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1. Introduction

1.1. Motivation

The investigation of incompressible flow is a key branch in fluid mechanics. Its mathemat-
ical description is based on the Navier-Stokes equations.
The field of computational fluid dynamics (CFD) aims to predict the behavior of flow
reliably and faces the difficulty to solve a resulting system of partial differential equations.
The development of mathematical models and efficient as well as accurate algorithms is
subject to research. The incompressibility constraint couples the velocity and pressure cal-
culation and thus leads to high computational cost.
In addition, the aspect of accurate approximate solutions is an important, yet compli-
cated issue. The challenge is to find a discretization that captures the physically correct
macroscopic behavior of the flow. Discretizations using the finite element method (FEM)
suffer from spurious oscillations in the numerical solution that arise for example due to
dominating convection, internal shear or near boundary layers. Depending on the finite
element spaces, poor mass conservation and a violation of the discrete inf-sup stability of
the velocity and pressure ansatz spaces can occur. If the latter condition is harmed, the
mixed problem becomes singular and (pressure) stabilization techniques have to be used
to overcome this. Inf-sup stable elements are not afflicted by this need.
Especially in the case of small diffusion, numerical unphysical instabilities lead to inac-
curacy of the method. By mesh refinement, these oscillations can be removed but the
resulting computational cost is often not feasible, even while the computing power is ever-
expanding nowadays.
In the last decades, various stabilization techniques have been proposed that are supposed
to eliminate over- and undershooting. These methods are applied mostly to convection-
diffusion type problems, the Stokes equations or the Oseen problem and show positive
effects in numerical experiments. In spite of the massive amount of work put into this,
there is no method that is an “allrounder” in the sense that it is accurate, efficient and
robust with respect to different problems and applications.
Non-isothermal incompressible flow can be modeled by the Oberbeck-Boussinesq approx-
imation if only small temperature differences occur. This model consists of a momentum
equation and a Fourier equation governing the velocity and temperature, respectively.
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2 1. Introduction

Both equations are coupled through a convection term in the Fourier equation and a
reaction term in the momentum equation. Therefore, the problems occurring when the
Navier-Stokes equations are solved numerically also arise for the Oberbeck-Boussinesq
model.

1.2. Outline and Contributions

It is an important issue of this thesis that the numerical solution of incompressible non-
isothermal flow problems is theoretically and empirically justified. Therefore, we introduce
a profound model and perform numerical analysis. The model is tested for various numer-
ical examples.
Chapter 2 covers all main steps to establish a fully discrete model that can be implemented
and investigated numerically. The underlying mathematical model of our simulations is the
Oberbeck-Boussinesq approximation, that is the singular limit of the more general Navier-
Stokes-Fourier model for heat driven flow. It is therefore suited to model incompressible
flow with small temperature differences. The model is deduced in Section 2.1 and char-
acteristic quantities are defined. As a spatial discretization approach, the finite element
method is introduced in Section 2.2, which is one of the most widely used techniques in
computational fluid mechanics. It yields an approximate solution of the variational formu-
lation of the problem. Here, important spaces and notations are fixed. Moreover, the usage
of grad-div and local projection stabilization (LPS) methods in the literature is reviewed
briefly. We adapt this method to the Oberbeck-Boussinesq model. Section 2.3 is dedicated
to the time-discretization of the model. We use a method called pressure-correction pro-
jection method, which incorporates a backward differentiation formula of second order.
Segregation methods are based on an idea by Chorin [Cho69] and Temam [Tem69] and
reduce the computational cost since the calculation of pressure and velocity is decoupled.
We formulate this method for the Oberbeck-Boussinesq model and sketch the steps in the
algorithm for solving the fully discrete scheme. As a preliminary study for the problem
of interest, we review the state of research dealing with stabilization of the convection-
diffusion-reaction and Oseen equations, see Section 2.4. We also recall results we originally
published in [DAL15] about the Oseen problem.
In Chapter 3, we study the semi-discrete problem closely. We extend the analysis from
our publications [DAL15] for the Oseen problem and [ADL15] for the Navier-Stokes equa-
tions to the thermally coupled setting. We prove stability of the semi-discrete solutions of
the stabilized Oberbeck-Boussinesq model and pursue two approaches regarding a priori
error estimates. The first variant relies on the discrete inf-sup stability of the velocity and
pressure ansatz spaces and the existence of a local interpolation operator preserving the
divergence. Secondly, an interpolation operator with additional orthogonality properties is



1. Introduction 3

taken advantage of. By a result of [MST07], this operator exists if a certain compatibility
condition between the approximation and projection spaces for velocity and temperature
holds. The applicability of the proposed methods is discussed; in particular, possible finite
element settings are reviewed. The design of stabilization parameters is studied. The re-
sults rely on relatively mild regularity assumptions for the continuous solutions. Also, the
convective terms are treated carefully in order to circumvent an exponential deterioration
of the error in the limit of vanishing diffusion. Furthermore, a pressure estimate is given
using the discrete inf-sup stability.
The fully discretized scheme is treated analytically in Chapter 4. In Section 4.1, we show
the stability of the fully discrete solutions of the stabilized Oberbeck-Boussinesq model.
Convergence in space and time is proved in Section 4.2 for the stabilized Navier-Stokes
equations. The proof utilizes the semi-discrete results from Chapter 3 and combines it
with an estimate of the error between the semi-discrete (continuous in time, discretized
in space) and fully discrete velocity. The choice of stabilization parameters is addressed.
This analysis of the Navier-Stokes equations was published in [AD15], where we present
two strategies: In addition to the one performed in this thesis, we also follow the ansatz to
discretize in time first and in space afterwards. Both approaches suffer from the artificial
introduction of a semi-discrete velocity (either in space or in time). This leads to regularity
assumptions for this additional quantity and further restrictions on parameters. For the
proofs, we make use of the discrete Gronwall Lemma. The convective terms then lead to
an unfeasible restriction of the time step size as ∆t ∼ ν3 in order to ensure applicability
of the Gronwall Lemma. Therefore, we give a critical assessment of the requirement of the
proof, see Section 4.3.
The subsequent Chapter 5 is devoted to the numerical simulation of incompressible isother-
mal and non-isothermal flow. First, we validate the theoretical convergence results with
respect to the mesh width and the time step size (Sections 5.1, 5.2, 5.3). The influence of
grad-div and LPS stabilization on the spatial and temporal errors is studied for the pa-
rameter range suggested by the analysis. Sections 5.4, 5.5, 5.6 and 5.7 are concerned with
more realistic flow. The stabilization variants are applied and their performance evaluated
via suitable benchmarks. Laminar as well as transient or even turbulent flow examples are
simulated. Moreover, it is tested if grad-div and LPS stabilization can act as an implicit
turbulence model.
For the simulations, we take advantage of the C++-FEM package deal.II, see [BHK07,
BHH+15], which provides tools for finite element methods. A highly parallel CFD solver
for the time dependent Navier-Stokes problem was developed by D. Arndt from Göttin-
gen. It is part of this thesis to extend the implementation to the non-isothermal case.
The implementation of a special finite element space, namely the bubble enrichment (see
Section 2.2.2), is joint work with D. Arndt.





2. Modeling Non-Isothermal Flow in Finite
Element Methods

In this chapter, we introduce a mathematical description of non-isothermal flow and outline
the steps towards a fully discrete model that can be considered numerically.
The main issues here are to introduce the Navier-Stokes-Fourier model and the special
case of the Oberbeck-Boussinesq model that is valid for incompressible flow and small
temperature differences. In order to obtain a discretized description, we consider spatial
discretization via the finite element method (FEM) and roughly review time-discretization
techniques. Afterwards, properties and results for auxiliary equations are cited.

2.1. Mathematical Model for Non-Isothermal Flow

There are several approaches in mathematical fluid mechanics for modeling flow. One of
these is the phenomenological theory of continuum fluid mechanics, where the macroscopic
behavior of the fluid is described. It is based on the assumption that the fluid can be
modeled as a continuum. A homogeneous fluid in a domain Ω ⊂ Rd, d ∈ {2, 3}, is described
by state variables such as density, fluid velocity and temperature. The time evolution in
an interval (0, T ) ⊂ R is described by partial differential equations. These can be derived
by taking balance laws into account.
This short introduction follows the derivations in [FN09a] and [Löw11].

2.1.1. Navier-Stokes-Fourier Model

We assume that the fluid can be described by the following variables.
(a) Domain Ω ⊂ Rd, d ∈ {2, 3}, occupied by the fluid,
(b) mass density % = %(t,x), a non-negative measurable function for (t,x) ∈ (0, T )× Ω,
(c) velocity u = u(t,x), a vector field for (t,x) ∈ (0, T )× Ω,
(d) temperature ϑ = ϑ(t,x), a positive measurable function for (t,x) ∈ (0, T )× Ω (mea-

sured in the Kelvin scale),
(e) pressure p = p(%, ϑ), specific internal energy e = e(%, ϑ) and specific entropy s =

s(%, ϑ),

5



6 2. Modeling Non-Isothermal Flow in Finite Element Methods

(f) stress tensor T = {Tij}di,j=1 describing the force per unit surface that a fluid part
adjoining a surface element imposes on a fluid part on the other side to the same
surface element,

(g) flux of the internal energy q, which is a vector field,
(h) volume force acting on the fluid f = f(t,x) for (t,x) ∈ (0, T )× Ω,
(i) rate of production of internal energy Q = Q(t,x) for (t,x) ∈ (0, T )× Ω.
The quantities (%,u, ϑ) characterize the current state and motion of the fluid at time t and
are called state variables. The other quantities depend on these state variables by fixed
relations.
There are important parameters which characterize the behavior of the flow:

SI unit Name

% kg ·m−3 Density
µ kg ·m−1 · s−1 Dynamic viscosity
ν = µ/% m2 · s−1 Kinematic viscosity
k W ·m−1 ·K−1 Thermal conductivity
cp J · kg−1 ·K−1 Specific heat capacity
α = k/(%cp) m2 · s−1 Thermal diffusivity
β K−1 Coefficient of thermal expansion
g m2 · s−1 Gravitational force
Lref m Characteristic length
Uref m · s−1 Characteristic velocity
Tref s Characteristic time
∆θref K Characteristic temperature difference

Among others, these parameters can be combined to dimensionless variables, that are of-
ten used for a classification of the flow.
With the characteristic reference values for time Tref, length Lref, density %ref, tempera-
ture ϑref, velocity Uref and the composed quantities pref, eref, µref, ζref, kref and source
terms fref, Qref, we can define the dimensionless variables Sr, Ma, Re, Fr, Pe, Hr

(see [FN09a]):

Sr Lref/(TrefUref) Strouhal number,
Ma Uref/

√
pref/%ref Mach number,

Re %refUrefLref/µref Reynolds number,
F r Uref/

√
Lreffref Froude number,

P e prefLrefUref/(ϑrefkref) Péclet number,
Hr %refQrefLref/(prefUref) Heat release parameter.
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The Strouhal number Sr describes the relation between the characteristic time scale Tref

and the convection time scale Lref/Uref. The occurring velocity is compared to the speed
of sound via the Mach number. The ratio between convective and diffusive forces is repre-
sented by the Reynolds numbers Re. The Froude number describes how large the inertial
forces are compared to external forces. Pe is defined as the ratio of the advection rate to
the diffusion rate at length scale Lref.

Definition 2.1.1 (Dimensionless quantities).
We define the Prandtl number Pr, the Grashof number Gr and the Rayleigh number Ra
as follows:

Pr = ν

α
, Gr = |g|β∆θrefL

3
ref

ν2 , Ra = Gr Pr = |g|β∆θrefL
3
ref

να
.

By Stokes’ law, it holds

T = S− pI

with the viscous stress tensor S. For Newtonian fluids, it is given by

S = µ(ϑ)
(
∇u+ (∇u)T − 2

3∇ · uI
)

+ ζ(ϑ)∇ · uI

with dynamic viscosity µ(ϑ), bulk viscosity ζ(ϑ) and the identity matrix I. The internal
energy flux q is determined by the thermal conductivity k(ϑ) by

q = −k(ϑ)∇ϑ.

The rate of energy production σ is defined as

σ = 1
ϑ

(
Ma2

Re
S · ∇u− 1

Pe

q · ∇ϑ
ϑ

)
.

Let D denote the differential with respect to % and ϑ. So by the second law of thermody-
namics, the Gibbs’ equation holds:

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D
(1
%

)
.

The Navier-Stokes-Fourier equations governing the behavior of the fluid result from phys-
ical principles, namely mass conservation, balance of linear momentum as well as the total
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energy and entropy balance. Scaling by characteristic variables yields the dimensionless
model for (t,x) ∈ (0, T )× Ω:

Sr ∂t%+∇ · (%u) = 0,

Sr ∂t(%u) +∇ · (%u⊗ u) + 1
Ma2∇p(%, ϑ) = 1

Re
∇ · S− 1

Fr2 %f ,

Sr ∂t(%s(%, ϑ)) +∇ · (%s(%, ϑ)u) + 1
Pe
∇ ·

(
q

ϑ

)
= σ +Hr %

Q

ϑ
,

Sr ∂t

∫
Ω

(
Ma2

2 %|u|2 + %e(%, ϑ)
)
dx =

∫
Ω

(
Ma2

Fr2 %f · u+HrρQ

)
dx.

(2.1)

2.1.2. Oberbeck-Boussinesq Approximation

The Navier-Stokes-Fourier equations (2.1) are a general mathematical model for non-
isothermal flow.
In many applications, the Mach number is small, as the fluid velocity is small compared
with the speed of sound. This means that no shocks occur and the acoustic waves have
negligible influence on the flow. In the limit Ma → 0, the pressure tends to a constant,
whereas the speed of sound tends to infinity. If additionally the temperature differences are
small, incompressibility ∇·u = 0 follows from mass conservation. The so-called Oberbeck-
Boussinesq model approximates the Navier-Stokes-Fourier equations for a simultaneously
small Froude number Fr ≈

√
Ma. This can be obtained by a formal asymptotic expansion.

Often the volume force f can be written as a gradient of a scalar potential F = F (x):

f = ∇F.

If we write Ma =: ε, Fr =
√
ε and assume that all of the other dimensionless charac-

teristics are of order O(1), we can expand the quantities %, u and ϑ around %̄, U , ϑ̄ as
a series of ε. Neglecting higher order terms of ε, we can derive the Oberbeck-Boussinesq
approximation:

%̄(∂tU +∇ · (U ⊗U)) +∇P = ∇ · S− r∇F,

∇ ·U = 0,

%̄cp(%̄, ϑ̄)(∂tθ +∇ · (θU))−∇ · (k(ϑ̄)∇θ) = 0.

(2.2)

These are equations for the incompressible velocity U , the temperature θ and the pressure
P . Note that θ describes the difference to the mean temperature ϑ̄ and P is a Lagrange
multiplier for the divergence free condition, which does not coincide with the thermody-
namic pressure. Due to the incompressibility of U , we have

S = µ(ϑ̄)
(
∇U + (∇U)T

)
.
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In (2.2), the specific heat capacity at constant pressure cp and the thermal conductivity k
are taken at constant density %̄ and constant temperature ϑ̄. Moreover, the temperature
dependent reduced density r = r(θ) appears in the momentum equation; it arises as a
linearization of the density around the mean temperature ϑ̄. It fulfills

r + %̄β̄(θ − ϑ̄) = 0

with the coefficient of thermal expansion β̄. We draw the reader’s attention to the fact
that the force term %̄β̄ϑ̄∇F can be incorporated in the pressure and does not influence
the velocity field.

The Oberbeck-Boussinesq system is considered in [Obe79] in order to model the flow of
diluted gases due to temperature differences. As it is shown in [FN09b], the asymptotic
limit for the general Navier–Stokes–Fourier system is the Oberbeck–Boussinesq system as
both Mach and Froude numbers tend to zero.

2.1.3. Boundary Conditions

In the following section, we present some possibilities to equip the Navier-Stokes-Fourier
model (2.1) or the Oberbeck-Boussinesq equations (2.2) on a bounded domain Ω with
boundary conditions on ∂Ω. These are also shown in [Löw11].

Let n denote the outer unit normal vector at the boundary. If the system is completely
isolated, we set

u · n|∂Ω = 0, Sn× n|∂Ω = 0, q · n|∂Ω = 0. (2.3)

The fluid does not leave the domain, there is no heat transfer in wall-normal direction and
no static friction influences the flow. In this case, no boundary layers occur near the walls.

A more realistic situation is created if there is a (homogeneous) Dirichlet condition on a
part of the boundary Γ0 ⊂ ∂Ω; so the velocity is set to zero on Γ0. The temperature at the
wall can be prescribed via Dirichlet conditions or a fixed heat transfer can be imposed:

u|Γ0 = 0, θ|Γ0 = θwall or q · n|Γ0 = qwall. (2.4)

These so-called no-slip conditions can lead to thin boundary layers for small viscosity. If
only a part of the physical domain is simulated, there are artificial boundaries. Typically,
these are boundaries describing inflow or outflow:

Γ− := {x ∈ ∂Ω | u · n < 0}, Γ+ := {x ∈ ∂Ω | u · n > 0}.
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In case of inflow, we can prescribe

u|Γ− = uin, θ|Γ− = θin. (2.5)

At outflow boundaries it is desired to impose conditions that do not influence the outflow.
An often considered possibility is called “do-nothing” boundary condition (see [Gre91], for
instance)

(ν∇u− pI) · n|Γ+ = 0, q · n|Γ+ = 0. (2.6)

2.2. Spatial Discretization

There are several methods available to perform a discretization in space. We pursue the
ansatz of finite elements, which are introduced in Section 2.2.2. Finite element methods
(FEM) are special Ritz Galerkin methods and approximate the weak solution of the dif-
ferential equation.

Also, finite difference methods (FDM), finite volume methods (FVM) and spectral methods
can be used for discretizing in space. We refer the reader to [RST08] and [QV08] for details.

2.2.1. Variational Formulation and Ritz Galerkin Method

From now on, we consider the simplified time-dependent Navier-Stokes-Fourier model
with Oberbeck-Boussinesq approximation and homogeneous Dirichlet data. We call this
the Oberbeck-Boussinesq equations:

∂tu− ν∆u+ (u · ∇)u+∇p+ βθg = fu in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

∂tθ − α∆θ + (u · ∇)θ = fθ in (0, T )× Ω,

u = 0 , θ = 0 in (0, T )× ∂Ω,

u(0, ·) = u0(·) , θ(0, ·) = θ0(·) in Ω

(2.7)

in a bounded polyhedral Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}, with boundary ∂Ω. Here
u : [0, T ]×Ω→ Rd, p : [0, T ]×Ω→ R and θ : [0, T ]×Ω→ R denote the unknown velocity,
pressure and temperature fields for given viscosity ν > 0, thermal diffusivity α > 0, thermal
expansion coefficient β > 0 and external forces fu ∈ L2(0, T ; [L2(Ω)]d)∩C(0, T ; [L2(Ω)]d),
fθ ∈ L2(0, T ;L2(Ω))∩C(0, T ;L2(Ω)), gravitation g ∈ L∞(0, T ; [L∞(Ω)]d) and initial data
u0 ∈ [L2(Ω)]d, θ0 ∈ L2(Ω).
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In order to guarantee well-posedness of the variational formulation, we define suitable
function spaces. Let

V := [W 1,2
0 (Ω)]d, Q := L2

∗(Ω) :=
{
q ∈ L2(Ω) |

∫
Ω
q dx = 0

}
, Θ := W 1,2

0 (Ω). (2.8)

The variational formulation of (2.7) can be derived by multiplication with respective test
functions and integration over the domain Ω. Integration by parts and taking the homoge-
neous Dirichlet boundary conditions into account yield the variational formulation. Note
that the test functions do not depend on time. The variational formulation for fixed time
t ∈ (0, T ) reads:

Find (u(t), p(t), θ(t)) ∈ V ×Q×Θ such that it holds for all (v, q, ψ) ∈ V ×Q×Θ

(∂tu(t),v) + (ν∇u(t),∇v) + cu(u(t);u(t),v)

−(p(t),∇ · v) + (βθ(t)g,v) = (fu(t),v), (2.9)

(∇ · u(t), q) = 0,

(∂tθ(t), ψ) + (α∇θ(t),∇ψ) + cθ(u(t); θ(t), ψ) = (fθ(t), ψ) (2.10)

with

cu(w;u,v) := 1
2
[
((w · ∇)u,v)− ((w · ∇)v,u)

]
,

cθ(w; θ, ψ) := 1
2
[
((w · ∇)θ, ψ)− ((w · ∇)ψ, θ)

]
.

The skew-symmetric form of the convective terms cu, cθ is chosen for conservation purposes
(in the discretized problem). Note that it holds cu(w;u,v) = ((w · ∇)u,v) for solenoidal
w (for cθ analogously). In the following, we omit the dependence on t.
The so-called (continuous) inf-sup condition

∃βc < 0: inf
q∈Q\{0}

sup
v∈V \{0}

(q,∇ · v)
‖q‖Q‖v‖V

≥ βc (2.11)

has important consequences. Uniqueness of the pressure p in (2.9) is guaranteed by (2.11),
see [Bab73, Bre74]. We point out that the inf-sup condition is fulfilled for the spaces
V ×Q = [W 1,2

0 (Ω)]d×L2
∗(Ω), which we consider throughout this thesis. Due to the closed

range theorem, the space

V div := {v ∈ V | (q,∇ · v) = 0 ∀ q ∈ Q} (2.12)

does not only consist of 0. So we can look for weakly solenoidal solutions u ∈ V div. If
(2.9) is tested with solenoidal test functions as well, all pressure terms can be eliminated.
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The pressure p can be recovered via the inf-sup condition afterwards.

The underlying idea of Ritz Galerkin methods is to approximate the solution spaces V , Q,
Θ by finite dimensional conforming subspaces Vh ⊂ V , Qh ⊂ Q, Θh ⊂ Θ. The dimensions
of Vh, Qh and Θh tend to infinity for decreasing discretization parameter h→ 0; they are
dense in the respective spaces. Then the discretized variational formulation reads:

Find (uh(t), ph(t), θh(t)) ∈ Vh ×Qh ×Θh such that

(∂tuh,vh) + (ν∇uh,∇vh) + cu(uh;uh,vh)

−(ph,∇ · vh) + (βθhg,vh) = (fu,vh), (2.13)

(∇ · uh, qh) = 0,

(∂tθh, ψh) + (α∇θh,∇ψh) + cθ(uh; θh, ψh) = (fθ, ψh) (2.14)

for any t ∈ (0, T ) and test functions vh ∈ Vh, qh ∈ Qh, ψh ∈ Θh. With the notation
nV := dim(Vh), nQ := dim(Qh), nΘ := dim(Θh), we can pick bases according to

Vh = span{vi | i = 1, . . . , nV }, Qh = span{qj | j = 1, . . . , nQ},

Θh = span{ψk | k = 1, . . . , nΘ}.

If we use the basis representation

uh =
nV∑
i=1

uivi, ph =
nQ∑
j=1

pjqj , θh =
nΘ∑
k=1

θkψk

and denote the coefficient vectors again with uh ∈ RnV , ph ∈ RnQ , θh ∈ RnΘ , we can
formulate an equivalent nonlinear system of finitely many equations for (2.13)-(2.14) as
follows: Let

Mu := [(vj ,vi)]i,j ∈ RnV ×nV , Mθ := [(ψj , ψi)]i,j ∈ RnΘ×nΘ ,

B := [(∇ · vi, qj)]i,j ∈ RnV ×nQ , G := [(βψjg,vi)]i,j ∈ RnV ×nΘ ,

Au(w) := [(ν∇vj ,∇vi) + cu(w,vj ,vi)]i,j ∈ RnV ×nV ,

Aθ(w) := [(α∇ψj ,∇ψi) + cθ(w, ψj , ψi)]i,j ∈ RnΘ×nΘ ,

Fu(t) := [(fu(t),vi)]i ∈ RnV , Fθ(t) := [(fθ(t), ψj)]j ∈ RnΘ .

The equivalent problem is:
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Find (uh, ph, θh) : (0, T )→ RnV × RnQ × RnΘ such that
Mu 0 0
0 0 0
0 0 Mθ



u′h(t)
p′h(t)
θ′h(t)

 =


Fu(t)

0
Fθ(t)

−

Au(uh(t)) B G

BT 0 0
0 0 Aθ(uh(t))



uh(t)
ph(t)
θh(t)

 . (2.15)

The respective initial conditions are obtained by projecting the continuous initial condi-
tions onto the discrete ansatz spaces.
We impose a discrete inf-sup condition for Vh and Qh throughout this thesis:

Assumption 2.2.1 (Discrete inf-sup stability).
Let Vh ⊂ V and Qh ⊂ Q be FE spaces satisfying a discrete inf-sup-condition

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(∇ · vh, qh)
‖∇vh‖0‖qh‖0

≥ βh > 0 (2.16)

with a constant βh independent of h.

Note that even for conforming discrete ansatz spaces, the continuous inf-sup condition
(2.11) does not imply the discrete one (2.16). If discrete ansatz spaces are used that are
not inf-sup stable, the mixed problem (2.15) becomes singular. In order to circumvent this,
we only use inf-sup stable elements. For instance, the well known Taylor-Hood elements
fulfill Assumption 2.2.1, see [BP79]. We introduce them below and use them frequently
during our numerical experiments.
Under the discrete inf-sup condition, we can define the non-trivial space of weakly sole-
noidal functions

V div
h := {vh ∈ Vh | (qh,∇ · vh) = 0 ∀ qh ∈ Qh} 6= {0}. (2.17)

We point out that this space is not conforming in the sense that

V div
h 6⊂ V div.

In general, this leads to poor mass conservation ‖∇ ·uh‖0 6= 0. Because of 1 ∈ Qh, at least
global mass conservation

∫
Ω∇ ·uh(x)dx = 0 holds if a continuous discrete pressure space

is used.
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2.2.2. Finite Element Methods

In this section, we introduce the concept of Finite Element Methods (FEM) and define
special elements that are important in the following chapters. For details and analytical
results regarding FEM, we refer the reader to [GR12,BS08,ESW14], for example.
Finite element methods are a special case of Ritz Galerkin methods, which have the
following properties. The domain is divided into fragments of simpler geometry, namely
into finitely many elements of finite size. The approximate solution is represented as a
linear combination of finitely many ansatz functions and is inserted into the differential
equation. The ansatz and test functions are defined piecewise (locally) on the subdomains,
where certain matching conditions guarantee conformity of the method. Considering also
initial and boundary conditions leads to a large, finite dimensional system of equations
that can be solved numerically.

Definition 2.2.2 (Finite element).
A finite element (FE) in Rd is a triple (T, PT ,ΣT ), where T ⊂ Rd is a closed subset
with int(T ) 6= ∅ and Lipschitz-continuous boundary and PT ⊂ {ϕ : T → R} is a finite
m-dimensional space of ansatz functions. The set of degrees of freedom ΣT consists of m
linearly independent linear forms ψi acting on PT , such that each p ∈ PT is well-defined
by the values of the m elements of ΣT :

∀{αi}mi=1 ⊂ Rm ∃! p ∈ PT : ψi(p) = αi, i = 1, . . . ,m.

A basis {φj}mj=1 ⊂ PT is called nodal basis if ψi(φj) = δij .

Let Ω be a bounded polyhedral domain. Consider a non-overlapping subdivision Th of Ω
into finitely many polyhedral cells Ti ∈ Th, i = 1, . . . , nT <∞.

Definition 2.2.3 (Admissible triangulation).
A subdivision Th = {Ti}nTi=1 of Ω is called admissible if Ω̄ =

⋃nT
i=1 Ti and if the intersection

of two different closed subdomains Ti and Tj is either empty, exactly one common surface
(if d = 3), exactly one whole common edge (if d ≥ 2) or exactly one common point (if
d ≥ 1).

Definition 2.2.4 (Shape regular and quasi-uniform triangulations).
The diameter hT of a cell T ∈ Th is defined by the diameter of the smallest ball Bin

T such
that T ⊂ Bin

T . A family {Th} of triangulations is called shape regular if there exists c > 0
such that for all Th in this family:

max
T∈Th

hdT
|T |
≤ c,
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where |T | :=
∫
T 1 dx is the measure of T in Rd. A shape regular family {Th} is called

quasi-uniform if, additionally, for all Th holds

maxT∈Th |T |
minT∈Th |T |

≤ ρ

with a fixed ρ > 0.

Let us introduce simplicial and quadrilateral elements as well as enriched finite element
spaces.

Definition 2.2.5 (Simplicial and quadrilateral finite elements).
Denote by T̂ ⊂ Rd the reference element. Let α ∈ Nd0 be a multiindex and xα := Πd

i=1x
αi
i

for x ∈ Rd. Then the spaces

Pk(T̂ ) := span
{
T̂ → R, x 7→ xα | α ∈ Nd0,

d∑
i=1

αi ≤ k
}
,

Qk(T̂ ) := span
{
T̂ → R, x 7→ xα | α ∈ Nd0, max

1≤i≤d
{αi} ≤ k

}
define the spaces of triangular (simplicial) and rectangular (quadrilateral/hexahedral) fi-
nite elements.

In case of simplicial or quadrilateral elements, T̂ is the unit simplex or cube in Rd. More-
over, we set

Rk(T̂ ) :=
{

Pk(T̂ ) on simplices T̂ ,
Qk(T̂ ) on quadrilaterals/hexahedra T̂ .

Now, we need the notion of barycentric coordinates for the reference simplex T̂ in Rd.
Because T̂ is convex, we can write it as the convex hull of its vertices {pi}di=0:

T̂ =
{
x̂ =

d∑
i=0

λ̂ip
i ∈ Rd : λ̂i ≥ 0,

d∑
i=0

λ̂i = 1
}
. (2.18)

This representation yields a parametrization of T̂ : The coordinates λ̂i with i = 0, . . . , d in
(2.18) are called barycentric coordinates.

Definition 2.2.6 (Bubble-enriched spaces).
We call bT̂ :=

∏d
i=0 λ̂i ∈ P̂d+1 a polynomial bubble function on the reference simplex T̂
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with barycentric coordinates λ̂i. Denote by ψ(x̂) :=
∏d
i=1(1 − x̂2

i ) a d-quadratic bubble
function on the reference cube. Then we define bubble-enriched spaces as

P+
k (T̂ ) := Pk(T̂ ) + bT̂ · Pk−2(T̂ ), Q+

k (T̂ ) := Qk(T̂ ) + ψ · span{x̂k−1
i , i = 1, . . . , d}.

We note that Q+
k (T̂ ) has exactly d basis functions more than Qk(T̂ ) and introduce the

abbreviation

R+
k (T̂ ) :=

{
P+
k (T̂ ) on simplices T̂ ,

Q+
k (T̂ ) on quadrilaterals/hexahedra T̂ .

We are interested in so-called mapped finite elements, that are constructed as transfor-
mations from the reference element. Denote by FT : T̂ → T the reference mapping. For
simplices T , FT is affine and bijective. In case of quadrilaterals/hexahedra, FT is a multi-
linear mapping from T̂ to arbitrary quadrilaterals/hexahedra. Henceforth, we require that
FT is bijective and its Jacobian is bounded for a family of triangulations according to

∃ c1, c2 > 0: c1h
d
T ≤ |detDFT (x̂)| ≤ c2h

d
T ∀ x̂ ∈ T̂ (2.19)

with constants c1, c2 > 0 independent of the cell diameter hT .

Definition 2.2.7 (Mapped finite elements).
The Lagrangian mapped finite elements are given by

Yh,−k := {vh ∈ L2(Ω) : vh|T ◦ FT ∈ Rk(T̂ ) ∀T ∈ Th}, Yh,k := Yh,−k ∩W 1,2(Ω),

Y +
h,−k := {vh ∈ L2(Ω) : vh|T ◦ FT ∈ R+

k (T̂ ) ∀T ∈ Th}, Y +
h,k := Y +

h,−k ∩W
1,2(Ω).

We deploy this definition to construct ansatz spaces for the discrete quantities. Let ku be
the polynomial degree for the discrete velocity, kp for the discrete pressure and kθ for the
discrete temperature spaces. We often consider

Vh = [Y (+)
h,ku

]d ∩ V , Qh = Yh,±kp ∩Q, Θh = Y
(+)
h,kθ
∩Θ

without or with bubble-enrichment, where the latter is indicated by the superscript +.
For convenience, we also write Vh = R(+)

ku
, Qh = R±kp , Θh = R(+)

kΘ
. The triple of ansatz

spaces for velocity, pressure and temperature is often denoted by R(+)
ku
∧ R±kp ∧ R(+)

kΘ
.

Remark 2.2.8. We point out that uh|T ∈ [W 1,∞(T )]d for all uh ∈ Vh = [Y (+)
h,ku

]d ∩ V .
This is due to the FE framework we introduced: uh|T ◦ FT is a smooth function on the
reference cell for all T ∈ Th. In addition, the reference mapping FT is bijective and affine
or multi-linear.
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2.2.3. Local Projection and Grad-Div Stabilization

The Ritz Galerkin scheme (2.13)-(2.14) is prone to suffering from instabilities occurring
in the numerical solution. This might be due to dominating advection or by a violation of
the discrete inf-sup condition (2.16). Many stabilization techniques have been proposed in
order to cope with these spurious oscillations. Besides, instabilities in the discrete velocity
can occur due to a poor mass conservation of the velocity-pressure ansatz spaces at high
Reynolds numbers, see [Lin09]. For instance, this becomes relevant for conforming mixed
finite element methods.
For the steady Navier-Stokes equations or related auxiliary problems as the Oseen model,
the widely used residual-based stabilization (RBS) methods add consistent stabilization
terms to the variational formulation in the sense that the additional terms vanish for the
exact strong solution. RBS methods penalize the residual of the differential equation. The
non-symmetric form of the stabilization terms and the occurrence of second order deriva-
tives in the residual are drawbacks regarding the efficiency of this method. An overview
about RBS methods and other stabilization techniques for can be found in [RST08].
A common way is a combination of pressure-stabilizing / Petrov-Galerkin (PSPG) and
Streamline-Upwind Petrov–Galerkin (SUPG) for advection together with a stabilization
of the divergence constraint (grad-div). This technique is studied, for example, in [LR06a].
The SUPG method relies on testing the residual with the streamline derivative and was
introduced in [BH82], PSPG was considered in [JS86,HFB86].
The so-called grad-div stabilization is an additional element-wise stabilization of the di-
vergence constraint. It enhances the discrete mass conservation and reduces the effect of
the pressure error on the velocity error (cf. [GLOS05,CELR11]). In case of advection dom-
inated flow, it plays an important role for robustness.
Due to the mentioned drawbacks of RBS methods, other stabilization techniques are con-
sidered in the literature. [BBJL07] gives an overview over different stabilization techniques,
discusses the residual-based SUPG/PSPG method and presents a symmetric stabilization
technique that is related to variational multiscale (VMS) methods introduced by [HMJ00]
(see also [BB06]). The key idea of VMS methods is a separation of scales into large scales,
small resolved scales and small unresolved scales. VMS methods model the influence of
the unresolved scales on the resolved scales, where it is often assumed that the unresolved
scales only influence the small resolved scales. Only parts of the residual are used. There-
fore, the consistency of the method is not guaranteed. Instead, an approximate Galerkin
orthogonality holds. So convergence rates of (quasi-)optimal order can be shown. Note
that many stabilization techniques can be interpreted as VMS methods.
Similar to VMS methods, local projection based stabilization (LPS) methods rely on the
idea to separate the discrete function spaces into small resolved and large resolved scales
and to add stabilization terms only on the small scales. The stabilization terms can be
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interpreted as models for the influence of the unresolved scales that act on the smallest
resolved scales. This method has the interesting features of adding solely symmetric terms
to the formulation and avoiding the computation of second derivatives of the basis func-
tions. The work of [MST07] provides a special interpolation operator, that is important
for the numerical analysis of the LPS method. In [LRL08], a unified numerical analysis for
finite element discretizations of the Oseen problem using the LPS method is given. Equal-
order and inf-sup stable velocity-pressure ansatz spaces are taken into account. The LPS
method considered in [BBJL07] stabilizes the pressure as well as the convective terms and
is thus applicable to equal-order elements for velocity and pressure (for these elements,
the discrete inf-sup condition does not hold). In [BL09], several analytical results for finite
element methods for incompressible flow problems with local projection stabilization are
discussed.
Since local projection and grad-div stabilization have proven useful for a large variety
of flow problems, we want to apply them to the Oberbeck-Boussinesq model (2.7). It is
a common procedure to transfer models introduced for e.g. the Navier-Stokes problem
to non-isothermal flow. For example, in [LL12], a projection-based variational multiscale
method is applied to large-eddy simulation of the Oberbeck-Boussinesq model.
Let us formulate the Oberbeck-Boussinesq model with streamline-upwind local projection
stabilization (LPS SU) and grad-div stabilization. Since both velocity and temperature
are considered in the advection-dominated regime, we want to add LPS in order to sta-
bilize both quantities. We assume inf-sup stable discrete velocity and pressure, hence, no
stabilization for the pressure is applied.

From now on, {Th} is an admissible and shape-regular family of triangulations into d-
simplices, quadrilaterals (d = 2) or hexahedra (d = 3). Let {Mh} and {Lh} be families of
shape-regular macro decompositions of Ω for velocity and temperature. They represent the
coarse scales in velocity and temperature. In [MST07] and later in [KL09], two approaches
are mentioned for choosing the space of large scales. In the so-called two-level approach,
the large scales are defined by using a coarse mesh. The coarse mesh Mh is constructed
such that each macro-element M ∈Mh is the union of one or more neighboring elements
T ∈ Th. So Mh arises by coarsening of the original mesh Th or, equivalently, Th is de-
rived from Mh by barycentric refinement of d-simplices or regular (dyadic) refinement
of quadrilaterals and hexahedra. In the one-level LPS-approach, the coarse scales can be
represented via a lower order finite elements space on Th. Another way is to enrich the fine
spaces. We can use the same abstract framework by settingMh = Th. Lh is constructed
analogously for the temperature.
Throughout this thesis, we suppose that the following assumption holds true.



2. Modeling Non-Isothermal Flow in Finite Element Methods 19

Assumption 2.2.9 (Fine and coarse triangulations).
Let {Th}, {Mh}, {Lh} be admissible and shape-regular families of non-overlapping tri-
angulations into d-simplices, quadrilaterals (d = 2) or hexahedra (d = 3). The so-called
macro elements M ∈ Mh, L ∈ Lh denote the union of one or more neighboring cells
T ∈ Th: There is nTh <∞ such that all M and L are formed as a conjunction of at most
nTh cells T ∈ Th. Denote by hT , hM and hL the diameters of cells T ∈ Th, M ∈ Mh and
L ∈ Lh, respectively. In addition, we require that there are constants C1, C2 > 0 such that

hT ≤ hM ≤ C1hT , hT ≤ hL ≤ C2hT ∀ T ⊂M, T ⊂ L, M ∈Mh, L ∈ Lh.

Denote by FT : T̂ → T the reference mapping. We require that FT is bijective and its
Jacobian is bounded for {Th} according to

∃ c1, c2 > 0: c1h
d
T ≤ |detDFT (x̂)| ≤ c2h

d
T ∀ x̂ ∈ T̂ (2.20)

with constants c1, c2 > 0 independent of the cell diameter hT .

Obviously, this is true for one-level methods. In case of two-level methods, it holds for
barycentric or regular refinement (cf. [MT14]).

Definition 2.2.10 (Fine and coarse finite element spaces).
We denote by Y u

h , Y
θ
h ⊂ H1(Ω) ∩ L∞(Ω) finite element spaces of functions that are con-

tinuous on Th. We consider the conforming finite element spaces

Vh = [Y u
h ]d ∩ V , Qh ⊂ Y p

h ∩Q, Θh = Y θ
h ∩Θ

for velocity, pressure and temperature, where Y p
h is a finite element space of continuous

or discontinuous functions on Th. Moreover, let Du
Mh
⊂ [L∞(Ω)]d, Dθ

Lh ⊂ L∞(Ω) denote
discontinuous finite element spaces onMh for uh and on Lh for θh, respectively. We set

Du
M = {vh|M : vh ∈Du

Mh
}, Dθ

L = {ψh|L : ψh ∈ Dθ
Lh}.

In the following, we often write for combinations of finite element spaces

(Vh/Du
Mh

) ∧Qh ∧ (Θh/D
θ
Lh), or (Vh/Du

M ) ∧Qh ∧ (Θh/D
θ
L).

If no LPS is applied, we omit the respective coarse space in the above notation.

Definition 2.2.11 (Fluctuation operators).
For M ∈Mh and L ∈ Lh, let πuM : [L2(M)]d →Du

M , π
θ
L : L2(L)→ Dθ

L be the orthogonal
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L2-projections onto the respective macro spaces. The so-called fluctuation operators are
defined by

κuM : [L2(M)]d → [L2(M)]d, κθL : L2(L)→ L2(L),

κuM := Id− πuM , κθL := Id− πθL.

Eh is defined as the set of inner element faces E 6∈ ∂Ω of Th. We denote by hE the
diameter of the face E ∈ Eh. For two cells TE and T ′E shared by E, let nE be the unit
normal vector pointing from TE into T ′E . For piecewise smooth functions wh, we denote
by [wh]E := (wh|TE )|E − (wh|T ′E )|E the jump over the face E. Note that this is unique up
to a sign.

Let uh ∈ Vh. For all macro elements M ∈ Mh and L ∈ Lh, we denote the element-wise
averaged streamline directions by uM ∈ Rd, uL ∈ Rd. For instance, we can choose

uM := 1
|M |

∫
M
uh(x) dx, uL := 1

|L|

∫
L
uh(x) dx.

The semi-discrete stabilized Oberbeck-Boussinesq model reads:

Find (uh, ph, θh) : (0, T )→ Vh ×Qh ×Θh such that for all (vh, qh, ψh) ∈ Vh ×Qh ×Θh:

(∂tuh,vh) + (ν∇uh,∇vh) + cu(uh;uh,vh)− (ph,∇ · vh) + (∇·uh, qh)

+(βgθh,vh) + su(uh;uh,vh) + th(uh;uh,vh) + ih(ph, qh) = (fu,vh), (2.21)

(∂tθh, ψh) + (α∇θh,∇ψh) + cθ(uh; θh, ψh) + sθ(uh; θh, ψh) = (fθ, ψh) (2.22)

with the streamline-upwind (SUPG)-type stabilizations su, sθ, the grad-div stabilization
th and the pressure jump stabilization ih according to

su(wh;u,v) :=
∑

M∈Mh

τuM (wM )(κuM ((wM · ∇)u), κuM ((wM · ∇)v))M ,

sθ(wh; θ, ψ) :=
∑
L∈Lh

τ θL(wL)(κθL((wL · ∇)θ), κθL((wL · ∇)ψ))L,

th(wh;u,v) :=
∑

M∈Mh

γM (wM )(∇ · u,∇ · v)M ,

ih(p, q) :=
∑
E∈Eh

φE([p]E , [q]E)E

with non-negative stabilization parameters τuM , τ θL, γM , φE . Note that the pressure stabi-
lization takes care of pressure jumps in case a discontinuous ansatz space Qh is chosen.
The set of stabilization parameters τuM (uh), τ θL(uh), γM (uh), and φE has to be determined
later on.
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Taking the discrete inf-sup stability from Assumption 2.2.1 into account, we can look for
weakly solenoidal solutions uh ∈ V div

h and reformulate the stabilized Oberbeck-Boussinesq
model (2.21)-(2.22) as follows:

Find (uh, ph, θh) : (0, T )→ V div
h ×Qh ×Θh such that for all (vh, qh, ψh) ∈ Vh ×Qh ×Θh:

(∂tuh,vh) + (ν∇uh,∇vh) + cu(uh;uh,vh)− (ph,∇ · vh) + (βgθh,vh)

+su(uh;uh,vh) + th(uh;uh,vh) + ih(ph, qh) = (fu,vh),

(∂tθh, ψh) + (α∇θh,∇ψh) + cθ(uh; θh, ψh) + sθ(uh; θh, ψh) = (fθ, ψh).

We utilize this formulation later for the analysis.

2.3. Time-Discretization

In the previous section, we introduced a spatial discretization of the Oberbeck-Boussinesq
model using finite elements. The resulting initial value problem (2.15) has to be discretized
in time in order to solve the equations numerically. For an introduction to different meth-
ods, we refer to [HNW93].
Consider a finite partition of the time interval 0 = t0 < t1 < · · · < tN = T , where we
want to compute the solution at. The time step sizes are ∆tn := tn − tn−1. In case of an
equidistant partition, we write ∆t := ∆tn for all 1 ≤ n ≤ N .
The initial value problem can be formulated as a differential equation with an algebraic
constraint. We seek for a solution yn = (uh, ph, θh)(tn) at each time step tn, 1 ≤ n ≤ N .
The challenge is to find a time-discretization scheme such that the constraint is fulfilled
simultaneously. There are one-step methods where only the previous value yn−1 is used
for the calculation of yn. In contrast, multi-step methods take the last k values yn−i
(i = 1, . . . , k) into account.
Different schemes based on a discretization of the coupled system (2.15) are presented
in [Löw11]. It is discussed that the incompressibility constraint is not guaranteed in gen-
eral if an explicit scheme is used. If the differential equation with constraint is treated
with an implicit scheme, a coupled system of nonlinear equations has to be solved in each
time step.
In order to reduce the computational cost, we consider a splitting algorithm which we
introduce below. This constitutes a major difference to the algorithm used in [Löw11] -
from an implementation point of view as well as for the analytical consideration of the
fully discrete algorithm.
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2.3.1. Pressure-Correction Projection Method

For the discretization in time, we use a splitting method called (rotational or standard
incremental) pressure-correction projection method, which is based on the backward dif-
ferentiation formula of second order (BDF2).
Projection methods were introduced by Chorin [Cho69] and Temam [Tem69] in order to
remove the coupling of u and p through the incompressibility constraint. The basic idea
is to split the problem into several steps, such that the pressure and velocity calculations
are decoupled.
Different pressure segregation methods are considered in [Bad06] and an overview is
given in [GMS06]. Guermond discusses the fractional step incremental projection method
in [Gue99] for the unstabilized Navier-Stokes equations with BDF2 time-discretization.
Shen presents analysis for a different second order time-discretization scheme in [She96].
The rotational pressure-correction projection method is proposed by [TMVDV96] and in-
corporates a divergence correction in order to prevent some numerical boundary layers.
Applied to the linear Stokes problem, this modified method is considered in [GS04].
An equidistant discretization in time with constant time step size ∆t > 0 is assumed
henceforth. Let N := T/∆t ∈ N and tn := n∆t, n ≤ N . Recall the continuous ansatz
spaces V ×Q×Θ = [H1

0 (Ω)]d × L2
∗(Ω)×H1

0 (Ω) and the discrete finite dimensional finite
element spaces from Section 2.2 satisfying

Vh ⊂ V for the velocity,

Qh ⊂ [Q ∩W 1,2(Ω)] ⊂ L2
∗(Ω) for the pressure,

Θh ⊂ Θ for the temperature.

Besides, we consider (due to the discrete inf-sup condition, Assumption 2.2.1)

V div
h := {vh ∈ Vh | (qh,∇ · vh) = 0 ∀ qh ∈ Qh} 6= {0}

and introduce the finite dimensional space Yh according to

Yh := V div
h ⊕∇Qh. (2.23)

Let PB be the L2-orthogonal projector into a spaceB ⊂ [L2(Ω)]d, such that (u−PBu,v) =
0 holds for all u ∈ [L2(Ω)]d and v ∈ B. We define the operatorDt to abbreviate the discrete
time derivative by

Dtu
n := 3un − 4un−1 + un−2

2∆t . (2.24)
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In each time step tn, we solve the momentum equation for a velocity ũnht ∈ Vh, that is
not necessarily in V div

h . In order to fulfill the incompressibility condition, ũnht is projected
onto the space of weakly solenoidal functions in a second step. The resulting velocity is
denoted unht.
The fully discretized and stabilized scheme reads in weak formulation:

Find ũnht ∈ Vh such that for all vh ∈ Vh:(
3ũnht − 4un−1

ht + un−2
ht

2∆t ,vh

)
+ ν(∇ũnht,∇vh) + cu(ũnht; ũnht,vh) + th(ũnht; ũnht,vh)

+su(ũnht; ũnht,vh)− (pn−1
ht ,∇ · vh) + β(g(tn)θn∗ht ,vh) = (fu(tn),vh),

ũnht|∂Ω = 0, (2.25)

where θn∗ht := 2θn−1
ht − θ

n−2
ht is an extrapolation of second order of the temperature θnht.

