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Summary

The main magnetic field of the Earth is generated by convective motions in the liquid
iron core. The field shows complex variations on a broad rangeof time scales. Shorter
scales in the range of years are likely related to wave phenomena (Gillet et al. 2010) while
decadal to centennial variations reflect the convective flowdynamics (Christensen et al.
2012). Much longer time scales are mostly associated to global polarity reversals of the
dipole field component which typically last 4− 5 thousand years (Merrill and McFadden
1999). Paleomagnetic measurements of sea-floor magnetic anomalies document several
hundred polarity switches in the last 180 million years of geomagnetic history with an
average rate of 2−3 per million years (Jacobs 1994). Reversals can therefore be regarded
as rare and almost instantaneous events on geologic time scales.

Stable polarity epochs are also punctuated by another type of events, known as excur-
sions. During such events, the magnetic pole may venture into the opposite hemisphere for
periods comparable to the duration of reversals but the opposite polarity is never firmly
established. Several excursions are documented for the last few million years of geo-
magnetic history but only some of them have been correlated globally (Gubbins 1999,
Laj and Channell 2007).

Paleomagnetic studies indicate that the average reversal frequency has changed over
time scales of the order of tens to hundred million years (Biggin et al. 2012). The Creta-
ceous normal superchron (CNS) is a particularly long stablepolarity epoch of about 35
million years which roughly started 118 million years before present. An increasing trend
in the geomagnetic reversal frequency from the end of the CNSto the present has been
reported, while particularly high reversal rates before this event have also been found.
The question whether such variations are of external origin, most often identified with
the mantle influence, or reflect the dynamics of the strongly non-linear internal dynamo
processes is still a matter of debate.

Self-consistent magneto-hydrodynamic (MHD) simulationssuccessfully reproduce
many features of the Earth’s magnetic field. Several of thesenumerical dynamo models
also experience dipole field reversals with characteristics similar to paleomagnetic obser-
vations (Amit et al. 2010). Due to the inherent complexity ofthe non-linear processes
involved, detailed studies of simulated polarity transitions only partially helped in deter-
mining the fluid dynamic mechanisms responsible for reversals and excursions (see, e.g.,
Wicht and Olson 2004, Aubert et al. 2008). The statistical characterization of these events
aims to provide robust constraints on our knowledge of the physical processes underlying
their occurrence.

This work presents a systematic statistical study of the reversals and excursions in
two dynamo models with different Ekman numbers and Rayleigh numbers. Both models
have been run for several thousand magnetic diffusion times and undergo several hundred
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Summary

reversals, thus representing by far the longest numerical dynamo records to date. Different
distribution functions, used in previous related studies and describing diverse random
processes, have been tested for modeling the statistics of stable polarity interval durations
and the durations of reversals and excursions. We quantifiedthe relative quality of the
individual models in describing the data using a Bayesian approach.

The occurrence of reversals is best described by a (stationary) Poisson process in the
dynamo models analyzed here. The number of reversals and excursions is very similar in
the numerical dynamo with the lower Ekman number and the duration of both types of
events follows a gamma distribution. We therefore concludethat reversals and excursions
are expressions of the same underlying process. This process consists of three stages: first
the dipole moment decreases significantly in order to allow for large angular deviations of
the magnetic pole. The dynamo tends then to linger for a relatively brief period (compared
to the free dipole decay time) at low dipole intensities characterized by a more complex
multipolar field. Finally the dipole moment recovers and it seems a matter of chance
whether the normal or reverse polarity is amplified, thus leading to an excursion or a
reversal respectively.

We also addressed the question whether the statistic of the simulated reversals re-
produces the Earth’s behavior. To this end, we analyzed the most recent paleomagnetic
reversal chronologies. Log-normal and log-logistic distributions, both characterized by
heavy tails, best describe the chron durations with similarposterior model probabilities.
When simulating the limited time resolution of the paleomagnetic record (missing shorter
events, non-resolved reversals) the polarity epochs in thenumerical simulation show sim-
ilar statistics. Our analysis thus suggests that the deviation from poissonianity observed
in the paleomagnetic record could be the consequence of the limited data quality rather
than the signature of a different statistical process.
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1 Introduction

This chapter summarizes important observational aspects of the present and past geomag-
netic field. After a brief historical introduction and a description of the Earth’s interior
structure (Sections 1.1 and 1.2), the present geomagnetic field morphology as inferred
from global model reconstructions is described in Section 1.3. Insights from paleomag-
netic studies on dipole field reversals (and excursions) arediscussed in Section 1.4.

1.1 Historical background

The first archeomagnetic artifact potentially representing a primitive compass dates back
to 1000 BC and belongs to the Olmec civilization in Mexico (Carlson 1975). This shaped
bar of lodestone, a naturally magnetized piece of magnetite, was most probably used as
a device for divination. By the 11th century, the Chinese used a magnetized needle for
navigational orienting and therefore deserve the credit for discovering Earth’s magnetism.
The scientific study of the Earth’s magnetic field began in the15th century with early
investigations of its properties during the period of global exploration. However, the ori-
gin of the geomagnetic field remained a mystery for a long time. Gilbert (1600) was the
first to suggest that the geomagnetic field is generated within the Earth itself. In his ex-
periments, Gilbert demonstrated that the pattern of field lines on a uniformly magnetized
sphere approximates the directions of the compass needle observed at the Earth’s surface.
He then concluded that the Earth behaves like a giant magnet.

Variations of the geomagnetic field on time scales of about one year or more (secular
variation) were first observed in the late 17th century. Collecting several measurements
of the magnetic field declination at different locations, Halley (1683) showed that a large
part of the secular variation could be explained by a westward drift of the field. To explain
the drift, Halley proposed a model of the Earth’s interior consisting of concentric shells
of magnetic material rotating in the prograde sense, but with the internal regions spinning
slightly slower than the exterior ones and thus causing the magnetic field to drift systemat-
ically westward as seen from the Earth’s surface (Halley 1692). Remarkable similarities
with our current understanding of the Earth’s interior, i.e. a layered structure and the asso-
ciation of internal motions with magnetic field variations,were therefore born. However,
the origin of the magnetic field was still incorrectly regarded in a permanently magnetized
solid inner core.

Collecting observations recorded during sea voyages, Halley also published a map
showing lines of constant declination (Halley 1701). This represents the first magnetic
chart and stimulated later generations of scientists in thestudy of geomagnetism through
the record of global geophysical data. In the 1830s, Carl-Friedrich Gauss and Alexan-
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1 Introduction

der von Humboldt founded what can be regarded as the first international geophysical
organization: the “Göttinger Magnetischer Verein”. The aim of such organization was to
coordinate the systematic measurement of the geomagnetic field declination among tens
of observatories located worldwide in order to study field variations. More information
on the early history of geomagnetism can be found in Merrill (1998, Chapter 1), Stern
(2002) and Kono (2007).

1.2 The Earth’s interior and the quest for dynamo action

Somewhat surprisingly, the belief of Earth as a permanentlymagnetized body survived
until the beginning of the 20th century. Apparently solved the problem of the geomag-
netic field origin, the interest of scientists focussed on explaining the magnetic field of
the Sun. In this attempt, Larmor (1919) posed the conceptualbasis of modern hydromag-
netic dynamo theory. Larmor suggested that, in the presenceof an initial magnetic field,
motions of electrically conducting fluids within a rotatingbody might generate induced
currents able to amplify and sustain the field against ohmic dissipation. Larmor’s hypoth-
esis contains the key ingredients for self-sustained dynamo action and is a simplified, but
still valid, description of the basic mechanism producing the magnetic field of the Earth
and many other cosmic bodies.

By inference from seismological observations, we know thatthe Earth’s interior struc-
ture is layered into spherical shells (Figure 1.1) and differs from what Gilbert and Halley
imagined more than three centuries ago. The outermost layers are a silicate solid crust

Upper m antle

Lower m antle

    Outer core
      (liquid)

    Crust
0 km

0.0001 GPa

24 GPa

136

GPa

329

GPa

364 GPa

660 km

2,890 km

5,150 km

6,370 km

Fe + Ni +

‘light elements’

Inner core
(solid)

Figure 1.1: Cross-section of the Earth’s interior. Depths for the various regions are indi-
cated on the left and corresponding pressures on the right. From Duffy (2011).
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1.3 The recent geomagnetic field

and a highly viscous mantle extending to a depth of about 2890km. Because of the high
pressure and temperature conditions, the silicate rocks composing the mantle undergo vis-
cous deformation and convective material circulation is present on very long time scales.
The mantle encloses the core which is composed by a solid part(inner core) and a liq-
uid one (outer core). The inner core radius isr i = 1220 km and the temperature at the
interface with the outer core (inner-core boundary) isTi = 5500 K. The outer core has a
thicknessd = 2260 km and the core-mantle boundary (CMB) temperature isTo = 4000 K.
The Earth’s core is mainly constituted of iron, while the second most abundant element
is nickel. Along with Fe and Ni, light elements (particularly S, O, Si) are also present
and account for about 8% of the core mass (Duffy 2011). Since the Curie temperature of
iron is of about 750 K and is exceeded a few tens of kilometers below the crust, Gilbert’s
conception of the Earth as a permanently magnetized body is certainly not correct.

According to the magnetic remanence of certain rocks (see, e.g., Usui et al. 2009), evi-
dences for the existence of a magnetic field go back to at least3.45 Ga and possibly are as
old as the core itself. Assuming that the geomagnetic field has been generated at the time
of core formation and no physical processes helped to maintain it, the field would simply
decay by ohmic diffusion. Thee-folding time of a large-scale dipole field diffusing by
ohmic processes within the core isτd = r2

o

/
π2η, wherero is the outer core radius andη the

magnetic diffusivity. Using recent estimates of the electrical conductivity at Earth’s core
conditions (Pozzo et al. 2012), the free dipole decay time isτd ≈ 56 kyr which is more
than 5 orders of magnitude shorter than the first evidence of the ancient geomagnetic field.
This represents a second argument against the hypothesis ofa permanent magnetization of
the Earth’s core and points towards the necessity of a regeneration process able to sustain
the magnetic field against ohmic decay. The small enough viscosity of the iron-rich liquid
outer core (comparable to that of liquid water) permits turbulent convective flows to de-
velop. These complex fluid motions induce electric currentsand therefore magnetic fields
exactly as envisioned by Larmor (1919). The variety of dynamical processes occurring in
the core which are able to transform the kinetic energy of fluid flows into electromagnetic
energy are known as thegeodynamo.

The ultimate long-term energy source for the geodynamo comes from the secular cool-
ing of the core. As the core cools down, the base of the liquid core crystallizes at the
inner-core boundary (ICB) thus causing the inner core to grow. Two important sources
of buoyancy are produced in this process. One source of buoyancy is generated by the
light elements which cannot be dissolved efficiently anymore at the ICB and drive the so-
called compositional convection. The other source is due tothe latent heat release. Since
the CMB heat-flow exceeds the amount of heat conducted along the adiabat throughout
the core, thermal convection can take place. Heat released by the radioactive decay of
unstable elements (such as K, Th and U) also contributes to the total energy budget.

1.3 The recent geomagnetic field

The termgeomagnetic fieldgenerally designates the magnetic field produced by all the
sources within the solid Earth and its atmosphere, up to the magnetopause. Sources of
internal origin include rocks which have been magnetized inthe past (permanent magne-
tization) but also retaining the additional magnetizationdue to the present ambient field

11



1 Introduction

(induced magnetization). Magnetized rocks lie in the uppermost (solid) layers of the
Earth and produce thecrustal field. All other sources are ultimately electric currents and
are generated inside the metallic core, in the mantle and crust, in the oceans and finally in
the ionosphere and magnetosphere.

The most intense field, with a mean amplitude of about 45µT at the Earth’s surface, is
known as themain fieldand is produced within the core through a self-sustaining dynamo
process. The crustal field is weaker than the main field and shows strong spatial variations
from fractions of a nT to fewµT. The sum of the main field and the crustal field is
often referred to as theinternal field. As already mentioned, the Earth’s magnetic field
has also sources above the neutral atmosphere which constitute the so-calledexternal
field. Electric currents produced by the motion of charged particles in the ionosphere and
magnetosphere are the main sources of the external field. As measured at the Earth’s
surface, the external field intensity is of the order of few tens of nT but it can occasionally
be up to two orders of magnitude stronger. The typical time scales of the external field
variations range from a fraction of a second to several days and are thus significantly faster
than the internal field variations.

Since the geomagnetic field is a vector field, it can be described at any given point
of the Earth’s surface by the three orthogonal componentsX (pointing in the geographic
north direction),Y (pointing eastward) andZ (pointing downward). The horizontal direc-
tion H =

√
X2 + Y2 is aligned in the direction of the compass needle, while the total field

intensity isF =
√

X2 + Y2 + Z2.
An alternative characterization of the field is generally used in paleomagnetism (see

Section 1.4). Instead of its vector components (X,Y,Z), the geomagnetic field is specified
at any given point by the field intensityF and two angular measures: thedeclination Dand
the inclination I. The declination is defined as the angle betweenH and the geographic
north, thusD = arctanY/X. The inclination is the angle between the horizontal plane and
the field vectorF, thusI = arctanZ/H.

Carl-Friedrich Gauss proposed a useful decomposition of the magnetic fieldB on a
sphere which is still used today to represent the Earth’s magnetic field. Since the lower
Earth’s atmosphere is a very poor electric conductor, no currents can flow in this region
and the electric current densityJ can be assumed to vanish. By means of Ampère’s law,
B is then conservative (∇ × B = 0) and can therefore be expressed as the gradient of a
scalar potentialV:

B = −∇V . (1.1)

Using the solenoidal property of the magnetic field (∇·B = 0), we are lead to the Laplace’s
equation

∇2V = 0 . (1.2)

In a spherical system of coordinates and assuming that the source currents reside in the
interior of a spherical surface of radiusr = a (internal sources only), the solution of
Laplace’s equation (1.2) reads (see, e.g., Backus et al. 1996)

V(r, θ, φ) = a
∞∑

ℓ=1

(a
r

)ℓ+1 ℓ∑

m=0

(
gm
ℓ cosmφ + hm

ℓ sinmφ
)
Pm
ℓ (cosθ) , (1.3)

whereθ andφ are colatitude and longitude respectively,Pm
ℓ

is the Schmidt quasi-normalized
associated Legendre function of degreeℓ and orderm (both being integers) andgm

ℓ
andhm

ℓ
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Figure 1.2: Maps of the geomagnetic field declinationD (top left), inclinationI (top
right) and intensityF (bottom) at the Earth’s surface in year 2005 as reconstructed by
the CHAOS model (Olsen et al. 2006). Declination and inclination values are given
in degrees. Iso-contour lines of field intensity are in stepsof 5000 nT. Adapted from
Olsen et al. (2007).

are constants known as the Gauss coefficients. If external sources are present, the solution
of (1.2) contains also terms proportional torℓ.

At present, the Earth’s magnetic field is continuously monitored by about 150 geomag-
netic observatories placed worldwide. Since the first space-borne measurements taken by
the Sputnik 3 in 1958, satellite magnetometers provided field measurements covering the
entire Earth. Both ground-based and satellite observations are used to produce global
models of the recent Earth’s magnetic field. These models aimat describing the field of
internal origin and thus rely on the spherical harmonic representation (1.3). Each of these
models is truncated at a certain degreeL, depending on the number and quality of the data
used, and some time dependence in the Gauss coefficients is introduced to account for
the fact that the field of internal origin varies with time. Certain corrections are further-
more required to get rid of externally induced fields. We refer to Olsen et al. (2007) for a
comprehensive description of the most recent global geomagnetic field models.

Figure 1.2 shows the main magnetic field at the Earth’s surface in year 2005 as given
by the CHAOS model of Olsen et al. (2006). Maps of the magneticfield declinationD,
inclination I and field intensityF are given in the top left, top right and bottom panels re-
spectively. Only degrees up toL = 13 have been used to reconstruct the field since higher
degrees host crustal contributions. As discussed in Section 1.1, the most simple approxi-
mation of the geomagnetic field is that of a geocentric axial dipole and was proposed by
Gilbert (1600). In the case of a pure axial dipole field the compass needle points to the

13



1 Introduction

geographic north all over the globe, meaning that the declination is zero everywhere. Fur-
thermore, the inclinationI is +90◦ at the geographic north pole,−90◦ at the geographic
south pole and 0◦ at the equator and lines of equal inclination are parallel tothe equator.
However, as can be seen from Figure 1.2, the present Earth’s magnetic field significantly
deviates from a pure axial dipole. In the first place, such deviations can be attributed to a
tilt of about 11◦ of the dipole component. Moreover, the fact that the magnetic poles are
not antipodal (Figure 1.2, top right panel) reveals that non-dipolar contributions are also
important.

The field intensity map of Figure 1.2 reveals further interesting insights. Axisymmet-
ric lines of equal intensity are expected for a pure axial dipole with an intensity at the
equator half of that at the poles. The geomagnetic field markedly differs from such con-
figuration. Two features show that even a tilted dipole cannot account for the observed
pattern. Firstly, the southern polar intensity maximum is somewhat stronger than the
northern one, the latter also appearing as a double feature.Secondly, a strong minimum
(∼ 23µT) localized in the South Atlantic, and for this reason knownas the South Atlantic
anomaly, is present.

Despite this complex morphology, the power of the geomagnetic surface field mea-
sured for each spatial degreeℓ as (Lowes 1974)

Rℓ =
(a
r

)2ℓ+4 ℓ∑

m=0

[(
gm
ℓ

)2
+

(
hm
ℓ

)2
]

(1.4)

is dominated for more than 90% of its total amplitude by the dipoleℓ = 1 (see, e.g., Kono
2007). The second strongest contribution, lower by more than one order of magnitude
in power, is the quadrupole (ℓ = 2). The dipole approximation therefore reflects the
dominant energetic contribution to the field. Furthermore,since the non-dipole terms vary
on time scales shorter than the dipole, the geomagnetic fieldcan be regarded as dipolar
when averaged over a sufficiently long time. As will be seen in the following section, this
assumption is often used in the study of the long-term geomagnetic field variations.

1.4 The paleomagnetic field

Systematic measurements of declination, inclination and intensity of the Earth’s magnetic
field are available only from the mid-19th century and have been recorded at observatories
mainly located in Europe. The past geomagnetic field, however, has been preserved by the
natural magnetization of rocks and sediments. Unfortunately, the quality of such data is
often poor and therefore the experimental determination ofdirection and intensity results
very difficult and sometimes poorly constrained.

Paleomagnetism is the study of the past geomagnetic (paleomagnetic) field as recorded
by rocks, sediments and archaeological materials. Such studies are of fundamental impor-
tance because they can provide information on the history ofmagnetic field generation
in the Earth’s core. In Section 1.4.1 we give a general description of the physical mecha-
nisms involved in the magnetization of rocks and sediments.Observational evidences of
geomagnetic field reversals are summarized in Section 1.4.2. The characteristics of polar-
ity transitions are described in Section 1.4.3. Our discussion on the paleomagnetic field
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concludes with a description of the most recent geomagneticpolarity time scale (Section
1.4.4) and of previous statistical analyses performed on different reversal chronologies.

1.4.1 Rock magnetism

In paleomagnetism, the remanent magnetization (RM) acquired under natural conditions
by magnetic minerals is referred to as thenatural remanent magnetization(NRM). The
NRM of a rock is shaped by various magnetization phases whichoccurred during its ge-
ological history. Any rock, at the time of its formation, tends to acquire a magnetization
M generally parallel to the ambient magnetic fieldH. This is referred to as the primary
magnetization and gives information about the direction and intensity of, presumably, the
Earth’s magnetic field. Several geological changes subsequent to the rock formation, such
as chemical alteration and relaxation effects, may affect the primary magnetization induc-
ing further magnetizations. Secondary magnetizations have to be excluded in laboratory
measurements to retrieve unbiased information about the geomagnetic field when the rock
was formed or cooled below its Curie temperature.

Different primary magnetization mechanisms may occur depending on the actual type
of magnetic mineral. In ferromagnets, the magnetic momentsof neighboring atoms are
parallel and have the same magnitude. Ferromagnetic materials retain indeed a sponta-
neous remanent magnetizationMr in the absence of an external fieldH. The high mag-
netic susceptibilityχ of ferromagnets originates a generally strong induced magnetization
Mi ∼ χH which can thus be measured even for weak magnetic fields such as the Earth’s
one. Among common magnetic minerals, only iron and iron-nickel are ferromagnetic but
they are rarely found on Earth.

Prevailing magnetic minerals on Earth are magnetite and hematite and they are said to
be ferrimagnetic and antiferromagnetic materials respectively. In antiferromagnetism, ad-
jacent magnetic moments are oppositely directed and, sincethey are created by identical
numbers and species of ions, have equal intensities. In a zero field, an antiferromagnet
has in principle no remanence because the spontaneous (oppositely directed) magnetiza-
tions cancel on larger spatial scales. Nevertheless, both sets of spins can be deflected in a
strong external field thus originating an antiferromagnetic susceptibilityχa which varies
only weakly with temperature (Dunlop and Özdemir 2007). Hematite actually has a weak
permanent magnetization which occurs only for certain crystal symmetries. Deviations
of magnetic moments out of antiparallelism by a fraction of adegree are also sufficient to
generate a weak transverse ferromagnetic moment.

In ferrimagnetic minerals adjacent magnetic moments have different intensities be-
cause they do not belong to the same type of atom (or ion). Magnetite, for example, is
constituted by antiparallel magnetic sub-lattices with a different number of Fe2+ and Fe3+

ions. This imbalance may induce a net magnetizationMi when placed in an external field.
This magnetization is generally weaker than that of ferromagnetic iron where all atomic
moments add, but is larger than that of hematite (Dunlop and Özdemir 2007).

Above a certain critical temperature (Curie temperature) the disordering effect of ther-
mal energy overcomes the ordered structure of magnetic moments. Magnetite, for exam-
ple, has a Curie temperature of about 580◦C. When an igneous rock cools from above
the Curie temperature of its magnetic minerals in an external field H (such as the Earth’s
magnetic field), the torque exerted on the magnetic moments orients them in the direction
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of H thus originating a net magnetizationM of the sample. This type of magnetization
regards igneous rocks and is referred to as thethermoremanent magnetization(TRM).

Extrusive igneous rocks such as lava flows cool very rapidly in their environment rel-
ative to changes of the Earth’s magnetic field and therefore they represent almost instan-
taneous recordings of the field. At this stage, several mechanisms may create undesired
secondary magnetizations. For example, the cooled and solid outer surface of lava flows
may be rotated by the hotter and fluid layers beneath it. The TRM direction may then
no longer accurately reflect the geomagnetic field. To overcome this problem, the consis-
tency of magnetic directions is usually checked in different regions of the lava flows.

Due to the episodic nature of volcanic activity, lava flows often provide a record of
the Earth’s magnetic field which is discontinuous in time. Intrusive igneous rocks may,
potentially, offer a continuous record of the magnetic field. Unfortunately,the rate of
chemical alteration of magnetic minerals in igneous rocks increases dramatically with
temperature. Since intrusive igneous rocks cool significantly slower than lava flows do,
the chemical processes undergone often render this record difficult to resolve.

Sedimentary rocks acquire a stable NRM called thedetrital remanent magnetization
(DRM). Small magnetic grains, while sinking and settling atthe bottom of lakes or in
marine environments, statistically align with the geomagnetic field. When the bottom gets
compacted by the overlying layers, these grains lock into the place. Different geological
and biological processes may cause the rotation or translation of the sedimentary grains
thus inducing secondary magnetizations (post-DRM).

Despite these problems, some deep-sea cores provided excellent records of the rever-
sal chronology but, because of the low sedimentation rates,only in some cases of reversal
transitions themselves. On the other hand, terrestrial sedimentary cores and certain lake
sediments with higher sedimentation rates unrevealed geomagnetic field variations over a
few thousand to a few tens of thousand years (Merrill 1998, Chapter 3).

A detailed discussion of the different magnetization processes occurring in rocks and
the experimental measurement of their RM can be found in Dunlop and Özdemir (2007).
An introduction to rock magnetism with particular emphasisto the determination of pale-
omagnetic directions and intensity is given by Merrill (1998, Chapter 3).

1.4.2 Observational evidences for field reversals

One of the most well documented observations of the paleomagnetic field are reversals.
David (1904) and Brunhes (1906) first claimed to have observed magnetizations in lava
flows roughly opposite to the present Earth’s magnetic field direction. More than two
decades later, Matuyama (1929) compiled the first, very approximative reversal chronol-
ogy demonstrating that early Quaternary lavas had a reverseTRM. These studies, however,
did not provide definitive evidence for reversals of the geomagnetic field.

An alternative explanation, at that time strongly supported in the scientific community,
considered certain self-reversal mechanisms occurring inrocks (Néel 1951) as responsible
for the reverse TRM observed. We now briefly describe the mostcommon mechanism
of self-reversal of thermoremanent magnetization. Consider a rock with two separated
magnetic phases such that phase A has a higher Curie temperature than phase B, namely
T(A)

C > T(B)
C . When the rock cools to a temperatureT such thatT(B)

C < T < T(A)
C , phase

A is magnetized parallel to the external fieldH. On further cooling belowT(B)
C , phase B
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becomes magnetized in the total fieldH + H(A), whereH(A) is the magnetic field due to
phase A. The direction of the total field in which B becomes magnetized depends on the
relative intensity ofH andH(A). If |H(A)| > |H |, phase B will be magnetized opposite toH.
In particular, if B has a higher saturation magnetization atroom temperature than A, the
sample will have self-reversed.

The controversy between field reversals and self-reversalsin rocks continued for sev-
eral years until the global character of the reverse field directions observed was firmly
established. Cox and Doell (1963) and McDougall and Tarling(1963), using precise ra-
diometric age determination on lava flows younger than 4 Ma, indeed demonstrated that
reversals occurred at the same time at widely separated locations such as Alaska, Califor-
nia, Iceland and Hawaii. Secondary magnetization effects possibly affecting the measure-
ments were also ruled out because simultaneous zones of one polarity were observed in
rocks of widely different magnetic mineralogy (see, e.g., Wilson 1962). It should be noted
that these early studies were not carried on continuous rocksequences but their main aim
was to establish the global character of these events. A discussion on the developments
and properties of a continuous reversal chronology will be the subject of Section 1.4.4.

Further observations of continuous field polarity changes carried on rock sequences
(see Section 1.4.3) definitely ruled out the hypothesis of self-reversals and finally proved
that the geomagnetic field reversed in the past. Today we haveevidences of dipole field
polarity changes as old as about 2.8 Ga and several hundreds of these events have been
recorded with a certain degree of reliability for the past 170 Myr (Ogg 2012). Properties
of the field during such transitions are described in more detail in the following section.

1.4.3 Geomagnetic polarity transitions

The Earth’s magnetic field has a complex morphology and varies on a wide range of time
scales. Defining a reversal simply as a quasi-instantaneoussign change of the field thus
falls too short. When averaged over few thousand years, however, the geomagnetic field
is closely approximated by a geocentric axial dipole (Merrill 1998). Recent global field
models (see, e.g., Pavón-Carrasco et al. 2014) show that thegeomagnetic field can be av-
eraged as axial dipolar in around 2000 yr within 5◦ confidence in latitude. Since such
approximation is used in many paleomagnetic studies, a necessary requirement for a field
reversal is that the axial dipole termg0

1 in the spherical harmonic decomposition (1.3) has
to change sign. This definition, however, is not sufficient. Paleomagnetic measurements
are, indeed, often available only at few locations over the Earth’s globe and cannot pro-
vide a valid spherical harmonic description of the field, especially throughout a complete
polarity transition. Moreover, most records from igneous rocks seldom capture polarity
transitions and uncertainties inherent to radiometric dating techniques of 1− 2% are at
least comparable to the event duration (Lowrie 2007, Chapter 5). Sedimentary records
with high deposition rates of the order of 10 cm/kyr are thus regarded as the most reliable
recording media for polarity transitions but have the problem of averaging field variations
over the (generally unknown) lock-in time. To overcome these difficulties, it is common
practice in paleomagnetism to obtain, firstly, reliable transitional data at a single selected
location.

The paleofield direction at the given location is typically characterized by the so-called
virtual geomagnetic pole(VGP). The VGP position is where the pole of a geocentric
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Figure 1.3: Virtual geomagnetic pole paths for the Brunhes/Matuyama polarity transition
(from reverse to normal) from the Ocean Drilling Program Sites 981 (top panel) and 983
(bottom panel). Adapted from Channell and Lehman (1997).

dipole would be to give the observed field direction at the given location. Given the
observed declinationD and inclinationI of the remanent magnetization measured in a
sample, the VGP calculation is quite straightforward (see,e.g., Lowrie 2007, Chapter 5).
This quantity is useful for comparing observed directions from different positions on the
globe. It is important to note that the geocentric dipole assumption may fail if the field
locally hosts significant multipolar contributions.

Examples of some high-quality VGP paths of the most recent Brunhes/Matuyama
(B/M) transition, sampled from deep-sea sediment cores at two different sites (Ocean
Drilling Program Sites 981 and 983), are presented in Figure1.3. The B/M transition
shows complex VGP paths with considerable scatter around the geographic poles. The
deposition rates at Site 983 are about twice those at Site 981as it is evident from the finer
temporal variability recorded by the former core. As a consequence of the large direc-
tional changes experienced by the dipole field during polarity transitions, reversal dura-
tions are difficult to estimate and mainly suffer from the arbitrary definition of transitional
VGPs. It is a common practice in paleomagnetism to regard VGPs as transitional when
deviating more than 45◦ − 60◦ from the closest geographic pole (Merrill and McFadden
1999).

The apparent duration of reversals varies between different localities and the B/M
transition represents one of the most well documented examples (Dormy et al. 2000). If
the non-dipole field components, fluctuating on shorter timescales, locally dominate in
intensity relative to the dipole, the duration of directional changes can be vastly diverse at
different sites. The duration of a polarity reversal is, however, likely bounded by 1 and 8
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1.4 The paleomagnetic field

Figure 1.4: Evolution of the geomagnetic field intensity during the past 2 Myr.Panel a:
Composite relative paleointensity curve (95% confidence intervals in gray). Black and
white bars at the top of the panel depict normal and reverse field polarities respectively.
Panel b: Virtual axial dipole moment (VADM) obtained after calibration with the absolute
paleointensity from volcanic records. Black dots denote VADMs from volcanic records
averaged over successive time intervals (at least 0.1 Myr long) and error bars indicate their
dispersion. Adapted from Valet et al. (2005).

thousand years with a mean value of 4− 5 thousand years (Merrill and McFadden 1999).

A further reasonable requirement for a proper definition of the event “reversal” is that
the polarity change exhibits some stability after it occurred. Common paleomagnetic prac-
tice thus characterizes a reversal as a globally observed polarity change in the dipole field
(mainly inferred from VGP measurements as discussed above)averaged over a few thou-
sand years (Merrill 1998). In other words, this definition requires that the field presents
a clear geocentric dipole character over a certain period oftime bounding the transition.
In this work, we used this property as a guideline for the identification of reversals in
numerical dynamo simulations (see Section 5.3).

The past geomagnetic field intensity (paleointensity) is the second source of informa-
tion on the characteristics of polarity transitions. Unfortunately, reliable paleointensity
estimates are more difficult to obtain than directional data. Absolute paleointensity esti-
mates are retrieved from igneous rocks and rely on laboratory measurements of their TRM,
while relative estimates can be occasionally acquired fromsediments (Merrill and McFadden
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1999).
Similarly to the analysis of directional data, it is convenient to introduce a reference

measure for comparing paleointensity estimates obtained at different locations. Thevir-
tual dipole moment(VDM) is defined as the equivalent (geocentric) dipole moment lead-
ing to the observed field intensity and inclination in a rock sample. Figure 1.4 shows the
evolution of the geomagnetic dipole field intensity during the last 2 Myr as reconstructed
by Valet et al. (2005). The relative paleointensity curve (Figure 1.4, panel a) has been ob-
tained by stacking independent sediment cores records fromdifferent areas of the world.
Note that polarity transitions correlate remarkably well with local minima of the field
intensity.

The relative paleointensity curve has been calibrated withvolcanic records to obtain an
absolute estimate of the virtual axial dipole moment (VADM,panel b of Figure 1.4). This
procedure, common to many paleomagnetic studies, is delicate and requires particular
care. Remanent magnetizations of igneous rocks represent almost instantaneous records
of the total field and thus provide information on both dipolar and non-dipolar field contri-
butions. In order to eliminate eventual non-dipolar contributions to the estimated field in-
tensity, Valet et al. (2005) used the time-averaged VADM recorded by lava flows over the
past 0.8 Myr for calibration. VADMs from volcanic records averagedover successive time
intervals (denoted by black dots in Figure 1.4) agree with the calibrated record. The mean
VADM value during the Brunhes polarity interval (0− 780 ka) is (7.5± 1.7)× 1022 Am2

and VADMs typically reach values below 20% of the mean duringeach polarity transition.
It is important to remark that the non-dipolar field components may occasionally become
comparable in intensity to the dipole during polarity transitions. Therefore, VDMs are
not fully reliable estimates of the dipole field during transitional periods.

The dipole intensity decrease during polarity transitionshas been confirmed by sev-
eral paleomagnetic studies. Tanaka et al. (1995), for example, showed that significantly
low VDM values occur when the VGP latitude is more than 45◦ away from the clos-
est geographic pole for several polarity transitions during the past 10 Myr. Furthermore,
field intensity variations are generally observed to last longer than directional changes
(Dormy et al. 2000). Large episodes of dipole intensity decrease are indeed necessary
to cause a dominance of non-dipolar contributions, thus allowing for significant angular
deviations of the magnetic pole. For a complete review of both directional and intensity
observations during polarity transitions and their implications on the nature of the field
we refer to Merrill and McFadden (1999).

Once the local characteristics of a transitional field are uncovered by the paleomag-
netic measurements discussed above, the global character of a reversal has still to be
determined. As already discussed in Section 1.4.2, this is typically done combining mea-
surements from rocks of the same age at different sites over the globe. This usually
represents enough evidence for a sign change ofg0

1 in the field expansion (1.3).
Transitional VGPs show a second type of events known asgeomagnetic excursions.

During excursions the magnetic pole greatly departs from the geocentric axial dipole di-
rection. Such deviations are generally larger than typicalpaleosecular variations and may
eventually lead to the reverse direction for a relatively brief period. Contrary to reversals,
the opposite dipole direction is not firmly established during excursions. Brief polarity
excursions were initially considered either as spurious and isolated recording artifacts
indicative of remagnetization processes, or as local anomalies of the geomagnetic field.
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The analysis of high resolution deep-sea sedimentary records demonstrated that several
excursions punctuated the most recent stable polarity epochs. Once the same excursions
could be detected at several locations and in different magnetic materials, thus robustly
establishing the global character of some of these events, their existence could no longer
be doubted.

Numerous field excursions have been discovered to punctuatethe most recent Brunhes
polarity interval (0− 780 ka). The Laschamp excursion is the most well documented
event and also the first to be historically recognized in lavas from the French Massif
Central. Absolute ages of lava flows date its occurrence at 46.6± 2.4 ka and sedimentary
records estimate its duration to about 2 kyr (Dormy et al. 2000). Six excursions during
the Brunhes polarity epoch can be reliably considered as global events, while at least five

Figure 1.5: Relative paleointensity (top panel) and virtual geomagnetic pole (VGP) lati-
tude (bottom panel) at the Ocean Drilling Program Sites 983 (red curves) and 984 (blue
curves) during part of the Matuyama chron (0.780− 2.581 Ma). Reversals and globally
correlated excursions are marked with the respective names. Adapted from Channell et al.
(2002).
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more have not been correlated worldwide.
Figure 1.5 shows relative paleointensity estimates and VGPlatitudes during part of

the most recent reverse polarity interval (Matuyama chron,0.780−2.581 Ma) as recorded
from deep-sea sediments at the Ocean Drilling Program Sites983 (in red) and 984 (in
blue). Large fluctuations in the VGP latitude during the reverse polarity epoch between
1100 and 1780 ka cross the (virtual) magnetic equator and characterize geomagnetic excur-
sions, named with the locality of their discovery. Jaramillo and Olduvai reversals embed
shorter epochs of normal polarity (positive VGPs) and do notpresent any excursion. A
comparison with the paleointensity records (Figure 1.5, top panel) reveals a correlation be-
tween excursions and local field intensity minima. As demonstrated by Guyodo and Valet
(1999), the six global excursions identified during the mostrecent Brunhes normal po-
larity epoch also nicely correlate with major paleointensity lows. Further information
regarding dating and duration of excursions during the Brunhes and Matuyama polarity
epochs can be found in, e.g., Laj and Channell (2007) and Valet et al. (2008). Evidences
for geomagnetic excursions in periods older than the Matuyama are more difficult to ac-
cess because the respective transitions need to be entirelyresolved to determine an event
occurrence.

On the basis of the evidences described above, it is likely that excursions punctu-
ated the entire history of the Earth’s magnetic field. Since excursions represent a major
characteristic of the geomagnetic field, their properties must be considered as an actual
constraint for dynamo models. In order to classify an event as a field “excursion”, it ap-
pears crucial to distinguish it from: (i) a large secular variation period and (ii) a pair of
subsequent reversals (Gubbins 1999). Such distinction appears also fundamental in nu-
merical dynamo simulations when these events have to be properly identified. This issue
will be discussed in detail in Section 5.3.

1.4.4 The geomagnetic polarity time scale

The first, very crude geomagnetic polarity time scale (GPTS)was compiled by Cox and Doell
(1963) and comprised only three magnetic polarity epochs for the past 3.2 Myr with a du-
ration of∼ 1 Myr each. When new observations and refined dating techniques became
available, more reversals started to be included in this early GPTS. In particular, polarity
epochs shorter than one hundred thousand years were discovered to punctuate the longer
ones. Figure 1.6 presents the GPTS for the past 6 Myr as compiled by Cande and Kent
(1995). Longer polarity epochs are named in honor of pioneering geophysicists (Brun-
hes, Matuyama, Gauss, Gilbert, etc.), while shorter eventsare labeled with the location
of their discovery. A nomenclature of polarity epochs basedon their duration has been
officially adopted and is summarized in Table 1.1. Polarity epochs with a duration of
1−10 Myr are calledchrons, while events lasting 0.1−1 Myr are referred to assubchrons.
We currently live during the Brunhes chron of normal (N) fieldpolarity. The last reversal
occurred about 780 kyr ago and the most recent reverse (R) polarity chron (Matuyama)
is punctuated by three subchrons (Jaramillo, Olduvai, Réunion as also shown in Figure
1.5). Very brief polarity intervals, typically shorter than 30 kyr and which are not fully
constrained, are termedcryptochrons. During the actual polarity epoch a cryptochron oc-
curred, for example, 0.504 Myr ago (Cobb Mountain). A list of cryptochrons for the last
64 Myr can be found in Table 3 of Cande and Kent (1995). It is important to remark that
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Figure 1.6: Geomagnetic polarity time scale of Cande and Kent (1995) for the past 6 Myr.
Normal and reverse polarities are marked in black and white respectively. From Merrill
(1998).

geomagnetic excursions, having typical durations of few thousand years, are sometimes
difficult to distinguish from cryptochrons.

