentrations of CXCL12 and AMD3100  

Best concentration of CXCL12 

This experiment was performed with the CXCR4-positive tumour cell line (ZMK-1). 8 x 10
4
 

cells were seeded into the insert. CXCL12 as chemoattractant was added to the lower chamber 

in the concentrations 0, 25, 50 and 100 ng/ml. The cells were allowed to migrate for 26 hours 

at 37°C and 5% CO2. 

Best concentration of AMD3100 

This experiment was also performed with ZMK-1 cell line. The cells were incubated with six 

different concentrations of AMD3100, i.e. 0, 1, 5, 12.5, 25 and 50 µg/ml for 26 hours at 37°C 

and 5% CO2. At the end of the incubation time 8 x 10
4
 cells were seeded into the insert. 

CXCL12 (100 ng/ml, optimal concentration determined in the experiment described above) 

was added to the lower chambers. The cells were allowed to migrate for 26 hours at 37°C and 

5% CO2.  

2.3.7.2 Influence of irradiation and CXCL12 on cell migration  

Cells were initially starved of serum for two hours. A cell suspension containing 16 x 10
4
 

cells was prepared and kept in four 15 ml plastic tubes. One tube contained cells for the 

control group (non-irradiated cells); the second tube was irradiated at 0.5 Gy; the third and 

fourth tubes were irradiated at 2 and 4 Gy, respectively. 500 µl cell suspensions aliquots from 

each tube (8 x 10
4
 cells) were seeded into serum-free medium in the two inserts. To 

investigate the influence of CXCL12 on cell migration, 100 ng/ml of CXCL12 was added to 

the one of the lower chambers (see Table 2.13, A1-A4, purple area). The remaining lower 

chambers were CXCL12-free (Table 2.13, B1-B4, green area). 

The cells were allowed to migrate for 26 hours at 37°C and 5% CO2. The experiments were 

repeated in duplicate for all cell lines. The results are expressed as the mean number of 

migrated cells ± standard deviation. Statistical differences were determined by Student’s t-

test. A value of p<0.05 was considered to indicate a statistically significant difference. 
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2.3.7.3 Influence of AMD3100 on CXCR4-positive migrating cells 

This experiment was only performed with the CXCR4-positive tumour cell lines (ZMK-1 and 

FaDu). Cells were initially starved of serum for two hours. A cell suspension containing 16 x 

10
4
 cells was prepared and maintained in eight 15 ml plastic tubes. Two tubes contained cells 

for the non-irradiated control group. For each radiation dose (0.5, 2 and 4 Gy) two tubes were 

prepared, i.e. for each dose one tube was treated with AMD3100 (5 µg/ml) for 30 minutes at 

37°C and 5% CO2 and the other tube was untreated (see Table 2.14, purple area: treated and 

green area: untreated cells). To control for AMD3100 influence on non-irradiated cells one of 

the control tubes was also treated with AMD100 (see Table 2.14, blue area).  

 1 2 3 4 5 6 

A 
Non-irradiated 

cells 

Non-irradiated 

cells 

+CXCL12 

Non-irradiated 

cells 

+CXCL12 

+AMD3100 

0.5 Gy irradiated 

cells 

+CXCL12 

+AMD3100 

2 Gy irradiated 

cells 

+CXCL12 

+AMD3100 

4Gy irradiated 

cells 

+CXCL12 

+AMD3100 

B    

0.5 Gy irradiated 

cells 

+CXCL12 

2 Gy irradiated 

cells 

+CXCL12 

4Gy irradiated 

cells 

+CXCL12 

C       

D       

 

 

 1 2 3 4 5 6 

A 
Non-irradiated 

cells 

+CXCL12 

0.5 Gy irradiated 

cells 

+CXCL12 

2 Gy irradiated 

cells 

+CXCL12 

4Gy irradiated 

cells 

+CXCL12 

  

B 
Non-irradiated 

cells 

0.5 Gy irradiated 

cells 

2 Gy irradiated 

cells 

4Gy irradiated 

cells 
  

C       

D       

Table 2.13: Schematic illustration of a 24-well transwell plate seeded with irradiated and non-irradiated cells. 

100 ng/ml of CXCL12 was added in the lower chamber of purple area, which was not available in green area.  

Table 2.14: Schematic illustration of a 24-well transwell plate seeded with irradiated and non-irradiated 

cells. 100 ng/ml of CXCL12 was added in all lower chambers except A1 for control. Irradiated cells in the 

purple area were treated with 5µg/ml of AMD3100. However, irradiated cells in the green area were 

untreated. 
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After the six treated cell suspensions had been irradiated, 500 µl cell suspension (8 x 10
4
 

cells) aliquots from all nine tubes were seeded into serum-free medium. To investigate the 

inhibitory effect of AMD3100 on cell migration, 100 ng/ml of CXCL12 was added to all 

lower chambers except one control chamber (see Table 2.14, A1). The cells were allowed to 

migrate for 26 hours at 37°C and 5% CO2. The experiments were repeated in triplicate.  

2.3.7.4 Data analysis 

The measurements and numbers of migrated cells were determined in duplicate to analyse the 

impact of the CXCL12 gradient on cell migration. The experiments on the inhibitory effect of 

AMD3100 on CXCR4-positive cell lines were repeated three times. The results are expressed 

as the mean number of migrated cells ± standard deviation. The differences between two 

groups were compared by Student´s t-test. One-way ANOVA was used to compare three or 

more groups. A value of p<0.05 was considered to indicate a statistically significant 

difference. 
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3. Results 

3.1 In vivo analysis of HNSCC biopsies 

3.1.1 General HNSCC patient data 

In the patient collective, both genders were included. The numbers of men and women were 

197 (85%) and 36 (15%), respectively, which correspond to a male-to-female ratio of 5.7:1 

(Table 3.1). Four different primary tumour sites were present in the patients. These were oral 

cavity, oropharynx, hypopharynx and larynx. Oropharyngeal carcinomas were the most 

common ones (99 cases, 42.5%), followed by oral cavity (63 cases, 27%) and hypopharyngeal 

carcinomas (45 cases, 19.3%) (Table 3.1).  

         Table 3.1: Pre-treatment characteristics of study patients  

Characteristic Patientsn (%) 

Gender  

 Male 197 (85) 

 Female  36 (15) 

Tumour localization  

 Oral cavity 63 (27) 

 Oropharynx 99 (42.5) 

 Hypopharynx 45 (19.3) 

 Larynx 26 (11.2) 

UICC stage  

 II 7 (3.0) 

 III 16 (6.9) 

 IV A/B 189/21 (90.1) 

T-status  

 1 7 (3.0) 

 2 17 (7.3) 

 3 39 (16.7) 

 4 170 (73) 

N-status  

 0 35 (15) 

 1 27 (11.6) 
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 2 149 (64) 

 3 22 (9.4) 

Histological grading  

 1 11 (4.7) 

 2 187 (80.3) 

 3 35 (15) 

Previously untreated tumours were staged according to the current classification of the Union 

Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer 

(AJCC) (Brandwein–Gensler and Smith 2010). All tumours were also staged according to the 

TNM staging system (Sobin and Compton 2010). The pathologic stage, tumour diameter, and 

nodal status were obtained from the primary pathology reports.  

The distribution of the histopathological tumour grades was: Grade 1: 11 patients; Grade 2: 

187 patients; and Grade 3: 35 patients (Table 3.1).  

3.1.2 Analysis of CXCL12, CXCR4 and p16
INK4A

 expression at the protein level 

by immunohistochemical staining 

In order to investigate the in vivo relevance of the expression of CXCL12, CXCR4 and 

p16
INK4A

, immunohistochemical analyses were performed on 233 primary HNSCC tumour 

tissue samples. The individual results of the staining are expressed as a score for each patient 

and each marker (see Chapter 2.2.2.1). This has the advantage that the evaluations of the 

  

 

Figure 3.1:  Representative IHC staining of CXCL12 and CXCR4 in HNSCC tumour specimens.  
In this staining system, the CXCL12 and CXCR4 are stained red and the nuclei are stained blue  A) 

CXCL12 was expressed in the cytoplasm and/or in the nucleus. B) CXCR4 was also expressed in the 

cytoplasm and/or in the nucleus.  The blue staining presents the nucleus of cells (Magnification 40x). 

 

A B 
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analysis could be directly and simply compared with other parameters that were generated in 

this study. First of all, the expression of the three markers was correlated with the patient’s 

pre-treatment data.  

The analyses were able to detect expression of CXCR4 and CXCL12 in 233 and 229 patients, 

respectively (Figure 3.1). For 4 patients there was not enough material for CXCL12 staining. 

The scores for the expression intensity of CXCR4 ranged from 0 to 210. Absent or very low 

expression with a score ≤ 10 was found in about one third of the patients (n = 79, 33.9%). For 

further analysis, the data were divided into three groups: a score between 15 and 70 

represented a medium expression (n = 79 patients, 33.9%) and a score > 70 a high expression 

(n = 75 patients, 32.2%). CXCL12 expression was observed less frequently, as 132 patients 

(56.7%) were negative for the marker. In the CXCL12 expression analyses we only 

differentiated between negative and positive samples. 

The analysis of p16
INK4A

 expression showed that 102 of the 233 (44%) samples had 

cytoplasmic and/or nuclear staining. Interestingly, there was a significant increase in 

p16
INK4A

-positive HNSCC patients in this cohort study over the period from 1992 to 2011 

(Figure 3.2, p=0.00091). 

 

 

Figure 3.2: A significant increase of positive p16 INK4A expression in HNSCC patients from 1992 

to 2011. 
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Figure 3.3: Representative IHC staining of p16 INK4A in HNSCC tumour specimens. In this staining 

system, the p16 INK4A is stained red and the nuclei are stained blue. Tumours were classified as: A) 

continuous and diffuse cytoplasmic and/or nuclear staining, B) weak and focal (patchy) cytoplasmic 

and/or nuclear staining and C) negative staining (Magnification 20x) 

A 

B 

C 
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 Based on the evaluation, there were three different phenotypes for p16
INK4A

 

immunoreactivity (Figure 3.3 A-C), namely diffuse positive cytoplasmic and/or nuclear 

staining (Figure 3.3 A), weak and focal (patchy) positive cytoplasmic and/or nuclear staining 

(Figure 3.3 B), and negative staining (Figure 3.3 C). Diffuse positive staining was found in 62 

of the 233 (27%) samples. Forty of the 233 (17%) samples had weak focal positive staining. 

The remaining 135 samples were negative for the p16
INK4A

 expression. 

3.1.2.1 Association of CXCL12, CXCR4 and p16
INK4A

 expression with pre-treatment 

parameters 

The association of CXCR4, CXCL12 and p16
INK4A

 expression with clinicopathological 

characteristics is shown in Table 3.2 and Table 3.3.  

CXCR4  

The expression of CXCR4 was positively and significantly associated with the patients´ age; 

patients older than the median age of the cohort showed a significant increase in CXCR4 

positivity (p=0.0035). However, the expression of this protein did not show any statistically 

relevant correlation with other pre-treatment parameters, such as gender, primary tumour 

localisation, T/N status or UICC stage. 

