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Abstract

Hundreds of databases offer vast amounts of literature knowledge about bio-
logical signaling networks. However, this knowledge is rarely integrated into
current bioinformatic analyzes due to challenges in the programmatic access
and transformation of this data. This thesis focuses on the integration of prior
knowledge into methods for network reconstruction. The motivation is to im-
prove the performance of bioinformatic algorithms and methods by facilitating
the integration of available pathway data as prior knowledge.

First, the fundamentals of biological networks and pathways, their encoding
using ontologies, methods for network reconstruction, and high-throughput
gene expression technologies are introduced.

Three central results are presented in this work: First, the novel software
package rBiopaxParser, which enables the generic import of BioPAX-encoded
pathway databases into the R Project for Statistical Computing. An overview
of the functionality, the internal data model and visulization options is given.
Second, a proof-of-concept implementation of the transformation and merging
of pathway data to be used as prior knowledge for methods for network re-
construction is presented. The interactomes, the entirety of interactions, of
three databases, Reactome, Pathway Interaction Database, and BioCarta, are
generated and merged as a basis for prior pathway knowledge. Third, network
reconstruction using Nested Effects Models is performed based on the generated
prior knowledge networks and experimental high-throughput data of 16 gene
knockdowns in breast cancer cell lines.

Finally, this thesis compares the implemented software to similar concurrent
developments and discusses the generated prior knowledge and the results of
network reconstruction.



Zusammenfassung

Über 300 Datenbanken bietet Zugang zu dem unüberschaubaren Literaturwissen
über biologische Signalnetze. Derzeit wird dieses Vorwissen, aufgrund von
Hindernissen beim programmatischen Zugriff und der weiteren Verarbeitung,
nur selten in bioinformatischen Analysen eingesetzt. Der Fokus dieser Arbeit
liegt in der Integration von Vorwissen in Methoden zur Netzwerkrekonstruktion.
Das Ziel hierbei ist, die Ergebnisse von bioinformatischen Algorithmen und
Methoden zu verbessern, indem die Integration von verfügbarem Vorwissen
vereinfacht wird.

Zuerst werden in dieser Arbeit die Grundlagen von biologischen Netzwer-
ken und Signalwegen, sowie ihre Kodierung mittels Ontologien, eingeführt.
Desweiteren werden Methoden zur Netzwerkrekonstruktion und Hochdurchsatz-
Technologien zur Messung von Genexpressionsdaten beschrieben.

Drei zentrale Ergebnisse werden in dieser Arbeit beschrieben: Das erste Er-
gebnis ist die Implementierung des Open Source Softwarepakets rBiopaxParser
für das R Project for Statistical Computing. Es wird ein Überblick über das R-
Paket, welches den Import von BioPAX-kodierten Pathwaydatenbanken erlaubt,
das interne Datenmodell und die Visualisierungsoptionen gegeben. Das zweite
Ergebnis ist die beispielhafte Implementierung eines Workflows für das Einle-
sen, die Transformation und das Zusammenführen von Pathwaydatenbanken,
welches für die Erstellung von Vorwissen für Netzwerkrekonstruktionsverfahren
benötigt wird. Hierbei werden die Interaktome, die Gesamtheit aller Interaktio-
nen, der drei Pathwaydatenbanken Reactome, Pathway Interaction Database
und BioCarta, konstruiert und als Basis für Vorwissen zusammengeführt. Das
dritte Ergebnis ist schließlich die Anwendung von Nested Effects Models zur
Netzwerkrekonstruktion basierend auf den generierten Vorwissennetzwerken
und experimentellen Daten von 16 Gen-Knockdowns in Brustkrebs-Zelllinien.

Anschließend werden in dieser Arbeit dem implementierten Softwarepaket
ähnliche Entwicklungen gegenübergestellt. Desweiteren werden der Workflow,
das generierte Vorwissen, sowie die Ergebnisse der Netzwerkrekonstruktion
diskutiert.
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Chapter 1

Introduction

“Cells are the intrinsic center of health and disease.” (Virchow,

1855)

This insight was announced by Rudolph Virchow, generally acknowledged

as the father of modern pathology, as early as 1855. Decoding the interactions

within a cell therefore leads to a new understanding of diseases. Deciphering

the inner workings of living cells fascinates researchers all over the world.

However, the processes within each cell are highly complex, with countless

participants constantly interacting via biochemical reactions, signaling cascades

and feedback loops.

Knowledge about these processes can be organized into so-called ”pathways”

by grouping sets of interactions which share a common goal or function (Alberts,

2008). Two examples are the apoptosis pathway (Kerr et al., 1972), which

includes the cell signaling cascade that leads to programmed cell death, and

the glycolysis pathway (Meyerhof, 1927), a metabolic process in which glucose

is degraded and leads to a gain in energy-rich molecules within the cell. In fact

wall charts, huge poster prints with detailed data on metabolic processes within

the cell, cover many laboratory walls across the world (Miura and Duncan,

1973). Due to the directed nature of signaling and catalytic processes, pathways

are often depicted computationally in the manner of directed graphs (Kohn,

1999).

Methods for network reconstruction are approaches to infer the graph

structure of pathways from experimental data (Tresch and Markowetz, 2008),
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enabling researchers to extend the current pathway knowledge. One possible

approach to network reconstruction derives the interactions of genes by com-

paring expression profiles between perturbed and untreated samples (Fröhlich

et al., 2009). Furthermore, a number of methods for network reconstruction

are able to integrate prior knowledge into their computations and thus improve

the power or robustness of their predictions (Fröhlich et al., 2007a; Mukherjee

and Speed, 2008).

Over the course of the last decades an enormous amount of knowledge on

molecular interactions within cells has been accumulated. These insights range

from the assembly of molecular complexes from single proteins, to the catalysis

of biochemical reactions and the signaling cascades triggering certain functions

within the cell. A meta-database on pathway databases, pathguide.org (Bader

et al., 2006), currently contains links to over 300 databases which collect and

curate knowledge on biological pathways.

Methods for network reconstruction can be used to infer the topology of a

cellular network from biological experiments, which are measured using high-

throughput technology (Markowetz and Spang, 2007). Literature knowledge of

molecular interactions might overlap with the reconstructed network. Integrat-

ing relevant parts of this literature knowledge as a prior knowledge network

can enhance the performance of network reconstruction (Fröhlich et al., 2007a).

The motivation of this thesis is to facilitate the integration of multiple

pathway data sources as prior knowledge for methods for network reconstruction.

Furthermore, the influence of these computationally merged data sources are

evaluated.
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1.1 Aims and Organization of the Thesis

The specific aims of this thesis, in order to integrate multiple pathway data

sources as prior knowledge for network reconstruction, are:

A1

First, to enable the access to and the interoperability of pathway data

from different data sources. This warrants the integration of biological

knowledge from pathway databases encoded in an ontology into the R

Project for Statistical Computing. This aim is accomplished by the

implementation of a new software package rBiopaxParser.

A2

Second, the computational transformation and merging of available path-

way data. Here, a proof-of-concept for the transformation and merging

of pathway data from different sources is provided. This aim is reached

by applying the newly-developed software to existing pathway databases

and compiling a consensus network.

A3

Third, to implement a workflow for the integration of pathway knowledge

into methods for network reconstruction. An exemplary reconstruction of

a gene network is performed, integrating the merged consensus network

into methods for network reconstruction.

A4

Fourth, to evaluate the results of network reconstruction with and with-

out integrated prior knowledge. This evaluation of the performance of

methods for network reconstruction is assessed based on the results of the

exemplary reconstruction with and without integrated prior knowledge.

Figure 1.1 depicts the underlying workflow of the methods used within this

thesis: Gene perturbations, i.e. knockdowns of genes in cell line samples, are

measured using microarrays. This data is analyzed and used as input for the

network reconstruction algorithm. Literature knowledge, stored in pathway

databases and encoded using an ontology, is parsed and transformed into a
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directed graph, representing the interactions between the perturbed genes. The

experimental data and the generated prior knowledge network are used as input

for Nested Effects Models (NEMs) to reconstruct the network topology of the

perturbed genes.

Nested
Effects
Model

Gene 
Perturbations

Microarray
Data

Network
Reconstruction

Reconstructed
Network

Pathway 
Databases

Prior Consensus
Network

FIGURE 1.1 Detailed workflow of integrating prior knowledge into methods for network
reconstruction.

This thesis touches upon different areas of computer science, statistics,

bioinformatics and computational biology. Understanding the underlying

mechanisms, for example modeling knowledge via ontologies, or measuring gene

expression via microarrays, is a prerequisite.

The current Chapter 1, Introduction, covers the most relevant aspects of

biology, computer science and statistical bioinformatics for this thesis. In

Section 1.2, biological pathways and their organization and structure are

introduced. Section 1.3 describes high-throughput technologies used to measure

experimental gene expression data. Afterwards, Section 1.4 covers ontologies

as a way to model knowledge of a specific domain. Section 1.5 presents the

workings of methods for network reconstruction along with a general overview

of published methods.

Chapter 2 Materials and Methods covers the methods, software and model-

ing approaches used within this thesis as well as the experimental data used to

conduct network reconstruction. First, Section 2.1 presents BioPAX, a widely

used ontology to model pathway knowledge. Here, an overview on pathway

modeling approaches is given. Furthermore, a number of pathway databases
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which collect and curate biological pathway knowledge are presented. Second,

Nested Effects Models (NEMs), a framework of methods for network reconstruc-

tion, are covered in Section 2.2. The section explains in detail how a pathway

topology is reconstructed by analyzing gene expression data. Section 2.3 details

the experimental data and reveals the setup of the perturbation experiments

used within this thesis. Finally, Section 2.4 introduces the R Project for Statis-

tical Computing, a language and programming environment. This section also

describes several R software packages implementing NEMs as well as functions

to perform statistical bioinformatic analyzes.