A continuous record of polarity changes can be obtained analyzing the paleomagnetic
field recorded in deep-sea sediments retrieved by drilling the ocean bottom. Typical sed-
imentation rates of the north-central Pacific Ocean are relatively low and of the order of
1 to 10 mm per thousand years (Merrill 1998). Such low sedimentation rates allow to go

Magnetostratigraphic Geochronologic Approximate
polarity units unit (time equivalent) duration [yr]

Polarity megazone Megachron 108 − 109

Polarity superzone Superchron 107 − 108

Polarity zone Chron 106 − 107

Polarity subzone Subchron 105 − 106

Polarity cryptozone Cryptochron < 3 · 104

Table 1.1: Nomenclature for magnetostratigraphic (rock) and polarity chron (time)
units as recommended by International Subcommission on Stratigraphic Classification.
Adapted from Ogg (2012).
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Figure 1.7: Digital isochrons of oceans based on magnetic chronology. Mid-ocean ridges
are marked by the black solid lines. Adapted from Kono (2007).

back in time for several million years in the geomagnetic history over relatively short core
lengths. Large uncertainties in the marine sediment recordcome from dating fossils and
modelling variations in sedimentation rates. Accurate observations extending more than
10 Myr ago are thus practically impossible in deep-sea sediments. Long sequences of lava
flows on land are also affected by errors in their radiometric dating. Since these errors
increase proportionally to the sample age, many of these extended records are useless.

A fundamental improvement in the compilation of a GPTS, now reliably extended
to about 160 Myr ago, came from Vine and Matthews (1963) who interpreted the mag-
netic anomalies observed at oceanic ridges. Mid-ocean ridges constitute geologically ac-
tive fractures of the crust where hot magma, coming from mantle upwellings, constantly
emerges at the ocean floor (see Figure 1.7). The extrusion of new material pushes the
cooling crust away from the ridge symmetrically on either side. The large scale motion
of tectonic plates, sinking in the mantle at oceanic trenches, generates tension at the ridge
axis which tends to pull the crust and the uppermost mantle apart. Spreading rates range
from about 20 km/Myr to more than 140 km/Myr (McElhinny and McFadden 2000). As
the iron-rich material extruded at the ridge axis cools below its Curie temperature it be-
comes magnetized parallel to the Earth’s magnetic field. Theoceanic crust therefore
acquires a normal or reverse remanent magnetization depending on the ambient field po-
larity at that time. Due to the sea-floor spreading mechanismdescribed above, strips of
alternating polarity (produced parallel and distributed symmetrically to the ridge axis)
constitute the past geomagnetic polarity epochs (Figure 1.7). In other words, the crust
near the oceanic ridges acts as a kind of “tape-recorder” of the Earth’s magnetic field
in the past. The field polarities are observed by magnetometers dragged over the ocean
floors as anomalous field intensities. An enhanced magnetic field intensity is recorded
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Figure 1.8: Geomagnetic polarity time scale of Ogg (2012) for the past 171 Myr. Black
(white) marks normal (reverse) field polarity.

over the crust that cooled in an ambient field with the same polarity as the present field.
Conversely, partial cancellation of the signal is observedover the crust formed during a
period of reverse polarity.

The same sequence of magnetic anomalies is observed in much of the Pacific, Atlantic
and Indian Oceans at the respective ridge axes. The South Atlantic magnetic anomaly
profile has been taken as a standard for the polarity sequencespanning the last 84 Myr.
Since this period covers the late Cretaceous through the Cenozoic, the associated rever-
sal chronology is generally referred to as theC-sequenceand the respective magnetic
anomalies have been numbered from 1 to 34 (oldest). Polaritychrons of the C-sequence
are usually denoted by the letter “C” followed by a number correlated with the youngest
magnetic anomaly. A suffix “n” (“r”) marks the normal (reverse) field polarity during that
period. For example, C1r denotes the Matuyama chron representing the period of reverse
polarity between magnetic anomalies 1 and 2. If a polarity chron contains shorter field
polarities, the subchrons are denoted with a correspondingnumbered suffix. For example,
C1r.1n represents the youngest normal subchron during the Matuyama chron (Jaramillo
event in Figure 1.5).

Figure 1.8 shows the most recent GPTS for the past 171 Myr as reported by Ogg
(2012). This reversal chronology contains 449 events whichseem to occur stochasti-
cally in time. An exceptionally long normal polarity interval of 35 Myr (chron C34n),
known as the Cretaceous normal superchron (CNS), extends from about 118 Ma to ap-
proximately 83 Ma. Such event is not unique in the past geomagnetic history. Evidences
for a superchron of reverse polarity, known as the Kiaman reverse superchron (KRS),
were already available before the reversal chronology was well developed. The KRS has
been estimated to extend for more than 50 Myr, from approximately 318 Ma to 262 Ma
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(Cottrell et al. 2008). Several magnetostratigraphic observations support its existence, but
this event is too old to be recorded by marine magnetic anomalies.

A third superchron, known as the Moyero reverse superchron (MRS), is suspected
to have occurred during the Ordovician from 485 Ma to 463 Ma. Since evidences have
been found only at a single site (Moyero, Siberia) and different records elsewhere do not
document its existence, the MRS occurrence is still debated(McElhinny and McFadden
2000).

Oceanic crust of the late Middle Jurassic through the Early Cretaceous displays a sec-
ond series of magnetic anomalies, named theM-sequencebecause they cover the Meso-
zoic era. The M-sequence comprises chrons M0r–M25r and can be considered quite
robust since it has undergone only minor refinements since its first derivation (Ogg 2012).
Note that the end of M0r does not define the staring time of the CNS (Figure 1.8). Af-
ter the M-sequence was numbered, clusters of brief reverse polarities were reported by
deep-sea sediments from the oldest portion of the CNS. An upward continuation of the
M-sequence suggested a negative numbering (M-1r) to define the brief chron which ended
118.5 Myr ago and which actually defines the start of the CNS. Despite this event has not
yet been fully verified, we included it in the GPTS of Figure 1.8 because it is reported in
other polarity time scales as well (see, e.g., Cande and Kent1995). Two additional events
occurred around 102 Ma and 108 Ma are not included in Figure 1.8 since their durations
are not known.

Additional marine magnetic surveys in the Pacific using magnetometers towed near to
the sea-floor allowed to extend the M-sequence up to about 171Myr ago (see Ogg 2012,
and the oldest numbered M-sequence anomaly M45n). Contraryto surface surveys, these
intensity observations just above the oceanic crust inevitably record short-wavelength fea-
tures. It is therefore important to keep in mind that certainbrief chrons might be an artifact
of the recording method employed in the oldest 14 Myr of this extended M-sequence.

1.4.5 Statistical analyses of geomagnetic reversal occurrences

In the attempt to provide robust constraints on our knowledge of the internal core pro-
cesses underlying the occurrence of reversals, great effort has been spent in the statistical
study of the GPTS since its earliest compilations. Previousstatistical studies of geo-
magnetic reversal chronologies are reviewed in this section. Predictions from reversing
geodynamo models are also discussed in the following.

As already described in Section 1.4.3, paleomagnetic observations indicate that the
time required for a polarity transition typically ranges from 4 to 5 kyr. This time is more
than two orders of magnitude shorter than the mean chron duration during the Cenozoic.
As a first approximation, it is therefore reasonable to consider reversals as rare events
occurring instantaneously in time. The further assumptionthat reversals are independent
events (i.e. the probability of an event occurrence does notdepend on the duration of
prior polarity intervals) has been claimed in the pioneering work of Cox (1968) but was
subsequently debated (see, e.g., Naidu 1974).

The first and most obvious reason which may break the independence assumption
is that reversals, although relatively brief, do not occur instantaneously and therefore a
certain degree of memory must be present in the magnetic field. If fluid motions powering
the geodynamo were to terminate, the dipole field would decayby ohmic diffusion on
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Figure 1.9: Reversal rate for the past 170 Myr according to the time scale of Ogg (2012).
The estimate has been constructed using a sliding window with a fixed number ofN = 40
reversals in each interval. The duration of the Cretaceous normal superchron (CNS) is
marked in gray.

time scales of the order of several tens of thousand years (see Section 1.2). The free
dipole decay time of the core (∼ 56 kyr) can therefore be regarded as a reasonable upper
bound for the memory time of core processes. On the other hand, the memory time might
be several orders of magnitude shorter if it directly reflects typical temporal variations
of internal fluid motions. The convective overturn-time, for example, amounts to a few
hundred years and is associated with large scale motions of convection. Analyzing a suite
of global numerical dynamo simulations, Hulot et al. (2010)suggested that the Earth’s
dynamo is totally unpredictable beyond a century. Later studies demonstrated that dipole
correlation times in such models are typically a fraction ofthe free dipole decay time,
thus suggesting that any departure from the independence ofreversal occurrences might
be small (Lhuillier et al. 2011, Lhuillier et al. 2013).

The second reason which might invalidate the independence assumption are the varia-
tions observed in the reversal rate. Figure 1.9 shows the reversal rate throughout the GPTS
of Ogg (2012) calculated using a sliding window with a fixed number of reversals. The re-
versal rate decreases when approaching the CNS and increases afterwards, thus indicating
the possible existence of statistical correlations between successive field polarities. How-
ever, since the reversal rate changes slowly compared to themean chron duration (which
amounts to about 0.38 Myr), deviations from independence might still be considered mild.
Correlation analyses performed on short periods where the reversal rate can be considered
stationary indeed support the hypothesis of statistical independence (Phillips et al. 1975,
Phillips and Cox 1976).

In principle, the non-stationarity of the reversal rate over the last 170 Myr precludes
the possibility of considering the polarity chrons as a random sample from a probability
distribution with fixed parameters. The structure of the non-stationarity has been included
into the parameters of certain distribution functions either by assuming a filtering process
of the shortest chrons (McFadden 1984) or by analyzing the reversal sequences in station-
ary sub-intervals (McFadden and Merrill 1984). These and further aspects regarding the
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characterization of the distribution of geomagnetic polarity intervals will be discussed in
Section 3.4.1 where different probability distribution functions are described.

Constable (2000) investigated in detail the temporal variations in the reversal rate
during the Cenozoic. The author demonstrated that the hypothesis of a non-stationary
Poisson process is statistically compatible with the observed sequence of reversals.

Long-term variations in the reversal rate (and ultimately superchron states) have been
successfully linked to external effects influencing the core field dynamics and most often
identified to be of mantle origin (McFadden and Merrill 1984,Biggin et al. 2012). The
typical time scale of convective motions in the mantle can beestimated asτm = D/U ≈
200 Myr, whereD is the mantle thickness andU the mean sea-floor spreading rate of
45 mm/yr, and suggests that such processes and the occurrence of the CNS might have
a causal link. In this context, Driscoll and Olson (2011) proposed a numerical dynamo
model able to reproduce the reversal rate variations observed in the GPTS. The authors
showed that an increase in the heat-flow at the core-mantle boundary drives the dynamo
from a stable dipolar to a reversing state which accounts forreversal rate variations re-
markably similar to those observed since the end of the CNS. Conversely, a monotonic
decrease in the heat-flow at the outer boundary produces a decreasing reversal rate.

Other mechanisms possibly influencing the long-term state of the Earth’s core have
also been proposed. Driscoll and Olson (2009), for example,demonstrated that incre-
mental changes in the convective forcing of a chemically driven dynamo started in a
non-reversing state evolves to a reversing regime. The authors also showed that trends
in dipole intensity and polarity interval durations in suchmodels qualitatively agree with
those obtained from the analysis of reversal chronologies since the end of the CNS.

However, it is not yet clear if external processes are necessarily required to reproduce
the observed reversal rate variations. Such changes might alternatively stem from the
highly non-linear internal processes governing the geodynamo and thus spontaneously
producing the large variety of time scales observed. This alternative hypothesis was pro-
posed, for example, by Gaffin (1989) who demonstrated that polarity chrons with dura-
tions longer than 0.5 Myr are well described by a power-law distribution. The author
interpreted the scale invariance of the power-law distribution as an evidence for the lack
of an intrinsic time scale in the internal dynamical processes triggering reversals. More
recently, Jonkers (2003) confirmed these results analyzingthe Cenozoic reversal chronol-
ogy of Cande and Kent (1995) but obtained a different power-law exponent.

Compared to other probability distributions describing paleomagnetic chron durations,
the power-law presents a slower decreasing tail (see, e.g, Shcherbakov and Fabian 2012).
This characteristic naturally accounts for the occurrenceof extreme events such as super-
chrons. Rather than externally induced, these events mighttherefore alternatively stem
from the same physical process leading to shorter polarity intervals. Hulot and Gallet
(2003), generalizing a statistical test for stationarity introduced by McFadden and Merrill
(2000), showed that there is no long-term behavior in the reversal rate over the 40 Myr
preceding the CNS that could have explained its onset. In support of these findings,
Carbone et al. (2006) used a statistical transform to demonstrate that a non-stationary
Poisson process is incompatible with different polarity time scales available for the Ceno-
zoic. The authors furthermore showed that a Lévy process, a particular type of random
walk characterized by a heavy-tailed distribution, well describes the statistic of pale-
omagnetic chron durations. A detailed comparison of different distribution functions
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which adequately model the paleomagnetic polarity intervals have been carried out by
Ryan and Sarson (2007) and Shcherbakov and Fabian (2012). Such simple statistical
characterizations of reversal occurrences are particularly intriguing because they may pro-
vide the link between complex geodynamo processes and simpler stochastic mechanisms
able to describe them.

As a final remark, it is important to keep in mind that two unavoidable problems affect
the analysis of paleomagnetic reversal chronologies. Firstly, a reasonably reliable GPTS
is available only for the past 160 Myr and this provides a relatively short record of polar-
ity intervals. Secondly, due to resolution problems, even the most recent versions of the
GPTS likely disregard several of the shortest chrons (typically shorter than 30 kyr). Fur-
thermore, the precise ages of several reversals still need to be adjusted. Marzocchi (1997),
for example, investigated the influence of this incompleteness on some statistical proper-
ties of the GPTS. Filtering the shortest polarity intervalsfrom synthetic series of events,
the author showed that the Cenozoic time scale of Cande and Kent (1995) is compatible
with a Poisson process where at least 30% of the shortest chrons are missing in the record.
As already pointed out in Section 1.4.4, two of such short, not fully verified events may
have occurred during the CNS around 108 Ma and 102 Ma (Ogg 2012). The problems dis-
cussed above define an inherently incomplete GPTS and the statistical analysis of reversal
chronologies always require careful interpretations.
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2 The geodynamo: theory and
numerical modelling

This chapter introduces the fundamental magneto-hydrodynamic equations which model
the geodynamo. The equation governing fluid motions under the Boussinesq approxima-
tion and a transport equation for the temperature perturbations are derived in Sections 2.1–
2.4, while the equation of evolution for the magnetic field isderived in Section 2.5. The
non-dimensionalization of the governing equations is discussed in Section 2.6. Section
2.7 discusses appropriate boundary conditions for the geodynamo problem. The chap-
ter closes summarizing the numerical approach employed to solve the above-mentioned
equations in Section 2.8.

2.1 Hydrodynamics

The Earth’s outer core is a liquid mixture of iron and nickel.Since we are interested in
the description of macroscopic phenomena in such a system, namely occurring on length
scales much larger than the typical interatomic distances,the liquid core can be regarded
as acontinuous medium. In this approximation, known as thecontinuum hypothesis, the
state of the fluid is described by physical quantities which are continuous functions of
positionx and timet (Eulerian specification).

The state of a moving fluid is completely determined by the distribution of its velocity
u = u(x, t) and of any two thermodynamic quantities such as, for example, the pressure
P = P(x, t) and the densityρ = ρ(x, t). All the other thermodynamic quantities can be
obtained from the latter two specifying an equation of state. We now recall the equations
governing fluid motions.

The conservation of mass of the fluid is described by theequation of continuity

∂ρ

∂t
+ ∇ · ρu = 0 (2.1)

which can be written, expanding the divergence term, as

∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0 . (2.2)

The first term in the above equation describes the local temporal variations of the fluid
density, while the second term represents the rate of changeof the fluid density at a fixed
point in spacex due to transport (or advection) of the fluid elements. It is convenient to
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define the so-calledmaterial derivativeas

d
dt
�
∂

∂t
+ u · ∇ , (2.3)

such that Equation (2.2) shortly reads

1
ρ

dρ
dt
+ ∇ · u = 0 . (2.4)

The equation of motion for an inviscid fluid, describing the conservation of momen-
tum, is theEuler equation

∂u
∂t
+ (u · ∇) u = −1

ρ
∇p , (2.5)

where p denotes the hydrostatic fluid pressure. This equation describes the fluid flow
without taking into account any process of energy dissipation (ideal fluid). Using tensor
notation, Euler equation reads

∂ρui

∂t
= −
∂Πi j

∂xj
, (2.6)

where the second rank tensorΠi j is defined by

Πi j � pδi j + ρuiu j . (2.7)

The physical meaning of the different terms in (2.6) becomes clear after a volume inte-
gration. Integrating both sides of this equation over the fluid volumeV and using the
divergence theorem, we are lead to

∂

∂t

∫

V
ρui dV =

∮

∂V
Πi j dSj , (2.8)

where∂V denotes the closed boundary surface of the volumeV anddSj = dS nj with n j

the outward normal to the surface element. Since the left-hand side of (2.8) is the local
rate of change of thei-th component of the momentum in the fluid volume,Πi j is the
i-th component of the amount of momentum flowing per unit time through the unit area
perpendicular to then j direction. For this reasonΠi j is called the momentum flux density
tensor orstress tensor. Each diagonal component ofΠi j gives the normal component of
the internal surface forces acting on a surface parallel to one of the co-ordinate planes
(normal stresses). The non-diagonal components ofΠi j describe the surface forces acting
perpendicularly to the direction of fluid motions. The latter surface forces are setup by
shearing motions of fluid layers and are therefore called tangential stresses. It is evident
that the stress tensor (2.7) is symmetric, that isΠi j = Π ji . This means that the transfer of
momentum in ideal fluids is completely reversible as expected.

In real (and planetary) flows internal friction and heat exchange between different
parts of the fluid lead to energy dissipation and therefore Equations (2.6) and (2.7) require
some modifications. Equation (2.7) can be corrected introducing a new term−σ′i j which
describes the amount of momentum per unit time and unit area lost in the fluid motions
due to internal friction (viscosity), namely

Πi j = pδi j − σ′i j + ρuiu j . (2.9)
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2.2 Thermodynamic equations

The derivation of the explicit form ofσ′i j is phenomenological and can be found in clas-
sical textbooks of fluid dynamics (see, e.g., Batchelor 2000, Chapter 3). The resulting
expression reads

σ′i j = µ

(
∂ui

∂xj
+
∂u j

∂xi

)
+

(
ζ − 2

3
µ

)
∂uk

∂xk
δi j , (2.10)

where the positive constantsµ andζ are the so-called coefficients of viscosity and second
viscosity respectively. Note that the above expression depends only on the spatial deriva-
tives of the fluid velocity. This is due to the fact that internal friction occurs only when
relative motions of different parts of the fluid are present. Such velocity gradientshave
been assumed to be small and therefore only first order derivatives are retained. The two
terms collected in the first parenthesis of (2.10) describe the transport of momentum due
to the shearing motions of different fluid layers. The local rate of expansion∂kuk is asso-
ciated with the rate of change of the volume of fluid elements and also causes a transport
of momentum which is taken into account in the last term of (2.10).

The other essential assumption used to derive (2.10) is the fluid isotropy. The molec-
ular structure of the fluid can be reasonably considered statistically isotropic. Macroscop-
ically, this implies that the stress generated in any element of the fluid is independent of
the element orientation. Fluids for which the linear relation (2.10) holds are said to be
Newtonian.

Substituting (2.9) into Euler equation (2.6) leads to the equation of motion of a viscous
fluid

ρ

[
∂u
∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u +

(
ζ +
µ

3

)
∇(∇ · u) (2.11)

which is known as theNavier-Stokes equation.
In the presence of gravity, the additional forceρg acts on any unit volume and the

Navier-Stokes equation (2.75) modifies to

∂u
∂t
+ (u · ∇)u = −1

ρ
∇p+ g+ ν∇2u +

(
ζ

ρ
+
ν

3

)
∇(∇ · u) , (2.12)

where thekinematic viscosityν is defined as

ν �
µ

ρ
. (2.13)

The coefficientµ itself is called thedynamic viscosity.

2.2 Thermodynamic equations

As already anticipated in Section 1.2, the main drivers of fluid motions in planetary cores
are thermal and compositional convection. In thermal convection buoyancy forces are
setup by temperature gradients, while in compositional convection they are caused by the
release of light elements at the inner-core boundary. In this section, the compositional
driving is neglected and we concentrate on thermal convection. Starting from the prin-
ciples of thermodynamics, an evolution equation for the temperature is derived in the
following.
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Consider a thermodynamic transformation between two neighboring equilibrium states.
During such transformation, the system energy varies according to the first law of thermo-
dynamics

dU = dQ+ dW (2.14)

wheredU represents the variation in internal energy per unit mass ofthe fluid, dQ the
heat exchanged by the system per unit mass anddW the work per unit mass done by the
fluid during the transformation.

Consider now a mechanical compression of the fluid. If the transformation is re-
versible, the work done on the fluid is−pdV. Since the volume is taken per unit mass,
V = ρ−1 and (2.14) becomes

dU = dQ+
p
ρ2

dρ . (2.15)

In order to derive an evolution equation for the internal energy U of the system from the
above expression, variations in the heatQ need to be characterized in terms of changes
in two of the fundamental variables (T, p, ρ). The entropyS of the system, defined in a
reversible transformation from an equilibrium state to another, is introduced as an exten-
sive quantity byTdS = dQ. RegardingS as a function of temperature and pressure, the
entropy variations can be written as

dS =

(
∂S
∂T

)

p

dT +

(
∂S
∂p

)

T

dp, (2.16)

where the subscripts indicate that the terms in parenthesishave to be taken at constant
pressure and temperature respectively. Introducing the heat capacity at constant pressure
cp as the amount of heat exchanged by the system due to a change intemperature at
constant pressure, we have

cp �

(
∂Q
∂T

)

p

= T

(
∂S
∂T

)

p

. (2.17)

The first term in parenthesis on the right hand side (RHS) of (2.16) is thus proportional to
cp.

Using one of Maxwell’s relations of thermodynamics, the second term on the RHS of
(2.16) can be simplified as

(
∂S
∂p

)

T

= −
(
∂V
∂T

)

p

=
1
ρ2

(
∂ρ

∂T

)

p

. (2.18)

Defining the coefficient of thermal expansion of the fluidα as

α �
1
V

(
∂V
∂T

)

p

= −1
ρ

(
∂ρ

∂T

)

p

, (2.19)

expression (2.18) reads (
∂S
∂p

)

T

= −α
ρ
. (2.20)

Substituting (2.17) and (2.20) into Equation (2.16) finallyleads to the expression for the
entropy variations

dS =
cp

T
dT − α

ρ
dp. (2.21)
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The evolution equation of entropy is obtained dividing bothsides of the above expression
by dt

T
dS
dt
= cp

dT
dt
− α
ρ

T
dp
dt
. (2.22)

In planetary cores, heat variationsdQ are influenced by internal sources of thermal
energy. Introducing the local heat fluxq and a termh which includes all the internal
sources and sinks of heat per unit volume, the rate of change of heat can be generally
written as

ρ
dQ
dt
= −∇ · q + h . (2.23)

Fourier’s law of heat conduction providesq = −k∇T, wherek is the fluid thermal conduc-
tivity, and Equation (2.23) becomes

ρ
dQ
dt
= ∇ · (k∇T) + h . (2.24)

Assuming a fluid with constant thermal conductivityk and using the definition of entropy,
Equation (2.24) can be rewritten as

ρT
dS
dt
= k∇2T + h . (2.25)

Comparing the above equation with (2.22), we are finally leadto the evolution equation
for the temperatureT

ρcp
dT
dt
− αT dp

dt
= k∇2T + h . (2.26)

If the time derivatives in the above equation are interpreted as material derivatives, (2.26)
represents the general equation describing the effect of heat conduction in a moving fluid
with a constant thermal conductivityk.

In planetary iron cores, different physical mechanisms contribute as sources or sinks
of heat in the termh. Among the heat losses, the core secular cooling is perhaps the most
important one. As the core cools down, however, it graduallycrystallize at the top of the
inner-core boundary thus releasing latent heat in the liquid outer core. This represents
an important source of thermal energy driving convection inthe Earth’s outer core. On
the other hand, the freezing inner core cannot dissolve veryefficiently light elements thus
causing their expulsion in the liquid outer core. Such chemical differentiation between
the lighter fluid layers close to the inner core boundary and the overlying liquid can help
the fluid to become buoyant (compositional convection). Another important contribution
to the internal heat production comes from radioactive decay. This can be considered as
a uniform heat source since vigorous convection is expectedto homogeneously distribute
radiogenic elements in the outer core. For a viscous and magnetically conducting fluid,
heat due to viscous and Ohmic dissipation may also contribute. A detailed discussion on
the relative importance of the different sources and sinks of heat in the Earth’s core can
be found in Nimmo (2007).

To summarize, the equations governing fluid motions in planetary cores are: the con-
tinuity equation (2.4), the Navier-Stokes equation (2.12)and the temperature equation
(2.26). They must be complemented by an equation of state (EOS)

ρ = ρ(T, p) (2.27)
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which closes the system. In principle, the above equations could be used to solve numeri-
cally for thermal convection in the core. They describe physical processes in a wide range
of characteristic time scales varying, in the case of Earth’s core, from few minutes (acous-
tic/seismic) to hundreds of years (convection turnover time). Moreover, the temperature
perturbationsT′ driving convection are a very small fraction of the mean coretemperature.
Simple orders of magnitude estimates reveal indeedT′ ∼ 7×10−5 K (Jones 2007). From a
practical point of view, numerical errors of the same magnitude for the temperature would
lead to unreliable solutions. In order to model convection,it is therefore advantageous to
study only the small deviations from an equilibrium state (reference state) induced by con-
vective fluctuations. Simplified forms of the above equations, obtained upon linearization
of the thermodynamic relations, are discussed in the next section. More precisely, we
derive the equations governing thermal convection under the Boussinesq approximation
and we discuss the validity of such approximation in the caseof Earth’s core.

2.3 Equations for the convective perturbations

In order to derive the equations for the convective perturbations, we have first to specify a
reference state about which linearizing the thermodynamicrelations. The contributions to
the stationary reference state (indicated by the subscript0) are distinguished from the time-
dependent convective perturbations (indicated by the superscript′). It is useful to separate
further the reference state into the sum of a (constant) meanbackground contribution and
its spatial variations. The densityρ, the pressurep and the temperatureT of the fluid can
then be written as

ρ(r , t) = ρm+ ρa(r ) + ρ′(r , t) (2.28a)

p(r , t) = pm+ pa(r ) + p′(r , t) (2.28b)

T(r , t) = Tm + Ta(r ) + T′(r , t) (2.28c)

where the subscriptm refers to a (constant) spatial average over the fluid domain of
the corresponding quantity,a to the variations in the absence of motion and the primed
quantities to the fluctuations resulting from convective motions. Since by assumption the
reference state is steady (u0 = 0), we denote the fluid velocity in the perturbed state byu
for simplicity of notation.

For the convective motions to be slow, it is necessary that the reference state is in
quasi-equilibrium. In the absence of motions, Euler equation (2.5) in the presence of
gravity reduces to the hydrostatic balance

− ∇pa + ρ0g = 0 , (2.29)

whereρ0 = ρm+ρa. The above equation describes the mechanical equilibrium of the fluid
in the reference state.

There are different ways of imposing the thermal quasi-equilibrium of thereference
state, but the most natural choice for convection problems is to consider a state in which
heat is transported only by conduction. In the Earth’s outercore, heat is transported
far more effectively by convection than by conduction. Considering a turbulent thermal
diffusivity κT ∼ 2 m2/s (Jones 2007), the characteristic time scale of thermal diffusion
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processes in the core isd2/κT , whered is the outer shell thickness, and amounts to about
80 kyr. Since the convective turnover time can be estimated to be of a few hundreds
years, this separation of time scales allows to consider theconduction state as a steady
background for convection. The thermodynamic transformations of the fluid core due
to thermal diffusion processes can therefore be considered adiabatic withrespect to the
convective time scales. This implies that the transformations of the reference state are
isentropic (dS = 0) and, consequently, the evolution equation for the temperature (2.26)
consequently reduces to

k∇Ta = −h0 . (2.30)

The above equation describes the thermodynamic balance of the adiabatic reference state
between thermal diffusion and the heat coming from sources distributed within the core
and, eventually, from the boundaries.

Following Spiegel and Veronis (1960), we introduce the scale heights

H f �

∣∣∣∣∣
1
fm

d fa
dr

∣∣∣∣∣
−1

(2.31)

where f denotes any of the thermodynamic variablesρ, p, T and r the radial distance.
The basic assumption of the Boussinesq approximation is that the reference thermody-
namic quantities vary on length scales much larger than the largest linear dimension of
the system. In other words, the fluid is assumed to be confined in a spherical shell whose
thicknessd is such that

d≪ H f . (2.32)

This is often referred to as thethin-shell approximation.
The validity of such approximation in the case of Earth’s core can be examined esti-

mating, for the different thermodynamic quantities, the scale heights (2.31) as

H f ∼
(

1
fm

|∆ fa|
d

)−1

. (2.33)

Assuming a spherically symmetric outer core of thicknessd, ∆ fa in the above expression
is the change off across the fluid shellf (ro) − f (r i) and fm is its mean value [f (ro) +
f (r i)]/2. Using typical values for the densityρ, the temperatureT and the pressurep at
the inner core boundaryr i and at the core-mantle boundaryro (Olson 2007, Tables 2 and
3), the estimated scale heights of the respective quantities are

Hρ/d ∼ 15.6

HT/d ∼ 3.0

Hp/d ∼ 1.2 .

Since all the scale heights exceed the thickness of the Earth’s outer core, the thin-shell
approximation (2.32) can be considered to be at least marginally satisfied.

We now define for convenience

ǫa �
|∆ρa|
ρm

(2.34)
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which, using (2.33) and according to the above estimates, results inǫa ∼ d/Hρ ≈ 6 · 10−2.
Let the reference state described by equations (2.29) and (2.30) be slightly perturbed.
Assuming that the density fluctuationsρ′ do not exceed in amplitude the static background
densityρm, we can write ∣∣∣∣∣

ρ′

ρm

∣∣∣∣∣ � ǫ
′
. O(ǫa) . (2.35)

Substituting the decompositions (2.28) into the continuity equation (2.2) yields

∂ρ′

∂t
+ u · ∇ (

ρa + ρ
′) + ρ∇ · u = 0 . (2.36)

Dividing both sides of the above equation byρm and using (2.34) leads to

∂

∂t

(
ρ′

ρm

)
+ (u · ∇ + ∇ · u)

(
ρa

∆ρa
ǫa +

ρ′

ρm

)
+ ∇ · u = 0 . (2.37)

To orderǫa, the continuity equation (2.37) reduces therefore to the condition for an incom-
pressible flow

∇ · u = 0 . (2.38)

We now derive the equation of motion for the convective perturbations. Since by
assumption the density variations of the reference state and the density perturbations are
small compared to the mean background densityρm, the EOS (2.27) can be linearized. A
Taylor expansion ofρ = ρ(T, p) around (ρm,Tm, pm) up to the first order yields

ρ ≃ ρm

1+
1
ρm

(
∂ρ

∂T

)

pm

(T − Tm) +
1
ρm

(
∂ρ

∂p

)

Tm

(p− pm)



= ρm
[
1− α(T − Tm) + β(p− pm)

]
,

whereα is the thermal expansion coefficient defined in (2.19) andβ the isothermal com-
pression coefficient

β �
1
ρ

(
∂ρ

∂p

)

T

. (2.39)

Substituting (2.28) in the above expansion leads to

ρa

ρm
+
ρ′

ρm
= −α(Ta + T′) + β(pa + p′) . (2.40)

Since the adiabatic reference state is stationary, the firstterm on the left hand side (LHS)
of the above equation must equal the time independent terms−αTa + βpa on the RHS. As
a consequence, (2.40) can be separated into the two equations

ρa

ρm
= −αTa + βpa (2.41a)

ρ′

ρm
= −αT′ + βp′ . (2.41b)

These are the linearized thermodynamic relations which will be used in the following.
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2.3 Equations for the convective perturbations

Since the flow is divergence-free, the Navier-Stokes equation (2.12) reduces to

ρ
du
dt
= −∇p+ ρg+ ρν∇2u . (2.42)

Expanding density and pressure as in (2.28) and using the hydrostatic balance of the
reference state (2.29), the above equation reads

ρ

ρm

du
dt
= − 1
ρm
∇p′ +

ρ′

ρm
g+
ρ

ρm
ν∇2u (2.43)

where we divided both sides byρm.
Expanding the densityρ as in (2.28a) and using the definition (2.34) yields

(
1+ ǫa

ρa

|∆ρa|
+
ρ′

ρm

) (
du
dt
− ν∇2u

)
= − 1
ρm
∇p′ +

ρ′

ρm
g . (2.44)

The second and third terms in the first parenthesis on the LHS of the above equation are
O(ǫa) andO(ǫ′) respectively, while the buoyancy term on the RHS has a prefactor which
is O(ǫa). If we neglect these higher order terms with the exception of the buoyancy term
necessary to drive convection, Equation (2.44) reduces to

du
dt
= − 1
ρm
∇p′ +

ρ′

ρm
g+ ν∇2u (2.45)

whereρ′ is related to the pressure and temperature perturbations bythe linearized thermo-
dynamic equation (2.41b).

The first reason to retain the buoyancy term in (2.44) is physical and consists in the fact
that buoyancy forces must be present in the equation of motion when studying convection
problems. On the other hand, since fluid motions are driven bydensity fluctuations, the
characteristic acceleration of the fluid must be of orderρ′/ρmg which implies

∣∣∣∣∣
∂u
∂t

∣∣∣∣∣
/
|g| ∼ O(ǫ′) ≪ 1 .

The acceleration of gravity is therefore much larger than the characteristic fluid accelera-
tion due to convective motions. The buoyancy term of Equation (2.45) remains therefore
finite even though its prefactor isO(ǫa). Only density variations coupled to the gravita-
tional acceleration in the buoyancy force can then be retained, while all the other density
variations can be neglected. This represents the core assumption of theBoussinesq ap-
proximation.

Equation (2.45) can be simplified further analyzing the separation of scales on which
density, temperature and pressure vary. The estimated scale heights of these thermody-
namic quantities in the case of Earth’s core satisfy, as shown above,Hρ < HT < Hp.
Therefore, the background density varies more effectively due to temperature changes
rather than due to pressure fluctuations. Density changes due to pressure fluctuations,
quantified by the compression coefficient β, are then considered negligible. In this ap-
proximation, the thermodynamic equation equation (2.41b)reduces to

ρ′

ρm
= −αT′ . (2.46)
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2 The geodynamo: theory and numerical modelling

The fact that the background density variations due to convection are caused only by tem-
perature changes is the last fundamental assumption of the Boussinesq approximation.
Note that this argument does not apply to Equation (2.41a), since pa provides the major
contribution in the hydrostatic balance of the reference state described by (2.29). Sub-
stituting (2.46) into (2.45), we finally obtain the equationof motion for the convective
perturbations in the Boussinesq approximation which reads

∂u
∂t
+ u · ∇u = − 1

ρm
∇p′ − αT′g+ ν∇2u . (2.47)

We now derive the evolution equation for the convective temperature fluctuationsT′

starting from the temperature evolution equation (2.26) which holds for a fluid with con-
stant thermal conductivityk. Expanding the temperatureT as in (2.28c) and the heat
sources ash = h0(r ) + h′(r , t), Equation (2.26) reads

ρcp
dT
dt
− αT dp

dt
= k∇2Ta + h0 + k∇2T′ + h′ . (2.48)

Since the reference state is a conduction state, i.e. Equation (2.30) holds, the above equa-
tion simplifies to

ρcp
dT
dt
− αT dp

dt
= k∇2T′ + h′ . (2.49)

Consider now the second term on the LHS of (2.49). Since the pressurep is a function of
density and temperature, the material derivativedp/dt can be written as

dp
dt
=

(
∂p
∂ρ

)

T

dρ
dt
+

(
∂p
∂T

)

ρ

dT
dt

(2.50)

= −
(
∂p
∂ρ

)

T

ρ∇ · u +
(
∂p
∂T

)

ρ

dT
dt

(2.51)

by means of the continuity equation (2.4). To orderǫa, the velocity field for the convective
perturbations is divergence-free (Equation 2.38), and thefirst term on the RHS of (2.51)
can be neglected.

Pressure variations due to temperature changes constitutethe prefactor of the second
term on the RHS of (2.51) and can be estimated using the linearized thermodynamic rela-
tions (2.41a) and (2.46). These variations are negligible for the convective perturbations
by assumption (Equation 2.46) and must be proportional toα for the adiabatic reference
state (Equation 2.41a). As an order of magnitude estimate, the pressure term on the LHS
of Equation (2.49) can then be written as

∣∣∣∣∣αT
dp
dt

∣∣∣∣∣ ∼ α
2T ∼ O(ǫ2a)

where we regardedα ∼ O(ǫa). This term can be therefore neglected and Equation (2.49)
simplifies to

ρcp
dT
dt
= k∇2T′ + h′ . (2.52)

Expanding the densityρ as in (2.28a) and dividing both sides of the above equation byρm

yields to (
1+ ǫ

ρa

∆ρa
+
ρ′

ρm

)
cp

dT
dt
=

k
ρm
∇2T′ +

h′

ρm
. (2.53)
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Neglecting terms of orderǫa and higher, the evolution equation for the temperature pertur-
bations finally reads

ρmcp
dT′

dt
= κ∇2T′ + h′ . (2.54)

The hydrodynamical equations for the convective perturbations derived in the Boussi-
nesq approximation are then

du
dt
= −1
ρ
∇Π − αTg+ ν∇2u (2.55a)

∇ · u = 0 (2.55b)

ρcp
dT
dt
= κ∇2T + h (2.55c)

where the primes are suppressed in the notation for simplicity. The pressure fluctuations
p′ are renamed asΠ in order to distinguish them from the hydrostatic contributions, and
ρ denotes the (constant) mean fluid density.