Find unht ∈ V div
h and pnht ∈ Qh such that for all yh ∈ Yh and qh ∈ Qh:(3unht − 3ũnht

2∆t +∇(pnht − pn−1
ht + χrotπQh(ν∇ · ũnht)),yh

)
+ ih(pnht, qh) = 0,

(∇ · unht, qh) = 0,

unht|∂Ω = 0. (2.26)

Here, χrot ∈ {0, 1} and πQh denotes the L2-projection into the pressure space Qh. The case
χrot = 0 describes the incremental scheme, that is analyzed in Chapter 4, and χrot = 1
the scheme with rotational correction. The latter is used in our algorithm.

For the temperature equation, we search for θnht ∈ Θh such that for all ψh ∈ Θh

(Dtθ
n
ht, ψh) + α(∇θnht,∇ψh) + cθ(ũnht; θnht, ψh) + sθ(ũnht; θnht, ψh) = (fθ(tn), ψh),

θnht|∂Ω = 0. (2.27)

We call (2.25) the advection-diffusion step, (2.26) the projection step and (2.27) the tem-
perature step. Indeed, (2.26) causes unht to be the L2-orthogonal projection Pdivũnht of ũnht
into V div

h , since it holds for all wh ∈ V div
h (due to the projection step with qh = 0):

(ũnht − unht,wh) = (∇(pnht − pn−1
ht + χrotπp(ν∇ · ũnht)),wh) = 0 ⇒ unht = Pdivũ

n
ht.

Remark 2.3.1. For the first time step, we use a BDF1 instead of the BDF2 scheme. In par-
ticular, the advection-diffusion, projection and temperature steps in the fully discretized
setting read
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Find ũ1
ht ∈ Vh such that for all vh ∈ Vh:(

ũ1
ht − u0

ht

∆t ,vh

)
+ ν(∇ũ1

ht,∇vh) + cu(ũ1
ht; ũ1

ht,vh) + th(ũ1
ht; ũ1

ht,vh)

+su(ũ1
ht; ũ1

ht,vh)− (p0
ht,∇ · vh) + β(g(t1)θ0

ht,vh) = (fu(t1),vh).

Find u1
ht ∈ V

div
h and p1

ht ∈ Qh such that for all yh ∈ Yh and qh ∈ Qh:(
u1
ht − ũ

1
ht

∆t +∇(p1
ht − p0

ht + χrotπp∇ · ũ1
ht),yh

)
+ ih(p1

ht, qh) = 0.

Find θ1
ht ∈ Θh such that for all ψh ∈ Θh:(
θ1
ht − θ0

ht

∆t , ψh

)
+ α(∇θ1

ht,∇ψh) + cθ(ũ1
ht; θ1

ht, ψh) + sθ(ũ1
ht; θ1

ht, ψh) = (fθ(t1), ψh).

The initial values are projections of the continuous initial data.

2.3.2. Segregation Algorithm

In our algorithm, we just want to solve for ũnht. If we assume that test functions from Vh

are allowed in the projection step (2.26), we can eliminate the weakly solenoidal field unht,
replace (2.25) by the equation

(Dtũ
n
ht,vh) + ν(∇ũnht,∇vh) + c(ũnht; ũnht,vh) + th(ũnht; ũnht,vh) + sh(ũnht; ũnht,vh)

+β(g(tn)θn∗ht ,vh) =(fu(tn),vh) +
(
pn−1
ht + 4

3(pn−1
ht − p

n−2
ht + χrotπQh(ν∇ · ũn−1

ht ))

− 1
3(pn−2

ht − p
n−3
ht + χrotπQh(ν∇ · ũn−2

ht )),∇ · vh
)

(2.28)

and solve a Poisson problem for the pressure pnht instead of equation (2.26):

(∇(pnht − pn−1
ht + χrotπQh(ν∇ · ũnht)),∇qh) + ih(pnht, qh) =

(3∇ · ũnht
2∆t , qh

)
,

(n · ∇pnht)|∂Ω = 0. (2.29)

Then unht can be recovered according to

unht = ũnht −∇(pnht − pn−1
ht + χrotπQh(ν∇ · ũnht)).

We use this approach in our implementation. The issue of equivalence of the problems
(2.25)-(2.26) and (2.28)-(2.29) is discussed by Guermond in [Gue96] for a first order un-
stabilized projection scheme.
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2.4. Stabilized FEM for the Auxiliary Problems and their
Properties

The Oberbeck-Boussinesq model consists of a momentum equation for the velocity and
a Fourier part for the temperature. The convection-diffusion-reaction equation serves as
an auxiliary model for the latter. The Oseen model is a linearization of the Navier-Stokes
equations and is therefore suited for a preparatory study. In fact, many techniques of nu-
merical analysis translate from the Navier-Stokes (and the Oseen) model to the Oberbeck-
Boussinesq model. In this section, we review some stabilization techniques for finite element
methods applied to these auxiliary problems.

2.4.1. Convection-Diffusion Equation

In the following, we examine the steady convection-diffusion-reaction problem as an aux-
iliary problem for the Fourier equation in the Oberbeck-Boussinesq model

−ε∆u+ b · ∇u+ cu = f in Ω, u = ub in ∂Ω. (2.30)

Here, ε > 0 is a constant and b ∈ [W 1,∞(Ω)]d, c ∈ L∞(Ω), f ∈ L2(Ω), ub ∈ H1/2(∂Ω).
Consider the space V := H1(Ω). Define the bilinear form a and the linear form f as

a(v, w) := ε(∇v,∇w) + (b · ∇v + cu, w), f(v) := (f, v) (2.31)

for v, w ∈ V . Then the variational formulation reads:

Find u ∈ V such that a(u, v) = (f, v) ∀v ∈ V

u|∂Ω = ub.
(2.32)

Due to the Lax-Milgram Lemma A.4.1, there exists a unique weak solution u ∈ V of (2.32)
if the linear form f is continuous and the bilinear form a is V -elliptic and continuous. In
order to obtain the ellipticity condition, it is usually assumed that there is σ0 > 0 such
that

c− 1
2∇ · b ≥ σ0 a.e. in Ω. (2.33)

This limits the applicability of the uniqueness result since in many problems the convective
velocity b is solenoidal and there are no reaction type terms, resulting in σ0 = 0. This
is also the case for the Oberbeck-Boussinesq model. Optimal convergence results rely on
(2.33) with σ0 > 0, although numerical tests show that a violation of this condition does
not necessarily lead to a deterioration of the errors.
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The solution of convection-dominated convection-diffusion-reaction problems with finite
element methods is subject to ongoing research. Since the unstabilized Galerkin formu-
lation is not stable if implemented, stabilization is needed in order to increase accuracy
and robustness of the method. It is a standard procedure in the finite element context to
add terms to (2.32) providing artificial diffusion in order to improve stability. We refer
to [RST08] for an overview over different methods applied to the convection-diffusion-
reaction problem.
Galerkin least-squares methods (for example SUPG) can be applied to the problem. [BR94]
and [FNS98] point out that the enrichment of the finite element space is equivalent to sta-
bilization of streamline diffusion type in certain settings. A different approach is considered
in [BH04]: A continuous interior penalty (CIP) technique, which was originally proposed
by [DD76], penalizes gradient jumps across element boundaries. Also, a nonlinear term
adding diffusion on the element edges in the tangential direction is introduced in order to
guarantee monotonicity. It is shown that the method is stable in the hyperbolic limit of
vanishing diffusion and optimal a priori error estimates are presented. The local projection
stabilization we considered in Section 2.2.3 has also been applied to convection-diffusion
equations, for instance by [KL09] or [GT10].
The above techniques manage to reduce most of the numerical instabilities and oscilla-
tions. However, they do not fully eliminate over- and undershoots of approximate solutions
along discontinuities, shocks or sharp layers.
As a remedy, several so-called Spurious Oscillations at Layers Diminishing (SOLD) meth-
ods were proposed. SOLD methods add a shock-capturing term to the stabilized formu-
lation, see [LR06b], for instance. Often this term depends on the discrete solution in a
nonlinear way and is designed to eliminate oscillations at shocks without diminishing the
accuracy in smooth regions. For an overview, we refer to the studies in [JK07, JK08]. In
particular, there are SOLD methods that add diffusion in crosswind direction and manage
to reduce the oscillations considerably. In [KLR02], a shock-capturing term of the form

∑
T∈Th

τT (w)
(
b⊥ · ∇u
|b|

,
b⊥ · ∇v
|b|

)
T

+
∑
T∈Th

τSLT (w)
(
b · ∇u
|b|

,
b · ∇v
|b|

)
T

is considered, that adds artificial diffusion in crosswind and streamline directions b⊥ and
b, respectively. The parameters τT , τSLT are chosen in a consistent way. The authors show
existence of discrete solutions as well as error estimates. The idea of SOLD methods is
seized in [BJK13] and is combined with the LPS ansatz for convection-diffusion-reaction
equations. Due to our notation from Section 2.2.3, the stabilized Galerkin formulation
reads:

a(uh, vh) + sh(uh, vh) + dh(uh;uh, vh) = (f, vh),



2. Modeling Non-Isothermal Flow in Finite Element Methods 27

where

sh(u, v) =
∑

M∈Mh

τM (κM (bM · ∇u), κM (bM · ∇v))M ,

dh(w;u, v) =
∑

M∈Mh

τ soldM (w)(κM (PM∇u), κM (PM∇v))M (2.34)

and PM : Rd → Rd is the projection onto the crosswind direction of bM :

PM =

I− bM⊗bM
|bM |2 if bM 6= 0,

0 if bM = 0.
(2.35)

Depending on the choice of stabilization parameters τM and τ soldM , this method allows to
prove existence of a unique solution even if the condition (2.33) with σ0 > 0 is not satisfied.
A study in [ACF+11] investigates the performance of different techniques for convection-
dominated convection–diffusion equations. Among others the SUPG method, a SOLD
finite element method, a CIP stabilization, a discontinuous Galerkin finite element method,
and a total variation diminishing finite element method (FEM-TVD) are investigated.
It becomes obvious that a method that preserves sharp layers while avoiding spurious
oscillations is still an open problem.

2.4.2. Oseen Problem

Consider the linear steady Oseen problem in a bounded, polyhedral domain Ω ⊂ Rd, d ∈
{2, 3} with solenoidal b. This serves as a preliminary study of the Navier-Stokes equations
with b = u. If the Navier-Stokes equations are semi-discretized in time first by an implicit
scheme and the nonlinearity is handled using fixed point iterations, we obtain a sequence
of auxiliary Oseen-type equations in each iteration:

−ν∆u+ (b · ∇)u+ σu+∇p = f in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω. (2.36)

When the variational formulation of (2.36) is solved, numerical instabilities have to be
taken care of. These occur due to dominating convection 0 < ν � ‖b‖∞ or due to the
violation of the discrete inf-sup condition (2.16). In addition, poor mass conservation
of the discrete velocity-pressure ansatz spaces can cause instabilities at high Reynolds
numbers; [Lin09] examines a physically relevant example. As mentioned in Section 2.2.3,
several stabilization variants have been studied. We emphasize that additional grad-div
stabilization enhances the discrete mass conservation. [GLOS05] considers the combina-
tion of SUPG and grad-div stabilization (for the incompressible Navier–Stokes problem).
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In [OLHL09], grad–div stabilization is examined as a subgrid pressure model in the frame-
work of variational multiscale methods for the Stokes and Oseen problem. The cases of
inf–sup stable and equal-order elements of velocity and pressure are taken into account.
Furthermore, the techniques we listed for the convection-diffusion-reaction problem can
be applied to the Oseen model. We also mention non-conforming methods like the discon-
tinuous Galerkin method (see e.g. [CKS04]).
Different stabilized FE methods on isotropic meshes for the Oseen problem (2.36) are
examined in [BBJL07]: The residual-based SUPG/PSPG method and symmetric stabi-
lization techniques (in particular the LPS method) are compared. The issue of parameter
design is addressed. All presented methods handle the dominating advection in a different
way. They share the need of pressure stabilization if equal-order finite element spaces for
velocity and pressure are applied. This is due to the violation of the discrete inf-sup con-
dition.
Local projection stabilization in combination with equal-order and inf-sup stable elements
are considered in [LRL08]. Stabilization terms for fluctuations of the streamline derivative
b · ∇uh, divergence ∇ · uh and pressure gradient ∇ph as

∑
M∈Mh

(
τuM (κuM (b · ∇uh), κuM (b · ∇vh))M + γM (κpM (∇ · uh), κpM (∇ · vh))M

+τuM (κuM (∇ph), κuM (∇qh))M
)

(2.37)

are introduced. The a priori analysis on isotropic meshes gives comparable results to
the classical RBS method, but suggests a simpler parameter design. The convergence
properties of different LPS variants, including the one-level and the two-level approaches,
are studied by [KT13].
In [MST07], the LPS method (2.37) is analyzed for the stationary Oseen problem (2.36),
where an additional compatibility condition between the approximation and projection
velocity ansatz spaces Yh,ku(M) = [Yh,ku ]d|M and Du

M is assumed:

∃βu > 0: inf
wh∈Du

M

sup
vh∈Yh,ku (M)

(vh,wh)M
‖vh‖0,M‖wh‖0,M

≥ βu. (2.38)

It is shown that this requirement gives rise to an interpolation operator with additional
orthogonality properties. Thus, stability and a priori error bounds of optimal order can
be established. Furthermore, suitable simplicial and quadrilateral ansatz spaces are sug-
gested that fulfill (2.38). In the paper [MT14], the authors provide an overview regarding
stabilized finite element methods for the Oseen problem, in particular, in the case of local
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projection stabilization methods for inf-sup stable finite element methods with kp = ku−1.
A unified representation according to

∑
M∈Mh

(
τuM (κuM (bM · ∇uh), κuM (bM · ∇vh))M + γM (κpM (∇ · uh), κpM (∇ · vh))M

)
(2.39)

(without pressure stabilization) leads to an overview over suitable ansatz spaces including
parameter design.
In our paper [DAL15], we consider the linear time-dependent Oseen problem

∂tu− ν∆u+ (b · ∇)u+∇p = f in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω (2.40)

together with LPS SU and grad-div stabilization. Inf-sup stable velocity-pressure FE pairs
are chosen. We consider two settings of LPS spaces: The first ansatz makes use of the dis-
crete inf-sup condition. From [GS03], the existence of a quasi-local interpolation operator
ju : V div → V div

h preserving the discrete divergence is guaranteed. We obtain a method of
quasi-optimal order ku = kp + 1 provided that

ReM :=
hM‖b‖L∞(M)

ν
≤ 1√

ν
,

which gives a restriction on the local mesh width hM . This method is applicable to almost
all combinations of approximation and projection spaces Yh,ku(M) and Du

M . Secondly, we
seize the idea to assume (2.38). This restricts not only the range of possible fine and coarse
velocity ansatz spaces, but also for the pressure ansatz space. Indeed, both ansatzes prove
to be beneficial for the fully coupled Oberbeck-Boussinesq model, see Section 3. We also
tried the addition of crosswind stabilization (2.34), but numerical tests did not indicate
an improvement (the results are not shown in [DAL15]). Therefore, we do not pursue this
technique further in this thesis. We emphasize the positive effect of additional element-wise
stabilization of the divergence constraint, which becomes apparent also in the numerical
experiments. The grad-div stabilization improves the robustness in case of 0 < ν � 1.
Recent results from [dFGAJN15] for the time-dependent Oseen problem (2.40) reinforce
the benefits and stabilizing effects of grad-div stabilization for inf-sup stable mixed finite
elements. The authors show that the Galerkin approximations can be stabilized by adding
only grad-div stabilization. Robust error estimates with respect to small viscosities are
obtained if the solution is sufficiently smooth.





3. Semi-Discrete Analysis for the
Oberbeck-Boussinesq Model

In this chapter, we analyze the semi-discrete Oberbeck-Boussinesq problem, i.e., discrete
in space but continuous in time. Stability and convergence of the semi-discrete quantities
are proven under certain conditions we introduce below.
From now on and throughout this thesis, we suppose that the discrete inf-sup condition
(Assumptions 2.2.1) and Assumption 2.2.9 for the fine and coarse triangulations hold.
Recall that the stabilized Oberbeck-Boussinesq model (2.21)-(2.22) can be reformulated
using the discrete inf-sup stability from Assumption 2.2.1 for these ansatz spaces.

Find (uh, ph, θh) : (0, T )→ V div
h ×Qh ×Θh such that for all (vh, qh, ψh) ∈ Vh ×Qh ×Θh:

(∂tuh,vh) + (ν∇uh,∇vh) + cu(uh;uh,vh)− (ph,∇ · vh) + (βgθh,vh)

+su(uh;uh,vh) + th(uh;uh,vh) + ih(ph, qh) = (fu,vh), (3.1)

(∂tθh, ψh) + (α∇θh,∇ψh) + cθ(uh; θh, ψh) + sθ(uh; θh, ψh) = (fθ, ψh) (3.2)

with fu ∈ L2(0, T ; [L2(Ω)]d) ∩ C(0, T ; [L2(Ω)]d), fθ ∈ L2(0, T ;L2(Ω)) ∩ C(0, T ;L2(Ω)),
g ∈ L∞(0, T ; [L∞(Ω)]d) and cell-wise constant uM , uL ∈ Rd. Let the initial data be given
as suitable interpolations of the continuous initial values in the respective finite element
spaces as

uh(0) = juu0 =: uh,0 ∈ Vh ⊂ [L2(Ω)]d, θh(0) = jθθ0 =: θh,0 ∈ Θh ⊂ L2(Ω),

where (ju, jθ) : V × Θ → Vh × Θh denote interpolation operators. We remark that for
solenoidal u0, we can find an interpolation operator ju such that uh,0 ∈ V div

h (cf. [GS03]).
This formulation allows us to estimate the velocity separately in a first step and obtain
an upper bound for the pressure error afterwards via the discrete inf-sup condition.

3.1. Stability of the Semi-Discrete Quantities

We address the question regarding the existence of a semi-discrete solution of (3.1)-(3.2).
This is obtained via a stability result for uh ∈ V div

h and θh ∈ Θh; it yields control over

31
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the kinetic energy and dissipation introduced by fluctuations. The definition of the mesh-
dependent expressions below is motivated by symmetric testing in (3.1)-(3.2).

Definition 3.1.1.
For (v, q) ∈ V ×Q and θ ∈ Θ, we define

|||(v, q)|||2LPS := ν‖∇v‖20 + su(uh;v,v) + th(uh;v,v) + ih(q, q),

|[θ]|2LPS := α‖∇θ‖20 + sθ(uh; θ, θ).

We also write |||vh|||LPS := |||(vh, 0)|||LPS and introduce

‖(v, q)‖2L2(0,T ;LPS) :=
∫ T

0
|||(v, q)(t)|||2LPSdt, ‖v‖2L2(0,T ;LPS) :=

∫ T

0
|||v(t)|||2LPSdt,

‖θ‖2L2(0,T ;LPS) :=
∫ T

0
|[θ(t)]|2LPSdt.

The following result states the desired stability.

Theorem 3.1.2 (Stability of velocity and temperature).
Assume (uh, ph, θh) ∈ V div

h ×Qh ×Θh is a solution of (3.1)-(3.2) with initial data uh,0 ∈
[L2(Ω)]d, θh,0 ∈ L2(Ω). For 0 ≤ t ≤ T , we obtain

‖θh‖L∞(0,t;L2(Ω)) ≤ ‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω)) =: Cθ(T, θh,0, fθ),

‖uh‖L∞(0,t;L2(Ω)) ≤ ‖uh,0‖0 + ‖fu‖L1(0,T ;L2(Ω))

+ β‖g‖L1(0,T ;L∞(Ω))
(
‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω))

)
=: Cu(T,uh,0, θh,0,fu, fθ),

‖θh‖L2(0,t;LPS) ≤ Cθ(T, θh,0, fθ),

‖uh‖L2(0,t;LPS) ≤ ‖(uh, ph)‖L2(0,t;LPS) ≤ Cu(T,uh,0, θh,0,fu, fθ).

Proof. Let us start with the first claim for the temperature. Testing with ψh = θh ∈ Θh

in (3.2) gives

1
2
d

dt
‖θh‖20 + |[θh]|2LPS = (∂tθh, θh) + (α∇θh,∇θh) + sθ(uh; θh, θh) = (fθ, θh). (3.3)

Due to sθ(uh; θh, θh) ≥ 0, it follows

‖θh‖0
d

dt
‖θh‖0 = 1

2
d

dt
‖θh‖20 ≤ ‖fθ‖0‖θh‖0 ⇒ d

dt
‖θh‖0 ≤ ‖fθ‖0.
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Integration in time leads to

‖θh(t)‖0 ≤ ‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω)) = Cθ(T, θh,0, fθ). (3.4)

For the velocity, we test with (uh, ph) ∈ V div
h ×Qh in (3.1)

1
2
d

dt
‖uh‖20 + |||(uh, ph)|||2LPS = (∂tuh,uh) + (ν∇uh,∇uh) + su(uh;uh,uh)

+ th(uh;uh,uh) + ih(ph, ph) = (fu − βgθh,uh). (3.5)

We obtain

‖uh‖0
d

dt
‖uh‖0 = 1

2
d

dt
‖uh‖20 ≤ (‖fu‖0 + β‖g‖∞‖θh‖0) ‖uh‖0.

Hence, d
dt‖uh‖0 ≤ ‖fu‖0 + β‖g‖∞‖θh‖0. Integration in time and using stability of the

temperature (3.4) give:

‖uh(t)‖0 ≤ ‖uh,0‖0 + ‖fu‖L1(0,t;L2(Ω)) + β‖g‖L1(0,t;L∞(Ω))‖θh‖L∞(0,t;L2(Ω))

≤ ‖uh,0‖0 + ‖fu‖L1(0,T ;L2(Ω)) + β‖g‖L1(0,T ;L∞(Ω))
(
‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω))

)
= Cu(T,uh,0, θh,0,fu, fθ) (3.6)

for all t ∈ [0, T ]. In order to estimate the diffusive and stabilization terms, we go back to
(3.3), integrate in time and apply (3.4):

∫ t

0
|[θh(τ)]|2LPS dτ ≤

∫ t

0
‖fθ(τ)‖0‖θh(τ)‖0 dτ + 1

2‖θh,0‖
2
0

≤ ‖θh‖L∞(0,t;L2(Ω))‖fθ‖L1(0,t;L2(Ω)) + 1
2‖θh,0‖

2
0 ≤ Cθ(T, θh,0, fθ)2.

The analogous procedure for uh and ph, starting from (3.5) and using (3.6), yields:
∫ t

0
|||(uh, ph)(τ)|||2LPS dτ ≤

∫ t

0
‖fu(τ)− βgθh(τ)‖0‖uh(τ)‖0 dτ + 1

2‖uh,0‖
2
0

≤ ‖uh‖L∞(0,t;L2(Ω))
(
‖fu‖L1(0,t;L2(Ω)) + β‖g‖L1(0,t;L∞(Ω))‖θh‖L∞(0,t;L2(Ω))

)
+ 1

2‖uh,0‖
2
0

≤ Cu(T,uh,0, θh,0,fu, fθ)2.

Now, we can prove an existence result for the semi-discrete quantities.

Corollary 3.1.3 (Existence of solutions and stability of the pressure).
There exists a semi-discrete solution (uh, ph, θh) : [0, T ] → V div

h × Qh × Θh of problem
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(3.1)-(3.2) with initial data uh,0 ∈ V div
h , θh,0 ∈ Θh. Additionally, we require uh ∈

W 1,1(0, T ; [L2(Ω)]d). For 0 ≤ t ≤ T , we obtain

βh‖ph‖L1(0,t;L2(Ω)) ≤ ‖fu‖L1(0,t;L2(Ω)) + ‖∂tuh‖L1(0,t;L2(Ω))

+ Cu(T,uh,0, θh,0,fu, fθ)
∫ t

0

(
√
ν + max

M∈Mh

{√
τuM |uM |+

√
γM
})

dτ

+ C

ν
Cu(T,uh,0, θh,0,fu, fθ)2 + β‖g‖L1(0,t;L∞(Ω))Cθ(T, θh,0, fθ).

Proof. Consider the semi-discrete initial value problem:

Find (uh, θh) : [0, T ]→ V div
h ×Θh such that

(∂tuh,vh) = (fu,vh)− (ν∇uh,∇vh)− cu(uh;uh,vh)− (βgθh,vh)

− su(uh;uh,vh)− th(uh;uh,vh),

(∂tθh, ψh) = (fθ, ψh)− (α∇θh,∇ψh)− cθ(uh; θh, ψh)− sθ(uh; θh, ψh) (3.7)

for (vh, ψh) ∈ V div
h ×Θh, with initial conditions

uh(0) = uh,0 ∈ V div
h , θh(0) = θh,0 ∈ Θh.

V div
h and Θh are finite dimensional Banach spaces and the right-hand side of (3.7) depends

continuously on (t,uh, θh) ∈ [0, T ]× V div
h ×Θh. As a consequence of Theorem 3.1.2, each

(potential) solution of (3.7) is bounded on [0, T ]. This implies boundedness of the right-
hand side in [0, T ] × V div

h × Θh. Then the generalized Peano theorem A.4.2 is applicable
and yields the local existence of a solution of (3.7). This solution can be extended to [0, T ].
Furthermore, the closed range theorem yields that due to the discrete inf-sup stability, a
solution (uh, θh) of (3.7) gives rise to ph ∈ Qh such that (uh, ph, θh) solves the Oberbeck-
Boussinesq problem (3.1)-(3.2).
Due to the discrete inf-sup condition from Assumption 2.2.1, it is a standard result (see
e.g. [BS08]) that for all ph ∈ Qh, there exists a unique vh ∈ Vh with

∇ · vh = −ph, ‖∇vh‖0 ≤
1
βh
‖ph‖0. (3.8)

Testing with (vh, 0) ∈ Vh ×Qh in (3.1), we obtain

βh‖∇vh‖0‖ph‖0 ≤ ‖ph‖20 = −(ph,∇ · vh) = (fu,vh)− (∂tuh,vh)− (ν∇uh,∇vh)

− cu(uh;uh,vh)− (βgθh,vh)− su(uh;uh,vh)− th(uh;uh,vh)

≤ ‖∇vh‖0
(
‖fu‖−1 + ‖∂tuh‖−1 + ν‖∇uh‖0 + C‖∇uh‖20 + β‖g‖∞‖θh‖−1
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+ |||uh|||LPS max
M∈Mh

{√
τuM |uM |

}
+

∑
M∈Mh

γM‖∇ · uh‖0,M
)

≤ ‖∇vh‖0
(
‖fu‖−1 + ‖∂tuh‖−1 +

√
ν|||uh|||LPS + C

ν
|||uh|||2LPS + β‖g‖∞‖θh‖−1

+ |||uh|||LPS max
M∈Mh

{√
τuM |uM |

}
+ max
M∈Mh

√
γM |||uh|||LPS

)
,

where we used standard estimates for the convective term and that

su(uh;uh,vh) ≤ su(uh;uh,uh)1/2su(uh;vh,vh)1/2

≤ |||uh|||LPS max
M∈Mh

{√
τuM |uM |

}
‖∇vh‖0.

By integration in time and using the Cauchy-Schwarz inequality, we have for all 0 ≤ t ≤ T

βh‖ph‖L1(0,t;L2(Ω)) ≤ ‖fu‖L1(0,t;L2(Ω)) + ‖∂tuh‖L1(0,t;L2(Ω))

+ ‖uh‖L2(0,t;LPS)

∫ t

0

√
νdτ + C

ν
‖uh‖2L2(0,t;LPS) + β‖g‖L1(0,t;L∞(Ω))‖θh‖L∞(0,t;L2(Ω))

+ ‖uh‖L2(0,t;LPS)

∫ t

0
max
M∈Mh

{√
τuM |uM |

}
dτ + ‖uh‖L2(0,t;LPS)

∫ t

0
max
M∈Mh

√
γMdτ.

Because of the stability of uh and θh from Theorem 3.1.2, it holds for all 0 ≤ t ≤ T

βh‖ph‖L1(0,t;L2(Ω)) ≤ ‖fu‖L1(0,t;L2(Ω)) + ‖∂tuh‖L1(0,t;L2(Ω))

+ Cu(t,uh,0, θh,0,fu, fθ)
∫ t

0

(
√
ν + max

M∈Mh

{√
τuM |uM |+

√
γM
})

dτ

+ C

ν
Cu(t,uh,0, θh,0,fu, fθ)2 + β‖g‖L1(0,t;L∞(Ω))Cθ(t, θh,0, fθ).

Finally, this estimate ensures existence and uniqueness of the discrete pressure.

Remark 3.1.4. If we assume Lipschitz continuity of the right-hand side of problem (3.7),
the Picard-Lindelöf Theorem yields uniqueness of the solution.

3.2. Velocity and Temperature Estimates

In this section, we derive quasi-optimal error estimates in the finite element setting in-
troduced in Section 2.2.3. In particular, let the Assumptions 2.2.1 and 2.2.9 hold. We use
similar techniques as in our publications [DAL15] and [ADL15] for the time-dependent
Oseen and Navier-Stokes problems.
For the analysis, we introduce a decomposition of the error into a discretization and a
consistency error.
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Definition 3.2.1 (Error decomposition).
Let (ju, jp, jθ) : V ×Q×Θ→ Vh×Qh×Θh denote interpolation operators. We introduce

ξu,h := u− uh, ξp,h := p− ph, ξθ,h := θ − θh,

ηu,h := u− juu, ηp,h := p− jpp, ηθ,h := θ − jθθ,

eu,h := juu− uh, ep,h := jpp− ph, eθ,h := jθθ − θh.

(3.9)

Indeed, the semi-discrete errors are decomposed as ξu,h = ηu,h + eu,h, ξp,h = ηp,h + ep,h

and ξθ,h = ηθ,h + eθ,h. Furthermore, we need the following assumptions.

Assumption 3.2.2 (Interpolation operators).
Assume that for integers ku ≥ 1, kp ≥ 1, kθ ≥ 1, there are bounded linear interpolation
operators ju : V → Vh and jp : Q → Qh such that for all M ∈ Mh, for all w ∈ V ∩
[W lu,2(Ω)]d with 1 ≤ lu ≤ ku + 1:

‖w − juw‖0,M + hM‖∇(w − juw)‖0,M ≤ ChluM‖w‖W lu,2(ωM ) (3.10)

and for all q ∈ Q ∩W lp,2(Ω) with 1 ≤ lp ≤ kp + 1:

‖q − jpq‖0,M + hM‖∇(q − jpq)‖0,M ≤ Ch
lp
M‖q‖W lp,2(ωM ) (3.11)

on a suitable patch ωM ⊇M . Let for all M ∈Mh

‖v − juv‖∞,M ≤ ChM |v|W 1,∞(ωM ) ∀v ∈ [W 1,∞(Ω)]d. (3.12)

There is also a bounded linear interpolation operator jθ : Θ→ Θh such that for all L ∈ Lh
and for all ψ ∈ Θ ∩W lθ,2(Ω) with 1 ≤ lθ ≤ kθ + 1:

‖ψ − jθψ‖0,L + hL‖∇(ψ − jθψ)‖0,L ≤ ChlθL‖ψ‖W lθ,2(ωL) (3.13)

on a suitable patch ωL ⊇ L. In addition, assume for all L ∈ Lh, M ∈Mh

‖ψ − jθψ‖∞,L ≤ ChL|ψ|W 1,∞(ωL) ∀ψ ∈W 1,∞(Ω),

‖ψ − jθψ‖∞,M ≤ ChM |ψ|W 1,∞(ωM ) ∀ψ ∈W 1,∞(Ω). (3.14)

These properties are well considered; see the book of [Cia02], for example, where the
approximation of functions in Sobolev spaces by finite element spaces is discussed. In
[SZ90], a Lagrange type interpolation operator is constructed with the desired properties.
The last property (3.14) for jθ holds due to the fact that all M ∈ Mh and L ∈ Lh
are formed as a conjunction of at most nTh < ∞ cells T ∈ Th. So if the interpolator is
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constructed such that the above estimates hold true on all T ∈ Th, the same localized
estimates hold on M ∈Mh and L ∈ Lh.
We point out that due to [GS03], there exists a quasi-local interpolation operator that
preserves the discrete divergence and has the above properties.

Assumption 3.2.3 (Properties of the fluctuation operators).
Assume that for given integers ku, kθ ≥ 1, there are su ∈ {0, · · · , ku} and sθ ∈ {0, · · · , kθ}
such that the fluctuation operators κuM = Id−πuM and κθL = Id−πθL provide the following
approximation properties: There is C > 0 such that for w ∈ [W l,2(M)]d with M ∈ Mh,
l = 0, . . . , su and for ψ ∈W r,2(L) with L ∈ Lh, r = 0, . . . , sθ, it holds

‖κuMw‖0,M ≤ ChlM‖w‖W l,2(M), ‖κθLψ‖0,L ≤ ChrL‖ψ‖W r,2(L).

Note that this is a property of the coarse spaces Du
M and Dθ

L and is always true for
su = sθ = 0. It is also satisfied, for example, if Psu−1 ⊂ Du

M and Psθ−1 ⊂ Dθ
L, as it is

argued in [MST07].

Assumption 3.2.4 (Local inverse inequality).
Let the FE spaces [Y u

h ]d for the velocity and Y θ
h for the temperature satisfy the local inverse

inequalities

‖∇wh‖0,M ≤ Ch−1
M ‖wh‖0,M ∀wh ∈ [Y u

h ]d, M ∈Mh,

‖∇ψh‖0,L ≤ Ch−1
L ‖ψh‖0,L ∀ψh ∈ Y θ

h , L ∈ Lh.

This condition holds true for shape-regular subdivisions of Ω and Lagrangian finite element
spaces from Definition 2.2.7. A proof can be found in [Bra07].

Assumption 3.2.5 (Streamline directions).
Let uh ∈ Vh∩ [W 1,∞(Ω)]d. For all macro elements M ∈Mh and L ∈ Lh, let the element-
wise averaged streamline directions uM ∈ Rd, uL ∈ Rd be such that

|uM | ≤ C‖uh‖∞,M , ‖uh − uM‖∞,M ≤ ChM |uh|W 1,∞(M),

|uL| ≤ C‖uh‖∞,L, ‖uh − uL‖∞,L ≤ ChL|uh|W 1,∞(L)

with C > 0 independent of hM , hL.

One possible definition satisfying Assumption 3.2.5 is

uM := 1
|M |

∫
M
uh(x) dx, uL := 1

|L|

∫
L
uh(x) dx. (3.15)
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For the error analysis in Section 3.2.2, we need the following requirement.

Assumption 3.2.6 (Interpolators with orthogonality property).
Assume that for integers ku, kθ ≥ 1, the following holds: Let M ∈Mh, L ∈ Lh. There are
interpolation operators iu, iθ satisfying iu : V → Vh such that for 1 ≤ lu ≤ ku + 1

(v − iuv,wh)M = 0 ∀wh ∈Du
M ∀v ∈ V , (3.16)

‖v − iuv‖0,M + hM |v − iuv|W 1,2(M) ≤ ChluM‖v‖W lu,2(ωM ) ∀v ∈ V ∩ [W lu,2(Ω)]d, (3.17)

‖v − iuv‖∞,M ≤ ChM |v|W 1,∞(ωM ) ∀v ∈ [W 1,∞(Ω)]d (3.18)

and iθ : Θ→ Θh such that for 1 ≤ lθ ≤ kθ + 1

(ψ − iθψ, φh)L = 0 ∀φh ∈ Dθ
L ∀ψ ∈ Θ, (3.19)

‖ψ − iθψ‖0,L + hL|ψ − iθψ|W 1,2(L) ≤ Ch
lθ
L‖ψ‖W lθ,2(ωL) ∀ψ ∈ Θ ∩W lθ,2(Ω), (3.20)

‖ψ − iθψ‖∞,M ≤ ChM |ψ|W 1,∞(ωM ) ∀ψ ∈W 1,∞(Ω) (3.21)

with suitable patches ωM ⊇M , ωL ⊇ L.

Such interpolation operators exist, if the following so-called LPS compatibility condition
holds.

Lemma 3.2.7 (LPS compatibility condition).
Let M ∈Mh, L ∈ Lh. Consider Lagrangian finite element spaces Y u

h for the velocity and
Y θ
h for the temperature of piecewise polynomial functions, where the degrees are (at least)
ku ≥ 1 and kθ ≥ 1, respectively. Denote Y u

h(M) := {vh|M : vh ∈ [Y u
h ]d, vh = 0 on Ω\M}

and Y θ
h (L) := {θh|L : θh ∈ [Y θ

h ]d, θh = 0 on Ω \ L}. If the Assumptions 3.2.2, 3.2.4 and
the conditions

∃βu > 0: inf
wh∈Du

M

sup
vh∈Y uh(M)

(vh,wh)M
‖vh‖0,M‖wh‖0,M

≥ βu, (3.22)

∃βθ > 0: inf
ψh∈DθL

sup
θh∈Y θh (L)

(θh, ψh)L
‖θh‖0,L‖ψh‖0,L

≥ βθ (3.23)

hold, then there are interpolation operators iu and iθ satisfying Assumption 3.2.6.

Proof. In [MST07], from the condition (3.22), an interpolation operator iu : V → Vh is
constructed with the properties (3.16), (3.17): Let

W h(M) := {vh ∈ Y u
h(M) : (vh,wh) = 0 ∀wh ∈Du

M} ⊂ Y u
h(M)
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and W h(M)⊥ the L2-orthogonal complement of W h(M) in Y u
h(M). Consider the in-

terpolation operator ju given by Assumption 3.2.2. As it is shown in [MST07], for each
v ∈ [H1(Ω)]d, there exists a unique zh(v) ∈W h(M)⊥ such that

(zh(v),wh)M = (v − juv,wh)M ∀ wh ∈Du
M , (3.24)

‖zh(v)‖0,M ≤
1
βu
‖v − juv‖0,M , (3.25)

since (3.22) holds. Define iuv|M := juv|M + zh(v) for all M ∈ Mh. This gives rise to an
interpolation operator iu : [H1(Ω)]d → [Y u

h ]d satisfying for all M ∈Mh

‖v − iuv‖0,M ≤
(

1 + 1
βu

)
‖v − juv‖0,M

≤ ChlM‖v‖W l,2(ωM ) ∀v ∈ [W l,2(Ω)]d, 1 ≤ l ≤ ku + 1.

The orthogonality (3.16) follows from (3.24). The approximation property in the H1-semi-
norm can be established via the inverse inequality from Assumption 3.2.4 applied to (3.25)
and the triangle inequality. Hence, (3.17) is shown.
The fact that iu fulfills (3.18) can be understood by transformation on the reference
element T̂ . For T ∈ Th, let ẑh(v) := zh(v) ◦FT denote the transformation of zh(v)|T onto
T̂ via the bijective reference mapping FT : T̂ → T . Moreover, we use finite element spaces
such that

c1h
d
T ≤ |detDFT (x̂)| ≤ c2h

d
T ∀ x̂ ∈ T̂

with constants c1, c2 > 0 independent of the cell diameter hT . Since [Y u
h ]d is finite dimen-

sional, all norms on this space are equivalent. So we have for all T ∈ Th

‖zh(v)‖∞,T ≤ ‖ẑh(v)‖∞,T̂ ≤ c‖ẑh(v)‖0,T̂ ≤ Ch
−d/2
T ‖zh(v)‖0,T

with c > 0 independent of hT . With this, the properties of the fine and coarse triangulations
from Assumption 2.2.9, (3.25) and the properties of ju by Assumption 3.2.2, we have for
all v ∈ [W 1,∞(Ω)]d:

‖v − iuv‖∞,M ≤ ‖v − juv‖∞,M + ‖zh(v)‖∞,M ≤ ‖v − juv‖∞,M + Ch
−d/2
M ‖zh(v)‖0,M

≤ ‖v − juv‖∞,M + Ch
−d/2
M ‖v − juv‖0,M ≤ C‖v − juv‖∞,M

≤ ChM |v|W 1,∞(ωM )

for all M ∈Mh. The analogous construction yields the claim for iθ.
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3.2.1. Quasi-Optimal Estimates without LPS-Compatibility Condition

In order to prove semi-discrete error estimates, we have to bound the difference of the
convective terms for velocity and temperature. We move this into the lemma below. The
following mesh-dependent quantities are useful:

Definition 3.2.8 (Local Reynolds and Péclet numbers).
For M ∈ Mh, L ∈ Lh and uh ∈ L∞(Ω), we introduce the local Reynolds number ReM
and the local Péclet number PeL as

ReM := ‖uh‖∞,MhM
ν

, PeL := ‖uh‖∞,LhL
α

.

Since we are interested in suitable choices of stabilization parameters, none of the used
constants C > 0 depends on any of the problem parameters, hM , hL or the (continuous
or discrete) solution in the following.

Lemma 3.2.9 (Convective terms without compatibility condition).
Let ε > 0 and (u, p, θ) ∈ V div × Q × Θ, (uh, ph, θh) ∈ V div

h × Qh × Θh be solutions of
(2.9)-(2.10) and (3.1)-(3.2) satisfying u ∈ [W 1,∞(Ω)]d, θ ∈W 1,∞(Ω). If Assumption 3.2.2
holds, we can estimate the difference of the convective terms in the momentum equation

cu(u;u, eu,h)− cu(uh;uh, eu,h)

≤ 1
4ε

∑
M∈Mh

1 + νRe2
M

h2
M

‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 4ε|||eu,h|||2LPS

+
[
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}

+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

]
‖eu,h‖20

with C independent of hM , hL, ε, the problem parameters and the solutions. The difference
of the convective terms in the Fourier equation can be bounded as

cθ(u; θ, eθ,h)− cθ(uh; θh, eθ,h)

≤ 1
4ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 3ε|||eu,h|||2LPS + 7ε|[eθ,h]|2LPS

+ 1
28ε

∑
L∈Lh

αPe2
L

h2
L

‖ηθ,h‖20,L + 1
2 |θ|W 1,∞(Ω)‖eu,h‖20 + ‖eθ,h‖20

(
1
2 |θ|W 1,∞(Ω)

+ ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

)
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with C > 0 independent of the problem parameters, hM , hL and the solutions.

Proof. In this proof, we perform similar estimates for velocity and temperature. Therefore,
we present every step for the velocity and a shortened version for the temperature directly
afterwards.
Due to the result from [GS03], the existence of a quasi-local interpolation operator pre-
serving the discrete divergence is guaranteed from Assumptions 2.2.1 and 3.2.2. We denote
this operator by ju : V div → V div

h . It has the approximation properties (3.10) and (3.12).
For jθ, we choose the interpolation operator provided by Assumption 3.2.2. With the split-
ting ηu,h + eu,h = (u− juu) + (juu− uh) from Definition 3.2.1 and integration by parts,
we calculate

cu(uh;uh, eu,h) = 1
2(uh · ∇uh, eu,h)− 1

2(uh · ∇eu,h,uh)

= 1
2(uh · ∇uh, eu,h) + 1

2(uh · ∇eu,h, eu,h)− 1
2(uh · ∇eu,h, juu)

= (uh · ∇juu, eu,h) + 1
2((∇ · uh)juu, eu,h).

Together with an analogous reformulation for the temperature terms, this yields

cu(u;u, eu,h)− cu(uh;uh, eu,h)

= ((u− uh) · ∇u, eu,h)︸ ︷︷ ︸
=:Tu1

+ (uh · ∇(u− juu), eu,h)︸ ︷︷ ︸
=:Tu2

−1
2((∇ · uh)juu, eu,h)︸ ︷︷ ︸

=:Tu3

,

cθ(u;θ, eθ,h)− cθ(uh; θh, eθ,h)

= ((u− uh) · ∇θ, eθ,h)︸ ︷︷ ︸
=:T θ1

+ (uh · ∇(θ − jθθ), eθ,h)︸ ︷︷ ︸
=:T θ2

−1
2((∇ · uh)jθθ, eθ,h)︸ ︷︷ ︸

=:T θ3

.

Now, we bound each term separately. Using Young’s inequality with ε > 0, we calculate:

T u1 ≤
∑

M∈Mh

‖∇u‖∞,M
(
‖eu,h‖20,M + ‖ηu,h‖0,M‖eu,h‖0,M

)
= |u|W 1,∞(Ω)‖eu,h‖20 +

∑
M∈Mh

1
hM
|u|W 1,∞(M)‖ηu,h‖0,MhM‖eu,h‖0,M

≤ 1
4ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M +
(
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}

)
‖eu,h‖20 (3.26)

and for the temperature:

T θ1 ≤
∑

M∈Mh

‖∇θ‖∞,M‖eθ,h‖0,M
(
‖eu,h‖0,M + ‖ηu,h‖0,M

)
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= |θ|W 1,∞(Ω)‖eu,h‖0‖eθ,h‖0 +
∑

M∈Mh

1
hM
|θ|W 1,∞(M)‖ηu,h‖0,MhM‖eθ,h‖0,M

≤ 1
4ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}‖eθ,h‖

2
0

+ 1
2 |θ|W 1,∞(Ω)‖eθ,h‖20 + 1

2 |θ|W 1,∞(Ω)‖eu,h‖20. (3.27)

For the terms T u2 and T θ2 , we have via integration by parts

T u2 = (uh · ∇ηu,h, eu,h) = −(uh · ∇eu,h,ηu,h)− ((∇ · uh)eu,h,ηu,h) =: T u21 + T u22,

T θ2 = (uh · ∇ηθ,h, eθ,h) = −(uh · ∇eθ,h, ηθ,h)− ((∇ · uh)eθ,h, ηθ,h) =: T θ21 + T θ22.

Term T u21 is the most critical one. Note that uh|M ∈ [L∞(M)]d and uh|L ∈ [L∞(L)]d. This
is due to the definition of the finite element spaces. We calculate using the local Reynolds
number ReM = ‖uh‖∞,MhM/ν from Definition 3.2.8 and Young’s inequality:

T u21 = −(uh · ∇eu,h,ηu,h) ≤
∑

M∈Mh

‖uh‖∞,M‖∇eu,h‖0,M‖ηu,h‖0,M

≤
√
ν‖∇eu,h‖0

( ∑
M∈Mh

ν
‖uh‖2∞,Mh2

M

ν2 h−2
M ‖ηu,h‖

2
0,M

)1/2

≤ ε|||eu,h|||2LPS + 1
4ε

∑
M∈Mh

νRe2
Mh
−2
M ‖ηu,h‖

2
0,M . (3.28)

With the local Péclet number PeL = ‖uh‖∞,LhL/α and Young’s inequality, we bound T θ21
as:

T θ21 = −(uh · ∇eθ,h, ηθ,h) ≤ 7ε|[eθ,h]|2LPS + 1
28ε

∑
L∈Lh

αPe2
Lh
−2
L ‖ηθ,h‖

2
0,L. (3.29)

Using (∇·u, q) = 0 for all q ∈ L2(Ω), Assumption 3.2.2 and Young’s inequality with ε > 0,
we obtain

T u22 = −((∇ · uh)ηu,h, eu,h) = ((∇ · (ηu,h + eu,h))ηu,h, eu,h)

≤
∑

M∈Mh

‖ηu,h‖∞,M
(
‖∇ · eu,h‖0,M + ‖∇ · ηu,h‖0,M

)
‖eu,h‖0,M

≤
∑

M∈Mh

ChM√
γM
|u|W 1,∞(M)

√
γM
(
‖∇ · eu,h‖0,M + ‖∇ · ηu,h‖0,M

)
‖eu,h‖0,M

≤ ε|||ηu,h|||2LPS + ε|||eu,h|||2LPS + C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
‖eu,h‖20 (3.30)
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and in a similar fashion

T θ22 = −((∇ · uh)eθ,h, ηθ,h) = ((∇ · (ηu,h + eu,h))ηθ,h, eθ,h)

≤
∑

M∈Mh

‖ηθ,h‖∞,M
(
‖∇ · eu,h‖0,M + ‖∇ · ηu,h‖0,M

)
‖eθ,h‖0,M

≤ ε|||ηu,h|||2LPS + ε|||eu,h|||2LPS + C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
‖eθ,h‖20. (3.31)

Utilizing the splitting according to Definition 3.2.1, we have

T u3 = −1
2((∇ · uh)juu, eu,h) = 1

2((∇ · uh)ηu,h, eu,h)− 1
2((∇ · uh)u, eu,h) = T u31 + T u32,

T θ3 = −1
2((∇ · uh)jθθ, eθ,h) = 1

2((∇ · uh)ηθ,h, eθ,h)− 1
2((∇ · uh)θ, eθ,h) = T θ31 + T θ32.

