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Summary

The main magnetic field of the Earth is generated by conwectiotions in the liquid
iron core. The field shows complex variations on a broad raridene scales. Shorter
scales in the range of years are likely related to wave phenavkﬁﬂe_t_el_dlmm while
decadal to centennial variations reflect the convective ﬂwvamics[(_C_hJislensgn_eﬂal.
@). Much longer time scales are mostly associated tcagfoddarity reversals of the
dipole field component which typically last-45 thousand years (Merrill and McFadden
@%ﬁ)). Paleomagnetic measurements of sea-floor magneinadies document several
hundred polarity switches in the last 180 million years obmgagnetic history with an
average rate of 2 3 per million years@l@%). Reversals can theretoredarded
as rare and almost instantaneous events on geologic tifessca

Stable polarity epochs are also punctuated by another tiygeeats, known as excur-
sions. During such events, the magnetic pole may ventur¢hetopposite hemisphere for
periods comparable to the duration of reversals but the sifopolarity is never firmly
established. Several excursions are documented for théelasmillion years of geo-
magnetic history but only some of them have been correlakaioaty dQ_u_bLbjnngga
Laj and g;hannél_20ﬂ)7).

Paleomagnetic studies indicate that the average reveespléncy has changed over
time scales of the order of tens to hundred million years gBigt all 2012). The Creta-
ceous normal superchron (CNS) is a particularly long stpblarity epoch of about 35
million years which roughly started 118 million years befpresent. An increasing trend
in the geomagnetic reversal frequency from the end of the @N\iBe present has been
reported, while particularly high reversal rates beforis #vent have also been found.
The question whether such variations are of external agrigiost often identified with
the mantle influence, or reflect the dynamics of the strongly-imear internal dynamo
processes is still a matter of debate.

Self-consistent magneto-hydrodynamic (MHD) simulatisugcessfully reproduce
many features of the Earth’s magnetic field. Several of theseerical dynamo models
also experience dipole field reversals with charactessimilar to paleomagnetic obser-
vations [(Amjl_el_al._ZQJIO). Due to the inherent complexityttoé non-linear processes
involved, detailed studies of simulated polarity trammsigs only partially helped in deter-
mining the fluid dynamic mechanisms responsible for revgi@ad excursions (see, e.g.,
Wicht and Olson 2004, Aubert et bl._%i)08). The statisticalahbterization of these events
aims to provide robust constraints on our knowledge of thesjglal processes underlying
their occurrence.

This work presents a systematic statistical study of thersals and excursions in
two dynamo models with éierent Ekman numbers and Rayleigh numbers. Both models
have been run for several thousand magnettasion times and undergo several hundred
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Summary

reversals, thus representing by far the longest numernycemo records to date. BDerent
distribution functions, used in previous related studied describing diverse random
processes, have been tested for modeling the statistitstadé polarity interval durations
and the durations of reversals and excursions. We quantifeedelative quality of the
individual models in describing the data using a Bayesignmaach.

The occurrence of reversals is best described by a (stayipRaisson process in the
dynamo models analyzed here. The number of reversals andséxas is very similar in
the numerical dynamo with the lower Ekman number and thetiduraf both types of
events follows a gamma distribution. We therefore concthdéreversals and excursions
are expressions of the same underlying process. This @ooesists of three stages: first
the dipole moment decreases significantly in order to almvierge angular deviations of
the magnetic pole. The dynamo tends then to linger for aivelsitbrief period (compared
to the free dipole decay time) at low dipole intensities elstarized by a more complex
multipolar field. Finally the dipole moment recovers andeess a matter of chance
whether the normal or reverse polarity is amplified, thuslileg.to an excursion or a
reversal respectively.

We also addressed the question whether the statistic ofitii@éaded reversals re-
produces the Earth’s behavior. To this end, we analyzed ttst necent paleomagnetic
reversal chronologies. Log-normal and log-logistic dlsttions, both characterized by
heavy tails, best describe the chron durations with sinpitesterior model probabilities.
When simulating the limited time resolution of the paleometir record (missing shorter
events, non-resolved reversals) the polarity epochs indingerical simulation show sim-
ilar statistics. Our analysis thus suggests that the dewiditom poissonianity observed
in the paleomagnetic record could be the consequence ointited data quality rather
than the signature of aftierent statistical process.



1 Introduction

This chapter summarizes important observational aspétte present and past geomag-
netic field. After a brief historical introduction and a deption of the Earth’s interior
structure (Sections 1.1 and 11.2), the present geomagnetticrfiorphology as inferred
from global model reconstructions is described in Sedfigh Insights from paleomag-
netic studies on dipole field reversals (and excursionsjiamissed in Sectidn 1.4.

1.1 Historical background

The first archeomagnetic artifact potentially represenérmprimitive compass dates back
to 1000 BC and belongs to the Olmec civilization in Mexi@@ﬂ. This shaped
bar of lodestone, a naturally magnetized piece of magnetds most probably used as
a device for divination. By the 11th century, the Chinesedusenagnetized needle for
navigational orienting and therefore deserve the crediicovering Earth’s magnetism.
The scientific study of the Earth’s magnetic field began in16th century with early
investigations of its properties during the period of gladeploration. However, the ori-
gin of the geomagnetic field remained a mystery for a long tigibert @b) was the
first to suggest that the geomagnetic field is generatedmwitte Earth itself. In his ex-
periments, Gilbert demonstrated that the pattern of fieleldion a uniformly magnetized
sphere approximates the directions of the compass neesibevaal at the Earth’s surface.
He then concluded that the Earth behaves like a giant magnet.

Variations of the geomagnetic field on time scales of aboaty@ar or more (secular
variation) were first observed in the late 17th century. &udihg several measurements
of the magnetic field declination atfterent Iocation 3) showed that a large
part of the secular variation could be explained by a westwaft of the field. To explain
the drift, Halley proposed a model of the Earth’s interionsisting of concentric shells
of magnetic material rotating in the prograde sense, bt thi internal regions spinning
slightly slower than the exterior ones and thus causing thgnatic field to drift systemat-
ically westward as seen from the Earth’s surface (HalleyZ)6Remarkable similarities
with our current understanding of the Earth’s interior, adayered structure and the asso-
ciation of internal motions with magnetic field variatiomgre therefore born. However,
the origin of the magnetic field was still incorrectly regaddn a permanently magnetized
solid inner core.

Collecting observations recorded during sea voyagesgeifalso published a map
showing lines of constant declinatidml 01). Thapresents the first magnetic
chart and stimulated later generations of scientists irstheéy of geomagnetism through
the record of global geophysical data. In the 1830s, Caédfich Gauss and Alexan-
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1 Introduction

der von Humboldt founded what can be regarded as the firginetienal geophysical
organization: the “Gottinger Magnetischer Verein”. Theaif such organization was to
coordinate the systematic measurement of the geomagretticlclination among tens
of observatories located worldwide in order to study fieldatéoons. More information

on the early history of geomagnetism can be founmm, Chapter ﬂﬂrn

(2002) and Konla (2007).

1.2 The Earth’s interior and the quest for dynamo action

Somewhat surprisingly, the belief of Earth as a permanentignetized body survived
until the beginning of the 20th century. Apparently solvkd problem of the geomag-
netic field origin, the interest of scientists focussed opl&xing the magnetic field of
the Sun. In this attemmmlg) posed the concepagb of modern hydromag-
netic dynamo theory. Larmor suggested that, in the presainae initial magnetic field,
motions of electrically conducting fluids within a rotatibgdy might generate induced
currents able to amplify and sustain the field against ohmsgightion. Larmor’s hypoth-
esis contains the key ingredients for self-sustained dyraction and is a simplified, but
still valid, description of the basic mechanism producing magnetic field of the Earth
and many other cosmic bodies.

By inference from seismological observations, we know thatEarth’s interior struc-
ture is layered into spherical shells (Figlrel 1.1) arfeeds from what Gilbert and Halley
imagined more than three centuries ago. The outermostdayera silicate solid crust

2,890 km

Fe + Ni +
‘light elements’

5,150 km

Inner core
(solid)

6,370 km

Figure 1.1: Cross-section of the Earth’s interior. Depthrstfie various regions are indi-
cated on the left and corresponding pressures on the rigbmm ).
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1.3 The recent geomagnetic field

and a highly viscous mantle extending to a depth of about RB@Because of the high
pressure and temperature conditions, the silicate roakgoeing the mantle undergo vis-
cous deformation and convective material circulation espnt on very long time scales.
The mantle encloses the core which is composed by a solidipagr core) and a lig-
uid one (outer core). The inner core radiusgjis= 1220 km and the temperature at the
interface with the outer core (inner-core boundary}iis= 5500 K. The outer core has a
thicknessd = 2260 km and the core-mantle boundary (CMB) temperaturg s 4000 K.
The Earth’s core is mainly constituted of iron, while the@®t most abundant element
is nickel. Along with Fe and Ni, light elements (particula®, O, Si) are also present
and account for about 8% of the core m@ ). Since the Curie temperature of
iron is of about 750 K and is exceeded a few tens of kilometel®/bthe crust, Gilbert’s
conception of the Earth as a permanently magnetized bodyrtaicly not correct.

According to the magnetic remanence of certain rocks (sgellésui et al. 2009), evi-
dences for the existence of a magnetic field go back to at3e#sGa and possibly are as
old as the core itself. Assuming that the geomagnetic fiedde®n generated at the time
of core formation and no physical processes helped to maiiifghe field would simply
decay by ohmic diusion. Thee-folding time of a large-scale dipole fieldftlising by
ohmic processes within the corerig= r2/x?n, wherer, is the outer core radius amdhe
magnetic difusivity. Using recent estimates of the electrical conduigtiat Earth’s core
conditions @gﬁ_ﬂiﬁaﬁ), the free dipole decay time is 56 kyr which is more
than 5 orders of magnitude shorter than the first evidendsecdhcient geomagnetic field.
This represents a second argument against the hypothesieaihanent magnetization of
the Earth’s core and points towards the necessity of a regtome process able to sustain
the magnetic field against ohmic decay. The small enouglositcof the iron-rich liquid
outer core (comparable to that of liquid water) permits tleht convective flows to de-
velop. These complex fluid motions induce electric currantstherefore magnetic fields
exactly as envisioned M@lg). The variety of dymairprocesses occurring in
the core which are able to transform the kinetic energy odifliaws into electromagnetic
energy are known as tlgeeodynamo

The ultimate long-term energy source for the geodynamo sdroen the secular cool-
ing of the core. As the core cools down, the base of the liqoi@ crystallizes at the
inner-core boundary (ICB) thus causing the inner core tovgrowo important sources
of buoyancy are produced in this process. One source of bggyia generated by the
light elements which cannot be dissolveti@ently anymore at the ICB and drive the so-
called compositional convection. The other source is dukddatent heat release. Since
the CMB heat-flow exceeds the amount of heat conducted almngdiabat throughout
the core, thermal convection can take place. Heat releagédebradioactive decay of
unstable elements (such as K, Th and U) also contribute®ttmthl energy budget.

1.3 The recent geomagnetic field

The termgeomagnetic fielgienerally designates the magnetic field produced by all the
sources within the solid Earth and its atmosphere, up to thgnetopause. Sources of
internal origin include rocks which have been magnetizetthénpast (permanent magne-
tization) but also retaining the additional magnetizatine to the present ambient field
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1 Introduction

(induced magnetization). Magnetized rocks lie in the upmest (solid) layers of the
Earth and produce therustal field All other sources are ultimately electric currents and
are generated inside the metallic core, in the mantle ared,aruthe oceans and finally in
the ionosphere and magnetosphere.

The most intense field, with a mean amplitude of aboyi B4t the Earth’s surface, is
known as themain fieldand is produced within the core through a self-sustainindyo
process. The crustal field is weaker than the main field andsbktyong spatial variations
from fractions of a nT to fewuT. The sum of the main field and the crustal field is
often referred to as thimternal field As already mentioned, the Earth’s magnetic field
has also sources above the neutral atmosphere which cbedtie so-callegxternal
field. Electric currents produced by the motion of charged pagim the ionosphere and
magnetosphere are the main sources of the external field. essumed at the Earth’s
surface, the external field intensity is of the order of femstef nT but it can occasionally
be up to two orders of magnitude stronger. The typical tinedescof the external field
variations range from a fraction of a second to several dagisiee thus significantly faster
than the internal field variations.

Since the geomagnetic field is a vector field, it can be desdrdi any given point
of the Earth’s surface by the three orthogonal componEr{{sinting in the geographic
north direction),Y (pointing eastward) and (pointing downward). The horizontal direc-
tionH = VX2 + Y2is aligned in the direction of the compass needle, while ke field
intensity isF = VX2 + Y2 + Z2,

An alternative characterization of the field is generallgdigh paleomagnetism (see
Sectior 1.1). Instead of its vector componeidsY Z), the geomagnetic field is specified
at any given point by the field intensiByand two angular measures: theclination Dand
theinclination I. The declination is defined as the angle betwkleand the geographic
north, thusD = arctanY/X. The inclination is the angle between the horizontal plar a
the field vectorF, thusl = arctanZ/H.

Carl-Friedrich Gauss proposed a useful decompositionehthgnetic fieldB on a
sphere which is still used today to represent the Earth’sneidgfield. Since the lower
Earth’s atmosphere is a very poor electric conductor, nceots can flow in this region
and the electric current densifycan be assumed to vanish. By means of Ampére’s law,
B is then conservativeV(x B = 0) and can therefore be expressed as the gradient of a
scalar potentiaV/:

B=-VV. (1.1)
Using the solenoidal property of the magnetic fidldg = 0), we are lead to the Laplace’s
equation

V3V = 0. (1.2)
In a spherical system of coordinates and assuming that theeagurrents reside in the
interior of a spherical surface of radius= a (internal sources only), the solution of

Laplace’s equatiori(11.2) reads (see, e.g., Backus let af)199

bl 1 L
V(r,0,¢) = aZ (?) Z (g7 cosmg + h}'sinmg) P}'(cosb) , (1.3)
=1 m=0

wheref andg are colatitude and longitude respectivéty,is the Schmidt quasi-normalized
associated Legendre function of degfemd ordem (both being integers) argf’ andh?’
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1.3 The recent geomagnetic field

20000 30000 40000 50000 60000 70000
(nT)

Figure 1.2: Maps of the geomagnetic field declinat@r(top left), inclinationl (top

right) and intensityF (bottom) at the Earth’s surface in year 2005 as reconstiuaye
the CHAOS model|(Olsen etlal. 2006). Declination and intioravalues are given
in degrees. Iso-contour lines of field intensity are in stepS000nT. Adapted from

Olsen et al.[(2007).

are constants known as the Gausditoents. If external sources are present, the solution
of (I.2) contains also terms proportionalrto

At present, the Earth’s magnetic field is continuously maneitl by about 150 geomag-
netic observatories placed worldwide. Since the first sjpmerae measurements taken by
the Sputnik 3 in 1958, satellite magnetometers provided freéasurements covering the
entire Earth. Both ground-based and satellite obsernaiwa used to produce global
models of the recent Earth’s magnetic field. These modelsaaitiescribing the field of
internal origin and thus rely on the spherical harmonicespntation (1]13). Each of these
models is truncated at a certain degkedepending on the number and quality of the data
used, and some time dependence in the Gaudsia@eats is introduced to account for
the fact that the field of internal origin varies with time. r@@n corrections are further-
more required to get rid of externally induced fields. We rr&ﬁ@ls_en_el_dl.l_(zo_dﬂ) fora
comprehensive description of the most recent global geostagfield models.

Figure[1.2 shows the main magnetic field at the Earth’s seifagear 2005 as given
by the CHAOS model of Olsen etlal. (2006). Maps of the magrfitid declinationD,
inclination| and field intensityF are given in the top left, top right and bottom panels re-
spectively. Only degrees up ko= 13 have been used to reconstruct the field since higher
degrees host crustal contributions. As discussed in S€&flh the most simple approxi-
mation of the geomagnetic field is that of a geocentric axjablé and was proposed by

). In the case of a pure axial dipole field the pass needle points to the
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1 Introduction

geographic north all over the globe, meaning that the datitin is zero everywhere. Fur-
thermore, the inclinatioth is +90° at the geographic north pole90° at the geographic
south pole and Oat the equator and lines of equal inclination are parall¢h&equator.
However, as can be seen from Figlrd 1.2, the present Eartigsetic field significantly
deviates from a pure axial dipole. In the first place, suchalmns can be attributed to a
tilt of about 1T of the dipole component. Moreover, the fact that the magnpiles are
not antipodal (Figure1l2, top right panel) reveals that-diolar contributions are also
important.

The field intensity map of Figufe1.2 reveals further inteérggsinsights. Axisymmet-
ric lines of equal intensity are expected for a pure axiabipwith an intensity at the
equator half of that at the poles. The geomagnetic field niylatiffers from such con-
figuration. Two features show that even a tilted dipole camooount for the observed
pattern. Firstly, the southern polar intensity maximumaosswhat stronger than the
northern one, the latter also appearing as a double fegBa@®ondly, a strong minimum
(~ 23uT) localized in the South Atlantic, and for this reason knasrthe South Atlantic
anomaly, is present.

Despite this complex morphology, the power of the geomagsetrface field mea-
sured for each spatial degréas dﬁ@@

Re= (33 @+ o] a4

r

is dominated for more than 90% of its total amplitude by thmotk¢ = 1 (see, e.go
). The second strongest contribution, lower by mora tivae order of magnitude
in power, is the quadrupole (= 2). The dipole approximation therefore reflects the
dominant energetic contribution to the field. Furthermenege the non-dipole terms vary
on time scales shorter than the dipole, the geomagneticdaidoe regarded as dipolar
when averaged over aficiently long time. As will be seen in the following sectiohig
assumption is often used in the study of the long-term geoetagfield variations.

1.4 The paleomagnetic field

Systematic measurements of declination, inclination atehsity of the Earth’s magnetic
field are available only from the mid-19th century and haveecorded at observatories
mainly located in Europe. The past geomagnetic field, hoveas been preserved by the
natural magnetization of rocks and sediments. Unfortupatee quality of such data is
often poor and therefore the experimental determinatiatirettion and intensity results
very difficult and sometimes poorly constrained.

Paleomagnetism is the study of the past geomagnetic (patpoetic) field as recorded
by rocks, sediments and archaeological materials. Sudiestare of fundamental impor-
tance because they can provide information on the histomagnetic field generation
in the Earth’s core. In Sectidn 1.4.1 we give a general dgsaon of the physical mecha-
nisms involved in the magnetization of rocks and sedimedtsservational evidences of
geomagnetic field reversals are summarized in Section. ITA& characteristics of polar-
ity transitions are described in Section 114.3. Our disomssn the paleomagnetic field

14



1.4 The paleomagnetic field

concludes with a description of the most recent geomagpetarity time scale (Section
[1.4.4) and of previous statistical analyses performed fiarént reversal chronologies.

1.4.1 Rock magnetism

In paleomagnetism, the remanent magnetization (RM) aeduinder natural conditions
by magnetic minerals is referred to as tegural remanent magnetizatigfhRM). The
NRM of a rock is shaped by various magnetization phases wdechrred during its ge-
ological history. Any rock, at the time of its formation, ténto acquire a magnetization
M generally parallel to the ambient magnetic fiéld This is referred to as the primary
magnetization and gives information about the directiahiatensity of, presumably, the
Earth’s magnetic field. Several geological changes sulesgdo the rock formation, such
as chemical alteration and relaxatidiieets, may fiect the primary magnetization induc-
ing further magnetizations. Secondary magnetizations babe excluded in laboratory
measurements to retrieve unbiased information about thraggnetic field when the rock
was formed or cooled below its Curie temperature.

Different primary magnetization mechanisms may occur depgmaithe actual type
of magnetic mineral. In ferromagnets, the magnetic momehieighboring atoms are
parallel and have the same magnitude. Ferromagnetic ralategtain indeed a sponta-
neous remanent magnetizatibh in the absence of an external figld The high mag-
netic susceptibility of ferromagnets originates a generally strong induced m@i@ation
M; ~XH which can thus be measured even for weak magnetic fields sutte &arth’s
one. Among common magnetic minerals, only iron and irorkeliare ferromagnetic but
they are rarely found on Earth.

Prevailing magnetic minerals on Earth are magnetite andtismand they are said to
be ferrimagnetic and antiferromagnetic materials respaygt In antiferromagnetism, ad-
jacent magnetic moments are oppositely directed and, #iregeare created by identical
numbers and species of ions, have equal intensities. Incafisdd, an antiferromagnet
has in principle no remanence because the spontaneouss(m@iypdirected) magnetiza-
tions cancel on larger spatial scales. Nevertheless, letslog spins can be deflected in a
strong external field thus originating an antiferromagnstisceptibility¥, which varies
only weakly with temperature (Dunlop and Ozdemir 2007). ldéta actually has a weak
permanent magnetization which occurs only for certaintatyg/mmetries. Deviations
of magnetic moments out of antiparallelism by a fraction degree are also fiicient to
generate a weak transverse ferromagnetic moment.

In ferrimagnetic minerals adjacent magnetic moments hafferdnt intensities be-
cause they do not belong to the same type of atom (or ion). ktagnfor example, is
constituted by antiparallel magnetic sub-lattices withféedent number of Fé and Fé"
ions. This imbalance may induce a net magnetizatlpwhen placed in an external field.
This magnetization is generally weaker than that of ferrgnegic iron where all atomic
moments add, but is larger than that of hematite (Dunlop azeir 2007).

Above a certain critical temperature (Curie temperature)disordering #ect of ther-
mal energy overcomes the ordered structure of magnetic mismilagnetite, for exam-
ple, has a Curie temperature of about 5380 When an igneous rock cools from above
the Curie temperature of its magnetic minerals in an extéield H (such as the Earth’s
magnetic field), the torque exerted on the magnetic momeieists them in the direction
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1 Introduction

of H thus originating a net magnetizatidh of the sample. This type of magnetization
regards igneous rocks and is referred to agtleemoremanent magnetizatiQhiRM).

Extrusive igneous rocks such as lava flows cool very rapmiyeir environment rel-
ative to changes of the Earth’s magnetic field and thereforg tepresent almost instan-
taneous recordings of the field. At this stage, several mesites may create undesired
secondary magnetizations. For example, the cooled andl @aier surface of lava flows
may be rotated by the hotter and fluid layers beneath it. Thil TRection may then
no longer accurately reflect the geomagnetic field. To oveecthis problem, the consis-
tency of magnetic directions is usually checked ifiedent regions of the lava flows.

Due to the episodic nature of volcanic activity, lava flowseafprovide a record of
the Earth’s magnetic field which is discontinuous in timetrdeive igneous rocks may,
potentially, dfer a continuous record of the magnetic field. Unfortunatilg, rate of
chemical alteration of magnetic minerals in igneous rocksdases dramatically with
temperature. Since intrusive igneous rocks cool signifigastower than lava flows do,
the chemical processes undergone often render this red@ialid to resolve.

Sedimentary rocks acquire a stable NRM calleddb&ital remanent magnetization
(DRM). Small magnetic grains, while sinking and settlinglad bottom of lakes or in
marine environments, statistically align with the geon®grfield. When the bottom gets
compacted by the overlying layers, these grains lock ineégpilace. Dfferent geological
and biological processes may cause the rotation or tramslat the sedimentary grains
thus inducing secondary magnetizations (post-DRM).

Despite these problems, some deep-sea cores providedeaxecetords of the rever-
sal chronology but, because of the low sedimentation ratég.in some cases of reversal
transitions themselves. On the other hand, terrestriairesdary cores and certain lake
sediments with higher sedimentation rates unrevealed ggoaetic field variations over a
few thousand to a few tens of thousand ye998a,mkiw 3).

A detailed discussion of the fierent magnetization processes occurring in rocks and
the experimental measurement of their RM can be found in @uahd Ozdemir (2007).
An introduction to rock magnetism with particular emphasithe determination of pale-
omagnetic directions and intensity is givenr Chapter 3).

1.4.2 Observational evidences for field reversals

One of the most well documented observations of the palepsataxgfield are reversals.
David @) andj_anhbulQOG) first claimed to have obskemagnetizations in lava
flows roughly opposite to the present Earth’s magnetic fiéldction. More than two
decades IateLMaﬂ,gLaHa_(Lbzg) compiled the first, veryaqimative reversal chronol-
ogy demonstrating that early Quaternary lavas had a reV&bk These studies, however,
did not provide definitive evidence for reversals of the gagnetic field.

An alternative explanation, at that time strongly suppbntethe scientific community,
considered certain self-reversal mechanisms occurriracks Ml) asresponsible
for the reverse TRM observed. We now briefly describe the mmostmon mechanism
of self-reversal of thermoremanent magnetization. Carsadrock with two separated
magnetic phases such that phase A has a higher Curie teomeettzn phase B, namely
TP > TP, When the rock cools to a temperatfesuch thaf® < T < T, phase
A is magnetized parallel to the external figtd On further cooling belowr ), phase B
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1.4 The paleomagnetic field

becomes magnetized in the total figdo+ H®, whereH™® is the magnetic field due to
phase A. The direction of the total field in which B becomes nediged depends on the
relative intensity oH andH®. If [H®| > |H|, phase B will be magnetized oppositeHo
In particular, if B has a higher saturation magnetizatiornaim temperature than A, the
sample will have self-reversed.

The controversy between field reversals and self-reversatseks continued for sev-
eral years until the global character of the reverse fieldatiions observed was firmly
established. Cox and Ddell (1963) dnd McDougall and Tan{itR63), using precise ra-
diometric age determination on lava flows younger than 4 kideéd demonstrated that
reversals occurred at the same time at widely separatetidosauch as Alaska, Califor-
nia, Iceland and Hawaii. Secondary magnetizatibaats possibly fiecting the measure-
ments were also ruled out because simultaneous zones ofotaréypwere observed in
rocks of widely diterent magnetic mineralogy (see, 962). It Ehioei noted
that these early studies were not carried on continuoussegiiences but their main aim
was to establish the global character of these events. Aigkgan on the developments
and properties of a continuous reversal chronology willHzesubject of Sectidn 1.4.4.

Further observations of continuous field polarity changasied on rock sequences
(see Sectioh 1.4.3) definitely ruled out the hypothesis Ibfregersals and finally proved
that the geomagnetic field reversed in the past. Today we éadences of dipole field
polarity changes as old as abou8 Ba and several hundreds of these events have been
recorded with a certain degree of reliability for the pasd Vigr @). Properties
of the field during such transitions are described in moraiblietthe following section.

1.4.3 Geomagnetic polarity transitions

The Earth’s magnetic field has a complex morphology and sanea wide range of time
scales. Defining a reversal simply as a quasi-instantareguschange of the field thus
falls too short. When averaged over few thousand years, Veywhe geomagnetic field
is closely approximated by a geocentric axial dipm). Recent global field
models (see, e.d., Pavon-Carrasco et al. 2014) show thgeteagnetic field can be av-
eraged as axial dipolar in around 2000 yr withind@nfidence in latitude. Since such
approximation is used in many paleomagnetic studies, assacgrequirement for a field
reversal is that the axial dipole tergfiin the spherical harmonic decompositibn{1.3) has
to change sign. This definition, however, is noffmient. Paleomagnetic measurements
are, indeed, often available only at few locations over thehes globe and cannot pro-
vide a valid spherical harmonic description of the field,ezsally throughout a complete
polarity transition. Moreover, most records from igneoosks seldom capture polarity
transitions and uncertainties inherent to radiometriengatiechniques of + 2% are at
least comparable to the event duratimom, Chdpte Sedimentary records
with high deposition rates of the order of 10 tkyr are thus regarded as the most reliable
recording media for polarity transitions but have the peobbf averaging field variations
over the (generally unknown) lock-in time. To overcome éhdificulties, it is common
practice in paleomagnetism to obtain, firstly, reliablesiional data at a single selected
location.

The paleofield direction at the given location is typicaliyacacterized by the so-called
virtual geomagnetic pol¢VGP). The VGP position is where the pole of a geocentric
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Hole 981B: B/M boundary
cas

Figure 1.3: Virtual geomagnetic pole paths for the BrufMe@suyama polarity transition
(from reverse to normal) from the Ocean Drilling PrograneS®81 (top panel) and 983
(bottom panel). Adapted from Channell and Lehman (1997).

dipole would be to give the observed field direction at theegilocation. Given the
observed declinatio® and inclinationl of the remanent magnetization measured in a
sample, the VGP calculation is quite straightforward (geg., Lowrie 2007, Chapter 5).
This quantity is useful for comparing observed directiasf different positions on the
globe. It is important to note that the geocentric dipolauag®tion may fail if the field
locally hosts significant multipolar contributions.

Examples of some high-quality VGP paths of the most recennBegMatuyama
(B/M) transition, sampled from deep-sea sediment cores at tferent sites (Ocean
Drilling Program Sites 981 and 983), are presented in Fifjue The BM transition
shows complex VGP paths with considerable scatter aroundélgraphic poles. The
deposition rates at Site 983 are about twice those at Sita981s evident from the finer
temporal variability recorded by the former core. As a cousace of the large direc-
tional changes experienced by the dipole field during pilaransitions, reversal dura-
tions are dfficult to estimate and mainly ffier from the arbitrary definition of transitional
VGPs. Itis a common practice in paleomagnetism to regard 8/&transitional when
deviating more than 45- 60° from the closest geographic pole (Merrill and McFadden
1999).

The apparent duration of reversals varies betwedierént localities and the /Bl
transition represents one of the most well documented ebeanjPormy et al. 2000). If
the non-dipole field components, fluctuating on shorter tstedes, locally dominate in
intensity relative to the dipole, the duration of direcabnhanges can be vastly diverse at
different sites. The duration of a polarity reversal is, howdilely bounded by 1 and 8
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Figure 1.4: Evolution of the geomagnetic field intensityidgrthe past 2 Myr.Panel a
Composite relative paleointensity curve (95% confidentervals in gray). Black and
white bars at the top of the panel depict normal and reverkegi@arities respectively.
Panel b Virtual axial dipole moment (VADM) obtained after calitti@n with the absolute
paleointensity from volcanic records. Black dots denotéWs from volcanic records
averaged over successive time intervals (at ledd¥§r long) and error bars indicate their
dispersion. Adapted from Valet et al. (2005).

thousand years with a mean value of & thousand years (Merrill and McFadden 1999).

A further reasonable requirement for a proper definitiorhefeévent “reversal” is that
the polarity change exhibits some stability after it ocedtcrCommon paleomagnetic prac-
tice thus characterizes a reversal as a globally obserndadtyahange in the dipole field
(mainly inferred from VGP measurements as discussed alaweeaged over a few thou-
sand years (Merrill 1998). In other words, this definitioquiges that the field presents
a clear geocentric dipole character over a certain peridare bounding the transition.
In this work, we used this property as a guideline for the idieation of reversals in
numerical dynamo simulations (see Secfion 5.3).

The past geomagnetic field intensity (paleointensity) é&ssbcond source of informa-
tion on the characteristics of polarity transitions. Utdoately, reliable paleointensity
estimates are morefticult to obtain than directional data. Absolute paleoinitgresti-
mates are retrieved from igneous rocks and rely on labgrateasurements of their TRM,
while relative estimates can be occasionally acquired Bediments (Merrill and McFadden
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1999).

Similarly to the analysis of directional data, it is convamti to introduce a reference
measure for comparing paleointensity estimates obtaihddfarent locations. Their-
tual dipole momenfVDM) is defined as the equivalent (geocentric) dipole monheaud-
ing to the observed field intensity and inclination in a roakngle. Figuré 114 shows the
evolution of the geomagnetic dipole field intensity durihg tast 2 Myr as reconstructed
by. 5). The relative paleointensity curvig(iFe[1.4, panel a) has been ob-
tained by stacking independent sediment cores recordsdifierent areas of the world.
Note that polarity transitions correlate remarkably weithniocal minima of the field
intensity.

The relative paleointensity curve has been calibratedvalktanic records to obtain an
absolute estimate of the virtual axial dipole moment (VADMnel b of Figuré_114). This
procedure, common to many paleomagnetic studies, is tkelaoad requires particular
care. Remanent magnetizations of igneous rocks reprelseostanstantaneous records
of the total field and thus provide information on both dip@ad non-dipolar field contri-
butions. In order to eliminate eventual non-dipolar cdmitions to the estimated field in-
tensity) Valet et al. (2005) used the time-averaged VADMbreed by lava flows over the
past 08 Myr for calibration. VADMSs from volcanic records average¢er successive time
intervals (denoted by black dots in Figlrell.4) agree wighcdlibrated record. The mean
VADM value during the Brunhes polarity interval (0780ka) is (75 + 1.7) x 10?2 Am?
and VADMs typically reach values below 20% of the mean dueagh polarity transition.
It is important to remark that the non-dipolar field compaisenay occasionally become
comparable in intensity to the dipole during polarity tiéiogs. Therefore, VDMs are
not fully reliable estimates of the dipole field during traiosal periods.

The dipole intensity decrease during polarity transitibas been confirmed by sev-
eral paleomagnetic studies. Tanaka et 995), for el@rspowed that significantly
low VDM values occur when the VGP latitude is more thari 4%vay from the clos-
est geographic pole for several polarity transitions dythre past 10 Myr. Furthermore,
field intensity variations are generally observed to lasgkr than directional changes
(Dormy et al. 2000). Large episodes of dipole intensity dase are indeed necessary
to cause a dominance of non-dipolar contributions, thusnatlg for significant angular
deviations of the magnetic pole. For a complete review of latectional and intensity
observations during polarity transitions and their imalions on the nature of the field
we refer ta Merrill and MQFaddbh_(LQQQ).

Once the local characteristics of a transitional field areowered by the paleomag-
netic measurements discussed above, the global chardcéereversal has still to be
determined. As already discussed in Sedtion 1.4.2, thigisdlly done combining mea-
surements from rocks of the same age dlfedent sites over the globe. This usually
represents enough evidence for a sign changg of the field expansiori (1.3).

Transitional VGPs show a second type of events knowgessnagnetic excursions
During excursions the magnetic pole greatly departs froengiocentric axial dipole di-
rection. Such deviations are generally larger than tyge&osecular variations and may
eventually lead to the reverse direction for a relativeigtyperiod. Contrary to reversals,
the opposite dipole direction is not firmly established dgrexcursions. Brief polarity
excursions were initially considered either as spurious iaolated recording artifacts
indicative of remagnetization processes, or as local afiesnaf the geomagnetic field.
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1.4 The paleomagnetic field

The analysis of high resolution deep-sea sedimentary deat@monstrated that several
excursions punctuated the most recent stable polarityhepd@nce the same excursions
could be detected at several locations and ffedent magnetic materials, thus robustly
establishing the global character of some of these evdms,axistence could no longer
be doubted.

Numerous field excursions have been discovered to puncheteost recent Brunhes
polarity interval (0— 780ka). The Laschamp excursion is the most well documented
event and also the first to be historically recognized in dairam the French Massif
Central. Absolute ages of lava flows date its occurrence .&t+48.4 ka and sedimentary
records estimate its duration to about 2 I{;LL(D_OLmLéLaLEBOCSiX excursions during
the Brunhes polarity epoch can be reliably considered dsafjevents, while at least five
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Figure 1.5: Relative paleointensity (top panel) and virggomagnetic pole (VGP) lati-
tude (bottom panel) at the Ocean Drilling Program Sites 988 ¢urves) and 984 (blue

curves) during part of the Matuyama chron7@®0— 2.581 Ma). Reversals and globally
correlated excursions are marked with the respective nafwuepted fron Eﬁéﬁﬁgll ethl.

(2002).
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more have not been correlated worldwide.

Figure[1.b shows relative paleointensity estimates and \&Bfdes during part of
the most recent reverse polarity interval (Matuyama chdof80— 2.581 Ma) as recorded
from deep-sea sediments at the Ocean Drilling Program 888in red) and 984 (in
blue). Large fluctuations in the VGP latitude during the reeepolarity epoch between
1100 and 1780 ka cross the (virtual) magnetic equator anactestize geomagnetic excur-
sions, named with the locality of their discovery. Jaraondlhd Olduvai reversals embed
shorter epochs of normal polarity (positive VGPs) and dopresent any excursion. A
comparison with the paleointensity records (Fiduré 1 panel) reveals a correlation be-
tween excursions and local field intensity minima. As dentrasd by Guyodo and Valet
@), the six global excursions identified during the nresent Brunhes normal po-
larity epoch also nicely correlate with major paleointen$ows. Further information
regarding dating and duration of excursions during the Besnand Matuyama polarity
epochs can be found in, e.g., Laj and Channell (2007) and ¥h#. (2008). Evidences
for geomagnetic excursions in periods older than the Mahayare more diicult to ac-
cess because the respective transitions need to be enéselyed to determine an event
occurrence.

On the basis of the evidences described above, it is likedy éxcursions punctu-
ated the entire history of the Earth’s magnetic field. Sincaiesions represent a major
characteristic of the geomagnetic field, their propertiestie considered as an actual
constraint for dynamo models. In order to classify an everda &eld “excursion”, it ap-
pears crucial to distinguish it from: (i) a large seculariaton period and (ii) a pair of
subsequent reversaé@@%%. Such distinctioeaapmlso fundamental in nu-
merical dynamo simulations when these events have to begyddentified. This issue
will be discussed in detail in Sectién 5.3.