Table 3.2: Association of CXCL12 and CXCR4 expression with clinicopathological characteristics of 233 

Patients with inoperable HNSCC  

Characteristics Number of patients (%) p-

value 

Number of patients 

(%) 

p-

value 

 Total CXCR4 expression  CXCL12 expression  

  low 
≤10 

median       
>10 - 70 

high 
>70 

 negative 
0 

positive 
>0 

 

Total n = 233 79 

(33.9) 

79  

(33.9) 

75 

(32.2) 

 132  

(56.7) 

97  

(41.6) 

 

Age     0.0035   0.90 

 < Median 116  

(49.7) 

53 

(45.7) 

31  

(26.7) 

32 

(27.6) 

 64  

(56.1) 

50  

(43.9) 

 

 > Median 117  

(50.2) 

26 

(22.2) 

48  

(41.0) 

43 

(36.8) 

 68  

(59.1) 

47  

(40.9) 
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Gender     0.65   0.83 

 Male 197  

(84.7) 

67 

(34.0) 

69  

(35.0) 

61 

(31.0) 

 110  

(57.0) 

83  

(43.0) 

 

 Female 36  

(15.3) 

12 

(33.3) 

10  

(27.8) 

14 

(38.9) 

 22 

 (61.1) 

14 

 (38.9) 

 

Tumour localization     0.76   <0.001 

Oropharynx 99  

(42.5) 

36 

(36.4) 

33  

(33.3) 

30 

(30.3) 

 46  

(48.4) 

49 

 (51.6) 

 

Hypopharynx 44  

(18.9) 

13 

(29.5) 

17  

(38.6) 

14 

(31.8) 

 18  

(40.9) 

26  

(59.1) 

 

Larynx 27  

(11.6) 

10 

(37.0) 

10  

(37.0) 

7 

 (25.9) 

 15  

(55.6) 

12  

(44.4) 

 

Oral cavity 63  

(27.0) 

20 

(31.7) 

19 

 (30.2) 

24 

(38.1) 

 53  

(84.1) 

10  

(15.9) 

 

Histological grading     0.33   0.075 

 G1 11  

(4.7) 

3  

(27.3) 

3  

(27.3) 

5  

(45.5) 

 10  

(90.9) 

1  

(9.1) 

 

 G2 187 

 (80.3) 

62 

(33.2) 

63 

 (33.7) 

62 

(33.2) 

 104  

(56.8) 

79  

(43.2) 

 

 G3 35  

(15.0) 

14 

(40.0) 

13  

(37.1) 

8 

 (22.9) 

 18  

(51.4) 

17 

 (48.6) 

 

T-status     0.88   0.51 

 1 7 

 (3.0) 

3  

(42.9) 

2  

(28.6) 

2  

(28.6) 

 3  

(42.9) 

4  

(57.1) 

 

 2 17 

(7.3) 

3  

(17.6) 

10  

(58.8) 

4  

(58.8) 

 12  

(70.6) 

5  

(29.4) 

 

 3 39  

(16.7) 

15 

(38.5) 

14  

(35.9) 

10 

(35.9) 

 22 

 (56.4) 

17 (43.6)  

 4 170 

 (73.0) 

58 

(34.1) 

53  

(31.2) 

59 

(31.2) 

 95  

(57.2) 

71  

(42.8) 

 

N-status     0.78   0.025 

 0 35  

(15.0) 

10 

(28.6) 

15  

(42.9) 

10 

(28.6) 

 26  

(74.3) 

9  

(25.7) 
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CXCL12 

The expression of CXCL12 was significantly correlated with tumour localisation (p<0.001). 

Tumours of the oral cavity were predominantly CXCL12-negative (84.1% negative vs. 15.9% 

positive, Table 3.2). In contrast, tumours located either in the oropharynx, the hypopharynx or 

the larynx showed nearly similar proportions of CXCL12-positive and negative samples. It 

also observed that the expression of CXCL12 in tumours is linked to an increasing N-status 

(p=0.025). 

p16
INK4A

  

p16
INK4A

 expression was not significantly associated neither with age at diagnosis, gender, 

tumour localization, histological tumour grade nor UICC stage. There were no statistically 

significant differences in these parameters between patients with and without p16
INK4A

 

expression (Table 3.3). 

 1 27 

 (11.6) 

11 

(40.7) 

8  

(29.6) 

8 (29.6)  19 

 (70.4) 

8  

(29.6) 

 

 2 149 

 (64) 

48 

(32.2) 

51  

(34.2) 

50 

(33.6) 

 76  

(52.4) 

69  

(46.6) 

 

 3 22  

(9.4) 

10 

(45.5) 

5 

 (22.7) 

7 

 (31.8) 

 11  

(50.0) 

11  

(50.0) 

 

UICC stage     0.53   0.30 

 II 7  

(3.0) 

1  

(14.3) 

4  

(57.1) 

2 

 (28.6) 

 4  

(57.1) 

3  

(42.9) 

 

 III 16 

 (6.9) 

4  

(25.0) 

6 

 (37.5) 

6  

(37.5) 

 12 

 (75.0) 

4 

 (25.0) 

 

 IV A/B 189/21 

(90.1) 

74 

(35.2) 

69  

(32.9) 

67 

(31.9) 

 116  

(56.1) 

90  

(43.9) 
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Table 3.3: Correlation between p16INK4A expression and clinicopathological characteristics of 233 patients 

with inoperable HNSCC  (reproduced from (Tehrany et al. 2015))   

3.1.2.2 Correlation between CXCL12, CXCR4 and p16
INK4A

 expression in HNSCC 

tumours 

In HNSCC tumour samples, for which the expression of CXCL12, CXCR4 and p16
INK4A

 was 

evaluated by immunohistochemical staining, the correlation among CXCL12, CXCR4 and 

p16
INK4A

 expression was investigated. There was a significant positive correlation between 

Characteristics Patients (%) Number of patients (%) p-value 

 Total P16INK4A expression  

  negative 
0 

positive 
>0 

 

Total n = 233 131 (56.2) 102 (43.8)  

Age    0.146 

 < Median 116 (49.7) 71 (61.2) 45 (38.8)  

 > Median 117 (50.2) 60 (51.3) 57 (48.7)  

Gender    0.586 

 Male 197  (84.7) 109  (55.3) 88 (44.7)  

 Female 36 (15.3) 22 (61.1) 14 (38.9)  

Tumour localization    0.066 

Oropharynx 99 (42.5) 50 (50.5) 49 (49.5)  

Hypopharynx 44 (18.9) 21 (47.7) 23 (52.3)  

Larynx 27 (11.6) 17 (63.0) 10 (37.0)  

Oral cavity 63 (27.0) 43 (68.3) 20 (31.7)  

Histological grading    0.203 

 G1 11 (4.7) 6 (54.6) 5 (45.4)  

 G2 187 (80.3) 110  (58.8) 77 (41.2)  

 G3 35 (15.0) 15 (42.9) 20 (57.1)  

UICC stage    0.08 

 II 7 (3.0) 1 (14.3) 6 (85.7)  

 III 16 (6.9) 9 (56.2) 7 (43.8)  

 IV A/B 189/21 (90.1) 121 (57.6) 88 (42.4)  
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p16
INK4A

 expression and CXCL12 and CXCR4 expression. However, no significant 

association between CXCL12 expression and CXCR4 was seen. Additionally, as shown in 

Figure 3.4, the degree of CXCR4 expression and positivity for CXCL12 correlate 

significantly with positive expression of p16
INK4A  

(Figure 3.4).  

 

 

 

 

Figure 3.4: Correlation between p16 INK4A positivity and CXCL12 and CXCR4 expression.  In the 

box-plots the immunohistological scores for CXCR4 and CXCL12 stratified by p16 INK4A positivity are 

summed. 
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3.1.3. Correlation between p16
INK4A

 expression and HPV status in HNSCC 

tissue samples 

Next, 233 HNSCC tissue samples were examined for the presence of HPV DNA using broad 

spectrum PCR and nested-PCR to determine whether HPV detection differs when different 

primer sets are used. First of all, the two major consensus primer sets used for PCR 

amplification of HPV DNA were compared, the PGMY 09/11 primer sets and the 

GP5+/GP6+ primers. To monitor DNA quality, the specimens were also amplified with the ß-

globin primers PC04 and GH20 (268 bp in size) (Figure 3.5 A). Fifty-four of the 233 (23%) 

samples showed either only weak signals or no amplification of the ß-globin. However, to 

avoid missing samples that contain HPV DNA, we decided to subject these 54 samples to 

nested-PCR as well. Furthermore, the fragments of 450 bp and 140 bp in size were amplified 

in all samples using PGMY 09/11 and GP5+/GP6+ primers, respectively (Figure 3.5 B and 

C). In this study the PGMY 09/11 and GP5+/GP6+ consensus primer sets showed a 

completely different sensitivity, as defined by the ability to detect HPV DNA. Although 44 

(19 %) specimens were HPV DNA positive in PCR experiments using the GP5+/GP6+ 

primers, no sample showed HPV DNA positivity in PCR experiments using the PGMY 09/11 

primers except for the positive control with a high concentration of HPV-6 DNA.  

Of note, we did not observe multiple infections. Furthermore, we sequenced the positive 

nested amplicons to confirm correct HPV genotype amplification (see methods Chapter 

2.2.2.5). 

Nested-PCR was performed to validate the IHC-based detection of p16
INK4A

 expression. The 

correlation between immunohistochemical analysis of p16
INK4A

 expression and HPV subtypes 

is summarized in Table 3.4.  

Although the FFPE samples were old, we were able to detect HPV DNA (L1 consensus) in 44 

(19 %) samples (42 samples were sequenced as HPV-16 and 2 samples as either HPV-6 or 

HPV-11). Based on the immunohistochemical analysis cytoplasmic and nuclear p16
INK4A

 

expression was detected in 102 of 233 (44 %) samples. 
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Figure 3.5: PCR results with 3 primer sets on HNSCC specimens.  A) PCR with PC04 and GH20 ß-

globin primers to monitor DNA quality (expected size of 268 bp in size). B) Board spectrum PCR 

amplification yield with PGMY 09/11 primer sets for the L1 region of HPV g enome (expected size of 

450 bp in size). C) nested-PCR with GP5+/GP6+ primers as nested-PCR (expected size of 140 bp in 

size); PC: positive control; NC: negative contro l; S: sample; B: blank. 

 

A 

B 

C 
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The correlation between p16
INK4A

 expression and HPV DNA in the tumour cells was highly 

significant (p<0.01), and 41 of 42 (98%) samples positive for HPV-16 (a high-risk HPV 

subtype) showed p16
INK4A

 immunoreactivity. However, in one sample there was no p16
INK4A

 

immunoreactivity despite HPV-16 DNA being detected (details given in Table 3.4). There 

were also two low-risk HPV subtypes (HPV-6 and HPV-11) that one of them was positive for 

p16
INK4A

.  

Table 3.4: HPV detection and P16 INK4A expression (reproduced from (Tehrany et al. 2015)) 

 

 Total Diffuse Focal Negative 

HPV-16 42 31 10 1 

HPV-6/11 2 1 0 1 

HPV negative 189 30 30 133 

Total 233 62 40 135 

3.1.4 Treatment outcome and high-grade acute organ and hematotoxicity in 

HNSCC patients 

In this study, the response to treatment was classified as complete remission (126 patients, 

54.1 %), partial remission (48 patients, 20.6 %), no change (19 patients, 8.2 %), and 

progression (20 patients, 8.6 %). Twenty patients (8.6%) were lost during follow-up, and no 

data are available concerning the state of disease at the end of therapy.  

At the end of the study, 185 patients (79.4%) had died due to tumour-related causes (132 

patients) or from other intercurrent disease (53 patients). Loco-regional reoccurrence were 

seen in 66 of the 233 patients (28.3%), and distant metastases occurred in 29 of 233 patients 

(12.5%) during follow-up. At the end of the study, 48 patients (20.6%) were still alive. The 

three- and five-year OS rates were 27.1% and 23.2%, respectively.  

In addition to treatment outcome, treatment-related acute organ toxicity and hematotoxicity 

were evaluated in all patients (details given in Table 3.5).  
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Table 3.5: Incidence and grading of acute organ and hematotoxicity ( reproduced from (Tehrany et al. 2015)) 

Acute organ toxicity occurred during R(C)T as follows and is summarized in table 3.5; 231 of 

the 233 patients developed mucositis (58x grade 1; 131x grade 2; 42x grade 3), a skin reaction 

was seen in 232 patients (82x grade 1; 135x grade 2; 15x grade 3), dysphagia was noted in 

196 patients (92x grade 1; 70x grade 2; 34x grade 3) and nausea was seen in 51 patients (36x 

grade 1; 15x grade 2).  

Acute hematotoxicity during R(C)T appeared as follows: anaemia grade 1 was seen in 41, 

grade 2 in 59, and grade 3 in 11 patients; leukopenia grade 1 was observed in 35, grade 2 in 

42, grade 3 in 26, and grade 4 in 7 patients; thrombocytopenia grade 1 was noted in 19, grade 

2 in 7, grade 3 in 3 patients and grade 4 in one patient (Table 3.5).  

3.1.4.1 Correlation of cytoplasmic expression of CXCL12, CXCR4 and p16
INK4A 

with 

acute toxicity during treatment 

Figure 3.6 illustrates the correlation between the expression of the three investigated proteins 

(CXCL12, CXCR4 and p16
INK4A

) and high-grade toxicity during R(C)T. Acute organ toxicity 

and hematotoxicity were evaluated weekly for the entire duration of R(C)T. The evaluation 

was continued every second week after the end of therapy until acute toxicity according to the 

scoring system (Common Toxicity Criteria, CTC) was no longer detectable. For this analysis, 

due to a significantly impaired of quality of life, acute toxicity was scored as HGAOT or 

 Number of patients (%) 

Type None Grade 1 Grade 2 Grade 3 Grade 4  

Acute organ toxicity      

 Mucositis 2 (0.9) 58 (24.9) 131 (56.2) 42 (18.0) 0 (0.0) 

 Skin reaction 1 (0.4) 82 (35.2) 135 (57.9) 15 (6.4) 0 (0.0) 

 Dysphagia 37 (15.9) 92 (27.8) 70 (30.0) 34 (14.6) 0 (0.0) 

 Nausea 182 (78.1) 36 (15.5) 15 (6.4) 0 (0.0) 0 (0.0) 

Acute hematotoxicity      

 Anaemia 122 (52.4) 41 (17.6) 59 (25.3) 11 (4.7) 0 (0.0) 

 Leukopenia 123 (52.8) 35 (15.0) 42 (18.0) 26 (11.2) 7 (3.0) 

 Thrombocytopenia 203 (87.1) 19 (8.1) 7 (3.0) 3 (1.3) 1 (0.4) 
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HGAHT if one or more of the acute toxicity items were graded as CTC >2. HGAOT of grade 

III ensued in 77 of the 233 cases (33%). Additionally, HGAHT of grade III-IV occurred in 42 

of the 233 cases (18%) (Figure 3.6). 