2.4 Rotating frame of reference

The equations (2.55) derived in the previous sections are valid in an inertial frame of
reference. On Earth, we naturally observe fluid motions on a reference frame fixed at
the surface and therefore rotating with respect to an inertial frame. Rather than dealing
with moving boundaries, it is more convenient to write the Navier-Stokes equation (2.55a)
in such non-inertial frame. The additional fictitious forces entering this equation play a
fundamental role in shaping the flow.

Consider a frame of referenceSR rotating about thez-axis at a uniform angular veloc-
ity Ω = Ωêz with respect to a (fixed) inertial frameSI . Let SR andSI have a common
origin of coordinatesO and denote the position vector of a point in space with respect to
the originO with r . The rate of change ofr as seen by an inertial observer is related to
the rate of change in the rotating frameSR by (see, e.g., Batchelor 2000, Chapter 4)

(
dr
dt

)

I

=

(
dr
dt

)

R

+Ω × r . (2.56)

The first term on the RHS describes the variation of position with respect toSR, while the
second term arises from the rotation of the unit vectors ofSR as seen by an observer fixed
with respect toSI . The above equation obviously represents the transformation law for
the velocity between the two reference frames:

uI = uR +Ω × r . (2.57)

The acceleration measured by an inertial observeraI can be obtained applying the trans-
formation (2.56) onuI , thus

(
duI

dt

)

I

=

(
duI

dt

)

R

+Ω × r . (2.58)

41



2 The geodynamo: theory and numerical modelling

Using (2.57) in the above equation yields

duI

dt
=

(
duR

dt

)

R

+Ω ×
(
dr
dt

)

R

+Ω × uR +Ω × (Ω × r ) ,

where the rotation rate has been assumed to be constant in time. This represents the
transformation law for the acceleration between the two reference frames which more
compactly reads

aI = aR + 2Ω × uR +Ω × (Ω × r ) . (2.59)

The difference between absolute and relative accelerations consists of two terms. The first,
proportional to the rotation rate and to the velocity, is called the Coriolis acceleration;
the second is the centripetal accelerationac and arises even in the absence of motions.
This last term can be written as the gradient of a scalar potential functionφc (centrifugal
potential) which satisfies

Ω × (Ω × r ) = −∇
[
(Ω × r )2

2

]
. (2.60)

Using the transformation law (2.59) into the Navier-Stokesequation (2.55a) and ex-
pressing the centripetal acceleration as in (2.60), we are finally lead to the equation of
motion for a convecting fluid in the Boussinesq approximation in a rotating frame of ref-
erence

du
dt
= −1
ρ
∇Π∗ − 2Ω × u − αTg+ ν∇2u , (2.61)

whereΠ∗ is themodified pressureΠ∗ � Π−ρ(Ω× r )2/2 which includes centrifugal forces.

2.5 The magnetic induction equation

In this section the evolution equation for the magnetic field, known as the induction equa-
tion, is introduced. We concern here with conducting and non-magnetic materials. Elec-
tromagnetic phenomena in such media are described by Maxwell’s equations which, in
the Gaussian unit system, read

∇ · E = 4πρe (2.62a)

∇ × E = −1
c
∂B
∂t

(2.62b)

∇ · B = 0 (2.62c)

∇ × B =
4π
c

J +
1
c
∂E
∂t
. (2.62d)

whereE is the electric field,B the magnetic field,ρe the distribution of electric charges,J
the current density andc the speed of light.

In magnetohydrodynamics (MHD) aquasi-steady approximationof the above equa-
tions is used. In this approximation the fluid system is considered to be stationary on
light travel times, thus neglecting the propagation of eventual electromagnetic waves. In
planetary cores, fluid motions are typically of the order of few millimeters per second and
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2.5 The magnetic induction equation

therefore this approximation is valid to a large extent. Ifℓ is a characteristic length scale
of the system andτ the time scale of field variations, Faraday’s law (2.62b) allow us to
write

|E|
|B| ∼

υ

c
≪ 1 (2.63)

whereυ � ℓ/τ defines a characteristic system velocity. The above estimate implies|E| ≪
|B|, thus the electric field plays only a minor role compared to the magnetic field. By
means of (2.62a), we can conclude that the charge densityρe is not significant in MHD.
Physical effects due to charge separation in the conductive fluid act on time scales of the
order of the electron gyro-frequency, thus much faster thantypical fluid motions. Sinceρe

is very small in the interior of the conductor, Gauss’ law (2.62a) can be simply dropped. In
MHD electric fields are therefore generated only via induction effects due to time variable
magnetic fields according to Equation (2.62b).

The displacement currentc−1∂tE in the Ampère-Maxwell equation (2.62d) can also
be neglected. As an order of magnitude estimate, compare thedisplacement current with
the first term on the LHS of Equation (2.62d):

∣∣∣c−1∂tE
∣∣∣

|∇ × B| ∼
υ

c
|E|
|B| ∼

υ2

c2
≪ 1 .

This demonstrates that Maxwell’s correction in Equation (2.62d) is not required in MHD.
Therefore, the (pre-Maxwell) electrodynamic equations used in MHD are

∇ × E = −1
c
∂B
∂t

(2.64a)

∇ · B = 0 (2.64b)

∇ × B =
4π
c

J . (2.64c)

It is interesting to note that taking the divergence of both sides of Equation (2.64c) yields
to

∇ · J = 0 (2.65)

which expresses the solenoidal character of the density current and agrees, as expected,
with the fact that no free charge densityρe is present in MHD.

We now derive the magnetic induction equation. Consider a fluid conductor with an
electrical conductivityσ. If the conductor is at rest, the following (phenomenological)
relationship, known asOhm’s law, holds

J = σE . (2.66)

In a reference frame moving with the fluid conductor, it can beexpected that such relation-
ship is still locally valid. IfJR andER are, respectively, the current density and the electric
field as measured by an observer moving with respect to an inertial reference frame with
the local fluid velocityu = u(x), thenJR = σER. Using the non-relativistic transforma-
tions for the electric and magnetic fields (see, e.g., Davidson 2001, Chapter 2), Ohm’s law
(2.66) can be written, relative to the fixed frame of reference, as

J = σ
(
E +

1
c

u × B
)
. (2.67)
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The above equation represents the (generalized) Ohm’s law for a moving conductor. Sub-
stituting (2.67) into Faraday’s law (2.64a) gives

∂B
∂t
= ∇ ×

(
u × B − c

J
σ

)
. (2.68)

Using Ampère’s law (2.64c) to eliminate the current densityin the above equation yields
to

∂B
∂t
= ∇ × (u × B) − ∇ × (η∇ × B) (2.69)

whereη is the magnetic diffusivity of the fluid defined as

η � c2/4πσ . (2.70)

Assumingη is constant, the second term on the RHS of Equation (2.69) isη∇× (∇ × B) =
η(∇(∇ · B) − ∇2B) = −η∇2B which finally leads to

∂B
∂t
= ∇ × (u × B) + η∇2B . (2.71)

The above equation governs the magnetic field evolution in a moving conductor with
constant diffusivity η and is called themagnetic induction equation.

If fluid motions were to be absent (u = 0), the induction equation (2.71) would reduce
to a diffusion equation and thereforeB would decay exponentially. The rate of decay of
the field is, as a simple dimensional analysis would suggest,τη � ℓ

2/η whereℓ is a char-
acteristic length scale of the system. Using recent estimates of the electrical conductivity
of iron at Earth’s core conditions (Pozzo et al. 2012) and taking the outer core gapd as
the typical length scaleℓ, the geomagnetic field is expected to decay by ohmic diffusion
on time scalesτη ≃ 244 kyr. Since we have evidences for an active magnetic field which
go back to periods as old as 500 million years ago (Ogg 2012), the term∇× (u × B) in the
induction equation (2.71) must act as a source of magnetic energy which prevents the field
to decay by ohmic diffusion. As already discussed in Section 1.2, the idea that motions in
an electrically conducting fluid might generate induced currents able to amplify and self-
sustain an original seed field was firstly proposed by Larmor (1919). This hypothesis is
now used in the study of magnetic field generation in planetary cores and stellar interiors,
and is at the basis of modern hydromagnetic dynamo theory.

For a conducting fluid, the equation governing fluid motions (2.61) must be modified
by considering the electromagnetic forces acting on the fluid conductor itself. These
forces can be expressed per unit volume as (Davidson 2001)

f = ρeE +
1
c

J × B . (2.72)

The first term represents the forces experienced by the free charges due to the presence of
an electric fieldE (electrostatic force); the second term describes the contribution due to
the motion of the charged particles into the magnetic fieldB (Lorentz force). As already
discussed before, the total charge densityρe is small in fluids with high electrical conduc-
tivity and therefore the electrostatic force can be expected to be negligible compared to
the Lorentz force. In this approximation, Equation (2.72) simplifies to

f ≃ 1
4π

(∇ × B) × B , (2.73)
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where we expressed the density currentJ using Ampère’s law (2.64c). On conversion to
SI units, the volumetric Lorentz force becomesf = µ−1

0 (∇ × B) × B whereµ0 = 4π ×
10−7 Vs/Am is the vacuum permeability.

Including the Lorentz force into the Navier-Stokes equation (2.61), we are finally lead
to the equation of motion of a thermally convecting and conducting fluid in the presence
of magnetic fields which reads

ρ
du
dt
= −∇Π∗ − 2ρΩ × u − αTρg+ µ∇2u +

1
µ0

(∇ × B) × B . (2.74)

2.6 The non-dimensionalization

In the previous sections, we derived a set of equations in theeight unknowns represented
by the flow velocityu, the magnetic fieldB, the modified pressureΠ∗ and the temperature
perturbationsT which describe the dynamics of a conducting and thermally convecting
fluid under the Boussinesq approximation. These equations,repeated here for conve-
nience, are: the conservation of momentum

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇Π∗ − 2ρΩ × u − αTρg+ µ∇2u +

1
µ0

(∇ × B) × B , (2.75)

the simplified continuity equation for a Boussinesq fluid

∇ · u = 0 , (2.76)

the evolution equation of the temperature perturbationsT with respect to the adiabatic
reference state without internal heat sources (or sinks)

ρcp

(
∂T
∂t
+ u · ∇

)
T = k∇2T (2.77)

and the induction equation

∂B
∂t
= ∇ × (u × B) + η∇2B . (2.78)

These equations are supplemented by the solenoidal magnetic field condition

∇ · B = 0 . (2.79)

It is generally useful to write differential equations using non-dimensional variables. This
procedure introduces dimensionless parameters which measure the relative importance of
the terms they multiply in the equations. We derive here the non-dimensional form of the
above equations following the scaling used by Wicht (2005).

Any vector quantityx will be denoted hereafter by the product of its non-dimensional
part x̂ with its (constant) units or dimensions ˜x, i.e. x = x̃x̂. The same notation holds for
scalar quantities. Lengths are scaled with the outer core width d � ro − r i, wherero and
r i are the outer core and inner core radii respectively. Time isscaled in units of the outer
core magnetic diffusion timeτη = d2/η introduced in Section 2.5. A typical fluid velocity
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can then be defined as ˜u = d/τη which yieldsu = ũû = d/τηû. In such non-dimensional
units, the time derivative, gradient and laplacian operators transform, respectively, as

∂

∂t
=

1
τη

∂

∂t̂
,

∇ = 1
d
∇̂ ,

∇2 =
1
d2
∇̂2 .

Let B = B̃B̂, whereB̃ is a typical magnetic field strength which will be defined later.
Applying the above transformations to the induction equation (2.78) yields to

B̃
τη

∂B̂
∂t̂
=

B̃
τη
∇̂ ×

(
û × B̂

)
+ η

B̃
d2
∇̂2B̂ .

Multiplying both sides byτη/B̃, the above equation simplifies to

∂B̂
∂t
= ∇̂ ×

(
û × B̂

)
+ ∇̂2B̂ . (2.80)

Note that the non-dimensional induction equation (2.80) isformally equivalent to (2.78)
when using the magnetic diffusion time as temporal units.

We proceed in non-dimentionalizing the evolution equationof temperature (2.77).
The temperature perturbationsT are scaled with the super-adiabatic temperature contrast
across the outer core∆T, such thatT = ∆TT̂. Equation (2.77) can therefore be written as

∆T
τη

∂T̂

∂t̂
+
∆T
τη

(
û · ∇̂

)
T̂ = ∆T

k
ρcpd2

∇̂2T̂ . (2.81)

The ratio of the thermal conductivityk to the volumetric heat capacityρcp defines the
thermal diffusivityκ

κ �
k
ρcp
. (2.82)

This quantity measures the fluid capability to conduct heat relative to its efficiency in
retaining thermal energy. Multiplying both sides of Equation (2.81) byτη/∆T and using
the definition of thermal diffusivity (2.82), we are lead to

∂T̂

∂t̂
+ û · ∇̂T̂ =

κ

η
∇̂2T̂ . (2.83)

The dimensionless prefactor of the diffusion term in the above equation can be expressed
in terms of two non-dimensional numbers. ThePrandtl number Pris defined by

Pr =
ν

κ

and describes the relative importance of viscous diffusion to thermal diffusion in the fluid.
In terms of time scales,Pr can be interpreted as the ratio of the thermal diffusion timescale
τκ = d2/κ to the viscous diffusion time scaleτν = d2/ν. The second non-dimensional
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number is themagnetic Prandtl number Pmwhich is the ratio of viscous diffusion to
magnetic diffusion, namely

Pm=
ν

η

and equals the time scales ratioτη/τν. Using these definitions, the non-dimensional form
of the temperature equation (2.83) reads

∂T̂

∂t̂
+ û · ∇̂T̂ =

Pm
Pr
∇̂2T̂ . (2.84)

In planetary cores, the main driver of fluid motions (necessary for dynamo action) is
convection. In order to maintain an operating dynamo, the thermal energy must diffuse on
time scales much longer than the magnetic diffusion time. Therefore, we expect the ratio
Pm/Pr = τη/τκ to be small in planetary cores. In the case of Earth’s core, for example,
Pm is estimated to be 10−6 − 10−5, while Pr is 0.1 − 1 (Christensen 2011). Such low
magnetic Prandtl numbers are practically unachievable in numerical dynamo simulations
which generally use values from 0.1 to 10. This means that the viscous diffusion time
τν is underestimated by 5− 6 orders of magnitude in dynamo models. This leads to an
enhanced fluid viscosity which damps the small and unresolvable scales present in real
planetary cores.

We finally derive the non-dimensional form of the Navier-Stokes equation (2.75). The
(constant) fluid densityρ in (2.75) is assumed to be the mean outer core densityρo. The
system is assumed to rotate uniformly about thez-axis with an angular velocityΩ = Ωêz,
whereΩ is the planetary rotation rate andêz the unit vector in the vertical direction. The
magnetic field is scaled bỹB = (ρoΩ/σ)1/2, thusB = (ρoΩ/σ)1/2 B̂. The gravitational
accelerationg is assumed to vary linearly with the radial distance, thusg = −gor/ro

wherego is the value of the gravitational acceleration at the outer boundary. Using these
scalings, Equation (2.75) reads

ρo
d
τ2η

(
∂

∂t̂
+ û · ∇̂

)
û = ρoΩ

d
τη

(
−∇̂Π̂∗ − 2ez× û

)
+

α∆TT̂ρogo
r
ro
+ µ

1
dτη
∇̂2û +

1
µ0

1
d
ρoΩ

σ

(
∇̂ × B̂

)
× B̂ ,

where the same dimensional units for the Coriolis force and the modified (non-hydrostatic)
pressure force have been adopted. Multiplying both sides ofthe above equation by
τη/ρoΩd gives

η

d2Ω

(
∂

∂t̂
+ û · ∇̂

)
û = −∇̂Π̂∗ − 2ez× û +

αgo∆Td
Ωη

r
ro

T̂ +
ν

d2Ω
∇̂2û +

(
∇̂ × B̂

)
× B̂ (2.85)

where we used the definitions of magnetic diffusivity η = 1/µ0σ and of kinematic viscos-
ity (2.13). The prefactor of the viscous diffusion term on the right of (2.85) is theEkman
number

E =
ν

Ωd2
.

The Ekman number is therefore the ratio of the planetary rotation timeΩ−1 to the viscous
diffusion time scaleτν. It can also be interpreted as the ratio of viscous drag to theCoriolis
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force in the Navier-Stokes equation (2.75). In the case of Earth, E is expected to be as low
as 10−15 − 10−14 (Christensen 2011). The dynamics of the fluid core is therefore strongly
influenced by Coriolis forces, while viscous diffusion plays only a marginal role. Due
to computational resource limits, self-consistent 3D dynamo simulations hardly reach an
Ekman number of 10−6−10−7 (Kageyama et al. 2008). This introduces an excess viscosity
in the system which acts in damping the smallest and unresolvable scales occurring at
realistic parameter values for the Earth’s core.

The second dimensionless quantity on the RHS of Equation (2.85) multiplies the buoy-
ancy term. In the study of convection problems, it is useful to introduce the (modified)
Rayleigh number

Ra=
αgo∆Td
Ων

which represents a measure for the relative importance of buoyancy forces to viscous
diffusion.Ra is therefore also a direct measure for the vigor of convection in the system.
In order for convection to set in, the buoyancy force has to overcome stabilizing forces
such as viscous diffusion, which tends to suppress fluid motions, and the Coriolis force,
which tends to maintain the flow aligned with the rotation axis. The Rayleigh number
in the Earth’s core is estimated to be much larger than the critical value for the onset of
convection, while dynamo models are less supercritical by nearly two orders of magnitude
(Christensen 2011). Fluid motions in the Earth’s outer coreare therefore vigorously driven
by convection, thus resulting in a high turbulent flow. Having introduced the Ekman
numberE and the modified Rayleigh numberRa, Equation (2.85) finally reads

E
Pm

(
∂

∂t̂
+ û · ∇̂

)
û = −∇̂Π̂∗ − 2ez× û + Ra Pm

r
ro

T̂ + E∇̂2û +
(
∇̂ × B̂

)
× B̂ . (2.86)

The non-dimensional set of partial differential equations constituted by the equation
of motion (2.86), the evolution equation for the temperature perturbations (2.84) and the
magnetic induction equation (2.80), supplemented by the fact that the flow is divergence-
free in the Boussinesq approximation (∇̂ · û = 0) and by the solenoidal magnetic field
condition (̂∇ · B̂ = 0), can now be solved numerically upon the specification of opportune
boundary conditions. The boundary conditions used in this study, as well as possible
alternative choices, are discussed in the next section.

2.7 Boundary conditions

In this section, we specify appropriate boundary conditions for the set of MHD equations
derived before. The fluid core is considered bounded in a spherical shell at the inner radius
r i (corresponding to the ICB) and at the outer radiusro (corresponding to the CMB). The
overlying mantle is assumed to be electrically insulating while the inner core, mainly
composed of iron, is modeled as a conductor. Figure 2.1 showsa sketch of the spherical
shell geometry employed in the problem.

The Earth is actually an oblate spheroid due to the action of centrifugal forces. How-
ever, deviations from sphericity are small as a simple orderof magnitude estimate sug-
gests. Since the centrifugal accelerationac depends linearly on the distance from the rota-
tion axis (see Section 2.4), it attains its maximum value at the equator of the planet where
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g
ro
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Ω

Figure 2.1: Sketch of the spherical shell geometry employed. The fluid shell is rotating
about thez-axis with angular frequencyΩ. The inner core is highlighted in gray and
broken lines mark the inner core tangent cylinder. From Christensen and Wicht (2007).

|ac| = Ω2rE ≃ 0.034 m s−2 (rE being the Earth’s radius). This corresponds approximately
to 1/288 of the gravitational acceleration at the Earth’s surface. Spherical boundaries are
therefore a good approximation when precession effects are not considered.

Having defined the fluid domain, we can now specify the boundary conditions for
the velocity fieldu, the magnetic fieldB and the temperatureT. Firstly, we discuss the
mechanical boundary conditions. Since the fluid is confined within the spherical shell,
it cannot penetrate the inner and outer boundaries and the velocity field must therefore
satisfy êr · u = 0, whereêr is the unit vector in the radial direction. In the frame of
reference co-rotating with the mantle, the fluid velocity isthen assumed to vanish at the
inner and outer boundaries, that is

u = 0 at r = r i, r = ro .

These are referred to as rigid (or no-slip) mechanical boundary conditions. However,
there is no a priori reason why the inner core should co-rotate with the mantle. A more
appropriate mechanical boundary condition is then

u = Ωi × r at r = r i , (2.87)

whereΩi = Ωi êz is the inner core rotation rate. The change of rotation rate with respect
to the mantledΩi/dt is determined by the net torque acting on the conducting inner core.
Gravitational, viscous and Lorentz forces contribute to such torque and an angular mo-
mentum equation must therefore be solved as part of the equation system. The no-slip
condition at the ICB provides a relation betweenΩi and the toroidal velocity potential.
The angular momentum equation can then be transformed simply to a matching condition
for the toroidal velocity potential atr = r i. For a complete mathematical formulation of
the problem, as well as its numerical implementation, we refer to Wicht (2002). For sim-
plicity, the inner core is assumed to have the same densityρ and electrical conductivityσ
of the outer core.

Kuang and Bloxham (1997) argued that the use of rigid boundary conditions leads to
large Ekman layer effects. The thickness of a viscous Ekman layerδE scales with the
Ekman number asδE/ℓ ∼

√
E, whereℓ is a typical length scale of the system (Busse et al.
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2007). In the case of Earth’s coreδE ≈ 10 cm and this possibly demonstrates the unim-
portant role of Ekman layers on the large scale flow dynamics and, consequently, on the
magnetic field generation. In dynamo models, however, the Ekman number is at least 8−9
orders of magnitude larger than in the Earth’s core and this leads to larger Ekman layers
which might significantly influence the dynamo mechanism. Inparticular, helical fluid
motions close to the rigid boundaries may contribute to the magnetic field production.
The second type of mechanical boundary conditions often employed considers vanishing
shear stresses. This is referred to as a free-slip boundary condition and is thought to
represent more realistically the small viscous coupling between the core and the mantle.
Despite such drawbacks, we use rigid inner and outer boundary conditions in this work.

We now discuss the magnetic boundary conditions. At the outer boundary, the conti-
nuity of the magnetic field reads

B = Bo at r = ro . (2.88)

The mantle is assumed to be a perfect electrical insulator. This implies that no currents
can flow in the mantle (Jo = 0) and therefore, from Ampère law (2.64c),∇×Bo = 0. This
allows to writeBo as the gradient of a potential fieldφ (Bo = −∇φ). The solenoidal mag-
netic field condition finally gives∇2φ = 0. This equation, together with the requirement
thatBo→ 0 asr →∞ (the source ofBo is in the core), completely specifies the magnetic
field at the outer boundary.

Since the Earth’s inner core is mainly composed of iron-nickel alloys, it can be mod-
eled as a solid conducting sphere of radiusr = r i with the same electrical conductivity
σ of the fluid shell. Therefore, a dynamo equation formally equivalent to (2.71) must be
solved for the inner core. This equation is

∂Bi

∂t
= ∇ × (ui × Bi) + η∇2Bi (2.89)

where the velocity fieldui equals the solid body rotation of the inner core with respect
to the reference frame of the mantle. The induction equations for the outer fluid shell
(2.71) and for the inner core (2.89) have to be linked by two matching conditions. These
conditions are the continuity of the magnetic field

B = Bi at r = r i (2.90)

and the continuity of the horizontal electric field

Eh = Eh
i at r = r i , (2.91)

where the superscripth denotes the horizontal component. Equation (2.91) can be readily
written in terms ofB andBi using Ohm’s law in the rotating frame of reference (2.67) and
Maxwell’s equation (2.64c).

Finally, we briefly examine the thermal boundary conditionscommonly used in geo-
dynamo models to drive core convection. The simplest assumption considers a fixed
temperature contrast∆T between the inner and outer boundaries:

T = To at r = ro , (2.92a)

T = Ti at r = r i (2.92b)
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where∆T = To − Ti < 0. The lack of internal heat sources or sinks setsh = 0 in
the temperature equation (2.55c). Though there is no physical reason which justifies the
conditions above, (2.92) are often assumed for simplicity.

Among the possible heat sources driving thermal convectionin the Earth’s core, the
most important one is the latent heat released from the innercore solidification due to sec-
ular cooling (see Section 2.2). Secular cooling and internal heating are formally equiva-
lent. The internal heat sourcesh in the transport equation (2.55c) are generally considered
homogeneously distributed in the fluid volume.

As the inner core freezes due to secular cooling, however, light elements cannot be
dissolved efficiently anymore at the bottom of the fluid core. These light elements are
likely buoyantly unstable and drive the so-called compositional convection. The composi-
tional transport equation is formally equivalent to (2.55c) whereT has now to be intended
as the perturbation concentration (from a mean reference state) of the light constituents
of the core fluid. The constant release of light elements fromthe ICB can be modeled
as a constant volumetric sink term (h < 0) in Equation (2.55c) (Kutzner and Christensen
2002). Since light elements cannot escape the outer core, anappropriate boundary con-
dition at the CMB is a zero heat-flux. The latter two conditions are usually employed to
model pure compositional convection.

The outer boundary condition can also take into account the fact that the mantle, hav-
ing a finite thermal conductivity, controls the heat loss from the core. A fixed heat-flux
condition atr = ro is generally employed in such cases. In addition, the net compositional
flux from the inner boundary can be expected to depend directly from the heat loss to the
mantle.

2.8 The numerical method

The non-dimensional equations derived in the previous sections and describing the dy-
namics of a convecting and conducting fluid in the Boussinesqapproximation and in the
presence of magnetic fields are

E
Pm

(
∂

∂t
+ u · ∇

)
u = −∇Π∗ − 2ez× u + Ra Pm

r
ro

T + E∇2u + (∇ × B) × B (2.93a)

∂B
∂t
= ∇ × (u × B) + ∇2B (2.93b)

∂T
∂t
+ u · ∇T = Pm∇2T . (2.93c)

For simplicity, the superscripts ˆ denoting non-dimensional quantities are suppressed in
the above equations. Equations (2.93) are supplemented by the solenoidal velocity field
condition (∇ · u = 0) and by the solenoidal property of the magnetic field (∇ · B = 0).

The above equations are solved numerically in a spherical shell which represents the
Earth’s outer core (Figure 2.1) and with the boundary conditions specified in Section
2.7. In this work we used the numerical implementation of Wicht (2002) which is based
on developments from the code originally employed in early geodynamo simulations by
Glatzmaier and Roberts (1995). In this section we briefly outline the basics of the pseudo-
spectral method employed. Further details on the numericalmethod and the derivation of
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the spectral equations can be found in, e.g., Glatzmaier (1984), Glatzmaier and Roberts
(1995), Wicht (2002) and Christensen and Wicht (2007).

The set of differential equations given above provides nine scalar equations in the eight
unknownsu, B, Π∗ andT. The magnetic and velocity field components are not indepen-
dent since bothu andB are divergence-free. A convenient scalar decomposition ofany
solenoidal vector field is the well-known toroidal-poloidal decomposition (Chandrasekhar
1961, Appendix III). For the magnetic fieldB such decomposition reads

B = ∇ ×
(
∇ × g

r
r

)
+ ∇ × h

r
r
, (2.94)

whereg andh are arbitrary functions of the position and time. The first and second terms
on the RHS of the above equation are, respectively, the poloidal and toroidal fields. It
is evident that (2.94) automatically guarantees that the divergence ofB vanishes. An
analogous equation defines the flow field by means of the poloidal and toroidal potentials
3 andw:

u = ∇ ×
(
∇ × 3r

r

)
+ ∇ × w

r
r
. (2.95)

Under the toroidal-poloidal decomposition, the problem unknowns reduce to six scalar
fields: the poloidal and toroidal potentials for the magnetic field (g, h) and for the flow
field (3,w), the modified pressureΠ∗ and the temperature perturbationsT. Such fields
are represented in a spherical system of coordinates (r, θ, φ). A natural basis for the spec-
tral representation of the unknown scalar fields in colatitude θ and longitudeφ are the
spherical harmonic functions

Yℓm(θ, φ) = Pℓm(cosθ) eimφ (2.96)

whereℓ andm denote degree and order respectively, andPℓm are the associated Legendre
functions. As an example, the poloidal field potentialg is then expanded as

g(r, θ, φ) =
L∑

ℓ=0

ℓ∑

m=−ℓ
gℓm(r)Yℓm(θ, φ) . (2.97)

The radial variation of the unknowns is represented using Chebyshev polynomials. The
Chebyshev polynomial of degreen ∈ N is defined by

Cn(x) = cos [narccos(x)] (2.98)

where x ∈ [−1, 1]. The radial expansion of the poloidal magnetic potentialin (2.97)
truncated at degreeN reads

gℓm(r) =
N∑

n=0

gℓmnCn(r) , (2.99)

where the coefficientsgℓmn have to be determined through the application of an inner prod-
uct to the above expansion and using the orthogonality of Chebyshev polynomials. The
expansion (2.99) is then evaluated numerically at specific radial grid points (collocation
formulation). A particularly convenient choice of theNr collocation points is

xk = cos

(
π

k− 1
Nr − 1

)
(2.100)
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with k = 1, . . . ,Nr . The values of the Chebyshev polynomials at these points are, indeed,
simply the cosine functions

Cn(xk) = cos

[
n
π(k− 1)
Nr − 1

]
. (2.101)

The domain of Chebyshev polynomials (−1 ≤ xk ≤ 1) is transformed into the radial
domain (r i ≤ rk ≤ ro) choosing

xk = 2
rk − r i

ro − r i
− 1 . (2.102)

As a major advantage, this particular choice of collocationpoints provides the possibility
to apply a fast Fourier transform between the physical and the spectral space. As a second
benefit, the radial grid points are denser at the inner and outer boundaries which permits
to better resolve the boundary layers.

The complete spectral representation of the poloidal field potentialg then reads

g(r, θ, φ) =
L∑

ℓ=0

ℓ∑

m=−ℓ

N∑

n=0

gℓmnCn(r)Yℓm(θ, φ) . (2.103)

Sinceg is a real-valued function, its spectral coefficientsgℓmn are not all independent
but g∗

ℓ,m,n = gℓ,−m,n with the superscript∗ denoting complex conjugate. Only coefficients
with m ≥ 0 can be therefore considered in the expansion (2.103). Spectral expansions
analogous to (2.103) hold for the remaining unknown scalar fields. The partial differential
equations (2.93) separate then in (five) ordinary differential equations with respect to time
in the (six) unknown spectral coefficients represented by the magnetic potentialsgℓmn and
hℓmn, the velocity potentials3ℓmn andwℓmn, the pressureΠ∗

ℓmn and the temperatureTℓmn.
PressureΠ∗

ℓmn, however, remains an additional unknown in the evolution equation for
the poloidal flow potential. This problem can be solved in twoways. The first approach
is to apply the curl operator to the Navier-Stokes equation (2.93a) which yields to an
evolution equation for the vorticityω = ∇×u without the pressure term. The second, more
direct approach is to close the system deriving an equation involving the flow potentials
andΠ∗

ℓmn. This can be achieved by taking the horizontal divergence ofthe Navier-Stokes
equation (2.93a) (Christensen and Wicht 2007).

Several terms of the spectral equations (including the Coriolis force and the non-linear
terms) couple modes in the spectral space and cause aliasingproblems. To avoid such
problems, the Coriolis force, the Lorentz force and the advection of momentum in (2.93a)
are evaluated in the real space rather than in the spectral space. The same holds true for
the source term in the induction equation (2.93b) and the temperature advection term in
(2.93c). The spatial derivatives involved in the calculation of these terms are, however,
evaluated in the spectral space. These terms are integratedexplicitly in time using a
second order Adam-Bashforth scheme. The remaining terms are implicitly time-stepped
using a Crank-Nicolson scheme.

The numerical grid is defined in the code upon specification ofthe number of radial
grid pointsNr and longitudinal grid pointsNφ. Nr − 1 equals the maximum Chebyshev
polynomial degreeN used in the expansion (2.103). In the numerical simulationsana-
lyzed in this work, we useNr = 48. The number of latitudinal grid points is adjusted

53



2 The geodynamo: theory and numerical modelling

to Nθ = Nφ/2 to provide an isotropic resolution in the equatorial region. Nφ is related
to the maximum spherical harmonic orderL in (2.103) byL = 2/3Nθ. In our numerical
simulations we use a number of longitudinal grid pointsNφ up to 128.

The time step∆t is dynamically adapted during the temporal integration to fulfill the
Courant-Friedrichs-Lewy (CFL) condition. The CFL condition demands that∆t has to be
smaller than the smallest advection time between two adjacent grid points

∆t < min

(
∆r
ur
,
∆h
uh

)
, (2.104)

whereur anduh are the radial and horizontal characteristic velocities respectively, while
∆r and∆h are the radial and horizontal grid intervals. The estimatesof ur anduh account
for both the fluid velocity and the local Alfvèn velocity. Further details on the time step
control are given in Christensen et al. (1999).
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3 Probability theory and statistical
tools

This chapter reviews some fundamentals of probability theory and presents a complete
description of the statistical methods employed in the restof this work. The basics of
probability theory are discussed in Sections 3.1–3.3. The theoretical distributions and the
associated stochastic processes tested by our statisticalanalysis are described in Section
3.4. Section 3.5 discusses the (frequentist) method we employed to estimate the unknown
distribution parameters, while Section 3.6 describes the statistical tests used to determine
the goodness-of-fit. Section 3.7 closes the chapter with a discussion on the problems of
parameter inference and model selection in a Bayesian framework.

3.1 The concept of probability

It is not an easy task to define precisely and consistently theconcept of probability. Differ-
ent definitions of probability have indeed been developed inthe past. Naively speaking,
probability quantifies the degree of randomness of a certainproperty associated with a
given system. In most practical situations it reflects our degree of uncertainty relative to
the prediction of a certain event occurrence (e.g., the outcome of a measured physical
quantity, the input parameters of a model describing observational data, etc.). The most
direct definition of probability was formulated by Kolmogorov (1933) in the framework
of set theory. In this section, we recall the Kolmogorov axioms of probability and we
derive Bayes’ theorem and the law of total probability.

Let S be a set characterized by a certain number of elements (not yet explicitly spec-
ified) and called thesample space. We assign to each subsetA of S a real number P(A),
called the probability ofA, which is defined by the following axioms:

1. for anyA ⊂ S, P(A) ≥ 0;

2. for any disjoint subsetsA andB (A∩B = ∅), the probability ofA or B is P(A∪B) =
P(A) + P(B);

3. the probability assigned to the sample space is P(S) = 1.

The above definition immediately implies 0≤ P(A) ≤ 1. Several basic properties of
probability can be directly derived from these axioms (see,e.g., Cowan 1998, Chapter 1).
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Figure 3.1:Left panel: Relationship between the sample spaceS and the setsA andB in
the definition of conditional probability.Right panel: Decomposition of the sample space
S into the disjoint setsAi, i = 1, . . . , 5.

Consider the subsetsA ⊂ S andB ⊂ S such that P(B) , 0. Theconditional probabil-
ity P(A | B), namely the probability ofA given thatB is true, is defined as

P(A | B) =
P(A∩ B)

P(B)
. (3.1)

Figure 3.1 (left panel) illustrates the relation betweenA and B in the sample spaceS.
The conditional probability (3.1) satisfies the Kolmogorovaxioms of probability (Cowan
1998, Chapter 1).

Bayes’ theorem naturally follows from the definition of conditional probability. As-
suming P(A) , 0, the conditional probability ofB givenA is

P(B |A) =
P(B∩ A)

P(A)
. (3.2)

SinceB∩ A = A∩ B, the above definition yields

P(B |A) P(A) = P(A∩ B) = P(A | B) P(B) , (3.3)

where (3.1) has been used in the last equality. The first and last equalities in (3.3) give

P(A | B) =
P(B |A) P(A)

P(B)
. (3.4)

Equation (3.4) relates the conditional probabilities P(A | B) and P(B |A) and is known as
theBayes’ theorem. We now derive the so-called law of total probability which will be
useful in the following. Suppose the sample spaceS to be divided into the disjoint subsets
Ai, i.e. S = ∪N

i=1Ai with Ai ∩A j = ∅ for anyi , j, and assume that these subsets contain at
least one element, that is P(Ai) , 0 for all i. An illustration of this decomposition of the
sample space is given in Figure 3.1 (right panel). Any arbitrary B ⊂ S can then be written
as

B = B∩ S = B∩ (∪iAi) = ∪i (B∩ Ai) .

Since the subsetsB ∩ Ai are disjoint by construction (cf. Figure 3.1, right panel),the
probability ofB is

P(B) = P(∪i (B∩ Ai)) =
∑

i

P(B∩ Ai)
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and, using definition of conditional probability (3.1), we are lead to

P(B) =
∑

i

P(B |Ai) P(Ai) . (3.5)

Equation (3.5) is called thelaw of total probability and is useful when the sample space
can be divided into subsetsAi for which the probabilities are easy to calculate. Using the
law of total probability in (3.4) yields to the equivalent formulation of Bayes’ theorem

P(A | B) =
P(B |A) P(A)∑
i P(B |Ai) P(Ai)

. (3.6)

3.1.1 Interpretation of probability

The mathematical results discussed above are very general because they are valid for any
function P which satisfies the Kolmogorov axioms. To apply these results in practical sit-
uations, we have to specify, firstly, the elements of the sample space where the probability
is defined (i.e. the domain of P) and, secondly, a rule to assign to each element in the
domain the respective probability value P. At this stage, two interpretations of probability
(the frequentist and the Bayesian) are commonly used. We describe these approaches in
more detail below.

3.1.1.1 Frequentist interpretation

In the (classical) frequentist interpretation of probability, the elements of the sample space
S correspond to the possible outcomes of an experiment. In principle, the experiment has
to be repeatable an infinite number of times under exactly thesame conditions. A subset
A ⊂ S corresponds to the occurrence of any of the outcomes and is shortly referred to as
anevent. The probability of eventA is then defined as the fraction of timesA occurs in an
infinite number of repeated experiments:

P(A) = lim
n→∞

n(A)
n
, (3.7)

wheren(A) is the number of experiments givingA as an outcome andn is the total number
of experiments. In this interpretation the probability P istherefore the relative frequency
of a given event. Hence, the conditional probability P(A | B) of Equation (3.1) is the
number of cases where bothA andB are observed divided by the number of occurrences
of eventB alone.