1.4.4 The geomagnetic polarity time scale

The first, very crude geomagnetic polarity time scale (GRA&) compiled bII
) and comprised only three magnetic polarity epochthimpast 2 Myr with a du-
ration of ~ 1 Myr each. When new observations and refined dating teckaiqacame
available, more reversals started to be included in thiy &®PTS. In particular, polarity
epochs shorter than one hundred thousand years were disddeepunctuate the longer
ones. Figuré 116 presents the GPTS for the past 6 Myr as cedpjl Cande and Kent
). Longer polarity epochs are named in honor of pidngegeophysicists (Brun-
hes, Matuyama, Gauss, Gilbert, etc.), while shorter evamrtdabeled with the location
of their discovery. A nomenclature of polarity epochs basedheir duration has been
officially adopted and is summarized in Table]1.1. Polarity Bpowith a duration of
1-10 Myr are callecchrons while events lasting.Q — 1 Myr are referred to asubchrons
We currently live during the Brunhes chron of normal (N) fipllarity. The last reversal
occurred about 780 kyr ago and the most recent reverse (Rjifyothron (Matuyama)
is punctuated by three subchrons (Jaramillo, Olduvai, Réuas also shown in Figure
[@.8). Very brief polarity intervals, typically shorter th&0 kyr and which are not fully
constrained, are termeaulyptochrons During the actual polarity epoch a cryptochron oc-
curred, for example,.804 Myr ago (Cobb Mountain). A list of cryptochrons for thetla
64 Myr can be found in Table 3 of Can n émﬂggs). It isartgnt to remark that
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Age  Epoch Polarity  Polanty Polarity
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Figure 1.6: Geomagnetic polarity time scaleé of Cande and K&95) for the past 6 Myr.
Normal and reverse polarities are marked in black and wkgpectively. From Merrlll
(1998).

geomagnetic excursions, having typical durations of fesuffand years, are sometimes
difficult to distinguish from cryptochrons.

A continuous record of polarity changes can be obtained/aimag the paleomagnetic
field recorded in deep-sea sediments retrieved by drillvegaicean bottom. Typical sed-
imentation rates of the north-central Pacific Ocean areivels low and of the order of
1 to 10 mm per thousand years (Merrill 1998). Such low sedtateam rates allow to go

Magnetostratigraphic Geochronologic Approximate

polarity units unit (time equivalent) duration [yr]
Polarity megazone Megachron 41010
Polarity superzone Superchron 10108
Polarity zone Chron 10- 10/
Polarity subzone Subchron 10 10°
Polarity cryptozone Cryptochron <3-104

Table 1.1: Nomenclature for magnetostratigraphic (rockdl @olarity chron (time)
units as recommended by International Subcommission ati@tphic Classification.
Adapted from Ogg (2012).
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Chron 5 6 13 18 21 25 31 34 MO M4 M1ON M16 M21 M25

0.0 9.7 20.1 33.1 40.1 479 55.9 67.7 83.5 120.4126.7131.9139.6147.7154.3 180.0 Ma

Figure 1.7: Digital isochrons of oceans based on magnetanciiogy. Mid-ocean ridges
are marked by the black solid lines. Adapted flom K 007)

back in time for several million years in the geomagnetitdmgsover relatively short core
lengths. Large uncertainties in the marine sediment reconge from dating fossils and
modelling variations in sedimentation rates. AccuratecolEions extending more than
10 Myr ago are thus practically impossible in deep-sea sedlisn Long sequences of lava
flows on land are alsofected by errors in their radiometric dating. Since thesersrr
increase proportionally to the sample age, many of thesndrt records are useless.

A fundamental improvement in the compilation of a GPTS, neliably extended
to about 160 Myr ago, came from Vine and Matthews (1963) wherjmeted the mag-
netic anomalies observed at oceanic ridges. Mid-ocearesidgnstitute geologically ac-
tive fractures of the crust where hot magma, coming from teamwellings, constantly
emerges at the ocean floor (see Fiduré 1.7). The extrusioevefnrmaterial pushes the
cooling crust away from the ridge symmetrically on eithelesi The large scale motion
of tectonic plates, sinking in the mantle at oceanic treachenerates tension at the ridge
axis which tends to pull the crust and the uppermost mantdetafpreading rates range
from about 20 kryMyr to more than 140 kyiMyr ' h 2000). As
the iron-rich material extruded at the ridge axis cools Wwels Curie temperature it be-
comes magnetized parallel to the Earth’s magnetic field. ddeanic crust therefore
acquires a normal or reverse remanent magnetization deygeod the ambient field po-
larity at that time. Due to the sea-floor spreading mechanisstribed above, strips of
alternating polarity (produced parallel and distributgdhmetrically to the ridge axis)
constitute the past geomagnetic polarity epochs (Figufleg 1n other words, the crust
near the oceanic ridges acts as a kind of “tape-recorderhefBarth’s magnetic field
in the past. The field polarities are observed by magnetamdtagged over the ocean
floors as anomalous field intensities. An enhanced magneteifitensity is recorded
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Figure 1.8: Geomagnetic polarity time scale of Ogg (2012)te past 171 Myr. Black
(white) marks normal (reverse) field polarity.

over the crust that cooled in an ambient field with the samarfiglas the present field.
Conversely, partial cancellation of the signal is obsemveer the crust formed during a
period of reverse polarity.

The same sequence of magnetic anomalies is observed in rilehRacific, Atlantic
and Indian Oceans at the respective ridge axes. The Souwhtistimagnetic anomaly
profile has been taken as a standard for the polarity seqsgaesing the last 84 Myr.
Since this period covers the late Cretaceous through thezoer) the associated rever-
sal chronology is generally referred to as thesequenceand the respective magnetic
anomalies have been numbered from 1 to 34 (oldest). Poldrigns of the C-sequence
are usually denoted by the letter “C” followed by a numberelated with the youngest
magnetic anomaly. A gtix “n” (“r") marks the normal (reverse) field polarity durinpat
period. For example, C1r denotes the Matuyama chron remiagehe period of reverse
polarity between magnetic anomalies 1 and 2. If a polaritplcontains shorter field
polarities, the subchrons are denoted with a correspomdintpered sfiix. For example,
C1r.1n represents the youngest normal subchron during #teydma chron (Jaramillo
event in Figuré1l5).

Figure[1.8 shows the most recent GPTS for the past 171 Myr@stesl by Ogg
(2012). This reversal chronology contains 449 events wkidm to occur stochasti-
cally in time. An exceptionally long normal polarity intedvof 35 Myr (chron C34n),
known as the Cretaceous normal superchron (CNS), exteadsdbout 118 Ma to ap-
proximately 83 Ma. Such event is not unique in the past geomiaghistory. Evidences
for a superchron of reverse polarity, known as the Kiamawenss superchron (KRS),
were already available before the reversal chronology welsdeveloped. The KRS has
been estimated to extend for more than 50 Myr, from approtaipe818 Ma to 262 Ma
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dQ_oll;LelLel_a]LZD_dB). Several magnetostratigraphic olz@ns support its existence, but
this event is too old to be recorded by marine magnetic anesal

A third superchron, known as the Moyero reverse superchiRS), is suspected
to have occurred during the Ordovician from 485 Ma to 463 Manc& evidences have
been found only at a single site (Moyero, Siberia) arftedent records elsewhere do not

document its existence, the MRS occurrence is still deb@tetElhinny and McFadden
2000).

Oceanic crust of the late Middle Jurassic through the EargtaCeous displays a sec-
ond series of magnetic anomalies, namedNMhsequencédecause they cover the Meso-
zoic era. The M-sequence comprises chrons MOr—M25r and eatpbsidered quite
robust since it has undergone only minor refinements sisdest derivation@ 2).
Note that the end of MOr does not define the staring time of tN& (Figure[1.B). Af-
ter the M-sequence was numbered, clusters of brief revariseifes were reported by
deep-sea sediments from the oldest portion of the CNS. Aratghwontinuation of the
M-sequence suggested a negative numbering (M-1r) to défentertef chron which ended
1185 Myr ago and which actually defines the start of the CNS. Deghis event has not
yet been fully verified, we included it in the GPTS of Fi because it is reported in
other polarity time scales as well (see, ELg_,_Qaﬂd_e_aadI@) Two additional events
occurred around 102 Ma and 108 Ma are not included in Fig@eihce their durations
are not known.

Additional marine magnetic surveys in the Pacific using neagmeters towed near to
the sea-floor allowed to extend the M-sequence up to aboutvyv Ago (se@@hz,
and the oldest numbered M-sequence anomaly M45n). Coritrayrface surveys, these
intensity observations just above the oceanic crust iablyitrecord short-wavelength fea-
tures. Itis therefore important to keep in mind that certaiaf chrons might be an artifact
of the recording method employed in the oldest 14 Myr of thigeded M-sequence.

1.4.5 Statistical analyses of geomagnetic reversal occerices

In the attempt to provide robust constraints on our knowdedfthe internal core pro-
cesses underlying the occurrence of reversals, gfisat Bas been spent in the statistical
study of the GPTS since its earliest compilations. Previstasistical studies of geo-
magnetic reversal chronologies are reviewed in this sectiRredictions from reversing
geodynamo models are also discussed in the following.

As already described in Sectign 114.3, paleomagnetic vhsens indicate that the
time required for a polarity transition typically rangeerr 4 to 5 kyr. This time is more
than two orders of magnitude shorter than the mean chroridomduring the Cenozoic.
As a first approximation, it is therefore reasonable to adgrsreversals as rare events
occurring instantaneously in time. The further assumpta reversals are independent
events (i.e. the probability of an event occurrence doesdapend on the duration of
prior polarity intervals) has been claimed in the pionegmvork of CoX @) but was
subsequently debated (see, MlQM).

The first and most obvious reason which may break the indegpmedassumption
is that reversals, although relatively brief, do not ocawstantaneously and therefore a
certain degree of memory must be present in the magnetic fié¢ldid motions powering
the geodynamo were to terminate, the dipole field would ddyaghmic difusion on
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Figure 1.9: Reversal rate for the past 170 Myr according édithe scale d@d_EQhZ).
The estimate has been constructed using a sliding windowanfixed number oN = 40
reversals in each interval. The duration of the Cretaceausial superchron (CNS) is
marked in gray.

time scales of the order of several tens of thousand yeaesSeetior_12). The free
dipole decay time of the core (56 kyr) can therefore be regarded as a reasonable upper
bound for the memory time of core processes. On the other, ia@mdnemory time might
be several orders of magnitude shorter if it directly refldgpical temporal variations
of internal fluid motions. The convective overturn-time; &xample, amounts to a few
hundred years and is associated with large scale motiormweéction. Analyzing a suite
of global numerical dynamo simulations, Hulot et al. (20$0pgested that the Earth’s
dynamo is totally unpredictable beyond a century. Latedissidemonstrated that dipole
correlation times in such models are typically a fractiorthod free dipole decay time,
thus suggesting that any departure from the independenay@fsal occurrences might
be smalll(Lhuillier et al. 2011, Lhuillier et al. 2013).

The second reason which might invalidate the independesstevgtion are the varia-
tions observed in the reversal rate. Fiduré 1.9 shows tleegalrate throughout the GPTS
of @) calculated using a sliding window with a fixednter of reversals. The re-
versal rate decreases when approaching the CNS and ineedtesvards, thus indicating
the possible existence of statistical correlations betvgrecessive field polarities. How-
ever, since the reversal rate changes slowly compared toé¢a@ chron duration (which
amounts to about.88 Myr), deviations from independence might still be coesadl mild.
Correlation analyses performed on short periods wherestrersal rate can be considered
stationary indeed support the hypothesis of statisticgpendence (Phillips et/al. 1975,

illi 6).

In principle, the non-stationarity of the reversal raterabe last 170 Myr precludes
the possibility of considering the polarity chrons as a mandample from a probability
distribution with fixed parameters. The structure of the-stationarity has been included
into the parameters of certain distribution functionseithy assuming a filtering process
of the shortest chrons (McFadden 1984) or by analyzing thersal sequences in station-

ary sub-intervals (McFadden and Merill 1984). These amthér aspects regarding the
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characterization of the distribution of geomagnetic pgofantervals will be discussed in
Sectior3.4.11 where fierent probability distribution functions are described.

IConstable|(2000) investigated in detail the temporal tiaria in the reversal rate
during the Cenozoic. The author demonstrated that the hgg® of a non-stationary
Poisson process is statistically compatible with the olesesequence of reversals.

Long-term variations in the reversal rate (and ultimateiyeschron states) have been
successfully linked to externaftects influencing the core field dynamics and most often
identified to be of mantle origin (McFadden and Melrill 19®4ggin et all2012). The
typical time scale of convective motions in the mantle car$t@mated as,, = D/U =~
200 Myr, whereD is the mantle thickness and the mean sea-floor spreading rate of
45 mnyyr, and suggests that such processes and the occurrence ©N® might have
a causal link. In this context, Driscoll and Olson (2011)gwsed a numerical dynamo
model able to reproduce the reversal rate variations obdanvthe GPTS. The authors
showed that an increase in the heat-flow at the core-mantiedawy drives the dynamo
from a stable dipolar to a reversing state which accountseieersal rate variations re-
markably similar to those observed since the end of the CNBvérsely, a monotonic
decrease in the heat-flow at the outer boundary produceseaséty reversal rate.

Other mechanisms possibly influencing the long-term sthteeoEarth’s core have
also been proposed. Driscoll and Ols 009), for exangeejonstrated that incre-
mental changes in the convective forcing of a chemicallyairidynamo started in a
non-reversing state evolves to a reversing regime. Theoatidso showed that trends
in dipole intensity and polarity interval durations in sunldels qualitatively agree with
those obtained from the analysis of reversal chronologireeghe end of the CNS.

However, it is not yet clear if external processes are necigsequired to reproduce
the observed reversal rate variations. Such changes nlightatively stem from the
highly non-linear internal processes governing the geathmand thus spontaneously
producing the large variety of time scales observed. Théerahtive hypothesis was pro-
posed, for example, @ ) who demonstrated that polarity chrons with dura-
tions longer than ® Myr are well described by a power-law distribution. Thebhaut
interpreted the scale invariance of the power-law distiilvuas an evidence for the lack
of an intrinsic time scale in the internal dynamical proesssiggering reversals. More
recentlyi ( 20b3) confirmed these results analyhm@enozoic reversal chronol-
ogy ofLC_aad_e_aﬂd_KdHL(ﬂ%) but obtained fiedient power-law exponent.

Compared to other probability distributions describintgpanagnetic chron durations,
the power-law presents a slower decreasing tail (se€, kaneBakov and Fabian 2012).
This characteristic naturally accounts for the occurresf@xtreme events such as super-
chrons. Rather than externally induced, these events rthghtfore alternatively stem
from the same physical process leading to shorter polamigrials. | Hulot and Gallet
2003), generalizing a statistical test for stationarityaduced by McFadden and Meffill
_M), showed that there is no long-term behavior in then®l rate over the 40 Myr
preceding the CNS that could have explained its onset. Ipaumpf these findings,
K;amgns_el_él.L(ZQbG) used a statistical transform to detraiesthat a non-stationary
Poisson process is incompatible witlfdrent polarity time scales available for the Ceno-
zoic. The authors furthermore showed that a Lévy procesartecplar type of random
walk characterized by a heavy-tailed distribution, welkchébes the statistic of pale-
omagnetic chron durations. A detailed comparison dfedent distribution functions
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1.4 The paleomagnetic field

which adequately model the paleomagnetic polarity intsriiave been carried out by
| (2007) and_Shcherbakov and Fabian! (2012h smple statistical
characterizations of reversal occurrences are partlgutdriguing because they may pro-
vide the link between complex geodynamo processes andesisioichastic mechanisms
able to describe them.

As a final remark, it is important to keep in mind that two unideble problemsfect
the analysis of paleomagnetic reversal chronologiestlysiesreasonably reliable GPTS
is available only for the past 160 Myr and this provides atheddy short record of polar-
ity intervals. Secondly, due to resolution problems, evenrhost recent versions of the
GPTS likely disregard several of the shortest chrons (glpishorter than 30 kyr). Fur-
thermore, the precise ages of several reversals still rmelmeiadjusted. Marzocc l(;é97),
for example, investigated the influence of this incomplegsnon some statistical proper-
ties of the GPTS. Filtering the shortest polarity interviatsn synthetic series of events,
the author showed that the Cenozoic time scale of Cande anid(K@95) is compatible
with a Poisson process where at least 30% of the shortesighre missing in the record.
As already pointed out in Section 1.4.4, two of such short fully verified events may
have occurred during the CNS around 108 Ma and 104 Mal )20h2 problems dis-
cussed above define an inherently incomplete GPTS and tististd analysis of reversal
chronologies always require careful interpretations.
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2 The geodynamo: theory and
numerical modelling

This chapter introduces the fundamental magneto-hyd@dynequations which model

the geodynamo. The equation governing fluid motions undeBthussinesq approxima-
tion and a transport equation for the temperature pertiottsare derived in Sectiohs P.1—
[2.4, while the equation of evolution for the magnetic fieldiésived in Section 215. The

non-dimensionalization of the governing equations isubsed in Section 2.6. Section
[2.1 discusses appropriate boundary conditions for theygeodo problem. The chap-
ter closes summarizing the numerical approach employedlve she above-mentioned

equations in Sectidn 2.8.

2.1 Hydrodynamics

The Earth’s outer core is a liquid mixture of iron and nick8ince we are interested in
the description of macroscopic phenomena in such a systamely occurring on length
scales much larger than the typical interatomic distartbedjquid core can be regarded
as acontinuous mediumin this approximation, known as tle®ntinuum hypothesishe
state of the fluid is described by physical quantities whidh @ntinuous functions of
positionx and timet (Eulerian specification).

The state of a moving fluid is completely determined by thérithistion of its velocity
u = u(x,t) and of any two thermodynamic quantities such as, for exanipk pressure
P = P(x,t) and the density = p(x,t). All the other thermodynamic quantities can be
obtained from the latter two specifying an equation of stéfe now recall the equations
governing fluid motions.

The conservation of mass of the fluid is described byeitpgation of continuity

%+V-pu:0 (2.1)

which can be written, expanding the divergence term, as

%+U-Vp+pV~U:0. (2.2)
The first term in the above equation describes the local teahpariations of the fluid
density, while the second term represents the rate of chairtge fluid density at a fixed

point in spacex due to transport (or advection) of the fluid elements. It isvemient to

31



2 The geodynamo: theory and numerical modelling

define the so-callethaterial derivativeas

d o
a—a-l-lj'v, (23)
such that Equatio (2.2) shortly reads
ldop
-——+V-u=0. 2.4
ot +V-u=0 (2.4)
The equation of motion for an inviscid fluid, describing tleservation of momen-

tum, is theEuler equation
1
6—u+(u~V)u:——Vp, (2.5)
ot o
where p denotes the hydrostatic fluid pressure. This equation ibescthe fluid flow
without taking into account any process of energy dissypefdeal fluid). Using tensor

notation, Euler equation reads

opu; Oll;;
" 2.6
ot HXJ' ’ ( )
where the second rank tendas is defined by
Hij = pdij + puil; . (27)

The physical meaning of theftierent terms in[(2]6) becomes clear after a volume inte-
gration. Integrating both sides of this equation over tha flolume VY and using the
divergence theorem, we are lead to

ﬁ Py dv = % Hij dSJ , (28)
ot Jy oV

wheredV denotes the closed boundary surface of the voldfrenddS; = dS n) with n;
the outward normal to the surface element. Since the leftisade of [2.B) is the local
rate of change of theth component of the momentum in the fluid volunig; is the
i-th component of the amount of momentum flowing per unit timewgh the unit area
perpendicular to tha; direction. For this reasol;; is called the momentum flux density
tensor orstress tensorEach diagonal component bff; gives the normal component of
the internal surface forces acting on a surface paralleht af the co-ordinate planes
(normal stresses). The non-diagonal componenis;adescribe the surface forces acting
perpendicularly to the direction of fluid motions. The latseirface forces are setup by
shearing motions of fluid layers and are therefore calledeatial stresses. It is evident
that the stress tensdr (2.7) is symmetric, thdfjjs= I1;. This means that the transfer of
momentum in ideal fluids is completely reversible as exmkcte

In real (and planetary) flows internal friction and heat exuie between ferent
parts of the fluid lead to energy dissipation and thereforgaigns[(2.6) and (2. 7) require
some modifications. Equatioh (2.7) can be corrected intiodua new term-o; which
describes the amount of momentum per unit time and unit asarl the fluid motions
due to internal friction (viscosity), namely

Hij = p5ij —O'i/j +pUin. (29)
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2.2 Thermodynamic equations

The derivation of the explicit form of; is phenomenological and can be found in clas-
sical textbooks of fluid dynamics (see elg“_aatgﬂlhlaLZGE]ﬁhpter 3). The resulting

expression reads
Bu. au O
L= - —u 2.10

where the positive constanisandZ are the so-called cdigcients of viscosity and second
viscosity respectively. Note that the above expressiomep only on the spatial deriva-
tives of the fluid velocity. This is due to the fact that intarfriction occurs only when
relative motions of dferent parts of the fluid are present. Such velocity gradieate
been assumed to be small and therefore only first order digggaare retained. The two
terms collected in the first parenthesis[of (2.10) deschberansport of momentum due
to the shearing motions of fikerent fluid layers. The local rate of expansiguy is asso-
ciated with the rate of change of the volume of fluid elements&so causes a transport
of momentum which is taken into account in the last terni_ gI@2.

The other essential assumption used to defive2.10) isulteiflotropy. The molec-
ular structure of the fluid can be reasonably consideresstaily isotropic. Macroscop-
ically, this implies that the stress generated in any eléragthe fluid is independent of
the element orientation. Fluids for which the linear relat{2.10) holds are said to be
Newtonian

Substituting[(2.9) into Euler equatidn (R.6) leads to thesatipn of motion of a viscous
fluid

ot

which is known as thé&lavier-Stokes equation
In the presence of gravity, the additional foreg acts on any unit volume and the
Navier-Stokes equatiof (2]75) modifies to

8— +(u- V)u] = -Vp+uVeu + (§+ %)V(V -u) (2.11)

6—+(u V)u_—}Vp+g+vV2u+ £+ V(V-u), (2.12)
ot Je Je 3

where thekinematic viscosity is defined as

y=H. (2.13)

P

The codficienty itself is called thedynamic viscosity

2.2 Thermodynamic equations

As already anticipated in Sectibn 1.2, the main drivers aoflflaotions in planetary cores
are thermal and compositional convection. In thermal cotwe buoyancy forces are
setup by temperature gradients, while in compositionaVection they are caused by the
release of light elements at the inner-core boundary. k gbction, the compositional
driving is neglected and we concentrate on thermal cormectBtarting from the prin-

ciples of thermodynamics, an evolution equation for theperature is derived in the

following.
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2 The geodynamo: theory and numerical modelling

Consider a thermodynamic transformation between two heighg equilibrium states.
During such transformation, the system energy varies doogto the first law of thermo-
dynamics

dU =dQ+dwW (2.14)

wheredU represents the variation in internal energy per unit maskefluid, dQ the
heat exchanged by the system per unit massddidhe work per unit mass done by the
fluid during the transformation.

Consider now a mechanical compression of the fluid. If thasfi@mation is re-
versible, the work done on the fluid +spdV. Since the volume is taken per unit mass,
V = p~tand [2Z.1%) becomes

du :dQ+p—F;dp. (2.15)

In order to derive an evolution equation for the internalrggéJ of the system from the
above expression, variations in the h€aheed to be characterized in terms of changes
in two of the fundamental variable¥,(p, p). The entropyS of the system, defined in a
reversible transformation from an equilibrium state totaeq is introduced as an exten-
sive quantity byT dS = dQ. RegardingS as a function of temperature and pressure, the
entropy variations can be written as

ds=(52) ar+(52) dp. (2.16)
p T

oT ap
where the subscripts indicate that the terms in parentisis to be taken at constant
pressure and temperature respectively. Introducing thedapacity at constant pressure
Cp as the amount of heat exchanged by the system due to a chatg®perature at
constant pressure, we have
0Q S
== =T[=] . 2.17
Ce (aT)p (aT)p (2.17)
The first term in parenthesis on the right hand side (RHS) dfdAs thus proportional to
Cp-
Using one of Maxwell’s relations of thermodynamics, theosetterm on the RHS of
(2.18) can be simplified as

)20 -3(8),
Defining the co#ficient of thermal expansion of the fluidas

318 --2(8),
expression(2.18) reads

Substituting[(2.117) and (2.20) into Equati¢n(2.16) finddisds to the expression for the
entropy variations

C
ds = 2d1 - Zdp. (2.21)
T Io
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2.2 Thermodynamic equations

The evolution equation of entropy is obtained dividing bsithes of the above expression
by dt
dS dT a_dp
dat ~ P p dt’
In planetary cores, heat variatiod® are influenced by internal sources of thermal
energy. Introducing the local heat flqxkand a termh which includes all the internal
sources and sinks of heat per unit volume, the rate of chahbeat can be generally

written as
dQ

p_

dt

Fourier’s law of heat conduction providgs= —kVT, wherek is the fluid thermal conduc-
tivity, and Equation[(2.23) becomes

aQ

Pat

Assuming a fluid with constant thermal conductivitgnd using the definition of entropy,
Equation[[Z.24) can be rewritten as

ds
,oTa = kV?T +h. (2.25)
Comparing the above equation with (2.22), we are finally keatthe evolution equation
for the temperaturé

(2.22)

= -V.q+h. (2.23)

=V (kVT) +h. (2.24)

pCp(jj—-::- — aT%) = kV?T +h. (2.26)

If the time derivatives in the above equation are intergte®material derivatives, (Z2126)
represents the general equation describing flezeof heat conduction in a moving fluid
with a constant thermal conductiviky

In planetary iron cores, fierent physical mechanisms contribute as sources or sinks
of heat in the ternin. Among the heat losses, the core secular cooling is perhapaost
important one. As the core cools down, however, it gradualgtallize at the top of the
inner-core boundary thus releasing latent heat in thediquiter core. This represents
an important source of thermal energy driving convectioth@ Earth’s outer core. On
the other hand, the freezing inner core cannot dissolveaf&oyently light elements thus
causing their expulsion in the liquid outer core. Such cloaindifferentiation between
the lighter fluid layers close to the inner core boundary &edaverlying liquid can help
the fluid to become buoyant (compositional convection). theoimportant contribution
to the internal heat production comes from radioactive yletais can be considered as
a uniform heat source since vigorous convection is expaotbdmogeneously distribute
radiogenic elements in the outer core. For a viscous and etiagtly conducting fluid,
heat due to viscous and Ohmic dissipation may also con&ibdiletailed discussion on
the relative importance of theftierent sources and sinks of heat in the Earth’s core can
be found i@?).

To summarize, the equations governing fluid motions in gkyecores are: the con-
tinuity equation [(2.4), the Navier-Stokes equatibn (P.48Y the temperature equation
(2.28). They must be complemented by an equation of stat&§]EO

p=p(T,p) (2.27)
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2 The geodynamo: theory and numerical modelling

which closes the system. In principle, the above equationklde used to solve numeri-
cally for thermal convection in the core. They describe jtgigrocesses in a wide range
of characteristic time scales varying, in the case of Esutbie, from few minutes (acous-
tic/seismic) to hundreds of years (convection turnover timedrédver, the temperature
perturbationg”’ driving convection are a very small fraction of the mean ¢emeperature.
Simple orders of magnitude estimates reveal indéed 7x 10° K (mn. From a
practical point of view, numerical errors of the same magtetfor the temperature would
lead to unreliable solutions. In order to model convectibis, therefore advantageous to
study only the small deviations from an equilibrium statf€rence state) induced by con-
vective fluctuations. Simplified forms of the above equatj@mbtained upon linearization
of the thermodynamic relations, are discussed in the netiose More precisely, we
derive the equations governing thermal convection undeBibussinesq approximation
and we discuss the validity of such approximation in the cdgearth’s core.

2.3 Equations for the convective perturbations

In order to derive the equations for the convective pertiwha, we have first to specify a
reference state about which linearizing the thermodynaetations. The contributions to
the stationary reference state (indicated by the subsgm@pe distinguished from the time-
dependent convective perturbations (indicated by thersappt’). It is useful to separate
further the reference state into the sum of a (constant) roaekground contribution and
its spatial variations. The densjby the pressur@ and the temperatufE of the fluid can
then be written as

p(r.t) = pm+ pa(r) +0'(r, 1) (2.28a)
P(r,t) = Pm+ Pa(r) + p'(r, 1) (2.28D)
T(r,t) =T+ Ta(r) + T'(r, 1) (2.28c)

where the subscript, refers to a (constant) spatial average over the fluid domiin o
the corresponding quantity,to the variations in the absence of motion and the primed
guantities to the fluctuations resulting from convectiveioms. Since by assumption the
reference state is steady,(= 0), we denote the fluid velocity in the perturbed statauby
for simplicity of notation.

For the convective motions to be slow, it is necessary thatréfierence state is in
quasi-equilibrium. In the absence of motions, Euler equa{P.5) in the presence of
gravity reduces to the hydrostatic balance

— VPa+pog =0, (2.29)

wherepg = pm+pa. The above equation describes the mechanical equilibriuhedluid
in the reference state.

There are dterent ways of imposing the thermal quasi-equilibrium of bierence
state, but the most natural choice for convection problents consider a state in which
heat is transported only by conduction. In the Earth’s oatwe, heat is transported
far more défectively by convection than by conduction. Consideringrauient thermal
diffusivity k1 ~ 2nm?/s @7), the characteristic time scale of therntlsibn
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2.3 Equations for the convective perturbations

processes in the cored/«r, whered is the outer shell thickness, and amounts to about
80kyr. Since the convective turnover time can be estimatelet of a few hundreds
years, this separation of time scales allows to considecdhneuction state as a steady
background for convection. The thermodynamic transfoionatof the fluid core due
to thermal dffusion processes can therefore be considered adiabaticesiplect to the
convective time scales. This implies that the transforomatiof the reference state are
isentropic (IS = 0) and, consequently, the evolution equation for the teatpes [2.25)
consequently reduces to

kVT, = —hg. (2.30)

The above equation describes the thermodynamic balanbe afifiabatic reference state
between thermal éiusion and the heat coming from sources distributed withéncibre
and, eventually, from the boundaries.

Following/Spiegel and Veronis (1960), we introduce theetalights

-1

1df (2.31)

where f denotes any of the thermodynamic variabegp, T andr the radial distance.
The basic assumption of the Boussinesq approximation tsthieareference thermody-
namic quantities vary on length scales much larger thanatgesét linear dimension of
the system. In other words, the fluid is assumed to be confmadpherical shell whose
thicknesd is such that

d < Hs. (2.32)

This is often referred to as thkin-shell approximation
The validity of such approximation in the case of Earth’secoan be examined esti-
mating, for the diferent thermodynamic quantities, the scale heighis{(281) a

1 Af\ "
Hf~(f—m d) . (2.33)

Assuming a spherically symmetric outer core of thickritssf, in the above expression
is the change of across the fluid shelf(r,) — f(r;) and f;, is its mean valuef[(r,) +
f(ri)]/2. Using typical values for the density the temperatur@ and the pressurp at
the inner core boundarny and at the core-mantle boundamm, Tables 2 and
3), the estimated scale heights of the respective quanétie

H,/d ~ 15,6
Hr/d ~ 3.0
Hp/d ~ 1.2.

Since all the scale heights exceed the thickness of the 'Eankter core, the thin-shell
approximation[(2.32) can be considered to be at least neltgisatisfied.
We now define for convenience

e, = A0 (2.34)

Pm

37



2 The geodynamo: theory and numerical modelling

which, using[(2.:38) and according to the above estimatssltesine, ~ d/H, ~ 6- 1072,

Let the reference state described by equations](2.29)[aB@)(Re slightly perturbed.
Assuming that the density fluctuatios'sdo not exceed in amplitude the static background
densitypn,, we can write

’

L

=€ < O(Ea) . (235)

Pm

Substituting the decompositioris (21.28) into the continaguation[(2.R) yields

’

dp
ot

+U-V(pa+p)+pV-u=0. (2.36)

Dividing both sides of the above equationdyyand using[(Z2.34) leads to

é(p_) (U.V+V.u)(paea+p—)+v'uzo. (2.37)

To ordere,, the continuity equatioh (2.87) reduces therefore to tmalitmn for an incom-
pressible flow
V.-u=0. (2.38)

We now derive the equation of motion for the convective pbdtions. Since by
assumption the density variations of the reference stat¢tandensity perturbations are
small compared to the mean background densifythe EOSI[(Z.27) can be linearized. A
Taylor expansion g = p(T, p) around pm, T, Pm) UpP to the first order yields

P = Pm

(&) (a8), @
1+=(2) d-T+=(2) p-pm
(% T (5] e

=pm[1-a(T = Tm) +B(P - Pm)] .

whereq is the thermal expansion ciiieient defined in[(2.19) anél the isothermal com-
pression coféicient

1 6p)
=—|—=] . 2.39
P p (Hp T ( )
Substituting[(2.28) in the above expansion leads to
Pa i L o (Tt T +B(pat ). (2.40)
Pm  Pm

Since the adiabatic reference state is stationary, thedmst on the left hand side (LHS)
of the above equation must equal the time independent teaig+ Bp, on the RHS. As
a consequencd, (2J40) can be separated into the two equation

Pa

Pa _ 4T, + Bpa (2.41a)
Pm
B T app. (2.41b)
Pm

These are the linearized thermodynamic relations whichbsiuised in the following.
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2.3 Equations for the convective perturbations

Since the flow is divergence-free, the Navier-Stokes equdf.12) reduces to
du 5
P = -Vp+ pg+ pvVeu. (2.42)

Expanding density and pressure as[in (R.28) and using theos$igdic balance of the
reference stat¢ (2.29), the above equation reads

1 ’
p U _—vp + g+ Loy (2.43)

Pm dt Pm Pm Pm

where we divided both sides lpy,.
Expanding the density as in [2.28k) and using the definitidn (2.34) yields

(1 TP p—)(d—u - VVZU) __Lopi £y (2.44)
|Apal  pm Pm Pm
The second and third terms in the first parenthesis on the LHl$eabove equation are
O(ea) andO(€’) respectively, while the buoyancy term on the RHS has a gi@favhich
Is O(e,). If we neglect these higher order terms with the excepticth® buoyancy term
necessary to drive convection, Equation (2.44) reduces to
du 1

- _—vp+ g (2.45)
dt Pm Pm

wherep’ is related to the pressure and temperature perturbatiotiebinearized thermo-
dynamic equatiori(2.41b).

The first reason to retain the buoyancy terniin (P.44) is m@sind consists in the fact
that buoyancy forces must be present in the equation of matieen studying convection
problems. On the other hand, since fluid motions are driveddnsity fluctuations, the
characteristic acceleration of the fluid must be of ogdép,g which implies

Z—Ltji/|g| ~0() <« 1.
The acceleration of gravity is therefore much larger thandmaracteristic fluid accelera-
tion due to convective motions. The buoyancy term of Equaf45%) remains therefore
finite even though its prefactor 8(e;). Only density variations coupled to the gravita-
tional acceleration in the buoyancy force can then be rethiwhile all the other density
variations can be neglected. This represents the core assunof theBoussinesq ap-
proximation

Equation [[Z.4b) can be simplified further analyzing the sapan of scales on which
density, temperature and pressure vary. The estimated Beahts of these thermody-
namic quantities in the case of Earth’s core satisfy, as shalwove,H, < Hr < H,.
Therefore, the background density varies maofeatively due to temperature changes
rather than due to pressure fluctuations. Density changedadpressure fluctuations,
quantified by the compression dheient, are then considered negligible. In this ap-
proximation, the thermodynamic equation equation (2.4éblces to

P o, (2.46)

Pm
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2 The geodynamo: theory and numerical modelling

The fact that the background density variations due to atimeare caused only by tem-
perature changes is the last fundamental assumption of aeshesq approximation.
Note that this argument does not apply to Equation (2.41ladep, provides the major
contribution in the hydrostatic balance of the referenatestiescribed by (2.29). Sub-
stituting (2.46) into[(2.45), we finally obtain the equatiohmotion for the convective
perturbations in the Boussinesq approximation which reads

ou 1

— +U-Vu=-—Vp —aT'g+vWau. (2.47)

ot Om

We now derive the evolution equation for the convective terature fluctuation3’
starting from the temperature evolution equation (2.26ictvinolds for a fluid with con-
stant thermal conductivitk. Expanding the temperatuiie as in [2.28c) and the heat
sources ab = hy(r) + h'(r, t), Equation[(2.26) reads
dT dp

Py ~ OZTa = KV2T, + hg + KV2T" + . (2.48)

Since the reference state is a conduction state, i.e. Equ@i30) holds, the above equa-
tion simplifies to
dT d p 27 ’
pcpa — QTE =kVT +h. (249)
Consider now the second term on the LHS[of (2.49). Since thesprrep is a function of

density and temperature, the material derivatipgdt can be written as

dp (dp\ do (dp) dT

dt (ap)T dt +(8T , dt (2:50)
__(9p gp) dT
= (6p)TPV u+(6_|_)p It (2.51)

by means of the continuity equatidn (2.4). To ordgithe velocity field for the convective
perturbations is divergence-free (Equafion 2.38), anditketerm on the RHS of (2.51)
can be neglected.

Pressure variations due to temperature changes conshieuprefactor of the second
term on the RHS of (Z.51) and can be estimated using the imesebthermodynamic rela-
tions (2.41h) and (2.46). These variations are negligitméHe convective perturbations
by assumption (Equatidn 2}46) and must be proportional fiar the adiabatic reference
state (Equation Z.41a). As an order of magnitude estimagepitessure term on the LHS
of Equation[(2.4B) can then be written as

dp
'aTa' ~ a?T ~ O(€d)

where we regarded ~ O(e,). This term can be therefore neglected and Equafion](2.49)
simplifies to
dT 2T ’
pcpa =kV°T +h. (2.52)
Expanding the density as in [2.28k) and dividing both sides of the above equatignby

yields to

Pa P dar  k_,., N
1+e€ + —|Cp——=—VT" +—. 2.53
( Apa pm) P dt Pm Pm ( )
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2.4 Rotating frame of reference

Neglecting terms of ordet, and higher, the evolution equation for the temperaturaupert

bations finally reads

dT’
PrCogr = KV2T + 1. (2.54)

The hydrodynamical equations for the convective pertimhatderived in the Boussi-
nesq approximation are then

% = —%VH —aTg+vVau (2.55a)

V.-u=0 (2.55b)
T

,ocp‘j']l—t = kV?T +h (2.55¢)

where the primes are suppressed in the notation for sirplithe pressure fluctuations
p’ are renamed ad in order to distinguish them from the hydrostatic contribns, and
p denotes the (constant) mean fluid density.

