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ABSTRACT 
 

This PhD thesis investigates the application of heavy minerals in sedimentary 

provenance analysis, with the main focus on garnet geochemistry. The work is 

mainly based on an intensive literature study, fieldwork, conventional heavy mineral 

analysis, electron microprobe analysis of garnet, and statistical data evaluation. 

The thesis is subdivided into six chapters. After an introduction into the subject 

(Chapter 1), we make an attempt to evaluate six different garnet discrimination 

diagrams (one binary diagram and five ternary diagrams) commonly used by many 

researchers (Chapter 2). A large dataset was compiled (N=3532) encompassing 

major element compositions of garnets derived from various host lithologies, 

including metamorphic, igneous, and mantle-derived rocks, in order to test the 

applicability of the various discrimination schemes. The dataset contains mineral 

chemical data collected from the literature complemented with some new data 

(N=530) from garnet-bearing metamorphic and ultramafic rocks in Austria and 

Norway. Discrimination of the tested diagrams only works for a small group of 

garnets derived from mantle rocks, granulite-facies metasedimentary rocks, and 

felsic igneous rocks. For other garnet types, the assignment to a certain type of host 

rock remains ambiguous. We further apply compositional biplot analysis to derive 

some hints towards future perspectives in detrital garnet discrimination. In Chapter 3, 

we present results from fieldwork in the southern Tauern window in Austria. Here, we 

test the application of heavy minerals and garnet geochemistry for sedimentary 

provenance analysis for modern stream sediments collected along three rivers 

draining the Eclogite Zone and adjacent geological source units of the western Hohe 

Tauern area in the central Eastern European Alps. For comparison with the stream 

sediments, rock outcrops exposed in this area were also sampled. Additionally, the 

influence of grain-size is studied in detail by considering grain-size fractions ranging 

from coarse silt to coarse sand (32 to 1000 μm). Interestingly, in all samples, 

grossular-rich garnets are more frequent in the smaller grain-sizes and pyrope-rich 

garnets are more frequent in the coarser grain-sizes. This is controlled by the original 

finer size distribution of grossular in the source rocks rather than being a hydraulic 

effect. The data underline strong grain-size control on sediment composition 

including single grain compositional variations. In Chapter 4, we present heavy 

mineral data and garnet geochemistry of stream sediments and bedrocks from the 
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catchment area draining the Almklovdalen peridotite massif in the Western Gneiss 

Region in SW Norway. The data reveal that a wider grain-size spectrum than the 

commonly used grain-size range of 63−125 µm needs to be considered to avoid 

misleading interpretations. Remarkably is the almost total lack of pyrope-rich garnets 

in the sediments, which point to the few garnet peridotites exposed in the area. 

Garnets with pyrope content exceeding 50 % are only found in the 500−1000 µm 

grain-size fraction. In Chapter 5, we present heavy mineral and garnet geochemical 

data of recent stream sediments and bedrocks from three different catchment areas 

(the Flatraket and Ulvesund body and the island of Runde) in the Western Gneiss 

Region in SW Norway. We want to test to what extent the heavy minerals and the 

garnet geochemistry from a single stream-sediment sample per catchment reflect the 

geological situation in the source area. In overall, the heavy mineral and garnet 

geochemical data very well reflect the geological situation in the source area, which 

confirms the application and the importance of heavy minerals in sedimentary 

provenance analysis. Geochemical data of heavy minerals usually show a wider 

distribution in the sediments than the data of heavy minerals measured in the 

bedrocks. However, our results demonstrate that this is not always the case. Some 

garnets measured in the bedrocks, especially lower grade and ultrahigh-grade 

metamorphic garnets are only of secondary importance or they are lacking in the 

sediments. In Chapter 6, we have a look which elements are most useful to 

discriminate between the several garnet bearing groups. We present first ideas about 

the compilation of our garnet data and for a step-wise classification of garnets. For 

this we use the data from our compiled database. At the final end we want to 

establish a new scheme in which detrital garnets are assigned to a specific rock type 

with the highest probability. However, this is not yet included in this thesis since we 

need to work more on that subject.  

 
 

KURZFASSUNG 
 

Die vorliegende Doktorarbeit befasst sich mit Anwendung von Schwermineralen in 

der Liefergebietsanalyse mit besonderem Fokus auf der Geochemie von Granat. Die 

Arbeit basiert im Wesentlichen auf einer gründlichen Literaturrecherche zu 
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mineralchemischen Daten von natürlichem Granat aus verschiedenen Ausgangs-

gesteinen, Geländearbeiten, konventioneller Schwermineralanalyse, 

mineralchemischen Analysen von Granat an der Elektronenstrahl-Mikrosonde und 

statistischer Datenauswertung. Die Doktorarbeit ist in sechs Kapitel unterteilt. Nach 

einer Einführung in das Thema der Arbeit (Kapitel 1) wird die Anwendbarkeit 

vorhandener Klassifikationsdiagramme von Granat getestet, welche in den meisten 

Studien benutzt werden um Granat bestimmten Gesteinen zuzuordnen (Kapitel 2). 

Für diese Studie wurde eine große Datenbank (N=3532) angelegt, welche 

Hauptelemente von Granat aus verschiedenen Liefergesteinen enthält, um die 

Anwendbarkeit der einzelnen Diagramme zu testen. Die Datenbank enthält 

geochemische Daten von Granat aus verschiedenen metamorphen, magmatischen 

und ultramafischen Lithologien, welche aus der Literatur entnommen wurden 

zusammen mit eigenen neuen Daten (N=530) von Granat enthaltenen metamorphen 

und ultramafischen Gesteinen aus Österreich und Norwegen. Die Klassifikation der 

getesteten Diagramme funktioniert nur für eine kleine Gruppe von Granaten aus 

Mantelgesteinen, granulitfaziellen metasedimentären Gesteinen und felsischen 

magmatischen Gesteinen. Für Granate aus anderen Gesteinen bleibt eine 

Zuordnung schwierig. Weiterhin stellen wir Biplots vor um Anstöße für weitere 

Arbeiten im Bereich der Granatchemie zu geben. In Kapitel 3 werden die Ergebnisse 

von den Geländearbeiten im südlichen Tauernfenster in Österreich vorgestellt. Es 

wird die Anwendbarkeit von Schwermineralen und die der Geochemie von Granat, 

aus rezenten Flusssedimenten, in der Liefergebietsanalyse getestet. Die Sedimente 

wurden entlang drei Flussläufen, welche die Eklogitzone und angrenzende 

geologische Zonen der Hohe Tauern Region der zentralen östlichen europäischen 

Alpen entwässern, entnommen. Zum Vergleich wurden neben den Flusssedimenten 

auch Gesteine von Aufschlüssen beprobt. Der Einfluss der Korngröße ist im Detail 

unter Berücksichtigung der Korngrößenfraktionen von Grobsilt bis Grobsand (32 bis 

1000 μm) untersucht worden. Interessant ist, dass in allen Proben grossular-reiche 

Granate verstärkt in den feineren Fraktionen auftreten und pyrop-reiche Granate 

verstärkt in den gröberen Fraktionen. Dies ist sehr wahrscheinlich durch die feinere 

Korngröße in den grossular-reichen Liefergesteinen, als durch einen hydraulischen 

Effekt zu erklären. Die Daten zeigen eine starke Korngrößenabhängigkeit der 

Sedimentzusammensetzung inklusive Variationen in Einzelkörnern. In Kapitel 4 

werden die Ergebnisse von den Geländearbeiten in der Western Gneiss Region in 
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SW-Norwegen vorgestellt. Das Untersuchungsgebiet umfasst das Almklovdalen 

Peridotitmassiv. Detritische Schwermineraldaten und geochemische Daten von 

Granat von Flusssedimenten und Festgesteinen aus dem Einzugsgebiet, welches 

das Almklovdalen Peridotitmassiv in SW-Norwegen umfasst zeigen, dass ein 

breiteres Korngrößenspektrum als das für gewöhnlich benutzte Spektrum von 

63−125 µm benötigt wird um irreführende Interpretationen zu vermeiden. Auffällig ist 

das Fehlen von pyrop-reichem Granat in den Flusssedimenten, welche auf die 

wenigen Granat-Peridotite im Liefergebiet hinweisen. Granate mit > 50% Pyropanteil 

treten nur in der gröbern Fraktion auf (500−1000 µm). In Kapitel 5 präsentieren wir 

Schwermineraldaten und geochemische Daten von Granat von rezenten 

Flusssedimenten und Festgesteinen von drei verschiedenen Einzugsgebieten 

(Flatraket, Ulvesund und Runde) im West Gneis Komplex in Südwest Norwegen. In 

dieser Studie möchten wir testen, inwieweit die Schwerminerale, sowie auch die 

Granatgeochemie einer einzelnen Sedimentprobe je Einzugsgebiet, die geologische 

Situation im Untersuchungsgebiet wiederspiegeln. Im Gesamten spiegeln die Daten 

der Schwerminerale und die von Granat sehr gut die geologische Situation im 

Liefergebiet wieder, was die Anwendbarkeit und Wichtigkeit der 

Schwermineralanalysen in der sedimentären Provenienzanalyse zum Ausdruck 

bringt. Geochemische Daten von Schwermineralen zeigen häufig eine breiter 

gefächerte Verteilung in Sedimenten als in Festgesteinen. Dennoch zeigen die 

Ergebnisse, dass dies nicht immer der Fall ist. Manche Granate in den 

Festgesteinen, vor allem die niedriggradig- und ultrahochgradig metamorphen 

Granate sind sind oft nur zweitrangig von Bedeutung oder fehlen gänzlich in den 

Sedimenten. In Kapitel 6 wird aufgezeigt welche Hauptelemente wichtig für die 

Klassifikation von Granat aus verschiedenen Gesteinstypen sind. Wir stellen erste 

Ideen und Ansätze vor, wie man Schritt für Schritt die einzelnen Granatgruppen 

sinnvoll einteilen kann. Dafür werden die Daten aus der angelegten Datenbasis 

verwendet. Am Ende soll eine Tabelle oder ein Diagramm entwickelt werden, 

welches detritische Granate mit einer bestimmten Wahrscheinlichkeit bestimmten 

Gesteinstypen zuordnet. Dies ist aber nicht mehr Inhalt des Kapitels, da es noch 

weitere Bearbeitung braucht. 
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Chapter I: 
 

INTRODUCTION AND OUTLINE OF THIS THESIS 
 

1. About the project 

The PhD scholarship was financed by CASP, formerly known as Cambridge Arctic 

Shelf Programme. CASP is a non-for-profit charitable trust, dedicated to fundamental 

geoscientific research in prospective hydrocarbon basins, affiliated to the Department 

of Earth Sciences at the University of Cambridge (http://www.casp.cam.ac.uk/). The 

project itself was developed and performed at the Geoscience Center of the 

University of Göttingen, focusing on the application of heavy minerals with the main 

focus on the geochemistry of garnets in sedimentary provenance analysis. Working 

on this thesis started in December 2011. Fieldwork and analytical work was financed 

by the German Research Foundation (DFG grant EY 23/20-1). During this project 

two bachelor theses have been prepared. Part of the data of Manuscript II is obtained 

from the bachelor thesis of Eva Russell and part of the data of Manuscript III is taken 

from the bachelor thesis of Jan Schönig. 

 

2. Outline of the thesis 

The integration of mineralogical, geochemical and radiometric data of heavy minerals 

is a powerful tool in sedimentary provenance analysis. Specific parageneses of 

detrital non-opaque heavy minerals enable direct links between source rocks and 

sediments (e.g., Mange and Maurer, 1992; Morton, 2012). Ideally, source rock 

mineralogy reflects the composition of heavy mineral assemblages in the sediment, 

but many other processes operate during the sedimentary cycle and obscure the 

original provenance signal (Morton, 2012), for example, weathering in the source 

area, abrasion, hydrodynamic sorting during transport and deposition, weathering 

during alluvial storage on flood plains, and diagenesis (Morton and Hallsworth, 1999). 

Weathering may cause modifications of heavy mineral composition in the source 

rock, during transport (alluvial storage) and at deposition. The extent of modification 

depends on the physiographic setting and on the climate (e.g., Morton 2012). There 

is no evidence of mechanical abrasion in river systems like the Mississippi (Russell, 

http://www.casp.cam.ac.uk/about/our-status
http://www.casp.cam.ac.uk/
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1937), the Nile (Shukri, 1949; Garzanti et al., 2006), the Brahmaputra (Garzanti et al., 

2010) and the Rhine (van Andel, 1950), and therefore, this process appears to be 

negligible for provenance studies (Morton, 2012). However, loss of heavy minerals 

remains possible (Morton, 2012). Density, diameter and shape control the 

hydrodynamic behavior of heavy minerals, and grains with similar hydrodynamic 

behavior are deposited together, which needs to be considered carefully (Komar, 

2007; Garzanti et al., 2008). However, the strongest effect that obscures the 

provenance signal is burial diagenesis. During burial diagenesis unstable phases can 

be lost. At burial depth the initial high diversity of heavy minerals decrease 

dramatically. An indication of dissolution is the presence of corrosion textures on 

grain surfaces (e.g., Edelman and Doeglas, 1932, 1934; Morton, 2012) (Fig. 1). 

 
Fig. 1. Burial depth distribution of heavy minerals in Upper Paleocene sandstones of the central North 

Sea, showing the decrease in mineral diversity with increasing burial caused by dissolution of unstable 

minerals (modified after Morton and Hallsworth, 1999). 
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The most stable minerals under both deep burial and acidic weathering are rutile, 

zircon, and tourmaline (Fig. 2). Apatite is very resistant against burial diagenesis, but 

least stable in acidic environments. Garnet is relatively stable against burial 

diagenesis and in acidic environments. Relatively unstable are olivine, pyroxene, and 

amphibole (Fig. 2).  

 

 
Fig. 2. Relative stability of detrital heavy minerals under deep burial and acidic weathering conditions. 

 

Another problem is the grain-size. Using the entire grain size range, the resulting 

data can be heavily affected by differences in hydrodynamics between samples. 

Most commonly the 63–125 µm grain-size fraction is used because this grain-size 

range commonly covers the entire heavy mineral spectrum in the source area (Fig. 

3). It is assumed that this approach minimizes the possible lack of diagnostic 

minerals. Minerals of an original coarser grain-size distribution in the source rock 

occur in the finer grain-size fractions, because they are crushed through hydraulic or 

other mechanical processes (Morton, 2012). Nevertheless, heavy minerals segregate 

according to their grain-size, density, and shape (Morton and Hallsworth, 1999; 
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Garzanti et al., 2008, 2009, 2010). When only considering a narrow grain-size range, 

some minerals of the source rocks can be lacking in the sediments, which can lead to 

misleading results. This does not pose any problems when the geological situation in 

the study area is well known, but source to sink relationships may be obscured in 

ancient sedimentary systems, where the sediments are the only evidence of the 

original palaeotectonic and palaeogeographic setting. For some minerals the relation 

between grain size and frequencies has been determined (Fig. 3). 

 
Fig. 3. Relation between grain-size and heavy mineral frequencies. Pliocene–Pleistocene Lafayette 

sand, western Kentucky. Taken from Pettijohn et al. (1972). 
 

For sands and sandstones, which suffered one or more periods of subaerial 

exposure or deep burial diagenesis, the application of heavy minerals is limited due 

to selective dissolution of mineral species. Pyroxene, amphiboles and epidotes are 

relatively unstable under both, deep burial conditions and in acidic environments and 

studies on these minerals are therefore limited. The heavy mineral garnet is relatively 

resistant under burial conditions and relatively stable in acidic environments under 

normal conditions, as shown in Figures 1 and 2 (see also Deer et al., 1992). That is 

one reason why garnet is a useful mineral in sedimentary provenance analysis. 

There are several other reasons why garnet is the focus of this research project. 

For more than 25 years the mineral chemistry of heavy minerals has been widely 

used to identify and characterise sediment source areas (e.g., Morton 1985; 

Haughton and Farrow, 1989; von Eynatten and Gaupp, 1999; Mange and Morton, 
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2007). Garnet offers a good opportunity for accurate analysis (Morton, 2012). 

Additionally, it exists in many different kind of rocks, such as crustal and mantle rocks 

(e.g., Deer et al., 1992; Seifert and Vrána, 2005). Due to its high density, it is a 

common constituent in the heavy minerals suites of clastic sediments and 

sedimentary rocks (e.g., Pettijohn, 1941). Another important point is that garnet has a 

wide range of major element and also trace element composition, which reflect the 

bulk composition of the source rock and its pressure and temperature conditions. 

Numerous studies underline the strong evidence that certain garnet composition can 

be related to a specific source rock (e.g., Morton et al., 2004; Mange and Morton, 

2007; Aubrecht et al., 2009). For example, detrital Cr-pyrope garnets can be related 

to mantle-derived xenoliths in diamond-bearing intrusive rocks and therefore have 

important implications for diamond exploration (Fipke et al., 1995; Schulze et al., 

1997; Seifert and Vrána, 2005; Grütter et al., 2004). For these reasons, the mineral 

chemistry of detrital garnet has important implications for the identification of the 

potential lithologies exposed in the source area and their evolution through time. This 

is very important, especially when sediment derived from various sources and 

geodynamic settings might be mixed together. Yet there is no clear quantitative 

understanding of what garnet types come from which host lithologies. Several 

discrimination diagrams for garnets exist and are used by many researchers, but a 

statistical analysis of their reliability is still missing. This PhD thesis tackles some of 

these issues. In a first part, a thorough literature study to collect mineral chemical 

data of garnet from various host lithologies was done to create a large garnet 

database. This database is presented in Chapter 2. Also general information about 

the heavy mineral garnet and its application in sedimentary provenance analysis are 

given in this chapter. Furthermore, we make an attempt to evaluate the application of 

existing garnet discrimination diagrams, commonly used by many researchers in 

sedimentary provenance analysis, with the data collected from the literature and 

some new garnet data from own fieldwork. In the second part of the thesis, case 

studies from different fieldwork areas are presented. In these case studies, the 

source to sink relationship was analysed in order to test the general application of 

garnet in sedimentary provenance analysis. Fieldwork was done in Austria and 

Norway. There, the geological setting allows to easily collect samples from bedrocks 

and recent sediments, because metamorphic rocks are well exposed, easily 

accessible and pre-Holocene sediment influx can be regarded as insignificant so that 



6 

 

contamination with garnets from other source rocks than those exposed in the study 

areas can be excluded. 

Fieldwork in Austria focused on medium- to high-grade metamorphic rocks, like 

micaschists and eclogites, of the southern Tauern window. Fieldwork in Norway 

focused on high- and ultrahigh-grade metamorphic rocks of the Nordfjord–Stadlandet 

and the Sørøyane domains of the Western Gneiss Region.  

In both study areas, a range of source rocks as well as stream sediments from 

adjacent river systems were collected in order to test to what extent the heavy 

minerals and the garnet geochemistry reflect the situation in the source area. 

Fieldwork was followed by mineral chemical analysis using the electron microprobe. 

The results from fieldwork in Austria are presented in Chapter 3. Results from the 

fieldwork in Norway are presented in Chapters 4 and 5. Additionally, several grain-

size fractions were analysed in detail and are presented in Chapters 3 and 4. One 

aim of this research is to study the relation between garnet and its source rock for a 

better understanding of the source to sink relationship in the geological record.  

Another aim is a probabilistic approach that means assigning each garnet 

composition a probability of belonging to a specific source-rock type. This study is 

still in process and needs further investigations. A first step is to analyse the 

characteristics of the individual garnet types, for example, which elements are 

important to differentiate the individual garnet groups. First investigations, ideas and 

results are presented in Chapter 6.  
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Abstract 

This work is an attempt to evaluate six different garnet discrimination diagrams (one 

binary diagram and five ternary diagrams) commonly used by many researchers. The 

mineral chemistry of detrital garnet is a useful tool in sedimentary provenance 

studies, yet there is no clear-cut understanding of what garnet type originates from 

which host lithology. Several discrimination diagrams exist for garnet showing distinct 

compositional fields, separated by strict boundaries that are thought to reflect specific 

types of source rocks. For this study, a large dataset was compiled (N = 3532) 

encompassing major element compositions of garnets derived from various host 

lithologies, including metamorphic, igneous, and mantle-derived rocks, in order to 

test the applicability of the various discrimination schemes. The dataset contains 

mineral chemical data collected from the literature complemented with some new 

data (N = 530) from garnet-bearing metamorphic and ultramafic rocks in Austria and 

Norway. Discrimination of the tested diagrams only works for a small group of 

garnets derived from mantle rocks, granulite-facies metasedimentary rocks, and 
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felsic igneous rocks. For other garnet types, the assignment to a certain type of host 

rock remains ambiguous. This is considered insufficient and therefore the evaluated 

diagrams should be used with great care. We further apply compositional biplot 

analysis to derive some hints towards future perspectives in detrital garnet 

discrimination. 

 
Keywords: provenance; heavy minerals; garnet chemistry; discrimination; 

compositional biplot 

 

1. Introduction 

For more than 25 years, the mineral chemistry of heavy minerals has been widely 

used to identify, discriminate, and characterise sediment source areas (see recent 

review in von Eynatten and Dunkl, 2012). Particularly, the heavy mineral garnet can 

be used for the identification of the potential lithologies exposed in the source area. 

Garnet is a particular useful mineral in provenance research because of its wide 

range of major element composition, its high importance in defining metamorphic 

conditions, and its comparative stability during transport and burial diagenesis (e.g., 

Wright, 1938, Tröger, 1952, Zemann, 1962, Nandi, 1967, Morton, 1985 and Deer et 

al., 1992). Morton (1985) was the first to undertake detrital garnet provenance 

analysis using electron microprobe analysis, in a study of Middle Jurassic 

sandstones from the North Sea. Since then, this method has been widely applied to 

determine the provenance of sediments (e.g., Haughton and Farrow, 1989, Takeuchi, 

1994, von Eynatten and Gaupp, 1999 and Sabeen et al., 2002). The chemical 

composition of garnet depends on host rock bulk composition as well as its pressure 

and temperature history. Therefore the major, trace, and rare earth element 

composition of garnet can be used to analyse the evolution of mantle and crustal 

rocks (Harangi et al., 2001, Schulze, 2003, Cookenboo and Grütter, 

2010 and Heimann et al., 2011, and references therein). Certain garnet compositions 

have been empirically related to specific sources and, therefore, detrital garnet has 

been increasingly useful in sedimentary provenance analysis (e.g., Morton et al., 

2004, Mange and Morton, 2007, Keulen et al., 2008, Aubrecht et al., 2009, Biernacka 

and Józefiak, 2009, Meinhold et al., 2010, Morton et al., 2011, Wotzlaw et al., 2011, 

Andò et al., 2013 and Suggate and Hall, 2013). Garnet chemistry also has important 

provenance applications in archaeology, where the mineral chemical composition is 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0505
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0560
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0460
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0570
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0315
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0280
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0600
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0600
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0280
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0185
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0445
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0445
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0495
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0370
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0175
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0405
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0080
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0080
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0190
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0300
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0300
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0610
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0225
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0040
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0055
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0055
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0260
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0310
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0555
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0585
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0635
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used as a fingerprint to trace the source of gemstone garnet, thereby giving insights 

into ancient trade routes from the Far East to Europe and within Europe (e.g., 

Farges, 1998, Quast and Schüssler, 2000 and Mathis et al., 2008). 

Garnet is classified as a group of cubic nesosilicates with the general formula 

X3Y2Si3O12. Altogether, there are fourteen end-member compositions within the 

garnet group (Grew et al., 2013). The elements Fe2+, Ca2+, Mg2+, and Mn2+ are 

commonly situated in the X position, and Al3+, Fe3+, and Cr3+ are usually in the Y 

position. The most common end-member species are almandine (Fe3Al2Si3O12), 

pyrope (Mg3Al2Si3O12), spessartine (Mn3Al2Si3O12), grossular (Ca3Al2Si3O12), 

andradite (Ca3(Fe,Ti)2Si3O12), and uvarovite (Ca3Cr2Si3O12). Natural garnet usually 

consists of a solid solution of these end-members in highly varying proportions. 