We exploit T u31 = −1
2T

u
22, T θ31 = −1

2T
θ
22 and estimate as in (3.30) and (3.31):

|T u31| ≤ ε|||ηu,h|||2LPS + ε|||eu,h|||2LPS + C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
‖eu,h‖20, (3.32)

|T θ31| ≤ ε|||ηu,h|||2LPS + ε|||eu,h|||2LPS + C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
‖eθ,h‖20. (3.33)

For the terms T u32 and T θ32, we use that (∇ · u, q) = 0 for all q ∈ L2(Ω) and Young’s
inequality:

|T u32| =
1
2 |(∇ · uh,u · eu,h)| = 1

2 |(∇ · (−ηu,h − eu,h + u),u · eu,h)|

≤ 1
2 |(∇ · ηu,h,u · eu,h)|+ 1

2 |(∇ · eu,h,u · eu,h)|

≤ 1
2

∑
M∈Mh

(
‖u‖∞,M

√
γM‖∇ · ηu,h‖0,M

1
√
γM
‖eu,h‖0,M

+ ‖u‖∞,M
√
γM‖∇ · eu,h‖0,M

1
√
γM
‖eu,h‖0,M

)
≤ ε|||ηu,h|||2LPS + ε|||eu,h|||2LPS + C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}‖eu,h‖20, (3.34)

|T θ32| =
1
2 |(∇ · uh, θ · eθ,h)| ≤ 1

2 |(∇ · ηu,h, θ · eθ,h)|+ 1
2 |(∇ · eu,h, θ · eθ,h)|

≤ 1
2

∑
M∈Mh

(
‖θ‖∞,M‖∇ · ηu,h‖0,M‖eθ,h‖0,M + ‖θ‖∞,M‖∇ · eu,h‖0,M‖eθ,h‖0,M

)
≤ ε|||ηu,h|||2LPS + ε|||eu,h|||2LPS + C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}‖eθ,h‖20. (3.35)

Combining the above bounds (3.26)-(3.35) for velocity and temperature separately yields
the claim.
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Remark 3.2.10. The local quantities ReM and PeM on the right-hand side blow up for
very small ν and α. If we additionally require Assumption 3.2.4 in Lemma 3.2.9, we can
conduct a different estimate of the critical term T u21 (and similarly for T θ21):

T u21 = −(uh · ∇eu,h,ηu,h) ≤
∑

M∈Mh

‖uh‖∞,M‖∇eu,h‖0,M‖ηu,h‖0,M

≤ C
∑

M∈Mh

‖uh‖∞,M‖eu,h‖0,Mh−1
M ‖ηu,h‖0,M

≤ ‖uh‖2∞‖eu,h‖20 + C
∑

M∈Mh

h−2
M ‖ηu,h‖

2
0,M .

We require to fulfill the conditions stated below.

Assumption 3.2.11 (Parameter bounds).
Assume that for all M ∈Mh, E ∈ Eh and L ∈ Lh:

τuM (uM ) ≥ 0, γM (uM ) ≥ 0, φE ≥ 0, τ θL(uL) ≥ 0,

max
M∈Mh

γM (uM ) ∈ L∞(0, T ), max
M∈Mh

γM (uM )−1 ∈ L∞(0, T ), max
E∈Eh

φE ∈ L∞(0, T ),

max
M∈Mh

τuM (uM )|uM |2 ∈ L∞(0, T ), max
L∈Lh

τ θL(uL)|uL|2 ∈ L∞(0, T ),

max
M∈Mh

ReM ∈ L∞(0, T ), max
L∈Lh

PeL ∈ L∞(0, T ).

These considerations give rise to the following quasi-optimal semi-discrete error estimate
for the LPS-model (3.1)-(3.2).

Theorem 3.2.12 (Error estimate without compatibility condition).
Let (u, p, θ) : [0, T ]→ V div ×Q×Θ, (uh, ph, θh) : [0, T ]→ V div

h ×Qh ×Θh be solutions of
(2.9)-(2.10) and (3.1)-(3.2) satisfying

u ∈ L∞(0, T ; [W 1,∞(Ω)]d), θ ∈ L∞(0, T ;W 1,∞(Ω)), p ∈ L2(0, T ;Q ∩ C(Ω)),

∂tu ∈ L2(0, T ; [L2(Ω)]d), ∂tθ ∈ L2(0, T ;L2(Ω)).

Let Assumptions 3.2.2, and 3.2.11 be valid and uh(0) = juu0, θh(0) = jθθ0. We obtain for
eu,h = juu − uh, ep,h = jpp − ph, eθ,h = jθθ − θh of the LPS-method (3.1)-(3.2) for all
0 ≤ t ≤ T :

‖eu,h‖2L∞(0,t;L2(Ω)) + ‖eθ,h‖2L∞(0,t;L2(Ω)) +
∫ t

0

(
|||(eu,h, ep,h)(τ)|||2LPS + |[eθ,h(τ)]|2LPS

)
dτ

≤ C
∫ t

0
eCG,h(u,θ)(t−τ)

{ ∑
M∈Mh

[
(ν + τuM |uM |2 + γMd)‖∇ηu,h(τ)‖20,M

+ (1 + νRe2
M )h−2

M ‖ηu,h(τ)‖20,M + ‖∂tηu,h(τ)‖20,M + τuM |uM |2‖κuM (∇u)(τ)‖20,M
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+ min
(d
ν
,

1
γM

)
‖ηp,h(τ)‖20,M

]
+
∑
E∈Eh

φE‖[ηp,h(τ)]E‖20,E

+
∑
L∈Lh

[
‖∂tηθ,h(τ)‖20 +

(
αPe2

L

h2
L

+ β‖g‖∞,L

)
‖ηθ,h(τ)‖20,L

+
(
α+ τ θL|uL|2

)
‖∇ηθ,h(τ)‖20,L + τ θL|uL|2‖κθL(∇θ)(τ)‖20,L

]}
dτ

with (ηu,h, ηp,h, ηθ,h) = (u − juu, p − jpp, θ − jθθ), the local Reynolds number ReM =
hM‖uh‖∞,M/ν, the local Péclet number PeL = ‖uh‖∞,LhL/α and the Gronwall constant

CG,h(u, θ) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω)

+ max
M∈Mh

{h2
M |u|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

+ max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}.

Proof. We choose the same interpolation operators ju : V div → V div
h and jθ : Θ → Θh as

in Lemma 3.2.9. For the pressure, we use the interpolation operator jp : Q → Qh from
Assumption 3.2.2.
Subtracting (3.1) from (2.9), testing with (vh, qh) = (eu,h, ep,h) ∈ V div

h × Qh and using
Definition 3.2.1 lead to an error equation for the velocity:

0 = (∂t(u− uh), eu,h) + (ν∇(u− uh),∇eu,h)− (p− ph,∇ · eu,h) + cu(u;u, eu,h)

− cu(uh;uh, eu,h)− su(uh;uh, eu,h)− th(uh;uh, eu,h)− ih(ph, ep,h)

+ (βg(θ − θh), eu,h)

= (∂tηu,h, eu,h) + (∂teu,h, eu,h) + (ν∇ηu,h,∇eu,h) + (ν∇eu,h,∇eu,h)− (ηp,h,∇ · eu,h)

+ cu(u;u, eu,h)− cu(uh;uh, eu,h) + su(uh; eu,h, eu,h) + su(uh;ηu,h, eu,h)

− su(uh;u, eu,h) + th(uh; eu,h, eu,h)− th(uh; juu, eu,h)

+ ih(ep,h, ep,h)− ih(jpp, ep,h) + β(geθ,h, eu,h) + β(gηθ,h, eu,h),

where we used (ep,h,∇· eu,h) = 0 due to eu,h ∈ V div
h . With the definition of ||| · |||LPS , the

fact that (∇ · u, q) = 0 for all q ∈ L2(Ω) and continuity of p, this implies

1
2∂t‖eu,h‖

2
0 + |||(eu,h, ep,h)|||2LPS

= −(∂tηu,h, eu,h)− ν(∇ηu,h,∇eu,h) + (ηp,h,∇ · eu,h) + cu(uh;uh, eu,h)− cu(u;u, eu,h)

− su(uh;ηu,h, eu,h)− th(uh;ηu,h, eu,h)− ih(ηp,h, ep,h)

+ su(uh;u, eu,h)− β(geθ,h, eu,h)− β(gηθ,h, eu,h).



46 3. Semi-Discrete Analysis for the Oberbeck-Boussinesq Model

The right-hand side terms are bounded as:

−(∂tηu,h, eu,h) ≤ ‖∂tηu,h‖0‖eu,h‖0 ≤
1
4‖∂tηu,h‖

2
0 + ‖eu,h‖20,

−ν(∇ηu,h,∇eu,h) ≤
√
ν‖∇ηu,h‖0|||eu,h|||LPS ,

(ηp,h,∇ · eu,h) ≤
( ∑
M∈Mh

min
(d
ν
,

1
γM

)
‖ηp,h‖20,M

)1/2
|||eu,h|||LPS ,

−su(uh;ηu,h, eu,h) ≤
( ∑
M∈Mh

τuM |uM |2‖∇ηu,h‖20,M
)1/2
|||eu,h|||LPS ,

−th(uh;ηu,h, eu,h) ≤
( ∑
M∈Mh

γMd‖∇ηu,h‖20,M
)1/2
|||eu,h|||LPS ,

−ih(ηp,h, ep,h) ≤
( ∑
E∈Eh

φE‖[ηp,h]E‖20,E
)1/2( ∑

E∈Eh

φE‖[ep,h]E‖20,E
)1/2

,

su(uh;u, eu,h) ≤
( ∑
M∈Mh

τuM |uM |2‖κuM (∇u)‖20,M
)1/2
|||eu,h|||LPS ,

|β(geθ,h, eu,h) + β(gηθ,h, eu,h)| ≤ β‖g‖∞ (‖eθ,h‖0 + ‖ηθ,h‖0) ‖eu,h‖0

≤ β‖g‖∞
(
‖eθ,h‖20 + 1

4‖eu,h‖
2
0 + 1

3‖ηθ,h‖
2
0 + 3

4‖eu,h‖
2
0

)
= β‖g‖∞

(
‖eθ,h‖20 + ‖eu,h‖20

)
+ β‖g‖∞

3 ‖ηθ,h‖20.

Due to |||eu,h|||LPS ≤ |||(eu,h, ep,h)|||LPS , this implies

1
2∂t‖eu,h‖

2
0 + |||(eu,h, ep,h)|||2LPS

≤ 1
4‖∂tηu,h‖

2
0 + ‖eu,h‖20 + cu(uh;uh, eu,h)− cu(u;u, eu,h)

+ |||(eu,h, ep,h)|||LPS

[
√
ν‖∇ηu,h‖0 +

( ∑
M∈Mh

τuM |uM |2‖∇ηu,h‖20,M
)1/2

+
( ∑
M∈Mh

γMd‖∇ηu,h‖20,M
)1/2

+
( ∑
M∈Mh

min
(d
ν
,

1
γM

)
‖ηp,h‖20,M

)1/2

+
( ∑
M∈Mh

τuM |uM |2‖κuM (∇u)‖20,M
)1/2

+
( ∑
E∈Eh

φE‖[ηp,h]E‖20,E
)1/2

]

+ β‖g‖∞
(
‖eθ,h‖20 + ‖eu,h‖20

)
+ β‖g‖∞

3 ‖ηθ,h‖20

and thus via Young’s inequality

1
2∂t‖eu,h‖

2
0 + (1− 2ε)|||(eu,h, ep,h)|||2LPS

≤ 1
4‖∂tηu,h‖

2
0 + ‖eu,h‖20 +

[
cu(uh;uh, eu,h)− cu(u;u, eu,h)

]
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+ 3
4ε

∑
M∈Mh

[(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M + min

(d
ν
,

1
γM

)
‖ηp,h‖20,M

+ τuM |uM |2‖κuM (∇u)‖20,M
]

+ 3
4ε

∑
E∈Eh

φE‖[ηp,h]E‖20,E

+ β‖g‖∞
(
‖eθ,h‖20 + ‖eu,h‖20

)
+ β‖g‖∞

3 ‖ηθ,h‖20. (3.36)

Lemma 3.2.9 yields for the convective terms:

cu(u;u, eu,h)− cu(uh;uh, eu,h)

≤ 1
4ε

∑
M∈Mh

1 + νRe2
M

h2
M

‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 4ε|||eu,h|||2LPS

+
[
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}

+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

]
‖eu,h‖20.

We incorporate this into (3.36) and obtain with a constant C independent of the problem
parameters, hM , hL, the solutions and ε

1
2∂t‖eu,h‖

2
0 + (1− 6ε)|||(eu,h, ep,h)|||2LPS

≤ 1
4‖∂tηu,h‖

2
0 + C

ε

∑
M∈Mh

1 + νRe2
M

h2
M

‖ηu,h‖20,M +
[
1 + β‖g‖∞

+ |u|W 1,∞(Ω) + ε max
M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

]
‖eu,h‖20 + C

ε

∑
M∈Mh

[(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M

+ min
(d
ν
,

1
γM

)
‖ηp,h‖20,M + τuM |uM |2‖κuM (∇u)‖20,M

]
+ C

ε

∑
E∈Eh

φE‖[ηp,h]E‖20,E

+ β‖g‖∞‖eθ,h‖20 + Cβ‖g‖∞‖ηθ,h‖20. (3.37)

Now, subtracting (3.2) from (2.10) with ψh = eθ,h ∈ Θh as a test function leads to an
error equation for the temperature:

0 = (∂t(θ − θh), eθ,h) + (α∇(θ − θh),∇eθ,h) + cθ(u; θ, eθ,h)

− cθ(uh; θh, eθ,h)− sθ(uh; θh, eθ,h)

= (∂tηθ,h, eθ,h) + (∂teθ,h, eθ,h) + (α∇ηθ,h,∇eθ,h) + (α∇eθ,h,∇eθ,h)

+ cθ(u; θ, eθ,h)− cθ(uh; θh, eθ,h) + sθ(uh; eθ,h, eθ,h)− sθ(uh; jθθ, eθ,h).
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We utilize the definition of |[·]|LPS and calculate

1
2∂t‖eθ,h‖

2
0 + |[eθ,h]|2LPS = −(∂tηθ,h, eθ,h)− α(∇ηθ,h,∇eθ,h)

+ cθ(uh; θh, eθ,h)− cθ(u; θ, eθ,h)− sθ(uh; ηθ,h, eθ,h) + sθ(uh; θ, eθ,h).

In a similar way as for the velocity terms, we estimate:

−(∂tηθ,h, eθ,h) ≤ ‖∂tηθ,h‖0‖eθ,h‖0 ≤
1
4‖∂tηθ,h‖

2
0 + ‖eθ,h‖20,

−α(∇ηθ,h,∇eθ,h) ≤
√
α‖∇ηθ,h‖0|[eθ,h]|LPS ,

−sθ(uh; ηθ,h, eθ,h) ≤
( ∑
L∈Lh

τ θL|uL|2‖∇ηθ,h‖20,L
)1/2
|[eθ,h]|LPS ,

sθ(uh; θ, eθ,h) ≤
( ∑
L∈Lh

τ θL|uL|2‖κθL(∇θ)‖20,L
)1/2
|[eθ,h]|LPS .

With Young’s inequality, we have

1
2∂t‖eθ,h‖

2
0 + (1− 2ε)|[eθ,h]|2LPS

≤ 1
4‖∂tηθ,h‖

2
0 + ‖eθ,h‖20 + cθ(uh; θh, eθ,h)− cθ(u; θ, eθ,h)

+ 3
8ε

∑
L∈Lh

[(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,L + τ θL|uL|2‖κθL(∇θ)‖20,L

]
. (3.38)

Due to Lemma 3.2.9, the difference of the convective terms in the Fourier equation can be
bounded by:

cθ(u; θ, eθ,h)− cθ(uh; θh, eθ,h)

≤ 1
4ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 3ε|||eu,h|||2LPS + 7ε|[eθ,h]|2LPS

+ 1
28ε

∑
L∈Lh

αPe2
L

h2
L

‖ηθ,h‖20,L + 1
2 |θ|W 1,∞(Ω)‖eu,h‖20 + ‖eθ,h‖20

(
1
2 |θ|W 1,∞(Ω)

+ ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

)
.

(3.39)

The combination of (3.38) and (3.39) with a constant C independent of the problem
parameters, hM , hL, the solutions and ε gives

1
2∂t‖eθ,h‖

2
0 + (1− 9ε)|[eθ,h]|2LPS ≤

1
4‖∂tηθ,h‖

2
0 + C

ε

∑
L∈Lh

αPe2
L

h2
L

‖ηθ,h‖20,L
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+ C

ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 3ε|||eu,h|||2LPS + 1
2 |θ|W 1,∞(Ω)‖eu,h‖20

+
[
1 + 1

2 |θ|W 1,∞(Ω) + ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}

+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+ C

ε

∑
L∈Lh

[(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,L + τ θL|uL|2‖κθL(∇θ)‖20,L

]
. (3.40)

Note that
|||ηu,h|||2LPS ≤

∑
M∈Mh

(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M .

Adding (3.37) and (3.40) results in

1
2∂t‖eu,h‖

2
0 + (1− 9ε)|||(eu,h, ep,h)|||2LPS + 1

2∂t‖eθ,h‖
2
0 + (1− 9ε)|[eθ,h]|2LPS

≤ 1
4‖∂tηu,h‖

2
0 + 1

4‖∂tηθ,h‖
2
0 + C

ε

∑
M∈Mh

2 + νRe2
M

h2
M

‖ηu,h‖20,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ 1

2 |θ|W 1,∞(Ω)
]
‖eu,h‖20

+
(
C

ε
+ Cε

) ∑
M∈Mh

(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M

+ C

ε

∑
M∈Mh

[
min

(d
ν
,

1
γM

)
‖ηp,h‖20,M + τuM |uM |2‖κuM (∇u)‖20,M

]

+ C

ε

∑
E∈Eh

φE‖[ηp,h]E‖20,E +
∑
L∈Lh

(
C

ε

αPe2
L

h2
L

+ Cβ‖g‖∞,L

)
‖ηθ,h‖20,L

+
[
1 + 1

2 |θ|W 1,∞(Ω) + β‖g‖∞ + ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}

+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+ C

ε

∑
L∈Lh

[(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,L + τ θL|uL|2‖κθL(∇θ)‖20,L

]
.

We choose ε = 1
18 and get (where . indicates that the left-hand side is smaller or equal

than a generic constant times the right-hand side)

∂t‖eu,h‖20 + |||(eu,h, ep,h)|||2LPS + ∂t‖eθ,h‖20 + |[eθ,h]|2LPS
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. ‖∂tηu,h‖20 + ‖∂tηθ,h‖20 +
∑

M∈Mh

1 + νRe2
M

h2
M

‖ηu,h‖20,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ |θ|W 1,∞(Ω)

]
‖eu,h‖20

+
∑

M∈Mh

(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M

+
∑

M∈Mh

[
min

(d
ν
,

1
γM

)
‖ηp,h‖20,M + τuM |uM |2‖κuM (∇u)‖20,M

]

+
∑
E∈Eh

φE‖[ηp,h]E‖20,E +
∑
L∈Lh

(
αPe2

L

h2
L

+ β‖g‖∞,L

)
‖ηθ,h‖20,L

+
[
1 + |θ|W 1,∞(Ω) + β‖g‖∞ + max

M∈Mh

{h2
M |θ|2W 1,∞(M)}

+ max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+
∑
L∈Lh

[(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,L + τ θL|uL|2‖κθL(∇θ)‖20,L

]
.

We require that all the terms on the right-hand side are integrable in time. This holds due
to the regularity assumptions on u and θ, Assumption 3.2.11, g ∈ L∞(0, T ; [L∞(Ω)]d) and
the fact that the fluctuation operators are bounded. Application of Gronwall’s Lemma
A.3.5 for ‖(eu,h, eθ,h)‖20 := ‖eu,h‖20 + ‖eθ,h‖20 with the Gronwall constant

CG,h(u, θ) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω)

+ max
M∈Mh

{h2
M |u|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

+ max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

gives the claim since the initial error (eu,h, eθ,h)(0) vanishes.

Corollary 3.2.13 (Method of quasi-optimal order).
Consider a solution (u, p, θ) : [0, T ]→ V div ×Q×Θ of (2.9)-(2.10) satisfying

u ∈ L∞(0, T ; [W 1,∞(Ω)]d) ∩ L2(0, T ; [W ku+1,2(Ω)]d),

∂tu ∈ L2(0, T ; [W ku,2(Ω)]d), p ∈ L2(0, T ;W kp+1,2(Ω) ∩ C(Ω)),

θ ∈ L∞(0, T ;W 1,∞(Ω)) ∩ L2(0, T ;W kθ+1,2(Ω)),

∂tθ ∈ L2(0, T ;W kθ,2(Ω))
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and a solution (uh, ph, θh) : [0, T ]→ V div
h ×Qh×Θh of (3.1)-(3.2). Let Assumptions 3.2.2,

3.2.3 and 3.2.11 be valid as well as uh(0) = juu0, θh(0) = jθθ0 hold. For 0 ≤ t ≤ T ,
we obtain the a priori estimate for the semi-discrete error ξu,h = u − uh, ξp,h = p − ph,
ξθ,h = θ − θh:

‖ξu,h‖2L∞(0,t;L2(Ω)) + ‖ξθ,h‖2L∞(0,t;L2(Ω)) +
∫ t

0

(
|||(ξu,h, ξp,h)(τ)|||2LPS + |[ξθ,h(τ)]|2LPS

)
dτ

≤ C
∫ t

0
eCG,h(u,θ)(t−τ)

{ ∑
M∈Mh

h2ku
M

[
(1 + νRe2

M + ν + τuM |uM |2 + γMd)‖u(τ)‖2Wku+1,2(ωM )

+ ‖∂tu(τ)‖2Wku,2(ωM ) + τuM |uM |2h
2(su−ku)
M ‖u(τ)‖2W su+1,2(ωM )

]
+

∑
M∈Mh

h
2(kp+1)
M

[
min

(d
ν
,

1
γM

)
+ max
T⊂M,E∈∂T

{φE
hT

}]
‖p(τ)‖2

Wkp+1,2(ωM )

+
∑
L∈Lh

h2kθ
L

[
‖∂tθ(τ)‖2

Wkθ,2(ωL)+
(
αPe2

L + h2
Lβ‖g‖∞,L + α+ τ θL|uL|2

)
‖θ(τ)‖2

Wkθ+1,2(ωL)

+ τ θL|uL|2h
2(sθ−kθ)
L ‖θ(τ)‖2W sθ+1,2(ωL)

]}
dτ (3.41)

with the local Reynolds number ReM = hM‖uh‖∞,M/ν, the local Péclet number PeL =
‖uh‖∞,LhL/α, su ∈ {0, · · · , ku}, sθ ∈ {0, · · · , kθ} and the Gronwall constant

CG,h(u, θ) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω)

+ max
M∈Mh

{h2
M |u|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

+ max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}.

(3.42)

Proof. We split the semi-discrete error as

ξu,h = ηu,h + eu,h, ξθ,h = ηθ,h + eθ,h, ξp,h = ηp,h + ep,h

and use the triangle inequality in order to estimate the approximation and consistency
errors separately. The interpolation results in V div

h ×Qh × Θh, according to Assumption
3.2.2, are applied to Theorem 3.2.12. Further, we take advantage of the approximation
properties of the fluctuation operators from Assumption 3.2.3 with su ∈ {0, · · · , ku},
sθ ∈ {0, · · · , kθ}. This provides a bound for the consistency error in the following way for
all 0 ≤ τ ≤ t ≤ T

∑
M∈Mh

(ν + τuM |uM |2 + dγM )‖∇ηu,h(τ)‖20,M
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+
∑

M∈Mh

(
1 + νRe2

M

)
h−2
M ‖ηu,h(τ)‖20,M +

∑
M∈Mh

min
(d
ν
,

1
γM

)
‖ηp,h(τ)‖20,M

+
∑
L∈Lh

(
αPe2

L

h2
L

+ β‖g‖∞,L

)
‖ηθ,h(τ)‖20,L +

(
α+ τ θL|uL|2

)
‖∇ηθ,h(τ)‖20,L

≤ C
∑

M∈Mh

h2ku
M

(
1 + νRe2

M + τuM |uM |2 + dγM
)
‖u(τ)‖2Wku+1,2(ωM )

+ C
∑

M∈Mh

h
2(kp+1)
M min

(d
ν
,

1
γM

)
‖p(τ)‖2

Wkp+1,2(ωM )

+
∑
L∈Lh

h2kθ
L

(
αPe2

L + h2
Lβ‖g‖∞,L + α+ τ θL|uL|2

)
‖θ(τ)‖2

Wkθ+1,2(ωL).

Furthermore, it holds

‖∂tηu,h(τ)‖20 ≤ C
∑

M∈Mh

h2ku
M ‖∂tu(τ)‖2Wku,2(ωM ),

τuM |uM |2‖κuM (∇u(τ))‖20,M ≤ C
∑

M∈Mh

τuM |uM |2h
2su
M ‖u‖

2
W su+1,2(ωM ),

‖∂tηθ,h(τ)‖20 ≤ C
∑
L∈Lh

h2kθ
L ‖∂tθ(τ)‖2

Wkθ,2(ωL),

τ θL|uL|2‖κθL(∇θ(τ))‖20,L ≤ C
∑
L∈Lh

τ θL|uL|2h
2sθ
L ‖θ(τ)‖2W sθ+1,2(ωL).

For the pressure jump term, we utilize the trace inequality A.3.3:

∑
E∈Eh

φE‖[ηp,h(τ)]E‖20,E ≤
∑

M∈Mh

∑
T⊂M

∑
E∈∂T

φE‖[ηp,h(τ)]E‖20,E

≤ Ctr
∑

M∈Mh

∑
T⊂M

max
E∈∂T

φE(h−1
T ‖ηp,h(τ)‖20,T + hT ‖∇ηp,h(τ)‖20,T )

≤ C
∑

M∈Mh

max
T⊂M,E∈∂T

{φE
hT

}
h

2(kp+1)
M ‖p(τ)‖2

Wkp+1,2(ωM ),

where we applied hT ≤ hM ≤ ChT and the approximation property of jpp due to As-
sumption 3.2.2. For the interpolation errors, we exploit the approximation properties from
Assumption 3.2.2:

‖ηu,h(τ)‖20 ≤ C
∑

M∈Mh

h
2(ku+1)
M ‖u(τ)‖2Wku+1,2(ωM ),

‖ηθ,h‖20 ≤ C
∑
L∈Lh

h
2(kθ+1)
L ‖θ(τ)‖2

Wkθ+1,2(ωL),

|||(ηu,h, ηp,h)(τ)|||2LPS≤
∑

M∈Mh

(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h(τ)‖20,M+

∑
E∈Eh

φE‖[ηp,h]E‖20,E
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≤ C
∑

M∈Mh

h2ku
M

(
ν + τuM |uM |2 + γMd

)
‖u(τ)‖2Wku+1,2(ωM )

+ C
∑

M∈Mh

max
T⊂M,E∈∂T

{φE
hT

}
h

2(kp+1)
M ‖p(τ)‖2

Wkp+1,2(ωM ),

|[ηθ,h(τ)]|2LPS ≤
∑
L∈Lh

(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,M

≤ C
∑
L∈Lh

h2kθ
L

(
α+ τ θL|uL|2

)
‖θ(τ)‖2

Wkθ+1,2(ωL).

The combination gives the claim.

In the convection dominated regime, the error estimate (3.41) does not blow up for the
limit of vanishing ν or α if for all M ∈Mh and L ∈ Lh

ReM = hM‖uh‖∞,M
ν

≤ 1√
ν

and PeL = hL‖uh‖∞,L
α

≤ 1√
α
. (3.43)

Thus, we obtain a method of order k := min{ku, kp + 1, kθ} provided that ReM ≤ C/
√
ν

and PeL ≤ C/
√
α. This gives a restriction on the local mesh widths hM and hL. It is in

agreement with our findings for the Oseen equation (cf. [DAL15]) and is less restrictive
than the usual condition ReM := hM‖b‖∞,M/ν ≤ C for the Galerkin method applied to
advection-diffusion problems where b is a stationary velocity field. An alternative stability
estimate is given in [MST07] for the stationary Oseen problem which requires the global
(and thus more restrictive) condition ReΩ := ‖b‖∞CP

ν ≤ 1√
ν
. The restriction (3.43) can be

avoided: We refer to Remark 3.2.10 where an alternative estimate for the convective term
is given, provided that Assumption 3.2.4 holds. This bears the disadvantage of a Gronwall
constant depending on ‖uh‖2∞ and thus on the discrete velocity.
Now, we address the question of suitable settings and choices of stabilization parameters
for our analysis. The presented approach is applicable to many combinations of ansatz
spaces. The interpolation property from Assumption 3.2.2 and the discrete inf-sup condi-
tion (Assumption 2.2.1) hold for our finite element setting of Lagrangian elements

Vh = R(+)
ku
, Qh = R±(ku−1), Θh = R(+)

kΘ

from Definition 2.2.7 with ku ≥ 2, kθ ≥ 2. In [MT14] (Table 1 and 2), fine and coarse dis-
crete ansatz spaces are presented that fulfill the approximation property of the fluctuation
operators (Assumption 3.2.3). We summarize possible variants of the triples (Vh/Du

M ) ∧
Qh ∧ (Θh/D

θ
L) with su ∈ {1, . . . , ku}, sθ ∈ {1, . . . , kθ}.

• One-level methods:
(Pku/Psu−1) ∧ Pku−1 ∧ (Pkθ/Psθ−1), (Qku/Qsu−1) ∧Qku−1 ∧ (Qkθ/Qsθ−1),
(P+
ku
/Psu−1) ∧ P−(ku−1) ∧ (P+

kθ
/Psθ−1), (Qku/Psu−1) ∧ P−(ku−1) ∧ (Qkθ/Psθ−1).
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• Two-level methods (for the construction of the coarse space, see [MST07,MT14]):
(Pku/Psu−1) ∧ Pku−1 ∧ (Pkθ/Psθ−1), (Qku/Qsu−1) ∧Qku−1 ∧ (Qkθ/Qsθ−1),
(P+
ku
/Psu−1) ∧ P−(ku−1) ∧ (P+

kθ
/Psθ−1), (Qku/Psu−1) ∧ P−(ku−1) ∧ (Qkθ/Psθ−1).

With the mesh restriction (3.43), these possibilities result in a parameter choice as

γM = γ0, 0 ≤ φE ≤ φ0hT ,

0 ≤ τuM (uM ) ≤ τu0
h

2(ku−su)
M

|uM |2
, 0 ≤ τ θL(uL) ≤ τ θ0

h
2(kθ−sθ)
L

|uL|2
(3.44)

for M ∈ Mh and L ∈ Lh, where γ0, φ0, τ
u
0 , τ

θ
0 = O(1) denote non-negative tuning con-

stants. With the parameter choice (3.44), Assumption 3.2.11 is satisfied. In these possible
settings, we can apply Theorem 3.2.12 and Corollary 3.2.13. We point out that in order
to get an optimal rate k in (3.41), one might want to choose

k := ku = kθ = kp + 1.

A choice of grad-div and LPS SU parameters as in (3.44) balances the terms in the upper
bound of the semi-discrete error (3.41). In addition, the Gronwall constant (3.42) does
not blow up for small ν if γM > 0. An h-independent γM (or at least γM ≥ Ch) also
diminishes the growth of the Gronwall constant with |u|W 1,∞(Ω) and |θ|W 1,∞(Ω) and is
therefore favorable. In case of uM = 0, we set τuM (uM ) = 0 and τ θL(uL) = 0 if uL = 0
as the whole LPS term vanishes. The pressure jump stabilization may be set to zero; in
particular, it vanishes for a continuous discrete pressure ansatz space. For discontinuous
ph, the term ih on the left-hand side gives additional control over the pressure jumps over
cells.
For the discussion below, we write k := ku = kθ = kp + 1. In [MT14], a similar bound
for the Oseen problem is proposed: τuM |bM |2 ≤ Chk−suM and γM ∼ 1 . The design of the
grad-div parameter set {γM}M is still an open problem, see e.g. [JJLR13] for the Stokes
problem. An equilibration argument in our analysis (3.41) suggests

γM ∼ max
(
0;
‖p‖Wk,2(M)
‖u‖Wk+1,2(M)

− ν
)
. (3.45)

Indeed, in different flow examples, the choice (3.45) yields distinct γM : In case of flow
with fu ≡ 0, (u · ∇)u = ∂tu = 0 and −ν∆u+∇p = 0 (Poiseuille flow), we would choose
γM = 0, as ‖p‖Wk,2(Ω)/‖u‖Wk+1,2(Ω) ∼ ν. For the Taylor-Green vortex with fu ≡ 0, one
has ∂tu−ν∆u = 0 and (u ·∇)u+∇p = 0, thus leading to ‖p‖Wk,2(Ω)/‖u‖Wk+1,2(Ω) ∼ 1. If
ν is small, γM ∼ 1 follows. Unfortunately, (3.45) is not a viable choice for γM in practice.
Especially in the advection dominated case, grad-div stabilization with γM > ν has a
regularizing effect. Furthermore, γM > ν is essential for the independence of the Gronwall
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constant CG,h(u, θ) of ν. Corollary 3.2.13 and the above discussion clarify that γM = O(1)
is a reasonable compromise. Our numerical tests also confirm this.

3.2.2. Quasi-Optimal Estimates with LPS-Compatibility Condition

The restrictions ReM ≤ ν−1/2, P eL ≤ α−1/2 in (3.43) stem from the estimate of the
convective terms (Lemma 3.2.9) in the analysis of Theorem 3.2.12. Taking Assumption
3.2.6 into account, we can circumvent this. As this represents a compatibility condition
between the fine and coarse discrete spaces Vh/Du

M and Θh/D
θ
L, the number of possible

ansatz spaces is limited. Moreover, the interpolation operator iu : V → Vh for the velocity
does not map to V div

h in general. Consequently, in addition to the analysis of Theorem
3.2.12, a mixed velocity-pressure term has to be handled. As a first step, we prove a
preparatory lemma for the convective terms.

Lemma 3.2.14 (Convective terms with compatibility condition).
Let ε > 0 and Assumptions 3.2.2, 3.2.4, 3.2.5, 3.2.6 hold. Consider solutions (u, p, θ) ∈
V div × Q × Θ, (uh, ph, θh) ∈ V div

h × Qh × Θh of (2.9)-(2.10) and (3.1)-(3.2) satisfying
u ∈ [W 1,∞(Ω)]d, θ ∈ W 1,∞(Ω), uh ∈ [W 1,∞(Ω)]d. Let C > 0 be a generic constant. For
the difference of the convective terms in the momentum equation, we have

cu(u;u, eu,h)− cu(uh;uh, eu,h) ≤ 1
4ε

∑
M∈Mh

(
1
h2
M

+ 2
τuM

)
‖ηu,h‖20,M

+ 3ε|||ηu,h|||2LPS + 4ε|||eu,h|||2LPS

+
[
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}

+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ Cε max

M∈Mh

{τuM |uh|2W 1,∞(M)}
]
‖eu,h‖20.

The difference of the convective terms in the Fourier equation can be bounded as

cθ(u; θ, eθ,h)− cθ(uh; θh, eθ,h) ≤ 1
4ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + C

ε

∑
L∈Lh

1
τ θL
‖ηθ,h‖20,L

+ 3ε|||ηu,h|||2LPS + 3ε|||eu,h|||2LPS + 7ε|[eθ,h]|2LPS

+ 1
2 |θ|W 1,∞(Ω)‖eu,h‖20 + ‖eθ,h‖20

(
1
2 |θ|W 1,∞(Ω) + Cε max

L∈Lh
{τ θL|uh|2W 1,∞(L)}

+ ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

)
.
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Proof. We choose the interpolation operators provided by Assumption 3.2.6 and rename
ju := iu : V → Vh and jθ := iθ : Θ→ Θh. These interpolators satisfy the usual approxima-
tion properties as required in Assumption 3.2.2. Therefore, all the estimates of the proof
of Lemma 3.2.9 remain valid, but we modify the terms T u21, T

θ
21. Assumption 3.2.6 provides

the orthogonality of ju on Du
M and jθ on Dθ

L, hence

T u21 = −(uh · ∇eu,h,ηu,h) =
∑

M∈Mh

((uM − uh) · ∇eu,h,ηu,h)−
∑

M∈Mh

(uM · ∇eu,h,ηu,h)

=
∑

M∈Mh

((uM − uh) · ∇eu,h,ηu,h)M︸ ︷︷ ︸
Tu211

−
∑

M∈Mh

(uM · ∇eu,h − πuM (uM · ∇eu,h),ηu,h)M︸ ︷︷ ︸
Tu212

,

T θ21 = −(uh · ∇eθ,h, ηθ,h) =
∑
L∈Lh

((uL − uh) · ∇eθ,h, ηθ,h)0,L −
∑
L∈Lh

(uL · ∇eθ,h, ηθ,h)0,L

=
∑
L∈Lh

((uL − uh) · ∇eθ,h, ηθ,h)0,L︸ ︷︷ ︸
T θ211

−
∑
L∈Lh

(uL · ∇eθ,h − πθL(uL · ∇eθ,h), ηθ,h)0,L︸ ︷︷ ︸
T θ212

.

Using the inverse inequalities from Assumption 3.2.4 for discrete velocity and temperature
ansatz spaces, Young’s inequality and Assumption 3.2.5 for the streamline direction yields:

T u211 ≤
∑

M∈Mh

((uM − uh) · ∇eu,h,ηu,h)M ≤
∑

M∈Mh

‖∇eu,h‖0,M‖uM − uh‖∞,M‖ηu,h‖0,M

≤ C
∑

M∈Mh

‖uM − uh‖∞,M
hM

‖eu,h‖0,M‖ηu,h‖0,M

≤ C
( ∑
M∈Mh

‖uM − uh‖2∞,MτuM
h2
M

‖eu,h‖20,M
)1/2( ∑

M∈Mh

1
τuM
‖ηu,h‖20,M

)1/2

≤ 1
4ε

∑
M∈Mh

1
τuM
‖ηu,h‖20,M + Cε max

M∈Mh

( τuM
h2
M

‖uM − uh‖2∞,M
)
‖eu,h‖20

≤ 1
4ε

∑
M∈Mh

1
τuM
‖ηu,h‖20,M + Cε max

M∈Mh

(
τuM |uh|2W 1,∞(M)

)
‖eu,h‖20,

T θ211 ≤
∑
L∈Lh

((uL − uh) · ∇eθ,h, ηθ,h)L ≤
∑
L∈Lh

‖∇eθ,h‖0,L‖uL − uh‖∞,L‖ηθ,h‖0,L

≤ 1
4ε

∑
L∈Lh

1
τ θL
‖ηθ,h‖20,L + Cε max

L∈Lh

( τ θL
h2
L

‖uL − uh‖2∞,L
)
‖eθ,h‖20

≤ 1
4ε

∑
L∈Lh

1
τ θL
‖ηθ,h‖20,L + Cε max

L∈Lh

(
τ θL|uh|2W 1,∞(L)

)
‖eθ,h‖20.
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For the terms T u212 and T θ212, we have with the definition of the fluctuation operators and
Young’s inequality

T u212 =
∑

M∈Mh

(κuM (uM · ∇eu,h),ηu,h)M ≤ ε|||eu,h|||2LPS + 1
4ε

∑
M∈Mh

1
τuM
‖ηu,h‖20,M ,

T θ212 =
∑
L∈Lh

(κθL(uL · ∇eθ,h), ηθ,h)0,L ≤ 7ε|[eθ,h]|2LPS + 1
28ε

∑
L∈Lh

1
τ θL
‖ηθ,h‖20,L.

In summary, we obtain

cu(u;u, eu,h)− cu(uh;uh, eu,h)

≤ 1
4ε

∑
M∈Mh

(
1
h2
M

+ 2
τuM

)
‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 4ε|||eu,h|||2LPS

+
[
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}

+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ Cε max

M∈Mh

{τuM |uh|2W 1,∞(M)}
]
‖eu,h‖20,

cθ(u; θ, eθ,h)− cθ(uh; θh, eθ,h)

≤ 1
4ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + C

ε

∑
L∈Lh

1
τ θL
‖ηθ,h‖20,L

+ 3ε|||ηu,h|||2LPS + 3ε|||eu,h|||2LPS + 7ε|[eθ,h]|2LPS

+ 1
2 |θ|W 1,∞(Ω)‖eu,h‖20 + ‖eθ,h‖20

(
1
2 |θ|W 1,∞(Ω) + Cε max

L∈Lh
{τ θL|uh|2W 1,∞(L)}

+ ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

)
.

In order to improve the estimates from Section 3.2.1, we make use of this lemma and the
following additional assumption on the parameter bounds.

Assumption 3.2.15 (Parameter bounds).
Assume that for all M ∈Mh, E ∈ Eh and L ∈ Lh:

τuM (uM ) ≥ 0, γM (uM ) ≥ 0, φE ≥ 0, τ θL(uL) ≥ 0,

max
M∈Mh

γM (uM ) ∈ L∞(0, T ), max
M∈Mh

γM (uM )−1 ∈ L∞(0, T ),

max
E∈Eh

φE ∈ L∞(0, T ), max
E∈Eh

φ−1
E ∈ L∞(0, T ),

max
M∈Mh

τuM (uM )|uM |2 ∈ L∞(0, T ), max
L∈Lh

τ θL(uL)|uL|2 ∈ L∞(0, T ),
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max
M∈Mh

h2
Mτ

u
M (uM )−1 ∈ L∞(0, T ), max

L∈Lh
h2
Lτ

θ
L(uL)−1 ∈ L∞(0, T ),

max
M∈Mh

τuM |uh|2W 1,∞(M) ∈ L
∞(0, T ), max

L∈Lh
τ θL|uh|2W 1,∞(L) ∈ L

∞(0, T ).

Theorem 3.2.16 (Error estimate with compatibility condition).
We consider solutions (u, p, θ) : [0, T ]→ V div ×Q×Θ and (uh, ph, θh) : [0, T ]→ V div

h ×
Qh ×Θh of (2.9)-(2.10) and (3.1)-(3.2) with the following regularity properties

u ∈ L∞(0, T ; [W 1,∞(Ω)]d), θ ∈ L∞(0, T ;W 1,∞(Ω)), p ∈ L2(0, T ;Q ∩ C(Ω)),

∂tu ∈ L2(0, T ; [L2(Ω)]d), ∂tθ ∈ L2(0, T ;L2(Ω)), uh(t) ∈ [W 1,∞(Ω)]d ∀t ∈ [0, T ].

Let Assumptions 3.2.2, 3.2.4, 3.2.5, 3.2.6 and 3.2.15 be valid. Moreover, assume ∇Qh|M ⊂
Du
M for all M ∈Mh and uh(0) = juu0, θh(0) = jθθ0. Then for 0 ≤ t ≤ T , we obtain the

error estimate

‖eu,h‖2L∞(0,t;L2(Ω)) + ‖eθ,h‖2L∞(0,t;L2(Ω)) +
∫ t

0

(
|||(eu,h, ep,h)(τ)|||2LPS + |[eθ,h(τ)]|2LPS

)
dτ

≤ C
∫ t

0
eC
′
G,h(u,θ,uh)(t−τ)

{ ∑
M∈Mh

[(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h(τ)‖20,M

+
( 1
h2
M

+ 1
τuM

)
‖ηu,h(τ)‖20,M + min

(d
ν
,

1
γM

)
‖ηp,h(τ)‖20,M

+ ‖∂tηu,h(τ)‖20,M + τuM |uM |2‖κuM (∇u)(τ)‖20,M
]

+
∑
E∈Eh

[
φE‖[ηp,h(τ)]E‖20,E + χdisc(Qh) 1

φE
‖ηu,h(τ) · nE‖20,E

]
+
∑
L∈Lh

[(
α+ τ θL|uL|2

)
‖∇ηθ,h(τ)‖20,L +

( 1
τ θL

+ β‖g‖∞,L
)
‖ηθ,h(τ)‖20,L

+ τ θL|uL|2‖κθL(∇θ)(τ)‖20,L + ‖∂tηθ,h(τ)‖20,L
]}
dτ

with (ηu,h, ηp,h, ηθ,h) = (u − juu, p − jpp, θ − jθθ), χdisc(Qh) ∈ {0, 1} (vanishing if Qh is
continuous and χdisc(Qh) = 1 if Qh is discontinuous) and Gronwall constant

C ′G(u, θ,uh) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω)

+ max
M∈Mh

{h2
M |u|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

+ max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

+ max
M∈Mh

{
τuM |uh|2W 1,∞(M)

}
+ max
L∈Lh

{
τ θL|uh|2W 1,∞(L)

}
.
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Proof. Consider the interpolation operators ju := iu and jθ := iθ from Assumption 3.2.6 as
in the previous Lemma 3.2.14. For the pressure, choose the interpolation operator jp from
Assumption 3.2.2. They have the usual approximation properties as stated in Assumption
3.2.2. We modify the proof of Theorem 3.2.12 in the sense that the estimate for the
convective terms from Lemma 3.2.14 is taken advantage of. Note that eu,h is no longer
weakly solenoidal.
Subtracting (3.1) from (2.9), testing with (vh, qh) = (eu,h, ep,h) ∈ Vh × Qh and using
Definition 3.2.1 lead to the error equation for the velocity according to:

1
2∂t‖eu,h‖

2
0 + |||(eu,h, ep,h)|||2LPS

= −(∂tηu,h, eu,h)− ν(∇ηu,h,∇eu,h) + (ηp,h,∇ · eu,h)− (ep,h,∇ · ηu,h) + cu(uh;uh, eu,h)

− cu(u;u, eu,h)− su(uh;ηu,h, eu,h)− ih(ηp,h, ep,h)− th(uh;ηu,h, eu,h) + su(uh;u, eu,h)

− β(geθ,h, eu,h)− β(gηθ,h, eu,h).

We use the bounds for the right-hand side as in the proof of Theorem 3.2.12 except for
the convective terms and an additional mixed term. This mixed term −(ep,h,∇ · ηu,h)
does not vanish in general. Since ∇Qh|M ⊂ Du

M for all M ∈ Mh, Lemma 3.2.7 yields
(∇ep,h,ηu,h)M = 0 for all M ∈Mh. Integration by parts gives with normal vectors nE on
edges E

−(ep,h,∇ · ηu,h) = (∇ep,h,ηu,h)−
∑
E∈Eh

([ep,h]E ,ηu,h · nE)E

= −
∑
E∈Eh

([ep,h]E ,ηu,h · nE)E .