There was no significant correlation between HGAHT and the expression of any of the three 

proteins with p=0.55, p=0.97 and p=0.46 for CXCL12, CXCR4 and p16
INK4A

, respectively 

(Figure 3.6 A, C, E). Moreover, HGAOT also showed no association with CXCL12 and 

CXCR4 status with p=0.34 and p=0.49 for CXCL12 and CXCR4, respectively (Figure 3.6 B, 

D). In contrast, the expression of p16
INK4A

 was significantly associated with the occurrence of 

HGAOT during R(C)T (Figure 3.6-F, p=0.011). The correlation between HGAOT and 

p16
INK4A

 expression is summarized in Table 3.6.  

 

 

  

A B 
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Figure 3.6: Correlation between cytoplasmic expression of CXCL12, CXCR4 and p16 INK4A and 

HGAOT and HGAHT during R(C)T.  Expression of these three proteins did not correlate with 

HGAHT (A, C, E). Only for p16 INK4A expression there was a statistically significant correlation with 

HGAOT (p=0.011) during R(C)T (F). No significant correlation between expression of CXCL12 and 

CXCR4 with HGAOT was noted (B, D). HGAHT: high-grade acute hematotoxicity, HGAOT: high-

grade acute organ toxicity, n: number of patients with positive  or negative occurrence of HGAOT or 

HGAHT.  

 

The distribution of acute toxicity symptoms in patients with positive or negative expression of 

p16
INK4A

 during R(C)T was as follows: out of the 77 patients with higher than grade 2 acute 

organ toxicity, 43 patients (42.2%) expressed p16
INK4A 

(p = 0.011). 

Table 3.6: Organ toxicity in relation to p16 INK4a expression (reproduced from (Tehrany et al. 2015)) 

 Number of patients (%) P-value 

Type Total P16
INK4a

 expression  

  Negative  Positive  

Mucositis     0.609 

≤ grade 2 191 (82.0) 109 (83.2) 82 (80.1)   

> grade 2 42 (18.0) 22 (16.8) 20 (19.9)   

Skin reaction    0.592 

≤ grade 2 218 (93.6) 124 (94.7) 94 (92.2)  

> grade 2 15 (16.4) 7 (5.3) 8 (7.8)  

Dysphagia    0.001 

≤ grade 2 199 (85.4) 121  (92.4) 78 (76.4)  

> grade 2 34 (14.6) 10 (7.6) 24 (23.6)  

Nausea    0.524 

   grade 0 182 (78.1) 100 (76.3) 82 (80.1)  

≥ grade 1 51 (21.9) 31 (23.7) 20 (19.9)  

Organ toxicity    0.011 

≤ grade 2 156 (67.0) 97 (74.1) 59 (57.8)  

> grade 2 77 (33.0) 34 (25.9) 43 (42.2)  

Overall, 20 of the 42 patients with higher than grade 2 mucositis during R(C)T were positive 

for p16
INK4A

 expression (Table 3.6, p=0.609). Of the 15 patients with a higher than grade 2 

skin reaction, eight patients expressed p16
INK4A

 (Table 3.6, p=0.592). Dysphagia higher than 

grade 2 was observed in 34 patients, of whom 24 patients were p16
INK4A

 positive. 
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Furthermore, expression of p16
INK4A

 showed a strong correlation with dysphagia (Table 3.6, 

p=0.001). There were no patients with higher than grade 2 nausea.  

3.1.5 Association of CXCL12, CXCR4 and p16
INK4A

 expression with survival 

data of HNSCC patients 

We analysed the patient survival data to determine whether expression of CXCL12, CXCR4, 

and p16
INK4A

 in head and neck tumours as well as the occurrence of HGAOT during R(C)T 

had any prognostic relevance.  

3.1.5.1 Impact of CXCL12 and CXCR4 expression on patient survival  

In this analysis, no relationship was found between CXCL12 expression, disease free survival 

(DFS), local recurrence-free survival (LRFS), and distant metastasis-free survival (DMFS) 

(Table 3.7). In contrast, Kaplan-Meier analysis of the survival data indicated that patients with 

a tumour expressing CXCL12 had a better OS than those who were CXCL12-negative 

(Figure 3.7, p=0.036). The survival rates were 17% vs. 26%, and 12% vs. 20% (positive vs. 

negative) at 5 years and 10 years, respectively.  
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Univariate Cox regression analyses showed that CXCR4 expression was not significantly 

associated with either OS (p=0.32, Table 3.7) or LRFS (p=0.42, Table 3.7). However, a 

reduced DMFS was significantly associated with a high CXCR4 expression (p=0.034, Figure 

3.8-B, Table 3.7). In addition, a borderline statistically significant correlation was found 

between high CXCR4 expression and decreased DFS (p=0.057, Figure 3.8-A, Table 3.7). The 

association between expression of CXCL12 and CXCR4 and survival data of patients is 

summarized in Table 3.7. 

 

 

 

 

Figure 3.7: Overall survival (OS) related to CXCL12 expression in tumour cells of pre-treatment 

biopsies of patients with HNSCC by Kaplan-Meier analysis. Patients were divided into two groups 

based on CXCL12 expression in the tumour, i.e. CXCL12 + (n=97) vs. CXCL12 – (n=132) HNSCC 

patients. 
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Figure 3.8: Correlation between survival data, and low, medium and high CXCR4 expression in 

pre-treatment biopsies of patients with HNSCC receiving radio(chemo)therapy. A) disease free 

survival, (DFS); B) distant metastasis-free survival (DMFS). The Cox proportional hazard model 

demonstrated that CXCR4 expression was significantly correlated with DMFS (p=0.034). Although an 

association between CXCR4 expression and DFS was also observed, these correlation was not 

statistically significant (p=0.057). 

 

A 

B 
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Table 3.7: Survival data in relation to CXCL12 and CXCR4 expression  

Characteristics Number of patients (%) p-

value 

Number of patients (%) p-

value 

 Total CXCR4 expression  CXCL12 expression  

  low 
≤10 

median  
>10 - 70 

high 
>70 

 negative 
0 

positive 
>0 

 

Total n = 233 79 (33.9) 79 (33.9) 75 (32.2)  132 (56.7) 97 (41.6)  

RT schedule     0.001   0.53 

Classic 183 (78.5) 73 (39.9) 59 (32.2) 51 (27.9)  104 (58.1) 75 (41.9)  

Intensity-

modulated  

50 (21.5) 6 (12.0) 20 (40.0) 24 (48.0)  28 (56.0) 22 (44.0)  

Chemotherapy     0.44   0.023 

No 62 (26.6) 18(29.0) 26 (41.9) 18 (29.0)  42 (68.9) 19 (31.1)  

Yes 171 (73.4) 61(35.7) 53 (31.0) 53 (31.0)  90 (53,6) 78 (46.4)  

Loco-regional 

recurrence 

    0.42   0.87 

#Events 66 21 18 27  33 32  

60 month survival 0.60 0.64 0.69 0.46  0.55 0.64  

120 month 

survival 

0.57 0.58 0.69 0.46  0.55 0.53  

Distant metastases     0.034   0.52 

# Events 29 7 5 17  17 12  

60 month survival 0.81 0.87 0.88 0.69  0.79 0.81  

120 month 

survival 

0.81 0.87 0.88 0.69  0.79 0.81  

DFS     0.057   0.89 

# Events 81 23 22 36  44 36  

60 month survival 0.51 0.61 0.59 0.33  0.46 0.55  

120 month 

survival 

0.48 0.55 0.59 0.33  0.46 0.50  

OS     0.32   0.036 

# Events 185 68 62 55  110 72  

60 month survival 0.22 0.17 0.25 0.24  0.17 0.26  

120 month 

survival 

0.15 0.15 0.14 0.11  0.12 0.20  
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3.1.5.2 Impact of p16
INK4A

 expression and the occurrence of HGAOT during R(C)T 

on HNSCC patient survival 

For this cohort we considered the demographic and clinicopathologic characteristics of age at 

diagnosis, gender, tumour stage, and tumour grade (Table 3.3). With regard to these 

characteristics, there was no statistically significant difference between patients with 

p16
INK4A

-positive HNSCC and those with p16
INK4A

-negative HNSCC. We also examined 

survival outcome differences based on p16
INK4A

 expression status in patients with HNSCC 

tumours. We observed that patients with p16
INK4A

 overexpression in their tumours had a 

significantly better OS (p=0.002, Figure 3.9).  

 

  

Figure 3.9: Correlation between cytoplasmic p16 INK4A expression and overall survival (OS) and 

local recurrence-free survival (LRFS).  A) The Cox proportional hazard model demonstrated that 

cytoplasmic p16 INK4A expression was significantly associated with OS in this group of patients 

(p=0.0022). B) The trend towards improved LRFS in the patients with positive p16 INK4A expression was 

not statistically significant (p=0.069).   

A B 
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Moreover, we evaluated the impact of p16
INK4A

 expression on OS of our HNSCC study cohort 

after therapy and the analysis of acute organ toxicity. It is known that patients with HGAOT 

(CTC >2) including one or more of the items mucositis, skin reaction or dysphagia had better 

OS and locoregional control rates than patients without such reactions (Wolff et al. 2010a).  

Figure 3.10 shows the Kaplan-Meier plots for patients positive and negative for p16
INK4A

 

expression, and with and without the occurrence of HGAOT. These four patient subgroups 

significantly differed in their five-year OS rates. Patients with p16
INK4A

 expression and 

HGAOT had a five-year OS rate of 47%. With only HGAOT, the five-year OS rate was 42%, 

while in patients with p16
INK4A

 expression it was only 20%. The five-year OS rate in patients 

without p16
INK4A

 expression or HGAOT was 10%. In addition, a borderline statistically 

significant correlation was found between P16
INK4A

 expression and LRFS (Figure 3.9, 

p=0.069). 

 

Figure 3.10: Kaplan-Meier plots for patients tested positive and negative for p16 INK4A expression, 

and with and without HGAOT. These four patient subgroups significantly differed in their five -year 

OS rates; Patients with p16 INK4A expression and HGAOT showed better five-year OS rates than patients 

with p16 INK4A expression or HGAOT alone. The five-year OS rates in patients without p16 INK4A 

expression and HGAOT was 10% (n = number of patients,  p16: p16 INK4A, yes: occurrence of HGAOT, 

no: without HGAOT) (reproduced from (Tehrany et al. 2015)). 
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3.2 The role of CXCL12 and CXCR4 in the migration of irradiated 

HNSCC and control cell lines ( in vitro analysis) 

3.2.1 Characterisation of the cell lines  

The characterisation of three HNSCC and two control cell lines for the expression of 

CXCL12 and CXCR4, and their radiosensitivity and metabolic activity under diverse 

conditions were prerequisite for all subsequent analyses. 

3.2.1.1 CXCL12 and CXCR4 mRNA expression 

Expression of CXCL12 and CXCR4 in the cell lines FaDu, ZMK-1, GR-145 (HNSCC tumour 

cell lines), DF-19 and HaCat (control cell lines) under non-irradiated and irradiated conditions 

has already been determined by real-time PCR at the mRNA level (Wolff et al. 2011a). The 

positivity or negativity of CXCL12 and CXCR4 expression was reconfirmed in the present 

study (Table 3.8).  

Table 3.8: CT values of target genes (CXCL12 and CXCR4) and the housekeeping gene (HPRT1) by real-time 

PCR 

Cell line CXCL12 CXCR4 HPRT1 

DF-19 21.47 Not expressed 25.47 

FaDu Not expressed 31.30 23.47 

GR-145 27.35 Not expressed 25.01 

HaCat Not expressed Not expressed 24.79 

ZMK-1 Not expressed 22.95 22.58 

We examined, whether HNSCC tumour cells or control cells revealed characteristic CXCL12 

and CXCR4 patterns at protein levels. For this purpose, we performed western blot analysis 

and immunocytochemical staining. 

