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ABSTRACT 
Mouse models have been a versatile tool in asthma research, however the application of imaging 

techniques to quantify hallmarks of asthma, to follow the course of the disease or to monitor 

treatment response are hampered by the small size of the mouse lung. Moreover, breathing causes 

substantial motion artifacts in most of the in-vivo imaging methods. In addition, the air-tissue 

interfaces within the lung causes scattering effects in optical imaging applications, the large cavity of 

the lung leads to susceptibility artifacts in magnetic resonance imaging and the rib cage hinders the 

use of medical ultrasound by reflecting the sound waves. 

Therefore, novel imaging strategies to study asthma-related anatomical, functional and molecular 

alterations within the mouse lung are in great demand. In order to overcome the obstacles in lung 

imaging of asthmatic mice we followed three main routes: A) anatomical imaging by inline free 

propagation Synchrotron phase contrast CT to provide a detailed three-dimensional depiction of the 

lung morphology in order to assess and quantify asthma related alterations and to track barium 

sulfate filled macrophages, B) direct measurement of lung function utilizing low-dose planar 

cinematic x-ray imaging and C) functional imaging by means of near infrared optical imaging in 

combination with labeled antibodies or smart probes activated in the presence of inflammation. 

By developing and applying phase contrast CT for anatomical imaging I was able to quantify 

morphological alterations while measuring the soft tissue to air ratio, narrowing of the airways as 

well as bronchi wall thickening within asthmatic lung tissue and therefore to discriminate between 

mice from asthma models of different severity, treated mice and healthy controls. Moreover, this 

imaging technique allowed the tracking of barium sulfate filled macrophages that were 

intratracheally applied into mouse lungs. This allowed for the first time the combination of 

functional imaging with detailed morphological three-dimensional analysis of asthmatic mouse 

lungs under in vivo like conditions and in great detail (9 µm). In order to correlate these results with 

the grade of dyspnea in living mice, I invented a simple and reliable method to assess lung function 

by utilizing planar cinematic low-dose x-ray imaging. Using this approach I was able to measure 

differences in the lung function of asthmatic, treated and healthy mice in vivo over time. Moreover, I 

demonstrated that the results obtained by this new approach correlate with CT and histology. 

Furthermore, this method has the potential to be applied on free moving un-anesthetized mice, 

which would lower the stress of the mouse during lung function measurements and would thereby 

generate more reliable data. Using near infrared fluorescence imaging we demonstrated that we are 

able to monitor different molecular hallmarks of asthma in vivo over time. First, the use of a novel 

dendritic polyglycerol sulfate dye (MN2012), which targets selectins, allowed us to depict 

differences in the grade of inflammation between asthmatic mice and healthy controls. Moreover, 

we proved that this novel probe expresses a faster kinetic and a higher specificity than state-of-the-

art commercial probes. Second, we showed that by using a specific antibody-dye-conjugate 

targeting siglecF predominately expressed on eosinophils, eosinophilia in asthmatic mice can be 

imaged. Third near infrared fluorescence imaging allowed to determine the fate of inhaled 

fluorescent nanoparticles within the lung that were taken up by macrophages. All these methods 

were cross-validated and verified by histology and near infrared fluorescence microscopy. In 

summary, the imaging strategies developed in the here presented thesis establishing an imaging 

platform for assessing asthma mouse models, which can now be used to study specific effects in 

asthma models of different severity, to follow the course of the disease or to monitor treatment 

response.   
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ZUSAMMENFASSUNG 
Asthma ist eine Erkrankung die das komplette Immunsystems involviert, ein System so komplex, 

dass es sich nur unzureichend in-vitro studieren lässt. Daher haben sich Mausmodelle als ein 

unverzichtbares Werkzeug in der präklinischen Asthmaforschung etabliert. Da es sich weiterhin bei 

Asthma um eine Erkrankung handelt, die durch eine schnelle Änderung der Symptome 

gekennzeichnet ist, wäre longitudinale vorzugsweise nicht-invasive Bildgebung, insbesondere bei 

der Entwicklung und Bewertung neuer Therapiekonzepte von großem Interesse. Nachteilig 

hingegen ist, dass die Darstellung der Mauslunge in der Praxis auf Grund der Größe des Organs und, 

im Falle einer in vivo Bildgebung, durch die Bewegung des Brustkorbes sich als äußerst schwierig 

herausstellt. Die Vielzahl der Luft-Gewebe-Grenzflächen erzeugt starke Streuung in der optischen 

Bildgebung, der große Hohlraum der Lunge verursacht Suszeptibilitätsartefakte bei der MRT und 

die Rippen erschweren eine Ultraschallbildgebung. 

Aus diesen Gründen besteht ein großer Bedarf an neuen Bildgebungsverfahren, um die durch 

Asthma verursachten anatomischen, funktionalen und molekularen Veränderungen darstellen zu 

können. Um die Schwierigkeiten in der Lungenbildgebung bei Mäusen zu umgehen, habe ich mich 

auf drei wesentliche Bildgebungsstrategien fokussiert: A) anatomische Bildgebung durch “inline 

free propagation phase contrast computed tomography”, B) direkte Messung der Lungenfunktion 

durch “low dose planar cinematic x-ray imaging” und C) funktionale Bildgebung mit Hilfe der „near 

infrared fluorescence imaging“ in Kombination mit Antikörpern, die mit einem Fluoreszenzfarbstoff 

markiert wurden, oder “smart probes”, die in Gegenwart von Entzündungen aktiviert werden. 

Durch die Anwendung von “phase contrast computed tomography” für die anatomische Bildgebung 

war ich in der Lage morphologische Veränderung des Lungengewebes zu quantifizieren, indem ich 

lokal das Verhältnis zwischen Weichgewebe und Luft, das Zusammenziehen der Luftwege sowie das 

Anschwellen der Bronchialwände im asthmatischen Lungengewebe ausgewertet habe. Diese 

Parameter erlaubten es zwischen Mäusen von Asthmamodellen unterschiedlicher Schweregrade, 

therapierten und gesunden Mäusen zu unterscheiden. Zusätzlich ermöglichte diese Technik die 

Darstellung intra-tracheal applizierter Bariumsulfat markierter Makrophagen im Lungengewebe. 

Dies stellt meines Wissens die erste Kombination einer funktionalisierten Kontrastierung und 

hochauflösender Lungenbildgebung mittels CT unter in vivo ähnlichen Bedingungen dar. Um diese 

Ergebnisse mit dem Grad der asthmabedingten Kurzatmigkeit zu korrelieren, habe ich eine einfache 

und verlässige Methode entwickelt die es, basierend auf 2D Röntgen-videos niedriger Röntgendosis 

(~6,5mGy) erlaubt, in narkotisierten Mäusen die Lungenfunktion zu bewerten. Mit Hilfe dieser 

neuen Methode gelang es mir charakteristische Unterschiede in der Lungenfunktion von 

asthmatischen, therapierten und gesunden Mäusen in vivo über die Zeit nachzuweisen, und diese 

Resultate mit den Ergebnissen von CT und Histologie zu korrelieren. Das Verfahren wird derzeit von 

mir für die Anwendung an frei beweglichen und nicht narkotisierten Mäusen weiterentwickelt. Dies 

sollte zu einer deutlichen Stressreduktion für die Maus bei der Untersuchung führen und somit, vor 

allem in Asthma, im Gegensatz zu etablierten Verfahren wie Plethysmographie, die Erhebung 

validerer Messdaten erlauben. Mit Hilfe von „near infrared fluorescence imaging“ konnten wir in 

vivo und longitudinal erfolgreich verschiedene durch Asthma ausgelöste molekulare Veränderungen 

in der Mauslunge verfolgen. Erstens erlaubte die Verwendung einer neuen Polyglyzerol Probe mit 

dendritischer Struktur (MN2012) die spezifisch an Selektine bindet, die Darstellung der durch 

Asthma verursachten Entzündung der Lunge. Im Zuge dessen konnten wir nachweisen, dass sich 
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MN2012  zur Darstellung von Enzymkinetiken bei Entzündungsreaktionen durch eine schnellere 

Kinetik und höher Spezifität als kommerziell erhältliche Proben auszeichnet. Zweitens haben wir 

gezeigt, dass in Kombination mit einem Fluoreszenz markiertem Antikörper gegen SiglecF, einem 

Antigen das hauptsächlich auf Eosinophilen exprimiert ist, Eosinophilie in asthmatischen Mäusen 

verfolgt und der Effekt einer Dexamethason Behandlung  ebenso dargestellt werden kann. Drittens 

konnten wir den Verbleib inhalierter fluoreszierender Nanopartikel in der Lunge der Maus in vivo 

untersuchen und dabei nachweisen, dass diese hauptsächlich von endogenen Makrophagen im 

Lungengewebe aufgenommen werden. Alle diese Techniken wurden gegeneinander und mittels 

histologischer Analyse und Fluoreszenzmikroskopie korreliert und validiert.  

Zusammenfassend bilden die in meiner Dissertation entwickelten Lungenbildgebungsstrategien für 

Asthmamausmodelle eine Bildgebungsplattform, um sowohl spezifische Effekte in asthmatischen 

Mäusen unterschiedlichen Schweregrades als auch die Auswirkungen neuer Therapien abzubilden 

und im Detail zu untersuchen. 
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GLOSSARY 
 

Asthma     Asthma is a chronic inflammatory disease of the airways leading to persistent 
or recurring symptoms like airway obstruction, bronchi wall thickening 
causing impaired lung functionality. Asthma (besides feline asthma) is solely 
found in humans. 

Beamline In Synchrotrons electrons are forced to circulate by altering the direction of 
movement using so called bending magnets. Changing the direction of the 
electrons causes them to emit radiation in line with their original path. The 
energy of the radiation depends on the field strength of the used magnet and 
is optimized for the chosen application. Each of these experimental setups 
since they are organized in line of the emitted photon beam is called 
beamline. 

Complex Refractive 
Index 

The complex refractive index combines both, phase shift (, real part) and 
attenuation (, imaginary part). For x-ray’s this index is usually denoted as:  

n(r) = 1 –  + i 

Contrast-to-Noise 
ratio (CNR) 

The contrast-to-noise ratio (CNR) describes the probability to discriminate 
between two adjacent tissues within a data set. This probability increases 
with a larger difference of the average signal level (g1-g2, contrast) and is 
decreased by the noise level (usually measured as the standard deviation 
(std) in a region assumed to be homogenous).  

CNR = (g1-g2) / (0.5*(std12+std22))0.5 

Edge Index (EEI) One way to quantify the quality of an edge present in a data set is the 
calculation of the edge index (EEI). In analogy to the CNR it compares the 
difference of the minimum and maximum values (L, P) of a line profile 
through an edge of two adjacent tissues with the “noise” meaning the 
standard deviation (STD) of the line profiles in areas which should be inside 
the homogenous regions of the two tissues.  

EEI = (P-L) / (stdL2+stdP2)0.5 

Eosinophil Eosinophil granulocytes are white blood cells which are responsible to tackle 
multicellular parasites and some infections. They are known to play an 
important role in eosinophilic allergy and asthma. 

Figure of Merit 
(FoM) 

A Figure of Merit (FoM) represents a parameter which can be quantified and 
used for comparison for instance between different algorithms. 

Free propagation 
phase contrast CT 

Free propagation phase contrast CT is one phase sensitive CT technique, 
which in addition to the x-ray attenuation related contrast of classical CT 
shows edge enhancement effects related to interferences of wave fronts 
traveling with different velocities in adjacent materials. The magnitude of 
these effects depends on the distance of the detector plane to the object plane. 
At least partial coherence of the used x-ray’s is the prerequisite for phase 
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contrast CT. Therefore, it is restricted to Synchrotron Light Sources or micro 
focus x-ray tubes. Besides free propagation other phase sensitive x-ray 
techniques such as interferometric or edge-illumination methods exist. 

Holotomography Tomographic reconstructions of the 3D distribution of the refractive index or 
"Holotomography" is implemented by rotating the sample and recording at 
each projection angle a series of images at different distances. 

Macrophage The macrophage is a white blood cell belonging to the non-specific innate 
immune system. It can perform phagocytosis and therefore can engulf larger 
particles, which makes it especially attractive as carrier for diagnostic as well 
as therapeutic substances. Depending on its differentiation it can either cause 
inflammatory or anti-inflammatory effects.  

Ovalbumin induced 
asthma mouse 
models  

Ovalbumin (OVA) is a protein in egg white, which is often used in research to 
induce an allergic reaction in mice, by mimicking certain aspects of human 
asthma. Usually, these models contain two or more immunization steps to 
achieve an immune response and several challenging steps to cause the acute 
allergic reaction. Severity of asthma symptoms in mice depends on the time 
schedule and the amount of OVA applied in each step. 

Phase retrieval Phase retrieval is the process to calculate the real part of the refractive index 
present in the analyzed sample. Several different algorithms are known either 
using data sets with several sample-to-detector distances or a combination of 
a priori knowledge of the sample in combination with only one sample-to-
detector distance data set. 

Plethysmography Plethysmography is a technique to measure changes in volume within an 
organ or whole body (usually resulting from fluctuations in the amount of 
blood or air it contains). 

Segmentation Segmentation is the process to separate the structure of interest from the 
background in a data set, which usually leads to a binary decision (mask). 
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INTRODUCTION 

BACKGROUND 
Asthma is a global burden of public health predominately in industrial nations and continues to be a 

major cause of morbidity [1]. Tim Clark, Chair of the Global Initiative against asthma (GINA) pointed 

out that: “It is now estimated that as many as 300 million people of all ages, and all ethnic 

backgrounds, suffer from asthma and the burden of this disease to governments, health care systems, 

families, and patients is increasing worldwide” (Figure 1). 

 

Figure 1 World map of prevalence of clinical asthma [2]. 

However, not all of the pathological mechanisms in asthma are fully understood and the commonly 

applied therapies are far from being optimal and can cause significant side effects [3]. Despite the 

fact that a large proportion of patients with asthma can be treated very effectively with 

corticosteroids, some patients do not respond to such a therapy at all [4]. Asthma is a disease which 

involves virtually all parts of the immune systems, a system so complex that up to now it cannot be 

reproduced ex vivo or studied by computer models. Therefore, animal models or more precisely 

allergic airway disease mouse models are frequently used in preclinical asthma research, although 

asthma can only be found in humans and felines. The predictive value of mouse models is 

controversially discussed [5]–[8] although all authors concluded that no model exists which can 

reliably mimic human asthma for the entire course of the disease. Even human asthma developes 

with a wide range of variations. Nevertheless, it is proven that depending on the mouse model, 

certain aspects of human asthma like eosinophilia, airway hyper-responsiveness or different grades 

of severity can be mimicked. Thus, despite the known limitations, preclinical allergic airway disease 

mouse models are still very important. In our studies we focus on ovalbumin induced asthma mouse 

models, because they are extensively studied in the literature, can be produced both easily and 

reliably and unlike for instance house dust mite models pose no risk for the examiner.  
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Asthma is a very complex multi-factorial disease resulting in alterations within the lung on the 

anatomical, functional and molecular level. Figure 2 shows which of these hallmarks of asthma can 

potentially be exploited for imaging. On a cellular and molecular level, imaging approaches may 

focus on direct visualization of specific cells involved in the asthmatic reaction, by following their 

migration or by depicting changes in the expression level of specific enzymes, such as proteases. If 

anatomical imaging with a sufficient spatial resolution to resolve the lung substructure can be 

achieved, known effects like thickening of bronchial walls, obstruction of the airways as well as 

changes in the composition of the lung soft tissue present interesting endpoints that could be 

monitored. Even on a larger scale, changes in the total lung volume, in lung water content (due to 

inflammation or edema) and an adaption of the total lung structure to the alteration in its 

substructure are expected and represent interesting parameters to be visualized by in vivo 

anatomical imaging. Finally, from a more clinical point of view functional parameters such as 

quantification of lung function, “air-trapping” or the underlying changes in lung tissue elasticity, 

which directly reflect clinical symptoms, are of significant interest. All these imaging techniques and 

strategies are different and have their own requirements, advantages and limitations.  

 

Figure 2 Overview of asthma hallmarks which presents potential targets for imaging distributed in molecular, functional and 

anatomical parameter. 

 

ANATOMICAL IMAGING 
The use of imaging techniques would be highly desirable in mice to allow the assessment of small 

morphological alterations and thereby to study pathological mechanism within allergic airway 

inflammation mouse models as well as to monitor the course of the disease and the efficacy of novel 

therapies. However, most of the techniques applied so far are hampered simply be the smallness of 

the mouse as a model organism and by the highly porous nature of the lung structure itself, which 
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causes strong scattering in optical imaging and susceptibility artifacts in MRI. In addition, medical 

ultrasound is barely usable due to the echoes caused by the ribcage. Regarding in vivo imaging, all 

techniques suffer from motion artifacts caused by the movements of the chest during breathing. Due 

to the small size of the mouse lung a high spatial resolution in the order of <10µm is needed to 

depict the lung substructure down to alveolar level. Moreover, the shape of the lung is critically 

dependent on its boundary condition represented by the rib cage and the diaphragm. Therefore, if in 

vivo imaging is not feasible, reliable structural parameters can only be assessed in an in-situ setup. 

Up to date microCT is the only 3D imaging method which can image entire mouse lungs in-situ with 

a sufficient spatial resolution to analyze their fine structure. An in vivo application of this method, 

however, is challenging due to the fact that the image quality (mainly the influence of noise) is 

intrinsically linked to the inverse spatial resolution to the power of 2 and to the inverse square root 

of the applied x-ray dose [9]. Ford et al. analyzed the relation of image quality and dose for an 

idealized CT imaging system [9]. He measured a dose of 0.35Gy for a mouse imaged with an 

isotropic resolution of 135µm assuming a 1% coefficient of variation (COV) of the linear attenuation 

coefficient. Therefore, imaging with the desired resolution of 10µm and the same noise level would 

yield to a dose of ~64Gy (0.35Gy*(135/10)^2). This is of course an enormously high entrance dose, 

but underlines that in vivo imaging cannot be performed with a sufficient spatial resolution.  

Classical x-ray attenuation based microCT of specimens is usually characterized by a high spatial 

resolution, but expresses a poor soft tissue contrast and a high noise level. Nevertheless, it has been 

already successfully applied in mouse lung disease models usually in combination with a 

preparation scheme to fix and explant the lung tissue as for instance described by Vasilescu et al. 

[10]. Figure 3 shows exemplary cross sections of in-situ mouse lung scans for a healthy mouse, an 

asthmatic mouse and a mouse from a lung emphysema model obtained with a classical bench-top 

microCT (eXplore Locus SP, GE HealthCare). The images appear grainy due to the high noise level, 

which substantially hampers a detailed analysis of the lung substructure. The noise problem can be 

overcome by extended scanning times in the range of hours, providing a better signal-to-noise ratio. 

However, this requires that the sample remains stable for such a long period. In summary, all these 

issues do not only limit a microCT based assessment of the lung anatomy at 10µm resolution to an 

in-situ application, but also underline that a meaningful image quality can only be reached with long 

scanning times putting high demands on sample quality and preparation.  
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Figure 3 Cross sections through lung scans acquired with eXplore locus SP microCT demonstrate a high noise level: 

In-situ mouse lungs inflated with air at a pressure of 30cm water column of a) healthy mouse and mice with b) asthma and c) 

emphysema. Due to the high noise level the lung substructure cannot be resolved in detail. Therefore besides the obstruction of big 

bronchi, no structural differences between wild type controls and asthmatic mice were found. Scanning time 1.5h, Resolution 

~16µm 

Absorption is not the only interaction of x-rays with matter. In addition, scattering (however with 

very low scattering angles) and phase shift occur (Figure 4). The contribution of these effects to the 

measured image contrast can only be seen if at least partial coherent x-rays are used. Therefore, the 

phase effect, though well known for visible light in classical optic, was first discovered for x-rays at a 

Synchrotron Light Source and its application for biomedical samples was pioneered as late as 1995 

by Prof. Atsushi Momose et al. [11]. Phase contrast occurs when partial coherent x-ray waves which 

traveled through different tissues at slightly different velocity overlap and interfere. For the 

simplest setup (in-line free propagation phase contrast) no additional optical elements are needed. 

In this setup, the detector is placed in a certain distance behind the sample. The magnitude of the 

interference depends on the plane or more precisely the sample-to-detector distance at which the 

image is recorded. As a result absorption and fringes caused by the phase shift of the waves are 

combined on the measured projection image. As a special case in the near contact regime (sample-

to-detector distance is very low) the image resembles the classical absorption based contrast. The 

outcome in the near-field distance is an image with remarkably enhanced edges even for low 

absorbing materials. In contrast to all other imaging techniques that can hardly deal with lungs, lung 

imaging is an ideal application for phase contrast CT [12], [13]. However, the mentioned edge effects 

that strongly enhance the delineation of low-absorbing objects, renders quantitative analysis of the 

samples challenging, if simple threshold based segmentation is used. In order to decouple 

absorption from phase effects calculating images predominately displaying the real part of the 

complex refractive index (responsible for the phase shift) a special type of algorithms can be 

applied. It was demonstrated by Beltran et al. [14] that the combination of inline free propagation 

phase contrast CT with the application of phase retrieval algorithms produces images that 
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demonstrate an up to 200 fold gain in contrast-to-noise ratio (CNR) for soft tissue. Therefore this 

technique has been chosen as the central method in this thesis. 

 

Figure 4 Impact of the phase shift on the image formation with increasing sample-to-detector distance: 

This figure demonstrates how the phase shift of the incident x-ray beam that occurs within the sample causes different interference 

effects depending on the distance between the imaging plane and the object (Bronnikov et al. [15]). In this thesis all phase contrast 

data sets have been recorded in the near field regime.  

Despite the fact that free propagation phase contrast CT imaging has already been used for lung 

imaging, some specific problems remained for its application in in-situ lung imaging. Therefore the 

aims of this thesis were: 

- to use single distance phase retrieval since it needs only projection images acquired at one 

single sample-to-detector distance and therefore it would be the fastest approach less 

influenced by alterations of the sample over time. However, problematic in this perspective 

may be that single distance phase retrieval algorithms need some a-priori information about 

the object, which may not be valid in in-situ lung imaging. Therefore, the applicability of 

single distance phase retrieval algorithms for in-situ mouse lung imaging needs to be 

evaluated. 

- to validate if the image quality and resolution is sufficient to detect and quantify the subtle 

alterations of the lung structure especially in mild asthma models. 

- to verify if the gain in image contrast provided by phase contrast CT in combination with 

single distance phase retrieval will be sufficient to track labeled macrophages within mouse 

lungs in-situ. 

 

MEASUREMENT OF FUNCTIONAL PARAMETERS 
Anatomical and molecular or cellular alterations in asthmatic lungs present interesting hallmarks of 

the disease, but if and to what extent these features correlate to clinical symptoms, in particular to 

an impairment of the lung function, is not evident. In order to address this problem, direct 

assessment of lung function would be of utmost importance. However, while easily feasible in 

humans, such an approach has some intrinsic problems in mouse models. Measurement of the lung 

function in mice is commonly done by plethysmography [16]. This technique usually either needs 

intubation or at least restraining of the mouse, both introducing a high level of stress. As asthma is 

known to be triggered by stress in humans, stress caused during plethysmography may interfere 
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with the results. Plethysmography with unrestrained mice has been reported but is controversially 

discussed in the literature. Whereas Adler et al. demonstrated that this method leads to unreliable 

measurements of airway hyper responsiveness [16], deLorme and Moss showed that in contrast to 

the traditional methods unrestrained plethysmography was able to identify airway reactivity [17]. 

However, the analysis of alterations in lung function in addition to other readouts used in asthma 

research seems to be of critical importance, as it presents the only direct link to the clinical 

symptoms and should be the most important criteria to preclinical evaluate novel asthma therapies 

in mouse models. 

Therefore, the question aimed to be answered within this thesis is: 

- Can an alternative reliable imaging strategy, less stressful than plethysmography, be 

developed to directly measure lung function in living mice? 

 

MOLECULAR IMAGING 
In vivo molecular imaging aims to depict molecular processes within the entire living subject. To 

achieve this goal usually targeted probes are administered. Since only a limited amount of such a 

probe can be concentrated at the sites of interest, imaging techniques such as PET, SPECT and 

Optical Imaging (either by near infrared fluorescence (NIRF) or bioluminescence) must deal with a 

low amount of photons and therefore require a very high sensitivity. To allow enough photons to 

interact with a detector element to produce a measurable signal, the detectors used need to have a 

sufficient large pixel size, which substantially limits the spatial resolution. In my thesis I focused on 

optical imaging, in particular NIRF imaging [18]. This is a method that is extensively used in 

preclinical research today, as in contrast to PET or SPECT, no radioactive probes are used and thus 

no specific radiation safety laboratories are needed. In addition, optical probes do not decay like the 

radioactive ones and are therefore stable for a long time and much cheaper. Usually the optical 

window of water and hemoglobin (in the range of 600 – 800nm) is exploited for imaging, allowing a 

penetration depth in the range of 2 to 4cm. This limitation has basically no implication for mice but 

substantially hampers clinical use of optical imaging and restricts it to superficial applications, such 

as the skin.  

NIRF imaging has no known side-effects and therefore enables longitudinal in vivo studies. This in 

combination with the availability of dedicated fluorescence probes, has been the foundation for the 

successful use of this imaging strategy. The probes can be divided into four classes (Figure 5): a) 

targeted probes, combining for instance an antibody with a fluorescence dye to specifically highlight 

tumor cells; b) smart probes, which are activated upon a change in the environment; for example a 

quenched probe which becomes dequenched in the presence of an enzyme such as cathepsin during 

inflammatory processes; c) unspecific fluorescence dyes which can for instance be used to highlight 

the difference in the blood supply of certain regions within the body and d) in vitro cell membrane 

staining to allow tracking of injected labeled cells in vivo.  
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Figure 5 The four major probe concepts in NIRF Imaging;  

a) a labelled antibody, b) a probe which is non-fluorescent in its ground state and gets activated by for instance specific enzymes, c) non-

specific probes which circulate in the blood stream, d) or cells which have been stained with a fluorescent dye. 

 

In the past years various optical imaging applications have been reported in asthma mouse models, 

mainly focusing on the inflammatory aspect of the disease and the application of smart probes, 

which are activated in the presence of inflammation [19], [20]. This approach, however, has two 

intrinsic flaws: firstly, smart probes usually shows a slow kinetic due to the fact that a sufficient 

amount of the probe needs to be activated to produce a signal strong enough and secondly, the 

probes do not attach to the site of action/inflammation and therefore create a strong unspecific 

background signal, especially in the liver, which is the common excretion pathway of most of the 

molecules. In addition to the smart probes, the use of blood pool agents has been reported in an LPS 

induced lung inflammation mouse model allowing the depiction of the changes in the lung blood 

content in presence of inflammation [20]. Neither antibody based nor cell tracking studies have 

been reported for optical imaging in asthma mouse models so far.  

 

In order to improve the applicability of NIRF imaging in asthma mouse models, within this thesis, 

imaging strategies were developed: 

- to establish an readout faster than the 24hrs as required by the smart-probes. This would be 

required to monitor the acute asthma attack and a treatment response, since measurements 

in humans show that there is a drop in lung function 4h after an acute asthma attack. After 

this time the lung function starts to normalize again only to show a second minor reduction 

in a late phase.  

- to specifically image immune cells, since the recruitment of these cells such as eosinophils 

and macrophages into the lung plays an important role in asthma. 
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SUMMARY OF THE AIMS OF THESIS 
In summary the thesis aims to develop an imaging platform to study certain morphological, 

functional and molecular aspects of asthma in preclinical allergic airway disease mouse models. 

This platform will provide tools to further analyze the patho-mechanism of the disease as well as to 

better assess effects of new treatments targeting hallmarks of asthma. 

RESULTS & DISCUSSION / SUMMARY OF PUBLICATIONS 
The results will be presented grouped into anatomical, functional and molecular imaging. Therefore, 

the discussed publications will not appear in chronological order. 

A. ANATOMICAL IMAGING 

THE SAMPLE PREPARATION SCHEME 
The aim of applying anatomical imaging in this thesis is the quantification of structural alterations 

within the lung of asthmatic mice. Unlike for instance emphysema, which can cause major and 

therefore easily detectable damage to the lung parenchyma, asthma produces only mild alterations 

of the lung tissue. In addition, it is desirable to be able to distinguish between severe chronic and 

mild acute asthma as well as to quantify treatment response. In order to achieve a spatial resolution 

of 10µm, an increased x-ray dose is required which is too high for in vivo imaging, thus restricting 

our technique to be used only in dead animals. In addition, to improve image quality by increasing 

the CNR, long scanning times in the range of hours are needed during which the sample must not 

alter or move. Furthermore, the lungs in mice collapse soon after death. Therefore, it is crucial that a 

sample preparation will be employed which mimics the physiological situation of the lung as close 

as possible, as well as suppresses both, deformation and alteration of the sample. To this end we 

developed a scheme to prepare in-situ mouse lung samples. First, we performed an ex-vivo 

tracheotomy, inserted a cannula into the trachea and inflated the lung with air at a constant 

pressure of 30cm water column. Following this procedure the entire mouse was embedded in a 

plastic tube using 1% agarose gel as described by Dullin et al. [21]. The agarose gel sufficiently 

suppresses sample movements and shows very little x-ray attenuation. Adversely, the gel cracks at 

temperatures below 0°C and the prepared samples can therefore not be stored frozen. Despite the 

improved soft tissue contrast in in-line phase contrast CT used in this study, soft tissue can poorly 

be discriminated from liquids. Fixatives like ethanol or formalin cannot be applied since they would 

interfere with the status of the swollen airway walls and therefore, samples cannot be maintained 

for a long time. Moreover, a stable temperature needs to be provided to avoid severe motion 

artifacts created by thermal expansion of the air inside the lung. Based on these requirements we 

improved the sample preparation scheme by adding a 30min time delay between inflating the lung 

and embedding the mouse, to let the corpse relapse from rigor-mortis. As the samples are 

completely sealed in agarose gel within the plastic tube they can be maintained at 4°C for about one 

week. About 30mins before imaging we removed the samples from the fridge and placed them 

inside the experimental hutch of the beamline to let them adjust to ambient temperature. This 

sample preparation scheme has proven to provide reliable and stable conditions for detailed in-situ 

lung imaging and was therefore chosen for all Synchrotron experiments presented here. 
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SINGLE DISTANCE PHASE RETRIEVAL - THE METHOD OF CHOICE FOR IN-SITU LUNG IMAGING 
In order to increase the soft tissue contrast within the lung we applied Synchrotron free 

propagation in-line phase contrast. The resulting images show strong edge enhancement, which 

certainly improves visibility of tissue interfaces but hampers the segmentation of the different 

compartments within the lungs and therefore prohibits quantification. In order to circumvent this 

situation we applied phase retrieval to decouple phase from absorption based contrast. Most of 

these classes of algorithms assume that the absorption based contrast is nearly independent from 

the sample-to-detector distance, whereas the phase effect shows a strong dependency on distance. 

As a result, projection images acquired at two or more sample-to-detector distances are commonly 

analyzed. This however is disadvantageous in our case, not only because changing the distances 

introduces alignment problems of the obtained projection images but more importantly because it 

prolongs the scanning times and thereby promotes potential alterations in the unfixed tissues. For 

this reason we focused on the single distance phase retrieval method, which only requires 

projection data obtained at one distance, but in addition needs a priori information of the sample. 

This  priori information contains the assumption of homogenous objects, meaning an object which 

either shows only absorption (real part of the refractive index = 0), only phase shift (imaginary part 

of the refractive index = 0) or a constant ratio between the real and imaginary part of the refractive 

index. These idealized conditions are not met in in-situ mouse lung samples. Hence, the applicability, 

reliability and benefit of single distance phase retrieval for the multi-material biological samples 

used here needed to be evaluated. 

1) ACCURACY AND PRECISION OF RECONSTRUCTION OF COMPLEX REFRACTIVE INDEX IN 

NEAR-FIELD SINGLE-DISTANCE PROPAGATION-BASED PHASE-CONTRAST TOMOGRAPHY 

T. Gureyev, S. Mohammadi, Y. Nesterets, C. Dullin, and G. Tromba, “Accuracy and precision of reconstruction of 

complex refractive index in near-field single-distance propagation-based phase-contrast tomography,” J. Appl. 

Phys., vol. 114, no. 14, p. 144906, 2013. 

The aim of using phase retrieval is to decouple phase from absorption information and in doing so 

to allow the reconstruction of both the real and imaginary part of the refractive index (1 − 𝛿 − 𝑖𝛽). 

Due to the fact that single distance phase retrieval assumes a homogenous object the aim of this part 

of the study was to test how precise the refractive index can be recovered in samples containing a 

mixture of different materials. Therefore, I designed a simple phantom made from acrylic glass with 

6 cylindrical holes filled with substances of known chemical composition related to applications in 

biomedical imaging: polyoxymethylene (CH2OH), water (H20), air, Ultravist 300 (C18H24I3N3O8, a 

clinically used contrast agent), calcium chloride (CaCl2), magnesium chloride (MgCl2) and glycerol 

(C3H8O3). The advantage of using such a phantom with defined materials was that the theoretical 

andcouldbe calculatedWe demonstrate that, except for regions near the interfaces between 

distinct materials, the distribution of the imaginary part (, responsible for absorption) of the 

refractive index, can be accurately reconstructed from a single projection image per view angle 

using single distance phase retrieval in combination with conventional CT reconstruction. In 

contrast, the accuracy of reconstruction of the imaginary part (, responsible for the phase shift) 

depends strongly on the choice of the “regularization” parameter within the algorithm. We 

demonstrate that for some multi-material samples, a direct application of this method produces 

qualitatively incorrect results for , but which can be rectified by utilizing suitable a priori 
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information about the sample. Especially, if materials with a large difference in their respective 

 ratio are present in the sample, the algorithm can only adequately calculate one of the 

materials at a time. Respectively, for in-situ lung imaging in a cross-section of the mouse chest either 

the bones or the lung will be accurate. This finding has been further analyzed by Beltran et al. [22] 

who proposed the combination of reconstructed data sets optimized for each material of interest. 

Additionally, in our study we found that it is possible to significantly improve the CNR by increasing 

the sample-to-detector distance in combination with the application of phase retrieval compared to 

conventional (“contact”) CT. 

2) QUANTITATIVE EVALUATION OF A SINGLE-DISTANCE PHASE-RETRIEVAL METHOD APPLIED 

ON IN-LINE PHASE-CONTRAST IMAGES OF A MOUSE LUNG 

S. Mohammadi, E. Larsson, F. Alves, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-

retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat., vol. 21, no. 4, 

pp. 0–0, 2014. 

In a second step we evaluated if the knowledge we gained from the phantom study can be applied in 

in-situ imaging of mouse lungs. We performed inline free propagation phase contrast CT of an in-situ 

mouse lung sample at three different sample-to-detector distances (7, 30 and 100cm). As expected 

the reconstructed raw data sets showed an edge enhancement that progress with increasing 

detector distance. We were able to verify that the application of single distance phase retrieval in 

combination with 3D reconstruction in all three cases produces comparable data sets 

predominately showing the -values of the refractive index. In order to assess the image quality the 

CNR was measured. A 10 fold gain in CNR was observed between the phase retrieved data set at 

30cm compared to the reconstruction of the raw projection data at 7cm mimicking classical 

absorption based CT. It has to be pointed out that since the contact regime data was acquired with a 

quasi-monochromatic x-ray source, comparison of the phase retrieved data sets with classical 

microCT utilizing a fine focus x-ray tube would have revealed an even higher gain in CNR. However, 

we also demonstrate that CNR as a single measure of image quality is insufficient as it does not 

consider the sharpness of an image. Since established measures of image sharpness are unable to 

compare the images with strong edge enhancement (reconstructed unprocessed data sets) with the 

phase retrieved data sets, we introduced a new measure of image sharpness based on a non-linear 

fit of a sigmoid function into edge-brightness profiles.  

By applying this measure we found that the 10 fold gain in CNR is, as expected, related to a reduced 

edge sharpness, which is in accordance with the visual observation of the data sets, but provides a 

reliable edge profile without phase shift-related edge effects. These results are in accordance with 

the findings of Wu et al. [23] who demonstrated that even by violating the “homogenous object” 

assumption the obtained data is correct for tissue containing only materials with an atomic number 

lower than 11, such as in the mouse lung. Our observations (demonstrated in Figure 6) proved that 

we can increase the contrast by simultaneously maintain sharp edges in the image and substantially 

suppress the edge effects in the raw data sets. As a result, in these phase retrieved data sets air and 

soft tissue are represented by two clearly distinguished grey value intervals allowing their 

segmentation using a simple threshold function. Thus, the results of this experiment proves that 
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analysis of in-situ mouse lung samples will be feasible and a more than 10 fold improved sensitivity 

can be expected.  

In theory and in accordance with our first study, the CNR can further be improved by increasing the 

sample-to-detector distance even more. However, we found a small decrease in the edge quality 

from 30cm to 100cm detector distance which may be related to an increased effect from scattered 

photons. Therefore, a detector distance of 30cm was chosen for the following studies.  

 

 

Figure 6 The benefits of phase retrieval in phase contrast Lung CT:  

An  exemplary slice of an in-situ mouse lung scanned at 30cm sample-to-detector distance either reconstructed directly (A: FBP) or after 

application of single distance phase retrieval (B: PhR). The profile plot along P (detail view left panel) show strong edge effects for FBP. 

These effects produce all kinds of grey values resulting in a grey value histogram of the lung area basically showing one big gaussian 

function (right insert, blue curve). The grey value histogram of the same area in the phase retrieved data clearly demonstrates two 

components (air and soft tissue, red curve). In addition the profile plots at the position (P) (left insert), show that by application of single 

distance phase retrieval the edge effects are successfully removed and the interface between air and soft tissue resembles the expected 

simple stair shape.  

{Source: Mohammadi S, et al.[24]} 
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3) PHASE CONTRAST CT FOR QUANTIFICATION OF STRUCTURAL CHANGES IN LUNGS OF 

ASTHMA MOUSE MODELS OF DIFFERENT SEVERITY 

C. Dullin, E. Larsson, G. Tromba, A. Markus, F. Alves, “Phase contrast CT for quantification of structural changes in 

lungs of asthma mouse models of different severity,” J. Synchrotron Radiat. vol. 22, pp. 1106–1111, 2015 

Anatomical hallmarks of asthma such as airway obstruction or airway wall thickening are reported 

in many publications, however little is known about the magnitude of these effects in asthma mouse 

models, especially in relation to the large varieties of established asthma models. Therefore, our aim 

was to test if the gain in CNR in in-line phase contrast CT can provide more insights into structural 

alterations of asthmatic mouse lung tissue. To this end we analyzed mice of two asthma models of 

different severity as well as healthy controls. We used ovalbumin (OVA) induced asthma mouse 

models, a very common and well established method. In order to generate asthma of different 

severity, different concentrations and amounts of OVA were applied (Figure 7). 

 

Figure 7 Schedule of the different OVA induced allergic airway inflammation mouse  models used: 

a) the mild asthma model was set up using (10µg / 200µL PBS) of OVA and only two challenges, while the b) the severe asthma model was 

set up using a higher amount (50µg / 150µL PBS) of OVA, AlOH (50µL ¼ PBS) as adjuvant and 4 challenges. 

Twelve 6 week old female BALB/c mice were equally distributed into three different groups 

(healthy controls (CN), mild allergic asthma (MAA) and severe allergic asthma (SAA)). The animals  

were sacrificed (in case of the asthmatic mice two days after the last challenge) and prepared for 

phase contrast analysis as described above. The time point was chosen based on pilot optical 

imaging studies that revealed a peak in the inflammatory response 48h after the last OVA challenge. 

Phase contrast CT scans at the SYRMEP beamline (Synchrotron Light Source “Elettra”, Trieste, Italy) 

were obtained at 22keV and with a sample-to-detector distance of 30cm. Single distance phase 

retrieval was performed and finally the data sets were reconstructed using a classical FBP 

algorithm. Figure 8 shows the quality of the obtained lung phase contrast CT data sets. 
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Figure 8 Demonstration of the image quality in inline phase contrast CT of in-situ lungs of a healthy mouse after phase retrieval: 

a) displays a representative slice of a phase retrieved and reconstructed data set at reduced resolution. Despite the good image quality 

within the lung the expected poor quality of the bones can be seen. b) shows a detailed view of the region indicated by the white rectangle 

in a) at full resolution. Given the fact that the alveolar septal tissue is virtually a single cell layer, the data show cellular resolution in 3D 

for the entire lung. 

In these obtained data sets I analyzed the soft tissue volume ratio in 8 volumes of interest (VOI) 

with a size of 2x2x2 mm3 equally distributed in the periphery of the lung at comparable locations in 

each analyzed mouse. The peripheral lung region was chosen to avoid large bronchi inside the VOIs. 

The soft tissue volume ratio is the relative percentage of soft tissue within such a VOI, which is 

expected to be increased in the presence of airway wall thickening. I found significant differences in 

the soft tissue content between the three groups in correlation with the grade of severity of asthma 

(SAA shows a greater soft tissue volume ratio than MAA, while MAA shows a higher value than the 

controls). Moreover, the average -value of the lung tissue also differed between healthy controls, 

mild and severe asthmatic mice. Interestingly, the mild asthma group showed a lower and the 

severe asthma group a higher value than the controls. Since the -value is characteristic for the 

material, this indicated a possible difference in the composition of the lung tissue in these models. In 

order to verify this finding, lungs of mice from both models as well as from controls were explanted, 

weighed directly after excision and after being vacuum dried for 24h. Lungs from mice with severe 

asthma (SAA) were found to be twice as heavy as healthy controls, without showing any difference 

in wet and dry state, thus indicating that the ratio between the water content and the cells equals 

that in the healthy controls. In contrast, in the mild asthmatic mice (MAA) the weight difference of 

lungs increased from wet to dry state, thus indicating that the water to tissue ratio is higher in lungs 

of mild asthmatic than in healthy mice. This might indicate that in lungs of the MAA mice edema and 

mucus production is the more dominant effect rather than an increased amount of cells as found in 

the severe asthma model.  

In summary, the results of these experiments proved that phase contrast CT at a spatial resolution 

of 9µm in combination with single distance phase retrieval is not only capable of quantifying 
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structural differences in between lungs of healthy controls, mild and severe asthmatic mice, but is 

also sensitive enough to detect differences in the soft tissue composition in these asthma mouse 

models.  

In a novel still unpublished study we repeated this experiment, but extended the three groups by a 

group of asthmatic mice treated with the common anti-inflammatory glucocorticosteroid 

Dexamethasone (DEX) as well as a group of mice sacrificed 5 days after the last OVA challenge. Both 

groups the treated mice and the mice left to recover on their own, displayed significantly lower soft 

tissue volume ratios than the respective untreated MAA and SAA mice, but still had higher soft-

tissue volume ratios than the healthy controls. Even without treatment the mice of the MAA model 

showed values close to the baseline 5 days after the last OVA challenge, whereas the mice of the SAA 

model revealed a significantly larger soft tissue volume ratio than the healthy at the same time 

point. This indicates that in the severe model the alterations in the lungs are not reverted within 5 

days. If these lung tissue changes in SAA indeed present persistent alterations will be the scope of 

further experiments. 

In conclusion, the here established anatomical imaging procedure based on in-line free propagation 

phase contrast CT in combination with single distance phase retrieval appears to be well suited to 

assess morphological alterations in asthma mouse models of different severity as well as to address 

the effect of therapeutic strategies onto these morphologic features. 

 

4) FUNCTIONALIZED SYNCHROTRON IN-LINE PHASE-CONTRAST COMPUTED TOMOGRAPHY: A 

NOVEL APPROACH FOR SIMULTANEOUS QUANTIFICATION OF STRUCTURAL ALTERATIONS AND 

LOCALIZATION OF BARIUM-LABELED ALVEOLAR MACROPHAGES WITHIN MOUSE LUNG SAMPLES 

C. Dullin†, E. Larsson†, S. Dal Monego†, S. Mohammadi, M. Krenkel, C. Garrovo, S. Biffi, A. Lorenzon, A. Markus, J. 

Napp, T. Salditt, A. Accardo, F. Alves‡, and G. Tromba‡, “Functionalized Synchrotron inline phase contrast CT: a 

novel approach for simultaneous quantification of structural alterations and localization of barium labelled alveolar 

macrophages within mouse lung samples,” J. Synchrotron Radiat., vol. 22, pp. 143–155, 2015 

†,‡ equal contribution 

A drawback of CT is its limitation to structural imaging, since its rather poor sensitivity prohibits 

functional approaches. As demonstrated in the previous experiments our setup for in-line free 

propagation phase contrast CT in combination with single distance phase retrieval provides an at 

least 10-fold increase in CNR, basically the same factor that separates classical CT from MRI in 

which functional imaging strategies exist. Therefore, I aimed to combine the superior spatial 

resolution of CT with a functional aspect to detect in-situ sites of inflammation. My approach 

established for the first time functional CT with targeted contrast for in-situ imaging of mouse lungs. 

For this purpose, we labeled MH-S cells (an immortalized alveolar macrophage mouse cell line [25]) 

with a clinically approved BaSO4 containing contrast agent (Micropaque [26]) and stained the 

membrane of these cells with DiD, a fluorescent dye [27]. Six million of these cells were 

intratracheally administered into the lungs of mice from the mild asthmatic model 48h after the last 

challenge. Macrophages were chosen as vehicles for contrast agents for their phagocytotic 
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properties, as well as for the facts that they are known to home to inflammatory sites and were 

recently identified as a key player in asthma [28]. Therefore, collecting more knowledge about the 

migration pattern of macrophages in asthma may also aid to a better understanding of the patho-

mechanism of this disease. 