In case of continuous discrete pressure, we have [ep,h]E = 0 and thus (ep,h,∇ · ηu,h) = 0.
For discontinuous discrete pressure, we take advantage of the stabilization term ih:

−
∑
E∈Eh

([ep,h]0,E ,ηu,h · nE)E ≤
( ∑
E∈Eh

1
φE
‖ηu,h · nE‖20,E

)1/2
|||(eu,h, ep,h)|||LPS

≤ 1
4ε

∑
E∈Eh

1
φE
‖ηu,h · nE‖20,E + ε|||(eu,h, ep,h)|||2LPS .

Due to Assumption 3.2.6, Lemma 3.2.14 provides a refined estimate of the convective error
term in the momentum equation:

cu(u;u, eu,h)− cu(uh;uh, eu,h)

≤ 1
4ε

∑
M∈Mh

(
1
h2
M

+ 2
τuM

)
‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 4ε|||eu,h|||2LPS
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+
[
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}

+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ Cε max

M∈Mh

{τuM |uh|2W 1,∞(M)}
]
‖eu,h‖20.

Combining these estimates with the upper bounds for the remaining terms from the proof
of Theorem 3.2.12 yields

1
2∂t‖eu,h‖

2
0 + (1− 6ε)|||(eu,h, ep,h)|||2LPS ≤

1
4‖∂tηu,h‖

2
0

+
∑

M∈Mh

[
C

ε

(
1
h2
M

+ 2
τuM

)
‖ηu,h‖20,M + C

ε

(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M

+ C

ε
min

(d
ν
,

1
γM

)
‖ηp,h‖20,M + C

ε
τuM |uM |2‖κuM (∇u)‖20,M

]

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + ε max

M∈Mh

{h2
M |u|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ Cε max

M∈Mh

(
τuM |uh|2W 1,∞(M)

) ]
‖eu,h‖20

+ β‖g‖∞‖eθ,h‖20 + Cβ‖g‖∞‖ηθ,h‖20

+ C

ε

∑
E∈Eh

φE‖[ηp,h]E‖20,E + χdisc(Qh)C
ε

∑
E∈Eh

1
φE
‖ηu,h · nE‖20,E . (3.46)

For the Fourier equation, we proceed in a similar way as in the proof of Theorem 3.2.12:
We subtract (3.2) from (2.10) with ψh = eθ,h ∈ Θh and reorder the terms as follows:

1
2∂t‖eθ,h‖

2
0 + |[eθ,h]|2LPS = −(∂tηθ,h, eθ,h)− α(∇ηθ,h,∇eθ,h)

+ cθ(uh; θh, eθ,h)− cθ(u; θ, eθ,h)− sθ(uh; ηθ,h, eθ,h) + sθ(uh; θ, eθ,h).

We include the estimate from Lemma 3.2.14 for the nonlinear terms

cθ(u; θ, eθ,h)− cθ(uh; θh, eθ,h) ≤ 1
4ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + C

ε

∑
L∈Lh

1
τ θL
‖ηθ,h‖20,L

+ 3ε|||ηu,h|||2LPS + 3ε|||eu,h|||2LPS + 7ε|[eθ,h]|2LPS

+ 1
2 |θ|W 1,∞(Ω)‖eu,h‖20 + ‖eθ,h‖20

(
1
2 |θ|W 1,∞(Ω) + Cε max

L∈Lh
{τ θL|uh|2W 1,∞(L)}

+ ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

)
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and use |||eu,h|||2LPS = |||(eu,h, 0)|||2LPS ≤ |||(eu,h, ep,h)|||2LPS . This results in

1
2∂t‖eθ,h‖

2
0 + (1− 9ε)|[eθ,h]|2LPS ≤

1
4‖∂tηθ,h‖

2
0 + C

ε

∑
L∈Lh

1
τ θL
‖ηθ,h‖20,L

+ C

ε

∑
M∈Mh

1
h2
M

‖ηu,h‖20,M + 3ε|||ηu,h|||2LPS + 3ε|||(eu,h, ep,h)|||2LPS + 1
2 |θ|W 1,∞(Ω)‖eu,h‖20

+
[
1 + 1

2 |θ|W 1,∞(Ω) + ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ Cε max

L∈Lh

(
τ θL|uh|2W 1,∞(L)

)

+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+ C

ε

∑
L∈Lh

[(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,L + τ θL|uL|2‖κθL(∇θ)‖20,L

]
. (3.47)

We utilize
|||ηu,h|||2LPS ≤

∑
M∈Mh

(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M ,

denote with C > 0 a constant independent of the problem parameters, hM , hL and the
solutions and sum up the intermediate estimates for velocity (3.46) and temperature (3.47):

1
2∂t‖eu,h‖

2
0 + (1− 9ε)|||(eu,h, ep,h)|||2LPS + 1

2∂t‖eθ,h‖
2
0 + (1− 9ε)|[eθ,h]|2LPS

≤ 1
4‖∂tηu,h‖

2
0 + 1

4‖∂tηθ,h‖
2
0 + C

ε

∑
M∈Mh

(
1
h2
M

+ 1
τuM

)
‖ηu,h‖20,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + 1

2 |θ|W 1,∞(Ω) + ε max
M∈Mh

{h2
M |u|2W 1,∞(M)}

+ C

ε
max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

+ Cε max
M∈Mh

{
τuM |uh|2W 1,∞(M)

}]
‖eu,h‖20

+
∑

M∈Mh

(
C

ε
+ Cε

) (
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M

+ C

ε

∑
M∈Mh

[
min

(d
ν
,

1
γM

)
‖ηp,h‖20,M + τuM |uM |2‖κuM (∇u)‖20,M

]
+ C

ε

∑
E∈Eh

φE‖[ηp,h]E‖20,E + χdisc(Qh)C
ε

∑
E∈Eh

1
φE
‖ηu,h · nE‖20,E

+
∑
L∈Lh

(
C

ε

1
τ θL

+ Cβ‖g‖∞,L

)
‖ηθ,h‖20,L

+
[
1 + β‖g‖∞ + 1

2 |θ|W 1,∞(Ω) + ε max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ Cε max

L∈Lh

(
τ θL|uh|2W 1,∞(L)

)
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+ C

ε
max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+ C

ε

∑
L∈Lh

[(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,L + τ θL|uL|2‖κθL(∇θ)‖20,L

]
.

The choice ε = 1
18 gives

∂t‖eu,h‖20 + |||(eu,h, ep,h)|||2LPS + ∂t‖eθ,h‖20 + |[eθ,h]|2LPS

. ‖∂tηu,h‖20 + ‖∂tηθ,h‖20 +
∑

M∈Mh

(
1
h2
M

+ 1
τuM

)
‖ηu,h‖20,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω) + max

M∈Mh

{h2
M |u|2W 1,∞(M)}

+ max
M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ max

M∈Mh

{
τuM |uh|2W 1,∞(M)

}]
‖eu,h‖20

+
∑

M∈Mh

(
ν + τuM |uM |2 + γMd

)
‖∇ηu,h‖20,M

+
∑

M∈Mh

[
min

(d
ν
,

1
γM

)
‖ηp,h‖20,M + τuM |uM |2‖κuM (∇u)‖20,M

]
+
∑
E∈Eh

φE‖[ηp,h]E‖20,E + χdisc(Qh)
∑
E∈Eh

1
φE
‖ηu,h · nE‖20,E

+
∑
L∈Lh

[(
1
τ θL

+ β‖g‖∞,L

)
‖ηθ,h‖20,L +

(
α+ τ θL|uL|2

)
‖∇ηθ,h‖20,L + τ θL|uL|2‖κθL(∇θ)‖20,L

]

+
[
1 + β‖g‖∞ + |θ|W 1,∞(Ω) + max

M∈Mh

{h2
M |θ|2W 1,∞(M)}+ max

L∈Lh

(
τ θL|uh|2W 1,∞(L)

)

+ max
M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20.

We can apply Gronwall’s Lemma A.3.5 for ‖(eu,h, eθ,h)‖20 := ‖eu,h‖20+‖eθ,h‖20 since all terms
on the right-hand side are integrable in time: This holds due to the regularity assumptions
on u, θ, Assumptions 3.2.3, 3.2.15 and g ∈ L∞(0, T ; [L∞(Ω)]d). The Gronwall constant is

C ′G(u, θ,uh) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω)

+ max
M∈Mh

{h2
M |u|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

+ max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

+ max
M∈Mh

{
τuM |uh|2W 1,∞(M)

}
+ max
L∈Lh

{
τ θL|uh|2W 1,∞(L)

}
As the initial errors eu,h(0), eθ,h(0) vanish, we establish the desired result.
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Corollary 3.2.17 (Method of quasi-optimal order with compatibility condition).
Let Assumptions 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6 and 3.2.15 be valid. In addition, we require
∇Qh|M ⊂ Du

M for all M ∈ Mh and uh(0) = juu0, θh(0) = jθθ0. Let the solutions
(u, p, θ) : [0, T ]→ V div ×Q×Θ, (uh, ph, θh) : [0, T ]→ V div

h ×Qh×Θh of (2.9)-(2.10) and
(3.1)-(3.2) satisfy

u ∈ L∞(0, T ; [W 1,∞(Ω)]d) ∩ L2(0, T ; [W ku+1,2(Ω)]d),

∂tu ∈ L2(0, T ; [W ku,2(Ω)]d), p ∈ L2(0, T ;W kp+1,2(Ω) ∩ C(Ω)),

θ ∈ L∞(0, T ;W 1,∞(Ω)) ∩ L2(0, T ;W kθ+1,2(Ω)),

∂tθ ∈ L2(0, T ;W kθ,2(Ω)),

uh(t) ∈ [W 1,∞(Ω)]d ∀t ∈ [0, T ].

Let χdisc(Qh) ∈ {0, 1} (vanishing if Qh is continuous and χdisc(Qh) = 1 if Qh is discon-
tinuous). The error can be bounded for 0 ≤ t ≤ T by

‖ξu,h‖2L∞(0,t;L2(Ω)) + ‖ξθ,h‖2L∞(0,t;L2(Ω)) +
∫ t

0

(
|||(ξu,h, ξp,h)(τ)|||2LPS + |[ξθ,h(τ)]|2LPS

)
dτ

≤ C
∫ t

0
eC
′
G,h(u,θ,uh)(t−τ)

{ ∑
M∈Mh

h2ku
M

[(
ν + τuM |uM |2 + γMd+ 1 + h2

M

τuM

+ χdisc(Qh) max
T⊂M,E∈∂T

{hT
φE

})
‖u(τ)‖2Wku+1,2(ωM )

+ ‖∂tu(τ)‖2Wku,2(ωM ) + τuM |uM |2h
2(su−ku)
M ‖u(τ)‖2W su+1,2(ωM )

]
+

∑
M∈Mh

h
2(kp+1)
M

[
min

(d
ν
,

1
γM

)
+ max
T⊂M,E∈∂T

{φE
hT

}]
‖p(τ)‖2

Wkp+1,2(ωM )

+
∑
L∈Lh

h2kθ
L

[(
α+ τ θL|uL|2 + h2

L

τ θL
+ h2

Lβ‖g‖∞,L
)
‖θ(τ)‖2

Wkθ+1,2(ωL)

+ τ θL|uL|2h
2(sθ−kθ)
L ‖θ(τ)‖2W sθ+1,2(ωL) + ‖∂tθ(τ)‖2

Wkθ,2(ωL)

]}
dτ (3.48)

with su ∈ {0, · · · , ku}, sθ ∈ {0, · · · , kθ} and the Gronwall constant

C ′G(u, θ,uh) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω)

+ max
M∈Mh

{h2
M |u|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}

+ max
M∈Mh

{h2
M |θ|2W 1,∞(M)}+ max

M∈Mh

{h2
M

γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

+ max
M∈Mh

{
τuM |uh|2W 1,∞(M)

}
+ max
L∈Lh

{
τ θL|uh|2W 1,∞(L)

}
. (3.49)
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Proof. We split the semi-discrete errors according to

ξu,h = ηu,h + eu,h, ξp,h = ηp,h + ep,h, ξθ,h = ηθ,h + eθ,h

with the same interpolation operators as in Theorem 3.2.16 and use the triangle inequality.
Most of the terms can be estimated as in Corollary 3.2.13. In addition, we take advantage
of the trace inequality A.3.3:

χdisc(Qh)
∑
E∈Eh

1
φE
‖ηu,h(τ) · nE‖20,E

≤ χdisc(Qh)Ctr
∑

M∈Mh

∑
T⊂M

max
E∈∂T

1
φE

(h−1
T ‖ηu,h(τ)‖20,T + hT ‖∇ηu,h(τ)‖20,T )

≤ χdisc(Qh)C
∑

M∈Mh

max
T⊂M,E∈∂T

{hT
φE

}
h2ku
M ‖u(τ)‖2Wku+1,2(ωM )

with χdisc(Qh) ∈ {0, 1}. Here, we used hT ≤ hM ≤ ChT and the approximation property
of juu due to Assumption 3.2.6. This concludes the proof.

Indeed, we avoid the mesh restriction (3.43) in the above results. A drawback is that the
Gronwall constant (3.49) now depends on τuM |uh|2W 1,∞(M) and τ θL|uh|2W 1,∞(L) and thus on
the discrete velocity. With a suitable choice of τuM and τ θL, we can relativize this disadvan-
tage.
Compared to the previous Section 3.2.1, more premises are needed. In the following, we dis-
cuss possible settings where Theorem 3.2.16 and Corollary 3.2.17 are applicable. In order to
establish Theorem 3.2.16, we require the additional Assumptions 3.2.6 and ∇Qh|M ⊂Du

M

for allM ∈Mh. The challenge is to guarantee Assumption 3.2.3 and 3.2.6 simultaneously:
3.2.3 requires a certain richness of the coarse space compared to the fine space so that the
fluctuation operator has the desired approximation property, whereas the fine space has
to be large enough, according to Lemma 3.2.7, such that Assumption 3.2.6 is satisfied.
In the argumentation below, we restrict ourselves to the fine and coarse velocity ansatz
spaces; the temperature spaces can then be chosen in the same way. As shown in [MST07],
the approximation property of κuM (Assumption 3.2.3) is fulfilled, for example, if the poly-
nomials of degree less or equal than su−1 ≤ ku−1 are in the coarse space: [Psu−1(M)]d ⊂
Du
M . Consider su = ku. If we choose Qh = Pku−1 or Qh = P−(ku−1) (in order to guarantee

discrete inf-sup stability 2.2.1), the condition ∇Qh|M ⊂Du
M holds.

From [MST07,MT14], we obtain the following variants for (Vh/Du
M ) ∧Qh ∧ (Θh/D

θ
M ):

• One-level methods:
(P+
ku
/Pku−1) ∧ Pku−1 ∧ (P+

kθ
/Pkθ−1), (P+

ku
/Pku−1) ∧ P−(ku−1) ∧ (P+

kθ
/Pkθ−1),

(Q+
ku
/Pku−1) ∧ P−(ku−1) ∧ (Q+

kθ
/Pkθ−1), (Qku/Pku−1) ∧ P−(ku−1) ∧ (Qkθ/Pkθ−1).



3. Semi-Discrete Analysis for the Oberbeck-Boussinesq Model 65

• Two-level methods (for the construction of the coarse space, see [MST07,MT14]):
(Pku/Pku−1) ∧ P−(ku−1) ∧ (Pkθ/Pkθ−1), (Qku/Qku−1) ∧Q−(ku−1) ∧ (Qkθ/Qkθ−1),
(Qku/Pku−1) ∧ P−(ku−1) ∧ (Qkθ/Pkθ−1).

For these choices of finite element spaces, the above analysis is valid. Note that we consider
only su = ku and sθ = kθ. From (3.48) in Corollary 3.2.17, we obtain a method of quasi-
optimal order k if k := ku = kp + 1 = kθ. Balancing the error bounds, we obtain a choice
of the stabilization parameters as

γM = γ0, χdisc(Qh)φ0hT ≤ φE ≤ φ0hT ,

τu0h
2
M ≤ τuM (uM ) ≤ τu0‖uh‖−2

W 1,∞(M), τ θ0h
2
L ≤ τ θL(uL) ≤ τ θ0‖uh‖−2

W 1,∞(L)
(3.50)

with tuning constants γ0, φ0, φ0, τ
u
0 , τ

u
0 , τ

θ
0, τ

θ
0 = O(1). The reasons for the choice of γM

are as in Section 3.2.1. For continuous pressure spaces Qh, we may omit the pressure
stabilization since in this case χdisc(Qh) = 0. Note that the parameter bounds needed in
Assumption 3.2.15 are met since we have for the streamline direction (due to Assumption
3.2.5)

τuM |uM |2 ≤ CτuM (uM )‖uh‖2∞,M ≤ CτuM (uM )‖uh‖2W 1,∞(M)

and analogously for τ θL|uL|2. Therefore, the Gronwall constant C ′G,h(u, θ,uh) does not
blow up.

3.3. Pressure Estimate

In order to derive an upper bound for the pressure error, we proceed in a similar manner
as in Corollary 3.1.3 where stability of ph is established.

Theorem 3.3.1 (Pressure estimate).
Let (u, p, θ) : [0, T ]→ V div ×Q×Θ, (uh, ph, θh) : [0, T ]→ V div

h ×Qh ×Θh be solutions of
(2.9)-(2.10) and (3.1)-(3.2) satisfying

u ∈ L∞(0, T ; [W 1,∞(Ω)]d), uh ∈ L∞(0, T ; [L∞(Ω)]d).

Then we obtain the a priori estimate for the semi-discrete pressure error ξp,h = p− ph for
0 ≤ t ≤ T

‖ξp,h‖2L2(0,t;L2(Ω)) ≤
C

β2
h

{
‖∂tξu,h‖2L2(0,t;L2(Ω)) + β2‖g‖2L∞(0,t;L∞(Ω))‖ξθ,h‖

2
L2(0,t;L2(Ω))

+
(
‖u‖2L2(0,t;L∞(Ω)) + ‖uh‖2L2(0,t;L∞(Ω))

)
‖ξu,h‖2L∞(0,t;L2(Ω))
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+
∫ t

0

(
ν + C max

M∈Mh

{γ−1
M ‖uh‖

2
∞,M}+ max

M∈Mh

{τuM |uM |2}+ max
M∈Mh

{γMd}
)
|||ξu,h|||2LPSdτ

+
∫ t

0
max
M∈Mh

{τuM |uM |2}
∑

M∈Mh

τuM |uM |2‖κuM (∇u)‖20,Mdτ
}

with a constant C > 0 independent of the problem parameters, hM , hL and the solutions.

Proof. The discrete inf-sup condition from Assumption 2.2.1 gives that for ξp,h ∈ Qh, there
exists a unique vh ∈ Vh with

∇ · vh = ξp,h, ‖∇vh‖0 ≤
1
βh
‖ξp,h‖0.

We subtract (3.1) from (2.9) and use (vh, 0) ∈ Vh ×Qh as a test function. This leads to

βh‖∇vh‖0‖ξp,h‖0 ≤ ‖ξp,h‖20 = (ξp,h,∇ · vh) = (∂tξu,h,vh) + (ν∇ξu,h,∇vh)

+ cu(u;u,vh)− cu(uh;uh,vh) + (βgξθ,h,vh)− su(uh;uh,vh)− th(uh;uh,vh)

≤ ‖∇vh‖0
(
‖∂tξu,h‖−1 + ν‖∇ξu,h‖0 + β‖g‖∞‖ξθ,h‖−1

)
+ cu(u;u,vh)− cu(uh;uh,vh) + su(uh; ξu,h,vh)− su(uh;u,vh)

+ th(uh; ξu,h,vh),

where we used (∇ · u, q) = 0 for all q ∈ L2(Ω) in the last term. We further have

su(uh; ξu,h,vh) ≤ su(uh; ξu,h, ξu,h)1/2su(uh;vh,vh)1/2

≤ |||ξu,h|||LPS max
M∈Mh

{
√
τuM |uM |}‖∇vh‖0,

−su(uh;u,vh) ≤
( ∑
M∈Mh

τuM |uM |2‖κuM (∇u)‖20,M
)1/2

max
M∈Mh

{
√
τuM |uM |}‖∇vh‖0,

th(uh; ξu,h,vh) ≤ |||ξu,h|||LPS max
M∈Mh

{
√
γMd}‖∇vh‖0.

Integration by parts of the convective terms, using (∇ · u, q) = 0 for all q ∈ L2(Ω) and
applying the Poincaré inequality A.3.2 yield:

cu(u;u,vh)− cu(uh;uh,vh)

= −(u− uh,u · ∇vh)− (uh, (u− uh) · ∇vh) + 1
2(∇ · (u− uh),uh · vh)

≤
(
‖u‖∞ + ‖uh‖∞

)
‖ξu,h‖0‖∇vh‖0 + C max

M∈Mh

{γ−1/2
M ‖uh‖∞,M}|||ξu,h|||LPS‖∇vh‖0.
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We obtain

βh‖ξp,h‖0 ≤ ‖∂tξu,h‖0 + β‖g‖∞‖ξθ,h‖0 +
(
‖u‖∞ + ‖uh‖∞

)
‖ξu,h‖0

+
(√

ν + C max
M∈Mh

{γ−1/2
M ‖uh‖∞,M}+ max

M∈Mh

{
√
τuM |uM |}+ max

M∈Mh

{
√
γMd}

)
|||ξu,h|||LPS

+
( ∑
M∈Mh

τuM |uM |2‖κuM (∇u)‖20,M
)1/2

max
M∈Mh

{
√
τuM |uM |}.

Squaring and integration in time result in the claim.

In the above estimate for the pressure error ξp,h, the results from Sections 3.2.1 or 3.2.2
can be inserted if the respective requirements are met.

Remark 3.3.2. If the convective terms are estimated in a standard way (using Lemma
A.3.7), the dependence on ‖uh‖∞ can be avoided, because we calculate

cu(u;u,vh)− cu(uh;uh,vh)

= cu(u− uh;u,vh)− cu(u− uh;u− uh,vh) + cu(u;u− uh,vh)

≤ C
(
‖u‖1 + ‖ξu,h‖1

)
‖ξu,h‖1‖∇vh‖0

≤ C
(
‖u‖1 + ν−1/2|||ξu,h|||LPS

)
ν−1/2|||ξu,h|||LPS‖∇vh‖0.

However, the resulting error bound is not stable for vanishing ν.

Remark 3.3.3. The above a priori error estimate of the pressure suffers from the term
‖∂tξu,h‖L2(0,t;L2(Ω)). In [DAL15], we show for the Oseen problem that an error reduction
occurs. A similar result was obtained in [BF07] for an edge stabilization method of the
Navier-Stokes problem.





4. Fully Discrete Analysis

This chapter is dedicated to the behavior of the fully discrete algorithm in terms of con-
vergence in time and space where grad-div and LPS-SU stabilizations are incorporated.
We prove the stability of the fully discrete solution of the stabilized Oberbeck-Boussinesq
model (3.1)-(3.2) and present a consistency analysis for the stabilized Navier-Stokes equa-
tions. In Section 2.3.1, we introduced the fully discrete scheme. For clarity, we repeat the
important equations here and introduce some notations and simplifications we use in the
following analysis.
Consider equidistant time steps of size ∆t. Let 0 = t0 < t1 < · · · < tN = T . For u, v ∈ V
and ψ, θ ∈ Θ, the LPS terms at time tn are written as

su(w,u,y,v) :=
∑

M∈Mh

τnM (κuM ((wM · ∇)u), κuM ((yM · ∇)v))M ,

sθ(w, ψ,y, θ) :=
∑
L∈Lh

τnL((κθL(wL · ∇)ψ), κθL((yL · ∇)θ))L

with element-wise constant wM , wL, yM , yL ∈ Rd as introduced in Section 2.2.3 and
stabilization parameters that coincide with the semi-discrete, time-continuous ones at all
tn:

τnM = τuM (tn), τnL = τ θL(tn) for M ∈Mh, L ∈ Lh.

Note that this notation coincides with the definition from Section 2.2 if the first and third
arguments are equal. For convenience, we assume a constant grad-div parameter γ := γM

for all M ∈Mh, i.e.,

th(ũnht; ũnht,vh) = γ(∇ · ũnht,∇ · vh),

and the case ih ≡ 0, since we use a continuous discrete pressure space for our simulations
later. The extension to cell-wise linear and time dependent γnM = γM (tn) can be proven
easily.
Let θn∗ht := 2θn−1

ht − θ
n−2
ht . For the analysis of the splitting algorithm, we consider the case

of an incremental method, i.e., χrot = 0. Then the fully discretized and stabilized scheme
reads:

69
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Find ũnht ∈ Vh such that for all vh ∈ Vh:(
3ũnht − 4un−1

ht + un−2
ht

2∆t ,vh

)
+ ν(∇ũnht,∇vh) + cu(ũnht; ũnht,vh) + th(ũnht; ũnht,vh)

+su(ũnht, ũnht, ũnht,vh)− (pn−1
ht ,∇ · vh) + β(g(tn)θn∗ht ,vh) = (fu(tn),vh),

ũnht|∂Ω = 0. (4.1)

Find unht ∈ V div
h and pnht ∈ Qh such that for all yh ∈ Yh and qh ∈ Qh:(3unht − 3ũnht

2∆t +∇(pnht − pn−1
ht ),yh

)
= 0,

(unht,∇qh) = 0,

unht|∂Ω = 0. (4.2)

Find θnht ∈ Θh such that for all ψh ∈ Θh:

(Dtθ
n
ht, ψh) + α(∇θnht,∇ψh) + cθ(ũnht; θnht, ψh) + sθ(ũnht, θnht, ũnht, ψh) = (fθ(tn), ψh),

θnht|∂Ω = 0. (4.3)

The above scheme provides the existence of ũnht, unht, pnht, θnht in every time step 1 ≤ n ≤ N .
This can be understood via induction. Given the solutions at time tn−1 and tn−2, a solution
ũnht of (4.1) exists by standard theory. The velocity unht is given as the L2-projection of
ũnht onto V div

h 6= {0}. All yh ∈ Yh can be written as yh = wh +∇qh ∈ Yh = V div
h ⊕∇Qh.

If we insert unht := Pdivũ
n
ht into the projection equation (4.2), we have:

(3unht − 3ũnht
2∆t +∇(pnht − pn−1

ht ),yh
)

= 3
2∆t(Pdivũ

n
ht − ũnht,wh) + (∇(pnht − pn−1

ht ),wh)

+ 3
2∆t(u

n
ht − ũnht,∇qh) + (∇(pnht − pn−1

ht ),∇qh)

= 3
2∆t(u

n
ht − ũnht,∇qh) + (∇(pnht − pn−1

ht ),∇qh).

Thus, the projection equation becomes a Poisson problem for the pressure pnht. Therefore,
its existence is guaranteed and (4.2) is satisfied. Obviously, θnht exists as well.
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4.1. Stability of the Fully Discretized Quantities

In order to obtain stability for the fully discretized quantities, we are interested in suitable
norms in which we want to control the solution and errors.

Definition 4.1.1 (Time-discrete norm).
Let vn ∈ A be vector-valued and ψn ∈ B be scalar-valued quantities, where A and B are
normed spaces, 1 ≤ n ≤ N . Let v = (v1, . . . ,vN ) ∈ AN and ψ = (ψ1, . . . , ψN ) ∈ BN . The
norms we want to control are defined by

‖v‖2l2(0,T ;A) := ∆t
N∑
n=1
‖vn‖2A, ‖ψ‖2l2(0,T ;B) := ∆t

N∑
n=1
‖ψn‖2B,

‖v‖l∞(0,T ;A) := max
1≤n≤N

‖vn‖A, ‖ψ‖l∞(0,T ;B) := max
1≤n≤N

‖ψn‖B.

We denote analogously

‖v‖2l2(0,T ;LPS) := ∆t
N∑
n=1
|||vn|||2LPS

= ∆t
N∑
n=1

(
ν‖∇vn‖20 + γ‖∇ · vn‖20 + su(ũnht,vn, ũnht,vn)

)
,

‖ψ‖2l2(0,T ;LPS) := ∆t
N∑
n=1
|[ψn]|2LPS = ∆t

N∑
n=1

(
α‖∇ψn‖20 + sθ(ũnht, ψn, ũnht, ψn)

)
.

For quantities r that are continuous in time, we identify r with (r(t1), . . . , r(tN ))T , where
tn := n∆t.

Theorem 4.1.2 (Stability of the stabilized Oberbeck-Boussinesq model).
Let fu ∈ l2(0, T ; [L2(Ω)]d), fθ ∈ l2(0, T ;L2(Ω)) and g ∈ l∞(0, T ; [L∞(Ω)]d). With C > 0,
we have the following stability result for solutions (ũht,uht, pht, θht) ∈ (Vh)N × (V div

h )N ×
(Qh)N × (Θh)N of (4.1)-(4.3):

‖ũht‖2l∞(0,T ;L2(Ω)) + ‖ũht‖2l2(0,T ;LPS) + (∆t)2‖∇pht‖2l∞(0,T ;L2(Ω))

+ ‖θht‖2l∞(0,T ;L2(Ω)) + ‖θht‖2l2(0,T ;LPS)

≤ CeCG,OB
[
‖ũ0

ht‖20 + ‖ũ1
ht‖20 + ‖2u1

ht − u0
ht‖20 + |||ũ0

ht|||2LPS + |||ũ1
ht|||2LPS

+ (∆t)2‖∇p0
ht‖20 + (∆t)2‖∇p1

ht‖20 + ‖θ1
ht‖20 + ‖θ0

ht‖20 + ‖2θ1
ht − θ0

ht‖20

+ |[θ0
ht]|2LPS + |[θ1

ht]|2LPS +
(
β‖g‖l∞(0,T ;L∞(Ω))

)−1 (
‖fu‖2l2(0,T ;L2(Ω)) + ‖fθ‖2l2(0,T ;L2(Ω))

) ]
,
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provided 3∆tβ‖g‖l∞(0,T ;L∞(Ω)) < 1 and with a Gronwall constant CG,OB behaving like

CG,OB ∼ T
(
1− 3∆tβ‖g‖l∞(0,T ;L∞(Ω))

)−1
. (4.4)

Proof. Due to the projection step (4.2) tested with yh = 8
3(∆t)2∇pn−1

ht and the fact that
unht ∈ V

div
h , we have

− 4∆t(ũnht,∇pn−1
ht ) + 8(∆t)2

3 (∇(pnht − pn−1
ht ),∇pn−1

ht ) = 0.

Testing with vh = 4∆tũnht in (4.1) yields due to skew-symmetry of cu

2
(
3ũnht − 4un−1

ht + un−2
ht , ũnht

)
+ 4∆tν(∇ũnht,∇ũnht) + 4∆tγ(∇ · ũnht,∇ · ũnht)

+ 4∆tsu(ũnht, ũnht, ũnht, ũnht)

= −4∆tcu(ũnht; ũnht, ũnht) + 4∆t(fu(tn), ũnht)− 4∆t(∇pn−1
ht , ũnht)− 4∆tβ(g(tn)θn∗ht , ũnht)

= 4∆t(fu(tn), ũnht)− 4∆t(∇pn−1
ht , ũnht)− 4∆tβ(g(tn)(2θn−1

ht − θ
n−2
ht ), ũnht).

We add these two equations together and establish using Young’s inequality

2
(
3ũnht − 4un−1

ht + un−2
ht , ũnht

)
+ 4∆tν‖∇ũnht‖20 + 4∆tγ‖∇ · ũnht‖20

+ 4∆tsu(ũnht, ũnht, ũnht, ũnht) + 8
3(∆t)2(∇(pnht − pn−1

ht ),∇pn−1
ht )

= 4∆t(fu(tn), ũnht)− 4∆tβ(g(tn)(2θn−1
ht − θ

n−2
ht ), ũnht)

≤ 5∆tβ‖g(tn)‖∞
3 ‖ũnht‖20 + 12∆t

5β‖g(tn)‖∞
‖fu(tn)‖20 + 4∆tβ‖g(tn)‖∞

3 ‖ũnht‖20

+ 3∆tβ‖g(tn)‖∞‖2θn−1
ht − θ

n−2
ht ‖

2
0

≤ 3∆tβ‖g(tn)‖∞‖ũnht‖20 + 12∆t
5β‖g(tn)‖∞

‖fu(tn)‖20 + 3∆tβ‖g(tn)‖∞‖2θn−1
ht − θ

n−2
ht ‖

2
0.

(4.5)

Denote δtan := an − an−1 and δtta
n := δt(δtan). The first term on the left-hand side is

splitted according to

2(3ũnht − 4un−1
ht + un−2

ht , ũnht) = 6(ũnht, ũnht − unht)

+ 2(ũnht − unht, 3unht − 4un−1
ht + un−2

ht ) + 2(unht, 3unht − 4un−1
ht + un−2

ht )

= I1 + I2 + I3

with I1 := 3‖ũnht‖20 + 3‖unht − ũnht‖20 − 3‖unht‖20,

I2 := 2(ũnht − unht, 3unht − 4un−1
ht + un−2

ht ),

I3 := ‖unht‖20 + ‖2unht − un−1
ht ‖

2
0 + ‖δttunht‖20 − ‖un−1

ht ‖
2
0 − ‖2un−1

ht − u
n−2
ht ‖

2
0,
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where the following identities were taken advantage of:

2(a, a− b) = ‖a‖20 + ‖a− b‖20 − ‖b‖20, (4.6)

2(a, 3a− 4b+ c) = ‖a‖20 + ‖2a− b‖20 + ‖a− 2b+ c‖20 − ‖b‖20 − ‖2b− c‖20. (4.7)

The second term I2 vanishes using (4.2) and due to unht ∈ V div
h :

3
4∆tI2 = (∇(pnht − pn−1

ht ), 3unht − 4un−1
ht + un−2

ht )

= −(pnht − pn−1
ht ,∇ · (3unht − 4un−1

ht + un−2
ht )) = 0.

We deploy this splitting and apply identity (4.6) to 8
3(∆t)2(∇(pnht−p

n−1
ht ),∇pn−1

ht ) in (4.5):

3‖ũnht‖20 + 3‖unht − ũnht‖20 − 2‖unht‖20 + ‖2unht − un−1
ht ‖

2
0 + 4

3(∆t)2‖∇pnht‖20

+ 4∆tν‖∇ũnht‖20 + 4∆tγ‖∇ · ũnht‖20 + ‖δttunht‖20 + 4∆tsu(ũnht, ũnht, ũnht, ũnht)

≤ ‖ũn−1
ht ‖

2
0 + ‖2un−1

ht − u
n−2
ht ‖

2
0 + 4

3(∆t)2‖∇pn−1
ht ‖

2
0 + 4

3(∆t)2‖∇(pnht − pn−1
ht )‖20

+ 3∆tβ‖g(tn)‖∞‖ũnht‖20 + 12∆t
5β‖g(tn)‖∞

‖fu(tn)‖20 + 3∆tβ‖g(tn)‖∞‖2θn−1
ht − θ

n−2
ht ‖

2
0.

Then we use that ‖unht‖0 ≤ ‖ũ
n
ht‖0 because unht = Pdivũ

n
ht is an orthogonal L2-projection:

‖ũnht‖20 + 3‖unht − ũnht‖20 + ‖2unht − un−1
ht ‖

2
0 + 4

3(∆t)2‖∇pnht‖20

+ 4∆tν‖∇ũnht‖20 + 4∆tγ‖∇ · ũnht‖20 + ‖δttunht‖20 + 4∆tsu(ũnht, ũnht, ũnht, ũnht)

≤ ‖ũn−1
ht ‖

2
0 + ‖2un−1

ht − u
n−2
ht ‖

2
0 + 4

3(∆t)2‖∇pn−1
ht ‖

2
0 + 4

3(∆t)2‖∇(pnht − pn−1
ht )‖20

+ 3∆tβ‖g(tn)‖∞‖ũnht‖20 + 12∆t
5β‖g(tn)‖∞

‖fu(tn)‖20 + 3∆tβ‖g(tn)‖∞‖2θn−1
ht − θ

n−2
ht ‖

2
0.

The projection equation (4.2) tested with yh = ∇(pnht − p
n−1
ht ) yields

2∆t
3 ‖∇(pnht − pn−1

ht )‖20 = −(unht − ũnht,∇(pnht − pn−1
ht ))

≤ ‖unht − ũnht‖0‖∇(pnht − pn−1
ht )‖0

⇒ 4
3(∆t)2‖∇(pnht − pn−1

ht )‖20 ≤ 3‖unht − ũnht‖20.

We insert this in the previous estimate and obtain

‖ũnht‖20 + ‖2unht − un−1
ht ‖

2
0 + 4

3(∆t)2‖∇pnht‖20 + 4∆tν‖∇ũnht‖20

+ 4∆tγ‖∇ · ũnht‖20 + ‖δttunht‖20 + 4∆tsu(ũnht, ũnht, ũnht, ũnht)
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≤ ‖ũn−1
ht ‖

2
0 + ‖2un−1

ht − u
n−2
ht ‖

2
0 + 4

3(∆t)2‖∇pn−1
ht ‖

2
0 + 3∆tβ‖g(tn)‖∞‖ũnht‖20

+ 12∆t
5β‖g(tn)‖∞

‖fu(tn)‖20 + 3∆tβ‖g(tn)‖∞‖2θn−1
ht − θ

n−2
ht ‖

2
0. (4.8)

For the temperature, we test (4.3) with ψh = 4∆tθnht and take advantage of the skew-
symmetry of cθ:

2
(
3θnht − 4θn−1

ht + θn−2
ht , θnht

)
+ 4∆tα(∇θnht,∇θnht) + 4∆tsθ(ũnht, θnht, ũnht, θnht)

= −4∆tcθ(ũnht; θnht, θnht) + 4∆t(fθ(tn), θnht)

= 4∆t(fθ(tn), θnht) ≤ 3∆tβ‖g(tn)‖∞‖θnht‖20 + 4∆t
3β‖g(tn)‖∞

‖fθ(tn)‖20.

For the first term on the left-hand side, it holds due to identity (4.7):

2(3θnht − 4θn−1
ht + θn−2

ht , θnht) = ‖θnht‖20 + ‖2θnht − θn−1
ht ‖

2
0 + ‖δttθnht‖20

− ‖θn−1
ht ‖

2
0 − ‖2θn−1

ht − θ
n−2
ht ‖

2
0.

We obtain

‖θnht‖20 + ‖2θnht − θn−1
ht ‖

2
0 + ‖δttθnht‖20 + 4∆tα‖∇θnht‖20 + 4∆tsθ(ũnht, θnht, ũnht, θnht)

≤ ‖θn−1
ht ‖

2
0 + ‖2θn−1

ht − θ
n−2
ht ‖

2
0 + 3∆tβ‖g(tn)‖∞‖θnht‖20 + 4∆t

3β‖g(tn)‖∞
‖fθ(tn)‖20. (4.9)

Adding (4.8) and (4.9) and summing up from n = 2 to m ≤ N give

‖ũmht‖20 + ‖2umht − um−1
ht ‖

2
0 + 4

3(∆t)2‖∇pmht‖20 + ‖θmht‖20 + ‖2θmht − θm−1
ht ‖

2
0

+
m∑
n=2

[
4∆tν‖∇ũnht‖20 + 4∆tγ‖∇ · ũnht‖20 + ‖δttunht‖20 + ‖δttθnht‖20

+ 4∆tα‖∇θnht‖20 + 4∆tsu(ũnht, ũnht, ũnht, ũnht) + 4∆tsθ(ũnht, θnht, ũnht, θnht)
]

≤ ‖ũ1
ht‖20 + ‖2u1

ht − u0
ht‖20 + 4

3(∆t)2‖∇p1
ht‖20

+ ‖θ1
ht‖20 + ‖2θ1

ht − θ0
ht‖20 + ∆t

m∑
n=2

3β‖g(tn)‖∞‖2θn−1
ht − θ

n−2
ht ‖

2
0

+ ∆t
m∑
n=2

3β‖g(tn)‖∞
(
‖ũnht‖20 + ‖θnht‖20

)
+

m∑
n=2

∆t
β‖g(tn)‖∞

(12
5 ‖fu(tn)‖20 + 4

3‖fθ(tn)‖20
)

≤ ‖ũ1
ht‖20 + ‖2u1

ht − u0
ht‖20 + 4

3(∆t)2‖∇p1
ht‖20 + ‖θ1

ht‖20 + ‖2θ1
ht − θ0

ht‖20

+ ∆t
m∑
n=1

3β‖g(tn)‖∞
(
‖ũnht‖20 + ‖θnht‖20 + ‖2θnht − θn−1

ht ‖
2
0

)
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+ ∆t
β‖g‖l∞(0,T ;L∞(Ω))

m∑
n=2

(12
5 ‖fu(tn)‖20 + 4

3‖fθ(tn)‖20
)
.

Provided 3∆tβ‖g‖l∞(0,T ;L∞(Ω)) < 1, the discrete Gronwall Lemma A.3.6 can be applied
for ‖ũmht‖20 + ‖θmht‖20 + ‖2θmht − θ

m−1
ht ‖20. Hence, for 2 ≤ m ≤ N :

‖ũmht‖20 + (∆t)2‖∇pmht‖20 + ‖θmht‖20 + ‖2θmht − θm−1
ht ‖

2
0

+ ∆t
m∑
n=2

[
ν‖∇ũnht‖20 + γ‖∇ · ũnht‖20 + α‖∇θnht‖20

+ su(ũnht, ũnht, ũnht, ũnht) + sθ(ũnht, θnht, ũnht, θnht)
]

≤ eCG,OB
[
‖ũ1

ht‖20 + ‖2u1
ht − u0

ht‖20 + (∆t)2‖∇p1
ht‖20 + ‖θ1

ht‖20 + ‖2θ1
ht − θ0

ht‖20

+ C∆t
β‖g‖l∞(0,T ;L∞(Ω))

m∑
n=2

(
‖fu(tn)‖20 + ‖fθ(tn)‖20

) ]

with a Gronwall constant CG,OB ∼ T
(
1− 3∆tβ‖g‖l∞(0,T ;L∞(Ω))

)−1
.

Thus, the fully discrete velocity and temperature are stable with respect to the fully
discrete norms as introduced in Definition 4.1.1. We can prove stability of the pressure by
taking advantage of the discrete inf-sup condition. Note that one immediately obtains a
certain stability of the pressure as (∆t)2‖∇pht‖2l∞(0,T ;L2(Ω)) ≤ C.

4.2. Fully Discrete Convergence Results

A proof of convergence for the fully discretized model is not trivial. Even for the Navier-
Stokes equations, we run into technical difficulties we want to discuss in this section. The
main challenge here is to handle both the pressure term and the convective term in the
advection-diffusion equation (4.1).
The rotational correction scheme is analyzed in [GS04] for the linear Stokes problem.
L2-convergence of the time-discretized velocity as (∆t)2 is shown as expected. For the
W 1,2-velocity and the L2-pressure errors, improved convergence results of order (∆t)3/2

can be obtained. It is argued there that the nonlinear terms do not corrupt the order of
convergence and can therefore be omitted.
In our considerations [AD15], we observe that indeed, the order of convergence stems from
the linear problem, but nonlinear terms add technical problems for the rotational correc-
tion scheme that cannot be handled easily. In order to extend the analysis of [GS04] to the
nonlinear case - or worse the stabilized case -, one would need stability results and prior
auxiliary estimates for the error that are not available for the rotational scheme, since one
would need to control a term of the form (∇∇ · ũnht,∇pnht).
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Therefore, we pursue a different ansatz for the nonlinear case considering the incremen-
tal method. Our analysis is inspired by techniques from several authors who worked on
the fully discretized Navier-Stokes equations: In [BC07], convergence results for a first or-
der projection method for the fully discrete Navier–Stokes equations are given. The frac-
tional step incremental projection method for the unstabilized Navier-Stokes equations
with BDF2 time-discretization is analyzed in [Gue99]. Shen considers a different second
order time-discretization scheme in [She96]. Neither author regards the dependence on
constant problem parameters, in particular on ν. It is a stated aim of this thesis to point
out the arising restrictions of our error estimates. Besides that, we take LPS SU and grad-
div stabilization into account.

We desire to separately consider the errors produced by discretization in time and space.
So we bound the total error via the triangle inequality according to:

‖u− ũht‖l∞(0,T ;L2(Ω)) ≤ ‖u− uh‖l∞(0,T ;L2(Ω)) + ‖uh − ũht‖l∞(0,T ;L2(Ω)),

‖u− ũht‖l2(0,T ;LPS) ≤ ‖u− uh‖l2(0,T ;LPS) + ‖uh − ũht‖l2(0,T ;LPS).

The errors resulting from u−uh can be bounded by a semi-discrete analysis, e.g., similar
to Chapter 3, which provides a bound for the time-continuous norm as

‖u− uh‖L∞(0,T ;L2(Ω)) + ‖u− uh‖L2(0,T ;LPS) . hku .

We use the fact that these norms provide an upper bound for the respective discrete norms;
see Section 4.2.1. The estimates for uh − ũht are presented in Section 4.2.2. In Section
4.2.3, we combine the results and derive an error bound on ‖p − pht‖l2(0,T ;L2(Ω)) via the
inf-sup stability of the ansatz spaces.

Assumption 4.2.1 (For error due to spatial discretization).
We require for some l ∈ {1, 2} (to be fixed later)

u ∈W l,2(0, T ;LPS), uh ∈W l,2(0, T ;LPS), (4.10)

where W l,2(0, T ;LPS) consists of functions v ∈ W l,2(0, T ; [W 1,2(Ω)]d) such that all time
derivatives v(n) (n = 0, . . . , l) are bounded with respect to || · ||0,T ;LPS. Moreover, assume
that the conditions for Corollary 3.2.13 hold for the velocity. This includes in particular

u ∈ L∞(0, T ; [W 1,∞(Ω)]d) ∩ L2(0, T ; [W ku+1,2(Ω)]d),

∂tu ∈ L2(0, T ; [W ku,2(Ω)]d), p ∈ L2(0, T ;W kp+1,2(Ω) ∩ C(Ω)).
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The latter conditions can be replaced by the premises of any other suitable semi-discrete
a priori error estimate for the time dependent Navier-Stokes equations.

Assumption 4.2.2 (For linear error due to temporal discretization).
We require for the linear error due to time-discretization that there is a constant C > 0
(independent of n) such that for all 1 ≤ n ≤ N :

‖Rn −Rn−1‖20 + ‖∇(ph(tn)− 2ph(tn−1) + ph(tn−2))‖20 ≤ C(∆t)4, (4.11)

‖∇(ph(tn)− ph(tn−1))‖0 ≤ C∆t, (4.12)

∆t
N∑
n=1
‖Rn‖2−1 ≤ C(∆t)4, (4.13)

where Rn := Dtuh(tn)−∂tuh(tn) denotes the difference between of the time derivative and
its BDF2-type discretization.

We remark that if uh ∈ W 3,∞(0, T ; [L2(Ω)]d) and ph ∈ W 2,∞(0, T ;H1(Ω)), conditions
(4.11) and (4.12) can be shown via (generalized) Taylor expansion. (4.13) can be derived
from ∫ T

0
‖∂tttuh(τ)‖2−1 + ‖∂ttuh(τ)‖21 + ‖∂ttph(τ)‖20 dτ ≤ C

using Taylor expansion. We refer to [She92] and [She96], where similar proofs are presented.

Assumption 4.2.3 (For nonlinear error due to temporal discretization).
For the nonlinear error due to temporal discretization, we require all conditions from As-
sumptions 4.2.1 and 4.2.2 as well as in addition

u ∈ L∞(0, T ; [W 2,2(Ω)]d); (4.14)

in particular, we assume ‖u‖L∞(0,T ;W 2,2(Ω)) ≤ C with C independent of ν.
For the stabilization terms, we require the following properties. Let the cell-wise constant
streamline direction be defined as

wM = 1
|M |

∫
M
w(x)dx

for all M ∈Mh. Furthermore, we require that su is linear in each argument; in particular,
τnM must not depend nonlinearly on the arguments of su. Let ih ≡ 0 and assume γ := γM

for all M ∈Mh, i.e.,

th(ũnht; ũnht,vh) = γ(∇ · ũnht,∇ · vh).
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Note that the above setting of wM is in agreement with Assumption 3.2.5 that is needed
for the semi-discrete analysis in Section 2.2.3. According to the grad-div parameter choice
we discussed in the semi-discrete analysis, the assumption on th is reasonable.

