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Abstract 
   1

 

     The myelin sheath is a specialized membranous structure that facilitates rapid signal 

conduction along axonal segments. During central nervous system development, it is 

formed by oligodendrocytes that extend motile and exploratory processes. Upon axonal 

contact, these processes transform into flat sheets that spread and wrap around the axons 

to generate a multilayered stack of membranes. In order to drive the leading edge of the 

forming sheath in between the growing myelin layers and the interface with the axon, 

mechanical forces are necessary, however, the underlying mechanisms are not known. 

Thus, to study how the process of myelin formation occurs, we used an interdisciplinary 

approach that combines morphological and genetic analysis with nano-mechanical 

experiments.  

     In order to perform mechanical measurements on flat oligodendrocytes with 

minimum damage, we developed a vertical optical trap and compared its performance 

with atomic force microscopy. We found that indentation experiments carried out with 

both instruments yield consistent results for the cell elasticity. I used both 

complementary techniques to measure the response of fibroblasts over a large range of 

forces and deformations modes. 

     Experiments on oligodendrocytes pointed to a key role for the actin filament (F-

actin) network dynamics in myelin growth. At the onset of myelin biogenesis, F-actin is 

located primarily at the non-adhesive leading edge, which is propelled around the axon 

driven by forces generated by F-actin polymerization. Behind the leading edge, F-actin 

disassembly reduces surface tension which allows membrane spreading and 



xxii 
 

transforming the processes into large flat sheets that adhere to the substrate. 

Furthermore, we have identified the actin depolymerizing factor ADF/Cofilin1, as 

necessary regulator of myelin formation. By controlling the local actin dynamics with 

repetitive cycles of assembly and disassembly, oligodendrocytes can drive the 

protrusions forwards and eventually spread. 
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1.1 Cell Mechanics 

      

Throughout the years, the functioning of cells has been approached by 

biochemical, molecular and genetic methods. This has led to a great understanding of 

the components of the cell and provided insights into the behavior of cells by 

elucidating processes such as signaling pathways, ligand-receptor or substrate-enzyme 

interactions and regulation of the cytoskeleton, to only name a few. More recently, 

mechanical properties of cells are increasingly appreciated as an additional information 

channel to better understand the structure and behavior of cells. Many of the concepts 

and ideas about cell mechanics have been around for a long time (Pelling and Horton, 

2008) and the last decade has seen a strong increase in studies related to the topic (Guck 

and Chilvers, 2013). This is, on one side, due to the development of new and improved 

techniques used to measure cell mechanical properties. On the other side, more 

connections are being discovered that link the physical and mechanical properties of 

cells to relevant biological processes (Christopher R. Jacobs, 2012). 

 

 

 



2 Introduction 
 

1.1.1 Cellular processes related to cell mechanics  

      

A variety of cellular processes on different levels of complexity are directly or 

indirectly linked to cell mechanics. Our skeletal system is one example illustrating this, 

where bone tissue and cartilage serve as a mechanical support for our body and 

muscular system. The state of the skeleton is not a static, but dynamic condition since 

on one hand deprivation of mechanical stimulation leads to a debilitation of bone tissue 

and on the other hand, mechanical load activates various signaling pathways leading to 

bone formation (Huiskes et al., 2000; Jacobs et al., 2010). Similar effects have been 

found on cartilage, where moderate and cyclic stimuli are beneficial for chondrocytes, 

while excessive chronic mechanical loading will damage the tissue and generate 

osteoarthritis (Moyer et al., 2014). 

On a cellular level, the regulation of cell shape by adjusting their mechanical 

properties has important functional implications. This is particularly interesting during 

mitosis, when rounding up of cells takes place as a consequence of disassembled surface 

adhesion contacts. The resulting decrease in the adhesive forces keeping the cell 

adhered to the surface as well as a reorganization of the actin cytoskeleton then 

generates enough mechanical stress to increase the membrane tension at the equator 

which is the start of the division of the whole cell (Clark and Paluch, 2011). 

      Apart from internal mechanisms regulating cell shape, the cell’s environment 

likewise exerts effects on their morphology and differentiation. As an example, plating 

naïve mesenchymal stem cells with no basal expression of any lineage-specific markers 

onto matrixes of different stiffness (expressed in kPa) influences their specification into 

cells expressing  neurogenic (0.1-1 kPa), myogenic (11 kPa) or osteogenic (34 kPa) 

markers (Engler et al., 2006). Studies relating cell mechanics and stem cells have been 
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so successful that the concept of “mechano-niche” has emerged, defining a specific 

combination of mechanical properties of the cell, the extracellular matrix and other 

external cues to control the maintenance of the cell population and later differentiation 

(Lee et al., 2011). It is hence not surprising that also the development of our nervous 

system is tightly regulated by cell mechanical processes (Franze, 2013). One example is 

the distinct mechanical properties of central nervous system (CNS) cell types, with 

astrocytes being structurally softer than neurons (Lu et al., 2006). Since in mixcultures 

of cortical neurons and astrocytes plated onto soft substrates neuronal growth is favored 

(Georges et al., 2006), it raises the idea that in addition to being structural support 

astrocytes provide a soft mechanical environment highly favorable for neuronal 

development. 

Generally, for a cell to react to a certain mechanical stimulus, signal transduction 

has to take place. In a first step, the cell is mechanically deformed in response to a 

stimulus which then, in a second step is translated into an active biochemical pathway 

by mechanosensors. Mechanosensitive channels e.g. provide the cell with a direct mean 

to assess the membrane’s stretching state by switching between open and closed 

conformations (Sachs, 2010). Indirect means include for instance, the focal adhesion 

complexes, which are macromolecular protein assemblies connecting the extracellular 

matrix (ECM) and the cytoskeleton and have been shown to respond to applied force by 

assembly or disassembly of its components (Geiger and Bershadsky, 2002; Harburger 

and Calderwood, 2009). 

      Taken together, numerous cellular processes are controlled by the interplay 

between the cell’s mechanical properties and external mechanical forces acting on it 

with the cytoskeleton being a crucial structural component at the center of its regulation. 

 



4 Introduction 
 

1.1.2 Describing mechanical properties of cells

 

      The reaction of a cell to mechanical stimuli (how much it deforms) can be 

described by parameters that approximate its mechanical properties. In this section I 

will describe the most relevant ones in the context of this study. 

 

1.1.2.1 Elasticity  

      If material is elastic it will return to its original shape after a deformation has 

taken place. At small deformations, it follows Hooke’s law which states that the force is 

proportional to the deformation, where F is the applied force, ∆x is the deformation and 

k is the factor of proportionality of the material which describes its spring constant in 

N/m. 

xkF Δ−=    (Eq. 1) 

      Analogous to Hooke's law the elasticity of a 3 dimensional solid can be 

quantified by the Young’s modulus (E). E is the factor of proportionality (in N/m2) 

between the tensile stress (σ; the force F per area A), and the tensile strain (ε; the 

relative change in length ∆l/l0). 

0l
l
A

F
E

Δ
==

ε
σ

   (Eq. 2) 

           When the force is not applied uniaxial but perpendicular one refers to the shear 

modulus (G’). For all elasticity parameters a higher value means that the object is harder 

to deform. The cell does not behave like an ideal elastic material which is a 

consequence of its heterogeneous composition. Nevertheless, in many publications the 

Young's modulus is used to quantify the stiffness of the cell. Although not entirely 
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correct it allows one to compare different measurement at least when the experimental 

procedures are comparable (Atanackovic and Guran, 2000; Sadd, 2005). 

      Different biological samples have reported Young’s moduli that cover a wide 

range of elastic values from hundreds of Pa to GPa which correlates with their function 

in the organism, as shown in Figure 1.1. 

 

Muscle 
Articular cartilage 

Rubber Tendon 
Polymers 

(i.e. polystyrene Bone Steel 
Eukaryotic cells 

Figure 1.1: Elasticity values of biological samples. Scheme showing elasticity of biological materials 

compared to steel and rubber. Figure adapted from Moeendarbary, E., and Harris, A.R. (2014). 

 

  1.1.2.2 Visco-elasticity and rheology 

      If a material is viscous it will not return to its original shape after a deformation 

has taken place. Viscosity (µ) is considered as a property of liquids describing the rate 

at which a fluid flows under a defined load or more specifically, its resistance to stress. 

It is calculated by the ratio of stress to the rate of strain or flow rate (γ) (Maxwell, 

1866). 

γμσ *=   (Eq. 3) 

      Cells do neither behave like an ideal elastic material nor like an ideal viscous 

material. Instead they exhibit both elastic and viscous properties, meaning that they 

often return only partially to their original shape after a deformation. This combined 

behavior results from the heterogeneous composition of cells from stiff cytoskeletal 

filaments and the more fluid such as cytoplasm. Various models exist to quantify the 

visco-elasticity at which elastic and viscous elements are placed in series or in parallel 
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(Maxwell and Kelvin-Voigt materials, respectively). Since none of these models 

describe accurately the mechanical behavior of the cell they were not used for this thesis 

work and will not be described in more detail (Viswanath et al., 2007). 

      As mentioned before, the response of cells to mechanical deformation includes 

both elastic and viscous components. This is one of the reasons for the high variation in 

the reported values for the cell’s Young’s modulus. When a visco-elastic cell is 

deformed quickly it will appear stiffer than when the same cell is deformed slowly; the 

viscous components will result in a deformation rate-dependent response. Although an 

exact modeling of this response remains difficult, a consistent behavior has been 

observed when comparing different measurements that were performed at a range of 

deformation rates. Basically, in such measurements the cell is deformed with a probe 

that is oscillated at a range of frequencies, between single and a few hundred Hz. Such 

rheology experiments measure the frequency dependent response of materials and show 

typically a stiffening of the cell at higher frequencies. The thus obtained visco-elastic 

modulus (E*) consists of the elastic modulus (E’) and the viscous component (E’’). The 

frequency dependence of the elastic modulus of a material is characteristic to its 

structure. As is turns out even when the absolute Young’s modulus is not the same in 

the experiments on cells from different research groups there is often a remarkable 

agreement between their qualitative frequency dependency (Hoffman and Crocker, 

2009). In most cases the frequency-dependent stiffness of cells has been found to follow 

a power law: 

αω** bE =   (Eq. 4) 

      Where b is a prefactor that sets the absolute stiffness, ω the frequency 

(~deformation rate) and a the power, which has a value between 0.1 and 0.3 depending 

on which part of the cell is probed (Hoffman et al., 2006). While techniques measuring 
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the “outside” of cells e.g. magnetic twisting cytometry, atomic force mictoscopy, 

external laser tracking, micropipette aspiration or uniaxial rheometry will yield 

exponents on the range of 0.13-0.17, techniques measuring the “inside” of the cell such 

as internal laser tracking and two-point microrheology will result in a higher exponent 

ranging from 0.24-0.29 (Hoffman et al., 2006). This can be explained by the fact that 

the “outside” techniques are measuring the response at the actin cortex region, while the 

“inside” techniques are testing the deep intracellular space around the nucleus (Hoffman 

and Crocker, 2009; Hoffman et al., 2006). 

 

1.1.2.3 Surface tension 

      Eukaryotic cells are enclosed by a lipid bilayer that is supported by ~100 nm 

thick actomyosin cortex. Because this layer has a relative large influence on the 

mechanical properties of the cell some measurements can be actually very well 

described by the surface tension or membrane tension. This tension depends on the in-

plane tensile force within the outer layer of the cell divided by the thickness of this 

layer. For cells the tension is the sum of the in-plane tension of the lipid bilayer and the 

cortical tension which is largely dependent on the actomyosin cortex (Christopher R. 

Jacobs, 2012; Clark and Paluch, 2011). A classical experiment to estimate the surface 

tension values of a cell is the tether extraction measurement (Hochmuth et al., 1996). 

First, a probe is attached to the cell and then pulled away. When the attachment between 

the cell and probe is firm enough small tubes of membrane bilayer called tethers are 

extracted, which are detached from the actomyosin cortex. The measured static tether 

force (F0, force necessary to keep the pulled tether at a constant length), contains the 

contribution of the bending stiffness of the bilayer (B), the in-plane membrane tension, 

and membrane-cytoskeleton adhesion (Dai and Sheetz, 1997; Dai and Sheetz, 1999; Dai 
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et al., 1998; Diz-Munoz et al., 2013; Sheetz, 2001; Sheetz and Dai, 1996). The last two 

terms cannot be separated, since the in-plane tension is generated by the cytoskeleton 

adhesion and therefore are combined into the so-called membrane tension (Tm). 

mBTF 220 π=    (Eq. 5) 

 

1.1.3 Techniques used to measure mechanical properties 

 

      There are many techniques to experimentally determine the mechanical 

properties of cells. In this section, I will provide insight into the techniques applied 

during this study, namely atomic force microscopy (AFM) and optical tweezers. 

 

1.1.3.1 Atomic Force Microscopy 

      AFM belongs to the family of scanning probe microscopes and was first 

described by Binnig, Quate and Gerber in 1986 (Binnig et al., 1986). It comprises a tip 

(probe) mounted at the end of a flexible cantilever that can be controlled using 

piezoelectric actuators. Since the cantilever is flexible, any contact of the tip with the 

surface or sample will apply force onto the cantilever end and result in bending. The 

deflection is measured by focusing a laser on the back of the cantilever and projecting 

its reflection onto a quadrant photodiode (Allison et al., 2010; Kapanidis and Strick, 

2009; Last et al., 2010). The z-movement of the cantilever with respect to the surface is 

controlled by a feedback loop that allows controlling the bending of the cantilever 

which can be either kept constant via the force applied to the tip or kept oscillating at a 

constant amplitude (Figure 1.2). Briefly, when the cantilever bends, the angle of 

reflection changes and therefore the laser spot will move away from the center of the 
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quadrant detector. The detector signal is processed by the controller and compared with 

the set-point (the desired cantilever bending). The controller will send a signal to the 

piezo actuator to move the cantilever down until the set point is reached after which the 

motion is stopped (Eghiaian and Schaap, 2011). This control is so precise that it allows 

obtaining a sub-nanometer resolution in the vertical axis (Last et al., 2010). 

 

Figure 1.2: Feedback loop of an AFM setup. The external controller receives information from the 

photodiode and compares it with the set point. If they are unequal the cantilever is moved accordingly.  

 

      There are two widely used modes of imaging that can be used depending on the 

type of sample. In contact mode the cantilever approaches and touches the surface until 

the set point is reached. From there it starts scanning in x and y while keeping the 

cantilever bending constant. When the tip touches the sample, which is higher than the 

surrounding surface, the bending will increase and the feedback loop will retract the 

cantilever until the set point is restored. From the x, y, z signals that are sent to the piezo 

actuators it is possible to reconstruct the topography of the sample. The disadvantage of 

this mode is that the lateral forces exerted on the sample can reach high levels. When 

the specimen is not well attached to the surface or is easily deformable this can result in 

uncontrolled deformations or even its displacement (Allison et al., 2010; Eghiaian and 

Schaap, 2011). 
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      It is possible to reduce the lateral forces by working in tapping mode. In this 

mode the cantilever is oscillated at its resonance frequency (Eghiaian and Schaap, 

2011). In this case, the set point is defined as the desired amplitude of oscillation. As the 

oscillating cantilever approaches to the surface, the amplitude decreases due to tip-

surface interactions, the feedback look will adjusts its height accordingly to keep the 

amplitude constant (Allison et al., 2010; Eghiaian and Schaap, 2011; Martin et al., 1987; 

Putman et al., 1994). 

      AFM can also be used to perform force spectroscopy measurements by using the 

tip to deform the sample and measuring the forces that result from this deformation. In 

addition, it is possible to extract cell adhesion energies and tether forces from the force 

curves. First, the tip is brought down to contact the cell for multiple seconds to ensure 

adhesion between the tip and cell. Then the cantilever is retracted again and the cell is 

effectively stretched between the surface and the tip. During retraction the cell will at 

some point detach from the tip, from which the adhesion energies can be extracted. In 

some cases a membrane tether will be extracted from the cell from which the membrane 

tension can be extracted. To investigate the spatial distribution of the mechanical 

properties an automated array of multiple force curve can be performed. Such force 

maps can for example reveal heterogeneities at different positions of the sample 

(Allison et al., 2010; Eghiaian and Schaap, 2011; Last et al., 2010). 

      In order to obtain reliable values for the cell stiffness (Section 1.1.2) it is 

necessary to calibrate the spring constant of the cantilever properly. During an 

indentation measurement, the cell (kcell) and cantilever (kcantilever) will act as two springs 

in series (ktotal), and the measured stiffness will be determined by both (Eq. 6). When the 

cantilever spring constant is know this is simply subtracted from the combined value to 

obtain the spring constant of the cell (Eq. 7). 
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      Normally, the spring constant of the cantilever is provided by the manufacturer 

and depends mainly on its dimensions and the material. These dimensions, especially 

the thickness, can vary even within the same lot. Also, since most cantilevers have a 

reflective coating this will have an effect on the spring constant (Neuman and Nagy, 

2008). To calibrate the spring constant two steps of calibration are required: 

      First, the response of the photo detector needs to be calibrated in m/V, so that we 

know exactly how many nanometer the AFM tip is moving (by the bending of the 

cantilever). The photo detector signal is expressed in volts which will make it necessary 

to convert it into distance units. To achieve this, the cantilever is pressed against the 

surface therefore the bending will increase linearly when the cantilever is brought closer 

to the surface. Since the z piezo actuator is calibrated by the manufacturer we can 

simply convert the photodetector signal from V to nm. Basically, a force versus distance 

curve is performed on the hard surface. The slope of this curve will then indicate how 

many volts in the photodiode equal a certain displacement of the z-piezo (Neuman and 

Nagy, 2008). 