These methods act as a foundation for my own work, presented in Chap-

ter 3 Results. These results describe in detail how the aims defined for this

thesis were reached. The three central and novel results are described in the

following sections: In the first section of Chapter 3, the new R software package

rBiopaxParser is introduced in detail. The focus of this section lies on the

workflow, how BioPAX pathway data is parsed, the internal data model and

how this data can be accessed and visualized. This section fulfills the first

aim A1, to integrate biological knowledge into the R Project for Statistical

Computing. In Section 3.2 Prior Knowledge Generation, the merging of several

BioPAX databases and their transformations into suitable prior knowledge

input is described. This section offers a solution for the second aim A2, as a

proof-of-concept for the merging of pathway data from different databases using

the newly implemented R package. Network Reconstruction, the last section

of Chapter 3, applies NEMs to reconstruct networks from experimental data

integrating prior knowledge parsed from different pathway databases, which

fulfills the third aim A3.

The achieved results are assessed in Chapter 4 Discussion, weighing the pros

and cons of the used methods, the workflow implementation and the results of

network reconstruction. Section 4.1 discusses the data modeling format BioPAX

and compares the R package rBiopaxParser to similar available approaches.

In Section 4.2 Prior Knowledge Generation, the used data sources and the

steps towards merging a consensus prior network from literature knowledge are

analyzed. The last section of this chapter, Section 4.3 Network Reconstruction,

evaluates the reconstructed network with respect to differences in the results

for network reconstruction with and without integrated prior knowledge. The
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evaluation of the results in Chapter 4 Discussion, accomplishes the fourth aim

A4 of the thesis.

Finally, Chapter 5 Conclusion rounds off the work described within this

thesis and mentions (con-)current developments in the fields of standardization

of pathway modeling formats, pathway databases and computational pathway

generation.

1.2 Biological Networks and Pathways

The mechanisms of the inner cell are commonly described using the path-

way representation. In biological terms a ”pathway” is used to describe a

collection of processes within a cell that lead to one or more actions. The

graphical representation of these processes enables the reader to understand

complex relationships and interactions much more easily compared to free-text

descriptions (Kohn, 1999). Pathways are a way of organizing the multitude of

cellular processes and events into modules responsible for a certain process of

a higher abstraction level (Novère et al., 2009), for example cell proliferation

or cell death. While there is usually agreement on the existence and function

of these high-level processes, the specific molecules and their interactions are

often disputed and a matter of current research. The following sections aim to

give the reader an idea of the organization of common pathways as well as to

illustrate examplary pathways.

While the nomenclature in literature often differs, usually pathways are

divided into three subgroups: Metabolic pathways, signaling pathways and

regulation of gene expression. Within this introduction of the biological fun-

daments the general nomenclature of Karp (2010) and Alberts (2008) is used,

which define metabolic pathways as series of chemical reactions with educts

and products, while signaling pathways are defined as cascades of molecular

interactions and cellular processes.

Graphical representations of pathways often contain not only processes

subject to only one of these pathway groups, but incorporate signaling events

as well as regulatory events and biochemical processes. The graphical repre-

sentation of pathways commonly includes a multitude of biological processes,

for example: Biochemical reactions of metabolites, the assembly of complex
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molecules, cell signaling, phosphorylation or the transport of proteins within

the cell. Section 1.2.4 Visualization of Pathway Knowledge illustrates different

possibilities and standards for visualizing pathway knowledge at different levels

of detail.

Furthermore, pathways may be represented as graphs, allowing a broad

variety of mathematical and bioinformatical operations. This makes it possible

to use pathway information in a multitude of different algorithms. Due to

the directed nature of signaling and catalytic processes, pathways are often

depicted computationally in a manner of directed graphs. A more pronounced

definition of the participants and interactions within pathways, as utilized in

a computational manner within this thesis, is given in Section 2.1 Modeling

Pathway Knowledge.

1.2.1 Metabolic Pathways

Although the continuously running metabolic pathways are a fundament of

cellular activity, this thesis focuses on the more abstract regulatory events of

signaling pathways and gene regulation. However, for the sake of completeness

metabolic pathways are shortly described.

A metabolic pathway is characterized by a series of chemical reactions

catalyzed by enzymes. Enzymes may use organic as well as inorganic co-factors

for their catalysis. A number of distinct major metabolic pathways are known

and form the so-called metabolic network of the cell. The metabolic network is

a central aspect to sustain homeostasis of the cells, a balance between educts

and products for the various processes. The fact that metabolic processes

are fundamental biochemical reactions, catalyzed by enzymes, has sparked

a strong industrial research interest. The enzymatic nature of the reactions

means that genetically modified yeast or bacteria may be used to increase the

amount of product or lower the energy costs for reactions. Additionally, the

cross-species similarity of the metabolism means that new findings can be easily

validated and adopted (Pace, 2001). New findings as well as suggestions for

techniques to extend and validate metabolic pathways have been published for

a long time (Stanier, 1947). Due to the extent of available data, metabolic

pathway curators have been early adopters of database infrastructure (Ochs

and Conrow, 1991). Nowadays, many pathway databases detailing literature
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knowledge of metabolic pathways are available, for example the well-known

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Ogata et al.,

1999), the Human Metabolome Database (Wishart et al., 2007) or MetaCyc

(Karp et al., 2002).

FIGURE 1.2 Representation of the glycolysis pathway in yeast (Saccharomyces cerevisiae).
Part A shows a portion of the whole pathway with detailed biochemical reactions. Part B
shows the complete pathway. Courtesy of MetaCyc. (Karp et al., 2002).

In Figure 1.2 the glycolysis pathway as shown in MetaCyc is displayed as

an example of a metabolic pathway. Its main task is the conversion of glucose

into pyruvate at a gain of energy, in order to generate energy-rich adenosine

triphosphate (ATP) (Meyerhof, 1927). The first part of Figure 1.2 (A) shows

a portion of the pathway, depicting the chemical reactions as edges and the

chemical compounds in their structural and molecular formulas. Green edges

represent molecule transports and blue edges represent biochemical reactions.

The source or destination of a transport is written in green text. Chemical
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compounds are stated in red text and enzymes catalyzing reactions are encoded

in blue text, stating their Enzyme Commission number (e.g. 2.7.1.11). The

second part (B) of Figure 1.2 displays the complete glycolysis pathway.

1.2.2 Signaling Pathways

Signaling pathways are chains of molecular interactions and cellular processes

which let a cell respond to changes in its microenvironment. This communication

can appear in a variety of settings: The signaling may occur between different

organisms, like mating yeast cells or early embryos of mammals, it may occur

between different cells of the same organism, or the source and target of cellular

signaling can be within the same cell.

When compared with metabolic networks, which have been published as

early as 1927 (Meyerhof, 1927), the process of signal transduction has only

recently been discovered. In 1994 Martin Rodbell recieved the Nobel Prize in

Medicine for his discovery of the G-protein, a major protein family involved in

transmitting a signal from outside the cell to its inside, in 1971 (Rodbell et al.,

1971; Coles, 1994).

Problems with cellular signaling events may coincide with cancer develop-

ment, autoimmune diseases and metabolic diseases like diabetes (Karp, 2010).

However, the complexity of the signaling networks makes good treatment very

hard to achieve. Due to the complexity of the signaling network, pathway

boundaries are often arbitrarily chosen or different pathways might overlap

and share the same molecular interactions (Schaefer et al., 2009). Examples of

signaling pathways are cell proliferation and cell death, apoptosis, as well as

tissue repair and immune responses.

For example, apoptosis, the programmed cell death, is a central process

in embryonal development, in cancer suppression and immune response (Kerr

et al., 1972). Furthermore, apoptosis is also a normal deconstruction process

for cells that are no longer needed. In an average human about 50 billion cells

undergo apoptosis daily (Alberts, 2008). Indeed apoptosis is a major antagonist

in the fight of the human body against cancer development (Karp, 2010).

Cells which have sustained serious DNA damage might become cancerous and

proliferate further. Apoptosis hinders cancer development by triggering on cells
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with serious DNA damage. One of the best-researched parts of the apoptosis

pathway is the signaling of the tumor necrosis factor (TNF).

FIGURE 1.3 The apoptosis signaling pathway of the tumor necrosis factor R1 in homo
sapiens. (TNFR1 Signaling Pathway, Courtesy of BioCarta) (Nishimura, 2001).

In Figure 1.3 the apoptosis pathway downstream of the TNF receptor 1 is

illustrated (Nishimura, 2001). Here, apoptosis is induced by binding of the

TNF protein to the transmembrane TNF receptor. This leads to a complex

assembly by binding the proteins TRADD and FADD. Further downstream,

this complex binds two procaspase-8 molecules, which leads to an activation of

caspase-8 and the initiation of programmed cell death (Karp, 2010).