Garnet is a common mineral of a wide variety of metamorphic rocks and rarely 

occurs as a primary magmatic mineral in igneous rocks and tuffs (e.g., Miller and 

Stoddard, 1981 and Patranabis-Deb et al., 2008). Garnet is also frequent in mantle-

derived rocks and is often embedded amongst mineral inclusions in diamonds. In 

contrast to mantle-derived olivine and pyroxene, garnet is more stable during 

dispersion and alteration (Pettijohn, 1941, Morton and Hallsworth, 1999 and Grütter 

et al., 2004). Because garnet displays diagnostic compositional characteristics, it is 

an interesting mineral for diamond exploration (e.g., Nowicki et al., 2003). Garnet can 

also be a major constituent in the heavy mineral spectra of sediments and 

sedimentary rocks (e.g., Pettijohn, 1941, Morton, 1985, Takeuchi, 1994 and Sabeen 

et al., 2002). 

Although garnet chemical composition is a widely used tool in sedimentary 

provenance analysis, there is no clear-cut and quantitative understanding of what 

garnet type originates from which host lithology. A number of discrimination diagrams 

for garnet have been proposed in the literature. They are mainly binary and ternary 

diagrams where discrimination fields are drawn as strict boundaries by solid lines and 

some of them show distinct overlap between discrimination fields (e.g., Harangi et al., 

2001, Grütter et al., 2004, Mange and Morton, 2007 and Aubrecht et al., 2009). 

Given the complex controls on garnet composition, such strict boundaries appear to 

be unlikely. To approach this problem, we compiled a large dataset (N = 3532) based 

on literature and own data on major element geochemistry of garnet derived from 

various host lithologies in order to test the reliability of the various discrimination 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0110
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0360
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0255
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0160
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0270
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0270
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0335
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0350
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0295
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0165
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0165
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0320
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0350
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0280
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0445
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0370
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0370
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0175
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0175
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0165
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0610
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0040
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schemes. Finally, future perspectives for a better discrimination of garnets derived 

from different host rocks are presented using compositional biplot analysis. 

 

2. Garnet sources 

2.1. Metamorphic garnet 
The majority of garnet occurs in metamorphic rocks covering a broad range of 

pressure (P) and temperature (T) conditions, and protolith compositions. 

Metamorphic garnets are commonly characterised through zoning with respect to 

Fe–Mg–Mn, show resorption zones, and usually have inclusions (e.g., Patranabis-

Deb et al., 2008, and references therein). Inclusions in garnet are useful indicators of 

metamorphic grade. For example, inclusions of omphacite with a high jadeite content 

point to eclogite-facies host rocks and are also common in ultrahigh-pressure (UHP) 

metamorphic rocks (Desmons and Smulikowski, 2004, Schmid et al., 

2004 and Méres et al., 2012). Coesite inclusions in garnet also point to UHP 

metamorphic conditions (e.g., Wang and Liou, 1991, Wang et al., 1992, Okay, 1993, 

Cong et al., 1995, Liu and Liou, 1995, Tabata et al., 1998 and Petermann et al., 

2009). The presence of kyanite and rutile inclusions in pyrope-rich garnet indicates 

high-pressure origin (Méres et al., 2012). The structure and distribution of inclusions 

give further information about the formation of a rock. For example, a curvy 

distribution or snowball structure is often observed in deformed rocks (e.g., Escuder-

Viruete et al., 2000). 

 

2.2. Igneous garnet 
Primary igneous garnets are rare and can only develop under restricted conditions; 

hence, they give useful information about the geodynamics of magma genesis and 

pressure and temperature conditions (e.g., Green, 1977, Green, 1992 and Harangi et 

al., 2001). Their appearance in igneous rocks is often restricted to granitoids and acid 

volcanic rocks (René and Stelling, 2007). There exist three different theories about 

the origin of garnet in igneous rocks: (i) formation during partial melting as a restite 

phase (e.g., White and Chappell, 1977, Vennum and Meyer, 1979, Allan and Clarke, 

1981 and Stone, 1988), (ii) formation through low-pressure precipitates from a highly 

fractionated peraluminous granitic melt (e.g., Hall, 1965, Allan and Clarke, 1981, 

Miller and Stoddard, 1981 and Harrison, 1988), or (iii) formation through 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0335
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0335
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0605
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0625
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0625
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0265
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0515
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0520
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0325
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0075
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0240
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0640
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0345
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0345
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0265
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0105
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0105
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0150
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0155
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0175
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0175
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0365
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0530
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0490
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0425
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0170
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0270
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0180
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transportation of high-pressure phenocrysts to the Earth's crust (e.g., Green, 

1977 and René and Stelling, 2007). Restite means here the solid remain of a plutonic 

or volcanic rock resulting from partial melting (Chappell and White, 1991 and Sheibi 

et al., 2010). It is important to know if these garnets are of phenocrystic or 

xenocrystic origin. However, great care must be taken when chemical composition is 

used to distinguish between phenocrystic and xenocrystic garnets, because they 

have a wide compositional range depending on bulk-rock composition, mineral 

assemblages, and P–T conditions (e.g., Spear, 1993 and Kawabata and Takafuji, 

2005). 

Garnet found in pegmatites is commonly a Mn-rich almandine–spessartine solid 

solution (Manning, 1983). Spessartine-rich almandine–spessartine garnets are stable 

within a granitic melt at pressures below 5 kbar. With higher Mn content garnet is 

stable at lower pressures below 1 kbar at 750 °C (Weisbrod, 1974). There exists a 

relationship between the concentrations of Fe2+ and Mn and the geochemical 

evolution of zoned pegmatite bodies. It has been observed that Mn content increases 

from the wall to the core whereas Fe2+ decreases (Baldwin and von Knorring, 

1983 and Whitworth, 1992). There is also a correlation between OH in garnets and 

pegmatite evolution. OH in spessartine–almandine garnets ranges up to 0.1 wt.%, 

whereas in grossular-rich garnets, OH exists in higher concentrations due to 

substitution of SiO4 by O4H4 (hydrogarnet substitution) (Arredondo et al., 2001). 

As mentioned above, inclusions in garnets can offer clues about their origin. Besides 

mineral inclusions, there can also be melt inclusions. Their presence in a mineral 

implies that the mineral grew whilst coexisting with the melt (Kawabata and Takafuji, 

2005). The absence of metamorphic inclusions in garnet may point to a magmatic 

origin. The grain morphology is another important criterion for the origin of a mineral. 

Euhedral garnets point to rapid ascent of magma and their formation in equilibrium 

with the host magma (Gilbert and Rogers, 1989, Day et al., 1992 and Kawabata and 

Takafuji, 2005). For example, garnets from the East Kunlun porphyry of the NE 

Tibetan Plateau show concentric zoning and have a euhedral shape (Yuan et al., 

2009). 

 

2.3. Ultramafic and mantle-derived garnet 
Garnets in mantle-derived rocks play an important role for diamond exploration (e.g., 

Nowicki et al., 2003). Eclogite and peridotite garnet xenocrysts and low-Cr 
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http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0590
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0375
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0375
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0630
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0220
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http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0665
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http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0220
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0220
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0565
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megacrysts found in kimberlites represent upper mantle material and hence 

constitute a source for diamonds (Schulze, 1997). In fact, Cr-pyrope garnet is a minor 

common mineral in ultramafic rocks but it is also used as an indicator mineral in 

diamond exploration (Fipke et al., 1995 and Seifert and Vrána, 2005). Orogenic 

garnet peridotites are found within orogenic belts because of subduction and/or late 

stage continent collision. Cratonic garnet peridotite xenoliths within cratons are 

usually entrained in ultramafic volcanic rocks and can be related to partial melting of 

lower mantle and/or mantle plume, whereas off-cratonic garnet peridotite xenoliths 

are usually preserved in mafic and alkaline volcanic rocks, which occur mostly within 

the margin of cratons (Su et al., 2011). 

The colour of garnets can also be of importance. Seifert and Vrána (2005) studied 

garnets from the Bohemian Massif, which primarily derived from lherzolites and 

peridotites, and found that there is a close linkage between colour and Cr2O3 content. 

The garnets with high Cr-content are violet in colour, whilst others are mostly red. 

 

2.4. Detrital garnets 
In magmatic and metamorphic petrology, the host rock of garnet is obvious because 

garnet occurs in situ in the analysed rock specimen. This is not the case in 

sedimentary petrology where garnet, if present, occurs as an accessory detrital 

component, i.e. the original paragenesis is not known. Detrital heavy minerals are 

used for establishing source to sink relationships, which may be obscured in ancient 

sedimentary systems as source regions may be eroded and leaving the sedimentary 

rocks as the only evidence of the original palaeotectonic setting (e.g., Krippner and 

Bahlburg, 2013). River sediments represent averaged samples of the rocks within the 

drainage basin. However, exotic detritus might have been delivered during repeated 

ice sheet advances, as shown, for example, in NW European sediments (Morton et 

al., 2004). The relative abundances of minerals are effected through hydraulic 

processes. The effects of these processes depend on heavy mineral grain-size, 

density, and shape (e.g., Morton and Hallsworth, 1999, Garzanti et al., 2008, 

Garzanti et al., 2009 and Garzanti et al., 2010). Even within a single mineral group, 

sorting due to different sizes and densities can be observed. For example, the 

almandine-rich garnet species are concentrated in the finer fractions in contrast to 

less dense garnet species (Schuiling et al., 1985, Andò, 2007 and Garzanti et al., 

2008). Therefore, different heavy mineral assemblages do not necessarily mean that 
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they were derived from different source lithologies. They may simply reflect 

synsedimentary and diagenetic modifications, which need to be considered carefully 

(e.g., Morton and Hallsworth, 1999 and Morton, 2012). The ultrastable heavy 

minerals zircon, rutile and tourmaline (Hubert, 1962) are more stable than garnet, 

which in turn is more stable than staurolite, kyanite, titanite, and epidote under burial 

diagenetic conditions. Amphibole and pyroxene, for instance, are relatively unstable. 

The stability of apatite varies, mainly depending on the environment (Pettijohn, 1941, 

Morton and Hallsworth, 1999 and Morton, 2012). It is therefore important to compare 

the ratios of minerals with similar hydrodynamic and alteration behaviour when 

establishing provenance relationships. Single grains can be characterised by their 

morphology (e.g., roundness), colour, and geochemical characteristics (Morton et al., 

2004). One has to consider that the extent of chemical weathering also depends on 

the climate (e.g., Velbel, 2007 and Andò et al., 2012, and references therein). Garnet 

is relatively stable during diagenesis, but in hot humid climates, garnet is destroyed 

faster than hornblende, and grains can be completely transformed into clay coatings 

(Garzanti et al., 2013). At lower latitudes, dissolution effects also stable minerals 

such as zircon and tourmaline. Depending on the extension of alteration, specific 

minerals can show corrosion features and deep etching (e.g., Price et al., 2013). Due 

to the fact that corrosion morphologies depend on crystal structure, the dissolution 

features of specific minerals can offer clues about how much the detrital heavy 

mineral assemblage is modified and therefore about the climate in the stratigraphic 

record (e.g., Velbel, 2007 and Andò et al., 2012, and references therein). 

Morton (1984) proved the stability of garnet grains and found out that garnets persist 

to depths of about 3000 m in Tertiary sandstones from the northern North Sea. At 

greater depths, garnet surfaces become etched and grains show skeletal textures 

(Turner and Morton, 2007). Walderhaug and Porten (2007) investigated the stability 

of heavy minerals on the Norwegian continental shelf and found out that the 

maximum depth and temperature of occurrence for garnet are ~ 4600 m and 175 °C, 

respectively. First signs of garnet dissolution occur at 2000 m depth, and at > 3500 m 

depth garnets are partially dissolved. Under acidic weathering conditions, garnet is 

considerably less stable than during burial diagenesis (Velbel, 1984). The instability 

of garnet may therefore cause problems when using this mineral for sedimentary 

provenance analysis (Haughton and Farrow, 1989). Beyond depletion of garnet, 

intrastratal solution may also cause major variations in the composition of garnet 
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suites. For example, high-Ca garnets are considered less stable than low-Ca garnets 

during burial and diagenesis (Morton, 1987 and Harangi et al., 2001). It is therefore 

important to take into account that the stability of garnet depends on its chemical 

composition. 

 

3. Discrimination diagrams of garnet 

Garnet composition strongly depends on the paragenesis in the host rock. On an 

empirical basis, however, there is strong evidence that certain garnet compositions 

are most likely related to specific source rocks such as high-grade metamafic rocks, 

granulite-facies metasedimentary rocks, granitoids, and skarn deposits (e.g., Morton 

et al., 2004, Mange and Morton, 2007 and Aubrecht et al., 2009). Such relations 

derived from empirical evidence are important in sedimentary provenance analysis 

because sediment derived from various source areas and geodynamic settings might 

be mixed, and thus inferences drawn from sediment characteristics alone are 

inevitably subjected to some degree of uncertainty. 

Discrimination of garnet is done in different ways, for example, by using flow charts, 

binary diagrams or ternary diagrams or a combination of those. In the following, we 

give a brief outline about the binary and ternary discrimination diagrams commonly 

used in sedimentary provenance studies. 

Wright (1938) made the first attempt to classify garnets from different host rock types 

in ternary diagrams, as displayed in Fig. 1a. Morton et al. (2004) introduced a ternary 

diagram using almandine + spessartine, pyrope, and grossular as poles, and the 

discrimination fields A, B, and C, redefined and detailed in Mange and Morton (2007), 

as shown in Fig. 1b. This diagram has widely been applied in a number of garnet 

provenance studies (e.g., Whitham et al., 2004, Morton et al., 2005, Mange and 

Morton, 2007, Meinhold et al., 2010 and Morton et al., 2011). Aubrecht et al. (2009) 

presented a new classification scheme for natural garnet using pyrope–almandine–

grossular and pyrope–almandine–spessartine ternary diagrams (Fig. 1c, d). The first 

ternary diagram for garnet classification using a spessartine–pyrope–grossular 

diagram without involving the Fe-component was developed by Teraoka et al., 

1997 and Teraoka et al., 1998 (Fig. 1e) and applied by Win et al. (2007). 
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Fig. 1. Ternary diagrams used for garnet discrimination. (a) Ternary discrimination diagram with 

proportion of pyrope, almandine plus spessartine, and grossular as poles after Wright (1938); (b) 

Ternary discrimination diagram with molecular proportions of pyrope, almandine plus spessartine, and 
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grossular as poles after Mange and Morton (2007). A – mainly from high-grade granulite-facies 

metasediments or charnockites and intermediate felsic igneous rocks,  B – amphibolite-facies 

metasedimentary rocks, Bi – intermediate to felsic igneous rocks, Ci – mainly from high-grade mafic 

rocks, Cii – ultramafics with high Mg (pyroxenites and peridotites), D – metasomatic rocks, very low-

grade metamafic rocks and ultrahigh temperature metamorphosed calc-silicate granulites; (c) Ternary 

discrimination diagram with pyrope, almandine, and grossular compositions as poles after Aubrecht et 

al. (2009).  A – garnets from high-pressure (HP) to ultrahigh-pressure (UHP) rocks, B – garnets from 

eclogite- and granulite-facies rocks, C – garnets from amphibolite-facies rocks. The group C is further 

subdivided into two subgroups. The transitional field C1 includes garnets from higher amphibolite- to 

granulite-facies rocks whereas the field C2 includes garnets from amphibolite-facies rocks but also 

includes garnets from many other rocks such as blueschists, skarns, serpentinites and igneous rocks. 

The source lithologies for garnets are distinguished into 7 groups. 1 – Garnets derived from UHP 

eclogites or garnet peridotites, 2 – Garnets derived from HP eclogites and HP mafic granulites, 3 – 

Garnets derived from felsic and intermediate granulites, 4 – Garnets derived from gneisses 

metamorphosed under pressure and temperature conditions transitional to granulite- and amphibolite-

facies metamorphism, 5 – Garnets derived from amphibolites metamorphosed under pressure and 

temperature conditions transitional to granulite- and amphibolite-facies metamorphism, 6 – Garnets 

derived from gneisses metamorphosed under amphibolite-facies conditions, 7 – Garnets derived from 

amphibolites metamorphosed under amphibolite-facies conditions. (d) Ternary diagram with pyrope, 

almandine, and spessartine compositions as poles after Aubrecht et al. (2009). (e) Ternary 

discrimination diagram with proportions of pyrope, grossular, and spessartine as poles after Teraoka 

et al. (1997, 1998). L – Low P–T, la – Intermediate P–T (up to amphibolites facies), H – High P–T, lg1, 

lg2 – Intermediate P–T (granulite facies), E – Eclogite, G – grandite garnets 

 

Grütter et al. (2004) presented a binary discrimination scheme for mantle-derived 

garnets on the basis of the CaO and Cr2O3 contents in these garnets (Fig. 2). 

Garnets containing high Cr contents often have high proportions of pyrope too. 

These garnets are minor phases in peridotites and may constitute important 

indicators in diamond exploration. However, this classification scheme is not 

developed to discriminate a wide range of garnet types, but to categorise the 

compositions of garnet grains that may be associated with diamond-bearing intrusive 

rocks. 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0165
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0010
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Fig. 2. G-number nomenclature of the classification scheme of Grütter et al. (2004) for mantle-derived 

garnets viewed in a conventional Cr2O3 vs. CaO diagram (after Grütter et al., 2004). G0 – 

Unclassified, G1 – Low-Cr megacryst garnet, G3 – Eclogitic garnet, G4 & G5 – Pyroxenitic, websteritic 

and eclogitic garnets, G9 – Lherzolitic garnet, G10 – Harzburgitic garnet, G11 – High-TiO2 peridotitic 

garnet, G12 – Wehrlitic garnet. Note that the megacryst group G1 (dotted pattern) does not actually 

overlap groups G3, G4, G5, G9 or G12 since it occurs at higher TiO2 content (see Grütter et al., 2004). 

Pyroxenitic categories G5 and G4 are indicated by grey fields. Group G5 garnets are separated from 

G9 garnets by a Mg-number <0.7 threshold. See Grütter et al. (2004) for details. 

 

Suggate and Hall (2013) recently presented a new approach of garnet discrimination 

by using two triangular plots with apices of almandine, pyrope, spessartine, and 

grossular + andradite + schorlomite (Fig. 3). In their scheme, protoliths of garnets are 

identified by a stepwise separation of garnets of specific composition. First, garnets 

with an uncommon content of Y2O3, V2O3, and ZrO2 are removed. In a second step, 

garnets with high TiO2 content are separated. Due to that separation, they have a 

group of garnets derived, for example, from ores, skarns, mafic pyroclastic rocks, and 

nepheline syenites. In a next step, a group of garnets with high uvarovite and pyrope 

contents commonly derived from ultramafic rocks is separated. After the separation, 

the remaining garnets, for example, those from amphibolite-facies, granulite-facies, 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0635
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0015
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and eclogite-facies rocks, are plotted in two triangular plots. These garnets overlap, 

but many mafic eclogites can be distinguished by their low spessartine content 

(Suggate and Hall, 2013). 

 

 
Fig. 3. Ternary plots using end-members grossular+andradite+schorlomite, almandine, pyrope and 

spessartine showing sub-areas characteristic of garnets with different protoliths of Suggate and Hall, 

2013). (a) Ultramafic rocks (peridotites, eclogites and kimberlites), granites, calc-silicates, skarns and 

rodingites. 95% of all ultramafic garnets have pyrope contents >55%. (b) Granulites, granulite-facies 

high-Mg pelites, and blueschists. (c) Amphibolites and metamafic sub-ophiolitic rocks. 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0635
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Chemical discrimination is not only based on major element composition; trace 

elements are also important to decipher source rock petrology. Trace element zoning 

is often more extensive than major element zoning (Hickmott et al., 1987, Otamendi 

et al., 2002 and Jung and Hellebrandt, 2006, and references therein), and is 

therefore sensitive to chemical and thermobarometric changes (Jung and 

Hellebrandt, 2006). It provides information about metamorphic processes, in situ 

migmatisation, metamorphic growth, and igneous crystallisation (Jung and 

Hellebrandt, 2006). 

A possibility to distinguish mantle- from crustal-derived garnets is the oxygen isotope 

composition and the H2O content. For example, the mean δ18O value for all garnet 

megacrysts from Group I kimberlites worldwide is 5.24‰ (Schulze et al., 2001). 

Relatively low MgO contents together with a high δ18O value suggest formation from 

a felsic (i.e., crustal) melt (Yuan et al., 2009). 

 

4. Sample description and method 

4.1. Samples 
We compiled a large database (N = 3532 single analyses) on major element mineral 

chemistry of garnet grains derived from metamorphic and igneous rocks from 

different parts of the world. The data were collected from the literature together with 

new data acquired from basement rocks in Austria and Norway (N = 530; this study). 

In the database, 982 garnet analyses are from mantle rocks, 599 are from 

metaigneous eclogites, 281 are from metaigneous granulites, 193 are from 

metaigneous amphibolites, 775 are from magmatic rocks, and 702 are from 

metasedimentary rocks. Magmatic rocks are subdivided in plutonic and volcanic and 

felsic and mafic rocks. Metasedimentary rocks are subdivided in greenschist-facies, 

amphibolite-facies, granulite-facies, and eclogite-facies metasedimentary rocks 

(Table 1). 
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Table 1. Summary of the type of garnet-bearing rocks and quantity of data considered in this study 

(see Supplementary data). 

Binary diagram Quantity 
Lithology  
Low-Cr megacrysts 454 
harzburgites 12 
lherzolites 83 
pyroxenites 21 
metaigneous eclogites 565 

    

Ternary diagrams Quantity 
Lithology  
ultramafics 982 

metaigneous eclogites 599 

metaigneous amphibolites 193 

metaigneous granulites 281 

greenschist-facies metapelites 33 

amphibolite-facies metapelites 224 

granulite-facies metapelites 178 

eclogite-facies metapelites 24 

felsic plutonic rocks 499 

mafic plutonic rocks 75 

felsic volcanic rocks 70 

mafic volcanic rocks 131 
 

Our own samples from Austria were collected from the Frosnitz valley area in the 

central Tauern Window of the Eastern Alps. The Tauern Window exposes exhumed 

continental basement of European affinity. A nappe stack that developed in a 

subduction zone during the closure of the Piemont-Liguria and Valais oceans in the 

Cretaceous and Paleogene represents the Tauern Window (e.g., Schmid et al., 

2013). Sample A7-D (geographic coordinates: 47°3′35″N, 12°20′3″E) is a 

metaigneous eclogite from the Eclogite Zone, which is one of the tectonic units of this 

nappe stack. Own samples from Norway are from the Western Gneiss Region that 

comprises Precambrian gneissic basement and allochtonous cover units 

metamorphosed and deformed during the Caledonian orogeny induced through the 

collision between Baltica, Laurentia and Avalonia under closure of the Iapetus Ocean 

(e.g., Cuthbert et al., 2000). Samples N5-3 (geographic coordinates: 61°54.855′N, 

5°20.210′E), N16-1 (geographic coordinates: 61°57.281′N, 5°12.562′E) and N4-2 

(geographic coordinates: 61°56.826′N, 5°27.937′E) are metaigneous eclogites. 

Sample N7-1 (geographic coordinates: 61°59.225′N, 5°05.593′E) is a metaigneous 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0385
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0385
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0085
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amphibolite, sample N9-1 (geographic coordinates: 61°56.257′N, 5°08.565′E) is a 

metaigneous granulite, and sample N24 (geographic coordinates: 62°00.278′N, 

5°36.448′E) is a peridotite. In the database, our own samples are marked with 

“Krippner (2013)” and “unpublished”. The full database, including the lithology, 

metamorphic facies, and the full references, referred to in this paper is included in the 

accompanying Supplementary data (see Appendix A). 

 

4.2. Analytical details 
Our own samples were analysed with a JEOL JXA 8900 RL electron microprobe 

equipped with five wavelength dispersive spectrometers at the University of 

Göttingen (Department of Geochemistry, Geoscience Center). All samples were 

coated with carbon to ensure conductivity. Measurement conditions included an 

accelerating voltage of 15 kV and a beam current of 20 nA. The counting times were 

15 s for Si, Mg, Ca, Fe, and Al, and 30 s for Ti, Cr, and Mn. Matrix correction was 

performed using ZAF corrections. We analysed the rim, mantle, and the centre for 

nearly all garnet grains. Measurement conditions are given in Table 2. 
 