3.1.1.2 Bayesian interpretation

The Bayesian interpretation of probability is more generaland, in principle, contains the
frequentist one. The subsets of the sample spaceS are defined ashypothesesor propo-
sitionswhich can be either true or false. In this context,S is often referred to as the
hypothesis space rather than the sample space. The probability P(A) is then interpreted as

P(A) = degree of belief thatA is true. (3.8)
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To fulfill Kolmogorov axioms, the hypothesis spaceS must be constructed such that only
one of its elementary hypotheses is true.

The following example clarifies the role of probability in the Bayesian interpretation.
Consider the situation in which we want to test the ability ofa certain modelM to describe
repeated measurements of a physical quantity (the dataD) obtained from an experiment.
The subsetA in Bayes’ theorem (3.4) can then be interpreted as the proposition “model
M is true”, while the subsetB is the proposition “the measurementsD are obtained from
the experiment”. Therefore, Bayes’ theorem allow us to write

P(M |D) ∝ P(D |M) P(M) . (3.9)

In the above expression P(M) represents the probability that modelM is truea priori,
i.e. before conducting the experiment. For this reason, P(M) is commonly called the
prior probability . The term P(D |M) on the RHS of (3.9) is the probability of obtaining
the dataD given that modelM is true. In other words, P(D |M) quantifies how likely
is the set of the observed measurements in the light of the model and is usually called
thelikelihood. Finally, the probability that modelM correctly describes the experimental
dataD is given by P(M |D). This is called theposterior probability of the model in order
to stress the fact that it is calculated after conducting theexperiment. The normalization
constant, dropped in Equation (3.9), is often referred to astheevidencebecause it depends
on the data only.

The advantages of the Bayesian approach compared to the frequentist one are clear
in the above example. In the first place, there is no limitation in the type of hypotheses
which can be analyzed and Bayes’ theorem applies to all of them. The intrinsic procedure
of updating the prior probability assigned to a hypothesis is very similar to our natural
learning process. Starting from an initial guess describedby the prior, the information
directly retrieved from experiments is used to construct our posterior knowledge. The
likelihood indeed acts as a weight factor on the prior probability.

A possible weakness of the Bayesian approach may come from the fact that there is
no objective way of calculating the prior probabilities. Inthe above example, the prior
probability P(M) can be assigned according to the prior belief of the modelerhimself on
his theory. Reasonable choices of the prior probability have to be evaluated depending on
the specific problem at hand. However, the prior probabilitycan have only a minor impact
on the posterior probability if, for example, the evidence coming from the data is strong.
We will further discuss these issues in Section 3.7.

3.2 Fundamentals of probability theory

In this section, we review some fundamentals of classical statistical analysis and we intro-
duce the notation employed in the rest of this work.

Consider an experiment whose outcome is described by a single continuos random
variable (RV)X. The sample spaceS introduced in Section 3.1 is then defined by the
domain ofX and is often referred to as thestatistical population. The experimental
results, i.e. the repeated measurements ofX, are regarded as the finite sample (x1, . . . , xN)
which represents a set ofN > 1 random numbers drawn from the statistical population.
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Assume the probability that the RVX does not exceed the valuex, namely P(X ≤ x),
exists and is finite. This probability is called thecumulative distribution function (CDF)
of X and will be denoted asFX(x) hereafter. IfFX(x) is a continuous non-decreasing
function of x differentiable everywhere (except, eventually, in a finite number of points),
theprobability density function (PDF) fX(x) is

fX(x) =
dFX(x)

dx
≥ 0 . (3.10)

Equivalently, the above definition reads

FX(x) =
∫ x

−∞
fX(x′) dx′ . (3.11)

In its integral form, the PDFfX(x) is thus the probability of observing a value of the RVX
within the infinitesimal interval [x, x+ dx]. In the frequentist interpretation of probability,
fX(x) gives the fraction of times that the experimental outcome lies within [x, x + dx] in
the limit of an infinite number of observations. In order to fulfill the third Kolmogorov
axiom (Section 3.1), the PDFfX(x) is normalized such that

∫

S
fX(x) dx= 1 , (3.12)

where the integration domain is the entire sample spaceS.
We now introduce two useful quantities which characterize the distribution of any

random variable. Theexpectation valueEX [x] of a RV X distributed according to the
PDF fX(x) is

EX [x] �
∫ +∞

−∞
x fX(x) dx. (3.13)

The expectation value is also called the population mean andis generally shortly denoted
by µ.

The second quantity is thepopulation varianceVX [x] and is defined by

VX [x] � EX

[
(x− EX [x])2

]
=

∫ +∞

−∞
(x− µ)2 fX(x) dx. (3.14)

The population variance (or simply variance) is shortly denoted byσ2 and is a measure
for the spread ofx about its mean valueµ. The definitions given in this section can be
easily generalized to multi-dimensional random variables.

In the previous discussion, we adhered the common practice to denote the random
variable in upper case and the actual value assumed by the corresponding lower case. For
simplicity reasons, this notation might be sometimes avoided in the rest of this work;
the distinction between random variables and their values should then be clear from the
context.

3.3 Survival and hazard functions

In this section, we introduce the concepts of survival and hazard functions. They are used
in the context of survival analysis, a branch of statistics dealing with the analysis of time
durations to until a specified event happen.
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Let T be a non-negative random variable which represents the timeuntil an event
occurrence. The probability that an event occurs by the timet is the CDFFT(t) = P(T ≤ t).
It is convenient to define the complement of the CDF

ST(t) � P(T > t) =
∫ ∞

t
fT(t′) dt′ = 1− FT(t) (3.15)

which is known as thesurvival function and represents the probability that the event of
interest does not occur by the timet.

An alternative characterization of the distribution ofT is given by the instantaneous
rate of occurrence of the event

hT(t) � lim
dt→0

P(t < T ≤ t + dt |T > t)
dt

(3.16)

which is called thehazard function. In the expression above, the numerator is the prob-
ability of observing an event in the infinitesimal time interval (t, t + dt] provided that no
event has occurred before timet. The value of such probability per unit time in the limit
of infinitesimally small intervals gives then the instantaneous rate of occurrence of the
event of interest. A relation between the hazard functionhT(t) and the survival function
ST(t) can be obtained using the definition of conditional probability (3.1) in (3.16)

hT(t) = lim
dt→0

P(t < T ≤ t + dt,T > t)
P(T > t) dt

= lim
dt→0

P(t < T ≤ t + dt)
ST(t) dt

, (3.17)

where we used P(t < T ≤ t + dt,T > t) = P(t < T ≤ t + dt) in the second equality. Since
P(t < T ≤ t + dt) = fT(t) dt, (3.17) reads

hT(t) =
fT(t)
ST(t)

. (3.18)

The expression above can also be intended as an alternative definition of the hazard func-
tion. Note that the hazard function is neither a probabilitynor a probability density.

By means of (3.10), Equation (3.18) can be written as

hT(t) = − d
dt

ln ST(t) . (3.19)

Integrating both sides of the above expression between 0 andt gives
∫ t

0
hT(t′) dt′ = ln ST(0)− ln ST(t) . (3.20)

Assuming an event to be observed fort > 0, ST(0) = 1 and the first term on the RHS of
(3.20) equals zero. Using the definition of survival function (3.15), Equation (3.20) finally
becomes

FT(t) = 1− exp

[
−

∫ t

0
hT(t′) dt′

]
. (3.21)

This equation demonstrates that the hazard function uniquely identifies a distribution func-
tion. Statistical models can thus be constructed specifying the hazard rate only. In the next
section we describe the distribution functions of interestfor this work and we provide ex-
plicit expression for the respective hazard functions.
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3.4 Statistical models and theoretical distributions

The probability distributions of interest for our subsequent statistical analysis and the
associated random processes are presented in Section 3.4.1. In this section particular
attention is paid to modeling aspects of the geomagnetic reversal occurrences. Section
3.4.2 describes a particular type of random process known asthe Poisson process. Further
information on the wide variety of probability distributions and their properties can be
found in, e.g., Forbes et al. (2011) and Johnson et al. (1995).

3.4.1 Theoretical distributions

3.4.1.1 Uniform distribution

A continuous RVX ∈ R has a uniform distribution in the interval [α, β] if its PDF is

fX(x |α, β) =

(β − α)−1 for α ≤ x ≤ β
0 otherwise.

(3.22)

Hereafter, we denote a uniform random variable byX ∼ Uniform(α, β). This distribution
describes a quantity which is equally likely to be found betweenα andβ. The mean and
variance of a uniformly distributed RV are, respectively,

EX [x] =
1
2

(α + β) (3.23)

and

VX [x] =
1
12

(β − α)2 . (3.24)

The CDF of a uniform RV is then

FX(x |α, β) =



0 for x < α

(x− α)/(β − α) for x ∈ [α, β)

1 for x ≥ β
(3.25)

Figure 3.2 shows the PDF and CDF of the (standard) uniform RVX ∼ Uniform(0, 1).
The uniform distribution is of fundamental importance in statistics because of the

following property. The proof of this property can be found in any introductory textbook
on classical statistical analysis. LetX be a continuous RV with CDFFX(x). The random
variableY defined by the transformation

y = FX(x) (3.26)

is then uniformly distributed over the interval [0, 1], that isY ∼ Uniform(0, 1). Any
RV can therefore be mapped into a standard uniform distribution by means of (3.26).
This mapping is often called the probability-integral transformation and is particularly
useful for practical purposes. Having a pseudo-random generator of uniformly distributed
numbers, random deviates from any cumulative distributioncan be obtained by a simple
inversion of Equation (3.26).
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Figure 3.2: Probability density function (left panel) and cumulative distribution function
(right panel) of a uniform random variable in the interval [0, 1].
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Figure 3.3: Hazard functions for the uniform distribution (3.27) within [0, 1] (solid line)
and [0, 2] (dashed line).

The hazard function of a uniform distribution in the interval [α, β] is

hX(x) =
1
β − x

(3.27)

for α ≤ x < β. As an example, Figure 3.3 shows the hazard functions of Uniform(0, 1)
and Uniform(0, 2). If x is interpreted as the time period after the occurrence of a specified
event, the rate of occurrence increases monotonically withtime. In particular,hX is infinite
for x = β which means that, if an event did not occur for timesx < β, an event will
certainly happen at timex = β.

3.4.1.2 Exponential distribution

The non-negative continuous RVX has an exponential distribution if its PDF is

fX(x | λ) = λ e−λx , (3.28)

whereλ > 0 is known as the rate parameter. We denote an exponentially distributed RV by
X ∼ Exp(λ). The mean and variance of an exponentially distributed RV are, respectively,

EX [x] = λ−1 (3.29)
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Figure 3.4: Probability density functions (left panel) andcumulative distribution functions
(right panel) of an exponentially distributed random variable for various values of the rate
parameterλ.

and
VX [x] = λ−2 . (3.30)

The exponential CDF is
FX(x | λ) = 1− e−λx (3.31)

for x ≥ 0. Figure 3.4 shows the exponential PDFs and CDFs for three different values of
the rate parameterλ.

As will be discussed in detail in Section 3.4.2, the exponential distribution describes
the inter-event times in a Poisson process. Cox (1968) suggested that the occurrence of ge-
omagnetic reversals stems from a Poisson process. Analyzing one of the earliest reversal
chronologies for the past 11 Myr the author demonstrated that an exponential distribu-
tion well describes the observed chron durations. Two additional assumptions underly
the Poisson hypothesis. First, events are assumed to occur instantaneously. Geomagnetic
reversals, lasting on average at least one order of magnitude longer than polarity chrons,
can be considered as instantaneous events in first approximation. The second assumption
considers reversals occurring at a constant rate over the period spanned by the data.

The progressive improvement of magnetostratigraphic timescales, both in dating ac-
curacy and recording of older events, revealed certain inconsistencies with the Poisson
model. On time scales of tens of million years, the reversal occurrence might be influ-
enced by mantle convection processes (see the discussion inSection 1.4.5). More recently,
Constable (2000) reconstructed the reversal rate variations over the past 160 million years
and found the reversal occurrence compatible with a non-stationary Poisson process.

The hazard function (3.18) for the exponential distribution is

hX(x) = λ . (3.32)

SincehX uniquely identifies a distribution function (Section 3.3),the exponential is the
only distribution with a constant hazard rate. This means that the rate of occurrence of
an event is independent of the time at which the last event happened. In other words,
it is equally likely to find an event in any period of arbitrarylength. The exponential
distribution is thus said to bememoryless. A rigorous proof of such property will be given
in Section 3.4.2 where the Poisson process is discussed in detail.
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3.4.1.3 Gamma distribution

The positive continuous RVX has a gamma distribution, denoted byX ∼ Gamma(k, λ)
hereafter, if its PDF is

fX(x | k, λ) = λ
k

Γ(k)
xk−1 e−λx (3.33)

with k > 0 (shape parameter) andλ > 0 (rate parameter) and whereΓ(k) is the gamma
function evaluated atk:

Γ(k) =
∫ ∞

0
xk−1e−x dx.

Figure 3.5 shows gamma PDFs and CDFs for different values of the shape parameterk and
the rate parameterλ. Note that fork = 1 the gamma reduces to an exponential distribution.
Fork < 1, the gamma PDF is monotonically decreasing and drops faster than an exponen-
tial (Figure 3.5, upper left panel). Fork > 1, the PDF is skewed and bell-shaped (Figure
3.5, middle and lower left panels). Whenk increases the distribution profile broadens and
approaches a normal distribution for largek values (typically fork > 10). Increasing the
rate parameterλ tends to shrink the distribution function. This is quantified by the fact
that, havingX ∼ Gamma(k, λ) and for anyc > 0, cX ∼ Gamma(k, λ/c).

The mean and variance of a gamma distributed RV are, respectively,

EX [x] =
k
λ

(3.34)

and

VX [x] =
k
λ2
. (3.35)

The gamma CDF is

FX(x | k, λ) = γ(k, λx)
Γ(k)

(3.36)

whereγ(k, λx) is the lower incomplete gamma function

γ(k, λx) =
∫ λx

0
tk−1e−t dt .

Cumulative distributions (3.36) are shown in the right panels of Figure 3.5 for various
values of the distribution parameters.

Substituting (3.33) and (3.36) into (3.18) yields to the hazard function of the gamma
distribution

hX(x) =
λk xk−1 e−λx

Γ(k) − γ(k, λx)
. (3.37)

Figure 3.6 illustrates the gamma hazard functions forλ = 1 and for different values of the
shape parameterk. The constant hazardhX = 1 is obtained fork = 1 where the gamma
reduces to an exponential distribution withλ = 1 (see Section 3.4.1.2). Fork < 1 the
hazard function decreases monotonically to the asymptoticvalueλ. If the random variable
describes the time until a specified event happens, the occurrence is initially encouraged
for k < 1. If k > 1, the hazard function increases monotonically to the asymptotic valueλ.
This corresponds to a diminished likelihood of an event occurrence for a certain period.
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Figure 3.5: Gamma probability density functions (left panels) and cumulative distribution
functions (right panels) for various values of the shape parameterk and the rate parameter
λ. Upper, middle and lower rows showk = 0.5, k = 1.5 andk = 3 respectively. Each plot
presents three different values of the rate parameter, namelyλ = 1, λ = 2 andλ = 4.
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The largerk the longer this inhibition period is (cf. Figure 3.6). If this inhibition period is
left, events tend to occur almost with a constant hazardλ.

Analyzing a reversal chronology for the past 48 million years, Naidu (1971) was the
first who demonstrated that paleomagnetic chrons can be welldescribed by a gamma
distribution withk > 1.

As already discussed in Section 1.4.4, geomagnetic reversal chronologies suffer of
two major problems: the accurate dating of certain individual events and a reliable record
of the shorter polarity intervals. The censoring of brief chrons (typically shorter than
30 kyr) represents a gross error in the sequence of polarity intervals as highlighted by the
following example. Consider a sequence of three intervals of normal, reverse and normal
(NRN) polarities. If the R interval is short and it is not resolved, the sequence is then (in-
correctly) identified as a single long lasting N interval. This censoring effect relates with
the following property of the gamma distribution. Lett1, . . . , tn ben independent observa-
tions from an exponential distribution with rateλ. If such observations are concatenated
into the single interval

Tn =

n∑

i=1

ti , (3.38)

thenTn is gamma distributed with shapek = n and rateλ. This property constitutes a link
between the exponential and gamma distributions and a proofcan be found in McFadden
(1984). Therefore, if short chrons in paleomagnetic reversal chronologies are missed, the
filtered sequence of polarity intervals results compatiblewith a gamma distribution with
relatively large values ofk.

Simulating the unfiltered sequence of polarity intervals byadding few short chrons to
the reversal chronology for the past 65 Myr and accounting for the non-stationarity of the
reversal occurrences, McFadden and Merrill (1984) estimated a gamma shape parameter
k significantly biased towards low values. The authors demonstrated that there is a signif-
icant evidence fork = 1 in the unfiltered sequence of chrons, in agreement with a Poisson
occurrence of reversals.

More recently, Marzocchi (1997) studied the influence of missing intervals on syn-
thetic time series of events. The author suggested that the number of short polarity inter-
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Figure 3.6: Hazard functions for the gamma distribution (3.37) with λ = 1 and four
different values ofk as shown in the legend. The constant solid line refers tok = 1 where
the gamma reduces to an exponential distribution. Other values ofk are the same of those
presented in the PDF plots of Figure 3.5.
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3.4 Statistical models and theoretical distributions

vals (< 30 kyr) missed in a purely Poisson process which accounts forthe value of the
gamma shape parameterk estimated from paleomagnetic reversal chronologies amounts
to about 35% of the original events number.

McFadden and Merrill (1993) proposed an alternative explanation for the observed
deviations from the Poisson model relying on the intrinsic inability of the core to generate
new reversals for a short period immediately following a polarity transition. Assuming
that paleomagnetic chrons are gamma distributed, the authors estimated this period to last
about 45 kyr which roughly matches the time required by the dipole field to diffuse in the
Earth’s core by ohmic processes.

A comprehensive review of gamma models used to describe certain characteristics of
the geomagnetic reversal occurrences can be found in McFadden (1984).

3.4.1.4 Weibull distribution

The Weibull distribution is an extension of the exponentialdistribution and has been
named after Weibull (1951). This distribution is defined quite naturally from a power
transformation of the exponential. The positive RVX has a Weibull distribution if

Y = (λX)s , (3.39)

whereλ > 0 ands> 0, has the (standard) exponential distribution

fY(y) = e−y . (3.40)

The Weibull PDF can be obtained applying the change of variables rule to (3.39) and
reads

fX(x | s, λ) = sλs xs−1 e−(λx)s
, (3.41)

wheres andλ are called the shape and rate parameters respectively. The Weibull CDF is

FX(x | s, λ) = 1− e−(λx)s
. (3.42)

We denote a Weibull distributed random variable byX ∼Weibull(s, λ) hereafter.
Figure 3.7 shows the Weibull PDFs (left panels) and CDFs (right panels) for dif-

ferent values of the shape and rate parameters. The PDFs decrease monotonically for
s < 1 (Figure 3.7, upper left panel), while is bell-shaped fors > 1. Similarly to the
gamma, the Weibull distribution reduces to an exponential with rateλ for s = 1, namely
Weibull(1, λ) = Exp(λ).

The Weibull hazard function, obtained substituting (3.41)and (3.42) into (3.18), is

hX(x) = sλs xs−1 . (3.43)

Figure 3.8 presents the hazard function (3.43) forλ = 1 and different values of the shape
parameters. This function is monotonically decreasing fors< 1 and equalsλ for s= 1 as
expected for an exponential distribution (Equation (3.32)). On the contrary,hX increases
monotonically fors > 1. The cases = 2 is of particular interest because provides a
linear variation in the hazard rate. If the variablex is interpreted as the waiting time until
the occurrence of a certain event, a Weibull distribution with s > 1 predicts the event
occurrence to become more likely with time. This situation cannot be described using,
for example, a gamma distribution which tends to a constant hazard rate asx → ∞ (cf.
Figure 3.6).
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Figure 3.7: Weibull probability density functions (left panels) and cumulative distribution
functions (right panels) for various values of the shape parametersand the rate parameter
λ (see legend insets).
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Figure 3.8: Hazard functions of the Weibull distribution (3.43) with rateλ = 1 and four
different values of the shape parameters as given in the legend. The (constant) solid line
refers tos= 1 where the Weibull distribution reduces to the exponentialExp(1).
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3.4.1.5 Log-normal distribution

The log-normal distribution, as its name suggests, can be introduced as a logarithmic
transformation of a normally distributed random variable.Let X be a positive RV such
that

Y = ln X (3.44)

has a normal distribution with meanµ ∈ R and standard deviationσ > 0, denoted as
Y ∼ Normal(µ, σ) with PDF

fY(y | µ, σ) =
1
√

2πσ
exp

[
−(y− µ)2

2σ2

]
. (3.45)

The RV X is said to be log-normally distributed and we writeX ∼ LogNormal(µ, σ)
hereafter. Applying the change of variables rule to (3.45),we obtain the log-normal PDF
of X

fX(x | µ, σ) =
1

√
2πσx

exp

[
−(ln x− µ)2

2σ2

]
, (3.46)

wherex > 0. An alternative parameterization is obtained considering the transformation
µ = ln m, wherem> 0. The PDF (3.46) then reads

fX(x |m, σ) =
1

√
2πσx

exp

[
− [ln(x/m)]2

2σ2

]
(3.47)

andm coincides with the geometric mean (and also with the median)of the distribution.
The CDF ofX ∼ LogNormal(µ, σ) is

FX(x | µ, σ) =
1
2

[
1+ erf

(
ln x− µ
σ
√

2

)]
, (3.48)

where erf is the error function.
Mean and variance of a log-normally distributed RV are, respectively,

EX [x] = eµ+
1
2σ

2
(3.49)

and
VX [x] = (eσ

2 − 1)e2µ+σ2
= (eσ

2 − 1)(EX [x])2 . (3.50)

The above expressions can be readily obtained from (3.44) recalling that EY
[
y
]
= µ and

VY
[
y
]
= σ2. Figure 3.9 plots the log-normal probability densities andcumulative distri-

butions forµ = 0 and different values of the standard deviationσ.
The hazard function, obtained substituting (3.46) and (3.48) into (3.18), is

hX(x) =
exp

[
− (ln x−µ)2

2σ2

]

√
π
2σx

[
1− erf

(
ln x−µ
σ
√

2

)] . (3.51)

Figure 3.10 illustrates the hazard function (3.51) forµ = 0 and the three differentσ values
shown in Figure 3.9. These functions present an initial increase followed by a monotonic
decrease. If the random variableX is interpreted as the waiting time until a specified

69



3 Probability theory and statistical tools

0 1 2 3 4

0

0.5

1

1.5

2

x

P
ro

ba
bi

lit
y 

de
ns

ity

σ = 0.5
σ = 1
σ = 2

0 1 2 3 4

0

0.5

1

x

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

σ = 0.5
σ = 1
σ = 2

Figure 3.9: Log-normal probability density functions (left panel) and cumulative distribu-
tion functions (right panel) with location parameterµ = 0 and various values ofσ (see
legend inset).

event happens, the event occurrence is initially encouraged while becomes progressively
less likely with time. This naturally favors long waiting times leading to PDFs with
pronounced tails. The largerσ the lower the asymptotic value ofhX is; higherσ values
thus correspond to heavier distribution tails (cf. Figure 3.9).

We now discuss an interesting property of the log-normal distribution. Let{Xi} be a
set ofn (positive) independent and identically distributed RVs and define the product

Zn =

n∏

i=1

Xi (3.52)

which equivalently reads

ln Zn =

n∑

i=1

ln Xi . (3.53)

As n→ ∞, the central limit theorem states that the RV lnZn is normally distributed with
meanµ = EZn [ln zn] and varianceσ2 = VZn [ln zn]. This demonstrates that the limiting
distribution ofZn is a log-normal.

The property above highlights the fact that the log-normal distribution often arises
in processes involving the multiplicative contribution ofrandom effects (multiplicative
noise). Hoyng et al. (2001), for example, proposed a mean-field dynamo model which
involves a multiplicative noise mechanism and well reproduces certain characteristics of
the geomagnetic dipole field variability. The authors suggested that multiplicative noise
effects arise in the random helicity fluctuations originating in the turbulent core convec-
tion. These random fluctuations are parametrized in theα-term of the mean-field equation
and multiply over time when time-stepping the induction equation.

Ryan and Sarson (2007) investigated similar stochastic processes and proposed a re-
versing mean-fieldαω-dynamo coupled with a shell model of turbulence. The authors
demonstrated that the simulated polarity intervals, similarly to paleomagnetic chrons, are
well-described by a log-normal distribution. This heavy-tailed distribution naturally ac-
counts for superchrons. These extreme events might therefore stem from the same internal
random processes triggering shorter polarity intervals (see also the discussion in Section
1.4.5).
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Figure 3.10: Hazard functions for the log-normal distribution (3.51) with location param-
eterµ = 0 and variousσ values as given in the legend.

3.4.1.6 Log-logistic distribution

A positive random variableX has a log-logistic distribution if its PDF is

fX(x |α, θ) = α (x/θ)α−1

θ
[
1+ (x/θ)α

]2
, (3.54)

whereα > 0 andθ > 0 are the shape and scale parameters respectively. Hereafter, we
refer to a log-logistically distributed random variable toasX ∼ LogLogistic(α, θ). The
log-logistic CDF reads

FX(x |α, θ) = 1
1+ (x/θ)−α

. (3.55)

Figure 3.11 illustrates the log-logistic PDFs and CDFs forθ = 1 and differentα values. If
α < 1, the PDF is a monotonic decreasing function. Ifα > 1, the PDF is unimodal with
modeθ [(α − 1)/(α + 1)]1/α.

The log-logistic hazard function, obtained by means of (3.18), is

hX(x) =
α (α/θ)α−1

θ [1 + (x/θ)α]
. (3.56)
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Figure 3.11: Log-logistic probability density functions (left panel) and cumulative distri-
bution functions (right panel) forθ = 1 and different values of the shape parameterα (see
the legend insets).
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Figure 3.12: Hazard functions of the log-logistic distribution (3.56) for a scale parameter
θ = 1 and various values of the shape parameterα as given in the legend.

Figure 3.12 plots log-logistic hazard functions forθ = 1 and different values ofα which
correspond to those shown in Figure 3.11. The hazard function (3.56) decreases mono-
tonically for α ≤ 1. If x is interpreted as the temporal interval until a specified event
occurs, the likelihood of observing an event decreases withtime. Forα > 1, the hazard
rate increases for relatively short waiting times and decreases monotonically afterwards.
A similar behavior also characterizes the log-normal distribution (see Section 3.4.1.5).

3.4.2 The Poisson process

The Poisson process is a stochastic process for modeling thetemporal occurrence of cer-
tain events in a system. Many natural phenomena (e.g., the radioactive decay of atoms
or the occurrence of earthquakes) and a large variety of daily-life situations (e.g., the
incoming telephone calls to a help line or the customer purchases at a store) are well-
described as Poisson processes. Cox (1968) was the first who modeled the occurrence of
geomagnetic reversals in terms of a Poisson process. In the following, we formally define
a Poisson process and we derive the distribution of the inter-event times in such a process
and its memoryless property.

The Poisson process can be formally defined as a counting process in which the events
(or arrivals) occur continuously and independently. LetN(t) be the number of events
which occur during the time interval (0, t]. We defineN(0) = 0 because no events can
occur before the counting starts. The number of arrivals in any time intervalh > 0 is
N(t + h) − N(t) and is called the increment.

The (homogeneous) Poisson process of rateλ > 0 is defined as the infinite collection
of random variables{N(t)} (obtained for eacht > 0) with the following properties:

(i) the increments in disjoint time intervals areindependent;

(ii) the increments arestationary;

(iii) the events occurrarely, i.e.

P(N(h) = 0) = 1− λh+O(h2) ,

P(N(h) = 1) = λh+O(h2)

ash→ 0.
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The first property states that the arrivals in any time interval (0, t] do not affect the events
occurrence in any later period. In other word, for any time intervalh > 0, N(t + h) − N(t)
and N(t) are mutually independent random variables. The second property states that
the distribution ofN(t + h) − N(t) is the same for eachh > 0, i.e. is independent oft.
Intuitively, this means that the events are equally likely to occur at all times. The third
property regards the probability of observing a single event in an infinitely small time
interval and equalsλh if higher order terms are neglected. Similarly, the probability for
zero arrivals is 1− λh. The probability for two or more events is then

1− P(N(t) = 0)− P(N(t) = 1) ∼ O(h2) (3.57)

and can therefore be neglected to the first order.
We now calculate the probability distribution ofN(t), namely P(N(t)), under the above

assumptions. Consider the interval [0, t] where k arrivals are observed. We discretize
such period inton sub-intervals of equal lengthsδ ≪ 1. Let N(ti), i = 0, . . . , n− 1 be the
number of arrivals in each sub-interval. As discussed above, the probability of more than
two arrivals during any sub-interval isO(h2) and can thus be neglected to the first order.

In any sub-interval, we observe either a success (a single event with probability P(N(ti)−
N(ti−1)) = 1) or a failure (no event and therefore P(N(ti) − N(ti−1)) = 0). Since the incre-
mentsN(ti)−N(ti−1) are independent by definition, this process is equivalent to a sequence
of n Bernoulli trials (e.g., the binary outcomes ofn independent coin tosses) with success
probability p = λδ at each trial. The probability of observingk successes inn Bernoulli
trials is (see, e.g., Cowan 1998)

P(N(t) = k) =

(
n
k

)
pk qn−k , (3.58)

whereq = 1− p is the failure probability and
(
n
k

)
=

n!
k! (n− k)!

(3.59)

is the binomial coefficient which describes the number ofk-combinations in a set ofn
elements. Ift is kept fixed, the approximation (3.58) becomes more preciseasδ → 0. In
this case,n = t/δ→ ∞ but the expected number of successesnp remains finite and equals
λt.

Under these circumstances, the binomial probability (3.58) is approximated by the
Poisson distribution with parameterλt (see, e.g., Cowan 1998)

lim
n→∞

P(N(t) = k) ≃ (λt)k

k!
e−λt, with k = 0, 1, . . . . (3.60)

Note that, ifλt ≪ 1, a Taylor expansion ofe−λt in the above expression demonstrates that
the above property (iii) is fulfilled by (3.60).

3.4.2.1 Distribution of waiting times and memoryless property

In this section, we demonstrate that the inter-event times in a Poisson process are expo-
nentially distributed. Consider a (homogeneous) Poisson process{N(t); t > 0} with rate
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λ > 0 and letTk be thek-th arrival time (k = 1, 2, . . .). If Tk > t, it is clear that the number
of arrivals until timet is smaller thank and therefore

P(Tk > t) = P(N(t) < k) . (3.61)

We now consider the time until the first arrivalT1. According to the above equation,T1 is
greater thant only if no events occurred beforet and therefore

P(T1 > t) = P(N(t) = 0)

=
(λt)0

0!
e−λt = e−λt ,

where we used the Poisson distribution (3.60) fork = 0 events. The cumulative distribu-
tion function ofT1 is

FT1(t) � P(T1 ≤ t) = 1− P(T1 > t) = 1− e−λt . (3.62)

Equation (3.10) gives the PDF ofT1

fT1(t) = λ e−λt (3.63)

which demonstrates that the waiting time until the first arrival is exponentially distributed.
Using the assumption of independent increments, it can be shown that all the following
inter-arrival timesTk − Tk−1 are exponentially distributed. Hence, the waiting timesXk =

Tk−Tk−1 in a Poisson process are independent and identically distributed random variables
with Xk ∼ Exp(λ).

Among all types of arrival-processes, the Poisson process is the only memoryless one.
A stochastic process is said to bememorylessif

P(X > t + x |X > t) = P(X > x) (3.64)

for any t ≥ 0. If the RV X is interpreted as the waiting time until a certain arrival, the
above expression states that, provided there is no arrival before timet, the probability for
an event occurring atx > t equals the probability of the total waiting timex. Intuitively,
this means that an event occurrence is not influenced by the previous history.

As it shown in the following, the above property (3.64) holdsfor an exponential distri-
bution (i.e. for the waiting timesX ∼ Exp(λ) in a Poisson process). Using the definition
of conditional probability (3.1), the RHS of (3.64) can be written as

P(X > t + x |X > t) =
P(X > t + x,X > t)

P(X > t)

=
P(X > t + x)

P(X > t)

where the last equality descends from the fact that the event{X > t+x} necessarily implies
{X > t}. By means of the CDF (3.62), the above expression becomes

P(X > t + x)
P(X > t)

=
e−λ(t+x)

e−λt
= P(X > x)

which finally demonstrates the validity of (3.64).
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3.5 The method of maximum likelihood

Consider the RVX with PDF fX(x | θ) whereθ = (θ1, . . . , θM) are its M free parame-
ters. Suppose to haveN repeated measurements ofX yielding to the observationsx =
(x1, . . . , xN). In the following we describe the method ofmaximum likelihood (ML), a
technique for estimating the parametersθ given the sample of observed valuesx.

Assuming the measurements to be independent and identically distributed, the proba-
bility of observing the samplex is

L(θ) =
N∏

i=1

fX(xi | θ) . (3.65)

L(θ) measures how likely the observationsx are and is therefore called thelikelihood
function. The maximum likelihood method defines the estimatorsθ̂ = (θ̂1, . . . , θ̂M) of the
unknown parametersθ as those values which maximize the likelihood function:

θ̂ = max
θ

L(θ) (3.66)

and therefore requiring the data to be most likely. It is useful to define the log-likelihood
functionℓ(θ) as

ℓ(θ) � lnL(θ) =
N∑

i=1

ln fX(xi | θ) (3.67)

such that the ML estimatorŝθ are given by the solutions of the equations

∂ℓ

∂θ j
= 0 , j = 1, . . . ,M . (3.68)

Note that the ML method assumes the validity of the modelfX(x | θ) in describing the data.
The choice of a poor or wrong model usually manifests in a likelihood function which
spreads over a large range of parameter values. The main advantage of the ML method
compared to other parameter estimation techniques is that no data binning is required.

As an example, we apply the ML method to estimate the rate parameterλ of the
exponential distribution (Section 3.4.1.2). Using the exponential PDF (3.28), the log-
likelihood function (3.67) reads

ℓ(λ) =
N∑

i=1

(ln λ − λxi) = N ln λ − λ
N∑

i=1

xi . (3.69)

Maximizingℓ(λ) gives the ML estimator

λ̂ =
N

∑N
i=1 xi

(3.70)

which coincides with the inverse of the sample mean as expected.
Figure 3.13 illustrates this parameter estimation problemwith a numerical experiment.

A sample of 50 random deviates has been drawn from an exponential distribution with
rateλ = 1. The ML estimate (3.70) iŝλ = 1.197 and the corresponding exponential
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Figure 3.13: Maximum likelihood estimate of the exponential rate parameterλ in a nu-
merical experiment. The random sample has been drawn from anexponential distribution
with λ = 1 and is constituted byN = 50 observations (tick marks on the horizontal axis
of the left panel).Left panel: Exponential probability density evaluated with the true rate
λ = 1 (red curve) and with the maximum likelihood estimateλ̂ (black curve).Right panel:
Likelihood function of the sample (3.65) with the vertical lines denoting the true rate (red)
and the estimatêλ (black).

PDF closely resembles the expected profile (Figure 3.13, left panel). The estimatêλ
does not exactly match the true value due to the poor sample size and the inherent random
fluctuations. The right panel of Figure 3.13 presents the likelihood functionL(λ) obtained
from (3.69). Increasing the number of observations tends topeak the likelihood function
around the true value as will be discussed in the next sections.

The ML method, however, does not necessarily guarantee a well-defined estimator.
The properties which characterize an optimal estimator will be presented in Section 3.5.2.

3.5.1 Transformation invariance of the ML estimator

An important property of the ML estimator is its invariance under variable transformations.
We demonstrate this property in this section. Consider the generic functional transforma-
tion a(θ) of the parameterθ and its ML estimatêθ to be known. The ML estimate ofa
results from the solution of

∂ℓ

∂a
=
∂ℓ

∂θ

∂θ

∂a
= 0 . (3.71)

The condition∂aℓ = 0 in the equation above is satisfied if∂θℓ = 0 and thusθ = θ̂.
Therefore, the evaluation ofa at θ̂ gives the ML estimate ofa

â = a(θ̂) (3.72)

which demonstrates the invariance of the ML estimatorθ̂. Note that the properties of the
estimator ˆa are, however, not necessarily the same ofθ̂.

3.5.2 Desirable properties of estimators

The definition of an estimator for a certain quantity, for what reasonable may seem, is
rather arbitrary and certainly not unique. Here we describethe three properties which
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qualify the “goodness” of an estimator. For simplicity, thefollowing discussion is limited
to a scalar parameterθ but it can be readily extended to multiple dimensions.

3.5.2.1 Consistency

An estimatorθ̂ is said to be consistent if it converges to the true parametervalueθ as the
sample sizeN increases, that is

lim
N→∞
θ̂ = θ . (3.73)

This is the fundamental property an estimator has to fulfill.For example, the ML estimator
of the exponential rate parameter (3.70) converges to the true valueλ in the limit of an
infinite number of observations due to the law of large numbers.

3.5.2.2 Bias

The biasb of an estimator̂θ is defined as the difference between its expectation value and
the true valueθ, namely

b = Eθ
[
θ̂
] − θ . (3.74)

In some cases the biasb can be calculated analytically. As an example, consider theex-
ponential distribution and the ML estimator of its rate parameter (3.70). The expectation
value ofλ̂ is

Eλ
[
λ̂
]
=

∫
λ̂ fX(x | λ)dx

= λ
N

N − 1
, (3.75)

where fX(x | λ) is the joint exponential PDF of the data samplex assuming that the mea-
surements are independent and identically distributed. Substituting the expectation value
above in (3.74) yields to the bias of the rate parameter

b =
λ

N − 1
. (3.76)

The above expression shows that the ML estimatorλ̂ is unbiased only in the limitN→ ∞
(asymptotically unbiased).

Since it is not always possible to calculate analytically the bias (3.74), a numerical
approach is often employed. To obtain the expectation valueEθ

[
θ̂
]
, a set ofM ≫ 1

experiments are simulated numerically. Each experiment consists ofN random deviates
drawn from the given probability densityfX(x | θ), whereθ is the true distribution pa-
rameter which is kept fixed. The estimate of the distributionparameter varies for each
experiment due to the inherent statistical fluctuations. Wetherefore obtain the set of val-
ues{θ̂1, . . . , θ̂M} which is representative of the distribution of the originalestimateλ̂. The
expectation value Eθ

[
θ̂
]

is then calculated as the sample mean of the ensemble and the
convergence of the estimator to the true parameter value canbe finally studied.
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3.5.2.3 Efficiency, estimator variance and the Cramèr-Rao bound

The third property relates with the statistical uncertainty of an estimator. A natural mea-
sure of this uncertainty is the estimator variance

Vθ
[
θ̂
]
= Eθ

[
θ̂2

] − (
Eθ

[
θ̂
])2
. (3.77)

An estimatorθ̂1 is said to be more efficient thanθ̂2 if V θ1
[
θ̂1

]
< Vθ2

[
θ̂2

]
.

