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Abstract 

Mdm38 is a versatile protein from Saccharomyces cerevisiae, which is functionally 

involved in mitochondrial translation, export of mitochondrial proteins and 

potassium homeostasis of the organelle. 

This thesis focuses on the investigation of interaction partners of the recently 

identified ribosomal binding domain of Mdm38. In previous studies, isolations of 

recombinant GST-tagged constructs of this domain from E. coli were found to 

exhibit an enrichment of ribosomal proteins and this binding showed conserved 

characteristics. To further define the molecular interactors of mdm38 in this thesis, 

an in vivo photo cross-linking approach, using the non-natural amino acid para-

benzoylphenylalanine (pBpA), was established. In particular, different conserved 

amino acids within the presumed binding cavity of the domain were exchanged 

with pBpA. The resulting pBpA-specific cross-links were further characterized via 

mass spectrometry. Strikingly, results did not reveal any ribosomal proteins, but 

only transcription and translation related proteins, suggesting a connection to E. 

coli ribosomes.  

In the second part of this thesis, the function of Mdm38 function in yeast was 

further characterized. It was shown that plasmid based expression of Mdm38 

complements growth defects of Mdm38-truncation strains lacking the ribosomal 

binding domain. In addition, it was demonstrated that mild overexpression of 

Mdm38, using the multicopy plasmid Yep352, induces a phenotype resembling 

characteristics of the deletion strain. Since the stability and translation of 

mitochondria-encoded proteins was not changed, this suggests deficiencies in the 

assembly of complexes containing mitochondrial encoded subunits. Additional 

experiments excluded the possibility that the discovered phenotype was due to the 

role of Mdm38 in potassium homeostasis, since application of the artificial K+/H+-

exchanger, nigericin, mitigates the phenotype of the deletion mutant but not that of 

the overexpression strain. 

Finally, another approach, using the biotin ligase BirA, was undertaken to identify 

proteins within the close environment of Mdm38 in yeast. BirA biotinylates 

proteins within 20-30 nm and was genetically fused to Mdm38. Thus, it was 

possible to visualize specific biotinylated proteins by Western Blot and to confirm 

their localization in the mitochondrial matrix. Indeed, preliminary mass 

spectrometry analysis was in line with pervious publications, serving as a proof of 

concept for this approach. 
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1 INTRODUCTION 

1.1 Mitochondria 

1.1.1 Origin of mitochondria  

A giant leap in the evolution of eukaryotic life was the acquirement of cellular 

organelles. First theories for the origin of these cell components were already 

postulated more than a century ago, whereby an endosymbiotic process was 

hypothesized for the incorporation of chloroplasts (Schimper 1883). According to 

this endosymbiotic theory, plastids originate from prokaryotic cells, which were 

engulfed during non-digestive phagocytosis by a eukaryotic ancestor. The idea of 

this process was later also transferred to mitochondria, with genetic studies 

suggesting an aerobe α-proteobacterium (Family: Rickettsiaceae) as a potential 

candidate incorporated by an anaerobic archeo-bacterium approximately 1,500 

million years ago (Sicheritz-Pontén et al. 1998; Gray et al. 2001). In line with this 

theory, mitochondria still maintain a variety of prokaryotic features. 

First of all, mitochondria are equipped with their own genetic information, 

encoded on circular DNA, which is translated by a mitochondria-specific 

translation system (Leon and Mahler 1968). However, most of the genetic 

information was transferred to the nuclear genome during evolution (Daley et al. 

2002). This means only 8 proteins in S. cerevisiae and 13 proteins in human are 

mitochondrially encoded, whereas the majority of mitochondrial proteins 

originate from nuclear genes (Elstner et al. 2009). In consequence, mitochondria 

have to take up proteins, lipids and RNAs in order to fulfill their different 

biochemical functions in the cell. 

Also, linked to the endosymbiotic event is the submitochondrial organization. 

Mitochondria are enclosed by two phospholipid membranes, each with a specific 

composition: the outer membrane (OM) and the inner membrane (IM). The IM is 

supposed to originate evolutionary from the plasma-membrane of the host cell, 

whereas the OM represents a relic of the endosymbionts coat. In this regard, it was 

shown that the lipid cardiolipin predominantly appears in bacterial cell 

membranes and in the IM (Hoch 1992; Mileykovskaya and Dowhan 2009). 

Accordingly, both membrane envelopes result in two aqueous compartments; 
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Thereby, the mitochondrial matrix, which is enclosed by the IM, and the 

intermembrane space (IMS), which separates the inner from the outer membrane. 

1.1.2 Respiratory chain 

The most prominent advantage achieved by the described endosymbiosis of the α-

proteobacterium, is the exploitation of its aerobic lifestyle. In mitochondria, energy 

is provided by the oxidative phosphorylation (OXPHOS) of adenosine diphosphate 

(ADP). This process takes place at the mitochondrial IM and can be further divided 

into two processes. In a first step, reducing equivalents (FADH2 & NADH), 

generated by the catabolic metabolism of glucose and fatty acids, are oxidized. 

Electrons are then transferred through a redox system of complexes I-IV and two 

electron-shuttling entities (Ubiquinone & Cytochrome c) within the membrane, 

and finally to oxygen. This latter process is termed the respiratory chain (Stuart 

and Rehling 2008). During the transfer of electrons through the respiratory chain, 

the pumping of protons into the IMS creates an electrochemical gradient (Δψ), 

which in turn is the driving force for the F1FO-ATP-synthase (also termed complex 

V). This latter enzyme complex finally catalyzes the binding of free phosphate (Pi) 

to ADP (Mills et al. 2006). Thus, catabolism is indirectly connected to the 

production of the universal cellular energy equivalent adenosine triphosphate, 

ATP. Interestingly, S. cerevisiae, the main model organism for studies investigating 

mitochondrial respiration, lacks complex I of the respiratory chain (Figure 1.1). In 

this organism, oxidation of NADH is facilitated by other NADH dehydrogenases 

(external: Nde1 & Nde2, internal: Ndj1) (Boumans et al. 1998). 

Since the respiratory chain is composed of different sub-components that could be 

crystallized as single complexes, a fluid model was proposed, describing separate 

units moving freely in the membrane (Hackenbrock et al. 1986). Later 

observations suggest a higher level of organization, since non-denaturing 

separation of mildly solubilized mitochondria by Blue Native-PAGE revealed 

different supercomplexes. These supercomplexes consist of complexes III and IV, 

which are composed in yeast as follows: a dimer of Complex III (III2) and two 

heteromers of complexes III and IV (III2IV & III2IV2) (Schägger 2001). Additionally, 

a higher organization of complex V was identified as a homo-dimer (V2) (Arnold et 

al. 1998). 
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Figure 1.1 The OXPHOS system of S. cerevisiae 
Schematic illustration of the mitochondrial oxidative phosphorylation system in yeast. 
Shown are the respiratory chain complexes II-IV and the F1FO-ATP synthase (V) in 
the inner mitochondrial membrane. NADH dehydrogenases are depicted in yellow and 
mobile electron shuttles Ubiquinone (Q) and Cytochrome c (Cyt c) in green. The flux 
of electrons (e-) is indicated by red and the shuttling of protons (H+) by blue arrows. 

1.1.3 Additional roles of mitochondria 

Although mitochondria are predominantly known as the powerhouse of the cell, 

the organelle fulfils a wide spectrum of additional functions. 

First of all, the iron-sulfur cluster biogenesis represents an even more important 

process than oxidative phosphorylation, since even non-respiring organisms retain 

this mitochondria-based process. Iron-sulfur clusters are cofactors not only for 

mitochondrial, but also a variety of cytosolic enzymes involving electron-transfer 

processes (Lill 2009).  

Furthermore, in higher eukaryotes, mitochondria are involved in cell death 

mechanisms (Martinou and Youle 2011), as well as in calcium signaling and 

storage (Rimessia et al. 2008). 

1.2 Mitochondrial Membrane transport 

The above mentioned structural features, together with the fact that mitochondria 

contain proteins of dual genomic origin, require specialized systems for import 

and export, which are schematically summarized in Figure 1.2. 

1.2.1 Mitochondrial import  

The import of nuclear encoded proteins is channelled via the translocase of the 

outer membrane (TOM) and the translocase of the inner membrane (TIM23). 

Protein targeting to the mitochondria is facilitated predominantly by a 

presequence (Vögtle et al. 2009; Becker et al. 2012). Imported proteins are 

recognized at the cytosolic side of the outer membrane by three receptor 
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components: Tom20, Tom22 and Tom70 (Komiya et al. 1997; Komuro et al. 2013). 

The translocation through the OM then takes place through a central protein-

conducting channel of the TOM-complex, which is formed by the β-barrel protein 

Tom40 (Vestweber et al. 1989; Becker et al. 2005).  

Upon import, presequence-containing proteins destined for the inner membrane 

or the mitochondrial matrix are handed over to the translocase of the inner 

membrane (TIM). TIM complexes can be further divided in two different forms, 

TIM23MOTOR and TIM23SORT.These perform the translocation of precursors into the 

matrix and the membrane insertion of transmembrane domain-containing 

precursors (termed lateral sorting) respectively (Becker et al. 2012; Dudek et al. 

2013). Full matrix translocation via the TIM23MOTOR requires its association with 

the presequence associated import motor (PAM). This complex drives inward 

motion of its substrate in an ATP-dependent process (van der Laan et al. 2010). 

1.2.2 Export by Oxa1, Cox18 and Mba1 

Following import of nuclear-encoded proteins into the mitochondrial matrix, 

proteins destined for the inner membrane are then exported from the 

mitochondrial matrix and translocated into the inner mitochondrial membrane. 

This involves the translocase Oxa1 (oxidase assembly mutant) and is closely 

coordinated with the TIM23MOTOR machinery (Reif et al. 2005; Bohnert et al. 2010). 

However, Oxa1 also facilitates the co-translational export of mitochondria-encoded 

proteins from the ribosome into the inner membrane. Studies have revealed an 

interaction of Oxa1 with newly synthesized mitochondrial proteins and also with 

mitochondrial ribosomes (Hell et al. 2001; Jia et al. 2003; Jia et al. 2009). 

Connected to its role in membrane translocation, Oxa1 was shown to form a pore 

with ion channel activity in the presence of a substrate peptide (Krüger et al. 

2012). 

Since Oxa1 mediated export shows highly conserved characteristics of the 

bacterial translocase machinery, this process is also termed conservative sorting. 

In bacteria, translocation is performed by YidC in order to secrete soluble proteins 

or insert proteins into the plasma membrane, (Bonnefoy et al. 2009; Park and 

Rapoport 2012). 

An additional homologue of Oxa1 in yeast, and therefore also a member of the 

YidC/Alb3/Oxa1 family, is Cox18. Interestingly, Cox18 is involved in the export of 
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the C-terminus of Cox2, while Oxa1 facilitates the export of the N-terminus 

(Saracco and Fox 2002). 

 

 

Figure 1.2 Membrane 
transport in 
mitochondria 
Schematic illustration 
of the mitochondrial 
trans-port system 
relevant for proteins 
within the inner mito-
chondrial membrane 
and matrix. Transport 
pathways of newly 
synthesized proteins 
(light blue) are indi-
cated by arrows. 

 
Adapted from 

Mick et al. 2011 

 

Another protein involved in export of mitochondria-encoded proteins from the 

ribosome into the inner membrane is the inner membrane protein Mba1. The yeast 

Mba1 deletion mutant is deficient in the biogenesis of Cox2 and the membrane 

insertion of other mitochondria-encoded proteins, thereby implicating an 

involvement for Mba1 in translocation (Preuss et al. 2001). Moreover, an 

interaction with the mitochondrial ribosome has been shown, suggesting a 

ribosomal receptor function for Mba1 (Pfeffer et al. 2015). It was therefore 

postulated that Mba1 is involved in the positioning of the ribosomes at the inner 

membrane to facilitate co-translational hand-over of newly synthesized proteins to 

the export machinery. However, it is worth noting, that deletion of MBA1 and 

MDM38, encoding a protein implied in similar function (see 1.4), did not 

significantly change the membrane association of ribosomes in flotation 

centrifugation experiments (Bauerschmitt et al. 2010). Similar observations were 

also made by Ott et al. (2006) for deletions of MBA1 and the ribosome binding C-

terminus of Oxa1. Thus, all three proteins are not critical in this regard. 

Nevertheless, membrane association is a prominent feature of mitochondrial 

ribosomes (Pfeffer et al. 2015; Beckmann and Herrmann 2015). This fact is most 
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probably owed to their specialized role in the translation of mainly highly 

hydrophobic membrane proteins and thus the co-translational export of newly 

synthesized mitochondria-encoded proteins is required. 

1.3 Mitochondrial translation 

While import provides the majority of proteins that comprise the respiratory 

chain, respiratory chain biogenesis still depends on mitochondrial translation 

products. This is based on the fact that 7 out of 8 mitochondria-encoded proteins 

represent core subunits of complexes III-V in yeast. As is the case for it’s 

prokaryotic ancestors, protein biosynthesis in mitochondria is performed in four 

steps; initiation, elongation, termination, and recycling. (Marshall et al. 2008). 

Accordingly, components of the mitochondrial translation machinery are distinct 

from their cytoplasmic counterparts, with the exception of three aminoacyl tRNA 

synthetases.  

Initiation of translation is facilitated by two intiation factors, mIF2 & mIF3, which 

both have bacterial orthologs. In yeast mIF2 recruits the initiator tRNA, preferably 

in its formylated form (fMet-tRNAfMet), to the initiation codon of the mRNA on the 

ribosome (Gualerzi and Pon 1990; Garofalo et al. 2003). Meanwhile, mIF3 (S. 

cerevisiae: Aim23) is required for the dissociation of the ribosome into its subunits 

and the binding of the initiator tRNA to the ribosomal initiation complex (Koc and 

Spremulli 2002; Atkinson et al. 2012). 

Translation after initiation is further enabled by three elongation factors. First, 

mEF-Tu promotes the GTP-dependent binding of an aminoacyl-tRNA to the A site 

of the ribosome (Kaziro 1978; Nagata et al. 1983). The factors mEF‐G1 and mEF-G2 

then facilitate the exchange of tRNAs at the ribosomal A-site and are involved in 

conformational changes in the ribosome that enable elongation of the peptide 

chain (Vambutas et al. 1991). 

Finally, termination is facilitated by the mitochondrial release factor, mRF-1, by a 

yet unknown mechanism (Towpik et al. 2004), along with the mitochondrial 

ribosome recycling factor Rrf1 (Teyssier et al. 2003). As described for bacterial 

recycling factors before (Selmer et al. 1999), Rrf1 dissociates the two ribosomal 

subunits in order to release the peptide chain and enable further rounds of 

translation. Rrf1 is suggested to fulfill its function by structural mimicry of tRNA 

(Teyssier et al. 2003). 
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1.3.1 Translational regulation in mitochondria 

In addition to the above described mechanisms of mitochondrial translation, this 

process requires further regulation for proteins of the respiratory chain 

complexes, due to their dual genetic origins. Thereby, in yeast, both genetic 

systems are coordinated by different mRNA-specific activators (listed in Tab. 1.1). 

The recognition of respective mRNAs is enabled by specific 5′ untranslated regions 

(UTRs). 

Tab. 1.1 Mitochondrial translation activators (Kuzmenko et al. 2014) 

Target mRNA Translational activators 

Var1  Sov1 

Cob  Cbs1, Cbs2, Cbp1, Cbp3/Cbp6 

Cox1  Mss51, Pet309 

Cox2  Pet111 

Cox3  Pet54, Pet122, Pet494 

Atp6/8 – bicistronic Atp22 

Atp9  Aep1/Aep2 

1.3.2 Assembly-controlled translational auto-regulation of cytochrome c 

oxidase (complex IV) 

The translational activators Pet309 (petite phenotype) and Mss51 (mitochondrial 

splicing suppressor protein) are essential for translation of Cox1 (cytochrome c 

oxidase). Genetic studies revealed a COX1-mRNA stabilizing function for Pet309, in 

addition to its UTR-dependent role in translational activation (Manthey and 

McEwen 1995; Tavares-Carreón et al. 2008).  

In this respect, translational activation of COX1-mRNA, via Mss51, was also shown 

to occurby UTR-specific binding (PerezMartinez et al. 2003; Zambrano et al. 2007). 

In addition, further results suggested a mechanism, which is autoregulated by 

feedback from the assembly of Cox1 (Barrientos et al. 2004; Fox et al. 2009). In line 

with this, Mss51 interacts dynamically with Cox1 and several assembly factors of 

complex IV. Newly synthesized, unassembled Cox1 is bound by Mss51 in a 

transient pre-assembly complex, stabilized by the assembly factors Cox14 and 

Coa3 (cytochrome c oxidase assembly) (Barrientos et al. 2004; Mick et al. 2010). 

Bound Mss51 is prevented from promoting further rounds of translation by its 

association with another assembly factor, Coa1. As Cox1 assembley proceeds, 



INTRODUCTION 

P a g e  | 8 

Mss51 is released from the complex, thereby enabling its reactivation. In summary, 

these processes directly connect the translation of Cox1 to its assembly 

(Barrientos et al. 2004; Mick et al. 2010), which is in turn also dependent on the 

translation and maturation of Cox2 & Cox3 (Horan et al. 2005; Mick et al. 2010). 

Overall, the assembly of complex IV in yeast, consisting of three mitochondrial and 

eight nuclear encoded subunits, involves approximately 40 currently identified 

nuclear-encoded proteins, starting with translation (Soto et al. 2012).  

1.3.3 Regulation of translation in the context of complex III assembly  

In contrast to complex IV, knowledge about the biogenesis of complex III is still 

scarce. The core subunit of the complex is cytochrome b (Cob). Its mitochondrial 

translation is regulated in a UTR-dependent way by Cbs1, Cbs2 and Cbp1 (Rödel 

1986; Krause-Buchholz et al. 2005). Additionally, a similar assembly-controlled 

translational auto-regulation, as described for Cox1, was also suggested for Cob. In 

this regard, the hetero-dimer of Cbp3 & Cbp6 (Cbp3-Cbp6), bound to the ribosomal 

exit tunnel, is essential for the translation of Cob, where it subsequently binds to 

the newly synthesized protein. Cbp3-Cbp6 stays trapped in this preassembly 

complex with Cob and can only rebind to the ribosome after its release as complex 

III assembly proceeds (Gruschke and Ott 2010; Gruschke et al. 2011; Gruschke et 

al. 2012; Hildenbeutel et al. 2014) 

1.3.4 Mitochondrial expressosome - MIOREX 

Since ATP-synthesis is the result of the concerted interplay of different complexes, 

which in turn are also organized on even higher levels, a similar organization of 

their biogenesis is not unreasonable. Interestingly, this idea was supported by 

coimmunoprecipitation experiments and Yeast Two-Hybrid analysis. These data 

indicated a physical interaction, not only between the translational activators for 

Cox1, Cox2 and Cox3, but also to the ribosome and to Nam1, a protein involved in 

COX1-, COB- and ATP8/ATP6-mRNA interactions (Wallis et al. 1994; Naithani et al. 

2003). Accordingly, Nam1 is also locally associated with the mRNA-polymerase, 

Rpo41 (Rodeheffer et al. 2001). Moreover, mass spectrometry results for a high 

molecular weight complex revealed Pet309 and Cbp1 (Krause et al. 2004). These 

results were recently supported by mass spectrometric analysis of the interactome 

of the mitochondrial ribosome (Kehrein et al. 2015), suggesting expressosome-like 
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assemblies that were termed MIOREX (mitochondrial organization of gene 

expression) complexes. In line with previous studies, most of the translational 

activators were herein identified. Furthermore, many proteins were recovered 

with ribosomes that are involved in mRNA maturation and processing, DNA-

metabolism and organization of the mitochondrial nucleoid, as well as OXPHOS-

assembly factors (e.g. Oxa1). Thus, MIOREX complexes might organize 

mitochondrial gene expression by coupling translation of the mRNAs and 

posttranscriptional mRNA metabolism, with mRNA decay. 

1.3.5 The mitochondrial ribosome 

According to the endosymbiotic theory, mitochondrial ribosomes developed from 

those of the bacterial ancestor of the organelle. In this context, shared antibiotic 

susceptibilities and sequence similarities of ribosomal proteins and RNAs (rRNAs) 

suggests that the mitochondrial translation system is essentially identical to that of 

prokaryotes (Borst and Grivell 1971; Jones et al. 2009). However, mitochondrial 

ribosomes were significantly remodeled during evolution, since a variety of 

ribosomal proteins represent mitochondria-specific subunits and also the rRNA 

content is significantly reduced. 