      Second, now we know the displacement of the tip in nm. To convert this into a 

force we need to multiply it with the spring constant (N/m) of the cantilever. The spring 

constant is obtained by recording the thermal noise of the cantilever fluctuations and use 

the equipartition theorem to calculate the spring constant. The equipartition theorem 

states that the average energy present in thermal motion of the (cantilever) spring is 

given by the product of the Boltzmann constant and the absolute temperature: 

TKzk Bcantilever >=< 2*   (Eq. 8) 
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      The term <z2> gives the positional variance of the cantilever position, which 

multiplied with kcantilever, gives the average energy of the thermal cantilever fluctuation. 

One can measure <z2> directly from the thermal noise recordings. However, this can 

lead to an over-estimate of the variance because additional noise sources increase the 

recorded noise. To overcome this problem, the noise signal is converted via a Fourier 

transformation into a power spectrum which allows distinguishing the real thermal noise 

of the cantilever from potential other noise sources. From the power spectrum the 

fundamental resonance frequency of the cantilever is easily distinguished as a large 

peak. The variance <z2> of the cantilever deflection is now given by the surface area 

under the peak which is obtained by fitting the power spectrum with the function of a 

simple harmonic oscillator (Hutter and Bechhoefer, 1993). In practice the calibration 

steps are largely automated through the AFM software, and the whole routine can be 

performed with a few mouse clicks in less than a minute.  

There are various advantages speaking for the application of AFM on biological 

samples such as cells. One of them is that it can be operated in liquid, allowing 

measurements at near physiological conditions and enabling the observation of dynamic 

processes such as conformational changes. Also, samples do not have to be fixed or 

labeled. Cantilevers and tips can be functionalized with specific molecules in order to 

measure different interactions such as intermolecular interplay (Hinterdorfer and 

Dufrêne, 2006). Additionally, special tips can be selected to improve imaging 

conditions or force measurements. An example of this is using sharp tips to improve the 

resolution of images and blunt spherical tips to distribute the force over a larger area 

during indentation experiments to avoid damaging of soft samples like cells (Allison et 

al., 2010; Muller, 2008; Neuman and Nagy, 2008). 
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1.1.3.2 Optical trap 

      The optical trap setup is also referred to as optical tweezers. It is based on the 

trapping of dielectric particles using a high power focused laser beam. To limit 

photodamage that may result from the high laser power (>100 mW), near infra-red 

wavelengths are used (800-1100 nm). Additionally, to properly focus the laser high 

numerical aperture objectives are needed (Neuman and Nagy, 2008). 

      Trapping a particle with a laser beam relies on a highly inhomogeneous spatial 

field distribution, which is achieved by focusing the beam with a Gaussian intensity 

profile such that the intensity is highest in the center and decreases towards the edges 

(Stevenson et al., 2010). A dielectric particle located close to the focus will experience 

attractive forces towards the focus based on the principle of conservation of momentum 

(Ashkin, 1997; Neuman and Nagy, 2008) which states that when two bodies collide, 

they will exert equal forces on each other. In this case, the photons have a momentum, 

and its direction will change when they travel through the particle, thereby generating a 

reaction force opposite to this change in direction. Besides this gradient force (Figure 

1.3), there is also a scattering force caused by photons that are absorbed or scattered by 

the particle. The scattering force exerts a force in the direction of propagation of the 

light, whereas the gradient force acts in the direction of the intensity gradient towards 

the focus (Ashkin, 1997; Moffitt et al., 2008). Only when the gradient force overcomes 

the scattering force, the particle is driven into the focus of the optical trap. Once the 

particle is in the center of the trap, the net force acting on the particle is zero. From then 

on, it will stay trapped and act as a spring, following Hooke’s law with the exerted force 

being proportional to its displacement from the center of the trap (Moffitt et al., 2008). 
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Figure 1.3: Forces acting on the particle during optical trapping. Light is refracted by the particle and 

it imposes a momentum on it. Gradient forces (Fgrad) will attract the particle perpendicular to the 

propagation of the beam into the high intensity area and Scatter forces (Fscat) will push the bead in the 

direction of the beam.  

 

      In order to calibrate and calculate the spring constant of the trapped particle, a 

similar procedure as for the calibration of the AFM cantilever is followed. The power 

spectrum of thermal (Brownian) motion of the bead is recorded and the equipartition 

theorem is again employed to calculate the spring constant. Because the trapped bead 

behaves like an overdamped spring the power spectrum does not show a pronounced 

resonance peak. Instead the graph consists of two regimes: At low frequencies the 

power is constant with a plateau up to the corner frequency. At higher frequencies it 

decreases linearly with a slope of approximately -2 representing Brownian motion, 

meaning that the particle is no longer under the confinement of the optical trap. The 

frequency at which these two curves intersect is the corner frequency, which can be 

used to calculate the trap stiffness (Bodensiek et al., 2013; Gittes and Schmidt, 1997; 

Zhang and Liu, 2008). 
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      In order to calculate the bead displacement from the center of the trap, a 

quadrant photodiode is placed at a conjugated plane of the back focal plane of the 

condenser. The interference between unscattered light and the light scattered by the 

particle will create a particular intensity pattern on the photodiode. Movement of the 

particle away from the center of the optical trap will result in a shifted light pattern on 

the photodiode (Bodensiek et al., 2013; Gittes and Schmidt, 1997). Calibration of the 

sensitivity of the photodiode (in m/V) can be done when the radius of the trapped 

particle is known. Then the expected Brownian displacements of the bead can be 

calculated with the Stokes-Einstein equation and the measured displacements can be 

used to obtain the calibration factor. Similar to the AFM calibration procedure, the 

calibration steps are largely automated through the optical trapping software, and the 

whole routine can be performed with a few mouse clicks in less than a minute.  

      Among the advantages of using an optical trap is the application of very low 

forces, typically from 1 up to ~100 pN. Also, different sized particles can be trapped 

and consequently used for experimental applications. Furthermore, 3D displacement can 

be tracked at sub-nanometer accuracy and sub-millisecond time resolution (Neuman and 

Nagy, 2008). 

      A detailed description of how our vertical optical trap was built, can be found in 

(Bodensiek et al., 2013). Briefly, the components for the optical trap were integrated 

into a commercially available upright microscope. A near-infrared laser (974 nm) was 

used to minimize photodamage on cells. The optics to guide the trapping laser into the 

optical path of the microscope was mounted rigidly on top of the microscope to improve 

resistance against mechanical perturbations. In order to decrease spherical aberrations 

when trapping particles far away from the coverslip, a water immersion objective was 

used (Vermeulen et al., 2006). The detection pathway was set up to include vertical (z) 
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detection using a quadrant photodiode allowing detection in x, y and z (Dreyer et al., 

2004). The advantage of working in the z-direction is that the boundary conditions 

during deformation experiments are similar to those in AFM. In both cases a probe (the 

trapped particle or the AFM tip) is brought down to indent the cell in the z direction, 

and the results of the measurements can be directly compared. In order to estimate when 

the trapped particle contacts the cell, a method was developed based on the variability 

of the thermal bead fluctuations. The principle is that the bead’s random fluctuations 

while being in the trap are much higher than the fluctuations after it is in contact with 

either a cell or the glass surface since this significantly decreases its freedom of 

movement. The whole feedback principle of the vertical trap was implemented on a 

field programmable gate array, a similar approach that is followed by many AFM 

manufactures and it increased the response time of the feedback loop to the sub-

milisecond time scale (Figure 1.4). 

 

Figure 1.4: Photograph of our vertical optical trap. On top of the microscope a small optical table is 

mounted that holds most of the optical components that form the optical trap. The light path of the optical 

table is shown in the middle. The light path of the whole optical trap is shown at the right. The laser light 

coming from the single mode fiber is collimated and expanded 4 times by a Galileo telescope. The 

expanded beam is redirected by two mirrors and a dichroic mirror into the optical path of the microscope 

and the actual trap is formed by the microscope objective lens (Nikon 60x 0.27NA). The vertical position 
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of the trap was controlled by a z-piezo that moves the objective up and down. The laser light was 

collected by the condenser, coupled out of the optical path via a second dichroic mirror and cast onto the 

photodiode for xyz detection. The illumination source of the microscope consists of a blue LED. Imaging 

was performed by a standard CCD camera. Image adapted from Bodensiek et al., (2013). Reprint by 

permission of AIP Publishing LLC, license numbers 3632510635988 and 3637640809569. 

 

      The light path of the whole optical trap consists of a laser light coming from the 

single mode fiber, collimated and expanded 4 times by a Galileo telescope. The 

expanded beam is redirected by two mirrors and a dichroic mirror into the optical path 

of the microscope. The actual trap is formed by the microscope objective lens (Nikon 

60x 0.27NA). The vertical position of the trap was controlled by a z-piezo that moves 

the objective up and down. The laser light was collected by the condenser, coupled out 

of the optical path via a second dichroic mirror and cast onto the photodiode for x, y, z 

detection. The illumination source of the microscope consists of a blue LED. Imaging 

was performed by a standard CCD camera. 
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1.2 Myelin sheath formation

 

1.2.1 Myelin in the Central Nervous System

 

      The nervous system is in charge of processing sensory information from all over 

the body and integrating it into an adequate response. It is divided in two parts, the 

central nervous system (CNS) comprising the brain and spinal cord, and the peripheral 

nervous system (PNS) comprising nerves relaying the information from the CNS to the 

muscles. Due to the immediate relevance of this information for an organism to respond 

and interact with its environment, substantial parts of this information are transmitted 

using electrical pulses. This is done by neurons that generate a rapid change in their 

membrane potential along their longest process, the axon. At the axonal terminal the 

information is chemically passed on to the next cell. The speed of conduction varies 

from 0.5 to 10 m/s (Neuroscience, 2004), raising a big issue for larger organisms in their 

capability of responding to environmental stimuli quickly enough. In vertebrates, this 

problem is addressed by insulating the axon by a thick, multilayered membrane 

structure called myelin, resulting in increased speed of nerve conduction of up to 150 

m/s (Neuroscience, 2004). This compacted membrane structure covers segments of the 

axon of around 150 μm in length, locally increasing the resistance and decreasing the 

capacitance leading to a highly increased signal conduction velocity. In between the 

myelinated segments lie uncovered segments called nodes of Ranvier, where the 

electrical signal is regenerated (Hartline and Colman, 2007). Compact myelin is 

composed of periodic layers of around 12 nm thick alternating closely condensed 
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cytoplasmic myelin membranes and tightly apposed outer membranes (Figure 1.5) 

(Aggarwal et al., 2011a). 

      The layered myelin membranes are also called the myelin sheath and largely 

consists of lipids, accounting for around 70-75% of its dry weight (Jahn et al., 2009). 

The most abundant lipids are cholesterol and the glycosphingolipids galactosylceramide 

and its sulfated form sulfatide (Maier et al., 2008). Other lipids include gangliosides, 

plasmalogens and phosphoinositides (Schmitt et al., 2014). They not only provide 

stability of the whole membrane structure by favoring tight packing of molecules but 

also serve as communicators in axon-glia interactions by locally clustering of proteins 

or even acting as signaling molecules themselves (Schmitt et al., 2014). The remaining 

30% of myelin dry weight consists of proteins, predominantly the proteolipid protein 

(PLP) and the myelin basic protein (MBP) (Baumann and Pham-Dinh, 2001). For a long 

time it had been assumed that the variety of myelin proteins is very low. However, 

recent improvements in the techniques used to identify myelin proteins have revealed 

that the aforementioned proteins only constitute 35% of the newly identified myelin 

proteins (Jahn et al., 2009). In contrast to the previously known function of myelin 

proteins of achieving a tight apposition between two membranes, the newly discovered 

proteins include enzymes, members of the cytoskeleton, protein transporters, trafficking 

and adhesion-related as well as phospholipid-binding proteins (Jahn et al., 2009). 

Therefore, the function of proteins in myelin is highly variable.  

      Myelin is a polarized structure composed of highly compacted areas known as 

internodes followed by non-compacted regions (Zuchero and Barres, 2011). The 

internodes are connected to the axonal membrane by the transmembrane proteins Necl1 

and Necl4. Additionally, within the compacted myelin layers, MBP interacts with the 

cytoplasmic side of the plasma membrane and with neighboring MBP proteins, bringing 
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the two bilayers tightly together and acting as a physical barrier excluding other proteins 

from the compacted areas (Aggarwal et al., 2013; Aggarwal et al., 2011b). Located 

between areas of compacted myelin and the nodes of Ranvier are another two 

noncompacted areas of myelin that contact the axon by specific adhesion molecules. 

First, following the internodal myelin areas are the juxtaparanodes, which interact with 

the axonal cytoskeleton via adhesion molecules such as Caspr2 and moreover contain 

K+ channels. The juxtaparanodal regions are followed by the paranodes where glia-axon 

interaction is mediated by the proteins Neurofascin-155 and contactin (Figure 1.5); 

(Simons and Trajkovic, 2006). These regions are defined by glia-axon interactions and 

form a lateral diffusion barrier segregating the components of the nodes of Ranvier from 

the internodal ones in order to allow for a proper transmission of the electric impulse 

and establishing an area of glia-axon communication that ensures the integrity of the 

axon (Simons and Trajkovic, 2006). 

 

Figure 1.5: Compacted and non-compacted myelin. Electron micrograph on the left shows a cross-

section of a myelinated axon. Compacted myelin is tightly brought together by MBP on the cytosolic side 

and by PLP connecting adjacent layers on the extracellular part of the membrane. Areas devoid of myelin 

are called nodes of Ranvier and harbors the axonal voltage-gated Na+ channels. In between compacted 

myelin and the nodes of Ranvier there is non-compacted myelin, connected with the axon by different 

adhesive molecules. Figure adapted from Nave (2010). Reprint by permission of Nature Publishing 

Group, license number 3632500703833. 
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      Failure in myelin assembly and maintenance as well as the proper segregation of 

its components leads to pathology. The most apparent examples for myelin-related 

pathologies in the CNS are leukodystrophies and multiple sclerosis (MS). In the case of 

leukodystrophies, genetic mutations are known to affect either assembly or maintenance 

of the myelin sheath (Nave, 2010), whereas MS is an autoimmune disease in which 

autoantibodies against epitopes of myelin proteins or the myelin-forming cells are 

generated (Bradl and Lassmann, 2010; Fitzner and Simons, 2010; Nave, 2010). Both 

cases lead to dysmyelination and demyelination, respectively, followed by 

neurodegeneration progressively resulting in motoric disorders and ultimately death. For 

this reason, many studies are focused on the basic understanding of myelin and myelin 

diseases in order to develop treatments. 

 

1.2.2 Myelin development in the CNS

 

      Myelin sheath in the CNS is produced by a glial cell type called 

oligodendrocytes. During their tightly regulated differentiation process they undergo 

dramatic morphological changes. At first, oligodendrocytes extend multiple processes 

which contact the axon. Then, extensive membrane growth is initiated which eventually 

forms the myelin sheath around the axon. A single oligodendrocyte is able to produce 

several myelinated segments on different axons.  

      Developmentally, oligodendrocyte precursor cells (OPCs) originate from 

neuroepithelial cells located in a domain of the ventral ventricular zone of the spinal 

cord under the control of the Notch pathway (Rogister et al., 1999). They express 

markers such as NG2 and PDGFRα and are able to migrate over long distances to settle 
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along the axonal fiber tracts in the areas where they are eventually required to myelinate 

thereby forming the so-called white matter (Baumann and Pham-Dinh, 2001; Bradl and 

Lassmann, 2010; Levine et al., 2001; Rogister et al., 1999). Proliferation and migration 

of OPCs occurs in response to growth factors such as PDGF (Miller, 2002) and ECM 

proteins in interaction with their glial counterparts located at the OPC cell membrane, 

e.g. integrin proteins (Milner et al., 1997; Tiwari-Woodruff et al., 2001). Subsequently, 

they first transform into non-migratory pre-oligodendrocytes expressing sulfatides 

recognizable by the O4 antibody (Baumann and Pham-Dinh, 2001) followed by a 

transformation into pre-myelinating oligodendrocytes that start to express myelin 

proteins such as PLP/DM20 (Baumann and Pham-Dinh, 2001; Levine et al., 2001). 

Afterwards, they develop into myelinating oligodendrocytes expressing all myelin 

proteins (MPB, PLP, CNP, MOG, etc) and processes that did not form contacts with an 

axon are retracted (Levine et al., 2001). 

      The process of oligodendrocyte differentiation and myelination is tightly 

controlled by various extrinsic and intrinsic factors which can influence proliferation, 

migration and differentiation of OPCs, their timing and capability to myelinate axonal 

segments or regulating expression of different genes at certain stages of differentiation. 

Some of these factors are shown in Figure 1.6. Among those molecules are extrinsic 

signals and growth factors such as the Notch ligand Jagged, PDGF (Bradl and 

Lassmann, 2010; Rogister et al., 1999) and morphogens such as Sonic hedgehog 

(Rogister et al., 1999) that are mainly involved in the generation and maintenance of 

OPCs. Conversely, intrinsic signaling pathways including PI3K, MAPK, Wnt/β-catenin 

(Colognato et al., 2002; Fancy et al., 2009), their regulated transcriptional factors e.g. 

Olig1, Olig2, Nkx2.2, Sox10, Tcf4 (Emery, 2010; Fu et al., 2009) and histone 

acetylation by histone deacetylases (Emery, 2010) mainly control oligodendrocyte 
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differentiation. Furthermore, adhesion molecules and proteins of the ECM such as 

vitronectin, laminin, N-cadherin, NCAM, integrins and their activated signaling 

pathways can regulate OPC migration and recognition of the unmyelinated axon 

(Bozzali and Wrabetz, 2004; Bradl and Lassmann, 2010; Colognato et al., 2002; 

Rogister et al., 1999). 