The location of the macrophages in the lung was verified by in vivo optical imaging 24h after their 

instillation. Following in vivo optical imaging mice were sacrificed and prepared for phase contrast 

CT scanning in the way described above. I was able to reproduce the results of the first study, 

showing that the quality of the obtained data sets allowed a quantification of structural alterations 

within the lung and in doing so the discrimination between asthmatics and controls. But moreover, 

we were able to identify clusters of injected macrophages due to their enhanced x-ray absorption by 

the phagocytized BaSO4 (Figure 9). In these phase contrast CT data sets we found a much higher 

amount of these cells in the asthmatic compared to the healthy lung tissue. In order to confirm these 

results NIRF microscopy and high resolution phase contrast x-ray microscopy was performed on 

lung sections from the same animal model. Both techniques also revealed the presence of the 

labeled cells, but did not demonstrate a strong difference in their total amount between asthmatic 

and healthy lung tissue. However, only in the asthmatic tissue clusters of cells including our instilled 

macrophages were detected. Hence single distributed labeled MH-S cells cannot be detected with 

our in-situ lung imaging setup these clusters most probably caused the observed higher 

concentration of Barium labeled cells in asthmatic lung tissue (Figure 9).  
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Figure 9: 3D localization of the barium sulfate labeled macrophages within the lung: 

in Volume rendering representation of the phase contrast CT data sets of an asthmatic mouse (AA) and of a healthy control (CN), grey = 

bones red = soft tissue, gold = Barium. VOIs (1x1x1 mm3) are shown for the location indicated by the white rectangle.  

{SOURCE: Dullin et al.[21] modified} 

In summary, I demonstrated for the first time that functional CT imaging, exploiting labeled 

macrophages as specific carriers of a CT contrast agent, is feasible in in-situ lung imaging of 

asthmatic mice and healthy controls. 

5) PHASE CONTRAST ZOOM-TOMOGRAPHY REVEALS DETAILED LOCATION OF MACROPHAGES 

IN MOUSE LUNGS 

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, T. Salditt, “Phase contrast zoom-tomography reveals detailed 

location of macrophages in mouse lungs,” Scientific reports 5, 2015 

In order to study more precisely the fate of the instilled labeled MH-S cells, imaging with a higher 

spatial resolution was required. To this end, the study was repeated, but instead of our sample 

preparation scheme used before, the lungs were explanted after inflation with paraformaldehyde, 

embedded in agarose gel and cut into 500µm thick slices. These samples were then analyzed at the 

ID 22 beamline (ESRF, Grenoble France) by Martin Krenkel from the institute for x-ray physics of 
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the University Göttingen headed by Prof. Tim Salditt. He used a setup for x-ray holotomography 

utilizing wave-guides developed within the group of Prof. Salditt. Phase retrieval was performed in 

the obtained data resulting in data sets with a voxel size of 430nm. At this subcellular spatial 

resolution single labeled macrophages could be easily identified within the local lung structure 

environment (Figure 10). Due to the very complex setup, the long acquisition time and the limited 

viability of ID 22 only a few samples taken from two controls, two asthmatic mice and one mouse 

without injected macrophages (serving as negative control) were analyzed. The high resolution also 

limits the available field of view so that only manually chosen regions of the samples were scanned 

at this level of detail. However, the remarkable feature of this approach is that the magnification can 

be varied, thus allowing to zoom into certain sites of interest. The generated data sets showed no 

obvious differences in the amount of labeled macrophages or in their localization between the 

different groups.  

 

Figure 10: 3D localization of the labeled macrophages in a thick lung section scanned by holotomography: 

three orthogonal oriented slices are shown together with automatically labeled Barium clusters (green) and alveolar walls in a small ROI 

(yellow). A part of a blood vessel has been marked semi automatically (purple).  

{SOURCE: Krenkel M, et al. [24], modified} 

 

B. LUNG FUNCTION MEASUREMENT 
All the methods demonstrated in this thesis so far measures secondary effects in asthma. Up to now, 

it is not known to which extent these hallmarks are related to the clinically most interesting 

parameter which is the “lung function”. In the clinic, the direct assessment of lung function is the 

gold standard for the characterization of asthmatic patients. In preclinical research lung function 

assessment is usually done by plethysmography, a technique that measures the pressure differences 

caused by breathing. In most cases, plethysmography goes along with the immobilization or 
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intubation of the mouse. Plethysmography can also be performed on freely breathing mice, but the 

reliability of this approach is heavily discussed [16]. As an alternative, a method analyzing video 

streams of mice placed in a transparent box was introduced by Bates et al. [29]. Although this 

approach claims to allow the measurement of lung function in free moving mice, the described box 

in which the mouse is kept during the acquisition is so small that the mouse is still very restrained, 

thus leading to potential higher stress levels of the animal. As an increased stress level, especially in 

asthma, will influence the results, my aim was to develop an alternative approach to assess lung 

function. 

1) QUANTIFICATION OF LUNG FUNCTION IN PRECLINICAL ASTHMA MOUSE MODELS BY 

PLANAR CINEMATIC X-RAY IMAGING 

In humans, “air-trapping”, meaning the inability to expel the inhaled air from certain areas of the 

lung, is used to identify the presence of asthma by CT. The trapped air lowers the average x-ray 

attenuation and as a result these regions appear darker than normal ventilated areas on CT scans in 

expiration state. In order to reliably measure such an effect in mice, CT with a sufficient spatial 

resolution is required. As previously discussed, such a resolution in the range of microns would be 

accompanied with an increased x-ray dose that prohibits an in vivo application. In addition, inhaling 

and expelling of air cannot be controlled in mice. In order to reconstruct the lung either in 

inspiration or expiration state a gated imaging approach is necessary. For this purpose 

retrospective gating is usually used in in vivo small animal CT mainly [30], where instead of one set 

of projection images several rotations are acquired to retrospectively generate one data set for the 

same state of the chest. The advantage of this approach is that any CT device that is capable of 

acquiring more than one rotation can be used. However, performing several rotations increases the 

overall scanning time and applies several times the dose of one “classical” CT scan to the studied 

object/subject. Therefore, there was the strong need to acquire a better method to address and 

quantify an impairment of lung function in mice. 

This inspired me to develop a method to measure lung function based on planar cinematic x-ray 

imaging. With planar chest radiography the lung can be easily visualized, an effect which has been 

used for medical diagnosis of lung disease for decades. By utilizing the low dose in vivo microCT 

“QuantumFX” (Perkin Elmer), x-ray movies with 1024 frames at a frame rate of 30Hz can be 

recorded. Applied to the chest region of a mouse this means that 34s of the breathing cycles can be 

imaged. Since the changes in the air content due to breathing cause significant modulations in the x-

ray attenuation over the lung area, the function generated by measuring the average x-ray 

attenuation of the lung (XAF) will contain information about alteration of the lung function. As 

demonstrated for three mice in Figure 11, the XAF shows distinct breathing events for a healthy 

mouse (blue), an asthmatic mouse (red) and a dexamethasone (DEX) treated asthmatic mouse 

(green). Whereas the blue and green curves look very similar, the red curve is characterized by a 

higher baseline, as well as by much smaller and asymmetric peaks. Within this thesis I developed a 

method to quantify these breathing events by fitting a second order polynomial function in the 

peaks of the XAF. For each mouse and each breathing event the parameters of this polynomial 

function (XAF’(t) = QF*t^2+ k*t^1 + C) and additionally the width of the breathing event (L), the 

area under the curve (AuC) as well as a symmetry index (AnIso) are calculated and averaged per 

mouse.  
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Figure 11 Principle of the in-vivo lung function measurement approach based on cinematic planar x-ray imaging: 

a) shows the imaged chest region of the mouse. The changes in the x-ray absorption function (XAF) were measured as average grey values 

over the right side of the lung (ROI) and normalized by the background region ROIBgk. b) shows exemplified the XAFs of a healthy control 

mouse (SCN, blue), an asthmatic mouse (SAA, red) and a dexamethasone treated mouse (SAA-DEX, green). Clearly a dramatically reduced 

area under the curve can be seen for SAA in comparison to both the healthy and the treated mouse, pointing to a reduced volume of 

transported air in the asthmatic mouse. In addition the XAF of the asthmatic mouse shows a slower decay, reflecting a reduced elasticity 

of the lung tissue and therefore a reduced speed of expelling the inhaled air. For quantification level functions were calculated 

automatically (horizontal lines). Between two intersection points of the level functions with the XAF a polynomial function of the order 2 

was fitted into the XAF (dashed, dotted and solid interpolation function). 

In order to establish this procedure, in a first step the chest regions of isoflurane-anesthetized and 

therefore non-moving mice were imaged. However, combined with a motion tracking algorithm, the 

method has even the potential of analyzing free moving mice as well. 

In order to verify the robustness of this novel technique, it was applied on healthy BALB/c mice of 

both genders and of different age. In order to access age related effects the mice were divided into 

three groups: a) younger than 7 weeks, b) between 7 and 11 weeks of age and c) older than 11 

weeks. A reduction of QF (the factor of the quadratic term of the fitting polynomial function) and an 

increase of L (the average width of the breathing events) with increasing age of the mice were 

found. However, I could not identify significant gender related variations besides a slightly 

increased L has been found in male mice. This latter effect is most likely related to the fact that male 

mice are larger than females of the same age. This indicates that only age and gender matched mice 

should be used. In need to compare results from studies performed with mice of different age, only 

the relative difference between the parameters for asthmatic and control mice should be used. 

In order to demonstrate that this method can be used with a low x-ray dose and is therefore suitable 

for in vivo studies, a set of mice was measured with varying x-ray doses. In this experiment a 

relationship between the applied dose and the calculated parameters was not found, thus indicating 

that even with in a very low dose setting of about 6.5mGy per acquisition (90kV and 40µA) the 

parameters of the XAF can still be evaluated. For comparison, the dose usually used to perform a CT 

scan at the same device (QuantumFX, Perkin Elmer, USA) that covers roughly half of the mouse is 
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about 40mGy (which is still very low compared to other systems on the market). Since similar CT 

scans have been performed by us once per week in longitudinal tumor therapy studies in mice and 

have never caused any measurable side effects, it can be assumed that the lung function 

measurement technique which uses about 16% of this dose can be applied unreserved in in vivo 

longitudinal studies. 

I could demonstrate that the introduced lung function parameters (QF, C and L) can be used to 

discriminate between asthmatic and healthy mice. Moreover, I applied this method in mice of two 

asthma mouse models of different severity, DEX treated mice and healthy controls. For verification, 

the lungs were also analyzed by phase contrast CT and histology. Mice of all groups including the 

treated mice demonstrated remarkable differences in the analyzed parameter (QF, C and L, Figure 

12). 

 

Figure 12 the obtained function parameters QF, C and L for the two asthma models, controls and DEX treated mice: 

A reduced QF was found in asthmatic mice (MAA and SAA), where SAA shows a stronger reduction than the mild model MAA. Treated 

mice (MAA-DEX and SAA-DEX) showed a larger QF which in case of MAA-DEX exceeds the controls MCN (left). The same characteristic 

differences can been found in C and L (which represents the length of a breathing event). Asthmatic mice, especially from the severe 

model SAA, showed a prolonged breathing event as observed in human asthma patients as well. Also for this parameter the effect of the 

DEX treatment can be seen, as a shortening of the breathing event time towards the one of healthy animals (SAA-DEX) or, in case of MAA-

DEX, exceeding the controls. 

In the presence of asthma a reduction of QF, an increase of C and a prolongation of L was observed. 

Since QF is the parameter responsible for the steepness of the polynomial function, a reduction 

means a smaller interval of x-ray attenuation changes within the lung, thus pointing to an impaired 

exchange of air. C basically measures the baseline of the polynomial function and therefore its 

increase demonstrates the air trapping effect in asthma. L is the length of a breathing event showing 

the expected effect of extended expiration times in asthmatic mice due to the reduced elasticity of 

the lung tissue. It can be seen that these parameters, in accordance with the design of the 

experiment, showed a reduced lung function in the asthmatic animals (stronger in the once from the 

severe model) compared to the healthy controls and intermediate values for the treated animals. In 

the case of the mild asthma model the treated mice even expressed a “better” lung function than the 

healthy controls, suggesting that the applied DEX dosage (causing bronchodilation) may 

overcompensate the negative effects of asthma. Overall, the method proved to be a reliable measure 

of lung function able to discriminate between asthmatic mice of different severity as well as, treated 

and healthy mice.  In order to verify and correlate the results phase contrast CT and Histology (H&E 

and PAS staining) has been performed in the same animals ex vivo. A detailed discussion of the 

correlation between the parameters of the different imaging techniques is presented in chapter C. 
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Furthermore using this lung function measurement technique, I demonstrate that the natural 

recovery from the disease in mice from the mild asthma model can be analyzed. For this, asthmatic 

and healthy control mice were measured 2 days and 16 days after the asthma attack (Figure 13). 

Interestingly, in the recovered asthmatic mice the length of the breathing events L as well as the 

height of the baseline C showed no difference to the controls anymore, whereas QF and AuC 

remained reduced and AnIso increased. This may indicate that there is no longer any acute air 

trapping in the mice that recovered from asthma. However, the lung function seems still to be 

impaired due to persistent changes in the lung tissue elasticity, which is also known for asthmatic 

patients [31](shown by the AnIso parameter). Since phase contrast CT analysis on recovered mice 

did not reveal any differences to healthy mice, the lung function measurement method proposed in 

this thesis provides even additional information and proved to be more sensitive than CT. 

 

FIGURE 13 Recovery of asthmatic mice assessed by lung function measurements: 

The relative difference of the lung function parameter in between asthmatic mice 2 days (AA) and 16 days (AAr) after the last OVA 

challenge compared with healthy controls. Therefore 0 equals healthy conditions. a) shows that still in AAr the parameter QF (steepness 

of the breathing peak) is strongly reduced, b) instead indicates that the baseline parameter C has basically reached normal condition also 

c) the length of the breathing peak equals healthy control mice. However d) demonstrate that anisotropy index AnIso remains different to 

the controls. 

It has to be noted that the analysis is influenced by the breathing frequency and therefore it was 

adjusted to about one breathing event in 1.4s by modifying the isoflurane concentration. The used 

anesthesia device is not optimized for such an approach and therefore the obtained synchronization 

of the breathing frequencies was not optimal. This may account for the fact that the lung function 

parameters showed stronger variations within each group than the results obtained for instance by 

phase contrast CT and histology. If in future an electronic controlled anesthesia device will be used 

this problem will be circumvented.  

In summary, I demonstrated that the measurement of lung function based on low-dose planar 

cinematic x-ray imaging is feasible and sensitive enough to discriminate between healthy mice, mice 

from different asthma models and treated mice. The method can be used in in vivo longitudinal 

studies due to the low x-ray dose. Therefore, this technique provides a functional readout allowing 

the quantification of this important clinical symptom – the impairment of lung function - and its 
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correlation to alterations on the anatomical and molecular level within the mouse lung. Since the 

lung function is also influenced by changes in the lung tissue elasticity, this approach provides a 

direct measure of this effect which is missing in the CT based analysis. While only demonstrated on 

anesthetized mice, the application of our method on free moving non-anesthetized mice seems to be 

feasible and will be topic for further developments to improve this approach.  

C. CORRELATION BETWEEN THE ANATOMICAL AND FUNCTIONAL MEASURES 
So far, the two routes – anatomical and functional imaging were discussed separately. For a better 

understanding of asthma, the course of the disease or the treatment response, the relationship 

between the different parameters is of major interest. For this purpose, we conducted a study in 

which asthmatic mice (MAA and SAA), DEX treated mice as well as healthy controls were analyzed 

in vivo by x-ray based lung function measurement and ex vivo by phase contrast CT. Furthermore, 

histology was performed to validate the obtained results. Please note, that a control group for each 

asthma model (MCN and SCN) was used. These groups received PBS instead of OVA at the same time 

points as the respective asthma mice. Moreover, the preparation of the lungs for histology was done 

after the phase contrast CT scans. In this case the lungs were kept in-situ without fixatives for up to 

5 days, which might explain the reduced quality of the obtained histological sections. Therefore, 

direct quantification of hallmarks of asthma such as airway wall thickening was not able to perform.  

For histology, haematoxylin eosin (H&E) and periodic acid-schiff (PAS) staining were performed to 

assess hallmarks of asthma by identifying the grade of immune cell infiltration and the amount of 

mucus production. Histological sections of all mouse lungs were scored by four independent 

researchers using a scale from 0 (no visible immune cell infiltration or no mucus) to 3 (large amount 

of cell infiltration or strong mucus production). Since the H&E score represents the increase of 

immune cells in the lungs, it is not surprising that even airway wall thickening is not addressed, due 

to the limited quality of the histological sections, the results correlate with an increase in the soft 

tissue vol. ratio obtained by phase contrast CT (Figure 14). When comparing the soft tissue vol. ratio 

with the corresponding normalized -value (the real part of the refractive index responsible for the 

phase shift) (Figure 14a), in the presence of asthma both, the soft tissue ratio and the -value were 

found to be increased. The first parameter quantifies airway wall thickening and immune cell 

infiltration the latter indicates a modification of the cell-to-water ratio within the lung tissue, which 

both are well known effects of human asthma. Also the response to a DEX treatment was quantified, 

which significantly reduces the soft tissue vol. ratio by bronchodilatation, but does not change the 

composition of the lung tissue (-value remains high). Interestingly, if the DEX treated mice were 

excluded, Figure 14b) shows that the H&E score correlates with the normalized -value and reflects 

the severity of asthma. In the treated mice MAA-DEX and SAA-DEX the H&E score is reduced but the 

-value remains high. This might indicate that the amount of infiltrating cells can be reduced by DEX 

but there must be other cells or enlarged cells involved that keep the -value up. Figure 14c) shows 

a relationship of the soft tissue vol. ratio to the amount of infiltrating cells stated by the H&E score. 

It should be noted that the scores are not linear and therefore a linear correlation cannot be 

expected. Figure 14d) proves that both the H&E and PAS score are reliable measurements to assess 

the severity of asthma. From this figure we can also conclude that in SAA the applied treatment was 

not sufficient to completely undo the alterations caused by asthma, whereas in MAA-DEX no 

significant difference to the healthy controls can be observed. Since PAS and H&E scores are highly 
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correlated, Figure 14e) and f) demonstrate the same trends as in Figure 14b) and c). Based on visual 

comparison the different groups seem to be a bit more separated in Figure 14e) and f) than in b) 

and c) suggesting that the PAS score is slightly more sensitive to discriminate between mice of 

different groups. 

 

Figure 14 Correlation between phase contrast CT and histology: 

The various plots a)-f) display the correlation between two individual parameter. a) indicates that asthma is characterized by both a 

higher vol. ratio and an increased normalized -value of the lung tissue. Interestingly the treatment seems to reduce the vol. ratio (so it 

treats the swelling of the tissue) but does not chance the altered chemical composition of the lung tissue (the normalized -value is not 

reduced). It can be also seen (indicated by the red lines) that the combination of vol. ratio and d-value allows a clear separation into 

asthmatic, treated and healthy mice b) shows that there is a high degree of correlation between cell infiltration (H&E) and normalized -

value, thus meaning that more cells within the lung tissue increase the obtained d-value. This relationship is disturbed in the presence of 

treatment. c) shows that the bronchodilation caused by the DEX treatment yields to a lower vol. ratio but does not change the amount of 

infiltrating cells that much. d) indicates that both PAS and H&E scores are reliable measures of asthma and therefore show a high degree 

of correlation. It can be also seen that in case of the severe model the DEX treatment was not completely successful and therefore SAA-

DEX appears grouped together with SAA and MAA. Since H&E and PAS score are highly correlated e) and f) show the same trends like b) 

and c). 

 

Another important issue is the relationship between anatomical information and lung function, as 

this would demonstrate how predictive a morphological analysis in asthma mouse models is. These 

results are demonstrated in Figure 15, showing that asthmatic mice can be easily discriminated 

from healthy and treated mice by combining the soft tissue vol. ratio obtained by phase contrast CT 

with the measured lung function parameter QF, L and C. As the two asthma models were setup in 

parallel using age and gender matched mice, the same results were expected for the two control 

groups MCN and SCN. The only difference in the setup of the control mice was the schedule in which 

they received PBS. Since MCN and SCN can be clearly separated, I believe that injection of even PBS 

alone, can result in an alteration of the lung tissue, thereby suggesting that great care needs to be 



 

39 
 

taken when comparing results obtained in different asthma models. This finding needs further 

evaluation.  

 

Figure 15 relationship between phase contrast CT (vol. ratio) and the lung function parameter (QF, C and L[s]): 

Since the lung function parameters QF, C and L[s] are all changed in asthma and show a high degree of correlation, very similar trends can 

be seen in a), b) and c). Whereas, based on solely the lung function parameter for instance MAA cannot easily separated from SAA-DEX, 

the combination of phase contrast CT and lung function measurement would allow a clear discrimination as indicated by the marked 

regions. 

In summary, I could show that the established histological analysis of lung tissue from asthmatic 

mice, although limited to 2D, shows the same trends like the lung tissue vol. ratio parameter 

obtained by phase contrast CT. Additionally, phase contrast CT correlates well with the lung 

function measures, which indicates a strong relationship between structural and functional 

alterations in asthma. The observed correlations may also account for the trustworthiness of the 

two novel approaches for the analysis of asthma mouse models: phase contrast CT and x-ray based 

lung function measurement. Interestingly, the differences that we found in the two asthma models 

suggest, due to the different induction schemes, additional effects rather than only increasing 

magnitude of the hallmarks of asthma. Moreover, the DEX treated mice displayed different features 

than the controls, which may indicate that the treatment only suppresses some symptoms but does 

not cure the asthmatic mice.  

 

D. MOLECULAR IMAGING 
In order not to limit the analysis of asthma in preclinical mouse models to the quantification and 

classification of symptoms, but also to study the underlying molecular processes such as cell-cell 

interaction and cell migration, molecular imaging by means of in vivo near infrared fluorescence 

(NIRF) imaging was performed. Particularly in rather dynamic diseases such as asthma, which 

demonstrate different phases of an immune response, a method with a fast readout such as NIRF 

imaging would be very useful to monitor the course of the disease as well as to assess treatment 

response. However, structural changes as well as changes in the lung function in asthmatic mice 

cannot be measured due to the limited spatial and temporal resolution of such systems, especially of 

systems using a raster acquisition scheme. Thus, NIRF optical imaging is either focused on the 

inflammatory progression of asthma or on the detection of differences in population or recruitment 

of specific cell types to the lung. 



 

40 
 

1) DENDRITIC POLYGLYCEROLSULFATE NEAR INFRARED FLUORESCENT (NIRF) DYE 

CONJUGATE FOR NON-INVASIVELY MONITORING OF INFLAMMATION IN AN ALLERGIC ASTHMA 

MOUSE MODEL 

S. Biffi†, S. Dal Monego†, C. Dullin, C. Garrovo, B. Bosnjak, K. Licha, P. Welker, M. M. Epstein, and F. Alves, 

“Dendritic polyglycerolsulfate near infrared fluorescent (NIRF) dye conjugate for non-invasively monitoring of 

inflammation in an allergic asthma mouse model,” PloS One, vol. 8, no. 2, p. e57150, 2013. 

† equal contribution 

Asthma causes a local inflammation within the lung which can be exploited for the detection of the 

disease by using optical imaging in combination with smart fluorescence probes as demonstrated by 

Cortez-Retamonzo et al. [19]. However, these smart probes (ProSense and MMPSense) which are 

activated predominately by either Cathepsin-B or MMP-9 and MMP-13, share the same 

disadvantages: a rather slow kinetic and the lack of attachment to the site of activation, creating a 

substantial background signal. Both effects hamper the applicability of this kind of probes in asthma 

mouse models. Therefore, we applied a novel dendritic polyglycerolsulfate NIRF dye conjugate 

(MN2012) [32]. This dye is known to be taken up by macrophages and to bind P- and L-selectin. 

Following intravenous injection of MN2012 the average fluorescence intensity was measured over 

the chest area. We demonstrated that MN2012 accumulates in the lung and showed the highest 

difference between asthmatic and control mice 4h after the administration of the dye, in comparison 

to 24h with above mentioned commercial smart probes which peak later due to their activation 

process. In summary, in this study we concluded, that the use of MN2012 is beneficial especially if a 

faster readout of changes in the local inflammation is needed, for instance to monitor a given 

treatment. However, we also found that the commercial dyes, despite their slow kinetic, expressed a 

much stronger signal. Since MN2012 has also proven to act anti-inflammatory at higher doses [33], 

increasing the dose to match the signal intensity of the commercial dyes may affect the asthma 

model and is therefore contraindicated. Thus, in applications in which only weak signals closer to 

the detection limit of the optical imaging system are expected, the use of commercial dyes instead of 

MN2012 seems preferable.  

 

2) NON-INVASIVE OPTICAL IMAGING OF EOSINOPHILIA DURING THE COURSE OF AN 

EXPERIMENTAL ALLERGIC AIRWAYS DISEASE MODEL AND IN RESPONSE TO THERAPY 

M. A. Markus, C. Dullin, M. Mitkovski, E. Prieschl-Grassauer, M. M. Epstein, and F. Alves, “Non-Invasive Optical 

Imaging of Eosinophilia during the Course of an Experimental Allergic Airways Disease Model and in Response to 

Therapy,” PloS One, vol. 9, no. 2, p. e90017, 2014. 

The imaging strategy discussed above, using Cathepsin-B, MMP-9 and MMP-13 sensitive probes or 

MN2012 presents a readout for inflammation independent of the underlying disease and is 

therefore not specific for asthma. To this end, we focused on another hallmark of asthma: the 

increase of the total amount of eosinophils within the lung during an asthmatic response 

(eosinophilia). Eosinophilia is reduced by most of the applied therapeutic concepts such as DEX 

based therapies. Therefore, imaging eosinophils within the lung would allow to identify the 
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presence of asthma as well as to monitor treatment efficacy. Here, we used a NIRF-labeled anti-

Siglec-F antibody. Siglec-F is expressed on the membrane of eosinophils and to a much lower extent 

on macrophages. In this study a significant difference in the amount of eosinophils between 

asthmatic and control mice was found in the lung region at 48h and 72h after administration of the 

NIRF-labeled anti-Siglec-F antibody. Moreover, asthmatic mice treated either with DEX or beta-

escrin, a new anti-inflammatory drug derived from Chinese horse chestnut seeds, expressed an 

about 2-fold decreased fluorescence intensity, indicating that this approach can be used to detect 

treatment response. Additionally, the results were validated by utilizing ex vivo NIRF microscopy, 

bronchoalveolar lavage (BAL) and classical histology. In summary, we demonstrated for the first 

time that eosinophilia can be monitored in vivo and non-invasively in asthma mouse models and 

that this NIRF imaging approach can be used to assess preclinically treatment response over time. 

3) TRACKING OF INHALED NEAR-INFRARED NANOPARTICLES IN LUNGS OF SKH-1 MICE WITH 

ALLERGIC AIRWAY INFLAMMATION 

A. Markus, J. Napp, T. Behnke, M. Mitkovski, C. Dullin, S. Kilfeather, U. Resch-Genger, and F. Alves, “Tracking of 

inhaled near-infrared nanoparticles in lungs of SKH-1  mice with  allergic airway inflammation” ACS Nano, in 

revision 

Cell migration, especially of macrophages, is of great interest as it has been shown by Mizue and 

Chen [28], [34] that inhibition of the macrophage migration inhibition factor (MIF) prevents airway 

remodeling and therefore the development of asthmatic symptoms. In order to study the migration 

behavior of endogenous macrophages, we used NIRF nanoparticles which we intranasally instilled 

into mice. In this paper we show that inhaled NIRF (Itrybe) nanoparticles are predominately taken 

up by alveolar M2 macrophages (AMs) in the peribronchial and alveolar space, allowing for in vivo 

detection of these cells by means of NIRF imaging. We found higher fluorescence intensity in the 

lung area of mice from an OVA induced allergic airway disease model in comparison with healthy 

controls. These findings were validated by confocal microscopy of lung tissue sections co-stained 

with a fluorescent labeled anti-CD68 antibody. In summary, we demonstrated that in vivo NIRF 

imaging can be used to investigate the fate of inhaled NIRF nanoparticles within the lungs of asthma 

mice which may also aid the analysis of the biodistribution of inhaled therapeutics in asthma. Since 

the Itrybe particles were predominately found in M2 macrophages, the approach can be used in 

other disease models to perform tracking of endogenous M2 macrophages. 

 

SUMMARY OF THE MOLECULAR IMAGING PART 
In the here presented studies we showed that NIRF imaging, despite its poor spatial resolution, is a 

valuable tool to detect asthma in mouse models, to monitor certain aspects like the degree of 

inflammation or the recruitment of specific cell into the lung and more importantly to address 

treatment response in a living mouse over time. It has been shown that the alternative dye MN2012 

can be used to detect inflammation during asthma and expresses a faster kinetic than the so far used 

commercial smart probes. We also demonstrated that specific cells can be labeled either by 

antibody-dye conjugates or by uptake of NIRF nanoparticles and, even though single cell tracking is 

not feasible, the differences in their total amount can be monitored over time within the lung by in 
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vivo NIRF imaging. Moreover, we showed that the population of specific endogenous cells such as 

eosinophils and M2 macrophages can be imaged, which will not only help to understand cell 

migration and cell-cell interactions in asthma, but could also aid to the development of more 

localized therapeutic approaches in asthma which may generate less side effects than systemic drug 

therapy. 

PROJECT SUMMARY & FUTURE PLANS 
Within this thesis I demonstrated that despite the limiting small size of mouse lungs, cutting edge 

imaging techniques can provide detailed information regarding anatomical, functional and 

molecular alterations in lungs of mouse asthma models, thereby providing the necessary sensitivity 

to discriminate between mice with asthma of different severity as well as between DEX treated, 

disease recovered and healthy mice. 

I established and validated a novel approach for anatomical imaging of in-situ mouse lungs based on 

a combination of Synchrotron inline free propagation phase contrast CT and single distance phase 

retrieval that allowed a reliable quantification of subtle morphologic alterations within the lung 

tissue of asthmatic mice such as increased soft tissue vol. ratio. This approach has been proven to be 

sufficient to discriminate between mice with asthma of different severity, DEX treated and healthy 

mice. Moreover, this technique was sensitive enough to visualize barium sulfate labeled 

macrophages that were intra tracheal instilled into the lungs and thereby depict in-situ differences 

in the bio distribution of macrophages in lungs of asthmatic and healthy mice – the first approach of 

functionalized contrast in combination with CT lung imaging. 

Furthermore, I invented a novel imaging approach to assess the impairment of lung function in 

asthmatic mice in vivo over time by low dose planar cinematic radiography. Utilizing this technique I 

was able to discriminate alterations of the lung functions in between mice from two asthmatic 

models, DEX treated mice, mice that had recovered from asthma and healthy controls. I 

demonstrated that this approach correlates well with different aspects of morphological alterations 

obtained by phase contrast CT and by histology. This new technique has been proven to be more 

sensitive than phase contrast CT when assessing treatment response. Moreover, I could show that 

with this method lung function can be measured without the need of intubating the mouse which 

may reduce its stress level. 

In order to address molecular event within asthmatic mice, we successfully established three novel 

in vivo NIRF imaging strategies: first monitoring local inflammation within the lung with a new 

polyglycerol dye (MN2012) which has proven to be more specific discriminating asthmatic from 

healthy mice and to express a fast kinetic than the commercial smart probes, which will allow to 

follow the dynamic of an asthma attack more closely. Second, we demonstrated that an NIRF labeled 

anti-Siglec-F antibody can be used to visualize eosinophilia in vivo in asthma mouse models and will 

therefore provide an readout for treatment response on eosinophils. Third, we showed that we can 

image the fate of inhaled NIRF nanoparticles in vivo, which have been found to be predominately 

taken up by M2 macrophages. Therefore macrophages might be an interesting target for a 

nanoparticle based therapy. 
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The combination of these novel imaging methods developed within this thesis creates an imaging 

platform that can be used to evaluate the response of novel asthma therapies based on their 

interactions with eosinophils, lung tissue and lung function in general. I demonstrated that these 

different techniques not only provide measures of established parameters such as airway 

obstruction and airway wall thickening, but also allow investigation of other features such as lung 

tissue elasticity measureable by direct evaluation of the lung function. By application of this imaging 

platform to assess the efficacy of a DEX therapy in an asthma mouse model, we found that 

eosinophilia, bronchial wall thickening as well as air-trapping could successfully be diminished by 

DEX, but alterations of the lung function were still present. Due to this and the fact that 

corticosteroid treatments such as DEX are known to produce side effects there is still a strong need 

for alternative therapies targeting asthma.  The here developed imaging platform may aid to 

evaluation and optimization of such novel therapeutic strategies. 

Within the scope of anatomical imaging, it is planned to use the high sensitivity of the generated 

phase contrast CT technique in combination with our preparation scheme to study the entire lung 

structure in-situ in great detail at different air pressures. This will allow the calculation of the local 

lung tissue elasticity, a parameter known to be substantially lowered in asthma. Persistent changes 

in lung tissue as discovered in patients even years after the last asthma attack, have to our 

knowledge never been the focus of a therapy approach before, but if cured would remarkably 

improve the wellbeing of the patients. These changes in the lung tissue elasticity might most likely 

not only be limited to the airways but could also affect the lung blood vessels. Changes in the blood 

vessel density in the presence of asthma have already been reported in the literature [35]. 

Therefore, I acquired data sets of lung tissue embedded in paraffin and stained with a tungsten 

containing acid (PTA), allowing the 3D-depiction of the lung blood vessels 3D in great detail. The 

data is currently being processed and will add another possible readout to the imaging platform.  

The approach to use labelled macrophages for functional CT imaging in preclinical research, which 

has opened up possibilities for a broad range of applications due to the fact that it can be easily 

adapted to other inflammatory diseases. In addition, this also has the potential to exploit 

macrophages as carriers of therapeutics while monitoring their distribution in parallel.  

The here presented lung function measurement will be in the focus of future research. It is planned 

to apply this strategy on free moving mice. The mice will be scanned in a box large enough to cause 

less stress and these boxes will in addition be used as houses inside the cages, so that the mice can 

adapt to it. That will hopefully allow the establishment of less stressful lung function measurements, 

thereby delivering more reliable results in preclinical asthma research. Hence, it is planned to 

perform a study comparing the novel technique with the established plethysmography and, in case 

of the x-ray based approach, on anaesthetized and unrestrained mice. This will reveal the potential 

benefit of the here presented lung function measurement approach and may also allow to match the 

calculated parameter (QF, L, C etc.)  with established results from measurements with 

plethysmography. In addition, it will reveal the impact of the stress level on the obtained results. 

The use of imaging platform generated in this thesis has already revealed unknown effects and 

features in asthma such as the migration pattern of the injected macrophages, the differences in the 

composition of the lung tissue in different asthma models, the inability of the applied DEX therapy 
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to revert certain aspects of the lung function to healthy condition to only name a few.  This not only 

opens up a large field of future research but may aid to a better understanding of asthma and could 

help to identify alternative targets for novel therapies and will therefore hopefully be beneficial for 

asthma patients in the future.   
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OWN CONTRIBUTION 
Due to the fact that this was a highly interdisciplinary and collaborative research project I would 

like to state in detail my contribution to the several subprojects: 

1. Anatomical imaging  

a. Accurate and precise reconstruction of complex refractive index in near-field single-distance 

propagation-based phase-contrast tomography 

Phantom design, data acquisition, contribution to the writing process  

b. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-

contrast images of a mouse lung 

Experimental idea and design, data acquisition, contribution to sample preparation, data 

analysis, generation of a novel method to assess edge sharpness, supervision of author S. 

Mohammadi/E. Larsson 

c. Phase contrast CT for quantification of structural changes in lungs of asthma mouse models of 

different severity 

Experimental idea and design, data acquisition, data analysis, writing of the publication, 

contribution to sample preparation 

d. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for 

simultaneous quantification of structural alterations and localization of barium-labelled 

alveolar macrophages within mouse lung samples 

Experimental idea and design, data acquisition, contribution to data analysis and sample 

preparation, supervision of E. Larsson in the 3D data analysis process 

e. Phase contrast zoom-tomography reveals detailed location of macrophages in mouse lungs 

Involved in experimental design and sample preparation, contribution to writing process 

2. Molecular imaging 

a. Dendritic Polyglycerolsulfate Near Infrared Fluorescent (NIRF) Dye Conjugate for Non-

Invasively Monitoring of Inflammation in an Allergic Asthma Mouse Model 

Experimental design, analysis strategy, contribution to data acquisition, involved in writing 

of the publication  

b. Non-invasive optical imaging of eosinophilia during the course of an experimental allergic 

airways disease model and in response to therapy 

Involved in data analysis and writing process 

c. Tracking of inhaled near-infrared nanoparticles in lungs of SKH-1 mice with allergic airway 

inflammation 

Involved in data analysis and writing process 

3. Functional Imaging 

a. Quantification of lung function in preclinical asthma mouse models by planar cinematic x-ray 

imaging 

Experimental idea and design, data acquisition, analysis, writing of the publication 
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We investigate the quantitative accuracy and noise sensitivity of reconstruction of the 3D

distribution of complex refractive index, nðrÞ ¼ 1� dðrÞ þ ibðrÞ, in samples containing materials

with different refractive indices using propagation-based phase-contrast computed tomography

(PB-CT). Our present study is limited to the case of parallel-beam geometry with monochromatic

synchrotron radiation, but can be readily extended to cone-beam CT and partially coherent

polychromatic X-rays at least in the case of weakly absorbing samples. We demonstrate that,

except for regions near the interfaces between distinct materials, the distribution of imaginary part

of the refractive index, bðrÞ, can be accurately reconstructed from a single projection image per

view angle using phase retrieval based on the so-called homogeneous version of the Transport of

Intensity equation (TIE-Hom) in combination with conventional CT reconstruction. In contrast, the

accuracy of reconstruction of dðrÞ depends strongly on the choice of the “regularization” parameter

in TIE-Hom. We demonstrate by means of an instructive example that for some multi-material

samples, a direct application of the TIE-Hom method in PB-CT produces qualitatively incorrect

results for dðrÞ, which can be rectified either by collecting additional projection images at each

view angle, or by utilising suitable a priori information about the sample. As a separate

observation, we also show that, in agreement with previous reports, it is possible to significantly

improve signal-to-noise ratio by increasing the sample-to-detector distance in combination with

TIE-Hom phase retrieval in PB-CT compared to conventional (“contact”) CT, with the maximum

achievable gain of the order of 0:3d=b. This can lead to improved image quality and/or reduction

of the X-ray dose delivered to patients in medical imaging. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4824491]

I. INTRODUCTION

After approximately 50 years of development, counting

from the seminal paper by Bonse and Hart,1 phase-contrast

X-ray imaging is currently approaching a mature stage, where

it can be translated into medical clinical practice.2,3 Amongst

several X-ray phase-contrast imaging modalities that include

crystal-based and grating-based interferometry, analyser-

based imaging and others,3 the so-called in-line or

propagation-based imaging (PBI) method is the simplest in

its experimental implementation, as well as in its theoretical

underpinnings.4–6 The method still has some well-established

disadvantages, compared to alternative approaches, most

notably the relatively stringent requirements to the spatial

coherence of the incident X-ray beam.7 It has been recently

demonstrated8–11 that depending on the nature of the sample

being imaged and the experimental layout (including the

coherence properties of the source and the spatial resolution

of the detector), a particular phase-contrast imaging mode

may perform better than the rest, however, there is no single

clear winner, in general. Therefore, in preparation to the

introduction into the clinical practice and in parallel with

the development of suitable new types of X-ray sources12–14

and detectors,15,16 it is important to conduct systematic

investigations of the performance of each promising phase-

contrast imaging method under a variety of realistic condi-

tions. In particular, it is essential to carefully evaluate such

critical parameters as spatial resolution, contrast, signal-to-

noise ratio, and relevant figures-of-merits (which explicitly

account for the importance of the X-ray dose delivered to the

sample). While successful work of this type has been con-

ducted recently,8–10,17,18 the need for further complementary

tests still exists, e.g., in order to assess in detail the quantita-

tive accuracy of the reconstruction of the complex refractive

index or the explicit dependence of the signal-to-noise in the

reconstructed images as a function of the object structure and

composition, the imaging parameters and the processing algo-

rithms in each of the relevant imaging methods.

In this work, we present the results of systematic tests of

PBI in its three-dimensional form, i.e., phase-contrast propa-

gation-based X-ray computed tomography (PB-CT). Given

the requirement to the coherence of the incident X-rays in

PB-CT and the lack of readily accessible laboratory sources,

which could deliver sufficient spatial coherence in combina-

tion with high photon flux, we have limited this study so far

to the case of synchrotron radiation. Third-generation syn-

chrotron sources can deliver X-ray beams with the required

high coherence and high flux that allow one to conduct the
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relevant experiments (that typically involve several hundred

of X-ray projection images each) within a reasonable time (a

few hours, minutes, or even seconds). All the experiments

considered in this paper have been carried out at SYRMEP

beamline19 of Elettra synchrotron in Trieste, Italy. This

beamline has been designed from the start with biomedical

applications in mind, so it is well-suited for this type of

imaging experiments and is also an ideal platform for pilot

clinical applications.20 We have performed quantitative anal-

ysis of the results of these experiments using a well-tested

X-ray image analysis software package, X-TRACT.21 This

work resulted in quantitative evaluation of the accuracy of

reconstruction of the complex refractive index in the multi-

material samples (where the materials have been chosen to

approximate the X-ray absorption and refractive properties

of biological tissues and contrast agents).

II. MONOMORPHOUS OBJECTS

While several theoretical methods for phase retrieval in

PBI and quantitative PB-CT reconstruction have been

reported,22–26 most of them require multiple X-ray projection

images to be acquired at each view angle (rotational position

of the sample) in order to reconstruct the 3D distribution of

the complex refractive index, nðrÞ ¼ 1� dðrÞ þ ibðrÞ,
inside the sample. At each view angle, suitable projection

images can be collected at two or more different sample-

to-detector distances or at different X-ray energies.27 This

requirement can be easily understood as a pre-requisite for

reconstruction of two independent real-valued 3D distribu-

tions, namely, those of dðrÞ and bðrÞ, from the (real-valued)

intensity measurements performed with a conventional 2D

X-ray area detector at different rotational positions of the

sample. Known exceptions to this rule (where a single image

per view angle is sufficient for an exact reconstruction) are

represented by the following three cases. (1) Conventional

(or “contact”) CT that can be viewed as a limit case of PB-

CT, in which the sample-to-detector distance is negligibly

small. Here, X-ray refraction effects do not contribute to the

registered images and, as a result, only the imaginary part

bðrÞ of the refractive index, which is responsible for differ-

ential absorption of X-rays in the sample, is reconstructed.28

(2) The opposite case is represented by the so-called pure-

phase objects which exhibit negligible absorption at the

X-ray energies used in the experiment. Here, only the real

part dðrÞ of the refractive index contributes to the image con-

trast and thus can be reconstructed in a PB-CT experiment.24

(3) Finally, there is a class of samples characterized by

a fixed proportionality relationship between the real and

imaginary parts of the refractive index, dðrÞ=bðrÞ ¼ c
¼ constant.29–31 Obviously, this relationship reduces the

number of unknown 3D distributions from two to just

one (assuming that c is known a priori) and therefore a

single projection per view angle is sufficient for the recon-

struction of the 3D distribution of the complex refractive

index nðrÞ ¼ 1þ ði� cÞbðrÞ. Such objects are sometimes

called “monomorphous,”32 they include, for example,

“homogeneous” samples which consist predominantly of a

single material, whose density may vary spatially. In fact,

the above classes (1) and (2) can be viewed as special cases

of class (3) with c ¼ 0 and c ¼ 1, respectively.

There are obvious practical advantages to using a

method that requires just a single projection per view angle

compared to those requiring multiple projections. Apart from

the obvious reduction in the dose delivered to the sample

(which can in fact be a human patient, in the case of medical

applications), there are also substantial practical difficulties

in applying PBI phase retrieval methods that require more

than one image per view angle. In particular, due to the

subtle, but complicated variation of the intensity and phase

distribution in the incident X-ray beam over time at most

synchrotron beamlines, it can be difficult to properly apply

the phase retrieval methods that are fundamentally based on

the comparison of projection images collected at different

points of time, which may be the case when using, e.g., dif-

ferent sample-to-detector distances. Indeed, these methods

are very sensitive to low-order spatial frequencies in the

images, so if the background illumination changes between

different exposures even by a fraction of percent on average,

the artefacts generated by these background variations after

the phase retrieval tend to dominate the useful signal.33 For

these and other reasons, we decided to concentrate in the

present work on the application of the “monomorphous” var-

iant of PBI phase retrieval. An obvious limitation that arises

in such an approach is that of the assumption about the

“monomorphicity” of the sample. Many real samples do not

satisfy this assumption, although it has been demonstrated in

Ref. 30 that for X-ray energies approximately between 60

and 500 keV all biological samples consisting predominantly

of chemical elements with Z< 10, can be considered

“monomorphous” for the purpose of PBI and PB-CT. Still,

in general, the question needs to be addressed about the

effect of the sample deviation from monomorphicity on the

quantitative accuracy of phase retrieval and, ultimately, on

the accuracy of reconstruction of the 3D distribution of the

complex refractive index in the sample. Some publications

have appeared recently, where authors have addressed this

problem by different modifications of the monomorphous

phase retrieval methods34–37 utilising additional a priori in-

formation about the sample. In our present analysis, we use

an approach similar, in principle, to that in Ref. 34.