Table 2. Operating conditions of the electron microprobe for garnet analyses.Count time on the peak 

(in s), Bckg time counting time on background position (in s), DL detection limit (in ppm). 

Spectrometer 1 TAP 1 TAP 2 TAP 3 PETJ 4 PETJ 4 PETJ 5 LIFH 5 LIFH 
Element 
(Line) 

 
Si (K) Al (K) Mg (K) Ca (K) Ti (K) Cr (K) Mn (K) Fe (K) 

Count time 15 15 15 15 30 30 30 15 
Bckg time 5 5 5 5 15 15 15 5 
Standard Garnet, 

natural 
Garnet, 
natural 

MgO, 
synthetic 

CaSiO3, 
natural 

TiO2, 
synthetic 

Cr2O3, 
synthetic 

Rhodonite, 
natural 

Fe2O3, 
synthetic 

DL 164 133 115 180 163 179 161 285 
         
 

5. Evaluation of discrimination diagrams 

To our knowledge, no evaluation of the reliability of the various discrimination 

diagrams discussed in this study has yet been made. We test six commonly applied 

discrimination diagrams based on major element geochemistry as described above. 

We place special emphasis on the quality of the data in our database and therefore 

use only garnet data that could be clearly assigned to a specific rock type. In order to 

allow a better comparison, the same garnet data are used for all five ternary 

diagrams. However, not every discrimination diagram aims to differentiate all types of 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0230
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#ec0005
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#t0010
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garnet-bearing rocks, and hence a subset of the database is used for individual 

diagrams with more limited application. All analysed garnets, no matter whether the 

data point is from the rim, the mantle, or the core, are plotted in the individual 

diagrams, because when we are dealing with detrital garnets this information is often 

been lost. We commonly do not have the information of the precise location of data 

points. Our own data are treated in the same way. The precise number of garnets for 

every rock type is given in Table 1, and the potential of discriminating garnets for 

every single diagram is given in Table 3. 

 

5.1. Ternary discrimination diagrams 

5.1.1. Wright (1938)  

For the evaluation, 1324 (filled symbols) out of the 3532 grains are tested (Fig. 4). Of 

these, 599 garnets are from metaigneous eclogites, 193 are from metaigneous 

amphibolites, 499 are from granites and pegmatites, and 33 are from greenschist-

facies metapelites (Table 1). Most of the eclogitic garnets do not plot in their 

expected field (~ 23% success) (Fig. 4a). Many of the eclogitic garnets plot also in 

the field for amphibolites and biotite schists (Fig. 4a). Many of the amphibolite 

derived garnets plot outside the expected field (~ 57% success) (Fig. 4b). Nearly half 

of the tested amphibolite garnets also plot in the field for low-grade metamorphic 

rocks (biotite schists) (Fig. 4b). Because both eclogitic and amphibolitic garnets plot 

in the field for amphibolitic garnets and garnets derived from biotite schists, a 

discrimination of these groups is difficult. A clear discrimination of eclogitic from 

amphibolitic garnets is only possible if the eclogitic garnets have a pyrope content of 

more than 30%; this is the case for 260 eclogitic garnets out of 599 (43% success). 

Only about 51% of the garnets derived from greenschist-facies metasediments 

(biotite schists) plot in their expected field; the others mainly plot in the field for 

garnets derived from granites and pegmatites (Fig. 4c). Garnets from felsic plutonic 

rocks mostly plot in or nearby their assigned field (~ 70% success) (Fig. 4d), but due 

to the fact that about half of the garnets derived from metasedimentary rocks also 

plot in the field for garnets derived from granites and granite pegmatites, these 

garnets cannot be discriminated from each other. 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#t0005
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#t0015
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#t0005
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0020
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0020
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Fig. 4. Evaluation of the classification scheme of Wright (1938) using the database compiled in this 

study. (a) Crustal- and mantle-derived garnets. (b) Crustal-derived garnets. (c) Metasedimentary 

garnets. (d) Magmatic garnets. Filled symbols – included in the valuation; Open symbols – not 

included in the valuation because of the lack of discrimination fields for these garnets. 

 

5.1.2. Mange and Morton (2007) 

The diagram of Mange and Morton (2007) (Fig. 5) is a modification of the diagram 

proposed by Morton et al. (2004) on the basis of garnet compositions in Scottish and 

Norwegian river sediments. For the evaluation, 2956 (filled symbols) out of the 3532 

grains are tested. Of these, 982 garnets are from ultramafic rocks, 599 garnets are 

from metaigneous eclogites, 193 are from metaigneous amphibolites, 281 are from 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0610
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0300
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metaigneous granulites, 499 are from granites and pegmatites, 224 are from 

amphibolite-facies metapelites, and 178 are from granulite-facies metapelites 

(Table 1). All mantle-derived garnet grains plot in the expected field Cii for ultramafic 

rocks, except for eight analyses (~ 99% success) (Fig. 5a). Garnets from eclogites 

usually should plot in the fields Cii and Ci (high-grade metamafic rocks). 

Approximately 7% of garnets derived from eclogites plot outside their field (Fig. 5a). 

Most of the garnets derived from metaigneous amphibolites and granulites plot in the 

expected field for high-grade mafic rocks (field Ci; ~ 81% success), however, they 

cannot be discriminated from garnets derived from eclogites, because these garnets 

also plot in field Ci (Fig. 5b). Only mantle-derived garnets with a pyrope content 

> 40% can be clearly discriminated from crustal-derived garnets (~ 97% success) 

(Fig. 5a). Garnets derived from metasedimentary rocks mainly plot in fields A, B, and 

Bi (Fig. 5c). Of amphibolite-facies metasedimentary garnets, 224 out of 467 plot 

outside their respective field (field B; ~ 52% success), and 56 out of 178 granulite-

facies metasedimentary garnets plot outside their expected field (field A; ~ 68% 

success). Garnets of granulite-facies metasediments (n = 39) with a pyrope content 

> 44% can be clearly discriminated from the group of amphibolite-facies 

metasedimentary garnets (Fig. 5c). Intermediate to felsic igneous garnets should plot 

in fields A and Bi, which is the case for 72% of the samples. Those garnets plotting in 

field A (2%), however, cannot be discriminated from high-grade metasedimentary 

garnets. Moreover, some of the igneous garnets also plot in field B (Fig. 5d) and 

cannot be discriminated from amphibolite-facies metasedimentary garnets. Because 

many of the amphibolite-facies metasedimentary garnets plot in field Bi, a 

discrimination of metasedimentary and igneous garnets is not possible. 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#t0005
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0025
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Fig. 5. Evaluation of the classification scheme of Mange and Morton (2007) using the database 

compiled in this study. (a) Crustal- and mantle-derived garnets. (b) Crustal-derived garnets. (c) 
Metasedimentary garnets. (d) Magmatic garnets. A – mainly from high-grade granulite-facies 

metasediments or charnockites and intermediate felsic igneous rocks, B – amphibolite-facies 

metasedimentary rocks, Bi – intermediate to felsic igneous rocks, Ci – mainly from high-grade mafic 

rocks, Cii – ultramafics with high Mg (pyroxenites and peridotites), D – metasomatic rocks, very low-

grade metamafic rocks and ultrahigh temperature metamorphosed calc-silicate granulites. Filled 

symbols – included in the valuation; Open symbols – not included in the valuation because of the lack 

of discrimination fields for these garnets. 

 



28 

 

5.1.3. Aubrecht et al. (2009)  

For the evaluation, 2956 (filled symbols) out of the 3532 grains are tested; i.e. the 

same as for the diagram by Mange and Morton (2007). Of these, 982 garnets are 

from ultramafic rocks, 599 garnets are from metaigneous eclogites, 193 are from 

metaigneous amphibolites, 281 are from metaigneous granulites, 499 are from 

granites and pegmatites, 224 are from amphibolite-facies metapelites, and 178 are 

from granulite-facies metapelites (Table 1). In both diagrams from Aubrecht et al. 

(2009) (Figs. 6a, 7a), almost all ultramafic garnets plot in the expected field of 

garnets derived from UHP eclogites or garnet peridotites (~ 98% success). A 

discrimination of mantle-derived garnets (i.e., those from mantle-derived eclogites 

and peridotites) from crustal-derived garnets is possible. Only about half of the 

garnets derived from eclogites plot in the expected field (~ 55% success). Many of 

them also plot in fields 4 to 7 (Figs. 6a, 7a), i.e. these cannot be discriminated from 

garnets derived from metaigneous granulites and amphibolites. 

Most of the granulite- and amphibolite-derived garnets plot in the expected field. 

About 8% of the garnets derived from granulites and ~ 6% of amphibolite-derived 

garnets plot outside their field (Figs. 6b, 7b). However, a clear discrimination of 

garnets derived from eclogites, granulites, and amphibolites is rather difficult. It is 

possible to discriminate mantle-derived garnets from crustal-derived garnets, as done 

in the diagram of Mange and Morton (2007). In Figs. 6c, 7c, garnets derived from 

amphibolite-facies metasediments are expected to plot in fields 4 to 7. About 4% of 

garnets for the first diagram of Aubrecht et al. (2009) (Fig. 6c) and ~ 7% of garnets 

for the second diagram of Aubrecht et al. (2009) (Fig. 7c) plot outside their field. 

About 22% of the garnets derived from granulite-facies metasediments plot outside 

their field (Figs. 6c, 7c). According to the diagram of Aubrecht et al. (2009), igneous 

garnets should appear in field C2, which is the case for the most felsic plutonic 

garnets (Figs. 6d, 7d). Only ~ 3% of the igneous garnets plot outside their field 

(Figs. 6d, 7d), but due to the fact that in this field also garnets from gneisses and 

amphibolites metamorphosed under amphibolite-facies conditions are located, a 

discrimination of these groups is not possible. 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0610
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#t0005
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http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0030
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0035
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0030
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http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0035
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0040
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0030
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0040
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0035
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0030
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0035
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0040
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0030
http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0035
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Fig. 6. Evaluation of the first classification scheme of Aubrecht et al. (2009) using the database 

compiled in this study. (a) Crustal- and mantle-derived garnets. (b) Crustal-derived garnets. (c) 
Metasedimentary garnets. (d) Magmatic garnets. A – garnets from high-pressure (HP) to ultrahigh-

pressure (UHP) rocks, B – garnets from eclogite- and granulite-facies rocks, C – garnets from 

amphibolite-facies rocks. The group C is further subdivided into two subgroups. The transitional field 

C1 includes garnets from higher amphibolite- to granulite-facies rocks whereas the field C2 includes 

garnets from amphibolite-facies rocks but also includes garnets from many other rocks such as 

blueschists, skarns, serpentinites and igneous rocks. The source lithologies for garnets are 

distinguished into 7 groups: 1 – Garnets derived from UHP eclogites or garnet peridotites, 2 – Garnets 

derived from HP eclogites and HP mafic granulites, 3 – Garnets derived from felsic and intermediate 

granulites, 4 – Garnets derived from gneisses metamorphosed under pressure and temperature 

conditions transitional to granulite- and amphibolite-facies metamorphism, 5 – Garnets derived from 

amphibolites metamorphosed under pressure and temperature conditions transitional to granulite- and 

amphibolite-facies metamorphism, 6 – Garnets derived from gneisses metamorphosed under 

amphibolite-facies conditions, 7 – Garnets derived from amphibolites metamorphosed under 

amphibolite-facies conditions. Filled symbols – included in the valuation; Open symbols – not included 

in the valuation because of the lack of discrimination fields for these garnets. 
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Fig. 7. Evaluation of the second classification scheme of Aubrecht et al. (2009) using the database 

compiled in this study. (a) Crustal- and mantle-derived garnets. (b) Crustal-derived garnets. (c) 
Metasedimentary garnets. (d) Magmatic garnets. A – garnets from high-pressure (HP) to ultrahigh-

pressure (UHP) rocks, B – garnets from eclogite- and granulite-facies rocks, C – garnets from 

amphibolite-facies rocks. The group C is further subdivided into two subgroups. The transitional field 

C1 includes garnets from higher amphibolite- to granulite-facies rocks whereas the field C2 includes 

garnets from amphibolite-facies rocks but also includes garnets from many other rocks such as 

blueschists, skarns, serpentinites and igneous rocks. The source lithologies for garnets are 

distinguished into 7 groups: 1 – Garnets derived from UHP eclogites or garnet peridotites, 2 – Garnets 

derived from HP eclogites and HP mafic granulites, 3 – Garnets derived from felsic and intermediate 

granulites, 4 – Garnets derived from gneisses metamorphosed under pressure and temperature 

conditions transitional to granulite- and amphibolite-facies metamorphism, 5 – Garnets derived from 

amphibolites metamorphosed under pressure and temperature conditions transitional to granulite- and 

amphibolite-facies metamorphism, 6 – Garnets derived from gneisses metamorphosed under 

amphibolite-facies conditions, 7 – Garnets derived from amphibolites metamorphosed under 

amphibolite-facies conditions. Filled symbols – included in the valuation; Open symbols – not included 

in the valuation because of the lack of discrimination fields for these garnets. 
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5.1.4. Teraoka et al. (1998)  

For the evaluation, 1532 (filled symbols) out of the 3532 grains are tested. Of these, 

599 garnets are from metaigneous eclogites, 193 are from metaigneous 

amphibolites, 281 are from metaigneous granulites, 33 are from greenschist-facies 

metapelites, 224 are from amphibolite-facies metapelites, 178 are from granulite-

facies metapelites, and 24 are from eclogite-facies metasedimentary garnets 

(Table 1). Garnets derived from eclogites usually should plot in fields E and H. Here, 

these garnets also plot in field la. Generally, garnets plotting in the la field are of 

lower metamorphic facies than eclogite facies. Approximately 13% of the garnets 

derived from eclogites plot outside their field (Fig. 8a). In the second plot (Fig. 8b), 

garnets that experienced amphibolite-facies metamorphism should be found in fields 

la and H. Of those, 38 garnet grains plot outside these fields (~ 80% success). 

Granulite-derived garnets are commonly found in fields lg1 and lg2. Only 40 grains 

plot in their expected fields (~ 14% success). A discrimination of garnets derived from 

eclogites, granulites, and amphibolites is not possible. In this diagram, a 

discrimination of garnets derived from peridotites and garnets derived from granulites 

is also not possible, because both groups plot in fields lg1 and lg2 (Fig. 8a, b). Most of 

the garnets derived from granulites also plot in the eclogitic field and some in field la 

(Fig. 8b). In the third plot, garnets derived from metasedimentary rocks show a 

widespread distribution, especially garnets from amphibolite-facies metasedimentary 

rocks. Approximately 15% of garnets from greenschist-facies metasediments, ~ 31% 

of garnets derived from amphibolite-facies metasediments, ~ 17% of garnets from 

granulite-facies metasediments, and ~ 29% of the eclogite-facies metasedimentary 

garnets plot outside their expected fields (Fig. 8c). A general discrimination of these 

groups is not possible; a discrimination of metasedimentary and metaigneous 

garnets is also not possible. Intermediate felsic igneous garnets show a very 

widespread distribution and show much overlap with garnets derived from 

metasedimentary rocks that suffered amphibolite-facies conditions. Some of them 

also plot in the field for granulite-facies conditions (Fig. 8c). Altogether, a 

discrimination of garnets derived from different rocks using the diagram of Teraoka et 

al., 1997 and Teraoka et al., 1998 is difficult. A small group of garnets derived from 

magmatic rocks with a low pyrope and low grossular content (both < 10% in Sps–

Prp–Grs space) can be discriminated from other garnets. 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#t0005
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Fig. 8. Evaluation of the classification scheme of Teraoka et al. (1997, 1998) using the database 

compiled in this study. (a) Crustal- and mantle-derived garnets. (b) Crustal-derived garnets. (c) 
Metasedimentary garnets. (d) Magmatic garnets. L – Low P–T, la – Intermediate P–T (up to 

amphibolites facies), H – High P–T, lg1, lg2 – Intermediate P–T (granulite facies), E – Eclogite, G – 

grandite garnets. Filled symbols – included in the valuation; Open symbols – not included in the 

valuation because of the lack of discrimination fields for these garnets. 

 

5.2. Binary discrimination diagram 
In the CaO–Cr2O3 binary plot, eclogitic garnet data with > 12 wt.% CaO and mantle-

derived garnet data with > 11 wt.% Cr2O3 are not considered because of the limited 

size of the diagram (Fig. 9). The CaO content of eclogitic garnet can be up to 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#f0045
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32 wt.%, and the Cr2O3 content of peridotitic garnet can be up to 22 wt.% (see 

Grütter et al., 2004). In the diagram of Grütter et al. (2004), 1135 garnets derived 

from mantle rocks and eclogitic garnets are tested. Of these, 454 garnets are from 

low-Cr megacrysts, 12 are from harzburgites, 83 are from lherzolites, 565 are from 

metaigneous eclogites, and 21 are from pyroxenites (Table 1). Only nine garnets of 

the low-Cr megacryst garnet suite do not plot in their respective field, but in the field 

for garnets derived from lherzolites (~ 98% success). Low-Cr megacrystic garnet 

(field G1) can be distinguished from pyroxenitic garnet by its Ti content, because 

pyroxenitic garnets generally have lower Ti contents (Grütter et al., 2004) (see 

Supplementary data). Of garnets derived from low-Cr megacrysts, 27 out of 454 

grains cannot be discriminated from G5 garnets (garnets derived from pyroxenites 

and eclogites) (~ 94% success). Altogether 38 garnet grains derived from low-Cr 

megacrysts cannot be discriminated (~ 91% success). Of garnets of the harzburgitic 

garnet suite, 5 garnet grains (~ 58% success) and 28 garnet grains of the lherzolitic 

garnet suite plot outside the field (~ 66% success). All 565 eclogitic garnets plot in 

the expected fields G3, G4, and G5, except for one. However, 39 grains plot in fields 

G4 and G5, which may indicate pyroxenite origin as well. That means that only 

garnets from eclogites in field G3 (~ 93%) are fully discriminated in this diagram. Six 

garnet grains derived from pyroxenites plot outside the field (~ 71% success). 

Discrimination from eclogitic garnets is not possible (Fig. 9). The geochemical 

parameters Cr2O3 and CaO are well chosen in the diagram of Grütter et al. (2004), 

but significant overlap exists in fields G4/G5. Besides, many of the harzburgitic and 

lherzolitic garnets plot outside their respective fields (Fig. 9). 

http://www.sciencedirect.com/science/article/pii/S0037073814000591?np=y#bb0165
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Fig. 9. Evaluation of the classification scheme of Grütter et al. (2004) using the database compiled in 

this study. G0 – Unclassified, G1 – Low-Cr megacryst garnet, G3 – Eclogitic garnet, G4 & G5 – 

Pyroxenitic, websteritic and eclogitic garnets, G9 – Lherzolitic garnet, G10 – Harzburgitic garnet, G11 

– High-TiO2 peridotitic garnet, G12 – Wehrlitic garnet. Note that the megacryst group G1 (dotted 

pattern) does not actually overlap groups G3, G4, G5, G9 or G12 since it occurs at higher TiO2 content 

(see Grütter et al., 2004). Pyroxenitic categories G5 and G4 are indicated by grey fields. Group G5 

garnets are separated from G9 garnets by a Mg-number <0.7 threshold. See Grütter et al. (2004) for 

details. 
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6. Multivariate statistical approach 

6.1. Compositional biplot analysis 
Biplots are performed using “compositions”, an open source software package based 

on R (van den Boogaart and Tolosana-Delgado, 2008). Compositional data analysis 

is based on log ratios following the methodology proposed by Aitchison (1986). 

Because the numbers of the dataset are proportions of some whole, they are 

considered as so-called closed data or compositional data, i.e. the variables sum up 

to a constant (in our case 100%) and are thus not independent from each other. This 

kind of sample space is called a simplex. Before applying usual statistical techniques 

to compositional data, they have to be transformed from the simplex to the 

unconstrained multivariate real space through log-ratio transformation (for further 

readings see Aitchison and Egozcue, 2005 and Pawlowsky-Glahn and Egozcue, 

2006). 

In this study, the mineral chemical data were normalised to 100 wt.% and 

transformed into clr (centred log-ratio) coordinates according to the methodology of 

Aitchison (1986). The clr transformation enables a symmetrical treatment of all parts 

of a composition. The biplot is an optimal representation of variability in two 

dimensions based on principal components where both the data and the variables 

are represented (Gabriel, 1971). The biplot has been adapted to compositional data 

by Aitchison (1990) where it enables graphical display of relative variation of a 

multivariate data set projected onto a plane fixed by principal components. Biplots 

serve as a valuable tool for estimating the potential for discrimination of a multivariate 

data set and its subsets (e.g., von Eynatten et al., 2003). 

 

6.2. Biplot analysis 
In Fig. 10, the major elements SiO2, Al2O3, FeO, MgO, MnO, and CaO are used to 

differentiate the garnets derived from different kinds of rocks. We choose two biplots 

defined by the first and second (left side) and by the first and third (right side) 

principal components. These three components explain approximately 99% of the 

total variability. In Fig. 10a all samples are used, in Fig. 10b only igneous rocks and 

in Fig. 10c only metapelitic rocks are used. SiO2 and Al2O3 show the lowest variation 

in all six sample sets. The small distance between SiO2 and Al2O3 indicates a 

relatively constant SiO2/Al2O3 value. For the left side of all three sample sets, the 

major element data show a comparably high variability for CaO, MnO, and MgO 
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(spread in different directions) and a relatively low variability for FeO. For the right 

side of all three sample sets, the variability pattern is different. The major element 

data show the highest variability for FeO, which dominates the third principal 

component in all three sample sets. In Fig. 10a (right side), CaO, MgO, and MnO 

show similarly low variation in contrast to FeO. In Fig. 10b (right side), MnO and MgO 

show high variability and CaO rather low variability in contrast to FeO. A trend 

towards higher MgO/MnO values with higher metamorphic grade (eclogite, granulite) 

is visible, which is also evident in the ternary diagrams (e.g., Wright, 1938, Mange 

and Morton, 2007 and Aubrecht et al., 2009). Granulite derived garnets accumulate 

in the centre of the diagram, and the eclogite derived garnets tend towards MgO and 

FeO. In Fig. 10c (right side), MgO show a relatively high variability, MnO rather 

moderate, and CaO low variability in contrast to FeO. Although there is some 

overlap, Fig. 10b and c reveals strong potential to separate certain garnet groups on 

a probabilistic base. However, the biplots demonstrate that garnets derived from 

amphibolite-facies rocks and garnets derived from greenschist-facies rocks likely 

remain undistinguishable. With regard to discrimination, the biplots demonstrate that 

there are clusters of garnet grains belonging to a given garnet-bearing rock. In 

general, a differentiation of felsic plutonic garnets, metasedimentary, metaigneous, 

and ultramafic garnets is possible, although there is some overlap. 
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Fig. 10. Biplots of garnet grains from different rocks for five major elements (SiO2, Al2O3, FeO, CaO, 

MnO, MgO). Axes are first and second (left side) and first and third (right side) principal components; 

first principal component as horizontal axis in both cases. Percentages indicate proportions of total 

variability. (a) Crustal-and mantle-derived garnets. (b) Garnets derived from igneous rocks. (c) 
Garnets derived from metapelites.  

 

7. Discussion 

Examination of the various discrimination diagrams for garnet (Fig. 4, Fig. 5, Fig. 6, 

Fig. 7, Fig. 8 and Fig. 9) reveals that these diagrams are partly imprecise and need to 

be improved, although they are commonly used for source rock discrimination. The 

diagram of Grütter et al. (2004) can only be used for a limited range of garnet 

compositions, to classify mantle-derived garnets. It is not applicable for sandstone 

provenance, except maybe if any detrital garnet with high chromium content is 

measured. 