Assumption 4.2.4 (For fully discrete error).
In addition to Assumption 4.2.3, let the following conditions be true for some p ∈ {1, 2}:

u ∈ L∞(0, T ; [W ku+1,2(Ω)]d), p ∈W 1,2(0, T ;L2(Ω)), uh ∈W p,2(0, T ; [L2(Ω)]d).

4.2.1. Spatial Discretization of the Continuous Quantities

In order to make use of semi-discrete error estimates for u−uh, we have to show equivalence
of the time-discrete l2-norm and the time-continuous L2-norm. For this, we need some
preparatory results. We do not show the proofs here; instead, we refer the reader to
[AD15]. First, we state an interpolation result which is an extension of the Bramble-Hilbert
Theorem.

Theorem 4.2.5 (Generalized Bramble-Hilbert Theorem).
Let X be a real, separable Hilbert space and m ≥ 1 an integer. Denote by Pm−1(a, b;X)
the space of polynomials p : (a, b) ⊂ R → X of maximal order m − 1 (with respect to
time) and with values in X. Then there exists C > 0 such that for any bounded intervals
(a, b) ⊂ (0, T ) and any f ∈ Hm(a, b;X), there exists a polynomial q ∈ Pm−1(a, b;X)
satisfying q(a) = f(a) and q(b) = f(b) and

‖f − q‖Hk(a,b;X) ≤ C(b− a)m−k|f |Hm(a,b;X) ∀k ∈ N, k ≤ m. (4.15)

Lemma 4.2.6 (Equivalence of discrete and continuous norms).
Consider the set of points in time NT = {0 = t0, . . . , tN = T}, where we assume a constant
time step size ∆t = T/N and tn = n∆t, n = 0, . . . , N . Let X be a Banach space. Then
there exist constants c, C > 0 such that the estimate

c∆t
N∑
i=0
‖f(ti)‖2X ≤ ‖f‖2L2(0,T ;X) ≤ C∆t

N∑
i=0
‖f(ti)‖2X (4.16)

holds true for all functions f : [0, T ]→ X that are piecewise linear with respect to NT .

We can use the semi-discrete errors as an upper bound of the errors with respect to the
time-discrete norms according to the result below. For the proof, we refer to [AD15].
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Theorem 4.2.7 (Time-continuous quantities in time-discrete norms).
Let ξu,h = u− uh. Then it holds

‖ξu,h‖2l∞(0,T ;L2(Ω)) ≤ ‖ξu,h‖
2
L∞(0,T ;L2(Ω))

and if we additionally assume ξu,h ∈ H l(0, T ;LPS) for some l ∈ {1, 2},

‖ξu,h‖2l2(0,T ;W 1,2(Ω)) ≤ C‖ξu,h‖
2
L2(0,T ;W 1,2(Ω)) + C(∆t)2l,

‖ξu,h‖2l2(0,T ;LPS) ≤ C‖ξu,h‖
2
L2(0,T ;LPS) + C(∆t)2l,

provided that the right-hand sides exist.

Under the conditions of Corollary 3.2.13, for example, we can derive an a priori estimate
of the semi-discrete error ξu,h in the fully discrete norms. Here, all terms resulting from
the non-isothermal coupling are omitted.

Corollary 4.2.8 (Spatial convergence in discrete norms).
If Assumption 4.2.1 holds, the semi-discrete error can be bounded by

‖ξu,h‖2l∞(0,T ;L2(Ω)) ≤ ‖ξu,h‖
2
L∞(0,T ;L2(Ω))

≤ CeCG,h(u)
∫ T

0

{ ∑
M∈Mh

h2ku
M

[(
1 + νRe2

M + τuM |uM |2 + dγM
)
‖u(τ)‖2Wku+1,2(ωM )

+ τuM |uM |2h
2(su−ku)
M ‖u(τ)‖2W su+1,2(ωM ) + ‖∂tu(τ)‖2Wku,2(ωM )

]
+

∑
M∈Mh

h
2(kp+1)
M min

(d
ν
,

1
γM

)
‖p(τ)‖2

Wkp+1,2(ωM )

}
dτ =: C Ξξ,u,h,

‖ξu,h‖2l2(0,T ;LPS) ≤ C‖ξu,h‖
2
L2(0,T ;LPS) + C(∆t)2l ≤ C Ξξ,u,h + C(∆t)2l

with CG,h(u) . 1 + C|u|L∞(0,T ;W 1,∞(Ω)) + Ch2|u|2L∞(0,T ;W 1,∞(Ω)) + C‖u‖2L∞(0,T ;L∞(Ω)).

Proof. The right-hand sides in Theorem 4.2.7 can be bounded by Corollary 3.2.13:

‖ξu,h‖2L∞(0,T ;[L2(Ω)]d) + ‖ξu,h‖2L2(0,T ;LPS)

≤ C
∫ T

0
eCG,h(u)(t−τ)

{ ∑
M∈Mh

h2ku
M

[(
1 + νRe2

M + τuM |uM |2 + dγM
)
‖u(τ)‖2Wku+1,2(ωM )

+ τuM |uM |2h
2(su−ku)
M ‖u(τ)‖2W su+1,2(ωM ) + ‖∂tu(τ)‖2Wku,2(ωM )

]
+

∑
M∈Mh

h
2(kp+1)
M min

(d
ν
,

1
γM

)
‖p(τ)‖2

Wkp+1,2(ωM )

}
dτ ≤ CeCG,h(u) Ξξ,u,h
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with CG,h(u) . 1+C|u|L∞(0,T ;W 1,∞(Ω)) +Ch2|u|2L∞(0,T ;W 1,∞(Ω)) +C‖u‖2L∞(0,T ;L∞(Ω)).

4.2.2. Temporal Discretization of the Space-Discrete Quantities

The time-discrete error uh − ũht is handled by introducing a solution w̃ht of an auxiliary
linear problem as

‖uh − ũht‖ ≤ ‖uh − w̃ht‖+ ‖w̃ht − ũht‖ (4.17)

with a suitable norm, where (w̃ht,wht, rht) ∈ (Vh)N×(V div
h )N×(Qh)N solves the problem:

Find w̃n
ht ∈ Vh, wn

ht ∈ V
div
h , rnht ∈ Qh such that for all vh ∈ Vh, yh ∈ Yh, qh ∈ Qh(

3w̃n
ht − 4wn−1

ht +wn−2
ht

2∆t ,vh

)
+ ν(∇w̃n

ht,∇vh) + γ(∇ · w̃n
ht,∇ · vh) (4.18)

= (fu(tn),vh)− (∇rn−1
ht ,vh)− cu(uh(tn);uh(tn),vh)− su(uh(tn),uh(tn),uh(tn),vh),

w̃n
ht|∂Ω = 0,

(3wn
ht − 3w̃n

ht

2∆t +∇(rnht − rn−1
ht ),yh

)
= 0, (4.19)

(∇ ·wn
ht, qh) = 0,

wn
ht|∂Ω = 0.

uh − w̃ht is called linear error and is estimated in Lemma 4.2.14, w̃ht − ũht denotes the
so-called nonlinear error, see Lemma 4.2.16. Consistency estimates in time are obtained
by combining the results of both auxiliary problems.

Definition 4.2.9 (Error splitting).
We denote the errors due to temporal discretization

ξnu := uh(tn)− unht, ξ̃
n

u := uh(tn)− ũnht, ξnp := ph(tn)− pnht.

For the linear problem, we define the propagation operator δtan := an − an−1 and the
errors

ηnu := uh(tn)−wn
ht, η̃nu := uh(tn)− w̃n

ht, ηnp := ph(tn)− rnht.

We introduce the nonlinear errors

enu := wn
ht − unht, ẽnu := w̃n

ht − ũnht, enp := rnht − pnht.
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Note that it holds ξ̃nu = η̃nu + ẽnu, ξnu = ηnu + enu and ξnp = ηnp + enp .

For convergence rates of the desired order, estimates of the initial errors are needed. For
this, we cite [AD15].

Lemma 4.2.10 (Initialization).
The initial errors due to temporal discretization can be bounded by

‖ξ̃mu ‖20 + ν(∆t)2‖ξ̃mu ‖21 + (∆t)2‖∇ξmp ‖20 ≤ C(∆t)4 ∀m ∈ {1, 2},

provided the time step size satisfies

C
∆t
ν3 + C

∆t
ν

max
M∈Mh

{
τmM
hdM

}
+ C

∆t
ν

max
M∈Mh

{
τmM
hdM

}2

≤ 1 ∀m ∈ {1, 2}.

The initial linear errors can be bounded by

‖η̃mu ‖20 + ν(∆t)2‖η̃mu ‖21 + (∆t)2‖∇ηmp ‖0 ≤ C(∆t)4 ∀m ∈ {1, 2}.

Proof. For the first time step, one takes advantage of the fact that the error at t0 = 0
vanishes. For the next time steps, one uses the same techniques as for estimating the linear
and nonlinear errors. See [AD15] for details.

The proofs for the linear error are a modification of the work in [GS04], where we work on
the space-discrete level, add grad-div stabilization, handle the pressure term in a different
way and do not consider the rotational correction.

Lemma 4.2.11 (Intermediate linear velocity error).
Let ∆t < 1

2 and Assumption 4.2.2 be valid. For all 1 ≤ m ≤ N , it holds

‖ηmu − η̃mu ‖20 ≤ eCG,lin(∆t)4 (4.20)

with CG,lin ∼ T (1− 2∆t)−1.

Proof. The error equation due to the difference between the Navier-Stokes momentum
equation and the advection-diffusion step (4.18) reads(

3η̃nu − 4ηn−1
u + ηn−2

u

2∆t ,vh

)
+ ν(∇η̃nu,∇vh) + γ(∇ · η̃n,∇ · vh)

= (Rn,vh)− (∇(ph(tn)− rn−1
ht ),vh) ∀vh ∈ Vh (4.21)
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with Rn := Dtuh(tn)− ∂tuh(tn) and due to the projection step (4.19), we have the error
equation (3ηnu − 3η̃nu

2∆t +∇(rnht − rn−1
ht ),yh

)
= 0 ∀yh ∈ Yh. (4.22)

We consider the difference between two consecutive time steps of the advection-diffusion er-
ror equation (4.21) and call this the propagation error equation for the advection-diffusion
step. Since the propagation operator δt is linear, we establish:(

3δtη̃nu − 4δtηn−1
u + δtη

n−2
u

2∆t ,vh

)
+ ν(∇δtη̃nu,∇vh) + γ(∇ · δtη̃nu,∇ · vh)

= (δtRn,vh)− (∇δt(ph(tn)− rn−1
t ),vh) ∀vh ∈ Vh. (4.23)

The propagation error for the projection error equation (4.22) is similarly defined by

0 =
(3δtηnu − 3δtη̃nu

2∆t ,yh

)
− (∇δt(rnht − rn−1

ht ),yh)

=
(3δtηnu − 3δtη̃nu

2∆t ,yh

)
+ (∇δt(ηnp − ηn−1

p ),yh)

− (∇δt(ph(tn)− ph(tn−1)),yh) ∀yh ∈ Yh. (4.24)

Testing (4.23) with vh = 4∆tδtη̃nu gives

2
(
3δtη̃nu − 4δtηn−1

u + δtη
n−2
u , δtη̃

n
u

)
+ 4∆tν(∇δtη̃nu,∇δtη̃nu) + 4∆tγ(∇ · δtη̃n,∇ · δtη̃nu)

= 4∆t(δtRn, δtη̃nu)

− 4∆t(∇δt(ph(tn−1)− rn−1
ht ), δtη̃nu)− 4∆t(∇δt(ph(tn−1)− ph(tn)), δtη̃nu).

Now, we test the propagation error in the projection step (4.24) with yh = ∇δtηn−1
p =

∇δt(ph(tn−1)− rn−1
ht ) and get after integration by parts for the first term

−
( 3

2∆tδtη̃
n
u,∇δt(ph(tn−1)− rn−1

ht )
)

= −(∇δt(ηnp − ηn−1
p ),∇δtηn−1

p )

+ (∇δt(ph(tn)− ph(tn−1)),∇δtηn−1
p ).

Combining these and using that δtηnu = PHδtη̃
n
u, therefore ‖δtηnu‖ ≤ ‖δtη̃nu‖, yield (in a

similar way as in the proof of Theorem 4.1.2)

‖δtη̃nu‖20 + 3‖δtηnu − δtη̃nu‖20 + ‖2δtηnu − δtηn−1
u ‖20

+ ‖δtttηnu‖20 − ‖δtη̃n−1
u ‖20 − ‖2δtηn−1

u − δtηn−2
u ‖20

+ 4∆tν‖∇δtη̃nu‖20 + 4∆tγ‖∇ · δtη̃n‖20 + 4
3(∆t)2‖∇δtηnp ‖20
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≤ 4
3(∆t)2‖∇δtηnp −∇δtηn−1

p ‖20 + 4
3(∆t)2‖∇δtηn−1

p ‖20

+ 4∆t(δtRn, δtη̃nu)− 4∆t(∇δt(ph(tn−1)− ph(tn)), δtη̃nu)

+ 8
3(∆t)2(∇δt(ph(tn)− ph(tn−1)),∇δtηn−1

p ). (4.25)

In order to handle the first term on the right-hand side, the projection propagation error
equation (4.24) is tested with yh = ∇δt(ηnp − ηn−1

p ):

2∆t
3 ‖∇δt(η

n
p − ηn−1

p )‖20 ≤ ‖δtηnu − δtη̃nu‖0‖∇δt(ηnp − ηn−1
p )‖0

+ 2∆t
3 (∇δt(ph(tn)− ph(tn−1)),∇δt(ηnp − ηn−1

p ))

≤ 3
4∆t‖δtη

n
u − δtη̃nu‖20 + ∆t

3 ‖∇δt(η
n
p − ηn−1

p )‖20

+ 2∆t
3 (∇δttph(tn),∇δt(ηnp − ηn−1

p ))

due to Young’s inequality. Therefore, after multiplication with 4∆t,

4
3(∆t)2‖∇δt(ηnp − ηn−1

p )‖20 ≤ 3‖δtηnu − δtη̃nu‖20 + 8
3(∆t)2(∇δttph(tn),∇δt(ηnp − ηn−1

p )).

We insert this into (4.25) and use Young’s inequality:

‖δtη̃nu‖20 + ‖2δtηnu − δtηn−1
u ‖20

+ ‖δtttηnu‖20 − ‖δtη̃n−1
u ‖20 − ‖2δtηn−1

u − δtηn−2
u ‖20

+ 4∆tν‖∇δtη̃nu‖20 + 4∆tγ‖∇ · δtη̃n‖20 + 4
3(∆t)2‖∇δtηnp ‖20

≤ 4
3(∆t)2‖∇δtηn−1

p ‖20 + 4∆t(δtRn, δtη̃nu) + 4∆t(∇δttph(tn), δtη̃nu)

+ 8
3(∆t)2(∇δttph(tn),∇δtηnp )

≤ 4
3(∆t)2‖∇δtηn−1

p ‖20 + 4∆t‖δtRn‖20 + ∆t‖δtη̃nu‖20

+ 4∆t‖∇δttph(tn)‖20 + ∆t‖δtη̃nu‖20 + 8
3∆t‖∇δttph(tn)‖20 + 2

3(∆t)3‖∇δtηnp ‖20.

Summing up from n = 3 to m ≤ N gives

‖δtη̃mu ‖20 + ‖2δtηmu − δtηm−1
u ‖20 + 4

3(∆t)2‖∇δtηmp ‖20

+
m∑
n=3

(
‖δtttηnu‖20 + 4∆tν‖∇δtη̃nu‖20 + 4∆tγ‖∇ · δtη̃n‖20

)
≤ ‖δtη̃2

u‖20 + ‖2δtη2
u − δtη1

u‖20 + 4
3(∆t)2‖∇δtη2

p‖20
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+ ∆t
m∑
n=3

(
2‖δtη̃nu‖20 + 2

3(∆t)2‖∇δtηnp ‖20
)

+ ∆t
m∑
n=3

(
4‖δtRn‖20 + 7‖∇δttph(tn)‖20

)
.

Provided that 2∆t < 1, the discrete Gronwall Lemma applied to the term ‖δtη̃mu ‖20 +
4
3(∆t)2‖∇δtηmp ‖20 yields

‖δtη̃mu ‖20 + ‖2δtηmu − δtηm−1
u ‖20 + 4

3(∆t)2‖∇δtηmp ‖20

+
m∑
n=3

(
‖δtttηnu‖20 + 4∆tν‖∇δtη̃nu‖20 + 4∆tγ‖∇ · δtη̃n‖20

)

≤ eCG,lin
[
‖δtη̃2

u‖20 + ‖2δtη2
u − δtη1

u‖20 + 4
3(∆t)2‖∇δtη2

p‖20

+ C∆t
m∑
n=3

(
‖δtRn‖20 + ‖∇δttph(tn)‖20

) ]
≤ eCG,lin(∆t)4. (4.26)

This holds since the first three terms on the right-hand side denote initial errors (that can
be bounded by Lemma 4.2.10). Moreover, Assumption 4.2.2 ensures the estimate

‖δtRn‖20 + ‖∇δttph(tn)‖20 ≤ C(∆t)4

with C independent of n. CG,lin ∼ T (1− 2∆t)−1 denotes a Gronwall constant.
The intermediate result follows from the use of the projection error equation (4.22), from
(4.26) and Assumption 4.2.2:

‖ηnu − η̃nu‖0 = 2∆t
3 ‖∇δtr

n
ht‖0 = 2∆t

3 ‖∇(δtηnp − δtph(tn))‖0

≤ 2∆t
3 ‖∇δtη

n
p ‖0 + 2∆t

3 ‖δt∇ph(tn)‖0 ≤ CG,lin(∆t)2.

To bound ‖η̃nu‖0, we need the following operator.

Definition 4.2.12 (Grad-div stabilized inverse Stokes operator).
We define the grad-div stabilized space-discrete inverse Stokes operator S : Vh → Vh as
the solution (Svh, rh) ∈ Vh ×Qh of the problem

ν(∇Svh,∇wh)− (rh,∇ ·wh) + γ(∇ · Svh,∇ ·wh) = (vh,wh) ∀wh ∈ Vh,

(∇ · Svh, qh) = 0 ∀qh ∈ Qh,

Svh|∂Ω = 0. (4.27)

Further, let |vh|2∗ := (vh, Svh) for any vh ∈ Vh.
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Lemma 4.2.13 (Properties of the inverse Stokes operator).
Let ε > 0 be arbitrary. S has the following properties:

‖∇Svh‖0 ≤
1
ν
‖vh‖0,

|vh|2∗ = (vh, Svh) = ν(∇Svh,∇vh) + γ(∇ · Svh,∇ · vh)

≥
(

1−
(2ν + γ

ν

)2 ε

4

)
‖vh‖20 −

1
ε
‖vh − v∗h‖20 ∀v∗h ∈ V div

h , (4.28)

|vh|2∗ ≤
1
ν
‖vh‖20.

Proof. By testing (4.27) symmetrically with wh = vh, we derive an estimate for the
solution in the W 1,2-semi-norm

ν‖∇Svh‖20 + γ‖∇ · Svh‖20 = (vh, Svh)− (rh,∇ · Svh) = (vh, Svh) ≤ ‖vh‖−1‖∇Svh‖0

⇒ ‖∇Svh‖0 ≤
1
ν
‖vh‖−1 ≤

1
ν
‖vh‖0

due to the fact that ‖vh‖−1 ≤ ‖vh‖0. Thus, the upper bound for the semi-norm induced
by the inverse Stokes operator can be derived as

|vh|2∗ = (vh, Svh) ≤ ‖vh‖−1‖∇Svh‖0 ≤
1
ν
‖vh‖2−1 ≤

1
ν
‖vh‖20.

Next, we are interested in a lower bound. If we add grad-div stabilization in [Gue99] (as
in [AD15]), we can get ‖∇rh‖0 ≤ C

(
2 + γ

ν

)
‖vh‖0 and calculate with this

|vh|2∗ =ν(∇Svh,∇vh) + γ(∇ · Svh,∇ · vh) = ‖vh‖20 + (rh,∇ · vh)

=‖vh‖20 − (∇rh,vh − v∗h) ≥ ‖vh‖20 − ‖∇rh‖0‖vh − v∗h‖0

≥
(

1−
(2ν + γ

ν

)2 ε

4

)
‖vh‖20 −

1
ε
‖vh − v∗h‖20

for all ε > 0 and arbitrary v∗h ∈ V div
h .

Lemma 4.2.14 (Time convergence of the linear error).
If ∆t < 1

2 and Assumption 4.2.2 are valid, it holds for all 1 ≤ m ≤ N

‖η̃mu ‖20 ≤
C

ν2 e
CG,lin(∆t)4,

ν‖∇η̃mu ‖20 + γ‖∇ · η̃mu ‖20 ≤ eCG,lin(∆t)2

with CG,lin ∼ T (1− 2∆t)−1.
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Proof. We test the advection-diffusion error equation (4.21) with the inverse Stokes oper-
ator applied to 4∆tη̃nu and eliminate the terms containing ηn−1

u , ηn−2
u via the projection

error equation (4.22) tested with Sη̃nu. Using Sη̃nu ∈ V div
h gives:

2(3η̃nu − 4η̃n−1
u + η̃n−2

u , Sη̃nu) + 4∆tν(∇η̃nu,∇Sη̃nu) + 4∆tγ(∇ · η̃nu,∇ · Sη̃nu)

= 4∆t(Rn, Sη̃nu) + 4∆t(∇
(
− ph(tn) + 7

3r
n−1 − 5

3r
n−2 + 1

3r
n−3

)
, Sη̃nu) = 4∆t(Rn, Sη̃nu).

For the first term, we use the identity

2(3η̃nu − 4η̃n−1
u + η̃n−2

u , Sη̃nu) =|η̃nu|2∗ + |2η̃nu − η̃n−1
u |2∗ + |δttη̃nu|2∗

− |η̃n−1
u |2∗ − |2η̃n−1

u − η̃n−2
u |2∗.

This can be understood via Definition 4.2.12 of S: For vh,wh ∈ Vh, it holds

(vh, Swh) = ν(∇Svh,∇Swh) + γ(∇ · Svh,∇ · Swh) = (wh, Svh)

and thus with the definition |vh|∗ = (vh, Svh) from Lemma 4.2.13

2(3η̃nu − 4η̃n−1
u + η̃n−2

u , Sη̃nu)

= (6η̃nu − 4η̃n−1
u + η̃n−2

u , Sη̃nu)− 4(η̃nu, Sη̃n−1
u ) + (η̃nu, Sη̃n−2

u )

= (η̃nu, Sη̃nu) + (2η̃nu − η̃n−1
u , 2Sη̃nu − Sη̃n−1

u )

+ (η̃nu − 2η̃n−1
u + η̃n−2

u , Sη̃nu − 2Sη̃n−1
u + Sη̃n−2

u )

− (η̃n−1
u , Sη̃n−1

u )− (2η̃n−1
u − η̃n−2

u , 2Sη̃n−1
u − Sη̃n−2

u )

= |η̃nu|2∗ + |2η̃nu − η̃n−1
u |2∗ + |δttη̃nu|2∗ − |η̃n−1

u |2∗ − |2η̃n−1
u − η̃n−2

u |2∗.

With this, we get the following equation

|η̃nu|2∗ + |2η̃nu − η̃n−1
u |2∗ + |δttη̃nu|2∗ + 4∆tν(∇η̃nu,∇Sη̃nu) + 4∆tγ(∇ · η̃nu,∇ · Sη̃nu)

= 4∆t(Rn, Sη̃nu) + |η̃n−1
u |2∗ + |2η̃n−1

u − η̃n−2
u |2∗.

Due to Lemma 4.2.13, the consistency error can be bounded as

4∆t(Rn, Sη̃nu) ≤ 4∆t
ν
‖Rn‖2−1 + ∆tν‖Sη̃nu‖21 ≤

4∆t
ν
‖Rn‖2−1 + ∆t‖η̃nu‖20.

Using (4.28) with ε = 2
(

ν
2ν+γ

)2
, the diffusive term and the grad-div stabilization can be

estimated by

4∆tν(∇η̃nu,∇Sη̃nu) + 4∆tγ(∇ · η̃nu,∇ · Sη̃nu) ≥ 2∆t‖η̃nu‖20 − c∆t‖η̃nu − ηnu‖20,
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where c = 2
(

2ν+γ
ν

)2
≤ C(1+ ν

γ )2. Combining these estimates and summing up from n = 3
to m ≤ N yield

|η̃mu |2∗ + |2η̃mu − η̃m−1
u |2∗ +

m∑
n=3

(|δttη̃nu|2∗ + ∆t‖η̃nu‖20) (4.29)

≤ |η̃2
u|2∗ + |2η̃2

u − η̃1
u|2∗ +

m∑
n=3

(4∆t
ν
‖Rn‖2−1 + c∆t‖η̃nu − ηnu‖20

)
≤
(
C

ν
+ ceCG,lin

)
(∆t)4

because of Lemma 4.2.11, Assumption 4.2.2 and initial error estimates: Lemma 4.2.13
implies that | · |∗ can be bounded from above by ‖ ·‖0; the combination with Lemma 4.2.10
gives the desired initial error bounds. In particular, we derive

‖η̃u‖2l2(0,T ;L2(Ω)) = ∆t
N∑
n=0
‖η̃nu‖20 ≤

(
C

ν
+
(

1 + γ

ν

)2
eCG,lin

)
(∆t)4

≤ C

ν2 e
CG,lin(∆t)4.

To get an l∞-estimate, we use (4.28) again with ε = 2
(

ν
2ν+γ

)2
and obtain from (4.29)

together with Lemma 4.2.11

‖η̃u‖2l∞(0,T ;L2(Ω)) ≤ C max
1≤n≤N

|η̃nu|2∗ + C

(
1 + γ

ν

)2
max

1≤n≤N
‖η̃nu − ηnu‖20

≤ C

ν2 e
CG,lin(∆t)4.

For the estimates for the W 1,2-semi-norm, we again use calculations from Lemma 4.2.11.
Due to (4.26), we have

m∑
n=3

(ν‖∇δtη̃nu‖20 + γ‖∇ · δtη̃nu‖20) ≤ eCG,lin(∆t)3

and therefore via triangle inequality and because of N = T/∆t:

√
ν‖∇η̃mu ‖0 +√γ‖∇ · η̃mu ‖0 ≤

m∑
n=1

(
√
ν‖∇δtη̃nu‖0 +√γ‖∇ · δtη̃nu‖0)

≤ C
(
N

m∑
n=1

(ν‖∇δtη̃nu‖20 + γ‖∇ · δtη̃nu‖20)
)1/2

≤ eCG,lin∆t.
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Lemma 4.2.15 (Stability of ∇uh).
Set h := maxM∈Mh

hM . Let Assumption 4.2.3 be valid and ∆t < 1. Then we have

‖uh‖2l∞(0,T ;W 1,2(Ω)) ≤ C + CeCG,h(u)h
2ku + h2kp+2

ν∆t . (4.30)

If we additionally assume (h2ku + h2kp+2) . e−CG,h(u)ν∆t, it holds

‖uh‖2l∞(0,T ;W 1,2(Ω)) ≤ C.

Proof. Thanks to Assumption 4.2.3, we can apply Corollary 4.2.8 and establish

‖u− uh‖2l2(0,T ;W 1,2(Ω)) ≤ C
(
‖u− uh‖2L2(0,T ;W 1,2(Ω)) + (∆t)2l

)
≤ CeCG,h(u)

ν
(h2ku + h2kp+2) + C(∆t)2l,

‖u− uh‖2l∞(0,T ;W 1,2(Ω)) ≤
C

∆t‖u− uh‖
2
l2(0,T ;W 1,2(Ω))

≤ CeCG,h(u)h
2ku + h2kp+2

ν∆t + C(∆t)2l−1.

With this and u ∈ L∞(0, T ; [W 2,2(Ω)]d) due to Assumption 4.2.3, we derive

‖uh‖2l∞(0,T ;W 1,2(Ω)) ≤ C‖u‖
2
l∞(0,T ;W 1,2(Ω)) + C‖u− uh‖2l∞(0,T ;W 1,2(Ω))

≤ C + CeCG,h(u)h
2ku + h2kp+2

ν∆t + C(∆t)2l−1 ≤ C

because (h2ku + h2kp+2) . e−CG,h(u)ν∆t and 2l ≥ 1.

Now, let us turn our attention to the nonlinear error. The proof combines estimation strate-
gies from [She96] with the handling of the discrete BDF2-type time derivative by [GS04] as
well as adds grad-div and LPS stabilization and the thorough consideration of ν dependen-
cies. Extra technical challenges matter since we do not require uh ∈ L∞(0, T ; [W 2,2(Ω)]d).
In addition to the previous lemma, we make use of the insights from the linear error
estimate (Lemma 4.2.14).

Lemma 4.2.16 (Time convergence of the nonlinear error).
Denote

Kt,nl := C∆t‖uh‖2l∞(0,T ;W 1,2(Ω))

(‖uh‖2l∞(0,T ;W 1,2(Ω))
ν3 + max

1≤n≤N
max
M∈Mh

{
τnM
hdM

}

+
‖uh‖2l∞(0,T ;L2(Ω))

ν
max

1≤n≤N
max
M∈Mh

{
τnM
hdM

}2)
.
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Under the conditions of Assumption 4.2.3, it holds with CG,t ∼ T (1−Kt,nl)−1, for all
1 ≤ m ≤ N :

‖ẽmu ‖20 + (∆t)2‖∇emp ‖20 +
m∑
n=1

[
∆tν‖∇ẽnu‖20 + ∆tγ‖∇ · ẽnu‖20

+ ∆t
∑

M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M
]

≤ eCG,t
{(

C

ν3 + C

ν2 max
1≤n≤N

max
M∈Mh

{τnM/hdM}+ C

ν3 max
1≤n≤N

max
M∈Mh

{τnM/hdM}2
)

(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν3 e
CG,h(u)(h2ku + h2kp+2)(∆t)2 + C

ν2 (∆t)2l+2
}
,

provided that (h2ku + h2kp+2) . e−CG,h(u)ν∆t and Kt,nl < 1.

Proof. Subtracting the advection-diffusion equations for w̃n
ht and ũnht from each other gives(

3ẽnu − 4en−1
u + en−2

u

2∆t ,vh

)
+ ν(∇ẽnu,∇vh) + γ(∇ · ẽnu,∇ · vh)

+ (∇en−1
p ,vh) + cu(uh(tn);uh(tn),vh)− cu(ũnht; ũnht,vh)

+ su(uh(tn),uh(tn),uh(tn),vh)− su(ũnht, ũnht, ũnht,vh) = 0 ∀vh ∈ Vh (4.31)

and for the projection equations for w̃n
ht and ũnht:(3enu − 3ẽnu

2∆t +∇(enp − en−1
p ),yh

)
= 0 ∀yh ∈ Yh. (4.32)

The advection-diffusion error equation (4.31) is tested symmetrically with 4∆tẽnu and the
resulting pressure term 4∆t(∇en−1

p , ẽnu) is handled via (4.32) tested with 8
3(∆t)2∇en−1

p .
As before, this yields

‖ẽnu‖20 + 3‖enu − ẽnu‖20 + ‖2enu − en−1
u ‖20 + 4

3(∆t)2‖∇enp‖20

+ 4∆tν‖∇ẽnu‖20 + 4∆tγ‖∇ · ẽnu‖20 + ‖δttenu‖20 + 4∆t(Sn, ẽnu)

≤ ‖ẽn−1
u ‖20 + ‖2en−1

u − en−2
u ‖20 + 4

3(∆t)2‖∇en−1
p ‖20

+ 4
3(∆t)2‖∇(enp − en−1

p )‖20 − 4∆t(Qn, ẽnu), (4.33)

where

(Qn, ẽnu) := cu(uh(tn);uh(tn), ẽnu)− cu(ũnht; ũnht, ẽnu)

(Sn, ẽnu) := su(uh(tn),uh(tn),uh(tn), ẽnu)− su(ũnht, ũnht, ũnht, ẽnu).
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Equation (4.32) tested with ∇(enp − en−1
p ) gives

4
3(∆t)2‖∇(enp − en−1

p )‖20 ≤ 3‖enu − ẽnu‖20.

Due to ẽnu + η̃nu = uh(tn)− ũnht, we calculate for the convective term using skew-symmetry

(Qn, ẽnu) = cu(η̃nu + ẽnu;uh(tn), ẽnu) + cu(ũnht; η̃nu + ẽnu, ẽnu)

= cu(η̃nu + ẽnu;uh(tn), ẽnu) + cu(uh(tn); η̃nu, ẽnu)

− cu(η̃nu; η̃nu, ẽnu)− cu(ẽnu; η̃nu, ẽnu)

and make use of Lemma A.3.7 as well as the convergence results for the linear problem:

cu(ẽnu;uh(tn), ẽnu) ≤ C‖ẽnu‖
1/2
0 ‖uh(tn)‖1‖ẽnu‖

3/2
1

≤ ν

32‖∇ẽ
n
u‖20 + C

ν3 ‖uh(tn)‖41‖ẽnu‖20,

cu(uh(tn); η̃nu, ẽnu) + cu(η̃nu;uh(tn), ẽnu)

= cu(u(tn); η̃nu, ẽnu)− cu(u(tn)− uh(tn); η̃nu, ẽnu)

+ cu(η̃nu;u(tn), ẽnu)− cu(η̃nu;u(tn)− uh(tn), ẽnu)

≤ C‖u(tn)‖2‖η̃nu‖0‖ẽnu‖1 + C‖u(tn)− uh(tn)‖1‖η̃nu‖1‖ẽnu‖1

≤ ν

32‖∇ẽ
n
u‖20 + C‖u(tn)‖22

ν
‖η̃nu‖20 + C

ν
‖η̃nu‖21‖u(tn)− uh(tn)‖21,

cu(η̃nu; η̃nu, ẽnu) ≤ C‖η̃nu‖21‖ẽnu‖1 ≤
ν

32‖∇ẽ
n
u‖20 + C

ν
‖η̃nu‖41,

cu(ẽnu; η̃nu, ẽnu) ≤ C‖η̃nu‖1‖ẽnu‖21.

From Lemma 4.2.14, we have that
√
ν‖η̃nu‖l∞(0,T ;W 1,2(Ω)) ≤ exp(CG,lin)∆t. Provided that

C∆t ≤ ν3/2/8, we can estimate the last term

cu(ẽnu; η̃nu, ẽnu) ≤ C‖η̃nu‖1‖ẽnu‖21 ≤
ν

32‖∇ẽ
n
u‖20.

Taking ‖η̃u‖l∞(0,T ;L2(Ω)) ≤
exp(CG,lin)

ν (∆t)2 and
√
ν‖η̃nu‖l∞(0,T ;W 1,2(Ω)) ≤ exp(CG,lin)∆t

from Lemma 4.2.14 into account, we obtain in combination (with exp(CG,lin) hidden in C)

(Qn, ẽnu) ≤ ν

8‖∇ẽ
n
u‖20 + C‖uh(tn)‖41

ν3 ‖ẽnu‖20

+ C‖u(tn)‖22 + C

ν3 (∆t)4 + C

ν2 ‖u(tn)− uh(tn)‖21(∆t)2. (4.34)
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Recall that su is supposed to be linear in each argument due to Assumption 4.2.3. For the
stabilization terms, we have

(Sn, ẽnu) = su(uh(tn),uh(tn),uh(tn), ẽnu)− su(ũnht, ũnht, ũnht, ẽnu)

= su(ũnht, η̃nu + ẽnu, ũnht, ẽnu) + su(η̃nu + ẽnu,uh(tn), ũnht, ẽnu)

+ su(uh(tn),uh(tn), η̃nu + ẽnu, ẽnu)

= su(ũnht, η̃nu, ũnht, ẽnu) + su(η̃nu,uh(tn), ũnht, ẽnu) + su(uh(tn),uh(tn), η̃nu, ẽnu)

+ su(ũnht, ẽnu, ũnht, ẽnu) + su(ẽnu,uh(tn), ũnht, ẽnu) + su(uh(tn),uh(tn), ẽnu, ẽnu)

=: I1 + I2 + I3 + I4 + I5 + I6.

According to Lemma A.3.8, Cauchy-Schwarz and Young’s inequality, the terms I5 +I6 can
be handled as

|I5 + I6| ≤ C‖uh(tn)‖21 max
M∈Mh

{τnM/hdM}‖ẽnu‖20 + 1
4

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M

+ ν

8‖ẽ
n
u‖21 + C‖uh(tn)‖20‖uh(tn)‖21

ν
max
M∈Mh

{τnM/hdM}2‖ẽnu‖20.

For the remaining terms, we make use of Lemma 4.2.14, namely ‖η̃u‖l∞(0,T ;L2(Ω)) ≤
exp(CG,lin)

ν (∆t)2 and
√
ν‖η̃nu‖l∞(0,T ;W 1,2(Ω)) ≤ exp(CG,lin)∆t:

I1 = su(ũnht, η̃nu, ũnht, ẽnu)

≤ C
√

max
M∈Mh

{τnM |ũ
n
M |2}‖η̃nu‖1

 ∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M

1/2

≤ C max
M∈Mh

{τnM |ũnM |2}‖η̃nu‖21 + 1
4

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M

≤ C

ν
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + 1
4

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M ,

I2 = su(η̃nu,uh(tn), ũnht, ẽnu)

≤ C max
M∈Mh

{τnM/hdM}‖η̃nu‖20‖uh(tn)‖21 + 1
4

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M

≤ C

ν2 max
M∈Mh

{τnM/hdM}(∆t)4 + 1
4

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M ,

I3 = su(uh(tn),uh(tn), η̃nu, ẽnu) ≤ C max
M∈Mh

{τnM/hdM}‖uh(tn)‖0‖uh(tn)‖1‖η̃nu‖0‖ẽnu‖1

≤ C

ν
max
M∈Mh

{τnM/hdM}2‖uh(tn)‖20‖uh(tn)‖21‖η̃nu‖20 + ν

4‖ẽ
n
u‖21

≤ C

ν3 max
M∈Mh

{τnM/hdM}2‖uh(tn)‖20‖uh(tn)‖21(∆t)4 + ν

4‖ẽ
n
u‖21.



92 4. Fully Discrete Analysis

Summarizing these terms yields

−(Sn, ẽnu) + I4 ≤
3
4

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M + 3ν
8 ‖ẽ

n
u‖21

+
(
C‖uh(tn)‖21 max

M∈Mh

{τnM/hdM}+ C‖uh(tn)‖20‖uh(tn)‖21
ν

max
M∈Mh

{τnM/hdM}2
)
‖ẽnu‖20

+
(
C

ν2 max
M∈Mh

{τnM/hdM}+ C

ν3 max
M∈Mh

{τnM/hdM}2‖uh(tn)‖20‖uh(tn)‖21
)

(∆t)4

+ C

ν
max
M∈Mh

{τnM |ũnM |2}(∆t)2.

We insert the above estimates into (4.33), sum up from n = 2 to m ≤ N and obtain

‖ẽmu ‖20 + ‖2emu − em−1
u ‖20 + 4

3(∆t)2‖∇emp ‖20

+
m∑
n=2

[
2∆tν‖∇ẽnu‖20 + 4∆tγ‖∇ · ẽnu‖20 + ‖δttenu‖20 + ∆t

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M
]

≤ ‖ẽ1
u‖20 + ‖2e1

u − e0
u‖20 + 4

3(∆t)2‖∇e1
p‖20 + 4∆t

m∑
n=2

{(
C‖uh(tn)‖41

ν3

+ C‖uh(tn)‖21 max
M∈Mh

{τnM/hdM}+ C‖uh(tn)‖20‖uh(tn)‖21
ν

max
M∈Mh

{τnM/hdM}2
)
‖ẽnu‖20

+

C‖u(tn)‖22 + C

ν3 + C

ν2 max
M∈Mh

(
τnM
hdM

)
+ C

ν3 max
M∈Mh

(
τnM
hdM

)2

‖uh(tn)‖20‖uh(tn)‖21

(∆t)4

+ C

ν
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν2 ‖u(tn)− uh(tn)‖21(∆t)2
}
. (4.35)

Due to the estimates for the initial errors of the time-discretized problem and the linear
auxiliary problem (see Lemma 4.2.10), the initial errors of the nonlinear problem also
converge suitably

‖ẽ1
u‖20 + ‖2e1

u − e0
u‖20 + 4

3(∆t)2‖∇e1
p‖20 ≤ C(∆t)4.

In addition, we consult Theorem 4.2.7 and Corollary 4.2.8 in order to establish

‖u− uh‖2l2(0,T ;W 1,2(Ω)) ≤ C‖u(tn)− uh(tn)‖2L2(0,T ;W 1,2(Ω)) + C(∆t)2l

≤ 1
ν
‖u(tn)− uh(tn)‖2L2(0,T ;LPS) + C(∆t)2l ≤ C

ν
eCG,h(u)(h2ku + h2kp+2) + C(∆t)2l.
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Provided that (h2ku + h2kp+2) . e−CG,h(u)ν∆t and

Kt,nl = C∆t‖uh‖2l∞(0,T ;W 1,2(Ω))

(‖uh‖2l∞(0,T ;W 1,2(Ω))
ν3 + max

1≤n≤N
max
M∈Mh

{τnM/hdM}

+
‖uh‖2l∞(0,T ;L2(Ω))

ν
max

1≤n≤N
max
M∈Mh

{τnM/hdM}2
)
< 1,

application of the discrete Gronwall Lemma A.3.6 for ‖ẽmu ‖20 in (4.35) yields

‖ẽmu ‖20 + (∆t)2‖∇emp ‖20 +
m∑
n=1

[
∆tν‖∇ẽnu‖20 + ∆tγ‖∇ · ẽnu‖20

+ ∆t
∑

M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M
]

≤ eCG,t
{(

C‖u‖2l∞(0,T ;H2(Ω)) + C

ν3 + C

ν2 max
1≤n≤N

max
M∈Mh

{τnM/hdM}

+ C

ν3 max
1≤n≤N

max
M∈Mh

{τnM/hdM}2‖uh‖2l∞(0,T ;L2(Ω))‖uh‖
2
l∞(0,T ;W 1,2(Ω))

)
(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν3 e
CG,h(u)(h2ku + h2kp+2)(∆t)2 + C

ν2 (∆t)2l+2
}

≤ eCG,t
{(

C

ν3 + C

ν2 max
1≤n≤N

max
M∈Mh

{τnM/hdM}+ C

ν3 max
1≤n≤N

max
M∈Mh

{τnM/hdM}2
)

(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν3 e
CG,h(u)(h2ku + h2kp+2)(∆t)2 + C

ν2 (∆t)2l+2
}
,

where Lemma 4.2.15 for ‖uh‖l∞(0,T ;W 1,2(Ω)) is taken into account and CG,t ∼ T (1−Kt,nl)−1

denotes the Gronwall constant.

Now, we are prepared to state an estimate for the total error due to temporal discretization.
For this purpose, we combine Lemmas 4.2.14 and 4.2.16.

Theorem 4.2.17 (Time convergence of the semi-discrete quantities).
Under the assumptions of Lemmas 4.2.14 and 4.2.16, it holds

‖ξ̃u‖2l∞(0,T ;L2(Ω)) ≤
C

ν2 e
CG,lin(∆t)4 + Ξe,u,t,

‖ξ̃u‖2l2(0,T ;LPS) = ν‖∇ξ̃u‖2l2(0,T ;L2(Ω)) + γ‖∇ · ξ̃u‖2l2(0,T ;L2(Ω))

+ ∆t
N∑
n=1

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ξ̃nu)‖20 ≤ eCG,lin(∆t)2 + Ξe,u,t



94 4. Fully Discrete Analysis

with the abbreviation

Ξe,u,t := eCG,t

{(
C

ν3 + C

ν2 max
1≤n≤N

max
M∈Mh

{τnM/hdM}+ C

ν3 max
1≤n≤N

max
M∈Mh

{τnM/hdM}2
)

(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν3 e
CG,h(u)(h2ku + h2kp+2)(∆t)2 + C

ν2 (∆t)2l+2
}
.

Proof. For the linear error, Lemma 4.2.14 yields if ∆t < 1
2

‖η̃mu ‖20 ≤
C

ν2 e
CG,lin(∆t)4, ν‖∇η̃mu ‖20 + γ‖∇ · η̃mu ‖20 ≤ eCG,lin(∆t)2

with CG,lin ∼ T (1− 2∆t)−1. The nonlinear error is bounded by Lemma 4.2.16 as

‖ẽmu ‖20 + (∆t)2‖∇emp ‖20 +
m∑
n=1

[
∆tν‖∇ẽnu‖20 + ∆tγ‖∇ · ẽnu‖20

+ ∆t
∑

M∈Mh

τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M
]

≤ eCG,t
{(

C

ν3 + C

hdν2 max
1≤n≤N

max
M∈Mh

{τnM}+ C

ν3h2d max
1≤n≤N

max
M∈Mh

{τnM}2
)

(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν3 e
CG,h(u)(h2ku + h2kp+2)(∆t)2 + C

ν2 (∆t)2l+2
}
,

provided that (h2ku + h2kp+2) . e−CG,h(u)ν∆t and

Kt,nl = C∆t‖uh‖2l∞(0,T ;W 1,2(Ω))

(‖uh‖2l∞(0,T ;W 1,2(Ω))
ν3 + max

1≤n≤N
max
M∈Mh

{τnM/hdM}

+
‖uh‖2l∞(0,T ;L2(Ω))

ν
max

1≤n≤N
max
M∈Mh

{τnM/hdM}2
)
< 1.

We further notice for any M ∈Mh and 1 ≤ n ≤ N

τnM‖κuM ((ũnM · ∇)ξ̃nu)‖20,M ≤ 2τnM‖κuM ((ũnM · ∇)η̃nu)‖20,M + 2τnM‖κuM ((ũnM · ∇)ẽnu)‖20,M
≤ CτnM |ũnM |2‖η̃nu‖21,M + CτnM‖κuM ((ũnM · ∇)ẽnu)‖20,M

≤ C

ν
τnM |ũnM |2(∆t)2 + CτnM‖κuM ((ũnM · ∇)ẽnu)‖20,M .

In combination, we establish the claim.
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4.2.3. Errors of the Fully Discretized Scheme

For convenience, we define the total error by

ζ̃
n

u := u(tn)− ũnht, ζnu := u(tn)− unht, ζnp := p(tn)− pnht.

We combine the estimates for the discretizations in time and space into the theorem below.

Theorem 4.2.18 (Fully discrete error).
Let Assumption 4.2.4 be valid. Besides, let (h2ku + h2kp+2) . e−CG,h(u)ν∆t and

Kt,nl = C∆t‖uh‖2l∞(0,T ;W 1,2(Ω))

(‖uh‖2l∞(0,T ;W 1,2(Ω))
ν3 + max

1≤n≤N
max
M∈Mh

{τnM/hdM}

+
‖uh‖2l∞(0,T ;L2(Ω))

ν
max

1≤n≤N
max
M∈Mh

{τnM/hdM}2
)
< 1.