III. HOMOGENEOUS TIE AND ITS USE IN PB-CT

The most popular method currently in use for phase

retrieval in PBI is based on solution of the so-called

“homogeneous” Transport of Intensity Equation (TIE)

proposed originally in Ref. 29. It simply inserts the

“monomorphous” relationship dðrÞ=bðrÞ ¼ c into the

finite-distance form5 of the original TIE,38 with the resultant

equation looking as follows:

Iðx; y;RÞ ¼ ½1� cR=ð2kÞr2� Iðx; y; 0Þ; (1)

where ðx; y; zÞ ¼ r are the Cartesian spatial coordinates with

z axis coinciding with the optic axis (the direction of propa-

gation of the incident X-ray beam), z¼ 0 being the location

of the “object plane” and z¼R—the location of the detector
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(image) plane, Iðx; y; zÞ is the X-ray intensity, k ¼ 2p=k is

the wavenumber, and k is the X-ray wavelength. Equation

(1) is known as "homogeneous TIE" (TIE-Hom).29 Although

presented here for the case of parallel monochromatic X-ray

beam, an equation similar to Eq. (1) can be derived for par-

tially coherent polychromatic divergent X-ray beams,39,40

with the substitution of R by R0 ¼ R1R2=ðR1 þ R2Þ and

c=ð2kÞ by a, where R1 and R2 are the source-to-object and

object-to-detector distances, respectively, and a is the

position-independent proportionality coefficient between the

(gradients of the) logarithm of time-averaged intensity and

the generalized eikonal w of the partially coherent beam,39

wðx; y;RÞ ¼ a lnIðx; y;RÞ. In the case of tomographic imag-

ing, we keep the sample fixed, together with the correspond-

ing system of Cartesian coordinates, but rotate the optic axis

and the coordinate system of the detector around the y axis,

so the relevant rotated coordinates are assigned subscript h
corresponding to the rotation angle h0 ¼ h� p=2 (Fig. 1). If

in an experiment the intensity distribution Iðxh; y; zh ¼ RÞ is

measured in the detector plane, then Eq. (1) can be solved

for the intensity distribution in the object plane29,30,41

Iðxh; y; 0Þ ¼ ½1� cR=ð2kÞr2��1Iðxh; y;RÞ: (2)

At the next step, the linear integral of bðrÞ can be obtained,

assuming (as is usually done in CT) that the projection

approximation is valid:42 2k
Ð 0

�1bðxh; y; zhÞdzh

¼ �ln½Iðxh; y; 0Þ=Iin�, where Iin is the intensity of the (uni-

form) beam incident on the sample. Then, the final CT

reconstruction formula in its usual Filtered Backprojection

(FBP) version takes the following form:28

bðx;y;zÞ¼� 1

2k

ðp

0

ð1
�1

ð1
�1

expf�i2p½nhðx sinhþzcoshÞ

þgy�gF½lnðI0=IinÞ�ðnh;gÞjnhjdnhdgdh; (3)

where I0ðxh; yÞ ¼ Iðxh; y; 0Þ and F denotes 2-dimensional

Fourier transform with respect to coordinates ðxh; yÞ in the

object plane zh ¼ 0, which is orthogonal to the rotated optic

axis. After bðrÞ is reconstructed, dðrÞ ¼ cbðrÞ is easily

obtained too. The most popular modification of the FBP for-

mula, Eq. (3), for the case of cone-beam illumination with a

small cone angle, is the well-known Feldkamp-Davis-Kress

(FDK) algorithm.43 Regarding the issue of temporal coher-

ence, we note that the CT reconstruction, Eq. (3), in princi-

ple, does not require incident X-rays to be monochromatic.

However, in the polychromatic case, the result can only be

interpreted as an average over the X-ray spectrum, i.e.,

l ¼ hkbi, where lðx; y; zÞ is the reconstructed 3D distribu-

tion of the X-ray attenuation coefficient and the angular

brackets denote the spectral average. Well-known issues,

such as beam hardening, have to be taken into account in this

case, so the methods described in the present paper can be

readily extended to polychromatic X-rays only in the case of

weakly absorbing samples.39,44

If the sample is only weakly absorbing, then the follow-

ing approximation can be applied: ln½1þ ðIðxh; y; 0Þ=Iin � 1Þ�
ffi Iðxh; y; 0Þ=Iin � 1. Inserting this approximation into

Eq. (3), then taking Eq. (2) into account, we obtain

bðx; y; zÞ ¼ � 1

2k

ðp

0

ð1
�1

ð1
�1

expf�i2p½nhðx sin hþ z cos hÞ

þ gy�gF IR

Iin
� 1

� �
ðnh; gÞ

� jnhj
1þ pckRðn2

h þ g2Þ
dnhdgdh; ð4Þ

where IRðxh; yÞ ¼ Iðxh; y;RÞ and we have also used two well-

known properties of the Fourier transform: (i) F½r2�ðnh; gÞ
¼ �4p2ðn2

h þ g2Þ; and (ii) F½1�ðnh; gÞ ¼ dðnh; gÞ (note that

as the d-function is non-zero only at the origin of coordi-

nates, it is invariant with respect to multiplication by any

well-behaved function f ðnh; gÞ, such that f ð0; 0Þ ¼ 1).

Equation (4) is known as the "modified Bronnikov algo-

rithm."31,45 It provides a means for “single-step” PB-CT

reconstruction of the 3D distribution of bðrÞ in monomor-

phous objects from projection images Iðxh; y;RÞ, collected in

PBI regime at the defocus distance zh ¼ R. However, as seen

above, compared to the "two-step" reconstruction process

represented by Eqs. (2) and (3) applied in sequence, the "sin-

gle-step" formula, Eq. (4), relies on an additional assump-

tion, namely that the object is weakly absorbing. When the

latter condition is violated, the accuracy of reconstruction

provided by Eq. (4) can be lower compared to that produced

FIG. 1. PB-CT imaging geometry.
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by the combination of Eqs. (2) and (3). One possible way to

circumvent this limitation is described in Ref. 46, but the

reconstructed quantity in that case generally differs from

both bðrÞ and dðrÞ. Therefore, in the present work, we will

use Eqs. (2) and (3) for PB-CT reconstruction. Note that an

extension of Eq. (4) for the case of polychromatic cone-

beam CT has also been published.44

If a sample is truly monomorphous (e.g., if it consists of

a single material), then the above procedures can lead to a

unique and quantitatively accurate reconstruction of the

complex refractive index nðrÞ ¼ 1þ ði� cÞbðrÞ inside the

sample. If, however, the ratio dðrÞ=bðrÞ is different in differ-

ent parts of the sample, this procedure inevitably produces

some errors which depend on the degree of deviation of the

actual distribution dðrÞ=bðrÞ from the chosen constant value

c. If the true distribution dðrÞ=bðrÞ is known a priori for a

given sample, e.g., if the sample is known to consist of a

small number (M) of non-overlapping components, each

with a constant a priori known value of cm ¼ dm=bm, which

may be different for different values of index m¼ 1,2,…,M,

this information can be used to improve the accuracy of the

method. One approach to effective utilization of such a priori

information was proposed and successfully applied in

Ref. 34. In the subsequent sections of this paper, we will use

a method based on the same principle. However, first we will

investigate the behaviour of the error, which the deviation of

dðrÞ=bðrÞ from a constant value introduces into the recon-

struction of dðrÞ and bðrÞ in samples that substantially

violate the assumption of monomorphicity.

IV. MULTI-MATERIAL PHANTOM

In order to investigate the accuracy of reconstruction of

the complex refractive index in non-monomorphous sam-

ples, a phantom was made from a solid Polyoxymethylene

(POM) cylinder with the diameter of 16.5 mm with 6 cylin-

drical holes with the diameter of 3 mm cored out of the POM

matrix (Fig. 2) and filled with different substances, which

are listed in Table I together with their densities and X-ray

refractive indices at E¼ 31 keV (the X-ray energy at which

our PB-CT experiments were performed).

We collected, processed and analysed CT data for the

above phantom using X-rays with energy E¼ 31 keV at two

different sample-to-detector distances, R¼ 7 cm and

R¼ 30 cm. The scans were performed at the SYRMEP

beamline19,20 with the source-to-sample distance of 22.4 m

(we included corrections for the geometrical magnification

in our image processing). The detector used was a water

cooled CCD camera (Photonic Science VHR, 4008� 2672

full frame, pixel size¼ 4.5 lm) coupled to a Gadolinium

Oxysulphide scintillator placed on a fiber optic taper. The

CT scans were performed in 2 � 2 binning mode, therefore

with 9 lm effective pixel size. Each scan contained 1440

projections collected with 0.125� angle step over 180�. Dark

current images (without the X-ray beam) and flat field

images (with X-ray beam on, but without the sample) were

also collected and used for correction of the projection

images of the sample in the usual manner. Figures 3(a) and

3(b) show the same slice at y¼ constant from the conven-

tional FBP reconstruction (using Eq. (3) with Iðxh; y;RÞ in

place of Iðxh; y; 0Þ) performed using projections collected at

R¼ 7 cm and R¼ 30 cm, respectively, as the input.48

V. PB-CT RECONSTRUCTION OF b USING TIE-Hom
AND FBP

The two images in Figs. 4(a) and 4(b) represent the

same slice reconstructed from the CT projections collected

at R¼ 30 cm, but using TIE-Hom phase retrieval (i.e., using

Eqs. (2) and (3) as given above) with c¼ 2293 (correspond-

ing to Polyoxymethylene at 31 keV) and c¼ 1048 (corre-

sponding to 0.5 of the c value for water), respectively.

One can see that, compared to the “raw” CT reconstruc-

tion in Fig. 3, the application of TIE-Hom phase retrieval: (i)

noticeably improves signal-to-noise ratio in the images (see

also Fig. 5); (ii) removes Fresnel fringes well (particularly

with c¼ 2293); (iii) introduces some image blurring,

although this blurring is not significant (as can be seen also

in Fig. 5); this blurring is also lower in the case of c¼ 1048.

Note that the blurring can become significant if different

types of samples, e.g., small biological objects with high

“density” of edges and interfaces, are imaged.

We then estimated the average reconstructed b values

inside each material in the phantom for different CT recon-

structions, with the result presented in Table II. The uncer-

tainties for each value given in Table II (and in relevant

places in other tables below) have been calculated as the
FIG. 2. Structure of the phantom used in the experiments (see Table I for

materials corresponding to the indices).

TABLE I. Theoretical beta and delta values47 for materials in the phantom

at E¼ 31 keV.

Material

Density

(g/cm3) b� 1010 d� 107 d/b

0. Polyoxymethylene (CH2OH) 1.42 1.42 3.25 2293

1. Water (H20) 1.00 1.15 2.40 2096

2. Air 0.0012 0.0013 0.0026 2000

3. Ultravist 300 (C18H24I3N3O8) 1.33 8.60 2.96 344

4. Calcium chloride 1 M (CaCl2) 1.11 2.09 2.57 1231

5. Magnesium chloride 1 M (MgCl2) 1.10 1.69 2.56 1512

6.Glycerol (C3H8O3) 1.26 1.27 2.96 2330
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standard deviation of the distribution of values inside the re-

spective region (cylinder) in the reconstructed CT image (all

values have been rounded to the nearest second digit after

the decimal point).

Comparing the reconstructed values in Table II with the

theoretical values in Table I, one can see that in all cases,

the values of b have been reconstructed with approximately

the same accuracy (within 10% of the theoretical values),

but much higher precision (lower standard deviation) has

been achieved using the TIE-Hom phase retrieval, compared

to the results obtained without phase retrieval (i.e., applying

FBP reconstruction to “raw” CT projections). We have con-

sidered and checked possible sources of what appears to be a

systematic �10% underestimation of the reconstructed val-

ues of b, such as the potential presence of higher-order har-

monics in the incident X-ray beam, difference between the

assumed and actual composition or density of the materials

in the phantom, and detector performance, but have not

found a definite source of this discrepancy. The analysis

showed that about half of this difference (�5%) may be due

to the imperfect flat-field correction due to the variation of

the incident illumination during the scan. Another 5% or so

are most likely to be due to some extraneous X-ray scattering

contributing to the images, which led to the lower than

expected (by about 5%) apparent X-ray absorption as meas-

ured in the experimental projection images. Note that

FIG. 3. FBP reconstruction (without

phase retrieval) from projections col-

lected at (a) R¼ 7 cm, and (b)

R¼ 30 cm.

FIG. 4. FBP reconstruction from pro-

jections collected at R¼ 30 cm using

TIE-Hom phase retrieval with (a)

c¼ 2293, and (b) c¼ 1048.

FIG. 5. Cross-sections of b values in

the Ultravist-filled cylinder in (a) Fig.

4(a) (dashed line) and Fig. 4(b) (solid

line), and (b) Fig. 3(b).
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although the sources of the observed difference between

the theoretical and experimental values of b may be worth

further investigation in subsequent studies at SYRMEP

beamline, it is important to note that depending on the

published source, where the theoretical values of b are

obtained from, they can also differ by up to 5% (see, e.g.,

the NIST X-ray Form Factor, Attenuation and Scattering

Tables at http://www.nist.gov/pml/data/ffast/index.cfm, Sergey

Stepanov’s X-ray Server at Argonne National Laboratory,

http://sergey.gmca.aps.anl.gov, Henke tables at Berkeley

Lab, http://henke.lbl.gov/optical_constants, or the data

based on Ref. 47 at our website, http://www.ts-imaging.net/

Services/Simple/ICUtilAbsorb.aspx).

We then further quantified the precision of the recon-

struction by calculating the signal-to-noise ratio (SNR) in the

usual fashion

SNR ¼
jhbf eaturei � hbbackgroundij
ðr2

f eature þ r2
backgroundÞ

1
2

; (5)

where “features” in the phantom correspond to the small

cylinders filled with various substances and the

“background” corresponds to the enclosing POM cylinder,

angular brackets denote the average values, and r2 stands for

the variance of the reconstructed b values inside the corre-

sponding cylinders.

Table III clearly shows that, consistent with the visual

impression from Figs. 3–5, the SNR of the reconstructed b
values in PB-CT images obtained with the help of TIE-Hom

phase retrieval is considerably higher when compared to that

in the CT images obtained without the phase retrieval, which

is consistent with previous reports.34–37,49

The SNR numbers in Table III are also consistent with

the theoretical formulae obtained in Ref. 50

SNRPB�CT

SNRcontact�CT

ffi c1c
NF

min

ln
c2c
NF

min

� �� ��1=2

; (6)

where SNRPB�CT and SNRcontact�CT denote, respectively,

the signal-to-noise ratio in CT images obtained in PB-CT

with the use of TIE-Hom phase retrieval and in conventional

(contact) CT images, NF
min ¼ h2=ðkRÞ is the “minimal

Fresnel number” associated with the CT projections, h is the

detector pixel size, c1 and c2 are constants which depend on

the ratio of the width of detector’s point-spread function

(PSF) to its pixel size50 (Equation (6) is actually a simplified

expression obtained under the assumption ðc=NF
minÞ � 1

from a more general equation found in Ref. 50). In a typical

case of the detector PSF being 2 to 3 pixels wide, c1 ffi 0:079

and c2 ffi 0:016. In our experiment, we had: k ¼ 0:04 nm,

h¼ 9 lm, R¼ 30 cm, and hence NF
min¼ 6.75. Therefore, for

the two values of c that we used for the TIE-Hom reconstruc-

tion, we obtain from Eq. (6), the theoretical gain factors of

20.5 and 12.7 for c¼ 2293 and c¼ 1048, respectively. On

the other hand, calculating the ratio SNRPB-CT/SNRcontact-CT

directly from the reconstructed experimental images for dif-

ferent materials in the phantom (see Table IV), we obtain the

average values of 18.45 and 10.92 (or 19.48 and 11.37, if we

exclude water from the estimations) for the same two values

of c, which agree reasonably well with the above estimation

obtained from Eq. (6).

TABLE II. Values of b� 1010 for materials in the phantom reconstructed from projections at E¼ 31 keV and R¼ 7 cm or 30 cm. The values in brackets have

been obtained by applying a correction factor equal to the ratio of the theoretical and reconstructed b values for water.

Material

No phase retrieval

(R¼ 7 cm)

No phase retrieval

(R¼ 30 cm)

TIE-Hom with c¼ 2293

(R¼ 30 cm)

TIE-Hom with c¼ 1048

(R¼ 30 cm)

Polyoxymethylene 1.31 6 0.72 1.31 6 0.59 1.31 6 0.03 1.31 6 0.05

(1.39 6 0.77) (1.46 6 0.66) (1.42 6 0.03) (1.42 6 0.05)

Water 1.08 6 0.88 1.03 6 0.79 1.06 6 0.06 1.06 6 0.09

(1.15 6 0.94) (1.15 6 0.88) (1.15 6 0.06) (1.15 6 0.10)

Air �0.00 6 0.67 �0.02 6 0.56 �0.02 6 0.03 �0.02 6 0.05

(0.00 6 0.71) (�0.02 6 0.63) (�0.02 6 0.03) (�0.02 6 0.05)

Ultravist 300 8.03 6 0.90 8.01 6 0.76 8.02 6 0.04 8.02 6 0.07

(8.55 6 0.96) (8.94 6 0.85) (8.69 6 0.04) (8.70 6 0.07)

Calcium chloride 1.99 6 0.73 1.98 6 0.62 1.99 6 0.03 1.99 6 0.06

(2.12 6 0.78) (2.21 6 0.69) (2.16 6 0.03) (2.16 6 0.06)

Magnesium chloride 1.60 6 0.70 1.58 6 0.58 1.58 6 0.03 1.58 6 0.05

(1.70 6 0.75) (1.76 6 0.65) (1.71 6 0.03) (1.71 6 0.05)

Glycerol 1.18 6 0.68 1.14 6 0.58 1.14 6 0.03 1.14 6 0.05

(1.26 6 0.77) (1.28 6 0.65) (1.24 6 0.03) (1.24 6 0.05)

TABLE III. SNR for materials in the phantom reconstructed from projec-

tions at E¼ 31 keV.

Material

No phase

retrieval

(R¼ 7 cm)

No phase

retrieval

(R¼ 30 cm)

TIE-Hom

with

c¼ 2293

TIE-Hom

with

c¼ 1048

Polyoxymethylene N/A N/A N/A N/A

Water 0.2 0.3 3.7 2.4

Air 1.3 1.6 31.4 18.8

Ultravist 300 5.8 7.1 134.8 78.0

Calcium chloride 0.7 0.8 16.0 8.7

Magnesium chloride 0.3 0.3 6.4 3.8

Glycerol 0.1 0.2 4.0 2.4
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Note that according to Eq. (6), it should be possible to

increase the SNR in the phase-retrieved PB-CT images even

further by choosing a larger value for c in TIE-Hom phase

retrieval. However, this would lead to increased blurring of

boundaries and interfaces in the image. Furthermore, one

could argue that the SNR in conventional CT images can be

increased simply by spatial filtering, instead of the TIE-Hom

phase retrieval (after all, mathematically, TIE-Hom phase re-

trieval represents a form of Lorentzian low-pass filtering).

However, any low-pass spatial filtering of either projections

or reconstructed CT images will, in general, lead to loss of

spatial resolution. In contrast to that, the combination of

free-space propagation followed by phase retrieval does not

result in a loss of spatial resolution in the phase-retrieved

images, as long as the validity conditions of the relevant

phase retrieval method are satisfied. Indeed, the spatial filter-

ing associated with TIE-Hom phase retrieval can be viewed

as precise compensation of the Fresnel fringes appearing in

the images due to free-space propagation.51 Regarding the

spatial blurring in the CT images obtained with the help of

TIE-Hom in the present case, we note that the blurring was

absent at the boundaries of those cylinders, whose d/b ratio

was equal or close to c used in the TIE-Hom based phase

retrieval. Thus, in the examples above, the edge of the POM

cylinder did not display any additional blurring after the

application of TIE-Hom with c¼ 2293, while the most

blurred edge was that of the Ultravist-filled cylinder shown

in Fig. 5 (as this cylinder had the lowest c ratio, see the last

column in Table I). The situation would be different if we

use TIE-Hom with c¼ 344 (the value that corresponds to

Ultravist): in that case, the boundaries of the Ultravist-filled

cylinder would not be blurred, but the other boundaries in

the phantom would retain some "remnants" of the Fresnel

diffraction fringes, i.e., the phase-contrast effects at most of

the boundaries would be "under-compensated."34,35

Thus, there is no "silver bullet": it is impossible to prop-

erly compensate for the effects of Fresnel diffraction at

boundaries of materials with different d/b ratios using the

TIE-Hom method with a constant c. More generally, a trade-

off always exists in PB-CT imaging between the SNR and

the spatial resolution in the reconstructed images (compare

with Refs. 17 and 18). Unfortunately, the optimum imaging

conditions may depend on the (a priori unknown) internal

geometry and composition of the sample. Furthermore, the

optimum imaging conditions can be different for different

parts of the same sample. Still, some rough "rule of thumb"

type estimate for the optimal imaging conditions (likely to

maximize the SNR in the phase-retrieved PB-CT images)

can be deduced from Eq. (6). One can see that the ratio

SNRPB-CT/SNRcontact-CT increases, when NF
min decreases, i.e.,

when one or more of the following happens: the propagation

distance increases or the detector pixel size decreases. The

dependence on the wavelength (energy) is more complicated

due to the fact that both NF
min and d/b ratio depend on the

X-ray energy. As a result, the ratio SNRPB-CT/SNRcontact-CT

decreases both at low and high energies, reaching its maxi-

mum at a particular energy which depends on the material

composition of the sample (in particular, for breast tissue, this

maximum is achieved at approximately 20 keV). Note how-

ever that Eq. (6) is based on the TIE theory, which is valid

only when NF
min > 1.38 If has been shown previously18 that in

the region NF
min < 1, the phase contrast in PBI ceases to

increase linearly with 1=NF
min, and instead asymptotically

approaches a constant maximum value. A similar result has

been obtained in Ref. 50 for the behaviour of the ratio

SNRPB-CT/SNRcontact-CT at small values of NF
min in PB-CT

imaging. Therefore, we can infer that SNRPB-CT/SNRcontact-CT

reaches its maximum approximately when NF
min � 1, and the

maximum "gain" SNRPB-CT/SNRcontact-CT is approximately

equal to 0.3d/b. This estimation has been obtained in Ref. 50

semi-empirically as a result of numerical simulations and

analysis of the behaviour of the more general expressions for

both cases, NF
min > 1 and NF

min < 1.

VI. 3D RECONSTRUCTION OF d

As mentioned in Sec. I, Beltran et al.34,35 have pro-

posed a PB-CT method utilising a priori known information

about the varying d/b ratio across different regions of the

sample. This approach allows one to overcome the limita-

tions of the conventional TIE-Hom method, provided that

regions in the sample with different c values are suitably

separated. Here, we apply a different, but closely related,

procedure for reconstruction of the 3D distribution of dðrÞ
in a multi-material phantom. We have calculated the distri-

bution of dðrÞ in our phantom by segmenting the recon-

structed distribution of b obtained using TIE-Hom with

c¼ 2293 followed by FBP, from projections collected at

R¼ 30 cm, and multiplying different segmented areas of the

reconstructed b distribution by the corresponding local

values of d/b shown in the last column of Table I. Table V

below presents the analysis of the distribution of dðrÞ
obtained by this method.

One can see that (i) the reconstructed values of d are

generally about 10% lower when compared to the theoretical

values, which is a direct consequence of the same relation-

ship between the reconstructed and theoretical values of b in

Table II; (ii) the SNR values of the reconstructed d values

are of the same order as those for b in Table III, except for

Ultravist, where the SNR for d is about 30 times lower than

that for b. The latter deviation can be explained by the fact

that the difference between the X-ray absorption of Ultravist

and that of the "background material" (Polyoxymethylene) is

much larger than the difference between the refractive prop-

erties of the same materials.

TABLE IV. SNRPB-CT/SNRcontact-CT ratio for materials in the phantom

reconstructed from projections at E¼ 31 keV and R¼ 30 cm.

Material c¼ 2293 c¼ 1048

Polyoxymethylene N/A N/A

Water 13.3 8.7

Air 19.1 11.5

Ultravist 300 19.4 11.2

Calcium chloride 20.6 11.2

Magnesium chloride 19.3 11.6

Glycerol 19.1 11.4
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We have seen above (Table II) that the use of TIE-Hom

in combination with FBP reconstruction in PB-CT led to

quantitatively accurate reconstruction of the 3D distribution

of the imaginary part bðrÞ of the complex refractive index

in a multi-material sample, regardless of the chosen constant

value of c used at the TIE-Hom phase retrieval step. The

only obvious consequence of the variation of dðrÞ=bðrÞ in

the sample, in this case, is the under- or over-compensation

of Fresnel fringes near the interfaces. In stark contrast, the

reconstruction of 3D distribution of the real part dðrÞ of the

complex refractive index in a multi-material sample by

using TIE-Hom with a constant value of c, in combination

with FBP, can be qualitatively inaccurate as illustrated by

Fig. 6, and particularly Fig. 7. The latter figure shows line

profiles of the reconstructed dðrÞ values in Figs. 6(a) and

6(b) taken across the cylinders filled with water and CaCl2
solution. One can see that the two cylinders produced two

“dips” in Fig. 7(a), while in Fig. 7(b), the water-filled cylin-

der still produced a “dip,” but the CaCl2-filled cylinder pro-

duced a “peak.” The correct qualitative behaviour is, of

course, that in Fig. 7(a), as can be seen from the theoretical

values of d given in the first column of Table V. The qualita-

tively wrong behaviour of the distribution of dðrÞ obtained

by TIE-Hom with constant c is caused here by the fact that

b(water)<b(POM), but b(CaCl2)> b(POM), while both

d(water)< d(POM) and d(CaCl2)< d(POM) (see Table I).

In other words, the relative ratio [d(water)-d(POM)]/

[b(water)-b(POM)] is positive, while the ratio [d(CaCl2)-

d(POM)]/[b(CaCl2)-b(POM)] is negative. This phenomenon

(change of sign of the relative delta-to-beta ratio across the

sample) is impossible to take into account in the TIE-Hom

phase retrieval, which assumes a constant d/b ratio across

FIG. 6. The reconstructed distribution

of d obtained by (a) segmenting the

reconstructed b distribution from

Fig. 4(a) and multiplying values in

each cylinder by the corresponding

value of ci from the last column of

Table I, and (b) multiplying the recon-

structed b distribution from Fig. 4(a)

by a constant value c¼ 2293.

TABLE V. Values of d� 107 obtained from the distribution of bðrÞ recon-

structed using TIE-Hom with c¼ 2293 followed by FBP, from projections

collected at R2¼ 30 cm, subsequent segmentation and multiplication by suit-

able d/b in each cylinder. The values in brackets have been obtained by

applying a correction factor equal to the ratio of the theoretical and recon-

structed d values for water. SNR was calculated as for b above.

Material Theoretical Reconstructed SNR

Polyoxymethylene 3.25 3.02 6 0.07 N/A

(3.28 6 0.08)

Water 2.40 2.21 6 0.12 4.16

(2.40 6 0.13)

Air 0.0026 �0.04 6 0.07 20.95

(�0.04 6 0.08)

Ultravist 300 2.96 2.64 6 0.02 5.22

(2.87 6 0.02)

Calcium chloride 2.57 2.45 6 0.04 5.05

(2.66 6 0.04)

Magnesium chloride 2.56 2.39 6 0.05 5.23

(2.60 6 0.05)

Glycerol 2.96 2.66 6 0.08 2.39

(2.89 6 0.09)

FIG. 7. Sections of the reconstructed

distribution of dðrÞ across the cylinders

filled with water and CaCl2 solution

along the line shown in Figs. 6(a) and

6(b).
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the whole sample, leading to qualitative inconsistencies in

the reconstruction of d as shown in Fig. 7. Note that in the

method proposed by Beltran et al.,34 a negative relative d/b
ratio can cause instabilities in the phase reconstruction (see

Eq. (9) in Ref. 34). On the other hand, the main shortcoming

of the method used for 3D reconstruction of dðrÞ in the pres-

ent work can be seen in the form of the dark "halo" around

the Ultravist-filled cylinder in Fig. 6(a). This defect is

caused by the blurring of the edge of the Ultravist-filled

cylinder in the 3D reconstruction of bðrÞ as seen in

Figs. 4(a) and 5(a).

VII. CONCLUSIONS

We have presented quantitative analysis of the recon-

struction of complex refractive index in a sample contain-

ing materials with substantially different X-ray absorption

and refraction properties, using variants of TIE-Hom phase

retrieval method in combination with conventional CT

reconstruction. We have demonstrated that the 3D distribu-

tion of the imaginary part, bðrÞ, of the complex refractive

index can, in general, be reconstructed with high accuracy

by this method regardless of the choice of the regulariza-

tion parameter c in TIE-Hom. The only noticeable effect of

the variation of dðrÞ=bðrÞ ratio across the sample is the

incomplete removal of Fresnel diffraction fringes or the

blurring of the interfaces, in the areas of the sample, where

the actual local d/b ratio differs from the chosen value of c.

Additionally, when compared to the CT reconstruction

from "contact" projections (collected at small sample-

to-detector distances), the use of large sample-to-detector

distances in combination with TIE-Hom phase retrieval,

leads to significant increases in the precision of reconstruc-

tion of the 3D distribution of bðrÞ across the sample. In

other words, in agreement with previously reported results,

the SNR in the distribution of bðrÞ reconstructed this way,

is considerably larger when compared to "contact" CT or

PB-CT without phase retrieval. On the other hand, the

same method (i.e., the TIE-Hom phase retrieval followed

by conventional CT reconstruction) generally cannot guar-

antee even a qualitative accuracy in the reconstruction of

the real part, dðrÞ, of the complex refractive index.

Indeed, if a constant d/b ratio is assumed, as required in the

conventional TIE-Hom method, an actual variation of

dðrÞ=bðrÞ ratio across the sample can cause the recon-

structed dðrÞ distribution to qualitatively differ from the

real one. In other words, for two regions, A and B, in a sam-

ple, with dtrueðAÞ > dtrueðBÞ, the reconstructed values of

d can satisfy the opposite relationship, dreconstðAÞ
< dreconstðBÞ. Such errors can be avoided if additional a pri-

ori information about the sample is available, e.g., in the

form of knowledge about the actual distribution of

dðrÞ=bðrÞ in the sample. In that case, for some classes of

samples, quantitatively accurate reconstruction of dðrÞ can

also be obtained with a similar accuracy and precision

achievable for bðrÞ. We presented one example of such

“modified TIE-Hom plus FBP” reconstruction, which is

similar, in principle, to that in Ref. 34, but may produce

better results in certain cases.

Overall, the results presented in this paper point to

potential benefits that the use of larger sample-to-detector

distances in combination with TIE-Hom phase retrieval can

deliver. The demonstrated significant increases in the SNR

in the reconstructed 3D images, which is achieved primarily

due to the contribution from differences in the refractive

properties across the sample in addition to the differential

absorption, can lead to substantial decreases in the dose

delivered to the sample and/or to improvements in the qual-

ity of the reconstructed images. The increase in the sample-

to-detector distance also reduces the contribution of X-ray

scatter to the projection images, which is likely to further

improve the SNR in the final reconstructed images. These

favourable properties point to exciting opportunities for the

use of this type of methods in clinical radiography and other

application areas.2,3,52,53
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Propagation-based X-ray phase-contrast computed tomography (PBI) has

already proven its potential in a great variety of soft-tissue-related applications

including lung imaging. However, the strong edge enhancement, caused by the

phase effects, often hampers image segmentation and therefore the quantitative

analysis of data sets. Here, the benefits of applying single-distance phase

retrieval prior to the three-dimensional reconstruction (PhR) are discussed and

quantified compared with three-dimensional reconstructions of conventional

PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of

image features. The PhR data sets show more than a tenfold higher CNR and

only minor blurring of the edges when compared with PBI in a predominately

absorption-based set-up. Accordingly, phase retrieval increases the sensitivity

and provides more functionality in computed tomography imaging.

Keywords: computed tomography; phase-contrast imaging; phase retrieval; lung imaging.

1. Introduction

Within the aim of unravelling the patho-mechanism of lung

disease and the testing of novel treatments, there is still a

strong need for improvement of lung imaging techniques and

their application in preclinical disease models. Owing to the

very nature of the lung with its air–tissue interfaces, lung

imaging remains challenging for most imaging modalities

(Kauczor & Kreitner, 1999). Propagation-based phase-

contrast computed tomography (PBI) has already been

proven valuable in applications focusing on low-absorbing

tissue (‘soft tissue’) (Kitchen et al., 2005; Sera et al., 2005). The

obtained edge effects facilitate the delineation of the airways,

but on the other hand hamper or prohibit further quantitative

analysis relying on threshold-based segmentation of the data

sets. To circumvent this problem, edge-suppression techniques

or low-pass filters can be used to remove these effects.

However, this also diminishes the quality of the image

features, especially for edges. Here, we propose and validate

the application of a single-distance phase-retrieval method

(Paganin et al., 2002) for in-line phase-contrast computed

tomography (CT) imaging of a mouse lung in situ filled with

air at a physiological pressure. Several other phase-retrieval

techniques utilizing multiple sample-to-detector distances

(Mayo et al., 2012; Kostenko et al., 2013; Cloetens et al., 1999)

have been utilized before but are not practical for several

reasons: e.g. they need an advanced imaging set-up and are

very sensitive to variations in the incident beam, an aspect

which needs to be considered at synchrotron light sources.

Additionally, the movement and differences in the total

amount of optical energy between projections acquired at

different distances causes slight shifts and results in further

alterations and artefacts. More importantly, multiple

measurements increase the exposure time and dose delivered

to the biological sample. Therefore, a single-distance phase-

retrieval algorithm based on the transfer of intensity equation

(Paganin et al., 2002; Gureyev et al., 2009; Teague, 1983), which

only requires one CT data set obtained at a single sample-to-
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detector distance, has many advantages. This algorithm

reconstructs the three-dimensional distribution of the complex

refractive index, ~nnðrÞ = 1 � � rð Þ + i�ðrÞ, inside the sample by

using X-ray projection images acquired at different view

angles (rotational position of the sample). This class of algo-

rithms can strictly speaking only be applied for ‘homogeneous’

objects, which are either pure absorption, pure phase objects

or objects characterized by a constant ratio of the real to the

imaginary parts of the refractive index, i.e. �ðrÞ=�ðrÞ = � = a

constant (Paganin et al., 2002). Although biological samples do

not satisfy this assumption, it has been demonstrated by Wu et

al. (2005) that these kinds of algorithms can still be applied for

biological samples which are predominately composed of

materials with a low atomic number (Z < 10), referred to as

‘soft tissue’ within this article. Here we use an in situ mouse

lung sample and show that, even in the presence of material

with Z > 10, such as bone, the image quality can be dramati-

cally increased by single-distance phase retrieval and exceeds

that of PBI.

2. Methods

2.1. Sample preparation

The chest imaged in this study was taken from a mouse

sacrificed using a xylazine–tiletamine–zolazepam overdose. In

order to reproduce conditions which resemble the in vivo

situation, the lung was inflated in situ with air, under a

constant pressure of 30 cm water column (2.94 kPa), through

a series of smaller tubings, down to a polyethylene cannula

(PE50) fixed inside the trachea with a cotton wire. To block

the air inside the lung the trachea was tied up. Following this

procedure the sample was kept at room temperature for 2 h, in

order to avoid any ‘rigor mortis’-based alterations. In the final

step the sample was embedded in 1% agarose gel, inside a

30 ml falcon tube (Fisher Scientific, USA) serving as a sample

holder, thus avoiding air leakage, alterations and movement

during the time course of the X-ray examination. The agarose

gel was left to set for another 30 min at 277 K, which allowed

for a complete gelatinization of the gel. Following this

procedure the sample was placed inside the SYRMEP

beamline experimental hutch 30 min before imaging, thus

allowing for temperature adaptation in order to suppress any

alterations of the lung during the scanning process.

2.2. Data acquisition

The chest area of the sample was scanned at the SYRMEP

beamline of the Elettra synchrotron light source (Trieste,

Italy). The sample was scanned at three sample-to-detector

distances of 7 cm, 30 cm and 100 cm, with the following

parameters: X-ray energy = 22 keV, with a spatial resolution of

9 mm; field of view of 18 mm � 12 mm; 1800 projections over a

full rotation of 360�.

2.3. Phase retrieval

Owing to phase contrast, the obtained projection images

display a mix of absorption-based contrast and edge effects

whose magnitudes depend on the sample-to-detector distance.

In order to enable threshold-based segmentation and to fully

exploit the potential of phase-contrast CT, it is necessary to

calculate an image which is predominated by the real part of

the complex refractive index and without the edge effects.

Therefore, to reconstruct the complex refractive index ~nnðrÞ in

the sample, a single-distance phase-retrieval algorithm, based

on the transfer of intensity equation (TIE), is applied to the

acquired data sets (Paganin et al., 2002). Furthermore, only

one scan per sample is needed, thus enabling an overall

scanning time of about 1.5 h in a 360� mode and therefore

reduces artefacts based on alterations of biological samples

over time. We used a TIE phase-retrieval algorithm imple-

mented in the X-Tract software package developed at CSIRO

(Paganin et al., 2002).

For this algorithm a priori knowledge of the ratio (�)

between � and � of the refractive index is needed. Here we

used � = 1950 for lung tissue. This value is based on the

standardization of lung tissue by the International Commis-

sion on Radiological Protection (ICRP) which is described

by hydrogen, carbon and oxygen in the following ratios:

H 10, C 0.83, O 5 (Berger, 1992). This soft-tissue equivalent

was used in the online calculator for the refractive index

(Center of X-ray Optics, Lawrence Berkeley National

Laboratory, http://henke.lbl.gov/optical_constants/getdb2.

html) to obtain �.

To evaluate the benefit of single-distance phase retrieval

over conventional PBI, slices were also reconstructed without

prior application of a phase-retrieval algorithm.

2.4. Post-processing and quantification

All scans were reconstructed after application of the TIE

phase-retrieval algorithm (PhR) and without phase retrieval

(PBI). For quantitative analysis the PBI and PhR data sets

were registered to the PBI 7 cm data set using a two-dimen-

sional cross-correlation evaluation in order to identify the

corresponding slice and a Fourier–Mellin algorithm to detect

in-plane scaling, rotation and translation (Zitová & Flusser,

2003). The two-dimensional cross correlation used as a

measure for similarity between two images was strongly

influenced by the edge effects in the PBI data sets and

prevented the Fourier–Mellin algorithm from converging.

Therefore, the PBI data sets were filtered only for the regis-

tration process by using a normal mean filter (size 3 � 3 � 3

voxels) to suppress the edge effects. Profiles at air–tissue

interfaces were calculated to assess the edge quality in the

images. Standard deviations and mean values were measured

in different volumes of interest (0.4 mm2) for fat, air, soft

tissue and bone in all data sets. The contrast-to-noise ratio

(CNR) between two adjoined tissues was calculated based on

equation (1) (Muhogora et al., 2008).

In order to assess the quality of the edges in the images, the

edge-enhancement index [EEI; equation (2)] (Donnelly et al.,

2006) was calculated. However, the highest and lowest value

(P and L) on a profile plot used in the proposed equation (2)

by Donnelly et al. is difficult to define within the sometimes
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sparsely sampled line profile, especially in the presence of the

edge effects of the PBI images. Thus, we introduced a measure

based on a non-linear fit of a sigmoid function [equation (3)]

on these profiles. In order to avoid the registration process

from influencing the noise level determination, the noise level

was measured in the original untransformed data.

CNR ¼ g1 � g2

ð1=2Þ � 2
1 þ � 2

2

� �� �1=2
; ð1Þ

where g1 and g2 are the mean intensity values of a given

homogenous area (size 0.4 mm2) in tissue and in air, respec-

tively, and �1 and �2 are the corresponding standard devia-

tions;

EEI ¼ P� L

� 2
1 þ � 2

2

� �1=2
; ð2Þ

where P and L are the highest and lowest values on a profile

plot of an air–tissue interface (length 0.1 mm), and �1 and �2

are the standard deviations of the profile regions depicting

pure air and pure tissue, respectively;

sig xð Þ ¼ k1

1 þ exp �k2 xþ k3ð Þ� �þ k4; ð3Þ

where the different constants ki are used to adjust the sigmoid

function to the present line profile. The steepness of the edge

is depicted by the constant k2.

3. Results

3.1. Overall performance of the used phase-retrieval
algorithm

With increasing sample-to-detector distance the filtered

back-projection (FBP) reconstruction of the PBI data sets

reveals higher magnitudes of phase effects (Fig. 1a). Phase

retrieval is meant to calculate the �-distribution (real part) of

the complex refractive index within the sample and should

therefore be independent of the sample-to-detector distance.

The PhR results (Fig. 1b) in general show the expected

behaviour apart from a slight increased blurring, thus indi-

cating the successful application of the used algorithm.

3.2. Quantitative comparison of the reconstructed phase-
retrieved data sets with the PBI data sets

In general, quantitative comparison is hampered by the fact

that these two image types represent different features of the

studied object: absorption plus edge enhancement in the PBI

data sets, and phase-shift-dominated contrast without edge

effects in the PhR data sets. Both can be advantageous in

terms of the application of different image-processing proto-

cols. Therefore, the following analysis is mainly meant to show

the feasibility of using these data for threshold-based image

segmentation or for visual inspection of the images. Thus, both

contrast but also the quality of the edges of image features

need to be addressed. The contrast is a measure of the

effectiveness to discriminate between adjacent tissues and is

positively dependent on the difference in the tissues’ respec-

tive grey values and negatively influenced by the noise level.

In order to quantify the image contrast and account for the

presence of noise, the contrast-to-noise ratio [equation (1)]

was measured.
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Figure 1
Comparison of the edge effects within the PBI data sets (a) at 7, 30 and 100 cm sample-to-detector distances. A clear increase of the edge effects can be
seen with increasing distance. (b) The respective results from the TIE phase-retrieval algorithm (PhR) with a �-to-� ratio optimized for lung soft tissue,
therefore bone structures appear blurred. Besides a slight increased blurring at 100 cm the images look alike and present a higher contrast than the PBI
data sets. Note that only the central part of the data is shown for convenience. The full reconstruction represents the entire cross section of the sample.

electronic reprint



The same two-dimensional regions solely containing air or

soft tissue (three different regions each, measured on six

slices) with a size 0.4 mm2 were identified and their mean

values and standard deviation were calculated in all data sets.

These regions were selected away from tissue interfaces as to

not be affected by the edges effects. The calculated CNR

values show a high CNR between air and soft tissue within the

lung of up to 29 for the phase-retrieved data set at 100 cm

sample-to-detector distance (Table 1). Given the fact that the

CNR increases with increasing sample-to-detector distance,

this implies that imaging at higher distances may further

enhance the results.

Additionally, five line profiles (0.2 mm length) at an air–

soft-tissue interface were measured and the average of these

line profiles was used to analyse the edge quality using

equation (2) (EEI). As shown in Table 1, the EEI values for

the PhR data sets are higher due to the strongly reduced noise

of the profile. Therefore, EEI cannot reflect the true situation

displayed in Fig. 2(a) compared with Fig. 2(b) which shows a

much steeper and higher edge due to the edge effects in the

PBI rather than in the PhR data sets.

Therefore, in order to quantify and compare the steepness

of the edges and the influence of the edge effects we used a

non-linear fitting regime for the measured profiles utilizing a

sigmoid function [equation (3)] (Fig. 2, Table 1). Based on this

equation the parameter k2 reflects the steepness of the edge.

In order to provide more intuitive values, the highest k2 value

(PBI 30 cm) was set to 100% and all the other values were

expressed as a ratio of this reference value (steepness-of-fit).

In contrast to EEI, the steepness-of-fit parameter reflects the

observed increase in blurring in the phase-retrieved data sets

and shows a slight decrease from 8% for 7 cm to 5% for

100 cm. This behaviour will hamper the use of very large

sample-to-detector distances at least if a high spatial resolu-

tion in the range of the pixel size of the detection system is

needed. Owing to the strong edge effects in the PBI data sets

the edges appear steeper compared with the PhR data sets,

ranging from 57% for 7 cm to 100% at 30 cm. The breakdown

in the edge steepness at 100 cm in the PBI data is caused by

phase effects produced by the tissue texture, which carries

more weight at greater sample-to-detector distances, and by

the appearance of higher-order interference fringes, which

cannot be properly sampled with the limited detector pixel

size of 9 mm (binning 2 � 2 used in this study). These effects

create massive distortion of the measured edge profile which

prevents the applicability of a fitting approach with a sigmoid

function [equation (3)] and therefore diminishes the measured

edge-steepness.
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Table 1
Quantitative results of the image comparison.

PBI PhR

7 cm 30 cm 100 cm 7 cm 30 cm 100 cm

CNR air–soft-tissue 1.55 � 0.23 0.92 � 0.25 0.73 � 0.25 9.33 � 0.92 17.54 � 1.77 29.29 � 10.55
EEI 8.80 � 1.39 12.45 � 0.80 11.24 � 2.07 25.41 � 2.29 51.31 � 5.01 63.03 � 2.02
Steepness of fit 57% 100% 15% 8% 7% 5%

Figure 2
Comparison of the edge quality between PBI (a), PhR (b) and filtered
PBI data sets (c). (a)–(c) show profile plots at the same location in PBI
and PhR data sets obtained with a 30 cm sample-to-detector distance. In
order to suppress the influence of noise, five individual profiles (blue
dots) were measured and the average profile (black line) was used for
evaluation. The red line resembles the fit of the sigmoid function
[equation (3)]. A clearly steeper edge is apparent in (a) due to the strong
edge effects; (b) shows a smoother edge but in combination with reduced
noise; (c) presents the profile of the PBI data set after iterative use of a
low-pass filter to reach the same edge steepness as in (b).

electronic reprint



3.3. Does phase retrieval do more than a low-pass filter
applied to the raw data sets?

As shown in Fig. 2(a), PBI at 30 cm is characterized by

strong edge effects and therefore presents very steep edges

compared with the phase-retrieval data set PhR of the same

sample-to-detector distance (Fig. 2b). In order to prove that

phase retrieval cannot be substituted by a simple low-pass

filter to remove the edge effects, the PBI data set was

gradually filtered using a Gaussian filter (kernel with 3 pixels)

until the profile presented the same steepness as the PhR data

set. Even in this ideal situation where the CNR is increased

due to the suppressed noise, it only reaches about 5 as against

17.5 obtained with the PhR data set. This indicates that phase

retrieval cannot be substituted by low-pass filtering.

3.4. Single-distance phase-retrieval applied to in-line
phase-contrast synchrotron-radiation-based CT data sets
of an in situ mouse lung opens up for structural analysis
of lung tissue

Utilizing the TIE phase-retrieval algorithm we have

reached a more than ten times higher CNR value in the images

of an in situ mouse lung. Fig. 3 exemplifies the difference in the

appearance of PBI and PhR data sets by showing the same

slice at 30 cm cut in the middle. In Fig. 3(a), PBI depicts the

clear delineation of the air to soft-tissue interface and the

presence of strong edge effects. The blue line in the profile

plot at position P shows the large variation of the grey values

and the strong edge effect at the interface. In addition, the

overall histogram of this slice allows no contrast-based

separation of tissues, presenting only one Gaussian-shaped

distribution [Fig. 3(b), blue histogram]. In contrast, the PhR

data set in Fig. 3(b) shows no signs of edge effects. The profile

plot (red) depicts a common stair-shaped function with low

variation within the air and the soft-tissue plateau phase. The

histogram clearly shows at least two components for air and

soft tissue which enables threshold-based segmentation and

therefore quantitative image analysis.

4. Discussion

Here we present the benefits of utilizing in-line phase-contrast

CT for lung imaging in combination with single-distance phase

retrieval as demonstrated on an in situ mouse lung sample.