      Morover, oligodendrocyte maturation and myelination depends substantially 

upon axon-glia interactions since transection of the optic nerve or intraocular injection 

of tetrodoxin which blocks the voltage-gated sodium channels leading to inhibition of 

the electrical signals from the axon, decreases proliferation of oligodendrocyte 

precursor cells and therefore prevents myelinogenesis from starting (Barres and Raff, 

1993; Demerens et al., 1996). This suggests the existence of signals in or from the axon 

serving as guidance cues for the myelination process, which is an interesting ongoing 

topic of research.  

 

Figure 1.6: Factors influencing oligodendrocyte differentiation and myelination. There are extrinsic 

signals such as extracellular ligands, secreted molecules and axonal electrical activity; and intrinsic 

factors including transcriptional regulators and chromatin remodeling. Figure adapted from Emery 

(2010). Reprinted by permission of Elsevier, license number 3632520535640. 

 

 

 



24 Introduction 
 

1.2.3 Model of myelination in the Central Nervous System (CNS)

 

      Until recently, the “carpet crawler” was the most accepted model for 

myelination. It postulates the wrapping of an internode-sized portion of oligodendrocyte 

membrane around the axon followed by a turn that moves the leading edge underneath 

the growing sheet (Bunge et al., 1989). However, this model does not explain 

observations made by other research groups, such as bidirectional ensheathment and 

unequal thickness of myelin, displaying thicker diameters at the center of the internode 

(Knobler et al., 1976; Webster, 1971). Furthermore, for this model to apply, very high 

forces would have to be generated in order to overcome the friction of driving the 

leading edge to move underneath the myelin layer. 

      The “liquid croissant” model can explain most of these observations by stating 

that the oligodendrocyte establishes contact with the axon, its myelin forming process 

spreads onto the axon similar to dough concomitantly being guided by axonal 

membrane proteins while new myelin layers are being added on top (Sobottka et al., 

2011). This would also explain the previously observed bidirectionality of sheath 

growth due to the two opposite spiral formations originating from the center. 

Furthermore, since the center of the sheath is where the oligodendrocyte process started 

to spread around the axon, the model also accounts for a higher number of layers being 

temporally generated in the central zone. 

      Our group (M. Simons) has expanded on the previous models and proposed a 

more detailed model for myelin wrapping (Figure 1.7). Briefly, the oligodendrocyte 

process polarizes towards the leading edge after contacting and recognizing the axon. 

Subsequently, the membrane flattens onto the axon upon which transport of membrane 

components to the growing zone, also referred as the inner tongue or leading edge, via 
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the PI3K signaling pathway is taking place. Radial growth of the myelin sheath then 

occurs by adding new layers on top of the inner tongue giving rise to a triangular shape 

with the tip corresponding to the inner tongue and the base to the outermost layer of the 

sheath. After a few wraps, MBP-dependent compaction is initiated, however, some 

areas remain uncompacted. These areas are called cytoplasmic channels and function as 

a bridge connecting the cell body of the myelinating oligodendrocyte with the inner 

tongue below the compacted layers, allowing the direct transport of material for sheath 

growth until the completion of myelination, where the majority of cytoplasmic channels 

are closed. Following sufficient radial extension of the myelin sheath, the layers extend 

laterally until they attain the full length of the internode and form the paranode and 

juxtaparanode (Snaidero et al., 2014). 

 

Figure 1.7: Model of myelinogenesis in CNS. Scheme shows how myelination looks like as a cross-

section, wrapped and unwrapped view. The axon is shown in green, leading edge in pink, compacted 

myelin in dark violet and uncompacted myelin in light violet. (A) Initial contact with axon followed by 

one wrap of uncompacted layer. (B) The inner tongue or leading edge wraps underneath the newly added 

layers and compaction starts in some areas, there are many cytoplasmic channels connecting both 
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extremes. (C) After multiple rounds of wrapping, the inner tongue is still motile and uncompacted, 

cytoplasmic channels keep the trafficking of components between the cell body and the inner layer. (D) 

Once the desired thickness has been reached, radial growth is stopped, the layers extend laterally and the 

cytoplasmic channels are closed. Figure adapted from Snaidero et al. (2014). Reprint by permission of 

AAAS. 

 

      In order to drive the growing leading edge beneath the already formed myelin 

sheath, considerable amounts of force would need to be generated to constantly propel it 

forward around the axon. Generally, the major force generator in cells is the 

cytoskeleton, more specifically motor proteins associated to microtubules mediating 

transport along the cell, the actoymyosin bundles responsible for contractility and the 

actin filaments regulating cell shape and motility. Among these cytoskeletal 

components, actin filaments are the most likely candidates for the force generation in 

leading edge protrusion due to its known ability to promote forward the membrane 

movement depending on its polymerization rate. 

 

1.2.4 Actin filaments and force generation

 

      Actin filaments also referred to as F-actin are highly concentrated at the cell 

cortex and mechanically support the stability of the cell. Additionally, they are involved 

in the generation of different membrane protrusions such as lamellipodia and filopodia, 

which are essential for cell motility. In muscle cells, together with myosin motors and 

other proteins, they play a central role in contraction. Actin filaments are polymers 

consisting of the globular and compacted protein actin, also referred as G-actin that 

contains an ATP/ADP-binding site and arranges in a right-handed helical structure of 8 

nm in diameter (Alberts et al., 2007). In vertebrates, there are three isoforms of actin. 

While the α-isoform is exclusively expressed in muscle cells, the β- and γ-isoforms are 
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found in all non-muscle cells. Since the subunits are asymmetrical, the head-to-tail 

assembly of filaments gives rise to a polarized structure containing a “barbed” and a 

“pointed” end. The “barbed” end is also referred as the plus end, due to its rapid 

polymerization and proximal localization to the cell membrane of the cells. The 

“pointed end” is also called the minus end due to the slower rates of polymerization and 

high rates of depolymerization and its localization is towards the center of the cell 

(Mitchison and Kirschner, 1988). 

      The actin filament turnover rate (growth at the plus end and shrinkage at the 

minus end) depends on the availability of the soluble monomers, which in turn are 

controlled by a number of regulatory proteins. Nucleation factors such as the ARP2/3 

complex, formin and proteins of the WASP family increase the rate of polymerization 

and induce the branching of actin filaments (Svitkina, 2013). Regulatory proteins 

binding to free actin monomers are known to promote, e.g. profilin or inhibit, e.g. 

thymosin and capping proteins, actin filament elongation (Alberts et al., 2007). 

Disassembly of already assembled filaments is under the direct control of proteins such 

as ADF/Cofilin and gelsoline (Svitkina, 2013). Stabilization of actin filaments can be 

also achieved by their crosslinking to the ECM and is accomplished by protein 

complexes containing α-actinin, vinculin, filamin and integrins, among others (Hu et al., 

2007; Svitkina, 2013). Another level of actin filament regulation is introduced by 

controlling the activity of the above-mentioned proteins by phosphorilation, binding to 

phosphatidylinositol 4,5-biphosphate, pH and signaling pathways involving, for 

example, Rho GTPases (Ridley, 2011). 

      One of the main contexts in which cells exert control on polymerization and 

depolymerization of actin filaments (F-actin) is locomotion. Different types of 

structures for locomotion are formed at the leading edge with distinct functions 
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depending on the associated proteins. These structures can use adhesion-dependent or -

independent mechanisms to generate the required forces to propel the leading edge 

forward. The most abundant type of adhesion-dependent cell migration is crawling, 

which particularly in CNS, is fundamental for neurite extension. Guided movement is 

achieved by the growth cone, a specialized actin-rich structure. Within the growth cone, 

two main protrusions are formed, both promoting the forward movement due to F-actin 

polymerization in the regions of the outer edge of the cell. One of them is the 

filopodium, a finger-like continuation of the plasma membrane formed by parallel 

bundles of actin filaments, which extend from the leading edge in an exploratory 

manner (Chhabra and Higgs, 2007; Ridley, 2011). The other structure is the 

lamellipodium, a very thin, sheet-like region at the leading edge of the growth cone 

formed by branched actin filaments arranged in an interconnected, “dendritic” 

meshwork (Ridley, 2011; Svitkina, 2013). The lamellipodium is highly dynamic and 

located distally at the leading edge. It is followed by a more stable region, the lamellum, 

which extends into the cell body and couples the actin network to myosin contractility 

and attachment to the extracellular substrate (Chhabra and Higgs, 2007; Ridley, 2011). 

Movement is generated by a treadmill mechanism in which the addition of actin 

monomers at the plus end as well as the contractile properties of myosin pulling the 

actin filaments towards the cell body generates a retrograde flow. Focal adhesion 

contacts that are composed of a molecular cluster of proteins, attach the filaments to the 

substrate thus allowing the transduction of the generated traction forces resulting in the 

pushing forward of the leading edge (Chhabra and Higgs, 2007; Hu et al., 2007; 

Mitchison and Kirschner, 1988; Renkawitz and Sixt, 2010). 

      On the other hand, an example for adhesion-independent mechanisms is 

locomotion driven solely by actin polymerization, independent of myosin motors and 
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adhesion to the substrate, which is also referred to as amoeboid migration. This type of 

locomotion is mainly used by leukocytes when they have to squeeze in between the 

epithelial cells of the blood vessels. The principle is a cell deformation that inflates the 

leading edge depending on actin filaments polymerization in a 3D environment. 

Confinement is required for the protrusion to intercalate between tight spaces and thus 

generate an asymmetric friction, which is higher at the leading edge. Forces generated 

by friction are responsible for pushing the cell after the rear end contracts (Renkawitz 

and Sixt, 2010). 
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1.3 Aims of the Project 

 

 

     Until now, mechanistic details of myelin wrapping, in particular how the innermost 

layer is driven around the axon in a highly confined area, are poorly understood. The 

main aim of this project was to elucidate and describe the driving force for leading edge 

protrusion, myelin wrapping and myelin membrane flattening. Since oligodendrocytes 

undergo a series of morphological changes in order to generate the myelin sheath, we 

hypothesized that its mechanical properties must also change during their 

differentiation. To experimentally prove this, having the appropriate tools is crucial. 

Hence, a vertical optical trap has been designed for this purpose and the methodological 

verification is presented in chapter 3.1. Subsequently, in chapter 3.2, I present an 

interdisciplinary approach including live imaging confocal microscopy, mouse models, 

optical trapping and other biophysical measurements to study how actin dynamics 

influence leading edge protrusion and membrane flattening in myelin sheath formation. 

 



 

Materials and Methods    2

 

 

2.1 Materials 

 

2.1.1 Chemicals and consumables

 

      All chemicals were obtained from Sigma-Aldrich (Sigma-Aldrich Chemie 

GmbH, Munich, Germany) or Merck Millipore (Merck KGaA, Darmstadt, Germany) 

unless stated otherwise. 

      All basal media, supplements, antibiotics and sera for cell culture were 

purchased from Gibco (Life technologies GmbH, Darmstadt, Germany) unless 

specified.  

     Consumables and cell culture plates were purchased from Greiner bio-one (Greiner 

bio-one GmbH, Frickenhausen, Germany) and Eppendorf (Eppendorf AG, Hamburg, 

Germany). Imaging dishes for live imaging were purchased from ibidi (ibidi GmbH, 

Munich, Germany). 

      Micro cantilevers were purchased from Olympus (Asylum Research, Mannheim, 

Germany) and colloidal probes were obtained from NanoAndMore (NanoAndMore 

GmbH, Wetzlar, Germany). Microspheres were purchased from Bangs Laboratories, Inc 

(Polysciences Europe GmbH, Eppelheim, Germany). 
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      All optical components for building the vertical optical trap were purchased at 

Thorlabs (Thorlabs GmbH, Munich, Germany) unless otherwise specified. 

 

2.1.2 Antibodies 

 

      Primary antibodies are listed in Table 2.1. Secondary conjugated antibody 

fluorophores were purchase from Dianova (Dianova GmbH, Hamburg, Germany). 

 

Table 2.1: Summary of antibodies used in this study. 

Target 

 

CC1 

MBP 

Nkx2.2 

O1 

O4 

 

Olig2 

Vinculin 

Host 

species 

Mouse IgG2b 

Rabbit 

Mouse IgG2b 

Mouse IgM 

Mouse IgM 

 

Rabbit 

Mouse IgG1 

Application 

 

IHC (1/100) 

IF/IHC (1/300) 

IHC (1/5) 

IF (1/100) 

IF (1/100) 

 

IHC (1/250) 

IF (1/400) 

Reference 

 

Calbiochem-Merck Millipore,  Darmstadt, Germany 

Dako Deutschland GmbH, Hamburg, Germany 

Developmental studies hybridoma bank,  Iowa, USA 

Self made from hybridoma (Kuhlmann-Krieg et al., 1988; Raff et al., 1983) 

Self made from hybridoma (Kuhlmann-Krieg et al., 1988; Raff et al., 1983; 

Trotter and Schachner, 1989) 

Merk Millipore, Darmstadt, Germany 

Sigma-Aldrich, Munich, Germany 

 

  

2.1.3 Primers 

 

      The primers used in this study were synthesized in the DNA core facility, the 

AGCT-laboratory of the Max Planck Institute for Experimental Medicine (Göttingen, 

Germany). The list of primers used for genotyping is shown in Table 2.2. 
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Table 2.2: Summary of primers used for genotyping. 

Gen 

 

Cofilin-1 

 

 

ADF 

 

 

CNCE-Cre 

 

 

PLP1-Cre ERT2 

PCR 

 

CFL1FX 

 

 

ADF-KO 

 

 

CNCE-GNT 

 

 

PLP-Cre 

Number 

 

27596 

27597 

27598 

28830 

28831 

28832 

01955 

02016 

07315 

10099 

Sequence 

 

5- CGCTGGACCAGAGCACGCGGCATC -3’ 

5’- CTGGAAGGGTTGTTACAACCCTGG  -3’ 

5’- CATGAAGGTTCGCAAGTCCTCAAC -3’ 

5’- GATTAAGTTGGGTAACGCC -3’ 

5’- GAAGAAGGCAAAGAGATCTT -3’ 

5’- CTACCTAAAGGGCATCCTTTC -3’ 

5’- CATAGCCTGAAGAACGAGA -3’ 

5’- GCCTTCAAACTGTCCATCTC -3’ 

5’- CCCAGCCCTTTTATTACCAC -3’ 

5’- TGGACAGCTGGGACAAAGTAAGC -3’ 

5’- CGTTGCATCGACCGGTAATGCAGGC -3’ 

  

2.1.4 General buffers and solutions

 

Phosphate Buffered Saline (PBS): 

  10X PBS (1L): 

  80.0 g  NaCl 

  2.0 g KCl 

  14.4 g Na2HPO4 (18.05 g Na2HPO4 x 2H2O) 

  2.4 g KH2PO4 

Dissolve in dH2O; adjust pH value to 7.4 and autoclave.  

To obtain 1X PBS, 10X PBS was diluted 10 times with dH2O. 

 

Tris-Acetate-EDTA (TAE) buffer: 

  50X TAE (1L): 

  242 g Tris base 
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  57.1 ml Glacial acetic acid 

100 ml 0.5% EDTA 

Dissolve in dH2O and adjust pH 8.5. 

To obtain 1X working solution, 50X TAE was diluted 50 times with dH2O. 

  

Krebs Ringer Solution: 

120 mM  NaCl 

4.7 mM  KCl, 

1.2 mM  CaCl2 

0.7 mM MgSO4 

10 mM  Glucose 

10 mM  HEPES 

Dilute in dH2O, adjust pH value to 7.4 and autoclave. Keep at 4 °C for no longer 

than 2 weeks. 

 

Super SATO medium (100 ml): 

  2 ml B27-supplement 

  1 ml GlutaMAX 

  0.5 ml Penicillin/Streptomycin 

  1 ml Pyruvate 

  10 μl tri-iodo-tyronine 

  13 μl L-tyroxine 

  1 ml Horse serum (PAA Laboratories GmbH, Cölbe, Germany) 

Dilute in DMEM 4500 mg/L glucose, filter and keep at 4 °C for no longer than 2 

weeks.  
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BME medium (500 ml): 

  50 ml Horse serum (PAA Laboratories GmbH, Cölbe, Germany) 

  2.5 ml Penicillin/Streptomycin 

  5 ml GlutaMAX 

 Dilute in Basal Medium Eagle (BME). Keep at 4 °C. 

 

PLL solution 100 μg/ml (500 ml): 

Dilute 5 ml 50X Poly-L-Lysine stock (Mw>300000, Sigma-Aldrich) in sterile 

PBS.  Keep at 4 °C. 

 

4% Paraformaldehyde (PFA) solution (200 ml): 

  16% PFA (100 ml): 

16 g PFA diluted in 70 ml dH2O. Heat up to 60 °C and add NaOH pellets until 

the solution becomes clear. Add 10 ml of 10X PBS, adjust pH to 7.4 and adjust 

volume to 100 ml with dH2O. Aliquot and store at −20 °C. 

4% working solution was prepared freshly by diluting 50 ml of PFA stock 

solution in 150 ml 1X PBS, filtered and stored at 4 °C for no more than a week. 

For Immunofluorescence of cultured cells, 25 μl of 25% Glutaraldehyde 

(Merck-Millipore) was added to 2 ml of 4% PFA (when indicated). 

  

Blocking solution (100X): 

  2% Fetal bovine serum 

  2% BSA 

  2% fish gelatin 
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Dilute in 1X PBS, filter and store at −20 °C. For diluting antibodies, a 10% 

working solution was prepared by diluting the 100X solution 10 times in 1X 

PBS. 

 

Mowiol solution: 

Stir 2.4 g mowiol, 6 g glycerol and 6 ml H2O for several hours at room 

temperature. Add 12 ml 0.2M Tris-HCl (pH 8.5) and incubate at 60 °C for 10 

min. Centrifuge at 4000 g for 15 min. Aliquot and keep at −20 °C. 