None of the evaluated ternary diagrams is usable for magmatic garnets, except for 

garnets derived from felsic plutonic rocks (Fig. 11). Purely almandine garnet in 

volcanic rocks is rare, because it can only develop under restricted conditions. Its 

development depends on water content in the melt and of the geodynamic setting, for 

example, tensional stress field, which offers rapid ascent of a garnet-bearing melt 

(Harangi et al., 2001). That is the reason why there exist only a few volcanic rocks 

carrying garnets. In addition, it is difficult to classify garnets derived from mafic 

magmatic rocks, because their chemical compositions are similar to garnets derived 

from metamorphic rocks. For example, garnets derived from gabbros have high 

pyrope content, similar to garnets from granulites and eclogites. Garnets derived 

from andesites, dacites or rhyolites show similar composition to garnets derived from 

metapelites (Fig. 11). Because of that and the relatively rare occurrences of garnet-

bearing volcanic rocks, volcanic and mafic plutonic garnets are not considered in the 

discrimination diagrams. The diagrams are thus only suited for granitic garnet-

bearing rocks and pegmatites. Therefore, when analysing detrital garnets one needs 

to consider if there may have been garnet-bearing volcanic rocks in the potential 

source area, which could have supplied volcanic garnets, which could then be 

misinterpreted. 
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Fig. 11. Ternary discrimination diagrams after Mange and Morton (2007). Illustrated is a plot of 

garnets derived from magmatic rocks, divided in plutonic and volcanic and felsic and mafic rocks. A – 

mainly from high-grade granulite-facies metasediments or charnockites and intermediate felsic 

igneous rocks, B – amphibolite-facies metasedimentary rocks, Bi – intermediate to felsic igneous 

rocks, Ci – mainly from high-grade mafic rocks, Cii – ultramafics with high Mg (pyroxenites and 

peridotites), D – metasomatic rocks, very low-grade metamafic rocks and ultrahigh temperature 

metamorphosed calc-silicate granulites. 

 

In view of detrital garnet provenance, it is also important to mention that garnets that 

have been affected by retrograde metamorphism cannot be assigned to a specific 

rock type. For example, garnets from retrograde eclogites plot in the field of garnets 
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from amphibolites and metapelites (Fig. 12). For discrimination, it does not matter 

whether the diagram of Wright (1938), Mange and Morton (2007), or Aubrecht et al. 

(2009) is used (Fig. 4, Fig. 5, Fig. 6 and Fig. 7), because their potential for successful 

discrimination is largely similar (Table 3) (Fig. 13). Discrimination only works for 

mantle-derived garnets, for a very small group of garnets derived from granites and 

pegmatites, and for some garnets from granulite-facies metasediments. Only 3% of 

garnets derived from peridotites cannot be discriminated from crustal-derived 

garnets. Garnets with high pyrope content (> 40%) are likely originated from mantle-

derived rocks. If garnets plot in field Ci (Mange and Morton, 2007) or in fields 2–5 

(Aubrecht et al., 2009) it is highly probable that these garnets originate from 

metaigneous rocks such as eclogites, granulites, and amphibolites, and not from 

metasedimentary rocks. However, a further discrimination of these garnets is not 

possible. Discrimination of different grades of metasedimentary garnets is difficult. 

Only half of the garnets derived from eclogite-facies metasedimentary rocks, and 39 

out of 178 granulite-facies metasedimentary derived garnets can be discriminated. 

However, it is very probable that garnets falling in field A (Mange and Morton, 2007) 

originate from high-grade granulite-facies metasediments. Garnets located in field B 

and also in field Bi (Mange and Morton, 2007) or in field 6–7 (Aubrecht et al., 2009) 

are likely derived from metasedimentary rocks up to amphibolite-facies rather than 

from metaigneous rocks; however, there exist some overlap with garnets derived 

from metaigneous amphibolites. Because garnets derived from metasedimentary 

rocks also plot in field Bi (Mange and Morton, 2007) and field 6 (Aubrecht et al., 

2009) they cannot be clearly discriminated from felsic to intermediate igneous 

garnets. However, garnets with a high almandine + spessartine content of > 97% are 

likely derived from granites or pegmatites. 
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Fig. 12. Ternary discrimination diagram after Mange and Morton (2007). All garnets of the database 

are plotted here. The plot further contains garnets derived from retrogressed eclogites (grey circles). A 

– mainly from high-grade granulite-facies metasediments or charnockites and intermediate felsic 

igneous rocks, B – amphibolite-facies metasedimentary rocks, Bi – intermediate to felsic igneous 

rocks, Ci – mainly from high-grade mafic rocks, Cii – ultramafics with high Mg (pyroxenites and 

peridotites), D – metasomatic rocks, very low-grade metamafic rocks and ultrahigh temperature 

metamorphosed calc-silicate granulites. 

 



42 

 

 
Fig. 13. Comparison of the various ternary discrimination diagrams. All garnets of the database are 

plotted here for comparison, including garnets from ultramafic rocks, eclogites, amphibolites, 

granulites, metasedimentary rocks, and intermediate to felsic plutonic rocks. The legends for the 

various discrimination schemes are given in Figure 1. (a) Classification scheme of Wright (1938). (b) 
Classification scheme of Mange and Morton (2007). (c, d) Classification scheme of Aubrecht et al. 

(2009). (e) Classification scheme of Teraoka et al. (1997, 1998). 
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The diagram of Teraoka et al. (1998) is of little help for discriminating garnets. It is 

not useful to remove the Fe component, which is essential to discriminate 

metasedimentary garnets from metaigneous garnets. In addition, mantle-derived 

garnets cannot be discriminated from granulite-facies derived garnets. If garnets plot 

in field L, it is highly probable that these garnets derive from metasedimentary 

garnets up to amphibolite-facies conditions. However, there exists some overlap with 

garnets derived from granites and pegmatites (Fig. 13). 

The diagram of Suggate and Hall (2013) is a reasonable approach for a better 

discrimination of garnets; however, it does not resolve the problem of much overlap 

between garnets derived from amphibolites, granulites, blueschists, and eclogite-

facies rocks (Fig. 3). 

The biplots show that they do not solve the problem of some overlap of different 

types of garnets (Fig. 10). Nevertheless, there is a significant better discrimination of 

garnets derived from granites from garnets derived from metapelites than in the 

ternary diagrams, where only an insignificant part of garnets derived from granites 

can be discriminated. To get a more conclusive result, combining two or more 

diagrams can be helpful, but the value of this approach is limited because many of 

the individual diagrams use the same poles. 

In the case of marked garnet zoning, measured data points of core and rim can 

provide different results. For example, depending on increasing or decreasing 

pressure and temperature conditions, garnet cores can indicate eclogitic origin, 

whereas garnet rims indicate lower metamorphic origin, or even vice versa. If garnets 

show marked zoning, it is important to measure core and rim of the garnets and if 

possible also the mantle. When dealing with detrital garnet, zoning cannot always be 

observed and can lead to some mismatch. It is not considered useful to calculate the 

mean value of the measured data points. For example, using this approach, the 

eclogitic garnets in Fig. 12 would be interpreted as lower grade metamorphic garnets. 

Instead, we recommend that all measured garnet data (core, mantle, rim) are plotted 

together in the individual diagrams in order to fully evaluate the origin of the garnet. 

All data are plotted together, because in the case of detrital garnet provenance the 

information of zoning is often insufficient. It is important to bear in mind that a 

mismatch can be a result of biased information and is not only based on the 

inaccuracy of the specific diagrams. 
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Table 3. Qualitative evaluation of the potential of various diagrams for garnet discrimination. Note that 
magmatic garnets include volcanic and mafic plutonic rocks. Potential of discrimination: 
very good: ≥90% success, good: ≥40% success, medium: ≥20% success, bad: ≤10% success. 

Lithology 
Wright 
(1938) 

Mange and 
Morton (2007) 

Aubrecht et al. 
(2009), diagram 1 

Aubrecht et al. (2009), 
diagram 2 

Teraoka et al. 
(1998) 

  (N=1324) (N=2956)     (N=2956) (N=2956) (N=1532) 
ultramafics very good very good     very good very good bad 
metaigneous eclogites good good     good good bad 
metaigneous amphibolites bad bad     bad bad bad 
metaigneous granulites bad bad     bad bad bad 
felsic plutonic rocks bad bad     bad bad bad 
magmatic rocks (excluded are 
felsic plutonic rocks) bad bad     bad bad bad 
greenschist-facies metapelites bad bad     bad bad bad 
amphibolite-facies metapelites bad bad     bad bad bad 
granulite-facies metapelites medium medium     medium medium bad 
eclogite-facies metapelites bad bad     bad bad bad 

            

  

Grütter et 
al. (2004) 
(N=1135) 

    low-Cr megacrysts very good 
    harzburgites good 
    lherzolites good 
    pyroxenites bad 
    eclogites very good 
     

8. Conclusions and Outlook 

The present study clearly demonstrates that currently available discrimination 

diagrams for garnet are imprecise in clearly identifying the host rock of garnet. Many 

garnets of our large database plot outside their proposed compositional fields, with 

success rates of correct and unambiguous classification being < 50% for several 

garnet groups such as metaigneous and metasedimentary amphibolites, or 

metaigneous and metasedimentary granulites. In the binary and ternary plots, the 

discrimination fields between various garnet types are drawn as strict boundaries by 

solid lines, some of them showing distinct overlap. The most difficult problem is that 

garnets derived from different kind of garnet-bearing rocks share the same fields. For 

example, in the diagram of Mange and Morton (2007), garnets derived from 

metaigneous eclogites, amphibolites, and granulites share field Ci. In the diagram of 

Aubrecht et al. (2009), garnets derived from amphibolite-facies metasediments and 

garnets derived from granites plot together in field C2, even though they are of 

different origins. 

Garnet discrimination diagrams show that a discrimination of different garnets based 

on major element composition is feasible, but limited. Biplot analysis reveals that the 

potential of discrimination based on major elements is not yet fully explored and a 

probabilistic approach appears to be better suited than strict boundaries between 
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different garnet types. A further idea is to involve trace elements in these diagrams. 

The approach of combining major and trace elements is expected to provide a better 

discrimination of garnets. There exist some trace element data for garnets, but not to 

the same extent as major element data. It is therefore important to increase the 

amount of trace element data, so that a better discrimination of garnets can be 

achieved in the future. 

Obviously, no statistic approach can solve the problem of real overlap of specific 

garnet suites. However, given that the examined discrimination diagrams rely on up 

to three variables only (some may be amalgamated), a robust multivariate statistical 

model involving confidence intervals and probability density distributions and taking 

into account the compositional nature of mineral chemical data, is considered most 

helpful to successfully improve discrimination of a wide range of garnet-bearing 

source rock lithologies. 
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Abstract 

Heavy minerals are valuable indicators about the geological framework in the source 

area. The heavy mineral garnet is one of the most widespread heavy minerals in 

orogenic sediments and its geochemistry provides important information about 

metamorphic conditions. The application of heavy minerals and garnet geochemistry 

for sedimentary provenance analysis is tested for modern stream sediments 

collected along three rivers draining the Eclogite Zone and adjacent geological 

source units of the western Hohe Tauern area in the central Eastern European Alps. 

For comparison with the stream sediments, rock outcrops exposed in this area were 

also sampled. The chosen area is very well investigated and provides an excellent 

place to constrain the relations between source rocks and sediment in first-order 

drainages. The influence of grain-size is studied in detail by considering grain-size 

fractions ranging from coarse silt to coarse sand (32 to 1000 μm). In all grain-size 

fractions the heavy mineral assemblages are characterised to a variable extent by 

http://www.sciencedirect.com/science/journal/00370738/321/supp/C
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epidote, zoisite, garnet, and green calcic amphibole. In the smaller grain-size fraction 

apatite is more frequent, whereas in the coarser grain-size fractions an increase of 

green calcic amphibole and garnet can be observed. Electron microprobe analysis of 

detrital garnet shows the dominance of almandine-rich garnet. Stream sediments 

within and downstream of the Eclogite Zone show an increase of pyrope-rich garnets. 

Interestingly, in all samples, grossular-rich garnets are more frequent in the smaller 

grain-sizes and pyrope-rich garnets are more frequent in the coarser grain-sizes. 

This is controlled by the original finer size distribution of grossular in the source rocks 

rather than being a hydraulic effect. The heavy mineral assemblages and garnet 

geochemical data reflect the geological setting of the study area, hence confirming 

the general strength of these methods in sedimentary provenance analysis. 

However, the data underline strong grain-size control on sediment composition 

including single-grain compositional variations. 

 

Keywords: heavy minerals; garnet geochemistry; compositional biplot; Eclogite Zone; 

Eastern European Alps  

 

1. Introduction 

Modern stream sediments and adjacent source rocks from the western Hohe Tauern 

of the central Eastern European Alps were collected to constrain the source to sink 

relations of different garnet-bearing lithologies. The Alps are very well suited for such 

investigations, because the geology is well known, chemical weathering and climatic 

or diagenetic alteration are negligible, and sediment transport is rapid. Consequently, 

the first-cycle detritus is a good reflection of the mineralogy of the eroded parent 

rocks (Garzanti et al., 2010). Sediments were analysed for heavy minerals and both 

sediment and hardrock samples were analysed for garnet geochemistry. Heavy 

minerals are useful indicators of the provenance of sediments and sedimentary 

rocks, as they provide crucial information on the provenance from orogenic and other 

sources (e.g., Morton, 1991, Garzanti and Andò, 2007 and Garzanti et al., 2007). In 

an ideal case, the heavy mineral assemblages reflect their parent rock composition. 

For example, certain garnet composition can be related to specific source rocks, with 

higher MgO-rich garnets in high grade metamorphic rocks compared to low grade 

metamorphic rocks (e.g., Morton et al., 2004, Mange and Morton, 2007, Aubrecht et 

al., 2009, Andò et al., 2014, Krippner et al., 2014 and Suggate and Hall, 2014). 
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Because the geochemistry of garnet depends on both the composition of its parent 

rock and on pressure and temperature conditions, we want to test to what extent the 

compositional variations of the garnets in the source rocks are reflected in the 

garnets of the sediments, and also if the heavy mineral assemblages and garnet 

composition reflect the geological situation in the catchment source area. 

Hydrodynamic sorting of heavy minerals depends on grain-size, density, and shape 

(Morton and Hallsworth, 1999, Garzanti et al., 2008, Garzanti et al., 

2009 and Garzanti et al., 2010). Effects of sorting due to different grain-size and 

density not only influence heavy mineral assemblages, but also can be observed in a 

single mineral group. For example, almandine-rich garnet species are typically 

concentrated in the finer fractions, in contrast to less dense garnet species (Schuiling 

et al., 1985, Andò, 2007 and Garzanti et al., 2008). Therefore, grain-size and density 

play an important role in sedimentary provenance analysis (e.g., Garzanti et al., 

2009). 

In our research the focus lies on the heavy mineral garnet, because it occurs in a 

very wide range of source rocks from ultramafic to felsic composition. It is a major 

constituent in crustal metamorphic rocks, a primary component in mantle rocks, and 

a common heavy mineral in siliciclastic sediments and sedimentary rocks. It also 

exists in magmatic rocks (e.g., Miller and Stoddard, 1981, Patranabis-Deb et al., 

2008 and Baxter et al., 2013). Therefore, detrital garnet geochemistry has important 

provenance applications. However, several processes need to be considered when 

dealing with heavy minerals, because synsedimentary and diagenetic modifications 

of the original heavy mineral composition can lead to incorrect conclusions. 

Diagenetic modification of garnet assemblages has been recognised, with Ca-rich 

garnets being less stable than Ca-poor types (Morton, 1987 and Morton and 

Hallsworth, 2007). Hence, differences in heavy mineral assemblages or garnet 

compositions can reflect synsedimentary and/or diagenetic modifications and do not 

necessarily hint at different sources (e.g., Morton and Hallsworth, 1999 and Morton, 

2012). Our results demonstrate that great care must be taken when analysing detrital 

mineral data if only considering a specific grain-size range. 

 

2. Geological setting 

The Hohe Tauern area in the central Eastern Alps (Austria) is dominated by the 

Tauern window (Fig. 1), which is a geological structure exposing an old continental 
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basement belonging to the European foreland. The Subpenninic and Penninic 

domains in the Hohe Tauern consist of several units with different palaeographic 

affiliation (e.g., Dachs et al., 2005, Miller et al., 2007 and Pfiffner, 2014). The rocks 

building up these geological units underwent different metamorphic conditions during 

subduction and exhumation processes of various ages (e.g., Cadomian, Variscan, 

and Alpine). Our study area encompasses the south-trending valleys of Dorfertal, 

Timmeltal, and Frosnitztal, including three different rivers and enclosing the main 

structural units of the western Hohe Tauern (Fig. 1 and Fig. 2). This area is very 

suitable for studies on garnet, because rocks of the different geological source units 

suffered different metamorphic conditions, as outlined below, and particular garnet-

bearing rocks (e.g., garnet-micaschists, eclogites, amphibolites) are well exposed 

around these three valleys. The structurally deepest unit is the basal Venediger 

nappe, which encompasses Late Variscan granitoids (the Central Gneiss), 

metasedimentary rocks of the Lower Schieferhülle, and a few exposures of pre-

Alpine eclogites (e.g., Zimmermann and Franz, 1989 and von Quadt et al., 1997). 

The latter represent mafic rocks with basaltic composition. They are fine- to medium-

grained rocks and show intensive foliation with amphibole and symplectitic garnet-

rich layers (Zimmermann and Franz, 1989 and von Quadt et al., 1997). The peak 

metamorphism in the Venediger nappe occurred at ~ 11 kbar and ~ 540 °C 

(Selverstone, 1993). The Eclogite Zone is intercalated between the Venediger nappe 

and the overlaying Glockner nappe (including the Rote Wand–Modereck nappe for 

simplicity), which consists of metasediment and metamafic rocks of the Upper 

Schieferhülle with oceanic affinity that reached blueschist-facies metamorphism at 

~ 8 kbar and ~ 540 °C (Selverstone, 1993 and Hoschek, 2013). The eclogites in the 

Eclogite Zone are embedded in a matrix of Mesozoic quartzites, paragneisses, 

marbles, and garnet-micaschists (e.g., Neufeld et al., 2008 and Hoschek, 2013). The 

rocks of the Eclogite Zone were subducted and exhumed during Cretaceous–

Neogene tectonometamorphic events. They reached peak metamorphism at 

~ 25 kbar and ~ 650 °C (Holland, 1979, Frank et al., 1987a, Stöckhert et al., 1997, 

Hoschek, 2007 and Neufeld et al., 2008) and were subsequently overprinted by a 

blueschist-facies metamorphic event (Miller, 1977, Holland, 1979, Frank et al., 

1987a, Zimmermann et al., 1994, Kurz et al., 1998 and Miller et al., 2007). Finally, 

rocks of the Eclogite Zone underwent greenschist–amphibolite-facies metamorphism 

(Miller, 1977, Frank et al., 1987a, Dachs, 1990, Inger and Cliff, 1994, Zimmermann et 
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al., 1994 and Miller et al., 2007). The eclogite lenses of the Eclogite Zone make up 

~ 30% of the Eclogite Zone (Neufeld et al., 2008). In contrast to the pre-Alpine 

eclogites of the Venediger nappe, those rocks suffered higher metamorphic peak 

conditions. As a result of these variable conditions of formation and metamorphism, a 

range of garnet types has been produced. 

 
Fig. 1. a) Digital elevation model of the Alps and neighbouring areas (adapted from Pfiffner, 2014). 

The western Tauern window is shown in a box. b) Simplified geological map of the western Tauern 

window (modified from Hawkins et al., 2007). The study area is shown in a box.  

 

3. Samples and methods 

3.1. Samples 
For our research 27 stream samples and 14 outcrop samples were collected from the 

three valleys. Additionally, in the Dorfertal, 5 pebbles were taken from the river bed. 

Several sections of recent fluvial deposits at riversides along the three different rivers 

were sampled from upstream to downstream (Fig. 2). Preferentially loose bedload 

sand was sampled to cover a wide grain-size range. If accessible, sediments and 

outcrop samples were collected from each geological source unit (Venediger nappe, 

Eclogite Zone, Glockner nappe) to analyse possible changes in the provenance 

signal from of each river. Stream sediment sample locations are shown in Fig. 2. 

Rock types and geographic coordinates of all samples are given in the 

accompanying Supplementary data (see Appendix A). 
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Fig. 2. Geological map of the southern Grossvenediger area based on the map sheet by Frank et al. 

(1987). For simplification, the Rote Wand-Modereck nappe is included in the Glockner nappe. 

Locations of pre-Alpine eclogites are according to Zimmermann and Franz (1989). Whitish parts 

illustrate ice sheet coverage.  

 

3.2. Methods 
All stream sediments were wet-sieved using a sieving machine to separate the 

different grain-size fractions (32–63 μm, 63–125 μm, 125–250 μm, 250–500 μm, 

500–1000 μm). After drying, the samples were treated with acetic acid to remove the 

carbonate component if present. The heavy mineral fractions were separated using 

Na-metatungstate with a density of 2.85 g/mL. 

 

3.2.1. Heavy mineral analysis 

The heavy mineral separates were mounted on microscope slides (Mange and 

Maurer, 1992) using Meltmount™ with a refraction of 1.66 and identified under the 

polarising microscope. The relative abundances of the heavy minerals were 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0150
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determined by grain counting. For that, the microscope slide was moved along linear 

traverses (i.e., ribbon counting). Two-hundred and fifty translucent ‘non-micaceous’ 

minerals per sample were counted (Mange and Maurer, 1992). Relative abundances 

of all heavy minerals including opaque minerals, micas, alterites (minerals with poorly 

defined mineralogical composition and which cannot be identified under the 

polarising microscope; van Andel, 1950), and “unknown” are included in the 

Supplementary data (see Appendix A) as well as only groups of transparent minerals 

and heavy mineral data from all grain-size fractions (see Appendix A). 

 

3.2.2. Garnet geochemistry 

Garnet selection from the river sediments was achieved by handpicking under a 

binocular microscope. We randomly selected garnet grains of all sizes and 

morphological types and placed them on synthetic mounts. From the hardrock 

samples polished thin sections were prepared. Hardrock and river samples were 

analysed with a JEOL JXA 8900 RL electron microprobe (EMP) equipped with five 

wavelength dispersive spectrometers at the University of Göttingen (Department of 

Geochemistry, Geoscience Center). Before analysis, all samples were coated with 

carbon to ensure conductivity. Conditions included an accelerating voltage of 15 kV 

and a beam current of 20 nA. The counting times were 15 s for Si, Mg, Ca, Fe, and 

Al, and 30 s for Ti, Cr, and Mn. Matrix correction was performed using ZAF 

corrections. From the thin sections 20 garnet grains were analysed. We analysed the 

rim, mantle, and the core of the grains. From the river sediments about 50 garnet 

grains were analysed from each sample. Here, we analysed the core and the rim. 

Measurement conditions are given in Table 1. The full database including lithology 

and metamorphic grade are included in the Supplementary data (see Appendix A). 
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Table 1. Operating conditions of the electron microprobe for garnet analyses. Count time on the peak 

(in s), Bckg time counting time on background position (in s), DL detection limit (in ppm). 

Spectrometer 1 TAP 1 TAP 2 TAP 3 PETJ 4 PETJ 4 PETJ 5 LIFH 5 LIFH 
Element 
(Line) 

 
Si (K) Al (K) Mg (K) Ca (K) Ti (K) Cr (K) Mn (K) Fe (K) 

Count time 15 15 15 15 30 30 30 15 
Bckg time 5 5 5 5 15 15 15 5 
Standard Garnet, 

natural 
Garnet, 
natural 

MgO, 
synthetic 

CaSiO3, 
natural 

TiO2, 
synthetic 

Cr2O3, 
synthetic 

Rhodonite, 
natural 

Fe2O3, 
synthetic 

DL 160 135 119 128 107 125 105 187 
         
 

From all three valleys, the 63–125 μm fraction of all river sediments were point 

counted and analysed by EMP. All hardrocks were analysed by EMP. From the 

Dorfertal valley four samples were chosen for a detailed study across five grain-size 

grades: from samples A2-5, A2-1, A2-8, and A2-4, all grain-size fractions were point 

counted while all grain-size fractions from samples A2-5, A2-1, and A2-4 were 

analysed by EMP. The database of garnets from all grain-size fractions is included in 

the Supplementary data (see Appendix A). 