The signaling processes within the cell are usually very complex, with

possible feedback loops and self-regulation, and might induce a number of

metabolic pathways downstream. Different pathway collections and databases

are available, often including not only signaling but also metabolic and reg-

ulatory information (Bader et al., 2006; Schacherer et al., 2001; Krull et al.,

2006).
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1.2.3 Regulation of Gene Expression

Genes, defined by sequences on the DNA within the nucleus, are continuously

read from the DNA and assembled within the cell to take part in almost

all cellular activities (Alberts, 2008). In general the term ”gene expression”

describes the process of transcription of genomic DNA into messanger RNA

(mRNA) molecules, which are later translated into polypeptides and assembled

into proteins. In a nutshell, gene expression is a two-step process. The first

step transcribes a gene from the DNA to RNA and the second step translates

this RNA into a protein (Karp, 2010). The process of gene expression is used

by eukaryotes and prokaryotes alike. Gene expression can be measured on the

mRNA level, i.e. transcriptomics, and on the protein level, i.e. proteomics. The

expression levels of the transcriptome and the proteome depict the current state

of the cell and influence responses to cellular signaling as well as control of the

metabolic processes. Among many other aspects, gene expression regulation is

responsible for cellular differentiation in adult stem cells, leading to daughter

cells which differ vastly in size, shape and function.

The regulation of gene expression includes various mechanisms which can

be used to adapt the production of proteins or RNA within a cell. An overview

of these mechanisms is shown in Figure 1.4.

Proteins can be regulated for short durations of time by phosphorylation,

and on DNA level the transcription of genes can be regulated for longer periods

via processes such as methylation. So-called transcription factors play a major

role in the up- and downregulation of gene expression. Transcription factors

are proteins, which can bind to the DNA in the nucleus and therefore regulate

gene expression by making the transcription of corresponding genes more or

less likely. This is called transcriptional regulation. On the other hand, post-

transcriptional regulation is the control of gene expression at the RNA level via

processes like RNA capping or alternative splicing. Transcribed RNA has to use

the nuclear export mechanism to leave the nucleus towards the cytoplasm via a

nuclear pore. Finally, translational regulation controls the abundance of protein

synthesis from exported RNA. Following the expression of a gene, translated

proteins can be regulated via post-translational modifications, protein binding

or self-regulation (Alberts, 2008).
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FIGURE 1.4 The process of gene expression and possibilities for its regulation. Adapted
from Wikimedia Commons (Arnelh, 2009).

1.2.4 Visualization of Pathway Knowledge

With his remark, “A good sketch is better than a thousand words”, Napoleon

Bonaparte probably did not have biologists and bioinformaticians in mind.

However, visualization of pathways has been performed long before personal

computers or databases were commonly used (Meyerhof, 1927; Stanier, 1947;

Hendricks, 1953). Visualizing pathways helps readers to understand complex

molecular interactions and relationships more easily. A single pathway sketch

can contain dozens of molecules or chemicals, a huge number of interactions and

can still be perceived by a human. However, this information would be tedious

to read and difficult to understand in text form. A standardized computational

representation of biological networks has become desirable, especially with the

recent surge in new knowledge generation in biology and medicine due to the

advancements in bioinformatics and computational biology.

Before the start of the millennium, Kohn and colleagues (Kohn, 1999)

had already begun first attempts to standardize pathway representation. The

proposed ”Molecular Interaction Map” (MIM) was intended as a diagram

convention aiming at unambiguous representation of pathways. By defining a
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fixed set of glyphs and a mapping convention, pathway sketches became less

ambiguous and easier to understand. The focus of MIMs was on modeling

reactions of molecules and their interactions. In 2005 Kitano and colleagues

undertook another approach, which allowed graphs to have a much finer

granularity, for example depicting all possible states of tyrosine and theronine

phosphorylation sites of an molecule (Kitano et al., 2005). Although both

approaches aimed at standardization, their scope was too limited and lacked

the support for computationally encoding and handling diagrams.

Finally, in 2009 a joint work of Kohn and Kitano was published (Novère

et al., 2009), proposing the Systems Biology Graphical Notation (SBGN), which

consists of three different diagram types, shown in Figure 1.5.

A
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Entity
Relationship

Activity
Flow

A

B

C
Y T P

Process
Diagram

A

AB

B

C
P@Y T@  

P@Y T@P
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  @Y T@P

  @Y T@  
C

FIGURE 1.5 Diagrams of the same biological process visualized using the three different
diagram types available in SBGN. Reproduced according to (Novère et al., 2009).

The process diagram (left) resembles Kitano’s notation to represent all

possible states, educts and products of a biological pathway at finest granularity.

In this figure molecule C, with all possible states of its two phosphorylation

sites (T@ and Y@), and its interaction with molecule B, which can bind to

molecule A, are illustrated. In contrast, the entity relationship diagram (center)

is quite similar to Kohn’s Molecular Interaction Maps and mainly focuses on

describing the interactions of entities and their influence upon each other, but

leaves out exact variable states. Finally, the activity flow diagram (right) is

the coarsest diagram, depicting only activating and inhibiting relationships

between molecules. SBGN graphs, or rather the information contained in them,

can be represented and exchanged using SBGN-ML, a markup language to
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encode SBGN entities and interactions. This is also the reason why SBGN

itself does not dictate shape, color or layout of graphs. These details are part

of layout styles which can be applied to any SBGN-ML encoded graphs.

There are a number of possibilities available to generate pathway sketches

programmatically. The library libSBGN is provided as a Java and a C++ library

and allows programs to visualize graphs in SBGN notation using the SBGN-ML

schema(1) (Iersel et al., 2012). Cytoscape is a Java-based modular software for

generating, editing and visualizing networks and graphs (Shannon et al., 2003).

A large number of plugins are available and offer extended functionality like

pathway analyzes, interfacing with the R Project for Statistical Computing

as well as importing SBGN-ML diagrams (Lotia et al., 2013). Graphviz, short

for Graph Visualization Software, is a collection of open-source tools initially

developed by the AT&T Bell Labs for drawing graphs (Ellson et al., 2002).

Graphviz is available for many operating systems, and its main focus is to offer

layouting functionality for common graph types.

A large number of further tools to visually explore and map biological

networks are available (Suderman and Hallett, 2007), for example VisANT

(Hu et al., 2008), CellDesigner (Funahashi et al., 2003) and PathVisio (Iersel

et al., 2008).

The pathway databases used within this thesis and the corresponding data

models are further detailed in Chapter 2 Materials and Methods, Section 2.1

Modeling Pathway Knowledge.

1.3 Omics-Technologies

Measuring the abundance of proteins, metabolites and expressed genes within

cells is a requirement in order to pursue further insight into biological pathways.

Traditional techniques measure single protein or RNA expression levels. Nowa-

days the so-called ”omics” in biology, for example genomics and proteomics,

cover the complete genome or proteome and measure all parts of the field. This

section introduces methods to measure the abundance of gene expression within

cells. Furthermore, the last part of this section explains the experimental design

and possible ways to analyze microarray experiments.

(1)The libSBGN project: http://www.sbgn.org/LibSBGN
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1.3.1 Measuring Gene Expression

Measuring gene expression levels (i.e. mRNAs) within cells enables the re-

searcher to trace the change within the cells, for example after drug treatment or

due to immune response. Several traditional methods are available to measure

the current level of gene expression (Alberts, 2008). Northern and western

blotting are methods to measure mRNA and protein levels, respectively, by

using gel electrophoresis. For northern blotting the sample is hybridized to a

complementary target mRNA sequence and for western blotting the sample

is probed with a matching protein antibody. A drawback for both methods

is the relatively high consumption of material, which might be very valuable

and hard to come by, for example biopsies of human cancer tissue. Another

approach for measuring the mRNA level of cells is the reverse transcriptase

real-time quantitative polymerase chain reaction (RT-qPCR), where qPCR is

used to amplify and measure a DNA sequence which was previously acquired by

generating the complementary DNA (cDNA) using reverse transcriptase (Karp,

2010). Although recent development brought plates for hundreds of parallel

runs of RT-qPCRs, the sheer amount of known genes, roughly 25,000 for Homo

sapiens, makes these methods more convenient for validation purposes of smaller

gene sets, but less useful for exploratory research of the entire transcriptome.

On the other hand, ”omics” technologies like microarrays and RNA se-

quencing allow expression profiling of the whole human genome in a single

run (Alberts, 2008). These methods enable fast and reproducible expression

profiling on a whole-genome scale.

1.3.2 Gene Expression Profiling using Microarray Technology

Microarrays are chips with an array of thousands of oligonucleotide probes

attached to their surface. These oligonucleotide sequences bind specific DNA

or RNA targets, and labeling techniques are used to quantify the abundance of

these targets.

Using microarray scanners, the intensity of light emitted by the labels

allows comparative quantification of target expression. Originally microarrays

evolved from parallelized southern blotting, a method similar to northern

blotting, where DNA is fragmentized and fixated and then probed using a
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single complementary DNA sequence (Augenlicht and Kobrin, 1982). The 1990s

saw the introduction of commercially available microarrays and computer-aided

scanning devices (Maskos and Southern, 1992), and a development from the

first custom spottable cDNA arrays with comparatively few probes to the first

whole genome chip for Saccharomyces cerevisiae (Lashkari et al., 1997).

Currently most microarrays come pre-spotted and enable whole genome

expression profiling in many different settings. These include, for example,

different species, like human, rat or mouse genomes, and different types of

targets, for example mRNA, miRNA and single nucleotide polymorphisms.

FIGURE 1.6 This figure illustrates the single steps in the workflow of microarray experi-
ments. (Courtesy of Wikimedia Commons, Public Domain) (Squidonius, 2008).

Figure 1.6 shows the workflow of mRNA microarray experiments. In the

first step the cells’ mRNA is retrieved by purification of the samples, for

example from tissues or cell lines. Then cDNA is created by applying reverse

transcriptase (RT) and in the coupling-step the cDNA is labeled with fluorescent

markers. In the next step labeled cDNA is then hybridized onto the microarray

and non-binding fragments are washed off. Finally, the last step of wet lab

work is reached: The microarray chip is inserted into the scanning device and

a picture of the light intensities of all probes on the chip is scanned (for an

example, see Figure 1.7).