Altogether, comparisons of bacterial (E. coli) and yeast mitochondrial ribosomes 

has revealed a significant shift in the protein to nucleic acid ratio from 1:2 in 

bacteria to 1:1 in mitochondrial ribosomes (Graack and Wittmann-Liebold 1998; 

Smits et al. 2007). This is also reflected by the fact that mitochondrial proteins of 

the large subunit are, on average, nearly twice as large as their homologous 

bacterial counterparts. However, most of these new structural elements are 

exposed to the surface and thus, result in a markedly different overall ribosomal 

shape (Amunts et al. 2014).  

Additionally, the reduced rRNA content in mitochondrial ribosomes contributes to 

the changed ratio. Correspondingly, the sedimentation coefficients (S) of both 

rRNAs of the mitochondrial ribosome, 15 S and 21 S for the small and large subunit 

rRNA respectively, are lower than that of their bacterial counterparts, 16 S and 

25 S respectively (Smits et al. 2007). Moreover, this shift from RNA to protein is 

nicely illustrated by the complete lack of 5 S rRNA of bacterial and eukaryotic 

cytosolic ribosomes in mitochondria in which its location is structurally occupied 

by mitochondria-specific protein-extensions (Amunts et al. 2014). 
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Another hint that underlines the ongoing independent evolution of mitochondrial 

ribosomes is given by the fact that their composition already deviates between 

different species. This is exemplified by the high variation in mitochondrial 

ribosome mass and its corresponding sedimentation behavior which ranges from 

55 S to 80 S. S. cerevisiae is positioned in the midway within this range, with a 

mitochondrial ribosome of 74 S, composed of a small 37 S and a large 54 S subunit 

(Kitakawa and Isono 1991; Smits et al. 2007) 

Interestingly, the catalytic center of the ribosome was mainly untouched during 

evolution, since rRNA domains involved in peptide bond formation reveal high 

levels of conservation (Ott and Herrmann 2010; Amunts et al. 2014).  

1.3.5.1 Ribosomal exit tunnel 

The afore mentioned evolutionary changes in mitochondrial ribosomes also 

resulted in a remodeling of their polypeptide exit tunnel, leading to a unique 

architecture and composition.  

The ribosomal exit tunnel (RET) contains, in addition to four ubiquitously 

conserved proteins (Mrpl4, Mrpl22, Mrpl40 & Mrp20), at least three organelle-

specific proteins (Mrpl3, Mrpl13 & Mrpl27) which are, with the exception of 

Mrpl13, conserved between mammals and yeast (Gruschke et al. 2010). 

Due to the fact that RET is the site where nascent polypeptides are exposed to a 

hydrophilic environment for the first time, it is also the site where components of 

their assembly machinery are most likely positioned. In this respect, Oxa1 and 

Mba1 of the export machinery (1.2.2), and the assembly/translation regulator, 

Cbp3-Cbp6 (1.3.3) have been identified here (Gruschke et al. 2011; Gruschke et al. 

2012; Pfeffer et al. 2015). 

Interestingly, recent results based on cryo electron microscopy enabled further 

insights into the RET structure (Amunts et al. 2014). Although overall features of 

the tunnel are conserved, Amunts et al. revealed an alternate path that deviates 

approximately 60 Å from that of the bacterial RET. In consequence, the ribosomal 

tunnel emerges nearly 35 Å away from its evolutionary origin.  

In summary, these features are unique for mitochondria with their own 

mechanisms of regulation and co-and post-translational interactions. 
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1.4 Mdm38 - A protein with multiple roles 

As discussed above, distinct mitochondrial functions have been shown to have 

some interrelations and so it follows that proteins may have multiple roles within 

the mitochondria. One such example is the evolutionarily conserved 65 kDa 

protein Mdm38, which not only shows an involvement in the biogenesis of the 

respiratory chain, but also in mitochondrial K+/H+-homeostasis.  

Mdm38 was first characterized in a genome wide screen for genes important for 

mitochondrial distribution and morphology (MDM) in S. cerevisiae (Dimmer et al. 

2002). This screen, from which Mdm38 derives it’s name, revealed enlarged 

mitochondria, with very few branches, that often form rings or lariat-like 

structures in yeast cells lacking the Mdm38 protein (Figure 1.3). 

Further studies confirmed the localization of Mdm38 at the matrix side of the inner 

mitochondrial membrane (Nowikovsky et al. 2004) and a single trans-membrane 

domain (TM) was predicted for all homologs of Mdm38. Full sequence alignments 

of different Mdm38 homologs indicated a highly conserved area around this TM 

domain (Schlickum et al. 2004; Nowikovsky et al. 2004). Since this proline-rich 

predicted alpha-helix alignes with that of other proteins involved in ion channels 

(Sansom and Weinstein 2000), Nowikowski et al. assumed a related function as a 

possible explanation for the aberrant mitochondrial morphology. Following this 

idea, the group revealed a role for Mdm38 in the maintenance of Δψ (Nowikovsky 

et al. 2004). In addition, experiments with fluorescent dyes implicated an 

involvement in potassium-homeostasis by electro neutral K+/H+-exchange. This 

was further supported by the efficient reversal of mitochondrial swelling and the 

restoration of an almost normal mitochondrial network upon addition of the K+/H+ 

ionophore nigericin (Nowikovsky et al. 2004; Froschauer et al. 2005). 
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Figure 1.3 Aberrant mitochondrial 
morphology in mdm38 Δ 
Shown are fluorescence micro-
scopic images of the mitochon-drial 
morphology (left panel) and an 
overlay with the corresponding 
phase contrast image (right panel). 
For labeling, wild-type (WT) and 
MDM38 deletion strains (mdm38) 
expressing mitochondria-targeted 
GFP were grown at 30°C in glucose-
containing YPD medium to 
logarithmic growth phase. 
 

Pictures taken from 
 Dimmer et al. 2002 

 

Nevertheless, a single TM is unlikely to function as an ion-channel. In addition, only 

partial release of Mdm38 via carbonate extraction argues against a complete 

penetration of the inner membrane (Frazier et al. 2006). Therefore, these distinct 

functions of Mdm38 came into question. Interestingly, mdm38∆ yeast strains 

revealed severe growth deficiencies on non-fermentable media, indicating 

aberrations in the respiratory chain (Frazier et al. 2006). Correspondingly, 

mdm38∆ mitochondria showed a significant reduction in the steady-state levels of 

the mitochondrially encoded proteins Cox1, Cox2, and Cob, a slight reduction in 

Cox3 and a significant reduction in levels of the nuclear encoded Rieske protein 

(Rip1). Moreover, Blue Native PAGE analysis revealed deficiencies in respiratory 

chain biogenesis with significantly decreased levels of complexes III and IV and a 

slight decrease of complex V (Frazier et al. 2006). Since mitochondrial translation 

was nearly unchanged, those defects are expected to occur post-translationally. In 

line with this, co-isolations indicate that Mdm38 interacts specifically with 

mitochondrial ribosomes and newly synthesized mitochondrially encoded 

proteins. Moreover, proteinase protection assays revealed deficiencies in the 

posttranslational export of Atp6, Cob, and to a lesser extent, Cox1 in ∆mdm38 

mitochondria. These results suggest a role for Mdm38 in an Oxa1-independent 

export pathway (Hell et al. 1998; Frazier et al. 2006) . 

The two functions of Mdm38, ion-channeling and respiratory chain biogenesis, was 

further investigated by Nowikovsky et al. (2007). In this study, mitochondrial 



INTRODUCTION 

P a g e  | 13  

fragmentation upon Mdm38 shut-off and the association of mitochondrial 

fragments with vacuoles, suggests the occurrence of mitochondria-selective 

autophagy, termed mitophagy. Furthermore, mitophagy, was thought to be the 

primary phenotypical effect caused by diminished K+/H+ exchange activity 

(Nowikovsky et al. 2007).   

In contrast, Bauerschmitt et al. (2010) assessed the role of Mdm38 in respiratory 

chain biogenesis in a more independent context. In this study, a double deletion of 

MDM38 and MBA1 selectively prevented the synthesis of Cox1 and Cob. On one 

hand, this indicates an overlapping function of both proteins in translation. On the 

other hand, failed rescue of the ∆mba1∆mdm38 phenotype by nigericin argues 

against a direct coupling to Mdm38’s role in K+/H+ exchange. Moreover, a physical 

interaction between Mdm38 and the translational activators Pet309 and Mss51 

(see 1.3.1) was indicated by coisolations (Bauerschmitt et al. 2010; Pfeffer et al. 

2015). Correspondingly, the reported dependency of Cox1 synthesis on Mba1 and 

Mdm38 was lost when the COX1 reading frame was flanked by the UTRs of COX2. In 

summary, results of Bauerschmitt et al. imply a functional role of Mba1 and 

Mdm38 in mitochondrial translation, possibly through the recruitment of specific 

translation activators. 

Finally, the identification of a ribosomal binding domain (RBD, here also referred 

as Mdm38K) further manifested Mdm38 as a player in mitochondrial translation 

(Lupo et al. 2011). Herein, an area (aa 182-408) within the C-terminal domain 

(CTD) of Mdm38 was shown to interact with mitochondrial ribosomes. 

Interestingly, yeast strains expressing truncations lacking this RBD exhibit 

deficiencies in the synthesis of Cox1 and Cob and, in consequence, also in the 

respiratory chain. However, the correlated growth phenotype is not mitigated by 

nigericin and thus not essentially dependent upon K+/H+ exchange. 

Additionally, Lupo and Vollmer et al. determined the structure of the RBD via X-ray 

crystallography (Figure 1.4). Surprisingly, this structure superimposes with 14-3-3 

domains involved in different protein-protein interactions. Moreover, Mdm38K 

aligns with those 14-3-3 domains, since it possesses a highly conserved cavity 

assumed as a potential binding site. 
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Figure 1.4 Structure of Mdm38 ribosomal binding domain 
Shown are representations of the structure of Mdm38K in three different orientations 
after indicated rotations of about 90 °: 

A) Ribbon models using rainbow colors from the N-terminus (blue) to the C-terminus 
(red).  

B) Surface models of electrostatic charge distribution of Mdm38K. Negative charges 
are displayed in red, positive charges in blue and, uncharged in white. 

C) Surface models showing the degree of amino acid conservation among Mdm38 
protein family members determined via CONSURF analysis (Glaser et al. 2003). 
Highly conserved, conserved or partially conserved amino acids are displayed in 
dark red, orange and yellow, respectively. 

Pictures taken from Lupo et al., 2011 

 

Altogether, the results described above are in line with the model proposed by 

Bauerschmitt et al. (Figure 1.5): Mdm38 is localized in a membrane-associated 

context in the mitochondrial matrix. Furthermore, Mdm38 binds to mitochondrial 

ribosomes, which might indicate a similar role in positioning the ribosome as 

described for Mba1 (Ott et al. 2006; Keil et al. 2012). Finally, the interaction with 
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translation factors suggests a recruitment of those proteins to the translation 

machinery, which in turn interact specifically with respective mRNA. 

 

Figure 1.5 Model for the 
roles of Mdm38 and 
Mba1 in translation 
Illustrated are the 
ribosome-associated 
membrane proteins Oxa1, 
Mba1 and Mdm38. 
Translational activators 
(TLA) interact with Mba1 
and Mdm38 and associate 
with the 5’-UTR of specific 
mRNAs (pink). 

 

Adapted from 
Bauerschmitt et al. 2010 

1.4.1 Ylh47 and Ydl183c are functionally related to Mdm38 

The functional variability of Mdm38 already suggests that the protein does not 

fulfill its different roles within mitochondria alone, but rather in complex with 

other proteins. This should be especially true for Mdm38 function in ion 

channeling.  

First of all, Ylh47 (Yeast Letm1 homolog of 47 kDa) was investigated as a candidate 

for functional interactions, because it represents a homolog of Mdm38 in yeast. 

Although co-isolations indicate a physical interaction between Ylh47 and Mdm38, 

no function could be assigned to Ylh47, since no phenotype was observed for the 

respective deletion (Frazier et al. 2006). However, a genomic screen revealed 

Ylh47, together with an uncharacterized protein Ydl83c, to be multicopy 

suppressors of the ∆mdm38-phenotype (Zotova et al. 2010). Correspondingly, 

additional deletion of YDL183c and/or YLH47 enhanced the phenotypes of 

∆mdm38. It was therefore concluded that Mdm38, Ylh47, and Ydl183c are 

functionally redundant, but Mdm38 has the highest impact. 

Finally, it should also be noted that Zotova et al. (2010) revealed a self-

dimerization of Mdm38 in mitochondria, of which the functional relevance remains 

unclear. 
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1.5 The Letm1-family 

Mdm38 is a member of a conserved, ubiquitously expressed, protein family 

present in all sequenced eukaryotes. The family is named after the human 

representative Letm1 (leucine zipper EF-hand containing transmembrane 

protein). As indicated by its name, the human 84 kDa protein Letm1 is predicted to 

contain a leucine zipper, two EF-hand Ca2+ binding domains, a transmembrane 

domain, and coiled-coil domains (Endele et al. 1999; Schlickum et al. 2004). The 

function of Letm1 in higher eukaryotes is even more controversial than that of 

Mdm38 in yeast. Although complementation experiments in the MDM38 deletion 

mutant in yeast, using the human gene product (hLetm1) and Letm1 from 

Drosophila melanogaster (DmLetm1), indicate functional conservation, its role is 

still under debate.  

On one hand, a genome-wide siRNA screen in drosophila identified DmLetm1 as a 

player in Ca2+-uptake (Jiang et al. 2009), a finding that was further supported by 

experiments using mouse, rat, and human cells in culture, as well as in hLetm1-

containing liposomes (Jiang et al. 2009; Waldeck-Weiermair et al. 2011; Tsai et al. 

2014; Doonan et al. 2014). On the other hand, K+ rather than Ca2+ was assumed to 

be the Letm1-specific ion. In support of this, the addition of the K+/H+ ionophore 

nigericin rescued the mitochondrial fragmentation and matrix swelling phenotype 

of Letm1 depleted human cells, like in yeast (Nowikovsky et al. 2007; Hasegawa 

and van der Bliek 2007; Dimmer et al. 2007). Moreover, recent work in the 

protozoan flagellate, Trypanosoma brucei evansi, demonstrated a role for its Letm1 

homologue in mitochondrial translation and potassium homeostasis, but not 

calcium homeostasis (Hashimi et al. 2013).  

Interestingly, Letm1 function in Arabidopsis thaliana seems to be even more 

enigmatic (Zhang et al. 2012). The plant genome encodes two Letm1 homologues, 

Atletm1 and Atletm2, with overlapping function and a synthetically lethal double 

deletion. Accordingly, hemizygous mutants are viable but show a generally 

reduced translation of mitochondrial genes. Furthermore, Western Blot and Blue 

Native analysis of these mutants demonstrates severe deficiencies in the ATP 

synthase. However, no morphologic phenotype and no change in protein levels of 

the respiratory chain complexes I, II, III and IV were detectable.  

Altogether, these results for different organisms underline the complexity of roles 
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in which Letm1 proteins are involved. Therefore, contrary results regarding ion-

specificity might indicate intertwining mechanisms for calcium and potassium-

exchange, respectively. 

1.5.1 Letm1 in the endoplasmic reticulum 

In contrast with previous publications that claim Letm1 to be exclusively localized 

in mitochondria, fluorescence microscopy and Western blot analysis revealed the 

presence of hLetm1 to be in the endoplasmic reticulum (ER) (Kuum et al. 2012). 

Correspondingly, the ER retention signal AEVK was identified in the C-terminus of 

hLetm1, in addition to its N-terminal mitochondrial targeting sequence. In their 

studies, Kuum and coworkers demonstrate that Letm1 has a role in ER pH 

homeostasis and is involved in Ca2+ uptake in specific cell types. Moreover, it was 

shown that K+/H+-exchange is essential for ER Ca2+ uptake using different 

inhibitors.  

In summary, Kuum et al. nicely outline the dependence of calcium and potassium-

exchange in the ER and indicate a function for hLetm1 in this context. Therefore, 

both statements are in agreement with observations in mitochondria. 

1.6 Roles of Letm1 in human 

In line with the reported phenotypes on the cellular level, human Letm1 is also 

related to the Wolf-Hirschhorn syndrome (WHS), a multigenic disorder that affects 

1 in 50,000 live births (Hirschhorn and COOPER 1961; Endele et al. 1999). The 

syndrome is defined by the association of atypical facial appearance, severe 

growth delay and, mental retardation with microcephaly. Additionally, WHS is 

associated with an impairment of muscular tone and seizures. (Endele et al. 1999). 

Thereby, observed symptoms can be correlated with the phenotypes in yeast, since 

dysfunction of mitochondrial oxidative phosphorylation is often related to 

neuronal and muscular degenerative diseases like WHS (DiMauro and Hirano 

2009). 

WHS is caused by partial deletion of chromosome 4 at locus 4p16.3, whereas the 

critical region (WHSCR-1) has been defined to a 165 kb region (Wright et al. 1997; 

Zollino et al. 1999). Unfortunately, this region contains multiple other genes, in 

addition to LETM1, resulting in a multifunctional pathology and thereby 

complicating a direct determination of genotype–phenotype correlations (Zollino 
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et al. 2003). Deletions of hLETM1 occur in almost all patients with WHS (Endele et 

al. 1999), most of which exhibit seizures. Interestingly, the gene is preserved in 

those patients without seizures (Zollino et al. 2003; South et al. 2008). 

Letm1 was also found to play a role in cancer diseases. In this context, the 

expression levels of hLetm1 were shown to be significantly elevated in different 

human cancer tissues (Piao et al. 2009; Chen et al. 2014). Furthermore, studies 

showed that overexpression of hLetm1 can induce necrotic cell death in HeLa cells, 

presumably due to depletion of intracellular ATP (Piao et al. 2009). 

Interestingly, Hwang et al. (2010) showed that adenovirus-mediated 

overexpression of hLetm1 could induce the destruction of mitochondria in lung 

cancer cells by depleting ATP and activating AMP-activated protein kinase (AMPK). 

Consequently, hLetm1 was suggested to function as a tumor suppressor gene for 

lung cancer (Hwang et al. 2010) .  

If these effects are in fact directly or indirectly coupled to the functions of hLetm1 

still remains unclear. However, a recent study reveals a link between hLetm1 

knock down and the production of reactive oxygen species (ROS), which are one of 

the main causes of DNA-damage and thus, carcinogenesis (Doonan et al. 2014).  
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1.7 Research objectives 

The aim of these studies was to characterise the proteomic environment of 

Mdm38. Both in vitro and in vivo approaches were undertaken. For an in-vivo 

analysis, a fusion-construct with the biotin ligase BirA was introduced in the yeast 

Saccharomyces cerevisiae. This enabled the spatially restricted biotin tagging of 

proteins and thus, subsequent isolation and analysis. 

In parallel, studies were performed with recombinant constructs of the ribosomal 

binding domain of Mdm38, expressed in Escherichia coli. In vitro binding to 

isolated E. coli ribosomes was demonstrated for two different constructs and 

further characterized with regard to the ionic environment.  

Moreover, proteins in close proximity to Mdm38 where investigated in E. coli. An 

in vivo photo crosslinking approach was established using the non-natural amino 

acid para-benzoylphenylalanine (pBpA). A pBpA-specific cross-linking product 

was identified and analysed via mass spectrometry. 

Finally, a novel phenotype caused by a mild overexpression of Mdm38, which was 

discovered within these studies, was further characterized. Therefore, different 

mitochondrial features related to functions of Mdm38 were addressed.  
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2 Materials and methods 

2.1 Materials  

2.1.1 Enzymes  

Digestion of DNA was performed with “FastDigest” restriction enzymes from 

Thermo Scientific (Waltham, Massachusetts). Additional enzymes used in this 

thesis are listed below. 

 
Tab. 2.1 Enzymes and supplier 

Enzyme Supplier 

Creatine Kinase Roche (Basel) 

Proteinase K Roche (Basel) 

TEV Protease Invitrogen (Carlsbad, California) 

Zymolyase 20T Seikagaku Biobuiness (Fokushima) 

2.1.2 Chemicals  

All standard chemicals were purchased from AppliChem (Darmstadt), Merck 

(Darmstadt), Roth (Karlsruhe), SERVA (Heidelberg) or Sigma-Aldrich 

(Taufkirchen) in analytical grade purity. Exceptions and special chemicals are 

listed below.  