 

14% Chloral hydrate: 

Dissolve 1.4 g of Chloral hydrate C-IV (Sigma-Aldrich) in 10 ml of PBS. Store 

at room temperature.  Use 50-100 μl for pups and 200-250 μl for older animals. 

 

4% Paraformaldehyde (PFA) solution for EM (200 ml in Phosphate buffer) 

  2X Phosphate buffer (PB): 

  0.72 g NaH2PO4 

  6.2 g Na2HPO4 x 2H2O 

  2 g NaCl 

 Dilute in 180 ml dH2O, adjust pH to 7.4 and add dH2O up to 200 ml. 

For preparing 4% PFA, mix 50 ml 16% PFA, 20 ml 25% Glutaraldehyde 

(Merck-Millipore), 30 ml dH2O and 100 ml 2X PB. Filter and keep at 4 °C for 

no longer than 1 week. 
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2.1.5 Software 

 

      The software used for data acquisition and processing is listed in Table 2.3. 

 
Table 2.3: Summary of software used in this study. 

Software 

 

Adobe Illustrator CS3 

GraphPad PRISM 5 

ImageJ/Fiji (Free) 

Igor Pro 6.22A 

LabVIEW 

LAS AF 

LAS AF 3.1.0 

Application 

 

Figure making 

Statistical analysis and graph production 

Image processing and analysis 

AFM controller, data acquisition and processing  

Optical trap controller, data acquisition and analysis 

Live imaging and confocal images acquisition 

Fluorescent images acquisition 

Source/Manufacturer 

 

Adobe Systems, Inc 

www.graphpad.com 

www.fiji.sc 

www.wavemetrics.com/ www.asylumresearch.com 

National Instruments Germany GmbH 

Leica Microsystems, Mnanheim, Germany 

Leica Microsystems, Mannheim, Germany 
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2.2 Methods 

 

2.2.1 Atomic Force Microscopy 

 

      AFM indentation experiments were carried out using an MFP-3D (Asylum 

Research, Santa Barbara, CA, USA) that was mounted on a custom built inverted 

optical microscope using an oil immersion objective (60× 1.45NA plapon objective, 

Olympus, Japan). A 25 mm diameter coverslip containing the cells was mounted in an 

open sample chamber and filled with 350 μl Krebs Ringer solution. First, a cell was 

selected using the optical microscope. The AFM tip was then brought down to indent 

the cell, recording the motion of the z-piezo and the applied force. Calibration was done 

as described in section 1.1.3.1 by fitting the power spectrum to a simple harmonic 

oscillator. When performing measurements on cells, deformation was computed from 

the displacement of the z-piezo minus the bending of the cantilever. 

      For cell indentation experiments, cantilevers with a 1.98 µm diameter bead 

glued to the end (k= 0.08 N/m, CP-PNPL-PS, NanoAndMore) were used and the force 

applied to the cells was set up to 1 nN. The Young’s modulus of the cells was obtained 

by fitting the indentation curves with the Hertz contact mechanics model. This model 

describes the contact between two spherical elastic bodies. It assumes (i) that the contact 

area is much smaller than the radius of curvature of the surfaces; (ii) that there are no 

adhesive forces between the probe and the indented surface; (iii) that the materials are 

homogeneous and with elastic properties (Hertz, 1881). 
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      In this particular case the cell is modeled as an elastic half space (a sphere with 

an infinitely large radius) and the Young’s modulus of the probe is assumed to be much 

higher than that of the cell, and the Hertz equation can be simplified to:  

  2
3

2 )1(3
4

zb dR
v

EF
−

=   (Eq. 9) 

      The force (F) increases exponentially with the indentation (dz) and depends on 

the cell’s Young’s modulus (E), the bead radius (Rb) and the Poisson ratio of the cell 

(ν).    

      It is also possible to estimate the Young’s modulus from stretching experiments 

by using a variation of Eq. 9 describing the deformation of an elastic half space with a 

disk-shaped contact area. In this case, assuming that the contact radius remains constant 

(calculated based on the maximal indentation during the preceding indentation 

experiments), there will be a linear relation between force and indentation. 

zcdR
v

EF
)1( 2−

=   (Eq. 10) 

Rc is the contact radius, which since the indenter is a sphere, will increase with the 

indentation according to: 

bzc RdR =    (Eq. 11) 

As was already discussed in chapter 1.1.2 cells are neither homogenous in 

structure nor behave as an ideal elastic material. As a consequence the reported Young’s 

moduli do not represent an intrinsic mechanical parameter of the cell but will in part 

depend on the experimental conditions, most notably the deformation rate and the 

indentation depth as will be shown in chapter 3.1. To circumvent this issue we refer to 

the calculated Young’s modulus as the apparent cell’s Young’s modulus. 

      For force mapping and tether pulling, v-shaped cantilevers (k= 0.03 N/m, BL-

RC150VB-HW, Olympus) were used, the applied force was limited to 300 pN and the 
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probe was in contract with the cell for 1 s before pulling at 3.2 μm/s for a distance of 10 

μm. Mapping was done on an array of 20x20 points covering an area of 80x80 μm. The 

tether force (TF) was quantified as the force required to further extend a tether or to hold 

a tether at a constant length, depending on the experiment. See also section 1.1.2.3. 

 

2.2.2 Optical trap 

 

      The optical trap used to indent the cells at low force was built around a 

commercial upright microscope body (Eclipse 50i Nikon, Japan) and set up for trapping 

and detection vertical to the coverslip as described in (Bodensiek et al., 2013; Nawaz et 

al., 2012). Briefly, 974 nm laser light emitted from a 300 mW single mode fiber was 

collimated and combined with the optical path using a dichroic mirror and focused onto 

the sample through a water immersion objective (60× 1.27NA Plan Apo IR objective, 

Nikon, Japan). A closed-loop objective piezo element (P-721, Physik Instrumente 

GmbH, Karlsruhe, Germany) was used to move the objective up and down. The 

displacement of the bead from the trap center was monitored using a quadrant 

photodetector (S5980, Hamamatsu Photonics Deutschland GmbH, Germany) and trap 

stiffness calibration was done as described in section 1.1.3.2 by fitting a Lorentzian 

function to the power spectrum. The microscope is also equipped with a blue LED and a 

CCD camera to allow optical visualization of the sample while measuring.  

      Sample preparation was done by placing the coverslip containing the cells on a 

closed sample chamber, consisting of a microscope slide and a 100 µm thick spacer 

(Parafilm) and adding Krebs Ringer solution containing polystyrene beads of 0.76 µm 

diameter (Bangs laboratories). 
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      For all the experiments the force applied to the cells was set to 10 pN. For tether 

pulling the bead was in contact with the cell for 1-2 s before pulling at 4 μm/s for a 

maximum distance of 80 μm. 

      Young’s moduli (E) and Tether force (TF) were extracted from the curves as 

described in the previous section. 

 

2.2.3 Cell line culture 

 

      All cell culture work was carried out according to security level S1 safety rules. 

Cell incubation was carried out in humidified, 37 °C, 5% CO2 incubators. NIH3T3 

mouse embryonic fibroblasts (DSMZ, Braunschweig, Germany) were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose supplemented 

with 10% FBS, and Penicillin/Streptomycin. At least 24 h before experiments, cells 

were split with 0.25% Trypsin/EDTA and seeded onto Poly-L-Lysine-coated coverslips. 

For disruption of the actin cortex, cells were incubated with 1 μM latrunculin-A 

(Calbiochem-Merck Millipore, Darmstadt, Germany) for 30 min and measured directly 

afterwards. All AFM and OT experiments were performed at room temperature. 

 

2.2.4 Primary Oligodendrocyte culture

 

      As described before, everything was carried out according to S1 safety rules. 

Incubations were carried out in humidified, 37 °C, 5% CO2 incubators. Primary cultures 

were prepared from postnatal day 0-2 (P0-P2) mice. In brief, mice were decapitated and 

the brain was extracted. Olfactory bulb, cerebellum and meninges were removed and 
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brain hemispheres were digested with 0.25% Trypsin-EDTA for 5 min at 37 °C. 

Subsequently the brain hemispheres were dissociated in BME medium supplemented 

with 10% HS, Penicillin/Streptomycin and GlutaMAX. The cell suspension was filtered 

using a pore size of 0.2 μm and plated onto Poly-L-Lysine-coated flasks with BME 

medium (supplemented with 10% HS, GlutaMAX and Penicillin/Streptomycin) and 

Super SATO medium (DMEM 4.5 g/L glucose, 1% HS, B27 supplement, GlutaMAX, 

sodium pyruvate, triiodotyronine, L-tyroxine and Penicillin/Streptomycin). This glial 

mixed culture was incubated for 7 – 9 days and eventually consisted of two main types 

of cells: the bottom of the flask contained a monolayer of astrocytes with 

oligodendrocyte progenitor cells growing on top of them. Residual microglial cells were 

constantly removed by gently tapping the flasks and changing parts of the medium. 

      For a highly pure oligodendrocyte progenitor culture, cells were separated using 

mechanical dissociation by shaking the flasks to detach the oligodendrocytes whereas 

astrocytes remain attached to the bottom of the flask. The medium was collected and 

centrifuged at 0.9 rpm for 10 minutes followed by resuspension of progenitors in Super 

SATO medium and incubation in a petri dish for 2 min to allow clustered and other 

types of cells to adhere at the bottom of the plate. Subsequently, the cell suspension was 

collected from the plate and cells plated onto Poly-L-Lysine-coated surfaces (100 

μg/ml) with Super SATO medium followed by a differentiation period between 6 hours 

and 5 days. The cell density plated onto each well was 15000 for 96-well plates, 15000-

20000 for 48-well plates, 20000-40000 for 24-well plates and 40000 for imaging dishes. 

      For depolymerization of F-actin, cells were treated with 10 µM latrunculin-A 

(Calbiochem) and incubated for 30 min prior to measurements. To stabilize F-actin, 

cells were incubated with 200 nM Jasplakinolide (Calbiochem). For cell-substrate 

detachment, cells were treated with 200 µg/ml of Trypsin (Gibco) for 10-15 minutes. 
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2.2.5 Immunofluorescence (IF) 

 

      Cells were fixed in 4% PFA + Glutaraldehyde (25 μl of 25% Glutaraldhehyde 

for 2 ml 4% PFA) for 10 min at room temperature, washed 5 times with PBS, 

permeabilized with 0.1% Triton X-100 (in PBS) for 2 min and washed 5 times with 

PBS. To reduce unspecific binding of the antibody, coverslips were incubated for 30 

min with 100X blocking solution (2% fish gelatin, 2% FCS, 2% BSA in PBS) followed 

by incubation with primary antibody diluted in 10% blocking solution for 1 h at room 

temperature. After washing 5 times with PBS, secondary antibody diluted in 10% 

blocking solution was incubated for 40 min at room temperature. Coverslips were 

washed 5 times with PBS and 1 time with dH2O before mounting on a drop of Mowiol 

mounting medium. 

      The primary antibodies used are listed on table 2.1. For Vinculin staining cells 

were fixed only with 4% PFA. For plasma membrane associated antibodies (O1 and 

O4), coverslips were blocked and incubated with primary antibody immediately after 

fixation. After washing steps, cells were fixed with 1% PFA for 5 min and washed 3 

times with PBS. The rest of the protocol was followed as described above. 

      The fluorophore-conjugated secondary antibodies used were: Alexa 488 (anti 

mouse and rabbit), 555 (anti mouse), 568 (anti rabbit) and 647 (anti mouse and rabbit) 

(1/2000). For labeling of G-actin, Alexa Fluor 488-coupled Desoxyribonuclease I 

(LifeTechnologies) 1/200 was used and for labeling F-actin, phalloidin-rodamine or 

Alexa Fluor 488 phalloidin (LifeTechnologies) 1/300 were used. 

     The imaging was performed with an epifluorescence microscope (LEICA) using a 

40× objective. 
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2.2.6 Immunohistochemistry (IHC)

 

      Animals were anesthetized intraperitoneally using 14% Chloral hydrate. 

Intracardiac perfusion was carried out by inserting a needle into the left ventricle and 

cutting the right atrium. To wash out the blood, ice cold sterile PBS was pumped in by a 

mini-peristaltic pump (Harvard Apparatus) and perfusion was done in fresh 4% PFA 

followed by postfixation of the dissected tissue over night (brain and spine). Spinal 

cords were dissected from the spine and kept together with brains in 30% Sucrose 

solution (in PBS) until sinking down for 1-3 days and being frozen afterwards using 

Tissue-Tek O.C.T. (Sakura Finetek Germany GmbH, Staufen, Germany) on dry ice and 

stored at −80 °C. Sections between the cervical and thoracic area were cut using a 

cryostat (Research Cryostat Leica CM3050 S) directly onto glass slides (Thermo 

Scientific) and stored at −20 °C. For staining, sections were washed 3 times for 5 min 

with PBS, permeabilized with 0.5% Triton X-100 (in PBS) for 1 h and incubated with 

blocking solution (2% FCS, 2% fish gelatin and 2% BSA in PBS) for 1h. Primary 

antibodies were diluted in 10% blocking solution and incubated as described below, 

washed 5 times for 5 minutes with PBS + 0.2% Tween (CC1) or 0.3% Triton X-100 

(Nkx2.2) followed by incubation with respective secondary antibodies for 1 h at room 

temperature. After washing 5 times with PBS-Tween or PBS-Triton X-100 for 5 min 

and once with dH2O, sections were mounted with Mowiol solution. For imaging, a 

Leica DMI6000 inverse microscope or a Leica SP5 (Mannheim, Germany) confocal 

laser scanning microscope (CLSM) were used. 

      F- and G-actin staining (on 25 μm sections) were done overnight at 4 °C using 

Rhodamine phalloidin 1/500 and Alexa Fluor 488 DNase I 1/200. For 10 μm sections 

Olig2 1/250 (Millipore), Nkx2.2 1/5 (Developmental Studies Hybridoma Bank at the 
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University of Iowa) and CC1 1/100 (Calbiochem) antibodies were incubated for two 

nights at 4 °C. 

      For the combined CC1/Olig2 staining, antigen retrieval was carried out before 

permeabilization by autoclaving the slides submerged in 10 mM Sodium Citrate buffer, 

pH 6 followed by cooling down in room temperature PBS. 

 

2.2.7 Interference Reflection Microscopy (IRM)

 

      For IRM imaging, cells were monitored using a Leica SP5 (Mannheim, 

Germany) confocal laser scanning microscope with a 40× (NA 1.25) objective and a 

laser illumination to minimize phototoxicity (633 nm). The reflected light was collected 

using a photomultiplier tube detector every 17 or 34 seconds. 2 cells were imaged 

simultaneously on each imaging dish at 37 °C (imaging medium was Super SATO 

medium + 25 mM HEPES). 

      The IRM time series were semi-automatically analysed with a custom-written 

FIJI macro (written by Ioannis Alexopoulos and Mišo Mitkovski). Briefly, a “walking 

difference” routine was applied, which revealed pixels that reported dynamic changes in 

cell-surface adhesion. Pixel intensities above a threshold, which was kept constant for 

all experiments, were used in the cell-surface adhesion quantification. Additionally, the 

cell footprint area was quantified after segmentation of the IRM signal with the 

Trainable Weka Segmentation plugin of FIJI. The dynamic were quantified by 

calculating the slope of the dynamic pixels over a given time and the adhesion was 

quantified using Weka Segmentation to separate the adhesive pixels (dark grey and 

black). In both cases the data was normalized to the cell footprint area. 
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2.2.8 Mice 

 

      All animal experiments were performed according to the Lower Saxony State 

regulations for animal experimentation. Mutant mice were bred and maintained on a 

C57BL/6 background. Cnp-Cre (Lappe-Siefke et al., 2003), Plp1-CreERT2 (Leone et 

al., 2003), ADF KO and Cofilin1fl/fl mice have been described previously (Bellenchi et 

al., 2007; Flynn et al., 2012). To generate oligodendrocyte-specific ADF/Cofilin1 

double knockout animals (AC DKO), Cnp-Cre mice were cross-bread with Cofilin1fl/fl 

and then crossed with ADF KO animals to generate ADF-/-Cofilin1fl/flCnp1-Cre+/- mice. 

To generate the inducible ADF/Cofilin1 double knock out (ADF-/-Cofilin1fl/flPlp1-

CreERT2), Cofilin1fl/fl animals were crossed with Plp1-CreERT2 before breeding with 

ADF KO mice. 

      Tamoxifen (Sigma-Aldrich) was dissolved in corn oil (Sigma-Aldrich) at a final 

concentration of 10 mg/ml. ADF-/-Cofilin1fl/flPlp1-CreERT2 mice at P21 were injected 

intraperitoneal with 100 μg tamoxifen per gram of mouse weight once a day for 5 

consecutive days. As controls, animals without expression of Cre were used. The 

recombination efficiency of the treatment is at least 80% as described by (Leone et al., 

2003). 

 

2.2.9 Genotyping

 

      A small fraction of the animal’s tail was cut and genomic DNA was extracted 

using the Invitek Smarter Nucleic Acid Sample Preparation Kit (STRATEC Molecular 

GmbH, Berlin, Germany) according to manufacturer’s instructions and the following 

modifications. Tails were digested overnight with 400 μl of Lysis buffer plus 15 μl 
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Proteinase K at 52 °C and shaking at 400 rpm. Final centrifugation to eliminate traces of 

ethanol was done at 11000 rpm for 6 min and elution of DNA was done in 100 μl of 

elution buffer. 