 

3.2.3. Statistics 

For the graphical display of multivariate observations (points) and variables (lines) 

the compositional biplot is used. The length of the line corresponds to the variability 

of the respective element. The biplots are performed using CoDaPack, an open 

source software for Compositional Data Analysis (Comas-Cufi and Thió-Henestrosa, 

2011). Principal component analysis (PCA) is based on log ratios following the 

methodology proposed by Aitchison (1986). In this study, centred log-ratio 

transformation (clr) was conducted for major elements and is illustrated in 

compositional biplots and also compositional ternary diagrams. 0.001 replaces very 

few zero values. Biplots serve as a valuable tool for estimating the potential for 

discrimination of a multivariate data set and its subsets (e.g., von Eynatten et al., 

2003). 
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4. Results 

4.1. Heavy mineral analysis (63–125 µm) 
Along the three different rivers, the dominant heavy minerals are the epidote group 

minerals (epidote, zoisite, clinozoisite). They represent between 4% and 90% of the 

transparent heavy mineral spectra (Fig. 3). Of these minerals zoisite is dominant in 

the samples of the Dorfertal and Frosnitztal valleys, and epidote is most frequent in 

the Timmeltal valley. In all samples, clinozoisite is less frequent than epidote and 

zoisite (see Appendix A). In most of the samples garnet is very prominent, ranging 

from 2% to 30% in the samples of the main rivers. In samples A3, A5-5 and A5-2 

(tributaries of the main rivers) garnets represent between 0% and 8% of the heavy 

mineral spectra. In all samples, apatite (1–9%), green calcic amphibole (1–14%), 

staurolite (0–6%), kyanite (0–9%), and chloritoid (0–11%) occur in varying 

percentages. The proportion of stable heavy minerals (zircon, rutile, and tourmaline) 

is generally low (max. 6.3%). In some samples, titanite, sillimanite, amphiboles (other 

than green calcic amphibole) and pyroxene commonly occur in very minor 

proportions (0–8%). Opaque minerals, micas, and alterites are not considered in 

Fig. 3. 

 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0015
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Fig. 3. Transparent heavy mineral spectra of the analysed samples (63–125 µm) ordered from 

upstream to downstream for each valley. Numbers define the distance from the river`s source in km. 

Samples from the Eclogite Zone are red-coloured. Epidote-group: epidote, zoisite, clinozoisite; stable 

minerals: zircon, rutile, tourmaline; others: sillimanite, titanite, amphiboles (excluding green calcic 

amphibole), pyroxene, actinolite.  

4.2. Heavy mineral analysis vs. grain-size fraction (samples A2-5, A2-8, 
A2-1, A2-4 from the Dorfertal valley) 
The heavy mineral distribution in all samples and in all grain-size fractions remains 

essentially the same, with the dominant phases being epidote-group minerals and 

garnet (Fig. 4). Here, the 500–1000 μm grain-size fraction is not considered, because 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0020
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of the high proportion of micas and opaque minerals, which make up nearly 90% of 

the entire heavy mineral spectrum. Generally, the proportion of epidote-group 

minerals decreases from smaller to coarser grain-sizes, with the lowest concentration 

in the 250–500 μm grain-size fraction. Garnet generally increases from the smaller to 

the coarser grain-size fractions, with the highest proportion in the 125–250 μm 

(sample A2-1) or 250–500 μm (samples A2-5, A2-8, A2-4) grain-size fractions. 

Apatite, green calcic amphibole, staurolite, kyanite, and chloritoid also occur in all 

grain-size fractions with varying percentages. Similar to garnet, green calcic 

amphibole increases towards the coarser grain-size fractions, whereas apatite is 

more frequent in the smaller grain-size fractions. In all samples, staurolite and 

kyanite are most abundant in the 63–125 μm grain-size fraction. The proportion of 

stable minerals and minerals from the group named ‘others’ is generally low showing 

no clear trend related to grain size (Fig. 4). 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0020
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Fig. 4. Heavy mineral distribution of four grain-size fractions (32−63 µm, 63−125 µm, 125−250 µm, 

250−500 µm) of samples A2-5, A2-8 (Venediger nappe), A2-1 (Eclogite Zone), and A2-4 (Glockner 

nappe) from the Dorfertal valley.  
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4.3. Geochemistry of garnets (63–125µm) 
Garnets from the three valleys cover a broad compositional range (Alm9–83Sp0.1–

85Gr0.7–57Py0.5–40; see Appendix A). Most of the garnets, however, are Type B garnets, 

which are typically derived from amphibolite-facies metasedimentary rocks (Mange 

and Morton, 2007) (Fig. 5). Many garnets plot in field Ci, which are garnets derived 

from high-grade mafic rocks and some in field Bi, typical for garnets derived from 

intermediate to felsic igneous rocks. In general, there is a good agreement of garnets 

derived from the river sediments with the garnets derived from the bedrock samples, 

as they show a high degree of overlap in the discrimination diagrams (Fig. 5). Some 

Type D garnets, the field for garnets derived from metasomatic rocks, very-low grade 

metamafic rocks, or ultrahigh temperature metamorphosed calc-silicate granulites, 

are missing in the outcrop samples. We assume incomplete source rock sampling as 

the main reason for this discrepancy. 
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http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0155
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0025
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0025


68 

 

 
Fig. 5. Composition of garnets in the ternary classification diagram of Mange and Morton (2007) with 

almandine+spessartine, grossular and pyrope as poles. Composition of detrital garnets from all river 

sediments from each valley (63–125 µm) and of garnets from the bedrock samples from each valley. A 

– mainly from high-grade granulite-facies metasedimentary rocks or charnockites and intermediate 

felsic igneous rocks, B – amphibolite-facies metasedimentary rocks, Bi – intermediate to felsic igneous 

rocks, Ci – mainly from high-grade mafic rocks, Cii – ultramafics with high Mg (pyroxenites and 

peridotites), D – metasomatic rocks, very low-grade metamafic rocks and ultrahigh–temperature 

metamorphosed calc-silicate granulites. 

 

Garnet composition from all stream sediments (63–125 μm) upstream of the Eclogite 

Zone, within the Eclogite Zone, and downstream of the Eclogite Zone exhibit distinct 

contrasts (Fig. 6). Nearly all of the garnets (98%) upstream of the Eclogite Zone are 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0030
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type B, the field for garnets derived from amphibolite-facies sedimentary rocks. 

Garnets from sediment sampled within the Eclogite Zone are either type B garnets 

(74%) or type Ci garnets (33%), the latter being typically derived from high-grade 

metamorphic rocks. Few garnets (3%) plot in field Bi, which is the field for garnets 

derived from intermediate felsic igneous rocks. Most of the garnets from samples 

downstream of the Eclogite Zone are type B (55%), but many are type C (43%). 

There are also a small number of type D garnets (0.5%), which have a high CaO 

component (Fig. 6). 

 

 
Fig. 6. Composition of detrital garnets (63–125 µm) in the ternary classification diagram of Mange and 

Morton (2007) with almandine+spessartine, grossular and pyrope as poles. Each diagram shows 

garnet compositions from all three rivers, divided into (i) upstream of the Eclogite Zone, (ii) within the 

Eclogite Zone, and (iii) downstream of the Eclogite Zone. For key to garnet compositional fields see 

Fig. 5. 

 

For the biplots, major elements SiO2, Al2O3, CaO, MgO, MnO and FeO are used to 

differentiate the garnets from the different rock types and sediments of the different 

nappes. For the compositional ternary plots the major elements CaO, MgO, and MnO 

are used, because they show the highest variability. The biplots are defined by the 

first and the second principal components (PC). SiO2 and Al2O3 show the lowest 

variation in all sample sets. The small distance between SiO2 and Al2O3 indicates 

relatively constant SiO2/Al2O3 values. FeO also shows low variation. The major 

elements CaO, MgO, and MnO show a comparably high variability (spread in 

different directions) (Fig. 7a, b). While MnO and MgO dominate principle component 

1 (PC1), in opposite direction CaO has the highest loading on principle component 2 

(PC2). 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0030
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Micaschists of the Venediger nappe (blue points) accumulate in the direction of FeO. 

Also, garnets from micaschists of the Eclogite Zone (red points) are concentrated in 

this direction, although some accumulate between the arrows of MgO and CaO (red 

points). Garnets from rocks of the Venediger nappe (green, light grey, and grey 

points) concentrate in the direction of CaO. Garnets from the eclogites of the Eclogite 

Zone (magenta points) and also from the amphibolite pebble (yellow points), found in 

the Glockner nappe, accumulate mainly in the centre (Fig. 7a). The compositional 

ternary plot also demonstrates that garnets from the micaschists have a slightly 

higher MnO content in contrast to the garnets from the other rocks, even though 

some garnets from micaschists of the Eclogite Zone show higher MgO contents. 

Garnets from rocks of the Venediger nappe (eclogites, metabasites, metasediments) 

are enriched in CaO. Garnets from the metamafic rocks of the Eclogite Zone and of 

the amphibolite pebble (derived either from the Venediger nappe or Eclogite Zone) 

tend to higher MgO contents (Fig. 7c). 

Interestingly, garnets measured in the micaschists show a high degree of overlap, 

regardless whether they are from the Venediger nappe or Eclogite Zone. Some of the 

garnets from the micaschists of the Eclogite Zone tend towards MgO, which is 

probably due to the fact that rocks of the Eclogite Zone suffered higher metamorphic 

conditions and produce garnets with higher MgO contents (e.g., Wright, 1938, 

Morton, 1985, Deer et al., 1992 and Krippner et al., 2014). It is also interesting that 

garnets from rocks of the Venediger nappe (excluding the micaschists) form a group 

arranged at the CaO line. They can be clearly separated from the other garnets. In 

this context, an important observation is that garnets from the eclogite of the 

Venediger nappe (green points) have a higher CaO component than garnets from the 

eclogites sampled within the Eclogite Zone, which are richer in MgO, and can be 

clearly separated from each other. It is not clear from which unit the amphibolite 

pebble is derived, but due to the fact that they have similar composition to the 

garnets from the eclogites of the Eclogite Zone, it is probable that this amphibolite is 

derived from the Eclogite Zone. 

For a better overview, all garnets measured in the outcrop samples from all samples 

from the three valleys and all garnets measured in the river samples are plotted 

together in a biplot and compositional ternary plot in order to test the degree of 

overlap (Fig. 7b, d). Overall, most of the garnets from the outcrops and river 

sediments are arranged along the line from CaO to more MgO-rich garnets (Fig. 7d) 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0035
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and show a high degree of overlap. The detrital garnets show a wider distribution 

than the garnets of the outcrops because there are more data points of garnets 

measured in the sediments. However, there are some groups of detrital garnets 

which cannot be linked to the outcrop samples (Fig. 7b, d), possibly because of 

incomplete source rock sampling. Differences between the geochemistry of garnet 

cores and rims are only marginally significant. Most of the garnets show a gradational 

zoning with a slight increase of MgO towards the rim. 

  

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0035


72 

 

 

 

 
Fig. 7. a) Compositional biplot of garnet grains from all bedrock samples from every valley for the 

major elements SiO2, Al2O3, CaO, FeO, MnO, and MgO. Axes are first and second principal 

components (PC). Almost 92% of the variability is explained by the first and second PC.b) 

Compositional biplot of garnet grains from all bedrock and river sediments samples from every valley 

for the major elements SiO2, Al2O3, CaO, FeO, MnO, and MgO. Axes are first and second principal 

components. Almost 81% of the variability is explained by the first and second PC. c) Centred ternary 

plot of garnet grains from all bedrock samples from every valley for the major elements CaO, MnO, 

and MgO with highest probability. d) Centred ternary plot of garnet grains from all bedrock and river 

sediments samples from every valley for the major elements CaO, MnO, and MgO with highest 

probability. 
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4.4. Geochemistry of garnets from different grain-size fractions from the 
Dorfertal valley 
Almost all garnets of all grain-size fractions from sample A2-5 are type B garnets 

(98.5%), except for very few type Bi garnets and some type D garnets. Towards the 

smaller grain-size fraction an increasing number of garnets with a higher grossular-

component (up to ~ 60%) is observed, while in the 250–500 μm and 500–1000 μm 

fractions the grossular-component does not exceed 36% (Fig. 8; see also Appendix 

A). 

  

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0040
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Fig. 8. Composition of detrital garnets from the different grain-size fractions in sample A2-5 (upstream 

of the Eclogite Zone) in the ternary classification diagram of Mange and Morton (2007) with 

almandine+spessartine, grossular and pyrope as poles. For key to garnet compositional fields see Fig. 

5. Table shows content of the garnet types in the different grains-size fractions (GS). 

 

Most of the garnets of all grain-size fractions from sample A2-1 plot in field B (87%). 

However, an input of type Ci garnets in all grain-size fractions can be observed 
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(10%). In the 250–500 and 500–1000 μm grain-size fractions the proportion of 

grossular accounts for no more than 43% and 33% of garnets respectively, whereas 

in the smaller grain-size fractions (32–250 μm) the proportion of grossular of some 

garnets is around 50–56% (see Appendix A). It is noticeable that in the 125–250 μm 

grain-size fraction the proportion of pyrope in type Ci garnets is low (no more than 

16%) compared with other grain-size fractions. In the coarser grain-size fractions 

(250–500 μm) the pyrope component reaches up to 34% (Fig. 9; see also Appendix 

A). 

 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0045
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Fig. 9. Composition of detrital garnets from the different grain-size fractions from sample A2-1 (within 

the Eclogite Zone) in the ternary classification diagram of Mange and Morton (2007) with 

almandine+spessartine, grossular and pyrope as poles. For key to garnet compositional fields see Fig. 

5. Table shows content of the garnet types in the different grains-size fractions (GS). 

 

Most of the garnets of all grain-size fractions from sample A2-4 plot in field B 

(84.5%), with a subordinate number in field Ci (11%), and very few in field Bi (3%). 
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Garnets with higher grossular contents are more frequent in the smaller grain-size 

fractions, especially in the 32–63 μm grain-size fraction. In this sample type D 

garnets are only found in the 32–63 μm grain-size fraction. Pyrope-rich garnets are 

more frequent in the coarser grain-size fractions (250–500 and 500–1000 μm), where 

they reach up to 38%. In the smaller grain-size fractions (32–63 and 63–125 and 

125–250 μm), the proportion of grossular is not higher than 29%. In this sample 69% 

of all type Ci garnets measured in the sample are found in the 250–500 and 500–

1000 μm grain-size fractions (Fig. 10). 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0050
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Fig. 10. Composition of detrital garnets from the different grain-size fractions from sample A2-4 

(downstream the Eclogite Zone) in the ternary classification diagram from Mange and Morton (2007) 

with almandine+spessartine, grossular and pyrope as poles. For key to garnet compositional fields see 

Fig. 5. Table shows content of the garnet types in the different grains-size fractions (GS). 

 

The composition of all garnets from the different grain-size fractions from all samples 

are plotted together in a compositional ternary diagram (Fig. 11). There is a high 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0055
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overlap of garnets from the different grain-sizes. Most of the garnets accumulate in 

the centre and in the lower half of the diagram, but it is apparent that CaO-rich 

garnets are more frequent in the finer grain-size fractions, whereas MgO-rich garnets 

are more frequent in the coarser grain-size fractions (Fig. 11). 

 

 
Fig. 11. Centred ternary plot of detrital garnet grains from the different grain-size fractions of all 

samples (A2-5, A2-1, A2-4) from the Dorfertal valley for the major elements CaO, FeO+MnO, and 

MgO with highest probability. GM: geometric mean.  

 

5. Discussion 

The heavy mineral assemblages and garnet geochemical data reflect the geological 

setting of the study area, but the results demonstrate grain-size control on sediment 

composition including single-grain compositional variations. 

The heavy mineral assemblages show a dominance of epidote-group minerals, 

garnet, and green calcic amphibole, which are commonly found in sediments derived 

from collisional orogens such as the Alps (Garzanti et al., 2007). Along the three 

different valleys, the heavy mineral association of the 63–125 μm grain-size fraction 

remains essentially similar with only minor variations. Most of the rocks of each 

nappe contain epidote and zoisite, which explains the high input of this mineral group 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0055
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0085
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(see Appendix A). Also garnet is a common mineral in most of the rocks. Green 

calcic amphibole is found in high amounts in rocks of the Lower Schieferhülle and in 

the metasedimentary rocks of the Eclogite Zone (see Appendix A). All other minerals 

are only found in specific rocks in minor concentrations and therefore their relative 

abundances are heavily influenced by the high input of epidote-group minerals. 

Generally, the zircon–tourmaline–rutile (ZTR) index (Hubert, 1962) of the river 

sediments is low (ZTR = 0.4–6.3%). Two samples from the tributaries of the main 

rivers (sample A3 from the Dorfertal valley and sample A5-2 from the Timmeltal 

valley) carry only a few or no garnet grains. This is interpreted as due to the fact that 

both rivers drain only a small part of the Glockner nappe (Fig. 2), which comprises 

only a few garnet-bearing rocks, causing garnet contents to be diluted by the high 

input of epidote-group minerals. Garnet grains in the heavy mineral assemblage from 

sample A5-5, which is also a sample of a tributary from the main stream of the 

Timmeltal valley, make up ~ 7% of the spectrum. This tributary drains the Eclogite 

Zone and garnet grains from the eclogite lenses can be supplied to the tributary 

(Fig. 2). Garzanti et al. (2010) studied the relationship between source rocks and 

heavy mineral concentration with the result that ultradense rocks such as eclogites 

provide a high input of heavy minerals, which point to their occurrences, even though 

overprinted by retrogression. In the Tauern window, embedded metaophiolites are 

common and represent a source for rich heavy mineral suites which are either 

epidote-dominated or amphibole-dominated, with garnet, often dominated in 

extremely rich heavy minerals suites (Garzanti et al., 2010). A high input of garnets is 

observed in sample A8-4 of the Frosnitztal valley, where the river drains the Eclogite 

Zone. The high input of epidote minerals probable reflects greenschist-facies 

conditions in the source area, and greenschist-facies retrogression in the Eclogite 

Zone. The same observations were made in the Sesia-Lanzo area (Garzanti et al., 

2010). Due to the probable high input of epidote-group minerals, garnet and 

amphibole, other minerals may also be diluted. 

Comparing other grain-size fractions, in all samples apatite is more frequent in the 

smaller grain-size fractions and green calcic amphibole is more frequent in the 

coarser grain-size fractions (Fig. 4). This is unlikely to be due to hydrodynamic 

fractionation since the two minerals have similar densities. The difference is therefore 

likely to be attributable to grain-size inheritance from the source rocks, with apatite 

grain-sizes being generally smaller than green calcic amphibole. In all grain-size 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0130
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0010
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0010
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0100
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0100
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0100
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0100
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0020
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fractions the heavy mineral assemblages reflect the geological situation in the source 

area, but in some grain-size fractions minerals of lesser amounts may completely 

disappear particularly in the coarser grain-size fractions. The highest variety of heavy 

minerals is found in the commonly used grain-size fraction of 63–125 μm, which 

demonstrates the usefulness of this grain-size window. However, the geochemistry of 

garnets reveals a different picture as discussed below. 

The garnet geochemistry of all sediments from the three rivers show a relatively 

uniform pattern, with all garnets plotting either in field B, Bi, or Ci (Fig. 5 and Fig. 6). 

This pattern is consistent with the garnet geochemistry of the bedrock found in the 

study area, which suffered greenschist- to amphibolite-facies metamorphism, and up 

to eclogite-facies metamorphism within the Eclogite Zone. However, there are some 

type D garnets in the sediments which are not evident in the underlaying bedrock. 

These can be probably linked to the serpentinite bodies exposed in the Glockner 

nappe. The serpentinite bodies are surrounded by Ca-rich metasedimentary rocks 

(Dietrich et al., 1986 and Dachs et al., 2005). At the contact zone to these 

metasedimentary rocks, a rodingite serie is exposed which contains grossular-rich 

garnets (Dietrich et al., 1986 and Dachs et al., 2005). 

The detrital garnet compositions in samples from the Venediger nappe upstream of 

the Eclogite Zone can be linked to metasedimentary rocks and amphibolites which 

suffered amphibolite-facies metamorphism. The very few type Bi garnets can also be 

linked to these rocks, but may be also derived from Variscan granitoids which have 

intruded the pre-Variscan basement of the Venediger nappe (Cesare et al., 2001). 

The few Ci type garnets are probably derived from pre-Alpine eclogites exposed in 

that area. There is an increase in the quantity of pyrope-rich garnet within the 

Eclogite Zone, indicating input from the eclogites of this Zone. Farther downstream, 

the pattern reflects the composition of garnets from rocks found upstream of and 

within the Eclogite Zone (Fig. 6). 

The results show that the geochemistry of garnets strongly reflects the geological 

situation in the source area, as the composition reflects the different metamorphic 

conditions in the several units, which confirms the application of garnet geochemistry 

in sedimentary provenance analysis. Interestingly, garnet compositions in the two 

types of eclogites (pre-Alpine vs. Alpine) are different, as the high MgO content in the 

garnets in the Alpine eclogites indicates high pressure and temperature conditions, 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0025
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0030
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0065
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0055
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0065
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0055
http://www.sciencedirect.com/science/article/pii/S0037073815000688#bb0040
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0030
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which are not evident in the Venediger nappe, and therefore demonstrate the 

different evolution of these eclogites. 

The garnet composition of the different grain-size fractions from the three samples 

from the Dorfertal valley also reflects the geological situation in this area. Almost all 

the garnets of sample A2-5 from the Venediger nappe plot in field B (Fig. 8). Here, an 

input of garnets derived from the pre-Alpine eclogites is not visible. Within the 

Eclogite Zone there is an input of pyrope-rich garnets derived from the eclogites 

(Fig. 9), and garnets from sample A2-4 downstream of the Eclogite Zone reflect the 

pattern from upstream and directly from the Eclogite Zone (Fig. 10). But a closer look 

at the different grain-size fractions reveals that the very few type D garnets are more 

frequent in the smaller grain-size fractions (32–63 and 63–125 μm), and pyrope-rich 

garnets are more frequent in the coarser grain-size fractions, especially in the 250–

500 and 500–1000 μm grain-size fractions (Fig. 11). The grain-size of pyrope-rich 

garnets in the eclogites of the Hohe Tauern area is almost always coarser than 

400 μm (see Appendix A). Pyrope-rich garnets are therefore more frequent in the 

coarser grain-size fractions and relatively poorly represented in the smaller grain-size 

fractions, a pattern best illustrated by sample A2-4 (Fig. 10). Although, in general, the 

heavy mineral assemblages and garnet composition in the sediments reflect very 

well the conditions in the source area, great care must be taken when only 

considering a narrow grain-size window, because some important information may 

get lost, especially if some rocks are only minor distributed and only produce 

minerals with a special grain-size, which do not occur in the analysed grain-size 

window. This demonstrates the role played by grain-size inheritance from source to 

sediment. Another statement can be made about the sampling. An influence of pre-

Alpine eclogites is not visible in all samples, independently of the grain-size range. 

Therefore, to obtain a complete picture of the geological framework not only the 

grain-size, but also the number of samples is of importance. 

 

6. Conclusions 

Our results underline the reliability of heavy minerals and garnet geochemistry in 

sedimentary provenance analysis. The most important findings of this study are as 

followed: 

 The sediments of the three valleys from the Hohe Tauern area show a 

dominance of epidote-group minerals and garnets in all grain-size fractions, 

http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0040
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0045
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0050
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0055
http://www.sciencedirect.com/science/article/pii/S0037073815000688#f0050
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which can be related to the greenschist-facies metamorphic conditions in the 

source area as well as greenschist-facies retrogression and to the possibly 

high input of heavy mineral suites derived from ultradense source rocks. 

 An increase of apatite in the fine tail of the size distribution (32–63 μm) and an 

increase of green calcic amphibole and garnet in the coarse tail of the size 

distribution can be observed, probably related to mineral grain-sizes in the 

source rocks. 