Tab. 2.2 Special chemicals 

Chemical Supplier 

Alexa Fluor® 488 C5 Maleimide Thermo Fisher Scientific 

Anti-HA, mouse monoclonal antibody Roche 

ATP Roche 

Coomassie brilliant blue G250 Serva 

Coomassie brilliant blue R250 Serva 

Creatine phosphate Roche 

p-bezoylphenylalanine Bachem 

Desthiobiotin IBA 

Digitonin Calbiochem 

Dropout mixes (CSM-Trp/CSM-Ura) MP Biomedicals 
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ECL Western Blotting detection reagent GE-Healthcare 

GeneRuler DNA Ladder Mix  Fermentas 

Goat anti rabbit HRP Dianova 

Goat anti mouse HRP Dianova 

HisProbe™-HRP Conjugate Thermo Fisher Scientific 

Herring sperm DNA Promega 

IgG standard (bovine) Biorad 

Leupetin Roche 

NADH Roche 

Nigericin sodium salt Sigma 

Ni-NTA agarose Qiagen 

Oligonucleotides Metabion 

Peroxidase anti-peroxidase, antibody (PAP) Sigma 

PEG-4000 Applichem 

Peptone, yeast extract, YNB w/o aa BD 

SDS marker broad range Biorad 

Unstained Protein Standard III Serva 

[35S]-methionine Hartmann Analytics 

 

2.1.3 Kit systems 

Kit systems listed below were used according to the manufacturer’s specifications. 

 
Tab. 2.3 Kit Systems and supplier 

Enzyme Supplier 

KOD Hot Start DNA polymerase Novagen 

QuickChange® Site-Directed Mutagenesis Kit  Stratagene/ Agilent 

Rapid DNA Ligation Kit  Fermentas 

Wizard® Plus SV Minipreps DNA Purification System Promega 

Wizard® SV Gel and PCR Clean-Up System Promega 

2.1.4 Antibodies 

In general, polyclonal primary antibodies that were used in this study were raised 

in rabbit either against a C-terminal peptide or against the whole protein. 

Secondary antibodies against rabbit immunoglobulin, coupled to horseradish-
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peroxidase (HRP) for use in Western blot detection, goat anti rabbit HRP and goat 

anti rabbit IR680 were purchased from Dianova (Hamburg) and LI-COR (Bad 

Homburg), respectively. 

For immune detection of protein A, peroxidase anti-peroxidase (PAP) synthesized 

in rabbit was purchased and signals were enhanced by secondary antibodies 

against rabbit immunoglobulin, coupled to HRP. 

2.1.5 PCR-Primers 

Deoxyoligonucleotides used as PCR-primers in this study either for molecular 

cloning or site directed mutagenesis were purchased in standard desalted quality 

from Metabion (Martinsried).  

Tab. 2.4 Primers for molecular cloning 

Name Sequence 

CV199 CACGAGCTCTGCTGGAGATTC 

CV200 GTGGGTACCTAGCCTTGTTTGCTTTCTACGG 

oMD 457 Pho-AAGCTCATCGAGATCAGAAAAAAG 

oMD 458 TAGCGGCCGCTTAGTTGTAAACGGGATCTGGAATG 

oMD 459 TAGCGGCCGCTTATTTTTCGAACTGCGGGTGGCTCCA 

oMD 467 GGCTAGCCCATGGGCAAGCATCACCATCATTCAGGC 

oMD 468 TCCAAGCTCAGCTAATTAAGCTT 
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Tab. 2.5 Primers for site directed mutagenesis 

Name AA-Exchange Sequence  

(changed bases are written in small letters) 

oJMW_1 C315 amber- stop AAGAAGAGCTGTATCAAGCTgcTGTGTCTagaGGTATGAAAGCGT

ACGGTGT 
oJMW_2 C315 amber- stop ACACCGTACGCTTTCATACCtctAGACACAgcAGCTTGATACAGC

TCTTCTT 
oJMW_3 C315A AAGAAGAGCTGTATCAAGCTTagGTGTCTagaGGTATGAAAGCGT

ACGGTGT 
oJMW_4 C315A ACACCGTACGCTTTCATACCtctAGACACctAAGCTTGATACAGC

TCTTCTT 

oJMW_5 G319A TGTATCAAGCTTGTGTGTCTagaGcTATGAAAGCGTACGGTGTAT 

oJMW_6 G319A ATACACCGTACGCTTTCATAgCtctAGACACACAAGCTTGATACA 

oJMW_7 M320A CAAGCTTGTGTGTCTCGTGGcgccAAAGCGTACGGTGTATCCAA 

oJMW_8 M320A TTGGATACACCGTACGCTTTggcgCCACGAGACACACAAGCTTG 

oJMW_9 L330A ACGGTGTATCCAAGGAGGACgcgGTCGAcAATCTAAAAGTTTGGC

TAGA 

oJMW_10 L330A TCTAGCCAAACTTTTAGATTgTCGACcgcGTCCTCCTTGGATACA

CCGT 

oJMW_11 W337A GGTCGATAATCTAAAAGTTgctCTAGAATTGAGACTGAGACA 

oJMW_12 W337A TGTCTCAGTCTCAATTCTAGagcAACTTTTAGATTATCGACC 

oJMW_13 S354A CATCCGTCTTGATGGTTTTGgctagCACGTTCACGTTTGGAGGAC 

oJMW_14 S354A GTCCTCCAAACGTGAACGTGctagcCAAAACCATCAAGACGGATG 

MVP83 M320 amber-stop CTTGTGTGTCTCGTGGTtagAAAGCGTACGGTGTAT 

MVP84 M320 amber-stop GATACACCGTACGCTTTctaACCACGAGACACACAA 

MVP85 S354 amber-stop CATCCGTCTTGATGGTTTTGtagTCCACGTTCACGTTTG 

MVP86 S354 amber-stop CTCCAAACGTGAACGTGGActaCAAAACCATCAAGACGGATG 

MVP87 L330 amber-stop CGGTGTATCCAAGGAGGACtagGTCGATAATCTAAAAGTTTG 

MVP88 L330 amber-stop CAAACTTTTAGATTATCGACctaGTCCTCCTTGGATACACCG 

MVP89 G319 amber-stop TATCAAGCTTGTGTGTCTCGTtagATGAAAGCGTACGGTGTATCC 

MVP90 G319 amber-stop GGATACACCGTACGCTTTCATctaACGAGACACACAAGCTTGATA 

MVP91 W337 amber-stop GGTCGATAATCTAAAAGTTtagCTAGAATTGAGACTGAGAC 

MVP92 W337 amber-stop GTCTCAGTCTCAATTCTAGctaAACTTTTAGATTATCGACC 
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2.1.6 Vectors  

Tab. 2.6 Plasmids for yeast and E. coli 

Plasmid Backbone Insert Source 

pRS416   Stratagene 

pRS416 Mdm38* pRS416 Mdm38 This study 

YEp352   (Hill et al. 1986) 

p9328-1  YEp352 Mdm38 This study 

pSUP   (Ryu and Schultz 

2006) 

pGex4T2   GE Healthcare 

pGex4T2 Mdm38K pGex4T2 GST-Mdm38 (aa182-408)-HIS6 (Lupo et al. 2011) 

pGex4T3   GE Healthcare 

pGex4T3 Mdm38CTD pGex4T3 GST-Mdm38 (aa159-573)-HIS6 (Frazier et al. 2006) 

pBad24   (Guzman et al. 1995) 

pBad24 Mdm38K* pBad24 HIS-SUMO-Mdm38(aa182-408)Strep This study 

pTRc99a   Pharmacia Biotech 

pTRc99a Mdm38K* pTRc99a HIS-SUMO-Mdm38(aa182-408)Strep This study 

pSUMO   AG Göhrlich 

pSUMO Mdm38K* pSUMO HIS-SUMO-Mdm38(aa182-408)Strep This study 

*additional derivatives of these vectors containing point mutations were used in this studies (Tab. 

2.5) 

2.1.7 Laboratory Equipment 

Tab. 2.7 Equipment 

Product Model Supplier 

Electrophoresis 

and blotting 

EPS 601 power supply GE Healthcare 

Hoefer SE600 Ruby Blue native system GE Healthcare 

 Mini-PROTEAN® 3 Cell Bio-Rad 

 Mini-Sub® Cell GT Cell Bio-Rad 

 PowerPacTM HC Power Supply Bio-Rad 

 Semi Dry Blotting Chamber PEQLAB 

Biotechnologie 

Centrifuges Sorvall RC 12BP Thermo Scientific 

 Sorvall® RC6 Plus Thermo Scientific 

 OptimaTMDX-XP Beckman Coulter 

 5804R Eppendorf 
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 12-MC Beckman Coulter 

 5415R Eppendorf 

 5417R Eppendorf 

 5424 Eppendorf 

Rotors Sorvall® F14S- 6x250Y Thermo Scientific 

 Sorvall® F10S- 6x500Y Thermo Scientific 

 Sorvall® SS-34 Thermo Scientific 

 Sorvall® H-12000 Thermo Scientific 

 F45-24-11 Eppendorf 

 F45-30-11 Eppendorf 

 FA-45-24-11 Eppendorf 

 TLA-55 Beckman Coulter 

 A-4-44 Eppendorf 

Scanners Agfa Curix 60 Developing machine Agfa 

 Autoradiography Storage Phosphor Screen GE Healthcare 

 LAS 1000 FujiFilm 

 Starion FLA-9000 FujiFilm 

 Storm 820 Phosphorimager GE Healthcare 

 Typhoon FLA 9500 Phosphorimager GE Healthcare 

 UVsolo TS transilluminator Biometra 

Other Autoclave Systec DX-200 Systec 

 Balance BP 3100P Sartorius 

 Electronic Digital Balance Kern ABJ 220-4M KERN Son 

 Excella® E10 platform shaker New Brunswick 

Scientific 

 G25 Shaker Incubator New Brunswick 

Scientific 

 Innova® 44 Incubator shaker New Brunswick 

Scientific 

 GeneQuantTM 1300 Spectrophotometer GE Healthcare 

 Magnetic Stirrer MR 3001 Heidolph 

 Milli-Q-Water purification system Millipore 

 NanoVueTM Spectrophotometer GE Healthcare 
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 pH-meter InoLab 

 Pipettes Gilson 

 Sonicator Cell Disruptor (HI) Heat Systems  

 Sonifier 450  Branson 

 Storage phosphor screens GE Healthcare 

 Potter S glass-Teflon Homogenizer Sartorius AG 

 Termomixer Comfort Eppendorf 

 TPersonal 48 thermocycler Biometra 

 Vortex-Genie 2 Scientific 

Industries 

2.1.8 Cell lines 

Yeast (Saccharomyces cerevisiae – S. cerevisiae) strains used in this study were 

derivatives of YPH499 (Sikorski and Hieter 1989). Additional yeast strains 

transformed with different expression plasmids (Tab. 2.6) were used in this study 

are. 

Escherichia coli (E.coli) strain XL1-blue (Stratagene) was used for molecular 

cloning. For protein expression E. coli strains C43 and BL21 were used. 

Tab. 2.8 E. coli strains 

Strain Genotypes Source 

XL21-Blue supE44, hsdR17, recA1,endA1, gyrA96, thi-1, relA1, 

lac-°(c), F’[proAB+, lacIq lacZΔM15, Tn10(tetr)] 

 

Stratagene 

Bl21 F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI 

lacUV5-T7 gene 1 ind1 sam7 nin5]) 

 

Novagen 

C43 F-ompT gal hsdSB (rB-mB-) dcm lon λDE3 and two 

uncharacterized mutations described in the reference. 
(Miroux and 

Walker 1996) 
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Tab. 2.9 S. cerevisiae strains 

Strain Genotypes Source 

YPH499* MATa, ade2-101 his3-200 leu2-1 ura3-
52 trp1-63 lys2-801 
 

(Sikorski and 

Hieter 1989) 

DaMY17 (mdm38Δ)* MATa ade2-1 his3-11,15 leu2-3,112 ura3-1 
trp1-1 mdm38::TRP1 
 

(Bauerschmitt et 

al. 2010) 

DaMY18 (mdm38Δ/mba1Δ)* MATa ade2-1 his3-11,15 leu2-3,112 ura3-1 
trp1-1 mba1::HIS5MX6 mdm38::TRP1 
 

(Bauerschmitt et 

al. 2010) 

AFY25 (mdm38ProtA)* MATa ade2-101 his3-_200 leu2-_1 ura3-52 

trp1-_63 lys2-801 mdm38::MDM38ProtA-

HIS3MX6 

 

(Frazier et al. 

2006) 

AFY8 (mba1Δ)  MATa ade2-101 his3-_200 leu2-_1 ura3-52 

trp1-_63 lys2-801 mba1::HIS3MX6  

 

(Bauerschmitt et 

al. 2010) 

CVY1 (Mdm38RBD-ProtA)* MATa, ade2-101 his3-200 leu2-1 ura3-52 
trp1-63 Lys2-801 mdm38::MDM38 (aa1-
408) PROTA-HIS3MX6 
 

(Lupo et al. 2011) 

CVY1 (Mdm38ΔRBD-ProtA)* MATa, ade2-101 his3-200 leu2-1 ura3-52 
trp1-63 Lys2-801 mdm38::MDM38 (aa1-
159) PROTA-HIS3MX6 
 

(Lupo et al. 2011) 

cox26Δ MATa ade2-101 his3-_200 leu2-_1 ura3-52 

trp1-_63 lys2-801 mdm38::MDM38-

HIS3MX6 

 

Unpublished 

Levchenko, 2015 

cox26BirA MATa ade2-101 his3-_200 leu2-_1 ura3-52 

trp1-_63 lys2-801 cox26::COX26BirA-

HIS3MX6 

 

Unpublished 

Levchenko, 2015 

mdm38BirA MATa ade2-101 his3-_200 leu2-_1 ura3-52 

trp1-_63 lys2-801 mdm38::MDM38BirA-

HIS3MX6 

 

Unpublished 

Levchenko, 2015 

* Strains were additionally transformed with different plasmid constructs based on 

pRS416 or Yep352 (Tab. 2.6) 

2.2 Growth conditions and media 

2.2.1 Cultivation of S. cerevisiae 

S. cerevisiae was grown in liquid cultures of rich media at 30°C with agitation. For 

selection of different markers, synthetic media lacking uracil and/or tryptophan 

were used. Media were composed as listed in (Tab. 2.1). Media and solutions and 

were either filter sterilized or autoclaved. To avoid maillard products, carbon 

sources were autoclaved separately and added later on. 
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For solid media 2.5 % agar was added before autoclaving and plates of 5 mm 

thickness were cast. Cultures from cryo-stocks were streaked out on solid media 

and stored at 30 °C for 2-3 days. Liquid cultures were inoculated with cells picked 

from solid media or another liquid culture. Cell density of liquid cultures was 

monitored by OD600 whereby an OD600 of 1 approximately corresponds to 107 

cells/ml. 

 
Tab. 2.10 Yeast media 

Component Concentration 

YPD 1% yeast extract, 2% peptone, 2% glucose 

YPGal 1% yeast extract, 2% peptone, 2% galactose 

YPG 1% yeast extract, 2% peptone, 3% glycerol 

SD-Ura 0.67% yeast nitrogen base, 0.07% CSM-Ura, 2% glucose 

SGal-Ura 0.67% yeast nitrogen base, 0.07% CSM-Ura, 2% galactose 

SG-Ura 0.67% yeast nitrogen base, 0.07% CSM-Ura, 3% glycerol 

SD-Trp 0.67% yeast nitrogen base, 0.07% CSM-Trp, 2% glucose 

SGal-Trp 0.67% yeast nitrogen base, 0.07% CSM-Trp, 2% galactose 

SG-Trp 0.67% yeast nitrogen base, 0.07% CSM-Trp, 3% glycerol 

SD-Trp/-Ura 0.67% yeast nitrogen base, 1% -Ura/-Trp-mix*, 2% glucose 

SGal-Trp/-Ura 0.67% yeast nitrogen base, 1% -Ura/-Trp-mix*, 2% galactose 

SG-Trp/-Ura 0.67% yeast nitrogen base, 1% -Ura/-Trp-mix*, 3% glycerol 

* -Ura/-Trp-mix [w/v](filter sterilized): 
     0.2 % adenine, 0.2% histidine, 0.3% leucine, 0,3 % lysine 

2.2.2 Yeast cryo-stocks 

To store yeast strains at -80 °C 1 ml liquid culture of approximately 1 OD600 was 

supplemented with 15 % sterile glycerol and frozen in liquid nitrogen. 

2.2.3 Drop dilution assay 

In order to monitor the growth of yeast strains, overnight cultures of 

approximately 2 OD600 were harvested by centrifugation (5 min/ 5000g/ 4 °C) and 

washed with sterile water. Pellets were resuspended in water and adjusted to 2 

OD600. 5 µl of five serial 10-fold dilutions were spotted on solid medium applied 

with different carbon sources. After 2-5 days of growth at 30 °C (optionally, also 

24 °C & 37 °C) growth was documented by scanning (Epson Perfection V750 Pro). 
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For growth on nigericin medium the drug was added to the solution (cooled down 

to 60°C) in indicated concentrations prior to casting.  

2.2.4 Cultivation of E. coli  

E. coli cultures were grown at 37 °C in LB medium (1 % yeast extract, 0.5 % NaCl). 

Selective conditions for plasmids were achieved by the application of respective 

antibiotics. Therefore, 100 mg/l ampicillin sodium sulfate, 35 mg/l 

chloramphenicol or 30 mg/l kanamycin sulfate were used. For liquid cultures, E. 

coli cells were inoculated from solid media or from a pre-culture (1:100 to 

1:1000). Cell density was monitored by optical density at 600 nm (OD600). 

2.2.5 E. coli cryo-stocks 

For stock preservation 1 ml culture grown overnight was supplemented with 15 % 

sterile glycerol, frozen in liquid nitrogen and stored at -80 °C. 

 

2.3 Molecular biology methods  

2.3.1 Isolation of yeast genomic DNA 

To extract genomic DNA from yeast, 5 ml culture of wild-type yeast was grown to 

an OD600 of 0.5 to 0.7. Subsequently the medium was removed by centrifugation 

(5 min/ 5000 rpm) and cells were resuspended in 150 μl resuspension buffer A 

and incubated for 1 hour at 37 °C. After the addition of 20 μl of 10 % SDS and 100 

μl 8 M ammonium acetate the suspension was incubated for 15 min at ‐20 °C. Cell 

fragments were then separated from DNA by centrifugation (14.000 rpm/ 15 min/ 

4 °C). The DNA containing supernatant was transferred to a new tube and DNA 

was precipitated by isopropanol that was added in equal volume. Finally DNA was 

pelleted by centrifugation (14.000 rpm/15 min/4 °C) and washed with 70 % 

ethanol. After drying at RT, DNA was resuspended in 25μl TE buffer (1 mM EDTA, 

10 mMTris/HCl pH 7.5) and stored at ‐20 °C.  
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Tab. 2.11 Resuspension Buffer A 

Component Concentration 

Tris/HCl pH 7.5 50 mM 

EDTA 10 mM 

β-mercaptoethanol 0.3 % 

Zymolyase 0.5 mg/ml 

2.3.2 Determination of DNA concentration  

DNA concentration was determined via the absorption of DNA solutions. 

Therefore, OD260 was measured using NanoVue (GE Healthcare). According to 

(Sambrook et al. 1989) an OD260 of 1 was assumed to correspond to 50 µg/ml of 

double strand DNA. 

2.3.3 Sequencing of DNA 

Sequencing of DNA was performed by GATC Biotech (Konstanz). Obtained 

sequences were visualized and compared using GeniousPro (Version 5.3.6, 

Biomatters). 

2.3.4 Agarose gel electrophoresis 

DNA was separated by size with agarose gel electrophoresis. Therefore, 1-1.5 % 

agarose was dissolved in TAE Buffer (2 mM EDTA, 40 mM Tris/acetate, pH 8.0) by 

heating it to near-boiling point in a microwave oven. After cooling down to 70 °C 

the solution was supplemented with 1 µg/ml ethidium bromide and casted while 

pockets were created with a comb. After complete gelling the gel was transferred 

to a Mini-Sub Cell GT chamber and covered with TAE Buffer. DNA samples in 

loading dye (10 % sucrose, 0.25 % OrangeG) were pipetted into the pockets and 

the gel run was performed for 30 min at 120 V. DNA bands were visualized on an 

UV-trans illuminator using GeneRuler DNA Ladder Mix (Fermentas) as a standard 

for size estimation. Optionally, DNA bands were cut out for purification on a UV-

light table. 

2.3.5 Amplification of DNA fragments by PCR  

Polymerase chain reaction was performed to amplify DNA fragments using KOD 

Hot Start DNA polymerase (Novagen) according to the manufacturer’s 

recommendation. In general, reactions were performed in 50 µl using 10 ng of 



MATERIALS & METHODS 

P a g e  | 31  

plasmid DNA or 100 ng of yeast genomic DNA as template. Cycling conditions were 

adjusted for the intended fragment length and melting temperature of used primer 

pairs.  