The application of in-line phase-contrast CT on lungs exploits

the presence of the air–tissue interfaces and provides signifi-

cantly better delineation of the airways than several other

applications (Siu et al., 2008; Sera et al., 2005; Kitchen et al.,

2005). On the other hand, the strong edge effects in the data

sets hamper the segmentation of different components (air,

soft tissue) and therefore prevent a quantitative analysis.

By utilizing single-distance phase retrieval, as demonstrated

in this study, data sets can be generated which predominately

show the distribution of the real part of the complex refractive

index within the samples and do not display any edge effects.

We verified the reliability of this approach by analysing the

same lung sample at different sample-to-detector distances

and obtained the same results with every distance. Remark-

ably, the CNR of the generated data sets are more than ten

times higher than with the classical absorption-based mode

(short sample-to-detector distance). It has to be stated that the

ten-fold gain in CNR is related to many different factors,

including the overall set-up of the experiment, the character-

istics of the chosen sample, the sample-to-detector distances,

the resolution of the used detector system, characteristics

of the incident X-ray beam, the used implementation of the

reconstruction and the phase-retrieval software. Therefore,

the calculated factor of ten does not represent a general rule

when comparing phase-retrieved images with PBI images and

may vary in other set-ups. Beltran et al. for instance reported

a 9–200-fold increase in CNR (Beltran et al., 2011).

In addition, CNR is an image parameter, which can be

easily increased by de-noising. This usually suppresses high

spatial frequencies and therefore diminishes the quality of

edges. Therefore, it should not be used for quantification of

image quality without a measure of the preservation of image

sharpness. We repeatedly applied mean filtering on the PBI
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Figure 3
A direct comparison of the image features for PBI (a) and the TIE phase-
retrieved data set (b) is shown, both obtained for the same sample at an
object-to-detector distance of 30 cm (this figure depicts only the central
part of the reconstruction for convenience). As indicated in the detailed
views, PBI presents strong edge effects when compared with PhR. The
overall grey value histograms (lower right corner) for PBI (blue) and PhR
(red) show that, due to the phase effects overlaying the measured
absorption, only one Gaussian-shaped peak can be seen. Therefore, no
intensity-based segmentation between air and tissue can be performed. In
contrast, after phase retrieval the histogram is clearly composed of two
density intervals. The line profile at the position P in PBI (blue) and PhR
(red) in the lower left-hand corner shows large variations and a strong
edge effect for PBI, whereas in PhR the profile resembles the expected
jump-function for a simple air–tissue interface. These drastic edge effects
also cause negative values lower than the value for air, within the bronchi
(dark contours). Therefore, the airways may appear filled, which is not
the case. Note that the �-to-� ratio for PhR was optimized for soft tissue
and did not match the ratio of bone, which is why ribs and spine appear
more blurred than in PBI.

electronic reprint



images to reach the same CNR as measured by PhR, but

observed a dramatically lower sharpness of the edges than in

PhR. This demonstrates that single-distance phase retrieval

cannot be substituted by filtering of PBI images.

Interestingly, in the normal PBI data sets we also observed a

decrease in CNR with increasing sample-to-detector distance.

This is in contrast to our previous findings from the analysis of

a phantom filled with different substances and imaged with

two sample-to-detector distances (Gureyev et al., 2013). We

believe the loss in CNR is caused by the intrinsic small density

variation within biological tissue, such as the lung. Even in

areas solely composed of one tissue type, these variations

cause additional phase effects which increase the image ‘noise’

and therefore diminish the CNR. This notion is supported

by Donnelly et al. (2003), who quantitatively analysed the

dependency of the observed phase effects of certain systemic

parameters and found a strong impact of tissue texture and

scattering on the detection of the phase effect fringes in

biological samples. Our findings support these studies and

underline the importance of evaluating novel imaging

approaches in biological specimens.

Our data show that, even if biological samples do not fulfil

the preconditions of a ‘homogeneous’ object (Gureyev et al.,

2009) for single-distance phase-retrieval algorithms and the

generated data sets therefore predominately reflect only the

real part of the complex refractive index, the achieved image

quality outperforms that of absorption-based CT and PBI

(phase-contrast CT without phase retrieval). In addition, the

same short imaging time can be maintained with this single-

distance phase-retrieval approach, something that would be

impossible with other algorithms requiring multiple sample-

to-detector distances. However, as previously reported

(Beltran et al., 2011), the application of this class of phase-

retrieval algorithms requires a priori knowledge of the �-to-�
ratio of the refractive index of the analysed sample. In our

study we accordingly chose the appropriate ratio for lung

tissue (�-to-� ratio = 1950). Therefore, the bone details, like

the spine and rib cage, appear blurred in the reconstructions

due to the fact that they are characterized by a �-to-� ratio

of about 250 (Center of X-ray Optics, Lawrence Berkeley

National Laboratory, http://henke.lbl.gov/optical_constants/

getdb2.html), based on the composition of bone of H 0.06,

C 0.28, N 0.3, O 4.1, P 7, Ca 15 as found in the database of the

National Institute of Standards and Technology (NIST). This

underlines the fact that single-distance phase-retrieval algo-

rithms cannot be used to calculate the �-value distribution

of the refractive index in samples with a strong variance of

�-to-� ratios.

Another interesting result is that the analysed CNR in the

phase-retrieved data rises with increasing sample-to-detector

distances. This suggests that setting up imaging beamlines with

greater sample-to-detector distances may improve the quality

of such a lung imaging approach even further. The measured

gain in CNR directly translates into an increased sensitivity,

which will allow for precise three-dimensional analysis of

morphological alterations within, for instance, mouse lung

disease models. We therefore believe that the method

presented here can be beneficial in a wide variety of similar

preclinical studies.
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Lung imaging in mouse disease models is crucial for the assessment of the

severity of airway disease but remains challenging due to the small size and the

high porosity of the organ. Synchrotron inline free-propagation phase-contrast

computed tomography (CT) with its intrinsic high soft-tissue contrast provides

the necessary sensitivity and spatial resolution to analyse the mouse lung

structure in great detail. Here, this technique has been applied in combination

with single-distance phase retrieval to quantify alterations of the lung structure

in experimental asthma mouse models of different severity. In order to mimic an

in vivo situation as close as possible, the lungs were inflated with air at a constant

physiological pressure. Entire mice were embedded in agarose gel and imaged

using inline free-propagation phase-contrast CT at the SYRMEP beamline

(Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the

obtained phase-contrast CT data sets revealed an increasing lung soft-tissue

content in mice correlating with the degree of the severity of experimental

allergic airways disease. In this way, it was possible to successfully discriminate

between healthy controls and mice with either mild or severe allergic airway

disease. It is believed that this approach may have the potential to evaluate the

efficacy of novel therapeutic strategies that target airway remodelling processes

in asthma.

1. Introduction

Mouse lung disease models are widely used in preclinical

asthma research (Bates et al., 2009). Despite certain limita-

tions (Epstein, 2004), they are the method of choice to gain

insight into the pathomechanism of this complex multi-

factorial disorder and to evaluate novel therapeutic concepts

(Markus et al., 2014). However, the smallness of the lung, its

high porosity and the minor alterations in the lung structure

caused by asthma render classical imaging strategies like

medical ultrasound, MRI and computed tomography (CT)

extremely challenging. Synchrotron-radiation-based CT has

been proven very effective in lung imaging (Lewis, 1997) and

can provide spatial resolutions down to the sub-micrometre

level. Studies conducted at the European Synchrotron Facility

by Bayat et al. (2008) showed that the K-edge absorption

technique using xenon as contrast agent is very effective for

in vivo imaging of lung functionality. However, the used pixel
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size of 350 mm � 350 mm did not allow an accurate evaluation

of alterations in pulmonary morphology. Moreover, phase-

sensitive techniques such as free-propagation inline phase-

contrast CT and grating interferometry imaging with their

improved soft-tissue contrast (Beltran et al., 2011) have

already been successfully applied for lung imaging by various

groups such as Yagi, Kitchen, Hooper and Lewis (Kitchen et

al., 2004; Hooper et al., 2007; Lewis et al., 2005; Yagi et al.,

1999) to name but a few. Here, we used synchrotron radiation

inline phase-contrast CT (XPCT) in combination with single-

distance phase-retrieval algorithms for anatomical imaging of

mouse lungs, as it provides a detailed high-contrast depiction

of biological soft tissue while requiring only one tomographic

acquisition. This approach has already been proven beneficial

in lung imaging by analysing the phase shift of the X-ray

incident beam within the sample (Parsons et al., 2008; Kitchen

et al., 2005; Yong et al., 2009). Moreover, in a pilot study we

demonstrated that with XPCT the contrast-to-noise ratio

(CNR) in lung imaging can be increased by at least a factor of

ten when compared with classical absorption-based CT

(Mohammadi et al., 2014). In order to test the capability of

XPCT to distinguish between minor and major lung altera-

tions we chose two experimental allergic airway disease mouse

models of different severity, one that resembles mild acute

allergic asthma (Dullin et al., 2015) expressing only minor

morphological changes and one that mimics severe asthma

with dominant alterations of the lung structure (Nabe et al.,

2005). Both models were previously reported by us and others

(Markus et al., 2014; Dullin et al., 2015; Biffi et al., 2013;

Bosnjak et al., 2014) and exhibit reproducible numbers of

eosinophils in bronchoalveolar lavage as well as a consistent

amount of cell infiltration in histology.

We show that XPCT can discriminate between the two

airway disease models and that this technique provides the

necessary sensitivity for quantitative analysis of structural

differences in the lungs by comparing parameters like soft-

tissue content and changes in the lung tissue composition,

parameters that correlate with typical hallmarks of asthma and

thereby with the severity of the disease.

2. Methods

Female BALB/c mice (4–6 weeks old) were purchased from

Harlan Laboratories and maintained with ad libitum food and

water. Two experimental allergic airway disease models of

different severity were generated to mimic ‘mild’ acute allergic

asthma (MAA) (Markus et al., 2014; Biffi et al., 2013; Dullin et

al., 2015) and ‘severe’ acute allergic asthma (SAA) (Nabe et

al., 2005). For induction of MAA, mice were sensitized twice

intraperitoneally (i.p.) with 10 mg ovalbumin (OVA) in 200 ml

phosphate-buffered saline (PBS) on days 0 and 21. For SAA,

mice were sensitized on days 0 and 14 i.p. with a mixture of

50 mg OVA and 0.5% of aluminium hydroxide adjuvant

(Invivogen, San Diego, USA) in a volume of 200 ml PBS, as

well as intranasally (i.n.) with 50 mg OVA in 25 ml PBS. In

order to provoke an acute allergic reaction, mice were treated

i.n. either with a solution of 100 mg OVA/50 ml PBS/mouse

(MAA, at days 28 and 29) or with a solution of 250 mg OVA/

50 ml PBS/mouse (SAA, at days 28, 29, 30, and 33). The

control group (CN) was composed of mice which received

PBS only, following the schedule of the MAA model. Each

group contained four mice. All animal in vivo procedures were

performed at the University Medical Center Goettingen,

Germany, in compliance with the guidelines of the European

(86/609/EEC) and the German ethical laws and were

approved by the administration of Lower Saxony, Germany.

Mice were sacrificed two days after the last challenging step,

i.e. on day 31 (MAA, CN) and on day 35 (SAA). In order to

mimic the in vivo properties of the lung as close as possible,

samples were prepared for the phase-contrast CT analysis

as described before (Dullin et al., 2015) by performing a

tracheotomy on the sacrificed mice, followed by inflation of

the lungs with air at a constant pressure of 30 cm water

column. Finally, tracheas were tied up and the whole mice

were embedded in 1% agarose gel in 30 ml falcon tubes.

The samples were imaged at the SYRMEP beamline

(Synchrotron Light Source ‘Elettra’, Trieste, Italy) with the

following parameters: X-ray energy E = 22 keV, 1800 projec-

tions in a 360� acquisition mode using an exposure time per

projection of 2.4 s. For detection, we utilized a water-cooled

CCD camera (Photonic Science, model VHR) with a 4008 �
2672 full frame in 2 � 2 binning mode (resulting in a pixel size

of 9 mm � 9 mm), coupled to a gadolinium oxysulfide scintil-

lator placed on a fibre optic taper. The agarose embedded

mice were mounted in an upright position and their central

lung part (�4 mm in height) was imaged. A sample-to-

detector distance of 30 cm was chosen to allow for inline

phase-contrast measurements. In order to decouple the phase

shift from the absorption effect, a single-distance phase-

retrieval algorithm [TIE_Hom (Gureyev et al., 2009; Paganin

et al., 2002), X-tract software package, CIRS, Australia] was

applied to the projection images (Mohammadi et al., 2014)

before reconstruction using a classical filtered back-projection

algorithm (FBP). This resulted in three-dimensional (3D) data

sets, predominately representing the real part of the complex

refractive index, demonstrating a high CNR as well as a good

edge quality (Mohammadi et al., 2014).

CT imaging results were correlated to histology. For this

purpose, lung samples were obtained from a further set of

OVA-induced asthmatic and control mice following the same

asthma induction protocols. Excised lungs were fixed in 10%

buffered formalin and embedded in paraffin. 3 mm-thick

paraffin lung sections containing main stem bronchi were

obtained and hematoxylin-eosin (H&E) stained for 2 min.

Finally, these stained sections were dehydrated using an

ascending alcohol series and xylol followed by mounting with

DePex (Serva, Heidelberg, Germany). An Axioskop 2 (Carl

Zeiss Microscopy GmbH, Jena, Germany) microscope in

combination with a Leica DC 100 camera (Leica, Switzerland)

was used for visualization of the stained sections.

For quantification of differences in the water content of the

lung tissue from asthmatic and healthy mice an additional

cohort of age-matched mice was used (MAA, N = 6; SAA,

N = 5; CN, N = 6), that were immunized and challenged
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following the same protocol as the mice analysed by CT and

histology. Lungs from these mice were excised at the same

time point on day 31 (MAA, CN) and on day 35 (SAA). One

half of the lung was fixed in 10% buffered formalin for later

histological verification of the presence or absence of asthma.

The other half was weighed directly after explantation (wet)

and after a 24 h drying process (dry) using a vacuum

concentrator (SpeedVacTM, ThermoSientific).

3. Results and discussion

By applying inline phase-contrast CT in combination with

single-distance phase retrieval we found that the differences

in severity of the disease in these two experimental allergic

airway models in comparison with healthy controls are

reflected in an increase in the soft-tissue content of the lung.

Fig. 1 shows representative images of the soft-tissue–air

interface of lungs from one mouse of each group (CN, MAA

and SAA) rendered in 3D using the same parameters. The

observed increase in the soft-tissue content correlates with the

severity of the analysed models. In order to quantify these

alterations in the lung structure, eight non-overlapping

volumes-of-interests (VOIs) of 2 mm � 2 mm � 2 mm were

placed uniformly in the peripheral region of the lung in order

to depict comparable alveolar structures and ensure repro-

ducibility of the measurement in different samples. The grey

value histogram of such a VOI shows two dominant peaks

representing air and soft tissue. The mean value between these

two peaks was chosen as a threshold to discriminate air from

soft tissue and the threshold was kept constant for all VOIs

and samples. The volume ratio (Vol.Ratio) of the soft-tissue

component was calculated by dividing the total volume of all

voxels within the soft-tissue threshold range within the VOI

by the VOI volume. The values of the eight VOIs per sample

were averaged and the results are shown in Fig. 2(a). The three

groups (CN, MAA and SAA) are clearly distinguishable by a

statistically significant (one-way ANOVA test, p-value < 0.01;

Fig. 2a) increase in the soft-tissue Vol.Ratio in correlation with

the severity of the analysed models (0.2 in CN, 0.33 in MAA

and 0.55 in SAA).

The success of our imaging approach to discriminate

between diseased and healthy mice is vastly dependent on our

preparation scheme (Dullin et al., 2015) which is designed to

minimize alterations in the samples during the scanning

procedure. Inflating the lung with air at a constant pressure

results in an increased total lung volume (soft-tissue and air,

our own previous observation) and is most likely caused by

reduced elasticity of the lung tissue in asthmatic mice, already

described by Gelb et al. (2002). Therefore, the increased soft-

tissue volume ratio, which was found to be significantly higher

in the diseased mice, still underestimates the effect in vivo.

These ex vivo findings must not be confused with the so-called

‘air-trapping’ effect, a symptom often seen in asthmatic

patients and used as a clinical parameter in CT-based asthma

diagnosis. ‘Air trapping’ actually increases the air content in

certain lung areas at the expiration phase due to a reduced

ability to expel air (Busacker et al., 2009).

Another important aspect that has to be considered is that

asthma is accompanied by an increased mucus production.

The capabilities of our imaging strategy are limited in terms of

discriminating mucus from soft tissue. Therefore, the analysed

total amount in the tissue content of the asthmatic lungs may

be somewhat smaller if mucus is present. However, the

measurement of the air content of the asthmatic lungs is

unaffected by this limitation and suggests that the analysed

Vol.Ratio of non-air components within the lung represents a

good parameter for the characterization of the severity of the

allergic reaction in each lung sample.
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Figure 1
Volume rendering representations of the obtained XPCT results for lungs from a healthy control mouse (CN), a mouse from the mild (MAA) and a
mouse from the severe (SAA) experimental allergic airway model. Increased soft-tissue content is clearly visible within lungs in correlation with
increasing severity of asthma.
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In order to validate the observed increase in soft-tissue

content in asthmatic lungs, sections of lungs explanted four

days after the last challenge were histologically analyzed.

Fig. 3 shows representative results for one sample of each

group. In accordance with other reports, we found an

increased thickness of the bronchial walls, which is associated

with the severity of the allergic inflammatory reaction in mice

in these asthmatic mouse models (Dullin et al., 2015). In

addition, areas with a high cell density as shown in Fig. 3 can

only be found in SAA samples, confirming the strongly

increased soft-tissue Vol.Ratio depicted by phase-contrast CT

in SAA.

The application of a phase-retrieval algorithm results in 3D

data sets which predominately express the real part (�-value)

of the refractive index within the samples (Gureyev et al.,

2013). Since the �-value is characteristic of a certain element,

the mean grey value of the segmented soft tissue contains

information about the chemical tissue composition. Note that,

whereas the imaginary part of the refractive index can quite

reliably be estimated by the used phase-retrieval algorithm

(TIE-Hom), the �-value depends on the chosen �-to-� ratio as

indicated by Gureyev et al. (2013). Therefore, there is no

direct relation of the calculated grey values to the �-value.

However, since the same �-to-� ratio was used for all samples,

a similar grey level can be expected in all groups if the lung

soft tissue has the same composition. Here, in order to facil-

itate the comparison between the three groups, the individual

average grey values for the eight VOIs analysed per sample

were normalized to the mean value of the CN group as shown

in Fig. 2(b).

A slightly (2%) reduced mean �-value of lung soft tissue

was found in MAA and an (4%) increased mean �-value in

SAA mice [one-way ANOVA test, p-value < 0.01, Fig. 2(b)],

pointing to differences in the airway remodelling mechanism
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Figure 2
(a) The measured soft-tissue volume fractions obtained in eight VOIs per mouse are shown. Note that the same trend of increasing soft-tissue content
seen in Fig. 1 can be found here. (b) The relative mean �-values of the lung soft tissue (normalized to the control group CN) are demonstrated. An
increase of the relative �-value is found in lungs of mice with severe asthma (SAA). In contrast, lungs of mice with mild asthma (MAA) demonstrate
slightly reduced relative �-values. (c) Relative difference of the lung weight of MAA (N = 6) and SAA (N = 5) compared with CN (N = 6) (additional
cohort of mice) directly after explantation (wet) and after being dried for 24 h (dry). Lungs of SAA mice weighed almost twice as much as lungs of CN
with a small reduction in dry weight, indicating that the difference is equally related to more cells and higher water content. The relative weight
difference of MAA increases from 14% to 21% from the wet to dry state, indicating that this effect is much smaller than in SAA and is slightly more
related to an increase in the number of cells within the lung than to a higher water content. The error bars represent the standard deviation of the
respective values within the different groups. ** indicates a p-value of a one-way ANOVA test of less than 0.01 and therefore a significant difference.

Figure 3
H&E stained histological sections of a control lung (CN), of a lung from a mouse taken from the mild (MAA) and from the severe (SAA) experimental
allergic lung disease model, all sacrificed four days after the last OVA challenge. Lung sections of mice from MAA and SAA show airway wall thickening
(bronchial wall indicated by black arrow heads) and lungs of mice with SAA contain areas of high cell density (white arrow head) which are absent in CN
and MAA, all parameters known to be typical hallmarks of asthma.
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in these two experimental allergic airway disease models. In

order to further analyse these findings, lungs of an additional

cohort of mice were explanted and the wet and dry weight of

each left lung lobe was measured for each group (CN, MAA,

SAA). In Fig. 2(c) the results of this experiment are displayed

as the relative difference to the average left lung lobe weight

of CN (wet and dry, respectively). The wet weight reflects both

the weight of the water and the cells in the lung, whereas the

dry weight reflects the cells only. MAA shows a 14% and SAA

a 98% larger wet weight than CN, which changes to 21% and

95%, respectively, after the drying process. This indicates that

the 14% higher wet weight of the lungs from MAA is rather

related to the presence of more cells than to a higher water

content, since the difference increased when the lungs were

dried. In contrast, in SAA the increased weight of 98% must

be related to both the presence of more cells and increased

water content, as the relative weight difference to controls

changes only marginally. These results indeed suggest that the

two allergic airway disease models lead to different tissue

compositions of the lung.

To compare these results with the obtained phase-contrast

CT �-values (Fig. 2b), the soft-tissue volume fraction also has

to be considered. MAA shows an about 65% and SAA an

about 175% increased soft-tissue volume fraction compared

with CN. Therefore, the ratio between the increased amount of

cells and increased soft-tissue volume fraction is 0.32 in MAA

(21%/65%) and 0.54 in SAA (95%/175%) indicating that the

cells in MAA are more loosely packed than in SAA. This

effect may cause the different trends in the observed average

�-values in MAA and SAA. The packaging of cells may be

related to the extracellular matrix (ECM) and it is known that

in asthma an increased percentage of areas of collagen can be

found in the ECM (Weitoft et al., 2014), which most likely

causes the swelling and reduction in lung tissue elasticity.

Therefore, our results indicate a difference in the ECM

components between mild and severe asthma, a theory which

needs to be studied in more detail.

In summary, we show that synchrotron inline phase-contrast

CT with a pixel size of about 9 mm� 9 mm in combination with

a single-distance phase-retrieval algorithm provides the

necessary image quality for discrimination and quantification

of variable alterations in the lung structure. Our results show

that, based on quantification of structural alterations within

the lung, even mice from a weak allergic airway disease model

can be significantly discriminated from controls and stronger

allergic airway disease and highlights the robustness and

versatility of the presented approach. Inline phase-contrast

CT in combination with single-distance phase retrieval

therefore represents a valuable tool for the characterization

of morphological changes in allergic airway disease mouse

models and may aid the analysis of the efficacy of novel

therapeutic approaches.
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Functionalized computed tomography (CT) in combination with labelled cells is

virtually non-existent due to the limited sensitivity of X-ray-absorption-based

imaging, but would be highly desirable to realise cell tracking studies in entire

organisms. In this study we applied in-line free propagation X-ray phase-

contrast CT (XPCT) in an allergic asthma mouse model to assess structural

changes as well as the biodistribution of barium-labelled macrophages in lung

tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-

labelled were instilled intratracheally into asthmatic and control mice. Mice

were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned

utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source,

Italy). Single-distance phase retrieval was used to generate data sets with ten

times greater contrast-to-noise ratio than absorption-based CT (in our setup),

thus allowing to depict and quantify structural hallmarks of asthmatic lungs such

as reduced air volume, obstruction of airways and increased soft-tissue content.

Furthermore, we found a higher concentration as well as a specific accumulation

of the barium-labelled macrophages in asthmatic lung tissue. It is believe that

XPCTwill be beneficial in preclinical asthma research for both the assessment of

therapeutic response as well as the analysis of the role of the recruitment of

macrophages to inflammatory sites.

Keywords: phase-contrast CT; single-distance phase retrieval; functional CT imaging.

1. Introduction

Lung imaging, especially of the mouse, remains extremely

challenging due to the small size and high porosity nature of

the organ, which creates various problems like scattering for

X-ray and optical imaging techniques, susceptibility artefacts

in magnetic resonance imaging (MRI) and shadowing of

medical ultrasound waves at the rib cage. Together with

preclinical airway disease models, novel imaging technologies

are becoming increasingly important for monitoring disease

progression and the efficacy of treatment within the lung.

Recent studies have either focused on functional aspects,

utilizing near-infrared fluorescence (NIRF) imaging (Napp et

al., 2010; Markus et al., 2014) or on the depiction of morpho-

}
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logical alterations, such as airway wall thickening using ex vivo

micro-CT (Cortez-Retamozo et al., 2008; Sera et al., 2007). For

tracking of ex vivo labelled immune cells in vivo a wide range

of imaging modalities, for example MRI (Ahrens & Bulte,

2013) and optical imaging (Bousso & Moreau, 2012), have

been reported in recent years. Radionuclide labelling of cells is

the oldest technique for tracking immune cells, especially in

whole body distribution studies in humans (Thakur, 1977).

The application of CT in combination with novel contrast

agents for cell tracking has just begun to be explored and is

hampered by the poor sensitivity of CT combined with the low

toleration of high concentrations of contrast media loaded

into cells (Cormode et al., 2014). In order to visualize the

biodistribution of labelled cells following injection, as well as

to assess morphological alterations in great detail during

inflammation and airway remodelling within the lung, the

combination of high spatial resolution with increased sensi-

tivity is highly desirable. An imaging technique that meets

these requirements is the here-used in-line free-propagation

X-ray phase contrast CT (XPCT).

Since the very first application of X-rays for medical

purposes by Konrad Roentgen in 1895, the imaging principle

for detecting tissue-dependent variations by X-ray absorption

has remained unchanged. Especially in applications related to

visualization of soft-tissue as in mammography or in lung

imaging, these differences in X-ray absorption are very weak,

resulting in poor contrast. This contrast could be raised by

lowering the X-ray photon energy; however, this would also

increase the radiation dose deposition in the samples. Addi-

tionally, an energy level high enough to achieve sufficient

penetration of the sample needs to be maintained. Due to

these factors the absorption contrast in radiographs is limited,

especially in clinical practice. In addition to absorption, a

phase shift of the incident X-ray wavefront occurs within the

sample. Despite being about 100 times stronger in low-density

materials (Takeda et al., 1995), this effect has basically not

been exploited in clinical routine to date, due to the fact that at

least partial coherent X-rays are required, which can only be

generated with micro-focus X-ray tubes, or with higher

intensities, at synchrotron light sources (Nugent, 2010). This

limitation notwithstanding, X-ray phase-contrast imaging has

great potential, as it combines strong edge enhancement in

radiographs with the fact that the advantage of phase contrast

over conventional absorption contrast improves with

increasing photon energy. Therefore, medical phase-contrast

X-ray imaging could potentially be performed at higher

energies than in the actual absorption-based regime, which

would reduce the dose deposition within the patient, espe-

cially in soft-tissue applications like mammography. There are

already some clinical mammography systems on the market

demonstrating a gain in image contrast due to phase effects

(Tanaka et al., 2005). Besides the here-used in-line free-

propagation XPCT, there are other phase-sensitive techniques

such as grating interferometry (Pfeiffer et al., 2006). Grating

interferometry would allow phase-contrast imaging even when

conventional X-ray tubes are used. Notwithstanding that the

clinical application of this technique is at the moment

hampered by technical problems such as the magnitude of the

applied radiation dose, grating interferometry also showed

very promising results in lung imaging as demonstrated by

Schleede et al. (2012).

Since absorption-based CT imaging in its nature shows low

sensitivity, functional imaging approaches similar to those

used in SPECT, PET or optical imaging (Nahrendorf et al.,

2008) are virtually nonexistent. The potential of phase-sensi-

tive techniques for lung imaging has been explored since the

late 1990s at some synchrotron beamlines (Yagi et al., 1999;

Kitchen et al., 2004; Lewis et al., 2005; Hooper et al., 2007,

2009). However, the increased sensitivity of XPCT in less

dense materials might be well suited to realise CT functional

imaging addressing both soft-tissue alterations and the

distribution of heavy-ion-based contrast agents such as barium

sulfate. Contrary to classical absorption-based CT, in XPCT

edge enhancement caused by phase effects at tissue interfaces

is superimposed on the contrast caused by tissue-specific

differences in X-ray absorption. These interactions of X-rays

with matter are described by the complex refractive index

~nn = 1 � � + i�, where � determines the phase shift and � the

absorption. In order to analyse the phase shift separately, the �
part of the signal needs to be decoupled by a phase-retrieval

(PhR) algorithm. It has already been demonstrated that the

application of PhR is highly beneficial in the analysis of

biological samples (Keyriläinen et al., 2010; Zhang et al., 2011;

Yong et al., 2009; Gureyev et al., 2013) showing an up to 200-

fold improvement in the contrast-to-noise ratio (Beltran et al.,

2011). A large variety of PhR algorithms have been reported

so far, that can be loosely divided into multi- and single-

distance techniques (Nugent, 2007).

Commonly used multi-distance PhR approaches are either

based on the fact that the absorption part of the detected

radiograph is constant whereas the impact of the phase effects

varies with different sample-to-detector distances, or require

a priori knowledge of the refractive indexes within the sample

(Cloetens et al., 1999a; Beltran et al., 2010). Imaging with

several sample-to-detector distances is disadvantageous

because it crucially depends on a perfect alignment of the

different scans and it is affected by variations in the X-ray

beam, which often occur at synchrotron light sources. In

contrast to that, single-distance PhR algorithms minimize the

scanning time and are therefore especially suitable for the

analysis of unfixed biological samples such as in situ mouse

lungs imaged in this study, but they can strictly only be applied

on objects expressing a constant �-to-� ratio (Paganin et al.,

2002). However, the applicability of this type of algorithm for

soft-tissue samples was shown by Wu et al. (2005). Moreover,

single-distance PhR followed by standard filtered back-

projection reconstruction (FBP) was applied to generate

three-dimensional (3D) data sets of mouse lungs predomi-

nately presenting the distribution of the � part of the refractive

index (Mohammadi et al., 2014).

The aim of this study was to develop a functional XPCT

imaging approach (fXPCT) by exploiting the capability of

alveolar macrophages (M�) to migrate to inflammatory sites

within the lung using an ovalbumin induced experimental
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allergic airways disease model (Markus et al., 2014). In order

to visualize the biodistribution of cells following intratracheal

application, M� of the immortalized alveolar macrophage cell

line MH-S (Mbawuike & Herscowitz, 1989) were ex vivo

labelled by adding a contrast agent suitable for X-ray-based

imaging directly to the cell culture media. A barium sulfate

suspension was used, that is commonly applied in the clinic to

mark the gastrointestinal tract in CT (Golder et al., 1991).

Thereby, macrophages were intracellularly labelled and used

as a specific probe instead of an in situ labelling approach by

systemic administration of X-ray contrast agents. M� can

engulf large particles by phagocytosis and can therefore easily

be loaded with contrast agents and drugs in vitro (Trivedi et al.,

2006), converting them into potential carriers for both diag-

nostic and therapeutic agents. Since they migrate to inflam-

matory sites they have already been exploited for delivery of

various anti-inflammatory compounds (Bang et al., 2011;

Moreira & Hogaboam, 2011; Yang et al., 2012). Moreover, M�
were recently identified as one of the main effector cells in

asthma (Bang et al., 2011; Moreira & Hogaboam, 2011; Yang et

al., 2012). Mizue et al. (2005) showed that, in the absence of

the macrophage migration inhibitory factor (MIF), asthma

could not be induced in MIF-deficient mice, and Chen et al.

(2010a) demonstrated in an asthma mouse model that airway

remodelling was successfully inhibited by a MIF antagonist.

With the unique capabilities of XPCT in combination with

phase retrieval and the use of M� loaded with barium sulfate

particles, we were able to simultaneously depict and quantify

structural features and to illustrate in 3D the different accu-

mulation sites of labelled M� within asthmatic and control

lungs. We believe that, by providing new quantitative func-

tional and anatomical parameters and by using barium-

labelled immune cells in cell trafficking studies, this novel

fXPCT approach may help to preclinically investigate complex

and multi-factorial processes of inflammatory diseases.

2. Material and methods

2.1. Preparation and labelling of macrophages

The immortalized mouse alveolar M� cell line MH-S

(purchased from American Type Culture Collection, ATCC,

USA) was maintained in RPMI medium, supplemented with

10% FCS and 0.05 mM 2-mercaptoethanol (Mbawuike &

Herscowitz, 1989) in a humidified atmosphere at 5% CO2 and

310 K. For CT imaging, cells were loaded with a barium sulfate

suspension, the clinically used contrast agent Micropaque CT

(Guerbet, France) by co-incubating 1� 106 cells ml�1 for 24 h

with 3.5 ml Micropaque CT/ml cell media (175 mg barium

sulfate/ml media), followed by two washing steps with phos-

phate buffer (PBS). Subsequently, for stable fluorescent

labelling of the cell membrane, the M� were incubated for

30 min with 5 ml ml�1 of the lipophilic dialkylcarbocyanine

dye Vibrant DiD (DiD; Molecular Probes, Eugene, OR, USA;

excitation maximum: 644 nm; emission maximum: 665 nm),

followed by two washing steps with PBS. To test the loading

efficacy of barium sulfate particles into M�, a vial containing

1 � 105 barium sulfate M� resuspended in 100 ml PBS was

scanned with a normal bench-top microCT (eXplore locus SP,

GE HealthCare, USA) (Verdelis et al., 2011). The morphology

of the barium-labelled M� was assessed by light microscopy

and the effects of the uptake of barium sulfate particles on the

metabolic activity of M� were investigated with a water-

soluble tetrazolium (WST-1) cell proliferation assay (Madison,

WI, USA) (Mosmann, 1983).

2.2. Mouse model of allergic asthma

Female BALB/c mice (4–6 weeks old) were purchased from

Harlan Laboratories and maintained with ‘ad libitum’ food

and water. For generation of the experimental allergic airways

disease model, mice were sensitized intraperitoneally (i.p.) at

day 0 and 21 with 10 mg ovalbumin (OVA), dissolved in 200 ml

PBS. At day 28 and 29, mice were treated intranasally (i.n.)

with a solution of 100 mg OVA/50 ml PBS to induce an acute

allergic reaction (Biffi et al., 2013). Healthy age and gender-

matched BALB/c mice, immunized and challenged with PBS

only, were used as controls. To verify the success of OVA

immunization, blood samples were taken 72 h after the last

challenge from the facial vein of the living mice and levels of

OVA-specific immunoglobulin within the sera were analysed

as previously described (Biffi et al., 2013).

Animal in vivo procedures were performed at the CBM

Animal Facility, Trieste, Italy, in compliance with the guide-

lines of the European (86/609/EEC), the Italian (DL116/92)

and at the University Medical Center Göttingen, Germany, in

accordance with the German ethical laws (33.9-42502-04-10/

0134) and were approved by the Italian Ministry of Health as

well as by the animal ethics administration of Lower Saxony,

Germany.

2.3. Application of macrophages and experimental setup

Previous differential cell counts from bronchoalveolar

lavages (BAL) and in vivo fluorescence measurement

experiments showed that OVA-induced asthmatic mice

display the strongest signs of inflammation between 48 h and

72 h after the last antigen challenge (Biffi et al., 2013). We

therefore instilled 6 � 106 barium- and DiD-labelled M�
resuspended in 30 ml PBS intratracheally (i.t.) 72 h after the

last OVA challenge into the lungs of asthmatic and control

mice under xylazine-tiletamine-zolazepam anaesthesia.

2.4. In vivo optical imaging

Optical imaging was performed by two-dimensional fluor-

escence reflectance imaging (FRI) using the Optix MX2

system (ART; Montreal, Canada) as previously described

(Markus et al., 2014). For in vivo scans, mice were anaes-

thetized by inhalation with isoflurane (2% isoflurane in 2 l

oxygen per min). Before imaging, mice were shaved and

chemically depilated over thorax and abdomen to decrease

scattering from the fur. Mice were scanned before, directly

after and 24 h after M� instillation. All data were acquired

using a 670 nm excitation laser diode in combination with a

700 Lp emission filter and a 1.0 mm raster. The fluorescence
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intensity was analysed using the OptiView-2-02-00 software

(ART). The average intensity of the lung area was measured

and its relative increase compared with the pre-scan was

computed.

2.5. Preparation of biological samples for ex vivo CT analysis

Mice were sacrificed 24 h after instillation of barium-

sulfate-loaded and fluorescent-labelled M� (Fig. 1) using a

xylazine-tiletamine-zolazepam overdose. In order to ensure

comparability between different samples, all lungs were

inflated in situ with air, under a constant pressure of 30 cm

water column (2.94 kPa) through a series of smaller tubes,

which ended in a PE50 polyethylene cannula fixed inside the

trachea with a cotton thread. Tracheas were tied up and all

samples were kept at room temperature for 2 h, in order to

avoid any alterations caused by rigor mortis. To avoid air

leakage, alterations and movements during the X-ray exam-

ination, samples were then embedded in a 1% agarose gel

inside 30 ml tubes (Fisher Scientific, USA) and kept for 30 min

at 277 K. Samples were moved to the synchrotron beamline

30 min before scanning to allow for temperature adaptation.

Four lung samples were prepared for fXPCT analysis: one

mouse with OVA-induced asthma and two healthy controls, all

injected with M� (AA, CN1 and CN2), as well as one healthy

mouse without application of M� which served as a negative

control (Blk).

2.6. Synchrotron-radiation-based fXPCT and phase retrieval

All data sets were acquired at the SYRMEP beamline at the

synchrotron light source Elettra (Trieste, Italy) (Brun et al.,

2010; Dreossi et al., 2008), which is especially designed for

medical applications and analysis of biological samples. The

beamline was operated at 22 keV at a sample-to-detector

distance of 30 cm. The central area of the lung of each sample

was scanned by performing two overlapping 360� scans with

1800 projections each and a 2 � 2 binning of the detector

elements, thus resulting in a spatial resolution of 9 mm. In

order to decouple phase and absorption information in the

acquired projection images, we applied a single-distance in-

line phase-retrieval algorithm based on the Born equation

implemented by Chen et al., which only requires one data set,

obtained at a single sample-to-detector distance (Mohammadi

et al., 2014; Chen et al., 2010b, 2012; Taylor, 1981). In order to

apply this class of algorithms, a priori knowledge of the �-to-�
ratio within the sample is needed. Within this study we used

a �-to-� ratio of 1950 for standardized lung tissue with a

hydrogen, carbon and oxygen ratio: H10 C0.83 O5 (Interna-

tional Commission on Radiological Protection) (Mohammadi

et al., 2014).

2.7. Quantification of morphological alterations within the
lung and distribution of barium-loaded macrophages

For a quantitative comparison of the lung samples it is

crucial to identify parameters that characterize the alterations

in the lung structure without being affected by local in-

homogeneities in the manifestation of the asthmatic reaction

within the lung. To this end we applied an analysis scheme that

was adapted from strategies used for the characterization of

trabecular bone structure and other porous materials. Briefly,

the data sets were reoriented and resampled to ensure that the

analysis is independent of the orientation of the lungs during

the scan. Due to the high contrast-to-noise ratio in the phase-

retrieved reconstructed data sets, non-overlapping greyscale

ranges were assigned to air, lung soft-tissue, bone of the rib

cage and to barium used as label for the i.t. instilled M�.

These image segments were then further analysed and quan-

tified in terms of air, soft-tissue and barium content as well as

narrowing of the airways.

2.8. Histology

Lung samples for histology were obtained from a further set

of OVA-induced asthmatic and control mice following the

schedule and conditions as described in Fig. 1 (in order to be

comparable with the fXPCT analysis). The excised lungs were

fixed in 10% buffered formalin and embedded in paraffin, and

3 mm-thick paraffin lung sections containing main stem

bronchi were obtained. A periodic acid-Schiff (PAS) staining

was performed to assess bronchial wall thickness and mucus

production (Fullmer, 1960). Sections were deparaffinised,

rehydrated and stained with periodic acid for 5 min, followed

by Schiffs reagent (Merck, Darmstadt, Germany) for 15 min

and hematoxylin for 2 min. Slices were washed for 3 min

between each of the staining steps. The samples were dehy-

drated using an ascending alcohol series and Xylol and finally

mounted with DePex (Serva, Heidelberg, Germany). An

Axioskop 2 (Carl Zeiss Microscopy GmbH, Jena, Germany)

microscope in combination with a Leica DC 100 camera

(Leica, Switzerland) was used for analysis of the stained

sections.
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Figure 1
Experimental setup. An OVA allergen-induced experimental allergic
airways disease model was used, consisting of two immunization steps
(i.p. injection of 10 mg OVA) on days 0 and 21 and two challenging steps
(i.n. application of 100 mg OVA) on days 28 and 29. Prior to their
instillation, M� were labelled with Micropaque and DiD for 24 and 4 h,
respectively. On day 32, 6 � 106 barium- and DiD-labelled M� were
instilled i.t. into asthmatic and control mice. Mice were euthanized on day
33 and prepared for fXPCT analysis.



2.9. Fluorescence microscopy

In order to verify the location of the injected DiD and

barium-labelled M�, fluorescence microscopy of lung tissue

sections of asthmatic and control mice was performed,

utilizing an Axiovert 200M inverted microscope (Carl Zeiss

Microscopy) equipped with a xenon lamp and a high-sensi-

tivity ORCA-AG digital camera (Hamamatsu, Japan), capable

of NIRF detection. For this purpose, lungs of asthmatic mice

(n = 2) and a control mouse, explanted 24 h after M� i.t.

instillation, were filled with optimal-cutting-temperature

(OCT) embedding material (Tissue-Tek; Sakura Finetek,

Torrance, CA, USA) and were cryofrozen. Lung cryosections

(5 mm) were obtained, fixed with acetone (10 min at 253 K)

and washed with tris(hydroxymethyl)-aminomethane (Tris)

buffer (pH 7.5). Immunostaining was performed as follows.

Autofluorescence was blocked with 0.1 M glycin [for 10 min at

room temperature (RT)], endogenous biotin and avidin were

blocked with Avidin Biotin Blocking Solution and unspecific

binding sites for 20 min at RT with SEA BLOCK blocking

buffer (both Thermo Scientific) following the manufacturer’s

protocol. Slices were then incubated overnight at 277 K

with rat monoclonal anti-CD68 antibody (FA-11; Abcam,

Cambridge, UK; 3.33 mg ml�1) diluted in Antibody Diluent

with Background Reducing Components (DAKO, Glostrup,

Denmark), followed by two incubation steps of 1 h at RT with

biotinylated goat–anti-rat antibody (BioLegend, San Diego,

CA, USA; 1:200), and with Streptavidin-AlexaFluor 555

(Molecular Probes, Life Technologies, Carlsbad, CA, USA;

1:400). Finally, slices were mounted with Mowiol (Cali-

biochem, Merck, Darmstadt, Germany) supplemented with

40,6-diamidino-2-phenylindole (DAPI) for staining of the

nuclei and left overnight at 277 K. Two washing steps with Tris

buffer were performed between each step. DiD fluorescence

was acquired using a band-pass (BP) 640 � 15 nm excitation

filter, a 660 nm dichroic mirror and a BP 690� 25 nm emission

filter. The AlexaFluor 555 signals were recorded using a BP

546 � 6 nm excitation filter, a 580 nm dichroic mirror and a

590 nm long pass emission filter. DAPI fluorescence was

acquired using a BP 365 � 12.5 nm excitation filter, a 395 nm

dichroic mirror and a BP 445 � 25 nm emission filter. In the

produced images the DAPI channel was set to blue, Alexa-

Fluor 555 to green and DiD to red. Image generation and

processing were performed using the software AxioVi-

sion Rel.4.6 (Carl Zeiss Microscopy GmbH, Jena, Germany)

and ImageJ (National Institutes of Health, Bethesda, MD,

USA) (Collins, 2007).

2.10. High-resolution synchrotron-radiation-based X-ray
phase-contrast microCT (HR microCT)

Lung sections of a third set of OVA-induced asthmatic mice

(n = 2) and a control mouse following the schedule and

conditions as described in Fig. 1 were also studied using a CT

set-up with higher resolution. For this aim the procedure for

sample preparation was the following: the trachea was

cannulated, then filled and fixed with 4% paraformaldehyde

(PFA), and subsequently single lobes of the lung were

embedded in a 5% agarose-gel. Finally, 500 mm-thick slices

were cut using a Vibratome (Leica VT 1000S; Leica, Swit-

zerland). The slices were placed with a droplet of PBS

between two round pieces of polypropylene foil, secured

within aluminium rings. These were glued together to create a

closed chamber for the slices (Olendrowitz et al., 2012). These

slices were then imaged with a divergent X-ray beam of

17.5 keV at the beamline ID22 Ni at the European Synchro-

tron Radiation Facility (ESRF) in Grenoble. The beam was

focused to less than 100 nm � 100 nm by Kirkpatrick–Baez

(KB) mirrors and free propagation phase-contrast images

recorded with a FReLoN camera (Analog and Transient

Electronic ESRF group) coupled to a scintillator (Weitkamp et

al., 1999). The sample was placed at the maximum possible

defocus distance to achieve the highest field of view. Using a

ten-fold objective lens behind the scintillator and the magni-

fication of the KB beam an effective pixel size of 430 nm was

achieved. Tomographic scans with a series of 1500 images over

a full rotation of 360� were recorded for several specimens of

asthma and control mice. Phase retrieval was performed using

the single-distance Holo-tomo reconstruction algorithm

(Cloetens et al., 1999) implemented at the beamline. Before

3D reconstruction, each projection image was corrected by an

image of the empty beam and aligned to the other projections

before phase retrieval was performed.

2.11. Analysis and statistics

The 3D rendering of the data sets was performed with

VGStudio Max 2.2 (Volume Graphics, Heidelberg, Germany).

For mask generation, IDL 7.0 (Research Systems; Boulder,

CO, USA) and ImageJ (National Institutes of Health;

Bethesda, MD, USA) were used (Abràmoff et al., 2004).

Pore3D, a proprietary software library developed by the

SYRMEP group, was applied to analyse the 3D barium

distribution as well as to quantify the air and tissue content of

the lung within volumes of interest (VOIs) (Brun et al., 2010).