3.2.1.2 CXCR4 protein expression  

Western blot analysis was performed to assess CXCR4 protein expression in HNSCC and 

control cell lines. Protein was extracted and its concentration measured. Equal amounts of 
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protein for each cell line were transferred from the TGX gels onto nitrocellulose membranes 

and incubated with primary antibodies specific for each protein of interest (CXCR4 and β-

actin). Appropriate secondary antibodies were used to detect specific binding of the primary 

ones. Due to the nearly identical molecular weight of CXCR4 and β-actin an extra blot was 

probed for β-actin as an internal control to ensure equivalent protein loading and also protein 

integrity (see Chapter 2.3.3). 

Western blot analysis of β-actin showed positive bands for all cell lines, indicating sufficient 

amounts of protein and successful transfer. As shown in Figure 3.11, the expression of 

CXCR4 was confirmed in two tumour cell lines, ZMK-1 and FaDu, with strong bands at a 

molecular weight of about 40 kDa, while GR-145, HaCat and DF-19 cell lines showed no 

CXCR4 positive staining (Figure 3.11, Table 3.9).  

 

 

 

Figure 3.11: Protein expression analysis of CXCR4 and β-actin (as internal control) in three 

HNSCC tumour and two control cell lines by western blotting.  These two blots were produced using 

TGX-gel. The gel was run at 200 V and 30 mA before being transferred to a nitrocellulose membrane 

following an appropriate transfer protocol for 3 minutes. Whole cell lysate probed against CXCR4 and 

β-actin showing lower CXCR4 expression in ZMK-1 cells than in FaDu cells, while GR-145, HaCat 

and DF-19 cell lines were negative. β-actin serves to control for equal protein loading, and is observed 

in all cell lines tested.  
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3.2.1.3 CXCL12 immunocytochemistry  

The presence of CXCL12 in the cells was studied by immunocytochemical staining. Figure 

3.12 shows the results obtained for each cell line that was studied in this work. 

  

  

 

 

 

Figure 3.12: Cells stained by ICC method to detect CXCL12 in three HNSCC tumour and two 

control cell lines.   Red staining correlates to the presence of CXCL12 and the nuclei are stained blue. 

Tumour cells of ZMK-1 (A) and FaDu (B) were CXCL12-free. Other tumour cell line, GR-145 (C) 

showed a weak cytoplasmic staining. From two control cell lines, HaCat cells (D) were CXCL12-free, 

while DF-19 cells (E) expressed CXCL12 in the cytoplasm. (40x magnification and 2x zoom) 
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Red staining correlates to the presence of CXCL12. Chemokine-free cells i.e. HaCat, FaDu 

and ZMK-1 show only blue stained nuclei. It can be seen that DF-19 cells expressed more 

CXCL12 in the cytoplasm, while a weak cytoplasmic staining in GR-145 cells was also 

observed (Figure 3.12, Tab. 3.9). 

The results of the PCR analysis, western blotting, and immunocytochemical staining are 

summarized in Table 3.9. 

Table 3.9: Review of CXCL12 and CXCR4 expression in each cell lines  

 

Cell line CXCR4 CXCL12 

ZMK-1 Positive (PCR, WB) Negative (PCR, ICC) 

GR-145 Negative (PCR, WB) Positive (PCR, ICC) 

FaDu Positive (PCR, WB) Negative (PCR, ICC) 

HaCat Negative (PCR, WB) Negative (PCR, ICC) 

DF-19 Negative (PCR, WB) Positive (PCR, ICC) 

3.2.1.4 Investigation of the radiosensitivity of the cell lines 

A colony-forming assay was performed to examine and compare the radiosensitivity of 

HNSCC tumour and control cells. Using the Kaleidagraph
®
 software, the surviving fractions 

(SF) of irradiated and treated/untreated cells in all performed experiments were determined 

and the means and standard deviations of the SF were calculated. In the colony-forming 

assay, the cell survival curve describes the correlation between the radiation dose and the 

fraction of cells still dividing. The response of all cell lines to increasing radiation doses is 

shown in Figure 3.13 A-D. The survival curves for the irradiated cells alone show that for all 

four cell lines exposure to increasing doses of radiation induces a proportional decrease in 

clonogenic cell survival (Figure 3.13 A-D, solid lines). 

The impact of CXCL12 and AMD3100 on the radiosensitivity of the cell lines was measured 

using a colony-forming assay as described in Chapter 2.3.4 (Figure 3.13 A-D, and Figure 

3.14). 
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Figure 3.13: Surviving fraction of three HNSCC tumour and one control cell lines after 

irradiation alone or a combined treatment with 100 ng/ml CXCL12 after 0.5, 2, 4 and 6 Gy of 

radiation. After about 10 days, colonies were fixed and stained with 0.1% crystal violet solution. 

Colonies were counted and the surviving fraction was normali sed to the surviving fraction of the 

corresponding control. In all tumour and control cell lines, irradiation reduced cell survival in a dose-

dependent manner. The ZMK-1 cell line (A) (one of the CXCR4-positive cell lines) showed a 

significantly enhanced radiosensitivity in response to CXCL12 treatment , while GR-145 (B) and FaDu 

(C) cells showed a weak enhanced sensitizing effect of CXCL12. HaCat cells (D) were not affected by 

CXCL12. Data are presented as the mean ± standard errors of three independent experiments.  
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The radiosensitivity with a dose-modifying factor (DMS) of 1.44 was significantly increased 

in the ZMK-1 cell line, the tumour cell line that is negative for CXCL12 and has the high 

CXCR4 expression, when treated for 26 hours with CXCL12 (Figure 3.13-A). GR-145 cells 

and FaDu cells showed a slightly enhanced sensitizing effect of CXCL12 in the culture 

medium (Figure 3.13-B, C). However, HaCat cells were not affected by the addition of 

CXCL12 at all (Figure 3.13-D). Data were derived from three independent experiments and 

error bars show the standard error of the mean survival following exposure to 0.5, 2, 4, and 6 

Gy radiation. 

To determine the impact of the CXCR4 inhibitor, AMD3100, on the radiosensitivity of 

CXCR4-positive cell lines, cells were incubated with 5 µg/ml AMD3100 for 26 hours. After 

incubation, the colony-forming assay was performed (see Chapter 2.3.5.1). The data shown 

are the means and standard deviations of three independent experiments following exposure 

to 0.5, 2 and 4 Gy of radiation. FaDu and ZMK-1 cells were not affected by the addition of 

AMD3100 to the cell culture medium indicating that AMD3100 has no effect on the 

radiosensitivity of these CXCR4-positive tumour cell lines (Figure 3.14). 

 

 

Figure 3.14: Surviving fraction of two CXCR4-positive HNSCC tumour cell lines after 

irradiation alone or combined with 5µg/ml AMD3100 after 0.5, 2 and 4 Gy of radiation.  A) 

AMD3100 showed no effect on radiosensitivity of ZMK-1 (CXCR4-positive) tumour cell lines. B) 

FaDu cells (also CXCR4-positive tumour cells) were not affected by the addition of AMD3100 to the 

cell culture. 
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3.2.1.5 Metabolic activity of the cell lines under different treatment  conditions 

3.2.1.5.1 Preliminary experiments 

First preliminary experiment 

In order to determine the optimal incubation times and effective radiation doses for all 

planned experiments the preliminary CTB assay procedure was performed as described in 

Chapter 2.3.6.1. First preliminary experiments were performed with incubation times of 26, 

48, 72 and 96 hours for ZMK-1 and HaCat cell lines (Figure 3.15). The viable cells can 

convert resazurin into resorufin, a highly fluorescent product. This intensity of the 

fluorescence is proportional to the number of viable cells that are able to perform this redox 

reaction. 
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Figure 3.15 shows that a reduced viability of 4 Gy-irradiated ZMK-1 cells can been seen after 

a 96-hour incubation time, while HaCat cells would probably require a longer incubation time 

or a higher radiation dose to show alterations in metabolic activity.  

Second preliminary experiment 

A second preliminary experiment was performed to determine the optimal radiation dose. The 

incubation time for this second preliminary test was set at 72 hours after irradiation (see 

Chapter 2.3.6.1.).  

 

Figure 3.15: First preliminary CTB assay experiments with 26, 48, 72 and 96 hours incubation 

time for ZMK-1 and HaCat cell lines.  The incubation time, after which difference between the 

irradiated and non-irradiated cells was observable, was chosen as an optimal incubation time. A) In the 

ZMK-1 cell line a difference of metabolic activity of irradiated and non-irradiated cells was observed 

after 96 hours. B) In the HaCat cell line no impact of irradiation on cell viability was detected even 

after 96 hours incubation time. Each experimental condition was performed in triplicate. A total dose 

of 4 Gy was delivered with a dose rate of 2 Gy/min . 
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Figure 3.16 illustrates that for the diverse radiation doses, no clear difference in cell viability 

of control cell lines, HaCat and DF-19, can be observed. The tumour cell line FaDu showed 

reduced metabolic activity following 6, 8, 10 and 12 Gy radiation, while the tumour cell line 

GR-145 showed slightly decreased cell viability only with 8 Gy irradiation (Figure 3.16). 

Third preliminary experiment 

In the final experiment, the number of cells in each well was reduced from 5000-6000 cells to 

2000 cells. The incubation time was prolonged to one week (168 hours) to analyse the cell 

viability in an expanded period of time and a radiation dose of 8 Gy was used. The results are 

summarised in Figure 3.17. There was only a non-significant reduction in the fluorescence 

 

Figure 3.16: Second preliminary CTB assay experiment with different radiation doses.  Cells were 

incubated for 72 hours. A) The tumour cell line FaDu (at 6 to 12 Gy) showed reduced cell viability 

compared to non-irradiated control cells after irradiation . B) The control DF-19 cell line showed 

reduced metabolic activity after 12Gy radiation . C) The tumour GR-145 cell line showed reduced cell 

viability compared to non-irradiated control cells after irradiation (only with 8Gy). D) In the HaCat 

cell line even after 12Gy radiation, the metabolic activity of the cells was still efficient. Each 

experimental condition was performed in triplicate. A total dose of 2, 4, 6, 8, 10 and 12 Gy was 

delivered with a dose rate of 2 Gy/min.  

 

 

 

 

Figure 3.17: Optimising incubation time, radiation dose and cell densities in all used cell lines.  

The cells were irradiated with 8 Gy and after one week incubation time, the cell viability was 

measured. Each cell line except DF-19 demonstrates reduced metabolic activity following irradiation.  

Each experimental condition was performed in triplicate. A total dose of 8 Gy was delivered with a 

dose rate of 2 Gy/min. 
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intensity in the DF-19 cells, while a notable reduction of fluorescence was detected in the 

other cell lines (Figure 3.17). In addition, between non-irradiated cells, the FaDu cells after 

one week incubation time showed more cell viability in compare to DF-19 cells.  

After optimising the parameters for analysing cell viability the results suggested that the 8 Gy 

irradiation dose with a one-week incubation time should be used to detect the impact of 

irradiation on cell viability.  

3.2.1.5.2 Main experiment: Analysis the cell viability of cells under different 

treatment conditions 

This aforementioned irradiation dose and incubation time (Figure 3.15-17) was used in the 

following CTB assay to determine the impact of CXCL12 and AMD3100 on the metabolic 

activity of each cell line.  

To this end, cell suspensions were prepared and the cells incubated with 100 ng/ml CXCL12, 

5 µg/ml AMD3100 or both for 30 minutes at 37°C and 5% CO2. The cells were pipetted in 

two 96-well plates (2000 cells/well). One of two plates was irradiated at 8 Gy. The cell 

viability of each cell line under the different treatment conditions was analysed after one 

week. The non-irradiated or untreated cells were compared using the t-test, and p<0.05 was 

regarded significant. In each group the cell viability in the presence of CXCL12, AMD3100 

or both compounds was compared with untreated cells. In addition, cells treated with 

CXCL12, AMD3100 or both and irradiated with 8 Gy were compared with non-irradiated 

cells to study the impact of irradiation on cell viability. Data are presented as mean 

differences ± standard deviations. Results are taken from two independent experiments, 

always performed in triplicate (Figure 3.18).  

Of all cell lines, tumour cell lines ZMK-1, FaDu and GR-145 were rather radiosensitive, and 

irradiation reduced viability as shown by the results of the colony-forming assays (Figure 3.18 

A-C). However, the metabolic activity of the control cell lines, DF-19 and HaCat, was not 

significantly reduced by irradiation (Figure 3.18 D-E). 