2.3.6 Purification of plasmids 

Plasmids from E. coli were isolated using Wizard Plus SV Miniprep DNA 

Purification System (Promega) according to the manufacturer´s specifications. 

Subsequently, nucleic acid concentration of the solution was determined and 

plasmids were stored in dH2O at -20 °C.  

2.3.7 Molecular cloning  

For cloning DNA into plasmid vectors the DNA of interest was amplified by PCR 

using primers with extensions that contain suitable restriction sites. Purified PCR 

products (Wizard® SV Gel and PCR Clean-Up System) and plasmids were cleaved 

with the same set of restriction enzymes and subsequently heat inactivated for 10 

min at 85 °C. For dephosphorylation of the cut vector, the restriction solution was 

supplied with dephosphorylation buffer and alkaline phosphatase (4 µl/ 1 µg 

plasmid) and incubated for 45 min at room temperature. Afterwards, plasmids 

were separated from cut out fragments on a 1 % agarose gel and isolated (Wizard® 

SV Gel and PCR Clean-Up System). Ligation was performed using the Rapid DNA 

Ligation Kit (Fermentas) according to the manufacturer’s instructions. Ligated 

constructs were transformed into E. coli (XL1 blue). Finally, plasmids were isolated 

and constructs were confirmed by restriction analysis and sequencing. 

2.3.8 Site directed mutagenesis in plasmids 

Mutagenesis within plasmids was performed via mutagenesis-PCR using the Quick-

change lightning kit (Agilent) according to the manufacturer’s instructions. 

Therefore, primers containing intended nucleotide exchanges were designed. 

Achieved clones were finally examined by sequencing. Optionally, additional silent 

mutations were inserted into the primers by creating or removing low abundant 

restriction sites, which allow later verification of the mutagenesis by restriction 

analysis.  
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2.3.9 Enzymatic restriction of DNA 

Digestion of DNA with restriction enzymes was performed according to the 

manufacturer´s recommendations (FastDigest—Thermo Scientific). Subsequently, 

enzymes were inactivated by 10 min incubation at 85 °C. DNA fragments were 

analyzed by agarose gel electrophoresis and used for ligation reactions. 

2.3.10 Transformation of yeast cells with lithium acetate  

Transformations of plasmid vectors into yeast were performed as described in 

(Gietz and Schiestl 2007). A 5 ml overnight culture of the respective yeast strain 

was inoculated into 50 ml YPD to OD600 0.1 and incubated shakingly at 30 °C. After 

reaching mid-log phase (OD600 0.6 – 1.2) cells were centrifuged for 5 min (3.5 g/ 

4 °C). The supernatant was discarded and the pellet washed twice with 50 ml 

dH2O followed by a washing step with 25 ml LiAc/TE buffer. Subsequently, the 

resulting pellet was resuspended in 1 ml LiAc/TE. For the transformation 100 µl of 

cell suspension were mixed with 1-5 µg plasmid and 10 µl of carrier ssDNA 

(salmon sperm DNA 10 mg/ml) which was previously denatured for 5 min at 

95 °C. After 30 min incubation at 30 °C 1 ml of sterile filtered PEG4000 (40% in 

LiAc/TE) were added and carefully mixed by pipetting up and down. The 

suspension was incubated for 30 min at 30 °C followed by an addition of 68 µl 

DMSO and a heat shock of 42 °C for 15 min. Cells were then pelleted by two 

centrifugation steps of 5 min (5 g/4 °C) with turning the tubes 180 ° in between. 

The supernatant was discarded and cells were resuspended in 100 µl dH2O for 

subsequent plating on respective selective agarose medium. 

When colonies became visible after 2-3 d, three of them were streaked out again 

on selective media and single colonies were picked and tested for successful 

transformation. 

 

Tab. 2.12 LiAc/TE Buffer 

Component Concentration 

LiAc,  100 mM 

Tris/HCl (pH. 7.5) 100 mM 

EDTA 10 mM 
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2.3.11 Preparation of transformation competent E. coli cells with divalent 

cations 

2 ml of LB-medium was inoculated with a single colony of E. coli and incubated 

shakingly overnight at 37 °C. The whole culture was transferred to 200 ml LB-

medium and further incubated until an OD600 of 0.2-0.3 indicating the mid-log 

phase. After transferring the culture into 450 ml falcon tubes it was stored on ice 

for 15 min and medium was discarded after centrifugation (5 min/ 900 g/ 4 °C). 

Cells were then gently resuspended in 67 ml cold sterile filtered RF1-buffer and 

stored on ice for 30 min. After 15 min centrifugation (5 min/ 900g/ 4 °C) 

supernatant was removed and the pellet was resuspended in 16 ml of cold sterile 

filtered RF2-buffer. After 15 min incubation on ice the cell suspension was split 

into aliquots of 10 µl and snap frozen in liquid nitrogen. The achieved competent 

cells were stored frozen at -80 °C. 

 
Tab. 2.13 RF1-buffer 

Component Concentration 

RbCl 100 mM 

MnCl2 50 mM 

Na-acetate 30 mM 

CaCl2 10 mM 

Glycerol 15 % (w/v) 

RbCl 100 mM 

Adjusted to pH 5.8 with 0.2 M acetic acid 

 

Tab. 2.14 RF2-buffer 

Component Concentration 

RbCl 10 mM 

MnCl2 50 mM 

Na-acetate 10 mM 

CaCl2 75 mM 

Glycerol 15 % (w/v) 

RbCl 10 mM 

Adjusted to pH 6.8 with 50 mM NaOH 
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2.3.12 Transformation of chemically competent E. coli  

For transformation the competent cells were thawed on ice. Subsequently, 10 µl 

ligation mix or 200 ng plasmid DNA were added and the suspension was incubated 

for 15 min on ice followed by a heat shock for 45 s at 42 °C. For establishing the 

resistance against respective antibiotics, cells were cooled down, transferred to 

1 ml LB medium and incubated shakingly for 1 h at 37 °C with. Afterwards, cells 

were pelleted by 5 min centrifugation (5 g). The supernatant was discarded and 

cells were resuspended in 100 µl dH2O for subsequent plating on the respective 

selective agarose medium. 

 

2.4 Biochemical methods 

2.4.1 Separation of proteins by SDS-PAGE 

Separation of proteins under denaturing conditions was performed via with SDS-

polyacrylamide gel electrophoresis (SDS-PAGE). Prior the electrophoresis the 

proteins are boiled for 5 min at 95 °C or kept at room temperature for 30 min in 

SDS sample buffer. Thus, SDS coats the proteins resulting in a negative overall 

charge, so that proteins move to the anode in an applied electric field. Thereby, 

higher weight proteins migrate slower through the pores of the gel while smaller 

proteins are faster. The low percentage stacking gel contains large pores and the 

proteins are forming a stack between the leading chloride ions and the trailing ion 

Glycine. Subsequently, proteins reach the resolving gel with a higher pH than the 

stacking gel and containing smaller pores. Thus, the proteins are separated 

according to their molecular weight. Depending on the molecular weight of the 

investigated proteins, the different percentages of acrylamide/ bisacrylamide are 

used within the resolving gel. Details on the composition of the gels can be found in 

the following overview: 

For pouring and running SDS-gels self-made devices were used for large gels (gel 

size: 16.5 cm x 14 cm X 1mm) and the Mini-PROTEAN II Bio-Rad system for 

smaller ones (gel size: 10 cm x 5.5 cm x 0.75). Therefore, two glass plates, which 

were separated by two spacers, were fixed together by metal clamps and 

positioned in a gel basis. The lower rim of the casting mold was sealed with 3 ml 15 

% resolving gel supplied with 0.15 % APS and 0.3 % TEMED. After polymerization 
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of the sealing gel the resolving gel is casted on top of it filling three quarters of the 

space between the glass plates. The gel was topped with isopropanol during the 

polymerization to create a plane surface and prevent dehydration. The 

polymerized gel was rinsed with water and the stacking gel was filled on top. To 

form separated pockets for the application of the protein samples, a comb with 14-

21 teeth was fit in the liquid gel. 

The electrophoresis was performed in SDS running buffer (25 mM Tris, 1.91 M 

glycine, 1 % SDS) at 30 mA per gel using 250 V. 

 
Tab. 2.15 SDS-Polyacrylamide 

Component Concentration 
 (resolving gel) 

Concentration 
 (stacking gel) 

Acrylamide/Bisacrylamide (30/0.8 %) 10-16 % 5 % 

Tris/HCl pH ph 8.8 380 mM - 

Tris/HCl pH ph 6.8 - 80 mM 

SDS  0.1 % (w/v) 0.1 % (w/v) 

APS* 0.06 % (w/v)  0.1 % (w/v) 

TEMED* 0.12 %  0.2 % 

* Added immediately before casting 

 

Tab. 2.16 SDS Sample Buffer 

Component Concentration 

SDS 2 % (w/v) 

Glycerol 10 % 

Tris/HCl pH 6.8 60 mM 

β-mercaptoethanol 0.5 % 

Bromphenolblue 0.01 % (w/v) 

2.4.2 Blue Native Page  

Blue Native Page (BN Page) according to (Schägger and Jagow 1991) was used to 

separate native protein complexes from either whole solubilized mitochondria or 

already purified protein samples. For latter ones 10x BN sample buffer is directly 

added. Whole mitochondria were first pelleted (10 min, 16.000 g, 4 °C) and 

subsequently solubilized in Digitonin Buffer by pipetting up and down 20 times 
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yielding to a protein concentration of 1 mg/ml. The suspension was stored on a 

rotating wheel at 4 °C for 30 min. After 10 min centrifugation (16.000 g / 4 °C) the 

supernatant was used for the assay. Therefore, 10x BN sample buffer was added to 

the sample.  

Gels with different acrylamide gradients (Acrylamide/ Bisacrylamide: 16/1) were 

cast directly before the gel run and cooled down to 4 °C. Samples were loaded on 

the gel and covered with precooled BN Cathode Buffer (15 mM Bis-Tris/HCl 

pH 7.0, 50 mM Tricine, 0.2% Coomassie Brilliant Blue G-250) completely filling up 

the gel pockets. The gel electrophoresis was performed in Anode Buffer (50 mM 

Bis-Tris/HCl pH 7.0) using the SE600 Ruby system (GE-Healthcare) at a 200 V and 

15 mA. In the middle of the gel run the cathode buffer was replaced with BN 

Cathode Buffer without coomassie. Electrophoresis was continued either at 600 V 

for 4-5 h or overnight at 100 V. 

 
Tab. 2.17 10x BN Sample Buffer 

Component Concentration 

Bis- Tris/HCl, (pH 7.0) 100 mM 

ε-Amino n-caproic acid 500 µM 

Coomassie Brilliant Blue G-250 5 % 

 

Tab. 2.18 Digitonin Solubilization Buffer 

Component Concentration  

Tris/HCl pH 7.4 20 mM 

NaCl 50 mM 

Glycerol 10 % 

EDTA 1mM 

Digitonin 1 % 

PMSF 2 mM 

2.4.3 Western blotting of polyacrylamide gels 

For further analyses by immunodetection, proteins separated on polyacrylamide 

gels were transferred to PVDF membranes via using semi dry Western blotting. 

Therefore, gel and membrane activated in methanol were equilibrated in Blotting 

Buffer (20 mM Tris, 150 mM glycine, 0.02% SDS, 20 % ethanol). The blot was 
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assembled in a blotting chamber (Peqlab) using 3 layers of Whatman paper soaked 

with Blotting Buffer followed by the membrane the gel and another 3 layers of 

Whatman paper. The blotting run was performed at 250 mA /25 V for 2.5 h. 

Subsequently, membranes were directly used for further analysis or dried on a 

Whatman paper and stored at 4 °C. 

2.4.4 Immunostaining of Western Blot membranes 

PVDF membranes were blocked in TBST buffer (125 mM NaCl, 0.1% Tween 20, 

20 mM Tris, pH 7.5) supplied with 5 % low fat milk powder for 1 h at room 

temperature or at 4 °C overnight. Membranes were incubated in primary antibody 

for 1 h at room temperature and subsequently washed 3 times for 10 min in TBST 

followed by another incubation of 1 h at room temperature with the respective 

secondary antibody coupled to HRP. After 3 washing steps of 10 min in TBST 

membranes were placed in a developing cassette and supplied with ECL solution. 

Signals were detected using x-ray films. 

2.4.5 Western Blot staining with tag-specific probes 

To detect biotinylated or histidine tagged proteins on Western Blots, HRP-coupled 

probes were used (His: HisProbeTM-HRP (Thermo Fisher) / Biotin: HRP-conjugated 

streptavidin (SA-HRP - Invitrogen)). Activated PVDF membranes were therefore 

blocked in TBST buffer (2.4.5) containing 3 % BSA for 1 h at room temperature or 

at 4 °C overnight. After washing in TBST membranes were incubated with probes 

diluted 1:1000 in TBST for 1 h at room temperature or at 4 °C overnight. After final 

washing steps (3 x 10 min in TBST) signal detection was performed as in 2.4.5. 

2.4.6 Coomassie staining of Western Blot membranes or polyacrylamide 

gels 

To visualize proteins on PVDF membranes or polyacrylamide gels subjects were 

incubated in Coomassie staining solution (2.5 g/l Coomassie brilliant blue R-250, 

40 % ethanol, 10 % acetic acid) for 5 min (PVDF membranes) or 3 hours (gels). 

Subjects were then transferred to destaining solution (40 % ethanol, 10 % acetic 

acid) and shaken at room temperature until background staining was removed.  

Before using PVDF membranes for immune staining they were completely 

destained in methanol. 
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2.4.7 Colloidal coomassie staining of polyacrylamide gels 

Colloidal coomassie staining was used to visualize protein bands of lower 

abundance on polyacrylamide gels according to (Neuhoff et al. 1985). Therefore, 

after gel run gels were directly transferred to fixing solution (40 % EtOH, 10 % 

Acetic Acid) so that it was completely covered. After shaking incubation for at least 

1 h gels were washed twice for 10 min with water and subsequently transferred to 

freshly prepared dye solution (80 % dye stock solution / 20 % methanol (v/v)). 

Staining was performed for 1-3 days while shaking at room temperature. 

2.4.8 Preparation of colloidal Coomassie stock solution 

The dye stock solution was prepared at least 24 h in advance of the staining and 

for later uses. 2 % (w/v) ortho-phosphoric acid and 10 % ammonium sulfate were 

dissolved in 80 % of the final volume water. After complete dissolution 0.1 % 

Coomassie Brilliant Blue G250 was added while stirring and the solution was filled 

up to final volume with water. The stock solution was stored at room temperature 

but stirred again for at least 24 h before use. 

2.4.9 Protein extraction from whole yeast cells 

In order to perform steady state analysis of yeast proteins an extraction from 

whole cells was performed. Yeast strains were grown in overnight culture of 5 ml 

to an OD600 less than 3. Cells of 2 OD600 were then harvested by centrifugation at 

5.000 g and subsequently resuspended in 1 ml water. Cell lysis was performed by 

the addition of 15 mM β-mercaptoethanol and 250 mM NaOH. After 10 min 

incubation on ice proteins were precipitated by the addition of 6 % (w/v) TCA 

followed by10 min incubation on ice. Proteins were pelleted by centrifugation (10 

min/ 14.000g), resuspended in 50 µl sample buffer and boiled for 5 min at 95 °C. 

2.4.10 Determination of protein concentrations via Bradford assay  

Protein concentrations were determined via Bradford assay using Roti-Quant 

(Roth) according to the manufacturer’s recommendations. Therefore, the 

absorbance of protein solutions was measured at 600 nm. Concentrations were 

calculated using a standard curve prepared with IgG or BSA. 
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2.4.11 Subcellular fractionation of S. cerevisiae 

Subcellular fractionation was performed to isolate mitochondria from yeast cells. 

Therefore, a 50 ml overnight culture under respiration enforcing conditions e.g. in 

YPG was inoculated in 200-500 ml of respective media. The next day main cultures 

of 1.8 L were inoculated and adjusted to an OD600 resulting in OD600 of 2 after 

another overnight incubation. Main cultures were harvested by 10 min 

centrifugation (4.000 rpm / 18 °C). Cells were resuspended in 500 ml water and 

subsequently transferred to a 500 ml centrifuge beaker. After 10 min 

centrifugation (4.000 rpm / 18 °C) the supernatant was discarded and the cell 

pellet was weighted. Cells were then resuspended in 2 ml DTT-buffer/ mg cells 

(100 mM Tris/HCl pH 9.4, 10 mM DTT). For sufficient disruption of disulfide bonds 

within the cell wall, cells were incubated for 30 min at 30 °C shaking with 220 rpm. 

DTT buffer was removed by two centrifugation steps (4.000 rpm / 18 °C) including 

a resuspension in 1.2 M Sorbitol for further washing. Cells were then resuspended 

in 7 ml/ g yeast zymolyase buffer (20 mM potassium phosphate pH 7.4, 1.2 M 

sorbitol) without enzyme. Per gram cells 4 mg of zymolyase were dissolved in 1 ml 

1M Tris/HCl (pH 7.4) and added to the suspension. After 90 min shaking with 

90 rpm at 30 °C suspensions were checked for spheroblasts microscopically, 

pelleted (3.000 rpm / 18 °C) and washed with 100 ml zymolyase buffer without 

enzyme. From now on all steps were performed on ice. Subsequent to the addition 

of PMSF to a final concentration of 1 mM suspensions were transferred to a 

precooled 60 ml glass-Teflon homogenizer (Potter S, Sartorius). For 

homogenization by mechanic disruption of the cell membrane the Teflon pistil was 

moved up and down 20 times rotating with 900 rpm. Suspensions were then 

cleared from higher weight cell fragments by two subsequent centrifugation steps 

(10 min/ 7000 g/ 4 °C) followed by a centrifugation (15 min/ 17000 g/ 4 °C) of the 

supernatant to pellet mitochondria. Afterwards, Mitochondria were washed with 5 

ml SEM buffer (1 mM PMSF) and subsequently resuspended in a final volume of 1 

ml SEM buffer. Finally, protein concentration was determined with Bradford Assay 

and adjusted to 10 µg/µl by addition of SEM buffer. Mitochondria were frozen in 

liquid nitrogen and stored at -80 °C. 
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Tab. 2.19 Homogenization buffer 

Component Concentration 

Sorbitol 1.2 M 

Tris pH 7.4 20 mM 

EDTA 2 mM 

BSA (fatty acid free) 0.4% (w/v) 

2.4.12 In vivo labeling of mitochondrial translation products 

In order to analyze mitochondrial translation products quantitatively in living 

yeast cells, radioactive in vivo labeling via 35S-methionine was performed. For that 

reason yeast cells were grown in 5 ml medium (2.2.1) overnight using galactose as 

the carbon source. The next day solutions were diluted to OD600 of 0.1. After 

reaching an OD600 of 1 cells were harvested by centrifugation (1 min/ 5000 g/ RT) 

and washed by centrifugation (1 min/ 5000 g/ RT) with 500 µl labeling buffer (2% 

Gal, 40 mM KPi pH 6.0). Pellets were resuspended in 500 µl labeling buffer and 

incubated shakingly at 30 °C for methionine starvation. To inhibit cytosolic 

translation cyclohexemid was added to a final concentration of 0.5 mM. After 

further 5 min incubation at 30 °C. Mitochondrial translation was started by the 

addition of 2 µl 35S‐methionine (10 mCi/ml) and suspensions were shaken at 30 °C. 

After a defined period of time (pulse) further integration of 35S‐methionine is 

prevented by the addition of an excess of methionine (4 mM). After 2 min of 

further incubation suspensions were put on ice.  

After a following whole cell extraction the achieved protein pellets were 

resuspended in 50 µl SDS-sample buffer and kept shaking at room temperature for 

30 min. For further analysis, samples were subjected to SDS-PAGE (16 % 

acrylamide/ 0.21 % bisacrylamide) and digital autoradiography, which was 

optionally combined with Western Blot analysis. 

2.4.13 Analysis of stability of mitochondrial translation products in vivo with 

pulse-chase experiments 

Optionally, the stability of newly synthetized mitochondrially encoded proteins 

was investigated by in vivo labeling within pulse-chase experiments. Therefore, 

cells were further shaken at 30 °C after the addition of non-labeled methionine for 

defined time frames (chase), subsequently put on ice and treated as described 
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above. 