Statistical analysis was performed using MINITAB (Minitab

Ltd; Coventry, UK) and utilizing a one-way ANOVA test

with Tukey 90% simultaneous confidence intervals for the

computed parameters (Ryan et al., 2005; Dunn, 1961).

3. Results

3.1. XPCT in combination with single-distance phase retrieval
is a valuable tool for lung imaging

In order to evaluate the usefulness of phase retrieval in our

experiment, we performed two scans of a mouse lung sample

in XPCT at sample-to-detector distances of 7 and 30 cm. At

the distance of 7 cm only minor edge effects were present and

therefore this essentially resembles the absorption-based

setup in classical CT, despite the fact that the scan was

performed with a monochromatic X-ray source. In contrast,

scanning the same sample at a sample-to-detector distance of

30 cm provides sufficient phase contrast. Phase retrieval was

applied to the projection images of the second scan before

3D reconstruction with FBP was performed. This procedure

research papers

J. Synchrotron Rad. (2015). 22, 143–155 Christian Dullin et al. � Functionalized synchrotron in-line phase-contrast CT 147



matches the same scheme used in this study. As a basis for a

quantitative comparison, we calculated the contrast-to-noise

ratio (CNR) using the following equation:

CNR ¼
g1 � g2

�2
1 þ �

2
2

� �
=2

� �1=2
; ð1Þ

where g1 and g2 denote the mean grey value of two adjoining

tissues and �2
1 and �2

2 reflect their noise level, measured as

squared standard deviation in a region of interest (ROI)

(Mohammadi et al., 2014). In each sample and on five recon-

structed slices homogeneously distributed over the whole

lung, eight circular two-dimensional ROIs (size �0.4 mm2)

solely containing either air or lung soft-tissue were defined

and analysed. We determined a CNR between air and lung-

tissue of about 20.0 in the phase-retrieved data set at 30 cm

and 1.9 at 7 cm without PhR. In addition, only minor blurring

of the phase-retrieved images was found (data not shown).

These results demonstrate that the combination of XPCT with

single-distance phase retrieval is able to increase the soft-

tissue contrast in our samples and setup by a factor of 9.8 when

compared with absorption-based monochromatic X-ray

imaging. This directly translates into an increased sensitivity

that is beneficial for the combined functional and structural

CT imaging approach to visualize mouse lung tissue.

3.2. Macrophages as specific contrast agent for functional CT

The barium sulfate uptake efficacy of M� was assessed with

a bench-top microCT. Imaging of a vial, containing 1 � 105

M� loaded with barium sulfate particles and resuspended in

100 ml PBS, showed a 10% increase of the X-ray absorption

when compared with a vial containing 1 � 105 unlabelled M�
as control (data not shown). The WST-1 assay revealed no

influences of the phagocytized barium sulfate particles on the

metabolic activity of the M� (data not shown). Furthermore,

no evidence of morphologic alterations was observed in

barium-sulfate-loaded M� by light microscopy (data not

shown). In conclusion, the approach to load M� with barium

provides sufficient contrast for CT imaging and shows no signs

of acute cell toxicity.

3.3. In vivo optical imaging demonstrates successful intra-
tracheal instillation of MU

In vivo NIRF imaging was performed in order to confirm

the successful i.t. instillation of the M�. For this purpose the

M� were additionally stained with the NIR cell membrane

label DiD. Fig. 2 shows the in vivo optical imaging results for

the same asthmatic mouse analysed later by fXPCT. A strong

increase in fluorescence intensity was observed over the lung

area directly and 24 h after i.t. instillation of DiD- and barium-

labelled M� when compared with the pre-scan. These results

verify the presence of the labelled M� in the lung area of the

mouse 24 h after i.t. administration.

3.4. Processing and quantification of fXPCT data sets

All lungs were kept in situ and scanned at the SYRMEP

beamline using a setup that allows for fXPCT. In order to

cover the main central area of the lung, two slightly over-

lapping scans per sample were performed. The original

projection data sets were then processed by the single-distance

in-line phase-retrieval algorithm (Chen et al., 2010) to create

projections predominately showing the � part of the complex

refractive index. These data sets were later on reconstructed

with FBP. In order to analyse the data quantitatively, the

following steps were performed: stitching of the two over-

lapping scans and reorientation of the data sets to allow for

comparison between different samples; masking of the lung to

restrict the analysis to the lung area; segmentation of the three

different components (air, lung soft-tissue and barium); 3D

quantification of structural alterations and depiction of the

barium concentration and distribution.
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Figure 2
In vivo optical imaging results. Fluorescence intensity maps of the same asthmatic mouse used for fXPCT (Fig. 3) before (pre), directly after (T0) and
24 h after (T24) i.t. instillation of 6 � 106 barium-sulfate-filled and DiD-labelled M� are shown. After 24 h, strong fluorescence signals expressed in
normalized counts (NC) are visible over the lung area.



3.4.1. Post-processing steps and descriptive comparison of
the obtained fXPCT lung data sets. The automatic quantifi-

cation of anatomical alterations is based on the splitting of the

data sets into rectangular VOIs. Thus, to ensure that all data

sets are present in the same orientation, the reconstructed

data of the two scanning steps were registered, combined and

re-orientated. In consideration of the memory limitations

in the post-processing algorithms, data sets were re-sampled

down to an isotropic resolution of 14.4 mm. A volume-

rendering representation of the final data sets is shown in

Fig. 3(a) and VOIs in Figs. 3(b) and 3(c). To visualize the

various tissues as well as the i.t. instilled barium-sulfate-loaded

M�, pseudo-colours were assigned to different greyscale

ranges. As a result, lung soft-tissue is displayed in red, bones in

grey and highly dense areas related to the barium-containing

M� appear yellow. In order to maintain the 3D visibility of the

inner lung structure the air was set to transparent. Given that

barium causes a greater phase shift than lung soft-tissue and

the healthy blank (Blk) contains no barium, the upper limit of

the grey value range representing the lung soft-tissue in Blk

was chosen as a valuable threshold to detect the barium-

loaded M�.

The segmented images clearly show an increased soft-tissue

content in sample AA in comparison with the healthy controls

[Figs. 3(a) and 3(b)]. Additionally, the VOI of AA (Fig. 3b)

displays a reduced porosity, which illustrates the airway

obstruction characteristic for asthma. The same effect of

increased soft-tissue content and airway obstruction can to a

certain extent also be seen in the planar slices in Figs. 4(a) and

4(b) (white arrow heads). Furthermore, Fig. 3 demonstrates

that the barium-sulfate-loaded M� seem to be distributed in

cluster-like structures throughout the asthmatic lung, which is

also demonstrated in planar reconstructed slices in Figs. 4(c)

and 4(d). High-contrast regions related to barium-sulfate-

loaded M� are also present in the lungs of the two healthy

controls CN1 and CN2; however, at a much lower quantity

(yellow spots, Fig. 3b). Note that M� derived signals within

the lung in AA appear to be surrounded by lung soft-tissue

and therefore seem to be originating from areas around the

bronchial walls and not from the lumen of the airways

(Fig. 3b). The same location of M� was also found in two-

dimensional slices as shown in Fig. 4(c). In the same slices

areas can be found that are solely composed of soft tissue that

is characterized by a lower contrast than the marked spots
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Figure 3
Volume rendering of the fXPCT results and visualization of the M� localization. Volume renderings of four 3D reconstructions of phase-retrieved
fXPCT data sets are shown. Each column represents one lung sample of an asthmatic mouse (AA), a healthy mouse without instilled M� as negative
control (Blk), and two healthy controls (CN1, CN2). Bone is displayed in grey, soft-tissue in red and barium in yellow (air is not depicted). (a) Illustration
of the entire field of view: more barium and an increased soft-tissue density is shown in AA. (b) VOIs (their origin is indicated by white squares in row 1).
(c) The same VOIs are shown but with higher transparency to allow visualization of the sites where barium-filled M� cluster in more detail. Note that in
the VOIs of the AA lung a higher barium content is visible compared with the results obtained in lungs of the negative control Blk and the healthy
controls CN1 and CN2. Additionally, the VOIs of the AA sample show a higher soft-tissue content in comparison with the VOIs of all controls, reflecting
a reduced pulmonary volume and increased soft-tissue content in the asthmatic lung tissue.



assigned to barium. Therefore, it can be excluded that the

detected spots are caused by partial-volume effects. Due to the

fact that no other strong absorbing material is present in the

lung, these high-dense spots most likely represent the instilled

barium-labelled M�. Therefore, the detected localization of

the M� within the bronchial walls may indicate an active

migration of the instilled M� from the airspace into the tissue.

3.4.2. Development of an image-processing scheme for
automatic 3D quantification of morphological alterations.
Since lung tissue has a tree-like structure of airways with

different capillarity, the depiction of the VOIs are of crucial

importance for a VOI-based analysis scheme. On the other

hand, the instilled barium-labelled M� produce a weak signal

and might have an inhomogeneous distribution in such a way

that they could be easily missed in an approach focused on the

entire lung. In order to perform a quantitative comparison,

entire lungs were therefore subdivided into three sets of

2 mm-thick bands in the horizontal, vertical and frontal

direction. In the so-generated 32 VOIs per sample, two types

of parameters were analysed: (i) volume ratio (Vol. Ratio),

which defines the volume fraction of a tissue or material of

interest compared with the total volume of a VOI, and (ii)

structural thickness (St. Th.) of either the airways or the

surrounding tissue. Structural thickness is calculated by

analysing the maximal size of spheres which can be inscribed

in the structure as proposed by Hildebrand & Ruegsegger

(1997) and implemented in the software Pore3D (Brun et al.,

2010). These two parameters are directly related to airway

wall thickening and airway obstruction and therefore reflect

structural changes characteristic for asthmatic lung tissue.

3.4.3. Quantification of morphological changes in the lung.

In addition to visual inspection of the rendered fXPCT data

sets, quantification of structural changes was a further aim of

the study. For this purpose the average and standard variation

of the parameters Vol. Ratio and St. Th. were calculated in

each sample and in each of the horizontal, vertical and trans-

vertical sets of VOIs, respectively

(Table 1). We found an approximately

17% reduced air content as well as a

61% increase in the soft-tissue

Vol. Ratio in the AA sample compared

with all controls (Table 1). In addition,

airway obstruction as a hallmark of

asthma is clearly reflected in the results

of the St. Th. measurements showing

a 32% St. Th. reduction of the mean

airway thickness in AA compared with

all healthy animals and, vice versa, a

48% higher St. Th. in the lung soft-

tissue (Table 1).

In order to prove whether the results

obtained in the individual VOIs of each

data set are significantly different in

between the samples, we used a one-

way ANOVA test with Tukey 90%

simultaneous confidence intervals to

test the difference of the mean values of

the analysed parameters (Vol. Ratio of

air and soft-tissue and St. Th. of airways

and tissue) (Ryan et al., 2005). The

comparison of AA and Blk revealed

reliable differences for all analysed

parameters. Even the minor differences

of these parameters between Blk, CN1

and CN2 were found to be statistically

significant, demonstrating the sensitivity

of our fXPCT approach. Therefore,

based on the chosen parameters (air

and soft-tissue volume ratio and mean

airway and soft-tissue thickness), the

asthmatic and the three control lung

samples can be successfully distin-

guished, indicating that this parameter

set can be used to preclinically monitor

structural changes in asthmatic lungs.
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Figure 4
Manifestation of the structural alterations in asthmatic lung tissue and localization of the barium-
sulfate-labelled macrophages. Detailed views of single slices of the PhR reconstruction are shown in
(a) and (c) for the asthmatic sample (AA) and in (b) and (d) for one control (CN1). Indicated by
white arrow heads in (a) and contrary to the same locations marked in (b), thickening of the
bronchial walls as well as increased soft-tissue content in the smaller airways can be seen in the
asthmatic lung sample. In (c) and (d) areas within the grey value range assigned to barium are
marked in red, indicating the location of the instilled macrophages. Note that the barium-containing
macrophages can be localized within the soft tissue, showing the ‘red dots’ completely surrounded
by tissue.



In addition, the histogram of the � distribution within the

samples, which was normalized to the total amount of analysed

voxels for each mouse, showed a more dominant interval in

AA (grey values 45–55, data not shown). This result suggests

that during the course of asthma not only structural but also

changes in the composition of the lung tissue occur, which may

be the result of the presence of oedema, an increased mucus

production or alterations in the collagen fibres within the lung.

3.4.4. Quantitative analysis of the barium concentration
within the lungs. As shown in Fig. 3 (in yellow), barium-filled

M� can be detected in AA and to a lower extent in CN1 and

CN2. Following the same scheme used to quantify the soft-

tissue content, but applied to the barium segment of the data

set, we found a Vol. Ratio of about 0.1% for barium in the AA

lung (Table 1). The barium concentration in the two healthy

controls CN1 and CN2 was below 1% and therefore appear

as 0 in Table 1: The Blk mouse that did not receive barium-

filled M� (Blk) was used to set up the threshold and conse-

quently shows no barium content within the whole lung. The

Tukey intervals for barium content (data not shown) are all

positive and therefore confirm that the Vol. Ratio of the

barium content is significantly larger in the AA lung sample

than in the Blk and CN mice.

In summary, bronchial wall thickening and airway

obstruction in asthmatic mouse lung tissue can be visualized in

fXPCT data sets [Figs. 3, 4(a) and 4(b)]. Instilled M� appear

within clusters around the bronchial walls [Figs. 3, 4(c) and

4(d)]. With our approach we can also quantify these altera-

tions using automatically generated 3D morphologic para-

meters. These parameters, i.e. Vol. Ratio of air, barium and

lung soft-tissue and St. Th. of air and lung soft-tissue, showed

significant differences between AA and healthy controls in

accordance with the known pathological features in lungs of

an asthma mouse model.

3.5. Fluorescence microscopy and HR microCT confirm the
accumulation of MU in asthmatic lung tissue

In order to confirm the accumulation and to further analyse

the location of the instilled barium-filled and DiD-labelled

M� within the lung observed by fXPCT, we performed

fluorescence microscopy and HR microCT on lung sections.

Since the preparation process and the analysis at the

SYRMEP beamline resulted in the deterioration of the

samples and excluded histological analysis, fluorescence

microscopy and HR microCT were performed with lungs of

a different cohort of mice, but strictly following the same

protocol for asthma induction and instillation of M� (Fig. 1),

including the use of the same batch of OVA.

Representative results of the fluorescence microscopy

performed on cryosections of a lung of an asthmatic mouse

(AA) and a control lung (CN) are shown in Figs. 5(a) and 5(b).

Instilled barium- and DiD-labelled M� are shown in red,

DAPI stained nuclei appear blue and an anti-CD68 antibody

(Ab) which binds to both the applied and endogenous M� is

shown in green. As a result, the instilled barium- and DiD-

labelled M� appear yellow in the merged image. We observed

DiD-labelled M� in the small alveoli [Figs. 5(a) and 5(b),

white arrows] in both the CN and the AA lung samples. As

already seen in the fXPCT analysis, more instilled M� are

present in the AA lung. Moreover, only in the asthmatic tissue

were we able to detect an accumulation of instilled M� within

lung areas of high cellular density [Fig. 5(a), detailed view].

These clusters of cells were found throughout the lung and in

close proximity to the bronchi. Additionally, a higher number

of endogenous M� (green) was found in the asthmatic lung

[Fig. 5(a), green staining].

HR microCT examination clearly verified the presence of

the barium-filled M� inside the lung (dark spots), as shown in

Figs. 5(c) and 5(d), for two lung sections from an asthmatic and

a control mouse, respectively. In both asthmatic and healthy

lungs, barium-filled M� were detected throughout the lung

tissues. However, in contrast to the healthy sample, the asth-

matic sample additionally displayed areas around the bronchi

with an increased accumulation of M� (white rectangle).

Furthermore, thickening of the bronchial walls was observed

in the asthmatic tissue [Fig. 5(c), white arrow head] compared

with the healthy control [Fig. 5(d)], reflecting the presence of

the disease.

Figs. 5(e) and 5(f) show PAS-stained histological slices from

lungs of an OVA-induced asthma mouse (AA) and a healthy

control (CN). Red dots indicate that mucus production is

solely present in the asthmatic lung (Fig. 5e). Furthermore,

airway wall thickening can be observed (black arrow head)

in the AA slide only. These findings represent typical char-

acteristics of asthma and confirm the presence of an acute

asthma reaction in these mice. In addition, ELISA analysis of

the sera revealed increased IgG1 titre for all asthma mice

(data not shown), verifying a successful immunization.

4. Discussion

This study presents a novel functional in-line free propagation

X-ray phase-contrast CT imaging approach (fXPCT) that

enables the depiction of both structural features of lung tissue

and the accumulation of barium-labelled M� in the lungs of

mice after intratracheal instillation. We show that fXPCT can

be applied for CT-based immune cell tracking studies.

Furthermore, this method allows the quantification of struc-
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Table 1
Mean values � standard deviation of the considered parameters.

The pooled standard deviations for the Vol. Ratio (%) parameter were �0.04
for barium, �4.95 for alveoli and 4.94 for tissue. For the St. Th. (mm)
parameter the pooled standard deviation were�68 for alveoli and�11 for soft
tissue.

Sample Barium Air Soft tissue

Vol. Ratio (%) AA 0.10 � 0.07 64.62 � 6.78 35.28 � 6.75
Blk 0.00 � 0.00 78.32 � 3.43 21.68 � 3.43
CN1 0.00 � 0.00 74.28 � 4.75 25.72 � 4.75
CN2 0.00 � 0.00 81.85 � 4.21 18.15 � 4.21

St. Th. (mm) AA 188 � 39 83 � 15
Blk 254 � 53 54 � 9
CN1 256 � 83 60 � 9
CN2 315 � 87 53 � 7



tural changes in whole asthmatic lungs

in situ by measuring parameters like the

volume ratios of air, soft-tissue and the

mean airway and soft-tissue thickness,

thereby assessing hallmarks of asthma

such as bronchial wall thickening and

airway obstruction.

By applying a single-distance phase-

retrieval algorithm (Paganin et al., 2002)

to decouple phase from absorption

information, we raised the CNR of low-

absorbing unstained lung soft-tissue by

a factor of ten when compared with

classical FBP (Mohammadi et al.,

2014; Chen et al., 2010). It has to be

emphasized that this factor is strongly

related to the experimental setup

used, including the sample-to-detector

distance, the type of samples, the pixel

size of the camera system, the quality of

the X-ray beam, the phase-retrieval and

reconstruction algorithms, and does

therefore not represent a general rule

for comparing phase-retrieved with

non-phase-retrieved CT reconstructions

(Donnelly et al., 2003). In a different

setup even a factor of up to 200 was

reported by Beltran et al. (2011).

Another way to improve the detect-

ability of contrast agents would be K-

edge imaging (Cormode et al., 2010), in

spite of the increase in sensitivity in

K-edge imaging in combination with a

non-energy-resolved detector requiring

two scans with at least one using a

photon energy higher than optimal for

soft-tissue contrast.

Single-distance phase retrieval uses,

as the name implies, only one projection

to calculate the �-distribution of the

refractive index. Therefore, it simplifies

the experimental setup and minimizes

the acquisition time. This is of particular

advantage for unfixed biological

samples as used in this study, as it

reduces the influence of alterations

that occur within the samples over

time. However, single-distance phase

retrieval is in principle based on the assumption that the

studied sample is a ‘homogeneous’ object, meaning it only

contains one known �-to-� ratio (Chen et al., 2011; Gureyev et

al., 2009). Since this is not the case for our biological samples, a

�-to-� ratio optimized for lung tissue was used. Lung is only

composed of low-Z materials (Z < 10) for which Wu et al.

(2005) showed already that single-distance phase-retrieval

algorithms can be applied. Nevertheless, the generated

reconstructions are not valid for the analysis of dense struc-

tures like bony components (Beltran et al., 2011). If the

skeleton is of interest, an additional phase-retrieval step in

combination with a different �-to-� ratio should be applied

as shown by Beltran et al. (2011). Here we consider a low

concentration of barium-sulfate-loaded M� (less than 0.2%)

only a minor disturbance of the assumed ‘homogeneity’

within the lung although barium has a Z value of 56. The

calculated ten-fold increase in CNR is based on the

comparison with a scan that uses the same setup, but with a
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Figure 5
Validation of the fXPCT results by fluorescence microscopy, HR microCT and histology. (a, b)
Fluorescence microscopy of lung sections of (a) an asthmatic (AA) and (b) a control mouse (CN).
Nuclei were stained with DAPI (blue) and M� were immuno-stained with an anti-CD68 antibody
(green). DiD-labelled M� are shown in red, whereas instilled M� appear yellow due to the double
staining with CD68 and DiD. Endogenous M� are shown in green and can be seen in alveoli of both
AA and CN lungs, but seem to form clusters in AA (a and b). Instilled DiD-labelled M� are also
visible in both AA and CN lung samples (white arrows). In contrast to the CN, the AA sample
shows high cellular density areas (white rectangle and detailed view), where several CD68 positive
cells and clusters of instilled M� can be observed. Unlike the AA sample, the CN does not show
these areas, which may explain the increased soft-tissue ratio and the airway obstruction found in the
fXPCT results. (c, d) Representative cross sections of HR microCT for AA and CN vibratome lung
section. An increased wall thickness (white arrow head) for AA (c) and the location of the labelled
M� (black dots) can be clearly depicted. M� can be seen in both CN and AA, (c) shows an area
with higher cell density and accumulation of M� (white rectangle). (e and f ) PAS-stained lung
sections of an asthmatic (AA) and a control mouse (CN). Increased wall thickness in asthmatic lung
tissue (black arrow head) is depicted. Red dots are exclusively visible in asthmatic lungs and depict
mucus production.



minimized sample-to-detector distance, generating projection

images with predominately absorption-based contrast.

Therefore, the reconstructed absorption-based data set was

acquired with quasi-monochromatic X-rays known to

generate higher-quality data than conventional microCTs

with the same spatial resolution (Sera et al., 2005). Thus, the

gain in contrast with single-distance phase retrieval is even

more prominent when compared with conventional bench-

top microCT scans. This increase in contrast directly leads to

an increased sensitivity, which in our case did not only enable

the depiction but also the quantification of parameters of

structural changes in the entire asthmatic lung in 3D, namely

the volume ratios of air, soft-tissue and the mean airway

thickness, and was the prerequisite for the detection of the

labelled M�.

In contrast to other studies that analyse mouse lung struc-

ture at a micrometre scale (Yong et al., 2009; Sera et al., 2005;

Kitchen et al., 2005), we kept the lung in situ by filling the

airways with air at a constant pressure. We believe that in this

way the shape of the lung, which is critically dependent on the

pressure and the boundaries given by the ribcage, can be

compared with an in vivo situation. In previous studies using

the same asthma mouse model and sample preparation

scheme, we found that the overall lung volume (soft-tissue and

air content) was greater in asthmatic than in the healthy mice.

That means that the asthmatic lungs can be more inflated at

the same pressure pointing to a change in the elasticity of the

lung tissue. This finding may be reflected in the altered �-value

distribution of the soft-tissue in the asthmatic sample and

supports the understanding that in asthma, in addition to

inflammation, changes in the composition of lung tissue occur,

that lead to a loss in elastic recoil. This loss of elasticity was

already observed in patients (Gelb & Zamel, 2002; Gelb et al.,

2002) and confirmed our previous studies.

With this study we present a novel set of parameters

[volume ratio (Vol. Ratio) and structural thickness (St. Th.)

of airways and soft-tissue] and show their potential use in

describing differences between asthmatic and healthy lung

tissue. By applying fXPCT we determined a 17% reduced air

content, a 32% reduced mean airway thickness and a 61%

increase in the soft-tissue content in the asthmatic lung tissue

compared with controls, demonstrating that in contrast to

histology or conventional CT our approach can precisely

measure structural alterations and illustrate them in 3D. The

inflammatory response in asthma eventually leads to bronchial

obstruction, caused by structural abnormalities such as

hypertrophy of airway smooth muscle, sub-epithelial fibrosis,

goblet cell hyperplasia, and proliferation of airway blood

vessels and nerves. Since routinely most of these morpholo-

gical changes of airway remodelling are visualized histologi-

cally in lung sections in both humans and mouse models (Al

Heialy et al., 2011; Blacquière et al., 2010; Leong & Huston,

2001; Epstein, 2004), the quantification of these changes has

been difficult to date. While there are limited approaches by

conventional CT and MRI, these techniques are restricted by

a low resolution. In particular, minor alterations of the lung

tissue in asthma cannot be visualized with the limited spatial

resolution of clinical CT scanners. Therefore, up to now the

diagnosis of asthma in CT is based on lung densitometry

measuring air trapping caused by disturbed ventilation of

the lung (Washko et al., 2012). Our approach provides novel

parameters which may used in both preclinical asthma models

and clinical practice to classify and monitor asthma of

different severity and/or to access the influence of an asthma

therapy on airway remodelling.

In addition to anatomical information, the increased

sensitivity of our fXPCT technique in comparison with

conventional microCT allows for the depiction of the distri-

bution of i.t. instilled barium-sulfate-loaded immortalized

alveolar macrophages as ‘physiological’ contrast agent within

the 3D lung structure. This, to our knowledge, represents the

first approach of using barium-sulfate-loaded macrophages

as contrast agents for CT-based cell tracking studies in an

experimental allergic airways disease model. So far the use of

synchrotron-radiation-based CT for cell tracking has only

been reported in a few applications such as imaging small

clusters of tumour cells ex vivo loaded with gold nanoparticles

(Astolfo et al., 2013). The visualization of pancreatic islet cells

encapsulated in barium microcapsules is another example for

CT-based cell tracking (Arifin et al., 2012). We found a higher

barium content in the asthmatic lung sample, which is most

likely due to a more clustered distribution of the instilled

macrophages in cell-dense areas around the bronchi, a finding

which needs further investigation by high-resolution tomo-

graphy. This result is supported by our validation experiments

with fluorescence microscopy and HR microCT, all techniques

that share a higher spatial resolution than the used fXPCT

approach. In our experiment in asthmatic lung tissue, 24 h

after instillation, M� were predominately found in areas with

an increased cell density. While the implications of these

findings for the pathomechanism of asthma and other lung

disease models require further investigation, our results

demonstrate the benefit of our imaging technique for 3D

localization of cells in specific tissue regions. As the M� used

in this study are derived from an immortalized cell line

(Mbawuike & Herscowitz, 1989), no conclusions towards a

similar behaviour of endogenous M� can be made.

A current drawback of our method for future clinical

application is the lack of clinical CT systems that provide

phase contrast. This limitation may soon be overcome by the

implementation of novel technologies such as liquid-metal jet

anode systems, miniaturized synchrotrons or grating-inter-

ferometer-based phase-contrast imaging utilizing classical

X-ray sources (Pfeiffer et al., 2006; Tompkins et al., 1998; van

Heekeren et al., 2011). All of these techniques perform well

under laboratory conditions but struggle with different tech-

nical problems, which limit their use in the clinic so far. In

particular, the high radiation dose for grating-based phase-

contrast devices hamper their clinical application at the

moment (Raupach & Flohr, 2011). However, our quantifica-

tion scheme for analysis of lung structure alterations can be

directly translated to any other CT or anatomical lung imaging

technique, providing a spatial resolution high enough to

resolve the lung substructure.
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Our approach presents a proof-of-principle study for

fXPCT imaging that specifically visualizes and quantifies

morphological differences and airway remodelling of the

mouse lung and will support the preclinical validation of newly

developed targeted diagnostics and drug delivery strategies

for lung diseases. Furthermore, our novel imaging approach

provides a solid system for cell tracking studies of immune

cells to investigate the role that macrophages might play in the

development and progression of lung diseases such as asthma.
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Phase-contrast zoom tomography 
reveals precise locations of 
macrophages in mouse lungs
Martin Krenkel1, Andrea Markus2, Matthias Bartels1, Christian Dullin3, Frauke Alves2, 3, 4 & 
Tim Salditt1

We have performed x-ray phase-contrast tomography on mouse lung tissue. Using a divergent x-ray 
beam generated by nanoscale focusing, we used zoom tomography to produce three-dimensional 
reconstructions with selectable magnification, resolution, and field of view. Thus, macroscopic 
tissue samples extending over several mm can be studied in sub-cellular-level structural detail. The 
zoom capability and, in particular, the high dose efficiency are enabled by the near-perfect exit 
wavefront of an optimized x-ray waveguide channel. In combination with suitable phase-retrieval 
algorithms, challenging radiation-sensitive and low-contrast samples can be reconstructed with 
minimal artefacts. The dose efficiency of the method is demonstrated by the reconstruction of living 
macrophages both with and without phagocytized contrast agents. We also used zoom tomography 
to visualize barium-labelled macrophages in the context of morphological structures in asthmatic 
and healthy mouse lung tissue one day after intratracheal application. The three-dimensional 
reconstructions showed that the macrophages predominantly localized to the alveoli, but they were 
also found in bronchial walls, indicating that these cells might be able to migrate from the lumen of 
the bronchi through the epithelium.

Lung tissue, with its intricate three-dimensional (3D) system comprising the bronchial tree, alveoli, and 
blood vessels, is an excellent example of how the 3D structures of tissues enable their physiological 
function. Conversely, structural alterations are associated with different pathological states. To investigate 
these relationships quantitatively, the 3D structure of the tissue must be assessed from the cellular to the 
organ scale. Furthermore, cell-tracking studies are of high interest for the location of cells in relation to 
anatomical structures. The conventional approach of sectioning histology followed by optical microscopy 
or electron microscopy is associated with several major deficits and restrictions. Apart from possible 
slicing or staining artefacts, it is extremely tedious and time-consuming to record an entire organ or large 
field of view (FOV), making it almost impossible to cover the complete 3D tissue architecture of many 
different specimens, even at moderate resolution.

In the use of 3D biomedical imaging to fill this gap, x-rays are the first choice due to the required 
penetration depth and resolution power. X-ray tomography is a powerful technique for imaging 
high-density (‘hard’) structures in tissues and bodies that can otherwise only be visualized in a destruc-
tive manner. However, the advantage of transparency for hard x-rays is also a considerable drawback for 
the examination of most non-absorbing (‘soft’) tissues, resulting in a lack of contrast for low-density 
tissue. For micron- and nanometre-scale structures, low absorption coefficients become even more 
restrictive because measurable absorption levels build up only over longer path lengths. A closer 
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examination, however, of the optical constants involved in the x-ray index of refraction n 1 iδ β= − +  
shows that, for the elements and photon energies relevant for the tomography of tissues, the refractive 
decrement δ is up to three orders of magnitude larger than the absorption component β. Even if only 
relative changes, e.g., between water and protein, are relevant for the imaging, this opens up a huge 
potential to increase the contrast and resolution for soft tissues1–3. This alteration can be achieved if 
interaction via δ is exploited, i.e., if the phase shift k zδ  of an x-ray wave with wave number k 2π λ= /  
propagating through matter over a distance z can be visualized. See4,5 for a review.

To this end, several phase-contrast techniques have been developed in recent decades6,7. The most 
important phase-contrast principles are Zernike phase-contrast in zone plate x-ray microscopes8,9, grat-
ing interferometry10–12, scanning diffraction microscopy13,14, and phase-contrast formation based on the 
free propagation of the x-ray beam behind the sample15–17. Each technique has its advantages and draw-
backs, and each can be applied to a certain range of length scales and in certain types of applications18,19. 
For zone plate-based Zernike phase-contrast, resolutions down to ten nanometres have been achieved in 
2D18, but a resolution in this range cannot be achieved in tomography of thick specimens9. Furthermore, 
the low efficiencies of the optical elements behind the sample (zone plate, phase annulus) lead to the 
need for an increased radiation dose, and the calculation of quantitative phase-contrast values is typi-
cally based on idealized assumptions for the optical elements. Grating or analyser-based phase-contrast 
are the methods of choice for macroscopic field of view, with maximum-resolution values of approxi-
mately 4 μm20. Coherent lensless imaging methods are more dose efficient because no optical element is 
needed behind the sample for image formation. Scanning transmission x-ray microscopy (STXM) with 
ptychographic phase reconstruction21 and coherent diffractive imaging22,23 have both reached a resolu-
tion of approximately 10 nm in 2D for strongly diffracting test structures and sub-50 nm resolution for 
single cells. However, a major drawback of these methods is the limited FOV resulting from the small 
beam size and the scanning overhead. On the organelle23 and single-cell levels24,25, high-resolution 3D 
reconstructions have been achieved, and at even finer scales, the FOV can be enlarged in tomographic 
ptychography26. However, this increased resolution comes at the cost of long measurement times in the 
order of 10 h, which limits the usefulness of this method for objects in the range of several hundred μm.

Propagation-based phase-contrast enables a lensless full-field imaging approach compatible with a 
wide range of sample sizes, resolution values, photon energies and source characteristics. The imag-
ing scheme is conceptually simple: extending the standard radiographic exposure by a free propaga-
tion distance between object and detector and enhanced (spatial) coherence enables a defocused image 
based on self-interference (in-line hologram) to be recorded, which still bears recognizable similari-
ties with the object. The main difficulty is the phase-retrieval step, which is typically based on a priori 
information regarding the sample (e.g., a compact support27) or on idealized assumptions (e.g., weakly 
or non-absorbing objects28) often combined with intensity measurements at different Fresnel numbers 
(e.g., different defocus distances)29. In x-ray waveguide-based (cone beam) holographic imaging, we 
have previously demonstrated resolutions below 30 nm30,31 and fields of view in the range of 100 μm as 
well as tomographic 3D reconstructions with nanometre resolution of single cells32. Propagation-based 
phase-contrast tomography of larger tissue samples has also been reported33–36.

For the purposes of imaging tissues from several mm up to entire small animal organs, at a resolution 
in the range of 100 nm to several microns, x-ray propagation imaging is the method of choice. However, 
3D visualization of a whole organ such as the lung with nanoscale resolution would require handling 
unreasonable amounts of data. A suitable approach must therefore allow for 3D imaging of a large FOV 
on the millimetre scale with the possibility of zooming in to regions of interest (ROIs), yielding infor-
mation at the nanometre scale to visualize sub-cellular features. Propagation-based phase-contrast in 
cone beam geometry enables tomography with an effective zoom function as controlled by the focus to 
object distance z1 and the object to detector distance z 2

32,34,37,38, but this method has thus far not been 
applied to examine biological hydrated soft tissue.

In this work, we have used propagation-based phase-contrast with zoom tomography to measure the 
3D density distribution of hydrated lung tissue samples in a large FOV and at high magnification with 
sub-cellular resolution. To achieve the enhanced nanoscale resolution and high dose efficiency, we have 
tuned the characteristics of the incoming wave-front (coherence, curvature, reduced aberrations) by 
mode filtering based on x-ray waveguides, which act as a secondary quasi point source for object illumi-
nation. Using this approach, we have then visualized the distribution of barium-labelled macrophages in 
healthy and asthmatic lung tissues. Although macrophages are known to be involved in allergic inflam-
mation39, the exact role of macrophages in asthma is still not well understood40–43. To investigate this role, 
the distribution of macrophages and their migration properties within the lung are important factors 
requiring 3D visualization with high resolution and contrast. Using these unprecedented phase-contrast 
tomography capabilities, we can detect barium-labelled murine alveolar macrophages of the cell line 
MH-S44 in asthmatic and healthy lung tissue one day after intratracheal (i.t.) application. We show that 
macrophages localize predominately to alveoli and are able to penetrate the epithelial layer between the 
airway lumen and parenchyma. In addition, we demonstrate the dose efficiency and scalable resolution 
capability of this approach by providing 2D reconstructions of single living macrophages, with and with-
out phagocytized contrast agents.
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Experimental Procedure
Barium sulphate-labelled murine alveolar macrophages of the cell line MH-S44 were instilled i.t. in asth-
matic and control mice 24 h prior to euthanasia. Cell labelling was achieved by adding a suspension 
of barium sulphate (BaSO4) directly to the media followed by co-incubation. Lung tissue slices were 
prepared and mounted in phosphate-buffered saline (PBS) between two thin foils immediately before 
the tomographic measurements. Two different synchrotron setups with divergent beams obtained with 
Kirkpatrick-Baez (KB) or waveguide (WG) illumination were used for the experiments, resulting in dif-
ferent illuminating beams. The setup is sketched in Fig. 1(a) with resulting farfield intensity distributions 
shown in Fig.  1(b) for the KB and in (c) for the WG setup, both obtained for comparison at the P10 
beamline.

Results
Holographic imaging of asthmatic mouse lungs.  Figure  2 shows three typical empty 
beam-corrected images of lung tissue samples with labelled macrophages obtained at the ID22 (Fig. 2(c)) 
and at the P10 beamline, showing a projection for a large FOV (Fig. 2(d)) and the same projection angle 
at a larger magnification (Fig. 2(e)). Depending on the Fresnel number F , different imaging regimes are 
covered, ranging from the direct contrast regime (F 1 97= . ) in Fig. 2(c) to a strong holographic regime 
(F 0 075= . ) in Fig.  2(e). The measured intensity in the direct contrast regime is explained by the 2D 
derivative (Laplacian) of the phase distribution behind the sample. Although nearfield phase-retrieval 
algorithms based on, e.g., the transport of intensity equation (TIE)45 would still be feasible in this imag-
ing regime, we used a more general method based on the contrast transfer function (CTF), which has 
been described previously46. The TIE approximation of small propagation distances fails for larger image 
frequencies, and the CTF approach delivers results with higher resolution. As an example, 2D phase 
reconstructions are shown in Fig. 2(f) and (g) and Supplementary Figs. 1 to 3 with corresponding param-
eters shown in Supplementary Table 1. Phase retrieval was performed individually for each projection of 
a tomographic scan, and subsequent tomographic reconstruction yielded a 3D dataset.

Figure  3 depicts the results of a reconstructed 3D volume of a lung tissue slice, recorded with KB 
illumination in the direct contrast regime at ID22. The rendering in Fig. 3(a) shows three orthoslices: a 
semi-automatically segmented blood vessel (purple), automatically labelled soft tissue (half transparent 
yellow) in a ROI in the centre of the volume, and automatically labelled barium sulphate (green). Several 
bronchial tubes can be seen with a typical wall morphology showing single goblet cells protruding into 
the airways. A single planar orthoslice is shown in Fig. 3(b). The complete information contained in the 
datasets can be assessed from a video of the 3D rendering provided as Supplementary Video 1. With 
the high flux available at the ID22 beamline, a tomographic scan takes only approximately 15 minutes. A 
total of nine successful tomographic scans were recorded from five different mice: two asthmatic mice, 
two control mice and one blank specimen without instilled macrophages (see Supplementary Fig. 5). By 
visual inspection, the bronchial walls were found to be slightly thicker in asthmatic compared to con-
trol mice, but the location and distribution of macrophages did not seem to differ. In the reconstructed 
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Figure 1.  (a) Schematic of the imaging geometry: The x-ray beam is generated in an undulator at a 3rd-
generation synchrotron storage ring. A secondary source is created by focusing the beam with KB mirrors, 
yielding a divergent beam behind the focus, which makes it easy to control the magnification by changing 
the defocus distance. The radiation is detected by a scintillation-based detector. (b) A typical KB farfield 
showing wavefront artefacts due to mirror figure errors. The use of an x-ray waveguide for mode and 
coherence filtering and for further reduction of the source size down to 20 nm results in a significantly 
improved wavefront for the imaging experiment (see (c) for a typical farfield of the waveguide beam).
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volume, the macrophages can be readily rendered based on automatic segmentation of the barium inside 
the cells. The 2D orthoslices show that barium- labelled macrophages are found predominantly within 
alveoli (see Fig. 3(b)). However, only a full 3D analysis can unambiguously distinguish between an adher-
ing and an embedded location. Thus, we have rendered the epithelium together with the macrophages, 
based on automatic segmentation in a small ROI in the centre of the reconstruction volume, as shown 
in Fig. 3(a), as well as from a different viewing angle in (c). The positions of the labelled macrophages 
suggest that many macrophages are surrounded by soft tissue. To investigate this location in further 
detail, it is necessary to increase the resolution. Note that the present dataset was recorded at a voxel size 
of 430 nm and is rendered at 860 nm (2 × binning) in Fig. 3. To obtain high-resolution reconstructions, 
we used a setup based on waveguide optics, as described below.

Zoom tomography using the waveguide setup.  Figure  4 shows the results obtained with the 
waveguide setup at the P10 beamline with the same colour coding as in Fig. 3. Barium within the instilled 
macrophages was automatically labelled and is rendered in green. A semi-automatically segmented blood 
vessel is shown in purple. A bronchial tube (not rendered) that branches into two tubes lies parallel to 
the blood vessel. To provide a detailed impression of the 3D volume, a video of the rendering is available 
as Supplementary Video 2. A small part of the bronchial wall, marked by the dashed line in the inset of 
Fig.  4(b), was manually segmented and is rendered in half-transparent yellow. The outline of a single 
barium- labelled macrophage inside this ROI was manually segmented, and it is shown in blue (Fig. 4(c)). 
By moving the sample closer to the effective source, from z 190mm1 =  to z 40mm1 = , we increased the 
magnification while keeping the central ROI in the reconstruction volume. A second tomographic scan 
at this zoom setting was performed using the CTF-based reconstruction algorithm based on a four-distance 
dataset. For each projection, phase retrieval was performed using the resampled and aligned images, 
followed by tomographic reconstruction, as described in detail in Supplementary Methods 1 and 2. A 
rendering of the resulting 3D volume is shown in Fig. 5(c), in which the same bronchial wall segmenta-
tion and cell outline as in Fig. 4(c) are shown together with automatically labelled barium in green. A 
detailed video of the rendering is available as Supplementary Video 3. The macrophages are clearly 
located inside the bronchial wall, indicating that macrophages are able to migrate through the bronchial 
epithelium.

Dose and resolution.  The higher resolution of the zoomed tomograph in Fig. 5 immediately becomes 
apparent upon inspection of the barium inside the macrophages. Rather than a homogeneous density, we 
find individual barium clusters scattered within the cell. The macrophages can be identified by segment-
ing the envelope around the barium (see the cell rendered in blue), which is exemplified in the dashed 
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Figure 2.  Sample preparation and measurements: (a) Sketch of sample mounting. The 500 μm thick mouse 
lung tissue slices were placed in buffer solution on a thin foil and covered with a second foil. (b) Photograph 
of a final prepared sample mounted on a sample holder. (c,d,e) Phase-contrast projections of lung tissue 
samples corresponding to single projections out of the tomographic scans shown in Fig. 3 to 5: (c) A typical 
empty beam-corrected phase-contrast image recorded at the ID22 beamline showing direct contrast of the 
lung structure. The inset shows a detailed view scaled to have the same pixel size as (e). (d) A typical empty 
beam-corrected phase-contrast image recorded at the P10 beamline. Due to the smaller Fresnel numbers, the 
image is of holographic nature, showing less correspondence to the real spatial structure. (e) Phase-contrast 
image at higher geometric magnification (smaller defocus distance z1) of the area marked by a dashed 
rectangle in (d). (f) Reconstructed phase distribution out of (d) showing the region inside the dashed 
rectangle. (g) Reconstructed phase out of (e) and three other distances showing the higher resolution of the 
zoomed dataset.
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red rectangle in (c), as well as in isolated form in (d). The orthoslices in Fig. 5(a,b) correspond to a cut 
through the same macrophage. A Gaussian fit through a single small particle in this orthoslice reveals a 
feature size of 249 nm (see the inset in Fig. 5(b)). Fourier shell correlation indicates a resolution in the 
3D dataset of approximately 170 nm using a half-bit criterion according to47 (see Supplementary Methods 
3 for details). Thus, the resolution was increased compared to the results obtained in the KB setup at 
ID22, but it was significantly worse than the sub-30 nm resolution achieved using the same waveguide 
setup with two-dimensional test patterns30. This resolution loss can be attributed to small drifts that 
occur during the time of the tomographic scan, as the dose values (see Table 1) are comparable to those 
in30. We expect that the resolution might be increased by improving the mechanical stability or by using 
optimized alignment algorithms.

a

b c

BV

BT

100 µm

Figure 3.  Results obtained in the KB setup: (a) 3D rendering of a reconstructed asthmatic lung tissue 
volume showing three orthoslices together with automatically labelled (density based) barium clusters 
(green) and alveolar walls in a small ROI (yellow). A part of a blood vessel was marked semi-automatically 
(purple). (b) Orthoslice perpendicular to the tomographic rotation axis through the reconstructed volume, 
as obtained from a single distance tomogram with voxel size p 430=  nm. Darker values correspond to 
denser material. Barium sulphate particles (black) and fat (white) show a strong density contrast compared 
to soft tissue. A blood vessel (BV) and a bronchial tube (BT) can be identified based on their different wall 
morphologies. (c) Close-up of the ROI from a different viewing angle. 
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Fluence and dose values for the datasets shown are listed in Table 1. Zoomed tomography at the ID22 
beamline was impeded by radiation damage resulting from the higher dose at short defocus distance. 
Comparing the WG (Fig.  4) with the KB setup (Fig.  3), the dose applied to the sample was 18 times 
lower, although it was measured at a slightly higher resolution. Note that in ptychographic coherent 
diffraction imaging, a dose of 2 106⋅  Gy was required for 3D reconstruction at a similar resolution 
level14. Thus, the dose was 20 times higher than in the zoomed WG dataset shown here.

(a) (b) (c)

50 µm 50 µm50 µm

Figure 4.  Large FOV results obtained with the waveguide setup: (a) photograph of the sample mounted to 
the sample holder. (b) 3D rendering of the reconstructed volume of a control lung showing 3 orthoslices 
together with automatically labelled BaSO4  particles (green), a semi-automatically rendered blood vessel 
(purple), a manually labelled bronchial wall inside a ROI (yellow), and the contours of a single macrophage 
in this ROI (blue). An orthoslice through the area used to segment the bronchial wall (dashed orange line) 
is shown in the inset. (c) Close-up the segmented ROI viewed from a slightly different angle. The same area 
is measured with a larger magnification, shown in Fig. 5. 