 Detrital garnet assemblages reflect the different metamorphic conditions in the 

geological source units. Pyrope-rich garnets increase within the Eclogite Zone 

consistent with the geological framework. The proportion of grossular is higher 

in the smaller grain-sizes, whereas the proportion of pyrope is higher in the 

coarser grain-size fractions, which probably results of the inheritance of grain-

size from host rock to sediment. Due to the fact that grossular-rich garnet is 

less dense than other garnet species, a hydraulic effect is less likely than by 

the original finer grain-size distribution in the source rock, because less dense 

garnet-species are commonly found in the coarse tail of the grain-size 

distribution. 

 Great care must be taken when outcrops of a rock type are only rarely present 

in the study area, because an influence of these rock types can be missed 

when only a few samples are available. This is the same case with minerals, 

which can be missed in a specific grain-size range and therefore lead to 

misleading results. 

 

In summary, the amount of samples and a wide grain-size range are important 

features to consider when interpreting provenance data. They can provide a relatively 

clear and complete picture about the situation in the source area where external 

influences are small. 
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Abstract 

Detrital heavy minerals commonly document the geological setting in the source 

area, hence they are widely used in sedimentary provenance analysis. In heavy 

mineral studies, the 63–125 and 63–250 μm grain size fractions are most commonly 

used. Heavy mineral data and garnet geochemistry of stream sediments and 

bedrocks from the catchment area draining the Almklovdalen peridotite massif in SW 

Norway reveal that a wider grain size spectrum needs to be considered to avoid 

misleading interpretations. The Almklovdalen peridotite massif consists mainly of 

dunite and harzburgite, as testified by the heavy mineral suite. At the outlet of the 

main river, the heavy mineral spectrum is very monotonous due to dilution by a 

strong influx of olivine. Heavy minerals like apatite and epidote characterising the 

host gneisses have almost disappeared. MgO-rich almandine garnets are more 

frequent in the coarser grain size fractions, whereas MnO-rich almandine garnets are 

more frequent in the finer grain size fractions. Garnets with pyrope content exceeding 
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50% are only found in the 500–1000 μm grain size fraction. Therefore, the sample 

location and the selected grain size fraction are of paramount importance when 

dealing with heavy minerals and mineral geochemical data; otherwise, provenance-

sensitive information may be missed. 

Keywords: heavy minerals; garnet geochemistry; compositional biplot; provenance; 

Almklovdalen peridotite massif 

1. Introduction

Heavy minerals are used to characterise, discriminate, and identify source areas 

(Mange and Wright, 2007; von Eynatten and Dunkl, 2012, and references therein). 

Commonly, the heavy mineral composition of a sediment reflects the mineralogy of 

the rocks exposed in the source area; however, the heavy mineral assemblage may 

be affected by several processes during the sedimentary cycle that modify the 

occurrence and proportions of heavy mineral species (e.g., Morton and Hallsworth, 

1999). For instance, the stability of heavy minerals strongly depends on the specific 

environment and climatic conditions (Pettijohn, 1941; Morton and Hallsworth, 1999; 

Velbel, 2007; Andò et al., 2012; Morton, 2012; Garzanti et al., 2013). Therefore, 

differences in heavy mineral ratios are not necessarily the effect of different sources, 

but can reflect modifications which occur during the sedimentary cycle (e.g., Morton 

and Hallsworth, 1999). When studying stream sediments, it must be noted that 

minerals can be segregated and sorted according to their grain size, density, and 

shape (Morton and Hallsworth, 1999; Garzanti et al., 2008, 2009; Resentini et al., 

2013). This can happen either between different heavy mineral species, but also 

within a single mineral group. For example, almandine-rich garnets are commonly 

concentrated in the finer fractions in contrast to less dense garnet species (Schuiling 

et al., 1985; Andò, 2007; Garzanti et al., 2008). 

The heavy mineral garnet has important provenance applications because it exists in 

a wide range of rocks and its chemical composition depends on the composition of 

the source rock and on pressure and temperature conditions during garnet formation 

(e.g., Wright, 1938; Morton, 1985; Deer et al., 1992; Andò et al., 2013; Krippner et 

al., 2014). Although garnets from various garnet-bearing rocks often show much 

overlap in major element geochemistry, mantle-derived garnets, for instance, can be 

very well separated from crustal-derived garnets (e.g., Krippner et al., 2014). 
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Therefore, garnet is used as an indicator mineral in exploration, for instance, for 

diamonds (Nowicki et al., 2003) because mantle-derived garnets can be related to 

diamond-bearing intrusives (Grütter et al., 2004). In contrast to the typical mantle-

derived minerals olivine and pyroxene, garnet is more stable during alteration and 

dispersion at the Earth’s surface (e.g., Pettijohn, 1941; Gurney, 1984; Velbel, 1984, 

1999; Grütter et al., 2004; Morton, 2012). 

We collected stream sediments and adjacent source rocks in the high-grade 

metamorphic Almklovdalen area in SW Norway to study to what extent the heavy 

mineral suites and garnet composition of the stream sediments reflect the mineralogy 

of the source rocks. We analysed different grain size fractions in order to test for 

grain size dependency of heavy mineral assemblages and garnet geochemistry, 

which may lead to ambiguous or even wrong interpretations when a single and 

narrow grain size spectrum is considered only (Garzanti et al., 2009). 

 

2. Geological Setting 

The Almklovdalen area is located in the Western Gneiss Region (WGR) in SW 

Norway (Fig. 1). The WGR comprises Precambrian basement and allochthonous 

cover units, metamorphosed and deformed during the Caledonian orogeny induced 

through collisions between Baltica, Laurentia and Avalonia under closure of the 

Iapetus Ocean (Roberts and Gee, 1985; Cuthbert et al., 2000; Krabbendam et al., 

2000; Beyer et al., 2012). The gneisses and augen orthogneisses of the WGR are 

mainly of granodioritic to granitic composition and are considered to represent Baltica 

basement (Tucker et al., 1990). The gneisses are predominantly of amphibolite 

facies metamorphic grade (Bryhni and Andréasson, 1985; Krabbendam and Wain, 

1997; Krabbendam et al., 2000), but in some parts, granulite facies assemblages 

occur (Griffin et al., 1985; Krabbendam et al., 2000). Most of the orthogneisses of the 

WGR are suggested to be generated during Gothian (1.7–1.5 Ga) and 

Sveconorwegian (1.2–1.9 Ga) events (Beyer et al., 2012). During the Scandian 

phase (435–390 Ma) of the Caledonian orogeny, rocks of the WGR suffered high-

pressure (HP) to ultrahigh-pressure (UHP) conditions (Griffin and Brueckner, 1980; 

Gebauer et al., 1985; Griffin et al., 1985; Mørk and Mearns, 1985; Andersen et al., 

1991; Krabbendam et al., 2000). The metamorphic grade increases from SE to NW 

(Krogh, 1977; Cuthbert et al., 2000; Root et al., 2005; Beyer et al., 2012). The 

temperature gradient increases from ~ 550 °C in the SE to > 800 °C in the NW 
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(Krogh, 1977; Griffin et al., 1985; Carswell and Cuthbert, 2003). Mafic and ultramafic 

lenses which are enclosed within the surrounding gneisses range in size from 

centimetres to hundreds of metres (Carswell and Cuthbert, 2003). A few ultramafic 

bodies reach sizes up to several kilometres. There are hundreds of mantle-derived 

ultramafic bodies (Beyer et al., 2012), with some of them containing garnet-bearing 

assemblages (Eskola, 1921; Medaris, 1984; Carswell, 1986; Medaris and Carswell, 

1990; Brueckner et al., 2010; Beyer et al., 2012). The ultramafic rocks show 

Archaean Re–Os ages, which predate the formation of the Proterozoic upper crusts 

in the region (Brueckner et al., 2002; Beyer et al., 2004). One of the largest ultramafic 

bodies, with a size of 4.0 × 3.3 km2, is the Almklovdalen peridotite (Medaris and 

Brueckner, 2003), located in the HP–UHP transition zone (Fig. 1). This ultramafic 

body is a bowl-shaped sheet around a central gneiss area, composed of 

orthogneisses and paragneisses and indicates three main stages of deformation. The 

first deformation is seen in the Proterozoic folds in the garnet peridotite, a second 

deformation is highlighted by the Caledonian isoclinal folds in the chlorite peridotite in 

association with recrystallisation of garnet peridotite to chlorite peridotite, and a third 

deformation—also Caledonian in age—led to foliations and lineations in chlorite 

peridotite (Medaris and Brueckner, 2003). The main rock types in the Almklovdalen 

body are anhydrous dunite and harzburgite (Osland, 1997; Medaris and Brueckner, 

2003; Beyer et al., 2006, 2012). They contain garnet peridotite and garnet pyroxenite 

lenses (Medaris, 1984; Osland, 1997; Beyer et al., 2012), which occur in < 40-cm-

thick bands within the dunites and harzburgites (Cordellier et al., 1981). Eclogites are 

also present, but only in minor amounts (Griffin and Qvale, 1985; Beyer et al., 2012). 

The Almklovdalen body is surrounded by orthogneisses, paragneisses, anorthosites, 

and eclogites (Beyer et al., 2012). 
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Fig.1. Map of the outer Nordfjord and Stradlandet area of the Western Gneiss Region showing the 

distribution of ultramafic bodies. Dashed lines mark the limits of the HP and UHP zones and the extent 

of the mixed HP/UHP zone (adapted from Carswell and Cuthbert, 2003). The inset shows the location 

of the study area in the SW part of the Caledonides in Norway. 
 

 

3. Samples and methods 

3.1. Samples 
Four sand samples were collected from streams draining the Almklovdalen peridotite 

body (Fig. 2). Loose bedload sand was sampled to cover a wide grain size range. 

Stream sample AK-N20 was collected ~ 1 km SE of Helgehornet, followed by sample 

AK-N19-4 further downstream (Fig. 2). Stream sample AK-N19-3 was taken from the 

middle part of the Gusdalselva river and stream sample AK-N19-1 comes from the 

mouth of the Gusdalselva river entering lake Gusdalsvatnet. In addition, bedrock 

samples were collected since they represent the source for the detrital material. 
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Bedrock samples were taken in outcrops. One bedrock sample, a large pebble, was 

taken directly from the river bed. Sample AK-N21 is an eclogite exposed south of 

Helgehornet and AK-EA is an eclogite pebble collected at the mouth of the 

Gusdalselva river. Sample AK-N24 is a garnet peridotite and AK-N25 is a gneiss 

exposed SE of Helgehornet. The geographic coordinates of all samples are given in 

Table 1. 
 

 
Fig. 2. Geological map of the Almklovdalen area (adapted from Medaris and Brueckner, 2003) 

showing sample locations. The eclogite occurrences have sizes up to several metres and are 

enclosed within both the gneisses and peridotites. 
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Table 1. Geographic coordinates (WGS 84) of all samples (river sediments and bedrocks) from the 

Almklovdalen area. 

sample bedrock/sediment GPS: N° GPS: E° 
AK-N20  sediment 62°00.202' 5°36.268' 
AK-N19-4  sediment 62°00.001' 5°37.573' 
AK-N19-3  sediment 62°00.315' 5°37.690' 
AK-N19-1  sediment 62°01.010' 5°34.417' 
AK-N21  eclogite 62°00.153' 5°35.998' 
AK-EA  eclogite 62°01.010' 5°34.417' 
AK-N24  Garnet peridotite 62°00.278' 5°36.448' 
AK-N25 gneiss 62°00.278' 5°36.448' 
 

 

3.2. Methods 
Stream sediments were wet-sieved using a mechanical shaker to separate the 

different grain size fractions (63–125 μm, 125–250 μm, 250–500 μm, 500–1000 μm). 

We used ~ 350 g per sample. After drying, the samples were treated with acetic acid 

to remove the carbonate component if present. The heavy mineral fractions were 

separated using sodium polytungstate (SPT) with a density of 2.85 g/mL. 

The heavy mineral residues were mounted on microscope slides (Mange and 

Maurer, 1992) using Meltmount™ with a refraction of 1.66 and identified under the 

polarising microscope. The relative abundances of the heavy minerals were 

determined by grain counting. For that, the microscope slide was moved along linear 

traverses and all grains between two parallel lines were counted (i.e. ribbon counting; 

Mange and Maurer, 1992). Two-hundred and fifty translucent minerals were counted 

for each slide. All data are given as supplementary data, i.e. data of all heavy 

minerals including opaque minerals, micas and unknown (Supplementary Table S1), 

only groups of transparent minerals (see Supplementary Table S2), and heavy 

minerals from all grain size fractions (Supplementary Table S3). 

Unknown minerals probably originate from alterations of various minerals and are 

aggregates with no well-defined mineralogical composition. They are also termed as 

alterites (van Andel, 1950). 

For garnet geochemical analysis, garnet selection from the stream sediments was 

achieved by handpicking under a binocular microscope. We randomly selected 

garnet grains of all sizes and morphological types and placed them in synthetic 

mounts using a bonding epoxy composed of a mixture of Araldite® resin and 
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hardener at a ratio of 5:1. Grains of different morphological types were selected to 

consider a wide range of altered and non-altered garnets in the source area. Also, 

garnets of different colours in approximately similar amounts were selected to 

minimize the bias of picking only one type of garnet. 

From the bedrock samples, polished thin sections were prepared. Garnet from 

bedrock and stream samples were analysed with a JEOL JXA 8900 RL electron 

microprobe (EMP) equipped with five wavelength dispersive spectrometers at the 

University of Göttingen (Department of Geochemistry, Geoscience Center). Before 

analysis, all samples were coated with carbon to ensure conductivity. Conditions 

included an accelerating voltage of 15 kV and a beam current of 20 nA. The counting 

times were 15 s for Si, Mg, Ca, Fe and Al, and 30 s for Ti, Cr and Mn (Table 2). 

Matrix correction was performed using ZAF corrections. We preferentially analysed 

garnet rims and cores. From the thin sections, 20 garnets from each sample were 

analysed and 50 garnets of each sediment sample were measured. Additionally, 

minerals in thin sections were determined under the polarising microscope. The 

relative abundances of the main light and heavy minerals from the bedrocks can be 

taken from Table 3. The full database including lithology and metamorphic grade are 

included in Supplementary Table S4. 

 
Table 2. Operating conditions of the electron microprobe for garnet analyses. Count time on the peak 

(in s), Bckg time counting time on background position (in s), DL detection limit (in ppm). 

Spectrometer 1 TAP 1 TAP 2 TAP 3 PETJ 4 PETJ 4 PETJ 5 LIFH 5 LIFH 
Element 
(Line) 

Si (Kα) Al (Kα) 
 

Mg (Kα) 
 

Ca (Kα) 
 

Ti (Kα) 
 

Cr (Kα) 
 

Mn (Kα) 
 

Fe (Kα) 
 

Count time 15 15 15 15 30 30 30 15 
Bckg time 5 5 5 5 15 15 15 5 
Standard Garnet, 

natural 
Garnet, 
natural 

MgO, 
synthetic 

CaSiO3, 
natural 

TiO2, 
synthetic 

Cr2O3, 
synthetic 

Rhodonite, 
natural 

Fe2O3, 
synthetic 

DL 160 138 104 138 113 135 117 216 

          

From all stream sediment samples, the 63–125 μm fractions were point-counted and 

analysed by EMP. For the study of grain size dependency, sample AK-N19-3 was 

chosen. From this sample, the 125–250 μm and 250–500 μm grain size fractions 

were also point-counted, and garnet grains from the 125–250 μm, 250–500 μm and 

500–1000 μm size fractions were analysed by EMP. 

We measured the long and short axes of ~ 100 garnet grains from the 63–125 μm 

grain size fraction of each river sample, to study if the garnets are mainly separated 
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by their short axis or mainly by their long axis and if there is an appreciable input of 

garnets with smaller or coarser grain size, which do not belong to the specific grain 

size fraction. Long and short axes of garnet from bedrocks (AK-N21, AK-EA, AK-

N24) were also measured for comparison (Supplementary Table S5). 

The geochemical data are presented in ternary diagrams following Mange and 

Morton (2007) and in biplots produced using CoDaPack, an open source software for 

compositional data analysis (Thió-Henestrosa and Martín-Fernández, 2005; Comas-

Cufí and Thió-Henestrosa, 2011). The biplots are based on principal component 

analysis (PCA) using centred log-ratio transformation for six major element oxides, 

following the methodology proposed by Aitchison (1986). The biplots serve as a 

valuable tool for estimating the potential for discrimination of a multivariate data set 

and its subsets (e.g., von Eynatten et al., 2003). In biplots, multivariate observations 

are illustrated as points and variables as lines. The length of the line corresponds to 

the variability of the respective element. The length and position of the line reflects its 

relative influence on the respective principal component. 

4. Results

4.1. Heavy mineral analysis of all stream samples (63−125 µm) 
In all stream samples, olivine is the dominant heavy mineral representing between 

39% and 90% of the heavy mineral suite (Fig. 3a). Pyroxene comprises between 8% 

and 11% (mainly diopsitic to augitic clinopyroxenes). Garnet, green calcic amphibole, 

epidote-group minerals (epidote, zoisite), and apatite occur in different percentages. 

The amphiboles are dominantly blue-green with colour changing from blue-green to 

green. Ultrastable minerals (zircon, tourmaline and rutile) are not present or occur 

only in traces. Other amphiboles (mainly actinolites and tremolites) and titanites 

occur occasionally as single grains in individual samples and are grouped as ‘others’. 

Opaque minerals and micas are not considered in the diagram to emphasize the 

relative concentrations of the transparent heavy minerals. 

4.2. Heavy mineral analysis of sample AK-N19-3 (63–125 µm, 125–250 µm, 
250–500 µm) 
Olivine is the dominant heavy mineral with similar amounts (59%–63%) in all grain 

size fractions (Fig. 3b). Garnet content is higher in the coarser grain size fractions, 
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i.e. 28% in the 125–250 μm fraction and 24% in the 250–500 μm fraction compared 

to 9% in the 63–125 μm fraction. In contrast, pyroxene and green calcic amphibole 

decrease in the coarser fractions. The content of epidote group minerals remains 

fairly constant, whereas apatite (5%) is only found in the 63–125 μm grain size 

fraction. Ultrastable minerals are almost absent in the 250–500 μm fraction. The 

500–1000 μm grain size fraction is not considered here because of the very high 

proportion of micas and opaque minerals, which amounts to almost 90% of the entire 

heavy mineral spectrum. 
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Fig. 3 (a) Transparent heavy mineral suite of the 63–125 μm grain size fraction of the analysed 

samples. (b) Heavy mineral distribution of all grain size fractions of samples AK-N19-3. Epidote group: 

epidote, zoisite; ultrastable minerals: zircon, rutile, tourmaline; others: titanite, other amphibole 

(excluding green calcic amphibole). 

 

4.3. Grain-sizes of garnets 
The shortest axes of garnets from the 63–125 μm sieve fractions of the stream 

sediments range from > 40–180 μm and the longest axes range from > 80 to 300 μm 

(Fig. 4; Supplementary Table S5). The shortest axes of garnets from the eclogite 
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bedrocks are between < 100 and 700 μm and the longest axes between 100 μm and 

> 1000 μm (Fig. 4; Supplementary Table 5). 

The garnets of sample AK-N24 (garnet peridotite) are very coarse and go beyond the 

camera’s field of view of the microscope. The shortest axis of the smallest grain 

found in this sample is 1000 μm and the longest axis of the largest grain is about 

1.4 cm (measured with a ruler). 
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Fig. 4. Grain-size distribution of the short and the long axes of garnets from stream sediments of the 

63−125 µm grain-size fraction (upper part) and of the eclogite samples AK-N21 and AK-EA (lower 

part). 
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4.4. Geochemistry of garnets 
Biplots with the major element oxides SiO2, Al2O3, CaO, MgO, FeO and MnO as 

variables are used to differentiate garnets from the different bedrock types and from 

the sediments (Fig. 5). These diagrams are optimal in the sense that most of the total 

variability is illustrated in two dimensions (i.e. 89%–99% in this case). SiO2 and 

Al2O3 show the lowest variation in all of the three biplots (Fig. 5a, b, c). The small 

distance between SiO2 and Al2O3 indicates relatively constant SiO2/Al2O3 ratios 

typical for all garnet varieties with aluminum in the crystallographic Y-site (i.e. 

endmembers almandine, spessartine, pyrope, grossular). 

The major element data of the garnets from the bedrocks show the highest variability 

for MnO and MgO (spread in opposite directions and strongly controlling PC1) and a 

moderate variability for CaO and FeO along with fairly constant CaO/FeO (Fig. 5a). 

The three bedrock samples are clearly separated from each other in the biplot, with 

garnets from the peridotite being distinct due to relative high MgO content. Garnets of 

the eclogites accumulate on the left side of the biplot indicating relatively lower MgO 

content, with garnets of sample AK-N21 appearing to have slightly higher relative 

MnO content (i.e. higher MnO/CaO ratios), when compared to eclogite sample AK-

EA (Fig. 5a). 

The detrital garnets show a comparably high variability for MnO, MgO and CaO 

(spread in different directions) and show much overlap between both different 

samples and different grain size fractions (Fig. 5b, c). The CaO/FeO value is no 

longer constant, particularly for the coarser grain size fraction (Fig. 5c). CaO and 

MnO have the highest impact on PC2, which in turn has much higher impact on the 

total variability of the detrital garnets (22% and 26%) compared to the bedrocks (7%; 

Fig. 5). This implies higher relevance of CaO/MnO ratios for the variability of the 

detrital garnets. The detrital garnets of the different grain size fractions of sample AK-

N19-3 show only little contrast. However, few garnets of the coarser grain size 

fractions (250–1000 μm) show overlap with the garnet peridotite (Fig. 5c). 
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Fig. 5. Compositional biplot of garnets based on major elements Al2O3, SiO2, CaO, FeO, MnO and 

MgO. Axes are the first and second principal components (PC). (a) Compositional biplot of garnet 

grains from the bedrocks. Almost 73% of the variability is explained by the first PC and 13% by the 

second PC. (b) Compositional biplot of detrital garnet grains from the bedrocks and from all stream 

sediments of the 63–125 μm grain size fraction. Almost 51% of the variability is explained by the first 

PC and 20% by the second PC. (c) Compositional biplot from sample AK-N19-3 of the 63–125 μm, 

125–250 μm, 250–500 μm and 500–1000 μm grain size fractions. Almost 49% of the variability is 

explained by the first PC and 20% by the second PC. 
 

Garnet composition from stream sediments and bedrocks is illustrated in the classical 

ternary classification diagram using almandine + spessartine, pyrope, and grossular 

as poles, and the discrimination fields A, B, Bi, Ci, Cii, and D (Mange and Morton, 

2007; Fig. 6). This diagram has widely been applied in a number of garnet 

provenance studies (e.g., Whitham et al., 2004; Morton et al., 2005, 2011; Mange 

and Morton, 2007; Meinhold et al., 2010; Krippner et al., 2015). All of the garnets of 

samples AK-EA and almost all of the garnets of sample AK-N21 plot in field Ci, the 

field for garnets derived from high-grade mafic rocks, such as eclogites. Garnets of 
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sample AK-N24 plot in field Cii, the field for garnets derived from ultramafic rocks 

(Fig. 6a). 

For comparison, all garnets from the stream sediments (63–125 μm grain size 

fraction) and from the bedrocks are plotted together in one ternary diagram (Fig. 6b). 

The garnets from the stream sediments overlap fields B, Ci, A, and Cii, with almost 

90% of garnets plotting in field Ci. They show a high degree of overlap with garnets 

measured in the eclogites. However, many detrital garnets are not comparable to the 

garnets derived from the eclogites as they show a wider distribution and are possibly 

derived from other source rocks than the measured eclogites. Interestingly, no 

detrital garnets are comparable with those garnets measured in the garnet peridotite 

(Fig. 6b). 

The garnets from the different grain size fractions from sample AK-N19-3 overlap 

fields B, Bi, A, Ci, Cii, with almost 90% plotting in field Ci. Many garnets show a high 

degree of overlap with garnets measured in the eclogites, but many garnets tend to 

higher MgO composition and also towards higher CaO or FeO + MnO composition. 