2.4.14 In organello labeling of mitochondrial translation products 

Translation products from intact isolated mitochondria were analyzed 

quantitatively by radioactive in organello labeling with 35S-methionine. Therefore, 

40 µg mitochondria were thawed on ice and carefully suspended in 40 µl freshly 

prepared 1.5x translation buffer. Thereupon, pyruvate was added to a final 

concentration of 12 µg/ml and the solution was filled up to 60 µl with water. After 

5 min preincubation at 30 °C mitochondrial translation was started by the addition 

of 2 µl 35S‐methionine (10 mCi/ml) and suspensions were shaken at 30 °C. After a 

defined pulse an excess of unlabeled methionine (4 mM) was added to prevent 

further incorporation of 35S‐methionine. After 2 min further incubation at 30 °C 

samples were put on ice. Mitochondria were then isolated by centrifugation 

(10 min/ 14,000 g/ 4 °C) and washed with SEM. Pellets were resuspended in SDS 

sample buffer and shaken for 30 min at RT. Samples were further analyzed via 

SDS-PAGE (16% acrylamide/ 0.21% bisacrylamide) with and digital 

autoradiography and optionally also with Western Blot analysis. 

 

Tab. 2.20 1.5x Translation buffer 

Component Concentration 

Sorbitol 900 mM 

KCl 225 mM 

K-phosphate pH 7.4 22.5 mM 

Tris pH 7.4 30 mM 

BSA 4.5 mg/ml 

ATP pH 7.2 6 mM 

GTP pH 7.2 0.75 mM 

2-Ketoglutarat 9 mM 

Creatin Phosphate 7.5mM 

AA-mix (-met) 0.15 mM 

CHX (in EtOH) 7.5 µg/ml 

MgSO4 19 mM 
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2.4.15 Stability analysis of mitochondrial translation products in organello 

via within pulse-chase experiments 

In addition to quantitative analysis of translation over time also the stability of 

mitochondrial encoded proteins can be investigated in this context via using pulse-

chase experiments. Therefore, labeling was performed as described above for a 

pulse of 10 min followed by the addition of unlabeled methionine (4 mM). Stability 

was then observed for different time frames (chase) in samples which were shaken 

at 30 °C before they were put on ice. Afterwards samples were collected, washed 

and analyzed as described above. 

2.4.16 Submitochondrial localization of proteins by protease protection  

Localization of proteins in mitochondria was investigated by determining 

accessibility to proteinase K according to (Frazier et al. 2006). The assay was 

performed either in intact mitochondria or in mitoplasts using samples with 

completely disrupted membranes as a control. Mitoplasts were obtained by 

osmotic swelling. Therefore, mitochondria were diluted to a concentration of 1 

mg/ml in EM buffer and incubated on ice for 25 min. Samples for intact 

mitochondria were kept in SEM buffer with the same concentration and also stored 

on ice during that time. Samples were then treated with 20-100 µg/ml proteinase 

K or left untreated followed by an incubation on ice for 10 min. Blocking of the 

proteinase was performed by the addition of 2 mM PMSF and further incubation of 

10 min on ice. Control samples with completely disrupted membranes were 

prepared from mitochondria (1 mg/ml in EM buffer) that were either treated with 

100 µg/ml proteinase K or left untreated and subsequently exposed to 3x 20 

pulses in the ultrasound bath. After 10 min incubation on ice proteins were 

blocked as shown above. All samples were TCA precipitated and resuspended in 1x 

SDS sample buffer containing 1 mM PMSF. All samples were separated via by SDS-

PAGE and the corresponding Western Blot was probed by antibodies for the 

protein of interest and also control proteins with known submitochondrial 

localization. 

2.4.17 Isolation of protein complexes using Protein A-tag 

To investigate the interactome of Mdm38, mitochondria from yeast strains 

expressing Mdm38 chromosomally tagged with Protein A were used. Therefore, 
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mitochondria were thawed on ice and spun down by centrifugation (10 min/ 

14,000g/ 4 °C). Pellets were resuspended in digitonin solubilization buffer creating 

a final concentration 1 mg/ml protein. After 30 min incubation on an end-over-end 

shaker at 4 °C, solutions were cleared by centrifugation (15 min/ 14,000g/ 4 °C). 

Supernatants were then subjected to activated and equilibrated IgG-Sepharose 

beads (see 2.4.18, 50 ml beads per 1 mg mitochondria). After 2 h rotation on the 

end-over-end shaker at 4 °C beads were cleared from unbound material by 

centrifugation (30 s/ 100 g/ 4 °C) and 10 washing steps using 10 excess of washing 

buffer. Native elution from the beads was performed by enzymatic cleavage of the 

Protein A tag with TEV-protease. Therefore, beads were shaken overnight (800 

rpm/ 4 °c) in a 1:1 suspension with washing buffer supplied with 1 µl TEV-

protease per 100 µl. TEV-protease was subsequently removed via its HIS-tag by Ni-

NTA isolation. For that reason suspensions were supplied with 20 % (v/v) Ni-NTA 

beads equilibrated with washing buffer (2x washing with 10x excess). Elutions 

were then isolated by centrifugation (30 s/ 100 g/ 4 °C). And used for further 

analysis. Optionally, a second denaturing elution was performed by addition of 1:1 

SDS loading dye 5 min incubation at (95 °C) and subsequent centrifugation (1 min/ 

200 g/ RT). 

2.4.18 Activation and equilibration of IgG-Sepharose beads 

In order to activate IgG-Sepharose beads for protein isolation assays beads were 

first washed twice with a 10x excess of acetate buffer (0.5 M HAc, 0.5 M NH4Ac, pH 

3.4). Beads were then equilibrated to the used solubilization buffer washing twice 

with 10x excess of 2x Solublization buffer and once with 10x excess of digitonin 

solubilization buffer. 

 
Tab. 2.21 2x Solubilization buffer 

 

 

Component Concentration  

Tris pH 7.4 40 mM 

NaCl 2.4.18.1 80 mM 

Glycerol 20 % 

EDTA 2 mM 
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Tab. 2.22 Digitonin solubilization buffer 

Component Concentration 

Tris pH 7.4 20 mM 

NaCl 2.4.18.2 80 mM 

Glycerol 10 % 

EDTA 1mM 

Digitonin 1 % 

PMSF 2 mM 

 
Tab. 2.23 Washing buffer 

Component Concentration 

Tris pH 7.4 20 mM 

NaCl Varying (see Results)  

Glycerol 10 % 

EDTA 1mM 

Digitonin 0.3 % 

PMSF 1 mM 

2.4.19 Affinity purification with Glutathione Sepharose 

To isolate proteins tagged with Glutathione S-transferase (GST). Corresponding E. 

coli cell were harvested after 4 h expression by centrifugation (5 min/ 4500 g/ 

4 °C). Pellets were resuspended in PBS buffer (0,5 ml / 100 mg cells) and subjected 

to sonication on ice. Volumes below 2 ml were therefore exposed to 3 times 30 

pulses in an ultrasound bath (Branson) within a small reaction tube while higher 

volumes were sonicated for 3 times 45 seconds with a sonication needle (Heat 

Systems). Solutions were clarified by cencentrifugation (30 min/ 4500 g/ 4 °C) and 

upernatants were subsequently added to equilibrated Glutathione Sepharose 

beads (50 µl beads / 800 µl). For respective equilibration the Sepharose was 

sedimented by centrifugation at (5 min/ 500 g) and washed twice with 5 times 

excess of PBS buffer before. After an incubation overnight on an end-over-end 

shaker at 4 °C unbound proteins were removed by centrifugation (30 s/ 100 g/ 

4 °C) and beads were washed 6 times with 5 fold excess of PBS buffer. For 

competitive elution, beads were incubated with 50 mM Tris/HCl pH 8 (100 µl/ 50 

µl beads) containing 10 mM reduced Glutathione (GSH) for 5 min at room 
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temperature with agitation, whereupon GSH-eluates were spin out (1 min/ 100 g/ 

4 °C). A final denaturing elution (SDS eluates) was performed with SDS Loading 

Dye for 5 min at 95 °C followed by centrifugation (1 min/ 100 g/ RT). 

 

Tab. 2.24 PBS buffer pH 7.4 

Component Concentration 

NaCl 140 mM 

KCl 27 mM 

Na2HPO4 101 mM 

KH2PO4 18 mM 

PMSF 2 mM 

Protease Inhibitor EDTA free 1 tablet / 50 ml 

2.4.20 Mdm38K BpA in vivo cross-linking  

To investigate proteins in close proximity to different positions at the ribosomal 

binding domain of Mdm38 an in vivo cross-linking via p-benzoylphenylalanine 

(pBpA) was performed in E. coli according to the principle introduced by (Farrell 

et al. 2005). For the integration of pBpA expression vectors encoding constructs 

with an amber-stop (TAG) codon at intended positions were used. Furthermore the 

E. coli stains were co-transformed with the plasmid pSUP, which encodes the 

amber suppressor pBpA-tRNA and respective tRNA synthetase to enable the 

integration of pBpA at TAG-codons.  

The whole assay was performed under minimization of light exposition of the 

samples to prevent background cross-links. 

Precultures of 5 ml LB media supplied with 100 µg/ml ampicillin and 35 µg/ml 

chloramphenicol to select for both plasmids were inoculated with a single bacterial 

colony and grown with agitation at 30 °C. Next day main cultures of identical 

medium (negative control) or medium additionally containing 1 mM pBpa were 

adjusted to 0.1 OD600 and grown to 0.6 OD600. Expression was then induced with 

0.5 mM IPTG and cultures were further incubated for 4 h at 30 °C under agitation. 

Cultures were put on ice and cells were subsequently harvested by centrifugation 

(5 min/ 5000 g/ 4 °C). Pellets were resuspended in PBS buffer (Tab. 2.24 - 2 ml per 

20 ml main culture) and subsequently split into two equal volumes. Both samples 

were stored 30 min on ice. While one sample was exposed to UV light the other 
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was kept in darkness as negative control. A custom-made UV chamber applied with 

a halogen metal vapor lamp (Osram Ultratech) with a glass screen filtering out 

protein damaging wavelengths below 300 nm was used here. In the following step 

cells were lysed by sonication as described in 2.4.19. After removal of insoluble 

components by centrifugation (30 min/ 5000 g/ 4 °C) supernatants were used for 

further analysis. 

2.4.21 In vitro cross-linking to Mdm38K 

In order to test the availability of cysteine 315 of Mdm38K for externally added 

cross-linking reagents Alexa Fluor® 488 C5 Maleimide was added to purified 

Mdm38K as introduced by Yahaf et al. (2003). 

The assay was performed in 50 µl reaction buffer (10 mM EDTA, 40 mM Tris/HCl 

pH 7.4) using 25 µM of protein. The maleimide cross-linker was dissolved in 

Dimethylformamid (Sigma) an added in fivefold or tenfold excess including a mock 

control. Positive control were performed in parallel using reaction buffer with 2 % 

SDS. Then, samples were kept at room temperature to allow cross-linking. 

Subsequently the reaction was quenched by the addition of 1 µl 1M DTT. After 

additional 15 min at room temperature, loading dye was added to the samples. 

Following 5 min incubation at 95 °C, samples corresponding to approximately 3 

mg protein (20 µl) were separated via SDS-PAGE. Corresponding gels were blotted 

or stained with coomassie to detect fluorescent signal via a flourescence scanner or 

show whole protein levels, respectively. 

2.4.22 Isolation of biotinylated proteins from mitochondria 

Following the principle introduced by (Roux et al. 2012) which was further 

adapted to yeast by Levchenko et al. (2015, unpublished) biotinylated proteins 

were isolated from yeast mitochondria. Therefore, cells with chromosomally 

integrated gene constructs encoding fusion proteins with a N-terminally added 

biotin ligase, BirA were used for isolation of mitochondria (2.4.11). 

After thawing on ice 1000 µg mitochondria centrifuged (10 min/ 14.000 g/ 4 °C). 

Resulting pellets were subsequently resuspended in 1000 µl RIPA lysis buffer. 

Following 5 min incubation on ice lysates were clarified by centrifugation (10 min/ 

14.000 g/ 4 °C). After samples were taken (Total) supernatant was transferred to 

40 µl Streptavidin agarose beads that were previously equilibrated twice with 
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RIPA lysis buffer. Following 2 h rotation on an end-over-end shaker at 4 °C beads 

were cleared from unbound (Unbound sample) material by centrifugation (30 s/ 

100 g/ 4 °C). 5 washing steps were performed using 300 µl RIPA lysis buffer for the 

first and the last two steps and 2 %SDS for the third one. Finally columns were 

dried and denaturing elution was performed by addition of 100 µl hot SDS loading 

dye and subsequent 5 min incubation at 95 °C. Samples were spin out by 

centrifugation (1 min/ 200 g/ RT). 

 
Tab. 2.25 RIPA lysis buffer 

Component Concentration 

TRIS (pH 8.0)  50 mM 

NaCl 150 mM 

SDS  0,1% 

Sodium Deoxycholat  0,5 %  

TritonX100   1 % 

PMSF  1 mM 

Na Azide  10 mM 

EDTA free Protease inhibitor  1 tablet/ 50 ml 

2.4.23 Mass-spectrometry 

Samples for analysis by mass sprectrometry were excised from SDS gels stained 

with colloidal coomassie and transferred to an Eppendorf cup. The gel piece was 

subsequently covered with 100 µl 25 mM NH4HCO3 and incubated (a) for 15 min at 

37 °C with fast agitation (1000 rpm), followed by further incubation steps of 

30 min (same coditions ) in (b) 25 mM NH4HCO325, (c) 25 mM NH4HCO3/50 % 

acetonitrile, (d) 100% acetonitrile (e) 10 mM dithiothreitol and in 25 mM 

NH4HCO3 at 56°C for 1 h for final reduction. After repetition of al previous 

incubation steps (a-e) final carbamidomethylation was performed in 25 mM 

indoacetamide, 25 mM NH4HCO3/H2O at 56 °C. After overnight digestion with 

trypsin at 37 °C proteins were extracted. Therefore, samples were incubated for 30 

min at 37 °C in 1 % trifluoroacetic acid (TFA) and dried in a vacuum concentrator 

(SpeedVac). Gel pieces were resolved in10 μL 0.1% TFA were added and 

subsequently vortexed and sonified. Achieved solutions were finally applied to 

nano-LC-MALDI-MS/MS analysis. 
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Results were assumed as true for identified proteins if at least two different 

fragments with an expectation value below 0.5 were detected. 

Sample preparation and data analysis were performed by Olaf Bernhard 

(Göttingen). 
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3 Results 

3.1 Ribosomal Binding Domain of Mdm38 

3.1.1 Binding to mitochondrial ribosomes in yeast is salt dependent 

Mdm38 is a protein of about 65 kDa, localized at the matrix side of the inner 

mitochondrial membrane. Earlier studies suggested a role for Mdm38 in the export 

of newly synthesized, mitochondria-encoded proteins into the inner membrane 

(Frazier et al. 2006) and also for mitochondrial translation (Bauerschmitt et al. 

2010). In line with a functional connection to translation, interactions between 

mitochondrial ribosomes and Mdm38 were revealed by co-isolation experiments 

and resulted in the identification of a ribosomal binding domain (Lupo et al. 2011).  

In order to confirm previous findings and to characterize the interaction between 

Mdm38 and mitochondrial ribosomes more specifically, affinity purification using 

IgG-Sepharose was performed (2.4.17). Mitochondria were isolated (2.4.11) from 

yeast expressing Mdm38 with a chromosomal C-terminal Protein A (ProtA) fusion 

(Mdm38ProtA) (Frazier et al. 2006). Mitochondria were solubilized with 1 % 

digitonin and subsequently incubated with IgG-Sepharose beads. To examine the 

binding characteristics of Mdm38, samples were split and washed with buffers 

containing different salt concentrations (80 mM & 350 mM NaCl). Finally, samples 

were eluted by cleavage of the ProtA-tag with TEV-protease, followed by a second 

elution using SDS-loading dye. TEV-protease elutions were then dissolved in SDS 

loading dye. Western Blot analysis (Figure 3.1) revealed an enrichment of 

mitochondrial ribosomal proteins (Mrpl4 & Mrpl39) in both elutions after low salt 

washing, whereas co-purified amounts were significantly lower after washing 

using 350 mM NaCl. Tom20 was used as a negative control, since this protein of the 

outer mitochondrial membrane is not associated with Mdm38 and therefore shows 

no unspecific binding. Respectively, Ylh47 was used as a positive control, whereby 

co-isolation with Mdm38 was shown by Frazier et al.. Overall, these results are in 

line with (Frazier et al. 2006) and suggest an ionic interaction of Mdm38 and yeast 

mitochondrial ribosomes. 



RESULTS 

P a g e  | 50 

 

 

Figure 3.1 Salt-dependent co-isolation of mitochondrial proteins with Mdm38ProtA 
Lysates of 1 mg mitochondria from wild-type or Mdm38ProtA yeast strains were 
incubated with IgG-Sepharose. Samples were subsequently split and beads were 
washed using buffer with different NaCl concentrations (80 mM & 350 mM). Bound 
proteins were eluted with TEV-protease and subsequently with SDS loading dye. The 
corresponding SDS-gel was blotted and immunostained for indicated proteins. Mdm38* 
marks Mdm38ProtA after TEV-cleavage and Protein A the corresponding cleaved tag. 
Next to mitochondrial ribosomal proteins (Mrpl4 & Mrpl39), Ylh47 was used as a 
positive and Tom20 as a negative control.  
 

3.1.2 Binding to E. coli ribosomes shows conserved characteristics 

The structure of the C-terminal domain of Mdm38 (CTD – aa 159-573) was recently 

determined (Lupo et al. 2011). Therefore, a construct, which was C-terminally 

tagged with His6 and N-terminally tagged with Glutathione S-transferase 

(Mdm38CTD - Figure 3.2 A), was expressed in E. coli. Samples were then purified 

and subjected to x-ray crystallography. The results of Lupo et al. indicated that 

stable crystals only consist of a smaller fragment (aa 182-408), termed Mdm38RBD 

or Mdm38K. Additional experiments using truncations in yeast and recombinant 

constructs expressed in E. coli (Mdm38K- Figure 3.2 A) suggested, that this part of 

the protein is the ribosomal binding domain. 

Based on these findings, the constructs mentioned above were expressed in E. coli 

using IPTG inducible vectors; pGex4T2 Mdm38K and pGex4T3 Mdm38CTD (2.1.6) 

and an empty vector (pGex4T2), expressing GST, was used as a control. 
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Subsequently, cells were subjected to affinity purification with glutathione (GSH) 

Sepharose (2.4.19) and the corresponding samples were separated by SDS-PAGE 

(Figure 3.2 B). A coomassie stained gel enabled visualization of enriched 

expression products as prominent stained bands.  

In addition, the Western Blot of a replica gel was immunostained for the ribosomal 

E. coli protein L23, which was significantly enriched in both constructs, but not the 

negative control. In conclusion, these results confirm previous findings and 

demonstrate that binding of Mdm38K is also true for E. coli ribosomes.  

 

 
 
Figure 3.2 Co-isolation of E. coli ribosomes using recombinant expressed 
constructs of Mdm38 

A) Shown are cartoons of fused tagged constructs expressed in E. coli. The yeast 
protein is depicted for comparison, whereas predicted transmembrane- (T) and 
coiled-coil (CC) domains are indicated. 

B) The upper part of the figure shows a coomassie stained SDS gel of an affinity 
purification with Glutathione Sepharose, whereas samples were eluted with 
SDS loading buffer. Indicated constructs were purified from cells after 4 h 
expression. The empty vector expressing the GST-tag only was used as a 
control. The lower part shows the Western Blot of the same experiment immune 
decorated for the ribosomal E. coli protein L23. 

 

In order to study the binding characteristics of Mdm38 to bacterial ribosomes, the 

salt sensitivity was investigated (Figure 3.3). Therefore, isolations of GST-constructs 

were performed as described above. Deviating from the previous procedure, GSH 

beads were washed with a high salt buffer, containing 350 mM NaCl. Subsequently, 

samples were split and sequential elutions were performed with GSH and SDS 

loading dye for 50 % of the Sepharose.  

The lack of signals for specifically enriched L23 in the eluates suggest a salt 

dependent binding, which was previously described for yeast ribosomes 

(Figure 3.4 I). 
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Figure 3.3 Removal and rebinding of ribosomes to immobilized Mdm38K 
Shown is a schematic representation of the steps performed for in vitro binding of 
ribosomes to immobilized GST-constructs exemplified for Mmd38-GST. High salt buffer 
contains 350 mM NaCl and low salt buffer contains 140 mM NaCl. 
 