2.4 Rotating frame of reference

The equations (2.55) derived in the previous sections did waan inertial frame of
reference. On Earth, we naturally observe fluid motions oaefarence frame fixed at
the surface and therefore rotating with respect to an slertime. Rather than dealing
with moving boundaries, it is more convenient to write theridaStokes equatiof (2.55a)
in such non-inertial frame. The additional fictitious fasaentering this equation play a
fundamental role in shaping the flow.

Consider a frame of referen&g, rotating about the-axis at a uniform angular veloc-
ity Q = Q&, with respect to a (fixed) inertial fram®,. Let Sg andS, have a common
origin of coordinate® and denote the position vector of a point in space with radpec
the originO with r. The rate of change afas seen by an inertial observer is related to
the rate of change in the rotating frai§g by (see, e.gL_BamhﬂlbLZdoo, Chapter 4)

(dr)l - (ﬁ);gxr. (2.56)

dt dt

The first term on the RHS describes the variation of positigh vespect td&g, while the
second term arises from the rotation of the unit vectoiSgodis seen by an observer fixed
with respect tdS,. The above equation obviously represents the transfoomédiv for
the velocity between the two reference frames:

U =Ug+QXr. (2.57)

The acceleration measured by an inertial obseavean be obtained applying the trans-
formation [2.56) oru,, thus

(%)I = (%)R+er. (2.58)
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Using [2.57) in the above equation yields

% :(%) +Qx(ﬁ) + QXUR+ QX (QXT),
dt dt /5 dt/s
where the rotation rate has been assumed to be constanten flinis represents the
transformation law for the acceleration between the tweresfce frames which more
compactly reads
a =aR+2QXUR+Q X (2 XT). (2.59)

The diference between absolute and relative accelerations t®asia/o terms. The first,
proportional to the rotation rate and to the velocity, idaexhlthe Coriolis acceleration;
the second is the centripetal accelerati@rand arises even in the absence of motions.
This last term can be written as the gradient of a scalar piatdanction ¢, (centrifugal
potential) which satisfies

(Q xr)?
2

Qx(Qxr)=-V (2.60)

Using the transformation lavi_(Z59) into the Navier-Stokgsation[[2.58a) and ex-
pressing the centripetal acceleration adin (2.60), we aedlffilead to the equation of
motion for a convecting fluid in the Boussinesq approximatioa rotating frame of ref-

erence q 1
d_l:[I =-—-VII" -2Q x u —aTg+vV2u, (2.61)
o,

wherell* is themodified pressurll* = IT—p(Q x r)?/2 which includes centrifugal forces.

2.5 The magnetic induction equation

In this section the evolution equation for the magnetic fikttbwn as the induction equa-
tion, is introduced. We concern here with conducting and-magnetic materials. Elec-
tromagnetic phenomena in such media are described by MEsweglations which, in
the Gaussian unit system, read

V- E = 4npe (2.62a)
10B
VXE=-=-— 2.62b
X c ot ( )
V-B=0 (2.62¢)
VxB:ﬂJ+}a—E. (2.62d)
C c ot

whereE is the electric fieldB the magnetic fieldye the distribution of electric charge$,
the current density andthe speed of light.

In magnetohydrodynamics (MHD) guasi-steady approximatioof the above equa-
tions is used. In this approximation the fluid system is cde&x®d to be stationary on
light travel times, thus neglecting the propagation of éwahelectromagnetic waves. In
planetary cores, fluid motions are typically of the orderesf imillimeters per second and
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2.5 The magnetic induction equation

therefore this approximation is valid to a large extent. i§ a characteristic length scale
of the system and the time scale of field variations, Faraday’s ldaw (Z]62bjwalus to
write

—~ -1 (2.63)

wherev = ¢/t defines a characteristic system velocity. The above estimygilies|E| «
|BJ, thus the electric field plays only a minor role compared ® iagnetic field. By
means of[(2.62a), we can conclude that the charge demsisynot significant in MHD.
Physical &ects due to charge separation in the conductive fluid acthoa $icales of the
order of the electron gyro-frequency, thus much faster thyical fluid motions. Sincee
is very smallin the interior of the conductor, Gauss’ |awb28) can be simply dropped. In
MHD electric fields are therefore generated only via induttfects due to time variable
magnetic fields according to Equatién (2.62b).

The displacement curreets,E in the Ampére-Maxwell equation (2.62d) can also
be neglected. As an order of magnitude estimate, compaighkacement current with
the first term on the LHS of Equation (2.62d):

ctoE| viEl v,

VxB| c|Bl ¢

This demonstrates that Maxwell’s correction in Equatia®?8) is not required in MHD.
Therefore, the (pre-Maxwell) electrodynamic equatioresiia MHD are

10B

VXxE=--2 2.64

x c ot ( 3)

V-B=0 (2.64b)
4

VxB = %TJ. (2.64c)

It is interesting to note that taking the divergence of badles of Equation(Z.64c) yields
to
V-J=0 (2.65)

which expresses the solenoidal character of the densitgruand agrees, as expected,
with the fact that no free charge densityis present in MHD.

We now derive the magnetic induction equation. Considerid @anductor with an
electrical conductivityr. If the conductor is at rest, the following (phenomenolag)ic
relationship, known a®hm'’s law holds

J=0E. (2.66)

In a reference frame moving with the fluid conductor, it caekeected that such relation-
ship is still locally valid. IfJzr andEg are, respectively, the current density and the electric
field as measured by an observer moving with respect to atidhesference frame with
the local fluid velocityu = u(x), thenJr = oEg. Using the non-relativistic transforma-
tions for the electric and magnetic fields (see, Eg”ﬂmﬁm Chapter 2), Ohm'’s law
(2.68) can be written, relative to the fixed frame of refeesras

J:o-(E+%u><B) ) (2.67)
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The above equation represents the (generalized) Ohm’sdkeavrhoving conductor. Sub-
stituting [2.67) into Faraday’s law (2.64a) gives

oB J
—:Vx(uxB—c—). (2.68)
ot o

Using Ampére’s lawl(2.64c) to eliminate the current densitthe above equation yields
to

%—?:Vx(uxB)—Vx(anB) (2.69)
wheren is the magnetic diusivity of the fluid defined as
n = ¢%/4no . (2.70)

Assuming is constant, the second term on the RHS of Equation|(2.68) ¥s(V x B) =
n(V(V - B) — V2B) = —»V2B which finally leads to
oB

i V x (uxB) +nV?B. (2.71)

The above equation governs the magnetic field evolution inogimg conductor with
constant dtusivity n and is called thenagnetic induction equation

If fluid motions were to be abseni & 0), the induction equatiof (2.¥1) would reduce
to a difusion equation and therefoBewould decay exponentially. The rate of decay of
the field is, as a simple dimensional analysis would sugggest,£?/n where( is a char-
acteristic length scale of the system. Using recent estisnaftthe electrical conductivity
of iron at Earth’s core conditions (Pozzo eH_aMOlZ) andhtakhe outer core gag as
the typical length scalé, the geomagnetic field is expected to decay by ohnfitsion
on time scales, ~ 244 kyr. Since we have evidences for an active magnetic figidiw
go back to periods as old as 500 million years @I@zo&emmv x (u x B) inthe
induction equatiori{2.71) must act as a source of magnegiggnvhich prevents the field
to decay by ohmic diusion. As already discussed in Secfiod 1.2, the idea thabmsin
an electrically conducting fluid might generate inducedeuts able to amplify and self-
sustain an original seed field was firstly proposeMrt@). This hypothesis is
now used in the study of magnetic field generation in plagetares and stellar interiors,
and is at the basis of modern hydromagnetic dynamo theory.

For a conducting fluid, the equation governing fluid moti@&1) must be modified
by considering the electromagnetic forces acting on thel fb@nductor itself. These
forces can be expressed per unit volume as (Davidson 2001)

1
f = peE + EJ xB. (2.72)

The first term represents the forces experienced by the lfr@ges due to the presence of
an electric fielde (electrostatic force); the second term describes the iboritvn due to
the motion of the charged patrticles into the magnetic fi{dlorentz force). As already
discussed before, the total charge denaitis small in fluids with high electrical conduc-
tivity and therefore the electrostatic force can be expgktiebe negligible compared to
the Lorentz force. In this approximation, Equatibn (2.7&)difies to

fzi(VxB)xB, (2.73)
A
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where we expressed the density currgnising Ampere’s law(2.64c). On conversion to
Sl units, the volumetric Lorentz force beconfes: u* (V x B) x B whereug = 4r x
10 7Vs/Am is the vacuum permeability.

Including the Lorentz force into the Navier-Stokes equa{a61), we are finally lead
to the equation of motion of a thermally convecting and cantidig fluid in the presence
of magnetic fields which reads

d 1
pd—Ltj:—VH*—2pQ><U—ang+,uV2u+—(VxB)xB. (2.74)
Ho

2.6 The non-dimensionalization

In the previous sections, we derived a set of equations ieitjtfe unknowns represented
by the flow velocityu, the magnetic field, the modified pressuidd* and the temperature
perturbationsT which describe the dynamics of a conducting and thermalhvecting
fluid under the Boussinesq approximation. These equati@pgated here for conve-
nience, are: the conservation of momentum

1
,o(%—ttJ + u-Vu) = —VII* - 20Q x U — aTpg + uV2u + — (Vx B) x B, (2.75)
Ho
the simplified continuity equation for a Boussinesq fluid
V-u=0, (2.76)

the evolution equation of the temperature perturbatibngith respect to the adiabatic
reference state without internal heat sources (or sinks)

.
pcp(%—t +U- V)T = kV?T (2.77)
and the induction equation
B
aﬁ_t =V x (uxB)+nV°B. (2.78)

These equations are supplemented by the solenoidal mad@eé&ticondition
V-B=0. (2.79)

Itis generally useful to write dlierential equations using non-dimensional variables. This
procedure introduces dimensionless parameters whichurestig relative importance of
the terms they multiply in the equations. We derive here thedimensional form of the
above equations following the scaling useMiOOS).

Any vector quantity will be denoted hereafter by the product of its non-dimenaio
partX with its (constant) units or dimensiomsi’e. X = XX. The same notation holds for
scalar quantities. Lengths are scaled with the outer codéhwli = r, — r;, wherer, and
ri are the outer core and inner core radii respectively. Tinsgased in units of the outer
core magnetic diusion timer, = d?/n introduced in Section 2.5. A typical fluid velocity
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2 The geodynamo: theory and numerical modelling

can then be defined as="d/r, which yieldsu = @il = d/,,0. In such non-dimensional
units, the time derivative, gradient and laplacian opesai@nsform, respectively, as

0 10
ot T, ot
v=1g
=4V,
1 -

2 _ 2

vi= SV

Let B = BB, whereB is a typical magnetic field strength which will be defined tate
Applying the above transformations to the induction equa{P.78) yields to

BB B. A B.,a
—— =—Vx(0xB)+n=V?B.

T, 0t T, ( ) T
Multiplying both sides byr,,/l%, the above equation simplifies to

P =G (ax8)+ 98, (2.80)
Note that the non-dimensional induction equation (2.8@pimally equivalent to[(2.78)
when using the magneticfélision time as temporal units.

We proceed in non-dimentionalizing the evolution equatdrtemperature[(2.77).
The temperature perturbatiomsare scaled with the super-adiabatic temperature contrast
across the outer cor&T, such thafl = ATT. Equation[[2.717) can therefore be written as

AT T AT
__A+_

V2T . (2.81)
T, ot T,

0-V)T = AT
( ) pcde
The ratio of the thermal conductivity to the volumetric heat capacipc, defines the

thermal dffusivityx
LI (2.82)
PCp
This quantity measures the fluid capability to conduct hekdtive to its diciency in
retaining thermal energy. Multiplying both sides of Eqoat{2.81) byr, /AT and using

the definition of thermal diusivity (2.82), we are lead to
— +0-VT = =V?T. (2.83)

The dimensionless prefactor of thetfdsion term in the above equation can be expressed
in terms of two non-dimensional numbers. Thandtl number Piis defined by

Pr="
K
and describes the relative importance of viscoti&igion to thermal dfusion in the fluid.

In terms of time scale®r can be interpreted as the ratio of the thermfldion timescale
1, = d?/k to the viscous dfusion time scale, = d?/v. The second non-dimensional
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number is themagnetic Prandtl number Pnwhich is the ratio of viscous ffusion to

magnetic difusion, namely
4
Pm= -

n
and equals the time scales ratig'r,. Using these definitions, the non-dimensional form
of the temperature equatidn (2183) reads

oT . 2ax 5
atA+u~VT_PrVT. (2.84)

In planetary cores, the main driver of fluid motions (necesfa dynamo action) is
convection. In order to maintain an operating dynamo, teentlal energy must dfuse on
time scales much longer than the magnetitugion time. Therefore, we expect the ratio
Pm/Pr = 7, /7, to be small in planetary cores. In the case of Earth’s coregXample,
Pmis estimated to be 1® — 1075, while Pr is 0.1 — 1 (Christensen 2011). Such low
magnetic Prandtl numbers are practically unachievablemarical dynamo simulations
which generally use values from10to 10. This means that the viscousfdsion time
7, is underestimated by 5 6 orders of magnitude in dynamo models. This leads to an
enhanced fluid viscosity which damps the small and unrebtdvecales present in real
planetary cores.

We finally derive the non-dimensional form of the Navierd&t®s equatiorf (Z.75). The
(constant) fluid density in ([2.78) is assumed to be the mean outer core depgitfhe
system is assumed to rotate uniformly aboutztais with an angular velocit = Q&,,
whereQ is the planetary rotation rate aggthe unit vector in the vertical direction. The
magnetic field is scaled b = (0,Q/0)Y?, thusB = (p,Q/0)*?B. The gravitational
acceleratiorng is assumed to vary linearly with the radial distance, tgus —gor/r,
whereg, is the value of the gravitational acceleration at the outemiglary. Using these
scalings, Equatioi (2.75) reads

d(o . 2\. d, ~~ N
Po (—A +U- V)u =pol— (—VH* - 26, X u)+
7, \ 0t T,

- 1., 11pQ /2 =& A

AT Tpoo— + u—— V20 + — =22 (7 x B) x B,
lo dr, uod o

where the same dimensional units for the Coriolis force hadrodified (non-hydrostatic)

pressure force have been adopted. Multiplying both sideth@fabove equation by

T,/poQ2d gives

aQoATdr Vo con (& o A
o r—OT+dZ—QVu+(V><B)><B (2.85)

n (0 o oe\a gns -
dz—Q(a—f+u-V)u:—VH -2, xU+
where we used the definitions of magnetiftusivity = 1/ugo- and of kinematic viscos-
ity 2.13). The prefactor of the viscousfision term on the right of (2.85) is tligkman

number
4

E=—.
Qd?
The Ekman number is therefore the ratio of the planetartiostaime Q! to the viscous
diffusion time scale,. It can also be interpreted as the ratio of viscous drag t€thelis
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2 The geodynamo: theory and numerical modelling

force in the Navier-Stokes equatidn (2.75). In the case dhEB is expected to be as low
as 105 — 1024 (Christenseh 2011). The dynamics of the fluid core is theeestrongly
influenced by Coriolis forces, while viscoudfldision plays only a marginal role. Due
to computational resource limits, self-consistent 3D agaaimulations hardly reach an
Ekman number of 16-10"7 (Kageyama et al. 2008). This introduces an excess viscosity
in the system which acts in damping the smallest and unralt#scales occurring at
realistic parameter values for the Earth’s core.

The second dimensionless quantity on the RHS of Equafi@al) 2aultiplies the buoy-
ancy term. In the study of convection problems, it is usefuhtroduce the (modified)
Rayleigh number

agoATd

Qy
which represents a measure for the relative importance oydncy forces to viscous
diffusion. Rais therefore also a direct measure for the vigor of convadtidhe system.
In order for convection to set in, the buoyancy force has erceme stabilizing forces
such as viscous flusion, which tends to suppress fluid motions, and the Cerfolice,
which tends to maintain the flow aligned with the rotationsaxihe Rayleigh number
in the Earth’s core is estimated to be much larger than thiearvalue for the onset of
convection, while dynamo models are less supercriticadayly two orders of magnitude
(g;hristensdml). Fluid motions in the Earth’s outer emegherefore vigorously driven
by convection, thus resulting in a high turbulent flow. Hayintroduced the Ekman
numberE and the modified Rayleigh numbRg, Equation[(2.85) finally reads

Ra=

0

~ A . r . Ao A oA .
+0-V]|0 :—VH*—Zeru+RaPm—T+EV2u+(V><B)><B. (2.86)
Pm\ st

l'o

The non-dimensional set of partialfidirential equations constituted by the equation
of motion [2.86), the evolution equation for the temperatperturbationd (Z.84) and the
magnetic induction equatioh (2180), supplemented by tbetfet the flow is divergence-
free in the Boussinesq approxmatlo‘t'?i {0 = 0) and by the solenoidal magnetic field
condition (7 - B = 0), can now be solved numerically upon the specification pbojine
boundary conditions. The boundary conditions used in thudys as well as possible
alternative choices, are discussed in the next section.

2.7 Boundary conditions

In this section, we specify appropriate boundary condgifam the set of MHD equations
derived before. The fluid core is considered bounded in arggathshell at the inner radius
ri (corresponding to the ICB) and at the outer radiu&orresponding to the CMB). The
overlying mantle is assumed to be electrically insulatinglevthe inner core, mainly
composed of iron, is modeled as a conductor. Figure 2.1 shasketch of the spherical
shell geometry employed in the problem.

The Earth is actually an oblate spheroid due to the actiorofrfugal forces. How-
ever, deviations from sphericity are small as a simple oodenagnitude estimate sug-
gests. Since the centrifugal acceleratgmepends linearly on the distance from the rota-
tion axis (see Sectidn 2.4), it attains its maximum valudetquator of the planet where
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2.7 Boundary conditions

Figure 2.1: Sketch of the spherical shell geometry employiée fluid shell is rotating
about thez-axis with angular frequenc. The inner core is highlighted in gray and
broken lines mark the inner core tangent cylinder. F ' ' Hﬂ%ﬂb?).

lagl = Q?%re ~ 0.034 ms? (rg being the Earth’s radius). This corresponds approximately
to 1/288 of the gravitational acceleration at the Earth’s s@f&pherical boundaries are
therefore a good approximation when precesstteces are not considered.

Having defined the fluid domain, we can now specify the boundanditions for
the velocity fieldu, the magnetic field and the temperaturg. Firstly, we discuss the
mechanical boundary conditions. Since the fluid is confingtlimthe spherical shell,
it cannot penetrate the inner and outer boundaries and tbeityefield must therefore
satisfy& - u = 0, where& is the unit vector in the radial direction. In the frame of
reference co-rotating with the mantle, the fluid velocityhen assumed to vanish at the
inner and outer boundaries, that is

u=0 atr=ry, r=r,.

These are referred to as rigid (or no-slip) mechanical bagndonditions. However,
there is no a priori reason why the inner core should co-eotath the mantle. A more
appropriate mechanical boundary condition is then

u=Q;xr atr=r;, (2.87)

whereQ; = Q; & is the inner core rotation rate. The change of rotation ratie respect
to the mantledQ;/dt is determined by the net torque acting on the conducting icoee.
Gravitational, viscous and Lorentz forces contribute tohstorque and an angular mo-
mentum equation must therefore be solved as part of the iequatstem. The no-slip
condition at the ICB provides a relation betwe@nand the toroidal velocity potential.
The angular momentum equation can then be transformedystmplmatching condition
for the toroidal velocity potential at = r;. For a complete mathematical formulation of
the problem, as well as its numerical implementation, werrtf Wicht @IZ). For sim-
plicity, the inner core is assumed to have the same densihd electrical conductivity-
of the outer core.

Kuang and Bloxham (1997) argued that the use of rigid boyndamditions leads to
large Ekman layerféects. The thickness of a viscous Ekman lagerscales with the
Ekman number a& /¢ ~ VE, where( is a typical length scale of the systt al.
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@). In the case of Earth’s cofe ~ 10 cm and this possibly demonstrates the unim-
portant role of Ekman layers on the large scale flow dynamicds eonsequently, on the
magnetic field generation. In dynamo models, however, tmedtknumber is at least®
orders of magnitude larger than in the Earth’s core and #aidd to larger Ekman layers
which might significantly influence the dynamo mechanism pémticular, helical fluid
motions close to the rigid boundaries may contribute to tlagmetic field production.
The second type of mechanical boundary conditions ofted@magd considers vanishing
shear stresses. This is referred to as a free-slip boundengiton and is thought to
represent more realistically the small viscous couplinggveen the core and the mantle.
Despite such drawbacks, we use rigid inner and outer boyrdaditions in this work.

We now discuss the magnetic boundary conditions. At therdagendary, the conti-
nuity of the magnetic field reads

B=B, atr=r,. (2.88)

The mantle is assumed to be a perfect electrical insulatois implies that no currents
can flow in the mantle), = 0) and therefore, from Ampére lal (2.648)x B, = 0. This
allows to writeB, as the gradient of a potential fiedd(B, = —V¢). The solenoidal mag-
netic field condition finally give¥?¢ = 0. This equation, together with the requirement
thatB, — 0 asr — oo (the source 0B, is in the core), completely specifies the magnetic
field at the outer boundary.

Since the Earth’s inner core is mainly composed of iron-glieiloys, it can be mod-
eled as a solid conducting sphere of radius r; with the same electrical conductivity
o of the fluid shell. Therefore, a dynamo equation formallyieaglent to [2.71) must be
solved for the inner core. This equation is

% =V x (Ui x B)) + nV?B; (2.89)
where the velocity fields; equals the solid body rotation of the inner core with respect
to the reference frame of the mantle. The induction equatfonthe outer fluid shell
(2.71) and for the inner corg_(2189) have to be linked by twdéchiag conditions. These
conditions are the continuity of the magnetic field

B=B atr=r, (2.90)
and the continuity of the horizontal electric field
E"=E" atr=r, (2.91)

where the superscriftdenotes the horizontal component. Equation (2.91) candutilye
written in terms oB andB; using Ohm'’s law in the rotating frame of referenice (2.67) and
Maxwell’s equation[(2.64c).

Finally, we briefly examine the thermal boundary conditicoenxmonly used in geo-
dynamo models to drive core convection. The simplest assamponsiders a fixed
temperature contragilT between the inner and outer boundaries:

T=T, atr=r,, (2.92a)
T=T atr=r (2.92b)
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whereAT = T, - T; < 0. The lack of internal heat sources or sinks gets O in
the temperature equatidn (2.55c). Though there is no phlysiason which justifies the
conditions above[(2.92) are often assumed for simplicity.

Among the possible heat sources driving thermal convedtidhe Earth’s core, the
most important one is the latent heat released from the rorersolidification due to sec-
ular cooling (see Sectidn 2.2). Secular cooling and intdraating are formally equiva-
lent. The internal heat sourckén the transport equation (2.35c¢) are generally considered
homogeneously distributed in the fluid volume.

As the inner core freezes due to secular cooling, howegt &lements cannot be
dissolved éiciently anymore at the bottom of the fluid core. These ligktrednts are
likely buoyantly unstable and drive the so-called composél convection. The composi-
tional transport equation is formally equivalent[io (Z)Jp&bereT has now to be intended
as the perturbation concentration (from a mean refererate)sif the light constituents
of the core fluid. The constant release of light elements ftbenlCB can be modeled
as a constant volumetric sink terim £ 0) in Equation[{Z.58¢) (Kutzner and Christerisen
) Since light elements cannot escape the outer com@popriate boundary con-
dition at the CMB is a zero heat-flux. The latter two condit@re usually employed to
model pure compositional convection.

The outer boundary condition can also take into accountabietfiat the mantle, hav-
ing a finite thermal conductivity, controls the heat lossrirthe core. A fixed heat-flux
condition atr = r, is generally employed in such cases. In addition, the nepoaitional
flux from the inner boundary can be expected to depend dyr&atin the heat loss to the
mantle.

2.8 The numerical method

The non-dimensional equations derived in the previous@ectand describing the dy-
namics of a convecting and conducting fluid in the Boussiraggayoximation and in the
presence of magnetic fields are

E
— ﬁ+u-V u :—VH*—2e2><U+RaPmr—T+EV2u+(V><B)><B (2.93a)
Pm\ot lo
B
8& =V x(uxB)+V?B (2.93b)
T
8(9—t +Uu-VT = PmV?T. (2.93c)

For simplicity, the superscripts = denoting non-dimenalajuantities are suppressed in
the above equations. Equatiofs (2.93) are supplementéetkelsotenoidal velocity field
condition (v - u = 0) and by the solenoidal property of the magnetic fi®d B = 0).

The above equations are solved numerically in a spheriedll which represents the
Earth’s outer core (Figure_2.1) and with the boundary camakt specified in Section
[2.4. In this work we used the numerical implementatio i ) which is based
on developments from the code originally employed in eadgadynamo simulations by

Glatzmaier and Roberts (1995). In this section we brieflyineithe basics of the pseudo-

spectral method employed. Further details on the numere#thod and the derivation of
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the spectral equations can be found in, 9401 % latzmaier and Robelrts
(1995), Wicht (2002) and Christensen ani gﬂid:huioon.

The set of diferential equations given above provides nine scalar eanssitn the eight
unknownsu, B, IT* andT. The magnetic and velocity field components are not indepen-
dent since botlu andB are divergence-free. A convenient scalar decompositicangf
solenoidal vector field is the well-known toroidal-poldidacomposition (Chandrasekhar
1961, Appendix IIl). For the magnetic fieBl such decomposition reads

B:Vx(ng£)+Vxh£, (2.94)

whereg andh are arbitrary functions of the position and time. The firsd aacond terms
on the RHS of the above equation are, respectively, the gal@ind toroidal fields. It
is evident that[(2.94) automatically guarantees that thergence ofB vanishes. An
analogous equation defines the flow field by means of the padlaittl toroidal potentials
v andw:

U:VX(VXU£)+VXW£. (2.95)

Under the toroidal-poloidal decomposition, the problenknowns reduce to six scalar
fields: the poloidal and toroidal potentials for the magnéeld (g, h) and for the flow
field (v, w), the modified pressurE* and the temperature perturbatiohs Such fields
are represented in a spherical system of coordinatés/). A natural basis for the spec-
tral representation of the unknown scalar fields in coldgté and longitudep are the
spherical harmonic functions

Yem(0, ¢) = Pyn(cosd) €™ (2.96)

wheref andm denote degree and order respectively, Bpgare the associated Legendre
functions. As an example, the poloidal field potengj& then expanded as

L {
o, 60,0) = D" > Gul0)Yem(6, 4) . (2.97)

=0 m=—¢
The radial variation of the unknowns is represented usingb@shev polynomials. The
Chebyshev polynomial of degree= N is defined by
Cn(X) = cos jnarccosk)] (2.98)

wherex € [-1,1]. The radial expansion of the poloidal magnetic poteritiaf2.97)
truncated at degreld reads

N
Gin(r) = ), GemiClF) (2.99)
n=0

where the coicientsg,m, have to be determined through the application of an inned-pro
uct to the above expansion and using the orthogonality ob@teev polynomials. The
expansion[(2.99) is then evaluated numerically at spedifiat grid points ¢ollocation
formulation. A particularly convenient choice of thé collocation points is

X = cos(nl\l: — 11) (2.100)
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2.8 The numerical method

with k = 1,...,N;. The values of the Chebyshev polynomials at these poin{srateed,
simply the cosine functions

M] . (2.101)

C =
n(X) cos[n N 1

The domain of Chebyshev polynomials1( < x < 1) is transformed into the radial
domain ¢; < r¢ < r,) choosing

I —Tj
Xk=2k i

P— 1. (2.102)
As a major advantage, this particular choice of collocagiomts provides the possibility
to apply a fast Fourier transform between the physical aedpectral space. As a second
benefit, the radial grid points are denser at the inner aner daatundaries which permits
to better resolve the boundary layers.

The complete spectral representation of the poloidal fietémtialg then reads

L { N
9 0.8) = >° > > GumrCalr)Ye(6: 9) (2.103)

(=0 m=—¢ n=0

Sinceg is a real-valued function, its spectral ¢heentsg,m, are not all independent
butg; .., = 9r-mn With the superscript denoting complex conjugate. Only dbeients
with m > 0 can be therefore considered in the expandion (2.103). tapegpansions
analogous td(2.103) hold for the remaining unknown scaditdi The partial dierential
equations[(2.93) separate then in (five) ordinaffedential equations with respect to time
in the (six) unknown spectral citcients represented by the magnetic potentals and
h/mn, the velocity potentials;m, andw,mn, the pressurél;  and the temperaturgm,.
Pressurédl; ., however, remains an additional unknown in the evolutiamatign for
the poloidal flow potential. This problem can be solved in tmays. The first approach
is to apply the curl operator to the Navier-Stokes equaffbB3a) which yields to an
evolution equation for the vorticityy = Vxu without the pressure term. The second, more
direct approach is to close the system deriving an equatiiving the flow potentials
andIT;_ . This can be achieved by taking the horizontal divergenda@®Navier-Stokes

‘mn'
equation[[Z.93a) (Christensen and Wicht 2007).

Several terms of the spectral equations (including thedllsfiorce and the non-linear
terms) couple modes in the spectral space and cause al@sibgms. To avoid such
problems, the Coriolis force, the Lorentz force and the atitee of momentum in(2.93a)
are evaluated in the real space rather than in the spectteé sg he same holds true for
the source term in the induction equatifn (Z193b) and theégature advection term in
(2.93¢). The spatial derivatives involved in the calcalatof these terms are, however,
evaluated in the spectral space. These terms are integeapdiditly in time using a
second order Adam-Bashforth scheme. The remaining terensrgalicitly time-stepped
using a Crank-Nicolson scheme.

The numerical grid is defined in the code upon specificatiothemumber of radial
grid pointsN; and longitudinal grid point®,. N, — 1 equals the maximum Chebyshev
polynomial degreeN used in the expansiof (2.103). In the numerical simulatares
lyzed in this work, we us&\, = 48. The number of latitudinal grid points is adjusted
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2 The geodynamo: theory and numerical modelling

to Ny = N4/2 to provide an isotropic resolution in the equatorial regi®, is related
to the maximum spherical harmonic ordein (2.103) byL = 2/3Ny. In our numerical
simulations we use a number of longitudinal grid poiNjsup to 128.

The time stepAt is dynamically adapted during the temporal integratiorutélfthe
Courant-Friedrichs-Lewy (CFL) condition. The CFL conditidemands thatt has to be
smaller than the smallest advection time between two adfapel points

(2.104)

Ar Ah
U’ up)’

At < min(—,

whereu, anduy, are the radial and horizontal characteristic velocitiepegtively, while
Ar andAh are the radial and horizontal grid intervals. The estimates andu, account
for both the fluid velocity and the local Alfven velocity. Rber details on the time step

control are given in Christensen et al. (1999).
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3 Probabillity theory and statistical
tools

This chapter reviews some fundamentals of probability themd presents a complete
description of the statistical methods employed in the oéshis work. The basics of
probability theory are discussed in Sectibns B.1-3.3. Mberetical distributions and the
associated stochastic processes tested by our statesti@lgisis are described in Section
[3.4. Section 315 discusses the (frequentist) method wemmglto estimate the unknown
distribution parameters, while SectionlI3.6 describes tdtistical tests used to determine
the goodness-of-fit. Sectign 8.7 closes the chapter witls@udsion on the problems of
parameter inference and model selection in a Bayesian Wwanke

3.1 The concept of probability

Itis not an easy task to define precisely and consistentlgaheept of probability. Ofer-
ent definitions of probability have indeed been developetthénpast. Naively speaking,
probability quantifies the degree of randomness of a cepgrperty associated with a
given system. In most practical situations it reflects owgree of uncertainty relative to
the prediction of a certain event occurrence (e.g., theamuécof a measured physical
quantity, the input parameters of a model describing olagienval data, etc.). The most
direct definition of probability was formulated by Kolmoger(1933) in the framework
of set theory. In this section, we recall the Kolmogorov axsoof probability and we
derive Bayes’ theorem and the law of total probability.

Let S be a set characterized by a certain number of elements (hekggcitly spec-
ified) and called thesample spaceWe assign to each subs&f S a real number ),
called the probability oA, which is defined by the following axioms:

1. foranyAc S, P(A) = O;

2. for any disjoint subset& andB (AN B = 0), the probability ofA or Bis PAUB) =
PA) +PB);

3. the probability assigned to the sample space$® P(1.

The above definition immediately implies © P(A) < 1. Several basic properties of
probability can be directly derived from these axioms (seg.,,& Chapter 1).
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S B

.

NnB

Figure 3.1:Left panel Relationship between the sample sp&cand the seté& andB in
the definition of conditional probabilityRight panel Decomposition of the sample space
S into the disjoint set#\y, i =1,...,5.

Consider the subsefsc S andB c S such that FB) # 0. Theconditional probabil-
ity P(A| B), namely the probability of given thatB is true, is defined as
P(AN B)

P[B)

P(A|B) = (3.1)
Figure[3.1 (left panel) illustrates the relation betwe®mand B in the sample spac8.
The conditional probability (3]11) satisfies the Kolmogoexioms of probability n
1998, Chapter 1).

Bayes’ theorem naturally follows from the definition of caimhal probability. As-
suming PA) # 0, the conditional probability oB givenA is

HmM:PE&N (3.2)
SinceBn A = AN B, the above definition yields
PB|A) P(A) =PANB) =PA|B) PB), (3.3)

where [3.1) has been used in the last equality. The first atedpalities in[(313) give

PBIA) PA)

PAIB) =~

(3.4)
Equation [(3.14) relates the conditional probabilitieaFg) and PB| A) and is known as
the Bayes’ theorem We now derive the so-called law of total probability whichlwe
useful in the following. Suppose the sample spate be divided into the disjoint subsets
A,i.e.S= Ui“ilAi with AinA;j = 0 for anyi # j, and assume that these subsets contain at
least one element, that isA&R) # 0 for alli. An illustration of this decomposition of the
sample space is given in Figure3.1 (right panel). Any aabjtB c S can then be written
as

B=BNnS=Bn(UA)=U (BNA).

Since the subset® N A are disjoint by construction (cf. Figufe 8.1, right pandie
probability of B is

PE)=P(Ui (BN A)) = ) PBNA)
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3.1 The concept of probability

and, using definition of conditional probabilify (3.1), wedead to

PE) = ), PBIA) PA). (35)

Equation[(3.b) is called thaw of total probability and is useful when the sample space
can be divided into subse#s for which the probabilities are easy to calculate. Using the
law of total probability in[(3.14) yields to the equivalentiioulation of Bayes’ theorem

PBIA) PA)

PAIB) = S oEIA) PO

(3.6)

3.1.1 Interpretation of probability

The mathematical results discussed above are very gerezralibe they are valid for any
function P which satisfies the Kolmogorov axioms. To appBsthresults in practical sit-
uations, we have to specify, firstly, the elements of the saspace where the probability
is defined (i.e. the domain of P) and, secondly, a rule to agsiggach element in the

domain the respective probability value P. At this stage,itwerpretations of probability

(the frequentist and the Bayesian) are commonly used. Wileghese approaches in
more detail below.

3.1.1.1 Frequentist interpretation

In the (classical) frequentist interpretation of probiaithe elements of the sample space
S correspond to the possible outcomes of an experiment. hcipie, the experiment has
to be repeatable an infinite number of times under exactlgdnee conditions. A subset
A c S corresponds to the occurrence of any of the outcomes anaidysteferred to as
anevent The probability of evenf is then defined as the fraction of timA®ccurs in an
infinite number of repeated experiments:

P(A) = lim @ (3.7)

n—co N

wheren(A) is the number of experiments gividgas an outcome andis the total number
of experiments. In this interpretation the probability Rhisrefore the relative frequency
of a given event. Hence, the conditional probabilityAPB) of Equation [(3.11) is the
number of cases where botandB are observed divided by the number of occurrences
of eventB alone.

3.1.1.2 Bayesian interpretation

The Bayesian interpretation of probability is more genaral, in principle, contains the
frequentist one. The subsets of the sample si3aaee defined abypothesesr propo-

sitionswhich can be either true or false. In this conteStjs often referred to as the
hypothesis space rather than the sample space. The pitbBM4) is then interpreted as

P(A) = degree of belief thaA is true (3.8)
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3 Probability theory and statistical tools

To fulfill Kolmogorov axioms, the hypothesis spa8enust be constructed such that only
one of its elementary hypotheses is true.