With h = maxM∈Mh
and the notation from the previous results

Ξe,u,t := eCG,t

{(
C

ν3 + C

ν2 max
1≤n≤N

max
M∈Mh

{τnM/hdM}+ C

ν3 max
1≤n≤N

max
M∈Mh

{τnM/hdM}2
)

(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν3 e
CG,h(u)(h2ku + h2kp+2)(∆t)2 + C

ν2 (∆t)2l+2
}
,

Ξξ,u,h := eCG,h(u)
∫ T

0

{ ∑
M∈Mh

h2ku
M

[(
1 + νRe2

M + τuM |uM |2 + dγM
)
‖u(τ)‖2Wku+1,2(ωM )

+ τuM |uM |2h
2(su−ku)
M ‖u(τ)‖2W su+1,2(ωM ) + ‖∂tu(τ)‖2Wku,2(ωM )

]
+

∑
M∈Mh

h
2(kp+1)
M min

(d
ν
,

1
γM

)
‖p(τ)‖2

Wkp+1,2(ωM )

}
dτ

and CG,h(u) . 1 +C|u|L∞(0,T ;W 1,∞(Ω)) +Ch2|u|2L∞(0,T ;W 1,∞(Ω)) +C‖u‖2L∞(0,T ;L∞(Ω)), the
fully discrete errors can be bounded as

‖ζ̃u‖2l∞(0,T ;L2(Ω)) ≤
C

ν2 e
CG,lin(∆t)4 + C Ξe,u,t + C Ξξ,u,h =: Ξζ,u,L2,

‖ζ̃u‖2l2(0,T ;LPS) ≤ e
CG,lin(∆t)2 + C Ξe,u,t

+ C

(
1 + 1

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}
)

((∆t)2l + Ξξ,u,h) =: Ξζ,u,LPS ,

‖ζp‖2l2(0,T ;L2(Ω)) ≤
(

C

(∆t)2 + C

)
Ξζ,u,L2

+ C

(
ν + γ + max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}
)

Ξζ,u,LPS
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+ C
Ξ2
ζ,u,LPS

∆tν2 + C max
1≤n≤N

max
M∈Mh

{τnM |ũnM |2h
2su
M }

2‖u‖2l∞(0,T ;W su+1,2(Ω)) + C(∆t)2.

Proof. We meld Corollary 4.2.8 (for the spatial results) and Theorem 4.2.17 (for the tem-
poral results). Further, we use that

su(ũnht, ζ̃
n

u, ũ
n
ht, ζ̃u) ≤ 2su(ũnht, ξ̃

n

u, ũ
n
ht, ξ̃

n

u) + 2su(ũnht, ξnu,h, ũnht, ξnu,h),

where we already have a bound for the first term and estimate the second one as

su(ũnht, ξnu,h, ũnht, ξnu,h) ≤ max
M∈Mh

{τnM |ũnM |2}‖ξnu,h‖21 ≤
maxM∈Mh

{τnM |ũ
n
M |2}

ν
|||ξnu,h|||2LPS .

In combination, we obtain the estimates for

‖ζ̃u‖2l∞(0,T ;L2(Ω)) ≤ C‖ξ̃u‖
2
l∞(0,T ;L2(Ω)) + C‖ξu,h‖2l∞(0,T ;L2(Ω)),

‖ζ̃u‖2l2(0,T ;LPS) ≤ C‖ξ̃u‖
2
l2(0,T ;LPS)

+ C

(
1 + 1

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}
)
‖ξu,h‖2l2(0,T ;LPS).

In order to derive an estimate for the pressure error in the L2(Ω)-norm, we utilize the
discrete inf-sup stability of the ansatz spaces, i.e.,

∃wh ∈ Vh : ‖∇wh‖0 ≤ ‖ζnp ‖0/βh, (∇ ·wh, ζ
n
p ) = ‖ζnp ‖20. (4.36)

Tested with wh, the advection-diffusion error equation for the fully discrete error reads:(
3ζ̃nu − 4ζn−1

u + ζn−2
u

2∆t ,wh

)
+ ν(∇ζ̃nu,∇wh) + γ(∇ · ζ̃nu,∇ ·wh)

= −cu(u(tn);u(tn),wh) + cu(ũnht; ũnht,wh) + su(ũnht, ũnht, ũnht,wh)

+ (Dtu(tn)− ∂tu(tn),wh)− (∇(p(tn)− pn−1
ht ),wh),

where Dtu(tn) = (3u(tn) − 4u(tn−1) + u(tn−2))/(2∆t) and ∂tu is the time derivative of
u. With ζ̃nu = ξ̃

n

u + ξnu,h, we obtain

‖∇wh‖0‖ζn−1
p ‖0 ≤

1
βh
‖ζn−1
p ‖20 = −(∇ζn−1

p ,wh)

≤
∥∥∥∥∥3ζ̃nu − 4ζn−1

u + ζn−2
u

2∆t

∥∥∥∥∥
−1
‖∇wh‖0 + ν‖∇ζ̃nu‖0‖∇wh‖0 + γ‖∇ · ζ̃nu‖0‖∇ ·wh‖0

+ cu(u(tn);u(tn),wh)− cu(ũnht; ũnht,wh) + su(ũnht, ũnht, ũnht,wh)

+ ‖Dtu(tn)− ∂tu(tn)‖−1‖∇wh‖0 + ‖p(tn)− p(tn−1)‖0‖∇ ·wh‖0.
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The convective terms can be estimated according to Lemma A.3.7:

cu(u(tn);u(tn),wh)− cu(ũnht; ũnht,wh) = cu(ζ̃nu;u(tn),wh)− cu(ũnht; ζ̃
n

u,wh)

= cu(ζ̃nu;u(tn),wh)− cu(u(tn); ζ̃nu,wh)− cu(ζ̃nu; ζ̃nu,wh)

≤ C‖ζ̃nu‖0‖u(tn)‖2‖wh‖1 + C‖ζ̃nu‖21‖wh‖1.

For the LPS SU stabilization, we calculate

su(ũnht, ũnht, ũnht,wh) = su(ũnht,u(tn)− ζ̃nu, ũnht,wh)

≤ C
∑

M∈Mh

τnM |ũnM |2‖κuM (u(tn))‖0,M‖wh‖1,M

+ C
∑

M∈Mh

τnM‖κuM ((ũnM · ∇)ζ̃nu)‖0,M |ũnM |‖wh‖1,M

≤ C
(

max
M∈Mh

{τnM |ũnM |2‖κuM (u(tn))‖0,M}

+
∑

M∈Mh

τnM |ũnM |‖κuM ((ũnM · ∇)ζ̃nu)‖0,M
)
‖∇wh‖0

≤ C
(

max
M∈Mh

{τnM |ũnM |2h
su
M‖u(tn)‖W su+1,2(ωM )}

+
∑

M∈Mh

τnM |ũnM |‖κuM ((ũnM · ∇)ζ̃nu)‖0,M
)
‖∇wh‖0

with su ∈ {0, . . . , ku} due to the approximation property of κuM . Now, we take the estimates
for ‖ζ̃u‖l∞(0,T ;L2(Ω)) and ‖ζ̃u‖l2(0,T ;LPS) as well as ∆t

∑N
n=1 ‖p(tn) − p(tn−1)‖20 ≤ C(∆t)2

into account. The latter holds because of p ∈ W 1,2(0, T ;L2(Ω)) due to Assumption 4.2.4,
Lemma 4.2.6 and Taylor expansion. It follows that:

∆t
N∑
n=1
‖ζn−1
p ‖20 ≤ C

{
1

(∆t)2 ‖ζ̃u‖
2
l∞(0,T ;L2(Ω)) + ν2‖∇ζ̃u‖2l2(0,T ;L2(Ω))

+ γ2‖∇ · ζ̃u‖2l2(0,T ;L2(Ω)) + ‖ζ̃u‖2l∞(0,T ;L2(Ω))‖u‖
2
l2(0,T ;H2(Ω))

+ ‖ζ̃u‖2l∞(0,T ;W 1,2(Ω))‖ζ̃u‖
2
l2(0,T ;W 1,2(Ω))

+ max
1≤n≤N

max
M∈Mh

{τnM |ũnM |2h
su
M}

2‖u‖2l∞(0,T ;W su+1,2(Ω))

+ max
1≤n≤N

max
M∈Mh

{τnM |ũnM |2}∆t
N∑
n=1

∑
M∈Mh

τnM‖κuM ((ũnM · ∇)ζ̃nu)‖20,M + (∆t)2
}

≤ C
( 1

(∆t)2 + ‖u‖2l2(0,T ;H2(Ω))

)
Ξζ,u,L2

+ C

(
ν + γ + max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}
)

Ξζ,u,LPS + C
Ξ2
ζ,u,LPS

∆tν2

+ C max
1≤n≤N

max
M∈Mh

{τnM |ũnM |2h
su
M}

2‖u‖2l∞(0,T ;W su+1,2(Ω)) + C(∆t)2,
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where we utilized

‖ζ̃u‖2l∞(0,T ;W 1,2(Ω))‖ζ̃u‖
2
l2(0,T ;W 1,2(Ω)) ≤

1
∆t‖ζ̃u‖

4
l2(0,T ;W 1,2(Ω))

≤ exp(CG,lin)
∆tν2 ‖ζ̃u‖4l2(0,T ;LPS) ≤

C

∆tν2 Ξ2
ζ,u,LPS .

With ‖u‖2l∞(0,T ;H2(Ω)) ≤ ‖u‖
2
L∞(0,T ;H2(Ω)) ≤ C because of Assumption 4.2.4, the claim is

established.

We derive a method of quasi-optimal order by bounding the right-hand side in Theorem
4.2.18 in terms of the fully discretized parameters.

Corollary 4.2.19 (Method of quasi-optimal order).
Let the conditions of Theorem 4.2.18 with l = 1 hold true. If the problem parameters satisfy

γ = γ0, νRe2
M . 1, τnM . min

{
(∆t)2

ν2|ũnM |2
,

1
|ũnM |2h

2(su−ku)
M

, h
d−2(su−ku)
M

}
,

∆t . min{hd/(2p)−2(su−ku)
M , ν3}, h2ku + h2kp+2 . e−CG,h(u)ν∆t,

the error due to spatial and temporal discretizations can be bounded by

‖ζ̃u‖2l∞(0,T ;L2(Ω)) .
eCG,t

ν3 (∆t)4 + eCG,h(u)
(
h2ku + h2(kp+1)

)
,

‖ζ̃u‖2l2(0,T ;LPS) . eCG,lin(∆t)2 + eCG,h(u)
(
h2ku + h2(kp+1)

)
,

‖ζp‖2l2(0,T ;L2(Ω)) .
eCG,t

ν3 (∆t)2 + eCG,h(u) h
2ku + h2(kp+1)

(∆t)2 .

Proof. For l = 1 and the parameter choice stated in the corollary, we balance the following
terms in Theorem 4.2.18(

1
ν3 + C

hdν2 max
1≤n≤N

max
M∈Mh

{τnM}+ C

ν3h2d max
1≤n≤N

max
M∈Mh

{τnM}2
)

(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + C

ν2 (∆t)2l+2 .
1
ν3 (∆t)4. (4.37)

Theorem 4.2.18 provides an upper bound of the fully discrete error that still depends
both on semi-discrete and on fully discrete stabilization parameters. In order to be able to
compare and balance them, we bound the semi-discrete streamline velocity by the following
argument. Choose the partitioning Nt := {[(n− 1)∆t, n∆t]}N=T/∆t

n=1 and a piecewise linear
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nodal basis φn. Define ûht(t) by the finite element approximation of ũht and choose τuM
as the finite element approximation of τnM :

ûht :=
N∑
n=1

ũnhtφn, τuM :=
N∑
n=1

τnMφn.

In particular, according to this construction, we can achieve ûht ∈ W 2,2(0, T ; [L2(Ω)]d),
τuM ∈ W 2,2(0, T ;L2(Ω)) and τuM (tn) = τnM for all 1 ≤ n ≤ N . With the abbreviation
Ku := ‖u‖2

L∞(0,T ;Wku+1,2(ωM )) and ûM (t) := 1
|M |

∫
M ûht(x)dx, it holds due to Lemma

A.3.8 and Lemma 4.2.6 for all M ∈Mh∫ T

0
τuM (t)|uM (t)|2‖u(t)‖2Wku+1,2(ωM )dt

≤ CKu

∫ T

0
τuM (t)|ûM (t)|2dt+ CKu

∫ T

0
τuM (t)|uM (t)− ûM (t)|2dt

≤ CKu‖
√
τuM ûM‖

2
L2(0,T ) + Ch−dM Ku‖

√
τuM (uh − ûht)‖2L2(0,T ;L2(M))

≤ CKu‖
√
τnM ûM‖

2
l2(0,T ) + Ch−dM Ku

(
‖
√
τnM (uh − ũht)‖2l2(0,T ;L2(M)) + C(∆t)2p

)
≤ CKu

(
max

1≤n≤N
{τnM |ũM |2}+ max1≤n≤N{τnM}

hdM
‖ξ̃u‖2l2(0,T ;L2(M)) + C

(∆t)2p

hdM

)
.

Now, we use the estimate due to Theorem 4.2.17 as

‖ξ̃u‖2l2(0,T ;L2(M)) ≤ ‖ξ̃u‖
2
l∞(0,T ;L2(Ω)) ≤

C

ν2 e
CG,lin(∆t)4 + Ξe,u,t,

together with the balance from (4.37). Hence, the theorem yields for the error in L2(Ω):

‖ζ̃u‖2l∞(0,T ;L2(Ω)) ≤
C

ν2 e
CG,lin(∆t)4

+ eCG,t

{(
C

ν3 + C

ν2 max
1≤n≤N

max
M∈Mh

{τnM/hdM}+ C

ν3 max
1≤n≤N

max
M∈Mh

{τnM/hdM}2
)

(∆t)4

+ C

ν
max

1≤n≤N
max
M∈Mh

{τnM |ũnM |2}(∆t)2 + CeCG,h(u)

ν3 (h2ku + h2kp+2)(∆t)2 + C

ν2 (∆t)2l+2
}

+ C

∫ T

0
eCG,h(u)(t−τ)

{ ∑
M∈Mh

h2ku
M

[(
1 + νRe2

M + τuM |uM |2 + dγM
)
‖u(τ)‖2Wku+1,2(ωM )

+ τuM |uM |2h
2(su−ku)
M ‖u(τ)‖2W su+1,2(ωM ) + ‖∂tu(τ)‖2Wku,2(ωM )

]
+

∑
M∈Mh

h
2(kp+1)
M min

(d
ν
,

1
γM

)
‖p(τ)‖2

Wkp+1,2(ωM )

}
dτ

.

(
1 + max

1≤n≤N
max
M∈Mh

{τnM/hdM}(1 + h
2(su−ku)
M )

)[
eCG,t

ν3 (∆t)4
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+ eCG,h(u) (∆t)2

ν3 (h2ku + h2kp+2)
]

+ h2kp+2eCG,h(u) min
(d
ν
,

1
γ

)
+ h2kueCG,h(u)

[
1 + νRe2

M + dγ + (1 + h2(su−ku)) max
1≤n≤N

max
M∈Mh

{
τnM |ũM |2 + C

(∆t)2p

hdM

}]

≤ eCG,t

ν3 (∆t)4 +
(
h2ku + h2kp+2)eCG,h(u),

where ∆t . min{hd/(2p)−2(su−ku)
M , ν3} and the parameter choices

γ = γ0, νRe2
M . 1, τnM . min

{
(∆t)2

ν2|ũnM |2
,

1
|ũnM |2h

2(su−ku)
M

, h
d−2(su−ku)
M

}

were utilized. The suggested parameter design arises because Theorem 4.2.18 is only ap-
plicable if (h2ku + h2kp+2) . e−CG,h(u)ν∆t and ∆t . ν3. The estimates for ‖ζ̃u‖2l2(0,T ;LPS)
and ‖ζp‖2l2(0,T ;L2(Ω)) are shown similarly.

Remark 4.2.20. The error estimates in Theorem 4.2.18 suggest a parameter choice as

γ = γ0, νRe2
M . 1, τnM . min

{
(∆t)2

ν2|ũnM |2
,

1
|ũnM |2h

2(su−ku)
M

, h
d−2(su−ku)
M

}
,

∆t . min{hd/(2p)−2(su−ku), ν3}, h2ku + h2kp+2 . e−CG,h(u)ν∆t,

see Corollary 4.2.19. For the above analysis, discrete inf-sup stability of the ansatz spaces
is required. We assume Taylor-Hood elements satisfying ku = kp + 1 and a coarse space
with su = ku.
Now, let us discuss a feasible choice of p ∈ {1, 2}. Consider p = 1 first. For d ∈ {2, 3},
the condition ∆t . hd/(2p) is fulfilled if we choose ∆t ∼ h3/2 (for h < 1). Note that the
requirement h2ku . e−CG,h(u)ν∆t has to be fulfilled simultaneously by a small enough grid
size (or sufficiently high polynomial order ku). This leads to the requirement

h2ku−3/2 . e−CG,h(u)ν ;

in particular, higher order velocity spaces ku > 1 would be required. In case of p = 2, the
choice ∆t ∼ h3/4 (for h < 1) would be sufficient. This would relax the condition on the
mesh size considerably in the sense that first order ansatz spaces are not excluded:

h2ku−3/4 . e−CG,h(u)ν.

We point out that this challenge arises since it is desired to express the right-hand side in
Theorem 4.2.18 in terms of fully discretized stabilization parameters (which are the ones
that are actually implemented in our algorithm).
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With the mentioned choices and p = 2, we obtain a quasi-optimal estimate for Taylor-Hood
elements as

‖ζ̃u‖2l∞(0,T ;L2(Ω)) .
eCG,t

ν3 (∆t)4 + eCG,h(u)h2ku ,

‖ζ̃u‖2l2(0,T ;LPS) . eCG,lin(∆t)2 + eCG,h(u)h2ku ,

‖ζp‖2l2(0,T ;L2(Ω)) .
eCG,t

ν3 (∆t)2 + eCG,h(u)h2ku−3/2.

Let us remark that the suboptimal spatial error in the L2-norm leads to a suboptimal
pressure estimate as well. One has to put more effort into this (e.g. with the Aubin-Nitsche
Lemma considering the dual problem or using weaker norms) to obtain the desired order.

Remark 4.2.21. A similar convergence analysis can be performed for the coupled Oberbeck-
Boussinesq model. The first step is to add the error equation for the temperature step
and the error advection-diffusion equation where the reaction term βgθ is included. The
reaction term can be handled as in Theorem 4.1.2. The remaining Navier-Stokes terms
stemming from the advection-diffusion step are treated as in the above estimates. The
terms from the temperature step can be dealt with in a similar way; the analysis is even
easier because the Fourier equation does not incorporate a pressure term or different
time-discrete temperature approximations. Note that α plays a similar role as ν for the
temperature.

4.3. Critical Examination of the Required Assumptions

One objective of convergence analysis is to have as few restrictions and assumptions as
possible. If we recall Assumptions 4.2.1, 4.2.2, 4.2.3 and 4.2.4 or the bounds on the time
step size as ν3, this desire is not supplied. In this section, we have a closer look at the
requirements of our analysis and demonstrate where they are originated.
For the semi-discrete error u− uh, we need a continuous solution satisfying

u ∈ L∞(0, T ; [W 1,∞(Ω)]d) ∩ L2(0, T ; [W ku+1,2(Ω)]d),

∂tu ∈ L2(0, T ; [W ku,2(Ω)]d), p ∈ L2(0, T ;W kp+1,2(Ω) ∩ C(Ω))

according to Assumption 4.2.1. This is not too restrictive, it is comparable with the require-
ments in [BF07], for instance. In order to utilize the time-continuous L2(0, T ;LPS)-norm
as an upper bound of the discrete one, we need to assume for some l ∈ {1, 2}

u ∈W l,2(0, T ;LPS), uh ∈W l,2(0, T ;LPS).
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As our analysis suggests, l = 1 suffices (this can be understood by looking at the nonlinear
temporal error).
The auxiliary semi-discrete velocity uh and pressure ph play the role of (time-)continuous
quantities in the estimates for the temporal discretization (Section 4.2.2). Hence, Assump-
tion 4.2.2 demands

‖Rn −Rn−1‖20 + ‖∇(ph(tn)− 2ph(tn−1) + ph(tn−2))‖20 ≤ C(∆t)4,

∆t
N∑
n=1
‖Rn‖2−1 ≤ C(∆t)4,

‖∇(ph(tn)− ph(tn−1))‖0 ≤ C∆t

with Rn = Dtuh(tn)− ∂tuh(tn). This is needed for the proof of the linear part of the er-
ror introduced by temporal discretizations. As argued in [She96] (see also [She92]), these
conditions can be derived from certain regularity assumptions on uh and ph that can
be shown to hold for the continuous solutions u, p of the Navier-Stokes equations if the
data are smooth enough (cf. [HR82]). Unfortunately, Assumption 4.2.2 is not reducible to
the continuous quantities because the semi-discrete analysis does not yield estimates for
∇p−∇ph or ∂tu− ∂tuh.
For the nonlinear (temporal) error, we combine all these conditions in Assumption 4.2.3
and additionally that ‖u‖L∞(0,T ;W 2,2(Ω)) ≤ C with C independent of ν. The striking con-
dition we have for Lemma 4.2.16 reads

Kt,nl = C∆t‖uh‖2l∞(0,T ;W 1,2(Ω))

(‖uh‖2l∞(0,T ;W 1,2(Ω))
ν3 + max

1≤n≤N
max
M∈Mh

{τnM/hdM}

+
‖uh‖2l∞(0,T ;L2(Ω))

ν
max

1≤n≤N
max
M∈Mh

{τnM/hdM}2
)
< 1

and is due to the estimates for the convective and stabilization terms. The most restrictive
term ∆t < Cν3 gives rise to an upper bound for the error growing as

exp
(

T

1−∆t/ν3

)
.

Even if the LPS SU stabilization was omitted, the requirement

C∆t
‖uh‖4l∞(0,T ;W 1,2(Ω))

ν3 < 1
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arises due to the convective term. This bound is crucial for the application of the discrete
Gronwall Lemma A.3.6. The critical step is to bound

cu(ẽnu;uh(tn), ẽnu) ≤ C‖ẽnu‖
1/2
0 ‖uh(tn)‖1‖ẽnu‖

3/2
1

≤ ν

32‖∇ẽ
n
u‖20 + C

ν3 ‖uh(tn)‖41‖ẽnu‖20 (4.38)

in (4.34) in the proof of the nonlinear error ẽnu. Here, the problem is that we do not assume
uh ∈ L∞(0, T ; [W 2,2(Ω)]d) a priori. We put effort already in Lemma 4.2.15 to prove that
uh ∈ L∞(0, T ; [W 1,2(Ω)]d). However, we emphasize that this critical estimate containing
ν3 could be avoided if we assumed uh ∈ L∞(0, T ; [W 2,2(Ω)]d).
A related problem arises for the term

cu(uh(tn); η̃nu, ẽnu) + cu(η̃nu;uh(tn), ẽnu)

= cu(u(tn); η̃nu, ẽnu)− cu(u(tn)− uh(tn); η̃nu, ẽnu)

+ cu(η̃nu;u(tn), ẽnu)− cu(η̃nu;u(tn)− uh(tn), ẽnu)

≤ C‖u(tn)‖2‖η̃nu‖0‖ẽnu‖1 + C‖u(tn)− uh(tn)‖1‖η̃nu‖1‖ẽnu‖1

≤ ν

32‖∇ẽ
n
u‖20 + C‖u(tn)‖22

ν
‖η̃nu‖20 + C

ν
‖η̃nu‖21‖u(tn)− uh(tn)‖21.

Although we do not have uh ∈ L∞(0, T ; [W 2,2(Ω)]d), we need to estimate the linear error
η̃nu in the L2-norm in order to reach the full order of temporal convergence as (∆t)2. So we
need to go back to the continuous solution u that is assumed to be in L∞(0, T ; [W 2,2(Ω)]d)
(Assumption 4.2.3). This is still quite restrictive. Note that the term ‖u(tn)−uh(tn)‖21 is
handled via the semi-discrete results, see Corollary 4.2.8: Provided uh ∈W l,2(0, T ;LPS),
it holds

‖u− uh‖2l2(0,T ;W 1,2(Ω)) ≤ C‖u(tn)− uh(tn)‖2L2(0,T ;W 1,2(Ω)) + C(∆t)2l

≤ 1
ν
‖u(tn)− uh(tn)‖2L2(0,T ;LPS) + C(∆t)2l ≤ C

ν
eCG,h(u)(h2ku + h2kp+2) + C(∆t)2l.

The assumption with l = 1 is sufficient to obtain convergence of the fully discrete L2-error
as (∆t)2. We remark that this technique - introduction of u(tn) - does not help for the
critical term (4.38):

cu(ẽnu;uh(tn), ẽnu) = cu(ẽnu;u(tn), ẽnu) + cu(ẽnu;uh(tn)− u(tn), ẽnu)

≤ ‖ẽnu‖0‖u(tn)‖2‖ẽnu‖1 + C‖ẽnu‖
1/2
0 ‖uh(tn)− u(tn)‖1‖ẽnu‖

3/2
1

≤ ν

32‖∇ẽ
n
u‖20 + C

‖u(tn)‖22
ν

‖ẽnu‖20 + C

ν3 ‖uh(tn)− u(tn)‖41‖ẽnu‖20
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≤ ν

32‖∇ẽ
n
u‖20 + C

(
‖u(tn)‖22

ν
+ e2CG,h(u)h

4ku + h4kp+4

ν5(∆t)2 + C(∆t)4l−2
)
‖ẽnu‖20, (4.39)

where we inserted the estimate

‖u− uh‖2l∞(0,T ;W 1,2(Ω)) ≤
C

∆t‖u− uh‖
2
l2(0,T ;W 1,2(Ω))

≤ C

∆t
(
‖u− uh‖2L2(0,T ;W 1,2(Ω)) + (∆t)2l

)
≤ CeCG,h(u)h

2ku + h2kp+2

ν∆t + C(∆t)2l−1.

With the requirement h2ku + h2kp+2 . e−CG,h(u)ν∆t and (4.39), we obtain a comparable
condition ∆t . ν3.
For the nonlinear estimate in Lemma 4.2.16, we suppose that the LPS SU parameter τnM
must not depend nonlinearly on the arguments of su. This contradicts the findings from
Chapter 3, where we suggest a choice as hM/|ũM |. The linearity of su in each argument
is important to combine the terms

su(uh(tn),uh(tn),uh(tn), ẽnu)− su(ũnht, ũnht, ũnht, ẽnu).

The critical point is that the respective first arguments in these two terms differ. Again,
we observe that this is a problem due to the (auxiliary) introduction of uh.
In addition, we need

u ∈ L∞(0, T ; [W ku+1,2(Ω)]d), p ∈W 1,2(0, T ;L2(Ω)),

see Assumption 4.2.4, to establish Theorem 4.2.18. Compared with the previously discussed
conditions, this one is not critical.
Another challenge arises if we want to balance the error bounds in Theorem 4.2.18 in
order to obtain a method of desired order; see Corollary 4.2.19. Theorem 4.2.18 provides
an upper bound that still depends both on semi-discrete (i.e., time-continuous) and on
fully discrete stabilization parameters. We desire to express the right-hand side only by
fully discretized parameters as these are the quantities used in a numerical procedure. In
order to bound the semi-discrete streamline velocity by the fully discrete one, we need the
additional condition:

uh ∈W p,2(0, T ; [L2(Ω)]d), p ∈ {1, 2}.

Moreover, the restriction

∆t . hd/(2p)−2(su−ku)
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arises from this. The parameter choice according to Corollary 4.2.19 reads

γ = γ0, νRe2
M . 1, τnM . min

{
(∆t)2

ν2|ũnM |2
,

1
|ũnM |2h2(su−ku) , h

d

}
,

∆t . min{hd/(2p)−2(su−ku), ν3}, h2ku + h2kp+2 . e−CG,h(u)ν∆t.

If p = 1 holds, this leads to a high polynomial order ku > 1 and small grid size; for p = 2
the restriction on the polynomial order can be diminished (see Remark 4.2.20). This issue
could be avoided by omitting the LPS SU stabilization or by leaving out the introduction
of the semi-discrete solution.
Note that in [AD15], we additionally pursue a second ansatz to discretize in time first and
afterwards in space. We point out that this leads to less restrictive parameter bounds as
∆t . ν3/2 and τnM . |uM |−2 (if su = ku). This strategy also suffers from the introduction
of a semi-discrete velocity (discrete in time, continuous in space): One cannot show the
desired order of convergence with respect to spatial discretization, unless certain regularity
properties for the semi-discrete quantity are assumed. Anyway, we infer that the parameter
choice from Corollary 4.2.19 might be too restrictive. So we do not focus on this during
our numerical simulations.

In conclusion, it seems favorable for a fully discrete analysis, to omit the intermediate step
via u − ũht = (u − uh) + (uh − ũht) and estimate the complete difference immediately.
Then, regularity assumptions for uh are no longer necessary. Moreover, we conjecture that
the challenges due to the LPS SU stabilization can be reduced significantly. Regularity of
u alone would lead to a diminished constraint on ∆t. One would desire to estimate the
convective terms more carefully. Note that an additional difficulty arises compared with
usual procedures: ũnht is not weakly solenoidal in this segregation algorithm.





5. Numerical Examples

Stabilization techniques are designed to improve the accuracy of a numerical method. We
discuss if grad-div and local projection stabilization in streamline direction serve this pur-
pose in the sense that they damp unphysical oscillations and act as a turbulence model.
Because we restrict ourselves to the consideration of inf-sup stable elements and continu-
ous discrete pressure spaces in this chapter, no pressure stabilization is needed. We address
the question of a suitable parameter design. It is desired to find a parameter choice that
performs well for a large class of numerical test cases. Therefore, we consider a variety of
different isothermal and temperature driven flow examples in the following.
First, we validate the theoretical convergence results with respect to the mesh width h

and the time step size ∆t obtained from the previous chapters.
In Sections 5.1 and 5.2, we consider isothermal flow. The influence of grad-div stabilization
on the spatial errors for different Reynolds numbers is studied in both sections. The addi-
tional effect of LPS SU stabilization is examined in Section 5.2. Enriched elements are used
as well. Section 5.3 is dedicated to spatial and temporal convergence for a non-isothermal
example in dependence on α and β. The errors for various stabilization parameters in
combination with different choices of finite elements for the temperature are presented.
The remaining examples are dedicated to more realistic flow. In Sections 5.4 and 5.5, the
performance of grad-div and LPS SU stabilization is considered for laminar isothermal
and non-isothermal flow. Different stabilization parameters (in combination with different
coarse spaces) are compared.
Transient flow examples are regarded in Sections 5.6 and 5.7. Section 5.6 contains a turbu-
lent isothermal test case. The energy spectrum of this isotropic flow gives insight whether
grad-div stabilization alone is sufficient as an implicit turbulence model or whether addi-
tional LPS SU stabilization is needed in order to prevent an unphysical energy increase.
It is studied theoretically and numerically how the LPS SU parameter locally depends
on uh and the mesh width h. These findings are tested in Section 5.7 for non-isothermal
flow with Rayleigh numbers 105 ≤ Ra ≤ 109. For high Rayleigh numbers, where the flow
becomes transient, grad-div and LPS SU are considered as well as different finite elements
and grids. Based on the Nusselt number, we discuss how these aspects affect the quality
of the numerical solution.
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For the isothermal examples, we seek for solutions of the Navier-Stokes equations

∂tu− ν∆u+ (u · ∇)u+∇p = fu in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,
(5.1)

whereas for the non-isothermal ones, we consider the Oberbeck-Boussinesq model (2.7).
The discrete solutions are calculated using stabilized finite element methods with inf-sup
stable velocity and pressure spaces. For our numerical simulations, we take advantage of
the C++-FEM package deal.II, see [BHK07,BHH+15], which provides important tools
for solving differential equations using finite elements: These include tools for defining
domains and grid generation, matrix assembling and handling of degrees of freedom. The
time-discretization used is the rotational pressure-correction projection method introduced
in Section 2.3.
For the convergence studies, we denote the velocity error ‖u(T ) − ũNht‖0 in the L2-norm
at the end of the considered time interval T = N∆t with L2(u). H1(u) describes the error
in the semi-norm ‖∇(u(T )− ũNht)‖0 and L2(div u) stands for ‖∇ · ũNht‖0. The notation for
pressure and temperature is analogous.
Throughout the numerical experiments, the one-level approach as described in Section
2.2.3 is used when LPS SU stabilization applied, i.e.,Mh = Th and Lh = Th. Furthermore,
a continuous pressure ansatz space is used; therefore, we set ih ≡ 0. For convenience, we
write uh, ph, θh in this chapter instead of the fully discrete ũht, pht, θht.

5.1. Isothermal Convergence Results: 3D No-Flow Problem

This example serves to examine the effect of grad-div stabilization in case of different
viscosities ν. We published the results of this section in [ADL15].

5.1.1. Features of the Test Case

We consider the No-Flow test problem in three dimensions with exact stationary solution

u(x) ≡ 0, p(x) = x3 + y2 + z2 + x− 1 in Ω = (0, 1)3

for x = (x, y, z)T and forcing term fu(x) = (3x2 + 1, 3y2, 3z2)T . Note that fu is a gradient
field. The used grids are randomly distorted by 1% as shown in Figure B.1 in the appendix.
The grid size h is determined as an average cell diameter.
As discussed in [Lin14], this test is relevant for the numerical simulation of coupled flow
problems, where forcing terms with large gradient parts can cause poor mass conservation
for vanishing ν.
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5.1.2. Numerical Experiments
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Figure 5.1.: No-Flow test for Q2∧Q1 elements for u and p and ν∈{1, 10−3, 10−6} with and
without grad-div stabilization: H1-velocity error (left), L2-divergence error
(middle), L2-pressure error (right).

In Figure 5.1, we study spatial convergence of different errors in order to validate the
findings of Chapter 3. The errors for all ν ∈ {1, 10−3, 10−6} show the expected rates, even
in the unstabilized case: The H1-velocity, L2-pressure and L2-divergence errors behave
like

‖∇(u− uh)‖0 ∼ h2, ‖p− ph‖0 ∼ h2, ‖∇ · uh‖0 ∼ h2.

For different ν, the velocity errors differ by orders of magnitude. Without grad-div sta-
bilization the error in the H1-semi-norm is proportional to ν−1. By using γM = 1, this
behavior can be improved such that the error scales like ν−1/2, see Figure 5.1. This result
is conforming with the analytical result as the squared H1-semi-norm is multiplied by ν
in the definition of ||| · |||LPS . The pressure errors neither depend on ν nor on the use of
stabilization.

5.2. Isothermal Convergence Results: 2D Couzy Problem

The Couzy problem was proposed by Couzy [Cou95] and involves an analytical solution
of the Navier-Stokes equations. Hence, it is suited to study convergence of the numeri-
cal (stabilized) approximations to this solution. We are interested in finding the optimal
grad-div parameter for different Reynolds numbers Re and in the influence of LPS SU
stabilization. Some of the following results were presented in our paper [DAL15].



110 5. Numerical Examples

5.2.1. Features of the Test Case

Consider a test problem in Ω = (0, 1)2. It is constructed such that

u(x) = sin (πt)
(
− cos

(
π

2x
)

sin
(
π

2 y
)
, sin

(
π

2x
)

cos
(
π

2 y
))T

,

p(x) = −π sin
(
π

2x
)

sin
(
π

2 y
)

sin (πt)

is a solution of the Navier-Stokes problem (5.1). The forcing term fu, the initial condition
and the Dirichlet boundary data are deduced from the exact solution.
We consider different Reynolds numbers Re ∈ {1, 103, 106, 109}. (Q2/Q1)∧Q1 or enriched
(Q+

2 /Q1) ∧ Q1 elements for the velocity fine and coarse space and the pressure are used.
Isotropic grids with mesh size h are applied. Since we are interested in the spatial approx-
imation properties of the proposed methods here, we evaluate the error after 1000 time
steps of size ∆t = 10−5.

5.2.2. Numerical Experiments

In Figure 5.2, we show the dependence on a constant grad-div parameter γM for Re = 103

and Q2∧Q1 elements for velocity and pressure. The convergence diagrams for the velocity
and divergence errors show a significant influence of γM , whereas the pressure error is not
affected (see appendix, Figure B.2). A deviation from the optimal convergence rates of the
velocity or divergence errors is observed if γM is too large or too small (or zero).
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Figure 5.2.: Two-dimensional Couzy test with Re = 103: Dependence of the H1-velocity
error (left) and the L2-divergence error (right) on the grad-div parameter γM
for Q2 ∧Q1 elements.
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The dependence of the errors on Re for optimized grad-div parameter γM is considered
in Figure 5.3 for Q2 ∧ Q1 elements. The L2-velocity and L2-pressure errors are shown in
the appendix, Figure B.3. We observe that a grad-div parameter of magnitude O(1) is
adequate for all Reynolds numbers. A deviation from the optimal convergence rates of the
H1- and L2-velocity errors occurs for higher Reynolds numbers on fine meshes. This can
be explained by a too large time step size. On the other hand, optimal rates are found for
L2(div u) and L2(p).
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Figure 5.3.: Two-dimensional Couzy test with optimized grad-div parameter γM : Depen-
dence of the H1-velocity error (left) and the L2-divergence error (right) on Re
for Q2/Q1.

In Figure 5.4, we compare the effect of LPS SU stabilization and enrichment for Re = 103.
(Q2/Q1)∧Q1 and (Q+

2 /Q1)∧Q1 elements are combined with grad-div stabilization only and
with additional LPS SU stabilization, i.e. τuM ∈ {0, 1

2h/‖uh‖∞,M , ‖uh‖
−2
∞,M}. L2-velocity

and L2-divergence errors can be found in the appendix, Figure B.4.
For Taylor-Hood elements, LPS SU stabilization does not influence the errors notably;
the convergence rate in the velocity errors in H1 and L2 is reduced for fine grids. En-
riched elements can improve this situation. In the grad-div stabilized cases with τuM ∈
{0, 1

2h/‖uh‖∞,M}, the expected rates are obtained. In contrast, using an enriched velocity
space in conjunction with τuM = ‖uh‖−2

∞,M ≤ |uM |−2, the order of convergence drops by up
to a half for the finest grids. This leads to the conclusion that the upper bound obtained
from the semi-discrete analysis in Chapter 3 might be too large. The pressure error is
unaffected by different LPS SU parameters. Enriched elements deteriorate the divergence
error slightly but convergence rates as h2 are observed in all cases.
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Figure 5.4.: Two-dimensional Couzy test for Re = 103 with γM = 1: H1-velocity error
(left) and L2-pressure error (right) for different LPS SU parameters τuM for
(Q2/Q1) ∧Q1 and (Q+

2 /Q1) ∧Q1 elements.

5.3. Non-Isothermal Convergence Results: 2D Traveling Wave

The test case consists of a convection driven temperature peak moving through a domain.
After the peak hits a boundary, it is transported out of the domain. This example is
constructed such that an analytical solution is known. It captures the nature of convection-
diffusion equations but is coupled with a momentum equation according to the Oberbeck-
Boussinesq model.

In this section, we verify the theoretical convergence results in space and time numerically.
The influence of LPS stabilization is discussed.

5.3.1. Features of the Test Case

We consider a time dependent, two-dimensional solution of the Oberbeck-Boussinesq equa-
tions (2.7) for different parameters ν, α, β > 0 in a box Ω = (0, 1)2 with t ∈ [0, 6 · 10−3]:

u(x, y, t) = (100, 0)T , p(x, y, t) = 0,

θ(x, y, t) = (1 + 3200αt)−1/2 exp
(
−
(1

2 + 100tx
)2 ( 1

800 + 4αt
)−1

)
,

fu(x, y, t) =
(
0,−β(1 + 3200αt)−1/2 exp

(
−200(1 + 3200αt)−1(1 + 200t− 2x)2

))T
,

fθ(x, y, t) = 0
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with g ≡ (0,−1)T and (time dependent) Dirichlet boundary conditions for u and θ, where
the right-hand sides fu, fθ are calculated such that (u, p, θ) solves the equations. Initially,
the temperature peak is located at x = 1

2 and moves in x-direction until it finally hits the
wall at x = 1, t = 0.005 and is transported out of the domain. Note that the movement of
the peak is one-dimensional.

10
-2

10
-4

∆ t10
-610

-2

10
-1

h

10
-2

10
-10

10
-8

10
-6

10
-4

10
0

H
1
(u

) 
e
rr

o
r

10
-2

10
-4

∆ t10
-610

-2

10
-1

h

10
0

10
-5

10
0

H
1
(θ

) 
e
rr

o
r

Figure 5.5.: Velocity (left) and temperature (right) H1-errors in dependence of ∆t and h,
(ν, α, β) = (1, 1, 1).

The mesh is randomly distorted by 1%; h denotes an average cell diameter. The fully
discrete error depends both on the time step size ∆t and the mesh size h. We want to
study the induced errors separately. So we have to choose the other parameter small enough
such that the error of interest dominates. Otherwise, its order of convergence would be
corrupted by the error introduced by the other quantity (see Figure 5.5).
We use Q2 ∧Q1 ∧ (Q2/Q1) or Q2 ∧Q1 ∧ (Q+

2 /Q1) elements for velocity, pressure and fine
and coarse temperature. Since only the temperature ansatz spaces are varied here, we
write Q(+)

2 /Q1 for convenience.

5.3.2. Numerical Experiments: Spatial Convergence

Different parameter settings for (ν, α, β) are considered and the errors in temperature,
velocity and pressure are examined. Note that the continuous solutions u and p are part
of the semi-discrete ansatz spaces Vh and Qh. Furthermore, the influence of small viscosity
ν is discussed in Sections 5.1, 5.2. Therefore, we focus on the case of moderate ν, where no
stabilization for the momentum equation is needed (γM = 0, τuM = 0). The temperature
errors are displayed here; spatial errors for velocity and pressure can be found in the
appendix, Section B.3.
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Figure 5.6.: Temperature H1-errors for different finite elements and choices of α and β
with τ θL = 0 (left) and τ θL = h/‖uh‖∞,L (right), ν = 1.

As presented in Figure 5.6, the cases with α = 1 show the expected order of convergence
‖θ − θh‖H1(Ω) ∼ h2 even without stabilization. Adding LPS stabilization for θ does not
corrupt this result. Note that even a high parameter β does not require any stabiliza-
tion: Neither the discrete temperature nor velocity or pressure fail to converge properly
(see Figure 5.6 and appendix, Figures B.5 and B.6). In the interesting case α = 10−3,
the temperature H1-errors become very large in the unstabilized case. LPS stabilization,
especially in combination with Q+

2 /Q1 elements for θh, cures this situation (Figure 5.6
right). We point out that if the mesh width restriction

ReM = hM‖uh‖∞,M
ν

≤ 1√
ν
, PeL = hL‖uh‖∞,L

α
≤ 1√

α
,

that we obtained from the semi-discrete analysis in Section 3.2.1, is violated, no deterio-
ration of the error is detected.
In the unstabilized case as well as in case of LPS SU with Q2/Q1 elements for the tem-
perature, the spurious oscillations of the discrete temperature cannot be captured. These
wiggles are directly visible in Figure 5.7, where θh(x, y = 0.5, t = 0.005) is plotted for
x ∈ [0, 0.95], and in Figure 5.8, that shows a temperature segment at time t = 0.005. The
improvement becomes obvious in both illustrations if we use enriched elements Q+

2 /Q1.

In Figure 5.9, we study the influence of LPS stabilization for the temperature in case
of small α = 10−3 in more detail. Different choices of the fine space are considered as
well as stabilization parameters. Surprisingly, Q2/Q1 elements for the temperature do not



5. Numerical Examples 115

Figure 5.7.: Plot over temperature at y = 0.5 (x ∈ [0, 0.95]) at time t = 0.005 with
h = 1/16 in case of Q2/Q1 elements (left) for τ θL = 0 (black line) and for
τ θL = ‖uh‖−2

∞,L (red line), Q+
2 /Q1 elements (right) for τ θL = 0 (black line) and

for τ θL = ‖uh‖−2
∞,L (red line), (ν, α, β) = (1, 10−3, 1). The black line lies directly

underneath the red one in the left picture.

Figure 5.8.: Temperature segment x ∈ [0, 1], y ∈ [0.35, 0.65] at t = 0.005 in case of Q2/Q1
elements (left) and Q+

2 /Q1 elements (right) for τ θL = ‖uh‖−2
∞,L, (ν, α, β) =

(1, 10−3, 1)
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Figure 5.9.: Temperature H1-errors for different choices of τ θL in case of Q2/Q1 elements
(left) and Q+

2 /Q1 elements (right), (ν, α, β) = (1, 10−3, 1).
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improve the error considerably; only for one mesh size, we observe a slightly smaller H1-
error, cf. Figure 5.9 (left). However, if Q+

2 /Q1 elements are used for the temperature, LPS
SU diminishes the error (Figure 5.9, right).

Figure 5.9 confirms the theoretical discussion that τ θL has to be chosen to be at most τ θL =
‖uh‖−2

∞,L; a larger parameter is even worse than the unstabilized case. Our experiments
suggest a choice of τ θL as min{h/‖uh‖∞,L, ‖uh‖−2

∞,L}. The error decreases rapidly and is
reduced by a factor of at least 101 compared to τ θL = 0.

Figure B.7 in the appendix illustrates that the temperature error does not harm the other
quantities considerably through the coupling.

5.3.3. Numerical Experiments: Convergence in Time
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Figure 5.10.: Velocity L2- (left) and velocity H1-errors (right) for different choices of α
and β with Q+

2 /Q1 elements.

Figure 5.10 shows errors depending on the time step size ∆t at fixed end time T =
0.006 and validates the theoretical convergence results of Chapter 4 in time: For the
considered regimes of (ν, α, β), the error ‖u(T )− ũNht‖0 is of order O((∆t)2) as expected.
Note that the error on the finest grid is corrupted by the error due to spatial discretization.
The error ‖θ(T ) − θNht‖0 shows a similar behavior, see Figure B.8 in the appendix. The
errors ‖∇(u(T )− ũNht)‖0 and ‖p(T )− pNht‖0 show an even better behavior than O(∆t). An
improvement to O((∆t)3/2) is anticipated since we used the rotational correction scheme
in our implementation (see [GS04] for the linear Stokes case).
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5.4. Isothermal Laminar Flow: 2D Blasius Boundary Layers

Named after H. Blasius, a Blasius boundary layer is among the simplest applications of
Prandtl’s boundary layer theory. It describes the two-dimensional laminar boundary layer
that develops if there is steady flow with free stream velocity u∞ parallel to the x-axis
across a flat plate. In [DAL15], some of the following numerical results are shown.

5.4.1. Features of the Test Case

The plate is parallel to the x-axis, starts at (x = 0, y = 0) and is infinitely long downstream,
see Figure 5.11. According to [SG00], the attached laminar boundary layer u = u∞f

′(η)

Figure 5.11.: Blasius flow.

developing along the plate can be quite well described by the Blasius profile. It is an exact
solution of Prandtl’s boundary layer equations, that are given by

2f ′′′(η) + f(η)f ′′(η) = 0,

f(0) = f ′(0) = 0, lim
x→∞

f ′(η) = 1,
(5.2)

where η = y
√
u∞/(νx) is a dimensionless variable.

Let us write u = (u, v)T and x = (x, y)T ∈ Ω. We start from the stationary Navier-Stokes
equations, assume that viscous forces outside the boundary layer are negligible and the
flow is tangential to the boundary layer. Then, the equations can be reduced to Prandtl’s
boundary layer equations

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν

∂2u

∂y2 , (5.3)

∂p

∂y
= 0, (5.4)

∂u

∂x
+ ∂v

∂y
= 0 (5.5)
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with boundary conditions u(y = 0) = v(y = 0) = 0, limy→∞ u(y) = u∞ and Bernoulli’s
equation for the outer flow

∂p

∂x
= −u∞(x)du∞(x)

dx
.

Since u∞ is constant, we have that dp/dx = 0. In case of an infinitely thin plate, we
introduce a dimensionless coordinate

η = y

√
u∞
νx

and use that the continuity equation (5.5) can be integrated by a streamfunction Ψ(x, y).
A dimensionless streamfunction f(η) can be introduced by Ψ = √νu∞xf(η). Therefore,
it holds

u = ∂Ψ
∂y

= u∞f
′(η), v = −∂Ψ

∂x
= 1

2

√
νu∞
x

(ηf ′ − f).