Single-channel and two-channel microarray chips exist. Formerly two-

channel chips were very popular, allowing two samples, for example control

and treatment, to be hybridized to the same chip. However, experiment design

proved to be more complex and was not easily adopted for large cohort studies

in patients (Smyth, 2004). Drastically reduced prices per microarray chip as

well as application in clinical practice has led to a dominance of single-channel

chips nowadays.
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FIGURE 1.7 This image shows a portion of a scanned two-color microarray. The indi-
vidual probes and their fluorescent green and red coloring are clearly visible. (Courtesy of the
Transkriptomanalyselabor at the University Medical Center Göttingen).

1.3.3 Experimental Design of Microarray Experiments

Several mechanisms to measure gene expression have been introduced in the

previous sections. In order to measure whole genome mRNA levels, RNA-

sequencing or mRNA microarrays are available. The statistical design of

microarray experiments is essential to correctly measure and analyze the effects

of biological interest. The basic idea for many analyzes is the measurement and

comparison of expression levels of a single gene between two or more conditions

(Smyth, 2004). The type of analysis depends on several factors, a main aspect

being the chosen end-point of an experiment. In general most microarray

experiments belong to one of two categories:

The first category are cohort studies, where measurements from samples

across a specific population are correlated with time-to-event data. Cohort

studies use microarrays to measure whole genome expression profiles of patient

samples from a study cohort and try to correlate their expression levels with

clinical parameters, for example tumor progression or survival time.

The second category are group-wise comparisons, where measurments of

samples from different groups are compared. In group-wise comparisons mi-

croarrays are used to compare two or more groups of samples on a gene-by-gene
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basis. Statistical tests are used to determine significant differential expressions.

Examples suited for group-wise comparisons are the analysis of different types

of the same cancer, or the testing of samples treated with drugs or irradiation

against untreated controls. Figure 1.8 illustrates the different approaches in a

basic sketch.

Pat1 – Expr1 – SurvTime1

Patient1 - Expr1
Patient2 - Expr2
Patient3 - Expr3
Patient4 - Expr4
Patient5 - Expr5
Patient6 - Expr6

...

Patient1 - Expr1
Patient2 - Expr2
Patient3 - Expr3
Patient4 - Expr4
Patient5 - Expr5
Patient6 - Expr6

...

Control Group Treated Group

Group-wise comparison

Pat2 – Expr2 – SurvTime2

Pat3 – Expr3 – SurvTime3

Pat4 – Expr4 – SurvTime4

Pat5 – Expr5 – SurvTime5

Time-to-Event Analysis

FIGURE 1.8 In time-to-event analyzes the objective is to model the occurance of an event,
for example death, as a function of time and other variables, for example the expression level
of a specific gene. On the other hand, group comparisons try to evaluate whether there is a
significant difference of the mean expression levels between the groups.

Gene perturbation experiments belong to the category of group-wise com-

parisons. A common setting is that within samples of a specific cell line a

gene is perturbed and subsequently compared to control samples of this cell

line. Various approaches to perturb genes are available. Overexpression of gene

products can be achieved by injecting corresponding gene and a promoter into

the target cell via transfection of a viral vector. Furthermore, genes can be

down-regulated by knockout and knockdown protocols (Alberts, 2008). In a

knockout approach, the DNA corresponding to the gene is rendered unusable

and can subsequently no longer be transcribed. Consequently, this leads to a

complete lack of corresponding gene product. In gene knockdowns, also called

RNA interference, the mRNA product of a gene is targeted by introducing

short hairpin RNA (shRNA) or small interfering RNA (siRNA) into the cell.
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These gene knockdowns do not entirely remove all corresponding gene products

from within the cell but constantly degrade newly transcribed mRNA.

While the assignment of samples to single color microarrays is trivial, exper-

imental design for two-color microarray experiments poses a bigger challenge.

This is due to the fact that there is a bias between the colors, which leads to

a shift of expression values measured by red compared to green. In order to

handle this bias the dye-swap design was commonly used. Although several

different approaches were published (Yang and Speed, 2002), the basic idea

usually remains the same: By design, the amount of replicates on green and

red channels are identical and the expression ratios between green/red-channel

are used for analysis between groups.

The experimental data used within this thesis is described in Section 2.3 of

Chapter 2 Material and Methods. The results of the statistical analysis of the

experimental data can be found in Section 3.3.1 of Chapter 3 Results.

1.4 Modeling Knowledge using Ontologies

A vast amount of knowledge about biological processes and molecular interac-

tions has been accumulated over the past decades. In order to make use of this

complex data, it has to be archived in an accessible and well-documented way.

Modeling knowledge or data for storage and usage in computer systems

is a difficult task. Usually, once the architecture of data storage has been

decided upon, the users have to cope with the design decisions for a long

time. This poses a special challenge for biological knowledge: On the one hand

biological entities and their interactions are highly complex. Relationships exist

between DNA, RNA, proteins and small molecules, and interactions as well as

feedback between them is possible, as illustrated in the different examples of

Section 1.2 Biological Pathways. On the other hand, the underlying assumptions

on the data structure might change or might be extended with new entities or

relationships. Although a fundamental change of underlying assumptions may

not be addressable, the advent of ontologies in computer science has offered a

flexible, extensible way for modeling specific domains of knowledge (Gruber,

1995; Berners-Lee et al., 2001).
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The term ”Ontology” originates from philosophy, where it denotes the

studies of existance and reality, known as a branch of metaphysics, founded

on the work of the philosopher Aristotele (Burkhardt and Smith, 1991). In

computer science an ontology can be defined as following:

“A specification of a representational vocabulary for a shared domain

of discourse – definitions of classes, relations, functions and other

objects – is called an ontology.” (Gruber, 1993)

An ontology is always based on a conceptualization, i.e. an abstract,

simplified view of the domain which is to be modeled. An ontology is a specific

implementation of this conceptualization, it defines existing classes of objects,

as well as the relationships between them (Gruber, 1995).

The main goals for developing an ontology are to formalize the structure of

domain-specific information, to separate knowledge about the data structure

and the data itself, and to enable the reuse and sharing of the structure and

knowledge (Noy et al., 2001). Furthermore, it is possible to model description

logics, which enables automated reasoning and inference based on the knowledge

base and logical operations (Hitzler et al., 2011).

Every ontology is made up of a number of core components: Classes define

types of objects or things, properties define the respective attributes and

features of these classes. Restrictions on these properties allow the modeling of

assertions and pre-determined values. Classes can be instantiated for specific

objects and are called instances. Properties of objects can either reference

objects or consist of numeric or textual facts, for example a name property

(Noy et al., 2001). Furthermore, rules in an if-then form and axioms can be

used to infer statements about a domain of knowledge.

In practice ontologies are often used to add a layer of abstraction when the

underlying reality is very complex and the available knowledge can be detailed

in very different granularity. An example of this would be a full-length research

paper about Gene A activating Gene B compared to the simple statement

”Gene A activates Gene B”. On a very high abstraction level these statements

would be identical, however this conclusion cannot be drawn by comparing the

free text format of a research paper and the short statement (Plessis et al.,

2011).



. Modeling Knowledge using Ontologies 

Another notable development in knowledge encoding using ontologies is

the concept of so-called nanopublications. Starting with so-called microattri-

butions for genomic findings (NatGenEditorial, 2008; Giardine et al., 2011),

nanopublications were introduced as the idea of being the smallest publishable

scientific knowledge facts (Groth et al., 2010; Mons et al., 2011). The concept

has received considerable attention and aims at offering a standardized model-

ing framework for scientific knowledge, with the goal in mind to interconnent

findings and infer new findings automatically in the near future (Beck et al.,

2012; Patrinos et al., 2012). Lately, the OpenPhacts website has been opened

to support the publication of nanopublications in biosciences (Sansone et al.,

2012).

Ontologies have been defined to model knowledge domains within biol-

ogy and medicine, for example to encode the knowledge about the biological

pathways introduced in Section 1.2.

1.4.1 Overview of Published Biomedical Ontologies

A large number of ontologies have been suggested, defined and published in the

last decade. Several web sites are available which list and categorize biomedical

ontologies (Noy et al., 2009; Rubin et al., 2008), even a search machine for these

ontologies exists (Orchard et al., 2011). Examples of notable developments in

the biomedical community are the ontologies Chemical Entities of Biological

Interest (ChEBI, Degtyarenko et al., 2008), Gene Ontology (GO, Ashburner

et al., 2000), as well as the ontology for Biological Pathways Exchange (BioPAX,

Demir et al., 2010).

The first two are part of the Open Biomedical Ontologies Foundry (OBO,

(Smith et al., 2007)), a collaboration to standardize the way biomedical ontolo-

gies are developed and to allow cross-ontology referencing between members

of the OBO Foundry. ChEBI is a dictionary of small chemical molecules and

molecular entities commonly used in metabolic processes, as well as pharmaceu-

ticals, laboratory reagents, and subatomic particles. However, more complex

macromolecules like proteins are generally excluded. The idea behind ChEBI

is to provide an extensive, cross-referencing dictionary of basic biochemical

entities, their machine-readable structural information, their biological role
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(e.g. antibiotic or hormone) and their applications (e.g. pesticide or drug)

(Degtyarenko et al., 2008).