      For genotyping, the DNA was amplified by polymerase chain reaction (PCR) 

using GoTaq DNA polymerase (Promega, Manheim, Germany) and the set of primers 

listed on table 2.2. The reaction mix was prepared as follows: 

11.4 μl ddH2O 

4 μl 5X Buffer 

1 μl 25 mM MgCl2 

1 μl 10 mM dNTP (diluted 1/5) 

0.5 μl 50 pmol/μl Primer 1 (diluted 1/5) 

0.5 μl 50 pmol/μl Primer 2 (diluted 1/5) 

0.5 μl 50 pmol/μl Primer 3 (diluted 1/5) 

0.1 μl 5u/μl GoTaq DNA polymerase 

1 μl DNA 

      The reaction was carried out in a T3000 Thermocycler Kombi (Biometra) using 

the programs described in table 2.4. 

 
Table 2.4: PCR programs used for genotyping. 

CFL1FX 

 

94 °C   2 min 

94 °C   30 sec 

58 °C   30 sec 

68 °C   40 sec 

35 cycles 

68 °C   5 min 

8 °C     inf 

ADF-KO 

 

94 °C   2 min 

94 °C   30 sec 

58 °C   30 sec 

68 °C   40 sec 

36 cycles 

68 °C   5 min 

4 °C    inf 

CNCE-GNT 

 

95 °C   3 min 

95 °C   1 min 

50 °C   30 sec 

72 °C   1 min 30 sec 

35 cycles 

72 °C   3 min 

8 °C     inf 

PLP-Cre 

 

96 °C   3 min 

96 °C   30 sec 

60 °C   45 sec 

72 °C   1 min 

32 cycles 

72 °C   5 min 

8 °C     inf 
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2.2.10 Agarose gel electrophoresis

 

      10 μl of the PCR product was loaded on a 1.5% Agarose gel (prepared in TAE 

1X buffer) containing Sybr Safe DNA gel stain (Invitrogen) for DNA labeling and run 

in custom-made chambers (Feinmechanik of the Max Planck Institute for Experimental 

Medicine, Göttingen) in TAE 1X buffer. 

      Detection was carried out by exposure to UV light using the Intas Gel 

Documentation System (Intas Science Imaging Instruments Gmbh, Göttingen, 

Germany). 

 

2.2.11 Image processing and statistical analysis

 

      All image processing was done using the free software Fiji-ImageJ. When 

calculating intensities, the imaging was done at exactly the same parameters of 

illumination, exposure and gain for all compared conditions. For F- and G-actin 

intensity quantification, the cell body was excluded. 

      Statistical significance was determined using GraphPad PRISM 5 software. 

Unless stated otherwise the statistical analysis were performed using two-tailed 

Student’s T-test function (T-test<0,05:*, <0,01: ** and <0,001: ***). The variation 

between samples was calculated using the standard variation of the mean. For 

comparing 3 or more groups a one-way analysis of variance (ANOVA) was used and 

further pairwise using Tukey’s post test. 



 

Results    3

 

 

 

 

      This doctoral project was designed with the aim of studying the relationship 

between changes in the mechanical properties of a cell and its differentiation. To 

investigate this, it was first necessary to establish the experimental techniques to 

measure the mechanical properties of single cells and, in a second step, to apply these 

methods to the understanding of how mechanical properties control cell differentiation 

in oligodendrocytes. Accordingly, the results section is divided into two parts: 

      The first part describes the validation of a vertical optical trap as a novel tool for 

measuring the visco-elastic properties of cells at pico-Newton forces and will show how 

the mechanical response of the cell depends on the applied force, the length and 

directionality of deformation and the presence of the actin cortex. This work has been 

previously published (Nawaz*, Sánchez*, et al., 2012), *equal contribution. 

      The second part focuses on exploring the role of actin dynamics during 

myelination and oligodendrocyte differentiation. To address this, I used an 

interdisciplinary approach combining morphological, genetic and biophysical analyses 

to describe how actin polymerization and depolymerization influences myelin sheath 

growth in the central nervous system (CNS). This work has been accepted for 

publication (Nawaz*, Sánchez*, et al., 2015; *equal contribution). 
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      Both results sections are largely based on the two mentioned publications. To 

preserve the logical flow of arguments I included also some images that were obtained 

by co-authors. When this is the case, it is clearly mentioned in the figure caption. 

 

3.1 Cell visco-elasticity measured with AFM and optical trapping at 

sub-micrometer deformations 

 

3.1.1 Response of cells to mechanical deformations

 

      There is a variety of techniques available for the measurement of the mechanical 

properties of cells, with AFM being the most commonly used to quantify cell stiffness 

in a liquid environment. Since the lowest force that can be reliably controlled using 

AFM is ~0.1 nN, indenting soft cells can lead to a strain large enough to be in the non-

elastic deformation regime which complicates the data analysis and increases the 

probability of damaging the cell. Hence, it is crucial to develop methods that enable the 

measurement of cells at very low forces, such as optical traps. When an optically 

trapped bead is used to indent the cell, the resulting deformation is expected to be 

comparable or lower as that in AFM indentation experiments and the same Hertzian 

contact model can be used to extract the Young’s modulus of the cell. For this purpose 

we have developed an optical trap that can be operated with sub-nanometer precision in 

the vertical direction with respect to the cell, thus providing the same indentation 

geometry as in AFM. In order to validate this method, I compared the response of cells 

measured with this setup with similar measurements that were performed with AFM. 

First, I measured the response of 3T3 fibroblasts to indentation at different forces using 

an AFM coupled to an inverted microscope and a cantilever with a 1.98 μm diameter 
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bead glued to its end (Figure 3.1A). Under these conditions, the applied force is 

distributed over a big area and potential damage to the cell is highly reduced. Next, I 

measured the response of the same cells at forces up to 10 pN with our custom-built 

vertical optical trap. The trapped 0.76 μm diameter bead was moved down to indent the 

cells with a piezo element moving the objective (Figure 3.1B). 

 

Figure 3.1: Experimental setup. (A) AFM: The cantilever is moved up and down with a z-piezo. When 

the AFM tip touches and indents the cell, the cantilever will bend. The amount of bending is proportional 

to the force applied to the cell and it is calculated using a laser beam reflected on a photodiode. The 

bottom image shows the tip on an AFM cantilever indenting a cell on a spot between the nucleus and the 

periphery. Scale bar = 10 μm. (B) Optical trap: A laser beam from a single mode fiber is coupled to the 

optical path of an upright microscope and focused onto the sample by the objective. The vertical position 

of the trap is controlled by a z-piezo that moves the objective up and down. The force applied to the cell 

is calculated by monitoring the displacement of the bead from the center of the trap using the scatter light 

reflected on a photodiode. The bottom image shows a cell indented by a trapped bead on a similar area as 

used for AFM. Scale bar = 10 μm. 



52 Results 
 

      If the response of the cell is elastic, the indentation curve should correspond 

exactly to the retraction curve. Figures 3.2A, B and C show the indentation and 

retraction curves performed using the AFM. Figure 3.2A shows that at an applied force 

of 150 pN, both curves are not identical, but show hysteresis. When indenting the cells 

at lower forces up to 75 pN, the hysteresis decreases (Figure 3.2B). At forces lower than 

25 pN the hysteresis cannot be distinguished anymore (Figure 3.2C) which suggests that 

the deformation is now mainly elastic. The high intrinsic force noise of AFM 

complicates data analysis and the hysteresis might be hidden in the noise. The optical 

trap has a much lower force noise level (Bodensiek et al., 2013), allowing a more 

accurate analysis (Figure 3.2D). From these optical trapping curves it is evident that 

there is no hysteresis at lower forces and therefore the response of cells is largely elastic 

as compared to using higher forces where it is not.  

. 

 

Figure 3.2: The response of cells at higher forces shows an increased hysteresis. (A) 3T3 fibroblasts 

indented with AFM at forces around 150 pN. The indentation (black) and retraction (grey) curves are not 

identical, showing a clear hysteresis. (B) At a force of 75 pN hysteresis is reduced. (C) When applying 

forces around 25 pN both curves look the same and no hysteresis is visible. The intrinsic noise of AFM 

makes it difficult to determine the contact point and analyze the data correctly. (D) Cells indented with 

the optical trap at forces of around 10 pN show no difference between indentation (red) and retraction 

(orange) curves. The very low noise allows for an accurate analysis of the data. 
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The difference between indentation and retraction curves at higher forces 

indicates that some of the energy applied to indent the cell is not being recovered 

completely after the cell returns to its original shape. To quantify the relative amount of 

energy lost during this process, I calculated the difference between the integrals of 

indentation and retraction curves and normalized this by dividing it by the integral of 

the indentation curve. Figure 3.3A shows that at forces below 30 pN there is only a 

small amount of work lost (~13% for optical trap and ~15% using AFM). The lost work 

increases proportional with the force applied reaching ~40% at 150 pN. At low forces 

the cell deformation is ~250 nm (Figure 3.3B) and can reach up to 800 nm at 150 pN, 

suggesting that with increasing indentation of the cell, the contribution of the viscous 

cytoplasm on the measurements becomes more apparent. Taken together, this data 

shows that the response of cells is only at low forces mainly elastic and it can be 

reliably measured using our vertical optical trap. 

 

Figure 3.3: Higher deformations display a loss of energy between indentation and retraction. (A) 

The amount of energy lost between indentation and retraction curves was obtained by calculating the 

difference between the areas enclosed by each curve and dividing it by the area under the indentation 

curve. AFM (black) and optical trap (red) measurements at forces up to 30 pN show an energy loss of 

~15%. At higher forces, it increases up to 40%. Graph shows mean ± SEM (n= 7-15 cells). (B) Cell 

indentation was calculated from the estimated contact point of the curves used for (A). At forces lower 
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than 30 pN the average indentation is 0.2 μm whereas at higher forces indentation can reach up to 0.8 μm. 

Graph shows mean ± SEM (n= 7-15 cells). 

 

3.1.2 The cell’s response is elastic at small deformations and viscous at large 

deformations 

 

      If a material is elastic, its response will be independent on the deformation rate. 

Therefore, I tested the elastic response of cells at indentation speeds ranging from 0.3 to 

14 μm/s using AFM (up to 1 nN) and optical trap (up to 10 pN). Since I observed in the 

earlier experiments that the cellular response depends on the applied force, I analyzed 

the AFM indentation curves in between two ranges (Figure 3.4A), at low (7 – 30 pN) 

and high forces (150 – 600 pN). The curves were fitted using the Hertz model (Eq. 9) 

and the Young’s modulus was calculated accordingly. As expected, small indentations 

using AFM and optical trap resulted in a Young’s modulus that is independent from the 

deformation speed (Figure 3.4B, red and yellow), indicating that the response is indeed 

elastic. Furthermore, the values obtained with the optical trap (103.3±10.2 Pa, n=90) are 

comparable with the ones obtained using AFM (85.3±4.5 Pa, n=237), showing that both 

techniques can yield consistent results for the Young’s modulus of cells. Analysis of the 

AFM response at high forces revealed that the Young’s modulus increases from 140 Pa 

at small rates of deformation up to 330 Pa at higher rates (Figure 3.4B, green), 

confirming that the measured response is not elastic. 
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Figure 3.4: The apparent Young’s modulus of the cells suggests the presence of a viscous 

component at higher deformations. (A) The Hertz model was used to obtain the Young’s modulus of 

cells. AFM indentation curves were fitted between 7 – 30 pN (yellow) and 150 – 600 pN (green). (B) 

Young's modulus of optical trap (red) and AFM indentation curves fitted between 7 – 30 pN (yellow), 

show that Young's modulus is independent of the indentation speed. In AFM indentation curves fitted 

between 150 – 600 pN (green), the Young's modulus increased a multifold at higher indentation speeds. 

Graph shows mean ± SEM (n= 16 – 41 cells per speed). 

 

      When higher forces are applied to the cell, its deformation will extend deeper 

into the cell, potentially increasing the influence of the viscous cytoplasm. This 

hypothesis is supported by the fact that the stiffness of viscous materials strongly 

depends on their rate of deformation, suggesting that the apparent Young’s modulus 

measured at large deformations is most likely a combination of the elastic constant of 

the cell and a viscous component. However, when increasing the speed of deformation 

while keeping force range for analysis constant, the cell will be indented less and 

therefore the contribution of viscosity will be reduced. In order to correct for this 

potential artifact and to estimate the contribution of viscosity at a constant range of 

deformation (0.15-0.45 µm and 0.8-1.2 µm), I plotted the apparent Young’s modulus 

calculated for both indentation ranges as a function of its indentation rate (Figure 3.5). 

This reveals that the apparent modulus follows a power law with an exponent α=0.31 at 
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indentations between 0.8 and 1.2 μm. Because we found an elastic behavior at very 

small deformation, one should expect that at intermediate indentations the exponent 

would be decreased. This is indeed the case as observed at indentations between 0.15 

and 0.45 μm with an exponent α=0.17. These results confirm that a viscous component 

has a significant and increasing impact on the apparent Young’s modulus at larger 

deformations. 

 

Figure 3.5: The response of the cells is viscous at high deformations and follows a power law. The 

apparent Young’s modulus was plotted as a function of the indentation rate calculated as f = 1/ (2*(t2-t1)), 

where t2-t1 is the time of indentation for the analyzed indentation range (plotted on a double logarithmic 

scale). The fit follows a weak power law. At lower indentations the exponent is 0.17 and increases to 0.31 

at higher deformations. Graph shows mean ± SEM (n= 16 – 41 cells). 

 

3.1.3 The elastic response of cells at small deformations is anisotropic

 

      Ideally, the modulus of isotropic elastic materials is independent of the 

directionality of deformation. I tested this property on cells using a vertical optical trap 

to stretch the cells as opposed to the previous indentation experiments (Figure 3.6A). In 

order to calculate the Young’s modulus, a variation of the Hertz model that describes 

the deformation of a large elastic body with a disc shaped contact area was used. In this 

model, the relation between the force F and the deformation dz is linear (Eq. 10). In 
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order to carry out the calculations, the contact area between bead and cell, which will be 

assumed to remain constant during the pulling experiment, needs to be estimated. Since 

it is not possible to measure this area directly, the maximum contact with the bead at the 

measured indentation of 255 nm was estimated according to (Nawaz et al., 2012), 

resulting in a value of 311 nm. Next, the Young’s modulus was calculated by applying a 

linear fit on the stretching part of the retraction curves between -10 and 0 pN and using 

the estimated contact radius Rc. Figure 3.6B shows that the Young’s modulus obtained 

from stretching experiments was twice as high as the calculated one from indentation 

experiments (239 and 100 Pa, respectively). This demonstrates that the directionality of 

deformation plays a role at the time of calculating the elastic modulus of cells and 

confirms once more the limitation of treating the cell as an homogenous elastic material. 

 

Figure 3.6: Directionality of the elastic response is anisotropic. (A) The Young’s modulus of 

stretching experiments (orange curve) was calculated using a variation of the Hertz model. Only beads 

that got attached to the cell were used. (B) The estimated Young’s modulus obtained from stretching 

experiments was twice as high (239 Pa) as the calculated one from indentation experiments (100 Pa). 

Graph shows mean ± SEM. 
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3.1.4 The actin cortex is the major contributor to cell elasticity at small deformations 

 

      After describing the visco-elastic response of cells at small and large 

deformations and showing its anisotropy, I speculated about the reason of this behavior. 

Using AFM at high indentations, it has been previously shown that the response of a 

cell to deformation depends on the actin cortex (Rotsch and Radmacher, 2000). Since 

our vertical optical trap setup allows cell response measurements at very small 

deformations, I subjected cells to indentation experiments to determine the contribution 

of the actin cortex. Therefore, I depolymerized actin filaments using Latrunculin-A (1 

μM) treatment for 30 min (Figure 3.7) and found that the Young’s modulus strongly 

reduced from 100.3±10.2 (n=90) to 29.3±3.5 (n=45) Pa. This proves that at small 

deformations, the F-actin network is the main contributor to cell elasticity. 

 

Figure 3.7: The actin cortex is the major contributor to cell elasticity at small deformations. Optical 

trap measurements at forces up to 10 pN before and after F-actin depolymerization with 1 μm 

Latrunculin-A (LatA) show a decrease of the Young’s modulus. Graph shows mean ± SEM (n= 45 – 90 

cells). 

Overall, these results demonstrate that the response of cells to mechanical 

deformation is visco-elastic, depending mainly on the depth at which the cell is indented 

and furthermore identifies the actin cortex as the main contributing factor for the elastic 

response at small deformations. 
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3.2 Actin filament turnover drives leading edge growth during myelin 

sheath formation in the Central Nervous System 

 

3.2.1 The leading edge of oligodendrocytes shows an adhesion independent model of 

protrusion 

 

      Myelin sheath extension in the central nervous system is the result of leading 

edge growth of an oligodendrocyte process between the innermost myelin layer and the 

axon followed by a lateral extension of all myelin layers along the axon (Snaidero et al., 

2014). This model implies that forces need to be generated at the leading edge in order 

to allow the membrane to be continuously displaced. Typically, such forces are 

generated by F-actin polymerization, e.g. at the cell’s front to push out membrane 

protrusions and hence we hypothesized a role of actin in the forward movement of the 

leading edge. 

      As a prerequisite for this hypothesis, F-actin should be localized at the leading 

edge during the period of myelination. To asses this, mouse spinal cord sections at the 

onset of myelination (P4, 4 days postnatal), when the wrapping process is taking place, 

were stained and compared with animals at P12, when myelin growth is being finished. 

MBP and F-actin staining revealed that at P4, actin is confined to the inner tongue of the 

growing myelin sheath (Figure 3.8A) disappearing almost completely from it by P12, 

suggesting that actin could indeed be the driving force in myelin wrapping. Since it is 

technically difficult to visualize the inner tongue in vivo, primary cultures of 

oligodendrocytes are a valuable tool to investigate sheet formation and differentiation in 
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vitro. Figure 3.8B shows that F-actin is distributed in the processes and the 

lamellipodia-like protrusions in immature oligodendrocytes. Once the cells start to form 

sheets, F-actin is confined to the outer rim in a structure similar to the lamellipodium of 

migrating cells and analogous to the leading edge of myelin sheets in vivo. At later 

differentiation stages, F-actin is completely depleted from the sheets, demonstrating a 

redistribution of F-actin during oligodendrocyte differentiation. 