The following example clarifies the role of probability iretBayesian interpretation.
Consider the situation in which we want to test the abilitpaertain modeM to describe
repeated measurements of a physical quantity (the@ptdbtained from an experiment.
The subsef in Bayes’ theorem[(3]4) can then be interpreted as the pitiposmodel
M is true”, while the subséB is the proposition “the measuremeitsare obtained from
the experiment”. Therefore, Bayes’ theorem allow us toewvrit

PM|D) <« PO|M) PM). (3.9)

In the above expression K| represents the probability that moddl is true a priori,
i.e. before conducting the experiment. For this reaso)R§ commonly called the
prior probability . The term PD | M) on the RHS of[(319) is the probability of obtaining
the dataD given that modeM is true. In other words, B(| M) quantifies how likely
is the set of the observed measurements in the light of theehsul is usually called
thelikelihood. Finally, the probability that modé¥l correctly describes the experimental
dataD is given by PM | D). This is called theosterior probability of the model in order
to stress the fact that it is calculated after conductingettperiment. The normalization
constant, dropped in Equatidn (B.9), is often referred tb@svidencebecause it depends
on the data only.

The advantages of the Bayesian approach compared to thesfrest one are clear
in the above example. In the first place, there is no limitatiothe type of hypotheses
which can be analyzed and Bayes’ theorem applies to all of tfde intrinsic procedure
of updating the prior probability assigned to a hypothesigdry similar to our natural
learning process. Starting from an initial guess descrliethe prior, the information
directly retrieved from experiments is used to construct masterior knowledge. The
likelihood indeed acts as a weight factor on the prior prakigb

A possible weakness of the Bayesian approach may come frerath that there is
no objective way of calculating the prior probabilities. thre above example, the prior
probability PM) can be assigned according to the prior belief of the modetaself on
his theory. Reasonable choices of the prior probabilityeitawbe evaluated depending on
the specific problem at hand. However, the prior probaldy have only a minor impact
on the posterior probability if, for example, the evidenoening from the data is strong.
We will further discuss these issues in Secfion 3.7.

3.2 Fundamentals of probability theory

In this section, we review some fundamentals of classiedissical analysis and we intro-
duce the notation employed in the rest of this work.

Consider an experiment whose outcome is described by aestogitinuos random
variable (RV)X. The sample spac® introduced in Sectiof 3.1 is then defined by the
domain of X and is often referred to as ttstatistical population. The experimental
results, i.e. the repeated measuremenis, @ire regarded as the finite sampte (. ., Xn)
which represents a set bif > 1 random numbers drawn from the statistical population.
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3.3 Survival and hazard functions

Assume the probability that the R¥ does not exceed the valdgnamely PX < X),
exists and is finite. This probability is called tbemulative distribution function (CDF)
of X and will be denoted aEx(X) hereafter. IfFx(X) is a continuous non-decreasing
function of x differentiable everywhere (except, eventually, in a finite neind$ points),
the probability density function (PDF) fx(X) is

dFx(x)
f = : A
x(x) = —5 — 20 (3.10)
Equivalently, the above definition reads
Fx(X) = f fx(X)dx . (3.11)

In its integral form, the PDFx(X) is thus the probability of observing a value of the RV
within the infinitesimal intervalX, x + dX. In the frequentist interpretation of probability,
fx(X) gives the fraction of times that the experimental outcoree Wwithin [x, x + dX] in
the limit of an infinite number of observations. In order tdfifuthe third Kolmogorov
axiom (Sectio311), the PDx(x) is normalized such that

f fe()dx=1, (3.12)
S

where the integration domain is the entire sample sface

We now introduce two useful quantities which charactertze distribution of any
random variable. Thexpectation valueEy [X] of a RV X distributed according to the
PDF fx(x) is

Ex[X] = [+wx fx(X) dx. (3.13)

(o)

The expectation value is also called the population meansageherally shortly denoted

by .
The second quantity is thopulation variance V[ X] and is defined by

Vxd = Ex|x- Ex D] = [ (- i 314)

The population variance (or simply variance) is shortlyated byo? and is a measure
for the spread ok about its mean valug. The definitions given in this section can be
easily generalized to multi-dimensional random variables

In the previous discussion, we adhered the common pradidernote the random
variable in upper case and the actual value assumed by tresponding lower case. For
simplicity reasons, this notation might be sometimes aith the rest of this work;
the distinction between random variables and their valhesilsl then be clear from the
context.

3.3 Survival and hazard functions

In this section, we introduce the concepts of survival armhléfunctions. They are used
in the context of survival analysis, a branch of statistiealohg with the analysis of time
durations to until a specified event happen.
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Let T be a non-negative random variable which represents the uimtiean event
occurrence. The probability that an event occurs by thetisithe CDFF1(t) = P(T <t).
It is convenient to define the complement of the CDF

Sr(t) = P(T > 1) = f () dt = 1 Fr(0) (3.15)

which is known as thsurvival function and represents the probability that the event of
interest does not occur by the tirhe

An alternative characterization of the distributionTofs given by the instantaneous
rate of occurrence of the event
Pt<T<t+dt|T >1)

dt

which is called thénazard function. In the expression above, the numerator is the prob-
ability of observing an event in the infinitesimal time intak (t, t + dt] provided that no
event has occurred before timeThe value of such probability per unit time in the limit
of infinitesimally small intervals gives then the instargans rate of occurrence of the

event of interest. A relation between the hazard funchipt) and the survival function
St(t) can be obtained using the definition of conditional prolighB.1) in (3.16)

Pt<T<t+dt,T>t)
P > t)dt
. Pt<T<t+dt)
= |lim ,
dt—0 St(t) dt

wherewe used Pk T <t+dt, T >t) =Pt < T <t+dt)inthe second equality. Since
Pt < T <t+dt) = fr(t)dt, (317) reads

e (t) = lim (3.16)

o = i

(3.17)

fr(t)
Sr(t)
The expression above can also be intended as an alternatinéidn of the hazard func-

tion. Note that the hazard function is neither a probabiiidy a probability density.
By means of[(3.10), Equatioh(3]18) can be written as

hr(t) = (3.18)

hr(t) = —dﬂt InS(t). (3.19)

Integrating both sides of the above expression between 0 ginds

f hr(t) dt’ = InSr(0) - In St(t). (3.20)
0

Assuming an event to be observed for 0, St(0) = 1 and the first term on the RHS of
(3.20) equals zero. Using the definition of survival funot{@.15), Equatiori(3.20) finally
becomes

Fr(t) = 1—exp|— f t hr(t) dt’] . (3.21)
0

This equation demonstrates that the hazard function ulyigentifies a distribution func-
tion. Statistical models can thus be constructed spegfyia hazard rate only. In the next
section we describe the distribution functions of intefesthis work and we provide ex-
plicit expression for the respective hazard functions.
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3.4 Statistical models and theoretical distributions

The probability distributions of interest for our subsegustatistical analysis and the
associated random processes are presented in Sectioh &Mthis section particular

attention is paid to modeling aspects of the geomagnetiersal occurrences. Section
[3.4.2 describes a particular type of random process knowheaoisson process. Further
information on the wide variety of probability distributis and their properties can be

found in, e.g., Forbes etlal. (2011) and Johnsonlet al. (1995)

3.4.1 Theoretical distributions
3.4.1.1 Uniform distribution

A continuous RVX € R has a uniform distribution in the intervat 3] if its PDF is

B-a)t fora<x<p

_ (3.22)
0 otherwise.

fX(Xl a’ﬁ) = {

Hereafter, we denote a uniform random variabledoy Uniform(a, 8). This distribution
describes a quantity which is equally likely to be found be#ne andg. The mean and
variance of a uniformly distributed RV are, respectively,

1
Ex[X = E(a + ) (3.23)
and 1
_ = _ 2
Vx[X = 12(3 a)”. (3.24)
The CDF of a uniform RV is then
0 forx <«
Fx(X|a,B) =s(x—a)/(B—a) forxe[a,B) (3.25)
1 forx>p

Figure[3.2 shows the PDF and CDF of the (standard) unifornrXRVUniform(0, 1).

The uniform distribution is of fundamental importance iatgtics because of the
following property. The proof of this property can be foumdainy introductory textbook
on classical statistical analysis. LDétbe a continuous RV with CDFx(x). The random
variableY defined by the transformation

y=Fx(x) (3.26)

is then uniformly distributed over the interval,[0, that isY ~ Uniform(0,1). Any
RV can therefore be mapped into a standard uniform distabuty means of[(3.26).
This mapping is often called the probability-integral sormation and is particularly
useful for practical purposes. Having a pseudo-randomrgésreof uniformly distributed
numbers, random deviates from any cumulative distributem be obtained by a simple
inversion of Equatior (3.26).
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Figure 3.2: Probability density function (left panel) andwalative distribution function
(right panel) of a uniform random variable in the intervalD
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Hazard function

Figure 3.3: Hazard functions for the uniform distributi@Z7) within [Q 1] (solid line)
and [Q 2] (dashed line).

The hazard function of a uniform distribution in the intdriva, 3] is
hyx(X) = 1 (3.27)
x(X) = B-x :

for @ < x < B. As an example, Figufe_3.3 shows the hazard functions ofddnifQ 1)
and Uniform(Q2). If xis interpreted as the time period after the occurrence oéeipd
event, the rate of occurrence increases monotonicallytwmi. In particularhy is infinite
for x = B which means that, if an event did not occur for times 8, an event will
certainly happen at time = 3.

3.4.1.2 Exponential distribution

The non-negative continuous RX/has an exponential distribution if its PDF is
fx(x| 1) = 1, (3.28)

whered > 0 is known as the rate parameter. We denote an exponentistitipdted RV by
X ~ Exp(?). The mean and variance of an exponentially distributed RV r@spectively,

Ex[] =" (3.29)
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Figure 3.4: Probability density functions (left panel) aunulative distribution functions
(right panel) of an exponentially distributed random vilgsfor various values of the rate
parameten.

and
Vx[X] =172. (3.30)

The exponential CDF is
Fx(x]A) =1-e™ (3.31)

for x > 0. Figure.3.4 shows the exponential PDFs and CDFs for thféereint values of
the rate parameter.

As will be discussed in detail in Section 34.2, the expoiaédistribution describes
the inter-event times in a Poisson proc@ @1968) stiggjehat the occurrence of ge-
omagnetic reversals stems from a Poisson process. Anglgni@ of the earliest reversal
chronologies for the past 11 Myr the author demonstratedahaexponential distribu-
tion well describes the observed chron durations. Two amfdit assumptions underly
the Poisson hypothesis. First, events are assumed to ostantaneously. Geomagnetic
reversals, lasting on average at least one order of magnitundjer than polarity chrons,
can be considered as instantaneous events in first appriiamahe second assumption
considers reversals occurring at a constant rate over tiwdmpanned by the data.

The progressive improvement of magnetostratigraphic soaes, both in dating ac-
curacy and recording of older events, revealed certainnsistencies with the Poisson
model. On time scales of tens of million years, the reversaloence might be influ-
enced by mantle convection processes (see the discusSewtion 1.4.5). More recently,
|Q_Qnsla.tll|e|_(20_(b0) reconstructed the reversal rate vamsbwer the past 160 million years
and found the reversal occurrence compatible with a nares&ry Poisson process.

The hazard functiori (3.18) for the exponential distribaii®

hx(X) = 4. (3.32)

Sincehy uniquely identifies a distribution function (Section]3.8)e exponential is the
only distribution with a constant hazard rate. This meaas thhe rate of occurrence of
an event is independent of the time at which the last evenpdregd. In other words,
it is equally likely to find an event in any period of arbitrdgngth. The exponential
distribution is thus said to h@emorylessA rigorous proof of such property will be given
in Sectior 3.4.2 where the Poisson process is discussedksiih de

63



3 Probability theory and statistical tools

3.4.1.3 Gamma distribution

The positive continuous RX has a gamma distribution, denoted Xy~ Gammak, 1)
hereatfter, if its PDF is
/lk k-1 —AX
fx(X| k, /l) = W X Te (333)

with k > 0 (shape parameter) and> O (rate parameter) and wherék) is the gamma

function evaluated d&: .
(k) = f X“le*dx.
0

Figure[3.b shows gamma PDFs and CDFs féfiedént values of the shape paramétand
the rate parametear. Note that fokk = 1 the gamma reduces to an exponential distribution.
Fork < 1, the gamma PDF is monotonically decreasing and dropg thste an exponen-
tial (Figure[3.b, upper left panel). Far> 1, the PDF is skewed and bell-shaped (Figure
[3.3, middle and lower left panels). Wh&iincreases the distribution profile broadens and
approaches a normal distribution for ladggalues (typically fork > 10). Increasing the
rate parameter tends to shrink the distribution function. This is quantlfiey the fact
that, havingK ~ Gammak, 1) and for anyc > 0, cX ~ Gammak, 1/c).

The mean and variance of a gamma distributed RV are, respbgti

Ex[X] = ; (3.34)
and c
Vx[X] = = (3.35)
The gamma CDF is
Fy(x|k 1) = 7(;;;() (3.36)

wherey(k, 1X) is the lower incomplete gamma function

AX
y(k, 1X) = f thlet dt.
0

Cumulative distributiong (3.36) are shown in the right garad Figure[3.b for various
values of the distribution parameters.
Substituting[(3.33) and (3.86) intb (3]118) yields to thedrdzunction of the gamma

distribution

/lk Xk—l e—/lx
(k) — y(k, Ax)
Figure[3.6 illustrates the gamma hazard functionsiferl and for diferent values of the
shape parametér The constant hazafu, = 1 is obtained fok = 1 where the gamma
reduces to an exponential distribution with= 1 (see Sectioh 3.4.1.2). Far< 1 the
hazard function decreases monotonically to the asymptatieA. If the random variable
describes the time until a specified event happens, the rerme is initially encouraged
fork < 1. If k> 1, the hazard function increases monotonically to the asyticpralueA.
This corresponds to a diminished likelihood of an event aemnce for a certain period.

hx(x) = (3.37)
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Figure 3.5: Gamma probability density functions (left pdahand cumulative distribution

functions (right panels) for various values of the shapap@teik and the rate parameter
A. Upper, middle and lower rows shdw= 0.5, k = 1.5 andk = 3 respectively. Each plot

presents three fierent values of the rate parameter, namety1, 1 = 2 anda = 4.
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The largerik the longer this inhibition period is (cf. Figure 8.6). If ghinhibition period is
left, events tend to occur almost with a constant hazard

Analyzing a reversal chronology for the past 48 million yaa @1) was the
first who demonstrated that paleomagnetic chrons can bedsstiribed by a gamma
distribution withk > 1.

As already discussed in Sectibn 1]4.4, geomagnetic rdvelsanologies sfier of
two major problems: the accurate dating of certain indigidavents and a reliable record
of the shorter polarity intervals. The censoring of briefats (typically shorter than
30 kyr) represents a gross error in the sequence of polati@gyals as highlighted by the
following example. Consider a sequence of three intervat®omal, reverse and normal
(NRN) polarities. If the R interval is short and it is not résad, the sequence is then (in-
correctly) identified as a single long lasting N interval.iSfbensoring fect relates with
the following property of the gamma distribution. Ltgt. . ., t, ben independent observa-
tions from an exponential distribution with raie If such observations are concatenated
into the single interval

n
Th= Zti , (3.38)
i=1

thenT, is gamma distributed with shajge= n and ratel. This property constitutes a link
between the exponential and gamma distributions and a pesobe found ih McFadden

). Therefore, if short chrons in paleomagnetic realarisronologies are missed, the
filtered sequence of polarity intervals results compatiald a gamma distribution with
relatively large values .

Simulating the unfiltered sequence of polarity interval&ging few short chrons to
the reversal chronology for the past 65 Myr and accountingife non-stationarity of the
reversal occurrences, McFadden and Metrill (1984) estithatgamma shape parameter
k significantly biased towards low values. The authors detnatesl that there is a signif-
icant evidence fok = 1 in the unfiltered sequence of chrons, in agreement with ssBoi
occurrence of reversals.

More recentlyLMatzsm:hL(l&b?) studied the influence ofsimg intervals on syn-
thetic time series of events. The author suggested thatuimder of short polarity inter-

(¢)]

~ X X x
a1

W= =0

P

Hazard function

Figure 3.6: Hazard functions for the gamma distributioBf3.with 4 = 1 and four
different values ok as shown in the legend. The constant solid line refeks=tdl where
the gamma reduces to an exponential distribution. Otheregabfk are the same of those
presented in the PDF plots of Figlrel3.5.
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vals (< 30kyr) missed in a purely Poisson process which accountthéwralue of the
gamma shape parameteestimated from paleomagnetic reversal chronologies atsoun
to about 35% of the original events number.

McFadden and Merrill (1993) proposed an alternative exatian for the observed
deviations from the Poisson model relying on the intrinsatility of the core to generate
new reversals for a short period immediately following agpiy transition. Assuming
that paleomagnetic chrons are gamma distributed, the etistimated this period to last
about 45 kyr which roughly matches the time required by tipeléifield to difuse in the
Earth’s core by ohmic processes.

A comprehensive review of gamma models used to describaic@tiaracteristics of
the geomagnetic reversal occurrences can be found in Mefad984).

3.4.1.4 Weibull distribution

The Weibull distribution is an extension of the exponentatribution and has been
named aftemnl@l). This distribution is definedtguiaturally from a power
transformation of the exponential. The positive R\has a Weibull distribution if

Y =(X)®, (3.39)
whered > 0 ands > 0, has the (standard) exponential distribution
fy(y) = €. (3.40)

The Weibull PDF can be obtained applying the change of vessahule to [3.3P) and
reads

fy(X| s, ) = SASXSLe W (3.41)
wheresandA are called the shape and rate parameters respectively. €ieINNCDF is
Fx(x|s ) =1-e®, (3.42)

We denote a Weibull distributed random variableXy Weibull(s, 1) hereafter.
Figure[3.Y shows the Weibull PDFs (left panels) and CDFsh{rjganels) for dif-
ferent values of the shape and rate parameters. The PDFsadeamonotonically for
s < 1 (Figure[3.Y, upper left panel), while is bell-shaped $ox 1. Similarly to the
gamma, the Weibull distribution reduces to an exponentitl vate A for s = 1, namely
Weibull(1, 2) = Exp(2).
The Weibull hazard function, obtained substituting (8.dddl [3.42) into[(3.118), is

hx(X) = sASxSL, (3.43)

Figure[3.8 presents the hazard function (B.43)fer 1 and diterent values of the shape
parametes. This function is monotonically decreasing ®« 1 and equald fors= 1 as
expected for an exponential distribution (Equation (B.3@)n the contraryhy increases
monotonically fors > 1. The cases = 2 is of particular interest because provides a
linear variation in the hazard rate. If the varialles interpreted as the waiting time until
the occurrence of a certain event, a Weibull distributiothve > 1 predicts the event
occurrence to become more likely with time. This situatianmot be described using,
for example, a gamma distribution which tends to a constaréid rate ag — oo (cf.
Figure3.6).
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Figure 3.7: Weibull probability density functions (leftqels) and cumulative distribution
functions (right panels) for various values of the shapapa&ters and the rate parameter
A (see legend insets).
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Figure 3.8: Hazard functions of the Weibull distribution43) with rated = 1 and four
different values of the shape parametas given in the legend. The (constant) solid line
refers tos = 1 where the Weibull distribution reduces to the exponeiiiiqd(1).
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3.4.1.5 Log-normal distribution

The log-normal distribution, as its name suggests, can tvtedaced as a logarithmic
transformation of a normally distributed random variablet X be a positive RV such
that

Y =InX (3.44)

has a normal distribution with mean e R and standard deviatiom > 0, denoted as
Y ~ Normal(u, o) with PDF

fY(y | M, 0-) = 20_2

1 W—MT
exp|— . (3.45)
\2ro [
The RV X is said to be log-normally distributed and we wriXe ~ LogNormalf, o)
hereafter. Applying the change of variables rulefo (B.4&) obtain the log-normal PDF

of X L ( .
nX—u
exp|———=—|, 3.46
V2o X p[ 202 ] ( )

wherex > 0. An alternative parameterization is obtained considgtiire transformation
i = Inm, wherem > 0. The PDF[(3.46) then reads

ox _[In(x/m)]z]

202

fx(X|w, o) =

fx(xIm, o) = (3.47)

V2o x

andm coincides with the geometric mean (and also with the medétt)e distribution.
The CDF ofX ~ LogNormalf, o) is

Fu(X| ) = % 1+ erf(lno_x\;; )] , (3.48)

where erf is the error function.
Mean and variance of a log-normally distributed RV are, eetigely,

Ex[X] = e+2” (3.49)
and
V[N = (& - 1)+ = (& - 1)(Ex[X)?. (3.50)

The above expressions can be readily obtained ffoml(3.44)lirg that & [y] = ¢ and
Vy [y] = 0. Figure[3.9 plots the log-normal probability densities anchulative distri-
butions foru = 0 and ditferent values of the standard deviation

The hazard function, obtained substituting (8.46) anddBidto (3.18), is

exp] -3
\/gax[l — erf('(”%é‘)] '

Figure[3.10 illustrates the hazard functibn (3.51)fot 0 and the three dierento values
shown in Figuré_319. These functions present an initialkiase followed by a monotonic
decrease. If the random variableis interpreted as the waiting time until a specified

hx(x) = (3.51)
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Figure 3.9: Log-normal probability density functions {Ipanel) and cumulative distribu-
tion functions (right panel) with location paramejer= 0 and various values af (see
legend inset).

event happens, the event occurrence is initially encodragele becomes progressively
less likely with time. This naturally favors long waitingres leading to PDFs with
pronounced tails. The larger the lower the asymptotic value bf is; highero values
thus correspond to heavier distribution tails (cf. Figui®)3

We now discuss an interesting property of the log-normatibistion. Let{X;} be a
set ofn (positive) independent and identically distributed RVd define the product

n
Z, = ]_[ X; (3.52)
i=1
which equivalently reads
InZ, = Z InX; . (3.53)
i=1

As n — oo, the central limit theorem states that the R\Zjns normally distributed with
meanu = Ez [In z,] and variancer? = Vz [In z,]. This demonstrates that the limiting
distribution ofZ, is a log-normal.

The property above highlights the fact that the log-normsirithution often arises
in processes involving the multiplicative contribution ihdom &ects (multiplicative
noise).Ml. 1), for example, proposed a medoh-dignamo model which
involves a multiplicative noise mechanism and well repaafucertain characteristics of
the geomagnetic dipole field variability. The authors ssgge that multiplicative noise
effects arise in the random helicity fluctuations originatinghe turbulent core convec-
tion. These random fluctuations are parametrized ivtberm of the mean-field equation
and multiply over time when time-stepping the induction &tipn.

Ryan and Sarson (2007) investigated similar stochasticesses and proposed a re-
versing mean-fieldrw-dynamo coupled with a shell model of turbulence. The awsthor
demonstrated that the simulated polarity intervals, sirhjilto paleomagnetic chrons, are
well-described by a log-normal distribution. This heawayldd distribution naturally ac-
counts for superchrons. These extreme events might tmergtiem from the same internal
random processes triggering shorter polarity intervade @so the discussion in Section

[1.4.5).
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Figure 3.10: Hazard functions for the log-normal distribot(3.51) with location param-
eteru = 0 and variougr values as given in the legend.

3.4.1.6 Log-logistic distribution

A positive random variablX has a log-logistic distribution if its PDF is

a (x/0)"

WXl ) = i e

(3.54)

wherea > 0 andd > 0 are the shape and scale parameters respectively. Hereadte
refer to a log-logistically distributed random variablea®X ~ LogLogistici, ). The
log-logistic CDF reads

Fx(X|a,6) = (3.55)

1+ (x/6)"
Figure[3.11 illustrates the log-logistic PDFs and CDF%fer1 and diferenta values. If
a < 1, the PDF is a monotonic decreasing functiona t¢ 1, the PDF is unimodal with
moded [(a — 1)/(a + 1)]Y°.

The log-logistic hazard function, obtained by meang of§R.is

a (/)1
hy(X) = ————. 3.56
0= 5T+ ] (3.99)
1.5 c T ]
b a=2.5 g = -
(T) a= > = 2 e= =T
é 1 a:2 % ",’ ___
a=4 2
2 © 051 .
5 2 KA — a=05
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Figure 3.11: Log-logistic probability density functiorief¢ panel) and cumulative distri-
bution functions (right panel) fa = 1 and diferent values of the shape parametésee
the legend insets).
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Figure 3.12: Hazard functions of the log-logistic disttiba (3.56) for a scale parameter
6 = 1 and various values of the shape parametas given in the legend.

Figure[3.IP plots log-logistic hazard functions foe 1 and diferent values o& which
correspond to those shown in Figlire 3.11. The hazard fun€8&6) decreases mono-
tonically fora < 1. If x is interpreted as the temporal interval until a specifiecheve
occurs, the likelihood of observing an event decreasestwit. Fora > 1, the hazard
rate increases for relatively short waiting times and desee monotonically afterwards.
A similar behavior also characterizes the log-normal itistion (see Section 3.4.1.5).

3.4.2 The Poisson process

The Poisson process is a stochastic process for modelingriporal occurrence of cer-
tain events in a system. Many natural phenomena (e.g., thea@ive decay of atoms
or the occurrence of earthquakes) and a large variety oy-titel situations (e.g., the
incoming telephone calls to a help line or the customer p@sehl at a store) are well-
described as Poisson proces@ MI%S) was the first wtheled the occurrence of
geomagnetic reversals in terms of a Poisson process. loltbeiing, we formally define
a Poisson process and we derive the distribution of the-avtent times in such a process
and its memoryless property.

The Poisson process can be formally defined as a countinggsatwhich the events
(or arrivals) occur continuously and independently. Ngt) be the number of events
which occur during the time interval (). We defineN(0) = 0 because no events can
occur before the counting starts. The number of arrivalsnyn tame intervalh > 0 is
N(t + h) — N(t) and is called the increment.

The (homogeneous) Poisson process of kate0 is defined as the infinite collection
of random variablegN(t)} (obtained for each > 0) with the following properties:

() the increments in disjoint time intervals arelependent
(i) the increments arstationary

(i) the events occurarely, i.e.
P(N(h) = 0) = 1 — Ah + O(h?),
P(N(h) = 1) = ah + O(h?)

ash — 0.
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The first property states that the arrivals in any time irde(®, t] do not dfect the events
occurrence in any later period. In other word, for any tintenmalh > 0, N(t + h) — N(t)
and N(t) are mutually independent random variables. The secongepo states that
the distribution ofN(t + h) — N(t) is the same for each > 0, i.e. is independent df
Intuitively, this means that the events are equally lik@yotcur at all times. The third
property regards the probability of observing a single éweran infinitely small time
interval and equalah if higher order terms are neglected. Similarly, the prolitgiior
zero arrivals is - Ah. The probability for two or more events is then

1-P(N(t) = 0)— P(N(t) = 1) ~ O(h?) (3.57)

and can therefore be neglected to the first order.

We now calculate the probability distributionNft), namely PN(t)), under the above
assumptions. Consider the interval fowherek arrivals are observed. We discretize
such period inta sub-intervals of equal lengtlés< 1. LetN(t;),i = 0,...,n— 1 be the
number of arrivals in each sub-interval. As discussed altreeprobability of more than
two arrivals during any sub-interval §(h?) and can thus be neglected to the first order.

In any sub-interval, we observe either a success (a singla @uth probability PR(t;)—
N(ti_1)) = 1) or a failure (no event and thereforeN®(;) — N(ti_1)) = 0). Since the incre-
mentsN(t)) —N(tj_,) are independent by definition, this process is equivateastequence
of n Bernoulli trials (e.g., the binary outcomesrindependent coin tosses) with success
probability p = A6 at each trial. The probability of observikgsuccesses in Bernoulli

trials is (see, e.998)

PING) = 0 = ] (359

whereq = 1 — pis the failure probability and

n n!
(k) " K (n-K)! (3-59)

Is the binomial cofficient which describes the number lotombinations in a set af
elements. It is kept fixed, the approximatioh (3158) becomes more prexsse— 0. In
this casen = t/6 — oo but the expected number of successpsemains finite and equals
At.

Under these circumstances, the binomiaﬁg%ﬂi@&pproximated by the
Poisson distribution with parametgr (see, e.g 98)

: (anc
lim P(N(t) = k) ~ e withk=0,1,.... (3.60)
nN—oo !

Note that, ifit < 1, a Taylor expansion @& in the above expression demonstrates that
the above property (iii) is fulfilled by (3.60).
3.4.2.1 Distribution of waiting times and memoryless propgy

In this section, we demonstrate that the inter-event times Poisson process are expo-
nentially distributed. Consider a (homogeneous) Poissoogss{N(t); t > 0} with rate
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A > 0 and lefTy be thek-th arrival time k = 1, 2,...). If Ty > t, itis clear that the number
of arrivals until timet is smaller thark and therefore

P(Ti > t) = P(N() <K). (3.61)

We now consider the time until the first arrivl). According to the above equatioh, is
greater thar only if no events occurred befotend therefore

P >1t) =PN(t) =0)

_ (/H)O et — gt

0] ’

where we used the Poisson distributibn (8.60)Ker 0 events. The cumulative distribu-
tion function ofT; is

Fr)=PM<t)=1-PTi>t)=1-e", (3.62)
Equation[(3.ID) gives the PDF &f
fr,(t) = 1et (3.63)

which demonstrates that the waiting time until the firstvalris exponentially distributed.
Using the assumption of independent increments, it can bersithat all the following
inter-arrival timesT — T,_; are exponentially distributed. Hence, the waiting tinXgs=
T—Tk_1 in a Poisson process are independent and identicallylaliséd random variables
with X, ~ Exp(1).

Among all types of arrival-processes, the Poisson prosas®ionly memoryless one.
A stochastic process is said to imemoryles#

PX>t+x|X>1t)=PX> X (3.64)

for anyt > 0. If the RV X is interpreted as the waiting time until a certain arrivag t
above expression states that, provided there is no arfatdtimet, the probability for
an event occurring at > t equals the probability of the total waiting tinxe Intuitively,
this means that an event occurrence is not influenced by &wopis history.

As it shown in the following, the above property (3.64) hdidisan exponential distri-
bution (i.e. for the waiting timeX ~ Exp(1) in a Poisson process). Using the definition
of conditional probability[(3]1), the RHS df (3]64) can batten as
PX>t+xX>1t)

PX>t+x|X>t)= P> 1)
_PX>t+Xx)
 PX>t)

where the last equality descends from the fact that the ¢Xentt + x} necessarily implies
{X > t}. By means of the CDE(3.62), the above expression becomes

PX>t+x et
PX>D ~ er &>

which finally demonstrates the validity af (3164).
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3.5 The method of maximum likelihood

Consider the RVX with PDF fy(x|#) where@ = (04,...,0y) are itsM free parame-
ters. Suppose to hawe repeated measurementsXiyielding to the observations =
(X1,...,Xn). In the following we describe the method wfaximum likelihood (ML), a
technique for estimating the paramet@igiven the sample of observed values

Assuming the measurements to be independent and ideptiisiiibuted, the proba-
bility of observing the sample is

N
L£@) =] | ftxx16). (3.65)

L(#) measures how likely the observationgire and is therefore called tiigelihood
function. The maximum likelihood method defines the estimafoes(64, . . ., 0y) of the
unknown parameteias those values which maximize the likelihood function:

6 = max £(6) (3.66)

and therefore requiring the data to be most likely. It is ubef define the log-likelihood
function{(0) as

N
0(0) = In £(6) = Z In fx(x; | 6) (3.67)
i=1
such that the ML estimatorsare given by the solutions of the equations
or .
— =0, j=1,....M. 3.68
30, j (3.68)

Note that the ML method assumes the validity of the mdgét | 6) in describing the data.
The choice of a poor or wrong model usually manifests in aihked function which
spreads over a large range of parameter values. The maintageaof the ML method
compared to other parameter estimation techniques is théata binning is required.

As an example, we apply the ML method to estimate the ratenpetex A of the
exponential distribution (Sectidn_3.4.11.2). Using the angntial PDF[(3.28), the log-
likelihood function [3.617) reads

N N
f(/l):Z(In/l—/lxi):Nln/l—/lei. (3.69)
i=1 i=1
Maximizing £(1) gives the ML estimator
A N
A== (3.70)
i1 Xi

which coincides with the inverse of the sample mean as eggect

Figurel3.IB illustrates this parameter estimation probiétina numerical experiment.
A sample of 50 random deviates has been drawn from an expahdistribution with
rated = 1. The ML estimate[{3.70) id = 1.197 and the corresponding exponential
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Figure 3.13. Maximum likelihood estimate of the expondnide parameten in a nu-
merical experiment. The random sample has been drawn fraexr@onential distribution
with 2 = 1 and is constituted bi¥ = 50 observations (tick marks on the horizontal axis
of the left panel) Left panel Exponential probability density evaluated with the trater

A = 1 (red curve) and with the maximum likelihood estimaiglack curve) Right panel
Likelihood function of the sampl&(3.65) with the verticialds denoting the true rate (red)
and the estimate (black).

PDF closely resembles the expected profile (Figurel3.18 plfiel). The estimate
does not exactly match the true value due to the poor sangaesd the inherent random
fluctuations. The right panel of Figure 3113 presents ttedilibod function£(1) obtained
from (3.69). Increasing the number of observations tengesk the likelihood function
around the true value as will be discussed in the next sextion

The ML method, however, does not necessarily guarantee ladefhed estimator.
The properties which characterize an optimal estimatdrgilpresented in Section 3.5.2.

3.5.1 Transformation invariance of the ML estimator

An important property of the ML estimator is its invarianceder variable transformations.
We demonstrate this property in this section. Consider émegc functional transforma-
tion a() of the parametef and its ML estimat® to be known. The ML estimate af

results from the solution of o o006
= = (3.71)

da d0da
The conditionda¢ = 0 in the equation above is satisfieddft = 0 and thus) = 0.
Therefore, the evaluation aefat 6 gives the ML estimate cd

a=a(d) (3.72)
which demonstrates the invariance of the ML estimatdote that the properties of the

estimator’are, however, not necessarily the samé.of

3.5.2 Desirable properties of estimators

The definition of an estimator for a certain quantity, for wheasonable may seem, is
rather arbitrary and certainly not unique. Here we desdfigethree properties which
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qualify the “goodness” of an estimator. For simplicity, foBowing discussion is limited
to a scalar parametérbut it can be readily extended to multiple dimensions.

3.5.2.1 Consistency

An estimatom is said to be consistent if it converges to the true paranvelees as the
sample sizéN increases, that is

lim 6=6. (3.73)
This is the fundamental property an estimator has to fuFdl example, the ML estimator
of the exponential rate parameter (3.70) converges to tleevaluen in the limit of an
infinite number of observations due to the law of large nursber

3.5.2.2 Bias

The biasb of an estimatod is defined as the flierence between its expectation value and
the true valu®, namely

A

b=E,[d]-0. (3.74)

In some cases the bikscan be calculated analytically. As an example, consideexhe
ponential distribution and the ML estimator of its rate paeder [3.7D). The expectation
value ofa is

E] = f (x| 2)dx

N
= 1—, 3.75
N_1 (3.75)
where fx(x|4) is the joint exponential PDF of the data samplassuming that the mea-
surements are independent and identically distributetst8uting the expectation value
above in[(3.7K) yields to the bias of the rate parameter

A

b= .
N-1

(3.76)

The above expression shows that the ML estimatsrunbiased only in the limi — co
(asymptotically unbiased).

Since it is not always possible to calculate analytically thas [(3.74), a numerical
approach is often employed. To obtain the expectation VEJ;L[é], a set ofM > 1
experiments are simulated numerically. Each experimemsists ofN random deviates
drawn from the given probability densitix(x|6), whered is the true distribution pa-
rameter which is kept fixed. The estimate of the distribupanameter varies for each
experiment due to the inherent statistical fluctuations.tNéeefore obtain the set of val-
ues{fs, . .., 0u) which is representative of the distribution of the origiratimatel. The

expectation value H6] is then calculated as the sample mean of the ensemble and the
convergence of the estimator to the true parameter valubeéinally studied.
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3.5.2.3 Hficiency, estimator variance and the Crameér-Rao bound

The third property relates with the statistical uncertamitan estimator. A natural mea-
sure of this uncertainty is the estimator variance

Vo (6] = B, [6°] - (Eo[4])°. (3.77)

An estimatom, is said to be morefBcient thard, if Vo, [61] < Ve, [62].
In the example of the exponential distribution, the vareaatthe ML estimator of the
rate parametet is

Vo [d] = E.[2] - (Eq [A])°

2
:fﬁzfx(xu)dx—Uifx(xm)dx]

/12

=N (3.78)
wherefy(x | 1) is the joint exponential PDF of the observationdn the last equality we
used the fact that the measurements are independent anidadlgrlistributed. Note that
the variance[(3.18) is a function of the true (and unknowte parameten. To obtain
an estimate for the statistical error.gfthe ML invariance (Section 3.5.1) has to be used.
According to [3.7R), the ML estimate of the varianiﬁecan thus be obtained replacing
in (3.78) with its ML estimatorl and therefor&/; = 12/N. Since it can be shown, under
fairly general conditions, that in the large sample limi¢ fikelihood function[(3.65) is
normally distributed (see Sectibn 35.3), the interval(V ;)Y/2 coincides with the 68%
confidence interval of the estimate.

However, it is not always possible to solve analytically ifiegrals in [(3.7]7). More-
over, the analytical solution becomes impractical if thected model is characterized by
a large number of free parameters. Numerical calculationdes to those discussed in
the previous section for the estimator bias are then emgloye

It is reasonable to suppose that no estimator having zerangar can be constructed.
This limitation is a natural consequence of the fact that estymator is a function of
the data sample. The data sample comes indeed from repdeevations of the same
quantity which are subject to random fluctuations inherarthe measurement process
itself. In other words, any parameter estimate will be akayown with a certain “error”
and the variancé (3.77) provides a measure for this degreeaafrtainty. In this context,
a fundamental result is tHeramér-Rao inequality

. (1 + %)2
Vo[0] > T (3.79)
whereZ () is theFisher information
I(0) =Ey l(é In (x| 9))zl . (3.80)
06

The Cramér-Rao inequality (3179) sets a lower bound for gr@mce of any estimater
A proof of (3.79) can be found in Br MQ?). Note that bthestimators # 0) have
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a larger variance than unbiased ones. This is expected $ebtased estimators diverge
from the true parameter val#ealready by construction. If the equality in(3179) holds,
the estimato# has the minimum variance and is said to Hecent.