To confirm the hypothesis of salt-sensitive binding, in vitro binding was tested for 

the other half of washed beads (Figure 3.4 II). Sepharose was re-equilibrated to a 

lower NaCl concentration (140 mM) and isolated E. coli ribosomes (kindly 

provided by the group of Prof. Dr. Marina Rodnina) were added. These ribosomes 

were hereby adjusted to ribosome concentrations within the cell lysate, estimated 

in preliminary tests using Western Blots (~50 pM, data not shown). The 

corresponding Western Blots displays specifically enriched signals for L23 in the 

elutions of both constructs, in comparison to the control. Furthermore, signals for 

unbound mitochondria indicate similar ribosomal concentrations as for lysed E. 

coli and the added isolates.  
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In conclusion, these results suggest a salt sensitive binding of Mdm38K and 

Mdm38CTD to ribosomes of E. coli, which was hitherto solely described for 

S. cerevisiae. To this end, a conserved binding mechanism is assumed.  

 

 

Figure 3.4 Salt-dependent binding to E. coli ribosomes 
Western Blots immune stained for GST (top part) and L23 (bottom part)  

A) Isolation of GST-tagged constructs was performed as for Figure 3.2 
whereas Sepharose beads were washed with high salt buffer (350 mM 
NaCl) exhibiting reduced amounts of ribosomal protein in corresponding 
eluates. 

B) Sepharose was equilibrated to a lower salt concentration (140 mM NaCl) 
after high salt wash (I). Subsequently, beads were incubated with isolated E. 
coli ribosomes for 1 h, whereupon unbound ribosomes were removed. 
Corresponding elutions exhibit L23 protein, specifically enriched for both 
constructs. 
 

 

3.2 Establishing in vivo photo cross-linking with pBpA 

Given the above results, binding of the recombinant Mdm38K domain to yeast and 

E. coli ribosomes might follow similar mechanisms. However, interacting proteins 

and their respective binding properties remain to be characterized. To approach 

this issue, in vivo photo cross-linking was established (Chin et al. 2002). This assay 

enables the identification of proteins in close proximity (∼6.5 Å from the 

Cα carbon (Banta et al. 2014) ) to specific positions within a target protein. 

Therefore, amino acids were exchanged with the photo cross-linkable artificial 

amino acid para-benzoylphenylalanine (pBpA), by expansion of the genetic code. 

Since the crystal structure of Mdm38K revealed a highly conserved cavity that was 

assumed to be involved in protein-protein interactions (Lupo et al. 2011), 
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positions within that area were chosen for pBpA incorporation (amino acids: C315, 

M320, S354, L330, G319 & W337). 

 

Figure 3.5 Positions for pBpA incorporation 
A surface (left) and a ribbon model (right) depicting the 3D-structure of the ribosomal 
binding domain of Mdm38. Conserved amino acids chosen for pBpA exchanges are 
colored and the position of the assumed binding cavity is indicated. 
Illustrations were created with Pymol (Schrödinger, LLC) using structural data 
published by Lupo et al., 2011. 

 

3.2.1 Mdm38 derivatives with alanine exchanges are functional 

All amino acids chosen for pBpA exchange were highly conserved. Thus, they are 

most likely to be essential for the function of the domain. To exclude any severe 

effects resulting from these exchanges, further analyses were performed in S. 

cerevisiae. Therefore, complementation of mdm38Δ mutant phenotypes was tested 

with chromosomally expressed Mdm38 mutants, in which the respective amino 

acids are exchanged to alanine. 

For this purpose, Mdm38 was cloned into the yeast plasmid pRS416, together with 

its endogenous promoter. After verification, achieved constructs were used for 

mutagenesis, generating amino acid exchanges to alanine at specific positions 

(2.3.8 – Primers: Tab. 2.5). Verified constructs were transformed into wild-type 

and mdm38Δ yeast strains. Empty plasmids and plasmids expressing wild-type 

Mdm38 were transformed as controls. 

To determine the functionality of these Mdm38 derivatives, growth tests were 

performed (2.2.3). Serial dilutions were spotted on solid selective media 

containing either glucose or glycerol as the carbon source (Figure 3.6 A). The 

mdm38Δ strain containing the empty plasmid shows the characteristic reduced 
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growth on non-fermentable media. In contrast, all strains transformed with 

plasmids expressing either wild-type or mutagenized Mdm38 display growth 

comparable to the wild-type control with empty plasmid.  

Figure 3.6 Analysis of alanine exchanges  
A) Shown is a growth test on fermentable and non-fermentable synthetic media 

lacking uracil. Cells were spotted in serial 10-fold dilutions and incubated at 
24°C. Strains were transformed with pRS416 either empty or with different 
derivatives of MDM38 (see text). 

B) Whole cell extracts of indicated yeast strains were separated by SDS-PAGE, 
followed by Western Blot and probed for various mitochondrial proteins using 
Aco1 and Por1 as loading controls. 

 
Another phenotype of Mdm38 deficient strains is the reduced steady state levels of 

different mitochondrial proteins (Frazier et al. 2006). Therefore, whole cell 

extracts (2.4.9) of all strains used above were prepared. After separation using 

SDS-PAGE and subsequent Western blotting, protein levels were analyzed by 

immunostaining (Figure3.6 B). Reduced amounts of the respiratory chain proteins 

Cox1, Cox2 & Rip1, which is characteristic for Mdm38 deficiencies (Frazier et al. 

2006; Lupo et al. 2011), could only be detected for the deletion mutant (empty 

plasmid), whereas for all other strains wild-type levels were detected.  

Thus, it was concluded that Mdm38 containing the conserved aa-exchanges within 

the ribosomal binding domain, as described above, is still functional.  

3.2.2 Creation of an Mdm38K construct for pBpA incorporation 

Constructs of Mdm38K for in vivo cross-linking were designed to enable double 

purification with an N-terminal His14- and a C-terminal Strep-tag. Additionally, a 

SUMO (small ubiquitin related modifier) tag was chosen as a solubility tag and for 

potential cleavage of the HIS-tag ((Kuo et al. 2014) (illustrated in Figure 3.8 left 

branch). A suitable vector, pSUMO, for N-terminal tagging with His14-SUMO was 
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kindly supplied by the group of Prof. D. Görlich (Göttingen). For cloning of 

Mdm38K, the intended fragment (aa 192-408) was amplified by PCR. Cloning was 

performed using introduced restriction sites and constructs were confirmed by 

restriction analysis. In the next step, codons for amino acids C315, M320, S354, 

L330, G319 & W337 of Mdm38 were exchanged to amber-stop codons using site 

directed mutagenesis. Mutagenesis PCR was performed using primer pairs listed in 

(Tab. 2.5) and clones were verified by sequencing.  

         

Figure 3.7 Expression of pSUMO constructs 
Coomassie stained SDS-Gel of E. coli lysates. Strains are transformed with IPTG 
inducible expression vector pSUMO. The vector either contains no insert (HIS-SUMO) 
or derivatives of Strep-tagged Mdm38K, which were not mutagenized or contain an 
amber-stop replacement at the indicated position (amino acids: C315, M320, S354, 
L330, G319 & W337). Samples were taken after 4 h incubation either without (-) or 
with expression (+) induced by 1 mM IPTG. 
 
Furthermore, constructs were transformed (2.3.12) into the E. coli expression 

strain BL21 (2.1.8). Expression was induced by the addition of IPTG and resulting 

clones were tested for expression using a non-mutagenized construct as control. 

Non-induced samples of each strain (without IPTG) were used as controls. Samples 

were finally separated by SDS-PAGE. Coomassie staining of the gels revealed bands 

of highly expressed proteins of different sizes (Figure 3.7). Expression of 

unmodified Mdm38K results in a protein band with the expected size of 41.6 kDa. 

Furthermore, products of the amber-stop mutants, in which expression was 

terminated at their respective positions, correspond to sizes of around 31.4 kDa 

for L330. The expression product of the empty vector fits to the size of the HIS-

SUMO module (18 kDa). It was therefore concluded that all constructs were 

correct and suitable for expression.  
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The method of in vivo cross-linking in E. coli was already successfully performed in 

the group of Prof. Georg Koch (Freiburg). There, efficient pBpA insertion during 

expression of peptides is only efficient for lower expression rates. For this purpose, 

the use of vectors pTRc99a or pBad24 is well established and so the constructs 

described above were cloned into these expression plasmids. Since no restriction 

sites were available at the multiple cloning site (MCS) of pTRc99a or pBad24, and 

were also not contained within the sequence of Mdm38K constructs, a multi-step 

cloning strategy was used (schematically outlined for pTRc99a in Figure 3.8). First, 

the HIS-SUMO module was cloned from pSUMO into both other plasmids. Then, all 

Mdm38K constructs described above were transcloned from the respective pSUMO 

variants into both newly generated plasmids.  

For further investigation of pTRc99a and pBad24, plasmids were transformed into 

the E. coli expression strains BL21 and C43. Additionally, pSUP was co-

transformed in the same procedure to enable later incorporation of pBpA. 

Therefore, all following assays were performed in double selective media (LB + 

100 mg/ml Amp + 35 mg/ml chloramphenicol). Finally, expression was induced, 

followed by Western Blot analysis of lysed cells. His-Probe-HRP (Thermo Fisher 

Scientific) was used for detection of His-tagged constructs (2.4.5).  
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Figure 3.8 Cloning strategy for Mdm38K constructs 
Schematic illustration of the construction strategy for the expression of His14-SUMO-
Mdm38K-Strep construct using pTRc99a. 

 
Induction of strains transformed with variants of pTRc99a resulted in peptides of 

expected size for all constructs but the empty vector (Figure 3.9). It is worth noting 

that achieved amounts were much lower than the expression products of pSUMO 

and thus not distinguishable from background proteins on coomassie stained gels 

(not shown), but only on Western Blots. Altogether, constructs in pTRc99a were 

considered to be suitable for further assays. 
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Figure 3.9 Expression products of pTRc99a 
Western Blot of cell lysates from BL21 cells containing different pTRc99a constructs 
stained with His-Probe-HRP. Positions of amber-stop exchanges were indicated 
whereas, the non-mutagenized construct, Mdm38K, was used as control. 
Lysates correspond to 100 µl culture with (+) or without (-) induction by 0,5 mM IPTG 
for 4h at 30°C. To visualize expression products of different abundance a shorter and 
longer exposure of the same blot are depicted. 

 

3.2.3 Incorporation of pBpA into Mdm38K 

The integration of pBpA is performed by a technique extending the genetic code 

(Chin et al. 2002). An amber-suppressor t-RNA, charged with pBpA by its 

corresponding t-RNA synthetase (both encoded on pSUP), enables the integration 

of the artificial amino acid at the position of a UAG-codon. However, these codons 

not only exist at the intended position created by mutagenesis PCR, but also as 

natural stop-codons in E. coli. In consequence, expression in the presence of pBpA 

leads to the continued expression of several genes, in addition to the target gene, 

beyond their stop-codon within E. coli and thus to potentially harmful effects. 

However, the impact of different toxic proteins is reduced in the C43 strain and so 

this strain was chosen for expression (Miroux and Walker 1996).  

As an initial approach, the incorporation of pBpA was confirmed by the synthesis 

of mutagenized constructs to full length. To induce expression, cells were grown in 

media containing 1 mM pBpA. It is worth noting that M9-minimal medium, 

suggested by Chin et al., led to no detectable expression products of expected sizes 

(data not shown). Additionally, expressed products were enriched by affinity 

purification using Ni-NTA. As depicted in the Western Blot of the corresponding 

SDS-eluates, the wild-type Mdm38K construct was expressed to full length 

independent of the presence of pBpA. Whereas, cells with TAG-codons at positions 

M320, G319 and W337, exhibit expression products of prematurely terminated 
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translation in the absence of pBpA, as described before. Moreover, the absence of 

detectable amounts of full-length protein indicates that potential translation 

through the AUG-codon is, if occurring, only a very rare event. However, additional 

Western Blot bands, corresponding in size to the full-length construct were 

detectable when pBpA was added to the medium. In consequence, it was 

concluded that pBpA is incorporated and thus enables full length translation. It is 

worth mentioning, that a certain level of expression occured without induction by 

IPTG for all full length constructs shown here. 

 

 

Figure 3.10 Incorporation of pBpA 
Western Blot of SDS-eluates from His-purification with Ni-NTA probed with His-Probe-
HRP. Samples were obtained from induced or uninduced cultures (+/- IPTG) with or 
without pBpA. Four different constructs expressed from pTRc99 were loaded: non-
mutagenized (Mdm38K) and 3 amber-stop exchanges at indicated positions (M320, 
G319 or W337). 
The asterisk marks bands corresponding to a histidine rich E. coli protein Cat 
(Chloramphenicol acetyltransferase), which is therefore co-isolated and also stained at 
the Western Blot. 

 

3.2.4 In vivo photo cross-linking 

Since it has been shown that pBpA-incorporation was successful, strains 

expressing detectable amounts of pBpA-containing constructs (pBpA at M320, 

G319 or W337) were finally used for the complete in vivo photo cross-linking 

approach (Schematically illustrated in Figure 3.11). Cells from induced cultures 

grown in pBpA containing media were exposed to UV light. This resulted in 

covalent binding of pBpA to C-atoms within ~3 Å. Subsequently, cells were lysed 

and Mdm38K constructs were isolated using Ni-NTA or Strep Tactin beads. 

Different negative controls were applied in this context: The unmodified construct; 

cultures without pBpA and cells that were not exposed to UV-light. As depicted in 

Figure 3.12 A, the construct containing pBpA instead of M320 leads to specific 
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signals after UV exposure as visualized by Western Blot: one higher molecular 

weight band, detectable at ~180 kDa – (asterisk), and some potential smaller ones.   

Importantly, isolation was performed by the C-terminal Strep-tag using Strep-

Tactin agarose beads. Therefore, only full length constructs, where translation was 

not stopped before the tag, were isolated. 

 

 

 
Figure 3.11 pBpA incorporation and photo cross-linking 
Schematic illustration of performed steps to obtain Mdm38K-constructs cross-linked to 
potential interaction partners. 
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Figure 3.12 Cross-linking products 
A) Expressions of Mdm38K-constructs were induced for 4 h in medium with and 

without pBpA using the E. coli C43 strain. Cells were subsequently exposed to 
UV-light, lysed and proteins were isolate with Strep-Tactin agarose beads. The 
corresponding Western Blot after SDS-PAGE was probed with His-Probe-HRP. 
The +UV/+pBpA sample of the M320 exhibits specific bands. The most prominent 
signal is indicated by an asterisk right from the blot. 

B) Cells were treated as in A, whereas protein isolation was performed with Ni-NTA 
beads. The corresponding SDS-gel was stained with colloidal coomassie. The 
asterisk indicates band size of a band specific for the +UV/+pBpA sample of the 
M320, which was cut out and subjected to mass spectrometry. 
 

Identification of the specific photo cross-linking band was finally performed via 

mass spectrometry (2.4.23). Cultures and corresponding controls were treated as 

described above. However, initial results (not shown) revealed higher levels of 

unspecific isolation products for Strep-Tactin agarose. For this reason, affinity 

purification was performed with Ni-NTA. Eluted samples were separated on an 

SDS-gel and subsequently stained with colloidal coomassie (2.4.7). As depicted in 

Figure 3.12 B, compared to the previous result (Fig. 3.12 A), a higher molecular 

weight band became visible, which was subsequently cut and analyzed by mass 

spectrometry. Analysis detected the yeast proteins Mdm38 and Smt3 

(corresponding to the SUMO-tag) in the sample as well as several E. coli proteins 

(listed in Tab. 3.1). 

Unfortunately, purification of the cross-linked constructs resulted in high levels of 

unspecific co-isolated protein (Figure 3.12 B). Hence, further analysis of potential 

specific bands below the prominent band was impeded. Additional attempts to 

improve the purification process, by using higher amounts of cell lysate or by 
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double purification using both tags in sequence (data not shown), did not 

significantly improve the results.  

Certainly, isolation methods for low molecular weight bands, where cross-linking 

products of small ribosomal proteins are generally expected, have to be improved. 

But in summary, these results demonstrate suitable conditions for the in vivo 

incorporation of pBpA into recombinant constructs of Mdm38K.  

 

Tab. 3.1 Results for mass spectrometry 

Protein Description  
MukB   Chromosome partition protein  

EFTu1  Elongation factor Tu 1  

Tig  Trigger factor  

Odo2  Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate 

   dehydrogenase complex  

GatZ  D-tagatose-1,6-bisphosphate aldolase subunit  

AcrA  Multidrug efflux pump subunit  

RpoC  DNA-directed RNA polymerase subunit beta'  

RpoB  DNA-directed RNA polymerase subunit beta  

HrpA  ATP-dependent RNA helicase  

3.2.5 C315 of Mdm38 is accessible for maleimide-mediated in vitro 

modifications  

An approach to minimize unspecific co-isolations is an in vitro setup. Herein, 

isolated components, ribosomes, and Mdm38K, are mixed in an equimolar ratio 

and incubated for binding. Associated proteins can then be cross-linked by 

different methods.  

As an initial approach, C315 was tested for its availability to externally added 

cysteine specific maleimide modifications (Figure 3.13 A & B). Because this amino 

acid represents the only cysteine within the whole Mdm38K-construct and is also 

localized in the center of the assumed binding cavity (see Figure 3.5), C315 seemed 

suitable for this approach. Alexa Fluor® 488 C5 Maleimide was used to test 

availability for modifications, since it enables detection of the cross-linked product 

by fluorescence. After co-incubation of Alexa Fluor® 488 C5 Maleimide with 

Mdm38K, samples were separated by SDS-PAGE (Figure 3.13 C). Equal loading was 

visualized by coomassie staining, whereas successful modification was indicated 

by an increase in fluorescence. Although the reaction takes place under non-

denaturing conditions, results indicate that C315 is available for maleimide-

mediated modifications. This confirms the accessibility of C315 and are thus in line 

with the surface exposure of C315 predicted in the published crystal-structure. 
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Accordingly, in vitro approaches using externally added cysteine cross-linkers are 

suitable for the Mdm38K-construct introduced here, but were not performed 

within this thesis. 

 

 

Figure 3.13 Modification of C315 of Mdm38K 
A) Cysteine specific fluorescent cross-linker Alexa Fluor® 488 C5 Maleimide 

(Thermo Fisher Scientific)  

B) One step reaction of thioether formation between a maleimide cross-linker and 
a cysteine (Sahaf et al. 2003) 

C) In vitro modifications were performed with purified Mdm38K and Alexa Fluor® 
488 C5 Maleimide (MAL 488). The maleimide reactant was added in indicated 
molar excess. Shown are a coomassie stained SDS-gel (left) and a 
fluorescence scan of a Western Blot using the same samples (right). As 
positive controls, reactions were simultaneously performed in presence of 2 % 
SDS. 
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3.3 Overexpression phenotype of Mdm38 

3.3.1 Suppression and creation of phenotypes by extra-chromosomally 

expressed Mdm38 

Previous studies focusing on the ribosomal binding domain of Mdm38 made use of 

different chromosomally expressed truncations of the protein. Specifically, a 

truncation construct, lacking the amino acids C-terminal from the predicted 

transmembrane domain (Mdm38ΔRBD-ProtA / aa1-159), exhibits a similar, but 

slightly more severe, phenotype than the deletion mutant (Lupo et al. 2011). For 

this reason, we considered the possibility of a dominant effect caused by the 

truncation. It was therefore tested, whether extra-chromosomal expression of 

wild-type Mdm38 suppresses the phenotype. The plasmids pRS416 and pRS416 

MDM38 (2.1.6) were transformed into Mdm38ΔRBD-ProtA using mdm38Δ and WT as 

controls. Suppression of the phenotype was monitored by growth tests (2.2.3). 

Expression of pRS416 MDM38 reverted the growth phenotype of Mdm38ΔRBD-ProtA 

and mdm38Δ (Figure 3.14) and so it does not confirm the hypothesis of a dominant 

effect. Simultaneously, the same experiments were performed using the multicopy 

vector Yep352. While complementation of the mdm38Δ growth phenotype was 

rescues by plasmid based expression, Yep352 MDM38, further referred to as the 

Mdm38 overexpression strain or Mdm38Oex, caused reduced growth on non-

fermentable medium. 

 

 

 
 
Figure 3.14 Growth test for 
plasmid containing strains 
Shown is a drop dilution assay for 
yeast strains transformed with 
pRS416 or Yep352 either empty or 
with insert (MDM38). Overnight 
cultures were washed and adjusted 
to 2 OD600 in water. Serial dilutions 
were spotted on selective agar-
medium (SM –Ura) containing either 
glucose or glycerol as carbon 
sources. Plates were scanned after 3 
days incubation at 30 °C. 
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3.3.2 Overexpression strains resemble the mdm38Δ phenotype on Western 

Blot and Blue Native PAGE 

Since Mdm38 overexpression resulted in this novel phenotype, we performed 

further studies for characterization. First, the expression level of Mdm38 was 

determined by Western Blot analysis using fluorescent secondary antibodies (2.1.4 

& 2.4.4). Quantification and comparison of consistent signals indicated a mild 

2.3 (+/- 0.1) fold overexpression of Mdm38, compared to wild-type levels. 