In the example of the exponential distribution, the variance of the ML estimator of the
rate parameter̂λ is

Vλ
[
λ̂
]
= Eλ

[
λ̂2] − (

Eλ
[
λ̂
])2

=

∫
λ̂2 fX(x | λ) dx −

[∫
λ̂ fX(x | λ) dx

]2

=
λ2

N
, (3.78)

where fX(x | λ) is the joint exponential PDF of the observationsx. In the last equality we
used the fact that the measurements are independent and identically distributed. Note that
the variance (3.78) is a function of the true (and unknown) rate parameterλ. To obtain
an estimate for the statistical error ofλ̂, the ML invariance (Section 3.5.1) has to be used.
According to (3.72), the ML estimate of the varianceV̂λ̂ can thus be obtained replacingλ
in (3.78) with its ML estimator̂λ and thereforeV̂λ̂ = λ̂

2/N. Since it can be shown, under
fairly general conditions, that in the large sample limit the likelihood function (3.65) is
normally distributed (see Section 3.5.3), the intervalλ̂ ± (V̂λ̂)

1/2 coincides with the 68.3%
confidence interval of the estimate.

However, it is not always possible to solve analytically theintegrals in (3.77). More-
over, the analytical solution becomes impractical if the selected model is characterized by
a large number of free parameters. Numerical calculations similar to those discussed in
the previous section for the estimator bias are then employed.

It is reasonable to suppose that no estimator having zero variance can be constructed.
This limitation is a natural consequence of the fact that anyestimator is a function of
the data sample. The data sample comes indeed from repeated observations of the same
quantity which are subject to random fluctuations inherent in the measurement process
itself. In other words, any parameter estimate will be always known with a certain “error”
and the variance (3.77) provides a measure for this degree ofuncertainty. In this context,
a fundamental result is theCramèr-Rao inequality

Vθ
[
θ̂
] ≥

(
1+ ∂b

∂θ

)2

I(θ)
, (3.79)

whereI(θ) is theFisher information

I(θ) � Eθ


(
∂

∂θ
ln fX(x | θ)

)2 . (3.80)

The Cramèr-Rao inequality (3.79) sets a lower bound for the variance of any estimator̂θ.
A proof of (3.79) can be found in Brandt (1997). Note that biased estimators (b , 0) have
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a larger variance than unbiased ones. This is expected because biased estimators diverge
from the true parameter valueθ already by construction. If the equality in (3.79) holds,
the estimator̂θ has the minimum variance and is said to be efficient.

If the measurementsx1, . . . , xn are independent, the Fisher information (3.80) can be
written as

I(θ) = −Eθ

[
∂2ln fX(x | θ)
∂θ2

]

= −Eθ

[
∂2ℓ(θ)
∂θ2

]
. (3.81)

Intuitively, the fact thatI(θ) is proportional to the second derivative of the log-likelihood
ℓ(θ) measures how fast the convergence of the estimator to the true value is in the param-
eter space. The term “information” used forI(θ) is justified by the fact that a peaked
likelihood is more informative because the range of significant parameter values is nar-
rower.

In the example of the exponential distribution, the RHS of the Cramèr-Rao inequality
for the ML estimator of the rate parameterλ̂ equals the variance (3.78) obtained from the
analytical calculation. The estimator of the rate parameter (3.70) is therefore an efficient
estimator.

A simpler expression for the lower bound of the variance of a generic unbiased (b = 0)
ML estimator can be obtained using (3.81). By means of the transformation invariance
(3.72), the lower bound for̂Vθ̂ is given by (3.79) evaluating the second derivative in (3.81)
at the ML estimatêθ:

V̂θ̂ =

[
−∂

2ℓ(θ)
∂θ2

∣∣∣∣∣
θ=θ̂

]−1

. (3.82)

The above expression is particularly useful because it doesnot involve any additional ana-
lytical and/or numerical calculations. This result will be used in our subsequent statistical
analysis to evaluate the statistical error associated witha certain parameter estimate. The
estimate (3.82) can be easily generalized to multidimensional parameter estimates.

3.5.3 Asymptotic behavior of the ML estimator

In this section we derive the distribution of the ML estimator in the limit of an infinite
number of observationsN. For simplicity, we consider the case of a single parameter
estimateθ. We start our derivation expanding the log-likelihood function (3.67) in a Taylor
series about the ML estimatêθ:

ℓ(θ) = ℓ(θ̂) +
∂ℓ

∂θ

∣∣∣∣∣
θ=θ̂

(θ − θ̂) + 1
2
∂2ℓ

∂θ2

∣∣∣∣∣∣
θ=θ̂

(θ − θ̂)2 + . . . (3.83)

The first term on the RHS of the above expression is the log-likelihood maximum, while
the second term is zero by definition. For an efficient and unbiased estimator we can write

∂2ℓ

∂θ2
≃ Eθ

[
∂2ℓ

∂θ2

]
= − 1

Vθ
[
θ̂
] , (3.84)
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where we used (3.82). In the limit of an infinite data sample, the third and higher order
terms in (3.83) can be ignored becauseℓ(θ) strongly peaks at̂θ and we are thus lead to

ℓ(θ) ≃ ℓ(θ̂) − (θ − θ̂)2

2 Vθ
[
θ̂
] . (3.85)

The likelihood function consequently reads

L(θ) = L(θ̂) exp

(
−(θ − θ̂)2

2 Vθ
[
θ̂
]
)

(3.86)

which finally shows thatL(θ) is asymptotically normal. In the case of multiple parameters,
the asymptotic limit of the likelihood function is a multivariate normal distribution and
the derivation is equivalent to that given above.

3.6 Goodness-of-fit tests

Statistical tests are used to quantify how well the observeddata agree with the predicted
probabilities from a given model or with other features characterizing a certain popula-
tion. The hypothesis under test is called thenull hypothesisand is conventionally denoted
asH0. If H0 specifies a probability distribution which represents the model assumed to
describe the data, the statistical test is called a goodness-of-fit test. Goodness-of-fit tests
rely on a statistic explicitly constructed to quantify the agreement between the observed
measurements and the predictions ofH0. If the distribution underH0 is completely speci-
fied (i.e. all the free model parameters are known) the hypothesis is said to besimple. In
most practical situations, however, the unknown parameters are estimated from the data
themselves (using, for example, the maximum likelihood method described in Section
3.5). The null hypothesis is said to becompositein this case.

In the following sections we introduce two statistical tests designed for null hypothe-
ses concerning continuous distributions, the Kolmogorov-Smirnov and Anderson-Darling
goodness-of-fit tests. These tests compare the observed cumulative distributions with the
cumulative probabilities expected under the null hypothesis. An introduction to the ba-
sic principles of hypothesis testing can be found in Cowan (1998, Chapter 4). Different
goodness-of-fit tests are extensively described in, e.g, D’Agostino and Stephens (1986)
and Gibbons and Chakraborti (2010, Chapter 4).

3.6.1 Kolmogorov-Smirnov test

Consider a sample ofN observationsx1, . . . , xN obtained from a series of repeated mea-
surements of a certain quantity. Our goal is to test whether these measurements are realiza-
tions fromN independent random variables distributed according to thesame distribution
function (null hypothesisH0). The Kolmogorov-Smirnov statistic is based on the differ-
ence between the cumulative distribution expected under the null hypothesisFX(x) and
the observed cumulative probabilities.

The cumulative distribution function of the sample, also called theempirical distri-
bution function (EDF), is an estimate of the observed cumulative probabilities. The EDF
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SN(x) is defined as

SN(x) =
number of sample values≤ x

N
. (3.87)

If the sample observations are distinct and arranged in the increasing orderx(1) < x(2) <

. . . < x(N), a formal definition ofSN(x) is

SN(x) =



0 if x < x(1)

i/N if x(i−1) ≤ x < x(i), i = 1, . . . ,N

1 if x ≥ x(N)

(3.88)

The EDF (3.88) thus represents a “stepwise” version of the cumulative distribution func-
tion, where the jumps occur at the ordered sample values and the jump heights equal the
relative frequency of the observations. If an observation occursk times, the height of the
respective jump isk/N.

If the observationsx1, . . . , xN are a random sample drawn from the same cumulative
distributionFX(x), the EDFSN(x) approachesFX(x) asN→ ∞ (see, e.g., Gibbons and Chakraborti
2010, Chapter 2). This result suggests that the statistic

DN = sup
x

∣∣∣SN(x) − FX(x)
∣∣∣ (3.89)

is a reasonable measure for the accuracy of the null hypothesis. If the null hypothesis
is true, the data can be certainly represented as random variables with CDFsFX(x) and
thereforeDN is small. The quantity (3.89) is known as the Kolmogorov-Smirnov (KS)
statistic.

The most important property of the KS statisticDN is that its probability distribution
does not explicitly depend on the null hypothesis (distribution-free statistic). The distri-
bution ofDN must therefore be a function of the data only. For what difficult seems to be-
lieve, this property descends from the fact that any CDF can be mapped into a standard uni-
form distribution (see Section 3.4.1.1). A rigorous proof of this result can be found in, e.g.,
Gibbons and Chakraborti (2010, Theorem 3.1). Moreover, a convenient approximation to
the distribution functionF(DN ≤ d) exists for large samples (Gibbons and Chakraborti
2010, Theorem 3.3).

The use of the KS statistics in a goodness-of-fit problem proceeds as follows. Consider
a sample ofN observationsx1, . . . , xN and the null hypothesis

H0: FX(x | θ) = F0(x | θ) ,

whereF0(x) is continuous CDF with known (specified or alternatively estimated) param-
etersθ. Firstly, the KS statisticDN is calculated from the sample and underH0 obtaining
a certain valued∗. Since the PDFf (DN) is known, we can calculate the probability that
the KS statistic is larger than the observed valued∗

αKS = P(DN > d∗) =
∫ ∞

d∗
f (DN) dDN . (3.90)

The right tail probability of the test statistic given aboveis generally referred to as the
p-value. The null hypothesisH0 is rejected if the p-value is smaller than a small, pre-
scribed threshold valueα known as thesignificance level. Contrary to the p-value, the
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significance level does not depend on the underlying hypothesis and is defined before con-
ducting the experiment and acquiring the data. Typical values for the significance level
α are 5% or 1%. A p-value smaller than the suggested significance level indicates that
the observed result would be highly unlikely under the null hypothesis. The smaller the
p-value is, the larger the significance of the rejection.

3.6.2 Anderson-Darling test

In this section we briefly describe the Anderson-Darling (AD) goodness-of-fit test. The
AD statisticAN is a quadratic measure of the difference between the cumulative distri-
bution FX(x) and the empirical distribution functionSN(x). The AD statistic is defined
by

AN = N
∫ ∞

−∞
w(x) [SN(x) − FX(x)]2 dFX(x) , (3.91)

wherew(x) is the weighting function

w(x) =
1

FX(x) [1 − FX(x)]
. (3.92)

Since the weighting factorw(x) emphasizes the observations in the tail of the distribution,
this statistic is particularly useful for testing the capability of a given model in describing
extreme data values.

The use of the AD statistic in a goodness-of-fit problem follows the same reasoning of
the KS statistic. This has already been described in the previous section and it is therefore
not repeated here. In the following, we refer to the AD p-value obtained for a given data
sample and under a null hypothesisH0 to asαAD.

3.7 The Bayesian approach

In the following we discuss the Bayesian approach to the problems of parameter estima-
tion and model selection. In Section 3.7.1 we derive a general expression for the posterior
distribution of the free parameters of a given model. The question of the prior choice is
addressed in Section 3.7.2. Sections 3.7.3 and 3.7.4 finallyconcern with the problem of
model selection among a set of alternatives. Introductory textbooks on Bayesian proba-
bility theory with particular attention to data analysis problems are, e.g., Sivia (1996) and
Gregory (2005). An introduction to Bayesian reasoning and its applications can also be
found in D’Agostini (2003).

3.7.1 Parameter estimation

In this section we describe the basics of Bayesian inference. The discussion is based on
the fundamental concepts introduced in Section 3.1 and on Bayes’ theorem (3.4).

Consider a modelM believed to describe a certain physical phenomenon and let
θ = (θ1, . . . , θK) be theK-dimensional vector of the model free parameters. To val-
idate the modelM, an experiment is conducted and a collection ofN measurements
x = (x1, . . . , xN) is recorded. Our aim is to characterize the agreement ofM with the
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data to decide whether accepting or rejecting the model itself. As discussed in the pre-
vious sections, a frequentist approach to the problem wouldtest the reliability of the
hypothesized model based on the estimatesθ̂ of its parameters which best fit the data. On
the contrary, Bayesian inference permits to determine the probability distribution of the
model parametersθ themselves after observing the data. This gives information about the
accuracy of the model in its own domain of definition and not just based on the estimated
parameter values.

We now consider the modelM to be a certain probability densityfX(x | θ). Bayes’
theorem (3.4) allows to write the posterior probability of the model parameters P(θ | x,M)
as

P(θ | x,M) =
P(x | θ,M) π(θ |M)

P(x |M)
. (3.93)

As already discussed in Section 3.1.1.2, the likelihood of the data sample P(x | θ,M) repre-
sents the probability of observing the datax having assumedM to be the true model with
parametersθ. The prior probabilityπ(θ |M) describes the degree of belief in the model pa-
rameter values before conducting the experiment (and therefore before recording any data
x). By means of the continuous version of the law of total probability (3.5), the evidence
P(x |M) in (3.93) is

P(x |M) =
∫

P(x | θ,M) π(θ |M) dθ . (3.94)

Substituting (3.94) into (3.93) yields

P(θ | x,M) =
P(x | θ,M) π(θ |M)∫
P(x | θ,M) π(θ |M) dθ

. (3.95)

The expression above is the joint distribution density of the model parametersθ and is the
most general formula of inductive Bayesian inference. It provides the complete descrip-
tion of our state of knowledge on the model parameters. It is interesting to note thatM
is included as part of all the conditional statements in (3.95). The modelM indeed repre-
sents the knowledge we have on the problem beforehand and anyprobability relation has
therefore to be valid for the selected model. According to Equation (3.95), the posterior
distribution is a PDF in the parameter spaceθ, while the likelihood P(x | θ,M) is not a
probability density. As will be discussed in Section 3.7.3,the evidence P(x |M) is a cru-
cial quantity when comparing different models while has the role of a trivial normalization
factor in the context of parameter inference.

The posterior distribution (3.95) is usually described using rappresentative quantities
such as its mean value or its mode. In particular, the mode of (3.95) is referred to as
the maximum a posteriori(MAP). The spread of the posterior distribution is generally
described by its standard deviation. Since the posterior density (3.95) gives the most
complete statistical answer to the problem of parameter inference, it is generally a good
practice to explicitly show it. In the case of complex posterior densities (e.g. multi-modal
and/or highly skewed) the descriptive quantities listed above might indeed be biased.

Assuming the measurementsx to be independent and identically distributed, the like-
lihood P(x | θ,M) is

P(x | θ,M) =
N∏

i=1

fX(xi | θ) . (3.96)
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3 Probability theory and statistical tools

For consistency in the notation (see Section 3.5), the likelihood above will be denoted as
L(θ) and Equation (3.95) then reads

P(θ | x,M) =
L(θ) π(θ |M)∫
L(θ) π(θ |M) dθ

. (3.97)

3.7.2 Choice of priors

In order to calculate the posterior density (3.95) (or (3.97) if the measurements are in-
dependent and identically distributed), we have to face theproblem of the choice of the
prior distributionπ(θ |M). As already mentioned in Section 3.1.1.2, there is no general
and objective method for calculating such probabilities. As its name manifestly suggests,
the prior indeed depends on our knowledge of the model parametersbeforeobserving the
data. Priors are claimed to be the major weakness of Bayesianinference and are often
subject to criticism. However, there are situations in which a prior knowledge effectively
exists and one can take advantage of it. For example, if measurements of a certain quan-
tity of interest have been previously performed, the posterior density obtained for the old
experiment can play the role of the prior distribution in thenew inference problem. More-
over, the prior choice naturally forces the basic assumptions to be clearly stated. This is
not always the case in other frameworks of analysis where theunderlying assumptions
may be easily hidden.

In parameter inference it is often the case that upper and lower limits for the quantity
of interest (rather than its exact distribution) are known apriori. In such case, a reasonable
choice of the prior is to considerπ(θ |M) as a uniform distribution forθmin ≤ θ ≤ θmax.
The fact that any parameter value within a given range is equally probable a priori reflects
a “flat” knowledge of the parameters beforehand.

We now discuss the importance of a reasonable prior choice and the effect of different
choices on the posterior distribution with the following example. Consider the modelM
to be the exponential PDF (3.28). Assume a uniform prior for its rate parameterλ within
[λmax, λmin]. The prior distribution then reads

π(λ | Exp)=
1

λmax− λmin
�

1
∆λ

(3.98)

for λmin ≤ λ ≤ λmax and is 0 otherwise. Bayes’ theorem as given by (3.97) yields to the
posterior distribution of the rate parameter

P(λ | x,Exp)=
L(λ) π(λ | Exp)

∫ λmax

λmin
L(λ) π(λ | Exp)dλ

=
λN exp

[
−λ∑N

i=1 xi

]

∫ λmax

λmin
λN exp

[
−λ∑N

i=1 xi

]
dλ
. (3.99)

For a uniform prior, the posterior density thus always coincides with the normalized like-
lihood of the data. ForN = 0 (no data recorded yet) the posterior density (3.99) simply
reduces to the prior PDF in (3.98). Before performing any experiment, our knowledge
about the rate parameter indeed coincides with the prior information as expected.
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3.7 The Bayesian approach

We now perform a numerical experiment where the dataxi in (3.99) are drawn from
an exponential distribution with rateλ = 1 and we also assumeλmin = 0 andλmax = 5.
Figure 3.14 illustrates the evolution of the posterior density (3.99) increasing the number
of observationsN. For the lowest number of observations (N = 5), the posterior density
has the largest variance and is positively skewed. Increasing N progressively decreases
the variance of the posterior distribution and its MAP approaches the true valueλ = 1. For
N = 50 the posterior density is practically indistinguishablefrom a normal distribution
as expected in the asymptotic limit of the likelihood function (Section 3.5.3). If a model
is well supported by the data, as it is the case in this example, the posterior distribution
peaks around the true value of the model parameter(s). The prior only mildly influence
the posterior distribution in such cases and therefore the likelihood function dominates.
If the prior does not include the true model parameters values, however, the posterior
distribution results totally biased by the wrong prior assumption.
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Figure 3.14: Posterior density (3.99) for a different numberN of random deviates drawn
from an exponential distribution with rateλ = 1. The prior is assumed to be uniform in
[0, 5]. The dotted line refers toN = 0 where the posterior distribution coincides with the
prior (the other distributions have been rescaled for plotting purposes).

3.7.3 Model selection

In the previous sections we described the Bayesian approachto the problem of estimating
the parameters of a prescribed model. If alternative modelsare available, the question
of which model best describes certain observations naturally arises. In the following we
discuss the Bayesian answer to this problem.

Given a set of alternative models, one can be easily tempted to privilege the model
which best fits the experimental measurements. This reasoning shows its fallacy con-
sidering the fact that more complex models, i.e. models witha higher number of free
parameters, always better agree with the observations. Theproblem of model selection
therefore reduces in quantifying the gain of information achieved for a more complex
model. As will become clear in the following, Bayes’ theoremcan be used to quantify
such gain.
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3 Probability theory and statistical tools

Consider a set ofQ alternative models
{
Mi

}Q
i=1 defined by a number of adjustable

parameters and the experimental observationsx. The problem of model selection consists
in estimating the probability of each model given the measurementsx:

P(Mi | x) , i = 1, . . . ,Q . (3.100)

The sample space constituted by the selected models must contain the true model by
construction and therefore the probabilities above satisfy

Q∑

i=1

P(Mi | x) = 1 . (3.101)

Using Bayes’ theorem (3.4), the probability of thei-th model can be written as

P(Mi | x) =
P(x |Mi) P(Mi)

P(x)

=
P(x |Mi) P(Mi)∑Q
i=1 P(x |Mi) P(Mi)

, (3.102)

where we used the law of total probability (3.5) in the last equality. In the expression
above, the probability P(Mi) must be assigned before the analysis of the datax and thus
represents the prior belief in modelMi, while the likelihood P(x |Mi) is the marginal
probability of the data (3.94). Equation (3.102) then explicitly reads

P(Mi | x) =

∫
P(x | θi,Mi) π(θi |Mi) dθi P(Mi)

∑Q
i=1

∫
P(x | θi ,Mi) π(θi |Mi) dθi P(Mi)

, (3.103)

whereθi represents the vector of parameters of modelMi.
To determine the relative merit of the two modelsMi andM j among a set of alterna-

tives, it is useful to consider the ratio of the model posterior probabilities

Oi j �
P(Mi | x)
P(M j | x)

(3.104)

which is the so-calledposterior odds ratio. Using (3.102) and (3.103), the posterior odds
ratio reads

Oi j =
P(x |Mi)
P(x |M j)

P(Mi)
P(M j)

(3.105)

=

∫
P(x | θi,Mi) π(θi |Mi) dθi∫
P(x | θ j,M j) π(θ j |M j) dθ j

P(Mi)
P(M j)

. (3.106)

The first factor on the RHS of (3.106) is the ratio of the integrated likelihoods of the
two models and is called theBayes’ factor for Mi againstM j (usually denoted byBi j ).
The second factor on the RHS of (3.106) is known as the prior odds ratio. If there is no a
priori preference for any of the models, the prior odds ratiocan be set to 1. The posterior
oddsOi j coincides then with the Bayes’ factor. Due to (3.101), this is formally equivalent
to assign a prior probability 1/Q to each of the models. IfBi j ≫ 1 for any j , i, a strong
evidence in favor ofMi exists. On the contrary,M j is preferred ifBi j ≪ 1. If Bi j ≈ 1, an
informed judgement based on the current data is not possible. Jeffreys (1961) proposed
some rules of thumb for interpretingBi j . Though only the posterior probability P(Mi | x)
exactly quantifies how likely is a certain model in the light of the data, Jeffreys’ rules are
generally adopted standards of evidence in scientific investigation.
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3.7 The Bayesian approach

3.7.4 A built-in Occam’s razor

In the previous section we derived an expression for the comparison of hypotheses in a
Bayesian framework. The simplest case in which two alternative models are available,
namelyM1 andM2 characterized byK1 andK2 free parameters respectively, reveals in-
teresting insights. Assuming the two models to be equally likely a priori, the prior model
probabilities are P(M1) = P(M2) = 1/2 and the posterior odds ratio (3.106) reads

O12 =

∫
P(x | θ1,M1) π(θ1 |M1) dθ1∫
P(x | θ2,M2) π(θ2 |M2) dθ2

. (3.107)

Furthermore, assume the priors of the models parametersπ(θ1 |M1) andπ(θ2 |M2) to be
uniform within the intervals

[
θk1,min, θ

k
1,max

]
, for k = 1, . . . ,K1, and

[
θk2,min, θ

k
2,max

]
, for k =

1, . . . ,K2, respectively. Equation (3.107) then yields

O12 =

∏K2
k=1∆θ

k
2∏K1

k=1∆θ
k
1

∫
P(x | θ1,M1) dθ1∫
P(x | θ2,M2) dθ2

, (3.108)

where∆θk1 � θ
k
1,max− θk1,min and∆θk2 � θ

k
2,max− θk2,min.

Let M2 have a larger number of free parameters (K2 > K1) and let∆θk1 = ∆θ
k
2 for

k = 1, . . . ,K1. In this case the prior probabilities ratio in (3.108) is larger than one and
thus acts in favoringM1 with respect toM2. ModelM2, having a larger number of degrees
of freedom, results therefore systematically penalized with respect to the simpler one.
This follows the common scientific practice where we usuallyresort to the Occam’s razor
in discarding unnecessarily complicated models. For example, it is well understood that
a polynomial of ordern − 1, despite offering a perfect fit ofn experimental points, it is
generally not regarded as the best description of the data. This reasoning naturally comes
out in Bayesian model selection problems. For this reason the first factor in (3.108) is
often called theOccam’s factor.

The Occam’s factor is, however, weighted by the ratio of integrated likelihoods which
describes the relative quality of the models fit to the data. Therefore, the posterior odds
ratio (3.108) represents a trade-off between the ability of each model in describing the
data and the model complexity itself. As a final remark, consider the case where the two
models fit the data roughly equally well, thus having a ratio of integrated likelihoods of
approximately one. The posterior odds ratio results then dominated by the priors. More-
over, if the two models have the same number of free parameters (K1 = K2), our prior
knowledge on these parameters may completely bias the result. The model having a nar-
rower range of parameters values accessible a priori results thus favored over the less
discriminant one.
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4 Results from geomagnetic polarity
time scales

In this chapter we analyze the statistical properties of geomagnetic polarity epochs us-
ing the methods described in Chapter 3. As previously discussed in Section 1.4.4, geo-
magnetic polarity time scales provide the approximate times at which the geomagnetic
field reversed its polarity. These records are constantly revised and updated. The rever-
sal chronologies selected for this study are described in Section 4.1 and their statistical
analysis is presented in Section 4.2. Since resolution problems become important during
the Mesozoic era and are overwhelming before, we restrictedour analysis to reversals
younger than 170 million years.

4.1 Selection of geomagnetic polarity time scales

Geomagnetic polarity time scales (GPTSs) are constructed dating oceanic magnetic anoma-
lies and differ for the various crustal age interpolations used (Section1.4.4). Due to the
poor data resolution, the polarity changes are regarded as instantaneous. Table 4.1 lists
the GPTSs selected for the subsequent statistical analysistogether with some preliminary
statistical information.

Younger and most reliable chronologies cover the period of the Late Cretaceous through
the Neogene (C-sequence), thus roughly spanning the last 83Myr after the Cretaceous
normal superchron (CNS). Cande and Kent (1995) claimed to produce a record with uni-
form resolution throughout and containing almost all polarity intervals longer than 30 kyr.
Hereafter, we refer to this time scale to as CK95 and its polarity sequence is shown in the
upper panel of Figure 4.1.

The reversal frequency seems to increase after the CNS and potential variations in the
underlying reversal rate (see also Figure 1.9) have been already discussed in Section 1.4.5.
Distributions with time-dependent parameters have been proposed in order to capture the
long-term reversal rate variations and ultimately the superchron (McFadden and Merrill
1984, Constable 2000). Such models assume that external effects, most often of man-
tle origin, influence the core field dynamics. However, it is not entirely clear if external
mechanisms are necessarily required to capture the observed variations. Several studies
demonstrated that long-term stationary processes are alsoable to reproduce the statis-
tics of geomagnetic reversal occurrences (see Hulot and Gallet 2003, Ryan and Sarson
2007, Jonkers 2007, Shcherbakov and Fabian 2012, and the discussion in Section 1.4.5).
Following these latter studies, our statistical analysis assumes a stationary reversal rate
throughout the GPTSs. A suite of distribution functions, defined by time independent
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Name Reference Chron Age rangeN ∆t
[Ma] [Myr]
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CK95 Cande and Kent (1995) C1n–C34n 0− 118 184 0.637
CK95cc Cande and Kent (1995) C1n–C34n 0− 118 292 0.402

CK95-CNS Cande and Kent (1995) C1n–C33r 0− 83 183 0.449
CK95cc-CNS Cande and Kent (1995) C1n–C33r 0− 83 291 0.284

O12C Ogg (2012) C1n–C34n 0− 126 190 0.659

O12C-CNS Ogg (2012) C1n–C34n 0− 126 189 0.478

M
-s

eq
. TS10 Tominaga and Sager (2010) M0r–M29r 124− 158 100 0.337

MHTC12 Malinverno et al. (2012) M0r–M30n 121− 156 101 0.345

O12M Ogg (2012) M0r–M45n 126− 171 258 0.173

O12 Ogg (2012) C1n–M45n 0− 171 448 0.379
O12-CNS Ogg (2012) C1n–M45n 0− 171 447 0.302

Table 4.1: Geomagnetic polarity time scales used in this study and relative references. Covered chrons, age range, number of chronsN and
mean chron duration∆t are listed in column 3 to 6 respectively. See the main text forfurther details.
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4.1 Selection of geomagnetic polarity time scales

parameters and described in Section 3.4.1, will be fitted to the observed chron durations.
Using a Bayesian approach, we therefore seek for the model which best describes the data.
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Figure 4.1: Polarity sequences for the Cenozoic era (top panel) and the Mesozoic era (bot-
tom panel). Normal and reverse polarities are indicated by the letter N and R respectively.
Each sequence is labeled with the name assigned to the respective geomagnetic polarity
time scale (see Table 4.1). Cenozoic sequences start from chron C1n and Mesozoic ones
from chron M0r.

Cande and Kent (1995) listed 108 brief polarity intervals which are less constrained
by the magnetic anomaly record. These events, typically shorter than 30 kyr, are known
ascryptochrons. Hereafter, we refer to the GPTS including cryptochrons to as CK95cc
and its polarity sequence is shown in the upper panel of Figure 4.1 (black sequence). This
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4 Results from geomagnetic polarity time scales

version of the GPTS permits to study the impact of additionalbrief events on the chron
statistics. However, it is likely that several cryptochrons reflect strong paleointensity field
variations rather than true polarity changes.

Cenozoic GPTSs where we artificially discarded the CNS are distinguished from the
original versions by means of the suffix “-CNS” in the respective names. We will test the
compatibility of the CNS with a selected statistical model making use of these modified
GPTSs. The duration of the CNS is about 35 Myr, more than 50 times longer than the
average chron duration and about 6 times longer than the second longest chron. As already
discussed in Section 1.4.5, the question whether the CNS is an outlier or an extreme event
compatible with the large variety of time scales produced bythe geodynamo is still a
matter of debate. Discarding the superchron from the actualset of events would therefore
serve for testing its compatibility with a given statistical model.

Since times of reversal occurrences during the Middle Jurassic through the Early Cre-
taceous (M-sequence, 121−158 Ma) are affected by larger uncertainties, we used the two
independent GPTSs of Tominaga and Sager (2010) (TS10) and Malinverno et al. (2012)
(MHTC12) for this older period. The latter chronology includes one event more than the
former, while their mean chron durations are comparable with a value of about 0.34 Myr
(Table 4.1). Clearly different reversal timings, mainly caused by the different crustal age
interpolations used, are evident from the polarity sequences in Figure 4.1 (bottom panel).

Finally, the last GPTS selected for our analysis is the chronology of Ogg (2012) which
comprises the C-sequence and an extended version of the M-sequence. We refer to this re-
versal chronology to as O12 hereafter. O12 includes 448 chrons spanning the period from
171 Ma to the present. The extension of the M-sequence comprises chrons M27r–M45n
and cover the oldest 14 Myr. Contrary to younger periods, theoldest magnetic anomalies
have been recorded using magnetometers towed near the oceanic crust. This inevitably
introduces short-wavelength features in the record which might not reflect true polarity
changes of the field. Reversal rates as high as 10 Myr−1 are observed during the oldest
14 Myr of O12 (Figures 1.9 and 4.1) and are likely an artifact of the different recording
method. Further details regarding this GPTS can be found in Section 1.4.4. Despite these
problems, we will use the extended chronology O12 in order tostudy the potential impact
of briefer events on the statistic. Restricted versions of O12 for the Cenozoic and Meso-
zoic periods, named O12C and O12M respectively, have been considered for comparison
with the other GPTSs.

Figure 4.2 shows the distribution of chron durations for each of the selected GPTSs
obtained using an adaptive bin size which guarantees a smoother probability density with-
out empty bins. The maximum chron duration has been limited to 1.3 Myr for plotting
purposes only. We estimated this probability density as follows. Consider the set of chron
durations

{
∆ti

}N
i=1 to be sorted in ascending order and a numberM < N of such events.

The variable bins have been centered at∆tn and have boundaries (∆tn + ∆tn−M)/2 and
(∆tn + ∆tn+M)/2. The estimated probability density in then-th bin is therefore

pn =
cn

N
2

∆tn+M − ∆tn−M
, (4.1)

wherecn is the number of events in the bin. The varianceσ2 of the probability density
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Figure 4.2: Distributions of chron durations for the Cenozoic (top panel) and the Mesozoic
(bottom panel) as recorded by the different geomagnetic polarity time scales selected (see
legend insets and refer to Table 4.1). The horizontal axis has been limited to 1.3 Myr
for plotting purposes. Color shaded areas mark the 95% confidence intervals around the
estimated probability density (see the main text for more details).

(4.1) can be estimated assuming that the countscn follow a multinomial distribution:

σ2[pn] =

[
2

N(∆tn+M − ∆tn−M)

]2

cn

(
1− cn

N

)
. (4.2)

Color shaded areas in Figure 4.2 correspond to the 2σ intervals around the estimated
probability densities.

CK95 and O12C have similar distributions but the lower end ofthe former GPTS is
significantly different if cryptochrons are included (Figure 4.2, top panel).These brief and
less reliable events indeed constitute about 37% of the total number of chrons recorded
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4 Results from geomagnetic polarity time scales

for the past 118 Myr. Shorter polarity intervals last not less than 10 kyr. The CNS (not
shown in Figure 4.2) has a duration of about 35 Myr, while the second longest chron has
the considerably smaller duration of 5.6 Myr.

The distributions of chron durations for the M-sequence as reported by TS10 and
MHTC12 do not seem to differ significantly despite the dating of certain events is greatly
diverse (Figure 4.1, bottom panel). Polarity intervals of about 200 kyr are the most likely
and the two time scales closely agree on this estimate. On thecontrary, O12M favors
durations shorter than 100 kyr. As already discussed above,most of these relatively brief
events are almost certainly an artifact of the different recording method employed in the
extension of the oldest part of this GPTS. The longest chron recorded during the Mesozoic
occurs slightly before the CNS and its duration is somewhat different between the GPTSs
analyzed: TS10 and MHTC12 report values of 2.46 and 1.97 Myr respectively, while
dating from O12M gives 2.02 Myr.

4.2 Distribution of paleomagnetic polarity intervals

We fitted the paleomagnetic polarity intervals from the GPTSs described in the previ-
ous section to a suite of distribution functions (exponential, gamma, Weibull, log-normal
and log-logistic described in Section 3.4.1). Distribution parameters are estimated us-
ing the maximum likelihood method (Section 3.5) and the goodness-of-fit is evaluated
by means of the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) statistics (Sec-
tion 3.6). We quantified the relative likelihood of each model by means of the Bayesian
posterior odds (3.106). Since no preference to any particular distribution is given a pri-
ori, we assumed equal prior model probabilities. Moreover,we considered uniform prior
probabilities for the distribution parameters.

Figure 4.3 summarizes the results obtained from the frequentist and Bayesian ap-
proaches. The upper row depicts the AD p-values of the distribution fits of chron durations
from each of the selected GPTSs. Only distribution fits with KS and AD p-values higher
than 5% are plotted. Log-normal and log-logistic distributions describe the polarity inter-
val durations from most of the selected records. The only exceptions occur for the GPTSs
including cryptochrons (CK95cc and CK95cc-CNS) where all the selected models can be
rejected at the 95% confidence level. Table 4.2 lists the estimated distribution parameters
and their standard errors (3.82) for the two fitting models, together with the respective KS
and AD p-values and posterior model probabilities.

Posterior probabilities of the distribution functions reveal further interesting insights
(Figure 4.3, bottom row). The relative sizes of the symbols in the bottom row of Figure
4.3 correspond to the respective posterior odds ratios as given by Equations (3.104) and
(3.106). Consider, in the first place, the Cenozoic sequenceof chrons represented by
CK95 and O12C. The evidence in favor of the log-logistic distribution is positive for both
reversal chronologies (with a posterior model probabilityof 76% and 72% respectively),
while the log-normal is the only second contender.