Figure 5.  Zoomed-tomography results obtained with the waveguide setup: The sample shown in Fig. 4 was 
moved closer to the effective source, resulting in a higher geometric magnification. (a) Slice through the 3D 
volume showing the area used for segmentation of the bronchial wall (dashed orange line). (b) Close-up of 
the area of the dashed rectangle shown in (a). A profile through the solid line is plotted in the inset 
showing a feature size of 249 nm FWHM. The area marked by the red dashed rectangle shows the cell, 
which is rendered in blue. (c) 3D rendering of the data, showing automatically labelled aggregates of BaSO4 
particles (green), the manually labelled bronchial wall (yellow), and a manually labelled cell outline (blue). 
(d) Close-up of the barium-labelled cell marked by pink dashed lines in (b) and (c) from two different 
viewing angles showing the internal barium distribution.
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Imaging of living single cells.  Motivated by the dose-efficient imaging results for lung tissue, we 
sought to demonstrate the ability of the method to visualize living macrophages. Apart from being a 
proof of concept, it was of interest to study in more detail how the barium-based contrast agent is dis-
tributed within the cell.

To this end, single macrophages were kept in microfluidic chambers (ibidi microscopy slide) and 
transported in a mobile incubator to the beamline. The chambers were mounted at z 40 mm1 =  behind 
the effective source, with macrophages adhering to the windows, which are transparent for both 13.8 keV 
x-rays and visible light, facilitating alignment in the beam. Figure  6 shows holographic phase-contrast 
images and their corresponding phase reconstructions for a native unlabelled cell (a,b) and for cells that 
were labelled with the contrast agent by co-incubation with a barium sulphate suspension (c,d). This 
result proves that single cells can be resolved without contrast agents and shows that the strong contrast 
in the 3D reconstructions shown in Fig. 3 to Fig. 5 results mainly from the contrast agent. The inset in 
Fig. 6(d) shows that at low barium concentrations, the cell structure can be observed, although the much 
stronger contrast of the barium affects the image impression. We also observed that barium sulphate 
particles are not homogeneously distributed in the cell but, rather form aggregates mainly at the 

Fig. 
2(c)/Fig. 3

Fig. 
2(d,f)/Fig. 4

Fig. 
2(e,g)/Fig. 5 Fig. 6(a,b) Fig. 6(c,d)

illumination / beamline KB / ID22 WG / P10 WG / P10 WG / P10 WG / P10

number of distances 1 1 4 3 5

number of projections 1500 720 900 - -

total exposure time 150 s 2160 s 3600 s 30 s 5 s

distance z1 [mm] 299 190 40 39 39

voxel size [nm] 430 245 52 51 51

total fluence [photons/μm2] 1.9 · 108 6.9 · 106 2.1 · 108 1.5 · 106 2.5 · 105

total dose [Gy] 5.6 · 104 3.0 · 103 9.1 · 104 633 106

Table 1.   Experimental parameters and calculated dose. The distance z1 indicates the first distance to which 
all images are resized in case of multiple distances. As Fig. 2 shows individual projections taken out of the 
full tomographic scan, the total exposure times must be divided by the number of projections.

Figure 6.  Living single-cell imaging at P10: Living macrophages were kept in medium in an ibidi flow 
chamber that was mounted onto a sample holder. The left column shows empty beam-corrected phase-
contrast images of (a) an unlabelled macrophage and (c) two barium-labelled cells. The right column 
shows (b) the corresponding phase reconstruction of (a) using 3 distances, each 10 × 1 s, and (d) the phase 
reconstruction of (c) using 5 distances, each 1 s. The inset shows the lower right cell with contrast adjusted 
to enhance the weak signal of the cell structure.
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periphery. This finding is in agreement with the 3D reconstructions. Depending on the resolution of the 
image, this clustering of barium sulphate particles can complicate the interpretation of the 3D data.

Summary and Discussion
In summary, we have demonstrated that holographic phase-contrast tomography can (i) reveal the 
3D structure of hydrated mouse lung tissue slices down to the sub-cellular level and (ii) visualize 
barium-labelled macrophages within anatomical structures. Using a geometric zoom, imaging at a large 
field of view in the range of several 100 μm and at high resolution down to 170 nm for selected ROIs was 
achieved for the same tissue sample without deterioration of its structure. To exploit this zoom capability 
for soft biological tissues, high dose efficiency is required. We have achieved this efficiency by using x-ray 
waveguide optics that better fulfil the idealized assumptions on the illuminating wave-field regarding 
coherence, point-source geometry, and the nearly aberration-free wavefront.

Compared to ptychography, we have obtained reconstructions with a 20 times lower dose at similar 
resolution. We expect that with sophisticated alignment algorithms and/or faster accumulations, the 
resolution could be increased even further without increasing the dose. At the same time, the large over-
head in data accumulation by scanning microscopy techniques (such as ptychography) are avoided in the 
present full-field imaging scheme. Naturally, this approach can still be combined with moderate scanning 
to further enlarge the FOV, which should make it possible to visualize the entire lung of a mouse in 3D. 
Compared to grating-based phase-contrast imaging, which can also easily cover large FOVs, propagation 
imaging offers significantly higher resolution down to the sub-cellular level and does not require any 
optical elements between the sample and the detector.

Persistent challenges in the phase-retrieval step have kept the advantages of propagation imaging from 
being fully exploited. In particular, in the holographic regime, conventional phase retrieval based on the 
TIE equation is no longer valid. As detailed in Supplementary Methods 1, we found that the approach 
based on the contrast transfer function (CTF) pioneered by Cloetens15 provides a rapid and robust means 
to achieve high-quality reconstructions (regarding contrast and resolution) even for low-contrast tissues 
if the following conditions are met: (i) data are recorded in the holographic regime to optimize contrast 
transfer for a broad range of spatial frequencies, (ii) the wavefront is sufficiently coherent and well con-
trolled, and (iii) the image series with frames recorded at different magnifications and in different fields 
of view is well aligned. Further improvements, and in particular contrast values yielding quantitative 
electron density, can be achieved by extending the phase retrieval to iterative reconstruction algorithms.

Armed with the above imaging methodology, important biomedical questions can now be addressed, 
which are difficult to address with conventional histology. In particular, phase-contrast zoom tomogra-
phy could become a novel tool for tracking cells in relation to anatomical structures. The present study 
on lung tissues in asthmatic and control mice has addressed the distribution of instilled barium-labelled 
macrophages within the lung. The 3D reconstructions obtained in this study show that one day after i.t. 
application of MH-S cells, these macrophages were located within the alveolar lumen and within bron-
chial walls. The low dose required also enabled the imaging of living single cells. Aggregated particles 
of precipitated barium sulphate were observed in the cytosol of the macrophages. Future experiments 
will include more sophisticated contrast agents that bind specifically to functional sites inside the mac-
rophages at the organelle level.

Methods
Sample preparation.  The immortalized mouse alveolar macrophage cell line MH-S (American Type 
Culture Collection, ATCC, USA) was maintained in RPMI medium supplemented with 10% FCS, 
0.05 mM 2-mercaptoethanol and 2.06 mM glutamine44 in a humidified atmosphere at 5% CO2 and 37 °C. 
The cells (1 × 106 cells/ml) were loaded with barium sulphate particles by co-incubating the cells for 4 h 
in standard media containing 3.5 μl/ml of the clinical contrast agent Micropaque CT (7.5 g BaSO4/150 ml) 
(Guerbet, France). The uptake of BaSO4 differed randomly among cells, but the amount used ensured 
that most cells would take up enough particles for robust cell tracking. A conventional OVA-induced 
asthma model was used as previously described48. All experiments were carried out in strict accordance 
with the guidelines for the care and use of laboratory animals of the local ethics office of the University 
Medical Center Göttingen. This study was approved by the Committee on the Ethics of Animal 
Experiments of the Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit 
(LAVES) (Permit Number: 33.12-42502-04-12/0834). All painful procedures were performed under 
anaesthesia, and all efforts were made to minimize suffering. A total of 1 106×  barium-labelled mac-
rophages in 30 µ l PBS were i.t. instilled into the lungs of asthmatic and control BALB/c mice 72 h after 
the last OVA challenge under Ketamine 10% / Xylazine 2% anaesthesia. Mice were euthanised 24 h after 
macrophage instillation using an isoflurane overdose. Lungs were dissected and fixed in 4% paraformal-
dehyde for 24 h, and individual lung lobes were embedded in 5% agarose. Slices 500 µm in width were 
cut using a Leica VT1000 S vibrating blade microtome (Leica, Wetzlar, Germany) and they were stored 
in 0.02% sodium azide/PBS solution at 4 °C. Shortly before the measurements at the beamline, the slices 
were placed between two thin polypropylene foils mounted on 500 μm thick aluminium rings; see Fig. 2. 
To prevent drying during measurement, the sample holder was sealed. The two rings formed a closed 
chamber 500 μm thick. The samples were mounted vertically on sample holders, which fit the 
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corresponding instrument. Photographs of the final mounted samples can be seen in Fig.  2(b) and 
Fig. 4(a). For imaging of living cells, microscopy slides (ibidi) were used as closed chambers to transport 
barium-labelled and unlabelled MH-S cells in CO2 independent medium to the beamline, keeping the 
cells at 37 °C for approximately 4 to 6 h in a mobile incubator.

KB-based imaging at ID22.  The first part of the experiments was carried out at the ID22NI beamline 
at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France49. The x-rays were generated in  
an undulator and not further monochromatized (pink beam), leading to a very high flux in the order of 
1012 photons per second. The photon energy was set to 17.5 keV, with a relative bandwidth E E 0 015∆ / ≈ . .  
The beam was focused by two elliptically bent Kirkpatrick-Baez (KB) mirrors to a spot size of less than 
100 nm in both directions, resulting in a divergent beam (8.1 vertical and 8.2 horizontal mrad diver-
gence) that allows tunable magnification by changing the defocus distance z1 (see Table 1). The effective 
source size theoretically determines the maximal resolution possible with this setup. No additional opti-
cal element was placed in or behind the focus. A fully motorized sample tower positioned the air-bearing 
rotation stage. A scintillation-based detector was placed at z z 0 526m1 2+ = .  behind the focal plane. The 
detector was a high-resolution x-ray microscope based on a thin single-crystal scintillator viewed with a 
10-fold objective lens. The images were captured with a fast read-out low-noise CCD camera (Frelon, 
ESRF)50 resulting in a detector pixel size of p = 0.756 μm. The propagation can be fully described by a 
single parameter, the Fresnel-number F a zeff( )λ= , with the wavelength λ, the effective propagation 
distance z z z z zeff 1 2 1 2= ( + ) and a typical feature size a. In the present work, we defined a typical 
feature size of ten pixels a p10= ⋅ .

Waveguide-based imaging at the P10.  To further increase the resolution, the second part of the 
experiment was carried out at the GINIX instrument installed at the P10 beamline at DESY in Hamburg, 
Germany. The x-rays were generated in an undulator, and the energy was set to 13.8 keV. The x-rays were 
monochromatized by a Si(111) double-slit monochromator, resulting in a relative bandwidth 

E E 10 4∆ / = − . The x-rays were focused by KB mirrors to approximately v h100 300( ) × ( ) nm2. For 
high-resolution imaging, the effective source size was further reduced by precisely aligning an x-ray 
waveguide (WG) system consisting of crossed planar waveguides with an optimized two-component 
(Mo/Ge) cladding51 in the KB focus. By multi-modal interference, the waveguide beam propagated 
through the 59 nm thick carbon guiding layer over a total length of 0.76 mm, resulting in a reduced beam 
size in the exit plane of 16 nm FWHM, as determined by iterative inversion of the measured farfield 
data31,52, confirming the finite difference simulations carried out for optical design. The sample was posi-
tioned in the defocus of the beam at a distance z1 behind the waveguide exit on a fully motorized sample 
tower, including an air-bearing rotation. A high-resolution sCMOS x-ray camera (Photonic Science) was 
used in which a 15 μm thick Gadox scintillation screen was directly coupled via a 1:1 fibre-optic plate to 
the sCMOS chip, resulting in a detector pixel size of 6.54 μm. The detector was placed at z z 5 07m1 2+ = .  
behind the effective source created by the WG. Figure 1 shows a typical farfield image of the pure KB 
beam without the waveguide (b) compared to a farfield image obtained after aligning the waveguide in 
the focus (c). As the figure shows, the divergence increased, reflecting the smaller source size, and the 
illumination exhibited fewer high-frequency artefacts. Due to the waveguide geometry and absorption 
in the cladding of the waveguide, the total flux was reduced by approximately two orders of magnitude.
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Abstract

Background: Non-invasive in vivo imaging strategies are of high demand for longitudinal monitoring of inflammation
during disease progression. In this study we present an imaging approach using near infrared fluorescence (NIRF) imaging
in combination with a polyanionic macromolecular conjugate as a dedicated probe, known to target L- and P-selectin and
C3/C5 complement factors.

Methodology/Principal Findings: We investigated the suitability of dendritic polyglycerol sulfates (dPGS), conjugated with
a hydrophilic version of the indocyanine green label with 6 sulfonate groups (6S-ICG) to monitor sites of inflammation using
an experimental mouse model of allergic asthma. Accumulation of the NIRF-conjugated dPGS (dPGS-NIRF) in the inflamed
lungs was analyzed in and ex vivo in comparison with the free NIRF dye using optical imaging. Commercially available smart
probes activated by matrix metalloproteinase’s (MMP) and cathepsins were used as a comparative control. The fluorescence
intensity ratio between lung areas of asthmatic and healthy mice was four times higher for the dPGS in comparison to the
free dye in vivo at four hrs post intravenous administration. No significant difference in fluorescence intensity between
healthy and asthmatic mice was observed 24 hrs post injection for dPGS-NIRF. At this time point ex-vivo scans of asthmatic
mice confirmed that the fluorescence within the lungs was reduced to approximately 30% of the intensity observed at 4 hrs
post injection.

Conclusions/Significance: Compared with smart-probes resulting in a high fluorescence level at 24 hrs post injection
optical imaging with dPGS-NIRF conjugates is characterized by fast uptake of the probe at inflammatory sites and
represents a novel approach to monitor lung inflammation as demonstrated in mice with allergic asthma.
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Introduction

Currently, NIRF imaging is a common technology in preclinical

studies that obtains functional information in vivo over time for

assessment of antibody binding, protein expression, enzyme

activities, cell tracking etc. [1–3]. Optical imaging provides

relatively inexpensive and non-harmful methods and is preferred

over other imaging methods used in preclinical research and drug

development, such as PET and SPECT that are more complex to

perform. However, the penetration depth of typically up to 4 cm

in the near infrared range (NIR) limits its clinical application to

endoscopic techniques and structures beneath the skin or

fluorescence guided surgery [4]. Crucial for the success of in vivo

NIRF imaging will be the development of dedicated NIRF probes

for distinct targets of molecular events characterizing different

diseases. So far, these probes, based on their mechanisms of target-

detection can be divided into four groups: passive probes to image

areas with increased blood supply [5], target-specific fluorescent

probes which are directed against molecular and/or disease-

specific markers [6], fluorescent labels to track injected fluores-
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cence stained cells [7], and application of smart probes activated

by enzymes for the detection of molecular events [8].

NIRF imaging in lung disease models has remained challenging

due to the high scattering nature of the lung and its comparable

deep location. Recent application of novel non-invasive imaging

technologies in mouse models of asthma has enabled functional

and longitudinal in vivo monitoring of disease, validation of novel

biomarkers, and direct tracking of immune cells within tissues.

Novel methods for in vivo monitoring of lung inflammation in mice

include the utilization of smart-probes activated by MMPs or

cathepsin, enzymes known to be involved in lung inflammation

[9–11].

Airway inflammation is a central component of asthma that

consists of edema, cellular infiltration, particularly of eosinophils,

neutrophils, activated T lymphocytes and mast cells, increased

airway secretions, and deposition of excess collagen. Therefore

mouse models of asthma present attractive tools for evaluating

probes suitable for in vivo molecular imaging of lung inflammation

[12,13].

Using a model of allergen-induced lung inflammation, we

applied fluorescence imaging in combination with near-infrared

(NIR) fluorescently-labeled dendritic polyglycerol sulfates (dPGS),

a class of compounds that selectively bind to mediators of

inflammatory processes such as L- and P-selectin and C3/C5

complement factors [14,15]. The role of selectin-ligand interac-

tions in allergic asthma is well established, making them an

attractive target for visualization of inflammation [16–19]. For

example, reduced airway hyperresponsiveness in asthma in L-

Selectin-deficient mice has been reported [19]. Furthermore,

studies show that dPGS is transported into inflammatory cells e.g.

in activated mononuclear cells [20,21]. Generally, dPGS consists

of a highly branched (dendritic) polyglycerol core, which due to

the large amount of hydroxyl end groups enables high functiona-

lization. In our case, sulfate groups were generated from the

hydroxyl groups, thereby creating the highly charged, polyanionic

dPGS compound (Figure 1). dPGS acts via a multivalent binding

mechanism mimicking naturally occurring selectin ligands [20],

with a clearly demonstrated dependence of the binding affinity

from molecular weight and degree of sulfation [15,21]. Sulfation of

the hydroxyl groups in the polymer established a multivalent

polyanionic entity with high affinity for L- and P-selectin [22].

Anti-inflammatory property of dPGS in much higher concentra-

tions has been reported to occur as a result of a multivalent

interaction enabled by the multitude of sulfate groups. For

instance, binding of dPGS to L-selectin on leukocytes and P-

selectin on inflamed vascular endothelium reduces leukocyte

extravasation by shielding the adhesion molecule [22]. Addition-

ally, inhibition of C5a generation inhibits leukocyte chemotaxis

[14,22].

The compound used herein has a core molecular weight of

about 6000 Da, imparting high binding affinity of the respective

polysulfate [21] and at the same time having a reasonable

molecular weight range for sufficient distribution and excretion

[20], as well as chemical derivatization in order to conjugate NIRF

dyes to the polymeric entity. The aim of the present study was to

assess the capacity of dPGS conjugated with a near infrared

fluorescent (NIRF) dye related to indocyanine green (dPGS-NIRF)

to detect inflammatory sites in lungs by NIRF optical imaging

analysis in a mouse model of asthma and to compare dPGS-NIRF

to the commercially available smart-probes MMPSense and

ProSense.

Results

OVA-immunization and challenge-induced allergic
inflammation and extensive mucus hypersecretion in the
lungs, and elevated serum OVA-specific IgG1

Allergic asthma inflammation and mucus hypersecretion in

mice was induced by two intraperitoneal injections and subsequent

intranasal challenges with OVA. Figure 2 illustrates lung histology

from H&E and PAS-stained lung sections of asthmatic and healthy

control mice. H&E staining revealed that no inflammatory

infiltrates were present in lungs from healthy mice (Figure 2A).

In contrast, immunized mice had dense inflammatory infiltrates

containing predominantly eosinophils, as well as macrophages and

lymphocytes surrounding blood vessels, and large and small

airways (Figure 2B). The extent of allergic inflammation was

evaluated by assessing the total surface area and location of

leukocyte infiltration in lung sections (Figure 2C). Mice with

allergic inflammation have histological scores of 5.260.4 (dPGS-

NIRF group) and 4.460.3 (dye group) compared to healthy

controls with 0.560.3 (dPGS-NIRF group) to 0.860.3 (dye

group), demonstrating that diseased mice have lung inflammation

affecting more than two thirds of the examined lung sections with

infiltrates present in the hilum extending to the lung periphery.

To assess mucus hypersecretion, adjacent lungs sections were

stained with PAS. As expected, only rare mucus producing cells

were detected in the central airways of healthy control mice

(Figure 2D), whereas numerous mucus producing cells were

observed in asthmatic mice (Figure 2E). Histological evaluation

revealed that asthmatic mice have histological scores for mucus

overproduction of 2.860.4 (dPGS-NIRF group) and 2.560.5 (dye

group) compared to healthy controls with 0.360.3 (dPGS-NIRF

group) to 0.260.3 (dye group) (Figure 2F), indicating that mucus

hypersecretion extended to the periphery of the diseased lungs.

We also tested serum OVA-specific Th2-isotype antibody titres.

While no OVA-specific antibodies in sera were detected before

immunization with OVA, high titres ($1:7812500) of OVA-

specific IgG1 were detected in all OVA-sensitizated and

challenged mice (results not shown), further supporting presence

of allergic immune responses in both investigated groups.

Allergic asthma can be successfully visualized by
combination of dPGS-NIRF probe and in vivo optical
imaging

To visualize allergic inflammation in vivo, we injected dPGS-

NIRF and the control dye i.v. into the tail vein at 72 hrs after last

OVA challenge, when we expected that allergic inflammation in

the lung is at its peak. Asthmatic and healthy mice were imaged at

4 and 24 hrs post dPGS-NIRF or unconjugated NIRF dye

injection as control.

Figures 3 and 4 illustrate the distribution of the control dye and

dPGS-NIRF, respectively, after 4 hrs in the thoracic area of

asthmatic in comparison to healthy mice. A slight increase of

fluorescent signal was recorded after injection of control dye in

asthmatic mice in comparison to healthy mice (Figure 3A). In

order to localize the dPGS-NIRF probe within inflamed lung

region we applied fluorescence microscopy in combination with

immunofluorescence staining of macrophages by the use of an

antibody against F4/80, a 160 kDa cell surface glycoprotein that is

widely expressed on mature tissue macrophages. As shown in

Figure 3B a higher amount of macrophages was clearly detectable

in lungs of asthmatic mice in comparison to healthy controls. The

Control dye was not detected in lung sections of asthmatic mice

using fluorescence microscopy (Figure 3B). In contrast, higher

Optical Imaging of Allergic Asthma Mouse Model
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Figure 1. Chemical structure of dPGS-NIRF. The chemical structure indicates the linker structure and connection to the dye (approx. 3 dyes per
polymer). Please note that the polymer is not depicted in original molecular weight, but is shown only as principle sketch.
doi:10.1371/journal.pone.0057150.g001

Figure 2. Allergic inflammation and mucus hypersecretion in the lungs of asthmatic, but not control mice. Lungs were harvested 76 hrs
after the final ovalbumin (OVA) challenge meaning 4 hrs post i.v. probe injection. Representative H&E (A and B) and PAS (D and E) stained
photomicrographs of lungs from healthy (A and D) or asthmatic mice (B and E) are shown (magnification 406, inset 4006). (B) Arrows indicate
inflammation, and in (E) arrows indicate mucus hypersecretion. Allergic inflammation (C) and mucus hypersecretion (F) scores in H&E and PAS stained
lung sections, respectively, of healthy (open symbols) or asthmatic mice (filled symbols). Each symbol represents individual mice (n = 5–6 for healthy
groups and n = 5–7 for asthmatic groups), and line represents group mean. One-way ANOVA followed by Tukey’s multiple comparison test (*P,0.05)
was used to compare differences between groups.
doi:10.1371/journal.pone.0057150.g002

Optical Imaging of Allergic Asthma Mouse Model
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fluorescence intensity was detected in the thoracic region of

asthmatic mice 4 hrs post dPGS-NIRF probe injection (Figure 4A).

Moreover, fluorescence microscopy of lung sections of asthmatic

mice confirmed dPGS-NIRF probe localization in areas where

F4/80 stained macrophages could be detected, which demon-

strated that dPGS-NIRF accumulates especially in the inflamed

region of lungs of the pathological model (Figure 4B).

Fluorescence signals obtained with in vivo imaging were

quantified and intensity ratios were calculated as described in

the Material and Methods. As depicted in Figure 5A, at 4 hrs post

injection of control dye, we observed a slight increase in

fluorescence signal in asthmatic mice when compared to healthy

mice (increase in averageRIDye 4hð Þ ,11%, p-value = 0.047), most

probably due to an increase in the vascular flow in the inflamed

lungs. In contrast, dPGS-NIRF increased the fluorescence signal

in the thorax of asthmatic mice dramatically, as seen by an average

RIdPGS 4hð Þ ,44% with p-value = 0.004. Moreover, a direct

comparison of the contrast (RI) between dPGS-NIRF and free

dye in the asthmatic mice revealed a 30% higher RIdPGS 4hð Þ than

RIDye 4hð Þ (p-value = 0.005) at this time point. At 24 hrs post

dPGS-NIRF injection, fluorescence signals over the lung areas of

healthy and asthmatic mice were not longer distinguishable

(average RIdPGS 24hð Þ difference ,8%, p-value = 0.162)

(Figure 5B). In vitro analysis of serum binding of ICG as well as

of 6S-ICG demonstrate that ICG completely binds to serum

proteins (23), whereas less than 40% of 6S-ICG was bound to

serum proteins (data not shown).

Ex vivo optical imaging confirmed the in vivo results
To confirm the in vivo imaging findings immediately after the

last imaging, we imaged the lungs ex-vivo using an Optix MX2

system. Ex-vivo imaging avoids autofluorescence of other organs

and absorption and scattering within the body and fur. This

increases both specificity and sensitivity of probe detection. In

accordance to the in vivo results, we found a significant difference

between the fluorescence intensity within the lungs of asthmatic

and healthy mice 4 hrs post injection of the dPGS-NIRF

conjugate (difference of RIex{vivo
dPGS 4hð Þ ,65%, p-value = 0.009),

but not control dye (difference of RIex{vivo
Dye 4hð Þ ,18%, p-

value = 0.127) (Figure 6A and 6B). At 24 hrs post administration

of dPGS-NIRF, the observed fluorescence intensity over the lungs

was reduced to about 30% of the intensity measured 4 hrs post

injection. Moreover, the difference in fluorescence intensity

between healthy and asthmatic mice dropped down to ,10%

and was not significant (difference of RIex{vivo
dPGS 24hð Þ ,10%, p-

value = 0.323) (Figure 6B).

Comparison of dPGS-NIRF with commercially available
smart-probes

Commercially available smart-probes ProSense and

MMPSense, activated by cathepsins and MMPs, respectively,

were used for imaging lung inflammation [9]. Both smart-probes

were injected at 72 hrs after the last OVA challenge and imaged

after 24 hrs, according to probe manufacturer’s recommendations.

The intensity difference from the thoracic region between healthy

and asthmatic mice was ,27% (p-value = 0.013) after adminis-

tration of ProSense and ,83% after injection of MMPSense but

with no statistical significance (p-value = 0.093) (Table 1).

Discussion

In this study, we present a novel approach for functional in-vivo

imaging utilizing a dendritic polyglycerolsulfate conjugated to a

NIRF dye related to ICG (dPGS-NIRF) in combination with

optical imaging to monitor sites of inflammation in the lung by

applying an experimental model of allergic asthma [12].

We successfully demonstrated that the applied dPGS-NIRF

probe accumulates to inflammatory sites within the lung already

4 hrs after probe administration. The results show a significant

four times stronger contrast of the fluorescence intensity of the

dPGS-NIRF probe compared to the free dye in lungs of asthmatic

in comparison to healthy mice. At this time point fluorescence

Figure 3. In vivo distribution of free dye (indocyanine green) 4 hours post probe injection and 76 hours post last OVA challenge.
Panel A: whole body fluorescence intensity distribution of a representative healthy and asthmatic mouse displayed in normalized counts [NC]. Panel
B: Fluorescence microscopy images of F4/80 stained macrophages and DAPI stained cell nuclei of lungs isolated from asthmatic and healthy mice
injected with the NIRF labeled control dye and sacrificed 4 hrs post injection demonstrate no fluorescent control dye. F4/80 expression on
macrophages are depicted in green, cell nucleus in blue, control dye was not detected (bar = 50 mm). In the healthy model few macrophages have
been detected with respect to the asthmatic mouse, where cluster of cells are visible (see white arrows indicating macrophages). In both samples no
unconjugated NIRF dye 6S-ICG has been visualized.
doi:10.1371/journal.pone.0057150.g003

Optical Imaging of Allergic Asthma Mouse Model
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microscopy confirmed the localization of the dPGS-NIRF probe

within the inflamed lungs in areas where F4/80 stained

macrophages could be detected and histology demonstrated the

presence of inflammatory infiltrates in more than two thirds of the

examined lung sections. Therefore, dPGS-NIRF is suitable to

monitor inflamed lungs by NIRF imaging.

Furthermore, at 4 hrs post injection, the calculated RIex 4hð Þ
was significantly lower in asthmatic lungs after administration of

free dye. These results indicate that a specific target in the model

appears to be involved. dPGS-NIRF exerts high-affinity binding to

positively charged protein motifs e.g. P- and L-selectin as well as to

C3/C5 complement factors [22]. The selectivity is demonstrated

by the very low affinity for E-selectin compared to P and L-

selectin, which dPGS bind to with nanomolar affinity in vitro

[20,22]. Furthermore, dPGS accumulates in inflamed tissue by a

not yet understood cellular uptake mechanism into macrophages

and endothelial cells, but not into lymphocytes. This was shown

for example by fluorescence microscopy of liver tissue specimens

after dPGS-NIRF application that depicted accumulation in rat

liver macrophages (Kupffer cells) and of A549 tumor cells as well

Figure 4. In vivo distribution of dPGS-NIRF 4 hours post probe injection and 76 post last OVA challenge. Panel A: whole body
fluorescence intensity distribution in a representative healthy and asthmatic mouse displayed in normalized counts [NC]. Stronger fluorescence
intensity over the lung area of the asthmatic mouse can be seen. Panel B Fluorescence microscopy images of F4/80 stained macrophages and DAPI
stained cell nuclei of lungs isolated from asthmatic and healthy mice injected with dPGS-NIRF and sacrificed 4 hrs post injection. F4/80 expression on
macrophages are depicted in green, cell nucleus in blue, dPGS-NIRF displayed in red (bar = 50 mm). In the healthy model, few macrophages and no
probe localization have been detected. In the asthmatic mouse, cluster of macrophages are detectable (see white arrows) and the dPGS-NIRF probe
was visualized in the same region of macrophages.
doi:10.1371/journal.pone.0057150.g004

Figure 5. Quantification of in vivo imaging results of dPGS-NIRF and pure dye. Box plots of ratios of average fluorescence intensity over
the lung area compared with the mean value of each control group respectively are reported for asthmatic and healthy mice. Mice treated with free
dye 4 hrs post injection showed a slight increase in fluorescence signal in asthmatic mice (n = 5) when compared to healthy mice (n = 5; increase in
average ,11%, p-value = 0.047, panel A). Mice treated with dPGS-NIRF probe 4 hrs post injection (healthy n = 6, asthmatic n = 6) showed an increased
fluorescence signal in the thorax in asthmatic mice (increase in average ,44% with p-value = 0.004, panel B left side). At 24 hrs post injection
fluorescence signals over the lung areas of healthy (n = 5) and asthmatic mice (n = 10) shown no difference (difference ,8%, p-value = 0.162, panel B
right side). Both control dye and dPGS-NIRF probe were injected 72 hrs after last aerosol challenge. Note, intensity ratios were used to compare
probes with different brightness, therefore the box plots are depicted in the same scale.
doi:10.1371/journal.pone.0057150.g005

Optical Imaging of Allergic Asthma Mouse Model
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as of activated, LPS-stimulated mononuclear cells, both demon-

strating accumulation of dPGS [22].

The underlying chemical structure of the polymer in published

studies [22] is based on a polyglycerol core of 6000 Dal, whereas

different dyes were attached to the polymer, such as a visible

cyanine dye or a NIRF dye in a ratio of approx. 1 dye per

polymer, yielding identical selectin-binding properties. The

conjugate used herein employs the same polymer, but a more

hydrophilic indocyanine dye with 6 sulfonate groups (6S-ICG)

added to the fluorophore structure. Coupling to the dPGS could

be achieved at a dye-to-polymer ratio of 3 without signs of

aggregation known to be induced by more lipophilic indocyanine

dyes in bioconjugates, as described in [20].

Previously, studies show also inflammation-specific imaging with

dPGS-NIRF in an animal model of collagen induced rheumatoid

arthritis using the preceding conjugate with a lipophilic indocya-

nine green label. Comparable to our study, the authors

demonstrated a fast and selective uptake of the probe with a 3.5

fold higher fluorescence difference between healthy and diseased

joints and a signal peak at 1 hr after probe administration.

Together with a rough estimation of a blood half-life of shorter

than 1 hr by employing the eye fluorescence as a provisional

solution to monitor blood kinetics, they postulate targeting

mechanisms not yet fully understood [20] whereby dPGS-NIRF

binds to mediators of inflammation.

Interestingly, the high contrast between the fluorescence

intensity of dPGS-NIRF in the asthmatic and healthy groups

was not observed after 24 hrs. This might be explained in part by

shedding of P- and L-selectins from the cell surface after binding of

dPGS-NIRF [23]. Bound dPGS-NIRF probes will be removed

from the cells resulting in the reduction of fluorescence intensity to

background after 24 hrs.

The MMPSense and ProSense probes, which are activated in

the presence of inflammation-associated enzymes such as cathep-

sin and MMP’s that are present in the lungs during allergen

challenge are successfully used by others, for example to detect

lung inflammation and rapidly screen for new drug effects [9–11]

as well as to visualize colon adenomas [8]. Similar to our study,

Figure 6. Ex vivo imaging results of dPGS-NIRF and pure dye. Box plots of ratios of average fluorescence intensity over the explanted lungs
compared with the mean value of each control group respectively are reported for asthmatic and healthy mice treated with free dye 4 hrs post
injection (panel A), and treated with dPGS-NIRF probe 4 hrs (panel B left side) and 24 hrs (panel B right side) post injection. The corresponding
fluorescence intensity images of representative lungs are given at the bottom of each box plot. A significant difference between the fluorescence
intensity within the lungs of asthmatic (n = 5) and healthy mice (n = 5) was observed 4 hrs post injection of the dPGS-NIRF conjugate (difference of
,65%, p-value = 0.009), but not of the control dye (healthy n = 5, asthmatic n = 5; difference of ,18%, p-value = 0.127). Both control dye and dPGS-
NIRF probe were injected 72 hrs after last aerosol challenge. Note, intensity ratios were used to compare probes with different brightness, therefore
the box plots are depicted in the same scale.
doi:10.1371/journal.pone.0057150.g006

Table 1. Calculated average fluorescence intensity ratios RIex tð Þ between healthy and asthmatic mice after injection of control
dye, dPGS-NIRF, or two commercially available probes: ProSense and MMPSense.

Control Dye dPGS-NIRF ProSense MMPSense

measurement time (hours) 4 4 24 24 24

in vivo 1.1160.06 (0.047) 1.4560.20 (0.004) 1.0860.10 (0.162) 1.2760.02 (0.013) 1.8360.50 (0.093)

ex vivo 1.1860.18 (0.127) 1.6560.35 (0.009) 1.1060.22 (0.323) n.d. n.d.

Results are shown as mean calculated average fluorescence intensity ratios 6 standard deviation, while statistical significance between each pair of control and
asthmatic mice is given by p-value for the Welch-T-Test in brackets. Legend: n.d. – not done.
doi:10.1371/journal.pone.0057150.t001
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Cortez-Retamozo et al. demonstrated fluorescence differences

between asthmatic lungs and healthy controls by applying the

same amount of MMPSense or ProSense however by using

fiberoptic bronchoscopy and fluorescence molecular tomography

(FMT) [9]. Others also reported that the in vivo profile of cysteine

protease activation was depicted by FMT in a mouse model of

acute airway inflammation by LPS-induction [10,11].

These smart probes exhibit slower kinetics due to their

activation mechanism, demonstrating maximal fluorescence in-

tensity within the lungs about 24 hrs after probe injection [9]. The

application of these enzymatically activated probes is often

hampered by the fact that despite a dramatic increase of their

fluorescence intensity over inflammatory areas, the activated

probes do not remain at the site of interest for very long and

instead produce a strong liver signal due to their excretion

pathway.

In conclusion, we present a novel in vivo NIRF imaging probe

for detection of inflammatory reactions within the lungs of mice, as

demonstrated in mice with allergic inflammation, by utilizing a

dendritic polyglycerolsulfate NIRF dye conjugate known to bind

to selectins and complement factors. The greater fluorescence

intensity of dPGS-NIRF in inflammation of mice with allergic

asthma in combination with rapid kinetics makes dPGS-NIRF a

powerful probe candidate to monitor inflammation processes and

responses to therapy in experimental mouse models of lung

disease.

Materials and Methods

Mice
Female BALB/c mice (4- to 6-weeks old) were purchased from

Charles River and maintained with ad libitum food and water. All

the experimental procedures were performed in compliance with

the guidelines of European (86/609/EEC) and Italian (D.L.116/

92) as well as German laws and were approved by the Italian

Ministry of University and Research and the Administration of the

University Animal Facility, Trieste, as well as by the administra-

tion of Lower Saxony, Germany.

Synthesis of a dendritic polyglycerol sulfates NIR dye
conjugate probe (dPGS-NIRF)

dPGS was synthesized by anionic polymerization of glycidol and

subsequent sulfation using SO3/pyridinum complex according to

Türk and colleagues [14]. Conjugation of dPGS to an NIRF dye

(based on indocyanine green chromophore; derivative with

reactive group for conjugation) are described [20] elsewhere.

Briefly, the polyglycerol intermediate was reacted with an aliphatic

linker chain followed by the sulfation reaction. To this linker, a

novel NIRF dye (6S-ICG propargyl; mivenion GmbH) was

conjugated followed by high-performance liquid chromatography

(HPLC) purification yielding dPGS-NIRF with a mean dye-to-

polymer ratio of 3 and an average molecular weight of 19000 Da.

The degree of sulfonation was 85% (elementary analysis) and the

polydispersity index (PDI) within 1.6–1.8 (measured for the

polyglycerol intermediate using GPC). The dye used herein is a

hydrophilic version of the previously described indocyanine green

label, with 4 additional sulfonate groups in the molecule resulting

in a 6-fold sulfonated entity of maximal hydrophilicity for this type

of NIR fluorophore. The chemical structure is depicted in Figure 1.

Absorption maxima in PBS were 710 and 795 nm, fluorescence

emission maximum 810 nm. Unconjugated NIRF dye (6S-ICG

molecular weight ,1700 g/mol, free carboxylic acid instead of

linkage to polymer) served as control probe in the in vivo

experiments.

Mouse Model of Acute Allergic Asthma
Mice were sensitized intraperitoneally (i.p.) at day 0 and day 21

with 10 mg ovalbumin (OVA) dissolved in 200 ml PBS. At day 28

and day 29 mice were treated intranasal (i.n.) with a solution of

100 mg OVA/50 ml PBS/mouse. Healthy age and gender

matched BALB/c mice served as controls. Histology of H&E

stained lung sections was performed at 76 hrs post last challenge

Optical Imaging Scan
48 mice were examined by optical imaging (Table 2). Mice were

shaved over the lung area prior to the scanning procedure in order

to reduce scattering of the signal from fur. Throughout all imaging

sessions, mice were anesthetized with vaporized isoflurane at 1.8–2

volume % as described [2]. The anesthetized mice were placed

inside an Optix MX2 acquisition system (Advanced Research

Technologies, Montreal, Canada) and gently fixed on a heated

block (37uC) for the entire duration of data acquisition.

All in vivo analyses were preceded by native scans of the mice

prior to NIRF probe injection to provide a base line for later

analysis. At 72 hrs after the last OVA challenge, mice were

injected intravenously (i.v.) via the tail with 100 ml of one of the

following: dPGS-NIRF (2.6 nmol, polymer/dye = 1/3), free NIRF

dye (3.6 nmol), 100 ml (5 nmol) of either MMPSense (MMPSen-

seH, Perkin Elmer) or ProSense (ProSenseH, Perkin Elmer), all

dissolved in 0.9% NaCl. The amount of injected dPGS-NIRF and

NIRF solutions was calculated based on the weaker fluorescence

signal of dye in the conjugate than in the unconjugated control

dye. Exact numbers of animals in each group are shown in Table 2.

In vivo and ex vivo Optical Imaging
Animals with acute asthma and wild type controls were scanned

at 4 and 24 hrs post i.v. dPGS-NIRF or NIRF dye administration.

For the MMPSense and ProSense, scans were performed 24 hrs

after probe administration. According to the supplier (PerkinEl-

mer), this time point constitutes the peak activation of these probes

[9]. All in vivo data was acquired by using the small-animal time-

domain Optix MX2 preclinical NIRF-imager (Advanced Re-

search Technologies, Montreal, CA), equipped with four pulsed

laser diodes and a time correlated single photon counting detector

[24]. This system works in reflection mode applying a raster

acquisition scheme, measuring and analyzing fluorescence re-

sponse to pulsed excitation for each excitation spot by creating

fluorescence photon time of flight histograms. In all imaging

experiments applying the dPGS-NIRF and control dye, a 785 nm

pulsed laser diode with a repetition frequency of 80 MHz was used

whereas for the MMPSense and ProSense studies a 670 nm pulsed

laser diode with a repetition frequency of 80 MHz was applied.

Fluorescence emission was accordingly collected with an 800 nm

long pass filter for dPGS-NIRF and control dye and a 700 nm

long pass filter for both MMPSense and ProSense to block the

excitation light. Two-dimensional regions of interest (ROIs) were

selected, and laser power, integration time (repetition time of the

excitation per raster point), and scan step size were optimized

according to the emitted signal. Prior to probe application, mice

were scanned to obtain background images. These background

signal intensities recorded with the baseline image for each animal

before the injection of the probe was subtracted from each post

injection image. At the end of the last imaging session, 4 and

24 hrs after dPGS-NIRF/NIRF dye i.v. injection, animals were

sacrificed and ex vivo optical imaging of the explanted lungs was

performed. To calculate the total lung fluorescence intensity

(Ilung) in each scan, fluorescence intensities were normalized with

the laser power used for excitation and summed up in ROI’s

Optical Imaging of Allergic Asthma Mouse Model
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encompassing the whole organ. Lungs were then preserved in

formalin for histological analysis.

Image processing
Image analysis was done using OptiView (2.02.00), the

proprietary software developed for the Optix device. All data sets

of mice receiving dPGS-NIRF, free NIRF dye control as well

MMPSense and ProSense were normalized for different excitation

laser power and variations of the used integration time and

therefore expressed in normalized counts [NC], an arbitrary unit.

Average fluorescence intensity was calculated within a region of

interest covering the whole lung for every sample (x) and time

point (t) as �II x,tð Þ and subtracted by the base line intensity within

the same region�IIbg xð Þ. To remove the influence of different

brightness of all applied probes, ratios RIex x,tð Þ between the

average intensity of the sample (x) and the mean average intensity

of the control group for each experiment (ex) and time point (t)

were calculated and denominated asRIex x,tð Þ.

RIex x,tð Þ~
�II x,tð Þ{�IIbg xð Þ
N{1

cnt

P
�II x,tð Þ ð1Þ

RIex x,tð Þ can be interpreted as contrast or probability to

distinguish asthma mice from controls at certain time points and

was therefore used for comparison of the different studies and

statistical calculations.

Histological analysis of lung inflammation
Following ex vivo image analysis performed 76 hrs after the last

ovalbumin challenge, tissue samples were fixed in 10% buffered

formalin and embedded in paraffin. To evaluate allergic lung

inflammation, 3 mm thick lung sections containing main stem

bronchi were stained with hematoxylin and eosin (H&E). A

blinded grading of the slides was done to evaluate the intensity and

extent of inflammation according to our semi-quantitative scoring

system. For intensity of inflammation: 0 – no inflammatory

infiltrates; 1 – inflammatory infiltrates in central airways; 2 –

inflammatory infiltrates extending to middle third of lung

parenchyma; and 3 – inflammatory infiltrates extending to

periphery of the lungs. For extent of inflammation: 0 – no

inflammatory infiltrates; 1 – inflammatory infiltrates present in one

third of lung surface; 2 – inflammatory infiltrates spreading up to

two thirds of lung surface; 3 – inflammatory infiltrates present in

more than two thirds of lung surface. Data are presented as

histological score calculated as the sum of intensity and extent of

inflammation for each sample. For detection of mucus-containing

cells in lung tissue, adjacent 3 mm sections containing main stem

bronchi from each lung specimen were stained with periodic acid-

Schiff (PAS) and counter stained with hematoxylin. Slides were

examined blinded for the treatment and mucus overproduction

was scored as: Grade 0 – no mucus producing cells in airways;

Grade 1 – few mucus producing cells in central airways; Grade 2 –

mucus producing cells detected in middle airways; and Grade 3 –

mucus producing cells extending to respiratory bronchioles. In

borderline cases, an intermediate grade was used (0.5; 1.5 or 2.5),

extending the scoring to a total of seven grades.

Serum OVA-specific immunoglobulin
For the measurement of OVA-specific immunoglobulin (Ig) G1,

ELISA plates were coated with OVA at 10 mg/ml overnight at

4uC. The plates were washed and blocked with 2% bovine serum

albumin in PBS with 0.05% Tween 20 for 2 hrs at RT. Then sera

were titrated onto the plates and incubated for 24 hrs at 4uC
before washing. Plates were incubated for an additional 2 hrs at

4uC with biotinylated anti-IgG1 (Southern biotechnology associ-

ates Inc., Birmingham, AL, USA) detection mAb, followed by

incubation with streptavidin horseradish peroxidase (Southern

biotechnology) for 1 h at RT. Plates were washed and incubated

with TMB substrate solution (100 ml/well, BD OptEIATM,

Becton Dickinson Biosciences) for 10 min at RT. The reaction

was stopped with 100 ml of 0.18 M H2SO4 and the plates were

measured at 450 nm.

In vitro analysis of serum binding
The serum binding of 6S-ICG was determined in vitro by

incubation with pooled human serum (PAA) with dye concentra-

tion of 5 mg/ml [25]. The sample was placed in a Centriprep

micropartition unit NWML 30 kDa (Milipore, Billerica, USA),

and centrifuged at 5000 g for 20 min. The protein-bound 6S-ICG

and the free dye in the ultrafiltrate was quantified spectrophoto-

metrically (Beckman Coulter, USA).

Fluorescence microscopy
Detection of injected dPGS-NIRF probe or unconjugated NIRF

dye 6S-ICG in lungs of control and asthmatic mice was carried out

by fluorescence microscopy. In order to correlate NIRF fluores-

cence signals from the probes to inflammatory sites, lungs were

counterstained with at anti-mouse F4/80 antibody. detecting

macrophages Two-micrometer-thick sections were cut from

paraffin blocks, the slides were first processed for avidin/biotin

and protein blocking steps using xylol and decreasing alcohol

concentration for deparaffination and rehydration and later

incubated with the primary antibody rat anti-mouse F4/80

(AbD Serotec, Oxford, UK), dilution factor 1:100 at 4uC
overnight. After the incubation with the primary antibody, the

samples were incubated with secondary biotinylated antibody goat

anti-rat (BioLegend, San Diego, USA), dilution factor 1:200 at RT

for 1 hour, and then with streptavidin- Alexa 555 (Molecular

Probes, Life Technologies Corporation, USA) dilution factor

1:400 at RT for 1 hour. DAPI was diluted in the mounting media

and used as nuclear counterstaining. Fluorescence was analyzed

with a Zeiss Axiovert 200 M inverted microscope (Carl Zeiss,

Table 2. Experimental design of optical imaging biodistribution study.