As seen in Figure 3.18, the tumour cell lines, ZMK-1, FaDu and GR-145 as well as the 

control cell line DF-19 showed unchanged cell viability following treatment with CXCL12, 

AMD3100 or both compounds. However, when HaCat cells were treated with CXCL12, 
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AMD3100 or even both together, there was a significant increase of metabolic cell activity 

compared to the untreated control cells.  
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3.2.2 The role of CXCL12 and CXCR4 in the migration of  HNSCC and control 

cells 

3.2.2.1 Preliminary experiments 

To determine the best concentration of CXCL12 for the lower chamber in the migration 

assay, three CXCL12 concentrations were tested. The CXCL12 concentrations in the lower 

 

 

 

 

 

Figure 3.18: Mean fraction of viable cells of non-irradiated and 8 Gy irradiated cells. The cells were 

additionally pre-treated with either 100 ng/ml CXCL12, or 5 µg/ml AMD3100 or both compounds. A) ZMK-1 cells 

were radiosensitive and the metabolic activity of cells following treatment with CXCL12, AMD3100 or both 

compounds was not changed. B) FaDu cells were also radiosensitive and treatment with CXCL12, AMD3100 or 

both compounds was not changed the metabolic activity of cells. C) Irradiation reduced also viability of GR-145 

cells. Cells showed unchanged metabolic activity following treatment with CXCL12, AMD3100 or both 

compounds. D) The metabolic activity of HaCat cells was not reduced by irradiation. However, treatment with 

CXCL12, AMD3100 or both compounds showed an increased cell metabolic activity compared to the untreated 

control cells. E) Irradiation and treatment with CXCL12, AMD3100 or both compounds have no effect of metabolic 

activity of DF-19 cells. Student’s t-test was used in all experiments: *=p<0.05. The results were compared to non-

treated cells from each cell line. Data are obtained as mean differences ± standard deviation. Results are taken from 

two independent experiments, performed in triplicate.  
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chamber were 25, 50 and 100 ng per ml, respectively. After incubation, the migrated cells 

were stained, quantified, and the results compared to controls without addition of CXCL12.  

We observed a significant CXCL12-related stimulation of migration for ZMK-1 cells with 

concentrations of 25 ng and 100 ng per ml with 160% and 180% increase of cell migration 

compared to controls (Figure 3.19). For the main migration assay experiments, the 100 ng/ml 

CXCL12 concentration was chosen.  

 

 

Figure 3.19: Concentration-dependent migration of ZMK-1 cells along a CXCL12 gradient.  The 

highest percentage of migrating ZMK-1 cells compared to the control with 0 ng/ml CXCL12 was seen 

at a concentration of 100 ng/ml. The experiment was performed one time. 

In the next step, to determine the best concentration of AMD3100, two preliminary tests were 

performed. First, the cells were incubated with AMD3100 at different concentrations. They 

were then pipetted into the upper chambers, while 100 ng/ml CXCL12 was added to all lower 

chambers except for control chamber (Figure 3.20-A). After incubation, the migrated cells 

were stained, numerated, and the results compared with control cells.  

Figure 3.20-A shows that after AMD3100 treatment, the migratory capacity of ZMK-1 cells 

was reduced in a concentration-dependent manner up to 25 µg/ml AMD3100. The inhibition 

rate with AMD3100 at 1, 5, 12.5 and 25 µg/ml was 89%, 64%, 58%, and 58%, respectively. 

However, at the high concentration of AMD3100 (50 µg/ml), the inhibitory effect of 
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AMD3100 on the migratory response of non-irradiated cells was partially abolished (Figure 

3.20-A).  

 

 

 

 

 

Figure 3.20: Concentration–dependent effects of AMD3100 on cell migration.  Percentage of 

migrated ZMK-1 cells compared to a control with 100 ng/ml CXCL12 and 4 Gy-irradiated cells. A) 

Inhibitory effect on migration with different concentrations of AMD3100 in non -irradiated ZMK-1 

cells. CXCL12 (100 ng/ml) was added to all lower chambers except for control chamber.  The migration 

of ZMK-1 cells was reduced in a concentration-dependent manner up to 25 µg/ml AMD3100. B) 

Inhibitory effect on migration with different concentrations of AMD3100 in 4 Gy-irradiated ZMK-1 

cells.  CXC12 (100 ng/ml) was added to all lower chambers. The migration of irradiated ZMK-1 cells 

was reduced in a dose-dependent manner up to 5 µg/ml. These experiments were performed one time.   

 

A 

B 
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To analyse the inhibitory effect of different concentrations of AMD3100 on irradiated cells, 

ZMK-1 cells were incubated with different concentrations of AMD3100, then the cells were 

irradiated at 4 Gy. After seeding, the cells were incubated. Migrated cells were stained, the 

number of migrated cells was determined and the results were compared with control cells 

irradiated at 4 Gy, which had been exposed to 100 ng/ml CXCL12 but not treated with 

AMD3100. Figure 3.20-B shows that after AMD3100 treatment, the chemotactic activity of 

irradiated ZMK-1 cells was reduced in a concentration-dependent manner up to 5 µg/ml. 

However, the inhibitory effect of AMD3100 on the migratory response of irradiated cells 

decreased at higher concentrations of AMD3100 (25 and 50 µg/ml). For the main 

experiments, a concentration of 5 µg/ml of AMD3100 was used. 

3.2.2.2 Migratory response of HNSCC and control cells with different level of 

CXCL12 and CXCR4 expression 

The CXCR4-positive cell lines, ZMK-1 and FaDu, migrated uniformly in response to 

CXCL12 with an optimal response at 100 ng/ml. For these cells, the CXCL12-mediated 

migration could be abolished by pre-treatment with the CXCR4-antagonist AMD3100. As 

expected, CXCL12 had no significant effect on the migration activity of the CXCR4-negative 

GR-145 and HaCat cell lines. The data are summarized in Figure 3.21 A-E and a 

representative picture of FaDu cells that migrated across the transwell membrane to the other 

side of the filter is shown in Figure 3.22 A-C. 

Pre-treating the CXCR4-positive cell lines in upper chamber with AMD3100 resulted in a 

significant decrease in relative migration. As shown in Figure 3.21-A and B in ZMK-1 and 

FaDu cell lines, respectively, AMD3100 effectively blocked CXCL12-induced migratory 

response in a dose-dependent manner.  

Non-irradiated and irradiated cells exhibited comparable migration patterns with a decrease at 

higher radiation doses (Figure 3.21 A-D), the radiation effect being less pronounced than the 

effect of CXCL12 and AMD3100. DF-19 cells, which are CXCR4-negative and express and 

secrete large quantities of CXCL12 served as controls. The results showed no change in their 

migratory activities towards CXCL12, and reduced migration ability was found after 

irradiation at 4 Gy (Figure 3.21 E). 
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Figure 3.21: Effect of irradiation, CXCL12 and AMD3100 on the migration of three HNSCC 

tumour and two control cell lines. CXCL12 was present in the lower well and migration of cells was 

induced by 100ng/ml CXCL12. The migration assay showed that the CXCR4-positive cell lines, FaDu 

(A) and ZMK-1 (B) migrated to CXL12 through the membrane in a dose-dependent manner. No 

CXCL12-induced migration enhancement was observed for GR-145 and HaCat, which are CXCR4-

negative cell lines (C, D).  After combined CXCL12+AMD3100 treatment, the CXCL12-mediated 

migration of ZMK-1 and FaDu cells was significantly inhibited in a radiation dose -dependent manner 

at concentration of 5µg/ml AMD3100. Student’s t -test was used for all experiments: * p < 0.05.  
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Figure 3.21: Representative membranes of FaDu migrated cells ; the blue-stained cells are those 

cells which migrated through the upper surface to the lower surface of the membrane.  The photographs 

of A) FaDu cells B) FaDu cells with CXCL12 (100ng/ml) in lower chamber C) AMD3100 (5µg/ml) 

treated FaDu cells with CXCL12 in lower chamber.  (20x magnification) 

A B 
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4. Discussion 

4.1 Summary of results 

Besides tobacco and alcohol consumption being primary risk factors for the development of 

head and neck squamous cell carcinoma (HNSCC), infection with human papillomavirus 

(HPV) is also etiologically associated with a subgroup of cancers in head and neck regions 

(Gillison et al. 2000, Argiris et al. 2008). In the present retrospective study, the prevalence of 

HPV DNA was screened in tissue samples that had been taken from patients with HNSCC 

before therapy was started. Nested-PCR was used as a direct screening method to detect HPV 

DNA in 233 HNSCC pre-treatment formalin-fixed paraffin embedded (FFPE)-biopsies. Even 

though FFPE samples were comparably old, we were able to detect HPV DNA in 44 of the 

233 samples (19%). HPV-16, as a known dominant participant in HPV-positive HNSCC 

patients, was found in 95% of all HPV-positive samples. 

HPV-positive head and neck cancers are characterised by p16
INK4A

 overexpression, which is a 

consequence of retinoblastoma protein (pRb) inhibition by E7, one of the HPV oncogenes (Li 

et al. 1994). p16
INK4A

 expression was detected by immunohistochemistry (IHC) staining in 

102 of the 233 samples in this study (44%).  

The correlation between p16
INK4A

 expression and HPV DNA in tumour cells was highly 

significant (p<0.01); 41 of the 42 (98%) samples positive for HPV-16 also showed p16
INK4A

 

immunoreactivity. Because of the difficulties in detecting HPV DNA in old FFPE-biopsies 

and in view of the extremely significant correlation between HPV-positivity and p16
INK4A

 

overexpression, we used p16
INK4A

-positivity for further analysis. The clinicopathological 

analyses showed no statistically significant difference between patients with p16
INK4A

 

expression and those with no expression. However, positive p16
INK4A

 expression was 

correlated with better overall survival (OS) of patients (p = 0.022).  

Treatment of HNSCC is usually performed using surgery, radiotherapy (RT), and 

chemotherapy (CT) (Sayed et al. 2011). The combination of radiation and CT may cause 

acute organ and/or hematotoxicity. In terms of response to therapy, this treatment-related 

high-grade acute organ toxicity (HGAOT) plays an important role as positive prognostic 

factor for locally advanced, inoperable HNSCC patients treated with primary (Wolff et al. 

2010a) or adjuvant (Wolff et al. 2011b) radio(chemo)therapy R(C)T. In the present work, we 
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studied the impact of the combination of HGAOT as a potent prognostic marker in HNSCC 

and p16
INK4A

 expression as a known surrogate marker for HPV-positive HNSCC on the 

survival of patients. We were able to demonstrate that both parameters, p16
INK4A

 expression 

and the occurrence of HGAOT, are independent positive prognostic factors for the survival of 

patients with HNSCC treated with primary R(C)T. 

HNSCC is characterised by a high rate of early recurrence, the development of secondary 

primary cancers (Azad et al. 2012), and a high mortality rate. The CXCL12/CXCR4 axis has 

been suggested to play an important role in cancer metastasis (Crump et al. 1997, Kang et al. 

2005, Liang et al. 2010). In the present study we analysed the expression and prognostic 

significance of CXCL12 and its receptor CXCR4 in our cohort of 233 HNSCC patients. We 

observed that the expression of CXCL12 is directly correlated with tumour localisation 

(p<0.001) and the N-status (p=0.025) of the patients. However, patients with CXCL12 

expression had a significantly better chance of survival (p=0.036). On the other hand, CXCR4 

expression had a negative prognostic impact on distant metastasis-free survival (DMFS) 

(p=0.034). These results suggest that CXCR4 expression in HNSCC could be used as a 

biomarker for aggressive HNSCC tumours with high metastatic tendency.  

While the basic research and in vitro studies are the first step towards the elucidation of in 

vivo physiological processes, a one-to-one agreement between in vitro and in vivo results is 

not usually possible. In this study the importance of the CXCL12/CXCR4 axis in the 

migration of HNSCC cells was analysed, while taking into account the effects of irradiation. 

The cells were characterised for their viability, colony-forming ability, radiosensitivity and 

the degree of CXCL12 and CXCR4 expression. Through these in vitro analyses, we 

demonstrated a potentially important role of the CXCL12/CXCR4 axis in the promotion of 

migration of CXCR4-positive HNSCC cell lines even after irradiation, while AMD3100 

effectively blocked the CXCL12-induced migratory response in a dose-dependent manner in 

CXCR4-expressing cell lines (ZMK-1 and FaDu). These observations confirm a possible 

important role of CXCR4 in the process of metastasis, as do the results of our in vivo analysis.  

 

 

 

 



Discussion 

 

95 

 

4.2 The crucial role of HPV/P16
INK4A

 in prognosis and survival of 

HNSCC patients 

4.2.1 HPV detection 

Analyses of molecular changes in HNSCC development have identified a new prognostic 

indicator, namely, HPV infection. The presence of HPV, particularly HPV-16, is of 

significant clinical importance, as these HPV-positive HNSCC tumours are associated with 

better clinical outcomes than their HPV-negative counterparts (Ragin and Taioli 2007, Fakhry 

et al. 2008). However, the reports on the incidence of HPV in oral carcinogenesis are 

contradictory with infection percentages ranging from 8% to 50%. This may depend on the 

different sensitivity of the applied methods, different sampling methods, the tissue 

preservation status, geographical differences or anatomic sites of infection (Miller and White 

1996, Sand et al. 2000). Moreover, the time period of analyses as additional factor should be 

considered. In this study, we found a significant increase of p16
INK4A

 expression (the 

surrogate marker of HPV infection) from 1992 to 2011 (p=0.00091). Chaturvedi et al. in their 

analyses in 271 oropharyngeal squamous cell carcinoma (OPSCC) patients from 1984 to 2004 

also found a significant increase of HPV prevalence over calendar time regardless of the HPV 

detection assay (Chaturvedi et al. 2011). 