If the CNS is artificially discarded from each of the two records (CK95-CNS and
O12C-CNS), the result reverses: the evidences in favor of the log-normal distribution are
strong and its posterior probabilities reach 90% in both cases. The reason of such behavior
resides in the tails of the two distributions. Log-normal and log-logistic are both heavy-
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4.2 Distribution of paleomagnetic polarity intervals

tailed distribution functions, i.e. they decay at infinity slower than an exponential, but
they belong to different classes. Let∆t be the positive random variable describing chron
durations. As∆t → ∞, the log-logistic PDF (3.54) shows the pure power-law decay

f (∆t |α, θ) ∼ ∆t−α−1 , (4.3)

while the log-normal decreases more quickly (Shcherbakov and Fabian 2012).
Figure 4.4 shows the best-fitting log-normal and log-logistic PDFs of chron durations

from O12C. The data density is obtained using variable bin sizes as described in the
previous section. The two models can be considered of comparable quality since they
show a similar agreement with the data. The posterior odds ratio (3.106) of the log-logistic
to the log-normal distribution is of 2.6 which indeed gives only a weak evidence in favor
of the former model. The CNS (included in the last bin of Figure 4.4) is closer to the log-
logistic rather than to the log-normal tail as expected. This implies that the maximum of
the likelihood function (3.65) is larger for the log-logistic model. The maximum of the log-
likelihood (3.67) is indeed−30.6 for the log-logistic, while it reaches the somewhat milder
value of−32.6 for the log-normal. Discarding the CNS from O12C reverses the result: the
log-logistic and log-normal distributions have log-likelihood maxima of−19.7 and−18.8
respectively. Despite being just a single event, the gain inlikelihood introduced by the
CNS in favor of the log-logistic distribution is thus sufficient to render this model the
preferred alternative. However, the tail of the log-logistic distribution, decaying as∆t−2.52

according to 4.3, is nevertheless underestimating the probability of the CNS occurrence
by a significant margin (Figure 4.4). Jonkers (2003), fittinga pure power-law∆t−β to the
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Figure 4.3: Anderson-Darling (AD) p-values (top row) and Bayesian posterior probabili-
ties (3.103) (bottom row) of the tested distribution functions for chron durations from dif-
ferent geomagnetic polarity time scales (refer to Table 4.1for the time scales acronyms).
The tested distribution functions are marked with different colored symbols. Symbol sizes
are scaled with the associated AD p-value (top row) or posterior probability (bottom row)
as shown in the legend.
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Name Log-normal Log-logistic

µ [ln(Myr)] σ r αKS αAD P θ [Myr] α r αKS αAD P

C
-s

eq
u

en
ce CK95 −1.390± 0.084 1.139± 0.059 0.9 80.3 71.3 23.9 0.239± 0.019 1.583± 0.097 −4.3 96.5 93.3 76.1

CK95-CNS −1.417± 0.080 1.081± 0.057 1.7 97.8 92.7 90.3 0.237± 0.019 1.625± 0.100 −2.5 95.1 93.7 9.7
O12C −1.417± 0.086 1.186± 0.061 0.08 22.3 59.8 27.5 0.231± 0.019 1.520± 0.092 −4.7 74.8 87.1 72.5

O12C-CNS −1.444± 0.082 1.132± 0.058 0.4 36.5 83.0 87.8 0.228± 0.019 1.558± 0.094 −7.9 81.8 89.1 12.2

M
-s

eq
. TS10 −1.358± 0.067 0.674± 0.048 −1.3 21.3 24.5 41.8 0.244± 0.016 2.639± 0.219 −7.4 55.4 33.7 58.2

MHTC12 −1.273± 0.059 0.595± 0.042 0.6 17.0 17.9 34.5 0.267± 0.016 2.992± 0.247 −6.8 30.6 26.6 65.5
O12M −2.327± 0.064 1.019± 0.045 1.5 27.3 31.2 99.2 0.094± 0.006 1.709± 0.088 0.9 33.6 31.5 0.8

O12 −1.941± 0.056 1.182± 0.040 −2.1 44.0 22.1 84.0 0.137± 0.008 1.499± 0.059 −3.7 28.8 29.4 16.0
O12-CNS −1.953± 0.055 1.154± 0.039 2.5 52.2 28.1 99.7 0.136± 0.007 1.516± 0.059 −1.9 32.2 28.8 0.3

Table 4.2: Statistical properties of the log-normal and log-logistic distributions describing chrons from the different geomagnetic polarity
time scales (first column). Maximum likelihood estimates ofdistribution parameters are given with their standard errors in the second
and third (eighth and ninth) columns for the log-normal (log-logistic) distribution. Remaining columns indicate:r the Pearson correlation
coefficient between the distribution parameters,αKS andαAD the Kolmogorov-Smirnov and Anderson-Darling p-values of the distribution fit,
P the posterior probability of the distribution function. Correlation coefficients, p-values and posterior probabilities are given in percentages.
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Figure 4.4: Probability density of geomagnetic chron durations for the Cenozoic time
scale O12C (cf. Table 4.1). The gray shaded region marks the 95% confidence interval
for the binned probability density. Red and green curves show the best-fitting log-normal
and log-logistic distributions respectively. Color shaded areas denote the 95% confidence
intervals on the respective distribution parameters estimates.

binned chron durations from CK95, estimated a larger exponent of β = 1.09 which better
describes the data tail. However, a power-law distributionbehaves questionably at lower
chron durations where both the log-normal and the log-logistic closely agree with the data.

Consider now the M-sequence of chrons as recorded by TS10 andMHTC12. Though
the reversals timings of these GPTSs significantly differ (Figure 4.1, bottom panel), the
estimated parameters of the log-normal and log-logistic distributions agree in the limits
of statistical errors (Table 4.2). The posterior odds ratios of the log-logistic to the log-
normal distribution are 1.4 and 1.9 for TS10 and MHTC12 respectively and therefore an
informed judgement on on the best model is impossible.

The estimated log-normal and log-logistic distribution parameters for the longer re-
versal chronology O12M significantly differ from the respective estimates obtained for
the Mesozoic time scales analyzed above. As already pointedout before, the reason of
such differences can be attributed to the large fraction of short (notfully constrained)
chrons recorded in the oldest 14 Myr of O12M. Figure 4.5 presents a comparison of the
distributions of chron durations from MHTC12 and O12M. Best-fitting log-normal and
log-logistic PDFs are shown for each data set by the red and green curves respectively.
Both distribution functions seem to fit the data relative to each GPTS equally well. The
two models, however, seem to decay too slowly at low chron durations for the MHTC12
data. As already discussed above, no decisive evidence in favor of neither model exists for
MHTC12. On the contrary, the posterior probability for the log-normal distribution is as
high as 99% for O12M. Despite the statistical results are better constrained by the larger
data sample of O12M, a strong bias might be introduced by the excess of short chrons
recorded as an artifact of the measurement method employed for the oldest part of this
GPTS. It is interesting to note that another outlier might beidentified in the M-sequence.
This is a chron lasting about 2 Myr which neither the log-normal nor the log-logistic can
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Figure 4.5: Probability densities of geomagnetic chron durations for the Mesozoic time
scales MHTC12 and O12M (see legend inset). The gray shaded regions mark the 95%
confidence intervals for the respective binned probabilitydensities. The best-fitting log-
normal and log-logistic distributions are shown in red and green respectively (dashed
curves for MHTC12 and solid curves for O12M).

capture (Figure 4.5).
In conclusion, the statistic of chron durations during the Mesozoic is sensible to the

actual GPTS considered. If the shorter but better constrained reversal chronologies TS10
and MHTC12 are chosen, the log-normal and the log-logistic can be both considered valid
models with similar posterior probabilities. This result agrees with our previous analysis
of the Cenozoic GPTSs.

The probability density of chron durations for the polaritytime scale O12 (spanning
a period up to 171 Ma for a total of 448 chrons) is shown in Figure 4.6 together with
the best-fitting log-normal and log-logistic distributionfunctions. The results previously
obtained for shorter GPTSs are confirmed by this longer chronology. Both log-normal
and log-logistic distributions present a remarkable agreement with the data at short and
intermediate chron durations. However both models largelyunderestimate the likelihood
of the CNS as expected. A positive evidence in favor of the log-normal is suggested by
the Bayesian analysis (Figure 4.3). The posterior odds ratio (3.106) of the log-normal to
the log-logistic distribution is indeed 5.25 (cf. Table 4.2). However, it remains somewhat
difficult to judge which model better describes the data (Figure 4.6). As already discussed
above, the larger posterior probability obtained for the log-normal distribution may be
an artifact of the short and poorly constrained events included in the oldest part of this
chronology.

A final instructive test has been conducted discarding the CNS from O12 (O12-CNS).
The estimated log-normal and log-logistic parameters relative to O12 and to O12-CNS
are equal in the limits of statistical errors (Table 4.2). Best-fitting probability densities of
chron durations without the CNS are thus practically indistinguishable from those shown
in Figure 4.6. Nonetheless, the Bayesian analysis reports adecisive evidence in favor
of the log-normal model which has a posterior probability P(LogNormal |∆t) of 99.7%.
As already discussed analyzing the Cenozoic GPTSs, the superchron exclusion peaks
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Figure 4.6: Probability density of geomagnetic chron durations relative to the time scale
O12 (cf. Table 4.1). The gray shaded region marks the 95% confidence interval for the
binned probability density. Red and green curves show the best-fitting log-normal and
log-logistic distributions respectively. Color shaded areas denote the 95% confidence
intervals on the respective distribution parameters estimates.

the likelihood function of the log-normal relative to the log-logistic distribution and this
substantially influence the respective posterior model probabilities.

Figure 4.7 shows the posterior densities of the log-normal and log-logistic distribu-
tion parameters calculated as in Equation (3.97) for the chron durations∆t as recorded
by O12C (panels a and b), MHTC12 (panels c and d) and O12 (panels e and f) . These
GPTSs are representative of the Cenozoic, the Mesozoic and the last 171 Myr of geomag-
netic history respectively. The log-normal posterior densities are remarkably similar to
bivariate normal distributions for all the polarity time scales selected (Figure 4.7, panels
a, c and e). This indicates that the asymptotic limit of the respective likelihood functions
(Equation (3.97)) is reached and that the priors have only a marginal influence on the pos-
terior distributions. As a consequence, maximum likelihood estimates of the log-normal
parameters and the associated standard errors (Table 4.2) determine means and standard
deviations of the bivariate normal approximations to the posterior distributions with great
precision. The distribution parameters are practically uncorrelated and their correlation
coefficients are reported in Table 4.2. The log-normal posterior density relative to the
C-sequence presents significantly larger values of the shape parameterσ compared to the
M-sequence (Figure 4.7, panels a and c). This reflects the larger variability of chron dura-
tions during the Cenozoic with respect to the Mesozoic. The extended polarity time scale
O12 shows a strong bias of the log-normal posterior density towards lower values of the
location parameterµ due to the large number of short events included (Figure 4.7,panel
e).

The posterior densities of the log-logistic parameters P(α, θ |∆t, LogLogistic) cannot
be approximated by bivariate normal distributions very accurately (Figure 4.7, panels b, d
and f). Since uniform priors for the parametersθ andα have been assumed, this effect is
due to the data only. Lowerα values indicate a lower sample variance and therefore log-
logistic PDFs concentrated at lower durations (cf. Figure 3.11). A significant bias of the
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4 Results from geomagnetic polarity time scales

log-logistic posterior density towards lower parameter values is shown for O12 (Figure
4.7, panel f). Once more, this reveals the overwhelming effect of the poorly constrained
short chrons recorded by O12 on the statistic.
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Figure 4.7: Posterior densities of the log-normal (left panels) and log-logistic (right pan-
els) distribution parameters for the chron durations as recorded by the geomagnetic polar-
ity time scales O12C (panels a and b), MHTC12 (panels c and d) and O12 (panels e and
f). The selected time scales are representative of the Cenozoic, the Mesozoic and the past
171 Myr respectively (see Table 4.1 for further details). Iso-contour lines mark the 68%,
95% and 99.7% highest posterior density intervals.

In conclusion, our analysis suggests that the log-normal and log-logistic distributions
describe the geomagnetic polarity interval durations for the last 170 Myr. Ryan and Sarson
(2007), comparing a suite of distribution functions in a frequentist framework, also ob-
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4.2 Distribution of paleomagnetic polarity intervals

tained the most significant fit of chron durations for the log-normal and log-logistic fami-
lies. As already discussed in Section 3.4.1.5, the authors preferred the former distribution
because it naturally arises in simple dynamical systems subjected to the effect of multi-
plicative noise which have been used to model the occurrenceof geomagnetic reversals.
An example of this type of stochastic dynamical system is thenon-linear mean-field dy-
namo model of Hoyng et al. (2001). The authors suggested thatrandom perturbations
originating in the turbulent core convection may trigger helicity fluctuations (parametrized
by theα-term in the mean-field dynamo equation) which multiply overtime when time-
stepping the induction equation.

However, our Bayesian analysis shows that the log-normal model is decisively fa-
vored over the log-logistic only if the CNS is excluded from the reversal chronologies
analyzed. On the other hand, if the superchron (and possiblyfew other chrons lasting
several million years) is regarded as a realization of a single underlying statistical process,
the log-logistic would be a more suitable model due to its heavier tail. This is supported
by the positive evidence in favor of the log-logistic distribution obtained when including
such extreme event in the data sets. The likelihood of the CNS, however, is still largely
underestimated by the log-logistic distribution. An alternative description of the long end
of paleomagnetic chron durations suggests the use of a pure power-law (see, e.g., Gaffin
1989, Jonkers 2003). As already pointed out above, the main drawback of this distribu-
tion is that it poorly describes shorter chron durations where both the log-normal and the
log-logistic perform well.

It is therefore difficult to precisely characterize chron durations using distribution func-
tions with stationary parameters. As already discussed in Section 1.4.5, the reversal rate
possibly varied during the past 170 Myr, decreasing while approaching the CNS and in-
creasing afterwards (see Figure 1.9). Distribution functions with time-dependent parame-
ters have been proposed to take into account such variations(see, e.g., McFadden and Merrill
1984, Constable 2000, and the discussion in Section 1.4.5).These models presuppose the
influence of external mechanisms modulating the long-term state of the Earth’s core and
most often identified of mantle origin (Driscoll and Olson 2011, Biggin et al. 2012). How-
ever, some authors suggest that the reversal rate variations may also reflect the dynamics
of the strongly non-linear internal dynamo processes (Jonkers 2003, Shcherbakov and Fabian
2012) and arguments in favor of a long-term stationarity have been proposed in several
other studies (see, e.g., Hulot and Gallet 2003, Carbone et al. 2006).

Moreover, it is not entirely clear to which extent the poor resolution of the reversal
chronologies influences the observed reversal rate (McFadden 1984, Marzocchi 1997).
Our analysis uncovers a second type of bias caused by the poordata quality. Short and
not fully constrained chrons recorded in the extended Mesozoic time scales O12M and
O12 decisively encourage the posterior probability of the log-normal distribution relative
to the log-logistic. The superchron and some of the longer events which, on the contrary,
tend to favor the log-logistic model are overwhelmed by the large number of short chrons
available in these extended chronologies. In order to firmlyestablish the best alternative
between the two models selected by our analysis, it is therefore of fundamental impor-
tance to better constrain the shortest geomagnetic polarity interval durations.
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5 Results from geodynamo simulations

In this chapter we characterize the statistical propertiesof reversals and excursions in two
geodynamo models. The statistical analysis relies on concepts and methods discussed
in Chapter 3. In Section 5.1 we introduce the reversing dynamo models analyzed. The
field evolution during typical simulated polarity transitions is described in Section 5.2.
Section 5.3 illustrates the algorithm employed to determine the durations of reversals and
excursions in the numerical simulations. The statistical analysis of the occurrences and
durations of reversals (and excursions) is discussed in Section 5.4. The chapter closes
with a comparison of the statistics of the simulated polarity epochs with paleomagnetic
reversal chronologies in Section 5.5.

5.1 Models description and comparison with the Earth

In order to study the long-term behavior of the dipole field, we selected two reversing dy-
namo models with different Ekman numbers and Rayleigh numbers tuned to yield Earth-
like reversals. Table 5.1 lists the models parameters and the respective estimated values
for the Earth’s core. Model M1 has a larger Ekman numberE of 2 · 10−2 while the Ek-
man number of model M2 is twenty times smaller atE = 10−3. These models have been
previously discussed in the literature (Wicht 2005, Wicht et al. 2009).

Due to the actual limitations in the available computational power, present geodynamo
models run far away from the Earth’s parameter regime and themodels analyzed here do
not represent an exception (cf. Table 5.1). The most severe discrepancy is in the Ekman
number which is at least eleven orders of magnitude larger than the estimated Earth’s
value. This introduces an excess kinematic viscosityν which acts in damping small spa-
tial scales present at realistic parameter values, but currently unresolvable for practical
reasons. Moreover, M1 and M2 have mild Ekman numbers when compared to the most

Model E Ra Ra/Rac Pm Pr

M1 2 · 10−2 300 2.5 10 1
M2 10−3 500 8.9 10 1

Earth 10−15− 10−14 ≫ 1 104 Rac 10−6 − 10−5 0.1− 1

Table 5.1: List of control parameters for the two dynamo models analyzed. Ekman num-
berE, Prandtl numberPr and magnetic Prandtl numberPm listed for Earth are based on
molecular diffusivities.Raindicates the Rayleigh number andRac its critical value for the
onset of convection.
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recent geodynamo models approachingE = 10−7 (Kageyama et al. 2008). Long temporal
integrations, necessary to achieve a statistically significant number of reversals, act as an
additional restriction here. Nevertheless, model M2 has the lowest Ekman number among
the geodynamo models usually employed in the statistical study of simulated reversals
(see, e.g., Lhuillier et al. 2013, Olson et al. 2014).

The vast majority of geodynamo models belongs to a class of solutions where the ax-
ial dipole dominates over all the field components but remains largely aligned with the
rotation axis (stable dipolar regime). Reversals are therefore expected to be, if occurring
at all, extremely rare in such regime. Kutzner and Christensen (2002) demonstrated that
increasing systematically the vigor of convection relative to rotational forces, namely in-
creasing the Rayleigh numberRawhile keepingE constant, leads to a gradual transition
from stable dipolar to multipolar solutions (multipolar regime). The range of input param-
eters in which the dominant dipole field rarely undergoes reversals is quite narrow and lies
at the boundary between the dipolar and the multipolar regime (Kutzner and Christensen
2002, Wicht et al. 2009, 2010).

The Earth’s core Rayleigh number is hard to estimate but thought to be highly super-
critical (Christensen 2011). The numerical dynamos analyzed here are at least two orders
of magnitude less supercritical than the Earth (cf. Table 5.1).

The magnetic Prandtl numberPmis much smaller than unity for liquid metals. Typical
time scales of magnetic diffusion are thus expected to be much lower than viscous ones
in the Earth’s core (see Section 2.6). Magnetic diffusion is therefore extremely effective
and, in order to sustain the magnetic field against ohmic losses, the flow needs to be very
turbulent. In numerical models, a self-sustained magneticfield can be achieved only at
the price of lower magnetic diffusivities, i.e. for relatively large values ofPm.

In order to characterize to which extent the reversing behavior of models M1 and
M2 resembles the Earth, we defined some dimensionless measures following Wicht et al.
(2009). Their values, together with some time-averaged properties, are listed in Table 5.2.

Model Λ Rm M σM D τT |ϑ| σ|ϑ| τ

M1 4.6 94 7.36 4.51 0.38 0.061 75 15 10.8 · 103

M2 19.0 435 9.58 4.08 0.22 0.060 73 14 4.6 · 103

Earth 0.1− 10 400− 2000 7.5 1.7 < 0.6 ∼ 0.01 83 - 12· 103

Table 5.2: List of time-averaged output parameters and properties for the dynamo models
analyzed. Columns from 2 to 5 present time averages of the Elsasser numberΛ, the
magnetic Reynolds numberRm, the dipole momentM and its standard deviationσM, and
the relative dipole strength at the outer boundaryD. The time averages are calculated over
the total simulation timeτ (last column, in units of the outer core magnetic diffusion time
τη). M and its standard deviationσM are given in units of 1022 Am2. The seventh column
shows the relative transitional dipole timeτT, defined as the fraction of time that the
magnetic pole spends further away than 45◦ from the closest geographic pole. Columns 8
and 9 are the time averages of the absolute magnetic pole latitude|ϑ| (in degrees) and its
standard deviationσ|ϑ| respectively. Estimates given for Earth are discussed in the text.
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5.1 Models description and comparison with the Earth

The magnetic pole latitudeϑ is defined by

ϑ �
180
π

arctan


Bℓ=1,m=1(r = ro, t)√∑
m=0,1 B2

ℓ=1,m(r = ro, t)


, (5.1)

whereBℓ,m represents the coefficient of orderℓ and degreem in the spherical harmonic
expansion of the magnetic field (Section 2.8),ro the outer boundary radius andt time.
Values of the time-averaged absolute magnetic pole latitude |ϑ| as large as about 75◦ show
a dipole field closely aligned with the rotation axis in both dynamo models during most
of the simulation runs. The temporal variability of the magnetic pole latitude is quantified
by the standard deviation of|ϑ| (Table 5.2). The recent global geomagnetic field model
for the past 14 kyr of Pavón-Carrasco et al. (2014) reports a time-averaged value of the
magnetic north pole latitude of about 83◦.

The relative transitional timeτT is the time the magnetic pole spends further away than
45◦ from the closest geographic pole. This angular threshold has been chosen according to
the commonly accepted paleomagnetic practice (see Section1.4.3). Transitional periods
account for roughly 6% of the total simulation time in both models and are therefore
clearly separated from long stable dipole epochs. Reversals can thus be regarded as rare
events in these simulations. Considering that a typical geomagnetic reversal transition
requires 4−5 thousand years (Merrill 1998) and that about 300 events have been recorded
for the past 160 Myr,τT amounts to no more than a few percent for the Earth. This estimate
certainly represents a lower limit because, for example, transitional periods related to
excursions have not been considered.

The dipolarityD, defined as the square root of the ratio of magnetic dipole energy to
the total magnetic energy at the outer boundary

D =


∑

m=0,1 B2
l=1,m(r = ro, t)

∑
l
∑

m B2
l,m(r = ro, t)



1
2

, (5.2)

provides a quantitative estimate of the degree of dipole dominance. A value ofD ≃ 0.6
characterizes the recent geomagnetic field given up to degree and order 14 (Maus et al.
2006). Too low dipolarity is characteristic for reversing dynamos at larger Ekman num-
bers (Wicht et al. 2010). This can be attributed to the smaller influence of rotation at larger
Ekman numbers while a geostrophic flow, associated with lower E values, promotes the
production of an axial dipole field. The large-scale coherence of the flow is counterbal-
anced by the increasing influence of inertial forces at larger Rayleigh numbers. In our
simulations the time-averaged value ofD reaches 0.38 in M1 and 0.22 in M2. As we will
demonstrate in the following, the reason of such difference resides not only in the signifi-
cantly largerRaof model M2, but also in the peculiar behavior of M1 during transitional
periods. Obviously,D increases if averaged over stable dipole field polarities only, thus
approaching the estimated Earth’s value given above.

Time-averaged values of the Elsasser numberΛ and the magnetic Reynolds number
Rmare also reported in Table 5.2. The Elsasser numberΛ measures the ratio of Lorentz
to Coriolis forces in the momentum equation (2.74)

Λ =
〈B2〉
µ0ρΩ

, (5.3)
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whereµ0 is the vacuum permeability,ρ the fluid density andΩ the rotation rate. The
angular brackets〈·〉 denote root mean square (RMS) values calculated over the fluid shell.
For an arbitrary scalar quantityf , its RMS value is defined as〈 f 〉 = (

f̃ 2
)1/2, where

f̃ =
3

4π(ro − r i)3

∫ 2π

0

∫ π

0

∫ ro

r i

f (r, θ, φ) r2dr sinθ dθ dφ (5.4)

represents an average over the fluid shell. In the scaling used here,Λ is a dimensionless
measure for the mean magnetic field strength in the core (see Section 2.6). M1 and M2
have time-averaged values ofΛ of 3 and 9 respectively. Since Lorentz and Coriolis forces
are expected to be of the same order in the Earth’s core (magnetostrophic balance), the
Elsasser number is thought to be of order one. Reasonable estimates of the magnetic field
strength in the core confirm an Elsasser number in the range 0.1 − 10 (Christensen et al.
2009).

The field strength has been rescaled to dimensional values bymeans of (5.3) assuming
the Earth’s rotation rateΩ = 7.292·10−5 rad/s and a mean core densityρ = 1.1·104 Kg/m3.
Table 5.2 lists the rescaled values of the time-averaged dipole momentM for the dynamo
models analyzed here. As already discussed in Section 1.4.3, paleointensity measures
provide a mean (virtual) axial dipole moment of (7.5±1.7) ·1022 Am2 during the Brunhes
chron (see also Figure 1.4). Continuous global geomagneticfield reconstructions for the
past 10 kyr (Korte et al. 2011) and 14 kyr (Pavón-Carrasco et al. 2014) agree with this
estimate. The dipole moment inferred from such models ranges between a minimum
value of 4.5 ·1022 Am2 and a maximum of 11.0 ·1022 Am2. Our dynamo simulations show
time-averaged dipole moments falling within this range.

The magnetic Reynolds numberRmrepresents the ratio of magnetic advection to mag-
netic diffusion in the induction equation (2.71) and is defined as

Rm=
〈u〉d
η
, (5.5)

whereu is the fluid velocity,d the outer shell thickness andη the magnetic diffusivity. A
lower bound for the Earth’sRmcan be estimated from the westward drift velocity of the
non-dipole field which is on average approximately 0.18 degree/year (Bullard et al. 1950).
Assuming that such motion reflects typical flow velocities atthe top of the Earth’s outer
core,Rmcan be estimated to be around 400. Christensen and Tilgner (2004), analyzing a
suite of geodynamo models, predicted a higherRmof 1200 for the Earth’s core. Recently
revised estimates for the electrical conductivity of the fluid core (Pozzo et al. 2012) would
suggest a yet larger value ofRm≃ 2000. The magnetic Reynolds number of model M2
is somewhat more realistic atRm= 435, while the value ofRm= 94 for model M1 is on
the low side.Rmcould be increased, for example, considering a larger Rayleigh number,
but this would drive both dynamos into the multipolar regimewhere the dipole looses its
dominance and reverses more or less continuously.

Rm can also be interpreted as the ratio of the magnetic diffusion time of the outer
coreτη = d2/η to the advection time scaleτu = d/〈u〉 (convective turnover time). As
mentioned above, dimensionless times in the numerical simulations are rescaled to real
values usingτη. However, if the typical time scales of magnetic field variations studied
here are ruled by the vigor of convection rather than by diffusive effects, the rescaled
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5.1 Models description and comparison with the Earth

times result to be overestimated. Moreover, there are evidences that for many dynamo
processes the advective time may play a more important role (see, e.g., Olson et al. 2012).
This could be accounted for by dividing the dimensional times given in the following by a
factorRmEarth/Rm. UsingRmEarth ≃ 2000 suggests correction factors of about 4.6 for M2
and 21 for M1.

In order to achieve a significant number of reversals, modelsM1 and M2 have been in-
tegrated for several thousand magnetic diffusion times. Figures 5.1 and 5.2 illustrate time
series of the dipole tilt angle (or dipole colatitude)Θ = 90◦ + ϑ and the total dipole mo-
mentM (in rescaled units) for M1 and M2 respectively. The higher temporal variability
of M2 with respect to M1 is evident. The former dynamo model isindeed characterized
by abrupt reversal transitions occurring with a higher frequency compared to M1. The
stronger convective driving of M2 is responsible for such enhanced reversal activity. Pe-
riods of diminished dipole intensity nicely correlate withlarge dipole tilts in model M2.
This is not always the case in M1 where longer periods of weak dipole intensity may
present stages of stable dipole field polarity.

Figure 5.3 shows histograms of the dipole tilt angleΘ, dipole momentM and dipo-
larity D for the dynamo models analyzed. Distributions of transitional times (namely
periods characterized by 45◦ ≤ Θ ≤ 135◦) are illustrated in red. Opposite field polarities
are roughly equally represented in both dynamo models as expected (Figure 5.3, panels
a and b). The induction equation (2.93b) is indeed invariantunder the transformation
B → −B meaning that the same type of dynamo mechanism operates independently of
the sign of the magnetic field. However, a certain imbalance between the two polarities
still persists even after several thousand magnetic diffusion times.

Dipole moment distributions of the two models are markedly different (Figure 5.3,
panels c and d). M2 shows a unimodal distribution with its mode at about 11· 1022 Am2.
Transitional periods seem to cause a hump at lowM values which is suggestive of the
presence of a low dipole stage distinct from the leading stable field phase. As already
noticed above, weak dipole moments nicely correlate with transitional periods and this is
quantified by a Pearson correlation coefficient betweenM and the absolute magnetic pole
latitude|ϑ| of 0.52 (see Table 5.3).

On the contrary, the time spent in weak dipole stages is comparable to that of the
stronger and stable dipole field phases in model M1 (Figure 5.3, panel c). Furthermore,
low dipole intensities correlate not entirely with transitional periods (highlighted in red)
but even more likely with stable field polarities. Consistently, poor deviations of the dipole
from the rotation axis are also observed at lowD values (Figure 5.3, panel e). Model M2,
which does not display such behavior, presents a fraction oflow dipole tilts having small
dipolarity which is relatively modest (Figure 5.3, panel f).

Note also that the dipolarity distribution of transitionalperiods of M1 shows a heavier
tail compared to M2. The former model, contrary to the latter, presents therefore signifi-
cant dipolar contributions relative to the total field strength during weaker dipole periods.
This is confirmed by a somewhat lower correlation coefficient between dipole moment
and dipolarity obtained for M1 (see Table 5.3). The reasons for the observed differences
between the two dynamo models at low field strengths will be discussed in Section 5.2.

Before analyzing in detail the temporal behavior of the two dynamos during reversal
transitions, we illustrate typical magnetic and flow field solutions at times representative
of stable polarity epochs, i.e. presenting a relatively strong dipole field closely aligned
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Figure 5.1: Time series of dipole tilt angle (upper sub-panels) and dipole momentM
(lower sub-panels) for dynamo M1. Opposite stable polarities are marked in white and
green. Red and orange background colors highlight reversals and excursions respectively.
The horizontal red line marks the critical value ofM used to define the events durations
and equals 30% of its time-averaged value. Events spaced by less than 0.4τη have been
melted and only excursions crossing the equator are shown (see Section 5.3 for a detailed
description of the algorithm employed).
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Figure 5.2: Time series of dipole tilt angle (upper sub-panels) and dipole momentM
(lower sub-panels) for dynamo M2. Opposite stable polarities are marked in white and
green. Red and orange background colors highlight reversals and excursions respectively.
The horizontal red line marks the critical value ofM used to define the events durations
and equals 30% of its time-averaged value. Events spaced by less than 0.2τη have been
melted and only excursions crossing the equator are shown (see Section 5.3 for a detailed
description of the algorithm employed).
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Figure 5.3: Histograms of dipole tilt angleΘ (panels a and b), total dipole momentM
(panels c and d) and dipolarityD (panels e and f) for models M1 (left column) and M2
(right column). Transitional times, namely periods with 45◦ ≤ Θ ≤ 135◦, are highlighted
in red.

with the rotation axis. At the selected times, the dipolarity value isD = 0.21 for M1 and
D = 0.10 for M2, while tilt anglesΘ are 5◦ and 15◦ for M1 and M2 respectively. Figure
5.4 shows the corresponding snapshots of the radial field component at the outer boundary
Br(ro, θ, φ) and of the radial velocity at mid-depthur(r i + d/2, θ, φ).

In both dynamo models, the radial magnetic field at the outer boundary is character-
ized by polarity flux-patches of opposite polarity in the twohemispheres. Such magnetic
structures are more small scaled for M2 as expected and are due to its lower Ekman num-
ber and the more vigorous convective driving. The stronger flux-patches are distributed
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model M1 model M2

Br

ur

Br

ur

Figure 5.4: Snapshots of the radial field componentBr at the outer boundary (first row)
and radial flow velocityur at mid-depth (second row) for models M1 and M2 represen-
tative of stable dipolar configurations. Blue and yellow/red colors indicate inward and
outward directed fields respectively. Color contours are scaled according to the abso-
lute maximum of the respective fields. The absolute maximum magnetic field strength is
Br = 16.2

√
µ0ηρΩ for M1 andBr = 16.6

√
µ0ηρΩ for M2; the absolute maximum velocity

field strength isur = 277.0η/d for M1 andur = 1060.1η/d for M2.

at mid to high latitudes in M1, but tend to cluster towards somewhat higher latitudes in
M2. These patches are responsible of the strong axial dipolecontribution to the total field
strength in both cases. Furthermore, less intense low-latitude patches, generally of the
opposite sign of the leading polarity in each hemisphere, are present. The magnetic field
in M1 is strongly equatorial anti-symmetric, while M2 does not show the same degree
of anti-symmetry. The higherRa of the latter model is the main reason for the spatial
symmetry breaking (Wicht 2005).

Radial velocity fields at mid-depth, shown in the bottom row of Figure 5.4, illustrate
the pattern of convection. The flow is clearly organized in relatively thin columns elon-

Model r(M, |ϑ|) r(M,D)

M1 0.56 0.77
M2 0.52 0.91

Table 5.3: Pearson correlation coefficientsr for the dipole momentM with the absolute
magnetic pole latitude|ϑ| (second column) and with the dipolarityD (third column) for
the two dynamo models analyzed.
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5 Results from geodynamo simulations

gated along the rotation axis in model M2. This is the preferred structure of convection
in a rapidly rotating spherical shell. Even though the Ekmannumber is not very low,
the models analyzed here are also moderately supercritical(see Table 5.1) and therefore
the ordering influence of Coriolis forces still dominates over inertia. However, the larger
Ekman number of M1 results in a flow which do not seem properly geostrophic.

As already mentioned above, the dipole field is mainly formedby the superposition
of the bundles of concentrated radial flux at high latitudes (Figure 5.4, top panels). As
described in previous studies (Christensen et al. 1998, Olson et al. 1999), a significant
secondary flow along and into the convective columns is mainly responsible for such flux
concentrations. This can be seen comparing the radial component of the magnetic fieldBr

model M1 model M2

Br Br

ωz ωz

Figure 5.5: Snapshots of the radial magnetic field componentBr at the outer boundary
(upper panels) and vertical component of the flow vorticityωz at r = 0.9 ro (lower panels)
for model M1 (left panels) and M2 (right panels). One hemisphere is shown with the
north pole in the center of the projection. Blue and yellow/red colors indicate inward
(negative) and outward (positive) magnetic field (vorticity). Color contours are scaled
with the absolute maximum of the respective fields.
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at the outer boundary and the vertical component of the flow vorticity ωz just below the
outer boundary as shown in Figure 5.5. A good correlation exists between positive vortic-
ity (cyclones) and concentrations of radial magnetic field flux. The significant secondary
flow along the axis of convection columns directed towards the equator in cyclones and
away from the equator in anticyclones results, at the upper and lower ends of the convec-
tion columns, in a horizontal flow convergence from negativeto positive vortices. Assum-
ing the frozen-flux approximation to be valid (Rm≫ 1), these flows advect field-lines
towards the cyclones and yield to the respective field concentrations at high latitudes.

5.2 Field evolution during polarity transitions

As pointed out in the previous section, the two geodynamo models analyzed strongly
differ in the time spent with low dipolar energy. Field polarity transitions are therefore
expected to differ. In this section we closely analyze the field evolution during transitional
periods in both dynamo models.
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Figure 5.6: Time series of dipole tilt angleΘ (first panel), total magnetic energy at the
outer boundary (second panel), magnetic energy of the axialdipole (ℓ = 1,m= 0), equa-
torial dipole (ℓ = 1,m = 1) and multipolar components (ℓ > 1) at the outer boundary
(third panel) and dipolarityD (fourth panel) for a long lasting polarity transition in model
M1.

Figure 5.6 and Figure 5.7 show two particularly slow polarity transitions occurring
in models M1 and M2 respectively. In both dynamos, the dipoleexperiences significant
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5 Results from geodynamo simulations

angular deviations from the rotation axis when the overall magnetic field is weak (first and
second panels). The axial dipole, the equatorial dipole andall the higher multipolar field
contributions of M1 decay when entering the weak field epoch (Figure 5.6, third panel).
It seems that the dynamo mechanism stops operating for a certain time until it suddenly
restarts. The dipolarityD oscillates eradicably during the weak field stage (Figure 5.6,
fourth panel) and the dipole shows, consequently, a succession of normal and reverse
field polarities. It is the coherent evolution of the axial and equatorial fields which causes
the magnetic pole to remain closely aligned with the rotation axis during most of the
transitional phase. These periods significantly populate the low end of the dipole moment
distribution as already observed in Figure 5.3 (panel c). This behavior also explains the
high values in the dipolarity distribution obtained for transitional periods (cf. Figure 5.3,
panel e).

On the contrary, M2 shows what is regarded a more typical behavior of reversing geo-
dynamo models. Figure 5.7 displays a weak field episode mainly due to a decrease in the
axial dipole intensity, while the equatorial dipole and thehigher multipolar contributions
seem to remain rather unaffected (third panel). The weak axial dipole allows for transi-
tional pole positions which may be interpreted as a succession of excursions preceding
the polarity change. This event is, however, exceptionallylong (with a duration of about
30τη) and uncovers one of the most complex field transitions.

Though the type of transition analyzed here for model M1 constitutes a significant
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Figure 5.7: Time series of dipole tilt angleΘ (first panel), total magnetic energy at the
outer boundary (second panel), magnetic energy of the axialdipole (ℓ = 1,m= 0), equa-
torial dipole (ℓ = 1,m = 1) and multipolar components (ℓ > 1) at the outer boundary
(third panel) and dipolarityD (fourth panel) for a long lasting reversal in model M2.
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5.2 Field evolution during polarity transitions

fraction of the total number of reversals, it does not represent the rule as can be seen from
the time series in Figure 5.1. Reversals with a field evolution similar to those observed
for M2 are indeed also common in M1. Polarity transitions characterized by a decay in
all the magnetic field components are nevertheless sufficient to affect the reversal statistic
of model M1.

a b

Figure 5.8: Dipole field trajectories in the phase space constituted by the Gauss coeffi-
cientsg0

1, g1
1 andh1

1 for models M1 (panel a) and M2 (panel b). For each model, the time
interval analyzed is of about 80 outer core magnetic diffusion times and contains several
reversals. Red highlights the transitional trajectories where the magnetic pole is more
than 45◦ away from the rotation axis.

The different evolution of the dipole field for the two dynamo models can be described,
over longer time spans, in the phase space constituted by thethree Gauss coefficientsg0

1,
g1

1 andh1
1. Figure 5.8 depicts the phase space trajectories of the dipole field during several

tens of magnetic diffusion times for both dynamo models. The transitional field polarities,
namely periods defined by a dipole tilt 45◦ ≤ Θ ≤ 135◦, are marked in red. Both dynamos
show two symmetric states dominated by the axial dipole componentg0

1 which represent
the two opposite stable field polarities (Figure 5.8, black curves). Transitional dipole tilts
are achieved by a significant weakening ofg0

1 in both cases. Model M1, contrary to M2,
shows a high density of non-transitional trajectories in the region where the total dipole
intensity is low. This highlights, once more, the fact that relatively long periods of weak
dipole intensity characterized by mild dipole tilts are notisolated phenomena in M1 but
are rather part of its dynamical behavior. On the contrary, transitional trajectories are more
clearly correlated with low dipole field stages in model M2. These transitional phases are
likely caused by major weakenings of the axial dipole, whilethe equatorial components
g1

1 andh1
1 show variations not significantly different from those experienced during the

stable field polarities (Figure 5.8, panel b).
Paleomagnetic findings suggest that the behavior of model M2is more realistic for

Earth where too long periods of very low field intensity seem untypical and low dipole
moments highly correlate with large angular deviations of the magnetic pole (see, e.g.,
Merrill and McFadden 1999, Valet et al. 2005, and the discussion in Section 1.4.3).
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5 Results from geodynamo simulations

5.3 Definition of events and filtering algorithm

The algorithm employed for timing the duration of reversalsand excursions in the nu-
merical simulations is described in this section. Empirical working definitions commonly
used in paleomagnetism serve as a guidance here (see Chapter1).

Since reversals and excursions are both periods of weak (global) dipole intensity, a
natural way to time their start and end is to rely on the dipolemoment variations. Thei-th
event starts at the timet(s)

i when the dipole momentM decreases below a critical value
MC, t(s)

i = t(M ≤ MC), and it ends onceM subsequently exceeds this value at the time
t(e)
i = t(M > MC). This event is defined as a reversal if the field polarities atits starting and

ending times are opposite and is an excursion otherwise. In the following,MC denotes the
critical value of the dipole momentMC normalized with the time-averaged dipole moment
M.

T
il
t

Time

M

Figure 5.9: Sketch of dipole tilt (upper sub-panel) and dipole moment (lower sub-panel)
time series illustrating the different types of events defined. The opposite stable field
polarities are marked in white and green. Red, orange and gray backgrounds highlight
reversals, grand excursions and dipole dips respectively.The horizontal red line marks
the critical dipole momentMC used to define the event durations (see the main text for
details).