Control Dye dPGS-NIRF ProSense MMPSense

Measurement time
(hours) 4 4 24 24 24

Healthy mice (number) 5 6 5 2 2

Asthmatic mice (number) 5 6 10 3 4

doi:10.1371/journal.pone.0057150.t002
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Germany) equipped with a xenon lamp and a high sensitivity

ORCA-AG digital camera (Hamamatsu, Japan). Data were

acquired with AxioVs40 software (Carl Zeiss). Filter settings were

as followed: DAPI: Ex: BP 365/25 (+/212.5); FT 395; Em: BP

445/50 (+/225); Cy7: BP 708/75 (+/237.5); FT 757; BP 809/81

(+/240.5); Alexa555: BP 546/12 (66); FT 580 and LP 590 filter.

Subsequent analyses were performed using the java-based image

processing program ImageJ.

Statistical Analysis
Statistical verification of the differences of RIex x,tð Þ between

asthmatic and control mice for each experiment and time point

was done using an unpaired Welch Two Sample t-test imple-

mented in the PAST statistic software [26]. A p-value of less than

0.05 was considered significant.

Histological scores between groups were compared using One-

way ANOVA followed by Tukey’s multiple comparison test.

GraphPad Prism (v.5.00, GraphPad Software, San Diego, CA) was

used for data analysis.
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Abstract

Background: Molecular imaging of lung diseases, including asthma, is limited and either invasive or non-specific. Central to
the inflammatory process in asthma is the recruitment of eosinophils to the airways, which release proteases and
proinflammatory factors and contribute to airway remodeling. The aim of this study was to establish a new approach to
non-invasively assess lung eosinophilia during the course of experimental asthma by combining non-invasive near-infrared
fluorescence (NIRF) imaging with the specific detection of Siglec-F, a lectin found predominantly on eosinophils.

Methodology/Principal Findings: An ovalbumin (OVA)-based model was used to induce asthma-like experimental allergic
airway disease (EAAD) in BALB/c mice. By means of a NIRF imager, we demonstrate that 48 h–72 h after intravenous (i.v.)
application of a NIRF-labeled anti-Siglec-F antibody, mice with EAAD exhibited up to 2 times higher fluorescence intensities
compared to lungs of control mice. Furthermore, average lung intensities of dexamethasone-treated as well as beta-escin-
treated mice were 1.8 and 2 times lower than those of untreated, EAAD mice, respectively and correlated with the reduction
of cell infiltration in the lung. Average fluorescence intensities measured in explanted lungs confirmed the in vivo findings
of significantly higher values in inflamed lungs as compared to controls. Fluorescence microscopy of lung cryosections
localized the i.v. applied NIRF-labeled anti-Siglec-F antibody predominantly to eosinophils in the peribronchial areas of
EAAD lungs as opposed to control lungs.

Conclusion/Significance: We show that monitoring the occurrence of eosinophils, a prominent feature of allergic asthma,
by means of a NIRF-labeled antibody directed against Siglec-F is a novel and powerful non-invasive optical imaging
approach to assess EAAD and therapeutic response in mice over time.
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Introduction

Allergic asthma is a chronic inflammatory disease of the lungs,

which is characterized by a variable degree of bronchial

obstruction, airway hyperresponsiveness (AHR) and increased

mucus production. With over 300 million people affected and this

number growing steadily, asthma is still a major health issue.

While mild to moderate asthma is relatively well controlled by

glucocorticoid therapy [1], 5–10% of asthmatics are difficult to

treat with current therapies and warrant a continuing search for

new drugs [2]. Similar to other complex and heterogeneous

diseases, our understanding of asthma is slowed by the fact that

both genetic as well as environmental factors contribute to its

origin and progression, and by the variety of cellular and

molecular pathways involved [3]. As a result, animal models,

especially in mice, have been vital in improving our knowledge of

asthma and the development and validation of novel treatments

[4]. Many of the characteristic features of human atopic asthma

can be seen in mouse models. For example, following allergen

challenge, profound eosinophilic infiltration of lung tissue and

airways, an increase of lymphocytes, neutrophils, and monocytes

in the lungs, activation of alveolar macrophages and thickening of

the airway epithelium with a marked goblet cell hyperplasia are all

characteristics found in both humans and mice [5].

Until recently, preclinical animal studies, including the assess-

ment of mouse EAAD, relied heavily on invasive or terminal
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http://creativecommons.org/licenses/by/4.0/


procedures such as bronchoalveolar lavage (BAL) and histology of

excised tissue. Latest improvements of imaging techniques such as

PET, SPECT, MRI, CT and OCT have advanced non-invasive

research on pulmonary diseases [6]. However, these techniques

mainly facilitate the anatomical or structural assessment of the

diseased lung and/or make use of radioactive agents. Optical

imaging poses a great advantage, offering a rapid, cheap and easy

methodology, which enables the detection of specific targets in a

live animal over time [7]. Presently, near infrared fluorescent

(NIRF) probes revealed several benefits over other fluorescent dyes

because they minimize autofluorescence and penetrate deeper into

the tissue [8]. Importantly, NIRF imaging lacks radioactivity and

is therefore considered an alternative to nuclear imaging, the

current gold standard for clinical functional imaging.

However, molecular imaging of lung diseases and in particular

allergic asthma using fluorescence imaging (FI) is limited [6] and

unspecific [9,10]. Only proteinases such as matrix metalloprotei-

nases (MMPs) and cathepsins [9,10] as well as selectins [11] have

so far been targeted with smart probes. However, such optical

sensors may detect inflammation unrelated to eosinophilia. We

took a new, more specific, approach to detect the allergic

inflammatory process underlying asthma by targeting Siglec-F, a

member of the family of Siglecs (sialic acid-binding, Ig-like lectins),

which are single-pass transmembrane cell surface proteins found

predominantly on leucocytes [12]. Siglec-F is a functional paralog

of the human Siglec-8, both proteins preferentially recognising a

sulphated glycan ligand closely related to sialyl Lewis X, a

common ligand for the selectin family of adhesion molecules [12].

Most siglec proteins undergo endocytosis, an activity tied to their

roles in cell signaling and innate immunity. Both, the human as

well as the mouse protein, are specifically upregulated on

eosinophils during allergic inflammation, and therefore, represent

specific markers for detection of allergic reactions, involving

eosinophils. Induction of allergic lung inflammation in mice causes

up-regulation of Siglec-F on blood and bone marrow eosinophils

as well as quantitative up-regulation of endogenous Siglec-F

ligands in the lung tissue and airways [13]. A weaker expression

was also reported on macrophages [13,14]. The recruitment of

eosinophils to the airways occurs at the late-phase of allergic

inflammation and their release of proteases and proinflammatory

factors is thought to eventually lead to airway remodeling [15].

Eosinophilia is, therefore, an excellent marker for monitoring

allergic inflammation. It was recently shown that anti-Siglec-F

alone or in combination with anti-CD45 can be used for the

quantitative detection of eosinophils in mouse bone marrow and

spleen and that the antigen profile CD45(+)SiglecF(+)CD11c(2)

was the most effective at detecting eosinophils in the lung and

correlated with direct morphometric counts under all conditions

evaluated [16].

We show here, that 2D fluorescence reflectance imaging (FRI)

in combination with a NIRF-labeled antibody to Siglec-F, is an

ideal technique to specifically monitor allergic lung inflammation

in vivo and to evaluate the effect of therapeutic drugs in preclinical

studies. We observed significantly higher fluorescence signal

intensities over the lungs in mice with EAAD than in controls.

Moreover, we non-invasively demonstrate decreased Siglec-F

fluorescence signals over the lung in response to two different

asthma therapies, the commonly used glucocorticoid dexameth-

asone, as well as beta-escin, a new anti-inflammatory drug derived

from Chinese horse chestnut seeds.

Materials and Methods

Materials
Monoclonal rat anti-mouse-Siglec-F antibody and a rat IgG2a

isotype control were purchased from BD Biosciences (Heidelberg,

Germany). Siglec-F antibody was custom-labeled by Squarix

Biotechnology (Marl, Germany) with either Alexa Fluor 750 (dye

to protein ratio 2.8) or Alexa Fluor 680 (dye to protein ratio 4.5)

(Life Technologies GmbH, Darmstadt, Germany). These NIRF-

labeled anti-Siglec-F antibodies are designated anti-SiglecF-750

and anti-SiglecF-680, respectively. IgG2a isotype control antibody

was labeled with Alexa Fluor 750 (dye to protein ratio 3.1).

Animals
Pathogen-free female BALB/c mice, 6–8 weeks of age were

purchased from Charles River Laboratories Inc. (Wilmington,

MA). All animals were housed in a controlled environment with a

regular 12-hour dark:light cycle, at 22uC and were fed laboratory

chow (SAFE, Augy, France) and tap water ad libitum. Seven days

before the imaging experiments, the food was switched to

chlorophyll-free chow (Scientific Animal Food & Engineering,

Augy, France) to reduce autofluorescence from the stomach and

gut of the animals.

Induction of EAAD and Treatment Schedule
As shown in Figure 1, BALB/c mice were immunized via

intraperitoneal (i.p.) injection on days 0 and 21 with 10 mg OVA

(Sigma-Aldrich) in a volume of 0.2 ml phosphate-buffered saline

(PBS) per mouse. On days 28 and 29 post-immunization, mice

were challenged intranasally (i.n.) by pipetting 25 ml of 100 mg

OVA in PBS, into each nostril. Control mice received PBS only.

Anti-Siglec-F-NIRF-labeled antibodies (12 mg in 150 ml PBS) were

given either 3 or 4 days post challenge by tail vein injection and

mice were repeatedly scanned over a given period of time by

Figure 1. Induction of EAAD and treatment schedule. Schematic depiction of the experimental protocol used for the induction of EAAD, the
application of treatments and the optical imaging performed.
doi:10.1371/journal.pone.0090017.g001
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optical imaging. All intravenous (i.v.) injections and scanning

procedures were performed under 2% isoflurane, 2l/min oxygen

anesthesia for a maximum time of 20 min. The mice were

sacrificed with an overdose of isoflurane after the last scan.

For treatment response studies, mice received either 25 mg

dexamethasone (Sigma-Aldrich, Hamburg, Germany) in 50 ml

PBS i.n. or 60 mg beta-escin in 200 ml PBS (Marinomed, Vienna,

Austria) i.p. once a day from day 25 to 29. All i.n. procedures were

performed under mild 2% isoflurane, 2l/min oxygen anesthesia of

the mice.

In vivo Optical Imaging
To decrease autofluorescence, BALB/c mice were shaved and

chemically depilated (Isana depilation crème, Rossmann) to

remove the fur from thorax and abdomen. Optical imaging was

performed by FRI using the Optix MX2 System (ART, Montreal,

Canada), which comprises an interface for inhalation anesthetics

and four pulsed lasers (635, 670, 730 and 785 nm). During in vivo

scans, mice were anaesthetized by inhalation with 2% isoflurane,

2l/min oxygen for 15–20 min per scan. For detailed description of

Figure 2. Expression pattern of Siglec-F. Immunohistochemistry and immunofluorescence Siglec-F staining of lung sections and BAL cytospins
of mice with EAAD (A - D, upper panels) and controls (A – D, lower panels). (A)– (B) represent sections of cryofrozen lungs stained with anti-Siglec-F
antibody. (C) Representative images of cytospins from BAL stained with anti-Siglec-F antibody and (D) of cytospins from BAL fluid co-stained with
anti-SiglecF-680 and anti-CD68. In EAAD lungs, Siglec-F is highly expressed in eosinophils surrounding the blood vessels (b/v) and airways (a/w) (A,
upper panel), while control lungs are almost free of Siglec-F staining (A, lower panel), indicating the lack of immune cell infiltration. Higher
magnification of EAAD lung sections demonstrates Siglec-F staining on eosinophils (arrows, bilobed nucleus) and macrophages (arrow heads) (B,
upper panel). In cytospins, eosinophils (bilobed nucleus) from EAAD animals (C and D upper panel, arrows) demonstrate strong positive Siglec-F
staining, whereas macrophages from both, EAAD and control animals (C, arrow heads and D, positive CD68 staining) show a variety of Siglec-F
expression levels. Scale bars in A: 2.5 mm; in B–D: 5 mm.
doi:10.1371/journal.pone.0090017.g002
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the working principle of the Optix MX2 please refer to Dullin

et al. [17].

OVA-challenged and control mice were prescanned to measure

the autofluorescence signals of the animals. Three to four days post

challenge, the animals were injected intravenously (i.v.) with either

12 mg of anti-SiglecF-750 antibody (n = 8 for EAAD; n = 6 for

controls), anti-SiglecF-680 antibody (n = 5 for EAAD; n = 4 for

controls) or 750-labeled rat IgG2a isotype control (n = 5) in 150 ml

PBS and scanned at given time points. Alexa Fluor 750

fluorescence was measured using an excitation of 730 nm in

combination with a 770 nm long-pass emission filter. Alexa Fluor

680 fluorescence was measured using an excitation of 670 nm in

combination with a 700 nm long-pass emission filter. Scans were

performed with a 1.5 mm (whole body scans) or 1.0 mm (lung

scans) raster, a photon collection time (integration time) of 0.3–1 s

per scan point and varying laser power. Intensity data and lifetime

were analyzed with the OptiView-2-02-00 software (ART).

Fluorescence intensity data are displayed in normalized counts

(NC), where the measured fluorescence intensity (counts) was

normalized for varying laser power and integration times, allowing

comparison of measurements with different settings. Data were

quantified as average fluorescence intensity over a certain area of

interest and subsequently corrected for autofluorescence by

subtracting the average fluorescence intensity from the same

region of interest in the respective prescans, as well as corrected for

the dye to protein ratio of the different conjugates.

Bronchoalveolar Lavage (BAL)
Following imaging (72 h after antibody injection), mice were

sacrificed with an overdose of isoflurane. BAL was performed by

washing the airways gently three times with 500 ml of 2% FCS/

PBS after exposing and cannulating the trachea. Volumes were

pooled and then washed once in the same buffer. Recovered cells

were counted in a haemocytometer and 36104 cells were used for

cytospins followed by Giemsa staining (Sigma Aldrich, Munich,

Germany) for differential cell counting. Where indicated, cytospins

were immunostained and counterstained with DAPI (4 mg/ml) for

visualization of nuclei.

Immunohistochemistry and Immunofluorescence
Explanted lungs were cannulated and filled with 600 ml of

Tissue Tek OCT compound (Sakura Finetek Germany GmbH,

Staufen, Germany) and immediately frozen in liquid nitrogen at 2

80uC. Frozen lung sections of 5 mm from untreated EAAD and

control mice were cut on a Jung Frigocut 2800E cryostat

microtome (Leica Microsystems, Wetzlar, Germany) and stained

with monoclonal rat-anti-mouse-Siglec-F (BD Biosciences, Heidel-

berg, Germany) at 10 mg/ml in antibody-diluent (DAKO) and

4uC, overnight (o.n.). Subsequently, sections were incubated with

an anti-rat-biotinylated secondary antibody for 1 h at RT

(BioLegend, Fell, Germany), followed by detection with avidin-

horseradish-peroxidase (eBioscience, Frankfurt, Germany) for 1 h

at RT. The sections were then counterstained with haematoxylin/

eosin (HE) and analysed by transmitted light microscopy with an

Axioskop 2 microscope (Leica Microsystems, Wetzlar, Germany).

Figure 3. Time course of NIRF-labeled anti-Siglec-F distribution in the body. In vivo representative full body scans of EAAD (upper panel,
n = 8) and control (middle panel, n = 6) mice injected with 12 mg of anti-SiglecF-750, as well as EAAD mice injected with 12 mg of Alexa 750-labeled
anti-IgG2a isotype control antibody (lower panel, n = 5) at the given time points. Fluorescence intensity distribution is displayed in normalized counts
(NC). Excess anti-SiglecF-750 antibody accumulates within the liver (red elipse) and is excreted via the bladder (black arrows) within the first few hours
after antibody administration. 24 h –48 h after anti-SiglecF-750 injection, EAAD mice, in contrast to all control animals, accumulate the Siglec-F-
antibody in their lungs (yellow triangle).
doi:10.1371/journal.pone.0090017.g003
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Figure 4. Time course of NIRFlabeled anti-Siglec-F distribution in the lung. In vivo lung scans of EAAD, control as well as dexamethasone
and beta-escin treated animals before (prescan) and at 6 h, 24 h, 48 h and 72 h after antibody administration. Fluorescence intensity distribution is
displayed in normalized counts (NC). In contrast to control mice (A, lower panel, n = 6), OVA-immunized mice have a marked accumulation of anti-
SiglecF-750 within the lungs from 24 h, which decreases at 72 h (A, upper panel, n = 8). Anti-SiglecF-680 also reveals significant differences between
EAAD (B, upper panel, n = 5) and control (B, lower panel, n = 4) fluorescence intensities derived from the lung. EAAD mice treated with either
dexamethasone (C, upper panel, n = 5) or beta-escin (C, lower panel, n = 5) have low intensities over the lung, similar to healthy control mice (A and B,
lower panels) at all scan times.
doi:10.1371/journal.pone.0090017.g004
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For NIRF microscopy, sections were stained with DAPI (4 mg/

ml) and anti-SiglecF-680. For fluorescence microscopy of lungs

from anti-SiglecF-680 injected mice, cryosections were stained

with anti-mouse-eosinophilic major basic protein (EMBP) anti-

body (clone S-16, Santa Cruz, Heidelberg, Germany) followed by

anti-Alexa Fluor 488 secondary antibody, and/or anti-mouse

CD68 antibody (clone FA-11, Abcam, Cambridge, UK), followed

by anti-rat-Alexa Fluor 555 secondary antibody (Life Technologies

GmbH, Darmstadt, Germany). Images were acquired with a Leica

CTR6000 fluorescence microscope equipped with a Leica

DFC350FX camera.

Statistical Analysis
Statistical analysis was performed with Past [18] using a Welch

t-test. P-values ,0.05 were considered significant.

Ethics Statement
This study was carried out in strict accordance with the

guidelines for the care and use of laboratory animals of the local

ethics office of the University Medical Center Göttingen. This

study was approved by the Committee on the Ethics of Animal

Experiments of the Niedersächsisches Landesamt für Verbrau-

cherschutz und Lebensmittelsicherheit (LAVES) (Permit Number:

Figure 5. Quantification of in vivo imaging results. Box plot of average fluorescence intensities over the lung area for all groups at 48 h and
72 h after NIRF-labeled anti-Siglec-F antibody injection. Lung intensities of EAAD mice are significantly higher (represented by asterisk *) compared
with control mice and treated mice at 48 h and 72 h after antibody application; A = EAAD, C = control, AD = EAAD, dexamethasone treated,
AE = EAAD, beta-escin treated.
doi:10.1371/journal.pone.0090017.g005

Figure 6. Ex vivo imaging results. (A) Representative images of fluorescence intensities of explanted lungs, livers, kidneys and spleens of EAAD
(upper panel) and control mice (lower panel). (B) Bar graph of average fluorescence intensities of explanted lungs from mice injected with anti-
SiglecF-680 (left panel) or anti-SiglecF-750 (right panel). Ex vivo lung scans demonstrate a significant difference between signal intensities of EAAD
lungs and healthy lungs (A and B), while liver, spleen and kidneys show low intensities in both EAAD and control mice (A). NC = normalized counts.
doi:10.1371/journal.pone.0090017.g006

Non-Invasive Optical Imaging of EAAD

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e90017



Figure 7. Anti-SiglecF-680 binds to eosinophils and macrophages. Fluorescence microscopy of cryosections from lungs of EAAD mice
injected with anti-SiglecF-680 (A), confirms the binding of anti-SiglecF-680 (in green) to eosinophils (EMBP-positive, arrows in merge) and more
weakly to macrophages, which were counterstained with anti-CD68 (magenta, arrow heads in merge). Lungs from healthy controls injected with anti-
SiglecF-680 (B) have a low number of Siglec-F positive cells, which are all CD68-positive and therefore most probably represent macrophages. Nuclei
are stained blue with DAPI. Scale bars = 20 mm.
doi:10.1371/journal.pone.0090017.g007
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33.9-42502-04-10/0134). All painful procedures were performed

under anesthesia, and all efforts were made to minimize suffering.

Results

Siglec-F is a Suitable Marker of Eosinophilia
We first analysed the expression of Siglec-F on cells that

accumulated in lungs of EAAD mice that did not receive the

NIRF-labeled probe. Immunostaining of lung cryosections with an

anti-Siglec-F antibody demonstrated a positive staining of cells that

infiltrated the lung around blood vessels and airways of EAAD

mice (Figure 2A, upper panel). However, only scattered cells

within the lung tissue of control animals were Siglec-F positive

(Figure 2A, lower panel). At higher magnification (100x, Figure 2B,

upper panel), the positive cells in inflamed lungs are revealed to be

mostly eosinophils as judged by their bilobed nuclei (arrows), and

display a strong staining. A smaller number of weaker stained

macrophages (large cells with unsegmented nuclei, arrow heads)

were also detected in EAAD lung tissue. In control lung tissue the

Siglec-F positive cells were all macrophages, as judged by their size

and unsegmented nucleus (Figure 2B, lower panel, arrow head). As

shown in Figure 2C, upper panel, immunostaining of cytospins

from BAL fluid of EAAD mice with anti-Siglec-F antibody also

revealed strong expression of Siglec-F on eosinophils, as confirmed

by morphological appearance (cells with bilobed nuclei, arrows).

Macrophages (larger cells, with unsegmented nuclei) revealed a

variable degree of Siglec-F expression in both EAAD and control

BAL (Figure 2C, arrow heads).

We then tested the two NIRF-labeled Siglec-F antibodies, anti-

SiglecF-750 and anti-SiglecF-680, to confirm that these antibodies

too, detect eosinophils and macrophages. For this purpose, we

performed immunostaining of cytospins from BALs of EAAD and

control mice. To better distinguish between cell types, we

counterstained the nuclei with DAPI and labeled with anti-

CD68, a common macrophage marker. We found that both

NIRF-labeled antibodies were able to detect Siglec-F on eosino-

phils and macrophages. Figure 2D representatively shows the

results for anti-SiglecF-680. In general, we found that macro-

phages with a high expression of CD68 also tended to exhibit a

strong expression of Siglec-F.

In vivo Detection of Siglec-F Expression
To assess the suitability of anti-Siglec-F-antibody for in vivo

detection of EAAD we first conjugated it to Alexa Flour 750, a

near infrared fluorescence dye with an excitation maximum at

750 nm. In this spectral range tissue autofluorescence is reduced

due to minimal excitation of skin and hemoglobin, which are the

main causes of autofluorescence. This approach improves signal-

to-background ratio and hence the limits of detection. We then

injected 12 mg of anti-SiglecF-750 i.v. into the tail veins of EAAD

or control mice. As a negative control, EAAD mice were injected

i.v. with an equal quantity of Alexa Fluor 750-labeled IgG2a

isotype antibody at the same time point. Mice were scanned in vivo

before (prescan) and after antibody injection for 4 days (24 h,

48 h, 72 h and 96 h) to determine the distribution of the antibody

in the whole body. Figure 3 shows representative images of full

body scans of an EAAD anti-SiglecF-750 injected mouse (upper

panel), a control anti-SiglecF-750 injected mouse (middle panel)

and an EAAD mouse which received the isotype control antibody

(lower panel) at the given time points. Within the first 6 hours after

antibody administration, excess antibody accumulated within the

liver (red ellipses in Figure 3) and was excreted via the bladder in

all mice (black arrows in Figure 3). At 24 h, most of the

fluorescence signals over the liver and bladder area were cleared

from all mice, which was similar in EAAD and healthy mice as

well as in mice treated with the IgG2a control antibody. However,

after 24 h, EAAD mice accumulated anti-SiglecF-750 in their

lungs (yellow triangle in Figure 3, upper panel). This signal was

detectable over the following 2 days and decreased to background

levels at 96 h. In contrast, none of the control animals showed a

specific signal within the lung at any time point (middle and lower

panel).

To analyse the signals from the lungs in more detail, we

performed in vivo lung scans by choosing a region of interest (ROI)

over the lungs of the animals. These were performed with an

increased raster resolution (1 mm) as well as higher integration

time (1 s). To verify that the measured fluorescence intensities

originated from the injected conjugates, we performed a lifetime

analysis and compared the results with the lifetime of the pure

conjugate. The lifetime of fluorescence signals measured in vivo

over the lung region was the same as that of the pure conjugate

measured ex-vivo (0.85 ns for anti-SiglecF-750 and 1.52 ns for anti-

SiglecF-680) and was substantially higher than the lifetime of the

autofluorescence background measured in the prescan over the

same region (0.33 ns at 750 nm and 0.63 ns at 680 nm) (data not

shown).

Figure 4A shows representative images of lung scans of OVA-

induced EAAD mice and healthy control mice before and 6 h,

24 h, 48 h and 72 h after anti-SiglecF-750 application. During the

first 6 h, low fluorescence intensities were detected over the lungs

in control and EAAD animals, which was probably, in part, due to

the scattering of signals originating from the liver. This low signal

decreased over the next 3 days in control mice (Figure 4A, lower

panel). In contrast, OVA-immunized mice had a high fluorescence

signal over the lung indicating an accumulation of NIRF-labeled

antibody within the lungs over the following 3 days (Figure 4A,

upper panel). Mice with EAAD exhibited a 1.4 (24 h scan,

p = 0,04) –2.0 (48 h scan, p = 0,00035 and 72 h scan, p = 0,00012)

times higher anti-SiglecF-750 signal over the lungs compared to

control animals (Figure 5, left panel). The presence of EAAD was

confirmed by HE staining of lung cryosections at the end of the

experiment (96 h after antibody administration), which demon-

strated immune cell infiltration around the bronchi and vessels

within the lung (data not shown).

To verify the results with a dye with a higher quantum yield, we

used an anti-Siglec-F antibody coupled to Alexa Fluor 680 (anti-

SiglecF-680) in the same EAAD model and measured the signal

intensities over the lung at the altered wavelength of 680 nm in

EAAD and control animals. All other conditions and time points

were unchanged. Figure 4B shows representative images of one

animal illustrating that anti-SiglecF-680 also leads to high signal

intensities in the lungs of EAAD mice (upper panel), while control

animals displayed much lower signals (lower panel). Anti-SiglecF-

680 signal intensities were 1.4 (48 h scan, p = 0,01) –1.6 (72 h

scan, p = 0,0021) times higher in lungs of EAAD mice when

compared to controls (Figure 5, right panel). Notably, the

intensities with anti-SiglecF-680 were generally higher than those

with anti-SiglecF-750, which was mainly due to differences in the

quantum yields of the dyes (0.12 for Alexa Fluor 750 versus 0.36

for Alexa Fluor 680; www.lifetechnolgies.com), as the difference

between the dye to protein ratios were already accounted for.

Peak average intensities of lung signals in animals with EAAD

were observed across the range of detection time points, with 7

animals showing maximum intensity 24 h after antibody applica-

tion, 1 exhibiting a maximum signal 48 h, and 5 with maximum

signal 72 h after anti-Siglec-F-750 or anti-SiglecF-680 injections.

This is indicative of a difference in the progress of acute onset or

resolution of EAAD with a varying accumulation of eosinophils
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and other infiltrating immune cells in the lungs. However, by 96 h,

all animals with acute EAAD had reduced specific fluorescence

signals over the lungs.

Out of 13 OVA-immunized mice, only two displayed a

homogenous fluorescence signal distribution over the lung,

whereas all others showed an asymmetrical distribution of signal

intensities (Figure 4A and 4B). Eight mice showed a higher signal

on the right side of the lung, while 3 mice demonstrated more

signal on the left side, reflecting differential cellular infiltration in

different lung lobes, based on histological examination of lung

tissue from EAAD mice (data not shown). In summary,

fluorescence intensities over the lungs of EAAD mice in vivo were

significantly higher compared to those of control mice at 48 h and

72 h after antibody application, as demonstrated in the box plot

(Figure 5).

Ex vivo Confirmation of Siglec-F Expression
To verify that the in vivo measured signals originated from the

lung, we performed scans of the excised lungs from animals

sacrificed after the last in vivo scan, seen in Figure 6A. Ex vivo scans

confirmed that lungs from EAAD mice displayed a significantly

higher fluorescence signal intensity than control animals up to

96 h after i.v. injection of anti-SiglecF-750 (1.3 times higher in

EAAD, p = 0,007) (Figure 6B, right panel) or anti-SiglecF-680 (1.5

times higher in EAAD, p = 0,03) (Figure 6B, left panel). Note, that

here too, the average intensities with anti-SiglecF-680 are higher

than with anti-SiglecF-750, due to the higher quantum yield of

Alexa Fluor 680.

Other organs such as liver, kidneys and spleen showed

substantially lower Siglec-F signals in both EAAD and control

animals (Figure 6A). Signals in liver and kidneys of control mice

were generally somewhat higher than in the same organs of EAAD

mice, which may be explained by a higher amount of unbound

NIRF-labeled anti-Siglec-F antibody that is cleared by the liver

and kidneys.

To analyze the binding of the injected anti-SiglecF-680 to lung

cells in more detail, frozen tissue sections were visualized with a

fluorescence microscope. To better distinguish between eosino-

phils and macrophages, lung sections were stained with an

antibody directed against EMBP (eosinophilic major basic

protein), an eosinophil marker and anti-CD68 antibody, a

macrophage marker. Nuclei were visualized with DAPI. As seen

in Figure 7A, anti-SiglecF-680 was mainly bound to eosinophils

around bronchi and vessels in EAAD lungs (EMBP-positive,

arrows in merged image), but was also present on some

macrophages (CD68-positive, arrow head in merged image). Co-

localization of anti-SiglecF-680 (red) and anti-EMBP (green)

resulted in a yellow staining of eosinophils in the merged image.

Healthy control lungs displayed few anti-SiglecF-680 positive cells

(Figure 7B), which were all CD68 positive (arrow in merged image)

and therefore, macrophages and demonstrated vesicle-like Siglec-F

staining in the cytoplasm. These results confirm that the higher

in vivo signals we found in EAAD mice derive mostly from anti-

SiglecF-NIRF antibody bound to eosinophils.

In vivo Monitoring of EAAD in Response to Therapy
To investigate the feasibility of anti-SiglecF-750 to assess the

therapeutic response of mice with EAAD in vivo, we performed

lung scans after treatment with dexamethasone or the natural

compound beta-escin, as indicated in the Methods section in

Figure 1. Both dexamethasone- and beta-escin-treated mice

showed comparable signal intensities over the lungs that were

similar to healthy control mice (Figure 4C) and significantly

different to untreated EAAD animals at 48 h and 72 h after

antibody application (Figure 5, left panel). Average lung intensities

of dexamethasone-treated mice were 1.6 (p = 0,01) and 1.8

(p = 0,0059) times lower than untreated EAAD lungs at 48 h

and 72 h, respectively. Average lung intensities of beta-escin-

treated mice were 1.8 (p = 0,0034) and 2.0 (p = 0,00079) times

lower than in untreated EAAD mice at 48 h and 72 h after

antibody injection. In dexamethasone-treated mice, the response

to treatment, as evaluated by HE staining of lung cryosections

from mice sacrificed 96 h after antibody administration, correlated

with in vivo signal intensities. Mice that showed a low amount of

cell infiltration and decreased bronchial wall thickness due to

successful therapy, also had low fluorescence signals over the lung

(Figure S1, C–D). Despite therapy with dexamethasone, 2 mice

still had inflammation around bronchi and vessels and showed

fluorescence signals over the lung above control levels (supple-

mentary Figure 1, A–B). These results demonstrate that the

reduction of lung cell infiltration upon treatment could be

successfully monitored non-invasively by NIRF imaging with the

anti-SiglecF-750 probe (Figure 4C, lower panel). In summary,

both dexamethasone and beta-escin treatment reduced anti-

Siglec-F-750 lung signal intensity in EAAD mice to that of healthy

controls.

Discussion

Here, we show that the antibody targeting Siglec-F is a novel

NIRF probe that can be applied for non-invasive optical imaging

of EAAD in mice, during the course of the disease as well as in

response to therapy. We found that upon administration of anti-

SiglecF-750 and anti-SiglecF-680 probes there were significantly

higher fluorescence signals in the lungs of mice with EAAD

compared to healthy controls, demonstrating that NIRF imaging

was successfully used to distinguish EAAD and healthy mice

in vivo.

FRI-NIRF-based studies of the lung have, to date, found little

use in preclinical in vivo studies. However, a recent study

demonstrated the application of a novel NIRF-labeled probe

containing dendritic polyglycerol sulfates to monitor inflammation

in OVA-induced EAAD in mice, by targeting selectins [11].

Furthermore, the enzyme-based and commercially available

activatable probes, MMPSense and ProSense (PerkinElmer) were

shown to be useful for detection of lung inflammation [9,10,19].

These probes are optically silent in their inactivated state, but

become fluorescent following activation by either matrix metallo-

proteinases (MMPs) or cathepsins. A concern is that these probes

are not specific for lung inflammation, and might target

inflammation elsewhere. Additionally, smart-probes activated by

cathepsins and MMPs do not directly bind any target, leading to a

high background from unbound probe. These factors do not apply

for anti-Siglec-F antibody, as it binds directly to eosinophils. Since

eosinophilia is one of the hallmarks of allergic asthma, Siglec-F

represents a useful marker for disease imaging of EAAD.

In support of previously published studies [13,20], we found a

pronounced expression of Siglec-F on lung eosinophils of EAAD

mice. Furthermore, the binding of the i.v. applied antibody to

eosinophils was verified by NIRF microscopy on EAAD lung

sections. We administered anti-Siglec-F at the peak of eosinophilia,

which in this model is 3–4 days after the last i.n. challenge [21,22],

to achieve a high expression level of Siglec-F within the lung that

could be detected by the NIRF-labeled antibody. Notably, several

studies have shown that Siglec-F may play a role in the resolution

of the acute allergic reaction by inducing eosinophil apoptosis

[13,20,23]. For instance, in mice lacking Siglec-F, there is delayed

resolution of lung eosinophilia and reduced peribronchial cell
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apoptosis in a model of EAAD [13]. In addition, the administra-

tion of an anti-Siglec-F antibody significantly reduced allergen-

induced eosinophilic airway inflammation owing to the reduced

production of eosinophils and an increase in apoptotic eosinophils

in lung, blood, and bone marrow [13,20,23]. Based on these

studies, anti-Siglec-F antibody has been considered as a therapeu-

tic drug for eosinophilic disorders including acute and chronic

asthma [20,24,25]. To avoid the potential anti-Siglec-F antibody-

induced eosinophil apoptosis effect on the course of disease, we

administered the antibody 4 days after OVA challenge. However,

we cannot rule out that the decline of the signal detected in EAAD

mice within 24–48 h of receiving the antibody was caused by anti-

Siglec-F-induced apoptosis of eosinophils. We would argue that

the decline of the fluorescence signal is mostly likely due to

degradation or resorption of the antibody or a result of the normal

physiological resolution of allergic inflammation. Nevertheless, it is

tempting to speculate that anti-Siglec-F antibody could be used as

a combined diagnostic and therapeutic tool for allergic eosino-

philic inflammation for preclinical animal models.

Ex vivo results indicate that the anti-Siglec-F antibody not only

targets eosinophils, but also binds to macrophages around the

vessels and bronchioles of the EAAD lung tissue, which supports

previous findings [14]. Because macrophages increase in number

in the lungs of mice with EAAD, it is likely that the increased

Siglec-F signal in EAAD mice as well as the low but measurable

signal in control mice originated, in part, from the antibody

binding to macrophages. Furthermore, macrophages are involved

in the phagocytosis of apoptotic eosinophils during the resolution

of eosinophilia [26,27], and probably the underlying mechanism

for the observed Siglec-F expression in vesicle-like structures

within macrophages from EAAD mice.

Even though anti-Siglec-F antibody does not bind exclusively to

eosinophils and plays a role in eosinophil apoptosis, our results

show that it can be used as a probe to distinguish allergic lung

inflammation from healthy lung. There are additional eosinophil

markers, such as CCR3, EMBP, CD23, CD48, and CD147,

which are considered useful as potential in vivo targeting probes,

but they also bind to other immune cells, such as mast cells or Th

cells [28–31], and may affect the course of the disease to a larger

degree than anti-Siglec-F.

Our choice to utilize NIRF imaging for these studies was based

on several advantages over imaging methods such as MRI and

PET. One advantage is that there is a low signal-to-noise ratio and

high tissue penetration [32]. NIRF imaging using commercially

available dyes, Alexa Fluor 680 and Alexa Fluor 750 [33] coupled

to Siglec-F antibody, were highly suitable for distinguishing

between EAAD and controls. The fluorescence signals we detected

in vivo over the lung of EAAD mice were specific, as an isotype

control antibody did not demonstrate fluorescence intensities

above controls. Furthermore, the lifetime of these signals was the

same as that of the pure probe and substantially higher than the

lifetime of the autofluorescence background measured in prescans.

We observed that Alexa Fluor 680, in general, exhibited higher

fluorescence intensities, which was probably due to its higher

quantum yield. However, this resulted in higher background levels

and may have contributed to the lower signal ratios observed

between EAAD and control mice injected with anti-SiglecF-680.

The majority of EAAD mice showed a difference in signal

intensity between the right and left lung, which reflects the

distribution of inflammation in the lungs based on histological

examination of lung tissue from EAAD mice. Our findings are

supported by previous studies demonstrating heterogeneous

distribution of allergic inflammation in the lung using CT and

MRI [34] and in a study of non-invasive optical tomography using

NIRF-labeled smart probes [10].

Not only could normal, healthy lungs be distinguished from

mice with allergic lung inflammation, but it was possible to

monitor therapeutic efficacy with our anti-Siglec-F imaging

approach. EAAD mice treated with glucocorticosteroids or beta-

escin exhibited reduced eosinophilic inflammation, as visualized

by the NIRF-labeled anti-Siglec-F antibody. Treatment with

dexamethasone and beta-escin reduces lung eosinophilia [35,36]

and in our experiments led to low intensity signals over the lungs of

EAAD mice that were similar to healthy controls. These data

confirm the suitability of anti-Siglec-F-NIRF as a method not only

for detecting allergic lung inflammation but also for monitoring

the efficacy of novel therapies for the treatment of EAAD in

preclinical in vivo studies.

A feature that distinguishes EAAD from human asthma is the

level of airway eosinophilia. The model used in these studies leads

to approximately 30% eosinophils in the airways [22], which is

higher than airway eosinophilia in humans. Nevertheless, this

model is optimal for proof of concept for our imaging approach,

because untreated EAAD mice have significantly higher lung

eosinophilia compared with treated and healthy mice [37], which

allows the differences between healthy, treated, and untreated

groups to be easily distinguished. We would argue that our

approach works well in small animals and could be used effectively

in preclinical models. However, there are some limitations using

this approach clinically. Recent studies demonstrate that Siglec-F

functions differently in animals and humans. For example, Mao

et al. showed, that Siglec-F-mediated apoptosis differed in

magnitude and underlying mechanism in mice compared to

Siglec-8-mediated human eosinophil apoptosis [38], which may be

explained by the fact that Siglec-8 is a functional paraloq of Siglec-

F, rather than a true ortholog. Moreover, other targets that were

successfully used therapeutically in EAAD were ineffective in

humans [30,39]. This indicates that the differences between

EAAD and human asthma in regard to eosinophilia, T-cell

response and AHR need to be considered [15] and entail

optimization of both animal models and probes. Therefore, the

use of anti-Siglec-F/Siglec-8 antibody as a theranostic tool for

human asthma will require further study.

Conclusion
In conclusion, we demonstrate the suitability of NIRF-labeled

anti-Siglec-F-antibody probe in combination with FRI imaging as

a novel tool for non-invasive monitoring of allergic lung

inflammation in mice, for monitoring treatment efficacy and

progression of other eosinophil-related diseases.

Supporting Information

Figure S1 In vivo imaging results of treated mice
correlate with peribronchial inflammation. The upper

panel represents 48 h scans of 5 different EAAD mice treated with

dexamethasone. Samples (A) and (B) demonstrate a low but

measurable anti-SiglecF-750 signal in the lung (arrow heads) in

comparison to (C)-(E). The corresponding HE staining of lung

cryosections at the end of the experiment (lower panel) shows the

two samples with fluorescence signal have remaining cell

infiltration (arrows) despite therapy. All other samples reveal a

complete resolution of inflammation, as judged by the lack of

infiltrating immune cells.

(TIF)
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ABSTRACT Molecular imaging of inflammatory lung 

diseases such as asthma has been limited to date. In 

asthma, the recruitment of innate immune cells to the 

airways is central to the inflammation process. This 

study exploits these cells for imaging purposes within 

the lung, using inhaled polystyrene nanoparticles 

loaded with the near infrared fluorescence (NIRF) dye 

Itrybe (Itrybe-NPs). By means of in vivo and ex vivo 

fluorescence reflectance imaging (FRI) of an 

ovalbumin (OVA)-based allergic airway inflammation 

(AAI) model in hairless SKH-1 mice, we show that 

subsequent to intranasal application of Itrybe-NPs, 

AAI lungs display significantly higher fluorescence 

intensities than lungs of control mice for at least 24h. 

Ex vivo immunofluorescence analysis of lung tissue 

demonstrates the uptake of Itrybe-NPs predominantly 

by CD68
+
CD11c

+
ECF-L

+
MHCII

low
 cells, identifying 

them as alveolar M2 macrophages (AMs) in the 

peribronchial and alveolar areas. The in vivo results 

were validated by confocal microscopy and 

overlapping tile analysis, showing a significantly larger 

amount of Itrybe-NP-containing AMs in lungs of AAI 

mice than in controls. Itrybe-NPs were not found in 

lung draining lymph nodes, indicating that antigen-

presenting cells other than AMs migrate to lymph 

nodes for interaction with T-cells in this model. This 

simple and elegant imaging approach may advance 

monitoring of asthma in vivo over time and aid the 

investigation of the role that AMs play during lung 

inflammation. Furthermore, it allows for tracking of 

inhaled nanoparticles and can hence be utilized for 

studies of the fate of potential new nanotherapeutics.  

KEYWORDS: Itrybe nanoparticles, in vivo near 

infrared fluorescence (NIRF) imaging, experimental 

asthma, allergic airway inflammation mouse model, 

cell tracking, alveolar macrophages.   

Nanoparticles (NPs) are of increasing interest in 

preclinical and clinical research and diagnosis. 

Because they are capable of conjunction with different 

cell types they provide a tool for cell tracking and have 

been particularly explored in the field of stem cell 

therapy and cancer to understand cell migratory 

pathways and the fate of grafted cells. Furthermore, the 

rapid development of nanotechnology has generated a 

plethora of nanomaterials as candidates for novel 

delivery systems for target-specific therapeutic drugs 

as well as for the diagnosis of diseases and assessment 

of treatment efficacy. The chemical properties and the 

preparation of NPs are well established and optimized 

with respect to resulting particle sizes, small size 

distributions and various surface chemistries and also 

with respect to the preparation of fluorophore-encoded 

particles.
1–4

 However, there is still a need for their 

biological profiling and examination in vivo. Several 

recent studies of the interaction of such nanoparticles 

with biological systems have demonstrated the large 

influence of the particle surface functionalization 

(chemical nature and number of surface groups) and 

charge on such interactions including the formation of 

a protein corona and cellular uptake. However, no 

general statements can be made at present because 

previous research has used a range of different model 

systems and sometimes poorly analytically 
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characterized particles and has applied different 

methods to assess possible toxicity due to the lack of 

standardized measurements.
5–10

 Hence, it is often 

necessary to study the influence of the respective tailor 

made particle systems on the specific biological system 

of interest. 

Moreover, with the advent of nanotherapeutics in 

clinical practice,
11

 and the increasing manufacture and 

use of products based on nanotechnology
12

, there is an 

ever increasing need to investigate the fate of NPs in 

the body and to determine in which cell types they 

accumulate. In addition, the stability of NPs in the 

cellular microenvironment, as well as their trafficking 

and retention within different cells and organs require 

examination.
13,14

 Furthermore, established international 

regulatory authority governance of use of foreign 

substances in diagnostics and therapeutics dictates the 

safety thresholds for incorporation of foreign 

substances into healthcare. NPs are foreign substances 

and if administered for diagnostic or therapeutic 

purposes will need to undergo rigorous toxicological 

examination before incorporation into healthcare.  