Furthermore, steady state levels of mitochondrial proteins were determined by 

Western Blot analysis of whole cell extracts (data not shown) and isolated 

mitochondria (Figure 3.15 A). As a result, mdm38Δ showed reduced amounts for 

different proteins of complex III (Rip1) and complex IV (Cox1-4, Cox13) of the 

respiratory chain, whereas all other tested proteins remained unchanged. This is in 

line with former publications (Frazier et al. 2006). Additionally, proteins affected 

in the mdm38Δ background were recovered to wild-type levels, as long as Mdm38 

is extra-chromosomally expressed from pRS416. On the contrary, additional 

expression of Mdm38 via pRS416 in wild-type yeast had no detectable influence. In 

addition, Mdm38OEx exhibits reduced levels of all proteins that also have reported 

changes in mdm38Δ.  

Altogether, these results are in line with the growth phenotypes described above. 

These data support the assumption of disrupted mitochondrial translation and 

assembly of respiratory chain complexes in Mdm38OEx, which was published 

earlier for mdm38Δ.  

Mitochondrial complexes were investigated using Blue Native PAGE (2.4.2). 

Isolated mitochondria were lysed under non-denaturing conditions with digitonin. 

Subsequently, solublilized proteins were separated on a gradient polyacrylamide 

gel and corresponding Western Blots were immunostained for different 

mitochondrial complexes (Figure 3.15 B). On the one hand, it was found that 

complexes and supercomplexes of the respiratory complexes III and IV exhibit 

reduced signals. On the other hand, lower molecular weight bands for Cox4 (*) 

indicate either an incompletely assembled complex IV or degradation of the 

respective products. Similarly, F1FO–ATPase (complex V) also showed slightly 

reduced amounts of its monomeric (V) and dimeric forms (V2) in Mdm38OEx and 
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mdm38Δ. In a longer exposure, some lower molecular weight signals (*) became 

visible, suggesting deficiencies in either assembly or stability of the ATPase. These 

results are support the published phenotypes of mdm38Δ and suggest that 

overexpression of Mdm38 results in a similar, but milder, phenotype in S. 

cerevisae. 
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Figure 3.15 Mdm38 overexpressing strains resemble a mild phenotype of 
mdm38Δ 

A) Isolated mitochondria from the indicated strains were lysed in SDS loading buffer 
and separated by SDS-PAGE. Mdm38 was expressed from pRS416 (+) or Yep352 
(+++) using empty Yep352 as a control (-). The corresponding Western Blot was 
immunostained for the indicated proteins, whereas asterisks indicate bands resulting 
from cross-reactions of used antibodies. 

B) Isolated mitochondria were solubilized with 1 % digitonin and subjected to Blue 
Native PAGE (20 µg). The corresponding Western Blot was stained for different 
proteins of the respiratory chain complexes (IV & V) and supercomplexes (III2IV & 
III2IV2) are labeled, whereas IV* labels an assembly intermediate of complex IV. 
Single asterisks indicate lower molecular weight signals for Atp5 and Cox4, arisen 
either from incomplete assembly or degradation of corresponding complexes. 
 

3.3.3 Mdm38 overexpression does not affect translation 

Reduced amounts of respiratory chain complexes and corresponding proteins 

could both result from deficiencies in translation and, possibly linked to that, 

deficiencies in assembly during mitochondrial biogenesis. To clarify both 

possibilities, further experiments were performed.  

Previous publications suggest deficient K+/H+-homeostasis in mdm38Δ is the main 

cause of these phenotypes (Froschauer et al. 2005; Nowikovsky et al. 2007). The 

main argument for this hypothesis is the fact that the artificial K+/H+-exchanger 

nigericin mitigates the various phenotypes. Interestingly, further studies showed 

that defects in mitochondrial translation for mba1Δ/mdm38Δ double mutants and 

Mdm38 ΔRBD truncation were not rescued by the drug (Bauerschmitt et al. 2010; 

Lupo et al. 2011). Therefore, the authors excluded ion homeostasis as the exclusive 

cause of these effects. 

To this end, Mdm38OEx was investigated for potential suppression of its growth 

phenotype by application of nigericin. A drop dilution assay was performed on 

selective media supplemented with 0.5 µM nigericin (Figure 3.16). Consistent with 

previous publications, growth on nigericin-medium rescues growth to wild-type 

levels for mdm38Δ, whereas Mdm38OEx is unchanged. Control plates without the 

drug exhibit characteristic growth phenotypes for mdm38Δ and Mdm38OEx on non-

fermentable medium. These results argue that the observed phenotype is at least 

not exclusively caused by deficiencies in potassium-homeostasis. 
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Figure 3.16 Nigericin 
does not mitigate the 
growth phenotype 
A drop dilution assay was 
performed for indicated 
yeast strains transformed 
with Yep352 derivatives as 
described for Figure 3.6. 
Additionally, medium 
supplied with 0.5 µM 
nigericin was used. 
 

  

To gain an insight into possible changes in mitochondrial translation by the 

overexpression of Mdm38, mitochondrial translation products were radioactively 

labeled with 35S-methionine in living yeast cells (2.4.12). The autoradiogram of the 

corresponding SDS-gel reveals the known mild reduction of newly synthetized 

Cox1 and Cytochrome b for mdm38Δ. On the contrary, signals for all other tested 

strains suggest no changes in mitochondrial translation (Figure 3.17). 

 
 

 
 

Figure 3.17 In vivo 
labeled mitochondrial 
translation products are 
not affected in 
Mdm38OEx 
Mitochondrial translation 
products were labeled 
with 35S-methionine for 10 
min. Proteins were sub-
sequently precipitated 
with TCA and separated 
by SDS-PAGE. The dried 
gel was subjected to 
digital autoradiography. 
Expected sizes of 
mitochondria-encoded 
proteins are labeled. The 
asterisk indicates the 
oligomer of Atp9. 
 

 
Since reduced protein amounts for Mdm38OEx cannot be explained by dysfunctions 

in mitochondrial translation, the stability of newly synthetized proteins might be 

the reason. To this end, in vivo pulse-chase experiments were performed (2.4.13). 

Cells were incubated at 30 °C for different chase times after incorporation of 35S-
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methionine was stopped. Corresponding SDS-gels were dried and subjected to 

digital autoradiography. Signals for Cox1, Cox2 and Cytochrome b were quantified, 

internally normalized to Var1 and graphically depicted as percentages of samples 

at 0 min chase (Figure 3.18). These data demonstrated that the stability of the 

investigated proteins is not significantly altered within the monitored timeframe.  

In summary, mild overexpression of Mdm38 causes a phenotype, which, in 

tendency, resembles the delta mutant but is non-reversible by nigericin. However, 

neither deficiencies in translation, nor reduced stability could be established as 

possible causes. Further experiments addressing the assembly of respiratory chain 

complexes might provide an explanation, but were not conducted within this 

thesis.  

 

 
Figure 3.18 Mitochondrial translation products are not destabilized in Mdm38OEx 
Graphs depict results of pulse-chase labeling experiments. Mitochondrial translation 
products were labeled with 35S-methionine for 10 min (pulse). Incorporation of 
radioactive methionine was stopped by the addition of excess unlabeled methionine. 
Possible degradation was stopped 0, 15 and 45 min (chase) on ice. Samples were 
precipitated, separated by SDS-PAGE and subsequently analyzed by digital 
autoradiography. Signals for Cox1, Cox2 and Cytochrome b were quantified, internally 
normalized to Var1 and graphically depicted as percentages of samples with 0 min 
chase. Error bars indicate the standard deviation of three independent experiments. 
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3.4 Spatially restricted enzyme mediated biotin tagging  

To identify proteins within the close environment of Mdm38, the biotin ligase BirA 

was used. In principle, BirA fused to a protein of interest, biotinylates other 

proteins inside a range of approximately 20-30 nm, which then enables isolation 

and immunodecoration of the biotinylated proteins ((Roux et al. 2012), 

(Schematically illustrated in Figure 3.19). Accordingly, a fusion construct of 

Mdm38 with the HA-tagged biotin ligase at its C-terminus (Mdm38BirA) was 

generated and expressed from the chromosomal locus of MDM38 (Levchenko, 

2015 - unpublished).  

 

 

Figure 3.19 Schematic 
illustration of the 
biotinylation approach 
BirA C-terminally fused to 
Mdm38 auto biotinylates 
Mdm38 and also proximal 
proteins in vivo (green 
lines). Mitochondria were 
subsequently isolated and 
lysed under denaturing 
conditions. Finally 
biotinylated proteins were 
isolated with Streptavidin 
agarose beads. 
 

Figure adapted from 
Roux et al. 2012 

3.4.1 Characterization of BirA-fusion strains 

To perform investigations with the BirA fusion strains, yeast strains expressing the 

fusion constructs were firstly examined for their phenotype. The Mdm38BirA fusion 

strain did not show deficiencies in growth or steady state levels of various proteins 
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in comparison to the wild-type. It was therefore assumed that Mdm38BirA is still 

functional and suitable for further studies (data not shown).  

Since yeast full media is already supplied with biotin, biotinylation should occur 

under normal growth conditions. In preliminary tests, isolated mitochondria from 

Mdm38BirA grown in YPG, were lysed and subsequently affinity purified with 

Streptavidin agarose beads (2.4.21). The Western Blot of corresponding SDS-

eluates was stained for biotin using SA-HRP (2.4.5) and exhibited several bands 

differing in size from the wild-type control, as well as a variety of additional bands 

(Figure 3.20 A). Furthermore, mitochondria from yeast with an analogous BirA 

fusion construct of another mitochondrial protein, Cox26 (Cox26BirA), were used as 

a control (Levchenko, 2015 – unpublished). In this case, the detected band pattern 

was different from that of Mdm38BirA, indicating specific biotinylation products. 

The C-terminus of Mdm38 is localized in the mitochondrial matrix, which should 

also be true for biotinylated proteins. This hypothesis was addressed by 

determining the submitochondrial localization of biotinylated proteins (2.4.16). 

Whole mitochondria and mitoplasts (generated by swelling of the mitochondria in 

order to disrupt the outer membrane) were subjected to PK treatment (Figure 

3.20 B). SA- HRP stained bands are only accessible to PK after disruption of all 

membranes and therefore behave like the matrix protein Mrpl39. In contrast, the 

OM protein Tom70 is already digested in whole mitochondria, whereas Tim21 

(IM) is partially digested in mitoplasts (lower molecular weight band) and 

completely after sonication.  

Based on these results it can be concluded that the majority of bands detected with 

SA-HRP are located in the mitochondrial matrix and therefore specifically 

biotinylated by Mdm38BirA. However, it is worth noting that binding of the Mdm38 

specific antibody is prevented for the Mdm38BirA construct and therefore 

localization could not be determined directly. 
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Figure 3.20 Biotinylation by Mdm38BirA 

A) Western Blot of an SDS-PAGE stained against biotin with SA-HRP (short and 
log exposure). BirA fusion strains of Mdm38 and Cox26 from two different 
isolations were used, whereas the corresponding wild-type is loaded for each 
isolation. Samples are SDS-eluates from affinity purification with Streptavidin 
agarose beads and correspond to 0.5 mg mitochondria. 

B) Western Blots of a subcellular localization approach via PK accessibility. 
Depicted are immunostainings for control proteins within different 
compartments: Tom70 (OM), Tim21 (IM) and Mrpl39 (matrix). A replica Blot 
(lower part) was stained against biotin with SA-HRP. PK accessibility is 
depicted by reduced signal after treatment with 100 µg/ml PK (+). In mitoplasts 
Tim21 is partially digested, resulting in a truncation product (lower weight band 
in corresponding lane). 

 

3.4.2 Identification of biotinylated proteins 

Since the involvement of Mdm38 in mitochondrial translation and the export of 

mitochondrially encoded proteins has already been characterized in previous 

publications (Frazier et al. 2006; Bauerschmitt et al. 2010), newly synthetized 

proteins were predicted to be candidates for being spatially associated with 

Mdm38. Therefore, it was hypothesized that mitochondrial translation products 

are biotinylated by the fused biotin ligase of Mdm38BirA. To investigate this, an in 

organello labeling with 35S-methionine (2.4.14) was performed. Herein, the 

translation buffer (Tab. 2.1) was additionally supplied with 50 µM biotin, the 

substrate for BirA. Mitochondria were then lysed and biotinylated proteins were 

purified as described above. Samples were separated by SDS-PAGE and analyzed 

by Western Blot. Digital autoradiography (Figure 3.21) did not reveal any enriched 

bands above background levels for Mdm38BirA. Whereas the control strain, 
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Cox26BirA, exhibited an enrichment of three protein bands and therefore confirms 

the performance of the assay in general. 

 

 
 

Figure 3.21  
Biotinylation of mito-
chondrially encoded 
proteins 
Autoradiograms of Western 
Blots from samples, that were 
achieved after 50 min in 
organello labeling of 500 µg 
mitochondria and subsequent 
isolation with Streptavidin 
agarose beads. Mitochondria 
from Cox26BirA expressing 
yeast were used as a control. 
To visualize eluates, the 
contrast was increased (lower 
picture). Whereby only for 
Cox26BirA radioactive bands 
were enriched corresponding 
in size to Cox1, Cox2 and 
Cox3. 
Expected sizes of mito-
chondrially encoded proteins 
are indicated, whereas the 
asterisk labels the oligomer of 
Atp9. 

 
Additionally, Western Blots of Streptavidin isolations from Mdm38BirA were 

stained for a subset of different mitochondrial proteins (Cox1, Cox2, Cox3, Cox4, 

Mrpl39, Atp5, Aco1, Tom70, Tim44 - data not shown). However, no detectable 

amount of the tested proteins was enriched. Thus the identity of the biotinylated 

proteins remained unclear. 

In consequence, further identification was performed using mass spectrometry. 

For this purpose, Mdm38BirA isolations from mitochondria were performed as 

previously described using two Mdm38BirA strains from independent clones. 

Samples were split and separated on two SDS-gels depicted in Figure 3.22. The 

Western Blot exhibits the characteristic band pattern of biotinylated proteins 

(3.4.1). However, only a few bands were visualized by colloidal coomassie staining 

of the SDS-gel. Since bands of the same size also appeared in the wild types eluates, 

these bands are likely unspecific co-isolates. Altogether, 5 bands (6-10) were 

specifically stained for Mdm38BirA and therefore cut out and analysed by mass 
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spectrometry. Gel pieces from the corresponding positions of eluates from wild-

type mitochondria were used as controls (1-5). 

 

 
 
Figure 3.22 Streptavidin isolation for mass spectrometry 
Isolation with Streptavidin agarose from solubilized mitochondria of wild-type or 
Mdm38BirA expressing yeast. Samples were split and separated onto two SDS-gels. 
One gel was blotted (right picture) and probed with SA-HRP, exhibiting several specific 
bands for Mdm38BirA in the total and SDS-Eluates. To detect weaker signals, a longer 
exposure was used for the lower part of the blot. . 
The second gel (left panel) was stained with colloidal coomassie revealing a few bands 
for all SDS-eluates. Bands specific for Mdm38BirA (6-10) and the corresponding running 
heights of the wild-type (1-5) are indicated by arrowheads  
Streptavidin eluted from beads is indicated (SA). 

 
After subtraction of non-mitochondrial proteins and background isolation, which 

were detected in wild-type eluates, a few proteins were identified. Mdm38 was 

detected in the most prominent band (6), which indicates an expected auto-

biotinylation of the construct. Furthermore, according to the working hypothesis, 

the sample, labelled as band 9, contained the ribosomal 37 S ribosomal protein 

Rsm24. Finally, Abf2 (ARS-binding factor 2), a small basic DNA-binding protein 

was identified in band 9 (Diffley and Stillman 1988). Interestingly, this protein was 

recently identified in the mitochondrial expressosome complex, termed MIOREX, 

in which Mdm38 is also involved (Kehrein et al. 2015). 

In conclusion, these initial studies confirm previous characterizations and could 

show, that the approach using BirA is suitable for the characterization of the 

environment of Mdm38.  
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4 Discussion 

Mdm38 is a nuclear encoded protein localized at the matrix side of the inner 

mitochondrial membrane. There, the protein is involved in the maintenance of 

mitochondrial morphology (Dimmer et al. 2002). Further studies also 

demonstrated a role for Mdm38 in potassium homeostasis suggesting a general 

effect for mitochondrial function and biogenesis (Nowikovsky et al. 2004; 

Froschauer et al. 2005; Zotova et al. 2010). In addition, Mdm38 was shown to have 

a function in mitochondrial translation and interacts with mitochondrial 

ribosomes, as well as other proteins involved in mitochondrial protein biogenesis 

(Frazier et al. 2006; Bauerschmitt et al. 2010; Kehrein et al. 2015). 

Finally, recent results from Lupo et al. identified the ribosomal binding domain of 

Mdm38, which shows structural similarity to 14-3-3 proteins. In their studies, 

Lupo et al. proposed a highly conserved cavity as a potential binding site of this 

domain consistent with 14-3-3 proteins. Since this ribosomal binding domain was 

also shown to be essential for Mdm38 function in mitochondrial translation, 

independent from its role in potassium homeostasis, the primary objective of the 

present thesis was to further characterize this domain and discover potential 

binding partners. 

 

4.1 Binding to E. coli ribosomes 

In vitro binding studies of recombinantly expressed constructs containing the 

ribosomal binding domain (RBD), with GSH-Sepharose already confirmed an 

interaction with yeast mitochondrial ribosomes {Lupo:2011iw}. Using the same 

constructs as Lupo et al., the present thesis demonstrates that E. coli ribosomes are 

also enriched in the isolations of the respective Mdm38 constructs (Figure 3.2). In 

order to gain further insights into binding characteristics, the dependence of 

binding on ionic strength was tested. Data provided here indicate a salt-sensitive 

binding to the ribosome, since co-isolation was almost completely lost after 

washing of the beads with a high-salt buffer (Figure 3.3). Thus, these observations 

are consistent with former publications for Mdm38 in yeast, that describe a loss of 

binding to mitochondrial ribosomes under high-salt conditions (Frazier et al. 2006; 
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Kehrein et al. 2015). 

In this context, the observed salt dependent binding affinity can be correlated to 

different published features relating to the structural identity of the ribosomal 

binding domain (Mdm38K) (Lupo et al. 2011):  

(a) The fact that the primary interaction between other 14-3-3 proteins and their 

ligands is mainly mediated by the formation of numerous polar contacts is 

consistent with the observed salt-sensitivity (Yaffe et al. 1997; Rittinger et al. 

1999). However, the predicted binding pocket, within a highly conserved area of 

the Mdm38 RBD, is not capable of the binding properties described in latter 

publications, because here binding involves phosphoserine/-threonine containing 

motifs within the ligand. Thus, the mainly hydrophobic surface in the cavity argues 

against this reason (Lupo et al. 2011). Therefore, another phosphorylation-

independent mode of binding, as suggested by Ottmann et al., is possible. This form 

of binding is mainly driven by hydrophobic interactions via leucine side chains, 

which are conserved in Mdm38 and other 14-3-3 proteins (Ottmann et al. 2007). 

(b) Another common feature of 14-3-3 proteins is a homo- or hetero-association of 

monomers, leading to the formation of stable dimers of a clamp-like shape 

(Gardino et al. 2006). In this case, interaction is achieved by multiple hydrophobic 

and polar contacts, as well as several salt bridges depending on the protein 

involved. Correspondingly, Zotova et al. (2010) revealed a self-dimerization of 

Mdm38 in mitochondria; a finding, that can be further correlated to similar results 

for the human homologue, Letm1, by Hasegawa et al (2007). Consequently, these 

observations could also represent a feature that depends on the ionic environment 

and thus, might explain the loss of binding under high salt conditions presented in 

this work. Cautiously, comparability in this regard is only scarce, because this 

multipoint interaction described by Gardino et al. involves residues of the first four 

α-helices of 14-3-3 proteins, whereas helices 1 and 2 are not present in the Mdm38 

domain (Lupo et al. 2011). Therefore, dimerization is expected to take place by yet 

uncharacterized but probably also salt-dependent mechanisms. Nevertheless, it 

should be noted that although dimerization is a widespread feature in the protein 

family, it is not functionally essential for all 14-3-3 proteins. A variety of 14-3-3 

proteins are described, whose functions were shown to be independent from 

dimerization (Sluchanko et al. 2011). Furthermore, a spliced variant of the human 
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14-3-3ε protein, lacking the first 22 residues responsible for 14-3-3 dimerization, 

still fulfills the function of the normally occurring dimer (Han et al. 2010). To 

address whether the self-dimerization of Mdm38 shown by Zotova et al. is 

essentially correlated to ribosomal binding, dimerization of recombinant 

constructs needs to be further investigated. Dimerization can be shown by non-

denaturing separation methods (e.g. Blue Native-PAGE, Gelfiltration) or the co-

isolation of differently tagged constructs, either co-expressed in vivo or mixed in 

vitro. The possibility of hetero-dimerization of Mdm38 with another 14-3-3 protein 

is only speculative, since until now, no other protein of this family has been 

described in yeast mitochondria. 