If the measurements,, .. ., X, are independent, the Fisher informatign (8.80) can be
written as

70) = —E, [02|n fix(X| 9)]

062
82(6)
06°

(3.81)

Intuitively, the fact thatZ (6) is proportional to the second derivative of the log-likelod
£(6) measures how fast the convergence of the estimator toubevéiue is in the param-
eter space. The term “information” used f6(6) is justified by the fact that a peaked
likelihood is more informative because the range of sigaiftqgparameter values is nar-
rower.

In the example of the exponential distribution, the RHS ef@rameér-Rao inequality
for the ML estimator of the rate parameteequals the variancE{3]78) obtained from the
analytical calculation. The estimator of the rate param@&0) is therefore anfgcient
estimator.

A simpler expression for the lower bound of the variance cdraegic unbiased= 0)

ML estimator can be obtained usirig (3.81). By means of thesfoamation invariance
(3.72), the lower bound fov; is given by [3.7P) evaluating the second derivativ&in (B.81

at the ML estimat®: .

3.82
The above expression is particularly useful because it doegvolve any additional ana-
lytical andor numerical calculations. This result will be used in oussequent statistical
analysis to evaluate the statistical error associatedavitrtain parameter estimate. The
estimate[(3.82) can be easily generalized to multidimeraiparameter estimates.

V; = [_82{’(9)

0=0

3.5.3 Asymptotic behavior of the ML estimator

In this section we derive the distribution of the ML estinraito the limit of an infinite
number of observationkl. For simplicity, we consider the case of a single parameter
estimated. We start our derivation expanding the log-likelihood ftioe (3.67) in a Taylor
series about the ML estimafe

~  Of 10%¢

7). A(9—9)2+... (3.83)

=0

_A(H—HA)+

The first term on the RHS of the above expression is the lagiikod maximum, while
the second term is zero by definition. For dfagent and unbiased estimator we can write

&L [525]:_ 1 "

N VT VAT
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3 Probability theory and statistical tools

where we used (3.82). In the limit of an infinite data samgie, third and higher order
terms in [3.8B) can be ignored becau® strongly peaks ai and we are thus lead to
(6 - 6)°

£6) ~ €(6) — AT (3.85)

The likelihood function consequently reads

L(6) = L) exp(— (29\/_ (EZ;) (3.86)

which finally shows that’(#) is asymptotically normal. In the case of multiple paramsgte
the asymptotic limit of the likelihood function is a multwate normal distribution and
the derivation is equivalent to that given above.

3.6 Goodness-of-fit tests

Statistical tests are used to quantify how well the obsedatd agree with the predicted
probabilities from a given model or with other features ea#erizing a certain popula-
tion. The hypothesis under test is called thdl hypothesignd is conventionally denoted
asHy. If Hg specifies a probability distribution which represents thael assumed to
describe the data, the statistical test is called a gooebfefiistest. Goodness-of-fit tests
rely on a statistic explicitly constructed to quantify trgr@ement between the observed
measurements and the predictiondHgf If the distribution undeH, is completely speci-
fied (i.e. all the free model parameters are known) the hygsuhis said to beimple In
most practical situations, however, the unknown parameter estimated from the data
themselves (using, for example, the maximum likelihoodhodtdescribed in Section
[3.8). The null hypothesis is said to bempositen this case.

In the following sections we introduce two statistical sedésigned for null hypothe-
ses concerning continuous distributions, the Kolmogdavrnov and Anderson-Darling
goodness-of-fit tests. These tests compare the observadativa distributions with the
cumulative probabilities expected under the null hypageAn introduction to the ba-
sic principles of hypothesis testing can be founﬁ&@l Chapter 4). Dierent
goodness-of-fit tests are extensively described in, e.8gBstino and Stephens (1986)

and Gibbons and Chakrabotti (2010, Chapter 4).

3.6.1 Kolmogorov-Smirnov test

Consider a sample dfl observationsg, ..., Xy obtained from a series of repeated mea-
surements of a certain quantity. Our goal is to test whettemd measurements are realiza-
tions fromN independent random variables distributed according tsdinge distribution
function (null hypothesi$ly). The Kolmogorov-Smirnov statistic is based on th&edt
ence between the cumulative distribution expected unaentil hypothesig-x(x) and
the observed cumulative probabilities.

The cumulative distribution function of the sample, alsechthe empirical distri-
bution function (EDF), is an estimate of the observed cumulative probaslitThe EDF
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3.6 Goodness-of-fit tests

Sn(X) is defined as

number of sample values x
Sn(X) = - P .

If the sample observations are distinct and arranged inntre@asing ordex;) < Xp) <
.. < Xy, a formal definition ofSy(X) is

(3.87)

0 ifx<xy
SN(X)Z I/N if Xi-1) < X < Xy, i=1...,N (388)
1 if x> X(N)

The EDF [[3.8B) thus represents a “stepwise” version of timeutative distribution func-
tion, where the jumps occur at the ordered sample valuesrenjdimp heights equal the
relative frequency of the observations. If an observaticcuesk times, the height of the
respective jump i&/N.

If the observationxq, ..., Xy are a random sample drawn from the same cumulative
distributionFx(X), the EDFSN(x) approacheBx(x) asN — o (see, e.gL, Gibbons and Chakraborti
2010, Chapter 2). This result suggests that the statistic

Dy = sup|Sn(x) — Fx(X)| (3.89)

is a reasonable measure for the accuracy of the null hypsth#she null hypothesis
is true, the data can be certainly represented as randoablesiwith CDFx(x) and
thereforeDy is small. The quantity[(3.89) is known as the Kolmogorov-@mwv (KS)
statistic.

The most important property of the KS statidig is that its probability distribution
does not explicitly depend on the null hypothesis{ribution-free statistic The distri-
bution of Dy must therefore be a function of the data only. For whialilt seems to be-
lieve, this property descends from the fact that any CDF eamépped into a standard uni-
form distribution (see Sectidn 3.4.1.1). A rigorous profthis result can be found in, e.g.,

rh_(Zdlo Theorem 3.1). Moreovernaeaent approximation to
the distribution functiorF(Dy < d) exists for large sampleb_(Q_b_b_o_s_a_d_CLak_rdbortl
2010, Theorem 3. 3).

The use of the KS statistics in a goodness-of-fit problemg®ds as follows. Consider

a sample oN observationgg, . . ., Xy and the null hypothesis

Ho: Fx(x|6) = Fo(x16),

whereFq(X) is continuous CDF with known (specified or alternativeltiraated) param-
etersf. Firstly, the KS statisti®y, is calculated from the sample and unégrobtaining

a certain valua*. Since the PDR (Dy) is known, we can calculate the probability that
the KS statistic is larger than the observed value

aKs = P(DN > d*) = f f(DN)dDN . (390)
d*
The right tail probability of the test statistic given abasegenerally referred to as the

p-value. The null hypothesi$, is rejected if the p-value is smaller than a small, pre-
scribed threshold value known as thesignificance level Contrary to the p-value, the
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3 Probability theory and statistical tools

significance level does not depend on the underlying hypalaad is defined before con-
ducting the experiment and acquiring the data. Typicaleslior the significance level
a are 5% or 1%. A p-value smaller than the suggested signifecievel indicates that
the observed result would be highly unlikely under the nyjpdthesis. The smaller the
p-value is, the larger the significance of the rejection.

3.6.2 Anderson-Darling test

In this section we briefly describe the Anderson-Darling jAJoodness-of-fit test. The
AD statisticAy is a quadratic measure of thefférence between the cumulative distri-
bution Fx(x) and the empirical distribution functioBy(x). The AD statistic is defined
by

A\ = Nf W(X) [Sn(X) = Fx(X)]? dFx(X), (3.92)
wherew(X) is the weighting function

1
T Fx( L - Fx(®)]

Since the weighting factaw(x) emphasizes the observations in the tail of the distriloytio
this statistic is particularly useful for testing the caitibof a given model in describing
extreme data values.

The use of the AD statistic in a goodness-of-fit problem fedhe same reasoning of
the KS statistic. This has already been described in thequsgection and it is therefore
not repeated here. In the following, we refer to the AD p-eabbtained for a given data
sample and under a null hypothebigto asaap.

3.7 The Bayesian approach

In the following we discuss the Bayesian approach to thelprob of parameter estima-
tion and model selection. In Section 317.1 we derive a géegpession for the posterior
distribution of the free parameters of a given model. Thestjae of the prior choice is
addressed in Sectign 3..2. Sectibns 3.7.3[and]3.7.4 ficatlgern with the problem of
model selection among a set of alternatives. Introductexibboks on Bayesian proba-
bility theory with particular attention to data analysi®plems are, e.djm%) and
@Q%Lb 5). An introduction to Bayesian reasoning as@dpplications can also be
found in D’Agostini (2008).

3.7.1 Parameter estimation

In this section we describe the basics of Bayesian inferefbe discussion is based on
the fundamental concepts introduced in Sedfioh 3.1 and geBtheorem[(314).

Consider a modeM believed to describe a certain physical phenomenon and let
0 = (04,...,0k) be theK-dimensional vector of the model free parameters. To val-
idate the modeM, an experiment is conducted and a collectionNbineasurements
X = (Xg,...,Xy) IS recorded. Our aim is to characterize the agreemem afith the
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data to decide whether accepting or rejecting the moddf.itée discussed in the pre-
vious sections, a frequentist approach to the problem wtagd the reliability of the
hypothesized model based on the estimdtekits parameters which best fit the data. On
the contrary, Bayesian inference permits to determine thbability distribution of the
model paramete@themselves after observing the data. This gives informatimut the
accuracy of the model in its own domain of definition and net pased on the estimated
parameter values.

We now consider the modéll to be a certain probability densitix(x|68). Bayes’
theorem[(34) allows to write the posterior probability le¢ tmodel parameters®(x, M)
s PX|6, M) (0| M)

Pk M)

As already discussed in Section 3.111.2, the likelihoothefdata sample R(6, M) repre-
sents the probability of observing the dathaving assumet to be the true model with
parameterg. The prior probabilityr(#| M) describes the degree of belief in the model pa-
rameter values before conducting the experiment (andftirerbefore recording any data
X). By means of the continuous version of the law of total plolitg (8.5), the evidence

P|M)in 3.93)is

P@|x, M) =

(3.93)

PX|M) = fP(x|0, M) (8] M) d@. (3.94)
Substituting[(3.94) intd (3.93) yields

POIx. M) = —CIOM)Z(OIM) (3.95)
[P0, M)x(6| M) do
The expression above is the joint distribution density efrtiodel parametefsand is the
most general formula of inductive Bayesian inference. dvtes the complete descrip-
tion of our state of knowledge on the model parameters. hterésting to note thavl
is included as part of all the conditional statement$ InFB.The modeM indeed repre-
sents the knowledge we have on the problem beforehand anaralpgbility relation has
therefore to be valid for the selected model. According todimpn [3.95), the posterior
distribution is a PDF in the parameter spa;eavhile the likelihood PX|6, M) is not a
probability density. As will be discussed in Sectlon 3.7t evidence B( M) is a cru-
cial quantity when comparingfierent models while has the role of a trivial normalization
factor in the context of parameter inference.

The posterior distributio (3.95) is usually describechggiappresentative quantities
such as its mean value or its mode. In particular, the mod&.8BJ is referred to as
the maximum a posteriofMAP). The spread of the posterior distribution is gengrall
described by its standard deviation. Since the posterinsitle (3.95) gives the most
complete statistical answer to the problem of parametereémice, it is generally a good
practice to explicitly show it. In the case of complex postedensities (e.g. multi-modal
andor highly skewed) the descriptive quantities listed abovghtindeed be biased.

Assuming the measurement$o be independent and identically distributed, the like-
lihood Pk |6, M) is

P|0.M) = [ | fu(x10). (3.96)
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For consistency in the notation (see Section 3.5), theilikeld above will be denoted as
£L(6) and Equation(3.95) then reads

L) (0| M)
[L@®)n(6IM)de

P@|x, M) = (3.97)

3.7.2 Choice of priors

In order to calculate the posterior density (3.95) (or (B.®#7he measurements are in-
dependent and identically distributed), we have to faceptioblem of the choice of the
prior distributionz(@| M). As already mentioned in Sectién 3.1]1.2, there is no géner
and objective method for calculating such probabilities.itd name manifestly suggests,
the prior indeed depends on our knowledge of the model paeasieeforeobserving the
data. Priors are claimed to be the major weakness of Bayedmence and are often
subject to criticism. However, there are situations in Wwhagorior knowledge féectively
exists and one can take advantage of it. For example, if meas&nts of a certain quan-
tity of interest have been previously performed, the pastelensity obtained for the old
experiment can play the role of the prior distribution in tfesv inference problem. More-
over, the prior choice naturally forces the basic assumptio be clearly stated. This is
not always the case in other frameworks of analysis wheraitigkerlying assumptions
may be easily hidden.

In parameter inference it is often the case that upper andrlbmits for the quantity
of interest (rather than its exact distribution) are knovpmiari. In such case, a reasonable
choice of the prior is to considet(@#| M) as a uniform distribution fof,in < 0 < Onax
The fact that any parameter value within a given range islgqoi@bable a priori reflects
a “flat” knowledge of the parameters beforehand.

We now discuss the importance of a reasonable prior chot¢hendtect of diferent
choices on the posterior distribution with the followingaexple. Consider the mod#f
to be the exponential PDE(3]28). Assume a uniform priortforate parametet within
[Amax Amin]- The prior distribution then reads

1

Al ExXp)= —— = —
7T( | p) ﬂmax_/lmin Ad

(3.98)

for Amin < 1 < Amax @nd is O otherwise. Bayes’ theorem as given[Ry (3.97) yieldhe
posterior distribution of the rate parameter

L) (1] Exp)
" £(A)n(A| Exp)da

/lml
N awn[_ 1 5N
= — M expl 135 x| . (3.99)
[ AN exp[—/l Zi'ilxi] da

Amin

P@|x, Exp) =

For a uniform prior, the posterior density thus always cmias with the normalized like-
lihood of the data. FON = 0 (no data recorded yet) the posterior dengity (3.99) simply
reduces to the prior PDF ih_(3]98). Before performing anyeexpent, our knowledge
about the rate parameter indeed coincides with the priorimétion as expected.
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We now perform a numerical experiment where the data (3.99) are drawn from
an exponential distribution with rate = 1 and we also assumg,, = 0 andAyax = 5.
Figure[3.14 illustrates the evolution of the posterior derB.99) increasing the number
of observationdN. For the lowest number of observatiom$ £ 5), the posterior density
has the largest variance and is positively skewed. Inangdsiprogressively decreases
the variance of the posterior distribution and its MAP apyites the true value= 1. For
N = 50 the posterior density is practically indistinguishafoten a normal distribution
as expected in the asymptotic limit of the likelihood fuoatiSectiori 3.5]13). If a model
is well supported by the data, as it is the case in this exanipteposterior distribution
peaks around the true value of the model parameter(s). Taegnly mildly influence
the posterior distribution in such cases and thereforeikedifood function dominates.
If the prior does not include the true model parameters &lhewever, the posterior
distribution results totally biased by the wrong prior asgtion.

02 .............................................
2 2N, N=0
S ’ . =+ N=5
S d "« -- N=10
o ! : — N=50
S s
5 01 N
S .

i) N
3 ~
o '\_
0 +—F == -
0 3 4 5

Figure 3.14: Posterior density (3]199) for d&fdrent numbeN of random deviates drawn
from an exponential distribution with rate= 1. The prior is assumed to be uniform in
[0,5]. The dotted line refers thl = 0 where the posterior distribution coincides with the
prior (the other distributions have been rescaled for plgtpurposes).

3.7.3 Model selection

In the previous sections we described the Bayesian apptodbh problem of estimating
the parameters of a prescribed model. If alternative moalelsavailable, the question
of which model best describes certain observations ndyuagtes. In the following we
discuss the Bayesian answer to this problem.

Given a set of alternative models, one can be easily temptgdvilege the model
which best fits the experimental measurements. This reagatiows its fallacy con-
sidering the fact that more complex models, i.e. models witiigher number of free
parameters, always better agree with the observations pididem of model selection
therefore reduces in quantifying the gain of informatiohiaged for a more complex
model. As will become clear in the following, Bayes’ theorean be used to quantify
such gain.
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Consider a set o) alternative modeI$Mi}El defined by a number of adjustable
parameters and the experimental observatioie problem of model selection consists
in estimating the probability of each model given the measantsx:

PMi|x), i=1...,0. (3.100)

The sample space constituted by the selected models mustirtdhe true model by
construction and therefore the probabilities above satisf

Q
Z P(M;|x) = 1. (3.101)

Using Bayes’ theoreni(3.4), the probability of th#h model can be written as
P | M;) P(M;)
PK)
_ PIM) P(V)
%2 PIM) PV
where we used the law of total probabilify (8.5) in the lastiady. In the expression
above, the probability ®{;) must be assigned before the analysis of the gatad thus
represents the prior belief in mod®;, while the likelihood PX| M;) is the marginal
probability of the datd(3.94). Equatidn (3.102) then ecifhli reads
[PX] 6, M) (6 | M;) d; P(M)

%2, [ P16, M) x(6, | M) do; P(M))
where#; represents the vector of parameters of maddel

To determine the relative merit of the two modé&is and M; among a set of alterna-
tives, it is useful to consider the ratio of the model posteprobabilities

. PMix)

Qi = P(Mj [ x)
which is the so-callegosterior odds ratio. Using [3.102) and(3.103), the posterior odds
ratio reads

P(M;|x) =

(3.102)

P(M;|x) =

(3.103)

(3.104)

~_ P&xIM) P(M)
)= D) PO) (3.105)
[ P&I6;, M) x(6:1 M) d6; P(W) (3.106)

fP(XlOJ‘, Mj)ﬂ'(oj' | MJ) d0, P(MJ) .

The first factor on the RHS of (3.106) is the ratio of the ingggd likelihoods of the
two models and is called thgayes’ factor for M; againstM; (usually denoted bys;;).
The second factor on the RHS €f(3.106) is known as the prids odtio. If there is no a
priori preference for any of the models, the prior odds ra#io be set to 1. The posterior
0ddsQ;; coincides then with the Bayes’ factor. Duelio (3]101), tiformally equivalent
to assign a prior probability/D to each of the models. B;; > 1 for anyj # i, a strong
evidence in favor oMM; exists. On the contrar; is preferred ifB;; < 1. If Bj; = 1, an
informed judgement based on the current data is not posm ) proposed
some rules of thumb for interpretirg);. Though only the posterior probability F(| x)
exactly quantifies how likely is a certain model in the lightlee data, J&reys’ rules are
generally adopted standards of evidence in scientific tigyatson.
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3.7.4 A built-in Occam’s razor

In the previous section we derived an expression for the episgn of hypotheses in a
Bayesian framework. The simplest case in which two altereahodels are available,
namelyM; and M, characterized b¥K; andK, free parameters respectively, reveals in-
teresting insights. Assuming the two models to be equadiBlyia priori, the prior model
probabilities are R{l;) = P(M,) = 1/2 and the posterior odds ratio (3.106) reads

~ JPKI 61, My) 7(6: | My) db
[ P62, M2) n(62] M2) d6,

12 (3.107)

Furthermore, assume the priors of the models parametes$M,) andn(6,| M,) to be
uniform within the intervalgét .. 6% I, fork = 1,...,Ky, and[6} . .65 ], fork =

1,min’ ax]’ 2,min’

1,..., Ky, respectively. Equation (3.107) then yields

axl

o E:zl A9'§ f PX |61, M) do, 3108
12 = , .
I}<(:11 AQ'; f PX |62, My) d6,

whereAH‘{ = Hli,max - Hl:t,min andAH'; = eg,max_ Hg,min'

Let M, have a larger number of free parametefs & K;) and letAgk = Adk for
k =1,...,K;. Inthis case the prior probabilities ratio in (3.108) isglar than one and
thus acts in favoring/; with respect taVl,. Model M,, having a larger number of degrees
of freedom, results therefore systematically penalizetth wespect to the simpler one.
This follows the common scientific practice where we usuidbort to the Occam’s razor
in discarding unnecessarily complicated models. For exanigs well understood that
a polynomial of orden — 1, despite fering a perfect fit oh experimental points, it is
generally not regarded as the best description of the daia.réasoning naturally comes
out in Bayesian model selection problems. For this reaseffitst factor in [(3.108) is
often called thé&Occam'’s factor.

The Occam'’s factor is, however, weighted by the ratio ofgraéed likelihoods which
describes the relative quality of the models fit to the dataer&fore, the posterior odds
ratio (3.108) represents a tradff-between the ability of each model in describing the
data and the model complexity itself. As a final remark, coesthe case where the two
models fit the data roughly equally well, thus having a rafimtegrated likelihoods of
approximately one. The posterior odds ratio results thenidated by the priors. More-
over, if the two models have the same number of free param@éer= Ky), our prior
knowledge on these parameters may completely bias thd.rd$id model having a nar-
rower range of parameters values accessible a priori setuls favored over the less
discriminant one.
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4 Results from geomagnetic polarity
time scales

In this chapter we analyze the statistical properties ofhtggmetic polarity epochs us-
ing the methods described in Chagiér 3. As previously dssisn Section 1.4.4, geo-
magnetic polarity time scales provide the approximate simewhich the geomagnetic
field reversed its polarity. These records are constantiged and updated. The rever-
sal chronologies selected for this study are described atic®d4.1 and their statistical

analysis is presented in Sectionl4.2. Since resolutioni@nebbecome important during
the Mesozoic era and are overwhelming before, we restristedanalysis to reversals

younger than 170 million years.

4.1 Selection of geomagnetic polarity time scales

Geomagnetic polarity time scales (GPTSs) are construetitijoceanic magnetic anoma-
lies and difer for the various crustal age interpolations used (Sefffidd). Due to the
poor data resolution, the polarity changes are regardedstantaneous. Table 4.1 lists
the GPTSs selected for the subsequent statistical an&bggther with some preliminary
statistical information.

Younger and most reliable chronologies cover the periodetate Cretaceous through
the Neogene (C-sequence), thus roughly spanning the ladyBafter the Cretaceous
normal superchron (CNS). Cande and Kent (1995) claimedddumre a record with uni-
form resolution throughout and containing almost all pdyantervals longer than 30 kyr.
Hereafter, we refer to this time scale to as CK95 and its piglsequence is shown in the
upper panel of Figurie4.1.

The reversal frequency seems to increase after the CNS aaxtiadvariations in the
underlying reversal rate (see also Figuré 1.9) have beeadrdiscussed in Sectibn 1)4.5.
Distributions with time-dependent parameters have beepgsed in order to capture the
long-term reversal rate variations and ultimately the stip®n (McFadden and Merrill
@,LC.QDSI&HIE_ZQDO). Such models assume that extefeatss most often of man-
tle origin, influence the core field dynamics. However, it @ antirely clear if external
mechanisms are necessarily required to capture the olseaviations. Several studies
demonstrated that long-term stationary processes areablsoto reproduce the statis-

tics of geomagnetic reversal occurrences (see Hulot anei@003, Ryan and Sarson
2007, 7. Shcherbakov and Fabian/2012, and thessiisn in Section 1.4.5).

Following these latter studies, our statistical analyssuanes a stationary reversal rate
throughout the GPTSs. A suite of distribution functionsfirted by time independent
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Name Reference Chron Age rangeN At
[Ma] [Myr]
o CK95 Cande and Kent (1995) Cin-C34n -Q18 184 0637
% CK95cc Cande and Kent (1995) Cin-C34n -018 292 0402
> CK95-CNS Cande and Kent (1995) C1n-C33r -83 183 0449
$ CK95cc-CNS Cande and Kent (1995) Cln-C33r —-83 291 0284
© 012C 'Ogg (2012) Cln-C34n 0126 190 0659
O12C-CNS ~0gg (2012) Cin-C34n -Ql26 189 ™78
8‘- TS10 Tominaga and Sager (2010) MOr-M29r 32858 100 0337
¢ MHTC12 Malinverno et al. (2012) MOr-M30n 121156 101 (345
= 012M 0gg (2012) MOr—-M45n 126171 258 0173
012 'Oqgg (2012) Cin-M45n 90171 448 @379
012-CNS ~0gg (2012) Cln—-M45n -0171 447 (302

Table 4.1: Geomagnetic polarity time scales used in thidysamd relative references. Covered chrons, age range,enwhbhronsN and

mean chron durationt are listed in column 3 to 6 respectively. See the main textudher details.
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parameters and described in Secfion 3.4.1, will be fittetiéabserved chron durations.
Using a Bayesian approach, we therefore seek for the modehwkst describes the data.

""""""""" LR LA LA LALLLLALL) LAALLALAL] LLLLLLLL RALALLALL LALLLLAAL] LA RLALLLL LAY
N |- CK5 " o i
R (. (. L .
N ‘ CK95cc a - i
R (. (. L .
N |- 012C i
R u -
......... [IXTTRRETTA IXRRRRRATI NYRRARITA AXRRRARAT] AAYRRAAT] FRTRRATAT] AEYRRAANT] ARRATAATNY AARARAACTE ARRAARAACAARIANNTCTE ANRATAAITI
0O 10 20 30 40 50 60 70 80 90 100 110 120 130
Age [Ma]
UL B [rr T [rr T Trr T Trr T T
N ,
R | 4
N L MHTC12

Figure 4.1: Polarity sequences for the Cenozoic era (toplpand the Mesozoic era (bot-
tom panel). Normal and reverse polarities are indicatedhbydtter N and R respectively.
Each sequence is labeled with the name assigned to the tigspg@omagnetic polarity
time scale (see Table 4.1). Cenozoic sequences start froon €in and Mesozoic ones
from chron MOr.

Cande and Kent (1995) listed 108 brief polarity intervaldahihare less constrained
by the magnetic anomaly record. These events, typicallytshthan 30 kyr, are known
ascryptochrons Hereafter, we refer to the GPTS including cryptochronsst&€&95cc
and its polarity sequence is shown in the upper panel of Eidur (black sequence). This
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4 Results from geomagnetic polarity time scales

version of the GPTS permits to study the impact of additidonedf events on the chron
statistics. However, it is likely that several cryptochsaaflect strong paleointensity field
variations rather than true polarity changes.

Cenozoic GPTSs where we atrtificially discarded the CNS atindjuished from the
original versions by means of thefin “-CNS” in the respective names. We will test the
compatibility of the CNS with a selected statistical modelkimg use of these modified
GPTSs. The duration of the CNS is about 35 Myr, more than 5@gifanger than the
average chron duration and about 6 times longer than thedéaogest chron. As already
discussed in Sectidn 1.4.5, the question whether the CNSastéier or an extreme event
compatible with the large variety of time scales producedHhs geodynamo is still a
matter of debate. Discarding the superchron from the asetaif events would therefore
serve for testing its compatibility with a given statistiozodel.

Since times of reversal occurrences during the Middle dizdlsrough the Early Cre-
taceous (M-sequence, 121158 Ma) are fiected by larger uncertainties, we used the two
independent GPTSs of Tominaga and Sager (2010) (TS10) atidvigtao et al. (2012)
(MHTC12) for this older period. The latter chronology ind&s one event more than the
former, while their mean chron durations are comparabla wialue of about.@4 Myr
(Table[4.1). Clearly dferent reversal timings, mainly caused by thedent crustal age
interpolations used, are evident from the polarity seqgesit Figuré 4]1 (bottom panel).

Finally, the last GPTS selected for our analysis is the abiagy of @IZ) which
comprises the C-sequence and an extended version of thegb&see. We refer to this re-
versal chronology to as O12 hereafter. 012 includes 44&shspanning the period from
171 Ma to the present. The extension of the M-sequence ceagpchrons M27r—M45n
and cover the oldest 14 Myr. Contrary to younger periodspttiest magnetic anomalies
have been recorded using magnetometers towed near the®caast. This inevitably
introduces short-wavelength features in the record whigfhtmot reflect true polarity
changes of the field. Reversal rates as high as 10Vgne observed during the oldest
14 Myr of O12 (Figure$ 119 arild 4.1) and are likely an artifdcthe different recording
method. Further details regarding this GPTS can be founéai@{1.4.4. Despite these
problems, we will use the extended chronology O12 in ordstudy the potential impact
of briefer events on the statistic. Restricted versions t2 @r the Cenozoic and Meso-
zoic periods, named O12C and O12M respectively, have baidared for comparison
with the other GPTSs.

Figure[4.2 shows the distribution of chron durations forneatthe selected GPTSs
obtained using an adaptive bin size which guarantees a sergaiobability density with-
out empty bins. The maximum chron duration has been limibeti3 Myr for plotting
purposes only. We estimated this probability density devd. Consider the set of chron
durations{At;}", to be sorted in ascending order and a numidek N of such events.
The variable bins have been centered\gtand have boundariedf{, + At,_y)/2 and
(At, + Ath.m)/2. The estimated probability density in theh bin is therefore

Cn 2

I 4.1
N Atn+M - Atn—M ( )

n

wherec, is the number of events in the bin. The varianceof the probability density
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4.1 Selection of geomagnetic polarity time scales
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Figure 4.2: Distributions of chron durations for the CerioZtop panel) and the Mesozoic

(bottom panel) as recorded by théfdrent geomagnetic polarity time scales selected (see

legend insets and refer to Talile]l4.1). The horizontal axssheen limited to B Myr

for plotting purposes. Color shaded areas mark the 95% @ndealintervals around the
estimated probability density (see the main text for motaits).

(4.7) can be estimated assuming that the cogyitsllow a multinomial distribution:

2
N(Atn+M2—Atn_M)] C”(l C,\T) 4.2)

O'Z[Dn] =
Color shaded areas in Figure 4.2 correspond to theénZervals around the estimated
probability densities.
CK95 and O12C have similar distributions but the lower enthefformer GPTS is
significantly diferent if cryptochrons are included (Figlrel4.2, top pariéigse brief and
less reliable events indeed constitute about 37% of thé notaber of chrons recorded
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4 Results from geomagnetic polarity time scales

for the past 118 Myr. Shorter polarity intervals last noslésan 10 kyr. The CNS (not
shown in Figuré 4]2) has a duration of about 35 Myr, while theosid longest chron has
the considerably smaller duration aBb9MVyr.

The distributions of chron durations for the M-sequenceemorted by TS10 and
MHTC12 do not seem to ffer significantly despite the dating of certain events istlyea
diverse (Figuré 4]1, bottom panel). Polarity intervalslodat 200 kyr are the most likely
and the two time scales closely agree on this estimate. Onadheary, O12M favors
durations shorter than 100 kyr. As already discussed almowst of these relatively brief
events are almost certainly an artifact of th&eatient recording method employed in the
extension of the oldest part of this GPTS. The longest cheoarded during the Mesozoic
occurs slightly before the CNS and its duration is somewtttgregnt between the GPTSs
analyzed: TS10 and MHTC12 report values od@and 197 Myr respectively, while
dating from O12M gives 22 Myr.

4.2 Distribution of paleomagnetic polarity intervals

We fitted the paleomagnetic polarity intervals from the G®T8scribed in the previ-
ous section to a suite of distribution functions (expore@ngamma, Weibull, log-normal
and log-logistic described in Sectién 3}4.1). Distribatijparameters are estimated us-
ing the maximum likelihood method (Sectibn13.5) and the gmsd-of-fit is evaluated
by means of the Kolmogorov-Smirnov (KS) and Anderson-DarljAD) statistics (Sec-
tion[3.6). We quantified the relative likelihood of each midoe means of the Bayesian
posterior odds[{3.106). Since no preference to any paatialistribution is given a pri-
ori, we assumed equal prior model probabilities. Moreowerconsidered uniform prior
probabilities for the distribution parameters.

Figure[4.83 summarizes the results obtained from the fregiesnd Bayesian ap-
proaches. The upper row depicts the AD p-values of the bigian fits of chron durations
from each of the selected GPTSs. Only distribution fits with &d AD p-values higher
than 5% are plotted. Log-normal and log-logistic distribng describe the polarity inter-
val durations from most of the selected records. The onlggtxans occur for the GPTSs
including cryptochrons (CK95cc and CK95cc-CNS) whereladlselected models can be
rejected at the 95% confidence level. Tdblé 4.2 lists thenestid distribution parameters
and their standard errofs (3182) for the two fitting modelgether with the respective KS
and AD p-values and posterior model probabilities.

Posterior probabilities of the distribution functions eaVfurther interesting insights
(Figure[4.3B, bottom row). The relative sizes of the symbolthe bottom row of Figure
[4.3 correspond to the respective posterior odds ratiosvas ¢y Equationd (3.104) and
(3.106). Consider, in the first place, the Cenozoic sequehahrons represented by
CK95 and O12C. The evidence in favor of the log-logisticriisition is positive for both
reversal chronologies (with a posterior model probabiity 6% and 72% respectively),
while the log-normal is the only second contender.

If the CNS is artificially discarded from each of the two red®i(CK95-CNS and
012C-CNS), the result reverses: the evidences in favoreoliadpnormal distribution are
strong and its posterior probabilities reach 90% in botlesa$he reason of such behavior
resides in the tails of the two distributions. Log-normadi dog-logistic are both heavy-
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4.2 Distribution of paleomagnetic polarity intervals

tailed distribution functions, i.e. they decay at infinitpwer than an exponential, but
they belong to dterent classes. Lett be the positive random variable describing chron
durations. AsAt — oo, the log-logistic PDF(3.54) shows the pure power-law decay

f(At]|a, 6) ~ At (4.3)

while the log-normal decreases more quickly (Shcher ian 2012).

Figurel4.4 shows the best-fitting log-normal and log-lagiBDFs of chron durations
from O12C. The data density is obtained using variable kiessias described in the
previous section. The two models can be considered of cabfgaguality since they
show a similar agreement with the data. The posterior odits(BI106) of the log-logistic
to the log-normal distribution is of.@ which indeed gives only a weak evidence in favor
of the former model. The CNS (included in the last bin of F&jdr4) is closer to the log-
logistic rather than to the log-normal tail as expected sTimplies that the maximum of
the likelihood function[(3.65) is larger for the log-lodgistnodel. The maximum of the log-
likelihood (3.67) is indeed 30.6 for the log-logistic, while it reaches the somewhat milder
value of—32.6 for the log-normal. Discarding the CNS from O12C reverbesésult: the
log-logistic and log-normal distributions have log-likedod maxima o+19.7 and-18.8
respectively. Despite being just a single event, the gairkelihood introduced by the
CNS in favor of the log-logistic distribution is thus fégient to render this model the
preferred alternative. However, the tail of the log-lowgislistribution, decaying a&t=2°2
according td 4.3, is nevertheless underestimating thegtibty of the CNS occurrence
by a significant margin (Figufe2.4). Jonkers (2003), fitéingure power-lawat to the
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Figure 4.3: Anderson-Darling (AD) p-values (top row) andyBsian posterior probabili-
ties (3.10B) (bottom row) of the tested distribution funos for chron durations from dif-
ferent geomagnetic polarity time scales (refer to Tabl&dr. the time scales acronyms).
The tested distribution functions are marked withietient colored symbols. Symbol sizes
are scaled with the associated AD p-value (top row) or pmstprobability (bottom row)
as shown in the legend.
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4 Results from geomagnetic polarity time scales

Name Log-normal Log-logistic
M [In(Myr)] a r aKs a@ap P 0 [Myr] a r aKs a@ap P

% CK95 -1.390+0.084 1139+0.059 Q9 803 713 239 0239+0.019 1583+0.097 -43 965 933 761
2 CKO95-CNS -1417+0.080 1081+0.057 17 978 927 903 0237+0.019 1625+0100 -25 931 937 97
$ 012C -1417+0.086 1186+0.061 Q08 223 598 275 0231+0.019 1520+0.092 -4.7 748 871 725
O O012C-CNS -1444+0.082 1132+0.058 Q4 365 830 878 0228+0.019 1558+0.094 -79 818 891 122
g' TS10 -1.358+ 0.067 Q674+0.048 -13 213 245 418 0244+0.016 2639+0219 -74 554 337 582
®  MHTC12 -1.273+0.059 0595+0.042 06 170 179 345 0267+0.016 2992+0.247 -68 306 266 655
= 012M -2.327+0.064 1019+0.045 15 273 312 992 0094+0.006 1709+0.088 Q9 336 315 08
012 -1941+0.056 1182+0.040 -21 440 221 840 0137+0.008 1499+0.059 -3.7 288 294 160
012-CNS -1.953+0.055 1154+0.039 25 522 281 997 0136+0.007 1516+0.059 -19 322 288 03

Table 4.2: Statistical properties of the log-normal andlmgjstic distributions describing chrons from theéfdrent geomagnetic polarity
time scales (first column). Maximum likelihood estimatesdddtribution parameters are given with their standardrermo the second
and third (eighth and ninth) columns for the log-normal {logistic) distribution. Remaining columns indicatethe Pearson correlation
codficient between the distribution parameterss andaap the Kolmogorov-Smirnov and Anderson-Darling p-valueshef distribution fit,

P the posterior probability of the distribution functionoi@elation coéficients, p-values and posterior probabilities are giverec@ntages.
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4.2 Distribution of paleomagnetic polarity intervals
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Figure 4.4: Probability density of geomagnetic chron doret for the Cenozoic time
scale O12C (cf. Table4.1). The gray shaded region marks3®e @®nfidence interval
for the binned probability density. Red and green curvesvghe best-fitting log-normal
and log-logistic distributions respectively. Color shd@eeas denote the 95% confidence
intervals on the respective distribution parameters egés

binned chron durations from CK95, estimated a larger expooiks = 1.09 which better
describes the data tail. However, a power-law distributiehaves questionably at lower
chron durations where both the log-normal and the log-taxisosely agree with the data.