Tissue macrophages derive from monocytes and 

greatly increase in numbers in inflammation that 

commonly occurs in diseased tissue. Hence, this cell is 

clearly an attractive target for new nanotherapeutics as 

well as for diagnostic purposes. The uptake of NPs by 

macrophages has been repeatedly shown in different 

biological systems and during disease. In particular, 

imaging of tumor-associated macrophages has been 

explored for the purpose of prognostic information, 

definition of tumor margins and measuring therapeutic 

response.
15–17

 

Along with magnetic NPs, fluorescent NPs have been 

abundantly used for imaging macrophages, in both in 

vitro and in vivo assays.
18,19

 Above all, targeted, 

optically active contrast agents have improved the 

diagnosis and therapeutic assessment in oncology.
20

 

We successfully applied polystyrene NPs (PSNPs) 

loaded with the bright NIR-emissive asymmetric 

cyanine Itrybe for tumor detection in vitro and in a 

mouse tumor model.
21

 PSNPs are especially attractive 

for in vivo imaging as polystyrene is generally 

considered as inert and non-toxic.
22,23

 PSNP 

preparation via miniemulsion polymerization is well 

established and these particles are commercially 

available in a large range of different sizes with a 

narrow size distribution and various surface 

chemistries.
24,25

 Moreover, control experiments 

performed with accordingly prepared dye-doped 

particles in a dispersion of 5% BSA/PBS buffer 

revealed the absence of dye leakage.
26

 

Here, we decided to use Itrybe-NPs to track 

macrophages in a mouse model of acute allergic 

inflammation (AAI) because the number of alveolar 

macrophages (AM) is significantly increased in 

asthma.
27

 Allergic asthma is a chronic inflammatory 

disease of the lungs characterized by a variable degree 

of reversible bronchoconstriction, airway 

hyperresponsiveness (AHR) and increased mucus 

production, features that have been reproduced in mice 

by sensitization with different allergens such as 

ovalbumin (OVA).
28

 Allergen challenge induces a 

strong immune response that leads to profound 

immune cell infiltration of the lung airways, activation 

of AMs and thickening of the airway epithelium with a 

marked goblet cell hyperplasia, all of which can be 

found in both asthmatic humans and airway 

immunized mice.
29

 AMs are part of the innate immune 

system and one of the first cell types that allergens 

encounter. In a healthy lung, they form 95% of the cell 

load in bronchoalveolar lavage (BAL), the remainder 

being mainly lymphocytes. Particles inhaled into the 

lower airways are rapidly phagocytized by these cells 

and their number increases significantly during AAI.
30

 

Controversy exists about the role AMs play during the 

development or progress of asthma. Recent evidence 

suggests that AMs are associated with both anti-

inflammatory and pro-inflammatory functions.
27

 

Moreover, it is still unclear whether AMs play a part in 

inducing immune tolerance by antigen-presenting 

capabilities or if this function is largely attributed to 

dendritic cells.
31,32

   

To date, non-invasive preclinical animal studies of 

lung disease have mainly facilitated the anatomical or 

structural assessment of the diseased lung and/or 

require the use of radioactive agents or X-rays (PET, 

SPECT, CT).
33

 Optical imaging has emerged as an 

important alternative, as it represents a rapid, 

inexpensive and relatively simple technique that 

enables the detection of specific targets and functional 

events in a live animal over time 
34

, in particular when 

combined with near infrared fluorescent (NIRF) 

probes. Such probes have revealed several advantages 

over other fluorescent dyes as NIR light can penetrate 

deeper into the tissue and measurements in this 

spectral region benefit from comparably lower tissue 

autofluorescence.
35

 Moreover, they lack radioactivity 

and do not create toxic waste. Hence, NIRF imaging is 

considered as a real future alternative to nuclear 

imaging, the gold standard of functional imaging. 

In this study we show that fluorescence reflectance 

imaging (FRI) in combination with bright NIR-

emissive non-toxic Itrybe-NPs is an ideal technique to 

specifically monitor the presence of AAI in an 

experimental allergic inflammation SKH-1 mouse 
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model. We demonstrate that these NPs are specifically 

taken up by AMs in the lung and show, non-invasively, 

that AAI mice display significantly higher 

fluorescence intensities over the lung than controls. In 

addition, we find that such NPs provide an excellent 

tool to track lung macrophages and further substantiate 

the AMs as the most efficient phagocytes. We believe 

this imaging approach could be applied to pursue the 

fate of inhaled fluorescent NPs in the future, thereby 

assessing their suitability in theranostic nanomedicine.  

Results 

SKH-1 mice are susceptible to AAI induction 

Because the fur of mouse strains used in asthma 

research to date, such as BALB/c or C57BL/6, 

interferes with fluorescence imaging by absorbing and 

scattering of light and requires removal of the hair 

before imaging, we have considered the hairless but 

immunocompetent SKH-1 mouse strain a worthy 

alternative.
36

 To the best of our knowledge, SKH-1 

mice have not previously been used in asthma 

research. Induction of AAI in SKH-1 mice using a 

conventional OVA model (Figure 1A) resulted in 

characteristic features of allergic inflammation, 

comparable to that in BALB/c mice, as demonstrated 

by lung histology, BAL cell count and cytokine 

expression. H&E staining of lung paraffin sections 

revealed typical infiltration of immune cells around the 

bronchi and blood vessels of the lung (Figure 1B). 

Periodic acid - Schiffs (PAS) staining of lung paraffin 

sections showed goblet cell hyperplasia and excess 

mucus production (Figure 1C). Eosinophil numbers in 

BALs of AAI mice was found to be on average 60±1.6 

% of the total cell count in OVA-induced immunized 

mice compared to 0.4±0.38 % in control mice (Figure 

1D). OVA-specific IgE and IgG1 were significantly 

elevated in sera of AAI mice (Figure 1E), as were 

mRNA expression levels of cytokines IL-4, IL-5, IL-

10 and IL-13 in AAI lung tissues (Figure 1F). These 

results demonstrate that OVA-sensitization and 

challenge lead to a robust eosinophilic inflammation 

and Th2 response in SKH-1 mice. Macrophage count 

in BALs of AAI mice was well correlated with 

eosinophil numbers (Supplementary Figure 1) with a 

Pearson Correlation Coefficient r of 0,58. 

Characterization of Itrybe-NPs 

Itrybe-NPs are 100 nm-sized carboxy-modified 

polystyrene nanoparticles loaded with the NIRF dye 

Itrybe, an asymmetric cyanine, via an established 

staining procedure.
37

 In this procedure, a dye-

containing tetrahydrofuran (THF) solution (0.5 mM) 

was added to an aqueous particle suspension (0.5 w%). 

The addition of THF leads to swelling of the polymer 

matrix. The hydrophobic fluorophore molecules can 

then diffuse into the matrix and adsorb on the apolar 

polymer chains. Thus, no functional groups or 

chemical reaction is necessary for dye labeling. 

Subsequently, the NPs are thoroughly washed with 

ethanol to ensure complete removal of all 

unincorporated fluorophores from the particle surface 

and the swelling solvent is exchanged for water to 

induce the contraction of the swollen polymer 

particles. This leads to the physical and sterical 

entrapment of the dye molecules inside the NPs.  

The material and spectroscopic properties as well as 

the in vitro characteristics of Itrybe-NPs are 

summarized in Figure 2. Characterizing of the size 

distribution of colloidally stable aqueous dispersions of 

Itrybe-NPs via nanoparticle tracking analysis (NTA) 

revealed a mean hydrodynamic diameter dH of 108 +/- 

8 nm and high monodispersity (Figure 2A). Atomic 

force microscopy (AFM) showed the spherical shape 

and non-porous surface of the NPs (Figure 2B). Itrybe-

NPs show broad, unstructured and almost 

environment-insensitive absorption (500 nm – 700 nm) 

and emission (700 nm – 900 nm) bands with an 

absorption maximum at 605 nm and an emission 

maximum at 760 nm, respectively. The broad 

absorption band provides a great versatility in the 

choice of the excitation wavelength, rarely found in 

NIRF dyes, and the large Stokes Shift of about 3400 

cm
-1 

is ideal for the separation of scattered excitation 

light from fluorescence (Figure 2C). To test if Itrybe-

NPs are taken up by AMs in vitro, we incubated 100 

ng/ml NPs with 5 x 10
5
 MH-S cells, an immortalized 

and adherent mouse alveolar macrophage cell line, 

over 5 h (data not shown) and 24 h (Figure 2D and E). 

The MH-S cells readily take up Itrybe-NPs within 5 

hours of incubation. As can be seen in the 

representative image in Figure 2D, a strong active 

uptake of the particles is observed after 24h of 

incubation at 37°C, which was completely inhibited, 

when the cells were maintained at 4°C.  

In vivo monitoring of AAI by means of Itrybe-NPs 

To assess the suitability of Itrybe-NPs for monitoring 

the presence of AAI, we intranasally (i.n.) applied 100 

nm NPs in OVA-induced AAI or control mice. Mice 

were scanned in vivo by FRI 1 h, 5 h and 24 h after NP 

application to investigate the distribution of Itrybe-NPs 

in whole bodies and in the lung over time. Full body 

scans revealed that fluorescence signals above 

background are detectable over the lung area as early 

as 1 h after NP application. Some animals (AAI mice 

and controls) also showed measurable fluorescence 

intensities in the stomach and intestine as well as in the 
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bladder (data not shown). To analyze the fluorescence 

intensities derived from the lungs in more detail, we 

performed in vivo scans by choosing a region of 

interest (ROI) outlining the lungs of the animals. These 

were performed with an increased raster resolution (1 

mm) as well as a higher integration time (1 s). To 

verify that the measured fluorescence intensities 

originated from the injected Itrybe-NP, we performed a 

lifetime (LT) analysis and compared the results with 

the LT of the Itrybe-NPs in vitro in solution 

(Supplementary Figure 2). The fluorescence LT 

measured in vivo over the lung region was 0.8 ns as 

measured in vitro, which is substantially longer than 

the LT of the autofluorescence background measured 

in the prescan in the same region (0.4 - 0.5 ns). This 

indicates that the fluorescence intensities measured 

over the lung are specific for Itrybe.  

Figure 3A shows representative images of lung scans 

of OVA-induced AAI mice and healthy control mice 

before and at 1 h, 5 h, and 24 h post i.n. NP 

application. We found a significantly higher 

accumulation of Itrybe-NPs in lungs of OVA-

immunized mice than in control mice at every time 

point (Figure 3C). Peak average intensities over the 

lung were nearly identical at 1 h and 5 h (153.8 and 

154.2) post NP application. Some animals showed 

higher fluorescence intensities in the lung at 1 h or 24 

h after i.n. NP application, indicative of an inter-

individual variability in the progress of acute onset of 

AAI with a varying accumulation of immune cells in 

the lungs of mice. AAI mice exhibited 2.9, 1.7 and 1.4 

times higher NP-derived signals (average intensity 

over the lung minus average intensity of the prescan) 

in the lungs at 1 h, 5 h and 24 h respectively, when 

compared to control animals. 

To confirm that the intensities measured in vivo 

originated from the lung, we performed FRI scans of 

the excised lungs from animals sacrificed 24 h after i.n. 

NP application. Ex vivo scans confirmed our in vivo 

data by displaying about 3.5 fold higher fluorescence 

intensities in AAI lungs than in control lungs (Figure 

3B and D). 

Itrybe-NPs are phagocytized by bronchial and alveolar 

macrophages 

To analyze the location of the Itrybe-NP derived 

signals on a cellular level and thereby identify the cells 

that phagocytize the NPs in vivo, cytospins from BALs 

as well as frozen lung tissue sections were 

immunofluorescently stained with a fluorophore-

labeled antibody against the macrophage marker 

CD68. Cytospins of BALs from lungs explanted 24 h 

after NP application demonstrated that Itrybe-NPs 

were taken up by CD68-positive (CD68
+
) cells in both 

AAI and control mice (Figure 4A) but not by any other 

cells, such as eosinophils, which are easily 

distinguished by their fragmented or donut shaped 

nucleus (Figure 4A, left panel).  

Immunofluorescence microscopy of cryosections from 

entire lungs explanted 24 h after NP instillation also 

showed Itrybe-NPs in CD68
+
 immune cells in both 

AAI and control tissue (Figure 4B). As shown in 

Figure 4B, Itrybe-NP loaded macrophages were 

predominantly found in alveolar spaces and in the 

bronchial lumen. In lungs from AAI mice, we never 

found NPs in macrophages located within inducible 

bronchus-associated lymphoid tissue (iBALT) - an 

ectopic lymphoid tissue formed in the lung after 

pulmonary infection or inflammation. However, Itrybe 

NP-filled macrophages often clustered around iBALT 

(Figure 4B), suggesting that Itrybe-NP-filled 

macrophages are not able to migrate into, but may be 

recruited by iBALT. 

The total number of CD68- and Itrybe-NP-positive 

cells was obtained from merged, overlapping z-stacks, 

acquired with a confocal microscope and covering a 

representative area of 5.0 x 2.8 x 0.032 mm
3
 (Figure 

5A). Specificity of the detected Itrybe-NP signals was 

insured by measuring the emission spectrum in several 

Itrybe-NP containing ROIs and comparing it with the 

emission spectra of ROIs devoid of Itrybe-NPs and 

with the emission spectrum of the pure Itrybe-NP 

solution (Supplementary Figures 3 and 4). The 

emission maximum of Itrybe-NPs on tissue slices 

(located at about 710 nm) measured with the confocal 

microscope appears to be blue shifted compared to that 

measured in vitro (760 nm) with a calibrated 

spectrofluorometer (Figure 2C), which has been 

corrected for the wavelength-dependent spectral 

responsivity of the instrument.
38

 This apparent spectral 

deviation is ascribed to the wavelength-dependent 

spectral responsivity of the confocal microscope 

originating from the detector and the transmission of 

other optical components in the detection channel, 

which distorts the measured spectrum on tissue slices 

in an instrument-specific manner and accounts for the 

apparent blue shift in emission. 

One tiled image of each 6 AAI and 6 control lung 

cryosections was analyzed. In AAI lungs we detected 4 

times as many Itrybe-NP-containing AMs than in 

controls (Figure 5B). This difference clearly accounts 

for the increased fluorescence intensities detected by in 

vivo imaging in AAI lungs. As seen in Figure 5C, the 

number of Itrybe-NPs - containing cells form 2 clusters 

that correspond to AAI (red) and control (blue) mice, 

based on the fact that controls contain a lower total 
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number of CD68
+
 AMs when compared to AAI mice 

and thus have a lower amount of Itrybe-NP containing 

CD68
+
 cells. Stitched images of lung sections also 

revealed that in AAI lungs Itrybe-NPs accumulate 

more often in clusters around bronchi and blood 

vessels when compared to control lungs, where they 

were more evenly spread (Figure 5A). 

Although AMs in lung cryosections from AAI mice 

often appeared larger and consequently filled with 

more NPs when compared to controls, we could not 

find any significant difference in NP-load by 

quantification of mean fluorescence intensities in 

CD68/NP-colocalized cells (data not shown).  

Because cross reactivity of anti-CD68 antibodies has 

been reported with fibroblasts and activated 

endothelial cells,
39

 and in order to exclude uptake of 

Itrybe-NPs by dendritic cells, we double-stained lung 

cryosections with anti-CD68 and anti-CD11c 

antibodies. CD11c is mainly expressed on dendritic 

cells (DCs), whereas most, if not all, AMs express low 

or intermediate amounts of CD11c.
40

 As DCs do not 

express CD68 
41

 and interstitial macrophages, 

fibroblasts and endothelial cells are all CD11c-

negative,
42

 we considered a positive CD68
+
CD11c

+
 

double staining a reliable method for identifying the 

cells as AMs, a detection method that was used by 

others before.
43

 

As seen in Figure 6A, Itrybe-NPs were only found in 

CD68
+
CD11c

+
 cells and were therefore considered to 

be phagocytized by AMs only. Co-staining with anti-

CD68 and anti-MHCII antibodies (Figure 6B) 

demonstrated that the Itrybe-NPs were only seen in 

CD68
+
MHCII

low
 cells. This clearly confirms that cells 

that have taken up Itrybe-NPs are not dendritic cells, 

which express high levels of MHCII. A low expression 

of MHCII on Itrybe-NPs positive cells also suggests 

that Itrybe-NPs are preferentially taken up by 

alternatively activated (M2) macrophages rather than 

by classically activated macrophages (M1), which tend 

to express higher MHCII. This was further confirmed 

by double-staining of lung cryosections with anti-

CD68 and an antibody against ECF-L, a lectin 

primarily expressed on M2 macrophages. Figure 6C 

representatively shows that all Itrybe-NPs visualized 

by fluorescence microscopy were found in CD68
+
ECF-

L
+ 

cells, suggesting that NPs are taken up by 

alternatively activated M2 macrophages. In summary, 

the immunofluorescence staining illustrates that Itrybe-

NPs were phagocytized by 

CD68
+
CD11c

+
MHCII

low
ECF-L

+
 cells, representing 

bronchial and alveolar M2 macrophages. 

While we did not detect any Itrybe-NPs in 

CD68
─
MHC

high 
cells in any of the sections examined, 

an indication that dendritic cells do not take up these 

NPs, we cannot completely rule out the occasional 

uptake of Itrybe-NPs by dendritic cells.  

The possible uptake of Itrybe-NPs by lung epithelial 

cells was also examined by immunofluorescence 

studies with antibodies directed against the 

transmembrane protein podoplanin, a heavily O-

glycosylated protein, present on alveolar epithelial type 

I cells (AT1) as well as prosurfactant protein C (proSP-

C), a marker for alveolar type II cells (AT2).
44

 While 

we never found any Itrybe-NPs in proSP-C
+
 AT2 cells, 

we observed the location of some Itrybe-NPs in the 

cytoplasm of podoplanin
+
 AT1 cells (Figure 7).  

To assess if the pattern of Itrybe-NP uptake by AMs is 

different at an earlier or later time point, we performed 

anti-CD68 immunostaining with cryosections of lungs 

explanted 5 h, 48 h or 72 h after i.n. Itrybe-NP 

instillation. Similar to the 24 h time point, we found 

Itrybe-NPs in CD68
+
 AMs, in both AAI and control 

lungs. In contrast to findings obtained 24 h after 

Itrybe-NP instillation, at 5 h many free Itrybe-NPs 

were still seen in alveoli and bronchioles, representing 

NPs which were not or not yet phagocytized by AMs 

(Figure 8). At 48 h and 72 h after Itrybe-NP 

application, the pattern of NP-distribution was 

comparable to that obtained after 24 h (Figure 8), with 

most Itrybe-NPs phagocytized by 

CD68
+
CD11c

+
MHCII

low
ECF-L

+
 alveolar M2 

macrophages. 

Controversy exists about the pro-inflammatory role of 

macrophages, with conflicting results regarding the 

capability of antigen-primed AMs to migrate to lung 

draining lymph nodes and activate T-cells.
45

 We 

therefore tested whether NP-containing AMs can be 

found in lung draining lymph nodes 24 h, 48 h or 72 h 

post NP application. However, we could not detect any 

Itrybe-specific signals at any time point analyzed in 

either AAI or control lymph node cryosections (data 

not shown), suggesting that the NP-loaded 

macrophages observed are either not able to, or are not 

required to, migrate to lung draining lymph nodes 

under allergic airway conditions. 

Discussion 

To our knowledge this is the first application of NIRF-

loaded NPs for the in vivo detection of inflammatory 

response by FRI in a conventional OVA-induced 

allergic airway inflammation mouse model (AAI). We 

could demonstrate that uncomplicated i.n. application 

of non-toxic Itrybe-NPs was sufficient to distinguish 

between AAI and control mice, showing that the 
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measured fluorescence intensities over the lung area 

were significantly higher than those from controls. 

Molecular imaging of lung diseases and in particular 

AAI using fluorescence imaging has been very limited 

up to now. Three in vivo approaches have been 

reported with NIRF labeled probes so far where higher 

fluorescence intensities were observed in AAI versus 

controls for OVA-induced allergic asthma models: one 

targeting eosinophilia by using a NIRF-labeled anti-

SiglecF antibody 
46

 and the others monitoring the 

increase of typical inflammation markers such as 

matrix metalloproteinases 
47

 or P-Selectins.
48

 All of 

these approaches used NIRF-labeled probes, as NIRF 

poses a number of advantages for FRI, such as high 

signal-to-background ratio and high tissue penetration. 

Our own approach also exploits these advantages of 

NIRF by utilizing NPs loaded with the NIRF dye 

Itrybe. In addition, we established AAI in hairless and 

immunocompetent SKH-1 mice and demonstrated that 

these mice respond equally well to the induction of 

allergic inflammation as commonly used mouse 

strains, such as BALB/c, by developing a pronounced 

eosinophilia, goblet cell hyperplasia, mucus production 

and iBALT in their lungs. These mice also displayed 

typical features of a Th2 allergic response such as 

elevated OVA-specific IgE and IgG1 serum levels as 

well as significantly higher IL-4, IL-5, IL-10 and IL-13 

cytokine expression than controls. The use of hairless 

SKH-1 mice allows a further improvement of 

fluorescence detection owing to the reduction of light 

scattering and absorbance due to the lack of fur. 

In addition, our intranasal application of the NP probe, 

presents the most direct route to lung tissue. 

Intravenously applied NPs tend to be rapidly cleared 

by the liver or kidneys, depending on the size, or 

accumulate in the spleen and lymph nodes, as these 

organs contain a high number of macrophages.
49

 While 

some animals displayed fluorescence signals in the 

stomach due to swallowing of the probe, we did not 

detect any NP-derived signals in the liver, kidney, 

spleen or lymph nodes. This underlines the high 

potential of intranasally applied Itrybe-NPs for non-

invasively distinguishing inflamed from healthy lungs. 

Hence, this NP-based approach in general, and our 

Itrybe-NPs specifically, present a promising tool for 

the in vivo monitoring of lung pathologies where 

macrophages are involved as well as for the preclinical 

validation of new therapeutics in asthma mouse 

models. 

In our imaging strategy, we found that macrophages 

readily capture and retain our NIRF-probe in the lung, 

as they represent one of the innate immune cells which 

significantly increase in numbers upon airway 

inflammation. NPs have been used to image 

macrophages before, for example using iron oxide or 

gadolinium particles in combination with MRI. In this 

way, inflammatory processes and the related 

macrophage infiltration were detected in 

atherosclerosis, myocardial infarction, stroke, multiple 

sclerosis, rheumatoid arthritis and kidney 

transplantation in small animal models.
50

 

Nanomaterial-based contrast agents for computer 

tomography (CT) have also been used for tracking 

macrophages. However, X-rays require relatively high 

concentrations of NPs to delineate individual cells.
51

 

Even NP-loaded macrophages themselves have been 

used as contrast agents. For example Madsen et al 

(2013) used MRI to detect the migration of NP-loaded 

exogenous macrophages into the brain.
52

 In a previous 

study we tracked intratracheally applied barium 

sulfate-loaded macrophages in the lung of mice with 

AAI by using synchrotron radiation inline free 

propagation phase contrast CT.
53

 Imaging of 

endogenous alveolar macrophages has to date only 

been shown with gold-NPs 
54

 and superparamagnetic 

iron oxide NPs (SPIOs).
55

 To the best of our 

knowledge our study is the first to use fluorescently 

labeled NPs to track pulmonary macrophages. Because 

macrophages increase in number during the process of 

AAI and are the main phagocytic cell in the lung, we 

explored the source of the increased in vivo signal 

which we detected in lungs of AAI mice by 

undertaking an ex vivo characterization of the uptake 

of Itrybe NPs. As we demonstrate, Itrybe NPs were 

readily taken up by AMs, but not by DCs, interstitial 

macrophages or any other innate cell. In accordance 

with the study by Geiser et al 
54

, Itrybe NPs are taken 

up by macrophages of both diseased and healthy 

animals and no discriminating mechanism of 

phagocytosis was apparent with the microscopy 

methods we used. We identified NP-containing cells as 

CD68
+
CD11c

+
ECF-L

+
MHCII

low
 representing alveolar 

M2 macrophages. The role of the two major types of 

AMs, M1 (classically activated) and M2 (alternatively 

activated) macrophages, in human allergic asthma as 

well as mouse AAI, are complex and controversial. It 

has been proposed that M1 are Th1-driven, while M2 

cells are induced by and can drive Th2 responses, but 

increasing evidence suggests the parallel development 

and involvement of both these cell types in asthma.
27

 It 

seems that while M1 macrophages may be beneficial 

to prevent allergic sensitization, in already established 

asthma they may promote the development of M2 

macrophages.
56

 M2 macrophages are associated with 

asthma, but it is still unclear if they actively contribute 

to asthma pathogenesis.
57

 In our study, we detected 

NPs only in M2 cells, regardless of disease status. We 

therefore assume that the uptake of NPs by M2 cells is 

not related or dependent on the presence of asthma, in 
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accordance with the fact that these cells are involved in 

phagocytosis of foreign pathogens and apoptotic cells. 

It remains to be examined whether there is a difference 

in the amount of Itrybe-NPs taken up by AAI 

macrophages when compared to controls or whether 

AAI M2 macrophages process NPs differently to those 

of controls. A systematic analysis of the uptake and 

processing of Itrybe-NPs in relation to disease status 

and the effect NPs may have on the exacerbation of 

AAI is in preparation and will provide important 

information about the role AMs play in the relationship 

between AAI and inhaled NPs. 

We were not able to detect any Itrybe-NPs in lung 

draining lymph nodes and therefore found no evidence 

of macrophage trafficking to lymph nodes. The latter 

finding is consistent with AMs being efficient 

phagocytes but poor antigen-presenting cells, whereas 

DCs are poor phagocytes but the most competent cell 

population for T-cell activation.
43,58

 Alternatively, it 

may indicate that, when activated as M2 type, their 

antigen presenting capacity would be confined to their 

locality in respiratory tissue in conditions relating to 

the airway allergic model used. We further found that 

NP-filled AMs often clustered around iBALT. This 

could indicate that cells accumulated in iBALT, in 

particular B-cells, positively influence the activation 

and recruitment of macrophages, a mechanism that has 

recently been suggested for B-cells in iBALT of 

cigarette smoke – induced COPD.
59

 We also detected 

small amounts of Itrybe-NPs in AT1 cells, the 

structural cells of the lung which are responsible for 

gas exchange. These findings confirm former in vitro 

and in vivo studies that epithelial cells are capable of 

taking up NPs 
60,61

 and should be considered in the 

future design of NP-based drug delivery systems. 

Our tiling experiments confirmed the in vivo results by 

demonstrating a higher number of Itrybe-NP-

containing AMs in AAI than in controls. It also 

enabled a semi-quantitative calculation of the 

fluorescence intensity in AAI as compared to controls, 

which may be used as an indication of the percentage 

of NPs that can reach the different parts of the lung. 

Moreover, our results revealed that Itrybe-NP-

containing AMs cluster around bronchi and blood 

vessels in AAI, whereas there was a more homogenous 

distribution in controls. Future experiments may 

involve spectrally resolved, 3-dimensional, 

overlapping, confocal scans of the entire lung tissue 

sections, which would allow for absolute 

measurements of amount of NP present, as well as 

their localization within specific cell organelles or lung 

area. 

As NPs are increasingly used as targeted drug delivery 

systems,
62

 their characterization and rigorous 

toxicological examination is of growing importance for 

clinical application. This includes establishing their 

fate and within this, the kinetics of the uptake, 

distribution and dispersal. Transport via macrophages 

is clearly involved in the latter and uptake of NPs by 

macrophages has been recently exploited for novel 

nanotherapeutics.
63

 Identification of location in tissues 

and cells then assists in the direction of toxicology 

focusing on the potential toxic effects on tissues and 

cell compartments of accumulation. Macrophages can 

traffic from the lungs to other organs and examination 

of their capacity to deliver NPs between sites is 

therefore of value in assessing NP kinetics. 

Nanoparticles may not be inert passengers within 

macrophages, but may have significant effects on their 

function and even influence their longevity. Evidence 

of such influence would be important for the 

interpretation of findings obtained from research of 

biological systems in which NPs are used as research 

tools. In this regard, Itrybe-NPs in combination with in 

vivo optical imaging and high resolution fluorescence 

microscopy represent a powerful tool to trace 

macrophages in the entire lung and provide new 

information of the fate of inhaled NPs. In addition, the 

biological stability which is provided by the 

encapsulation of the Itrybe dye grants an important 

precondition for the tracking of nanomaterial within 

living systems. 

Conclusion 

Our results show that 100 nm Itrybe-NPs are a highly 

suitable tool for distinguishing between healthy mice 

and mice with allergic lung inflammation in vivo and, 

subsequently, localizing NP-loaded immune cells by 

ex-vivo NIRF microscopy. Our approach may facilitate 

a broader understanding of the cellular and molecular 

events in lung disease and may be used as a model to 

assess new lung disease therapies, in particular 

nanotherapeutics.  

Materials and Methods 

Materials and cells 

100 nm carboxy-modified polystyrene particles were 

purchased from Kisker Biotech GmbH and stained 

with Itrybe using a previously described staining 

procedure.
37

  All particles were ultrasonically treated 

prior to use. Itrybe was obtained from Otava Ltd. and 

used as received. 

For in vitro experiments, 5 x 10
5 

cells of the 

immortalized and adherent mouse alveolar cell line 
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MH-S (CRL-2019, ATCC) 
64

 were grown on 25 mm 

Poly-L-Lysin coated coverslips in complete RPMI 

medium, supplemented with 10% FCS and 0.05 mM 2-

mercaptoethanol. MH-S cells were incubated for 24 h 

with 100 ng/ml of Itrye-NPs either at 37°C or at 4°C, 

washed twice with phosphate-buffered saline (PBS) 

and then fixed for 10 min at RT with 4% 

paraformaldehyde (PFA) before counterstaining the 

nuclei with 4 µg/ml DAPI and visualization using an 

Axiovert 200 M inverted microscope (Carl Zeiss 

Microscopy GmbH). 

Nanoparticle characterization 

The size distribution was analyzed by NTA using a 

NanoSight LM14 equipped with a 405 nm laser diode 

and scientific CMOS camera from Malvern 

Instruments GmbH. The aqueous suspensions 

containing about 5 x 10
8
 particles/ml were measured 5 

times for 60 s and analyzed with the NanoSight NTA 

2.3 Analytical Software Suite. 

For the characterization of the morphology, Itrybe-NPs 

were dried on a silica substrate and imaged with an 

Agilent 5500 atomic force microscope (AFM) in the 

tapping mode using soft tapping cantilevers with a 

spring constant of nominally 5 N/m and a tip radius of 

<10 nm (Tap150Al-G from BudgetSensors).  

Absorption measurements of 0.1 w% particle 

suspensions were carried out with a Cary 5000 

spectrophotometer from Varian Inc. Fluorescence 

measurements were performed with a calibrated 

Spectronics Instruments 8100 spectrofluorometer 

(Aminco Bowmann) equipped with Glan Thompson 

polarizers. The excitation polarizer was set to 0° and 

the emission polarizer to 54.7°. The resulting emission 

spectra were corrected for the spectral responsivity of 

the fluorometer’s emission channel. 

Animals 

Pathogen free female immunocompetent and hairless 

SKH-1mice (Crl: SKH1-Hr
hr)

, 6-8 weeks of age, were 

purchased from Charles River Laboratories Inc. All 

animals were housed in a controlled environment at a 

regular 12-hour dark:light cycle, at 22°C and were fed 

laboratory chow and tap water ad libitum. Seven days 

prior to imaging experiments the standard food was 

replaced by chlorophyll free chow (Scientific Animal 

Food & Engineering) to reduce autofluorescence from 

the stomach and gut of the animals. All animal 

experiments were performed in accordance with 

German animal ethics regulations and were approved 

by the local ethics office (Niedersächsisches 

Landesamt für Verbraucherschutz und 

Lebensmittelsicherheit, LAVES, ethics approval no. 

33.12-42502-04-12/0834). 

Induction of AAI  

On days 0 and 14 mice were immunized via 

intraperitoneal (i.p.) injection with 50 μg OVA 

(Hyglos) and 0.5% aluminium hydroxide gel adjuvant 

(Invivogen) in a volume of 0.2 ml PBS, as well as 

intranasally (i.n.) with 50 µg OVA in 25 µl of PBS. On 

days 28, 29, 30 and 33 post-immunization, mice were 

challenged i.n. with 250 µg OVA in 25 µl PBS to 

induce an acute reaction. Control mice received PBS 

instead of OVA for all described steps except for the 

last two challenges on days 30 and 33, where they 

received 250 µg OVA in 25 µl PBS. Itrybe-NPs were 

given i.n. one day post challenges and mice were 

scanned over a given period of time by optical 

imaging. All i.n. applications were performed under 

short 2% isoflurane, 2 l/min oxygen anesthesia. Mice 

were sacrificed by CO2 overdose after the last scan. 

In vivo fluorescence reflectance imaging (FRI) 

Two-dimensional in vivo FRI was performed with an 

Optix MX2 System (ART), which comprises an 

interface for inhalation anesthetics and 4 pulsed laser 

diodes (635, 670, 730 and 785 nm) as described 

before.
65

 The Optix MX2 system works in a raster 

mode, illuminating each raster point with a multitude 

of short laser pulses (<150 ps, repetition rate 8 MHz). 

For measurement of the emitted fluorescence light a 

single photon counting detector is used that, being 

triggered with each excitation pulse, records the 

amount of detected fluorescence photons and the time 

delay for the first detection event. From these values a 

time-of-flight histogram is created for each raster point 

(temporal point spread function, TPSF) which contains 

information about fluorescence intensity, concentration 

and depth of the fluorophore in the analyzed subject as 

well as the fluorescence lifetime. The lifetime is an 

additional parameter characterizing the fluorophore, 

which can be used to discriminate between probe 

specific signals and unwanted fluorescence derived 

from autofluorescence. Raster point separation is 

possible between 0.5 – 2 mm, and photon collection 

time per raster point can be modified (integration 

time). Whereas the first allows for a more detailed 

analysis, increasing the integration time improves the 

statistics in the TPSF and allows for a more precise 

calculation of the underlying lifetime. 

During in vivo scans, mice were anaesthetized by 

inhalation with 2% isoflurane, 2l/min oxygen for 15 - 

20 min per scan. OVA challenged and control mice 

were prescanned to assess autofluorescence of the 
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animals. One day post challenges the animals were 

given 160 µg of 100 nm Itrybe-NPs in 30 µl of PBS by 

i.n. application and were then scanned after 1 h, 5 h 

and 24 h (n=16 for AAI; n=15 for controls). Itrybe 

fluorescence was measured using an excitation of 635 

nm in combination with a 670 nm band-pass emission 

filter with 40 nm bandwidth. Scans were performed 

with a 1.5 mm (whole body scans) or 1.0 mm (lung 

scans) raster, a photon collection time (integration 

time) of 0.3–1 s per scan point and varying laser 

power. Intensity data and fluorescence lifetime were 

analyzed with the OptiView-2-02-00 software (ART).  

Fluorescence intensity data are displayed in 

normalized counts (NC), where the measured 

fluorescence intensities (counts) were normalized for 

varying laser power and integration times, allowing for 

comparison of measurements with different settings. 

Data were quantified as average fluorescence intensity 

over a chosen region of interest over the lung and 

subsequently corrected for autofluorescence by 

subtracting the average fluorescence intensity from the 

same region of interest in the respective prescans.  

Following imaging, mice were sacrificed and lungs 

were harvested for ex vivo scans and then cryofrozen 

for later microscopy. Bronchoalveolar lavage (BAL) 

was performed with some mice before harvesting of 

the lung.  

Bronchoalveolar lavage  

Five - 72 h after NP application, mice were sacrificed 

by CO2 overdose. BAL was performed by washing the 

airways gently three times with 500 µl of 2% FCS/PBS 

after exposing and cannulating the trachea. Volumes 

were pooled and then washed once in the same buffer. 

Recovered cells were counted in a haemocytometer 

and 3 x 10
4
 cells were used for obtaining cytospins 

with a Shandon Cytospin 4 (Thermo Scientific), 

followed by Giemsa staining (Sigma Aldrich) for 

differential cell counting. Where indicated, cytospins 

were fixed with 1:1 acetone/methanol solution, 

immunostained and counterstained with DAPI (4 

µg/ml) for visualization of nuclei. 

Immunofluorescence staining 

Explanted lungs were cannulated and filled with 600 µl 

of Tissue Tek OCT compound (Sakura Finetek) and 

immediately frozen in liquid nitrogen at -80°C. Frozen 

lung sections of 5 µm or 20 µm from AAI and control 

mice were obtained by cutting the lungs with a Jung 

Frigocut 2800E cryostat microtome (Leica 

Microsystems). 

For NIRF microscopy, all sections were stained with 

DAPI (4 µg/ml) for visualization of nuclei. For 

detection of macrophages 5 µm cryosections were 

fixed with acetone, stained with rat-anti-mouse CD68 

antibody (clone FA-11, Abcam,1:300), followed by 

incubation with biotinylated goat-anti-rat antibody 

(BioLegend, 1:200) and Streptavidin-Alexa Fluor 555 

(Life Technologies, 1:400). CD11c cell expression was 

assessed with Alexa Fluor 488 conjugated anti-mouse 

CD11c (clone N418, BioLegend, 1:200) and MHCII 

expression with Alexa Fluor 488 conjugated rat-anti-

mouse MHCII antibody (clone M5/114.15.2, 

Biolegend, 1:200). ECF-L was stained with goat anti-

mouse ECF-L antibody (R&D, 1:150), followed by 

donkey anti-goat-Alexa Fluor 488 secondary antibody 

(Abcam, 1:400). AT1 cells were detected with 

hamster-anti-mouse podoplanin (Santa Cruz 

Biotechnology, 1:200), followed by goat anti-hamster-

Alexa Fluor 488 secondary antibody (Life 

Technologies, 1:400). AT2 cells were detected by 

rabbit anti-mouse proS-PC antibody (Millipore, 

1:2000), followed by goat anti-rabbit Alexa Fluor 488 

(Life Technologies, 1:400). Images were acquired with 

an Axiovert 200 M inverted microscope (Carl Zeiss 

Microscopy GmbH) equipped with a Xenon lamp and 

a high sensitivity ORCA-AG digital camera 

(Hamamatsu). Image generation and processing were 

performed with the AxioVision Rel.4.6 software (Carl 

Zeiss Microscopy GmbH) and FIJI (National Institutes 

of Health, Bethesda, USA).
66

 

For quantification of NP-positive macrophages in AAI 

and control lungs 20 µm sections were stained with 

anti-mouse CD68 antibody as described above. 

Representative 5.0 x 2.8 x 0.032 mm areas of the lung 

containing nuclei, CD68- and Itrybe-NP-positive cells 

were acquired by scanning and then merging 108 

overlapping z-stacks with a Leica SP5 confocal laser 

scanning microscope (CLSM, Leica Microsystems) 

equipped with a 20x immersion objective (HCX PL 

APO CS, 0.70NA), a motorized stage, a tunable laser 

(470-670 nm) and hybrid detectors. DAPI, Alexa Fluor 

555 and Itrybe-NPs were excited with 405, 555 and 

650 nm, respectively, and their individual emissions 

collected at 420-500 nm, 560-620 nm and 665-795 nm. 

Imaris 7.7.1 (Bitplane) was then used to visualize the 

fluorescence signal and generate ellipsoid spots for all 

nuclei, CD68- and Itrybe-positive cells based on the 

original CLSM multi-channel images. Briefly, three-

dimensional objects were generated for each nucleus, 

CD68 and Itrybe-positive cell and counted. To 

improve accuracy, each of the signal sources were 

modelled after an ellipsoid shape, whose major axis 

was parallel to the z-axis, so as to account for the 

lower z-axial optical resolution. The size of the 

ellipsoid model shape varied proportionally with 
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respect to the size of the detected fluorescence cluster. 

Ellipsoids representing CD68 or Itrybe-NPs were 

considered to colocalize, when the distance of their 

center coordinates was less than 0.5 µm. Further 

visualization was conducted with the FIJI image 

processing package, while data analysis was done with 

Microsoft Excel. To account for differences in the total 

number of cells between AAI and control lungs, 

CD68
+
/NP+ colocalization was normalized to the total 

cell number measured as DAPI stained nuclei. 

Determination of OVA-specific antibodies by ELISA 

Sera were obtained 48 h after the last challenge. Serum 

levels of OVA-specific IgE and IgG1 were measured 

by ELISA. Briefly, 96-well plates (Nunc) were coated 

with 100 µg/ml OVA. After addition of serum 

samples, OVA specific IgE was detected with a 

commercial kit (Biolegend) according to the 

manufacturer’s protocol and OVA specific IgG1 was 

detected with a biotinylated anti-IgG1 antibody 

(Southern Biotechnology) and amplified with 

Streptavidin HRP (Southern Biotechnology) as 

described before.
67

 Optical densities of the samples 

were measured at 450 nm. 

Determination of cytokine mRNA expression by 

quantitative reverse transcription PCR 

Pieces of cryofrozen lung tissue were homogenized 

with a tissue homogenizer and total RNA extracted 

with an RNAeasy Universal Plus kit (Qiagen) 

according to the manufacturer’s protocol. RNA 

concentrations and purity were measured with a 

NanoDrop (Thermo Scientific). The SuperScript® 

First-Strand Synthesis System for RT-PCR (Life 

Technologies) was used to synthesize first-strand 

cDNA. Real-time PCR was performed using the 

QuantiTect SYBR Green PCR Kit (Qiagen) and a 

LightCycler 480II (Roche Diagnostics). Data were 

expressed as the calculated ratio of the values obtained 

for the specific cytokines vs the values of the 

housekeeping gene HPRT1. Forward and reverse 

primers for all genes are listed in Supplementary Table 

1. 

Histology 

For demonstration of AAI induction in SKH-1mice, 

AAI and control lungs were explanted 2 days after the 

last challenge, fixed in 10% buffered formalin and 

embedded in paraffin. 3 µm sections were cut and 

H&E staining was performed to evaluate the degree of 

lung infiltrating mononuclear cells. PAS staining was 

performed with a PAS staining kit according to the 

manufacturer’s protocol (Merck) to show excess 

mucus production in paraffin sections from AAI mice. 

Statistical analysis 

Statistical analysis for significant difference of the 

mean values between two groups was performed with 

PAST 
68

 using a Welch t-test. P-values < 0.05 were 

considered significant. Cluster analysis was performed 

with PAST 
68

 and calculated clusters were manually 

encircled in the scatter plot created by Microsoft Excel. 

Pearson’s Correlation Coefficient was calculated by 

Microsoft Excel.  
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Figure 1. SKH-1 mice are susceptible to AAI induction. (A) General immunization and 

challenge scheme for the allergic inflammation model used in all investigations. (B) H&E and 

(C) PAS staining of lung paraffin sections of AAI (upper panel) and control mice (lower 

panel). (B) AAI mice exhibit typical cell infiltration around blood vessels and bronchi, as well 

as (C) goblet cells filled with secretory granules (magenta) and increased goblet cell 

hyperplasia (upper panel). (D) Cell composition in BALs shows increased total cells, 

macrophages (MØ), eosinophils (Eos) and lymphocytes (Lymph) in AAI, (E) OVA-specific 

IgE and IgG1 are significantly increased in AAI. Serum was diluted 1:10 for IgE and 1:625 

for IgG1, (F) Expression of IL-4, IL-5, IL-10 and IL-13 Cytokines expression in lung tissue is 

significantly elevated in AAI. Scale bars represent 200 µm (B) and 50 µm (C).* represents 

p<0.05 
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Figure 2. Itrybe-NP characteristic features. (A) Size distribution determined via NTA. (B) 

AFM tapping mode amplitude image of a single Itrybe-NP on silica substrate. (C) Itrybe-NP 

absorbance and emission spectra (excitation at 600 nm). (D) In vitro uptake of Itrybe-NPs by 

MH-S macrophages after 24 h incubation at 37°C (left) and uptake inhibition due to the 

inactivation of phagocytosis by switching the temperature from 37°C to 4°C (right). Scale 

bars in D represent 20 µm. 
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Figure 3. AAI mice demonstrate significantly higher intensities over the lungs than controls 

in vivo (A) and ex vivo (B). Fluorescence intensity distribution is displayed in normalized 

counts (NC). On average, AAI mice showed maximum intensities 5 h after i.n. Itrybe-NP 

application. In vivo (C) and ex vivo (D) fluorescence imaging results at the indicated time 

points after i.n. NP application are summarized in box plots of average fluorescence 

intensities over the lung area. ** p<0.05 
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Figure 4. Itrybe-NPs are taken up by CD68
+
 cells. Anti-CD68 immunostaining of cytospins 

from BAL 24 h after i.n. Itrybe-NP instillation demonstrates uptake of NPs by CD68
+
 cells in 

both AAI (A, left panel) and control (A, right panel) mice. Anti-CD68 immunostaining of 

cryosections from lungs of AAI (B, upper panel) and control mice (B, lower panel) shows a 

higher amount of Itrybe-NP containing CD68
+
 cells (arrows) in AAI mice compared to 

controls as well as clustering of Itrybe-NP containing CD68
+
 around iBALT in AAI. Note, 

that Itrybe-positive cells are never found in iBALT. Lower panels in B show magnifications 

of the selected areas in the upper panels. CD68 staining is shown in red, Itrybe-NPs in white. 

DAPI (blue) was used to stain cell nuclei in all images. MØ: macrophages; E: eosinophils. 

Scale bars represent 20 µm.  



 18 

 

 

 

 

 

 

Figure 5. Distribution of Itrybe-NP-loaded AMs. (A) Representative stitched image of 12x9 

tiles (456x456x32 µm each) selected in the center of an AAI and a control lung cryosection 

stained with anti-CD68 antibody showing an overview of Itrybe-NP distribution within the 

lung. (B) AAI lungs show a 4 times higher number of NP
+
/CD68

+
 cells than controls. Shown 

are colocalized CD68+/NP+ cells normalized to total nuclei. (C) The number of Itrybe-NP 

containing cells cluster for AAI (red) and controls (blue), as seen in the scatter plot of the 

total number of cells with colocalization of NP/CD68 from one tiled image each of 6 AAI and 

6 control cryosections. DAPI was used to stain nuclei in all images. Scale bars in A represent 

500 µm. ** in B represents p<0.05 
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Figure 6. Itrybe-NPs are phagocytized by CD68
+
CD11c

+
ECF-L

+
MHCII

low
 alveolar M2 

macrophages. Immunofluorescence microscopy of co-staining of AAI lung cryosections, 24 h 

after Itrybe-NP application with antibodies directed against CD68 and CD11c (A), MHCII 

(B) and ECF-L (C). Itrybe-NPs are shown in white; expression of CD68 is shown in red. 

Expression of CD11c, MHCII and ECF-L are shown in green. DAPI (blue) was used to stain 

nuclei in all images. Scale bars represent 20 µm. 
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Figure 7. Occasional uptake of Itrybe-NPs by epithelial type I pulmonary cells. Co-staining 

of AAI lung cryosections with antibodies directed against CD68 and podoplanin (A) or CD68 

and proSPC (B) 24 h after i.n. Itrybe-NP application. Few Itrybe-NPs were found in some 

podoplanin
+
 AT1 cells (A, arrows), but never in proSPC

+
 AT2 cells. CD68 expression is 

shown in red; podoplanin and proSPC expression are in green and Itrybe-NPs are shown in 

white. DAPI (blue) was used to stain nuclei in all images. Scale bars represent 20 µm. 

 

 

 



 21 

Figure 8. Itrybe-NP uptake by AMs in dependence of time. Immunostaining of AAI 

cryosections with anti-CD68 antibody. Five h after i.n. Itrybe-NP application, many NPs 

are within alveoli and bronchioles, where they have not yet been phagocytosed by cells 

(inset, white arrows). Forty eight h and 72 h after i.n. NP application show a similar pattern 

of Itrybe-NP localization as 24 h with all NPs taken up by AMs. CD68 expression is shown 

in red; Itrybe-NPs are in white. DAPI (blue) was used to stain nuclei. Scale bars represent 

100 µm (left panel) or 20 µm (right panel). 
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