The choice of a suitably sensitive method for detecting HPV DNA has become increasingly 

complex. In situ hybridisation, for example, is only able to detect HPV when there are more 

than 10 copies of viral DNA per cell and this method may lack the sensitivity to detect HPV 

DNA in oral squamous cell carcinoma (OSCC) tumours with low copy number of HPV 

(Miller et al. 1994). Southern blot, dot blot or reverse blot hybridisation, on the other hand, 

can detect even one copy of viral DNA per cell. PCR, a highly sensitive method, is able to 

detect even lower amounts than one copy of viral DNA per cell (Miller and White 1996). A 

meta-analysis by Termine et al. reported that the average HPV prevalence in OSCC published 

between 1988 and 2007 detected by in situ hybridisation was 29.8%, while PCR analysis 

resulted in a prevalence of 39.9% (Termine 2008). In the present study, we used a highly 

sensitive PCR-based analysis (nested-PCR) of viral DNA to detect HPV DNA. But even with 

this highly sensitive method (de Roda Husman et al. 1995, Ludyga et al. 2012) we only 

detected HPV DNA in 44 (19%) of the 233 FFPE-biopsies. Amplification in the nested-PCR 

was performed by two sets of primers with the combined sensitivity of the first and second 

step of the assay theoretically reaching one viral copy per 10
6
 to 10

7
 cells (de Roda Husman et 
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al. 1995). This reduced the risk of missing any HPV-positive cases in our series. In the first 

step of nested-PCR using the PGMY09/11 primer set, we found no positive fragments, while 

in the second step using GP5+/6+ primers we did find positive ones. This result indicates that 

there are low numbers of intact copies of HPV DNA in our samples. Since the amplification 

efficiency of a genomic fragment is inversely related to the length of the region targeted by 

PCR, and additionally, in many archival samples, the amount of intact HPV genome is very 

small, the detection of the HPV DNA was impossible in some samples.  

Another important factor that influences detection of HPV DNA is tissue preservation. 

According to a meta-analysis by Miller and White, HPV DNA can be detected more often in 

fresh or frozen samples (51.6%) than in paraffin-embedded tissues (21.1%) (Miller and White 

1996). In this retrospective study we used FFPE blocks, which is a common way to preserve 

specimens for a longer time period. In spite of the many advantages of using formalin fixation 

to preserve tissues, it is known that formalin decreases the efficiency of PCR due to protein 

cross-linking (Karlsen et al. 1994, Williams et al. 1999). In addition, the degradation of 

nucleic acids increases during storage, in particular due to a time-dependent decrease of pH
 

(Gilbert et al. 2007). In addition, Ludyga et al. in their study of old FFPE tissue reported that 

fixation and storage conditions may make FFPE material unsuitable for further analysis 

because of the strong fragmentation of DNA (Specht et al. 2001, Ludyga et al. 2012).  

In 2005, Kreimer et al. published a meta-analysis of 60 eligible studies using PCR detection 

to study 5046 cases of squamous cell carcinoma (SCC), 2642 oral cancers, 969 oropharyngeal 

cancers and 1435 laryngeal cancers. They concluded that HPV-16 was the most common 

subtype in all types of HPV-positive cancers; 86.7% of oropharyngeal, 68.2% of oral and 

69.2% of laryngeal cancers (Kreimer et al. 2005). Rietbergen et al. also reported that after 

DNA and RNA analysis of 24 HPV-positive frozen oropharyngeal samples, HPV-16 was 

identified in 91.7% of the HPV-positive samples (Rietbergen et al. 2013). The present study 

came to results similar to those of the other studies. The sequencing analysis detected HPV-16 

as the clearly dominant (95%) subtype in the 44 HPV-positive HNSCC samples. 

In HPV-positive HNSCC, the production of the oncoprotein E7 induces the degradation of 

pRb, which in turn leads to p16
INK4A

 overexpression (Wiest et al. 2002, Marur et al. 2010). 

Furthermore, immunohistochemistry (IHC) positivity for p16
INK4A

 expression is considered to 

be one of the major molecular hallmarks of HPV-positive HNSCC (Hafkamp et al. 2008, 

Dayyani et al. 2010, Langendijk and Psyrri 2010, Marur et al. 2010). Many studies used cut-
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off values to define positive p16
INK4A

 staining, but undisputed criteria do not exist (Deng et al. 

2014). For instance, in their study on FFPE tumour samples from HNSCC patients, Deng et 

al. evaluated the expression of p16
INK4A

 using a score of zero to four based on the percentage 

of p16
INK4A

-positive cells (Deng et al. 2014). In a study by Reimers et al., a strong nuclear or 

cytoplasmic staining was considered positive for p16
INK4A 

expression (Reimers et al. 2007). In 

this study, we assigned a weighted score to each case by multiplying the percentage of 

p16
INK4A

 positive cells (0-100%) by the staining intensity (0-3) and used the score values as a 

continuous variable in the Cox regression model. We detected a positive p16
INK4A

 expression 

in 102 (44%) of the samples. We also found 30 samples with strong and diffuse p16
INK4A

 

expression with undetectable HPV DNA. These results must be interpreted within the context 

of the study’s limitations. The source of high levels of p16
INK4A

 expression in some HPV-

negative tumours has not been clarified yet; mutations leading to p16
INK4A

 overexpression, 

other mechanisms of inactivation of retinoblastoma pathways or other viral infections are 

plausible alternatives. In this study, HPV DNA was amplified with the L1 consensus HPV 

PGMY09/11 and GP5+/6+ primer sets. The probability of a false negative HPV-L1-ORF due 

to the loss or disruption during integration of the HPV genome is another explanation for 

HPV DNA-negative, but p16
INK4A

 expression-positive cells (Duray et al. 2011). However, 

such a discrepancy between positivity of HPV and p16
INK4A

 expression is not uncommon 

(Blitzer et al. 2014). In this study, eighteen of the thirty p16
INK4A

 expression-positive/HPV 

DNA-negative samples (60%) revealed either poor quality or small quantity (< 20ng/µl) of 

extracted DNA, which did not reach the threshold of 1.8 (OD 260/280) as a measure of DNA 

quality.  

On the other hand, 95% (42 of 44) of HPV-positive HNSCC tumours were found to 

overexpress p16
INK4A

. Of this set, only one high-risk HPV-positive tumour was negative for 

p16
INK4A

 expression. We also had one sample that was infected with low-risk HPV-6 and did 

not show p16
INK4A

 expression. It could be argued that viral oncoprotein of low-risk HPV such 

as HPV-6 have no effect on p16
INK4A

 expression because the affinity of HPV-6 E7 protein for 

cellular pRb is 10-fold lower than that of E7 oncoprotein of HPV-16 as high-risk HPV 

subtype for pRb (Gage et al. 1990).  

Because of the low number of patients, in whom HPV DNA was detected and the significant 

correlation between HPV positivity and p16
INK4A

 overexpression, we used p16
INK4A

 positivity 

for the further statistical analysis. This seems acceptable because the p16
INK4A 

expression
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status kept its prognostic significance even in the absence of concomitant HPV DNA 

detection in several studies (Weinberger et al. 2006, Lassen et al. 2009, Shah et al. 2009, 

Harris et al. 2011). Kawakami et al. in their study on Japanese patients with OPSCC even 

reported that the survival of patients with HPV DNA-positive/p16
INK4A

-negative tumours was 

not as high as that of those with HPV DNA-positive/p16
INK4A

-positive tumours (Kawakami et 

al. 2013). In this study, we found a significant correlation between the p16
INK4A

-positive 

tumours and OS, which indicated that the probability of survival increases with increasing 

percentage of p16
INK4A

-positive cells. 

4.2.2 HPV/p16
INK4A

-associated HNSCC and prognosis of patients 

In HPV-associated malignancies, particularly in OSCC and OPSCC, most studies revealed a 

more favourable prognosis in terms of recurrence-free survival and OS in patients with a 

HPV-positive tumour compared to those whose tumours were HPV-negative (Lindel et al. 

2001, Li et al. 2003, Lindquist et al. 2007). In agreement with three previous studies, Young 

and colleagues in their study of 131 pre-treatment FFPE OPSCC tissue samples showed that 

p16
INK4A

-positive patients had a significantly improved failure-free survival (FFS) and OS 

compared to p16
INK4A

-negative patients (Young et al. 2011). Recent analysis of clinical data 

revealed that using p16
INK4A

 expression as a surrogate biomarker in HPV-positive HNSCC 

patients has a significant impact on treatment response and survival in HNSCC patients and 

also has a stronger prognostic value than the HPV status (Weinberger et al. 2006, Zhao et al. 

2012, Dok et al. 2014). In another study, Lassen et al. indicated that HNSCC patients with 

p16
INK4A 

expression showed a better response to RT and also an improved locoregional 

control rate than patients without p16
INK4A 

expression (Lassen et al. 2009). We also found a 

close association between p16
INK4A

 expression in HNSCC tumours and better OS (p=0.0022). 

However, the improvement of local recurrence-free survival (LRFS) in patients with p16
INK4A

 

expression was not statistically significant (p = 0.069, Figure 3.10). Because patients with 

oropharyngeal tumours benefit most from p16
INK4A

-positivity and have better three-year 

recurrence-free survival (Deng et al. 2014), the combined analysis of tumours located in the 

oropharynx, hypopharynx, oral cavity, and larynx may explain the lack of a significant 

correlation of p16
INK4A 

-positivity with LRFS in the present study. 

The reason for the improved survival of HNSCC patients positive for p16
INK4A

 expression has 

not been definitely explained. Clinically it may be that the patients are younger at disease 
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onset, or have a lower exposure to established risk factors such as tobacco and alcohol 

consumption (Lassen et al. 2009). In addition, improved responsiveness to RT, enhanced 

immune surveillance and the absence of field cancerisation in the patients who tend to be non-

smokers, have been reported (Lindel et al. 2001, Mellin Dahlstrand et al. 2005, Fakhry and 

Gillison 2006). McGovern et al. also stated that they had not observed a field cancerisation 

effect in HPV-positive tumours, where HPV viral DNA integration is solely restricted to the 

neoplastic and dysplastic tissue (McGovern et al. 2010).  

Radiation-induced DNA damage prompts apoptosis in tumour cells (Lima et al. 2012). A 

possible explanation for tumour radio-resistance may be a failure in DNA damage repair 

pathways, cell cycle checkpoints, as well as mechanisms of apoptosis (Xu et al. 2008). 

Increased radiation sensitivity of p16
INK4A

-positive tumours, possibly caused by reduced 

ability of cells to the normal cellular response to DNA damage, compromised DNA repair 

capacity or an altered oxygenation status (Kessis et al. 1993, Kong et al. 2009, Rieckmann et 

al. 2013, Dok et al. 2014) may account for the greater survival rate of patients with p16
INK4A

-

positive tumours. Recently, Kimple and colleagues observed an increased level of apoptosis 

and low levels of intact p53 after irradiation in HPV/ p16
INK4A

-positive HNSCC cells, which 

could be activated by RT (Kimple et al. 2013). They also verified that HPV-positive cells in 

head and neck cancer show increased radiosensitivity. Their results from in vitro and in vivo 

studies explained this effect with prolonged activation of markers of DNA damage, E6/E7-

mediated radiation-induced G2 arrest, and a strong apoptotic response and enhanced cell death 

(Kimple et al. 2013). However, existing data so far are questionable and at times 

contradictory (Bol and Gregoire 2014). It seems to be a complex interaction between basic 

mechanisms of radioresponse and the microenvironment of the tumour such as cells of the 

immune system (Bol and Gregoire 2014). In HPV-positive HNSCC tumour infiltration seems 

to play a significant role, leading to some studies suggesting that TR promotes immunogenic 

cell death led by T-cells in HPV-positive HNSCC (Kong et al. 2009, Bol and Gregoire 2014). 