Two single garnets of the 500–1000 μm grain size fractions show overlap with the 

garnets measured in the peridotite (Fig. 6c). Overall, the detrital garnets show a 

distinct higher variability than the garnets from the bedrocks, and hence point to even 

other source rocks than the measured ones. 
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Fig. 6. Composition of garnets in the ternary classification diagram of Mange and Morton (2007) with 

almandine + spessartine, grossular and pyrope as poles. (a) Composition of garnets from the bedrock 

samples. (b) Composition of detrital garnets of the 63–125 μm grain size fraction and from the bedrock 

samples. (c) Composition of detrital garnets of the 125–250 μm, 250–500 μm, and 500–1000 μm grain 

size fraction and from the bedrock samples. A—mainly from high-grade granulite-facies 

metasedimentary rocks or charnockites and intermediate felsic igneous rocks; B—amphibolite-facies 

metasedimentary rocks; Bi—intermediate to felsic igneous rocks; Ci—mainly from high-grade mafic 

rocks; Cii—ultramafics with high Mg (pyroxenites and peridotites); D—metasomatic rocks, very low-

grade metamafic rocks and ultrahigh–temperature metamorphosed calc-silicate granulites. 
 

With increasing grain size, the MgO/MnO value increases on average (Fig. 7). About 

6% of the garnets of the coarser grain size fractions (250–1000 μm) lie above line 2 

compared to 1% of the finer grain size fraction (125–250 μm). None of the garnets of 

the 63–125 μm grain size fraction lie above line 2. In contrast, 18% of the garnets of 

the finer grain size fractions (63–250 μm) and only 4% of the coarser grain size 

fractions (250–1000 μm) lie below line 1. This is because the content of MnO is 

overall higher in the finer grain size fractions (63–250 μm) than in the coarser grain 

size fractions. In contrast, the MgO content of the coarser grain size fractions (250–

1000 μm) is higher on average compared to the finer grain size fractions (Fig. 7). 

MnO contents exceeding 2 wt.% are only evident in the garnets of the finer grain size 

fractions (63–250 μm) (Supplementary Table S4). 
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Fig. 7. Binary diagram showing CaO/MnO vs. MgO/MnO value of all grain size fractions of sample AK-

N19-3.  

 

5. Discussion 

Heavy mineral analysis of stream samples from the Almklovdalen area in SW Norway 

reveal an increase of olivine from upstream (AK-N19-4) to downstream (AK-N19-1) 

from ~ 40% to 90% (Fig. 3a) and a decrease of green calcic amphibole from ~ 13% 

to ~ 1%. The content of ultrastable minerals also decreases. The content of garnet 

slightly increases in the middle part of the river and decreases at the downstream 

end of the Gusdalselva river where only 1% garnet is found (sample AK-N19-1). 

Apatite grains decrease strongly from upstream to downstream. In sample AK-N19-4, 

approximately 11% of the heavy mineral assemblage consists of apatite minerals, in 

sample AK-N19-1, at the downstream end of the Gusdalselva river, apatite grains 

were not found. Epidote group minerals commonly occur in the upper section of the 

river (~ 10%), but at the downstream end of the Gusdalselva river, they are strongly 

depleted (~ 1%). The pyroxene content is nearly constant in all samples (around 

10%). Most of the pyroxenes are clinopyroxenes, probably of diopsitic to augitic 



107 

 

composition and likely derived from the lherzolites (Beyer et al., 2006). However, 

there are also some orthopyroxenes identified which are probably of enstatitic 

composition. 

Chlorite peridotite (dunite, harzburgite) covers a large area in the downstream part of 

the Gusdalselva river, including a huge quarry (Fig. 2), thus explaining the 

downstream increase in olivine concentration. In the upper part of the river, garnet 

peridotites, eclogites and gneisses are more frequent than in the downstream part of 

the river. Therefore, in samples AK-N19-3, AK-N19-4 and AK-N20, the influx from 

those rocks is higher than in sample AK-N19-1. Further downstream, most of the 

heavy minerals are diluted by the high input of olivine. Apatite is found in the 

gneisses (Table 3). There is a major input of apatite recorded in sample AK-N19-4, 

which is not surprising since this part of the river is draining the gneisses upstream 

from the sample location. The strong decrease of apatite minerals is likely due to the 

dilution process described previously but may also result from partial dissolution, 

because apatite becomes unstable under acidic conditions (Morton, 2012). The 

vegetation of the study area and its surroundings consist mainly of coniferous forest 

and indicates a rather acidic environment in which apatite is prone to dilution. 
 

Table 3. Mineralogy of the bedrock samples. 

mineral/sample 
AK-N21 
(eclogite) 

AK-EA 
(eclogite) 

AK-N24  
(grt-peridotite) 

AK-N25 
(gneiss) 

quarz ++ ++ o +++ 

K-feldspar - - - + 

plagioclase o o - + 

micas o o ++ o 

pyroxene ++ ++ o - 

amphibole + + ++ o 

olivine + + +++ - 

garnet + + ++ - 

rutile t t - + 

zircon + + - o 

titanite - - - + 

apatite - - - + 
+++: very high content, ++: high content, o: low content, t: traces, -: not present 
 

The main lithologies in the study area are dunite and harzburgite with minor garnet 

peridotite, eclogite and gneiss. The major garnet-bearing rocks are garnet peridotites 

and eclogites. In the sampled gneiss, no garnet grains were found but garnet-bearing 
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gneisses are known from the surrounding area; hence, they also provide a source for 

the detrital garnets in the stream sediments. The detrital garnets of the 63–125 μm 

grain size fraction show a high degree of overlap with the garnets analysed in the 

eclogites (Fig. 6b). However, many of the detrital garnets cannot be directly linked to 

the studied eclogites. A possible explanation is that the several eclogite bodies 

exposed in the area cover a range of different garnet compositions, which is also 

evident from the two measured eclogites as seen in the biplots because they can be 

clearly separated from each other (Fig. 5a). This separation is only possible when 

FeO and MnO, respectively, almandine and spessartine, are not combined. That is 

why a discrimination of both eclogites cannot be determined in the ternary diagrams. 

Garnets with a high MnO and a low MgO content can be probably linked to the 

garnet-bearing gneisses, which suffered lower grade amphibolite-facies 

metamorphism (Bryhni and Andréasson, 1985; Krabbendam and Wain, 1997; 

Krabbendam et al., 2000). There is no overlap of detrital garnets with the garnets 

from the garnet peridotite. This suggests that the eclogites and the gneisses are the 

main source of the detrital garnets. Due to the fact that the grain size of the garnets 

in the garnet peridotite is coarser (the short axis of the smallest grain is > 1000 μm) 

than the garnets in the studied 63–125 μm grain size fraction, it is not very likely that 

these garnets occur in this grain size fraction. Certainly, coarse-grained source rock 

garnets, crushed through hydraulic or other mechanical processes, can occur in the 

finer grain size fractions, but less likely than garnets with an original finer size 

distribution in the source rocks. In contrast, garnets of original finer size distribution in 

the source rocks cannot be expected in the coarse grain size fractions. Therefore, it 

can be assumed that lower grade metamorphic garnets, possibly derived from the 

garnet-bearing gneisses, are generally finer, because almandine garnets with higher 

MnO content are more frequent in the finer grain size fractions (Fig. 7). In the ternary 

diagram, only two detrital garnets of the very coarse 500–1000 μm grain size fraction 

overlap with the garnets from the peridotites (Fig. 6c). In the biplots (Fig. 5c), this 

number is slightly higher and also includes grains from the 250–500 μm. Therefore, a 

general coarse grain size of garnets from the garnet peridotites exposed in this area 

can be assumed, as observed in the bedrock sample AK-N24, too. The fact that only 

grains from the coarse grain size fractions show overlap with the garnet peridotite 

(Figs. 5c, 6c) is likely due to the inheritance of grain size from source rock to 

sediment. Alternatively, the peridotites contribute only little detritus to the sediment 
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and the number of 50 garnets measured from the 63–125 μm grain size fraction is 

insufficient to detect them. As an effect of hydraulic sorting during settling, heavy 

minerals concentrate in specific grain size classes (Rubey, 1933; Rittenhouse, 1943; 

Garzanti et al., 2008; Resentini et al., 2013). The specific endmembers of garnet 

show different densities, with the highest density of ~ 4.3 g/cm3 for almandine 

garnets, 4.2 g/cm3 for spessartine garnets and 3.6 g/cm3 for pyrope garnets (Deer et 

al., 1992). Commonly, garnets with a higher density are found in the fine tail of the 

grain size distribution in contrast to less dense garnet species (Schuiling et al., 1985; 

Andò, 2007; Garzanti et al., 2008). Due to the fact that the less dense pyrope-rich 

almandine garnet is more frequent in the coarse grain size fraction, hydraulic sorting 

according to their density can be excluded and it is more likely that this is an effect of 

grain size distribution in the source rocks. 

The short axes of the garnets lie within the expected interval of 63–125 μm, except 

for a few grains. The long axes show a wider distribution in their sizes (> 80–260 μm) 

(Fig. 4; Table 2). Most of the long axes (38%–86%) are longer in size than the sieved 

grain size fraction (Fig. 4; Table 2). This means that a wet-sieved sample is only 

separated by the short axes of the minerals. Therefore, it is possible that grains with 

a short axis of 120 μm and a long axis of 480 μm, for instance, occur in the 63–

125 μm grain size fraction although their average grain size may be around 300 μm. 

The highest concentration of garnet grains occur in the 125–500 μm grain size 

fraction (Fig. 3b). This also points, in contrast to, e.g., apatite, to a generally coarser 

garnet grain size in the source rocks. 

 

6. Conclusions 

The heavy mineral assemblages reflect the geological situation in the area of 

Almklovdalen. The dominant heavy mineral is olivine. From upstream to downstream 

the content of olivine strongly increases, whereas the content of all other heavy 

minerals found in the samples strongly decreases. This is because in the upstream 

part of the sampled river the diversity of potential source rocks is higher than in the 

downstream part of the river where the proportion of dunite and chlorite peridotite is 

much higher. Garnets with high MgO content are more frequent in the coarse grain 

size fractions, which likely result from the inheritance of grain size from source rock 

to sediment. However, only very few garnets of the 250–1000 μm grain size fractions 

show full overlap with the garnets from the garnet peridotite sample. In contrast, 
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garnets with high MnO content are more frequent in the fine grain size fractions. 

Therefore, analysing a wide grain size window is of paramount importance, as also 

discussed in other studies (e.g., Garzanti et al., 2009; Krippner et al., 2015), because 

we can miss information contained in other grain size fractions.  
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Abstract 

We present heavy mineral and garnet geochemical data of recent stream sediments 

and HP‒UHP bedrocks from the Flatraket and Ulvesund bodies and from the island 

of Runde, Western Gneiss Region, SW Norway, to test to what extent the heavy 

minerals and the garnet geochemistry in stream sediments reflect the geological 

situation in the source area. The heavy mineral assemblages of the stream 

sediments contain garnet, green calcic amphibole, and epidote-group minerals, 

which reflect greenschist and higher grade metamorphism in the source area. The 

geochemical data of garnets point to high grade metamorphic conditions. Overall, the 

heavy mineral and garnet geochemical data very well reflect the geological situation 

in the source area, which confirms the application and the importance of heavy 

minerals in sedimentary provenance analysis. Geochemical data of heavy minerals 

usually show a wider distribution in the sediments than the data of heavy minerals 

measured in the bedrocks. However, our results demonstrate that this is not always 

the case. Some garnets measured in the bedrocks, especially lower grade and 

ultrahigh grade metamorphic garnets are only of secondary importance or they are 
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lacking in the sediments. This is probably because lower grade metamorphic 

gneisses, although they are dominant in the source areas, only sporadically contain 

garnets, or because the grain-size of garnets in these rocks is larger than the studied 

grain-size window of the sediments. Ultrahigh grade metamorphic rocks are only 

rarely exposed in the source areas. Therefore, we conclude that detrital minerals 

derived from lower and/or ultrahigh grade metamorphic rocks are diluted by the input 

from garnets of bedrocks containing granulite- and eclogite-facies assemblages, 

which carry high amounts of garnet. 

1. Introduction

Detrital heavy minerals from sediments provide insights in the entire catchment area. 

Several techniques exist to analyse different mineral grains and every single grain 

preserves important palaeographic information about the tectonic and erosional 

history of source areas (e.g., Garzanti et al., 2009; von Eynatten et al., 2012). 

However, numerous interferences can affect the original signal of the grains from the 

source rocks caused by processes during the sedimentary cycle (e.g., Morton and 

Hallsworth, 1999). Therefore, it is particularly important to learn more about these 

processes and to find ways to minimize potential bias. In this study, we sampled 

three different small catchment areas in the Western Gneiss Region in order to test 

the application of heavy minerals and garnet geochemistry for the commonly used 

grain-size fraction of 63‒125 µm. Some studies have shown that a narrow grain size 

can represent misleading short cuts, because through physical processes detrital 

minerals are segregated according to their size, density and shape (Morton and 

Hallsworth, 1999; Garzanti et al., 2008, 2009, 2010), even within a single mineral 

group (Schuiling et al., 1985; Andò, 2007; Garzanti et al., 2008). However, because 

sampling and sample preparation can be very time consuming, we want to test 

whether we are able to state assumptions about the geology of the source area, 

when only one sample is available and if only one grain-size fraction of the sample is 

considered. Garnet is very useful in sedimentary provenance analysis, because it 

exists in many different types of rock and its chemical composition can be correlated 

with the conditions under which the source rocks were formed (e.g., Andó et al., 

2014; Krippner et al., 2014). With increasing pressure and temperature conditions in 

the source area, garnet shows progressive substitution from Mn2+ to Fe2+ and Mg2+ 

(Miyashiro, 1953; Nandi, 1967; Deer et al. 1982; Andó et al., 2014). Therefore, garnet 
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has important provenance applications. However, there exist some overlaps between 

different garnet assemblages, which need to be considered carefully (see Krippner et 

al., 2014). 

2. Geological setting

The Scandinavian Caledonides were formed during the continental collision between 

Baltica and Laurentia under closure of Iapetus Ocean during the Silurian (e.g., 

Roberts and Gee, 1985; Brueckner and van Roermund, 2004; Root et al., 2005, 

Spengler et al., 2009). The Western Gneiss Region (WGR) is generally interpreted to 

represent the westward continuation of the Fennoscandian basement of Baltica. 

During the Scandian phase (435−390 Ma) of the Caledonian orogeny, the subduction 

of Baltica beneath Laurentia produced high-pressure (HP) and ultrahigh-pressure 

(UHP) rocks (Griffin and Brueckner, 1980, 1985; Gebauer et al., 1985; Mørk and 

Mearns, 1986; Andersen et al., 1991; Krabbendam et al., 2000; Terry and Robinson, 

2004). The depth of subduction increases towards the NW (Andersen et al., 1991; 

Brueckner, 1998; Brueckner and van Roermund, 2004; Hacker et al., 2010; Beyer et 

al., 2012) (Fig. 1). Most of the rocks of the WGR consist mainly of granodioritic to 

granitic orthogneisses and are considered to be Baltica basement (Tucker et al., 

1990). The gneisses are predominantly of amphibolite-facies metamorphic grade 

(Bryhni and Andréasson, 1985; Krabbendam and Wain, 1997; Krabbendam et al., 

2000), but in some parts granulite-facies assemblages occur (Griffin et al, 1985; 

Krabbendam et al., 2000). The orthogneisses are locally overlain by pelitic 

paragneisses, but they are only very scarce (Carswell and Cuthbert, 2003). Within 

the gneisses eclogite lenses and pods occur but they make up only 1 vol. % of the 

HP‒UHP terrane (Root et al., 2005). Following the UHP event, rocks of the WGR 

suffered a strong amphibolite-facies recrystallisation. Most of the eclogites are not 

affected by this event, but many of the UHP minerals were replaced by amphibolite-

facies minerals.  
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Fig. 1. Map of the Western Gneiss Region showing ultrahigh-pressure (UHP) domains and peak 

metamorphic temperature isolines (after Root et al., 2005; Kylander-Clark et al., 2008; Wang et al., 

2013). Boxes indicate locations of the study areas. 

3. Sampling areas

Samples were collected from two drainage systems in the Nordfjord-Stadlandet area 

and from the island of Runde off the coast SW of Alesund (Fig. 1). 

3.1 Flatraket 
The Flatraket body (Fig. 2) is located within the UHP domain (Root et al., 2005) and 

the mixed HP‒UHP transition zone (Wain, 1997) and preserves pre-Caledonian 

igneous and granulite-facies assemblages, which experienced no or only little 
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Caledonian deformation (Krabbendam et al., 2000). The main rock type of the 

Flatraket body is micaceous quartzo-feldspathic gneiss with megacrystic K-feldspar 

in its core equilibrated under amphibolite-facies conditions (Krabbendam et al., 

2000). This gneiss is surrounded by a transition zone composed of felsic granulite 

gneisses. Within these gneisses layers and pods of dioritic, anorthositic and mafic 

composition are preserved. The eclogites make up c. 5 % of the Flatraket body and 

are partially retrogressed to amphibolite-facies assemblages. Also the granulite is 

strongly affected by amphibolite-facies retrogression (Krabbendam and Wain, 1997; 

Wain et al., 2001).  

The stream sample (AK-N13-1) was taken where the main river enters the sea (Fig. 

2). Additionally, some source rocks were taken for comparison. Sample AK-N-11 is a 

granulite and sample AK-N-12 is a UHP eclogite taken in outcrop; samples AK-N13-

2a, AK-N13-2b, AK-N13-2c and AK-N13-2d are pebbles taken from the river bed. 

Pebbles AK-N13-2a and AK-N13-2b are of eclogitic composition, samples AK-N13-

2c and AK-N13-2d are gneisses. The geographic coordinates of all samples are 

given in Table 1. 
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Fig. 2. Map showing the locality of stream sample AK-N13-1 and the surrounding geology of the 

Flatraket area (compiled from Krabbendam et al., 2000; Carswell et al., 2003). 
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3.2 Ulvesund body 
The Ulvesund body is located in the HP‒UHP transition zone (Wain, 1997) and is 

mainly composed of medium- and fine-grained garnetiferous felsic gneiss, which 

contains relicts of metamorphic (granulite-, eclogite- and amphibolite-facies) 

assemblages. Ultramafic pods have only minor distribution in comparison to the 

Flatraket body. Most mafic pods are small with well equilibrated eclogite-facies 

assemblages (Krabbendam et al., 2000).  

The Trollebøelva stream sample (AK-N8-1) was taken near the river mouth (Fig. 3). 

Additionally some bedrocks were collected from this area for comparison. Sample 

AK-N9-1 is a granulite taken in outcrop; sample AK-N8-2 is a pebble of eclogitic 

composition collected from the river bed. The geographic coordinates of all samples 

are given in Table 1. 
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Fig. 3. Map showing the locality of stream sample AK-N8-1 and the surrounding geology of the 

Ulvesund area (modified from Krabbendam et al., 2000). 

3.3. Runde 
The island of Runde is located within a UHP domain, which is interpreted to be 

allochthonous relative to the WGR basement (Root et al., 2005; Beyer et al., 2012). 

The main rock type of the island of Runde is quartzo-feldspathic gneiss. The 

allochthonous cover units include different types of rock such as quartzites, marbles, 

calc-silicate gneisses, kyanite schists, augen gneisses, amphibolite and garnet free 
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peridotite, as well as eclogites, which makes this area more heterogeneous than the 

other two catchment areas (Root et al., 2005; Beyer et al., 2012).  

The sample (AK-N37) was taken from the beach on the southern side of the island 

(Fig. 4). Also, two bedrock samples were collected for comparison with the beach 

sample. Sample AK-N38 is an eclogite and sample AK-N39-1 is a garnetiferous 

gneiss taken in outcrop. The geographic coordinates of all samples are given in 

Table 1. 

Fig. 4. Map showing the locality of beach sample AK-N37 and the surrounding geology. Modified from 

a NGU map of Runde island (1:50000) prepared by the NGU map generator 

(http://geo.ngu.no/kart/berggrunn/). The eclogite localities are also indicated (Root et al., 2005; 

Spencer et al., 2013; Bradley R. Hacker, personal communication; own field observations). 

http://geo.ngu.no/kart/berggrunn/
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Table 1. Sample location data (WGS 84) of all samples (stream sediments and hardrocks). 

Sample type Localitiy Northing Easting 
AK-N8-1 stream Ulvesund body 61°56.565' 5°08.809' 
AK-N8-2 pebble Ulvesund body 61°56.565' 5°08.809' 
AK-N9-1 granulite Ulvesund body 61°56.257' 5°08.565' 
AK-N11 granulite E of Flatraket 61°58.703' 5°14.716' 
AK-N12 eclogite (UHP) Flatraket harbour 61°58.710' 5°14.063' 
AK-N13-1 stream Flatraket 61°58.554' 5°13.845' 
AK-N13-2 pebbles Flatraket 61°58.554' 5°13.845' 
AK-N16-1 eclogite Flatraket 61°57.281' 5°12.562' 
AK-N37 beach Runde 62°23.341' 5°38.252' 
AK-N38 eclogite Runde 62°24.212' 5°39.230' 
AK-N39-1 garnet gneiss Runde 62°24.012' 5°39.459' 

4. Methods

Recent fluviatile deposits near or directly at the river mouth were sampled. In 

addition, bedrock samples were collected since they represent the source for the 

detrital material. Bedrocks were taken in outcrop and pebbles were taken directly 

from the river bed. 

Stream sediments were wet-sieved using a sieving machine. After drying, the 63‒125 

µm size fractions were treated with acetic acid to remove the carbonate component if 

present. The heavy mineral fractions were separated using sodium metatungstate 

with a density of 2.85 g/mL. The heavy mineral residues were mounted on 

microscope slides (Mange and Maurer, 1992) using MeltmountTM with a refraction of 

1.66 and identified under the polarising microscope, with the relative abundances 

determined by grain counting. For that, the microscope slide was moved along linear 

traverses and all grains between two parallel lines were counted (i.e. ribbon counting; 

Mange and Maurer, 1992). Two-hundred fifty translucent minerals were point 

counted. Data of all heavy minerals including opaque minerals, micas and unknown 

are given as supplementary data (see Supplementary Table 1) and in a second table 

only groups of transparent minerals are given (see Supplementary Table 2). 

Garnet selection from the stream sediments was achieved by handpicking under a 

binocular microscope. We randomly selected garnet grains of all sizes and 

morphological types and set them in synthetic mounts. From the bedrock samples 

polished thin sections were prepared. Bedrock and stream samples were analysed 

with a JEOL JXA 8900 RL electron microprobe (EMP) equipped with five wavelength 

dispersive spectrometers at the University of Göttingen (Department of 
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Geochemistry, Geoscience Center). Before analysis, all samples were coated with 

carbon to ensure conductivity. Conditions included an accelerating voltage of 15 kV 

and a beam current of 20 nA. The counting times were 15 seconds for Si, Mg, Ca, 

Fe, and Al, and 30 seconds for Ti, Cr, and Mn. Matrix correction was performed using 

ZAF corrections. We preferentially analysed garnet rims and cores. Measurement 

conditions are also given in Table 2. The full database including lithology and 

metamorphic grade are included in Supplementary Table 3. 

 
Table 2. Operating conditions of the electron microprobe for garnet analyses.Count time on the peak 

(in s), Bckg time counting time on background position (in s), DL detection limit (in ppm). 

Spectrometer 1 TAP 1 TAP 2 TAP 3 PETJ 4 PETJ 4 PETJ 5 LIFH 5 LIFH 
Element 
(Line) 

 
Si (Kα) Al (Kα) Mg (Kα) Ca (Kα) Ti (Kα) Cr (Kα) Mn (Kα) Fe (Kα) 

Count time 15 15 15 15 30 30 30 15 
Bckg time 5 5 5 5 15 15 15 5 
Standard Garnet, 

natural 
Garnet, 
natural 

MgO, 
synthetic 

CaSiO3, 
natural 

TiO2, 
synthetic 

Cr2O3, 
synthetic 

Rhodonite, 
natural 

Fe2O3, 
synthetic 

DL 160 138 104 138 113 135 117 216 

          

5. Results 

5.1. Heavy mineral analysis 
Opaque minerals and micas are not considered in the diagram to get the true 

information of the total concentration of transparent heavy minerals.  