Inserting this into (5.3) yields the universal ordinary differential equation, which describes
the profile of the boundary layer (5.2).
Reference data are available in [How38]. For our numerical example, we consider a bounded
domain Ω = (−0.5, 0.5)2, where an infinitely thin plate ranges from the middle of the
domain (0, 0) to the right wall (0.5, 0). Homogeneous Dirichlet boundary conditions are
used at the plate and Dirichlet data (u∞ = 1, 0) at the left, top and bottom walls are
used. Neumann boundary conditions are posed on the right wall in order to dissemble an
infinitely long plate. In the following, we consider Blasius flow at ν = 10−3. We evaluate
the results once (after a fixed time T ), when the numerical solution reached a stationary
state.

5.4.2. Numerical Experiments

Using a discretization with Taylor-Hood elements Q2 ∧ Q1 for velocity and pressure in
combination with grad-div stabilization γM = 1 on a structured rectangular mesh, we
observe spurious wiggles of magnitude up to 10% of the velocity in front of the plate, see
Figure 5.12. On the other hand, the boundary layer profile is in good agreement with the
reference data from [How38].
In the following, the aim is to remove the unphysical oscillations while preserving or even
improving the approximation of the boundary layer with as few mesh points as possible.
We want to investigate if LPS SU stabilization has the desired effect and which parameter
τuM is suited. Figure 5.13 shows that in addition to grad-div, a LPS SU parameter τuM =
1/‖uh‖2∞,M can damp out the oscillations in front of the plate if (Q2/Q1) ∧ Q1 elements
are used for velocity fine and coarse space and pressure. Smaller parameters τuM of order
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Figure 5.12.: Flow over a horizontal plate at ν = 10−3, γM = 1, τuM = 0, h = 2−5: Velocity
magnitude near the plate (left) and Blasius profiles at different x (right).

O(h2) do not remove the wiggles. τuM ∼ O(h) already yields an improvement but does not
provide as much damping as the choice of order O(1). Enriched elements lead to similar
results, see Figure B.9 in the appendix. We also refer the reader to the appendix, Figure
B.10 in order to check that the choice τuM = 1

2h/‖uh‖∞,M in conjunction with (Q2/Q1)∧Q1

elements and with enriched (Q+
2 /Q1) ∧Q1 elements is comparable to τuM = h/‖uh‖2∞,M .

For the coarse space Du
M = Q1, we do not observe an influence of different stabilization

parameters with respect to the Blasius profile. In this example, the flow away from the
plate is given by (1,0). In particular, this means that using parameters depending in any
way on uh changes the behavior in the boundary layer only. There, the reference data is
of the form

f ′(η) = ηf ′′(0)− (f ′′)2

2
η4

4! +O(η5).

Hence, the streamline derivative is approximately linear away from the stagnation point. In
particular, the velocity is well approximated in the coarse space Du

M = Q1. Therefore, the
profile is almost unaffected by different choices of the LPS SU parameter. Using an empty
coarse space or Du

M = Q0 in conjunction with a constant parameter τuM = 1 perturbs the
approximation of the Blasius profile. In addition to the thickening of the boundary layer,
the oscillations are rather smeared than damped out (cf. Figure 5.14). If the parameter is
chosen in the magnitude O(h2) for Du

M = ∅ or O(h) for Du
M = Q0 (as suggested by the

semi-discrete analysis), the boundary profile is nearly unaffected.
We furthermore study refinement strategies near the plate in order to improve the numer-
ical solution. In the appendix, Figures B.11 and B.12, meshes are tested that are refined
near the boundary in different ways. The produced grids and the resulting velocity mag-
nitude in case of grad-div stabilization γM = 1 are shown. The oscillations in front of the
plate cannot be suppressed by a fine mesh only; a mesh is needed that damps out the
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Figure 5.13.: Blasius flow with ν = 10−3 for γM = 1 and different choices of the stabi-
lization parameter τuM with (Q2/Q1)∧Q1 elements: τuM = 0 (top left), τuM =
h2/‖uh‖2∞,M (top right), τuM = h/‖uh‖2∞,M (bottom left), τuM = 1/‖uh‖2∞,M
(bottom right).

η=y (u
∞

/(ν x))
1/2

0 2 4 6 8

u
/u

∞

0

0.2

0.4

0.6

0.8

1

1.2

Reference profile

DM = Q1 τM = 1

DM = Q0 τM = 1

DM = Q0 τM = h

DM = ∅ τM = 1

DM = ∅ τM = h2

Figure 5.14.: Profiles for different coarse spaces Du
M (denoted by DM ) and stabilization

parameters τuM with constant γM = 1 at x = 0.1 (left) and velocity magnitude
for Du

M = ∅, τuM = 1 (right).
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wiggles by being rather coarse in front of the plate. Simultaneously, the domain near the
plate has to be resolved in order to approximate the Blasius profile correctly. Therefore,
we define a refinement criterion based on diminishing the total variation (TVD) in order
to control the velocity difference within a cell

tolT :=
d∑
i=1

(
max
x∈T
|ui(x)| −min

x∈T
|ui(x)|

)

on each element T ∈ Th for uh = (u1, . . . , ud)T in d dimensions. In this example, we want
to ensure tolT ≈ 0.1 for all T ∈ Th. If this is not fulfilled, which is the case near the
boundary layer, the cell is refined. Indeed, this results in a rather coarse mesh away from
the plate that removes the spurious wiggles without any further stabilization than grad-div
γM = 1; see Figure 5.15 (left) and Figure B.13 in the appendix. Figure 5.15 (right), where
we increase the Reynolds number to 104, 105 and 106, shows that this criterion is stable
with respect to Re. It leads to convincing approximations of the reference Blasius profile
with errors less than 1%.
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Figure 5.15.: TGV based refinement criterion with γM = 1: Velocity magnitude for ν =
10−3 (left), comparison of boundary layer profiles for different ν (right).

In conclusion, the desired effect can be achieved in the following ways, since the boundary
layer has to be resolved sufficiently and the oscillations in front of the plate have to be
removed: In case of isotropic meshes, LPS SU stabilization in addition to grad-div provides
damping. Alternatively, the grid can be refined in a way that is adjusted to the test case,
i.e., it adds grid diffusion in front of the plate.
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5.5. Non-Isothermal Laminar Flow: 2D Heated Cavity

The heated cavity is an example for flow in a rectangular enclosure, that is relevant for
many industrial applications like cooling of electronic devices or venting in buildings, see
e.g. [MH96] for analysis of such a problem. The effects of convection resulting from a
heated wall in presence of a gravitational force can be examined.

5.5.1. Features of the Test Case

We consider laminar, non-isothermal flow in a cavity. The left vertical wall of the two-
dimensional domain Ω = (0, 1)2 is heated, the right one is cooled. The flow is then driven
by this difference, no external forces occur. Due to the gravity g ≡ (0,−1)T , the fluid rises
at the warm wall and sinks at the cold one.
Dirichlet boundary conditions for the temperature θleft = 0.5, θright = −0.5 and homo-
geneous Dirichlet boundary conditions for the velocity are applied. We use the Prandtl
number Pr = 0.71 of air at room temperature and vary the Rayleigh number Ra.
We solve the following dimensionless formulation of the Oberbeck-Boussinesq equations:

∂tu− Pr∆u+ (u · ∇)u+∇p− PrRa θey = 0 in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

∂tθ −∆θ + (u · ∇)θ = 0 in (0, T )× Ω

with Prandtl and Rayleigh numbers as introduced in Definition 2.1.1. The variables are
of the order of the respective characteristic quantities.
The mesh is adapted to resolve the boundary layer and is randomly distorted by 1% (see
appendix, Figure B.14). Here, the equidistant grid points are transformed by mappings
Tab : [0, 1]2 → [0, 1]2 of the form

(x, y)T 7→ Tab((x, y)T ) :=
(
x− 1

2π (1− a) sin(2πx), y − 1
2π (1− b) sin(2πy)

)T
with parameters 0 < a, b < 1 chosen as a ≈ Nu−1 and b ≈ Nu−1/3, as suggested in [Löw11].
The so-called Nusselt numberNu is introduced in the section below; for the grid generation,
we use reference values from the literature. We point out that in case of Ra = 104, the
maximal aspect ratio of the cells is approximately 1 : 2.8. For the highest Rayleigh number
considered, the maximal aspect ratio is nearly 1 : 50.8. The aspect ratio of neighboring
cells does not differ much. Note that the analytical results from Chapters 3 and 4 hold for
isotropic meshes. This numerical test case goes beyond this. We refer the reader to [Ape99],
where the approximation properties of finite element spaces on anisotropic meshes are
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studied and local error estimates are derived.
Throughout this section, we use (Q2/Q1) ∧Q1 ∧ (Q2/Q1) elements.

5.5.2. Description of Benchmark Quantities

In order to validate the numerical results, we evaluate certain benchmarks and compare
them with results from the literature.
The heat flux is defined as q := uθ − α∇θ. In this example, we are interested in the heat
transport from the warm left wall to the cold one, so we consider the horizontal heat flux
qx(x, y, t) = uxθ − α ∂θ∂x . From the total horizontal heat flux

〈qx〉y(x, t) :=
∫ 1

0
qx(x, y, t)dy, (5.6)

the dimensionless Nusselt number Nu is calculated as the ratio between the convective
heat transport h and the diffusive heat transport for motionless fluid in an area A:

Nu(x, t) = h(x, t)L
α

with h(x, t) = 〈qx〉y(x, t)
A∆θ . (5.7)

In the dimensionless context, this reduces to Nu(x, t) = 〈qx〉y(x, t). It is an easy calculation
that Nu(x, t) is independent of x when a steady state is reached. Using the stationary
equation for θ and the fact that u is solenoidal gives

∂〈qx〉y(x)
∂x

=
∫ 1

0

(
∂ux
∂x

θ + ux
∂θ

∂x
− α∂

2θ

∂x2

)
dy =

∫ 1

0

(
−∂uy
∂y

θ − uy
∂θ

∂y
+ α

∂2θ

∂y2

)
dy

=
∫ 1

0

(
− ∂

∂y
(uyθ) + α

∂2θ

∂y2

)
dy

= (uyθ)(x, 0)− (uyθ)(x, 1) + α
∂θ

∂y
(x, 1)− α∂θ

∂y
(x, 0) = 0

due to the Dirichlet boundary conditions of u and θ.
For two-dimensional flow, the streamfunction ∇Φ := u⊥ = (−uy, ux)T can be defined.
Local extrema indicate centers of a vortex and can be used as benchmarks. We solve for
Φ numerically through the associated Poisson problem

∆Φ = ∇ · (∇Φ) = ∇ · u⊥ in (0, T )× Ω,

Φ = 0 in (0, T )× ∂Ω,

as described in [Löw11]. We compare the absolute values of the global extrema, denoted
by Φmax, with values from the literature.
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5.5.3. Numerical Experiments

The velocity magnitude and temperature for different Rayleigh numbersRa ∈ {104, 106, 107}
are presented in Figure 5.16; in the appendix, Figure B.15 all Ra ∈ {104, 105, 106, 107}
are depicted as an overview. No stabilization and N = 642 cells are used. In all of these
cases, the flow is laminar and the solution reaches a stationary state that is shown in the
pictures.

Figure 5.16.: Heated cavity, temperature (left) and velocity magnitude (right) with stream-
lines, without stabilization, Pr = 0.71, Ra ∈ {104, 106, 107}, N = 642.

For small Rayleigh numbers, a central main vortex of highest velocity occurs. For higher
Ra, the boundary layer in the temperature near the heated and cooled walls becomes
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thinner and the fluid in the middle of the cavity becomes almost motionless. Boundary
layers within the velocity also emerge with growing Ra as the flow near the walls becomes
faster.
Not only this behavior but also the benchmark quantities in Table 5.1 are in good agree-
ment with the literature [Löw11, LQ91]. Even for Ra = 107, no stabilization for neither
velocity nor temperature is needed. Note that for our simulations, we use a grid that is
transformed in a way consistent with [Löw11] but distorted randomly. We observe grid
convergence of the Nusselt number and of Φmax. Furthermore, Nuavg is approximated
better than Nu(0.5), as expected, since Nu(x) for some fixed x ∈ [0, 1] depends on how
well the temperature gradient near the walls is resolved. However, Nuavg is averaged over
x ∈ [0, 1] and is subject to the temperature difference only:

∫ 1

0

∂θh
∂x

dx = θh(1, y)− θh(0, y) = θleft − θright.

Nonetheless, we observe that Nuavg and Nu(0.5) are very similar. In case of the exact
solution, they would coincide as the solution reaches a steady state.

Ra
√
N (Nuavg)ref Nuavg Nu(0.5)ref Nu(0.5) (

√
RaΦmax)ref √

RaΦmax

104 16 - 2.24478 - 2.23529 - 5.07359
32 2.24481 2.24481 2.24195 2.24436 5.07367 5.07367
64 2.24482 2.24482 2.24410 2.24656 5.07367 5.07367
128 2.24482 2.24482 2.24464 2.24719 5.07367 5.07367

105 16 - 4.52124 - 4.52350 - 9.60613
32 4.52162 4.52162 4.52283 4.52194 9.61490 9.6151
64 4.52163 4.52163 4.52192 4.52095 9.61570 9.61572
128 4.52164 4.52164 4.52170 4.52074 9.61637 9.61638

106 16 - 8.81573 - 8.85490 - 16.8347
32 8.82502 8.82502 8.82484 8.82173 16.79189 16.7934
64 8.82519 8.82519 8.82546 8.82189 16.81011 16.8103
128 8.82520 8.82520 8.82530 8.82174 16.81013 16.8102

107 16 - 15.3718 - 16.0458 - 43.1554
32 16.51578 16.5156 16.4921 16.4710 30.18100 30.1805
64 16.52302 16.5230 16.5211 16.5017 30.16094 30.1612
128 16.52309 16.5231 16.5228 16.5033 30.16377 30.1638

Table 5.1.: Nusselt numbers Nu and global extrema of the streamfunction Φmax for differ-
ent Ra and different numbers of cells N (at stationary point), compared with
simulations by [Löw11].
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For our purpose to study stabilization, the case of even higher Rayleigh numbers is more
interesting. [LQB98] investigates the transition point, when unsteady and even turbulent
flow occurs inside a differentially heated cavity. The critical Rayleigh number is found to
be Racrit ∈ [1.81 · 108, 1.83 · 108], where the flow becomes unsteady.
We consider a flow with Ra = 108, which is slightly below this critical value. In Figure 5.17,
temperature and velocity are displayed without and with grad-div stabilization. N = 642

cells are used within the cavity. Although a stationary solution is expected, the unstabilized
results are unstable and show unphysical oscillations and vortices in both the velocity and
the temperature; no steady state is reached. Grad-div stabilization with γM = 1 cures this
situation.

Figure 5.17.: Heated cavity with Pr = 0.71 and Ra = 108, temperature (left) and ve-
locity (right) with streamlines without (top) and with grad-div stabilization
(bottom), N = 642.

Table 5.2 compares the resulting benchmark values for different stabilization scenarios
with [LQ91]. The presented values are obtained via averaging in time. Again, in all cases,
we observe that refinement of the grid yields better agreement with the reference data.
There is a considerable difference in the quality of the benchmarks if no stabilization is
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√
N 16 32 64 reference

Nuavg 18.7694 27.3830 30.0965 30.225
Nuavg GD 24.5473 27.9058 30.2237
Nuavg SUt 24.7862 27.9774 30.2238
Nuavg SUut 26.5130 28.2333 30.2239

Nu(0.5) 23.4069 29.2566 29.5245 30.225
Nu(0.5) GD 30.9351 27.1668 30.1839
Nu(0.5) SUt 29.5851 27.5024 30.1838
Nu(0.5) SUut 27.4597 28.7397 30.1825
√
RaΦmax 113.7240 96.2385 55.3487 53.8475√
RaΦmax GD 108.2694 88.4510 53.8126√
RaΦmax SUt 109.1343 88.3693 53.8135√
RaΦmax SUut 104.7587 87.1177 53.8136

Table 5.2.: Nusselt numbers Nu and extrema of the streamfunction Φmax for Ra = 108

and different numbers of cells N (averaged over t ∈ [0.07; 0.1]) with different
stabilizations, compared with benchmarks by [LQ91], that are obtained by
using N = 1282 cells. GD denotes (γM , τuM , τ θL) = (1, 0, 0), SUt (γM , τuM , τ θL) =
(1, 0, ‖uh‖∞,M−2), SUut (γM , τuM , τ θL) = (1, 1

2h/‖uh‖∞,M , ‖uh‖
−2
∞,M ).

applied compared to the stabilized case. Adding LPS SU stabilization for temperature and
velocity yields slightly better results than grad-div stabilization only. Note that anisotropic
grids are used that are adapted to resolve the boundary layers.

5.6. Isothermal Turbulent Flow: 3D Taylor-Green Vortex

It is well known that dissipation occurs at the smallest scales in a flow, see the book
of [Pop00]. In case of turbulent flow, these are, in general, not resolved by a numerical
procedure unless through direct numerical simulation (DNS). Due to the development of
smaller and smaller eddies in turbulent flow, this is not feasible in our situation. An al-
ternative to solve the Navier-Stokes equations numerically is large eddy simulation (LES).
The goal is to solve a given differential equation numerically on a grid that is too coarse
to resolve all scales. So the influence of the small non-resolved scales has to be mod-
eled. The most important issue in turbulence modeling is how to choose the model such
that the dissipation of kinetic energy on the small scales is represented correctly. Other-
wise, an unphysical energy increase occurs. The choice of a suitable turbulence model is
a problem that has been looked at many times and is still not answered in a satisfactory
way. There are many different ansatzes for this problem, see e.g. [BIL05, Joh12, Sag06]
for introductions and mathematical considerations. More recent developments incorporate
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characteristics and local behavior of the flow, as in [NTC+11], for instance, or make use
of the idea of variational multiscale methods (cf. [RL10]).
In order to investigate the adequacy of grad-div and LPS SU stabilization as an im-
plicit LES subgrid model, we consider the case of a three-dimensional Taylor-Green vortex
(TGV). The Taylor-Green vortex is a commonly used and simple flow to study isotropic
turbulence. The energy cascade produces smaller and smaller eddies and vortex stretching
occurs.

5.6.1. Features of the Test Case

As in [CBCP15], we consider the flow in a periodic box Ω = (0, a)3 with some a > 0 that
we vary as needed. With b > 0, the initial values are

u0 = b ·


cos

(
2π
a x
)

sin
(

2π
a y
)

sin
(

2π
a z
)

− sin
(

2π
a x
)

cos
(

2π
a y
)

sin
(

2π
a z
)

0

 ,
p0 = b · 1

16

(
cos

(4π
a
x

)
+ cos

(4π
a
y

))(
cos

(4π
a
z

)
+ 2

)
.

The initial energy is concentrated on the wave numbers k = (±a,±a,±a). Note that
‖u0‖∞ = b. The parameters a, b will prove beneficial to study the proper choice of stabi-
lization parameters in dependence on h and uh. Two settings are taken into consideration,
namely {a = 2π, b = 1} and {a = 8/

√
3, b = 1/10}. In order to examine the effects of sta-

bilization on turbulent flow, we solve the problem for ν = 10−4 in case of {a = 2π, b = 1}
and ν = 10−5 if {a = 8/

√
3, b = 1/10}, whereas [CBCP15] uses Re = 1, 600. [BMO+83]

states that the flow is nearly isotropic for sufficiently high Re ≥ 1, 000.
We consider t ∈ [0, 10/b] and (Q2/Q1)∧Q1 elements for fine and coarse velocity space and
pressure. Isotropic grids are used, which means hM =: h for all M ∈Mh.

5.6.2. Description of Benchmark Quantities

In order to validate the numerical results, we compute the energy spectrum of the numer-
ical solution at time t as

E(k, t) = 1
2

∑
k− 1

2≤|k|≤k+ 1
2

û(k, t) · û(k, t)

with the Fourier transform û(k, t) =
∫
Ω u(x, t) exp(−ikx)dx.

Denote by K0 > 0 a dimensionless constant and by ε the turbulent dissipation rate. Kol-
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mogorov’s second hypothesis states that in the inertial subrange, the energy is distributed
like

E(k, t) = K0ε
2/3k−5/3,

assuming locally isotropic turbulence. We refer the reader to [Pop00] for details. This
relation is also known as Kolmogorov’s −5/3-law.

5.6.3. Theoretical Justification for the Choice of the LPS SU Parameter

In this section, we discuss theoretical arguments that give insight into the proper choice
of the LPS SU parameter τuM , especially its dependence on the mean velocity on a cell
uM and the globally used grid size h. Unfortunately, these considerations are not valid
universally; they apply to isotropic homogeneous turbulence and give no answer to the
case of wall bounded flow, for instance.
Parameters for the Smagorinsky model that are suited to represent the influence of small
scales are derived in [Lil67]. We follow this argumentation and apply it to our situation:
The LPS SU stabilization is interpreted as a turbulence model and is postulated to be of
the form

τuM (κuM (uM · ∇uh), κuM (uM · ∇vh)) with τuM = τ̃M
hβ

|uM |γ

and τ̃M > 0 and some β, γ ∈ R to be determined by the following discussion. In case of
isotropic turbulence, the energy spectrum is of the form

E(k, t) = K0ε
2/3k−5/3,

where ε represents the turbulent dissipation rate and simultaneously the energy transfer
rate across a given wave number. Assume that the turbulent kinetic energy production
and dissipation are in balance on a cell, i.e.,

ε = τuM‖κuM (uM · ∇uh)‖20,M . (5.8)

In order to determine β and γ, we conduct dimensional analysis for (5.8). The notation [·]
indicates the physical unit of a quantity.

m2

s3 = [ε] =
[
τuM‖κuM (uM · ∇uh)‖20,M

]
= [τuM ]

(
1
m

m2

s2

)2

= [τuM ]m
2

s4

⇒ [τuM ] = s =
[
h|uM |−1

]
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and thus, γ = 1 and β = 1.
Now, we desire to find a suitable constant τ̃M . Denote by kc the resolution limit wave
number of the coarse space Du

M with respect to the velocity and by kf the resolution limit
wave number of Vh. For the case of (Q2/Q1)∧Q1 elements and a = 1, it holds kf = 3

2h
−1

and kc/kf = 1/2. Due to Plancherel’s theorem for the Fourier transform, we calculate
from (5.8)

‖κuM∇uh‖20,M =
∫ kf

kc
k2E(k) dk = K0

∫ kf

kc
k1/3ε2/3 dk

= K0(τuM )2/3‖κuM (uM · ∇uh)‖4/30,M

∫ kf

kc
k1/3 dk

= K0(τuM )2/3‖κuM (uM · ∇uh)‖4/30,Mk
4/3
f

1−
(
kc
kf

)4/3


= K0(τuM )2/3‖κuM (uM · ∇uh)‖4/30,Mk
4/3
f

(
1−

(1
2

)4/3
)(3

2

)4/3
h−4/3

= K0
h2/3

‖uM‖2/30,M
τ̃M

2/3‖κuM (uM · ∇uh)‖4/30,M

(
1−

(1
2

)4/3
)(3

2

)8/3
h−8/3.

This yields a formula for τ̃M . However, this would lead to a highly nonlinear stabilization
term and is not feasible for our implementation. Therefore, we content ourselves with the
insights from the dimensional analysis and choose τ̃M empirically. We point out that the
finding τuM ∼ h

|uM | already reduces the range of possible parameters considerably.

5.6.4. Numerical Experiments

The initial condition of the TGV problem defines the large scale structures and vortices.
For high Reynolds numbers, the kinetic energy is transported to the small scales due to
vortex stretching.

Figure 5.18.: Iso-surfaces for |ω| = 1 at t = 0 (left), |ω| = 1 at t = 2 (second from left),
|ω| = 2.5 at t = 4 (second from right), |ω| = 4 at t = 9 (right) with h = π/8,
{a = 2π, b = 1} and grad-div stabilization γM = 1.
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Figure 5.18 illustrates the mechanisms of the energy cascade in case of ν = 10−4 with the
setup from [CBCP15] {a = 2π, b = 1} (h = π/8). At the beginning, the flow is governed
by large vortices, that decay into smaller eddies with high vorticity magnitude |ω|.
In order to validate the appropriate choice of stabilization parameters, we show energy
spectra at time t = 8/b for ν = 10−4. In this regime, the flow can be assumed to be nearly
isotropic, so we compare the spectra with Kolmogorov’s −5/3 law. Note that for a given
mesh width h, the displayed spectrum cannot be resolved properly for larger frequencies
than k ∼ h−1.
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Figure 5.19.: Energy spectra at t = 9 for different mesh widths with γM = 1 (left) and
with γM = 1, τuM = 1 (right), {a = 2π, b = 1}.

In Figure 5.19, the energy spectra with grad-div stabilization γM = 1 (left) and with
grad-div combined with LPS SU γM = 1, τuM = 1 (right) are presented for mesh widths
h ∈ {π/4, π/8, π/16}. Grad-div stabilization alone does not provide enough dissipation
because on all grids, one observes that the smallest resolved scales carry too much energy.
Additional LPS SU stabilization is more dissipative; the combination γM = 1, τuM = 1
is therefore more suited as a turbulence model than grad-div stabilization only. Indeed,
the classical Smagorinsky model (with optimized stabilization parameter) shows a similar
behavior; see Figure B.16 in the appendix.
Now, we are interested if there are choices for τuM that are more suited as a turbulence
model than τuM = 1. In order to be able to examine the influence of |uM | and h, we scale
the TGV problem such that Ω = (0, 8/

√
3)3 and ‖u0‖∞ = 1/10; this means that we set

a = 8/
√

3 and b = 1/10. The viscosity of the problem is ν = 10−5.
First, we consider how τuM depends on |uM |. The semi-discrete analysis yields an upper
bound of τuM ≤ |uM |−2; the dimensional analysis of Section 5.6.3 suggests a choice as



132 5. Numerical Examples

k

10
0

10
1

10
2

E

10
-4

10
-3

10
-2

10
-1

10
0

τ
u
M = 1/(2‖uh‖

2
∞,M )

τ
u
M = 1/(2‖uh‖∞,M )

τ
u
M = 1

k−5/3

Figure 5.20.: Energy spectra at t = 80, h = 1/(4
√

3), ‖u0‖∞ = 1/10 for considering the
dependence of the LPS SU parameter on |uM |.

τuM ∼ h|uM |−1. Figure 5.20 shows the combination of grad-div stabilization γM = 1
with different LPS SU choices ‖uh‖−γ∞,M ≤ |uM |−γ with γ ∈ {0, 1, 2}. It illustrates that
τuM ∼ ‖uh‖

−2
∞,M ≤ |uM |−2 is indeed too dissipative and thus unfeasible. Note that the

choice τuM = 1 is less dissipative on the small scales but shows more deviations from the
−5/3-law on the coarse scales than τuM ∼ ‖uh‖

−1
∞,M .

Hence, we exclude τuM ∼ |uM |−2 from our further contemplations and look at the h-
dependence more closely. In Figure 5.21, stabilization as γM = 1, τuM ∼ hβ/‖uh‖∞,M is
shown for β ∈ {0, 1} and for h = 1/(4

√
3) (left) and h = 1/(8

√
3) (right). The choice

β = 1 yields much better results than β = 0 for both mesh sizes. So we can rule out that
the improvement arises from a constant (i.e., h-independent) multiplicative factor in the
LPS SU parameter. This is in good agreement with the knowledge from Section 5.6.3.
On the grid h = 1/(4

√
3), we observe again that τuM = 1 is less dissipative on the small

scales but deviates more from the −5/3-law on the coarse scales than τuM ∼ h/‖uh‖∞,M .
Surprisingly, for h = 1/(8

√
3), these choices show very similar behavior, meaning that

stabilization is needed most in cells where (8
√

3)‖uh‖∞,M ≈ 1. Since even for the initial
condition, it holds ‖u0‖∞,M ≤ 0.1, this indicates cells of relatively large mean velocity
within the domain. We remark that τuM = 1 is not suited as a universal choice: A LPS
SU parameter as 0.1 corrupts the errors in Section 5.3, where a different flow example is
considered. Therefore, a parameter is desired that incorporates properties of the flow.
In summary, the numerical tests as well as the theoretical arguments show that for isotropic
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Figure 5.21.: Energy spectra at t = 80, ‖u0‖∞ = 1/10 for considering the dependence of
the LPS SU parameter on h, h = 1/(4

√
3) (left), h = 1/(8

√
3) (right).

turbulence a choice of τuM ∼ h|uM |−1 is suited to act as an implicit turbulence model;
grad-div stabilization alone is not dissipative enough.

5.7. Non-Isothermal Flow: 3D Rayleigh–Bénard Convection

The classical Rayleigh–Bénard test case describes flow driven by a temperature gradi-
ent between a heated bottom plate and a cooled top plate. This is an example of a
natural convection phenomenon, that is widely studied experimentally and analytically,
cf. [BPA00,AGL09,HSW11].
If the temperature difference is very small and the viscous damping is dominating, only
heat conduction occurs without material transport. For small thermal diffusivity and/or
larger temperature gradients, the heat is transported through convection. There is an
upflow of warm fluid. However, gravity pulls the cooler liquid from the top to the bot-
tom plate and acts against the viscous damping force in the fluid. The non-dimensional
Rayleigh number Ra expresses the ratio between these forces; at high Rayleigh numbers,
instabilities develop.

5.7.1. Features of the Test Case

We consider Rayleigh–Bénard convection in a three-dimensional cylindrical domain

Ω :=
{

(x, y, z) ∈
(
− 1

2 ,
1
2
)3 ∣∣∣√x2 + y2 ≤ 1

2 , |z| ≤
1
2

}
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with aspect ratio Γ = 1 for Prandtl number Pr = 0.786 and different Rayleigh numbers
105 ≤ Ra ≤ 109. The aspect ratio is determined as Γ = D/H, where D = 1 denotes the
diameter and H = 1 the height of the cylinder. The Oberbeck-Boussinesq approximation
with gravitational acceleration g ≡ (0, 0,−1)T in z-direction is used. The temperature
is fixed by Dirichlet boundary conditions at the bottom and top plates as θbottom = 0.5,
θtop = −0.5; the vertical wall is adiabatic with Neumann boundary conditions ∂θ

∂n = 0.
Homogeneous Dirichlet boundary data for the velocity are prescribed. Let T = 1000. As
in [WSW12], the dimensionless equations read

∂tu− Pr1/2Ra−1/2Γ−3/2∆u+ (u · ∇)u+∇p− θez = 0 in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

∂tθ − Pr−1/2Ra−1/2Γ−3/2∆θ + (u · ∇)θ = 0 in (0, T )× Ω.

Simulations with different triangulations are run, see Figure 5.22. One grid is isotropic
and globally refined. Furthermore, a mesh that is anisotropically refined near the walls is
applied in order to resolve boundary layers. This is implemented using a transformation
of the isotropic mesh; the mapping Txyz : Ω→ Ω is of the form

Txyz : (x, y, z)T 7→
(
x

r
· tanh(4r)

2 tanh(2) ,
y

r
· tanh(4r)

2 tanh(2) ,
tanh(4z)
2 tanh(2)

)T
(5.9)

with r :=
√
x2 + y2. The identity mapping TId : (x, y, z)T 7→ (x, y, z)T indicates the

isotropic grid.

Figure 5.22.: Isotropic mesh (left) and anisotropic mesh that is transformed via Txyz (right)
with N = 10 · 83 cells.
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We use these triangulations with N cells, where N ∈ {10 · 83, 10 · 163}, as well as a time
step size ∆t = 0.1 for the coarser mesh and ∆t = 0.05 for the finer mesh.

5.7.2. Description of Benchmark Quantities

As a benchmark quantity, the Nusselt number Nu is used. Recall that the vertical heat
flux qz from the warm wall to the cold one is defined by

qz = uzθ − α
∂θ

∂z
.

With B := {(x, y) ∈ (−1
2 ,

1
2)2 |

√
x2 + y2 ≤ 1

2}, the total vertical heat flux at fixed z is
calculated as

〈qz〉x,y(z, t) =
∫
B
qz(x, y, z, t) dx dy

and yields the dimensionless Nusselt number Nu by averaging in time:

Nu(z) = Γ
(
α|B|(T − t0) |θbottom − θtop|

)−1 ∫ T

t0
〈qz〉x,y(z, t) dt (5.10)

with a suitable interval [t0, T ]. It is well known that the time averaged Nusselt number
does not depend on z. This can be understood via the maximum principle. In order
to assess the quality of our simulations, we compute the Nusselt number for different
z ∈ {−0.5,−0.25, 0, 0.25, 0.5}, where the heat transfer is integrated over a disk at fixed z.
Then we compare these quantities with the Nusselt number Nuavg calculated as the heat
transfer averaged over the whole cylinder Ω:

Nuavg := Γ
(
α|Ω|(T − t0) |θbottom − θtop|

)−1 ∫ T

t0

∫
Ω
qz(x, y, z, t) dx dy dz dt. (5.11)

The maximal deviation σ within the domain is evaluated according to

σ := max{|Nuavg −Nu(z)|, z ∈ {−0.5,−0.25, 0, 0.25, 0.5}}.

We compare the Nusselt numbers from our simulations with DNS results by [WSW12]
and calculate σ, which is desired to be small. The reference Nusselt numbers are denoted
Nuref.

5.7.3. Numerical Experiments

For high Rayleigh numbers, boundary layers occur in this test case. In order to resolve
these layers in the numerical solution, the grid is transformed via Txyz throughout this
section unless it is stated otherwise.
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Figure 5.23.: Temperature iso-surfaces at T = 1000 for Pr = 0.786, Ra = 105 (left),
Ra = 107 (middle), Ra = 109 (right), N = 10 · 163, γM = 0.1.

A snapshot of temperature iso-surfaces for different Ra at T = 1000 is shown in Figure
5.23. N = 10 ·163 cells, grad-div stabilization with γM = 0.1 and Q2∧Q1∧Q2 elements for
velocity, pressure and temperature are used. In the appendix, Figure B.17, we also show
streamlines of the associated velocity. Whereas the large scale behavior shows one large
convection cell (upflow of warm fluid and descent of cold fluid) in all cases in a similar
fashion, with larger Ra, smaller structures and thin boundary layers occur. For Ra = 105,
the flow reaches a steady state, whereas Ra ∈ {107, 109} results in transient flow. This is
in good qualitative agreement with simulations run by [WSW12].
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Figure 5.24.: Time development of the Nusselt number in case of grad-div stabilization
γM = 1 for t ∈ [0, 300], Pr = 0.786, Ra = 105 (left) and Ra = 107 (right),
N = 10 · 83.
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For steady flow, the Nusselt number is constant in time and does not depend on z. In
case of unsteady flow, we are interested in time averaged Nusselt numbers as suggested
in [AGL09]. Indeed, Figure 5.24 illustrates that for steady flow at Ra = 105, the Nusselt
number also reaches a steady state, while Nu fluctuates around a steady state for Ra = 107

and higher. We start the time averaging at t0 = 150 after the peaks at the beginning
vanished and the flow is built up.
First, we want to examine whether stabilization is needed in this example and determine
the optimal grad-div parameter depending on Ra if necessary. We run simulations on the
coarser mesh with N = 10 · 83, T = 1000 and ∆t = 0.1; different grad-div parameters γM
in conjunction with Q2 ∧Q1 ∧Q1 elements are used. The resulting benchmark quantities
are presented in Table 5.3 and compared with results from [WSW12], indicated by Nuref.

Ra γM Nuavg σ Nuref

105 0 3.8396 0.0356 3.83
1 3.8364 0.0307
0.1 3.8372 0.0303
0.01 3.8377 0.0319

106 0 8.6457 0.3378 8.6
1 8.5148 0.0542
0.1 8.6475 0.0190
0.01 8.6376 0.1122

107 0 16.4143 1.8302 16.9
1 16.7361 0.1569
0.1 16.8767 0.1068
0.01 16.9937 0.5567
0.001 16.9605 1.3452

108 0 37.7301 29.4731 31.9
1 30.7236 0.7044
0.1 31.2902 0.6957
0.01 32.6444 1.0782

109 0 118.7932 137.5588 63.1
1 48.1509 2.2666
0.1 48.7784 1.9513
0.01 55.5231 1.3464
0.001 82.1364 5.3807

Table 5.3.: Averaged Nusselt numbers and maximal deviations σ for different Ra and dif-
ferent grad-div parameters γM , averaged over time t ∈ [150, 1000], N = 10 · 83.
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Only for Ra = 105, the unstabilized case γM = 0 gives satisfactory values for Nuavg

and σ; the discrepancy from Nuref is only 0.25%. Addition of grad-div stabilization does
not corrupt this result. For higher Rayleigh numbers, γM = 0 leads to Nusselt numbers
strongly depending on z and differing from the reference value by a large amount, for
example by more than 88% of the absolute value Nuref in case of Ra = 109. Even negative
Nusselt numbers occur for some z. Grad-div stabilization γM = 0.01 can reduce these
differences to 12% for Ra = 109. Also, the deviation within the domain can be diminished
considerably for all Ra > 105. The optimal grad-div parameter found by these experiments
lies in the range γM ∈ [0.01, 0.1] for all considered Rayleigh numbers. We infer that this
parameter can be chosen independently from Ra.
Anyway, for all Ra ∈ {105, 106, 107, 108}, the reference values Nuref obtained by DNS can
be approximated surprisingly well with the help of grad-div stabilization on a mesh with
only N = 10 · 83 cells. Also, the Nusselt number varies little with respect to different z.

Ra γM τuM τ θL Nuavg
th σth Nuavg

bb σbb Nuref

109 0.01 0 0 55.5231 1.3464 58.1419 1.4833 63.1
0.01 1 0 52.7697 1.4125 53.4583 1.6291
0.01 hu1 0 53.8371 1.4130 58.2691 1.4702
0.01 0 1 51.3556 4.0768 55.4918 2.7713
0.01 0 hu1 52.4530 3.4847 56.5274 3.0578
0.01 1 1 50.0199 3.5080 52.0606 3.8839
0.01 hu1 hu1 51.8141 3.4344 54.0410 3.3333

Table 5.4.: Averaged Nusselt numbers and maximal deviations σ for different choices of
stabilization and finite element spaces, Ra = 109, averaged over time t ∈
[150, 1000], N = 10·83. The subscript th indicates that (Q2/Q1)∧Q1∧(Q2/Q1)
elements are used and (Q+

2 /Q1) ∧Q1 ∧ (Q+
2 /Q1) are denoted by bb. The label

hu1 indicates that τu/θM/L = 1
2h/‖uh‖∞,M/L.

In order to examine the influence of additional LPS SU, we give an overview for different
parameters with (Q2/Q1) ∧Q1 ∧ (Q2/Q1), indicated by th, and enriched (Q+

2 /Q1) ∧Q1 ∧
(Q+

2 /Q1) finite elements, denoted by bb, in Table 5.4; Ra = 109 and the optimal grad-div
parameter γM = 0.01 are used. Note that the Nusselt numbers calculated with enriched el-
ements are in better agreement with the reference value than using (Q2/Q1)∧Q1∧(Q2/Q1)
elements. Our simulations support the conclusion that additional LPS SU stabilization is
not needed in case of anisotropic grids that are adapted to the specific problem; grad-div
suffices and is even more favorable. Stabilization of the velocity as τuM ∼ h/‖uh‖∞,M per-
forms better than other LPS SU variants. In case of enriched elements, this choice gives
slightly better results than grad-div stabilization only.
We present a larger variety of parameter choices for Ra = 109, N = 10 · 83 and (Q2/Q1)∧
Q1 ∧ (Q2/Q1) elements in the appendix, Table B.1. The addition of LPS SU stabilization
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with any tested parameter does not improve the benchmark quantities and yields even
worse results. It is prominent that τuM ∼ ‖uh‖

−2
∞,M , τ θL ∼ ‖uh‖

−2
∞,L or a combination of

both give rise to big deviations σ and poor Nusselt numbers. Therefore, we exclude this
choice for the further studies presented in this section.

Ra γM τuM τ θL Nuavg
Id,th σId,th Nuavg

Id,bb σId,bb Nuref

109 0.01 0 0 41.4584 40.1989 47.5335 23.4029 63.1
0.01 hu1 0 38.7093 43.0326 44.2998 24.7851
0.01 0 hu1 37.6081 10.8360 54.2603 16.5349
0.01 hu1 hu1 37.0516 10.3065 49.1255 12.9235

Table 5.5.: Averaged Nusselt numbers and maximal deviations σ for Ra = 109 and different
stabilization parameters, averaged over time t ∈ [150, 1000], N = 10 · 83. The
subscript Id means that an isotropic grid is used. The additional th indicates
that (Q2/Q1)∧Q1 ∧ (Q2/Q1) elements are used and (Q+

2 /Q1)∧Q1 ∧ (Q+
2 /Q1)

are denoted by bb. The label hu1 indicates that τu/θM/L = 1
2h/‖uh‖∞,M/L.

As mentioned before, we also test an isotropic grid, which is not particularly refined
in boundary layer regions. In Table 5.5, we investigate the use of different stabilization
variants in combination with (Q2/Q1) ∧ Q1 ∧ (Q2/Q1), indicated by th, and enriched
(Q+

2 /Q1) ∧ Q1 ∧ (Q+
2 /Q1) elements, denoted by bb. The coarser mesh N = 10 · 83 is ap-

plied. In general, the calculated benchmarks differ from the reference value Nuref by a
larger amount than ones obtained on a grid that is refined within the boundary layer,
even with the same number of cells, see also Table 5.4. However, in case of an isotropic
grid, the deviation is very large if grad-div stabilization is used solely; LPS SU stabiliza-
tion becomes relevant: Since small temperature structures in the boundary layer are not
resolved, their influence has to be modeled. Additional stabilization for the temperature
serves this purpose. For instance, in case of (Q2/Q1) ∧Q1 ∧ (Q2/Q1) elements, it reduces
σId,th from nearly 97% of the absolute value of the calculated Nusselt number Nuavg

Id,th

in case of (γM , τuM , τ θL) = (0.01, 0, 0) to less than 30% if τ θL = 1
2h/‖uh‖∞,L. The use of

enriched elements improves the results; a Nusselt number Nuavg
Id,bb = 54.2603 is reached for

(γM , τuM , τ θL) = (0.01, 0, 1
2h/‖uh‖∞,L). LPS SU stabilization of the velocity is not sufficient,

since it does not improve the situation for the temperature. In fact, whether LPS SU for
the velocity is applied or omitted does not change the benchmark quantities considerably.

We verify the obtained insights for a finer mesh withN = 10·163 cells that is anisotropically
refined via Txyz and (Q2/Q1)∧Q1∧(Q2/Q1) elements for different Rayleigh numbers. The
resulting benchmark quantities are presented in Table 5.6. As expected, the averaged
Nusselt numbers are in better agreement with the reference data than for the coarser grid
(N = 10 · 83, see Table 5.4). Nevertheless, regarding the question of a suitable parameter
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Ra γM τuM τ θL Nuavg σ Nuref

105 0.1 0 0 3.8402 0.0024 3.83

107 0.1 0 0 17.0254 0.0475 16.9

109 0.1 0 0 59.0524 1.0905 63.1
0.1 hu1 0 57.9408 1.0853
0.1 0 hu1 58.7353 0.9786
0.1 hu1 hu1 57.6262 1.1909
0.01 0 0 60.4889 1.1574
0.01 hu1 0 59.1612 1.2727
0.01 0 hu1 59.6733 0.9801
0.01 hu1 hu1 58.7159 1.2264
0.001 0 0 64.1406 3.4328

Table 5.6.: Averaged Nusselt numbers and maximal deviations σ for different Ra and dif-
ferent stabilization parameters, averaged over time t ∈ [150, 1000], N = 10·163.
The label hu1 indicates that τu/θM/L = 1

2h/‖uh‖∞,M/L.

design, the results are qualitatively comparable with the ones obtained with the coarser
grid: The grad-div parameter plays the key role, LPS SU does not yield a considerable
improvement.
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Figure 5.25.: Nu/Ra0.3 (Γ = 1, Pr = 0.786) for an anisotropic grid with N ∈ {10 · 83, 10 ·
163} cells, compared with DNS data from [WSW12] (Γ = 1, Pr = 0.786)
and [BCES10] (Γ = 1, Pr = 0.7). The label th indicates that (Q2/Q1)∧Q1∧
(Q2/Q1) elements are used and (Q+

2 /Q1)∧Q1 ∧ (Q+
2 /Q1) are denoted by bb.

For 105 ≤ Ra ≤ 108, γM = 0.1 is chosen; γM = 0.01 in case of Ra = 109.
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Figure 5.25 provides an overview over the obtained results (using the respective optimal
stabilization parameters and an anisotropic grid that is transformed via Txyz). We compare
the reduced Nusselt numbers Nu/Ra0.3 for different finite element spaces, indicated by
th and bb as above, with DNS data from the literature. The Grossmann-Lohse theory
from [GL00] suggests that there is a scaling law of the Nusselt number depending on
Ra (at fixed Pr) that holds over wide parameter ranges. The reduced Nusselt number
calculated in our experiments is nearly constant. However, one does not observe a global
behavior of the Nusselt number as Nu ∝ Ra0.3. But as in [WSW12], a smooth transition
between different Ra-regimes Ra ≤ 106, 106 ≤ Ra ≤ 108 and Ra ≥ 108 can be expected.
The existence of different regimes is also mentioned in [AGL09].

N #DoF(u) #DoF(p) #DoF(θ) Nuavg
γM=0.01 σγM=0.01 Nuref

th 10 · 83 129 987 5 729 43 329 55.5231 1.3464 63.1
bb 10 · 83 176 067 5 729 58 689 58.1419 1.4833
th 10 · 163 1 011 075 43 329 337 025 60.4889 1.1574
bb 10 · 163 1 379 715 43 329 459 905 61.3628 0.4668

Table 5.7.: Nusselt numbers Nuavg
γM=0.01 and deviation σγM=0.01 for Ra = 109,

(γM , τuM , τ θL) = (0.01, 0, 0) for different numbers of degrees of freedom for
discrete velocity #DoF(u), pressure #DoF(p) and temperature #DoF(θ). th
indicates that (Q2 /Q1) ∧ Q1 ∧ (Q2 /Q1) elements are used and bb signifies
(Q+

2 /Q1) ∧Q1 ∧ (Q+
2 /Q1) elements. The grids are transformed via Txyz.

Let us take a step back and compare the accuracy of the benchmarks for different numbers
of degrees of freedom (DoFs) of the discrete ansatz spaces: In Table 5.7, we list the results
for the Nusselt numbers Nuavg

γM=0.01 and deviation σγM=0.01 with grad-div stabilization
γM = 0.01 only for different numbers of cells and varying ansatz spaces. This parameter
choice provides the best results for Ra = 109 regarding the Nusselt number and shows
small deviations within the domain. It is striking that the use of enrichment for fixed
number of cells N leads to an improvement of the benchmarks that is high compared with
the number of additional DoFs. Taking a larger N also gives a better approximation but
introduces massively more DoFs. We point out that in the DNS in [WSW12], a fourth-
order-accurate finite-volume code is used. For Ra = 109, a mesh with 384× 1 024× 768 is
applied. Altogether, this results in more than 1.5 · 109 unknowns (1, 509, 949, 440 degrees
of freedom for velocity, pressure and temperature).

All in all, our simulations illustrate that we obtain surprisingly well approximated bench-
mark quantities even on relatively coarse meshes. The key ingredients are grad-div stabi-
lization and a grid that resolves the boundary layer. In case of isotropic grids, that are
not adapted to the problem, LPS SU stabilization for the temperature becomes necessary.
Bubble enrichment enhances the accuracy on all grids.