Consider now the M-sequence of chrons as recorded by TS1PBEAC12. Though
the reversals timings of these GPTSs significantijedi(Figure_ 4.1, bottom panel), the
estimated parameters of the log-normal and log-logisstriutions agree in the limits
of statistical errors (Table_4.2). The posterior odds gatbthe log-logistic to the log-
normal distribution are .2 and 19 for TS10 and MHTC12 respectively and therefore an
informed judgement on on the best model is impossible.

The estimated log-normal and log-logistic distributiomgraeters for the longer re-
versal chronology O12M significantly fier from the respective estimates obtained for
the Mesozoic time scales analyzed above. As already pomittefore, the reason of
such diferences can be attributed to the large fraction of short fiit constrained)
chrons recorded in the oldest 14 Myr of O12M. Figurd 4.5 pressa comparison of the
distributions of chron durations from MHTC12 and O12M. B&#ing log-normal and
log-logistic PDFs are shown for each data set by the red agehgcurves respectively.
Both distribution functions seem to fit the data relative acle GPTS equally well. The
two models, however, seem to decay too slowly at low chroatthurs for the MHTC12
data. As already discussed above, no decisive evidencedndéneither model exists for
MHTC12. On the contrary, the posterior probability for tlkgdnormal distribution is as
high as 99% for O12M. Despite the statistical results areebebnstrained by the larger
data sample of O12M, a strong bias might be introduced by xhess of short chrons
recorded as an artifact of the measurement method employdtid oldest part of this
GPTS. It is interesting to note that another outlier mightdantified in the M-sequence.
This is a chron lasting about 2 Myr which neither the log-nakmor the log-logistic can
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Figure 4.5: Probability densities of geomagnetic chroratians for the Mesozoic time
scales MHTC12 and O12M (see legend inset). The gray shadeshsemark the 95%
confidence intervals for the respective binned probabdéwpsities. The best-fitting log-
normal and log-logistic distributions are shown in red ameeg respectively (dashed
curves for MHTC12 and solid curves for O12M).

capture (Figuré4]5).

In conclusion, the statistic of chron durations during thesiizoic is sensible to the
actual GPTS considered. If the shorter but better congidaieversal chronologies TS10
and MHTC12 are chosen, the log-normal and the log-logistictie both considered valid
models with similar posterior probabilities. This resudt@es with our previous analysis
of the Cenozoic GPTSs.

The probability density of chron durations for the polatitpe scale O12 (spanning
a period up to 171 Ma for a total of 448 chrons) is shown in Feddu® together with
the best-fitting log-normal and log-logistic distributibtmctions. The results previously
obtained for shorter GPTSs are confirmed by this longer aiogy. Both log-normal
and log-logistic distributions present a remarkable agexg with the data at short and
intermediate chron durations. However both models largatjerestimate the likelihood
of the CNS as expected. A positive evidence in favor of therlognmal is suggested by
the Bayesian analysis (Figure ¥.3). The posterior odds &fL06) of the log-normal to
the log-logistic distribution is indeed 26 (cf. Tabld 4.2). However, it remains somewhat
difficult to judge which model better describes the data (FigLie As already discussed
above, the larger posterior probability obtained for thg-t@rmal distribution may be
an artifact of the short and poorly constrained events gheaduin the oldest part of this
chronology.

A final instructive test has been conducted discarding th& €bim 012 (012-CNS).
The estimated log-normal and log-logistic parameterdiveldo O12 and to O12-CNS
are equal in the limits of statistical errors (Table] 4.2)sB#éting probability densities of
chron durations without the CNS are thus practically indgitishable from those shown
in Figure[4.6. Nonetheless, the Bayesian analysis repateceive evidence in favor
of the log-normal model which has a posterior probabilitkd(Normal| At) of 99.7%.
As already discussed analyzing the Cenozoic GPTSs, thectupa exclusion peaks
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Figure 4.6: Probability density of geomagnetic chron daret relative to the time scale
012 (cf. Tabld41l). The gray shaded region marks the 95%dmmde interval for the
binned probability density. Red and green curves show tlséfiteng log-normal and
log-logistic distributions respectively. Color shade@as denote the 95% confidence
intervals on the respective distribution parameters egés

the likelihood function of the log-normal relative to theylogistic distribution and this
substantially influence the respective posterior moddb@dities.

Figure[4.7 shows the posterior densities of the log-normdllag-logistic distribu-
tion parameters calculated as in Equation (3.97) for therchiurationsAt as recorded
by O12C (panels a and b), MHTC12 (panels ¢ and d) and O12 (parmhd f) . These
GPTSs are representative of the Cenozoic, the Mesozoidardgt 171 Myr of geomag-
netic history respectively. The log-normal posterior dées are remarkably similar to
bivariate normal distributions for all the polarity timeades selected (Figute 4.7, panels
a, ¢ and e). This indicates that the asymptotic limit of thepesetive likelihood functions
(Equation[(3.9]7)) is reached and that the priors have onlg@imal influence on the pos-
terior distributions. As a consequence, maximum likelthestimates of the log-normal
parameters and the associated standard errors (Tableete2inihe means and standard
deviations of the bivariate normal approximations to thstpoor distributions with great
precision. The distribution parameters are practicallganrelated and their correlation
codficients are reported in Table 4.2. The log-normal poster@rsdy relative to the
C-sequence presents significantly larger values of theesba@ametes- compared to the
M-sequence (Figuile 4.7, panels a and c). This reflects therlaariability of chron dura-
tions during the Cenozoic with respect to the Mesozoic. Miereled polarity time scale
012 shows a strong bias of the log-normal posterior denswatds lower values of the
location parameter due to the large number of short events included (Figudepaiel
e).

The posterior densities of the log-logistic parameters #|(At, LogLogistic) cannot
be approximated by bivariate normal distributions veryuaately (Figuré 4]7, panels b, d
and f). Since uniform priors for the parametéranda have been assumed, thi$ext is
due to the data only. Lower values indicate a lower sample variance and therefore log-
logistic PDFs concentrated at lower durations (cf. FigquddlB A significant bias of the
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4 Results from geomagnetic polarity time scales

log-logistic posterior density towards lower parametduga is shown for O12 (Figure
4.1, panel f). Once more, this reveals the overwhelmitfigee of the poorly constrained
short chrons recorded by O12 on the statistic.
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Figure 4.7: Posterior densities of the log-normal (leftgdapand log-logistic (right pan-

els) distribution parameters for the chron durations asroed by the geomagnetic polar-
ity time scales O12C (panels a and b), MHTC12 (panels c anddlCd.2 (panels e and

f). The selected time scales are representative of the ©anake Mesozoic and the past
171 Myr respectively (see Talle #.1 for further detailsp-¢®ntour lines mark the 68%,

95% and 99% highest posterior density intervals.

In conclusion, our analysis suggests that the log-normélegrlogistic distributions
describe the geomagnetic polarity interval durationstiedast 170 MymLan_aﬂd_S_aLJson
), comparing a suite of distribution functions in agfrentist framework, also ob-
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4.2 Distribution of paleomagnetic polarity intervals

tained the most significant fit of chron durations for the tegmal and log-logistic fami-
lies. As already discussed in Section 3.4.1.5, the authrefsiped the former distribution
because it naturally arises in simple dynamical systemgestdd to the fect of multi-
plicative noise which have been used to model the occurrehgeomagnetic reversals.
An example of this type of stochastic dynamical system isnibwe-linear mean-field dy-
namo model oLI:IQ;Lng_el_hIL(de). The authors suggestedrdinaiom perturbations
originating in the turbulent core convection may triggdrdiy fluctuations (parametrized
by thea-term in the mean-field dynamo equation) which multiply otrere when time-
stepping the induction equation.

However, our Bayesian analysis shows that the log-normalemis decisively fa-
vored over the log-logistic only if the CNS is excluded frohetreversal chronologies
analyzed. On the other hand, if the superchron (and posfhlyother chrons lasting
several million years) is regarded as a realization of asingderlying statistical process,
the log-logistic would be a more suitable model due to its/lezaail. This is supported
by the positive evidence in favor of the log-logistic distriion obtained when including
such extreme event in the data sets. The likelihood of the,@ld®ever, is still largely
underestimated by the log-logistic distribution. An afi&tive description of the long end
of paleomagnetic chron durations suggests the use of a pwergaw (see, e.dﬁ
ll%Q,LlQﬁK&Fb_ZQbB). As already pointed out above, the nraimbdck of this distribu-
tion is that it poorly describes shorter chron durationsmehmth the log-normal and the
log-logistic perform well.

Itis therefore dificult to precisely characterize chron durations using ithstion func-
tions with stationary parameters. As already discusse@ai@\[1.4.b, the reversal rate
possibly varied during the past 170 Myr, decreasing whileraaching the CNS and in-
creasing afterwards (see Figlrel1.9). Distribution fuomiwith time-dependent parame-
ters have been proposed to take into account such varigtieese.gl, McFadden and Mefrill
11984/ Constable 2000, and the discussion in SeEfion 1 Br&se models presuppose the
influence of external mechanisms modulating the long-taate ©f the Earth’s core and

most often identified of mantle origin (Driscoll and Ol5orA0Biggin et al. 2012). How-

ever, some authors suggest that the reversal rate vasatiag also reflect the dynamics

of the strongly non-linear internal dynamo proces hcherbakov and Fabian

) and arguments in favor of a long-term stationarityehla@en proposed in several

other studies (see, e. 003, Carbone20@6).

Moreover, it is not entirely clear to which extent the poasakeition of the reversal
chronologies influences the observed reversal rate (Mafed884) Marzocchi 1997).
Our analysis uncovers a second type of bias caused by thedatoiquality. Short and
not fully constrained chrons recorded in the extended Masdmme scales O12M and
012 decisively encourage the posterior probability of ttgethormal distribution relative
to the log-logistic. The superchron and some of the longenesavhich, on the contrary,
tend to favor the log-logistic model are overwhelmed by #rgé number of short chrons
available in these extended chronologies. In order to fireskablish the best alternative
between the two models selected by our analysis, it is thexedf fundamental impor-
tance to better constrain the shortest geomagnetic poiatérval durations.
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5 Results from geodynamo simulations

In this chapter we characterize the statistical propedai@sversals and excursions in two
geodynamo models. The statistical analysis relies on gas@nd methods discussed
in ChaptefB. In Section 5.1 we introduce the reversing dymamdels analyzed. The
field evolution during typical simulated polarity transitis is described in Sectign b.2.
Sectiorf 5.8 illustrates the algorithm employed to deteentiire durations of reversals and
excursions in the numerical simulations. The statisticallysis of the occurrences and
durations of reversals (and excursions) is discussed itidb€8.4. The chapter closes
with a comparison of the statistics of the simulated pofagpochs with paleomagnetic
reversal chronologies in Sectibnb.5.

5.1 Models description and comparison with the Earth

In order to study the long-term behavior of the dipole fielé, selected two reversing dy-
namo models with dierent Ekman numbers and Rayleigh numbers tuned to yielth-Eart
like reversals. Table 5.1 lists the models parameters amdespective estimated values
for the Earth’s core. Model M1 has a larger Ekman nunbeaf 2 - 102 while the Ek-
man number of model M2 is twenty times smalleEat 10°3. These models have been
previously discussed in the literature (Wicht 2005, Widhale2009).

Due to the actual limitations in the available computatiquaver, present geodynamo
models run far away from the Earth’s parameter regime andcibdels analyzed here do
not represent an exception (cf. Tablel5.1). The most sevuscesgpancy is in the Ekman
number which is at least eleven orders of magnitude largan the estimated Earth’s
value. This introduces an excess kinematic viscosishich acts in damping small spa-
tial scales present at realistic parameter values, buewetlyrunresolvable for practical
reasons. Moreover, M1 and M2 have mild Ekman numbers whermpaged to the most

Model E Ra RdRa Pm Pr
M1 2-107 300 25 10 1
M2 1073 500 89 10 1

Earth 10%¥-10* »1 10fRa 10°-10° 01-1

Table 5.1: List of control parameters for the two dynamo n®dealyzed. Ekman num-
berE, Prandtl numbePr and magnetic Prandtl numbBmlisted for Earth are based on
molecular difusivities.Raindicates the Rayleigh number aR@, its critical value for the
onset of convection.
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5 Results from geodynamo simulations

recent geodynamo models approachiihg 10~ (Kageyama et al. 2008). Long temporal
integrations, necessary to achieve a statistically scamtinumber of reversals, act as an

additional restriction here. Nevertheless, model M2 hasdtvest Ekman number among
the geodynamo models usually employed in the statisticalysof simulated reversals

(see, e.gl, Lhuillier et al. 2013, Olson etlal. 2014).

The vast majority of geodynamo models belongs to a classlofisns where the ax-
ial dipole dominates over all the field components but resi¢angely aligned with the
rotation axis (stable dipolar regime). Reversals are thezeexpected to be, if occurring
at all, extremely rare in such regime. Kutzner and Christar{8002) demonstrated that
increasing systematically the vigor of convection relatio rotational forces, namely in-
creasing the Rayleigh numbBawhile keepingE constant, leads to a gradual transition
from stable dipolar to multipolar solutions (multipolagmeme). The range of input param-
eters in which the dominant dipole field rarely undergoesnsals is quite narrow and lies

at the boundary between the dipolar and the multipolar rediutzner and Christensen
2002} Wicht et all. 2009, 2010).

The Earth’s core Rayleigh number is hard to estimate butghbto be highly super-
critical dg;hristgnséh 2Qle). The numerical dynamos aralyere are at least two orders
of magnitude less supercritical than the Earth (cf. TabR. 5.

The magnetic Prandtl numbBmis much smaller than unity for liquid metals. Typical
time scales of magnetic fiiusion are thus expected to be much lower than viscous ones
in the Earth’s core (see Sectibnl2.6). Magnetitudiion is therefore extremelyfective
and, in order to sustain the magnetic field against ohmiekdbe flow needs to be very
turbulent. In numerical models, a self-sustained magrtid can be achieved only at
the price of lower magnetic flusivities, i.e. for relatively large values Bim

In order to characterize to which extent the reversing bienasf models M1 and
M2 resembles the Earth, we defined some dimensionless rmeafsd]owingl.
). Their values, together with some time-averagedeatees, are listed in Table5.2.

Model K Wn M O M D Tr @ 09| T
M1 4.6 94 736 451 038 0061 75 15 1®B-1C°
M2 19.0 435 958 408 022 0060 73 14 46-1C°
Earth 01-10 400-2000 75 17 <06 ~001 83 - 12.10°

Table 5.2: List of time-averaged output parameters andgsti@s for the dynamo models
analyzed. Columns from 2 to 5 present time averages of thes&#s numben, the
magnetic Reynolds numb&m the dipole momen¥ and its standard deviatiaeny, and
the relative dipole strength at the outer boundarylhe time averages are calculated over
the total simulation time (last column, in units of the outer core magnetiffiuion time
T,) M and its standard deviatiany, are given in units of 13 Am?. The seventh column
shows the relative transitional dipole time, defined as the fraction of time that the
magnetic pole spends further away than #&6m the closest geographic pole. Columns 8
and 9 are the time averages of the absolute magnetic pdledeii?| (in degrees) and its
standard deviatioor,y respectively. Estimates given for Earth are discussedeainexk.
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5.1 Models description and comparison with the Earth

The magnetic pole latitud@ is defined by

180 B, r=rot
9 = —— arcta c2mall = fo. Y , (5.1)

d \/Zm:O,l Bil,m(r = Io, 1)

whereB, , represents the cfiicient of orderf and degreen in the spherical harmonic
expansion of the magnetic field (Section]2.8)the outer boundary radius andime.
Values of the time-averaged absolute magnetic pole latiitiés large as about 7Show
a dipole field closely aligned with the rotation axis in bogmdmo models during most
of the simulation runs. The temporal variability of the mago pole latitude is quantified
by the standard deviation @f| (Table[5.2). The recent global geomagnetic field model
for the past 14 kyr of Pavén-Carrasco et bL(iOl4) reporima-averaged value of the
magnetic north pole latitude of about°83

The relative transitional time; is the time the magnetic pole spends further away than
45° from the closest geographic pole. This angular threshaddkan chosen according to
the commonly accepted paleomagnetic practice (see SEcAdP). Transitional periods
account for roughly 6% of the total simulation time in both aets and are therefore
clearly separated from long stable dipole epochs. Revecsal thus be regarded as rare
events in these simulations. Considering that a typicahgametic reversal transition
requires 4-5 thousand yearm& and that about 300 events haen recorded
for the past 160 Myrr; amounts to no more than a few percent for the Earth. This agim
certainly represents a lower limit because, for exampbmsditional periods related to
excursions have not been considered.

The dipolarityD, defined as the square root of the ratio of magnetic dipoleggrte
the total magnetic energy at the outer boundary

1
_ Zm:O,l B|2=1, m(r = ro’t) z

provides a quantitative estimate of the degree of dipoleidante. A value oD ~ 0.6
characterizes the recent geomagnetic field given up to degrd order 14|Mal.
2006). Too low dipolarity is characteristic for reversingndmos at larger Ekman num-
bers (Wicht et dl. 2010). This can be attributed to the smaifience of rotation at larger
Ekman numbers while a geostrophic flow, associated with idzvealues, promotes the
production of an axial dipole field. The large-scale coheeeof the flow is counterbal-
anced by the increasing influence of inertial forces at laRgyleigh numbers. In our
simulations the time-averaged valueldfeaches B8 in M1 and 022 in M2. As we will
demonstrate in the following, the reason of sudfiedence resides not only in the signifi-
cantly largerRaof model M2, but also in the peculiar behavior of M1 duringisional
periods. ObviouslyD increases if averaged over stable dipole field polaritidg, dinus
approaching the estimated Earth’s value given above.

Time-averaged values of the Elsasser numband the magnetic Reynolds number
Rmare also reported in Table 5.2. The Elsasser numbmeasures the ratio of Lorentz
to Coriolis forces in the momentum equation (2.74)

_(BY)
HopQ’

: (5.2)

A

(5.3)
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5 Results from geodynamo simulations

wherepyg is the vacuum permeabilityy the fluid density and2 the rotation rate. The
angular brackets) denote root mean square (RMS) values calculated over tlesthall.

For an arbitrary scalar quantify, its RMS value is defined ag) = (FZ)W, where

~ 3 21 T o X -
f= mfo L ﬁ f(r,6’, ¢)r drS|n9d9d¢ (54)

represents an average over the fluid shell. In the scaling lse2,A is a dimensionless
measure for the mean magnetic field strength in the core @e#082.6). M1 and M2
have time-averaged valuesAfof 3 and 9 respectively. Since Lorentz and Coriolis forces
are expected to be of the same order in the Earth’s core (nt@sgraphic balance), the
Elsasser number is thought to be of order one. Reasonabieagss$ of the magnetic field
strength in the core confirm an Elsasser number in the rarige 00 (Christensen et al.
2009).

The field strength has been rescaled to dimensional valueebnps of[(5.13) assuming
the Earth’s rotation rat® = 7.292-10-°rad/s and a mean core density= 1.1-10* Kg/m®.
Table[5.2 lists the rescaled values of the time-averageaalalipomentV for the dynamo
models analyzed here. As already discussed in Sekcfion, hdl@intensity measures
provide a mean (virtual) axial dipole moment of# 1.7)- 10?2 Am? during the Brunhes
chron (see also Figufe_1.4). Continuous global geomagfielicreconstructions for the
past 10 kyr [(Korte et al. 2011) and 14 kyr (Pavon-Carraschl@Gi4) agree with this
estimate. The dipole moment inferred from such models mhgdween a minimum
value of 45- 10?2 Am? and a maximum of 10- 10?2 Am?. Our dynamo simulations show
time-averaged dipole moments falling within this range.

The magnetic Reynolds numbd@mrepresents the ratio of magnetic advection to mag-
netic ditusion in the induction equatioh (Z171) and is defined as

_wd
9

Rm (5.5)

whereu is the fluid velocity,d the outer shell thickness amdhe magnetic diusivity. A
lower bound for the Earth’'Bmcan be estimated from the westward drift velocity of the
non-dipole field which is on average approximatety@degregyear (Bullard et al. 1950).
Assuming that such motion reflects typical flow velocitieshet top of the Earth’s outer
core,Rmcan be estimated to be around 400. Christensen and Tilgh@4)2analyzing a
suite of geodynamo models, predicted a higRerof 1200 for the Earth’s core. Recently
revised estimates for the electrical conductivity of thedfteore (Pozzo et al. 2012) would
suggest a yet larger value Bim=~ 2000. The magnetic Reynolds number of model M2
is somewhat more realistic Rim= 435, while the value oRm= 94 for model M1 is on
the low side.Rmcould be increased, for example, considering a larger Reyleumber,
but this would drive both dynamos into the multipolar regiwigere the dipole looses its
dominance and reverses more or less continuously.

Rmcan also be interpreted as the ratio of the magnetiugion time of the outer
coret, = d?/n to the advection time scate, = d/(u) (convective turnover time). As
mentioned above, dimensionless times in the numericallairons are rescaled to real
values usingr,. However, if the typical time scales of magnetic field vadas studied
here are ruled by the vigor of convection rather than ffudive dtects, the rescaled
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5.1 Models description and comparison with the Earth

times result to be overestimated. Moreover, there are suakethat for many dynamo
processes the advective time may play a more importantseks e.gL_QBQn_QdM12).
This could be accounted for by dividing the dimensional 8rg&en in the following by a
factor Rmga/Rm UsingRmMean = 2000 suggests correction factors of abotfér M2
and 21 for M1.

In order to achieve a significant number of reversals, mddéland M2 have been in-
tegrated for several thousand magnetitugion times. Figurds 5.1 ahd b.2 illustrate time
series of the dipole tilt angle (or dipole colatitud®)= 90° + ¢ and the total dipole mo-
mentM (in rescaled units) for M1 and M2 respectively. The highenperal variability
of M2 with respect to M1 is evident. The former dynamo modehdeed characterized
by abrupt reversal transitions occurring with a higher @iy compared to M1. The
stronger convective driving of M2 is responsible for sucharced reversal activity. Pe-
riods of diminished dipole intensity nicely correlate wigiige dipole tilts in model M2.
This is not always the case in M1 where longer periods of wepkle intensity may
present stages of stable dipole field polarity.

Figure[5.8 shows histograms of the dipole tilt an@ledipole momentM and dipo-
larity D for the dynamo models analyzed. Distributions of transaictimes (namely
periods characterized by 45 ® < 135’) are illustrated in red. Opposite field polarities
are roughly equally represented in both dynamo models asceeqh (Figuré 513, panels
a and b). The induction equation (2.93b) is indeed invaniartter the transformation
B — —B meaning that the same type of dynamo mechanism operatgseindiently of
the sign of the magnetic field. However, a certain imbalaretevéen the two polarities
still persists even after several thousand magnefiagion times.

Dipole moment distributions of the two models are markedijedent (Figurd 513,
panels ¢ and d). M2 shows a unimodal distribution with its matlabout 11 10?2 Am?.
Transitional periods seem to cause a hump at Mwalues which is suggestive of the
presence of a low dipole stage distinct from the leadinglstheld phase. As already
noticed above, weak dipole moments nicely correlate wéhditional periods and this is
quantified by a Pearson correlation flasent betweerM and the absolute magnetic pole
latitude|¥| of 0.52 (see Table 5l 3).

On the contrary, the time spent in weak dipole stages is caabpato that of the
stronger and stable dipole field phases in model M1 (FiguBef&anel c). Furthermore,
low dipole intensities correlate not entirely with tramsial periods (highlighted in red)
but even more likely with stable field polarities. Consistgmoor deviations of the dipole
from the rotation axis are also observed at Bwalues (Figuré 513, panel ). Model M2,
which does not display such behavior, presents a fractidovotiipole tilts having small
dipolarity which is relatively modest (Figure 5.3, panel f)

Note also that the dipolarity distribution of transitiopariods of M1 shows a heavier
tail compared to M2. The former model, contrary to the lajpeesents therefore signifi-
cant dipolar contributions relative to the total field sggnduring weaker dipole periods.
This is confirmed by a somewhat lower correlation ficeent between dipole moment
and dipolarity obtained for M1 (see Talile]5.3). The reasonshfe observed lierences
between the two dynamo models at low field strengths will Beuised in Sectidn5.2.

Before analyzing in detail the temporal behavior of the twaamos during reversal
transitions, we illustrate typical magnetic and flow fieldusions at times representative
of stable polarity epochs, i.e. presenting a relativelgrggrdipole field closely aligned
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Figure 5.1: Time series of dipole tilt angle (upper sub-psnand dipole momeni/
(lower sub-panels) for dynamo M1. Opposite stable potwitre marked in white and
green. Red and orange background colors highlight re\seasal excursions respectively.
The horizontal red line marks the critical valueMfused to define the events durations
and equals 30% of its time-averaged value. Events spaceesbythan @i r, have been
melted and only excursions crossing the equator are shaerSgction 513 for a detailed
description of the algorithm employed).
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Figure 5.2: Time series of dipole tilt angle (upper sub-psnand dipole momeniv
(lower sub-panels) for dynamo M2. Opposite stable potwitre marked in white and
green. Red and orange background colors highlight re\seasal excursions respectively.
The horizontal red line marks the critical valueMfused to define the events durations
and equals 30% of its time-averaged value. Events spacegsbythan @, have been
melted and only excursions crossing the equator are shaerSgction 513 for a detailed
description of the algorithm employed).
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Figure 5.3: Histograms of dipole tilt ang@ (panels a and b), total dipole momevit
(panels ¢ and d) and dipolariy (panels e and f) for models M1 (left column) and M2
(right column). Transitional times, namely periods withf 450 < 135, are highlighted
inred.

with the rotation axis. At the selected times, the dipojavdlue isD = 0.21 for M1 and

D = 0.10 for M2, while tilt angle®® are 5 and 15 for M1 and M2 respectively. Figure
shows the corresponding snapshots of the radial fielghooent at the outer boundary
B (ro, 8, ¢) and of the radial velocity at mid-depth(r; + d/2, 6, ¢).

In both dynamo models, the radial magnetic field at the outendary is character-
ized by polarity flux-patches of opposite polarity in the tiemispheres. Such magnetic
structures are more small scaled for M2 as expected and ar®dls lower Ekman num-
ber and the more vigorous convective driving. The strongerlatches are distributed
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Figure 5.4: Snapshots of the radial field compor@&nat the outer boundary (first row)
and radial flow velocityy, at mid-depth (second row) for models M1 and M2 represen-
tative of stable dipolar configurations. Blue and yell@d colors indicate inward and
outward directed fields respectively. Color contours amdest according to the abso-
lute maximum of the respective fields. The absolute maximwagmetic field strength is

B = 16.2 \/uonpQ for M1 andB; = 16.6 +/uonp for M2; the absolute maximum velocity
field strength isy, = 277.05/d for M1 andu, = 106Q1r/d for M2.

at mid to high latitudes in M1, but tend to cluster towards satnat higher latitudes in
M2. These patches are responsible of the strong axial dgouigibution to the total field
strength in both cases. Furthermore, less intense lowdiipatches, generally of the
opposite sign of the leading polarity in each hemispheepagsent. The magnetic field
in M1 is strongly equatorial anti-symmetric, while M2 doest show the same degree
of anti-symmetry. The highdRa of the latter model is the main reason for the spatial
symmetry breakinMﬁbS).

Radial velocity fields at mid-depth, shown in the bottom rdWrigure[5.4, illustrate
the pattern of convection. The flow is clearly organized iatreely thin columns elon-

Model r(M,[9]) r(M,D)

M1 0.56 Q77
M2 0.52 091

Table 5.3: Pearson correlation ¢eientsr for the dipole momenM with the absolute
magnetic pole latitud@} (second column) and with the dipolariBy (third column) for
the two dynamo models analyzed.
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5 Results from geodynamo simulations

gated along the rotation axis in model M2. This is the prefstructure of convection
in a rapidly rotating spherical shell. Even though the Ekmamber is not very low,
the models analyzed here are also moderately superciisieal Tablé€ 5]1) and therefore
the ordering influence of Coriolis forces still dominategoinertia. However, the larger
Ekman number of M1 results in a flow which do not seem propeglystrophic.

As already mentioned above, the dipole field is mainly forragdhe superposition

of the bundles of concentrated radial flux at high latitudggyre[5.4, top panels). As
described in previous studimlm&@m.mw, a significant

secondary flow along and into the convective columns is ma@dponsible for such flux
concentrations. This can be seen comparing the radial coempof the magnetic fielB,

Figure 5.5: Snapshots of the radial magnetic field compoBegat the outer boundary
(upper panels) and vertical component of the flow vortiaifyatr = 0.9r, (lower panels)

for model M1 (left panels) and M2 (right panels). One hem&phs shown with the

north pole in the center of the projection. Blue and yefted colors indicate inward
(negative) and outward (positive) magnetic field (voryigit Color contours are scaled
with the absolute maximum of the respective fields.
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5.2 Field evolution during polarity transitions

at the outer boundary and the vertical component of the flosroity w, just below the
outer boundary as shown in Figlrel5.5. A good correlatiostexietween positive vortic-
ity (cyclones) and concentrations of radial magnetic fiald.flThe significant secondary
flow along the axis of convection columns directed towardsetuator in cyclones and
away from the equator in anticyclones results, at the uppei@ver ends of the convec-
tion columns, in a horizontal flow convergence from negativgositive vortices. Assum-
ing the frozen-flux approximation to be vali®ih > 1), these flows advect field-lines
towards the cyclones and yield to the respective field canggons at high latitudes.

5.2 Field evolution during polarity transitions

As pointed out in the previous section, the two geodynamoaisodnalyzed strongly
differ in the time spent with low dipolar energy. Field polaritgrisitions are therefore
expected to dfer. In this section we closely analyze the field evolutionmytransitional
periods in both dynamo models.
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Figure 5.6: Time series of dipole tilt ang& (first panel), total magnetic energy at the
outer boundary (second panel), magnetic energy of the diale ¢ = 1, m = 0), equa-
torial dipole ¢ = 1,m = 1) and multipolar componentg ¢ 1) at the outer boundary
(third panel) and dipolarityp (fourth panel) for a long lasting polarity transition in medd

M1.

Figure[5.6 and Figure 5.7 show two particularly slow pojatransitions occurring
in models M1 and M2 respectively. In both dynamos, the digadeeriences significant
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5 Results from geodynamo simulations

angular deviations from the rotation axis when the overalfjnetic field is weak (first and
second panels). The axial dipole, the equatorial dipoleadirttie higher multipolar field
contributions of M1 decay when entering the weak field ep&toure[5.6, third panel).
It seems that the dynamo mechanism stops operating for @rcérme until it suddenly
restarts. The dipolarityp oscillates eradicably during the weak field stage (Figué 5.
fourth panel) and the dipole shows, consequently, a suocces$ normal and reverse
field polarities. It is the coherent evolution of the axiatiaguatorial fields which causes
the magnetic pole to remain closely aligned with the rotaéais during most of the
transitional phase. These periods significantly populsddw end of the dipole moment
distribution as already observed in Figlrel 5.3 (panel c)s bBehavior also explains the
high values in the dipolarity distribution obtained forrisitional periods (cf. Figurie 5.3,
panel e).

On the contrary, M2 shows what is regarded a more typicahbehaf reversing geo-
dynamo models. Figute 5.7 displays a weak field episode gndire to a decrease in the
axial dipole intensity, while the equatorial dipole and thgher multipolar contributions
seem to remain rather ufiected (third panel). The weak axial dipole allows for transi
tional pole positions which may be interpreted as a sucoess excursions preceding
the polarity change. This event is, however, exceptiorlaltg (with a duration of about
30r,) and uncovers one of the most complex field transitions.

Though the type of transition analyzed here for model M1 tiaiss a significant
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Figure 5.7: Time series of dipole tilt ang& (first panel), total magnetic energy at the
outer boundary (second panel), magnetic energy of the diiale ¢ = 1, m = 0), equa-
torial dipole ¢ = 1,m = 1) and multipolar componentg ¢ 1) at the outer boundary
(third panel) and dipolarityp (fourth panel) for a long lasting reversal in model M2.
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5.2 Field evolution during polarity transitions

fraction of the total number of reversals, it does not repméghe rule as can be seen from
the time series in Figufe 3.1. Reversals with a field evolusionilar to those observed
for M2 are indeed also common in M1. Polarity transitionsrebterized by a decay in
all the magnetic field components are neverthele§ggent to dfect the reversal statistic
of model M1.

Figure 5.8: Dipole field trajectories in the phase space tdoted by the Gauss ce
cientsg?, g7 andh; for models M1 (panel a) and M2 (panel b). For each model, the ti
interval analyzed is of about 80 outer core magnetiitidion times and contains several
reversals. Red highlights the transitional trajectori¢®re the magnetic pole is more
than 45 away from the rotation axis.

The diferent evolution of the dipole field for the two dynamo models be described,
over longer time spans, in the phase space constituted tifarée Gauss cdicientsgy,
g1 andhl. Figure[5.8 depicts the phase space trajectories of théediptd during several
tens of magnetic diusion times for both dynamo models. The transitional fielldpiies,
namely periods defined by a dipole tilt48 ® < 135, are marked in red. Both dynamos
show two symmetric states dominated by the axial dipole eoraptg? which represent
the two opposite stable field polarities (Figlrel 5.8, blaskves). Transitional dipole tilts
are achieved by a significant weakeningg®fin both cases. Model M1, contrary to M2,
shows a high density of non-transitional trajectories m tégion where the total dipole
intensity is low. This highlights, once more, the fact thelatively long periods of weak
dipole intensity characterized by mild dipole tilts are rsalated phenomena in M1 but
are rather part of its dynamical behavior. On the contraapditional trajectories are more
clearly correlated with low dipole field stages in model M&ege transitional phases are
likely caused by major weakenings of the axial dipole, wiktile equatorial components
g; andh; show variations not significantly filerent from those experienced during the
stable field polarities (Figufe 5.8, panel b).

Paleomagnetic findings suggest that the behavior of modeisMiZore realistic for
Earth where too long periods of very low field intensity seemypical and low dipole
moments highly correlate with large angular deviationshef imagnetic pole (see, e.g.,

Merrill and McFadden 1999, Valet et 05, and the disicnss Sectior 1.413).
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5.3 Definition of events and filtering algorithm

The algorithm employed for timing the duration of reversatgl excursions in the nu-
merical simulations is described in this section. Empinearking definitions commonly
used in paleomagnetism serve as a guidance here (see GBapter

Since reversals and excursions are both periods of weakdljldipole intensity, a
natural way to time their start and end is to rely on the dipotenent variations. Thieth
event starts at the timé&” when the dipole momenil decreases below a critical value
Mc, ti(s) = t(M < Mc), and it ends onc®! subsequently exceeds this value at the time
ti(e) =t(M > Mc). This eventis defined as a reversal if the field polaritietsatarting and
ending times are opposite and is an excursion otherwiséelfotlowing, Mc denotes the
critical value of the dipole momemic normalized with the time-averaged dipole moment
M.

Tilt
—

W aw/d

Time

Figure 5.9: Sketch of dipole tilt (upper sub-panel) and tpuoment (lower sub-panel)
time series illustrating the fierent types of events defined. The opposite stable field
polarities are marked in white and green. Red, orange andlgrekgrounds highlight
reversals, grand excursions and dipole dips respectividig horizontal red line marks
the critical dipole momenMc used to define the event durations (see the main text for
details).

Figure[5.9 sketches a time series of the dipole tilt and dipebment illustrating the
different types of events defined. Event duratiags= t© —t are marked with dferent
colors according to the event type. Reversal and excursitations are highlighted in red
and orange respectively. LBt andE; denote the-th reversal and excursion respectively
andAtR andAtF their durations. The duration of thieh stable polarity interval (SPI) of
the fieldAt” is defined as the time filerence between the starting time of tké reversal
and the end of the previous one, thus excluding the two bogdiversal transitionat?
andAt?,. Opposite SPIs are marked in white and green in Figute 5.9.

The last type of event defined is called dipole dip and an elampshown in gray
in Figure[5.9. Dipole dips are characterized by a decreadgoie moment comparably
shallower than those experienced during reversal transitiEven though dipole dips pro-
mote significant deviations of the dipole from the rotatiaisathey usually do not reach
the opposite hemisphere. Wicht (2005) and Wicht et al. (pé@Sorted that large drops
in dipole strength are required to allow tilt angles thattuea into the opposite polarity
and which are detectable as global events in their numesigallations. This is also the
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5.3 Definition of events and filtering algorithm

case for the two geodynamo models analyzed here where a¢évare characterized by a
decrease in dipole moment to at least 20% of its time-averagkeie (see Sectidn 5.38.1).

To keep the distinction between excursions and dipole dgas,ove introduce further
requirements for the former type of events. In order to ré@ar event as an excursion,
we additionally require that (a) the dipole moment has tgdrelow a critical valueV2
(in units of M) and (b) the magnetic pole reaches the opposite hemisphirasa once
during the event. We refer to this subset of excursions grasd excursions

Short term variability of the dipole moment due to seculaiatéon activity around
the threshold\¢ frequently leads to undesirable brief events which areclfy closely
spaced in time. In order to avoid such situation, we demaaiceents must be separated
by astable time interva{namely a period wher# > Mc) lasting at leasTs. In other
words, this filter attempts to smooth out the fastest dipotenent variations. In the
following, 7s denotes the stable peridls in units of the magnetic éusion timer,.
Events occurring closer thafg are merged together into a single reversal or excursion
according to the following rules. The possible combinatiohsuccessive events are:

(&) R andR.4,
(b) Ej andR; (or vice versa,
(C) Ei andEi+1

and they are sketched in the respective panels of Figuré 5.10

After the application of the temporal filter, the combinati@) gives a single excur-
sion beginning at the starting time Bf and stopping at the ending time Bf,; (Figure
[£.10, panel a). The brief mild recovery of the dipole momemntat deemed significant
enough to classify the respective period as a SPI. Disagitdiao successive reversals has
therefore the netféect of producing a longer SPI, obtained by merging the twaaeajt
ones, punctuated by an excursion.