Flatraket. The dominant heavy minerals are green calcic amphibole which represents 

36% and epidote-group minerals (epidote, zoisite) which represent 39% of the heavy 

mineral spectrum. Here, zoisite is the most dominant mineral. Garnet, pyroxene, 

apatite, and stable minerals (zircon, tourmaline, and rutile) occur in minor 

percentages. Olivine, titanite and kyanite occur only in low percentages and are 

therefore grouped as ‘others’ (Fig. 5). 

Ulvesund body. The dominant heavy mineral is garnet, which represents 73% of the 

heavy mineral spectrum. Green calcic amphibole, epidote-group and apatite occur in 

relatively high percentages. Pyroxene and stable minerals (zircon, tourmaline, and 

rutile) occur only in minor percentages. Kyanite occurs only in very low percentages 

and is therefore grouped as ‘others’ (Fig. 5).  

Runde. The dominant heavy minerals are garnet, which represents 30%, and green 

calcic amphibole, which represents 45% of the heavy mineral spectrum. Epidote 
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group minerals, pyroxene, apatite, and stable minerals (zircon, tourmaline, and rutile) 

occur in minor percentages. Olivine, titanite and kyanite occur only in low 

percentages and are therefore grouped as ‘others’ (Fig. 5). Opaque minerals and 

micas are not considered in the diagram to get the true information of the total 

concentration of transparent heavy minerals (HM). 

 

 
Fig. 5. Heavy mineral assemblages of sediment samples from the three catchment areas. Epidote-

group: epidote, zoisite; ultrastable minerals: zircon, rutile, tourmaline; others: olivine, titanite, kyanite. 

 

5.2. Garnet geochemistry 
The composition of garnets is illustrated in the ternary classification diagram of 

Mange and Morton (2007) using almandine + spessartine, pyrope, and grossular as 

poles, and the discrimination fields A, B, Bi, Ci, Cii, and D (Fig. 6). This diagram has 

widely been applied in a number of garnet provenance studies (e.g., Whitham et al., 

2004; Morton et al., 2005; Mange and Morton, 2007; Meinhold et al., 2010; Morton et 

al., 2011). 

Flatraket 

Garnets of sample AK-N13-2a overlap three compositional fields (A, Ci, and Cii) but 

most of them are type A garnets (Fig. 6a). Most of the garnets from sample AK-N12 

are type Cii garnets, some of them also plot in field Ci. Garnets of samples AK-N13-

2b, AK-N13-2d, and AK-N11 plot in field Ci. Garnets of sample N-16 plot in field Ci 

and field B. Garnets of sample AK-N13-2c are type B garnets. Most of the garnets 
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from the stream sediment are type Ci garnets (83%). Some of the garnets also plot in 

fields A (9%), B (5%), Bi (2%), and Cii (1%).  

Ulvesund body 

Garnets of samples AK-N8-2 and AK-N9-1 are both type Ci garnets (Fig. 6b). Nearly 

all of the garnets from the stream sediment are type Ci garnets (95%). Few garnets 

also plot in fields A (1%), Bi (1%), and Bi (3%). 

Runde 

Garnets of sample AK-N39-1 plot in fields Bi and A (Fig. 6c). Garnets of sample AK-

N38 plot in field Ci. Nearly all of the garnets from the stream sediment are type Ci 

garnets (85%). Few garnets also plot in fields A (8%) and B (7%). 

 

 
Fig. 6. Composition of garnets in the ternary classification diagram of Mange and Morton (2007) with 

almandine+spessartine, grossular and pyrope as poles. A) Composition of detrital garnets from the 

stream sediment and from the bedrock samples from Flatraket. B) Composition of detrital garnets from 

the stream sediment and from the bedrock samples from the Ulvesund body. C) Composition of 

detrital garnets from the stream sediment and from the bedrock samples from the island of Runde. A – 

mainly from high-grade granulite-facies metasedimentary rocks or charnockites and intermediate felsic 

igneous rocks, B – amphibolite-facies metasedimentary rocks, Bi – intermediate to felsic igneous 

rocks, Ci – mainly from high-grade mafic rocks, Cii – ultramafics with high Mg (pyroxenites and 

peridotites), D – metasomatic rocks, very low-grade metamafic rocks and ultrahigh-temperature 

metamorphosed calc-silicate granulites. 

 



130 

 

6. Discussion 

Overall, the heavy mineral association and garnet geochemical data reflect the 

geological setting of the study area, but some garnets measured in the bedrocks are 

lacking in the sediments. Detrital heavy minerals commonly reflect very well the 

situation in the source area. Geochemical data of heavy minerals often show a wider 

distribution in the sediments than the data of heavy minerals measured in the 

bedrocks, because it is not always possible to sample all outcrop rocks due to difficult 

conditions in the source area. Our results reveal that this is not always the case.  

The detrital garnets from all three study areas in SW Norway reflect high-pressure 

conditions in the source area since almost all the garnets plot in field Ci, the field for 

higher grade metamorphic garnets. A few detrital garnets show UHP conditions in the 

source area.  

The heavy mineral assemblages from Flatraket, Ulvesund, and Runde are 

comparable with garnet, green calcic amphibole and epidote-group minerals being 

the dominant heavy minerals, which reflect greenschist and higher grade 

metamorphism in the source area. The dominant heavy minerals in the stream 

sample from Flatraket are green calcic amphibole and epidote-group minerals 

(almost 70% of the HM spectrum), which reflect the amphibolite-facies assemblages 

of the surrounding gneisses (Krabbendam et al., 2000) (Supplementary Table 4). 

Garnet and pyroxene can be linked to the granulite- and eclogite-facies gneisses and 

mafic layers and pods (Supplementary Table 4), which are widespread distributed 

within the gneisses. The geochemical data show that the eclogites and granulites are 

the main source of the detrital garnets. The garnets of the amphibolite-facies 

gneisses are not well preserved in the stream sediment, probably because the 

gneisses only locally contain garnet grains. None of the garnets of the stream 

sediment sample from Flatraket overlap with the garnets of the gneiss pebble 

(sample AK-N13-2c). This possibly results from the coarser grain-sizes of garnets in 

this sample. The garnet grains of sample AK-N13-2c are often coarser than 500 µm 

(Supplementary Table 5).  

The dominant heavy mineral of the sample from the Ulvesund body is garnet, which 

makes up more than 60 % of the entire heavy mineral spectra. Most of the Ulvesund 

body comprises medium- and fine-grained garnetiferous felsic gneiss with dominantly 

amphibolite-facies assemblages, which represent remnants of granulite-facies 

assemblages. The geochemical data of the detrital garnets reflect higher grade 
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metamorphic conditions, because almost all of the detrital garnets plot in field Ci. In 

many samples a slight decrease of MgO from core to rim is visible, which shows that 

the garnets are affected by retrogression, but this is only marginally significant. The 

results point to granulite-facies metamorphism in the source area. Also, garnets 

measured in the bedrocks show higher grade metamorphic conditions. In summary, 

the heavy mineral spectrum and the geochemical data from the stream sample of the 

Ulvesund body show a high input from rocks of granulite- and eclogite-facies 

assemblages. 

The heavy mineral spectrum of Runde is dominated by garnet and green calcic 

amphibole. The allochthonous cover units experienced high-pressure amphibolite-

facies and a low-pressure granulite facies overprint (Root et al., 2005). The 

geochemical data of the detrital garnets show that the garnets are derived from high-

grade metamorphic rocks, since they overlap with garnets measured in the eclogite. 

Some of the detrital garnets are derived from lower grade metamorphic rocks such 

as amphibolite-facies metasedimentary rocks and can probably be linked to the 

allochthonous cover units. There are also two type Cii garnets, which point to UHP 

conditions in the source area. This fits with the results from Root et al. (2004) who 

identified relict coesite (a UHP indicator mineral) in the core of garnets from an 

eclogite collected from Runde. None of the garnets of the stream sediment sample 

from Runde overlap with the garnets of the garnet gneiss (sample AK-N39-1). This 

possibly results from the coarser grain-sizes of garnets in this sample 

(Supplementary Table S5). The heavy mineral assemblages are similar in Flatraket, 

Ulvesund and Runde, and only vary in proportions, probably depending on the 

distribution of their source rocks in the catchment area. The garnet composition of all 

samples shows a high degree of overlap since most of the garnets plot in field Ci with 

minor type Cii, type A, type B, and type Bi garnets. UHP pressure conditions are only 

evident in the stream sample of Flatraket and the beach sample of Runde. From both 

locations, eclogites containing relict coesite inclusions in garnets are known, which 

points to UHP conditions in each of these areas. UHP conditions are not evident in 

the garnets of rocks from the Ulvesund body. This is consistent with the lack of 

evidence for UHP eclogites in this area. Because the UHP eclogites of Flatraket and 

Runde are rather exceptional, garnets from these rocks, if any, only rarely occur in 

the sediment. Nonetheless, very few detrital garnets point to these UHP rocks.  
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The Trollebøelva stream drains the granulite of the Ulvesund body (Fig. 3), which 

explains the high input of garnet grains, which in turn reflects the high-pressure 

conditions in this area. Type B garnets are most evident in the sample from Runde. 

This is not surprising because garnet is common in the metasedimentary units of the 

allochthonous cover units in contrast to the amphibolite-facies gneisses of the 

basement. Therefore, the content of lower grade metamorphic garnet is higher on the 

island of Runde in contrast to the other two study areas. There, the input of lower 

grade metamorphic garnet may be diluted by the high input of higher grade 

metamorphic garnet, because the content of garnet is higher in the rocks with 

granulite- and eclogite-facies assemblages. Also possible is the grain-size 

inheritance from source to sediment, as some samples of the amphibolite-facies 

gneisses have large garnet grains (>125 µm in size) and are therefore not evident in 

the analysed grain-size fraction from 63–125 µm (Supplementary Table 5). 

 

7. Conclusions 

The heavy mineral and garnet geochemical data very well reflect the geological 

situation in all three study areas. The dominant rock type in the areas is layered 

micaceous quartzo-feldspathic gneiss. The gneisses show amphibolite-facies 

assemblages of green calcic amphibole ± epidote-group and ± garnet (Krabbendam 

et al., 2000), which is evident in the heavy mineral spectra. In the three study areas, 

most of the garnets are derived from higher grade metamorphic rocks such as 

eclogites and granulites, because these rocks have a high content of garnet in 

contrast to the amphibolite-facies gneisses, which mainly contain green calcic 

amphibole, epidote-group minerals and only locally garnets. This is most seen in the 

sample from the Ulvesund body where the stream drains the granulite, which carries 

huge amounts of garnet grains. However, some detrital garnets cannot be linked to 

the garnets analysed in the bedrocks, especially garnets derived from amphibolite-

facies gneisses. On one hand, this may be due to dilution by strong influx of garnets 

from higher grade metamorphic rocks, but, on the other hand, this may result from 

the original coarser grain-size of garnets in the host rocks. Even though UHP 

eclogites are only very rarely exposed in the study area, they are evident in the 

detrital garnets of Flatraket and Runde. With only little effort (one sample per stream) 

it is possible to get a relatively clear picture about the study area. However, to 

maximise the amount of provenance information, a larger number of samples from a 
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variety of locations should be used, as well as a wide grain-size range (see Krippner 

et al., 2015). Nevertheless, our results underline the applicability of heavy minerals 

and the power of garnet geochemistry in sedimentary provenance analysis 
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Chapter VI: 

A step-wise classification scheme of garnets for 
sedimentary provenance analysis: An Approach 

1. Introduction

The composition of garnets has been discussed in several publications (e.g., Mange 

and Morton 2007; Aubrecht et al., 2009). In these publications garnet is mainly 

classified from different rock types in binary and ternary diagrams using major 

elements or endmembers of garnets as poles. Commonly the major elements MgO, 

MnO, FeO, and CaO are used to discriminate garnets from different rock types, 

because generally these elements show the highest variability (e.g., Wright 1938; 

Krippner et al., 2014 and references therein). Differences in composition have 

several reasons as described in Chapter II. A clear distinction of garnets from 

different host rocks is not possible, because garnets show much overlap as also 

described in Chapter II. The aim is to establish a new classification, which allows the 

allocation of detrital garnets to a specific host rock with the highest probability. Before 

it is possible to assign a detrital garnet to a specific rock type with the highest 

probability, it is needed that we test the potential of discriminating garnets from which 

the host rock is known. In this Chapter we have a look which elements are most 

useful to discriminate between the several garnet-bearing groups and present first 

ideas about the compilation of our garnet data and a step-wise classification of 

garnets. For this we use the data from our compiled database (Appendix A).  

2. Database compilation

In a first step, we divide the garnets of the database in specific groups, here 

described as group A, B, C, D, E1, E2, E3, E4, and F. Group A comprises garnets 

from eclogites, B from amphibolites, C from granulites, D from ultramafic rocks such 

as peridotites, groups E1, E2, E3, E4 from magmatic rocks and F from greenschist-

facies metasedimentary rocks (Appendix A). Based on studies some groups of 

garnets show a high degree of overlap which makes discrimination based on major 
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elements difficult or even impossible. These are mainly garnets from magmatic rocks, 

which show high overlap with garnets from metamorphic rocks. The only group of 

garnets which shows a characteristic signature is group E1 (e.g., Wright et al., 1938, 

Krippner et al., 2014 and references therein), those garnets from felsic plutonic rocks 

(Appendix A). Discrimination of group F and group B garnets is also not possible as 

they show a high degree of overlap. Based on these findings five groups have been 

crystallised for classifying garnets. These are groups A, B, C, D, and E1. Due to the 

fact that garnets are not very common or only rarely found in rocks of groups E2, E3, 

E4, these groups can be disregarded and can be excluded from the analysis. Group 

B and F may be summarised as “Barrovian type” garnets (group B).  

 

3. Methodological approach for discriminating groups of garnets 

The discrimination of the groups is progressive and is according to the pattern as 

shown in Figure 1. In a first step, we discriminate group D from the rest of the groups 

(A, B, C, and E1 = summarised as group all), because garnets of group D generally 

have higher Cr2O3 contents than garnets from the other groups, which commonly 

have no or very less Cr2O3 contents and can be therefore easily identified. The 

remaining groups are group A, B, C, and E1. In a second step, we discriminate 

garnets of group E1 from group A, B, and C = summarised as group metamorph). 

Group E1 commonly has a higher Mn/Fe ratio than the other garnets and can be 

identified with a relatively high probability. Discrimination of groups A, B, and C is 

even more challenging, because these garnets commonly show high overlap. 

Therefore, a strict separation is not possible, but in this model we want to make an 

attempt to assign the garnet grain to its specific group with a certain probability.  

 



140 

 

 
 
Fig.1. Classification tree for discriminating garnets of groups D, E1, A, B, and C. 

 

4. Multivariate statistical approach 

Compositional data are proportions of some whole. That means that their relative 

portions summing up to 1 or 100 % (van den Boogaart and Tolosana-Delegado, 

2013). The dataset provided in this paper comprises compositional data; the portions 

of the major elements in the garnet. Compositions are multivariate by nature and 

there are several techniques for analysing the data (van den Boogaart and Tolosana-

Delegado, 2013). In this study, we analyse our data by using discriminant analysis in 

order to gain information about compositional variations of the specific garnet groups 

and to determine which variables are important to discriminate between groups. 

Additive log-ratio transform (alr) was conducted in R for major elements. The alr log-

ratio transform is calculated as: 
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5. Discrimination of garnets from ultramafic rocks (group D) from 
garnets derived from metamorphic (group A, B, C) and magmatic 
rocks (E1) 

For discrimination of group D from groups A, B, C, and E1 (group all) the major 

elements SiO2, Al2O3, MgO, FeO, MnO, CaO, and Cr2O3 are used. Cr2O3 mainly 

consists of zero values in most of the groups, because the amount is below the 

detection limit. Here, we assume a detection limit of 200 pm for Cr2O3. This means 

that every garnet grain is assigned to one of the two groups: “True” = yes (above 

detection limit) or “False” = no (below detection limit). The result demonstrates that a 

garnet with a Cr2O3 content of >200 ppm most probably belongs to group D. If the 

Cr2O3 content is >200 ppm the garnets can be either assigned to group D or group all 

(Fig. 2). The result also shows that there are only very few garnet grains in group all 

with a Cr2O3 content of >200 ppm (Fig. 2). Therefore the content of Cr2O3 is very 

important to discriminate mantle-derived garnets from other metamorphic or 

magmatic garnets (see also Grütter et al., 2004).  

 
Fig. 2. Mosaicplot of Cr2O3 content (Cr2O3>200 ppm or Cr2O3<200ppm) for garnets of groups D and 

all. The detection limit amounts 200 ppm. no: Cr2O3 content is below detection limit of 200 ppm; yes: 

Cr2O3 content is above detection limit. 

 

A boxplot of the individual variables helps to analyse the variations and agreements 

of the used major elements in the garnets within the groups. It is useful for the 

selection of elements which are helpful for discrimination between the different 
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groups. The elements with the greatest variation between the groups should be 

selected for discrimination. For example Al2O3 and SiO2 show a high agreement or 

overlap and are therefore not helpful for discrimination. In this case, MgO and FeO 

show the highest variation in both groups (Fig. 3). 

 

 
Fig. 3. Boxplots of major element variations (SiO2, Al2O3, MnO, FeO, CaO, MgO) for the groups D and 

all. 

 

The histogram shows the Mg/Fe value of group all (above) and of group D (below) 

(Fig. 4). The histogram demonstrates that the ratio is different between the groups 

and therefore significant for discriminating garnets of group D from other garnets 

(Fig. 4). 
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Fig. 4. Histogram showing the Mg/Fe values of group all garnets (above) and group D garnets 

(below). 

 

6. Discrimination of garnets from magmatic rocks (group E1) from 
garnets from metamorphic rocks (groups A, B, and C) 

For discrimination group E1 from groups A, B, and C (summarised as group 

metamorph) the major elements SiO2, Al2O3, MgO, FeO, MnO, CaO are used. The 

boxplots demonstrate  that Al2O3 and FeO show a high agreement or overlap and are 

not helpful for discrimination. In this case, MnO and FeO show the highest variation 

in both groups (Fig. 5). 
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Fig. 5. Boxplots of major element variations (SiO2, Al2O3, MnO, FeO, CaO, MgO) for the groups E1 

and metamorph. 

 

The histogram shows the Mn/Fe value of group metamorph (above) and of group E1 

(below) (Fig. 6). The histogram demonstrates that the ratio is different between the 

groups and therefore significant for discriminating garnets of group E1 from other 

garnets (Fig. 6). 
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Fig. 6. Histogram showing the Mn/Fe values of group metamorph garnets (above) and group E1 

garnets (below). 

 

7. Discrimination of garnets from eclogites (group A), amphibolites 
(group B) and granulites (group C) 

For discrimination between groups A, B, and C, the major elements SiO2, Al2O3, 

MgO, FeO, MnO, CaO are used.  

The boxplot demonstrates that most of the elements of the different groups show 

high overlap. The most significant variations are shown by MgO and FeO (Fig. 7).   
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Fig. 7. Boxplots of major element variations (SiO2, Al2O3, MnO, FeO, CaO, MgO) for the groups A, B, 

and C. 

 

The histogram shows the Mg/Fe values of groups A, B, and C, which show high 

overlap with only slight differences (Fig. 8). 
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Fig. 8. Histogram showing the Mg/Fe values of groups A (above), B (middle), and C (below). 

 

8. Summary 

The results show the potential of discriminating between garnets from different 

garnet-bearing rocks. In particular, garnets from peridotites, as well as garnets from 

felsic plutonic rocks can be relatively clear separated from other garnet types. 

However, discrimination of garnets derived from different metamorphic rocks remains 

difficult. A general trend to higher MgO content with higher metamorphic grade can 

be observed, but a distinction is rather impossible. The results determine the limits of 

discrimination of different metamorphic garnets based on major elements. Therefore, 

it seems more appropriate to use confidence intervals and probability density 

distributions based on multivariate statistical analysis, than binary and ternary plots, 

where the discrimination fields between various garnet types are drawn as strict 

boundaries by solid lines.  
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SUMMARY, CONCLUSIONS AND OUTLOOK 
 

Summary and Conclusions 

Stream sediments preserve the geochemical record of a source region. The 

completeness of this record depends on the drainage system and on several 

processes operating during the sedimentary cycle. This PhD thesis investigates the 

application of garnet geochemistry in sedimentary provenance analysis.  

Recent stream sediments and adjacent bedrocks from the Tauern window in Austria 

and the Western Gneiss Region in Norway have been sampled in order to study the 

source-to-sink relation, which have shown that garnet very well reflect the geological 

situation the source area. Our results underline the applicability of heavy minerals 

and the power of garnet geochemistry in sedimentary provenance analysis, but the 

results identified constraints and limits in its application, which need to be considered 

carefully. The discrimination of different garnet types based on major element 

composition is feasible, but remains difficult. Our main results and conclusions are as 

follows: 

 

1. Currently available discrimination diagrams for garnet are imprecise in clearly 

identifying the host rock of garnet. 

 

2. The success rates of correct and unambiguous classification being <50% for 

several garnet groups. Many garnets of our large database plot outside their 

proposed compositional fields. Discrimination works very well for garnets 

derived from peridotites, felsic magmatic rocks, and also from granulite-facies 

sedimentary rocks. 

 

3. Discrimination of garnets based on major elements derived from different 

metamorphic rocks, such as amphibolites, granulites, and eclogites remains 

difficult. 

 

4. Some heavy minerals are more frequent in the fine tail of the grain-size 

distribution and some heavy minerals are more frequent in the coarse tail of 
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the grain-size distribution, probably related to mineral grain-sizes in the source 

rocks.  

 

5. Our results demonstrate, that the proportion of grossular is higher in the 

smaller grain-sizes, whereas the proportion of pyrope is higher in the coarser 

grain-size fractions, which probably results from the inheritance of grain-size 

from host rock to sediment. Due to the fact that grossular-rich garnet is less 

dense than other garnet species, a hydraulic effect is less likely than by the 

original finer grain-size distribution in the source rock, because less dense 

garnet-species are commonly found in the coarse tail of the grain-size 

distribution.  

 

6. An influence of rock types, which are only rarely present in the study area, can 

be missed in the sediments when only a few samples are available. This is the 

same case with minerals, which can be missed in a specific grain-size range 

and therefore lead to misleading results.  

 

7. The sample location and the studied grain-size fraction are of paramount 

importance in sedimentary provenance analysis, because necessary 

information may not be recorded and data are likely being misinterpreted.  

 

Many studies are dealing with the application of the geochemistry of garnets, which 

indicates the interests in the heavy mineral and its applicability in sedimentary 

provenance analysis. The results of this study underline its important role in 

sedimentary and petrological studies and confirm the general strength and potential 

of garnet geochemistry for sedimentary provenance analysis. With only little amount 

of sample material, it is possible to get a relatively clear picture about the study area, 

what makes this mineral so interesting for provenance research, besides the 

ultrastable minerals zircon, rutile, and tourmaline and why further investigations are 

worthwhile. Nevertheless, an allocation of garnets to its specific host rock based on 

major elements remains unlikely to be resolved for the main garnet-bearing 

metamorphic rocks.  
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Outlook 

Discrimination of different garnet suites based on major elements remains difficult. A 

statistical approach is still in process to obtain a better discrimination of garnet 

groups in the future. Of course, no statistical approach can solve the problems of 

overlap, but a multivariate statistical model based on more than 2 or 3 variables that 

go beyond strict boundaries between compositional fields by providing probabilities is 

considered most helpful to successfully improve discrimination of a wide range of 

garnet-bearing source rocks. The more overlap exist between different groups (which 

is expected for several garnet-bearing rock types) the more necessary is a 

probabilistic approach that assigns to each composition a probability of belonging to 

one of the source-rock types. 

In a further step, which is still in process, we want to establish a new classification 

scheme which goes beyond strict boundaries and which allows the allocation of 

detrital garnets to a specific host rock with the highest probability. For this the data 

shall be analysed by using discriminant analysis in order to gain information about 

compositional variations of the specific garnet groups. However, before it is possible 

to assign a detrital garnet to a specific rock type with the highest probability, it is 

needed that we test the potential of discriminating garnets from which the host rock is 

known. Chapter 6 presents the first ideas and first investigations for a step wise 

classification of garnets derived from different rock types. 
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