6. Discussion and Conclusion

This thesis is devoted to the numerical solution of non-isothermal incompressible flow
problems. A key objective is to obtain accurate approximate solutions, meaning that
the model is theoretically and empirically founded. Hence, we introduce the Oberbeck-
Boussinesq equations in Chapter 2, that are justified as a suitable mathematical model
for incompressible non-isothermal flow with small temperature differences. We consider
stabilized finite element methods in order to circumvent the need for direct numerical sim-
ulation and adapt the local projection stabilization method to the Oberbeck-Boussinesq
model.
The discretization in time is described in Section 2.3. The so-called rotational pressure-
correction projection method is used, which incorporates an approximation in time of
second order. Projection methods go back to [Cho69,Tem69] and allow for a decoupling
of pressure and velocity. To our best knowledge, we apply this method to the Oberbeck-
Boussinesq model for the first time.
The analytical assessment of the stabilized method in Chapters 3 and 4 proves accuracy.
We also desire to validate the theoretical results empirically and derive a parameter design
that performs well. These issues are addressed below.

6.1. Discussion of the Analytical Results

A semi-discrete analysis for the Oberbeck-Boussinesq model is conducted in Chapter 3
for inf-sup stable elements. The techniques used here are based on the analysis from the
publications [DAL15] and [ADL15], which are joint work with my supervisor Prof. Dr.
Gert Lube and my colleague Daniel Arndt. The analysis is conducted for the Oseen and
the Navier-Stokes problem. In this thesis, we prove stability of the semi-discrete veloc-
ity, temperature and pressure solutions of the stabilized Oberbeck-Boussinesq model, see
Section 3.1. The key idea for proving a priori error estimates is to split the semi-discrete
error into an interpolation error and a consistency error. The estimates require relatively
mild regularity assumptions for the continuous solutions. The convective terms are treated
carefully in order to circumvent an exponential deterioration of the error with vanishing
diffusion. We make use of two special interpolation operators.
Section 3.2.1 is dedicated to the approach relying on the existence of a (quasi-)local inter-
polation operator ju : V div → V div

h preserving the divergence (see [GS03]). This is based
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on the inf-sup stability of the discrete velocity and pressure spaces.
We obtain a method of optimal order k := min{ku = kp + 1, kθ} provided that

ReM = hM‖uh‖∞,M
ν

≤ 1√
ν

and PeL = hL‖uh‖∞,L
α

≤ 1√
α

for all M ∈ Mh and L ∈ Lh, which gives a restriction on the local mesh widths hM and
hL. This condition is in agreement with our results from [DAL15] for the Oseen equation.
In [MST07], the global condition

ReΩ := ‖b‖∞CP
ν

≤ 1√
ν

is required, that cannot be ensured by grid refinement.
We argue that the method is applicable to almost all combinations of approximation and
projection spaces Vh/Du

M and Θh/D
θ
L since the assumptions required for the proof are

not very restrictive. Furthermore, we suggest a suitable parameter design depending on
the coarse space Du

M . Note that a broad range of LPS SU parameters τuM , τ θL is possible.
In particular, the errors do not deteriorate if τuM , τ θL are set to zero. The LPS SU as well
as the pressure jump stabilization give additional control over the stabilized quantities. In
contrast, in case of equal-order velocity and pressure ansatz spaces, a distinct choice for
the LPS parameter can be suggested (cf. [LRL08]).
As [JJLR13] illustrates for the Stokes problem, the design of the grad-div parameter γM is
still an open question. An equilibration argument in our analysis only suggests a choice for
γM that is not viable in practice. It is indicated by our analysis and numerical experiments
that γM = O(1) is a feasible compromise. We point out that grad-div stabilization proves
essential for the independence of the Gronwall constant CG(u) of ν.
In order to remove the restrictions ReM ≤ ν−1/2, P eL ≤ α−1/2, we perform a more thor-
ough estimation of the convective terms in Section 3.2.2. For this second approach, an
interpolation operator with additional orthogonality properties is required. In [MST07], it
is shown that this operator exists if a compatibility condition of inf-sup type between the
approximation and projection velocity and temperature ansatz spaces holds. The compat-
ibility condition restricts the range of possible ansatz spaces for fine and coarse velocity
and temperature ansatz spaces. The constructed operator has the necessary approxima-
tion properties we need for our analysis. However, in case of the velocity, it does not map
to V div

h in general. As a consequence, a mixed velocity-pressure term has to be handled in
the analysis. This is handled by an additional requirement for the pressure ansatz space:
∇Qh|M ⊂ Du

M is assumed for all M ∈ Mh. In case of discontinuous pressure spaces Qh,
the pressure jump stabilization term becomes important. We review combinations of fi-
nite element spaces where these assumptions hold true. The resulting Gronwall constant
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occurring as an upper bound of the error depends on τuM |uh|2W 1,∞(M) and τ θL|uh|2W 1,∞(L)
and thus on the discrete velocity. A suitable choice of τuM and τ θL is needed to prevent
a potential blow up of the Gronwall constant. Furthermore, balancing the error bounds
yields a different parameter design with γM = O(1) and

h2
M . τuM (uM ) . ‖uh‖−2

W 1,∞(M), h2
L . τ θL(uL) . ‖uh‖−2

W 1,∞(L),

indicating that LPS SU cannot be omitted.

In Chapter 4, we perform a fully discrete analysis. Stability of the fully discrete solution of
the stabilized Oberbeck-Boussinesq model is shown in Section 4.1. Spatial and temporal
convergence is proved in Section 4.2 for the stabilized Navier-Stokes equations; the exten-
sion to the thermally coupled problem is omitted for convenience but can be performed in
a similar fashion as the stability result.
In our technical report [AD15], where the results were published originally, we present two
strategies to estimate the errors produced by discretization in time and space separately.
In this thesis, we confine ourselves to the splitting

u− ũht = (u− uh) + (uh − ũht)

for reasons of clarity and comprehensibility. This approach already reveals the used esti-
mation techniques. Thus, we can take advantage of the semi-discrete a priori results. In
Section 4.2.1, we transfer the semi-discrete error estimates in the time-continuous norms
to estimates in the time-discrete norms. We put some considerations into this; for details,
we refer to [AD15]. Note that in [AD15], the second ansatz is to discretize in time first
and afterwards in space.
In Section 4.2.2, we estimate the error introduced by time-discretization of the space-
discrete quantities uh − ũht. In order to do so, we split the error again into a linear and
a nonlinear one. The linear error can be handled in a similar way as in [GS04] (for the
space-continuous Stokes problem), whereas we consider the space-discrete grad-div stabi-
lized problem. In [GS04], it is argued that the convective terms do not compromise the
temporal errors and are therefore omitted. This is true in fact; the order of convergence in
time is restricted by the linear part of the problem. Nonetheless, the nonlinear terms in-
troduce notable technical difficulties and requirements. In particular, the convective terms
lead to an unfeasible restriction of the time step size as ∆t ∼ ν3. This is required for the
application of the discrete Gronwall Lemma. Otherwise, even higher regularity assump-
tions on uh would be needed. The convective terms are taken into account in the literature
by [BC07] (for a first order projection method applied to Navier-Stokes), [Gue99] (for the
unstabilized Navier-Stokes equations with BDF2 time-discretization), [She96] (for a differ-
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ent second order time-discretization scheme of the unstabilized Navier-Stokes equations,
acting in the space-continuous case), for instance. The dependence on critical problem pa-
rameters, in particular on ν, is not considered there. We consider the LPS SU and grad-div
stabilized Navier-Stokes equations. In addition, it is a defined goal of this thesis to point
out the restrictions for the time step size, mesh width and other parameters arising due
to our error estimates.
We combine the temporal and spatial errors (from Sections 4.2.1 and 4.2.2) and derive
a fully discrete error estimate in Section 4.2.3. The pressure error is bounded using the
discrete inf-sup condition. This allows us to discuss a suitable design of the stabilization
parameters and point out requirements, especially on the time step size:

γ = γ0, νRe2
M . 1, τnM . min

{
(∆t)2

ν2|ũnM |2
,

1
|ũnM |2h

2(su−ku)
M

, h
d−2(su−ku)
M

}
,

∆t . min{hd/(2p)−2(su−ku), ν3}, h2ku + h2kp+2 . e−CG,h(u)ν∆t.

Note that this leads to the impression to omit the LPS SU stabilization completely. In
contrast, the second strategy presented in [AD15] suggests a parameter choice for τnM that
is comparable with the one obtained from the usual semi-discrete analysis from Chapter
3. We infer that the above parameter design is too restrictive and can be circumvented.
The fully discrete analysis is furthermore afflicted with the auxiliary introduction of a
semi-discrete, stabilized velocity uh; in fact, both ansatzes from [AD15] face this challenge
if the same quasi-optimal rates are desired. This leads to regularity assumptions for the
semi-discrete velocity.
Hence, a promising alternative would be to omit a splitting of the error. This would
lead to less requirements; mainly, assumptions on the continuous solution (u, p) would
suffice. More thorough estimates of the convective and stabilization terms would also lead
to less restrictive conditions. However, the fact that ũnht is not weakly solenoidal in this
segregation algorithm might lead to difficulties compared to usual techniques.

Note that the theoretical results from Chapters 3 and 4 assume homogeneous Dirichlet
boundary conditions. Our numerical test cases often do not fit into this setting. Different
boundary data often give rise to additional complications in the analysis. For example, the
so-called “do-nothing“ condition of outflow character is built such that it does not affect
the flow (in order to simulate significantly larger domains):

(ν∇u− pI) · n = 0 on the outflow boundary.

This is a very common condition and used in [Gre91], for instance. But as pointed out
in [BMZ14], there are few analytical results. In particular, there are still stability issues
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that are addressed by [BMZ14]. However, we do not observe numerical effects of these
difficulties in our simulations.

6.2. Discussion of the Numerical Results

A highly parallel CFD solver based on the C++-FEM package deal.II for the time de-
pendent Navier-Stokes problem was developed by D. Arndt from Göttingen. As part of
this thesis, the implementation is extended to the non-isothermal case by myself, in par-
ticular, to include the coupling with the Fourier equation. Together with D. Arndt, we
implemented the bubble enrichment of finite element spaces as introduced in Section 2.2.2.
In Sections 5.1, 5.2 and 5.3, the proven convergence rates in h and ∆t towards the respective
analytical solution of the Navier-Stokes or Oberbeck-Boussinesq equations are validated
numerically. Especially Sections 5.1 and 5.2 show that for small viscosities, grad-div sta-
bilization guarantees the appropriate behavior of the errors; its use already diminishes the
errors notably. A suitable parameter choice is γM = O(1) in all examples and for a broad
range of ν. Adding LPS SU stabilization does not improve the results to a similar amount
but does not harm neither. We point out that a choice as τu/θM/L ∼ h/‖uh‖∞,M/L seems
favorable. Using enriched elements improves the errors in general. Note that more degrees
of freedom are used here but the inf-sup stability of discrete velocity and pressure spaces
is weaker in the sense that a larger velocity ansatz space is used.
The non-isothermal example of a temperature peak moving through a domain and hitting
a Dirichlet wall with u · n > 0 eventually is considered in Section 5.3. The case of large
Rayleigh numbers and small α is the most interesting one since the calculated errors are
large. When the peak hits the wall, in the unstabilized case, one observes spurious tem-
perature oscillations in the solution spreading across the whole domain. One would expect
a stabilizing effect of LPS SU because it affects the flow in streamline direction, where the
wiggles occur. LPS SU combined with Q2/Q1 elements for the fine and coarse temperature
spaces are not capable of reducing these oscillations. Only the use of LPS SU stabilization
with Q+

2 /Q1 for the fine and coarse spaces can damp the oscillations. The resulting errors
decrease and the convergence rate in h is even improved. This example shows that the
upper bound τ θL . ‖uh‖−2

∞,L, that is in agreement with the semi-discrete analysis, should
not be exceeded since a larger stabilization parameter τ θL = 0.1 deteriorates the results.
The temporal accuracy, i.e., convergence rates with respect to the time step size, is as
expected (or better) for all stabilization choices. The LPS SU parameter τ θL = ‖uh‖−2

∞,L
does not corrupt this though it is not of order (∆t)2 as suggested by the fully discrete
analysis from Chapter 4. As discussed before, we conclude that this requirement is not
sharp due to the rather rough estimates of the convective and stabilization terms as well
as the auxiliary introduction of a semi-discrete velocity.
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From these insights, we infer that for the analytical solutions of Sections 5.1 and 5.2,
grad-div stabilization γM = O(1) suffices to handle small ν. Section 5.3 suggests that if
the main flow hits a Dirichlet wall in wall-normal direction, streamline upwinding LPS,
especially in combination with enriched elements, damps occurring oscillations. The mesh
width restriction found by the analysis in Section 3.2.1 cannot be observed empirically.
The other examples describe more realistic flow, where no analytical solution is known. In
Section 5.4, laminar isothermal flow over a horizontal plate is considered. For a Reynolds
number of 103, spurious wiggles occur in front of the plate if an isotropic grid is used. This
setting is comparable to the situation of a Dirichlet wall with u ·n > 0. These unphysical
oscillations can be damped by using LPS SU stabilization; grad-div is not sufficient. For
this laminar example, τuM has to be chosen of order O(h0) if fine and coarse space are
Q2/Q1; a scaling as O(h2) does not provide enough damping. The correct choice strongly
depends on the used coarse space, as suggested by the theory in Chapter 3: If the coarse
space is smaller than Q1, the choice of O(h0) damps too much. The best results are ob-
tained if the grid is refined near the boundary layer, especially at the beginning of the
plate, and coarse away from the plate where wiggles appear. In this case, LPS SU sta-
bilization is not needed as mesh diffusivity serves the stabilization purpose. Therefore, it
can be stated that LPS SU stabilization damps oscillations in the numerical solution that
occur especially for globally refined isotropic grids.
The heated cavity in Section 5.5 allows us to assess the effect of grad-div and LPS SU
stabilization in case of non-isothermal flow in a stationary regime 104 ≤ Ra ≤ 108 near
transition to the time dependent case. For a large range of 104 ≤ Ra ≤ 107, no stabilization
is needed in order to capture the expected flow characteristics. Near the transition point,
grad-div stabilization is needed in order to overcome numerical instabilities. The positive
effect is also reflected in the benchmark quantities. LPS SU for velocity or temperature
provides only a slight improvement because the grid is resolved within the boundary lay-
ers.
For the case of isotropic turbulence (Taylor-Green vortex, Section 5.6), we investigate
numerically whether grad-div and LPS SU serve as implicit turbulence models. A compar-
ison with Kolmogorov’s −5/3-law for the energy cascade shows that grad-div stabilization
alone does not provide enough dissipation in order to model the influence of the small
non-resolved scales. Additional LPS SU stabilization acts in a similar way as the classical
Smagorinsky model in the sense that it prevents that the energy for the smallest resolved
scales increases. The theoretical reasoning due to dimensional analysis as well as the nu-
merical tests suggest a parameter choice as τuM ∼ h/‖uh‖∞,M . Note that τuM = 1 also
seems appropriate but is not suited as a universal choice for different flow examples. So
LPS SU is capable of adding dissipation to the fluid but - like the Smagorinsky model
- is too dissipative. This is not very surprising as LPS SU is not adapted to the nature



6. Discussion and Conclusion 149

of isotropic turbulence: It adds stabilization in the particular direction of the mean flow
within a cell, whereas for the isotropic Taylor-Green vortex no direction is distinguished.
Therefore, it would be interesting to test a turbulent example with clear main flow like
the turbulent channel, for instance.
Rayleigh–Bénard convection in Section 5.7 is a transient non-isothermal example. In case
of unsteady flow, grad-div stabilization and anisotropic grids are needed to compute bench-
marks comparable to DNS results from the literature. The numerical tests show that a
grad-div parameter γM ∈ {0.01, 0.1} performs best for all Ra ∈ {105, 106, 107, 108, 109}.
We point out that the use of grad-div proves crucial for the stability of the numerical
solution for high Rayleigh numbers. LPS SU for the temperature becomes necessary if
isotropic grids are used, where the boundary layers within the temperature are not re-
solved.

Summarizing, one can state that grad-div stabilization improves the numerical behavior in
all considered examples. Not only the errors can be diminished but also benchmark quanti-
ties can be approximated better. A positive effect of LPS SU stabilization cannot be stated
universally (at least, it does not harm in most cases). But for certain circumstances and
settings, this technique is indeed favorable: Local projection stabilization is an adequate
turbulence model and damps oscillations in case of transient flow for isotropic, globally
refined grids. We point out that bubble enrichment of the fine (velocity and temperature)
finite element spaces yields an improvement especially when used in the context of LPS
SU stabilization.

6.3. Conclusion

In this thesis, we consider the Oberbeck-Boussinesq model that is suited to model non-
isothermal incompressible flow if the flow is driven by small temperature differences. In
order to diminish instabilities of the numerical solution, we apply LPS SU and grad-div
stabilization in combination with inf-sup stable velocity-pressure elements. A pressure-
correction projection method of second order is used for discretization in time. Our an-
alytical and experimental results imply that the method has advantageous properties in
the sense explained below.
The semi-discrete and fully discrete settings are analyzed; both the semi-discrete and the
fully discrete solutions of the stabilized problem are stable. A priori error estimates of
the expected order can be shown and lead to suggestions for a suitable parameter design,
that is tested numerically afterwards. The analysis relies strongly on the discrete inf-sup
stability of the finite element spaces: Estimates for velocity and pressure can be performed
separately. A drawback of inf-sup stable elements (compared to equal-order) is that no
precise parameter design is obtained by the analysis; instead, a range of possible choices
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is suggested. This means that the choice of stabilization parameters is an important issue
for the numerical tests. When the LPS SU stabilization is interpreted as an implicit tur-
bulence model, we can make a clear assertion using dimensional analysis.
The empirical tests of a suitable parameter choice are in good agreement with the pa-
rameter design obtained by the semi-discrete analysis. However, a violation of the mesh
width restriction as obtained in Section 3.2.1 does not lead to a deterioration of the errors
in the numerical solutions. In addition, the parameter bound for the LPS SU parameter
we found through the fully discrete analysis does not lead to a sufficient stabilization (in
cases where LPS SU yields an improvement). This supports the wish for a more thorough
consideration of the convective and stabilization terms in the fully discrete setting and
a direct estimation of the fully discrete error without introduction of an auxiliary semi-
discrete problem.
In order to perform sound empirical tests, we consider a variety of numerical examples.
These sustain the conclusion that grad-div stabilization with γM = O(1) is important
for robustness of the method. As it was pointed out by [Lin14], a proper choice of γM
is important for improved mass conservation, in particular for volume forces of gradient
type. The work of [dFGAJN15] for the time-dependent Oseen problem (with Taylor-Hood
elements) confirms our observation that grad-div stabilization alone is often sufficient to
obtain stable approximate solutions. In general, LPS SU does not deteriorate the results
in any of the examined cases. LPS SU stabilization is recommendable if (isotropic) grids
are used that are not well adapted to the specific example. In case of dominating convec-
tion, spurious oscillations can be suppressed by a large amount. Especially, enrichment of
the discrete ansatz spaces for velocity and temperature by bubble functions leads to an
improvement of the results.



A. Mathematical Tools and Notation

A.1. Notation

Let Ω ⊂ Rd, d ∈ {2, 3}, denote a bounded open domain with Lipschitz boundary. Vector-
valued quantities are written in bold letters. We write for the Euclidean coordinates,

x=(x, y)T =(x1, x2)T ∈ R2 or x=(x, y, z)T =(x1, x2, x3)T ∈ R3

and for the components of vectors, we use the notation

v = (v1, . . . , vd)T ∈ Rd,

or: v = (vx, vy)T ∈ R2, v = (vx, vy, vz)T ∈ R3.

For velocity components, we can also write u= (u, v, w)T ∈ R3. We denote the gradient
with respect to the spatial variables of vector or scalar fields with ∇ := ∇x. Let ∇· indicate
the divergence of a vector field, ⊗ the tensor product and × the cross product.

A.2. Function Spaces

Let K ⊂ Ω. We denote with C(K) the space of continuous functions v : K → R. For
p ∈ [1,∞], the Lebesgue space Lp(K) is the function space containing all measurable
functions u : K → R, such that

‖u‖Lp(K) :=
(∫

K
|u(x)|pdx

)1/p
<∞ for p ∈ [1,∞),

‖u‖L∞(K) := ess supx∈K |u(x)| <∞.

Lp(K) are Banach spaces. Additionally, L2(K) is a Hilbert space with respect to the inner
product

(u, v)L2(K) :=
∫
K
u(x)v(x)dx.
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The dual pairing of a Banach space X and its dual space X ′ is written as 〈·, ·〉X′×X .
We fix some notation: Throughout this thesis, we use

‖u‖0 := ‖u‖L2(Ω), ‖u‖0,K := ‖u‖L2(K),

‖u‖∞ := ‖u‖L∞(Ω), ‖u‖∞,K := ‖u‖L∞(K),

(u, v) := (u, v)L2(Ω), (u, v)K := (u, v)L2(K)

if not stated otherwise. Moreover, let

L2
∗(Ω) := {q ∈ L2(Ω):

∫
Ω
q(x)dx = 0}.

Let m ∈ N0 and α = (α1, . . . , αn) denote a multiindex of length |α| :=
∑n
i=1 αi. The

Sobolev space Wm,p(Ω) consists of all m-times weakly differentiable functions u : Ω → R
such that

‖u‖Wm,p(Ω) :=

 ∑
0≤|α|≤m

‖Dαu‖pLp(Ω)

1/p

<∞ for p ∈ [1,∞),

‖u‖Wm,∞(Ω) := max
0≤|α|≤m

‖Dαu‖L∞(Ω) <∞,

where Dαu denotes the α-th weak partial derivative. In particular, we have Lp(Ω) =
W 0,p(Ω). Note that Wm,p(Ω) are Banach spaces and

Hm(Ω) := Wm,2(Ω)

are Hilbert spaces. Further, Hm
0 (Ω) = Wm,2

0 (Ω) := {u ∈ Hm(Ω) | u|∂Ω = 0}. Note that on
the space W 1,2

0 (Ω), the norms ‖ · ‖W 1,2(Ω) and ‖∇(·)‖0 are equivalent (due to the Poincaré
inequality A.3.2).
For the Hilbert spaces (with p = 2), we use the abbreviations in this thesis

‖u‖m := ‖u‖Wm,2(Ω), ‖u‖m,K := ‖u‖Wm,2(K).

The Euclidean norm for vectors is denoted by | · |. Besides, we write for products of two
vectors v,w ∈ Rd:

vw = v ·w =
d∑
i=1

viwi.
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Let [Lp(Ω)]d be the space of all functions u : Ω → Rd such that all components of u are
Lp(Ω)-functions. For convenience, we denote the respective norm with ‖ · ‖Lp(Ω) as well;
for example, in case of the L2-norm:

‖u‖0 :=
(∫

Ω
|u(x)|2dx

)1/2
.

The spaces [Wm,p(Ω)]d and the associated norms are defined analogously.

For evolution equations, we need the notion of functions depending on time with values
in Banach or Hilbert spaces. We refer the reader to [Zei86] for details.

Definition A.2.1 (Bochner spaces).
Let (Z, ‖ · ‖Z) be a Banach space, 0 < T <∞. For 1 ≤ p <∞ and vector-valued functions
u : (0, T )→ Z with values in Z, we define

Lp(0, T ;Z) := {u : (0, T )→ Z measurable | ‖u‖Lp(0,T ;Z) <∞},

where

‖u‖Lp(0,T ;Z) :=
(∫ T

0
‖u(t)‖pZdt

)1/p

,

and for p =∞

L∞(0, T ;Z) := {u : (0, T )→ Z measurable | ∃M ∈ (0,∞) : ‖u(t)‖Z < M in (0, T ) a. e.}.

If vector valued functions u : (0, T ) → [Z]d are considered, the respective norms are also
denoted as ‖u‖Lp(0,T ;Z) for convenience. The notation

|u|L∞(0,T ;W 1,p(Ω)) := ess supt∈(0,T )‖∇u(t)‖p

indicates the use of the semi-norm ‖∇(·)‖p instead of ‖ · ‖W 1,p(Ω).

A function u : [0, T ]→ Z is called continuous in t0 ∈ [0, T ] if

lim
τ→0, t0+τ∈[0,T ]

‖u(t0 + τ)− u(t0)‖Z = 0.

We denote with C(0, T ;Z) the space of all functions u : [0, T ]→ Z that are continuous in
all points t0 ∈ [0, T ].
Generalized time derivatives can be defined as follows.
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Definition A.2.2 (Generalized time derivatives).
Let u ∈ L1(0, T ;Y ) and w ∈ L1(0, T ;Z) with Banach spaces Y , Z. Then w is called n-th
generalized derivative of u on (0, T ) if it holds

∫ T

0
φ(n)(t)u(t) dt = (−1)n

∫ T

0
φ(t)w(t) dt ∀ φ ∈ C∞0 (0, T ). (A.1)

We write u(n)(t) := w(t) or for n = 1, ∂tu(t) := w(t).

For real, separable Hilbert spaces X and 1 < p, q <∞ with 1
p + 1

q = 1, we can reformulate
(A.1). Let u ∈ Lp(0, T ;X). If there exists w ∈ Lq(0, T ;X) with

∫ T

0
(u(t), v)Xφ(n)(t) dt = (−1)n

∫ T

0
(w(t), v)Xφ(t) dt ∀ v ∈ X ∀ φ ∈ C∞0 (0, T ),

then the generalized derivative u(n) exists as u(n) = w. It holds

dn

dtn
(u(t), v)X = (u(n)(t), v)X ∀ v ∈ X, t ∈ (0, T ) a. e.. (A.2)

This gives rise to the following Sobolev spaces. Let X be a real, separable Hilbert space
and m ∈ N. For 1 < p, q <∞ with 1

p + 1
q = 1, we set

Wm,p(0, T ;X) :=
{
v ∈ Lp(0, T ;X) | v(n) ∈ Lq(0, T ;X), n = 1, . . . ,m

}
. (A.3)

A.3. Inequalities and Auxiliary Calculations

A.3.1. Useful Inequalities

Lemma A.3.1 (Young’s inequality).
Let x, y ∈ R and ε > 0 arbitrary. Then the following holds for 1 < p, q < ∞ satisfying
1
p + 1

q = 1:

|xy| ≤ ε|x|p + (pε)1−q

q
|y|q. (A.4)

Proof. A proof is given in [Alt02].

Lemma A.3.2 (Poincaré’s inequality).
Let Ω ⊂ Rd be a bounded open domain. Then there is C > 0 depending only on the domain
such that for all u ∈W 1,2

0 (Ω), it holds

‖u‖0 ≤ C‖∇u‖0.
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Proof. See [Dzi10].

Lemma A.3.3 (Trace inequality).
Let Ω ⊂ Rd, d ∈ {2, 3}, with Lipschitz boundary ∂Ω. Let Th be a quasi-regular triangulation
of Ω. Denote Eh as the set of inner element faces E 6∈ ∂Ω of Th. Let hT denote the outer
radius of a cell T ∈ Th. Then there is Ctr > 0 such that for all v ∈W 1,2(Ω)

‖v‖20,E ≤ Ctr(h−1
T ‖v‖

2
0,T + hT ‖∇v‖20,T ).

Proof. We refer the reader to [HKW06].

A.3.2. Variants of Gronwall’s Lemma

Lemma A.3.4 (Gronwall Lemma, integral version).
Let T ∈ R+ ∪ {∞} and φ, g ∈ L∞(0, T ). Moreover, let λ ∈ L1(0, T ) denote a function
which is non-negative almost everywhere in [0, T ]. Assume g is monotonically increasing,
positive and continuous in [0, T ]. If the inequality

φ(t) ≤ g(t) +
∫ t

0
λ(s)φ(s)ds

is fulfilled almost everywhere in [0, T ], then the following holds true almost everywhere in
0 ≤ t ≤ T :

φ(t) ≤ g(t) exp
(∫ t

0
λ(s)ds

)
. (A.5)

Proof. A proof can be found in [QV08].

Lemma A.3.5 (Gronwall Lemma, differential version).
Let T ∈ R+ ∪ {∞}, t0 ∈ [0, T ) and let φ ∈ W 1,1(0, T ) denote a function on [0, T ] that
satisfies the inequality

d

dt
φ(t) ≤ λ(t)φ(t) + g(t)

almost everywhere in (t0, T ) with functions λ, g ∈ L1(t0, T ). Then the following holds true
almost everywhere in t0 ≤ t ≤ T :

φ(t) ≤ φ(t0)eΛ(t) +
∫ t

t0
eΛ(t)−Λ(s)g(s)ds (A.6)

with Λ(t) :=
∫ t
t0
λ(s)ds.

Proof. The proof is a corollary of the integral version (Lemma A.3.4).
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Lemma A.3.6 (Discrete Gronwall Lemma).
Consider T > and 0 ≤ k ≤ T . Let yn, hn, gn, fn be non-negative sequences satisfying for
all 0 ≤ m ≤ [T/k]

ym + k
m∑
n=0

hn ≤ B + k
m∑
n=0

(gnyn + fn) with k
[T/k]∑
n=0

gn ≤M

for some M > 0. Assume kgn < 1 and let σ = max0≤n≤[T/k](1 − kgn)−1. Then for all
0 ≤ m ≤ [T/k], it holds

ym + k
m∑
n=1

hn ≤ exp(σM)
(
B + k

m∑
n=0

fn
)
. (A.7)

Proof. A proof of this result can be found in [Tem95].

A.3.3. Estimates for the Convective Term

Lemma A.3.7.
Let Ω ⊂ Rd, d ≤ 4, u,v,w ∈ [W 1,2

0 (Ω)]d. The convective term

c(u,v,w) = 1
2
(
(u · ∇v,w)− (u · ∇w,v)

)
can be estimated in the following ways

c(u,v,w) ≤



C‖u‖1‖v‖1‖w‖1,

C‖u‖2‖v‖0‖w‖1 ∀u ∈ [W 2,2(Ω) ∩W 1,2
0 (Ω)]d,

C‖u‖2‖v‖1‖w‖0 ∀u ∈ [W 2,2(Ω) ∩W 1,2
0 (Ω)]d,

C‖u‖1‖v‖2‖w‖0 ∀v ∈ [W 2,2(Ω) ∩W 1,2
0 (Ω)]d

with some C > 0. Furthermore, for d ≤ 3, it holds

c(u,v,u) ≤ C‖u‖1/20 ‖u‖
3/2
1 ‖v‖1,

c(u,v,w) ≤ C‖u‖1‖v‖1/21 ‖v‖
1/2
2 ‖w‖0 ∀v ∈ [W 2,2(Ω) ∩W 1,2

0 (Ω)]d.

Proof. The proof utilizes Hölder’s inequality and the Sobolev inequalities. We refer the
reader to [Tem95].
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Lemma A.3.8.
Let Ω ⊂ Rd, u ∈ [L2(Ω)]d and w ∈ [W 1,2(Ω)]d. Denote by uM the average over a cell
M ⊂ Ω, i.e.,

uM := 1
|M |

∫
M
u(x) dx,

where |M | denotes the measure of M in Rd. Then it holds

‖(uM · ∇)w‖20,M ≤
1
|M |
‖u‖20,M‖w‖21,M .

Proof. Let | · | denote the vector norm in Rd. Then we have via the Cauchy-Schwarz
inequality:

|uM |2 = 1
|M |2

∣∣∣ ∫
M
u(x)dx

∣∣∣2 = 1
|M |2

∣∣(u,1)M
∣∣2 ≤ 1

|M |2
‖u‖20,M‖1‖20,M = 1

|M |
‖u‖20,M .

Finally, for the streamline derivative:

‖(uM · ∇)w‖20,M =
d∑
i=1

∥∥∥∥∥∥
d∑
j=1

uM,j
∂wi
∂xj

∥∥∥∥∥∥
2

0,M

≤
d∑
i=1

 d∑
j=1

∥∥∥∥uM,j
∂wj
∂xi

∥∥∥∥
0,M

2

=
d∑
i=1

 d∑
j=1
|uM,j |

∥∥∥∥∂wj∂xi

∥∥∥∥
0,M

2

≤
d∑
i=1

 d∑
j=1
|uM,j |2

 d∑
j=1

∥∥∥∥∂wj∂xi

∥∥∥∥2

0,M


=

 d∑
j=1
|uM,j |2

∑
i,j

∥∥∥∥∂wj∂xi

∥∥∥∥2

0,M
= |uM |2‖w‖21 ≤

1
|M |
‖u‖20,M‖w‖21,M .

A.4. Existence Results

Let X be a Hilbert space with scalar product (·, ·)X and induced norm ‖ · ‖X . Consider
the variational problem:

Find u ∈ X such that

a(u, v) = f(v) ∀ v ∈ X, (A.8)

where a : X × X → R is a bilinear form and f : X → R a linear functional. The Lax-
Milgram Lemma states sufficient conditions for the existence and uniqueness of solutions
of (A.8). A proof can be found in [Cia02].
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Theorem A.4.1 (Lax-Milgram Lemma).
Assume that the bilinear form a : X ×X → R is continuous, i.e.,

∃α1 > 0: |a(v, w)| ≤ α1‖v‖X‖w‖X ∀ v, w ∈ X,

and X-elliptic (or coercive), i.e.,

∃α2 > 0: a(v, v) ≥ α2‖v‖2X ∀ v ∈ X.

Further, let the linear functional f : X → R be continuous. Then problem (A.8) has a
unique solution.

For evolution problems, we state a generalization of the Peano Theorem, which is an
implication the the Fixed Point Theorem of Schauder (see [Zei86] for full proofs).
Let (Y, ‖ · ‖Y ) be a Banach space, f : D(f) ⊂ R× Y → Y and x0 ∈ Y . Consider an initial
value problem of the form:

Find x : [0, T ]→ Y such that

d

dt
x(t) = f(t, x(t)), x(t0) = x0 ∈ Y. (A.9)

We assume that f is a compact operator, meaning that f is continuous and maps bounded
sets M ⊂ D(f) to relatively compact sets f(M) ⊂ Y . I.e., for all ε > 0, there are
y1, . . . , yn(ε) ∈ f(M) satisfying

min
1≤i≤n(ε)

‖yi − y‖Y < ε ∀ y ∈ f(M).

Theorem A.4.2 (Generalized Peano Theorem).
For t0 ∈ R and x0 ∈ Y , define

QR := {(t, y) ∈ R× Y : |t− t0| ≤ a, |y − x0| ≤ R}

with fixed numbers a, R ∈ (0,∞). Let f |QR : QR → Y be compact and ‖f(t, y)‖Y ≤ K for
all (t, y) ∈ QR with fixed K > 0. Let c := min(a,R/K). Then the initial value problem
(A.9) has at least one solution x(·) ∈ C1(t0 − c, t0 + c;Y ).



B. Appendix: Numerical Examples

In this chapter, we present some results that are mentioned in Chapter 5 but not shown
there for reasons of space.

B.1. Isothermal Convergence Results: 3D No-Flow Problem

In order to investigate the influence of grad-div stabilization, we consider the No-Flow test
problem in three dimensions with exact stationary solution

u(x) ≡ 0, p(x) = x3 + y2 + z2 + x− 1 in Ω = (0, 1)3

for x = (x, y, z)T and forcing term fu(x) = (3x2 + 1, 3y2, 3z2)T . The used grids are
randomly distorted by 1% as shown below in Figure B.1.

Figure B.1.: No-Flow test: Cut through mesh.
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B.2. Isothermal Convergence Results: 2D Couzy Problem

The Couzy test problem in Ω = (0, 1)2 is constructed such that

u(x) = sin (πt)
(
− cos

(
π

2x
)

sin
(
π

2 y
)
, sin

(
π

2x
)

cos
(
π

2 y
))T

,

p(x) = −π sin
(
π

2x
)

sin
(
π

2 y
)

sin (πt)

is a solution of the Navier-Stokes problem. The dependence of the velocity and pressure
L2-errors on a constant grad-div parameter γM ∈ {0, 0.1, 1, 5} for Re = 103 and Q2 ∧Q1

elements is shown in Figure B.2.
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Figure B.2.: Two-dimensional Couzy test with Re = 103: Dependence of the L2-velocity
error (left) and the L2-pressure error (right) on the grad-div parameter γM
for Q2 ∧Q1 elements.

The dependence of the L2-velocity and L2-pressure errors on Re for optimized grad-div
parameters γM are considered in Figure B.3.
L2-velocity and L2-divergence errors for different LPS variants can be found in Figure B.4.
We compare the effect of LPS SU stabilization and enrichment for Re = 103. (Q2/Q1) ∧
Q1 and (Q+

2 /Q1) ∧ Q1 elements are combined with grad-div stabilization only and with
additional LPS SU stabilization, i.e., τuM ∈ {0, 1

2h/‖uh‖∞,M , ‖uh‖
−2
∞,M}.
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Figure B.3.: Two-dimensional Couzy test with optimized grad-div parameter γM : Depen-
dence of the L2-velocity error (left) and the L2-pressure error (right) on Re
for Q2 ∧Q1.
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Figure B.4.: Two-dimensional Couzy test for Re = 103 with γM = 1: L2-velocity error
(left) and L2-divergence error (right) for different LPS SU parameters τuM for
(Q2/Q1) ∧Q1 and (Q+

2 /Q1) ∧Q1 elements.
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B.3. Non-Isothermal Convergence Results: 2D Traveling Wave

We consider a time dependent, two-dimensional solution of the Oberbeck-Boussinesq equa-
tions for different parameters ν, α, β in a box Ω = (0, 1)2 with t ∈ [0, 6 · 10−3]:

u(x, y, t) = (100, 0)T , p(x, y, t) = 0,

θ(x, y, t) = (1 + 3200αt)−1/2 exp
(
−
(1

2 + 100tx
)2 ( 1

800 + 4αt
)−1

)
,

fu(x, y, t) =
(
0,−β(1 + 3200αt)−1/2 exp

(
−200(1 + 3200αt)−1(1 + 200t− 2x)2

))T
,

fθ(x, y, t) = 0

with g ≡ (0,−1)T and (time dependent) Dirichlet boundary conditions for u and θ.
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Figure B.5.: Velocity H1-errors for different finite elements and choices of α and β with
τ θL = 0 (left) and τ θL = h/‖uh‖∞,L (right).

Different stabilization parameter settings for (ν, α, β) and the resulting errors in velocity
and pressure are considered in Figures B.5, B.6. With respect to desired convergence rates
in velocity and pressure, even large β and small α do not require any stabilization. However,
the errors are larger by orders of magnitude compared to the case α = 1, β = 1. We point
out that for small α, the temperature errors are improved by LPS SU stabilization (with
τ θL > 0). This does not affect the velocity and pressure errors considerably.
In Figure B.7, the influence of LPS stabilization for the temperature in case of small
α = 10−3 is studied in more detail. Different choices of the fine space are considered
as well as stabilization parameters. Whereas the temperature error is affected by these
variations notably (see Figure 5.9), velocity and pressure errors are not in that amount.
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Figure B.6.: Pressure L2-errors for different finite elements and choices of α and β with
τ θL = 0 (left) and τ θL = h/‖uh‖∞,L (right).
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Figure B.7.: Velocity H1-errors (left) and pressure L2-errors (right) for different choices of
τ θL and finite elements, (ν, α, β) = (1, 10−3, 1).
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Figure B.8.: Temperature L2- (left) and pressure L2-errors (right) for different choices of
α and β with Q+

2 /Q1 elements.

Figure B.8 shows errors depending on the time step size ∆t at fixed end time T = 0.006.
The error ‖θ(T )− θNht‖0 is of order O((∆t)2) as expected. Note that the error on the finest
grid is corrupted by the error due to spatial discretization. The error ‖p(T )− pNht‖0 shows
an even better behavior than O(∆t).
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B.4. Isothermal Laminar Flow: 2D Blasius Boundary Layers

The Blasius test case incorporates a two-dimensional laminar boundary layer that develops
if there is steady flow with free stream velocity u∞ parallel to the x-axis across a flat plate.

Figure B.9.: Blasius flow with ν = 10−3 for γM = 1 and different choices of the stabiliza-
tion parameter τuM with (Q+

2 /Q1) ∧ Q1 elements: τuM = 0 (top left), τuM =
h2/‖uh‖2∞,M (top right), τuM = h/‖uh‖2∞,M (bottom left), τuM = 1/‖uh‖2∞,M
(bottom right).

Figure B.10.: Blasius flow with ν = 10−3 for γM = 1, τuM = 1
2h/‖uh‖∞,M in combination

with (Q2/Q1) ∧Q1 (left), (Q+
2 /Q1) ∧Q1 elements (right).

In addition to grad-div, a LPS SU parameter τuM = 1/‖uh‖2∞,M can damp out the oscilla-
tions in front of the plate. This holds if (Q2/Q1)∧Q1 or (Q+

2 /Q1)∧Q1 elements are used
(see Figure B.9). Parameters τuM of order O(h2) do not remove the wiggles. τuM ∼ O(h) al-
ready yields an improvement but does not provide as much damping as the choice of order
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O(1). Figure B.10 illustrates that τuM = 1
2h/‖uh‖∞,M in conjunction with (Q2/Q1) ∧ Q1

elements and with enriched (Q+
2 /Q1) ∧Q1 elements is comparable to τuM = h/‖uh‖2∞,M .

Figure B.11.: Refine cells with midpoint (x, y) if |y| < δ, ν = 10−3, γM = 1: Velocity
magnitude (left) and mesh (right).

Figure B.12.: Refine in the boundary layer, ν = 10−3, γM = 1: Velocity magnitude (left)
and mesh (right).

In Figures B.11, B.12 and B.13, we study refinement strategies near the plate in order to
improve the numerical solution. We use ν = 10−3 and grad-div stabilization alone with
γM = 1. The meshes are always shown on the right; the resulting velocity magnitude in
case of grad-div stabilization γM = 1 on the left. The mesh in Figure B.11 is constructed
by refinement of cells where the midpoint (x, y) satisfies |y| < δ. The fine mesh in front of
the plate is not suited to damp the oscillations. However, if only the boundary layer, i.e.,
the region at the plate, is resolved (Figure B.12), the coarser mesh in front of the plate
provides mesh diffusion. A refinement criterion based on diminishing the total variation
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Figure B.13.: TGV based refinement criterion, ν = 10−3, γM = 1: Velocity magnitude
(left) and mesh (right).

(TVD), in order to control the velocity difference within a cell, is considered in Figure
B.13. It is constructed such that

tolT :=
d∑
i=1

(
max
x∈T
|ui(x)| −min

x∈T
|ui(x)|

)
≈ 0.1

holds on each element T ∈ Th for uh = (u1, . . . , ud)T in d dimensions.
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B.5. Non-Isothermal Laminar Flow: 2D Heated Cavity

In this example, we consider laminar, non-isothermal flow in a cavity. The left vertical
wall of the two-dimensional domain Ω = (0, 1)2 is heated, the right one is cooled. The flow
is driven by this difference.
The mesh is shown in Figure B.14. It is adapted to resolve the boundary layer and is
distorted randomly by 1%. The equidistant grid points are transformed by mappings
Tab : [0, 1]2 → [0, 1]2 of the form

(x, y)T 7→ Tab((x, y)T ) :=
(
x− 1

2π (1− a) sin(2πx), y − 1
2π (1− b) sin(2πy)

)T
with parameters 0 < a, b < 1 chosen as a ≈ Nu−1 and b ≈ Nu−1/3.

Figure B.14.: Anisotropic, randomly distorted mesh for heated cavity, Ra = 104 (left) and
Ra = 106 (right), N = 322.

The steady states of the numerical solutions (uh, θh) for different Rayleigh numbers Ra ∈
{104, 105, 106, 107}, resulting in laminar flow, are presented in Figure B.15. No stabilization
and N = 642 cells are used.
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Figure B.15.: Heated cavity, temperature (left) and velocity magnitude (right) with
streamlines, without stabilization, Pr = 0.71, Ra ∈ {104, 105, 106, 107},
N = 642.
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B.6. Isothermal Turbulent Flow: 3D Taylor-Green Vortex

The Taylor-Green vortex is an example for isotropic turbulence. We study the adequacy of
grad-div and LPS SU stabilization as an implicit LES subgrid model. In Figure B.16, the
energy spectra with grad-div stabilization γM = 1, grad-div combined with LPS SU γM =
1, τuM = 1 and the classical Smagorinsky model are presented for a mesh width h = π/16.
In case of γM = 1, the smallest resolved scales carry too much energy. Additional LPS SU
stabilization provides more dissipation. The stabilization with γM = 1, τuM = 1 works as a
turbulence model that has a dissipative effect similar to the classical Smagorinsky model.
We remark that in the simulation, we choose the Smagorinsky parameter csmag such that
the best results with respect to the −5/3-law are obtained.
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Figure B.16.: Energy spectra at t = 9, comparison between grad-div stabilization, grad-div
stabilization with LPS SU and use of the Smagorinsky model, {a = 2π, b =
1}, h = π/16.
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B.7. Non-Isothermal Flow: 3D Rayleigh–Bénard Convection

In the Rayleigh–Bénard example, the flow is driven by a temperature gradient between a
heated bottom plate and a cooled top plate.
A snapshot of temperature iso-surfaces as wells as streamlines of the associated velocity
are shown in Figure B.17 for Rayleigh numbers Ra ∈ {105, 109}. N = 10·163 cells, grad-div
stabilization with γM = 0.1 and Q2 ∧Q1 ∧Q2 elements are used. The large scale behavior
consists of one large convection cell, i.e., upflow of warm fluid and descent of cold fluid.
The velocity streamlines indicate that indeed, material transport occurs.

Figure B.17.: Temperature iso-surfaces (left) and streamlines of the associated velocities
(right) at T = 1000 for Pr = 0.786, Ra = 105 (top) and Ra = 109 (bottom),
N = 10 · 163, γM = 0.1. Red colored streamlines indicate a positive z-
component uz, blue ones negative uz.
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In Table B.1, we examine the influence of different grad-div and LPS SU parameters
with (Q2/Q1) ∧ Q1 ∧ (Q2/Q1) finite elements. For Ra = 109, we apply a grid with N =
10 · 83 cells that is transformed by Txyz. Any LPS SU parameter does not improve the
benchmark quantities and yields even worse results than grad-div stabilization alone. The
upper bounds from the semi-discrete analysis of Chapter 3 as τuM ∼ ‖uh‖−2

∞,M , τ θL ∼
‖uh‖−2

∞,L (or a combination of both) lead to big deviations σ and poor Nusselt numbers.

Ra γM τuM τ θL Nuavg σ Nuref

109 0 0 0 118.7932 137.5588 63.1

1 0 0 48.1509 2.2666
1 1 0 44.7787 1.6884
1 hu1 0 46.1522 1.9443
1 u2 0 37.2566 1.0368
1 0 1 46.1629 0.8950
1 0 hu1 47.2953 1.6829
1 0 u2 53.7836 17.9261
1 1 1 43.6124 2.2634
1 hu1 hu1 45.7747 2.1888
1 u2 u2 37.4286 2.3599

0.01 0 0 55.5231 1.3464
0.01 1 0 52.7697 1.4125
0.01 hu1 0 53.8371 1.4130
0.01 0 1 51.3556 4.0768
0.01 0 hu1 52.4530 3.4847
0.01 0 u2 67.5182 21.8258
0.01 1 1 50.0199 3.5080
0.01 hu1 hu1 51.8141 3.4344

0.001 0 0 82.1364 5.3807
0.001 hu1 0 71.6067 3.5743
0.001 hu1 hu1 66.8327 5.3091
0.001 0 hu1 72.1467 5.1825

Table B.1.: Averaged Nusselt numbers and maximal deviations σ for different choices of
stabilization, Ra = 109, averaged over time t ∈ [150, 1000], N = 10 · 83.
The notation hu1 indicates that τu/θM/L = 1

2h/‖uh‖∞,M/L and u2 that τu/θM/L =
‖uh‖−2

∞,M/L.
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