4.2.3 Combined effect of p16
INK4A

 expression and the occurrence of HGAOT on 

patients’ survival  

In a previous clinical study, HPV-positivity in HNSCC patients was associated with a 

superior response to RT and RCT and modality-independent survival benefits (Boscolo-Rizzo 

et al. 2013). Treatment selection in HPV-positive HNSCC is becoming a critical topic and 
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HPV-related HNSCC have already led to clinical studies that investigate de-intensified 

treatment schedules (Psyrri et al. 2014). Based on some studies, which consider that intensive 

RCT in HPV-positive patients may represent over-treatment (Forastiere 2008, Mannarini et 

al. 2009), and in view of the fact that HPV-positive patients are often younger and have a 

better prognosis (Kofler et al. 2014), the question of aggressive combined treatment, which is 

associated with high rates of acute or late toxicity of the therapy, has become an important 

issue (Boscolo-Rizzo et al. 2013).  

Generally, HNSCC patients undergoing radiation therapy may suffer from a number of side-

effects, above all from organ toxicity. Nevertheless the severity of organ toxicity may vary 

between patients, as does the course and outcome of the disease. In this respect Bonner et al. 

showed that in patients with locally advanced HNSCC who were treated with RT and CT, 

acute rash and skin toxicity were correlated with a significantly better OS (Bonner et al. 

2005). In another study on HNSCC patients, Wolff et al. suggested that normal tissue and 

tumour tissue might behave similarly with reference to treatment response (Wolff et al. 

2010a, Wolff et al. 2011b). Their investigation on the association between HGAOT during 

definite primary and adjuvant radiation and chemotherapy and the treatment outcomes in 

patients with locally advanced HNSCC showed that occurrence of HGAOT during or after 

therapy was associated with better outcomes, i.e. a better five-year OS and locoregional 

control rate of patients (Wolff et al. 2010a, Wolff et al. 2011b). This association of HGAOT 

and improved OS for patients, suffering from HGAOT, is mentionable. 

Much too little is known about the detailed molecular biological mechanisms and causes for 

the significant correlation between HGAOT and the OS improvement (Wolff et al. 2010a, 

Wolff et al. 2011b). This behavioural similarity between normal and tumour tissues with 

regard to treatment response might be explained by inter-individual differences in inherent, 

genetically determined sensitivity (Wolff et al. 2010a). An association between the 

appearance and maintenance of inflammatory mediator proteins that can cause acute organ 

toxicity, and an improved patient outcome has already been defined in the course of other 

studies (Galon et al. 2013) in contrast to other studies which showed that chronic 

inflammation promoted tumour progression (Trinchieri 2012). Moreover, the induction of a 

cytokine cascade in the acute reaction in normal and tumour tissues as a local factor might 

also be involved (Wolff et al. 2010a, Wolff et al. 2011b). The correlation between HGAOT 

and better treatment outcomes is not only limited to HNSCC patients. In breast cancer, Kuhnt 

et al. observed that patients with a pronounced acute reaction of normal tissue, e. g. -
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erythema, dysphagia, or pneumonitis, and who were treated with post-mastectomy RT, 

showed a trend towards better local control rates (Kuhnt et al. 1998). In anal carcinoma, 

patients with HGAOT treated with primary radiation and chemotherapy also showed better 

OS (Wolff et al. 2010c). In another study in patients with locally advanced rectal cancer, a 

statistically significant association was reported between HGAOT during preoperative 

radiation and chemotherapy and a complete histopathological tumour regression after total 

mesorectal excision in multimodal treatment (Wolff et al. 2010b).    

In the present study, we retrospectively investigated the correlation between p16
INK4A

 

expression and the occurrence of HGAOT in patients, who were treated with definite R(C)T. 

The univariate analyses showed an association between HGAOT and p16
INK4A

 expression 

(p=0.011, Figure 3.6-F). Patients with p16
INK4A

-positive tumours demonstrated significantly 

more HGAOT than patients with p16
INK4A

-negative tumours. Mucositis and dysphagia are the 

observable manifestations of acute organ toxicity as side-effects of the R(C)T.  

Since the present study confirmed the well-known association of p16
INK4A

-expressing tumours 

with an improved OS of patients (Weinberger et al. 2006, Lassen et al. 2009, Shah et al. 

2009, Blitzer et al. 2014), and also the formerly described correlation of OS with occurrence 

of HGAOT in patients with HNSCC (Wolff et al. 2010a, Wolff et al. 2011b), we investigated 

the impact of a combination of these two factors on the survival of patients. However, since 

multivariate analysis revealed no significant interaction between p16
INK4A

-expressing tumours 

and the occurrence of HGAOT, which could suggest additive effects of these two parameters, 

they were identified as independent prognostic factors. Such combined impact of two 

parameters is reflected by the five-year OS rates of 47%, for patients with p16
INK4A

 expression 

and HGAOT, compared with 42%, 20%, and 10% for patients with HGAOT only, patients 

with p16
INK4A

 expression only, and patients without either p16
INK4A

 expression or HGAOT, 

respectively (Figure 3.10). Interestingly, the dominant survival effect of p16
INK4A

 expression 

was more evident in patients without any or with only mild acute organ toxicity ≤ grade 2 

CTC. Based on these results, we believe that the analysis of HGAOT of patients during 

therapy is valuable because it can predict the course of therapy in patients.  
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4.3 Analysis of the prognostic roles of CXCL12 and CXCR4 

Technological advance and scientific research provided valuable information on the cellular 

and molecular mechanisms that underlie tumour progression and treatment response. The 

chemokine CXCL12 and its receptor CXCR4 play a role in several types of tumours and 

promote tumour progression, angiogenesis and metastasis (Popple et al. 2012). An association 

between CXCL12 expression and better treatment outcomes and improved OS has also been 

reported in carcinomas of the breast (Kang et al. 2005), the ovaries (Jiang et al. 2006), the 

oesophagus (Sasaki et al. 2008), the stomach (Ishigami et al. 2007), as well as gliomas 

(Salmaggi et al. 2005). In addition, increased expression of CXCR4, the main receptor of 

CXCL12, was reported to a have a prognostic value for patients with renal, colorectal, and 

breast carcinoma (D'Alterio et al. 2010, Hiller et al. 2011, Parker et al. 2012, Yopp et al. 

2012). Since a high expression of CXCL12 and CXCR4 in various types of cancer predicts 

poor patient outcomes, the analysis of their expression levels may have an important 

prognostic value (Maréchal et al. 2009, Bennani-Baiti et al. 2010, Wu et al. 2010, Jung et al. 

2011, Ramos et al. 2011, Wang et al. 2011, Popple et al. 2012, Zhang et al. 2013). In the 

present study, we investigated expression of CXCL12 and CXCR4 as novel prognostic factors 

for HNSCC patients treated with definite R(C)T. The levels of the two proteins were 

independently related to clinicopathological characteristics and survival data of the patients. 

One significant advantage of this retrospective study was the long follow-up times of up to 

217 months (median 83 months), which provided reliable survival data. Using IHC, we 

detected expression of CXCL12 in 41.6% and of CXCR4 in 66.1% of the 233 biopsies taken 

from HNSCC patients before the beginning of the treatment. In a similar analysis by Almofti 

et al., the expression of CXCL12 and CXCR4 in biopsy specimens from 61 patients with 

OSCC assessed by IHC was 11.4% and 57.3%, respectively (Almofti et al. 2004). In another 

study by Ishikawa et al., expression of CXCR4 was detected by IHC in 30% of the 90 OSCC 

tissue samples (Ishikawa et al. 2006). Although we were unable to find a significant 

association between the expression of CXCR4 and any clinicopathological features, we did 

find a statistically significant correlation between the expression of CXCL12 and N-staging 

(p=0.025, Table 3.2). Despite this association, we found that these patients had significantly 

better OS, which confirms the results of Clatot et al., who also found a significant association 

between the CXCL12 expression level and metastatic evolution and OS in a series of 71 

OSCC patients (Clatot et al. 2011). Moreover, in a gene expression study conducted by these 

authors with a focus on the CXCL12/CXCR4 pathway (Clatot et al. 2014), the patient group 
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with the better prognosis showed higher expression levels of genes involved in the CXCL12 

pathway. It should be noted that observations from experimental studies also support the 

clinical evidence of improved prognosis in patients with a high level of CXCL12 expression. 

Roy et al. in in vitro and in vivo studies on pancreatic cancer cell lines and tumour tissues also 

observed that autocrine CXCL12 expression reduced the growth and migration potential in 

vitro, and also reduced growth and metastasis rate of pancreatic ductal adenocarcinoma cells 

in vivo (Roy et al. 2014). 

The superior OS of patients, whose tumours expressed CXCL12, may be explained by the 

experimental findings from other studies that described the suppression of tumour cell 

migration, reduced tumour growth potential, modified radio- and chemosensitivity, or an 

enhanced immune response (Williams et al. 2010, Albert et al. 2013, Clatot et al. 2014, Roy 

et al. 2014). Granot et al. and Williams et al. demonstrated that the activation of functional 

CD8
+
 T cells or neutrophils may modulate the immune response, which leads to the inhibition 

of metastasis and tumour progression (Williams et al. 2010, Granot et al. 2011). However, 

CXCL12 is able to induce different anti-tumour responses depending on the tumour type 

(Williams et al. 2010). For instance, Fushimi et al.  demonstrated that CD8
+ 

T cells play an 

important role in the inhibition of the CXCL12-mediated growth of melanoma and lung 

carcinoma (Fushimi et al. 2006). However, in an in vivo mice model of leukaemia, CD4
+
 but 

not CD8
+
 T cells were required. In this study, all of the CD4

+
-depleted animals developed 

lethal tumours, while this occurred in only 20% of the CD8
+
-depleted animals (Dunussi-

Joannopoulos et al. 2002). In HNSCC patients treated with definite RCT, Balermpas et al. 

reported a positive association between a high number of tumour infiltrating CD3
+ 

and CD8
+
 

lymphocytes and improved OS and DMFS (Balermpas et al. 2014). Taken together, CXCL12 

is a chemokine with a wide spectrum of immunoregulatory properties and tissue specific 

CXCL12/CXCR4 interactions, and further studies of these mechanisms may lead to novel 

therapeutic strategies. 

The expression of CXCR4 is reported in diverse tumour entities. Moreover, many studies 

have shown an association between CXCR4 expression and a worsening of the OS because of 

a rapid tumour recurrence and metastasis (Iwakiri et al. 2009, Wagner et al. 2009, Otsuka et 

al. 2011). In this study, multivariate analysis showed a significant correlation between high 

CXCR4 expression and a reduced DMFS. Katayama et al. analysed 56 Japanese patients with 

HNSCC and found that CXCR4 positivity was correlated with lymph node and distant 
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metastases as well as a poor prognosis and poor survival rate (Katayama et al. 2005). In 

another study in OSCC patients by Lee et al., the association between CXCR4 expression and 

poor survival rate was also reported (Lee et al. 2009). The causes for an increased CXCR4 

expression in HNSCC and the relation to increased metastasis and reduced metastasis-free 

survival of patients are ascribed to various factors. CXCR4 expression is enhanced in cells 

that exhibit biological and morphological modifications associated with an epithelial-to-

mesenchymal transition (EMT) (Yoon et al. 2007, Taki et al. 2008).  Ou et al. also found an 

association between CXCR4 expression and lymph node metastasis, and the authors suggest 

that the EMT-related critical transcription factor Twist might regulate expression of CXCR4 

especially during lymph node metastasis (Ou et al. 2008). In addition, Taki et al. 

demonstrated that CXCR4 was up-regulated in OSCC by CXCL12 and TGF-beta1 (Taki et al. 

2008). They also reported that overexpression of SNAIL, another EMT-promoting 

transcription factor induced overexpression of CXCL12 (Taki et al. 2008). Hypoxia is another 

important CXCR4-regulating factor in HNSCC. Certain tumour environmental factors such as 

hypoxia-inducible factor-1 (HIF-1) may directly induce the enhanced expression of CXCR4 

(Ishikawa et al. 2009). HIF-1 as a heterodimeric transcription factor responds to oxygen 

concentration in tissues and up-regulates CXCR4 expression. However, overexpression of 

HIF-1 is also known as a good indicator for a poor response to CRT in osteosarcoma or bone-

metastases (Huang et al. 1998, Bendinelli et al. 2013).  

Clinical and experimental studies revealed an association between CXCR4 expression and 

tumour cell migration or tumour metastasis. The strategic blocking approach to inhibit the 

CXCL12/CXCR4 pathway has focused on inhibitors of CXCR4 (CXCR4 antibodies or 

CXCR4 antagonist) or CXCL12. The anti-CXCR4 antibody, MDX-1338 is a novel drug 

candidate, which could directly block the interaction between CXCR4 and its ligand CXCL12 

and also inhibits CXCL12-induced cell migration (Kuhne et al. 2009, Ramsey and McAlpine 

2013). AMD3100, a well-known CXCR4 antagonist, which is currently being investigated in 

phase I/II trials, binds to CXCR4 and effectively blocks CXCL12 binding (Domanska et al. 

2013). Furthermore, AMD3100 is an attractive drug candidate for several cancers in which 

CXCR4 is critically involved.  