 

Figure 3.8: F-actin is redistributed during oligodendrocyte differentiation. (A) F-actin and MBP 

localization in 400 μm thick spinal cord sections of WT mice show that upon termination of myelin 

growth actin is no longer localized at the leading edge. Scale bar = 1 μm. [Images kindly provided by 

Nicolas Snaidero] (B) Mouse primary oligodendrocytes cultured for 2 – 5 days in vitro (div) display a 

similar redistribution of F-actin after MBP containing sheets are formed. Scale bar = 10 μm. [Images 

kindly provided by Nicolas Snaidero and Schanila Nawaz]. 

 

      Since the lamellipodium is the initiation site of motility and adhesion, I used 

Interference Reflection Microscopy (IRM) to visualize membrane dynamics and 

adhesion during myelin sheet growth in oligodendrocytes. This method is very useful 

for the study of cells that are in close contact with the substrate (Barr and Bunnell, 

2009; Verschueren, 1985) and does not require labeling. Due to destructive interference 

of the reflected light from the coverglass, which depends on the distance between the 
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cell membrane and the glass surface, an image displaying dark pixels at areas where the 

membrane is in close proximity with the surface and bright pixels representing non-

adhesive areas is obtained. Using this method, I acquired time-lapse videos of 

oligodendrocytes grown on Poly-L-Lysine for 6 – 8 hours when the cells are still in the 

oligodendrocyte precursor (OPC) stage and are starting to form processes, compared to 

4-day-old oligodendrocytes (OLG), which are forming sheets (Figure 3.9). At a very 

early stage, oligodendrocyte precursor cells (OPC) extend processes with a growth 

cone-like structure at its end. This structure shows mainly destructive interference 

indicating that it is adhered to the surface (Figure 3.9, OPC). At later stages however, 

when the cells are only forming sheets, the leading edge is highly dynamic and less 

adherent to the surface, as indicated by the increase of bright pixels (Figure 3.9, OLG). 

These results suggest that the leading edge of oligodendrocytes is changing its adhesive 

properties when the cell is extending processes as compared to when it is forming 

membrane sheets. 

 

Figure 3.9: The leading edge of oligodendrocyte precursors is more adhesive than the leading edge 

of sheet forming oligodendrocyte. Live imaging of primary oligodendrocyte precursor cells (OPC) and 

sheet forming oligodendrocytes (OLG) using Interference Reflection Microscopy (IRM) to visualize 

membrane dynamics. The inset shows an enlarged area of the leading edge of each cell over time. 

Quantification shows more non-adhesive areas in sheet forming as compared to precursor cells. Graph 

shows mean ± SD (n= 9 – 15 cells from each stage, ***p<0.001, t-test). Scale bars = 10 μm. 

 

      Since the leading edge displays different degrees of adherence depending on the 

differentiation stage of the cell, I tested whether the adhesive contact with the surface is 
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required for its stability by treating the cells with 200 μg/ml of Trypsin to disrupt the 

adhesive contacts (Figure 3.10). As expected, treatment only affected OPCs, in which 

the leading edge completely retracted after treatment and therefore showed a decrease in 

the cell projected area. In contrast, treatment had no effect on the leading edge as well 

as the cell projected area of sheet forming cells (OLG). 

 

Figure 3.10: Disruption of the cell-substrate interactions collapses the leading edge of precursor but 

not sheet forming oligodendrocytes. IRM images of precursor (OPC) and sheet forming cells (OLG) 

before and after treatment with 200 μg/ml Trypsin. Kymographs (lower panel) show the movement 

during 30 min of the area shown by the white lines; dotted lines mark the addition of Trypsin. 

Quantification shows a decrease in normalized cell projected area only for OPCs after treatment. Graph 

shows mean ± SD (n= 25 – 38 cells, ***p<0.001, t-test). Scale bars = 10 μm. 

 

      The aforementioned results suggest that cells form adhesive contacts only at 

early differentiation stages. To confirm this, I stained oligodendrocytes (OPCs and 

OLGs) as well as astrocytes plated on Poly-L-Lysine-coated coverglasses against 

Vinculin, a protein located in focal adhesion complexes (Figure 3.11A). As expected, I 

could only visualize Vinculin-postive staining on processes of OPCs, which is located at 

the base of the growth cone structure. OLGs however, did not display Vinculin-positive 

staining on their sheets. Since adhesive contacts are formed specifically between 

proteins of the Extracellular matrix (ECM) and the cell, I cultured cells on 100 μg/ml 

PLL with 100 μg/ml Fibronectin. Comparable to PLL coating, astrocytes formed focal 

adhesions clearly visible by Vinculin-positive staining (Figure 3.11B). In 
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oligodendrocytes however, no formation of adhesive contacts was found as shown by 

the highly significant lower mean intensity of Vinculin staining when compared to 

astrocytes (Figure 3.11B). 

 

Figure 3.11: Vinculin is only present it early stage OPCs. (A) Primary oligodendrocytes plated on 100 

μg/ml Poly-L-Lysine coated coverslips express Vinculin (red) only at early stages of differentiation 

(OPC) but not at later stages (OLG). Inset shows an enlarged view of the leading edge with Vinculin 

located at its base. The right most panel shows an astrocyte as comparison. Scale bars = 10 μm. (B) 

Shows an oligodendrocyte (arrow head) and an astrocyte (arrow) cultured on 100 μg/ml Poly-L-Lysine 

with 100 μg/ml Fibronectin coated coverslips for 4 days. Quantification shows that the mean fluorescence 

intensity of oligodendrocytes is much lower than astrocytes. Graph shows mean ± SD (n = 14 cells, 

***p<0.001, t-test). Scale bar = 10 μm. 

 

      Taken together, these results demonstrate that the growth cone-like structures of 

oligodendrocyte processes require adhesive contacts for their assembly and moreover 

that when oligodendrocytes terminate their process outgrowth phase, the leading edge 

becomes non-adhesive until sheet formation is complete. 
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3.2.2 Membrane motility ceases and adhesive contacts are formed after actin 

depolymerization 

 

      IRM time-lapse images revealed that oligodendrocytes have highly motile areas 

during process extension and sheet formation, but this motility decreased after sheet 

formation is completed (Figure 3.12A). Inversely, adhesive areas start to increase 

reaching the maximum when sheet formation is complete (Figure 3.13A). Moreover, 

upon transduction of cells with Lifeact-GFP to visualize actin dynamics, non-adhesive 

and highly motile areas display enrichment in F-actin (data not shown). 

 

Figure 3.12: Membrane motility decreases after actin depolymerization. (A) IRM images were used 

to quantify membrane dynamics of primary oligodendrocytes cultured for 2 – 6 days. Kymographs (lower 

panel) show a dynamic membrane that remains static after differentiation. The upper graph shows 

dynamic pixels from single cells at different differentiation stages over time. Quantification in the bottom 

graph shows a decrease of dynamic areas (normalized by the total cell area) upon differentiation. Graph 
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shows mean ± SEM (n= 9 – 21 cells for each stage, **p<0.01, t-test). Scale bars are = 10 μm. [Data 

acquisition by Schanila Nawaz] (B) IRM images before and after F-actin depolymerization with 

Latrunculin-A (LatA). Kymographs (lower panel) demonstrate that motility stops. The graph on the left 

shows dynamic pixels from four different cells with the dotted line marking LatA addition. Quantification 

on the right-hand graph shows a decrease of dynamic areas (normalized by total cell area) upon treatment. 

Graph shows mean ± SEM (n= 9 cells, **p<0.01, paired t-test). Scale bars = 10 μm. [Data acquisition by 

Schanila Nawaz]. 

 

 

Figure 3.13: Adhesive areas increase upon actin depolymerization. (A) Quantification of adhesive 

areas normalized by total cell area of the cells from figure 3.12A shows an increase upon differentiation. 

Graph shows mean ± SEM (n= 9 – 21 cells for each stage, **p<0.01, t-test). (B) IRM images of 

oligodendrocytes before and after F-actin depolymerization with Latrunculin-A (LatA). Quantification 

shows an increase of adhesive areas after treatment. Graph shows mean ± SEM (n = 9 cells, **p<0.01, 

paired t-test). Scale bars = 10 μm. [Data acquisition by Schanila Nawaz]. 

 

      Consequently, it is conceivable that oligodendrocytes, similarly to non-adhesive 

cells such as leukocytes, can generate the friction they require to push the leading edge 

forward by clamping it between two surfaces in a 3D environment. In this model, they 

would use F-actin polymerization to “inflate” the leading edge in between the axon and 

the newly formed myelin sheath. Therefore, a depolymerization of F-actin should 

trigger the collapse and subsequent spreading of the protrusions when the cell is on a 2D 

substratum. To test this, cells that had formed thin processes and were starting to form 

sheets were treated with Latrunculin-A (LatA) to depolymerize F-actin. I could observe 
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that motility ceased immediately (Figure 3.12B) and adhesion to the surface was 

triggered (Figure 3.13B). When the amount of membrane spreading was quantified, an 

increase of the cell projected area of LatA treated cells was found (Figure 3.14). This 

response is the opposite of what would happen if F-actin was depolymerized on a cell 

with a linkage to the surface mediated by adhesion molecules, supporting the hypothesis 

of an adhesion-independent and deformation-based model of leading edge protrusion. 

 

Figure 3.14: F-actin depolymerization triggers membrane spreading. Oligodendrocytes cultured for 1 

or 2 days, treated with 10 μM Latrunculin-A (LatA) for 4 hours and labeled with Cell Mask Orange. 

Images are shown in binary format. Quantification shows an increase in cell surface projected area after 

treatment. Graph shows mean ± SD (n= 18 – 32 cells, ***p<0.001, t-test). Scale bars = 10 μm. [Figure 

kindly provided by Shanila Nawaz]. 

 

      To confirm that actin depolymerization is indeed the driving force for membrane 

spreading, I treated oligodendrocytes with Jasplakinolide (Jaspl), an F-actin stabilizing 

agent, and recorded IRM videos until 30 minutes after treatment. Similarly to the 

behavior observed for actin depolymerization with LatA, dynamics significantly 

decreased after treatment (Figure 3.15). However, no membrane spreading was 

triggered. On the contrary, there was a slight decrease of cell projected area and 

adhesion (Figure 3.15). These results agree with the model formerly proposed and show 

that only actin depolymerization is able to release the membrane and generate surface 

spreading and adhesion.  
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Figure 3.15: F-actin stabilization decreases motility but does not trigger membrane spreading. IRM 

images before and after F-actin stabilization with 200 nM Jasplakinolide (Jasp). Quantification shows a 

decrease of dynamic areas, adhesive pixels and cell projected area upon treatment. Graph shows mean ± 

SEM (n = 24 cells, *p<0.05, ***p<0.001, paired t-test). Scale bars = 10 μm 

 

3.2.3 Oligodendrocytes build up a membrane reservoir during differentiation 

 

      Since I observed a striking spreading of membrane from very thin processes, it 

was logical to ask where the excess of membrane is originating from. One possibility is 

membrane addition through exocytosis and/or block of endocytosis. However, this 

possibility was ruled out using capacitance measurements by whole-cell patch clamp 

which measure the total amount of membrane. This was unaffected by LatA treatment 

(Figure 3.16A), suggesting that the excess of membrane is already present in the 

protrusions as folds. 

 

Figure 3.16: Oligodendrocytes build up a large membrane reservoir during differentiation. (A) 

Whole cell patch clamp capacitance measurements were performed to quantify changes in cell surface 
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area. Quantification shows that (LatA) treatment for 2 hours had no effect on cellular capacitance; (n> 30 

cells). [Figure kindly provided by Schanila Nawaz] (B) Excess membrane area was quantified using an 

optical trap setup. Percentage of tethers that exceeded the maximal extension of the setup (80 µm) was 

determined at different times after plating of oligodendrocytes (6, 8, 12, 24, 146 hours) (grey dots) 

showing an increase during differentiation. After 2h of Latrunculin-A treatment (LatA) (red dots) there is 

a larger increase of membrane excess area available to be released on cells after 24 hours compared with 

the cells after 6 hours of plating. (C) Control experiment on NIH3T3 fibroblasts shows that upon F-actin 

depolymerization the amount of membrane available increases, but does not reach levels similar to 

oligodendrocytes. 

 

      These membrane stores can be measured by using an optical trap to pull small 

tubes of membrane, called tethers. The more membrane is available, the longer the 

tethers should be that can be pulled by this method (Raucher and Sheetz, 1999). To test 

this, I used the vertical optical trap setup to pull the membrane from oligodendrocytes 

after various times of differentiation and found that after 6 hours, at which cells are just 

reaching the phase of process formation, a fraction of around 20% of tethers longer than 

the limit of our setup (80 μm) could be pulled (Figure 3.16B, grey dots). This number 

increased rapidly to almost 50% after only 12 hours of plating, suggesting that the cell 

has accumulated a membrane reservoir as infoldings. In this line, I reasoned that the 

excess of membrane might be starting to accumulate in the processes from early stages 

of differentiation but it is kept together by the actin cytoskeleton. If this is the case, then 

depolymerizing F-actin should release this membrane reservoir. After 6 hours of 

plating, when the membrane reservoir still seems to be small, only a small amount of 

membrane is released after LatA treatment (Figure 3.16B, red dots). On the contrary, 

after 24 hours of plating when the cell is starting to form sheets, the amount of 

membrane released is much higher in comparison. To confirm that the release is due to 

an increase of membrane reservoir and not just a result F-actin depolymerization, I 

tested NIH3T3 fibroblasts, which are known to have a smaller reservoir and observed 

that untreated cells have indeed less excess of membrane compared the earliest time 



3.2 Actin filament turnover drives leading edge growth during myelin sheath formation in 
the Central Nervous System 

69 

 
point of oligodendrocyte differentiation (Figure 3.16C). As expected, there is a release 

of membrane infoldings after LatA treatment, which, however, is substantially lower 

than in the oligodendrocytes. This confirmed the idea of oligodendrocytes accumulating 

membrane in form of reservoirs at early stages of differentiation in order to use it later, 

after actin depolymerization, to expand membrane sheets. 

 

3.2.4 F-actin depolymerization decreases surface tension

 

      The excess of membrane does not fully explain the membrane spreading after 

actin depolymerization. Normally, when F-actin depolymerizes, the cell will round up, 

since the high surface tension and the forces generated by the actin cortex to keep the 

membrane anchored to the surface are gone. This is not the case for oligodendrocytes, 

since their cells surface spreads instead of rounding up. In order for this to happen, the 

forces keeping the membrane adhered to the surface should be higher than the surface 

tension pulling it up. We therefore measured surface tension by pulling tethers with the 

vertical optical trap. The force required to pull these tubes is determined by the 

interaction of membrane with the actin cortex and the membrane bending rigidity 

(Sheetz and Dai, 1996). I found that the static tether force of oligodendrocytes in their 

process forming phase is lower (~11 pN) as compared to fibroblasts (~13 pN, *p<0.05, 

t-test) and further lowers when they mature sheet-forming oligodendrocytes (~6 pN) 

(Figure 3.17A). This shows that membrane tension decreases upon myelin formation. 

Furthermore, it is possible to reduce the membrane tension of process forming cells by 

depolymerizing F-actin agents to values similar to those of mature cells. This is specific 

for F-actin depolymerization since inhibitors of actomyosin contractility had no effect 

on surface tension. Taken together, these results demonstrate a reduction of surface 
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tension during myelin sheet formation that it is completely dependent on the presence or 

absence of F-actin. 

 

Figure 3.17: Depolymerization of F-actin reduces membrane tension. (A) Surface tension of 

oligodendrocytes cultured for 2 and 5 days was measured using an optical trap to pull membrane tethers. 

Static tether force decreases with differentiation as well as by depolymerizing F-actin for 2 h with 5 μM 

Latrunculin-A (LatA) or 5μM Cytochalasin-D (CytoD). 50 μM blebbistatin (Blebb) and 10 μM Y27631 

(Y27) had no effect. Graph shows mean ± SEM (n = 37 – 80 cells for each condition, ***p<0.001). [Data 

acquisition by Schanila Nawaz] (B) Force maps of oligodendrocytes cultured for 2 days were obtained 

using Atomic Force Microscopy (AFM) to pull tethers. Only after LatA treatments could a decrease in 

tether force along the cell could be observed. Graph shows mean ± SEM (n = 10 – 13 cells with a total of 

67 – 245 pulled tethers per treatment). (C) Force maps of oligodendrocytes cultured for 5 days show a 

decrease in tether force at most parts of the cell except for the outer rim as compared to div2 cells where 

the tether force is homogeneous along the whole cell area. Graphs show mean ± SEM (n = 9 – 12 cells 

with a total of 291 – 800 pulled tethers for each stage, **p<0.01, ***p<0.001, one-way ANOVA and 

Tukey’s multiple comparison test). 

 

      Since this data indicates that oligodendrocytes use actin polymerization forces 

located at the leading edge, I measured surface tension at different positions along the 
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cell using AFM, allowing a better spatial resolution for surface tension measurements at 

the leading edge. To confirm that this method is applicable in this context, I treated 

immature oligodendrocytes with LatA and Jasplakinolide and, first of all, confirm that 

the tether force decreases all over the cell area after F-actin depolymerization (Figure 

3.17B). Stabilization of F-actin by Jasplakinolide on the other hand had no effect on 

surface tension. After confirming the applicability of this method, I went on to compare 

immature and mature oligodendrocytes. Interestingly, in contrast to immature cells, 

mature oligodendrocytes that had formed sheets displayed a significantly higher surface 

tension in the cell areas corresponding to the leading edge compared to the cell body 

and sheets (Figure 3.17C). 