The Gene Ontology emerged from a cooperation of three model organism

databases: FlyBase, Mouse Genome Informatics (MGI) and the Saccharomyces

Genome Database (SGD). A major goal of GO arose from the discovery that

there are large amounts of DNA sequences which are identical between species,

as well as functional conservation within these genes (Ashburner et al., 2000).

The desire for a common site of annotation for genes is a consequence of this

finding. The idea of GO is to model the knowledge about genes and gene

products across species and to provide access to this information. GO consists

of three independent ontologies, each modeling a different domain: biological

process, molecular function and cellular component (Ashburner et al., 2000).

Aiming for a generalizing model, the cellular component ontology models the

parts and pieces of eukaryotic cells and their microenvironments. The biological

process ontology contains all processes and events which take place within

cells and organisms. Finally, the molecular function ontology describes the

functional activities of proteins within a cell. GO is constructed in a manner

that the ontologies can be understood as a directed acyclic graph. Each node

in this graph represents one GO term, its name, annotations and references to

other databases or GO domains. In this graph every GO term is connected via

edges to its parents and children, representing the ancestry between these GO

terms. This hierarchical modeling enables GO to provide an open controlled

vocabulary where the user is able to retrieve knowledge about a certain item,

as well as more generalized or detailed knowledge about the GO term. GO is

not static, but continuously developed and curated as the biological knowledge

increases (Consortium, 2008). Being widely used and hierarchical in structure,

GO has sparked numerous new approaches in bioinformatics. Statistical testing

procedures (Beißbarth and Speed, 2004; Beißbarth, 2006) can be used to find

significantly overrepresented GO terms within a group of genes. Furthermore,

semantic similarity measures have been proposed to assess functional similarity

of genes (Fröhlich et al., 2007b; Pesquita et al., 2008) and pathways (Guo et al.,

2006). Based on these measures a large number of methods have been proposed,

ranging from disease gene identification (Jiang et al., 2011) to drug repurposing

(Andronis et al., 2011).
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The ontology Biological Pathways Exchange (BioPAX) (Demir et al., 2010)

aims at easing the sharing of pathway knowledge by offering a standardized

knowledge model for the pathway domain. Research groups and database

providers can use this common model to make their information easily accessible

and sharable by users. The main classes of BioPAX are physical entities,

interactions and pathways. Physical entities are defined as all physically

existing objects, for example proteins, small molecules, as well as RNA and

DNA fragments. The interaction class and its subclasses define all biological

processes and events within pathways, e.g. complex assembly, cell transport and

regulatory events. Depending on the interaction, its participants are physical

entities, interactions and whole pathways. The pathway class models pathways

which are made up of a number of interaction instances. A more detailed

account of the BioPAX ontology is given in Section 2.1.2 BioPAX Format

for Encoding Knowledge of Biological Pathways of Chapter 2 Materials and

Methods. A large number of pathway databases are available in BioPAX format

(Bader et al., 2006) and several well-known sources for BioPAX-encoded data

are described in Section 2.1.3 Pathway Databases.

1.5 Network Reconstruction

In bioinformatics and systems biology the term network reconstruction denotes

methods which aim at inferring biological networks from experimental data.

The predominant goal of these methods is to infer new insights into the processes

within cells (Markowetz and Spang, 2007). Methods for network reconstruction

either perform de-novo reconstruction of a new network from scratch or extend

previously known pathways by further nodes or edges. The central challenge

for these methods is that complex interactions involving a multitude of genes

have to be inferred from sparse and noisy high-dimensional data (Werhli and

Husmeier, 2007). This challenge has attracted many researchers from the

fields of statistics and computer science alike. Depending on the specific

aims, the experimental data and the availability of prior knowledge, different

approaches for network reconstruction have been pursued (Markowetz and

Spang, 2007). The following section offers an overview of commonly chosen
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aims and approaches for network reconstruction as well as an overview of

published methods.

1.5.1 Aims and Approaches for Network Reconstruction

The general idea of network reconstruction in bioinformatics is to derive knowl-

edge about biological interactions of molecules from experimental data. The

result of methods for network reconstruction is usually a graph representing

the inferred biological interactions. These resulting graphs can have directed

or undirected edges, depending on the chosen algorithm. On the one hand, the

data required can differ from algorithm to algorithm. On the other hand, the

choice of measured tissue and measuring technology can restrict the possible

algorithms for network reconstruction.

Network reconstruction has been conducted on a wide range of different

experiments using various different statistical inference or machine learning

approaches. A plethora of methods have been proposed in the statistics as

well as in the bioinformatics community. Several extensive reviews of popular

methods (Markowetz and Spang, 2007; Ideker and Lauffenburger, 2003; Hecker

et al., 2009; Werhli et al., 2006) offer an overview of the field. Network inference

challenges, like the Dialogue on Reverse Engineering Assessment and Methods

(DREAM) challenges (Marbach et al., 2010; Prill et al., 2010; Marbach et al.,

2012), enable researchers to contest their implementations with other methods.

The reasons for the heterogeneity of the field are mainly two-fold: First, the

biological complexity of different interacting processes of metabolites, signaling

receptors and regulatory activities, and second, the varying biological questions

or aims behind network reconstruction. Both reasons can be illustrated using

a model adapted from Brazhnik and colleagues (Brazhnik et al., 2002) by

splitting up biological processes into three layers: gene space, protein space

and metabolite space (see Figure 1.9).

In Figure 1.9 the biological entities are grouped into their corresponding

stages of gene expression, genes and DNA fragments are depicted in the gene

space layer, proteins and mRNA transcripts are nodes within the protein

layer and chemicals and their reactions take place within the metabolite space.

Regulations and interactions can occur within one layer of entities as well as
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FIGURE 1.9 A schematic view of biological interactions, layered into gene space, protein
space and metabolite space, illustrating possible interactions within and between these layers.
Adapted from Brazhnik et al. (2002) and Penfold and Wild (2011).

span across different layers, including the biological processes within pathways

introduced in Section 1.2. Genes in the gene layer can encode for transcription

factors, i.e. proteins which can regulate the transcription of genes by binding

upstream of their target promoter regions, leading to edges between gene and

protein space. Complex assembly and regulatory processes like phosphorylation

can lead to regulating edges within protein space. Enzymes can catalyze

biochemical reactions, while metabolites are able to degrade enzymes, leading

to regulations between protein and metbolite space.

Figure 1.9 illustrates that observed correlations between data might in fact

be due to indirect interactions, covering different layers of different pathway

types. This implies that network reconstruction is highly dependent on the type

of available data, which are also further detailed in the next section, dividing

available methods for network reconstruction into two groups, based either on

correlating expression profiles or based on intervention experiments.
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1.5.2 Overview of Published Methods

A number of facts determine which network reconstruction approaches are

viable: the type of data, e.g. whether there is mRNA or protein expression

data available, or if intervention or time-course measurements were conducted.

However, the heterogenity and extent in methods and applications has also

led to a wide range of differing definitions and nomenclature (Aittokallio and

Schwikowski, 2006; Markowetz and Spang, 2007; Kaderali and Radde, 2008;

Hecker et al., 2009). Following the nomenclature of Markowetz and Spang

(2007), methods for network reconstruction can be divided into two groups:

models of conditional independence, which are based on clustering co-expressed

molecules, and intervention models, which are based on observing cause-effect

relationships of perturbation experiments.

1.5.2.1 Conditional Independence Models

Conditional independence models derive the network structure from the cor-

relation structure of the measured molecules. In the most basic approach, a

so-called coexpression network is built from the similarity of measured expres-

sion profiles.

Coexpression networks are built following the guilt-by-association principle:

if two genes are co-expressed, i.e. they share a similar expression profile, they

are assumed to participate in the same biological processes. First uses of this

approach have already been made in the last century and have helped to identify

genes participating in the cell cycle (Eisen et al., 1998; Spellman et al., 1998).

The most basic approach to building a network from coexpression profiles simply

treats genes, or clusters of genes, as independent if their correlation is zero and

connects dependent genes and gene clusters (Stuart et al., 2003). This approach

has been extended in several ways: to account for time lag in expression profiles

of time-course data (Bickel, 2005), to account for ”differential coexpression”

between different sample groups (Kostka and Spang, 2004), to include different

data source weighting, and to account for non-linear correlations (Yamanishi

et al., 2004).

Different models of conditional independence have been proposed for network

reconstruction: full conditional models, first order conditional independence



. Network Reconstruction 

models and Bayesian networks. The central difference between these models

are the number of tests performed to assure that a correlated pair of genes is

indeed indepedent of the remaining genes.

Full conditional models are implemented as Gaussian graphical models

and infer correlations between two genes, depending whether this correlation

can be explained by the set of all other remaining genes (Heckerman et al.,

2001). A big advantage of this model is the small number of tests performed:

one test per gene pair. However, the drawback of full conditional models

is that in comparison to the number of genes, a large number of samples is

needed to compute the model. Unfortunatly, this setting is very rarely found in

-omics data. However, different model estimation strategies like bootstrapping

and linear shrinkage approaches have been proposed to increase modeling

performance (Schäfer and Strimmer, 2005a,b).

Unlike the strategies to improve model estimation, the idea behind first

order conditional independence models is to tackle the problem of p � n by

restricting the model conditions. Full conditional models account for conditional

independence of two genes with the set of all other genes. In contrast, first

order conditional independence models assure conditional independence of two

correlated genes with any single third gene (Markowetz and Spang, 2007).