 



Discussion 

 

105 

 

4.4 Migration of HNSCC cell lines along a CXCL12 gradient  

4.4.1 Characterisation of the employed cell lines 

We used an in vitro approach to study the role of CXCL12 and CXCR4 in the migration of 

HNSCC cell lines. Three HNSCC cell lines from two different anatomical subsites of head 

and neck regions with different CXCL12 and CXCR4 expression patterns were used. To 

avoid the impact of unexpected factors on the results of this analysis, we precisely 

characterised the expression of CXCL12 and CXCR4 at the mRNA and the protein level, the 

radiosensitivity of each cell line, a possible enhancement or reduction of radiosensitivity by 

CXCL12 and AMD3100 treatment, and at last the enhancing or inhibiting effect of CXCL12 

and AMD3100 on the proliferative capacity of the cell lines. 

We analysed the expression of CXCL12 and CXCR4 at the mRNA and protein level in three 

tumour (ZMK-1, FaDu and GR-145) and two control cell lines (HaCat and DF-19) by real-

time PCR, western blot and immunocytochemical staining. Our data showed that ZMK-1 and 

FaDu cells express CXCR4 and GR-145 and DF-19 cells express CXCL12 at both the mRNA 

and protein level. These results also confirmed the results of Wolff et al., who analysed the 

expression of several chemokines and chemokine receptors in HNSCC cell lines at the mRNA 

level (Wolff et al. 2011a). 

To determine the effect of CXCL12 and AMD3100 on HNSCC tumour cell radiosensitivity 

and clonogenic survival, we treated cells with CXCL12 or AMD3100 during colony-forming 

assay. In the present study, our experimental data showed an influence of CXCL12 on tumour 

cell radiosensitivity that was cell line-dependent. We found this CXCL12-related 

radiosensitisation in the tumour cell line ZMK-1 with the highest CXCR4 expression and no 

CXCL12 expression. To our knowledge no comparable experiments addressing the influence 

of CXCL12 on the cellular radiosensitivity have been conducted to date. However, Muller et 

al. showed that CXCL12 suppressed the rate of cisplatin-induced apoptosis in adenoid cystic 

carcinoma, a rare malignant epithelial tumour of the salivary glands (Muller et al. 2006). This 

CXCL12 stimulation resulted in the activation of AKT, ERK1/2, and MAP kinase pathways, 

which are commonly associated with cell survival and proliferation (Chan et al. 1999, Roux 

and Blenis 2004). 
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We found in all of the tumour cell lines (ZMK-1, FaDu and GR-145) and in one control cell 

line (HaCat) a reduction in clonogenic cell survival following exposure to increasing radiation 

doses. The second control cell line (DF-19) was not suitable for the colony-formation assay. 

Although the colony-forming assay is a broadly used technique, the results may be misleading 

under certain circumstances, when using primary (non-immortalised) cells. On the one hand, 

cells may be viable and able to divide very efficiently and still may not form colonies very 

well. On the other hand, non-immortalised cells are subject to replicative senescence after a 

number of population doublings (Ulus-Senguloglu 2012). At this point, the cells are 

metabolically viable but unable to undergo further cell division and are accordingly non-

clonogenic. This was confirmed for the DF-19 fibroblasts by viability assay. 

Do carmo et al. demonstrated that CXCL12 induced a significant increase in the proliferation 

of a CXCR4-positive glioma cell line (do Carmo et al. 2010). However, the effect of CXCL12 

on induction of glioma cell proliferation in a study by Zhou et al. was in disagreement. Zhou 

et al. showed that there was no association between treatment with CXCL12 and the 

proliferative potential of CXCR4 expressing cell lines (Zhou et al. 2002).  

Most studies investigating the biological function of CXCR4 and CXCL12 used AMD3100 as 

an efficient and specific CXCR4 antagonist that inhibits CXCL12-mediated calcium 

mobilisation, chemotaxis and GTP binding (Rubin et al. 2003, Marchesi et al. 2004, Cabioglu 

et al. 2005, Ohira et al. 2006, Burge and Peled 2009). Kim et al. reported that AMD3100 in 

high concentrations stimulates the proliferation of myeloma cells as compared to controls 

(Kim et al. 2010). They observed an initially enhancing and subsequently inhibiting effect on 

the survival and proliferation of myeloma cells as compared to controls. They also reported 

comparable observations in one leukaemia cell line (Kim et al. 2010). To investigate the 

metabolic activity-enhancing/reducing effect of CXCL12 and AMD3100 and irradiation on 

HNSCC tumour and control cell lines, we analysed the cell viability of the treated cells after a 

one-week incubation period. Cells were treated for 30 minutes with CXCL12, AMD3100 or 

both, before irradiation and one week of incubation. The same experimental set was 

performed with non-irradiated cells. Although some observations have shown that CXCL12 

or AMD3100 alters the proliferation of some cells in culture, our findings showed that 

treatment with either CXCL12, AMD3100 or both, had no enhancing or inhibiting effect on 

the cell proliferative capacity of all tumour cell lines (ZMK-1, FaDu, and GR-145) for up to 

one week. DF-19 was non-responsive as well, while in the second control cell line (HaCat) 

CXCL12 and AMD3100 treatment was associated with enhanced proliferation. Although 
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incubation with CXCL12 or AMD3100 did not considerably decrease the viability of HNSCC 

tumour cell lines, as expected, irradiation significantly reduced cell viability of the tumour 

cells. 

4.4.2 Effect of irradiation on the migration behaviour of HNSCC and control 

cell lines among a CXCL12 gradient 

Migration and invasion of tumour cells are chemokine-dependent. Müller et al. have 

demonstrated organ-specific metastases of breast cancer cells, which were directly associated 

with CXCL12 (Müller et al. 2001). They found that primary breast cancer tumours highly 

expressed CXCR4, whereas the peak level of CXCL12 mRNA expression was in organs that 

are preferential target organs of breast cancer metastasis (Müller et al. 2001). There is 

growing evidence supporting the crucial role of CXCR4 in promoting migration and 

metastasis of primary tumour cells to strongly CXCL12-expressing tissues (Burger et al. 

1999, Geminder et al. 2001, Müller et al. 2001, Robledo et al. 2001, Taichman et al. 2002, 

Ishikawa et al. 2006). In the present study, we investigated whether CXCL12 induced 

HNSCC cell migration with different CXCL12 and CXCR4 expression profiles. Since, no 

studies have analysed cell migration along a CXCL12 gradient in irradiated cells, we 

investigated the effect of irradiation on the migratory capacity on HNSCC cell lines, 

particularly CXCR4-positive cell lines. For cells responsive to CXCL12, an increased cell 

migration was observed at all radiation doses tested. As described above, CXCR4 contributes 

to a more aggressive metastatic phenotype (Albert et al. 2013), which could in part be 

associated with an enhanced migratory capacity of CXCR4-expressing tumours as we 

observed in CXCR4-expressing HNSCC tumour cell lines, ZMK-1 and FaDu. 

To answer to the question, whether CXCR4 expressed in CXCR4-positive HNSCC tumour 

cells is functionally active upon CXCL12 binding, we analysed the migration tendency in the 

presence of AMD3100. The significant reduction of cell migration in the CXCR4-expressing 

tumours cells, ZMK-1 and FaDu, by treatment with the antagonist AMD3100 was observed in 

both non-irradiated and irradiated cells in a dose-dependent manner. With regard to these 

results, it is conceivable that the combination of RT and AMD3100 may significantly reduce 

the migration potential of CXCR4-positive HNSCC cells. In this study, we showed the crucial 

role of the CXCL12/CXCR4 axis in HNSCC migration as indicated by the treatment effects 
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of the blocking CXCR4 antagonist, AMD3100 on CXCR4-expressing HNSCC tumour cell 

lines. 

4.5 Future directions 

The incidence of HPV-negative HNSCC will probably continue to decline due to the trend to 

less smoking during the past decades. However, with the increased incidence of OPSCC with 

HPV positivity or the combination of tobacco and HPV infection it is conceivable that HPV 

will eventually become the main aetiology of head and neck cancer (Friedman et al. 2014). 

Because the two different tumour classes have different prognoses, treatment outcomes and 

survival rates, it will be important to follow the incidence of both HPV-positive and HPV-

negative HNSCC in the future. Moreover, further insights into the molecular alterations 

underlying HPV-induced carcinogenesis will provide valuable opportunities to recognize 

more effective selected pathways (Mirghani et al. 2014).  

Despite the improved clinical outcome for the majority of patients with HPV-positive 

HNSCC, the trend to reduce the used intensified treatment is growing and the necessity for 

less toxic therapies is seriously debated. The question for patients with positive HPV is not 

how to reduce the intensity of treatment, but how to optimize the treatment to these HNSCC 

tumours. It should be necessary to study further indicators or biomarkers that are able to 

distinguish which tumour is sensitive to a specific therapy intervention. 

CXCL12 and CXCR4 have been involved in organ-specific metastases of several tumour 

entities. The association between inferior DMFS and a high CXCR4 expression level may be 

useful in estimating the prognosis and identifying patients who would profit from intensified 

surveillance and additional or altered treatment. 

Our findings suggest that the inhibition of CXCL12 and CXCR4 by AMD3100 in HNSCC 

should be confirmed in vivo in order to evaluate the potential of CXCR4 as a therapeutic 

target in the treatment of HNSCC. Inhibition of the CXCL12/CXCR4 axis may have a 

positive impact on regulating tumour motility and organ-specific metastasis.  

Despite significant advances in the field of both HPV and the CXCL12/CXCR4 axis, we still 

need more research into HNSCC before individualised patient treatment becomes routine. 

Moreover, finding other biomarkers or prognostic indicators is very important to predict or 

improve treatment outcome (Romanitan et al. 2013). We believe and hope that the results of 
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this study will provide a rational basis for the further development of HPV, CXCR4 and 

CXCL12 as prognostic indicators in the management of HNSCC patients. 
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5. Conclusion  

p16
INK4A

 expression is an important, independent prognostic marker in HNSCC patients. We 

observed a strong correlation between tumour HPV status, particularly HPV-16, and p16
INK4A

 

expression. Accordingly, our data clearly revealed that p16
INK4A

 expression may be a more 

powerful marker for predicting prognosis than HPV DNA detection from archived FFPE 

tumour tissues (Tehrany et al. 2015). The improved OS seen in HNSCC patients with positive 

p16
INK4A

 expression are thought to be independent of the treatment approach (Fakhry et al. 

2008, Worden et al. 2008, Lassen et al. 2009, Posner et al. 2011, Cmelak 2012). However, in 

this study we found that the combination of HPV/p16
INK4A

 positivity and HGAOT as 

treatment-related toxicities may have an additional effect on improved treatment outcomes 

and OS of HNSCC patients (Tehrany et al. 2015). Morover, p16
INK4A

 expression is more 

important for patients without HGAOT. For clinicians, the combined IHC report of  p16
INK4A

 

expression from the pathology laboratory and the analysis of acute organ toxicity of patients 

during therapy or even seen after therapy at follow-up appointments could provide important 

prognostic information for the individual patient and also become the basis of treatment 

decisions in the future. 

In this study, we presented clinical and experimental data, underscoring the prognostic value 

of CXCL12 and CXCR4 in HNSCC patients treated with R(C)T. immunohistochemical 

analysis of HNSCC biopsies showed that the expression of CXCR4 alone in tumour tissue 

was a negative predictor for patients, while the expression of CXCL12 was associated with 

improved OS. We evaluated CXCR4 as a predictive indicator for HNSCC patients with poor 

prognosis with regard to reduced DMFS and also investigated its biological relevance in the 

migratory capacity of HNSCC tumour cell lines in a CXCL12 gradient. CXCL12 had a 

specific effect on migration of HNSCC cells that does not stem to enhanced proliferation. 

Additionally, we were able to show that CXCL12 also induces irradiated HNSCC cells to 

migrate, whereas this tendency was significantly reduced in a dose-dependent manner by 

irradiation. As shown by an experiment in the in vitro study, CXCR4 significantly induces the 

migration of CXCR4-positive tumour cells and promotes the progression of distant metastases 

in our in vivo analysis. Accordingly, these results indicate that the CXCL12/CXCR4-pathway 

is functionally relevant in head and neck cancer cell lines, which in turn supports the clinical 

data.   
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In conclusion, we have demonstrated that different indicators and biomarkers are of 

independent prognostic value in HNSCC. These results can also lead us to a new efficient 

treatment strategy, in which the intensity of CT or extent of the irradiated area can be altered 

while maintaining good tumour control with the ability to rationally personalise therapy to 

advance therapeutic outcomes. 
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Figure 5.1: Summary of in vivo and in vitro analyses of HNSCC-biopsies and HNSCC cell lines. 
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