      Collectively, this indicates that oligodendrocytes generate high surface tension at 

the leading edge by locally polymerizing F-actin. This also correlates well with the 

formerly observed membrane spreading and increase in cell projected areas upon F-

actin depolymerization since it would lead to a reduction of tension, releasing the excess 

membrane stores that mature oligodendrocytes build up during differentiation. 

 

3.2.5 The actin depolymerizing factors ADF and Cofilin1 are responsible for low F- to 

G- actin ratios 

 

      Based on my previous observations, we propose that F-actin polymerization at 

the leading edge is the driving force for its forward extension growth. In order for a 

compact myelin sheath to be formed, an actin depolymerization phase has to take place 

for the membrane to spread right behind the expanding leading edge. For the cell to 

achieve this, a high F-actin turnover rate given by the ratio between filamentous (F-) 

and globular (G-) actin is required. Supporting this idea, a transcriptome database search 
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(Cahoy et al., 2008) revealed that several gene products involved in F-actin turnover are 

enriched in oligodendrocytes. 

      Among those, I focused on the ADF and Colfilin1 proteins because of their 

upregulation during myelin biogenesis (Figure 3.18). Since both proteins are redundant, 

single deletions had no neurological defects. Therefore, an ADF-Cofilin1 double 

knockout (AC DKO) was generated by crossing an ADF knockout mice (ADF-/-) with a 

mouse line in which Cofilin1 was specifically ablated in oligodendrocytes (Cnp1-Cre+/-

Cofilin1fl/fl). Mice were born at the expected Mendelian ratio (Figure 3.19A) but 

developed motor deficits approximately 10 days after birth. From then onwards, the 

phenotype increased rapidly in severity resulting in hindlimb paralysis, ataxia and 

tremor. The animals had to be sacrificed at ~P17. Genotyping was carried out by 

isolating genomic DNA followed by PCR of ADF, Cnp-Cre and Cofilin1 (Figure 

3.19B). 

 

Figure 3.18: ADF and Cofilin1 are upregulated during differentiation. The protein levels of ADF and 

Cofilin1 were estimated by subjecting cell lysates prepared from oligodendrocytes cultured for one, three 

and six days in vitro (div) for immunoblotting using ADF, Colfilin and Calnexin specific antibodies. The 

latter served as a loading control. Quantification shows an increase of band intensity normalized to 

Calnexin. Graph shows mean ± SD (n = 3 independent experiments, one-way ANOVA test; ADF: 

*p<0.05; Cofilin: n.s.). [Figure kindly provided by Schanila Nawaz]. 
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Figure 3.19: Generation and genotyping of ADF-Cofilin1 KO (AC DKO) mice. (A) Generation of AC 

DKO mice was done by crossing ADF KO with oligodendroglial-targeted Cofilin1 KO. Breeding scheme 

shows the best pair for getting the highest number of DKO animals per litter. (B) Animals were 

genotyped using PCR of genomic DNA for 3 genes, ADF, CNP-Cre and Cofilin1. The Cofilin PCR 

reveals a specific deletion band when the protein Cre is expressed (fl/wt/∆, arrowhead). 

 

      I then proceeded to investigate the actin distribution and turnover in the ADF-

Cofilin1 double knockout (AC DKO) mouse line. Using primary oligodendrocytes of 

control and AC DKO mice subjected to immunocytochemistry, a striking increase of F-

actin at the leading edge of double knockout mice was observed accompanied by a 

decrease of cell projected area that can be partially rescued by depolymerizing F-actin 

(Figure 3.20A). Furthermore, I looked at actin turnover given by the F/G actin ratio, and 

observed that the ratio decreases in control cells during differentiation upon sheet 

formation (Figure 3.20B), confirming that actin depolymerization is indeed taking place 

over the course of differentiation. Interestingly, primary oligodendrocytes from double 

knockout mice already displayed a higher F/G actin ratio at the beginning stage of 

process extension. Upon sheet formation, when sheets are formed, this ratio decreased 

but still remained elevated as compared to control oligodendrocytes (Figure 3.20B) 

suggesting that there are alterations in actin distribution and turnover upon genetic 

deletion of the two actin regulators ADF and Cofilin1. 
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Figure 3.20: F-actin localization at the leading edge and F- to G-actin ratios are significantly higher 

in ADF-Cofilin1 DKO mice. (A) Primary oligodendrocytes cultured from ADF/Cofilin1 KO (AC DKO) 

and littermate control mice were stained for F-actin using Phalloidin-rhodamine and with antibodies 

against galactosylceramide (O1) to visualize the cell surface. Quantification shows an increase of F-actin 

fluorescence intensity in AC DKO cultures, as well as a smaller cell projected area, which can be rescued 

by depolymerizing actin with LatA. Graphs show mean ± SEM (n = 26 – 52 cells from three experiments, 

**p < 0.01, ***p < 0.001, t-test). Scale bars = 10 µm. [Figure kindly provided by Schanila Nawaz] (B) 

Primary oligodendrocytes cultured for 2 and 4 days. DNaseI was used to label G-actin and Phalloidin-

rhodamine was used to label F-actin. Quantification shows a decrease in F- to G-actin ratio upon 

differentiation in control animals. F/G actin ratios are significantly higher in cells cultured from AC DKO 

animals. Graph shows mean ± SEM (n = 17 – 40 cells from 3 Ctrl and 3 DKO animals, **p<0.01, 

***p<0.001, t-test). Scale bars = 10 μm. 

 

      Next, due to the fact that ADF-Cofilin1 DKO animals do not survive past P17, I 

focused on the white matter in the spinal cord since it is among the first areas in the 
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CNS to be myelinated in the CNS. At P12, when the most active phase of myelin 

growth is completed, F-actin was almost undetectable in spinal cord cross-sections of 

control animals (Figure 3.21). In the AC DKO animals, however, there was a dramatic 

increase of F-actin levels at the inner tongue, also referred as the leading edge of the 

myelin sheath (Figure 3.21).  

 

Figure 3.21: Increase of F-actin levels located at the leading edge of ADF Cofilin1 DKO mice. F-

actin and MBP localization in 400 nm thick spinal cord sections of P12 control and AC DKO mice. 

Quantification shows an increase of the percentage of myelinated axons with an actin labeling within the 

inner tongue. Graph shows mean ± SEM (n = 874 – 1266 myelinated axons from 3 Ctrl and 3 DKO 

animals, ***p<0.001, t-test). Scale bars = 5 μm. [Staining and imaging by Nicolas Snaidero]. 

 

      Next, I wondered whether the F/G actin ratios were also affected. To test this, I 

investigated spinal cord sections from P11 mice and observed on one hand a higher F/G 

actin ratio in the white matter of AC DKO compared to control animals and on the other 

hand no increase in the F/G actin ratio of grey matter (Figure 3.22). 
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Figure 3.22: F/G actin ratio of ADF-Cofilin1 DKO animals is higher as compared to controls. F- and 

G- actin staining on 25 mm spinal cord sections of control and AC DKO mice at P11. F/G actin ratio is 

shown in pseudocolors to display the intensity ratios more clearly. Quantification shows that the ratio in 

white matter (area demarked by the continuous white line) of AC DKO mice is higher compared to the 

controls and is similar to the ratio from grey matter. Graph shows mean ± SEM (n > 10 images from 4 

animals, *p<0.05, t-test). Scale bars = 10 μm. 

 

Taken together, these results demonstrate a high F-actin disassembly rate during 

myelination and identify the actin disassembly factors ADF and Cofilin1 as the crucial 

actin regulators in vivo. 

 

3.2.6 ADF and Cofilin1 are required for myelin growth but not for its maintenance 

 

      Assuming that high actin turnover rates are required for myelin wrapping along 

the axon, one would expect that AC DKO animals would display thinner myelin sheets. 

In order to test this, electron microscopy (EM) was used to compare spinal cords of 

animals at P7, P13 and P17 (Figure 3.23). At P7, relatively normal levels of myelination 

with no difference in myelin thickness or number of myelinated axons were observed 

between control and AC DKO mice (Figure 3.23A-B). Later, at P13 and P17, several 

defects in the ultrastructure of myelin could be observed including a lower thickness 
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and a decrease in the number of myelinated axons in the AC DKO compared with 

controls (Figure 3.23A-B). Furthermore, the size of the inner tongue leading edge in the 

AC DKO mice was increased (Figure 3.23C). These results indicate that myelin sheath 

growth is stalled in ADF-Cofilin1 DKO animals after P7 with only a minor increase in 

the number of myelinated axons. Furthermore, these results show that actin 

depolymerization may be required to control not only myelin sheath growth but 

interestingly also the size of the inner tongue. 

 

Figure 3.23: ADF/Cofilin1 are required for myelin biogenesis in mice. (A) Electron micrographs of 

cervical spinal cord from control and AC DKO mice at P7 and P17. Quantification shows the average g-

ratio indicating that myelin thickness increases in control but not in AC DKO animals. Graph shows mean 

± SEM (n~100 axons from 3 – 4 animals of each age and genotype, ***p<0.001, t-test). Scale bar = 1 

μm. [Sample processing and imaging by Nicolas Snaidero and Caroline Velte, quantification by Schanila 

Nawaz] (B) Percentage of myelinated and unmyelinated axons from P7, P13 and P17 animals shows that 

the AC DKO animals have less myelinated axons from P13 onwards compared with controls (n~1000 

axons from >50 EM images of 3-4 animals per time point). [Sample processing and imaging by Nicolas 

Snaidero and Caroline Velte, quantification by Schanila Nawaz] (C) AC DKO shows increased inner 

tongues (arrow heads and inset) compared to control animals. Quantification shows a larger inner tongue 

diameter in relation to the axonal size in AC DKO animals at P17. A ratio of 1 corresponds to no inner 

tongue. Scale bar = 1 μm. [Sample processing and imaging by Nicolas Snaidero and Caroline Velte, 

quantification by Schanila Nawaz]. 
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      The defects in myelin sheath growth could either be due to a failure in the 

wrapping and flattening processes or due to a decrease in the number of precursor and 

mature oligodendrocytes. To test this, I stained P11 spinal cord sections with antibodies 

against precursor and mature cells and found that there was no difference between 

control and AC DKO mice (Figure 3.24). These results demonstrate that the defects in 

myelination are not due to alterations in the number of myelinating cells but rather a 

direct effect of the actin alterations in the leading edge. 

 

Figure 3.24: The number of oligodendroglial cells between control and ADF/Cofilin1 DKO mice is 

comparable. (A,B) 10 μm spinal cord sections of control and AC DKO mice at P11 were stained for 

Olig2 (A,B), Nkx2.2 (A) and CC1 (B). Quantification shows that the number of positive cells per area in 

the white matter remains the same between control and AC DKO mice. Graph shows mean ± SEM (n = 2 

sections per animal, 3 animals per genotype. A total area of 33500 μm2 divided into 5 different regions 

was measured on each section). Scale bars = 10 μm. 

      

      Finally, we asked whether ADF and Cofilin are also required for the 

maintenance of the myelin sheath after completion of the developmental process. For 

this, tamoxifen-inducible conditional double knockout mice were generated by crossing 
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ADF-/- with Cofilinfl/flPlp1-CreERT2 mice. The animals were induced at P21, when 

myelination in the spinal cord is complete followed by analysis 9 weeks later. No 

difference in the number of myelinated axons or in myelin thickness was observed 

(Figure 3.25). 

 

Figure 3.25: Inducible ADF-Cofilin DKO mice show no difference in myelin compared with control 

animals. Electron micrographs of tamoxifen-inducible AC DKO. Animals were injected with tamoxifen 

at P21 and analyzed 9 weeks later. Quantification shows that the g-ratios and percentage of myelinated 

and non-myelnated axons is the same for both. Graph shows mean ± SEM (n~400 axons from 3 animals 

of each genotype). Scale bar = 2 μm. [Sample processing and imaging by Nicolas Snaidero and Caroline 

Velte, quantification by Schanila Nawaz]. 

 

      Collectively, these results suggest a major role of actin turnover in myelin sheath 

formation by controlling the motility of the leading edge and the spreading of 

membrane identifying the actin depolymerization factors ADF and Cofilin as main 

regulators. 
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Discussion    4

 

 

4.1 Validation of a vertical optical trap for mechanical measurements

 

     In this first part of the work I have shown that a custom-built vertical optical trap 

setup can be used to perform mechanical measurements on cells. Furthermore, the 

response of cells to mechanical deformations was found to be visco-elastic, and 

depended on both the length and directionality of deformation as well as on the presence 

of the actin cytoskeleton. 

     The response of cells to mechanical stress in an experimental setup depends on many 

parameters, such as the time and length scales of the measurements. These parameters 

cannot always be freely chosen but depend strongly on the technique that is used to 

deform the cell. From all techniques, AFM is the most widely used for measuring cell 

stiffness by recording the response of single cells upon indentation. The amount of force 

that an AFM setup can apply to the cell depends on the spring constant of the cantilever 

and the force set point determined by the user. The contact mechanics during the 

indentation depend on the shape of the AFM tip, which can be varied. Sharp tips, for 

example, focus the applied force on a very small area of the cell surface thereby 

increasing the local stress and the probability to induce rupture if the force is high 

enough. Alternatively, very blunt tips such as micrometer sized beads glued to end of 
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the cantilever, can be used to distribute the force over a larger surface. Thus, the local 

stress on the membrane is reduced which lowers the risk of disrupting it. If the wrong 

parameters are used AFM can easily exert forces large enough to damage the cells 

which consequently will result in measurement artifacts. These could lead then to 

misinterpretation of the state of the biological sample, since e.g. apoptotic cells show 

lower stiffness than healthy cells (Hu et al., 2009; Pelling et al., 2009). Besides using 

blunt probes to deform the cell, an alternative solution to this problem would be to 

simply decrease the applied force. However, the minimum force that can be applied is 

limited by the intrinsic noise of conventional AFM cantilevers given by its thermal 

fluctuations and it reaches values around 10 pN (Dey and Szoszkiewicz, 2012). This 

does not only limit the minimum force that can be applied to tens of pN but it also 

creates a problem for the analysis of the indentation curves. The low force AFM curves 

as presented in Fig. 3.2 C show that the noise makes it very difficult to accurately 

determine the point when the AFM contacts the cell. Defining the right contact point is 

crucial to define the absolute amount of deformation, which, as we have found, has a 

large influence on the measured Young’s modulus of the cell (Eq. 9). Efforts to limit the 

forces and deformations are particularly relevant in this project because the main goal of 

this study is to measure mechanical properties of oligodendrocytes that form very flat 

structures which obviously cannot sustain very large indentation. 

     To lower the above mentioned force noise and the resulting complications we have 

designed an optical trap that can be controlled in the vertical (z) direction (Bodensiek et 

al., 2013). This is a novel approach since most optical traps move in the direction 

parallel to the surface (x, y). Moving in the z direction has the advantage of having the 

same boundary conditions as an AFM. The cell is supported by a planar surface and 

indented from above with a probe which simplifies the modeling of the cell 
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deformation. In fact, the same Hertz model used for calculation of the Young’s modulus 

when using AFM can be applied. The main advantage of optical traps is the very low 

force noise of less 1 pN which is due to the much lower spring constant of the optical 

trap of typically 0.1 pN/nm (whereas even a very soft AFM cantilever has a spring 

constant of at least 10 pN/nm) (Bodensiek et al., 2013).  This advantage combined with 

the vertical operation of our vertical optical trap enabled me to measure cells mechanics 

at forces lower than 10 pN, corresponding to an indentation of ~250 nm. This is 

substantially lower than the indentation applied by AFM setups which typically deforms 

for about a micrometer. Also, the force versus deformation curves acquired with the 

vertical trap such as presented in fig. 3.2 D show clearly that the contact point between 

the bead and the cell can be much more accurately determined. One disadvantage of 

optical traps is the need for a high power laser source, which can lead to an increase in 

temperature of a few degreed near the focus (Peterman et al., 2003). In the case of our 

vertical trap, this could be a potential issue since the light beam penetrates the sample 

and passes though the cell thereby potentially damaging it. However, the short time 

scale of the measurements, typically being less than 2 minutes per cell, and the fact the 

laser is focused outside and away of the cell, minimize this potential risk. Also, control  

measurements where we positioned the laser focus just outside of the cell periphery for 

10 minutes (about 10 times the duration of the indentation experiment) did not result in 

any sign of stress from the cell (Nawaz et al., 2012). 

     Overall, our vertical optical trap has proven to be a competent method to perform 

accurate force spectroscopy measurements on cells using low forces and permitting 

smaller indentations as compared to AFM and thus making it a suitable tool for the 

measurement of very flat cells with minimal cell damage and influence of the 

underlying substrate. 
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4.2 The response of cells to small deformations is elastic but 

anisotropic 

 

     The measurements of cell elasticity using our vertical trap at small indentations of 

~200 nm revealed an almost ideal elastic response. This is evidenced by: 1) the absence 

of hysteresis (and thus a low amount of energy lost) between the indentation and 

retraction curves, and 2) the observation that the obtained Young’s modulus of 100 Pa is 

independent on the rate of deformation. The vertical optical trap used for this study 

initially provided only a limited range of velocities. After the optimization of the fast 

force feedback loop we were able to produce a response in milliseconds and thereby 

moving the bead at speeds up to 50 μm/s during indentation measurements (Bodensiek 

et al., 2013). Using this improved setup, we confirmed that the elastic modulus of 

fibroblasts also remained constant over a wider range of speeds (Bodensiek et al., 2013), 

further supporting our finding that the cell response is elastic at small deformations. The 

same speed-independent elastic modulus was obtained from AFM measurements 

analyzed at forces up to 30 pN which confirms an elastic response at small 

deformations. In this case the obtained Young’s modulus was 85 Pa which shows that 

our optical trap setup produces results that are comparable with those of an AFM setup 

and that the observation of an elastic regime is independent on the measurement 

technique. 