Wille and colleagues (Wille et al., 2004) applied their implementation of sparse

Gaussian graphical models to identify gene clusters and cross-talk between

pathways in the Isoprenoid gene network in Arabidopsis thaliana and perform

further simulation studies. Another notable representative of lower order

conditional independence models is ARACNE (Margolin et al., 2006), which

has been published and applied in several settings, for example the reverse

engineering of regulatory networks in human B cells (Basso et al., 2005).

The assumed independence of coexpression clusters in full conditional models

(the correlation of two genes cannot be explained by all other genes) and first

order conditional independence (the correlation of two genes cannot be explained

by any single other gene) can be further extended. An even higher resolution

of network knowledge is provided by networks for which the correlation of two

genes cannot be explained by any other subset of the remaining genes. It can

be shown that the knowledge of all orders of independence of gene subsets
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implies the joint probability distribution of all variables and results in a directed

Bayesian network (Markowetz and Spang, 2007).

Bayesian networks are probabilistic graphical models, represented as di-

rected acyclic graphs (DAGs), which connect variables via their probabilistic

relationships and dependencies. One advantage of using a DAG as representa-

tion is that it formally contains the joint probability distribution of the variables,

and still remains informative for a human reader. In a DAG, nodes represent

random variables and the edges represent the conditional probabilities between

the variables. A vast number of different network reconstruction methods based

on Bayesian networks have been proposed in order to tackle various problems.

The first problem arises from the fact that in Bayesian networks for every pair

of genes independence tests for every possible subset of all other nodes have

to be assessed, while for full conditional and low order independence only a

few statistical tests, in the order of magnitude of the number of graph nodes,

have to be conducted. Unfortunately, the extensive amount of tests required

for Bayesian Networks are computationally not feasible for networks with more

than half a dozen genes (Pearl, 2000; Markowetz and Spang, 2007). In order to

avoid this problem, networks are scored on how well the measured data fits a

specific network. This poses the problems of network selection and network

scoring. In order to tackle the first problem, different approaches for selecting

networks from a huge network space have been used to smartly traverse through

the network space, for example greedy hillclimbing or sampling strategies like

Markov Chain Monte Carlo (Hastings, 1970; Husmeier, 2003). The second

problem is the scoring of networks, i.e. computing a score for the network to

define how well the measured data fits a selected network. Maximum likelihood

as well as Bayesian scores are often applied to rate the goodness of fit between

network and data (Pearl, 2000).

Although good results have been obtained and verified, reviews and bench-

marks have shown that conditional independence models exhibit severe lim-

itations in many areas. A major problem of these basic approaches lies in

the failure to reveal more information about cliques of a graph, i.e. fully

connected clusters of genes (Markowetz and Spang, 2007): For a clique of genes

X − Y − Z, basic coexpression networks are not able to distinguish if the

underlying biological regulation is X → Y → Z or X ← Y → Z or if in fact a
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hidden fourth regulator is triggering all genes independently. Furthermore, Hus-

meier and colleagues found that network inference performance varies greatly

based on prior knowledge, experimental sampling strategy and training set size

(Husmeier, 2003). Wimburly et al. demonstrate that reconstruction is unreli-

able and quickly degrades with added noise and small sample size (Wimburly

et al., 2003). However, one factor has been shown to greatly improve network

reconstruction performance: The use of interventions on biological networks

to experimentally generate perturbation data (Werhli et al., 2006; Zak et al.,

2003).

1.5.2.2 Intervention Models

In gene intervention experiments external stimuli or inhibitions, which either

enhance or reduce the gene expression of a particular gene, are provided to cells.

The idea of intervention models is that the observed effects of these interventions

can then be used to infer knowledge about the network (Markowetz, 2010).

Various approaches for network reconstruction using intervention data have been

published, notably Boolean networks, correlation networks, ideal interventions

and Nested Effects Models.

Boolean networks are directed, however not necessarily acyclic, graphs that

are defined by one Boolean function per node. This Boolean function derives

the state of the node from the state of its parents nodes. Boolean networks are

deterministic in the way that a regulatory edge within a regulatory network

either exists or not. Due to noisy data and other influences, models which

account for uncertainties are usually preferred for intervention models (Ideker

et al., 2000; Akutsu et al., 1998).

Correlation has been used to model intervention data similarily to the

conditional independence models (Rice et al., 2005). In these correlation

networks the expression levels for perturbed genes, both in perturbation and

control samples, are correlated with the expression levels of all other genes.

Two nodes within the model are connected if a high correlation for these genes

is computed. Although the model is accurate in reconstructing relationships

between genes, the number of needed perturbation experiments and replicates

is prohibitive for bigger networks (Markowetz and Spang, 2007).
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Ideal interventions have been proposed by Pearl and colleagues (Pearl, 2000)

to model interventions in Bayesian networks. Ideal interventions assume perfect

perturbation of a knocked-out gene and fix its state, making it independent of

all parent nodes. This model has been integrated for network reconstruction

using full conditional independence models (Rogers and Girolami, 2005) as

well as Bayesian networks (Pe’er et al., 2001; Markowetz and Spang, 2003).

Simulation studies have shown that intervention data strongly increases the

performance of network reconstruction algorithms (Werhli et al., 2006; Zak

et al., 2003).

Nested Effects Models (NEMs) are a family of graphical models which

try to further tackle a central problem of network reconstruction: the fact

that observed effects are often only indirect effects, nested below a number of

upstream regulators. The general idea of NEMs is that the observed effects of

interventions on a pathway are nested into each other. The regulator at the

very top of the pathway affects a very large number of targets. However, a

perturbation further downstream in the pathway affects only a subset of these

genes.
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FIGURE 1.10 NEMs are a probabilistic model to infer network topology from the nesting
of observed perturbation effects. Figure adapted from Markowetz and Spang (2007).

Figure 1.10 visualizes the concept that perturbations at different steps of a

pathway result in a number of sets of effected genes, which indirectly reflect

the original network topology. The framework for NEMs has been proposed by

Markowetz (2005) and has been extended over time by Tresch and Markowetz
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(2008), Fröhlich et al. (2007a, 2009, 2011), Anchang et al. (2009) and Failmezger

et al. (2013).

Nested Effects Models are used for the purpose of network reconstruction

within this thesis. A more in-depth description of NEMs can be found in

Section 2.2 of Chapter 2 Material and Methods.
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Chapter 2

Material and Methods

This thesis combines statistical bioinformatics, concepts from computer science

and requires knowledge about certain aspects of biology. This chapter describes

the methods used within the scope of this thesis. The idea is to give the reader

insight into the required methods to understand the workflow and the results of

this thesis. The first section describes the modeling of pathway knowledge and

the implementation of the ontology for Biological Pathway Exchange (BioPAX).

Furthermore, several renowned pathway databases as well as methods for

visualizing pathway data are introduced. The second section describes Nested

Effects Models (NEMs), a method for network reconstruction in detail. The

third section describes the setup of the intervention experiments and the data

used for network reconstruction. In the last section, a description of the R

Project for Statistical Computing and of the R packages used within this thesis

are given. In order to increase readability, ontology classes and R software

packages are printed in italics and R functions are printed in monospaced font.

2.1 Modeling Pathway Knowledge

Modeling pathway knowledge facilitates new opportunities of data exchange

between researchers and asserts a common vocabulary and understanding

of underlying principles. Evolving from home-grown databases to ontologies

ensures that knowledge models follow a standardized encoding and therefore

are easier to document and understand. Several different approaches to model

pathway knowledge have been proposed. The next section introduces a common
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ground of minimal requirements to model the different types of pathways

introduced in the previous chaper. Section 2.1.2 introduces the BioPAX ontology

for modeling pathway knowledge. Finally, in Section 2.1.3 pathway databases

in general and three databases used within this thesis are described.

2.1.1 Modeling the Structure and Composition of Biological Path-

ways

Formally representing pathway knowledge requires the definition of atomic

entities as well as relationships between these entities, which take part in

the composition of a pathway. Section 1.2 Biological Pathways introduced

the different types of pathways, this section focuses on signaling pathways,

which are used within this thesis. Modeling signaling pathways induces certain

requirements on the amount of biological entities and interaction that need to

be encoded.

Signaling pathways represent the communication within and between cells.

The key players in signaling pathways are receptors and ligands. Receptors are

proteins which are embedded either in the nucleus, the cytoplasm or the plasma

membrane of the cell. Ligands are molecules which can bind to a receptor

and form complexes with the receptor. This change of the receptor leads to a

change in the functional state of the receptor and a set of changes downstream

of the receptor. Finally, the binding of a ligand to a receptor triggers a cellular

response according to the associated pathway. The processes that have to be

modeled in signaling pathways are binding (association) and its reverse reaction

(dissociation). Furthermore, the cross-talk between different signaling pathways

can be modeled to account for overlapping pathways, feedback and feedforward

signaling. Finally, several interactions can interfere with signal transduction,

for example phosphorylation, ubiquitylation or methylation. These interactions

can activate or inhibit receptors and regulate signal transduction.

In essence, a signaling pathway consists of participating molecules as nodes

and two different types of edges. The first type of edge, the biochemical reaction,

connects educt molecules and product molecules. The second type of edge,

an interaction, connects a controlling molecule and a controlled biochemical

reaction edge.
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Different approaches to standardizing the encoding for one or several types

of pathways have been published, for example the Biological Pathway Exchange

(BioPAX, Demir et al., 2010), the Systems Biology Markup Language (SBML,

Hucka et al., 2003) and the Human Proteome Organizations Proteomics Stan-

dards Initiative’s Molecular Interaction format (PSI-MI, Hermjakob et al.,

2004).