Panel b of Figure 5.10 shows thext of the temporal filter on the event combination
(b). The excursiort; is now regarded as part of a longer reversal beginning ataneng
time of E; and ending wheR,; stops. The large dipole tilt variability preceding the nesa
is thus considered as a single weak field period leading tageloreversal transition.

Finally, the combination (c) considers two successive estons temporally spaced
by less tharv's. The two successive excursioBsandE;,; are now regarded as a single
excursion which comprises the two events (Fidurel5.10, IpgneThe dipole intensity
between the two initial events appears indeed too low towucior truly stable dipole
directions during such period.

Several pitfalls can occur when defining reversals and simos viaMc and 7,
in particular for extreme parameter combinations. Sinesehproblems may bias the
statistics of event durations, we discuss the most relemaes here. Figude 5.111 shows
illustrative examples of four potential problems. Solidlatfashed lines in the dipole tilt
time series illustrate the two possible polarity altevediafter a period of weak dipole
intensity. Blue, green and orange background colors lgghévent durations determined
with different choices oM (horizontal lines). The first problem, denoted as P1 in Fig-
ure[5.11, is an over-estimation of the event duration. Whké&nis chosen too large (blue
horizontal line) we may regard insignificant dipole momeatations as start or end of a

117



5 Results from geodynamo simulations

reversal (or an excursion) should these happen closerfiganm the ‘true’ event. The im-
pact of this problem increases wiily and therefore particularlyfiects the combination
of large Mc and long7s.

If Mc is chosen too low (orange horizontal line) we may wronglyssity periods
where the dipole momemd recovers only mildly as a SPI. This problem P2, illustrated
in the top right panel of Figure 5.111, increases the likedthdor short SPIs and also
artificially separates a reversal (solid dipole tilt curiregd a shorter reversal and a shorter
excursion. It may even separate a major excursion (dashpedediilt curve) into two
shorter reversals. P2 therefore modifies the statisticeftedurations. The likelihood for

a. Successive Reversals b. Excursion and Reversal
= =

WM M
WMWY

= =

Time Time
./
s M =

Time Time

C. Successive Excursions

= \

i

= MWAWWAAA, )
Tim;v

y !

=

= VWA

Time

Figure 5.10: Sketches of dipole tilt (upper sub-panels) @ipdle moment (lower sub-
panels) time series illustrating th&ect of the stable perio@is on different combinations
of consecutive events: successive reversals (panelsamyg g@xcursion and reversal (pan-
els b) and successive grand excursions (panels c). For eachirtation of events, the
time series before and after the application of the temddtat are shown in the upper
and lower panels respectively. The horizontal red line testhe critical dipole moment
Mc used to define the event durations.
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5.3 Definition of events and filtering algorithm

this problem to occur decreases with so that P2 is more severe for combination of low
Mc and shor7s.

Problem P3 concerns the other extreme where we falselyd@garoper’ SPI as part
of an ongoing event becaudd. is chosen too large ayat 75 too long. Since two events
are melted to form a single long one, the statistics of evenattbns can be severely
modified. P3 particularly concerns combinations of lafgie and long7s. All three
problems more drastically impact the duration of the shagtents than of the longer
SPIs.

A further problem illustrated in Figuie 5111 is P4. Whes is unreasonably large,
SPIs shorter thafis are classified as grand excursions regardlegelef The SPIs to the
left and right of this disregarded epoch are melted to formngér SPI. The disregarded
epoch, on the other hand, will als@fect the short end of the distribution of the excursion
durations. In conclusion, intermediatd: and small to intermediatés lead to the most
reliable definition of reversals and grand excursions anaviNdéurther discuss this issue
below.

The characterization of the correlations between low @pebments and transitional

= =
= =
= =
= =
= =

Time Time

Figure 5.11: Artist rendering of four fierent problems encountered in defining reversals
and grand excursions. Top sub-panels show the dipole tilevdottom sub-panels show
the dipole moment. The solid (dashed) dipole tilt curve iohepanel depicts a reversal
(grand excursion). Blue, green and orange illustrate ffexeof diferent critical dipole
momentsMc (horizontal lines) on the estimate of event durations (@mdackgrounds).
See the main text for more explanations.
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=8 model M1

o—=0 model M2

Figure 5.12: Relative time of transitional tilts during joels of low dipole field strengtht
as function of the dipole moment thresha¥d: for the dynamo models M1 and M2. Tilts
are defined as transitional if the magnetic pole is furthesyathan 458 from the closest
geographic pole. Vertical dashed lines mark one standasidtiten below the respective
time-averaged dipole moment value.

dipole tilts serves to better constrain the critical dipmlementsMc which provide reli-
able event definitions. Figute 5]12 shows the likelihoodfansitional tilts during weak
field epochs, calculated as the fraction of time spent wigoldi tilts 45 < ® < 135
during periods with dipole moments lower thar: and indicated as:, for the two dy-
namo models analyzed here. This measure gradually desr@@beVIc in both dynamo
models and slowly approaches the relative transitionadsim (Table[5.2) as expected.
The maximum values af- are about 41% and 68% for M1 and M2 respectively. Periods
of weak dipole field, therefore, do not always correlate veignificant magnetic pole
swings. The significantly lower value of obtained for M1 reflects the peculiar dynam-
ics of this model at low field intensities (Sectibnl5.2). ©at dipole moment values of
Mc = 1 - on/M, whereoy, is the dipole moment standard deviation, roughly coincide
with the largest variations at. in Figure[5.1P. These value seems to provide a reasonable
estimate for the amplitude of the dipole moment variati@ugiired to enter a transitional
phase in each model.

However, since no clear cutfan the likelihood for transitional times exists, it is im-
possible to fix a single value for the critical dipole mom@ért which properly defines
reversals and excursions. For this reason, we perform igtgtat analysis varying sys-
tematicallyMc and the stable perigfls. This study has not been performed before in the
literature and is of fundamental importance to guaranteedbustness of the statistical
results.

5.3.1 Selection of grand excursions

As already pointed out before, numerical simulations segtet large drops in dipole
strength are required to regard excursions as global e¢fitht 2005, Wicht et al. 2009).

A reasonable definition of grand excursions therefore darsithese events as character-
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5.3 Definition of events and filtering algorithm

ized by dipole moment dips similar to reversals. In orderttoase a reasonable value for
the critical dipole momenM¢ in the dynamo model M2, we calculated the mean dipole
moment minimum reached during reversals and grand exawwséM,.i,) when the dipole
moment thresholdMc = ME is varied (Figur€5.13). This measure rapidly increases be-
low Mc ~ 0.2 because events with larger dipole moment minima are pseiyay taken
into account, and tends to saturate for largdg values. Note, however, th@i,)
slightly decreases foMc > 0.2 due to problem P3 of Figufe 5]11. Too large critical
dipole momentsM¢ have the drawback of merging consecutive events even thitwgh
dipole moment significantly recover during the in betweenqee The discarded events,
characterized by larger dipole moment minima, cause therebd decrease iWImin).

In conclusion, a threshold o#€ = 0.2 seems to properly define grand excursions and
this value will be kept fixed in the following statistical dysis.

Itis remarkable to notice that the dipole moment reacheayerage, minimum values
of about 5— 6% of M during reversals and grand excursions. Standard deviation
Figure[5.1B give an idea of the dipole moment variabilityen these values and do not
significantly diter between the two types of events.

As an example, Figufe 5.114 shows the histogram of the dipol@emt minimaM,in
during reversals and grand excursions for the combinatn = 0.3, 7s = 0.2 and
ME = 0.2. The distributions are very similar as expected from thevaelanalysis. The
most likely dipole moment minimum reached during reversaid grand excursions is
around 3% of the time-averaged dipole momight
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Figure 5.13: Mean dipole moment minima reachéd,i,) during reversals and grand
excursions (in units of the time-averaged dipole momdhtas function of the critical
dipole momeniMc for the dynamo model M2. The thin curves indicate tbeititervals
of the respective estimates. The stable period has beentfi¥gsg= 0.1.
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Figure 5.14: Histograms of the dipole moment minima reachgthg reversals and grand
excursionsMni, (in units of the time-averaged dipole moménj for the dynamo model
M2 obtained using the threshold combinatibfy = 0.3, Mg =0.2and7s = 0.2.

5.4 Distribution of the durations of stable polarity inter-
vals, reversals and excursions

Based on the methods described in Chapter 3, we studied atistisal properties of

reversals and grand excursions of the dynamo model M2. Talgsis focuses on prob-
ability distributions previously used to describe the aoence of geomagnetic reversals
(see, e.gl, Cox 1968, McF n and Metrill 1993, Jorker§,2R9an and Sarson 2007,
Shcherbakov and Fablan 2d)12). In order to explore the depeedof the statistical re-

sults on our definition of reversals and excursions, theldipwment threshold1c and
the stable periods have been varied systematically. In particular, the dipotenent
threshold has been varied froilc = 0.1 to Mc = 0.8 in steps 0iM/10 and the stable
period from7s = 0.1 t07s = 1 in steps of/ s/10. We recall here tha¥lc is normalized
with the time averaged dipole momeiit (see Tabl€5]2) andls is given in units of the
magnetic difusion timer,. Since model M2 represents more closely the Earth’s behavio
compared to M1 (see Sectibn b.1), the following statistar®lysis concentrates on the
former model.

Different reversal and excursion sequences are obtained fopasameter combina-
tion (Mc, 7). In the following, R indicates the set of reversal durations obtained for a
specific combination of these parameters, namely

R = (At

i=1 "
In a similar way, we refer to
_ [A+E\NE
&= {Ati }i=1
to as the set of grand excursion durations, and to

Np

P = {Atip}i:l
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5.4 Distribution of the durations of stable polarity intels, reversals and excursions

to as the set of stable polarity interval (SPI) durationsafgiven parameter combination
(Mc, Ts). The event durationat?, AtF andAt” have been calculated using the algorithm
described in Sectidn 5.3.

5.4.1 Stable polarity intervals and occurrence of reversal

A suite of probability distributions (exponential, gamnvaeibull, log-normal and log-
logistic as described in Sectign 34.1) are fitted to the SPatibns? for each combi-
nation of Mc and7s explored. Since SPIs cannot be shorter tiignby construction
(Section 5.B), left truncated distribution functions ased. Distribution parameters are
estimated using the maximum likelihood (ML) method desadliin Section 3]5. We as-
sess the goodness-of-fit computing the Kolmogorov-Smi(iK&) p-valuesaks and the
Anderson-Darling (AD) p-valuesap (Section3.6). Since a significance level of 5% is
assumed, This means that the distribution under testingtigpothesis) will be rejected
if neitheraks noraap exceed M5.

Figure[5.15 summarizes the distribution fits of the SPI donat? obtained for the
combinations Mc, 7s) explored. The distribution functions are marked witffetient
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Figure 5.15: Anderson-Darling (AD) p-values of the digtitibn fits of the stable polarity
interval durations? obtained for the threshold valugdc and7s explored. The tested
distribution functions are marked withfterent colored symbols (top right legend). Sym-
bol sizes are scaled with the associated AD p-value (botigint legend). Empty spaces
occur where all the distribution functions can be rejectetha 5% significance level.
The dashed (dotted) horizontal line marks one (two) stahdaviation(s) below the time-
averaged dipole moment value. The gray background higisliggrameter combinations
expected to give reliable event definitions (see the mairfeexetails).
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5 Results from geodynamo simulations

colored symbols and the symbol sizes are scaled with thegmonding AD p-value.
Exponential, gamma and Weibull distributions cannot beateid at the 95% confidence
level for most points of the parameter space. Moreover tigally identical p-values are
obtained for all three distributions. The exponential carrdjected only at particularly
small or large combinations d¥ic and7s. Note furthermore that none of the distribution
functions fits the data for highlc and7 s values.

Closer inspection reveals that certain parameter combimatead to unreasonable
definitions of reversals and excursions due to the problestsisised in Sectidn 3.3. Fig-
ure[5.16 shows the dependence of the mean SPI duration omatiecpMc72. This
empirical combination provides an acceptable scaling efSRI durations. Black dots
mark threshold combinations where the exponential digiob fits cannot be rejected at
the given significance level, while blue squares represasgwhere the exponential is
rejected but gamma afat Weibull are not. Red triangles show significant log-narfitg
and finally crosses indicate parameter combinations whame of the distribution func-
tions is able to describe the data. The mean SPI duratiosssknsitive to the parameter
choice for intermediate values @flc7Z which therefore seem tofier more reasonable
definitions of reversals and excursions M is unreasonably low and rapid dipole mo-
ment fluctuations around1c are not compensated byfiaiently high7s values, short
SPIs enter the data sets. Thieet, identified as problem P2 in Sectionl5.3, leads to the
more rapid increase in the mean SPI duration for smwvg values illustrated in Figure
and to a somewhat distorted statistics.

Large Mc and7s values also show a fast increase in the mean SPI duration. The
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Figure 5.16: Mean stable polarity interval (SPI) duratisritanction of the threshold prod-
uct Mc7Z. Black dots mark threshold combinations where the expaeletistribution
fits cannot be rejected with 95% confidence. Blue squaresriged)les) mark remaining
gamma angbr Weibull (log-normal) fits. Crosses indicate where all th&tribution fits
are rejected. The gray background highlights the regioh thi¢ less sensitive choice of
threshold values. Capital letters denote the thresholdauations selected for a detailed
analysis (see the main text).
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5.4 Distribution of the durations of stable polarity intels, reversals and excursions

filtering introduced by the stable perig@ becomes dominant in this region of the param-
eter space where the shorter SPIs are likely to be combingxdtine adjacent polarities,
thus leading to unreasonably long event durations (protidnin Sectiori 5]3). As a
consequence, none of the selected models is able to deieidata.

The region with the less sensitive choice/of- and7s give acceptable event defini-
tions and it is highlighted with a gray background in FiguseE3 and 5.16. The exponen-
tial distribution dominates this part of the parameter sp&&amma and Weibull provide
a good description of the reliabfé sequences towards higher values of batla and
Ts (cf. Figurel5.15). Furthermore, note that the log-normal laxg-logistic distributions
tend to cluster at particularly highs values, thus around the boundary with the unreason-
ably long SPIs. As we will demonstrate below, these heawgdalistribution functions
naturally account for longer event durations.

Three parameter combinations, representative of tiferdint event definitions de-
picted above, are indicated in Figure 3.16: a combinatiolowfthreshold values with
Mc = 0.2 and7s = 0.1 (case A), an intermediate choice Mc = 0.3 and7s = 0.2
(case B) and the extreme combinatidft = 0.4 and7s = 0.8 (case C). Case A has the
lowest mean SPI duration, while case B belongs to the rediogaasonable event defi-
nitions (cf. Figurd 5R). Finally, case C belongs to the tamg with the biased event
counting and presents a log-normal fit to the data.

Figure[5.1¥ shows the probability density functions (PDdrg) the cumulative distri-
bution functions (CDFs) of the data and the respective fitgHe three threshold com-
binations selected. The estimated distribution pararseter listed in Table 5.4 and the
associated KS and AD p-values are given in Tablé 5.5.

Gamma and Weibull fit the SPI durations obtained for the tiolescombination A at
the given significance level and their profiles are pradiiéatlistinguishable (Figurie5.17,
panels a and b). The estimated gamma and Weibull shape gararaek = 0.77 + 0.05
ands = 0.88 + 0.03 respectively, thus resulting in monotonically decneg$?DFs. As
already mentioned above, an excess of short SPI durati@xpected using too lowc
and7s values (cf. problem P2 of Sectién b.3).

The exponential distribution, together with gamma and \Wkilcan model the SPI
durationsP obtained for the intermediate threshold combination B. ¥seeted, the esti-
mated gamma and Weibull shape parameters are close to ome thkdwo distributions
coincide with the exponential (see Section 3.4.1). TheregBd gamma shape param-
eterk is 0.91 + 0.07, while the Weibull shaps is one in the limits of statistical errors
(s = 0.96 + 0.04). Rate parameters of the exponential, gamma and Weibull distribu-
tions are also equal in the limits of statistical errors gseeted (cf. Table 5l4). However,
despite the evidences in favor of the exponential model, amect formally reject the
hypothesis of either gamma or Weibull distributed stablefty intervals for case B.

The longest stable polarity epoch in the numerical simaiaties significantly &
any distribution profile (Figure’5.17, panel c). Its duratiszhich amounts to more than
60 magnetic dtusion times, is also remarkably longer than the second kirgaarity
interval. Such event is punctuated only by few brief grancluesions. However, as will
be shown in Chaptéld 6, this extreme event cannot be regasdedwgperchron.

Case C deals with the extreme situation in whithis so large that the stable po-
larity intervals defined certainly contain unreasonabhygl@vents. Compared to the the
threshold combinations A and B, the histogram of SPI dunatimr case C presents a
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5 Results from geodynamo simulations

Exponential Gamma Weibull Log-normal
/1[7',;1] k /1[7',;1] S /1[‘(';1] ulln 7] o
MLE 0.155+0.006 Q769+0.050 0121+0.009 0882+0.032 0166+ 0.008 1229+ 0.053 1350+ 0.039
A Mean 0155 Q776 Q123 Q882 Q166 1227 1355
SD 0006 Q050 Q009 Q033 Q008 Q053 Q040
r - 0.778 -0.519 -0.105
MLE 0.134+0.006 0914+0.066 Q123+0.010 0962+ 0.038 0137+ 0.007 1495+0.050 1178+ 0.038
g Mean 0134 0920 Q125 Q961 Q137 1494 1184
SD 0006 Q067 Q010 Q037 Q007 Q052 Q038
r - 0.824 -0.455 -0.094
MLE 0.111+0.006 0869+0.102 Q100+0.010 Q939+0.052 Q116+0.011 1795+0.056 1033+ 0.044
c Mmean 0111 Q876 Q100 Q934 Q118 1791 1041
SD 0006 Q103 Q011 Q052 Q008 Q056 Q045
r - 0.868 -0.632 -0.292

Table 5.4: Frequentist and Bayesian parameter inferenexmdnential, gamma, Weibull and log-normal distributiomdtions for the
stable polarity interval duratior8 obtained for the combination$lc = 0.2 and7s = 0.1 (A), Mc = 0.3 and7s = 0.2 (B), Mc = 0.4 and
Ts = 0.8 (C). Maximum likelihood estimates (MLE) of the distribomi parameters are given in the first row of each threshold cwatibn
(errors refer to the 68% confidence limits of the relativeapagter estimate). Rows from 2 to 4 of each threshold combmést mean,
standard deviation (SD) and the Pearson correlatiofficantr of the posterior density of the filerent distribution parameters.
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Figure 5.17: Probability density functions (left colummdacumulative distributions
(right column) of the stable polarity interval (SPI) dugats obtained foMc = 0.2 and

Ts = 0.1 (case A, panels a and bjlc = 0.3 and7s = 0.2 (case B, panels ¢ and d),
Mc = 04 and7s = 0.8 (case C, panels e and f). The colored curves represent the
distribution fits passed at the 95% confidence level (seestiend insets).

diminished probability at its low end and several additieneents with longer durations
(Figurel5.17, panel e). The temporal filfes does not simply discard SPIs with a duration
lower than 08, but also merges adjacent events into longer stable pokpiichs thus
biasing the statistics (problem P4 of Secfion 5.3). Exptiaegamma and Weibull rate
parameterd become consequently lower compared to cases A and B (Tahleamma
and Weibull shape parameters are somewhat closer to cagddBder than the estimated
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values in case A as expected.

The log-normal distribution also provides a reasonableofithe data and, strictly
speaking, it cannot be rejected at the 5% significance lefeTablel5.5). Its probability
density is not monotonically decreasing as for the former distributions (Figur€ 5.17,
panel e). The log-normal may fit better the SPI shorter thaue?0r,, but at the price of
a heavier tail overestimating the actual contribution fribva data (Figure 5.17, panel f).
As a final remark note that two of the longer events in case @ haartificially enhanced
duration compared to cases A and B and almost reach the lb&§&sThese examples
reveal the severefect of the filtering algorithm on the SPI durations and thdgyeble
moderate choices for thilc and7 s values.

The frequentist analysis performed here has shown thatafahe exponential, gamma
and Weibull hypotheses can be rejected at the 5% signifidameewhen describing the
stable polarity interval durations in model M2. We therefogsort to a Bayesian approach
in order to quantify the relative likelihood between theestdd models (Sectidn 3.7).

Figure[5.18 summarizes the posterior probabilities (3. X3he distribution func-
tions for the SPI duratiorn® obtained for the combinations aflc and7 s explored. Only
distribution functions which passed the goodness-of4itstare shown (cf. Figufe 5]15).
Colored symbols denotefiierent distribution functions and the symbol sizes are dcale
with the corresponding posterior probability. For eachapagter combination, the rela-
tive sizes of the symbols correspond to the respective postedds ratios as given by
Equation[(3.106). Since no preference to any particuldridigion is given a priori, the
prior model probabilities i (3.106) are assumed to be equal

Prior probabilities of the distribution parameters areuassd to be uniform (see Sec-
tion[3.7.2). In particular, the exponential rate paramgteas been chosen to range from
the lowest possible rat&,, = 1/7, wherer is the total simulation time (Tab[e5.2), to
a maximum value oflmax = 1/7s. Priors for gamma and Weibull rate parameters range

Exponential Gamma Weibull Log-normal

ks 6.1 169 226 0
A app 0.5 125 1.6 0
P 03 945 5.2 0
ks 56.4 434 523 0.09
B aap 411 462 451 0.03
P 902 6.7 31 0
ks 532 813 821 6.2
C anp 57.9 819 802 5.3
P 857 9.3 5.0 0

Table 5.5: Kolmogorov-Smirnov p-valuescs, Anderson-Darling p-valuea,p and
Bayesian posterior model probabilities P foffeient distribution functions relative to
the stable polarity interval duratio#sobtained for the threshold combinatiofé: = 0.2
and7s = 0.1 (A), Mc = 0.3 and7s = 0.2 (B), Mc = 0.4 and7s = 0.8 (C). Values are
given in percentages.
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Figure 5.18: Bayesian posterior probabilities of the dstion functions[(3.103) for the
stable polarity interval duratiorf? obtained for the threshold valud4- and7s explored.
The tested distribution functions are marked witffetient colored symbols (top right
legend). Symbol sizes are scaled with the associated pgpeobability (bottom right
legend). Empty spaces occur where all the distributiontions have been rejected at
the 5% significance level (cf. Figufe 5]15). The dashed édjpthorizontal line marks
one (two) standard deviation(s) below the time-averagpdldimoment value. The gray
background highlights parameter combinations expectgi/eoreliable event definitions.

in the same interval. Shape parameters are mdfewlt to constrain a priori. Since
highly skewed distribution functions are not expected, esricted the uniform priors
of the gamma and Weibull shape parameters within the intédy&]. Priors for the log-
normal mearu and standard deviatiam are assumed to be uniform betweeri(, 10]
and (Q 5] respectively. Priors for the log-logistic scale paraenétand the shape parame-
tera vary in (Q 20] and (Q 10] respectively. Note that we defined similar prior ranges f
the two-parameters distribution functions. This choicaimizes the penalization factor
introduced by larger prior uncertainties (see Sedtior3.7.

For most of theMc and 75 combinations explored, the exponential distribution is
clearly preferred with posterior probabilities above 938ig(re[5.18). The gamma dis-
tribution appears as a second contender for certain thiceshtues. Strong evidences in
favor of the gamma model mainly occur where the event dedimstiare not reliable, that
is at particularly small or large combinations ®dfc and7s.

Figure[5.19 shows the Bayesian posterior densities of therential rate parameter
P(1]P, Exp) calculated from Equatiof (3J99) for the threshold corations B Mc =
03,7s = 0.2) and C Mc = 0.4, 7s = 0.8) selected above. The most likely values of
the rated are 0134+," and 01117, for B and C respectively and agree with the sample
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Figure 5.19: Bayesian posterior densities of the expoaknaie parametet for the stable
polarity interval duration$ obtained for the threshold combinations B{¢ = 0.3 and
Ts = 0.2, top panel) and CXlc = 0.4 and7s = 0.8, bottom panel). 68% and 95%
highest posterior density intervals are marked in blue addespectively.

means of the respective SPI durations as expected (cf. HgdB). Due to the higher
M and7s values of case C which provide longer SPIs, the posteridriloligion shifts
towards lower values of.

Since a uniform prior has been assumed, the posterior madleside with the ML
estimates oft because, as shown by Equatidn (3.97), the posterior distribis pro-
portional to the likelihood function. Moreover, the postedensities in Figure 5.19 are
practically identical to normal distributions as expedtethe asymptotic limit of the like-
lihood function (see Sectidn 3.5.3). The number of simalatelarity intervals is thus
suficient to guarantee the robustness of the statistical eesliawing random samples
from P | P, Exp) permits to calculate its posterior mean and standarhtien. These
values are reported in Talile 5.4 and completely specify diséepior distributions.

Bayesian credibility intervals of 68% and 95% around the enace marked in blue
and red respectively in Figuie 5]19. Bayesian inferencenjgerto conclude that the
true value of2 lies, with 68% probability, within the intervals [028 0.140]r,* and
[0.1050.117]7;* for the threshold combinations B and C respectively.

Figure[5.20 shows the posterior densities of the gamma anbuWdistribution pa-
rameters, namely R(1|#, Gamma) and ¥ 1| P, Weibull), for the three threshold com-
binations selected above. These posterior densities ayecl@se to bivariate normal
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Figure 5.20: Bayesian posterior densities of gamma (léftroa) and Weibull (right col-
umn) distribution parameters for the stable polarity madurations” obtained for the
threshold combinationd: = 0.2 and7s = 0.1 (case A, panels a and bjlc = 0.3
and7s = 0.2 (case B, panels c and dy{c = 0.4 and7s = 0.8 (case C, panels e and f).
Iso-contour lines mark the 68%, 95% and®% highest posterior density intervals.

distributions. As already pointed out before, this indésathat the statistic is well con-
strained in terms of the events number. The gamma paramnietad A are positively
correlated for all the threshold combinations selectedfei5.20, panels a, c and e) The
respective correlation céiicients are reported in Table 5.4 and reach values as high as
80%.

The threshold combination A, dominated by short polaritgivals, shows a narrow
gamma posterior density significantly away fréma 1 where the distribution coincides
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5 Results from geodynamo simulations

with the exponential. The fact thatl®Q | £, Gamma) is strongly peaked around its mode
Is a direct consequence of the large number of polarity wvateravailable in this case
(Np = 682). Having a model posterior probability of about 94%, ¢kielence in favor of
the gamma distribution is positive.

Larger values ok become more likely when increasingc and7s to the moderate
threshold combination B (Figufe 5120, panel c). In paracuthe 68% highest posterior
credibility interval now includek = 1. This is confirmed by the positive evidence in
favor of the exponential distribution which presents a post probability of about 90%,
while the gamma model reaches only 7% (Tdblé 5.5). The aditidegree of freedom
introduced by the second parameter of the gamma distribigiaot justified by a Sfti-
cient gain in the data likelihood for this threshold combioi. The posterior density of
the gamma parameters relative to case C (Figuré 5.20, ppoaeVvers a broad range kf
values and the 68% credibility interval still includes= 1. The correlation between the
two distribution parameters also remains higla-(0.86).

Posterior densities of the Weibull parameterand A are illustrated in the right col-
umn of Figurd 5.20 for the three combinations/df. and7s selected. Contrary to the
gamma distribution, Weibull parameters are negativelyatated with somewhat lower
amplitudes (cf. Tablg@Bl4). Fa < 1, increasing the value of results in a steeper
monotonically decreasing PDF (Figurel3.7). Since the Wkrhte A tends to decrease
in order to fit the data for larges, the two distribution parameters become negatively
correlated. Bivariate normal distributions only partfadipproximate the posterior densi-
ties PE 2| P, Weibull). Sample means, standard deviations and coroelabétficients of
P(s, 1| P, Weibull) are reported in Table'5.4.

Contrary to the posterior densities of the gamma paramd&ést | £, Weibull) mildly
shifts towards larger values of the shape paranmstdren going from the threshold com-
bination A to B. The values = 1 is within the 68% credibility interval in the latter case,
in agreement with the positive evidence in favor of the exgmiial model found. The pos-
terior model probability for the Weibull distribution reimna quite low for all the selected
cases with values up to 5%. Since the priors used for the gaanich&Veibull parameters
are the same, the data likelihood must account for the obdafigcrepancy in the poste-
rior model probabilities. We can therefore conclude thatgdamma distribution fits the
SPI durations better than the Weibull for the combinatidndfa and7s explored.

The impact of diferent prior choices for the distribution parameters isused in
the following section. The results discussed above have fmeend to vary only mildly
with the specific prior choice. This means that the postgobabilities are dominated
by the data likelihood (see Sectibn 317.2) and thereforetitistical inferences obtained
are robust.

In conclusion, our Bayesian analysis shows a strong evaerfavor of exponentially
distributed stable polarity interval durations in dynamodal M2 over a wide range of
Mc and7s combinations. Statistically significant deviations frome exponential distri-
bution in favor of a gamma model have been found only at todlsand too large thresh-
old values where the event definitions are less reliable.ughaot rigorously tested, it
seems reasonable to assume that reversals are indepewnelatstia our numerical sim-
ulations. A Poisson process (Sectlon 3.4.2) therefore destribes the occurrence of
reversals in model M2. The Poisson process is the only onengitihe selected random
processes described by théfdient distribution functions tested, to be memoryless (see
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5.4 Distribution of the durations of stable polarity intels, reversals and excursions

Sectiori 3.4.R). This means that, once the dynamo establisleéther stable field polarity,
a reversal can start at any time always with the same liketiho

5.4.1.1 Impact of the prior choice

The previous statistical analysis assumed uniform priorgte distribution parameters.
In order to test the robustness of the results presentedealba analyzed the impact
of different prior choices on the posterior densities of the tistion parameters. Here
the discussion is limited to the SPI durations obtained erthreshold combination C
(Mc = 0.4 and7s = 0.8) and to the gamma distribution as a representative exariple
in the analysis presented above, we fix in the following therdor the rate parameter
A to a uniform distribution within 1r and 1/7s, wherer is the total simulation time in
units of the magnetic éusion time.

Since the shape parametelis not expected to assume large values which would
result in highly skewed distribution functions, other r@aable choices for the prior
n(k| Gamma) are monotonically decreasing distributions. Adrhedecreasing and a
half normal prior have been selected kog (0, 5] (Figurel5.21, panel a).

Panel b of Figure 5.21 illustrates, for each prior choice rttarginal posterior density
of the gamma shape parameier

f:fl Pk, 1| P, Gammay
Pk|P, Gamma)= P@®| Gamma) ’

(5.6)

where PP | Gamma) is the evidencé (3]194) of the SPI duratiBhsThe dfect of the
prior on the posterior distribution is rather mild and mginbnsists in a shift towards
lower k values in the direction suggested by the prior. The marginaterior densities
are practically identical to normal distributions, thusfioning the dominance of the data
likelihood on the priors. This test has been repeated foditfierent distribution functions
selected and for the SPI durations fronffelient combinations oM and7s obtaining
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Figure 5.21:Panel a Uniform (dashed curve), triangular (dotted curve) and hatmal
(solid curve) prior density functions used for the gammapshaarametek € (0,5]. The
half normal prior has a half width at half maximum kf= 0.8. Panel b Marginal
posterior densities df (5.6) for the three selected prior distributions and for stetble
polarity intervalsP obtained for the combinatioMc = 0.4,7s = 0.8.
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5 Results from geodynamo simulations

similar results. This finally demonstrates the independ@four statistical results on the
specific prior choice.

5.4.2 Durations of reversals

This section focuses on the distribution of the reversahtiomsR obtained for the dier-
ent combinations ofMc and7s explored. Figur€5.22 presents the results of the distri-
bution fits of reversal durations. Only fits with KS and AD pues larger than 5% are
shown. None of the proposed distribution functions can [ezted at the 5% significance
level for the threshold combinations explored.

For Mc < 0.2, mainly gamma and Weibull distributions fit the reversatadions.
Small Mc and7s values promote shorter events, thus favoring the rapid toonzally
decreasing gamma and Weibull PDFs with shape parametees than one. FoMc =
0.2 and largef/'s values, shorter stable polarity intervals are discardgdtteer with the
associated reversals (problem P4 of Sedtioh 5.3). Thisfieedhe low end of the reversal
duration PDF in favor of an enhanced probability for intediage durations. Since the
distribution profiles decrease less rapidly, the expoaéoén fit the reversal durations.

For Mc > 0.3, skewed bell-shaped profiles of gamma, Weibull, log-nd@md log-
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Figure 5.22: Anderson-Darling (AD) p-values of the distitibn fits of the reversal du-
rationsR obtained for the threshold valu@d: and7s explored. The tested distribution
functions are marked with fierent colored symbols (top right legend). Symbol sizes are
scaled with the associated AD p-value (bottom right legeB&t)pty spaces occur where
all the distribution functions can be rejected at the 5%iicance level. The dashed (dot-
ted) horizontal line marks one (two) standard deviatiobé&pw the time-averaged dipole
moment value. The gray background highlights parametebaaations expected to give
reliable event definitions.
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logistic distributions fit theR sequences at the 95% confidence level. The best-fitting
log-normal and log-logistic probability densities showgktly higher modes compared
to the data (Figur€5.23, panel a). shows an exampleMgr = 0.3 and7s = 0.2.
On the contrary, gamma and Weibull PDFs increase fastemadrloeversal durations
and underestimate the probabilities around the mode. @Qeraptantile plots show the
reversal durations against the distribution quantileg{fé[5.28, panel b) and reveal that
the gamma distribution provides the closest overall mai¢he data with the highest AD
p-value ofapap = 0.57. The Weibull distribution severely underestimates tfubabilities
around the mode (Figuke 5]23, panel a) which results in arléiep-value ofaap = 0.07.
While gamma and Weibull distributions provide a good dgxin of the longer reversal
durations, log-normal and log-logistic tend to overestarsich probabilities due to their
heavy tails (Figure’5.23, panel b). The latter two distiitmos, however, cannot be rejected
at the 5% significance level.

Though the p-value based analysis shows no clear prefefenasy particular model,
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Figure 5.23: Panel a Probability density of the reversal duratiofs obtained for
Mc = 0.3 and7s = 0.2 and relative best-fitting distribution functions (see kbgend
inset). Panel b Quantile-quantile plot comparing the reversal duratif@ngbtained for
the threshold combination given above with th#etient best-fitting distribution functions
(see the legend inset).
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Figure 5.24: Bayesian posterior probabilities of the dsition functions[(3.103) for the
reversal duration® obtained for the threshold valuéd. and7s explored. The tested
distribution functions are marked withftirent colored symbols (top right legend). Sym-
bol sizes are scaled with the associated posterior pratyalnbttom right legend). Empty
spaces occur where all the distribution functions have bejected at the 5% significance
level (cf. Figurd5.2R). The dashed (dotted) horizonta himarks one (two) standard devi-
ation(s) below the time-averaged dipole moment value. Thg background highlights
parameter combinations expected to give reliable eventitefis.

the fact that all best-fitting PDFs are bell-shaped and pesjtskewed represents a robust
feature. Very short reversal transitions are indeed ngotMezly since these events cannot
happen instantaneously. Once a polarity transition hatedtahe dipole field requires a

finite time to decay and build up again into a new stable dipadafiguration.

Bayesian posterior probabilities permit to assess theiveltkelihood of the statis-
tical models tested. Figute 5124 shows the posterior piibithed of each model for the
threshold combinations explored. A definitive evidencewof of the gamma distribution
is found for the majority ofMc and7s values. The exponential distribution is, however,
the preferred model with posterior probabilities above $6%Mc = 0.2 and7s > 0.7.
Moreover, the log-normal distribution is promoted for lkangalues of the dipole moment
threshold, namely foMc > 0.5, and for moderaté&s values.

Since varying the dipole moment threshold directffeets the reversal duratiom
we studied the transition from low to highlc values in more detail fof s = 0.2. Figure
displays the distributions of reversal durations drerelative best-fitting gamma
PDFs for7s = 0.2 and three dierent Mc values. The gamma probability densities
broaden when increasinilc due to the systematically longer reversal durations defined
(problem P1 of Section 8.3). Figuke 5126 shows significamiatians in the posterior
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Figure 5.25: Distributions of reversal duratioRbtained for a stable periofs = 0.2
and three dterent values of the dipole moment threshai (see the legend inset). Col-
ored curves represent the respective best-fitting gamnrébdisons.

density of the gamma distribution parameterk, R(R, Gamma) for the thredc values
selected. When increasinylc, Pk, 1| R, Gamma) shifts towards larger values of the
shape parametde and lower values of the raté Differences in the gamma PDFs of
Figurd5.Z2b forMc = 0.2 andMc = 0.3 are mainly due to the variation in the most likely
value ofk which increases from.29 + 0.07 to 203 + 0.11 (Figurd 5.26, panels a and b).
The rated stays practically constant between the two cases. An additbias towards
lower reversal durations is introduced by problem P2 (sgar€i5.11) when considering
the low dipole moment thresholiflc = 0.2.