(c) Finally, salt-dependent binding of Mdm38K to the ribosome could also take 

place at charged patches, distinct from the investigated cavity, or maybe also at the 

positively charged rim of the cavity, which is suggestive of an interaction site for 

negatively charged ribosomal proteins or RNA. Cross-linking approaches, such as 

that established for the cavity in the present thesis, are an option for proving this 

hypothesis. In this context, the influence of modified charges at respective 

positions, via mutagenesis PCR, could provide further insights into binding 

characteristics. An approach to test for RNA binding and the simultaneous 

identification of respective RNA was described by Hieronymus & Silver (2003). 

Here, RNA is isolated from immunopreciptations and used as a template for 

reverse transcription, followed by quantitative PCR. For further identification, 

microarray analysis, or sequencing of corresponding cDNA, can be performed 

(Hieronymus and Silver 2003; Gilbert et al. 2004). 

 

In addition, a recent publication concerning yeast mitochondrial ribosomes 

discovered large complexes termed MIOREX, which contain Mdm38, along with 

other mitochondrial translation components, as well as factors required for 

transcription (Kehrein et al. 2015). It is therefore, tempting to speculate that the 

majority of interactions within MIOREX are indirect. For example, Pet309 (see 

1.3.2), a protein that interacts with Mdm38, can in contrast to Mdm38 still be 

purified with mitochondrial ribosomes under high-salt conditions (Kehrein et al. 

2015). Thus, Pet309 might represent a linking protein that is not a ribosomal 

component itself. Interestingly, isolated E. coli ribosomes are capable of binding 
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GSH-Sepharose with immobilized RBD containing constructs after the previous 

removal of ribosomes via high-salt washing. In summary, the demonstrated in vitro 

binding of purified components is a strong hint for a direct interaction of Mdm38 

with ribosomes. 

4.2 In vivo photo cross-linking with pBpA 

The crystal structure of the ribosomal binding domain, Mdm38K, is a powerful 

basis for further studies concerning potential binding partners. A powerful assay 

to identify proteins in close proximity to regions of interest and to determine the 

binding characteristics of Mdm38K, potentially down to the level of involved 

amino acids, is in vivo photo cross-linking. This approach was established for E. coli 

via the incorporation of the non-natural amino acid pBpA (Farrell et al. 2005). 

Therefore, one part of this current work focused on the establishment of this 

method.  

Due to the relatively short cross-linking range of pBpA (∼6.5 Å (Banta et al. 2014)), 

results are very specific. However, this also means, that pBpA-incorporation needs 

to occur basically exactly at the site of interaction. In fact, conserved amino acids 

are most likely to be functional and thus, also required for interactions. Therefore, 

amino acids were chosen for exchanges that are not only highly conserved among 

tested species, but also surface-exposed in the center of the predicted binding 

cavity (Lupo et al. 2011). Prior to pBpA-incorporation, the functional relevance of 

the chosen amino acid residues were tested in yeast. Surprisingly, single exchanges 

of all positions by alanine were still functional, as extra chromosomal expression of 

the respective Mdm38-variants rescued the phenotypes of the delta mutant 

(Figure 3.6). Therefore, all six amino acids were assumed suitable for exchanges by 

pBpA. 

Preliminary expression tests for constructs containing an amber stop for pBpA 

incorporation were performed in E. coli using pSUMO-plasmids (Figure 3.7). The 

results obtained indicate an efficient termination at the intended position, and that 

read-through or restart of translation after the stop-codon are, if happening at all, 

only rare events.  

To enable efficient suppression of the stop codon through incorporation of pBpA, 

expression has to be relatively slow (personal communication with Prof. Georg 

Koch, Freiburg). On this account, two expression-vectors were tested in this thesis: 
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arabinose-inducible pBAD24 and IPTG-inducible pTRc99a. Interestingly, only 

weak translation could be demonstrated for full-length Mdm38K variants using 

both vectors and for mutagenized domains for only using pTRc99a only. Moreover, 

results for the pTRc99a-derivatives indicate variations in expression-efficiency 

that deviate from that of the full-length construct. In particular, the Western Blot 

signals for the G319-, L330-, and C315-exchanges were remarkably reduced (see 

Figure 3.9.). These observations indicate a negative effect on the translation or 

transcription of their respective products, maybe due to secondary structures 

facilitated by the modifications. In this context, it should be noted that availability 

of pBpA, and thus potential suppression of the stop codon, did not circumvent 

these translation problems. This in turn, points to mRNA and/or transcription-

level as a cause for these effects. 

Successful pBpA-incorporation was only shown for the other three constructs, 

with TAG-codons at positions M320, G319, and W337. Although expression levels 

without pBpA for all three constructs were similar, pBpA incorporation, indicated 

by the amount of full-length protein, was different. This deviation can possibly be 

explained by the findings of Miller et al., that indicate an influence of the base 

sequence on the 3’ side of the stop-codon (Miller and Albertini 1983). More 

precisely, they found that if the following codon on the respective mRNA begins 

with cytosine (C) or uracil (U), suppression of the amber-stop is usually low. 

Correspondingly, the weakest incorporation into Mdm38K was revealed for the 

W337-exchange (Figure 3.10), which is indeed followed by C in the next codon. In 

consequence, an option to circumvent this problem is the additional mutagenesis 

of the respective C to A or G, but this was not tested within this thesis. 

In summary, pBpA-specific cross-linking bands were exclusively detected for 

Mdm38K with the best expression and incorporation occurring in Mdm38K-

M320pBpA. Unfortunately, purification of this construct after pBpA incorporation 

and cross-linking contained a high background of co-purified proteins also visible 

in the pBpA-lacking non-mutagenized controls (Figure 3.12). For this reason, only 

the most prominent band was cut out and analyzed by mass spectrometry.  

In contrast with the working hypothesis, no ribosomal protein was identified using 

this approach (Tab. 3.1). However, trigger factor (Tig) represents a ribosome 

associated protein, which was shown to bind the 50S subunit of the bacterial 
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ribosome (Merz et al. 2008; Hoffmann et al. 2010). Specifically, it functions in the 

folding of the nascent polypeptide chain and might also be involved in the 

posttranslational stabilization of other proteins (Martinez-Hackert and 

Hendrickson 2009). At this point it is not clear why Tig appears in the cross-linked 

band. On one hand this might be because of its localization at the ribosomal exit 

tunnel (RET), at the site where Mdm38 was also proposed (Bauerschmitt et al. 

2010; Lupo et al. 2011). On the other hand, its chaperone role might indicate a 

rather unspecific association to the construct. However, the size of Tig, of 

approximately 48.2 kDa, al least contradicts the possibility of a dimeric cross-

linked product, since the Mdm38K-construct is about 41.6 kDa and the analyzed 

band ran between 150-200 kDa (Figure 3.12). 

The same argument applies to EF-Tu (Elongation Factor - Thermo unstable), which 

was also discovered in the mass spectrometry data. At approximately 43.3 kDa, 

this protein has a comparable size to Tig. Furthermore, EF-Tu also plays a role as a 

chaperone that facilitates protein folding (Caldas et al. 1998), in addition to its 

function in translation (see 1.3). 

Further, mass spectrometry data identified three more proteins, which also fit in 

size to a cross-linked product with Mdm38K and comply with the observed 

running-behavior of the analyzed band. Interestingly, these proteins are associated 

with steps before translation and include the two subunits of the DNA-directed 

RNA-polymerases, RpoB (150 kDa) and RpoC (155 kDa) (Ebright 2000), and the 

RNA-helicase HrpA (150 kDa) (Moriya et al. 1995; Salman-Dilgimen et al. 2013). 

These findings can be paralleled with studies of Kehrein et al. (2015) in yeast that 

identified Mdm38 in a large MIOREX-complex, which also contains components for 

transcription and RNA-processing. However, given the fact that mitochondria only 

contain a single RNA-polymerase of an unrelated family (Kelly and Lehman 1986; 

Cermakian et al. 1996), potential binding to E. coli RpoB and RpoC is unlikely to 

represent a conserved feature of the organelle. In contrast, HrpA belongs to a 

ubiquitously expressed protein family of DEAD-box proteins (Salman-Dilgimen et 

al. 2013). Findings of Salaman-Dilgimen et al. suggest a function in RNA-processing 

for HrpA and its association to the ribosome. Thus, results presented in this thesis 

correspond to Mdm38 binding to Pet309 (Krause et al. 2004), a protein that is also 

associated with the ribosome and binds mRNA (Manthey and McEwen 1995; 
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Tavares-Carreón et al. 2008). Implicitly, this might suggest a role for Mdm38 in 

mRNA recruitment, that was proposed earlier by Bauerschmitt et al.. 

Another four proteins were identified via mass spectrometry within the cut band: 

MukB, GatZ, AcrA and Odo2. Of those, only the latter has a homologue in yeast 

mitochondria, Kgd2. However, findings by Repetto et al. for Kgd2, suggest it is a 

part of the trimeric α-ketoglutarate dehydrogenase complex (Repetto and 

Tzagoloff 1990) and thus is rather unrelated to the currently documented 

environment of Mdm38 (Kehrein et al. 2015). For these reasons, those four 

proteins were considered to be unspecific co-isolations and were not further 

pursued. 

Finally it should be mentioned, that it is expected that the performed overall 

photo-crosslinking was specific for pBpA and not potentially facilitated by 

ribosomal or messenger RNA, since the filter used during UV-exposure excludes 

wavelengths below 300 nm. Correspondingly, pBpA cross-links at a UV-irradiation 

range of 350-370 nm (Dormán and Prestwich 1994), whereas RNA-cross-linking 

needs irradiation around 260 nm (Greenberg 1979). 

Because of the highly abundance of background bands for isolations from the pBpA 

assay, it is reasonable to include a negative control with a construct lacking pBpA. 

Thus, whole isolations can be analyzed by quantitative mass spectrometry and 

proteins that were found to form cross-links independently of pBpa can be 

discounted. 

Other options to reduce background reactions involve an in vitro approach (see 

3.2.5). For example, isolated constructs with either in vivo incorporated pBpA, or 

with a bifunctional cross-linker bound after purification, could be used as 

described by Leitner et al. (Leitner et al. 2010). Using this approach, it was shown 

that C315 of Mdm38K is available for maleimide cross-linkers (Figure 3.13).  

In addition to cross-linking, another method for in vitro investigation of binding 

characteristics is the use of fluorescence resonance energy transfer (FRET) 

measurements (Stryer 1978). This approach exploits the fact that excitation of a 

donor fluorophore directly attached to a biological sample may result in energy 

transfer to a nearby (20–80 Å) acceptor fluorophore on another sample. 

Interestingly, this approach not only allows the determination of distance and 

orientation of both fluorophores (Stryer 1978; Remedios and Moens 1995), but 
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also enables the determination of transient states (e.g. at translating ribosomes) 

using stopped flow experiments (Milon et al. 2007). Consequently, using Mdm38K 

labeled with Alexa Fluor® 488 C5 Maleimide, as documented in this thesis (see 

3.2.5) could provide a suitable tool for experiments in the future using compatibly 

labeled ribosomes. 

4.3 Mdm38 neighboring proteins in S. cerevisiae 

In this thesis, the protein environment of Mdm38 was further addressed using an 

in vivo approach in yeast. As described by Roux et al., a construct with a C-

terminally fused biotin ligase, BirA, was used to label proteins within its proximity 

(Roux et al. 2012). Obtained results revealed a specific band pattern on Western 

Blot, suggesting the biotinylation of manly matrix-localized proteins. Moreover, 

preliminary mass spectrometry analyses identified the 37 S ribosomal protein 

Rsm24 and the DNA-binding protein Abf2, which is involved in transcription 

(Diffley and Stillman 1988). These results support the findings of Kehrein et al., as 

they implicate Mdm38 in transcription, as well as in translation.  

A larger overview of Mdm38 interaction partners could be further assessed by 

quantitave mass spectrometry using whole eluates, as discussed already for pBpA-

containing constructs. Unfortunately, the biotinylation range of BirA 

(approximately 20-30 nm as estimated by Roux et al.) aggravates more specific 

predictions of the localization, since it already exceeds the ribosomal diameter.  

However, there are options to narrow results to interactions specific for the 

ribosome binding domain. In one approach, BirA can be fused to different C-

terminal truncations of Mdm38, as were previously used for ProteinA-isolation 

experiments by Lupo et al.. 

Surprisingly, the findings presented here demonstrate that biotinylation via BirA 

can be also used to isolate newly synthesized proteins from mitochondrial 

ribosomes. Although biotinylation was proposed as a slow reaction of about 24 h 

by Roux et al., translation-products could be isolated with Streptavidin specifically 

from Cox26-BirA mitochondria after only a 45 min labeling reaction. In conclusion, 

this suggests the biotinylation kinetics are suitable for analysis of interactions in 

shorter time frames per se. However, no isolation of newly synthesized 

mitochondrial proteins could be detected for Mdm38BirA. Since Frazier et al. 

demonstrated an interaction with Mdm38ProtA, the findings of this thesis might 
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indicate a more indirect interaction. In addition, it cannot be excluded that the 

interactions of Mdm38BirA with newly synthesized mitochondrial proteins are too 

transient and therefore not suitable for this method. 

In this context, an option to improve kinetics was introduced by Rhee et al. (2013). 

There, the group made use of an engineered ascorbate peroxidase (APEX) that can 

also be fused to the protein of interest. APEX oxidizes biotin-phenol in an H2O2-

dependent reaction. Resulting phenoxyl radicals are then able to tag proteins in 

proximity in less than one minute, which is even more beneficial for these 

investigations (Rhee et al. 2013). 

4.4 Overexpression of Mdm38 induces a mdm38Δ like phenotype 

An additional finding of this thesis was the characterization of a novel phenotype 

caused by mild overexpression of Mdm38 in yeast. In tendency, the overexpression 

strain (Mdm38Oex) has a phenotype resembling that of the deletion mutant (3.3.2). 

This means, deficient growth on nonfermentable media and reduced steady state 

levels of different respiratory chain proteins. There are also disruptions in the 

formation of complexes III, IV and V and levels of corresponding supercomplexes 

are reduced. 

Overall, these results can be likened to several observations for human Letm1. Piao 

et al. reported that overexpression of Letm1 induces necrotic cell death in HeLa 

cells by the inhibition of mitochondrial biogenesis and ATP production (Piao et al. 

2009). This is further supported by Hwang and coworkers, who observed 

apoptosis of lung cancer cells during Letm1 overexpression, which was matched by 

decreased mitochondrial biogenesis (Hwang et al. 2010). 

An explanation for these findings can be based on the notion that disturbing the 

balance of translational activators can interfere with respiratory chain biogenesis. 

Along this line, Fiori et al. showed that overexpression of Pet111, a translational 

activator of Cox2, surprisingly lead to lower steady state levels of Cox1. This could 

be correlated to compromised assembly of complex IV, leading to subunit 

degradation (Fiori et al. 2005). Moreover, these data are in agreement with 

previous findings showing that overexpression of other translational activator 

proteins for Cox3 (Pet54, Pet122 and Pet494) or cytochrome b (Cbs2) also 

negatively affect respiration in general (Wiesenberger et al. 1995; Tzschoppe et al. 

2000). Thus, an elevated amount of Mdm38 can possibly be linked to an imbalance 
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in the recruitment of different factors, since a physical interaction between Mdm38 

and the translational activators Pet309 and Mss51 has already been shown by 

Bauerschmitt et al.. However, since no significant changes in mitochondrial 

translation were observed for Mdm38Oex, data provided here argue against an 

effect caused by deficient mitochondrial biogenesis (Figure 3.17). It was therefore 

concluded that the reduced levels of mitochondrially encoded proteins may be 

caused by the steps immediately following translation. Therefore, it was important 

to determine whether protein stability is compromised in Mdm38Oex. Pulse-chase 

experiments were performed, but did not reveal significant deviations from wild-

type yeast. In contrast, strains deficient in respiratory chain assembly exhibit 

severely reduced stability of mitochondrially encoded proteins within even shorter 

timeframes. For example, the stability of Cox2 is compromised in yeast harboring a 

deletion of COX14, which encodes a protein involved in Cox1-expression 

(Barrientos et al. 2004).  

To further investigate the effect of Mdm38 overexpression on respiratory chain 

assembly, one option is to follow the assembly of radiolabeled mitochondrial 

translation products into their respective complexes. This was performed in 

studies by Gruschke et al. using 2-D-analysis which depicts the assembly of 

cytochrome b into complexes with timely resolution (Gruschke et al. 2012). 

Alternatively, dysfunctions resulting from the overexpression of Mdm38 might 

also be caused by its role in ion-homeostasis. However, data provided here 

demonstrate that the Mdm38Oex growth phenotype cannot be mitigated by the 

addition of the artificial ion-channel, nigericin (Figure 3.16). Therefore, it was 

concluded that reduced growth on glycerol could not essentially be attributed to 

deficiencies in K+/H+-exchange. This notion correlates with studies by Waldeck-

Weiermair et al., where overexpression of Letm1 had no effect on Ca2+-exchange, 

whereas its depletion reduces Ca2+ transport (Waldeck-Weiermair et al. 2011). In 

contrast, Hasegawa et al. revealed mitochondrial contraction and cristae 

condensation resulting from Letm1 overexpression. These latter observations 

represent the reverse effect of a knock down of Letm1 and thus, might be due to 

elevated ion-channeling activity. However additional distinct reasons for 

morphologic aberrations are possible. Accordingly, Tamai et al. indicated that 

Letm1 depletion not only leads to swollen, but also elongated mitochondria. These 
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observations cannot be simply explained by an elevated osmotic pressure and 

thus, an additional function in the maintenance of mitochondrial morphology was 

proposed for Letm1 (Tamai et al. 2008). 

As an additional line of evidence, approaches used for studies in Trypanosoma 

brucei evansi by Hashimi et al. might be adapted to the yeast system. In their 

studies, the group phenocopied a Letm1 knockdown using the ionophore 

valinomycin (Hashimi et al. 2013). Valinomycin facilitates the transport of 

potassium-ions across lipid membranes along an electrochemical gradient and can 

thus be seen here as an antagonist of nigericin. In consequence, mitochondrial 

swelling, induced by valinomycin, is prevented after pretreatment of T. brucei 

evansi with nigericin (Hashimi et al. 2013). Therefore, an application of 

valinomycin should counteract an effect of elevated K+/H+-exchange, which might 

be caused by Mdm38Oex. However, the reverse effect by nigericin, which should 

further enhance a phenotype caused by increased K+/H+-exchange, was not 

observed for Mdm38Oex during these studies (Figure 3.16).  

To this end, the Mdm38Oex phenotypes reported here are likely to be independent 

from Mdm38 function in ion homeostasis, although possible interrelations cannot 

be excluded. Therefore, overexpression of Mdm38 might affect the post-

translational roles of the protein that were previously proposed by Bauerschmitt 

et al.. 
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4.5 Summary 

The data presented in this thesis demonstrate that binding of Mdm38 to ribosomes 

has conserved characteristics in yeast and E. coli. To gain further insights into 

potential binding partners, an in vivo photo cross-linking assay was established. 

Here, preliminary mass spectrometry analysis of a specific cross-linked product 

revealed proteins involved in pre- and post-translational steps. Nevertheless, 

further studies are required to improve purifications and to enable the analysis of 

lower molecular weight proteins. 

Further, it was shown that a fusion of the biotin ligase, BirA, to Mdm38 can be used 

as a tool to identify proteins in the proximity of Mdm38 in yeast. The comparison 

of present findings to those from previous studies implies a correlation between 

transcription and translation involving Mdm38. 

Finally, this thesis demonstrates a novel overexpression phenotype for Mdm38, 

which resembles characteristics of the MDM38 deletion mutant. Data presented 

here argue against an effect attributed to the proteins role in ion-homeostasis, but 

rather suggest an influence on post-translational processes, causing the respective 

phenotypes. However, further experiments are required to address possible effects 

of Mdm38-overexpression on the assembly of respiratory chain complexes. 
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