Figure 5.9 sketches a time series of the dipole tilt and dipole moment illustrating the
different types of events defined. Event durations∆ti = t(e)

i − t(s)
i are marked with different

colors according to the event type. Reversal and excursion durations are highlighted in red
and orange respectively. LetRi andEi denote thei-th reversal and excursion respectively
and∆tR

i and∆tE
i their durations. The duration of thei-th stable polarity interval (SPI) of

the field∆tP
i is defined as the time difference between the starting time of thei-th reversal

and the end of the previous one, thus excluding the two bounding reversal transitions∆tR
i

and∆tR
i+1. Opposite SPIs are marked in white and green in Figure 5.9.

The last type of event defined is called dipole dip and an example is shown in gray
in Figure 5.9. Dipole dips are characterized by a decrease indipole moment comparably
shallower than those experienced during reversal transitions. Even though dipole dips pro-
mote significant deviations of the dipole from the rotation axis, they usually do not reach
the opposite hemisphere. Wicht (2005) and Wicht et al. (2009) reported that large drops
in dipole strength are required to allow tilt angles that venture into the opposite polarity
and which are detectable as global events in their numericalsimulations. This is also the
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case for the two geodynamo models analyzed here where reversals are characterized by a
decrease in dipole moment to at least 20% of its time-averaged value (see Section 5.3.1).

To keep the distinction between excursions and dipole dips clear, we introduce further
requirements for the former type of events. In order to regard an event as an excursion,
we additionally require that (a) the dipole moment has to drop below a critical valueME

C

(in units of M) and (b) the magnetic pole reaches the opposite hemisphere at least once
during the event. We refer to this subset of excursions to asgrand excursions.

Short term variability of the dipole moment due to secular variation activity around
the thresholdMC frequently leads to undesirable brief events which are typically closely
spaced in time. In order to avoid such situation, we demand that events must be separated
by astable time interval(namely a period whereM > MC) lasting at leastTS. In other
words, this filter attempts to smooth out the fastest dipole moment variations. In the
following, TS denotes the stable periodTS in units of the magnetic diffusion timeτη.
Events occurring closer thanTS are merged together into a single reversal or excursion
according to the following rules. The possible combinations of successive events are:

(a) Ri andRi+1,

(b) Ei andRj (or vice versa),

(c) Ei andEi+1

and they are sketched in the respective panels of Figure 5.10.
After the application of the temporal filter, the combination (a) gives a single excur-

sion beginning at the starting time ofRi and stopping at the ending time ofRi+1 (Figure
5.10, panel a). The brief mild recovery of the dipole moment is not deemed significant
enough to classify the respective period as a SPI. Discarding two successive reversals has
therefore the net effect of producing a longer SPI, obtained by merging the two adjacent
ones, punctuated by an excursion.

Panel b of Figure 5.10 shows the effect of the temporal filter on the event combination
(b). The excursionEi is now regarded as part of a longer reversal beginning at the starting
time ofEi and ending whenRj stops. The large dipole tilt variability preceding the reversal
is thus considered as a single weak field period leading to a longer reversal transition.

Finally, the combination (c) considers two successive excursions temporally spaced
by less thanTS. The two successive excursionsEi andEi+1 are now regarded as a single
excursion which comprises the two events (Figure 5.10, panel c). The dipole intensity
between the two initial events appears indeed too low to account for truly stable dipole
directions during such period.

Several pitfalls can occur when defining reversals and excursions viaMC andTS,
in particular for extreme parameter combinations. Since these problems may bias the
statistics of event durations, we discuss the most relevantones here. Figure 5.11 shows
illustrative examples of four potential problems. Solid and dashed lines in the dipole tilt
time series illustrate the two possible polarity alternatives after a period of weak dipole
intensity. Blue, green and orange background colors highlight event durations determined
with different choices ofMC (horizontal lines). The first problem, denoted as P1 in Fig-
ure 5.11, is an over-estimation of the event duration. WhenMC is chosen too large (blue
horizontal line) we may regard insignificant dipole moment variations as start or end of a
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5 Results from geodynamo simulations

reversal (or an excursion) should these happen closer thanTS to the ‘true’ event. The im-
pact of this problem increases withTS and therefore particularly affects the combination
of largeMC and longTS.

If MC is chosen too low (orange horizontal line) we may wrongly classify periods
where the dipole momentM recovers only mildly as a SPI. This problem P2, illustrated
in the top right panel of Figure 5.11, increases the likelihood for short SPIs and also
artificially separates a reversal (solid dipole tilt curve)into a shorter reversal and a shorter
excursion. It may even separate a major excursion (dashed dipole tilt curve) into two
shorter reversals. P2 therefore modifies the statistic of event durations. The likelihood for
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Figure 5.10: Sketches of dipole tilt (upper sub-panels) anddipole moment (lower sub-
panels) time series illustrating the effect of the stable periodTS on different combinations
of consecutive events: successive reversals (panels a), grand excursion and reversal (pan-
els b) and successive grand excursions (panels c). For each combination of events, the
time series before and after the application of the temporalfilter are shown in the upper
and lower panels respectively. The horizontal red line denotes the critical dipole moment
MC used to define the event durations.
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this problem to occur decreases withTS so that P2 is more severe for combination of low
MC and shortTS.

Problem P3 concerns the other extreme where we falsely regard a ‘proper’ SPI as part
of an ongoing event becauseMC is chosen too large and/orTS too long. Since two events
are melted to form a single long one, the statistics of event durations can be severely
modified. P3 particularly concerns combinations of largeMC and longTS. All three
problems more drastically impact the duration of the shorter events than of the longer
SPIs.

A further problem illustrated in Figure 5.11 is P4. WhenTS is unreasonably large,
SPIs shorter thanTS are classified as grand excursions regardless ofMC. The SPIs to the
left and right of this disregarded epoch are melted to form a longer SPI. The disregarded
epoch, on the other hand, will also affect the short end of the distribution of the excursion
durations. In conclusion, intermediateMC and small to intermediateTS lead to the most
reliable definition of reversals and grand excursions and wewill further discuss this issue
below.

The characterization of the correlations between low dipole moments and transitional
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Figure 5.11: Artist rendering of four different problems encountered in defining reversals
and grand excursions. Top sub-panels show the dipole tilt while bottom sub-panels show
the dipole moment. The solid (dashed) dipole tilt curve in each panel depicts a reversal
(grand excursion). Blue, green and orange illustrate the effect of different critical dipole
momentsMC (horizontal lines) on the estimate of event durations (colored backgrounds).
See the main text for more explanations.
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Figure 5.12: Relative time of transitional tilts during periods of low dipole field strengthτL
T

as function of the dipole moment thresholdMC for the dynamo models M1 and M2. Tilts
are defined as transitional if the magnetic pole is further away than 45◦ from the closest
geographic pole. Vertical dashed lines mark one standard deviation below the respective
time-averaged dipole moment value.

dipole tilts serves to better constrain the critical dipolemomentsMC which provide reli-
able event definitions. Figure 5.12 shows the likelihood fortransitional tilts during weak
field epochs, calculated as the fraction of time spent with dipole tilts 45◦ ≤ Θ ≤ 135◦

during periods with dipole moments lower thanMC and indicated asτL
T, for the two dy-

namo models analyzed here. This measure gradually decreases withMC in both dynamo
models and slowly approaches the relative transitional timesτT (Table 5.2) as expected.
The maximum values ofτL

T are about 41% and 68% for M1 and M2 respectively. Periods
of weak dipole field, therefore, do not always correlate withsignificant magnetic pole
swings. The significantly lower value ofτL

T obtained for M1 reflects the peculiar dynam-
ics of this model at low field intensities (Section 5.2). Critical dipole moment values of
MC = 1 − σM

/
M, whereσM is the dipole moment standard deviation, roughly coincide

with the largest variations ofτL
T in Figure 5.12. These value seems to provide a reasonable

estimate for the amplitude of the dipole moment variations required to enter a transitional
phase in each model.

However, since no clear cut-off in the likelihood for transitional times exists, it is im-
possible to fix a single value for the critical dipole momentMC which properly defines
reversals and excursions. For this reason, we perform a statistical analysis varying sys-
tematicallyMC and the stable periodTS. This study has not been performed before in the
literature and is of fundamental importance to guarantee the robustness of the statistical
results.

5.3.1 Selection of grand excursions

As already pointed out before, numerical simulations suggest that large drops in dipole
strength are required to regard excursions as global events(Wicht 2005, Wicht et al. 2009).
A reasonable definition of grand excursions therefore considers these events as character-
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5.3 Definition of events and filtering algorithm

ized by dipole moment dips similar to reversals. In order to choose a reasonable value for
the critical dipole momentME

C in the dynamo model M2, we calculated the mean dipole
moment minimum reached during reversals and grand excursions〈Mmin〉 when the dipole
moment thresholdMC =ME

C is varied (Figure 5.13). This measure rapidly increases be-
lowMC ≃ 0.2 because events with larger dipole moment minima are progressively taken
into account, and tends to saturate for largerMC values. Note, however, that〈Mmin〉
slightly decreases forMC & 0.2 due to problem P3 of Figure 5.11. Too large critical
dipole momentsMC have the drawback of merging consecutive events even thoughthe
dipole moment significantly recover during the in between period. The discarded events,
characterized by larger dipole moment minima, cause the observed decrease in〈Mmin〉.
In conclusion, a threshold ofME

C = 0.2 seems to properly define grand excursions and
this value will be kept fixed in the following statistical analysis.

It is remarkable to notice that the dipole moment reaches, onaverage, minimum values
of about 5− 6% of M during reversals and grand excursions. Standard deviations in
Figure 5.13 give an idea of the dipole moment variability around these values and do not
significantly differ between the two types of events.

As an example, Figure 5.14 shows the histogram of the dipole moment minimaMmin

during reversals and grand excursions for the combinationMC = 0.3, TS = 0.2 and
ME

C = 0.2. The distributions are very similar as expected from the above analysis. The
most likely dipole moment minimum reached during reversalsand grand excursions is
around 3% of the time-averaged dipole momentM.

Figure 5.13: Mean dipole moment minima reached〈Mmin〉 during reversals and grand
excursions (in units of the time-averaged dipole momentM) as function of the critical
dipole momentMC for the dynamo model M2. The thin curves indicate the 1σ-intervals
of the respective estimates. The stable period has been fixedtoTS = 0.1.
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5 Results from geodynamo simulations

Figure 5.14: Histograms of the dipole moment minima reachedduring reversals and grand
excursionsMmin (in units of the time-averaged dipole momentM) for the dynamo model
M2 obtained using the threshold combinationMC = 0.3,ME

C = 0.2 andTS = 0.2.

5.4 Distribution of the durations of stable polarity inter-
vals, reversals and excursions

Based on the methods described in Chapter 3, we studied the statistical properties of
reversals and grand excursions of the dynamo model M2. The analysis focuses on prob-
ability distributions previously used to describe the occurrence of geomagnetic reversals
(see, e.g., Cox 1968, McFadden and Merrill 1993, Jonkers 2003, Ryan and Sarson 2007,
Shcherbakov and Fabian 2012). In order to explore the dependence of the statistical re-
sults on our definition of reversals and excursions, the dipole moment thresholdMC and
the stable periodTS have been varied systematically. In particular, the dipolemoment
threshold has been varied fromMC = 0.1 toMC = 0.8 in steps ofMC/10 and the stable
period fromTS = 0.1 toTS = 1 in steps ofTS/10. We recall here thatMC is normalized
with the time averaged dipole momentM (see Table 5.2) andTS is given in units of the
magnetic diffusion timeτη. Since model M2 represents more closely the Earth’s behavior
compared to M1 (see Section 5.1), the following statisticalanalysis concentrates on the
former model.

Different reversal and excursion sequences are obtained for each parameter combina-
tion (MC,TS). In the following,R indicates the set of reversal durations obtained for a
specific combination of these parameters, namely

R =
{
∆tR

i

}NR

i=1
.

In a similar way, we refer to

E =
{
∆tE

i

}NE

i=1

to as the set of grand excursion durations, and to

P =
{
∆tP

i

}NP

i=1
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5.4 Distribution of the durations of stable polarity intervals, reversals and excursions

to as the set of stable polarity interval (SPI) durations fora given parameter combination
(MC,TS). The event durations∆tR

i , ∆tE
i and∆tP

i have been calculated using the algorithm
described in Section 5.3.

5.4.1 Stable polarity intervals and occurrence of reversals

A suite of probability distributions (exponential, gamma,Weibull, log-normal and log-
logistic as described in Section 3.4.1) are fitted to the SPI durationsP for each combi-
nation ofMC andTS explored. Since SPIs cannot be shorter thanTS by construction
(Section 5.3), left truncated distribution functions are used. Distribution parameters are
estimated using the maximum likelihood (ML) method described in Section 3.5. We as-
sess the goodness-of-fit computing the Kolmogorov-Smirnov(KS) p-valuesαKS and the
Anderson-Darling (AD) p-valuesαAD (Section 3.6). Since a significance level of 5% is
assumed, This means that the distribution under testing (null-hypothesis) will be rejected
if neitherαKS norαAD exceed 0.05.

Figure 5.15 summarizes the distribution fits of the SPI durationsP obtained for the
combinations (MC,TS) explored. The distribution functions are marked with different
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Figure 5.15: Anderson-Darling (AD) p-values of the distribution fits of the stable polarity
interval durationsP obtained for the threshold valuesMC andTS explored. The tested
distribution functions are marked with different colored symbols (top right legend). Sym-
bol sizes are scaled with the associated AD p-value (bottom right legend). Empty spaces
occur where all the distribution functions can be rejected at the 5% significance level.
The dashed (dotted) horizontal line marks one (two) standard deviation(s) below the time-
averaged dipole moment value. The gray background highlights parameter combinations
expected to give reliable event definitions (see the main text for details).
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5 Results from geodynamo simulations

colored symbols and the symbol sizes are scaled with the corresponding AD p-value.
Exponential, gamma and Weibull distributions cannot be rejected at the 95% confidence
level for most points of the parameter space. Moreover, practically identical p-values are
obtained for all three distributions. The exponential can be rejected only at particularly
small or large combinations ofMC andTS. Note furthermore that none of the distribution
functions fits the data for highMC andTS values.

Closer inspection reveals that certain parameter combinations lead to unreasonable
definitions of reversals and excursions due to the problems discussed in Section 5.3. Fig-
ure 5.16 shows the dependence of the mean SPI duration on the productMCT 2

S . This
empirical combination provides an acceptable scaling of the SPI durations. Black dots
mark threshold combinations where the exponential distribution fits cannot be rejected at
the given significance level, while blue squares represent cases where the exponential is
rejected but gamma and/or Weibull are not. Red triangles show significant log-normal fits
and finally crosses indicate parameter combinations where none of the distribution func-
tions is able to describe the data. The mean SPI duration is less sensitive to the parameter
choice for intermediate values ofMCT 2

S which therefore seem to offer more reasonable
definitions of reversals and excursions. IfMC is unreasonably low and rapid dipole mo-
ment fluctuations aroundMC are not compensated by sufficiently highTS values, short
SPIs enter the data sets. This effect, identified as problem P2 in Section 5.3, leads to the
more rapid increase in the mean SPI duration for smallMCT 2

S values illustrated in Figure
5.16 and to a somewhat distorted statistics.

LargeMC andTS values also show a fast increase in the mean SPI duration. The

Figure 5.16: Mean stable polarity interval (SPI) duration as function of the threshold prod-
uctMCT 2

S . Black dots mark threshold combinations where the exponential distribution
fits cannot be rejected with 95% confidence. Blue squares (redtriangles) mark remaining
gamma and/or Weibull (log-normal) fits. Crosses indicate where all thedistribution fits
are rejected. The gray background highlights the region with the less sensitive choice of
threshold values. Capital letters denote the threshold combinations selected for a detailed
analysis (see the main text).
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5.4 Distribution of the durations of stable polarity intervals, reversals and excursions

filtering introduced by the stable periodTS becomes dominant in this region of the param-
eter space where the shorter SPIs are likely to be combined with the adjacent polarities,
thus leading to unreasonably long event durations (problemP4 in Section 5.3). As a
consequence, none of the selected models is able to describethe data.

The region with the less sensitive choice ofMC andTS give acceptable event defini-
tions and it is highlighted with a gray background in Figures5.15 and 5.16. The exponen-
tial distribution dominates this part of the parameter space. Gamma and Weibull provide
a good description of the reliableP sequences towards higher values of bothMC and
TS (cf. Figure 5.15). Furthermore, note that the log-normal and log-logistic distributions
tend to cluster at particularly highTS values, thus around the boundary with the unreason-
ably long SPIs. As we will demonstrate below, these heavy tailed distribution functions
naturally account for longer event durations.

Three parameter combinations, representative of the different event definitions de-
picted above, are indicated in Figure 5.16: a combination oflow threshold values with
MC = 0.2 andTS = 0.1 (case A), an intermediate choice ofMC = 0.3 andTS = 0.2
(case B) and the extreme combinationMC = 0.4 andTS = 0.8 (case C). Case A has the
lowest mean SPI duration, while case B belongs to the region of reasonable event defi-
nitions (cf. Figure 5.2). Finally, case C belongs to the boundary with the biased event
counting and presents a log-normal fit to the data.

Figure 5.17 shows the probability density functions (PDFs)and the cumulative distri-
bution functions (CDFs) of the data and the respective fits for the three threshold com-
binations selected. The estimated distribution parameters are listed in Table 5.4 and the
associated KS and AD p-values are given in Table 5.5.

Gamma and Weibull fit the SPI durations obtained for the threshold combination A at
the given significance level and their profiles are practically indistinguishable (Figure 5.17,
panels a and b). The estimated gamma and Weibull shape parameters arek = 0.77± 0.05
ands = 0.88± 0.03 respectively, thus resulting in monotonically decreasing PDFs. As
already mentioned above, an excess of short SPI durations isexpected using too lowMC

andTS values (cf. problem P2 of Section 5.3).
The exponential distribution, together with gamma and Weibull, can model the SPI

durationsP obtained for the intermediate threshold combination B. As expected, the esti-
mated gamma and Weibull shape parameters are close to one where the two distributions
coincide with the exponential (see Section 3.4.1). The estimated gamma shape param-
eterk is 0.91± 0.07, while the Weibull shapes is one in the limits of statistical errors
(s = 0.96± 0.04). Rate parametersλ of the exponential, gamma and Weibull distribu-
tions are also equal in the limits of statistical errors as expected (cf. Table 5.4). However,
despite the evidences in favor of the exponential model, we cannot formally reject the
hypothesis of either gamma or Weibull distributed stable polarity intervals for case B.

The longest stable polarity epoch in the numerical simulation lies significantly off
any distribution profile (Figure 5.17, panel c). Its duration, which amounts to more than
60 magnetic diffusion times, is also remarkably longer than the second longest polarity
interval. Such event is punctuated only by few brief grand excursions. However, as will
be shown in Chapter 6, this extreme event cannot be regarded as a superchron.

Case C deals with the extreme situation in whichTS is so large that the stable po-
larity intervals defined certainly contain unreasonably long events. Compared to the the
threshold combinations A and B, the histogram of SPI durations for case C presents a
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Exponential Gamma Weibull Log-normal

λ [τ−1
η ] k λ [τ−1

η ] s λ [τ−1
η ] µ [ln τη] σ

A

MLE 0.155± 0.006 0.769± 0.050 0.121± 0.009 0.882± 0.032 0.166± 0.008 1.229± 0.053 1.350± 0.039
mean 0.155 0.776 0.123 0.882 0.166 1.227 1.355
SD 0.006 0.050 0.009 0.033 0.008 0.053 0.040
r − 0.778 −0.519 -0.105

B

MLE 0.134± 0.006 0.914± 0.066 0.123± 0.010 0.962± 0.038 0.137± 0.007 1.495± 0.050 1.178± 0.038
mean 0.134 0.920 0.125 0.961 0.137 1.494 1.184
SD 0.006 0.067 0.010 0.037 0.007 0.052 0.038
r − 0.824 −0.455 -0.094

C

MLE 0.111± 0.006 0.869± 0.102 0.100± 0.010 0.939± 0.052 0.116± 0.011 1.795± 0.056 1.033± 0.044
mean 0.111 0.876 0.100 0.934 0.118 1.791 1.041
SD 0.006 0.103 0.011 0.052 0.008 0.056 0.045
r − 0.868 −0.632 -0.292

Table 5.4: Frequentist and Bayesian parameter inference ofexponential, gamma, Weibull and log-normal distribution functions for the
stable polarity interval durationsP obtained for the combinationsMC = 0.2 andTS = 0.1 (A),MC = 0.3 andTS = 0.2 (B),MC = 0.4 and
TS = 0.8 (C). Maximum likelihood estimates (MLE) of the distribution parameters are given in the first row of each threshold combination
(errors refer to the 68% confidence limits of the relative parameter estimate). Rows from 2 to 4 of each threshold combination list mean,
standard deviation (SD) and the Pearson correlation coefficientr of the posterior density of the different distribution parameters.
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Figure 5.17: Probability density functions (left column) and cumulative distributions
(right column) of the stable polarity interval (SPI) durations obtained forMC = 0.2 and
TS = 0.1 (case A, panels a and b),MC = 0.3 andTS = 0.2 (case B, panels c and d),
MC = 0.4 andTS = 0.8 (case C, panels e and f). The colored curves represent the
distribution fits passed at the 95% confidence level (see the legend insets).

diminished probability at its low end and several additional events with longer durations
(Figure 5.17, panel e). The temporal filterTS does not simply discard SPIs with a duration
lower than 0.8τη, but also merges adjacent events into longer stable polarity epochs thus
biasing the statistics (problem P4 of Section 5.3). Exponential, gamma and Weibull rate
parametersλ become consequently lower compared to cases A and B (Table 5.4). Gamma
and Weibull shape parameters are somewhat closer to case B but larger than the estimated
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5 Results from geodynamo simulations

values in case A as expected.
The log-normal distribution also provides a reasonable fit to the data and, strictly

speaking, it cannot be rejected at the 5% significance level (cf. Table 5.5). Its probability
density is not monotonically decreasing as for the former two distributions (Figure 5.17,
panel e). The log-normal may fit better the SPI shorter than about 20τη, but at the price of
a heavier tail overestimating the actual contribution fromthe data (Figure 5.17, panel f).
As a final remark note that two of the longer events in case C have an artificially enhanced
duration compared to cases A and B and almost reach the longest SPI. These examples
reveal the severe effect of the filtering algorithm on the SPI durations and the preferable
moderate choices for theMC andTS values.

The frequentist analysis performed here has shown that noneof the exponential, gamma
and Weibull hypotheses can be rejected at the 5% significancelevel when describing the
stable polarity interval durations in model M2. We therefore resort to a Bayesian approach
in order to quantify the relative likelihood between the selected models (Section 3.7).

Figure 5.18 summarizes the posterior probabilities (3.103) of the distribution func-
tions for the SPI durationsP obtained for the combinations ofMC andTS explored. Only
distribution functions which passed the goodness-of-fit tests are shown (cf. Figure 5.15).
Colored symbols denote different distribution functions and the symbol sizes are scaled
with the corresponding posterior probability. For each parameter combination, the rela-
tive sizes of the symbols correspond to the respective posterior odds ratios as given by
Equation (3.106). Since no preference to any particular distribution is given a priori, the
prior model probabilities in (3.106) are assumed to be equal.

Prior probabilities of the distribution parameters are assumed to be uniform (see Sec-
tion 3.7.2). In particular, the exponential rate parameterλ has been chosen to range from
the lowest possible rateλmin = 1/τ, whereτ is the total simulation time (Table 5.2), to
a maximum value ofλmax = 1/TS. Priors for gamma and Weibull rate parameters range

Exponential Gamma Weibull Log-normal

A
αKS 6.1 16.9 22.6 0
αAD 0.5 12.5 7.6 0
P 0.3 94.5 5.2 0

B
αKS 56.4 43.4 52.3 0.09
αAD 41.1 46.2 45.1 0.03
P 90.2 6.7 3.1 0

C
αKS 53.2 81.3 82.1 6.2
αAD 57.9 81.9 80.2 5.3
P 85.7 9.3 5.0 0

Table 5.5: Kolmogorov-Smirnov p-valuesαKS, Anderson-Darling p-valuesαAD and
Bayesian posterior model probabilities P for different distribution functions relative to
the stable polarity interval durationsP obtained for the threshold combinationsMC = 0.2
andTS = 0.1 (A),MC = 0.3 andTS = 0.2 (B),MC = 0.4 andTS = 0.8 (C). Values are
given in percentages.
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Figure 5.18: Bayesian posterior probabilities of the distribution functions (3.103) for the
stable polarity interval durationsP obtained for the threshold valuesMC andTS explored.
The tested distribution functions are marked with different colored symbols (top right
legend). Symbol sizes are scaled with the associated posterior probability (bottom right
legend). Empty spaces occur where all the distribution functions have been rejected at
the 5% significance level (cf. Figure 5.15). The dashed (dotted) horizontal line marks
one (two) standard deviation(s) below the time-averaged dipole moment value. The gray
background highlights parameter combinations expected togive reliable event definitions.

in the same interval. Shape parameters are more difficult to constrain a priori. Since
highly skewed distribution functions are not expected, we restricted the uniform priors
of the gamma and Weibull shape parameters within the interval (0, 5]. Priors for the log-
normal meanµ and standard deviationσ are assumed to be uniform between [−10, 10]
and (0, 5] respectively. Priors for the log-logistic scale parameter θ and the shape parame-
terα vary in (0, 20] and (0, 10] respectively. Note that we defined similar prior ranges for
the two-parameters distribution functions. This choice minimizes the penalization factor
introduced by larger prior uncertainties (see Section 3.7.4).

For most of theMC andTS combinations explored, the exponential distribution is
clearly preferred with posterior probabilities above 95% (Figure 5.18). The gamma dis-
tribution appears as a second contender for certain threshold values. Strong evidences in
favor of the gamma model mainly occur where the event definitions are not reliable, that
is at particularly small or large combinations ofMC andTS.

Figure 5.19 shows the Bayesian posterior densities of the exponential rate parameter
P(λ | P,Exp) calculated from Equation (3.99) for the threshold combinations B (MC =

0.3, TS = 0.2) and C (MC = 0.4, TS = 0.8) selected above. The most likely values of
the rateλ are 0.134τ−1

η and 0.111τ−1
η for B and C respectively and agree with the sample
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Figure 5.19: Bayesian posterior densities of the exponential rate parameterλ for the stable
polarity interval durationsP obtained for the threshold combinations B (MC = 0.3 and
TS = 0.2, top panel) and C (MC = 0.4 andTS = 0.8, bottom panel). 68% and 95%
highest posterior density intervals are marked in blue and red respectively.

means of the respective SPI durations as expected (cf. Figure 5.16). Due to the higher
MC andTS values of case C which provide longer SPIs, the posterior distribution shifts
towards lower values ofλ.

Since a uniform prior has been assumed, the posterior modes coincide with the ML
estimates ofλ because, as shown by Equation (3.97), the posterior distribution is pro-
portional to the likelihood function. Moreover, the posterior densities in Figure 5.19 are
practically identical to normal distributions as expectedin the asymptotic limit of the like-
lihood function (see Section 3.5.3). The number of simulated polarity intervals is thus
sufficient to guarantee the robustness of the statistical results. Drawing random samples
from P(λ | P,Exp) permits to calculate its posterior mean and standard deviation. These
values are reported in Table 5.4 and completely specify the posterior distributions.

Bayesian credibility intervals of 68% and 95% around the mode are marked in blue
and red respectively in Figure 5.19. Bayesian inference permits to conclude that the
true value ofλ lies, with 68% probability, within the intervals [0.128, 0.140]τ−1

η and
[0.105, 0.117]τ−1

η for the threshold combinations B and C respectively.
Figure 5.20 shows the posterior densities of the gamma and Weibull distribution pa-

rameters, namely P(k, λ | P,Gamma) and P(s, λ | P,Weibull), for the three threshold com-
binations selected above. These posterior densities are very close to bivariate normal
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Figure 5.20: Bayesian posterior densities of gamma (left column) and Weibull (right col-
umn) distribution parameters for the stable polarity interval durationsP obtained for the
threshold combinationsMC = 0.2 andTS = 0.1 (case A, panels a and b),MC = 0.3
andTS = 0.2 (case B, panels c and d),MC = 0.4 andTS = 0.8 (case C, panels e and f).
Iso-contour lines mark the 68%, 95% and 99.7% highest posterior density intervals.

distributions. As already pointed out before, this indicates that the statistic is well con-
strained in terms of the events number. The gamma parametersk andλ are positively
correlated for all the threshold combinations selected (Figure 5.20, panels a, c and e) The
respective correlation coefficients are reported in Table 5.4 and reach values as high as
80%.

The threshold combination A, dominated by short polarity intervals, shows a narrow
gamma posterior density significantly away fromk = 1 where the distribution coincides

131



5 Results from geodynamo simulations

with the exponential. The fact that P(k, λ | P,Gamma) is strongly peaked around its mode
is a direct consequence of the large number of polarity intervals available in this case
(NP = 682). Having a model posterior probability of about 94%, theevidence in favor of
the gamma distribution is positive.

Larger values ofk become more likely when increasingMC andTS to the moderate
threshold combination B (Figure 5.20, panel c). In particular, the 68% highest posterior
credibility interval now includesk = 1. This is confirmed by the positive evidence in
favor of the exponential distribution which presents a posterior probability of about 90%,
while the gamma model reaches only 7% (Table 5.5). The additional degree of freedom
introduced by the second parameter of the gamma distribution is not justified by a suffi-
cient gain in the data likelihood for this threshold combination. The posterior density of
the gamma parameters relative to case C (Figure 5.20, panel e) covers a broad range ofk
values and the 68% credibility interval still includesk = 1. The correlation between the
two distribution parameters also remains high (r = 0.86).

Posterior densities of the Weibull parameterss andλ are illustrated in the right col-
umn of Figure 5.20 for the three combinations ofMC andTS selected. Contrary to the
gamma distribution, Weibull parameters are negatively correlated with somewhat lower
amplitudes (cf. Table 5.4). Fors < 1, increasing the value ofs results in a steeper
monotonically decreasing PDF (Figure 3.7). Since the Weibull rate λ tends to decrease
in order to fit the data for largers, the two distribution parameters become negatively
correlated. Bivariate normal distributions only partially approximate the posterior densi-
ties P(s, λ | P,Weibull). Sample means, standard deviations and correlation coefficients of
P(s, λ | P,Weibull) are reported in Table 5.4.

Contrary to the posterior densities of the gamma parameters, P(s, λ | P,Weibull) mildly
shifts towards larger values of the shape parameterswhen going from the threshold com-
bination A to B. The values = 1 is within the 68% credibility interval in the latter case,
in agreement with the positive evidence in favor of the exponential model found. The pos-
terior model probability for the Weibull distribution remains quite low for all the selected
cases with values up to 5%. Since the priors used for the gammaand Weibull parameters
are the same, the data likelihood must account for the observed discrepancy in the poste-
rior model probabilities. We can therefore conclude that the gamma distribution fits the
SPI durations better than the Weibull for the combinations ofMC andTS explored.

The impact of different prior choices for the distribution parameters is discussed in
the following section. The results discussed above have been found to vary only mildly
with the specific prior choice. This means that the posteriorprobabilities are dominated
by the data likelihood (see Section 3.7.2) and therefore thestatistical inferences obtained
are robust.

In conclusion, our Bayesian analysis shows a strong evidence in favor of exponentially
distributed stable polarity interval durations in dynamo model M2 over a wide range of
MC andTS combinations. Statistically significant deviations from the exponential distri-
bution in favor of a gamma model have been found only at too small and too large thresh-
old values where the event definitions are less reliable. Though not rigorously tested, it
seems reasonable to assume that reversals are independent events in our numerical sim-
ulations. A Poisson process (Section 3.4.2) therefore bestdescribes the occurrence of
reversals in model M2. The Poisson process is the only one, among the selected random
processes described by the different distribution functions tested, to be memoryless (see

132



5.4 Distribution of the durations of stable polarity intervals, reversals and excursions

Section 3.4.2). This means that, once the dynamo establishes in either stable field polarity,
a reversal can start at any time always with the same likelihood.

5.4.1.1 Impact of the prior choice

The previous statistical analysis assumed uniform priors for the distribution parameters.
In order to test the robustness of the results presented above, we analyzed the impact
of different prior choices on the posterior densities of the distribution parameters. Here
the discussion is limited to the SPI durations obtained for the threshold combination C
(MC = 0.4 andTS = 0.8) and to the gamma distribution as a representative example. As
in the analysis presented above, we fix in the following the prior for the rate parameter
λ to a uniform distribution within 1/τ and 1/TS, whereτ is the total simulation time in
units of the magnetic diffusion time.

Since the shape parameterk is not expected to assume large values which would
result in highly skewed distribution functions, other reasonable choices for the prior
π(k | Gamma) are monotonically decreasing distributions. A linearly decreasing and a
half normal prior have been selected fork ∈ (0, 5] (Figure 5.21, panel a).

Panel b of Figure 5.21 illustrates, for each prior choice, the marginal posterior density
of the gamma shape parameterk

P(k | P,Gamma)=

∫ T −1
S

τ−1 P(k, λ | P,Gamma)dλ

P(P | Gamma)
, (5.6)

where P(P | Gamma) is the evidence (3.94) of the SPI durationsP. The effect of the
prior on the posterior distribution is rather mild and mainly consists in a shift towards
lower k values in the direction suggested by the prior. The marginalposterior densities
are practically identical to normal distributions, thus confirming the dominance of the data
likelihood on the priors. This test has been repeated for thedifferent distribution functions
selected and for the SPI durations from different combinations ofMC andTS obtaining

ba

Figure 5.21:Panel a: Uniform (dashed curve), triangular (dotted curve) and half normal
(solid curve) prior density functions used for the gamma shape parameterk ∈ (0, 5]. The
half normal prior has a half width at half maximum ofk = 0.8. Panel b: Marginal
posterior densities ofk (5.6) for the three selected prior distributions and for thestable
polarity intervalsP obtained for the combinationMC = 0.4,TS = 0.8.
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5 Results from geodynamo simulations

similar results. This finally demonstrates the independence of our statistical results on the
specific prior choice.

5.4.2 Durations of reversals

This section focuses on the distribution of the reversal durationsR obtained for the differ-
ent combinations ofMC andTS explored. Figure 5.22 presents the results of the distri-
bution fits of reversal durations. Only fits with KS and AD p-values larger than 5% are
shown. None of the proposed distribution functions can be rejected at the 5% significance
level for the threshold combinations explored.

ForMC ≤ 0.2, mainly gamma and Weibull distributions fit the reversal durations.
SmallMC andTS values promote shorter events, thus favoring the rapid monotonically
decreasing gamma and Weibull PDFs with shape parameters lower than one. ForMC =

0.2 and largerTS values, shorter stable polarity intervals are discarded together with the
associated reversals (problem P4 of Section 5.3). This modifies the low end of the reversal
duration PDF in favor of an enhanced probability for intermediate durations. Since the
distribution profiles decrease less rapidly, the exponential can fit the reversal durations.

ForMC ≥ 0.3, skewed bell-shaped profiles of gamma, Weibull, log-normal and log-
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Figure 5.22: Anderson-Darling (AD) p-values of the distribution fits of the reversal du-
rationsR obtained for the threshold valuesMC andTS explored. The tested distribution
functions are marked with different colored symbols (top right legend). Symbol sizes are
scaled with the associated AD p-value (bottom right legend). Empty spaces occur where
all the distribution functions can be rejected at the 5% significance level. The dashed (dot-
ted) horizontal line marks one (two) standard deviation(s)below the time-averaged dipole
moment value. The gray background highlights parameter combinations expected to give
reliable event definitions.
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5.4 Distribution of the durations of stable polarity intervals, reversals and excursions

logistic distributions fit theR sequences at the 95% confidence level. The best-fitting
log-normal and log-logistic probability densities show slightly higher modes compared
to the data (Figure 5.23, panel a). shows an example forMC = 0.3 andTS = 0.2.
On the contrary, gamma and Weibull PDFs increase faster at lower reversal durations
and underestimate the probabilities around the mode. Quantile-quantile plots show the
reversal durations against the distribution quantiles (Figure 5.23, panel b) and reveal that
the gamma distribution provides the closest overall match to the data with the highest AD
p-value ofαAD = 0.57. The Weibull distribution severely underestimates the probabilities
around the mode (Figure 5.23, panel a) which results in a lower AD p-value ofαAD = 0.07.
While gamma and Weibull distributions provide a good description of the longer reversal
durations, log-normal and log-logistic tend to overestimate such probabilities due to their
heavy tails (Figure 5.23, panel b). The latter two distributions, however, cannot be rejected
at the 5% significance level.

Though the p-value based analysis shows no clear preferencefor any particular model,
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Figure 5.23: Panel a: Probability density of the reversal durationsR obtained for
MC = 0.3 andTS = 0.2 and relative best-fitting distribution functions (see thelegend
inset). Panel b: Quantile-quantile plot comparing the reversal durationsR obtained for
the threshold combination given above with the different best-fitting distribution functions
(see the legend inset).
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Figure 5.24: Bayesian posterior probabilities of the distribution functions (3.103) for the
reversal durationsR obtained for the threshold valuesMC andTS explored. The tested
distribution functions are marked with different colored symbols (top right legend). Sym-
bol sizes are scaled with the associated posterior probability (bottom right legend). Empty
spaces occur where all the distribution functions have beenrejected at the 5% significance
level (cf. Figure 5.22). The dashed (dotted) horizontal line marks one (two) standard devi-
ation(s) below the time-averaged dipole moment value. The gray background highlights
parameter combinations expected to give reliable event definitions.

the fact that all best-fitting PDFs are bell-shaped and positively skewed represents a robust
feature. Very short reversal transitions are indeed not very likely since these events cannot
happen instantaneously. Once a polarity transition has started, the dipole field requires a
finite time to decay and build up again into a new stable dipolar configuration.

Bayesian posterior probabilities permit to assess the relative likelihood of the statis-
tical models tested. Figure 5.24 shows the posterior probabilities of each model for the
threshold combinations explored. A definitive evidence in favor of the gamma distribution
is found for the majority ofMC andTS values. The exponential distribution is, however,
the preferred model with posterior probabilities above 95%forMC = 0.2 andTS ≥ 0.7.
Moreover, the log-normal distribution is promoted for large values of the dipole moment
threshold, namely forMC ≥ 0.5, and for moderateTS values.