An overview of the capabilities of these standards was published by Strömbäck

and Lambrix (2005) and by Cary et al. (2005), and a short comparison is per-

formed in Chapter 4 Discussion. The following sections give an overview of

visualization options for pathways and an introduction to the BioPAX stan-

dard, which is used within this thesis for modeling signaling and regulatory

interactions.

2.1.2 The BioPAX Format for Encoding Knowledge about Bio-

logical Pathways

A central element to integrate pathway knowledge from different sources within

this thesis is the ontology for Biological Pathway Exchange (BioPAX) (Demir

et al., 2010).

An ontology is a formal system to model knowledge about a specific domain.

This ontology defines entities, like a protein, their properties, e.g. the name

and sequence of a protein, and their relationships to other entities, by using

predefined vocabulary. A strong advantage of encoding knowledge using an

ontology is the fixed modeling space which eases the exchange and portability

of knowledge by ensuring compatibility. Links to external resources, i.e. other

ontologies or databases, help standardization and the reuse of knowledge.

Three specifications are relevant for parsing ontology-encoded data within

the scope of this thesis: The defintions of classes and properties that make up

an ontology can be defined via the Web Ontology Language (OWL), a World

Wide Web Consortium (W3C) standard (McGuinness et al., 2004). These OWL

definitions can be encoded in an XML/RDF file format (Beckett and McBride,

2004) based on the extensible markup language (XML, Bray et al., 1997) and

the Resource Description Framework (RDF, Klyne et al., 2004). In short, XML

is a markup language, which encodes data using tags (‘<>‘) for annotation, and
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RDF defines so-called triples in form of subject-predicate-object expressions to

specifiy statements.

The ontology Biological Pathways Exchange (BioPAX, Demir et al., 2010) is

defined using OWL and the XML/RDF encoding. In this ontology the domain

of pathway knowledge is modeled. The ontology is under active development

and currently contains a total of 70 classes including utility classes for links to

open vocabularies and external resources. Figure 2.1 shows a simplified class

tree for the BioPAX ontology.
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FIGURE 2.1 This diagram shows the central classes and their inheritance relationships,
(Demir et al., 2010). Reproduced according to the BioPAX specification(1).

There are four distinguished central classes: physical entities, interactions,

pathways and support classes. All classes inherit the name and comment

properties from root class Entity.

(1)BioPAX Ontology Specification: http://www.biopax.org
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Physical entities are all physically existing objects, which are a part of

pathways, i.e. proteins, complexes, RNA, DNA and small molecules. Apart

from name and comment, these classes have further properties, for example

the participants of a complex molecule or a RNA or DNA sequence. Physical

entities take part in all kinds of interactions. These entities can be further

described and annotated by references to support classes, for example by using

external database identifiers like UniProt (Bairoch et al., 2005) or Entrez Gene

IDs (Maglott et al., 2005).

Interactions are split up into two different sub-classes, conversions and con-

trols. All interactions share the property participants, a term which references

physical entities. Conversions include the properties left, right and direction,

in contrast to controls, which have the properties controller and controlled as

sub-properties of the participants property. Conversions describe interactions

like complex assemblies and biochemical reactions, for example. The property

direction specifies whether the conversion occurs from left to right or vice versa.

Each conversion can have any number of physical entities referenced via left or

right properties. Controls are interactions with one controller property refer-

encing the controlling physical entity and any number of controlled properties

referencing interactions.

The pathway class has the properties: name, comment, organism, and any

number of pathway components referencing interactions.

Support classes include internally defined open vocabulary terms to de-

scribe interactions, external references to publications or protein databases and

references from DNA sequence to mRNA or protein products. Furthermore,

references to other ontologies likes the Gene Ontology (Ashburner et al., 2000)

are possible.

The summary of interaction classes above already indicates that the BioPAX

ontology models pathways similarly to the ER diagram of the SBGN: An

interaction is represented by an edge going from one physical entity to another

edge. A biochemical reaction is an edge from one or more entities to one or

more converted entities.

Section 3.1 of Chapter 3 Results introduces the rBiopaxParser, an R package

to parse and work with BioPAX-encoded data within R. The following section
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introduces a number of pathway databases which are available in BioPAX

encoding.

2.1.3 Pathway Databases

A plethora of pathway databases exists and many of them offer free access to

their encoded knowledge. Pathguide.org, a website listing all types of pathway

databases, currently contains links to over 300 different pathway data resources

(Bader et al., 2006). The different types of databases include protein-protein

interactions, metabolic pathways, signaling pathways and transcription factor

networks (Matys et al., 2003) for example, as well as collections of pathway

sketches. However, some of these require a paid subscription or do not offer a

data export in a standardized encoding.

Many notable pathway databases have been developed and are actively

curated. Probably, the best known is the Kyoto Encyclopedia of Genes and

Genomes (KEGG, Kanehisa et al., 2004), which includes metabolic and signaling

pathways. On the other hand, WikiPathways is a community approach to

pathway editing (Kelder et al., 2011). It allows everyone to join and share new

pathways or curate existing ones. Pathway Commons is a meta-database aiming

at providing a single point of access to publicly available pathway knowledge

(Cerami et al., 2011). It is a collection of pathway databases covering many

aspects and common model organisms trying to ease access to a large number

of different sources.

Within the scope of this thesis, the focus lies on renowned and freely

accessible databases offering BioPAX exports. Three exemplary databases have

been picked in order to demonstrate the parsing as well as the transformation

and merging of pathway databases to provide prior knowledge for methods for

network reconstruction: first, the Pathway Interaction Database (PID, Schaefer

et al., 2009) of Nature and the National Cancer Institute (NCI); second, the

BioCarta pathway database (Nishimura, 2001), which is available via the NCI

as well; and third, the Reactome database (Croft et al., 2011), an open source

database featuring a peer-review process.
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2.1.3.1 Pathway Interaction Database

The Pathway Interaction Database was launched as a collaborative project

between the NCI and the Nature Publishing Group in 2006 (Schaefer et al.,

2009). Three main data sources are available via the NCI website: Reactome,

BioCarta and the PID database curated by NCI and Nature. All these data

sources focus exclusively on the human as their model system. Initially, two

external databases were integrated in order to be able to offer data right

from the beginning. A partially annotated version of BioCarta export was

integrated without any peer-review. Although this data covers large parts

of known signaling pathways, only molecules are annotated using the Entrez

Gene ID (Maglott et al., 2005). Neither references nor evidence of interactions

nor post-translational molecule states are annotated. The second database to

be integrated was Reactome version 22 released in 2007. Within this import

molecules are annotated using UniProt identifiers (Bairoch et al., 2005) and

post-translational modifications are included. Finally, the most important

data source of PID is the NCI-Nature curated data, which was peer-reviewed

and curated by Nature editors. This data includes molecules annotated using

UniProt identifiers and post-translational modifications (Bauer-Mehren et al.,

2009). Evidence codes and references are used to annotate interactions. This

NCI-Nature curated data is very extensive and well curated and are referenced

within this thesis as PID data. New pathways are curated by NCI editors in

order of biological relevance and un-disputedness. Relevant interactions are

identified within peer-reviewed literature and added to existing pathways.

The PID knowledge is encoded using a proprietary data model based on

XML. The PID data model resembles the SBGN ER-diagram style: Molecular

reactions transform input molecules to output molecules. These reactions are

targeted by regulatory interactions, which can inhibit or promote the specific

reaction. Valid types of molecules are proteins, complexes, RNA and small

molecules. Unlike the BioPAX-model the PID model does not include DNA.

Molecules can be tagged, for example as active, inactive or phosphorylated.

All PID data sources are also accessible in different encodings, i.e. BioPAX

Level 2 and BioPAX Level 3. Furthermore, the PID website offers browsing

capabilities for pathways as well as querying algorithms to search for molecules
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or merge different pathways. As of June 2013, the available PID export contains

about 2000 pathways including nested sub-pathways.

2.1.3.2 BioCarta

The BioCarta database originated from a collection of pathway maps (Nishimura,

2001). BioCarta focuses on human and mouse as model systems but includes

selected plant pathways as well. Pathways are curated via templates for drawing

software tools and each pathway has one or more curators to update and extend

existing pathways. Pathways are available for browsing via the website and can

be queried for participating molecules. Furthermore, pathways can be ordered

as printed posters.

Although BioCarta is mainly a collection of pathway sketches, the BioCarta

knowledge has been transferred into a standardized encoding within the PID

project. BioCarta exports are available in BioPAX Level 2 and Level 3 encoding

via the PID website. As of June 2013, the available BioCarta export contains

about 350 pathways.

2.1.3.3 Reactome

Reactome is an open-source, manually curated, and peer-reviewed pathway

database including an interactive website for querying and visualizing data

(Vastrik et al., 2007). Reactome is a joint effort of the European Bioinformatics

Institute, the New York University Medical Center and the Ontario Institute

for Cancer Research. The database is focused on pathways in homo sapiens,

however, equivalent processes in 22 other species are inferred from human data

(Vastrik et al., 2007). Reactome includes signaling pathways, information on

regulatory interactions as well as metabolic pathways. The data model of

Reactome is based on a relational database schema. Its central model defines

entities and events, the conversion of input entities to output entities. Pathways

are grouped events which can also include further sub-pathways in a hierarchical

manner (Matthews et al., 2009). Reactome is currently available in version 45

and contains about 1500 pathways and sub-pathways, as of June 2013. Data

exports are available as a MySQL database dump using the internal database

model and in the SBML and BioPAX, Level 2 and Level 3, encodings.
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2.2 Methods for Network Reconstruction

Methods for network reconstruction aim at inferring the topology of a network

given experimental data. An overview of different approaches and techniques

is given in Section 1.5. Nested Effects Models have been thoroughly described

and used in a number of publications, e.g. by Markowetz (2005); Markowetz

et al. (2007), Fröhlich et al. (2007a, 2008b,a, 2009) and Tresch and Markowetz

(2008). This section describes Nested Effects Models (NEMs) as means to

reconstruct networks within this thesis and explains how prior knowledge can

be integrated.