Increasing the critical dipole moment furtherAdc = 0.6 leads to significantly longer
reversals with a mean duration ab@r,. The posterior density R(1| R, Gamma) is con-
sequently shifted towards higher values of the shape paeanvéh the most likely value
of k which equals B8 (cf. Figure[5.26, panel c). The rate at the posterior mdsie a
significantly decreases tb= 3.257;1. Problem P3 (Figure 5.11) is the main cause of the
observed variations in the gamma distribution parameféns.impact of problem P3 on
the reversal durations is significantly less severe at midkies ofMc. The best-fitting
gamma PDF forMc = 0.6 (Figure[5.25, blue curve) is largelyftérent from the cases
with milder Mc values. The posterior probability of the gamma model P(GanR) di-
minishes from 9®% for Mc = 0.3 to a milder 318% for Mc = 0.6. The posterior odds
ratio (3.106) of the log-normal to the gamma distribution tiee latter Mc value is of
about 2, thus a mild evidence in favor of the former model is1b(cf. also Figurg5.24).
The paucity of short reversal durations in tRelistribution for Mc = 0.6 and its some-
what more pronounced tail allow the log-normal to bettecdbs the data. However, this
preference is likely an artifact of problem P3. Figure b.B@vss the posterior density of
the log-normal parametersando. Since a bivariate normal distribution closely approx-
imates this posterior density, the asymptotic limit of tteadlikelihood is reached even
though the number of reversals is not as large as for sm&dleralues. The log-normal
distribution parameters are practically uncorrelatedestheir correlation caicient is as
low as-0.012.
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Figure 5.26: Bayesian posterior densities of the gammailalision parameters for the
reversal duration® obtained forMc = 0.2 (panel a) Mc = 0.3 (panel b) andVc = 0.6
(panel ¢). and a fixed stable periodf$ = 0.2. Iso-contour lines represent the 68%, 95%
and 997% highest posterior density intervals.

Larger values of7 s also impact the distribution of reversal durations esplycat
moderate values of the dipole moment threshdld. For example, a transition from a
gamma to an exponential distribution is observedAd¢ = 0.2 in Figure[5.24. In or-
der to study such transition, we selected the thfeealues of 02, 0.5 and 08. Figure
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Figure 5.27: Bayesian posterior density of the log-norndtidbution parameteng ando
for the reversal duratiorn® obtained for the threshold combinatidric = 0.6, 75 = 0.2.
Iso-contour lines represent the 68%, 95% and 99highest posterior density intervals.

shows time series of the dipole tilt and dipole momeneézh of the selected cases,
while the respective distributions of reversal duratioresdepicted in Figurle 5.29 together
with the distribution functions having the highest Bayagiasterior probability. Increas-

ing 7's, the distribution functions broaden as expected and sh@versals become less

likely.

Since Mc is relatively low, small dipole moment variations in proxiynof reversal
transitions likely define excursions (problem P2 of FiguEly. This situation frequently
occurs with the lowests value of 02 and a typical example can be found in Figure 5.28
(panel a) at the time~ 28967,. When increasings to 0.5, the associated reversal and
grand excursion merge into a longer reversal (Figurel 5.28elb). The short end of the
reversal duration distribution is thus depopulated whikeimediate and long durations
become more likely. Excursions should be typically regdrae part of the reversal tran-
sition when the dipole moment does not recover significamtigugh between the two
events. However, the combination of sma&dl- and large7s overemphasizes thidtect.
The posterior odds ratig (3.106) of the gamma to the expdaalatistribution relative to
the combinationMc = 0.2 and7s = 0.5 is 13 and therefore the two models are almost
equally likely. The best-fitting gamma distribution showgmd agreement with the data
as expected (Figute 529, blue curve).

The marginal posterior density of the gamma shape paratketer

le(l) Pk, 1| R, Gammaj

PKIR, Gamma)= P(R| Gamma)

(5.7)

points out that the valuk = 1 for which the gamma coincides with the exponential
is excluded from the 95% credibility region fars = 0.5 (Figure[5.3D, panel a). This
explains the very mild preference of the gamma distributieer the exponential by the
Bayesian analysis in this case. A comparison of the posteéeiosities F(, 1| R, Gamma)
for the combinationVc = 0.2 and7s = 0.2 (Figurd5.2b, panel a) and farlc = 0.2 and
7s = 0.5 (Figurd5.3D, panel c) reveals that the shape pararkstaghtly shifts towards
one and the rate significantly decreases when increasifg

As T increases further to0.8, 'proper’ SPIs are discarded and considered as long
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Figure 5.28: Hect of increasing the stable perig@d on the counting of reversals and
grand excursions. Time series of dipole tilt and dipole monae shown in the upper
and lower sub-panels respectively i6g = 0.2 (panel a)7s = 0.5 (panel b) and’s =
0.8 (panel c). The dipole moment threshold is fixedd = 0.2. Red and orange
background colors highlight reversals and grand excussiespectively, while opposite
stable polarities are marked in white and green.

grand excursions (problem P4 of Figlre 5.11). A typical eplenof such behavior is
shown in Figuré 5.28 (panel c) at the tirhe: 2883r,. Since reversals associated with
the discarded SPIs are more likely short events, the digtoib of reversal durations is
more severelyféected at its low end (cf. Figute 5]29). The exponential itigtion can
therefore describe the reversal durations and, having pasprobability of 95%, the
evidence in favor of this model is high. The best-fitting ex@otial PDF remarkably
agrees with the data as expected (red curve in Figurd 5.2B gamma distribution
achieves a posterior probability as modest as 3%. Conwdhetthreshold valugs = 0.5
analyzed before, the marginal posterior densitg[6f7 for7s = 0.8 shows that the value
k = 1 lies in the 68% credibility interval (Figufe 5130, panel dhe Bayesian analysis
favors the exponential distribution which achieves the fthvenly one rather than two
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Figure 5.29: Hect of increasing the stable perid@ (see the legend inset for the ex-
plored values) on the distribution of reversal duratighsbtained forMc = 0.2. Color
shaded areas mark the 95% confidence intervals of the binseibdtions. Solid curves
represent the best-fitting gamniag(= 0.2 and7s = 0.5) and exponential’{s = 0.8)
distributions.
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Figure 5.30: Posterior densities of the gamma distribupiarameter& and A (bottom
panels) and associated marginal posterior densities afthpe parametdr (5.7) (top pan-
els) for the reversal duratios®&obtained forMc = 0.2 and a stable periofis = 0.5 (left
panels) and’s = 0.8 (right panels). Blue and red areas mark 68% and 95% crégibil
intervals respectively (panels a and b), while the iso-@onlines represent the 68%, 95%
and 997% highest posterior density intervals (panels ¢ and d).
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5 Results from geodynamo simulations

parameters.

Having attributed the transitions from gamma to log-norif@iponential) distribu-
tions to the too largdc (7s) values, we can firmly conclude that the gamma distribution
is a robust model for the description of reversal duratiorbk veliable threshold values.

5.4.3 Durations of grand excursions

The distributions of the grand excursion duratiéghshow strong similarities with those
obtained for the reversal duratioRdn the previous section. Figure 5131 presents the AD
p-values of the dferent distribution fits of the grand excursion duration ot®d for the
threshold combinations explored.

For Mc < 0.2, mainly gamma and Weibull distributions fit the data at tB&cSconfi-
dence level. An analogous situation has been observedversa durations at lowMc
values (Figuré_5.22). Signatures for an exponential fit peduMc = 0.2 for few T
values. Contrary to reversal durations, there is no tramstbwards the exponential at
larger7s values. ForMc > 0.3, only the exponential model can be rejected at the given
significance level while the remaining distributions areaateptable.
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Figure 5.31: Anderson-Darling (AD) p-values of the disaitibn fits of the excursion
durationsS obtained for the threshold valugd: and7s explored. The tested distribution
functions are marked with fierent colored symbols (top right legend). Symbol sizes are
scaled with the associated AD p-value (bottom right legeB&t)pty spaces occur where
all the distribution functions can be rejected at the 5% ificance level. The dashed
(dotted) horizontal line marks one (two) standard deviggd below the time-averaged
dipole moment value. The gray background highlights patan@mmbinations expected
to give reliable event definitions.
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Figure 5.32:Panel a Probability density of the excursion duratiafi®btained forM¢ =
0.3 and7s = 0.2 and relative best-fitting distribution functions (see tbgend inset).
Panel b Quantile-quantile plot comparing the excursion duratiénobtained for the
threshold combination given above with thetdrent best-fitting distribution functions
(see the legend inset).

Figure[5.32 (panel a) exhibits the histogram of the grandieskan durations for the
combinationMc = 0.3 and7s = 0.2 with the relative best-fitting distribution functions.
As for reversal durations, it is ficult to assess which model better describes the data.
Log-normal and log-logistic PDFs seem to closely descrifgerapid increase at small
durations. On the other hand, gamma and Weibull distribstizetter describe the data
at intermediate excursion durations, while the log-noramal log-logistic underestimate
the respective probabilities. Excursions longer than tlagmetic difusion timer, are
poorly captured by all the ffierent models (Figure 5.82, panel b). The log-normal and
log-logistic distributions, due to their heavy tails, tendverestimate the probabilities of
occurrence of the longer events, while gamma and Weibulétexiimate the respective
likelihoods.

Since four diferent models fit the excursion durations obtained for thalkd thresh-
old combinations, no particular model can be selected irfréuentist approach. We
therefore computed the Bayesian posterior model proliasilior the threshold combi-
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Figure 5.33: Bayesian posterior probabilities of the dsition functions[(3.103) for the
excursion duration§& obtained for the threshold valudd: and7s explored. The tested
distribution functions are marked withftirent colored symbols (top right legend). Sym-
bol sizes are scaled with the associated posterior pratyalnbttom right legend). Empty
spaces occur where all the distribution functions have bejected at the 5% significance
level (cf. Figurd5.31). The dashed (dotted) horizonta imarks one (two) standard devi-
ation(s) below the time-averaged dipole moment value. Thg background highlights
parameter combinations expected to give reliable eventitefis.

nations explored and the results are displayed in Figur8. 5The gamma distribution
is the most likely model for the vast majority dflc and7s values. In particular, pos-
terior gamma probabilities larger than 95% are obtainedrfermediate values oM
and7s. Variations of the posterior model probabilities in Figlr&3 seem also to be
similar to those obtained for reversal durations (cf. Fedbi24). For example, a strong
evidence in favor of the exponential distribution is ack@vVor Mc = 0.2 and largef/'s
values. Moreover, increasingylc at low 75 values renders the log-normal distribution
more likely. The posterior odds ratids (3.106) of the logmal to the gamma distribu-
tion are, however, mildly larger than one only for the conalbions of7s = 0.1 and
moderate to highMc values and for few other extreme parameter combinationsrerh
is no decisive evidence in favor of the log-normal distnbatfor grand excursion dura-
tions contrary to reversal durations. We refer to SediidnZfor a detailed explanation
of the type of changes experienced by the distribution @®fithen increasing the dipole
moment thresholdM ¢ or the stable perio@s. As will be demonstrated in the following
section, the estimated distribution parameters are algosmnilar to those obtained for
reversal durations.

We can conclude that the grand excursion durat©®nsimilarly to the reversal du-
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5.4 Distribution of the durations of stable polarity intels, reversals and excursions

rationsR, are gamma distributed with shape paramekers 1. The question whether
reversals and excursions are actually equivalent evetiteevaddressed in the following
section.

5.4.4 Equivalence of reversals and grand excursions

In the previous sections, we demonstrated that both reh@usationsR and grand excur-
sion durationsS from the dynamo model M2 are best described by a gamma distib
Strong similarities in the variation of the estimated digttion parameters obtained for
the combinations oM and7s explored may also suggest that reversals and grand ex-
cursions are equivalent events. We further support thistingsis in the following.
Figure[5.34 displays the number of grand excursidasggainst the number of rever-
salsNg for each combination oMc and7s explored. Filled circles represent combina-
tions of Mc and7s where the event definitions are reliable (see Se¢fionl5ahd)they
therefore belong to the region highlighted in gray in Figi®e22 and 5.31. The open
symbols in Figuré 5.34 mark threshold combinations outsigeh region. The number
of grand excursions seems to be systematically larger ore¢hable event definitions.
The largest dference is of 15% in favor of grand excursions and is obtaiedHe
combinationMc = 0.3, 75 = 0.1. A linear least-squares fit of the events number pro-
videsNg = —-91 + 1.27Ng (red line in Figurd 5.34). This fierence can be attributed
to the choice of the lower dipole moment threshold, used tmeerand excursions, of
ME = 0.2 (Sectiori5.3]1). Note that using a lower valuedd§ would reduceNe.
Similarities between reversals and grand excursions cduartier assessed by com-
paring the estimated gamma distribution parameters ofbetelurations (Sections 5.4.2
and5.4.B). Figure5.35 shows the maximum likelihood edéaf the gamma distribu-
tion parameters for the reversal duratighagainst those obtained for the grand excursion
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Figure 5.34: Number of grand excursioNs against number of reversalg obtained
for all the diferent threshold combination®lc and7s explored. Filled symbols mark
the threshold combinations with reliable event definitiomiile open symbols refer to a
biased event counting (see Section 5.4.1). The grey bagkdrtine indicatedNg = N,
while the linear least-squares fit of the filled points is shomred.
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Figure 5.35: Estimated gamma distribution parameterspskan panel a and ratg in
panel b) for reversal durations (subscriptand grand excursion durations (subscgpt
Each plotted symbol refers to a combinatiomddg and7 s explored. Error bars represent
the 68% confidence intervals of the relative estimate. Tlg gackground line in panel
a (panel b) indicatek: = kg (1 = Ar). Linear least-squares fits are shown in red with
the color shaded backgrounds representing the respe&¥ecnfidence intervals.

durations&. Only combinations ofMc and7s values where the gamma distribution fits
both type of events at the 95% confidence level are shown. &aubol in Figurd 5.35
refers to a threshold combination with reliable event defins. Horizontal and vertical
error bars show standard errors, i.e. the 68% confidenceva$ecalculated fron{ (3.82),
of the relative estimates. Weighted linear least-squatesife displayed in red with the
associated 95% confidence intervals.

The estimated gamma shape parameters for revégssgem to be slightly larger than
those of grand excursiomks (Figure[5.35, panel a). The linear least-squares fit pravide
ke ~ (0.92+0.03) kg thus confirming the presumed trend. This estimate is, howpaely
biased by the large scatter introduced by the threshold o@tibns with the higheMc
and7 s values which have the larger errors due to their small nurabevents. The line
ke = kg lies indeed within the 95% confidence interval at lower shag@ameter values
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Figure 5.36: Distribution of the reversal duratioRsand grand excursion duratiods
obtained for the threshold combinatidni: = 0.3, 75 = 0.2.

where the statistics are well constrained.

The estimated gamma rate parameters for the durations efsadg.lz and grand
excursionsig seem to mildly favor the latter type of events (Figlire 5.3nmed b). The
least-squares fit providels: ~ (1.04 + 0.03) Ar, thus confirming the agreement between
the estimated rates. The lower shape parameter values eisditiewhat larger rates of
grand excursions as compared to reversals are consisthrttwihigher number of grand
excursions identified in the simulation run.

For the sake of completeness, the distributions of revarsélgrand excursion dura-
tions for the combinatioMc = 0.3,7s = 0.2 is shown in Figure5.36 as an example. The
distributions of the two event types are very similar as eige The higher number of
excursions at lower durations and the larger mean reveusatidn is fitted with gamma
distributions having a slightly higher rate in favor of exsions (il = 4.68 + 0.28 and
Ar = 4.43 + 0.28). Moreover, the narrower grand excursion distributicofife results in
a somewhat lower estimated shage £ 1.88+ 0.10 andkg = 2.03+ 0.11).

We can conclude that the statisticalfdrences between reversals and grand excur-
sions in model M2 do not support a clear separation betweitwth event types. The
similarities found in the respective events numbers impét the dynamo, after entering
a transitional period, recovers its dipole field in the sarmokafity as before (excursion)
or in the opposite one (reversal) with equal chance. Mongove found analogous esti-
mates of the gamma distribution parameters relative to ggeehof event in a wide range
of threshold combinations. This implies that reversals girashd excursions have a sim-
ilar temporal dynamics during the respective low dipolemsity phases. It is important
to recall that only grand excursions have been considerszl hethe constraint on the
dipole strength during excursionsf€) is relaxed, the so-called dipole dips are included
(see Sectionh513). In such situation, ‘excursion-like'régeare much more numerous than
reversals. Taking into account all excursions gives esémaf the gamma shape param-
eters significantly lower than those of reversals, while rrameters are lower for the
latter type of events as expected.
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5 Results from geodynamo simulations

5.5 Stable polarity intervals from a paleomagnetic point

of view
Paleomagnetic reversal chronologies are based exclysime¢he polarity of the magnetic
field (see Sectioh 1.4.4). Contrary to the analysis predesib®ve, bounding reversals
therefore contribute to the duration of each stable pglapibch. A separation of reversal
and SPI durations based on the dipole moment would only bglgedor the few most
recent events where intensity estimates are actuallyadtail However, we can mimic

the paleomagnetic data set by defining polarity epochs whudhde half of the duration
of each bounding reversal:

AtR AtR MR
C= {—' + At + J} . (5.8)
2 | 2 )ia

For consistency with the nomenclature adopted in paleostagn, we refer hereafter to
the polarity epochg& to aschrons

Similarly to the analysis of the SPIs presented above, wedfiift truncated distri-
bution functions by7s to the chrong. Figurel5.3V summarizes the results of the distri-
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Figure 5.37: Anderson-Darling (AD) p-values of the disttibn fits of the chron dura-
tions C obtained for the threshold valuéglc and7s explored. The tested distribution
functions are marked with fierent colored symbols (top right legend). Symbol sizes are
scaled with the associated AD p-value (bottom right lege&t)pty spaces occur where
all the distribution functions can be rejected at the 5%ificance level. The dashed (dot-
ted) horizontal line marks one (two) standard deviatiobé&yw the time-averaged dipole
moment value. The gray background highlights parametebaaations expected to give
reliable event definitions.
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5.5 Stable polarity intervals from a paleomagnetic pointiefv

bution fits for the threshold combinations Mc and7s explored, while the associated
posterior model probabilities are reported in Figure b:3& statistical properties of the
chron durationg’ significantly diter from those obtained for the exponentially distributed
SPI durationg (cf. Figured5.15 and 5.118). In particular, the posteriodeigrobabil-
ities uncover gradual transitions toward#elient statistical models. Positive and strong
evidences in favor of the exponential distribution are fbanly for low values ofMc and

Ts where the event definitions are less reliable. Positiveesnads in favor of the gamma
distribution are obtained for moderad: and intermediat@s values. The evidence in
favor of the log-normal distribution becomes progressgitatger when increasingc.
Moreover, the log-normal and log-logistic distributionstematically reach comparable
posterior probabilities when increasifig.

To gain insight into the féect of reversal durations on the polarity intervals stitist
we proceed with a closer comparison of the distributionfef$PIsP and the chrong
for the threshold combinations AMc = 0.2,7s = 0.1) and B Mc = 0.3, 7s = 0.2)
discussed in Sectidn 5.4.1. The posterior densities of dinenga distribution parameters
k and2 for the threshold combinations selected are presentedjur€b.39 (left panels).
Consider, in first place, the threshold combination A. A cangon with the respective
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Figure 5.38: Bayesian posterior probabilities of the dsitiion functions[(3.103) for the
chron durationgC obtained for the threshold valueelc and 75 explored. The tested
distribution functions are marked withfterent colored symbols (top right legend). Sym-
bol sizes are scaled with the associated posterior protyaltnbttom right legend). Empty
spaces occur where all the distribution functions have begjented at the 5% significance
level (cf. Figuré 5.37). The dashed (dotted) horizontad limarks one (two) standard devi-
ation(s) below the time-averaged dipole moment value. Thg Qackground highlights
parameter combinations expected to give reliable eventitefis.
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Figure 5.39:Left panels Posterior densities of the gamma distribution paramétersd
A for the chrongC obtained for the threshold combination A = 0.2, 7s = 0.1) and
B (Mc = 0.3,7s = 0.2) are shown in panels a and c respectively. Iso-contous limark
the 68%, 95% and 99% highest posterior density intervals respectivéyght panels
Probability density functions of the durations of the SPland chrong® are shown for
the two threshold combinations A and B in panels b and d reisqebc Colored curves
present the distribution fits with the highest posterior eiguobabilities (cf. Figures 5.18
and’5.38).

posterior density for the SPI durationskP{|#, Gamma) (Figuré€ 5.20, panel a) shows
that the shape parametiersignificantly shifts towards larger values when the reversa
durations are taken into account, while the rateemains mostly unchanged. The 68%
highest posterior density interval ofl2 | R, Gamma) includek = 1 (Figureg 5.3D, panel
a), in agreement with a posterior model probability for thpanential distribution as high
as 92%. The combination of SPIs and reversals evidently ptesma distribution with
relatively fewer short intervals. It can reasonably be as=ilithat the durations of the SPIs
and their bounding reversals are independent. Short or$étg are equally likely paired
with fast or slow reversals. Since the relativieet is larger for the short than for the long
SPIs, the pairing tends to depopulate the short duratiometigk distribution of the SPIs
(Figure[5.39, panel b). This naturally favors the less stimgeasing exponential PDF.
The posterior odds rati@ (3.106) of the gamma to the expdaaletistributions reduces
indeed from a value larger than 300, obtained for the SPItduns®, to about ¥20 for
the respective chron duratiogs

The threshold combination B, with exponentially distrgditSPIs, shows chrorn®
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5.5 Stable polarity intervals from a paleomagnetic pointiefv

best described by a gamma distribution with shkpe 1, once more because the short
duration end is depopulated (cf. Figlire 5.39, panel d).Heurmbore, the shape parameter
valuek = 1 is excluded from the 99% highest posterior density interval (Figlire 5.39,
panel c). However, the posterior model probability of theng@a distribution is 60%
and does not decisively favors this model compared to therexqtial which achieves a
probability of 33%.

As already noticed above, the log-normal and log-logisstrdbutions systematically
achieve the largest posterior probabilities among thetsdenodels when increasifng.
Figure[5.40 illustrates theffect of progressively increasirfs on the event definitions
for a fixed critical dipole moment oM = 0.3. The stable periods varies from 02
(corresponding to the threshold combination B analyzed &bt the moderate value of
0.4 and finally reaches the high value aB0 The distributions of the respective chron
durationsC are shown in the right panels of Figure 3.40 together withdiséribution
fits achieving the largest posterior probabilities (cf. F&5.38). Since the threshold
combination B seems to give the more reliable event defimstid is taken as a reference
case here. A% s increases to.@, the event definitions become questionable in some cases.
In particular, certain 'proper’ stable polarity intervalse regarded as grand excursions
(see, e.g., the events occurring at times 284&nd 2985, in Figure[5.40) and this has
been identified as problem P4 in Secfiod 5.3. Since thelikelil of short chron durations
necessarily diminishes compared to the threshold conmbmstvith milder7 s values, the
evidence in favor of the gamma distribution becomes pasitiith a posterior probability
of P(Gammad C) = 0.87 (see also Figuie 5.138).

When further increasin@s to 0.9, SPIs characterized by a large recovery in dipole in-
tensity are iected by problem P4 (see, e.g., the events occurring at @9@8r, and
30007, in Figure[5.40). Moreover, as discussed in Secfion b.42%rsal durations
become unreasonably long. The likelihood for longer chrsniherefore strongly en-
hanced and leads to afi@irent statistic which favors the (heavy-tailed) log-nararad
log-logistic distribution functions (Figurie 5.29, pangl fThe log-logistic achieves the
largest posterior probability with P(LogLogisti€) = 0.76, while the log-normal has
P(LogNormal|C) = 0.17. Posterior odds ratios of the latter two models to the gamm
distribution are 1® and 24 respectively. Therefore, the evidence in favor of the log-
logistic and log-normal distributions is positive.

Neglecting shorter stable polarity intervals using largeralues mimics the unavoid-
able problem of paleomagnetic reversal chronologies irsimgsshorter geomagnetic
chrons (see Sectidn 1.4.5). Large values may therefore yield distributions which can
be more meaningfully compared with paleomagnetic obsemnvabf field polarities. In
Chaptef# we demonstrated that log-normal and log-logissicibutions best describe the
paleomagnetic chron durations as recorded by the mosttrgeemagnetic polarity time
scales. These results confirm previous findings obtainatyudifferent paleomagnetic
reversal chronologies (see, elg., Ryan an 200feiakov and Fabian 2012).
The numerical simulations suggest thdtelient contributions may lead to such statistics.
The first contribution reflects the likelihood of reversatomences which has been found
to be well-described by a Poisson process (Se€fion]5.4akingd into account the finite
reversal durations leads to gamma distributed ch¢ow#th shape parameteks> 1. This
introduces a period of inhibition immediately followingeversal which reflects the time
required to rebuild a stable dipole field with opposite pityarHeavy-tailed distribution
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5 Results from geodynamo simulations

functions, such as the log-normal and the log-logistic,lfin@sult when artificially ne-
glecting shorter SPIs.
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6 Conclusions and outlook

Polarity reversals are the most striking features of thelEadipolar magnetic field evo-
lution but still remain poorly understood phenomena. $elisistent numerical models
of the geodynamo successfully show stochastic dipole feldrsals in a narrow range
of their input parameters. Detailed studies of polarityhsiions in such models only
partially helped in determining the fluid dynamic mechargsmsponsible for their oc-
currence due to the inherent complexity of the non-lineacesses involved (see, e.g.,
Wicht and Olson 2004, Aubert et él._Zd)OS). The statistioadigtof reversals aims to pro-
vide robust constraints on the physical processes undgrtiieir occurrence.

In this work, we studied the statistical properties of reaés and excursions in two
numerical dynamo models withfterent Ekman numbers and Rayleigh numbers. In or-
der to obtain robust statistical results, these models baea run for several thousand
magnetic difusion times and undergo several hundred reversals. Siecendidlel with
the lower Ekman number & = 10°3 (model M2) more closely resembles the Earth (see
the discussion in Sectidn %.1), we focused on the analysli®humerical dynamo.

The simulated reversals and excursions have been ideniffiad a criterion based on
the dipole field intensity coupled with a temporal requiret@n the stability of the non-
transitional phases (see Section 5.3). Since the seleatispecific threshold values for
these criteria is somewhat arbitrary, we performed a syaierstudy to attest the validity
of the statistical results.

We tested dterent distribution functions, characterizing diversed@mn processes as
outlined in Section 3.411, in order to describe the stasstif the stable polarity intervals
(SPIs) and the durations of reversals and excursions in oonerical simulation. We
quantified the reliability of each statistical model ralatio the selected alternatives using
a Bayesian approach (Section|3.7).

The exponential distribution has been found to describeStAedurations (defined
excluding the bounding reversal transitions) with postemodel probabilities larger than
95%. Though not rigorously tested, it seems reasonable sionaes that reversals are
independent events in the numerical simulation. The slbotirae scale of core processes
is the free dipole decay time = r2/x°n ~ 56 kyr, wherer, is the outer core radius and
the magnetic dfusivity n has been calculated according to the most recent estinfdtes o
core electrical conductivity Hy Pozzo el al. (2b12). Thisdiscale might be considered as
an upper bound for the correlation time of core processeseShe mean SPI duration in
our simulations is 26 25 times larger thany, the independence assumption is reasonably
justified. Moreover, studies performed on both stable @dipahd reversing geodynamo
models showed that dipole correlation times are typicalfyaation of 4 (
2010/ Lhuillier et all 2011, Lhuillier et &l. 201.3).

Considering therefore reversals as independent eventanveonclude that a Poisson
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6 Conclusions and outlook

process best describes their occurrence in the numennalaion. Among the dierent
random processes tested in our analysis, the Poisson ialthememoryless process (Sec-
tion[3.4.2). This implies that a reversal can start at ang tituring a stable polarity epoch
always with equal likelihood. Long-term variations in theoglynamo models setup, for
example triggered by changes in the boundary conditionsdarao mimic the mantle
influence (see, e.d., Driscoll and Olson 2011), could chahgeeversal likelihood over
time and thus lead to flerent conclusions. However, it is not clear to which degtexhs
variations influence the internal core dynamics and if theyreecessarily required to ac-

count for the observed geomagnetic behavior (Hulot an 520108, Jonkelts 2003, 2007,
Biggin et all 2012).

The other fundamental aspect regarding dipole momentti@igaaddressed in this
work concerns the equivalence of reversals and a partisulaset of excursions, called
grand excursions here. Grand excursions, similarly toreale, have been defined using
a criterion based both on the dipole moment intensity anéuaeltilts which have to ven-
ture in the opposite hemisphere (Secfiod 5.3). The fulfifitd these criteria ensures the
global character of these eve i005). The numbesvairsals and grand excur-
sions identified in model M2 have been found to be comparabteeover, our Bayesian
analysis showed that a gamma distribution is the most likebglel for the durations of
both types of events. The gamma distribution paramétarsiA are furthermore equal in
the limits of statistical errors (Section 5.4.4). We therefconcluded that reversals and
grand excursions stem from the same underlying process.pfbcess consists, first, in a
decrease of the dipole intensity which allows for large dagdeviations of the magnetic
pole. After lingering in this low dipole field stage for timegods significantly shorter
than the free dipole decay timg, the dipole finally recovers in intensity and thus leads
to an excursion or a reversal with equal chance.

Paleomagnetic studies have documented several excurinimg the most recent
Brunhes and Matuyama chrons (see, le.g, Laj and Channel| 2@t et all 2008). Most
of these events are characterized by large angular devsatibthe magnetic pole, typ-
ically larger than 45 and they are correlated with major dipole intensity dipsonC
trary to our results, geomagnetic excursions thereforendeebe much more frequent
than reversals. However, globally correlated excursiepsasent only a minor fraction
of the total number of events. For example, six global exonssoccurred during the
most recent Brunhes chron, while at least five others havebeen correlated world-
wide JDQrmy et alllO_dO). If the constraint used on the digdtength during excursions
Is relaxed, ‘excursion-like’ events become much more naoethan reversals in our
numerical simulation, thus reconciling with paleomagnetbservations. In this larger
dataset, excursion durations continue to be gamma digtdtaut the estimated distribu-
tion parameters are significantly biased by the large numbghorter events introduced.
These additional events, however, may not all represefagkexcursions since they are
characterized by milder dipole moment variatidEspﬂ/iﬁO

We paid particular attention to the comparison of the nucag¢simulation results with
the statistic of geomagnetic polarity intervals. The Baeanalysis presented in Chapter
M provided a significant evidence in favor of the (heavye@ilog-normal and log-logistic
distributions for the chron durations as recorded ffedent geomagnetic polarity time
scales for the past 170 Myr. This result agrees with prevatudies performed in a fre-
quentist framework and relying onftkrent geomagnetic reversal chronologies (see, e.g.,
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Ryan and Sarsan 2007, Shcherbakov and Fabiar 2012).

Long paleomagnetic records of reversals provide only tipeag@mate times at which
the geomagnetic field reversed its polarity and, consegyehe bounding transitional
periods contribute to the duration of each stable polaptocé. In order to mimic the pa-
leomagnetic data set, we analyzed the simulated polardaghtepincluding the durations
of the respective bounding reversals. Though reversasitians are much shorter than
stable polarity intervals on average, their influence orsthagstic is substantial. Contrary
to the exponentially distributed SPIs, polarity epochdudmg reversal transitions are
indeed best described by a gamma distribution (Settidn B8 finite reversal durations
introduce a period of inhibition immediately following daceversal which results in es-
timates of the gamma shape paramelkelager than one. This period reflects the time
required by the internal dynamo processes to build a stapigedfield with opposite po-
larity and, despite largely varying from event to eventyfitally amounts to a fraction
of the free dipole decay time.

Due to the poor resolution of paleomagnetic data, severdieobriefer geomagnetic
chrons (typically shorter than 30 kyr) are certainly notugied in the polarity time scales.
We investigated the problem of missing events in our sinedlaeversal sequences by
artificially neglecting stable polarity intervals shortean a given periods. We demon-
strated that the gamma distributed polarity epochs inolyideversal transitions are pro-
gressively biased towards log-normal and log-logistidridiations when increasin@s,
thus recovering the statistic of paleomagnetic chronsarglintervals shorter than at
least 07 — 0.8 magnetic diusion timesr, have to be discarded in dynamo M2 to ob-
serve this bias. Accounting for the fact that the magnetigniekls number of model M2
is 5 times smaller than the Earth’s value, the critical gotanterval duration estimated
above amounts to 30 40 kyr and agrees with the typical duration of shorter chr@ns
cryptochrons) likely discarded. The numerical simulatibarefore suggests that devi-
ations from poissonianity in the paleomagnetic record @dnd the consequence of the
limited data quality.

Even though log-normal and log-logistic distributionsyade a good fit of paleomag-
netic chron durations, they significantly underestimatelikelihood for the Cretaceous
normal superchron (CNS) as shown in Seclion 4.2. This exdhefong period of stable
field polarity is not unique in the past geomagnetic histany there are evidences for
two older superchrons (see Section 1.4.4). The questiothe@hthese extreme events are
simply outliers or stem from the large variety of time scglesduced by the geodynamo
processes is still a matter of debate. Long-term variatiortee reversal rate, and ulti-
mately superchron states, have been successfully linkexdeonal &ects influencing the
magnetic field core dynamics and are typically attributech@anges in the Earth’s mantle
11984, Driscoll and Olson 2011, Bigefral. 2012). Alternative
hypotheses suggest that stochastic mechanisms resutimgdtie highly non-linear inter-
nal dynamo processes may naturally trigger superchron®{idnd Gallet 2003, Jonkers
j_Q|7) Some additional studies point towards a nasspnian occurrence of the ge-
omagnetic reversalb&a_b_o_e_dtb._(JOOG), for examplapdstrated that variations in
the geomagnetic reversal rate are statistically incorbfeatvith a non-stationary Poisson
processLQLSQn_eLhL_(ZdM) also report evidences for tlengin the stochastic nature
of geomagnetic reversals caused by nearly periodic oqueeseduring certain periods.

Figure[6.1 (panel a) illustrates the variation in the palagnetic reversal rate ob-
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tained using a sliding window with a fixed number of reversdlse reversal rate rapidly
decreases before the CNS and increases afterwards. Duighgperiods, hints for the
clustering of particularly long and very short polarityenials seem to be present (see
also.Carbone et al. 2006, Jonkers 2007).

Figure[6.1 (panels b and c) also shows the same type of asgigsiormed on the
simulated reversal sequence from the dynamo model M2. Batepicts a period with
roughly the same number of reversals as the paleomagneticrand contains the longest
polarity epochs. The reversal rate varies by less than arfaeb throughout the simula-
tion run, while variations in the paleomagnetic record agarly an order of magnitude
larger. The longest polarity epoch in the numerical simatafdark gray background in
Figurel6.1, panels b and c) is much shorter than the CNS. t&ida is of about 60 mag-
netic difusion times or 14t Myr which is 30% longer than the second longest event and
8 — 9 times longer than the mean polarity interval duration. TINS, lasting for about
35 Myr or 146 magnetic diusion times, is about 6 times longer than the second longest
chron and 70 times longer than the mean chron duration. ™ieraely long period
of stable field polarity can only be reached with additionaldeo forcing, for example,
allowing for variations in the outer boundary heat-flux @l and Olson 2011).

The lower panel of Figule 8.1 shows the reversal rate vanatihroughout the whole
simulation run (solid curve). We also generated a syntlsetigrience of polarity epochs
drawing random samples from an exponential distributidre 3ynthetic data set consists
of the same number of events identified in the numerical strari (N = 571) occurring
at a rate which equals the estimated exponential rate 0.1347,;1). The reversal rate
variations in the synthetic data set (dotted curve in FigLfie panel c) are totally compa-
rable with those obtained in the numerical dynamo simutafidhis further confirms that
a stationary Poisson process correctly capture the ocweref reversals in the numeri-
cal dynamo model analyzed here (Secfion 5.4.1). Moreoker|angest polarity epoch
identified in the numerical simulation is compatible witle ttuctuations allowed by the
statistical model, while the probability of occurrence afuerchron-like event remains
extremely low at 4« 1071°, However, some degree of clustering and and periods with a
more regular reversal occurrence seem to characterizeuthencal simulation. In par-
ticular, it is remarkable that most of the longer polaritypelps occur in the vicinity of
the longest event. The statistical analysis performedigwiork cannot characterize, for
example, the clustering of events. The possible non-poiaadehavior of the system on
shorter time scales will be the focus of a future study.
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Figure 6.1: Panel a Geomagnetic reversal rate during the past 158 Myr from the p
larity time scale 0@9@2) Time has been rescaled usiaguter core magnetic
diffusion timer,, = 244 kyr based on the electrical conductivity estlmatelEB_cga
(@) The Cretaceous normal superchron (CNS) is higtddym gray. The horizontal
line shows the mean reversal rattanels b and cReversal rate throughout the simula-
tion run of model M2 for a period containing roughly the sanueniber of reversals as
the paleomagnetic record (panel b) and for the completepang] c). The solid hori-
zontal line represents the estimated rate from the exp@heindgtribution fit of the stable
polarity intervals obtained using the threshold comboraic = 0.3, 7s = 0.2. Dotted
lines mark the 95% confidence interval of the rate estimake dotted curve in panel ¢
shows the reversal rate for a synthetic data set obtainedrdyaandom samples from an
exponential distribution with the above rate. Colored lggiokinds highlight the longest
polarity interval (dark gray) and polarity intervals lomgban 30r, (light gray). All the
reversal rate estimates have been calculated using agsiddindow with a fixed number
of N = 40 reversals.
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