Since varying the dipole moment threshold directly affects the reversal durationsR,
we studied the transition from low to highMC values in more detail forTS = 0.2. Figure
5.25 displays the distributions of reversal durations and the relative best-fitting gamma
PDFs forTS = 0.2 and three differentMC values. The gamma probability densities
broaden when increasingMC due to the systematically longer reversal durations defined
(problem P1 of Section 5.3). Figure 5.26 shows significant variations in the posterior
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5.4 Distribution of the durations of stable polarity intervals, reversals and excursions

Figure 5.25: Distributions of reversal durationsR obtained for a stable periodTS = 0.2
and three different values of the dipole moment thresholdMC (see the legend inset). Col-
ored curves represent the respective best-fitting gamma distributions.

density of the gamma distribution parameters P(k, λ | R,Gamma) for the threeMC values
selected. When increasingMC, P(k, λ | R,Gamma) shifts towards larger values of the
shape parameterk and lower values of the rateλ. Differences in the gamma PDFs of
Figure 5.25 forMC = 0.2 andMC = 0.3 are mainly due to the variation in the most likely
value ofk which increases from 1.39± 0.07 to 2.03± 0.11 (Figure 5.26, panels a and b).
The rateλ stays practically constant between the two cases. An additional bias towards
lower reversal durations is introduced by problem P2 (see Figure 5.11) when considering
the low dipole moment thresholdMC = 0.2.

Increasing the critical dipole moment further toMC = 0.6 leads to significantly longer
reversals with a mean duration of 0.92τη. The posterior density P(k, λ | R,Gamma) is con-
sequently shifted towards higher values of the shape parameter with the most likely value
of k which equals 2.98 (cf. Figure 5.26, panel c). The rate at the posterior mode also
significantly decreases toλ = 3.25τ−1

η . Problem P3 (Figure 5.11) is the main cause of the
observed variations in the gamma distribution parameters.The impact of problem P3 on
the reversal durations is significantly less severe at milder values ofMC. The best-fitting
gamma PDF forMC = 0.6 (Figure 5.25, blue curve) is largely different from the cases
with milderMC values. The posterior probability of the gamma model P(Gamma | R) di-
minishes from 99.9% forMC = 0.3 to a milder 31.8% forMC = 0.6. The posterior odds
ratio (3.106) of the log-normal to the gamma distribution for the latterMC value is of
about 2, thus a mild evidence in favor of the former model is found (cf. also Figure 5.24).
The paucity of short reversal durations in theR distribution forMC = 0.6 and its some-
what more pronounced tail allow the log-normal to better describe the data. However, this
preference is likely an artifact of problem P3. Figure 5.27 shows the posterior density of
the log-normal parametersµ andσ. Since a bivariate normal distribution closely approx-
imates this posterior density, the asymptotic limit of the data likelihood is reached even
though the number of reversals is not as large as for smallerMC values. The log-normal
distribution parameters are practically uncorrelated since their correlation coefficient is as
low as−0.012.
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Figure 5.26: Bayesian posterior densities of the gamma distribution parameters for the
reversal durationsR obtained forMC = 0.2 (panel a),MC = 0.3 (panel b) andMC = 0.6
(panel c). and a fixed stable period ofTS = 0.2. Iso-contour lines represent the 68%, 95%
and 99.7% highest posterior density intervals.

Larger values ofTS also impact the distribution of reversal durations especially at
moderate values of the dipole moment thresholdMC. For example, a transition from a
gamma to an exponential distribution is observed forMC = 0.2 in Figure 5.24. In or-
der to study such transition, we selected the threeTS values of 0.2, 0.5 and 0.8. Figure
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Figure 5.27: Bayesian posterior density of the log-normal distribution parametersµ andσ
for the reversal durationsR obtained for the threshold combinationMC = 0.6,TS = 0.2.
Iso-contour lines represent the 68%, 95% and 99.7% highest posterior density intervals.

5.28 shows time series of the dipole tilt and dipole moment for each of the selected cases,
while the respective distributions of reversal durations are depicted in Figure 5.29 together
with the distribution functions having the highest Bayesian posterior probability. Increas-
ing TS, the distribution functions broaden as expected and shorter reversals become less
likely.

SinceMC is relatively low, small dipole moment variations in proximity of reversal
transitions likely define excursions (problem P2 of Figure 5.11). This situation frequently
occurs with the lowestTS value of 0.2 and a typical example can be found in Figure 5.28
(panel a) at the timet ≃ 2896τη. When increasingTS to 0.5, the associated reversal and
grand excursion merge into a longer reversal (Figure 5.28, panel b). The short end of the
reversal duration distribution is thus depopulated while intermediate and long durations
become more likely. Excursions should be typically regarded as part of the reversal tran-
sition when the dipole moment does not recover significantlyenough between the two
events. However, the combination of smallMC and largeTS overemphasizes this effect.
The posterior odds ratio (3.106) of the gamma to the exponential distribution relative to
the combinationMC = 0.2 andTS = 0.5 is 1.3 and therefore the two models are almost
equally likely. The best-fitting gamma distribution shows agood agreement with the data
as expected (Figure 5.29, blue curve).

The marginal posterior density of the gamma shape parameterk

P(k | R,Gamma)=

∫ 10

τ−1 P(k, λ | R,Gamma)dλ

P(R | Gamma)
(5.7)

points out that the valuek = 1 for which the gamma coincides with the exponential
is excluded from the 95% credibility region forTS = 0.5 (Figure 5.30, panel a). This
explains the very mild preference of the gamma distributionover the exponential by the
Bayesian analysis in this case. A comparison of the posterior densities P(k, λ | R,Gamma)
for the combinationMC = 0.2 andTS = 0.2 (Figure 5.26, panel a) and forMC = 0.2 and
TS = 0.5 (Figure 5.30, panel c) reveals that the shape parameterk slightly shifts towards
one and the rateλ significantly decreases when increasingTS.

As TS increases further to 0.8, ’proper’ SPIs are discarded and considered as long
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Figure 5.28: Effect of increasing the stable periodTS on the counting of reversals and
grand excursions. Time series of dipole tilt and dipole moment are shown in the upper
and lower sub-panels respectively forTS = 0.2 (panel a),TS = 0.5 (panel b) andTS =

0.8 (panel c). The dipole moment threshold is fixed toMC = 0.2. Red and orange
background colors highlight reversals and grand excursions respectively, while opposite
stable polarities are marked in white and green.

grand excursions (problem P4 of Figure 5.11). A typical example of such behavior is
shown in Figure 5.28 (panel c) at the timet ≃ 2883τη. Since reversals associated with
the discarded SPIs are more likely short events, the distribution of reversal durations is
more severely affected at its low end (cf. Figure 5.29). The exponential distribution can
therefore describe the reversal durations and, having a posterior probability of 95%, the
evidence in favor of this model is high. The best-fitting exponential PDF remarkably
agrees with the data as expected (red curve in Figure 5.29). The gamma distribution
achieves a posterior probability as modest as 3%. Contrary to the threshold valueTS = 0.5
analyzed before, the marginal posterior density ofk 5.7 forTS = 0.8 shows that the value
k = 1 lies in the 68% credibility interval (Figure 5.30, panel d). The Bayesian analysis
favors the exponential distribution which achieves the fit with only one rather than two
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Figure 5.29: Effect of increasing the stable periodTS (see the legend inset for the ex-
plored values) on the distribution of reversal durationsR obtained forMC = 0.2. Color
shaded areas mark the 95% confidence intervals of the binned distributions. Solid curves
represent the best-fitting gamma (TS = 0.2 andTS = 0.5) and exponential (TS = 0.8)
distributions.
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Figure 5.30: Posterior densities of the gamma distributionparametersk andλ (bottom
panels) and associated marginal posterior densities of theshape parameter (5.7) (top pan-
els) for the reversal durationsR obtained forMC = 0.2 and a stable periodTS = 0.5 (left
panels) andTS = 0.8 (right panels). Blue and red areas mark 68% and 95% credibility
intervals respectively (panels a and b), while the iso-contour lines represent the 68%, 95%
and 99.7% highest posterior density intervals (panels c and d).

141



5 Results from geodynamo simulations

parameters.
Having attributed the transitions from gamma to log-normal(exponential) distribu-

tions to the too largeMC (TS) values, we can firmly conclude that the gamma distribution
is a robust model for the description of reversal durations with reliable threshold values.

5.4.3 Durations of grand excursions

The distributions of the grand excursion durationsE show strong similarities with those
obtained for the reversal durationsR in the previous section. Figure 5.31 presents the AD
p-values of the different distribution fits of the grand excursion duration obtained for the
threshold combinations explored.

ForMC ≤ 0.2, mainly gamma and Weibull distributions fit the data at the 95% confi-
dence level. An analogous situation has been observed for reversal durations at lowMC

values (Figure 5.22). Signatures for an exponential fit occur atMC = 0.2 for few TS

values. Contrary to reversal durations, there is no transition towards the exponential at
largerTS values. ForMC ≥ 0.3, only the exponential model can be rejected at the given
significance level while the remaining distributions are all acceptable.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Exponential

Gamma

Weibull

Log−normal

Log−logistic

AD p−value

10%

50%

90%

Figure 5.31: Anderson-Darling (AD) p-values of the distribution fits of the excursion
durationsE obtained for the threshold valuesMC andTS explored. The tested distribution
functions are marked with different colored symbols (top right legend). Symbol sizes are
scaled with the associated AD p-value (bottom right legend). Empty spaces occur where
all the distribution functions can be rejected at the 5% significance level. The dashed
(dotted) horizontal line marks one (two) standard deviation(s) below the time-averaged
dipole moment value. The gray background highlights parameter combinations expected
to give reliable event definitions.
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Figure 5.32:Panel a: Probability density of the excursion durationsE obtained forMC =

0.3 andTS = 0.2 and relative best-fitting distribution functions (see thelegend inset).
Panel b: Quantile-quantile plot comparing the excursion durations E obtained for the
threshold combination given above with the different best-fitting distribution functions
(see the legend inset).

Figure 5.32 (panel a) exhibits the histogram of the grand excursion durations for the
combinationMC = 0.3 andTS = 0.2 with the relative best-fitting distribution functions.
As for reversal durations, it is difficult to assess which model better describes the data.
Log-normal and log-logistic PDFs seem to closely describe the rapid increase at small
durations. On the other hand, gamma and Weibull distributions better describe the data
at intermediate excursion durations, while the log-normaland log-logistic underestimate
the respective probabilities. Excursions longer than the magnetic diffusion timeτη are
poorly captured by all the different models (Figure 5.32, panel b). The log-normal and
log-logistic distributions, due to their heavy tails, tendto overestimate the probabilities of
occurrence of the longer events, while gamma and Weibull underestimate the respective
likelihoods.

Since four different models fit the excursion durations obtained for the reliable thresh-
old combinations, no particular model can be selected in thefrequentist approach. We
therefore computed the Bayesian posterior model probabilities for the threshold combi-
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Figure 5.33: Bayesian posterior probabilities of the distribution functions (3.103) for the
excursion durationsE obtained for the threshold valuesMC andTS explored. The tested
distribution functions are marked with different colored symbols (top right legend). Sym-
bol sizes are scaled with the associated posterior probability (bottom right legend). Empty
spaces occur where all the distribution functions have beenrejected at the 5% significance
level (cf. Figure 5.31). The dashed (dotted) horizontal line marks one (two) standard devi-
ation(s) below the time-averaged dipole moment value. The gray background highlights
parameter combinations expected to give reliable event definitions.

nations explored and the results are displayed in Figure 5.33. The gamma distribution
is the most likely model for the vast majority ofMC andTS values. In particular, pos-
terior gamma probabilities larger than 95% are obtained forintermediate values ofMC

andTS. Variations of the posterior model probabilities in Figure5.33 seem also to be
similar to those obtained for reversal durations (cf. Figure 5.24). For example, a strong
evidence in favor of the exponential distribution is achieved forMC = 0.2 and largerTS

values. Moreover, increasingMC at low TS values renders the log-normal distribution
more likely. The posterior odds ratios (3.106) of the log-normal to the gamma distribu-
tion are, however, mildly larger than one only for the combinations ofTS = 0.1 and
moderate to highMC values and for few other extreme parameter combinations. There
is no decisive evidence in favor of the log-normal distribution for grand excursion dura-
tions contrary to reversal durations. We refer to Section 5.4.2 for a detailed explanation
of the type of changes experienced by the distribution profiles when increasing the dipole
moment thresholdMC or the stable periodTS. As will be demonstrated in the following
section, the estimated distribution parameters are also very similar to those obtained for
reversal durations.

We can conclude that the grand excursion durationsE, similarly to the reversal du-
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rationsR, are gamma distributed with shape parametersk > 1. The question whether
reversals and excursions are actually equivalent events will be addressed in the following
section.

5.4.4 Equivalence of reversals and grand excursions

In the previous sections, we demonstrated that both reversal durationsR and grand excur-
sion durationsE from the dynamo model M2 are best described by a gamma distribution.
Strong similarities in the variation of the estimated distribution parameters obtained for
the combinations ofMC andTS explored may also suggest that reversals and grand ex-
cursions are equivalent events. We further support this hypothesis in the following.

Figure 5.34 displays the number of grand excursionsNE against the number of rever-
salsNR for each combination ofMC andTS explored. Filled circles represent combina-
tions ofMC andTS where the event definitions are reliable (see Section 5.4.1)and they
therefore belong to the region highlighted in gray in Figures 5.22 and 5.31. The open
symbols in Figure 5.34 mark threshold combinations outsidesuch region. The number
of grand excursions seems to be systematically larger for the reliable event definitions.
The largest difference is of 15% in favor of grand excursions and is obtained for the
combinationMC = 0.3, TS = 0.1. A linear least-squares fit of the events number pro-
vides NE = −91+ 1.27NR (red line in Figure 5.34). This difference can be attributed
to the choice of the lower dipole moment threshold, used to define grand excursions, of
ME

C = 0.2 (Section 5.3.1). Note that using a lower value ofME
C would reduceNE.

Similarities between reversals and grand excursions can befurther assessed by com-
paring the estimated gamma distribution parameters of the event durations (Sections 5.4.2
and 5.4.3). Figure 5.35 shows the maximum likelihood estimates of the gamma distribu-
tion parameters for the reversal durationsR against those obtained for the grand excursion

Figure 5.34: Number of grand excursionsNE against number of reversalsNR obtained
for all the different threshold combinationsMC andTS explored. Filled symbols mark
the threshold combinations with reliable event definitions, while open symbols refer to a
biased event counting (see Section 5.4.1). The grey background line indicatesNE = NR,
while the linear least-squares fit of the filled points is shown in red.
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Figure 5.35: Estimated gamma distribution parameters (shapek in panel a and rateλ in
panel b) for reversal durations (subscriptR) and grand excursion durations (subscriptE).
Each plotted symbol refers to a combination ofMC andTS explored. Error bars represent
the 68% confidence intervals of the relative estimate. The grey background line in panel
a (panel b) indicateskE = kR (λE = λR). Linear least-squares fits are shown in red with
the color shaded backgrounds representing the respective 95% confidence intervals.

durationsE. Only combinations ofMC andTS values where the gamma distribution fits
both type of events at the 95% confidence level are shown. Eachsymbol in Figure 5.35
refers to a threshold combination with reliable event definitions. Horizontal and vertical
error bars show standard errors, i.e. the 68% confidence intervals calculated from (3.82),
of the relative estimates. Weighted linear least-squares fits are displayed in red with the
associated 95% confidence intervals.

The estimated gamma shape parameters for reversalskR seem to be slightly larger than
those of grand excursionskE (Figure 5.35, panel a). The linear least-squares fit provides
kE ∼ (0.92±0.03)kR thus confirming the presumed trend. This estimate is, however, partly
biased by the large scatter introduced by the threshold combinations with the higherMC

andTS values which have the larger errors due to their small numberof events. The line
kE = kR lies indeed within the 95% confidence interval at lower shapeparameter values
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Figure 5.36: Distribution of the reversal durationsR and grand excursion durationsE
obtained for the threshold combinationMC = 0.3,TS = 0.2.

where the statistics are well constrained.

The estimated gamma rate parameters for the durations of reversalsλR and grand
excursionsλE seem to mildly favor the latter type of events (Figure 5.35, panel b). The
least-squares fit providesλE ∼ (1.04± 0.03)λR, thus confirming the agreement between
the estimated rates. The lower shape parameter values and the somewhat larger rates of
grand excursions as compared to reversals are consistent with the higher number of grand
excursions identified in the simulation run.

For the sake of completeness, the distributions of reversaland grand excursion dura-
tions for the combinationMC = 0.3,TS = 0.2 is shown in Figure 5.36 as an example. The
distributions of the two event types are very similar as expected. The higher number of
excursions at lower durations and the larger mean reversal duration is fitted with gamma
distributions having a slightly higher rate in favor of excursions (λE = 4.68± 0.28 and
λR = 4.43± 0.28). Moreover, the narrower grand excursion distribution profile results in
a somewhat lower estimated shape (kE = 1.88± 0.10 andkR = 2.03± 0.11).

We can conclude that the statistical differences between reversals and grand excur-
sions in model M2 do not support a clear separation between the two event types. The
similarities found in the respective events numbers imply that the dynamo, after entering
a transitional period, recovers its dipole field in the same polarity as before (excursion)
or in the opposite one (reversal) with equal chance. Moreover, we found analogous esti-
mates of the gamma distribution parameters relative to eachtype of event in a wide range
of threshold combinations. This implies that reversals andgrand excursions have a sim-
ilar temporal dynamics during the respective low dipole intensity phases. It is important
to recall that only grand excursions have been considered here. If the constraint on the
dipole strength during excursions (ME

C) is relaxed, the so-called dipole dips are included
(see Section 5.3). In such situation, ‘excursion-like’ events are much more numerous than
reversals. Taking into account all excursions gives estimates of the gamma shape param-
eters significantly lower than those of reversals, while rate parameters are lower for the
latter type of events as expected.
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5 Results from geodynamo simulations

5.5 Stable polarity intervals from a paleomagnetic point
of view

Paleomagnetic reversal chronologies are based exclusively on the polarity of the magnetic
field (see Section 1.4.4). Contrary to the analysis presented above, bounding reversals
therefore contribute to the duration of each stable polarity epoch. A separation of reversal
and SPI durations based on the dipole moment would only be possible for the few most
recent events where intensity estimates are actually available. However, we can mimic
the paleomagnetic data set by defining polarity epochs whichinclude half of the duration
of each bounding reversal:

C =
{
∆tR

i

2
+ ∆tP

i +
∆tR

i+1

2

}NR−1

i=1

. (5.8)

For consistency with the nomenclature adopted in paleomagnetism, we refer hereafter to
the polarity epochsC to aschrons.

Similarly to the analysis of the SPIs presented above, we fitted left truncated distri-
bution functions byTS to the chronsC. Figure 5.37 summarizes the results of the distri-
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Figure 5.37: Anderson-Darling (AD) p-values of the distribution fits of the chron dura-
tionsC obtained for the threshold valuesMC andTS explored. The tested distribution
functions are marked with different colored symbols (top right legend). Symbol sizes are
scaled with the associated AD p-value (bottom right legend). Empty spaces occur where
all the distribution functions can be rejected at the 5% significance level. The dashed (dot-
ted) horizontal line marks one (two) standard deviation(s)below the time-averaged dipole
moment value. The gray background highlights parameter combinations expected to give
reliable event definitions.
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bution fits for the threshold combinations ofMC andTS explored, while the associated
posterior model probabilities are reported in Figure 5.38.The statistical properties of the
chron durationsC significantly differ from those obtained for the exponentially distributed
SPI durationsP (cf. Figures 5.15 and 5.18). In particular, the posterior model probabil-
ities uncover gradual transitions towards different statistical models. Positive and strong
evidences in favor of the exponential distribution are found only for low values ofMC and
TS where the event definitions are less reliable. Positive evidences in favor of the gamma
distribution are obtained for moderateMC and intermediateTS values. The evidence in
favor of the log-normal distribution becomes progressively larger when increasingMC.
Moreover, the log-normal and log-logistic distributions systematically reach comparable
posterior probabilities when increasingTS.

To gain insight into the effect of reversal durations on the polarity intervals statistic,
we proceed with a closer comparison of the distributions of the SPIsP and the chronsC
for the threshold combinations A (MC = 0.2, TS = 0.1) and B (MC = 0.3, TS = 0.2)
discussed in Section 5.4.1. The posterior densities of the gamma distribution parameters
k andλ for the threshold combinations selected are presented in Figure 5.39 (left panels).
Consider, in first place, the threshold combination A. A comparison with the respective
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Figure 5.38: Bayesian posterior probabilities of the distribution functions (3.103) for the
chron durationsC obtained for the threshold valuesMC andTS explored. The tested
distribution functions are marked with different colored symbols (top right legend). Sym-
bol sizes are scaled with the associated posterior probability (bottom right legend). Empty
spaces occur where all the distribution functions have beenrejected at the 5% significance
level (cf. Figure 5.37). The dashed (dotted) horizontal line marks one (two) standard devi-
ation(s) below the time-averaged dipole moment value. The gray background highlights
parameter combinations expected to give reliable event definitions.
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Figure 5.39:Left panels: Posterior densities of the gamma distribution parametersk and
λ for the chronsC obtained for the threshold combination A (MC = 0.2, TS = 0.1) and
B (MC = 0.3,TS = 0.2) are shown in panels a and c respectively. Iso-contour lines mark
the 68%, 95% and 99.7% highest posterior density intervals respectively.Right panels:
Probability density functions of the durations of the SPIsP and chronsC are shown for
the two threshold combinations A and B in panels b and d respectively. Colored curves
present the distribution fits with the highest posterior model probabilities (cf. Figures 5.18
and 5.38).

posterior density for the SPI durations P(k, λ | P,Gamma) (Figure 5.20, panel a) shows
that the shape parameterk significantly shifts towards larger values when the reversal
durations are taken into account, while the rateλ remains mostly unchanged. The 68%
highest posterior density interval of P(k, λ | R,Gamma) includesk = 1 (Figure 5.39, panel
a), in agreement with a posterior model probability for the exponential distribution as high
as 92%. The combination of SPIs and reversals evidently promotes a distribution with
relatively fewer short intervals. It can reasonably be assumed that the durations of the SPIs
and their bounding reversals are independent. Short or longSPIs are equally likely paired
with fast or slow reversals. Since the relative effect is larger for the short than for the long
SPIs, the pairing tends to depopulate the short duration endof the distribution of the SPIs
(Figure 5.39, panel b). This naturally favors the less steepdecreasing exponential PDF.
The posterior odds ratio (3.106) of the gamma to the exponential distributions reduces
indeed from a value larger than 300, obtained for the SPI durationsP, to about 1/20 for
the respective chron durationsC.

The threshold combination B, with exponentially distributed SPIs, shows chronsC
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5.5 Stable polarity intervals from a paleomagnetic point ofview

best described by a gamma distribution with shapek > 1, once more because the short
duration end is depopulated (cf. Figure 5.39, panel d). Furthermore, the shape parameter
valuek = 1 is excluded from the 99.7% highest posterior density interval (Figure 5.39,
panel c). However, the posterior model probability of the gamma distribution is 60%
and does not decisively favors this model compared to the exponential which achieves a
probability of 33%.

As already noticed above, the log-normal and log-logistic distributions systematically
achieve the largest posterior probabilities among the selected models when increasingTS.
Figure 5.40 illustrates the effect of progressively increasingTS on the event definitions
for a fixed critical dipole moment ofMC = 0.3. The stable periodTS varies from 0.2
(corresponding to the threshold combination B analyzed above) to the moderate value of
0.4 and finally reaches the high value of 0.9. The distributions of the respective chron
durationsC are shown in the right panels of Figure 5.40 together with thedistribution
fits achieving the largest posterior probabilities (cf. Figure 5.38). Since the threshold
combination B seems to give the more reliable event definitions, it is taken as a reference
case here. AsTS increases to 0.4, the event definitions become questionable in some cases.
In particular, certain ’proper’ stable polarity intervalsare regarded as grand excursions
(see, e.g., the events occurring at times 2940τη and 2985τη in Figure 5.40) and this has
been identified as problem P4 in Section 5.3. Since the likelihood of short chron durations
necessarily diminishes compared to the threshold combinations with milderTS values, the
evidence in favor of the gamma distribution becomes positive with a posterior probability
of P(Gamma| C) = 0.87 (see also Figure 5.38).

When further increasingTS to 0.9, SPIs characterized by a large recovery in dipole in-
tensity are affected by problem P4 (see, e.g., the events occurring at times2968τη and
3000τη in Figure 5.40). Moreover, as discussed in Section 5.4.2, reversal durations
become unreasonably long. The likelihood for longer chronsis therefore strongly en-
hanced and leads to a different statistic which favors the (heavy-tailed) log-normal and
log-logistic distribution functions (Figure 5.29, panel f). The log-logistic achieves the
largest posterior probability with P(LogLogistic| C) = 0.76, while the log-normal has
P(LogNormal| C) = 0.17. Posterior odds ratios of the latter two models to the gamma
distribution are 10.9 and 2.4 respectively. Therefore, the evidence in favor of the log-
logistic and log-normal distributions is positive.

Neglecting shorter stable polarity intervals using largerTS values mimics the unavoid-
able problem of paleomagnetic reversal chronologies in missing shorter geomagnetic
chrons (see Section 1.4.5). LargeTS values may therefore yield distributions which can
be more meaningfully compared with paleomagnetic observations of field polarities. In
Chapter 4 we demonstrated that log-normal and log-logisticdistributions best describe the
paleomagnetic chron durations as recorded by the most recent geomagnetic polarity time
scales. These results confirm previous findings obtained using different paleomagnetic
reversal chronologies (see, e.g., Ryan and Sarson 2007, Shcherbakov and Fabian 2012).
The numerical simulations suggest that different contributions may lead to such statistics.
The first contribution reflects the likelihood of reversal occurrences which has been found
to be well-described by a Poisson process (Section 5.4.1). Taking into account the finite
reversal durations leads to gamma distributed chronsC with shape parametersk > 1. This
introduces a period of inhibition immediately following a reversal which reflects the time
required to rebuild a stable dipole field with opposite polarity. Heavy-tailed distribution
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5 Results from geodynamo simulations

functions, such as the log-normal and the log-logistic, finally result when artificially ne-
glecting shorter SPIs.
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6 Conclusions and outlook

Polarity reversals are the most striking features of the Earth’s dipolar magnetic field evo-
lution but still remain poorly understood phenomena. Self-consistent numerical models
of the geodynamo successfully show stochastic dipole field reversals in a narrow range
of their input parameters. Detailed studies of polarity transitions in such models only
partially helped in determining the fluid dynamic mechanisms responsible for their oc-
currence due to the inherent complexity of the non-linear processes involved (see, e.g.,
Wicht and Olson 2004, Aubert et al. 2008). The statistical study of reversals aims to pro-
vide robust constraints on the physical processes underlying their occurrence.

In this work, we studied the statistical properties of reversals and excursions in two
numerical dynamo models with different Ekman numbers and Rayleigh numbers. In or-
der to obtain robust statistical results, these models havebeen run for several thousand
magnetic diffusion times and undergo several hundred reversals. Since the model with
the lower Ekman number ofE = 10−3 (model M2) more closely resembles the Earth (see
the discussion in Section 5.1), we focused on the analysis ofthis numerical dynamo.

The simulated reversals and excursions have been identifiedusing a criterion based on
the dipole field intensity coupled with a temporal requirement on the stability of the non-
transitional phases (see Section 5.3). Since the selectionof specific threshold values for
these criteria is somewhat arbitrary, we performed a systematic study to attest the validity
of the statistical results.

We tested different distribution functions, characterizing diverse random processes as
outlined in Section 3.4.1, in order to describe the statistics of the stable polarity intervals
(SPIs) and the durations of reversals and excursions in our numerical simulation. We
quantified the reliability of each statistical model relative to the selected alternatives using
a Bayesian approach (Section 3.7).

The exponential distribution has been found to describe theSPI durations (defined
excluding the bounding reversal transitions) with posterior model probabilities larger than
95%. Though not rigorously tested, it seems reasonable to assume that reversals are
independent events in the numerical simulation. The slowest time scale of core processes
is the free dipole decay timeτd = r2

o/π
2η ≈ 56 kyr, wherero is the outer core radius and

the magnetic diffusivityη has been calculated according to the most recent estimates of the
core electrical conductivity by Pozzo et al. (2012). This time scale might be considered as
an upper bound for the correlation time of core processes. Since the mean SPI duration in
our simulations is 20−25 times larger thanτd, the independence assumption is reasonably
justified. Moreover, studies performed on both stable dipolar and reversing geodynamo
models showed that dipole correlation times are typically afraction of τd (Hulot et al.
2010, Lhuillier et al. 2011, Lhuillier et al. 2013).

Considering therefore reversals as independent events, wecan conclude that a Poisson
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process best describes their occurrence in the numerical simulation. Among the different
random processes tested in our analysis, the Poisson is the only memoryless process (Sec-
tion 3.4.2). This implies that a reversal can start at any time during a stable polarity epoch
always with equal likelihood. Long-term variations in the geodynamo models setup, for
example triggered by changes in the boundary conditions in order to mimic the mantle
influence (see, e.g., Driscoll and Olson 2011), could changethe reversal likelihood over
time and thus lead to different conclusions. However, it is not clear to which degree such
variations influence the internal core dynamics and if they are necessarily required to ac-
count for the observed geomagnetic behavior (Hulot and Gallet 2003, Jonkers 2003, 2007,
Biggin et al. 2012).

The other fundamental aspect regarding dipole moment variations addressed in this
work concerns the equivalence of reversals and a particularsubset of excursions, called
grand excursions here. Grand excursions, similarly to reversals, have been defined using
a criterion based both on the dipole moment intensity and on large tilts which have to ven-
ture in the opposite hemisphere (Section 5.3). The fulfillment of these criteria ensures the
global character of these events (Wicht 2005). The number ofreversals and grand excur-
sions identified in model M2 have been found to be comparable.Moreover, our Bayesian
analysis showed that a gamma distribution is the most likelymodel for the durations of
both types of events. The gamma distribution parametersk andλ are furthermore equal in
the limits of statistical errors (Section 5.4.4). We therefore concluded that reversals and
grand excursions stem from the same underlying process. This process consists, first, in a
decrease of the dipole intensity which allows for large angular deviations of the magnetic
pole. After lingering in this low dipole field stage for time periods significantly shorter
than the free dipole decay timeτd, the dipole finally recovers in intensity and thus leads
to an excursion or a reversal with equal chance.

Paleomagnetic studies have documented several excursionsduring the most recent
Brunhes and Matuyama chrons (see, e.g, Laj and Channell 2007, Valet et al. 2008). Most
of these events are characterized by large angular deviations of the magnetic pole, typ-
ically larger than 45◦, and they are correlated with major dipole intensity dips. Con-
trary to our results, geomagnetic excursions therefore seem to be much more frequent
than reversals. However, globally correlated excursions represent only a minor fraction
of the total number of events. For example, six global excursions occurred during the
most recent Brunhes chron, while at least five others have notbeen correlated world-
wide (Dormy et al. 2000). If the constraint used on the dipolestrength during excursions
is relaxed, ‘excursion-like’ events become much more numerous than reversals in our
numerical simulation, thus reconciling with paleomagnetic observations. In this larger
dataset, excursion durations continue to be gamma distributed but the estimated distribu-
tion parameters are significantly biased by the large numberof shorter events introduced.
These additional events, however, may not all represent global excursions since they are
characterized by milder dipole moment variations (Wicht 2005).

We paid particular attention to the comparison of the numerical simulation results with
the statistic of geomagnetic polarity intervals. The Bayesian analysis presented in Chapter
4 provided a significant evidence in favor of the (heavy-tailed) log-normal and log-logistic
distributions for the chron durations as recorded by different geomagnetic polarity time
scales for the past 170 Myr. This result agrees with previousstudies performed in a fre-
quentist framework and relying on different geomagnetic reversal chronologies (see, e.g.,
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Ryan and Sarson 2007, Shcherbakov and Fabian 2012).
Long paleomagnetic records of reversals provide only the approximate times at which

the geomagnetic field reversed its polarity and, consequently, the bounding transitional
periods contribute to the duration of each stable polarity epoch. In order to mimic the pa-
leomagnetic data set, we analyzed the simulated polarity epochs including the durations
of the respective bounding reversals. Though reversal transitions are much shorter than
stable polarity intervals on average, their influence on thestatistic is substantial. Contrary
to the exponentially distributed SPIs, polarity epochs including reversal transitions are
indeed best described by a gamma distribution (Section 5.5). The finite reversal durations
introduce a period of inhibition immediately following each reversal which results in es-
timates of the gamma shape parametersk larger than one. This period reflects the time
required by the internal dynamo processes to build a stable dipole field with opposite po-
larity and, despite largely varying from event to event, it typically amounts to a fraction
of the free dipole decay time.

Due to the poor resolution of paleomagnetic data, several ofthe briefer geomagnetic
chrons (typically shorter than 30 kyr) are certainly not included in the polarity time scales.
We investigated the problem of missing events in our simulated reversal sequences by
artificially neglecting stable polarity intervals shorterthan a given periodTS. We demon-
strated that the gamma distributed polarity epochs including reversal transitions are pro-
gressively biased towards log-normal and log-logistic distributions when increasingTS,
thus recovering the statistic of paleomagnetic chrons. Polarity intervals shorter than at
least 0.7 − 0.8 magnetic diffusion timesτη have to be discarded in dynamo M2 to ob-
serve this bias. Accounting for the fact that the magnetic Reynolds number of model M2
is 5 times smaller than the Earth’s value, the critical polarity interval duration estimated
above amounts to 30− 40 kyr and agrees with the typical duration of shorter chrons(or
cryptochrons) likely discarded. The numerical simulationtherefore suggests that devi-
ations from poissonianity in the paleomagnetic record could be the consequence of the
limited data quality.

Even though log-normal and log-logistic distributions provide a good fit of paleomag-
netic chron durations, they significantly underestimate the likelihood for the Cretaceous
normal superchron (CNS) as shown in Section 4.2. This extremely long period of stable
field polarity is not unique in the past geomagnetic history but there are evidences for
two older superchrons (see Section 1.4.4). The question whether these extreme events are
simply outliers or stem from the large variety of time scalesproduced by the geodynamo
processes is still a matter of debate. Long-term variationsin the reversal rate, and ulti-
mately superchron states, have been successfully linked toexternal effects influencing the
magnetic field core dynamics and are typically attributed tochanges in the Earth’s mantle
(McFadden and Merrill 1984, Driscoll and Olson 2011, Bigginet al. 2012). Alternative
hypotheses suggest that stochastic mechanisms resulting from the highly non-linear inter-
nal dynamo processes may naturally trigger superchrons (Hulot and Gallet 2003, Jonkers
2003, 2007). Some additional studies point towards a non-poissonian occurrence of the ge-
omagnetic reversals. Carbone et al. (2006), for example, demonstrated that variations in
the geomagnetic reversal rate are statistically incompatible with a non-stationary Poisson
process. Olson et al. (2014) also report evidences for deviations in the stochastic nature
of geomagnetic reversals caused by nearly periodic occurrences during certain periods.

Figure 6.1 (panel a) illustrates the variation in the paleomagnetic reversal rate ob-
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tained using a sliding window with a fixed number of reversals. The reversal rate rapidly
decreases before the CNS and increases afterwards. During such periods, hints for the
clustering of particularly long and very short polarity intervals seem to be present (see
also Carbone et al. 2006, Jonkers 2007).

Figure 6.1 (panels b and c) also shows the same type of analysis performed on the
simulated reversal sequence from the dynamo model M2. Panelb depicts a period with
roughly the same number of reversals as the paleomagnetic record and contains the longest
polarity epochs. The reversal rate varies by less than a factor two throughout the simula-
tion run, while variations in the paleomagnetic record are nearly an order of magnitude
larger. The longest polarity epoch in the numerical simulation (dark gray background in
Figure 6.1, panels b and c) is much shorter than the CNS. Its duration is of about 60 mag-
netic diffusion times or 14.4 Myr which is 30% longer than the second longest event and
8 − 9 times longer than the mean polarity interval duration. TheCNS, lasting for about
35 Myr or 146 magnetic diffusion times, is about 6 times longer than the second longest
chron and 70 times longer than the mean chron duration. This extremely long period
of stable field polarity can only be reached with additional outer forcing, for example,
allowing for variations in the outer boundary heat-flux (Driscoll and Olson 2011).

The lower panel of Figure 6.1 shows the reversal rate variations throughout the whole
simulation run (solid curve). We also generated a syntheticsequence of polarity epochs
drawing random samples from an exponential distribution. The synthetic data set consists
of the same number of events identified in the numerical simulation (N = 571) occurring
at a rate which equals the estimated exponential rate (λ = 0.134τ−1

η ). The reversal rate
variations in the synthetic data set (dotted curve in Figure6.1, panel c) are totally compa-
rable with those obtained in the numerical dynamo simulation. This further confirms that
a stationary Poisson process correctly capture the occurrence of reversals in the numeri-
cal dynamo model analyzed here (Section 5.4.1). Moreover, the longest polarity epoch
identified in the numerical simulation is compatible with the fluctuations allowed by the
statistical model, while the probability of occurrence of asuperchron-like event remains
extremely low at 4× 10−10. However, some degree of clustering and and periods with a
more regular reversal occurrence seem to characterize the numerical simulation. In par-
ticular, it is remarkable that most of the longer polarity epochs occur in the vicinity of
the longest event. The statistical analysis performed in this work cannot characterize, for
example, the clustering of events. The possible non-poissonian behavior of the system on
shorter time scales will be the focus of a future study.
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Figure 6.1: Panel a: Geomagnetic reversal rate during the past 158 Myr from the po-
larity time scale of Ogg (2012). Time has been rescaled usingthe outer core magnetic
diffusion timeτη = 244 kyr based on the electrical conductivity estimates of Pozzo et al.
(2012). The Cretaceous normal superchron (CNS) is highlighted in gray. The horizontal
line shows the mean reversal rate.Panels b and c: Reversal rate throughout the simula-
tion run of model M2 for a period containing roughly the same number of reversals as
the paleomagnetic record (panel b) and for the complete run (panel c). The solid hori-
zontal line represents the estimated rate from the exponential distribution fit of the stable
polarity intervals obtained using the threshold combinationMC = 0.3,TS = 0.2. Dotted
lines mark the 95% confidence interval of the rate estimate. The dotted curve in panel c
shows the reversal rate for a synthetic data set obtained drawing random samples from an
exponential distribution with the above rate. Colored backgrounds highlight the longest
polarity interval (dark gray) and polarity intervals longer than 30τη (light gray). All the
reversal rate estimates have been calculated using a sliding window with a fixed number
of N = 40 reversals.
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