     Although both AFM and optical trapping delivered consistent results for the Young's 

modulus, the values reported in literature are 10 to 100 times higher, as reviewed in 

(Kuznetsova et al., 2007; Vinckier and Semenza, 1998). Since almost all AFM 

experiments are performed at much higher forces and indentations than what we used, 

this discrepancy may largely result from the observed increase in apparent stiffness at 
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larger deformations due to the presence of a viscous component, which will be further 

discussed in section 4.4. 

          Because the cells respond elastic at small indentations one would expect that 

changing the direction of deformation (stretching vs. indenting) would not affect the 

measured Young's modulus. Surprisingly, when using the vertical trap for stretching the 

cells, the calculated Young’s modulus was more than twice as high (239 Pa) than the 

estimated modulus from indentations (100 Pa). This difference could only be partially 

attributed to the difficulty of defining specific contact conditions of the experiment, 

more specifically the estimation of the exact contact area between the membrane and 

the bead which would have an impact on the calculated Young’s modulus. The 

assumption was that the maximum contact area is reached during the preceding 

indentation and remains constant throughout the pulling. It is however possible that low 

adhesive forces potentially result in a decreased contact area and thus a too high 

calculated value for the Young’s modulus, or an increase of the contact area due to very 

high adhesion which would lead to a too low Young’s modulus. Nonetheless, even if an 

error of 50% in the contact area estimation is assumed, the calculated values range from 

160 to 480 Pa which is still higher than the values obtained from the cell indentation 

experiments (Nawaz et al., 2012). The most favorable explanation for this behavior is 

the anisotropy of the membrane-cortex interaction (Hu et al., 2003). Similar anisotropic 

results have been previously found, although in the opposite direction (Acerbi et al., 

2012), where indenting lung fibroblasts resulted in a 6 times higher Young’s modulus as 

compared to stretching them at high deformations. 
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4.3 The elastic response of cells is determined by the actin cortex.  

 

     The amount of deformation of a cell is determined by its intracellular structures. At 

very low forces, the plasma membrane and the underlying acting cortex are the main 

contributing factors for the calculated Young’s modulus while at deeper indentations the 

influence of the cytoplasm and cellular organelles start to play an increasing role. The 

effect of the cytoskeleton on the elastic modulus of cells has been described before by 

measuring fibroblasts with AFM at forces between 160-400 pN upon treatments that 

individually disrupt particular filaments of the cytoskeleton, such as actin and 

microtubules (Rotsch and Radmacher, 2000). Actin filament stabilization or 

microtubule disruption did not alter the measured Young’s modulus. However, the 

elasticity of the cells decreased more than a two-fold upon actin depolymerization and 

disruption of stress fibers, demonstrating its dependency on the actin filaments (Rotsch 

and Radmacher, 2000). My results when measuring the effects of actin 

depolymerization were obtained with the vertical optical trap at much lower forces and 

smaller indentations. Upon actin depolymerization, the Young’s modulus decreased 

more than a three-fold from 100 to 29 Pa. This confirms the cell cortex as the main 

contributor to cell elasticity and shows that its influence at small deformations is even 

stronger than at larger deformations. 

 

4.4 The response of cells to large deformations has a major viscous 

component 

 

     When AFM indentation experiments are performed at higher forces and indentation, 

this resulted in an increase in hysteresis (and thus the amount of energy dissipated by 
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the cell). Additionally, the apparent Young’s modulus increased (from 140 to 330 Pa) at 

higher rates of deformation which is a characteristic behavior of a viscous response. To 

identify the type of viscosity, the apparent Young’s modulus against the indentation rate 

values was plotted on a double logarithmic scale and fitting with a power function 

(Alcaraz et al., 2003; Balland et al., 2005; Hoffman et al., 2006). If a substance is solid 

with an ideal elastic behavior, the exponent will be 0. If the measured substance is a 

liquid and behaves like an ideal viscous material, the slope will be 1. Our measurements 

showed an exponent between 0 and 1 which clearly show that cells exhibit both elastic 

and viscous behavior. Interestingly the measured slope depends on how the 

measurement is performed. At very small indentations with the optical trap the response 

was elastic which corresponds to an exponent of 0. At larger indentations of around 0.3 

µm the exponent was 0.17 while this increased to 0.31 at indentations of around 1 µm 

(Figure 3.5). These finding are consistent with literature which reports that frequency-

dependent stiffness values follow a weak power law that depends on the type of 

deformation. Cells probed either in the proximity of the cell cortex or deeper into the 

cytosolic space yield an exponent value that increased from 0.13 to 0.29 (Hoffman and 

Crocker, 2009; Hofmann et al., 1997). These literature values were obtained with many 

different techniques and dependent on the type of technique the measurements were 

either sensitive to the cell periphery and yielded low values for the exponent, or the 

measurements were sensitive to the interior of the cell and yielded a higher value for the 

exponent. The uniqueness of our results is that we could extract the different exponents 

by just analyzing different indentation depths of the same AFM indentation curves. So 

with a single technique we can access different parts of the cell which unambiguously 

confirms the existence of different visco-elastic environments in a single cell. The 

reason for the variable exponent follows from the inhomogeneous composition of the 
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cell. The cell cortex responds mainly elastically whereas the deeper areas such as 

cytoplasm and nucleus respond more viscous.  

 

4.5 Actin distribution during myelination

 

     In the second part of my work I used diverse approaches to study primary 

oligodendrocytes and with the support of animal models, we have gathered new insights 

on the importance of actin dynamics for proper myelination. 

     F-actin has been shown to be located in the inner and outer mesaxon, Schmidt-

Lanterman incisure, periaxonal membrane and paranodal loop in Schwann cells, 

responsible for myelin formation in the PNS (Trapp et al., 1989). In these cells it is also 

required for maintaining shape and gene expression related to myelination (Fernandez-

Valle et al., 1997). In oligodendrocytes, the distribution of F-actin has a very particular 

distinct pattern which varies depending on the cell differentiation stage. However, it is 

consistently present at the growing edges of cells. At early stages of differentiation in 

vitro, actin is initially enriched in a growth cone-like structure at the end of the cell 

processes. Later on, it is almost entirely depleted from the sheets, but remains localized 

at the outer rim of the growing sheet. In vivo, it is located in the uncompacted inner 

tongue during active growth (Figure 3.8); (Dyer and Benjamins, 1989; Snaidero et al., 

2014). Strikingly, upon termination of myelination, F-actin disappears from the myelin 

sheath both in vitro and in vivo (Figure 3.8); (Snaidero et al., 2014). 

     Since in vivo the inner tongue is inaccessible because it is situated within the 

multilayered membrane, these changes in actin localization and its effects on 

oligodendrocyte morphology can be investigated better by using primary 

oligodendrocyte cultures. In this simplified system, it then becomes necessary to define 
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the correlates of the in vivo structures, in particular the leading edge. Figure 4.1 

illustrates the growth zones, also referred to as the leading edge, at each stage of 

development. They are characterized by the presence of F-actin which at the branching 

stage is limited to the growth cone. Afterwards, the sheets are being formed in between 

the processes, expanding towards each other thus filling up the gaps. At the end, the 

motile part of the growth zone is restricted to the outer rim of the cell showing back and 

forth movements. 

 

Figure 4.1: Leading edge in oligodendrocytes at different stages of differentiation. Illustration 

showing oligodendrocyte processes in green and the growth zones in red. The arrows indicate the 

direction of membrane expansion within the growing sheet. 

 

4.6 Shift between two migratory mechanisms allows wrapping of the 

leading edge 

 

     The results obtained from primary oligodendrocytes in this study demonstrate that 

oligodendrocytes have two different mechanisms of leading edge extension. First, an 

adhesion-based mechanism comparable to the neuronal growth cones. This involves 

adhesive molecules at its base connecting the cytoskeleton with proteins of the ECM 

thus generating force transmission, a lamellipodium at the periphery rich in actin 

pushing forward membrane protrusions by actin polymerization and dynamic filopodia 

extending beyond the membrane. Once myelin sheet formation begins, the leading edge 

is no longer adhesive evidenced by the lack focal adhesion components but is instead 
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displaying highly dynamic characteristics, as demonstrated by using IRM. Contrary to 

the actin-rich leading edge of processes, which moves in a targeted direction, the 

leading edge of sheet forming oligodendrocytes randomly extends protrusions in every 

direction which does not result in a net forward movement. 

     Migration independent of integrins and, therefore, of adhesive forces has been 

described for leukocytes, in which cortical actin and myosin-IIA-dependent contractility 

are responsible for generating protrusions that only under confinement conditions are 

able to generate friction, overcome the resistance and subsequently squeeze in between 

tight spaces (Krummel et al., 2014; Lammermann et al., 2008; Renkawitz and Sixt, 

2010). Moreover, they are capable of adapting by switching from a mesenchymal, 

integrin-based into an amoeboid integrin-independent migration based on the adhesive 

properties of its environment (Krummel et al., 2014; Renkawitz et al., 2009). 

     Recently, this switch between mesenchymal- and deformation-based migration in a 

3D environment has also been described for other types of cells such as the migratory 

progenitor cells in zebrafish gastrulation, where the trigger for switching is based on an 

increase in contractility (Ruprecht et al., 2015) or confinement conditions with a 

mechanism mediated either by generation of local protrusions or by myosinII-dependent 

contractility (Liu et al., 2015). Due to the increased appearance of focal adhesions 

evidenced by vinculin staining at early differentiation stages, I have provided evidence 

that oligodendrocytes are capable of using a mesenchymal mechanism for movement 

and, at later stages of differentiation, develop a deformation-based mechanism of 

process locomotion by lowering their membrane tension only depending of F-actin 

depolymerization and a decrease in adhesion complexes. The low tension together with 

its independence of myosin activity as evidenced by no effects on membrane tension in 

the presence of the myosin inhibitor blebbistatin, rules out any mechanism based on 
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actomyosin contractility thereby suggesting that instead, their motility is based on 

extending protrusions only by local actin polymerization. Furthermore, our hypothesis 

is supported by the observed changes in F/G actin ratios in mouse primary 

oligodendrocyte cultures and spinal cord tissue favoring the polymerization of actin 

filaments only at the process formation stage, whereas the equilibrium of F/G actin is 

shifted towards the free monomeric form at later stages, shown by the decrease of F-

actin staining in the myelinated fibers of the white matter. 

 

4.7 Membrane spreading as a wetting transition

 

     Wetting is a term used to describe the spreading of a small liquid drop onto a flat 

solid surface. It depends mainly on the intrinsic properties of each element which 

determine the adhesive and repulsive forces between the two surfaces placed in contact. 

The free energy per unit of area between the solid-vapor, solid-liquid and liquid-vapor 

interfaces determines the spreading coefficient and the contact angle at which the liquid-

vapor interface intersects the solid-vapor interface (de Gennes, 1985). A higher 

spreading coefficient indicates the tendency of a liquid to spread onto a surface with a 

smaller contact angle when the spreading is larger. Once the two surfaces reach an 

equilibrium, it can be either described as a partial wetting, where the liquid drop and the 

surface are in an steady state and the contact angle is constant, or a complete wetting 

where it has spread until the contact angle is 0 (de Gennes, 1985). Subsequent studies 

implemented this knowledge into the concept of cell adhesion, in which the wetting 

transition is determined by a balance between adhesive and repellent forces generated 

by specific receptors, nonspecific interactions, the glycocalix and membrane elasticity 

(Sackmann and Bruinsma, 2002). Consequently, spreading will occur if the free energy 
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of adhesion towards the surface overcomes the work against it. Furthermore, it has been 

described that the dynamics of a group of cellular aggregates spreading onto a surface 

initially shows a collective deformation comparable to a drop with visco-elastic 

characteristics and afterwards, a thin monolayer of cells spreads on the surface and can 

migrate away from the aggregate (Douezan et al., 2011). 

     In oligodendrocytes, as shown in this study, membrane spreading occurs at later 

stages of differentiation, when adhesive contacts remain no longer established with the 

surface. Since the adhesive forces must be very low at this stage, there has to be another 

mechanism by which oligodendrocytes are able to spread their membrane. One 

possibility is that adhesion would be triggered upon axonal contact by so far 

unidentified molecules, however the molecules involved are not yet known and since 

the leading edge displays very dynamic characteristics when wrapping around the axon 

forming strong adhesive contacts would not be favorable. An explanation of how 

spreading could happen under low adhesive conditions can be found partially in studies 

describing the mechanism for tissue segregation during embryogenesis. It was proposed 

long ago, that the determining property driving cell sorting in tissue was the difference 

in surface tension between the types of cells (Harris, 1976). According to this, if the 

surface tension of one cell type is higher than the other one, it will pull the cell type 

with lower tension around it (Beysens et al., 2000; Foty and Steinberg, 2004; Maitre et 

al., 2012). Moreover, it has been demonstrated in progenitor cells from zebrafish 

embryos that the cell-cell interfacial tension is determined by the cortical tension instead 

of the tension generated by adhesive contacts (Maitre et al., 2012). Oligodendrocytes 

control their surface tension by F-actin depolymerization (Figure 3.17), which is being 

reduced it during sheet formation, thereby raising the possibility that it can surround a 

surface with a higher tension such as the axon. 
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     Besides a low surface tension, large amounts of membrane have to be available for 

the extensive spreading to take place. Oligodendrocytes build up a large stock of 

membrane reservoirs prior to sheet formation that are kept together as infoldings by F-

actin, as shown in Figure 3.16B similar mechanism of excess membrane storage has 

been previously described for Drosophila embryos storing membrane in reservoirs 

located in microvilli (Figard et al., 2013). The first 13 divisions of the Drosophila 

embryo take place without cytokinesis followed by plasma membrane ingressing around 

every nucleus to form the individual cells in one cell cycle, increasing the surface area 

~25 fold (Figard et al., 2013). It was shown that microvilli can store at least half of the 

membrane required for the cellularization thus being the source for the excess 

membrane and membrane further release (Figard et al., 2013). This shows that 

infoldings can store large amounts of membrane and supports our hypothesis that 

membrane reservoirs can be stored in oligodendrocyte processes being released upon 

before sheet formation. 

      Taken together, our data suggests that oligodendrocytes spread their membrane by 

lowering membrane tension through F-actin depolymerization, thus releasing membrane 

reservoirs in a mechanism following the principles of a wetting transition. 

 

4.8 The factors ADF/Cofilin1 are necessary for actin 

depolymerization and myelin growth 

 

     Given the importance of actin turnover in oligodendrocyte differentiation and myelin 

formation, it was important to identify the factors involved in this regulation. In this 

study I have described that impaired F-actin depolymerization affects myelin formation 

in mice with the factors ADF and Colifilin1 being critical for its regulation. 
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Furthermore, the oligodendrocyte developmentally regulates ADF and Cofilin1. This 

makes sense since actin depolymerization would remove the constrains of the actin 

cytoskeleton on the membrane resulting in its release and thereby its flattening. The 

downregulation of vinculin-positive focal adhesions is also linked to this stage, since the 

forward movement of the oligodendrocyte membrane in between axon and compacting 

myelin membrane no longer requires traction force generation in attachment with the 

ECM but instead is achieved by dynamic regulation of the cytoskeleton. In light of this 

it also becomes clear why ADF and Cofilin1 play a role in myelin formation but not on 

myelin maintenance because once compacted, myelin is linked by MBP with little or no 

space and there is no functional relevance for the actin cytoskeleton. 

     However, the AC DKO mouse model still showed axons with compacted myelin. 

This could be due to compensation by others existing actin depolymerization factors, 

e.g. proteins of the gelsolin family (Vouyiouklis and Brophy, 1997). However, due to 

the lack of two main regulators of actin depolymerization once would expect a decrease 

on the effectiveness of processes related to it which in the mice could be observed by 

the increase in inner tongue area and increased F/G actin ratios resulting in disturbances 

of the myelination process. Additionally, it is possible that some cells escape Cre 

recombination and express Cofilin1, therefore forming normal myelin.  

 

4.9 Proposed model for the role of actin in myelin formation 

 

     Collectively, we propose that actin turnover plays a major role in myelination, where 

oligodendrocytes, in an initial stage of process formation, use a mesenchymal 

mechanism for locomotion. High tension and adhesion to the ECM will generate 

traction forces that will be transduced through the actin cytoskeleton promoting 
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lamellipodium extension and process growth similar to the mechanism described for 

neuronal growth. Subsequently, they will use forces generated by F-actin 

polymerization to inflate the leading edge at the inner tongue, pushing it forward 

throughout the space between the myelin layers and the axonal membrane. F-actin 

depolymerization at the base of the leading edge regulated by the factors ADF/Cofilin1 

favor membrane spreading and adhesion onto the axon in a model resembling wetting 

transition of liquid droplets (Figure 4.2). 

 

 

Figure 4.2: Role of F-actin in myelination. (A) Scheme shows the growth cone of an oligodendrocyte 

precursor, where actin filaments are anchored to the surface by transmembrane adhesion receptors to 

generate forces large enough to push the leading edge forward. (B) Model showing a process of a 

myelinating oligodendrocyte using F-actin polymerization forces to inflate the leading edge (arrows 

pointing upwards) and push it towards the forming myelin sheath and the axonal membrane. Subsequent 

F-actin disassembly deflates the back of the leading edge (arrows pointing downwards), facilitating 

spreading and flattening of the membrane to create the newer myelin layers. 
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     In conclusion, this project has delivered new evidence to further elucidate the 

mechanism of myelin formation in the CNS. To the existent knowledge of the inner 

tongue as the leading edge and structure responsible for myelin membrane growth 

around the axon, I have added a novel model describing how the regulation of 

polymerization and depolymerization of actin filaments controls the motility of the 

leading edge and membrane flattening. 
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