2.2.1 Nested Effects Models

Nested Effects Models are graphical models, which reconstruct networks based

on the nested structure of intervention effects generated by perturbation exper-

iments, for example gene knockdowns. The perturbed genes, which constitute

the nodes of the reconstructed network, are selected in such a way that they

are known or suspected to interact or interdepend, knockdowns of genes of

the same signaling pathway, for example. These experiments can be measured

using omics technologies introduced in Section 1.3, for example microarrays.

The data measured for each of these experiments can then be statistically

evaluated. Effected genes are commonly detected by testing genes which are

significantly differentially expressed between the control and the knockdown

experiment. This step yields a list of differentially expressed genes for each

knockdown experiment. Usually, all measured genes which show no differential

expression between any two comparisons of control versus a treated group are

filtered out.

A Nested Effects Model can be described in form of a matrix product of

two matrices representing two directed graphs: the network topology Φ and

the bipartite graph Θ attaching effected genes to perturbation experiments.

Figure 2.2 shows the definition of Nested Effects Models.

Another way of visualizing a NEM is shown in Figure 2.3 which depicts the

NEM F as the product of Φ and Θ using the adjacency matrix representation

of Φ and a dichotomized effect graph Θ.
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= no effect). (According to Markowetz et al. (2007))

Nested Effects Models reconstruct the network of perturbed genes and the

effects attached to each perturbation by optimizing F given the observed data.

Based on generated network and effect graph hypotheses, the resulting NEMs

can be scored according to their fit to the experimental data (see Figure 2.4).

The NEM fitting the experimental data best is selected.
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Markowetz et al. (2007) and Fröhlich et al. (2007a, 2008b) state that the

main goal of NEMs is the inference of the signaling graph Φ, hence statistical

independence of effect positions is assumed and Θ is integrated out following a

Bayesian point of view (Fröhlich et al., 2009). An alternative approach was

proposed by Tresch and Markowetz (2008), the maximization of the NEM score

by using maximum a posteriori / maximum likelihood (MAP/ML) probability

estimate in an alternating fashion for Φ and Θ.

From an algorithmic point of view, analyzing the nesting structure of the

experimental data and selecting the best fitting NEM are the crucial points. It

might not be feasible for larger networks to search the complete space of network

topologies for the best model and inference mechanisms have to be used, for

example greedy hillclimbing. A number of heuristics has been proposed in

order to select Φ from the space of possible network topologies. Furthermore,

several likelihood models were introduced to compare the network hypotheses

to the observed experimental data.

The most simple way of finding the optimum for this problem is traversing

the complete network topology space of Φ via an exhaustive search algorithm.

However, this is not feasible for larger networks due to the exponential growth

of possible network hypotheses with the number of nodes. Several strategies

were proposed to deal with this problem: The greedy hillclimbing algorithm and
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the divide-and-conquer algorithms pairwise heuristic (Markowetz et al., 2007),

triplets inference (Markowetz et al., 2007) and module networks (Fröhlich et al.,

2007a).

Greedy hillclimbing is a search strategy for finding local optima from a given

starting position. In NEMs an empty network topology, without any edges,

is used as starting position and during each iteration the edge improving the

network score the most is added to the graph. The algorithm terminates when

no edge remains which improves the network score.

The pairwise heuristic divides the network into the smallest possible subsets

of all pairs of genes. For each of these pairs the most likely of one of four

models is inferred, either X → Y , X ← Y , X ↔ Y or XY . The inferred

network topology is the set of all pairwise relationships (Markowetz et al.,

2007). Triplets inference further extends the scoring of pairs and removes the

independence assumption between pairs. The network topology is built by

scoring all triples (X, Y, Z) of genes and selecting the final graph by averaging

how often a specific edge between two genes is inferred. The final graph is built

from all edges which occur more often than a previously selected threshold

(Markowetz et al., 2007). Module networks start with hierarchical clustering

of the expressions profiles of intervention experiments. Effect profiles with a

similar response are supposed to have a small distance within the network

topology. These hierarchies are broken down into genes clusters of four genes

at a time. Exhaustive search NEMs for the highest scoring models for these

quadruples is performed and the modules are subsequently merged in a greedy

hillclimbing fashion (Fröhlich et al., 2007a).

Further extensions to NEMs have been proposed lately: Niederberger et al.

(2012) proposed a combination of Monte Carlo sampling and an Expectation-

Maximization (EM) algorithm and Failmezger et al. (2013) introduced dynamic

NEMs to analyze time laps cell images of RNAi knock downs.

2.2.2 Handling Prior Knowledge in Nested Effects Models

Werhli and Husmeier (2007) reason that network inference from sparse and

noisy high-dimensional data leads to a poor reconstruction accuracy and suggest

that the inclusion of complementary information might be indispensable. Two
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ways of handling prior knowledge integration for the network topology Φ have

been proposed for NEMs, following either a frequentist or a Bayesian formula

(Fröhlich et al., 2007a, 2008b). Both approaches assume independent edge

priors for all edges and model the likelihood of each specific edge using a

Laplacian distribution with parameter λ.

The first approach uses the frequentist point of view (Fröhlich et al., 2009)

and scales the belief into the prior as an regularization trade-off dependent on λ.

Here, λ = 0 leads to a pure maximum likelihood estimate and λ→∞ leads to

full belief into the prior edges. In order to select a balancing option between 0

and∞ Fröhlich et al. (2007a) proposed to use the Akaike Information Criterion

(AIC).

The second approach follows a Bayesian point of view and proposes the use

of an inverse gamma distribution as prior on λ and marginalization to model

the belief into prior knowledge edges (Fröhlich et al., 2008b).

2.3 Experimental Data

Previously generated experimental gene expression data of breast cancer cell

lines is used within this thesis in order to demonstrate the integration of pathway

data for network reconstruction purposes. The data consists of a number of

gene perturbation experiments in the human estrogen receptor positive breast

cancer cell line MCF7.

A total of 16 single knockout experiments was included for network recon-

struction after leaving out double knockout experiments and treatments with

stimuli or drugs. Table 2.1 lists the perturbed genes along with their specific

identifiers. For every perturbed gene 2, 3 or 4 biological replicates, indicating

4, 6 or 8 microarrays per knockdown, were measured.

Within the scope of the thesis, this dataset is used to demonstrate the

integration of prior knowledge from pathway databases into network recon-

struction approaches. Nested Effects Models, introduced in Section 2.2.1, are

applied to reconstruct the signaling cascade derived from the effects of the

gene perturbation observed within this experimental data. In essence, this

reconstructs a network with the 16 perturbed genes as nodes and their signaling

flow as edges.
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The data itself is available via the online repositories Gene Expression

Omnibus (2)(3) (Edgar et al., 2002) and ArrayExpress (4)(5) (Brazma et al.,

2003) and has been partially used in other network reconstruction publications

(Fröhlich et al., 2007a, 2008b). Gene perturbation has been performed using

siRNA knockdowns, the exact protocol is available along with the data via

GEO and ArrayExpress.

The perturbation experiments have been measured using custom two-color

microarrays following a dye-swap design. The mapping of microarray probes to

mRNA identifiers is detailed in the GEO platform definition GPL3050(6). The

dye-swap design specifies that one biological replicate consists of two two-color

chips, one chip using the green channel for treatment and the red channel as

control and the other chip using the green channel for control and the red

channel for treatment.

For each of the knockdown genes, a differential gene list is compiled repre-

senting the specific knockdown effects. The results of the statistical analysis of

knockdown versus control can be found in Section 3.3.1 of Chapter 3 Results.

(2)GEO Accession GSE12291: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12291
(3)GEO Accession GSE7033: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7033
(4)ArrayExpress Accession E-GEOD-7033: http://www.ebi.ac.uk/arrayexpress/experiments/E-

GEOD-7033/
(5)ArrayExpress Accession E-GEOD-12291: http://www.ebi.ac.uk/arrayexpress/experiments/E-

GEOD-12291/
(6)GEO Platform definition GPL3050: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gpl3050
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HUGO Gene Symbol Entrez Gene ID UniProt ID
AKT1 207 P31749
AKT2 208 P31751
BCL2 596 P10415
CCNG2 901 Q16589
ESR1 2099 P03372
FOXA1 3169 P55317
HSPB8 26353 Q9UJY1
MAPK1 5594 P28482
STAT5B 6777 P51692
STC2 8614 O76061
TMEM45B 120224 Q96B21
TP53 7157 P04637
XBP1 7494 P17861
DDR1 780 Q08345
GDF15 9518 Q99988
GPR30 2852 Q99527

TABLE 2.1 Table of Perturbed Genes
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2.4 The R Project for Statistical Computing

The R scripting language and the R Project for Statistical Computing offer

numerous ways for data processing, statistical testing, mathematical modeling

and graphical plotting (Team, 2013). It is an implementation of the language

S whose development begun at the Bell Laboratories in 1975. R is an open

source software, part of the GNU project, and has been in development since

1997. One of its main advantages over other statistical computing environments

like SAS, SPSS or Statistica is the portability and the extensibility with new

software packages written in R, C or other languages. The quick succession

of new discoveries in molecular biology, the open source approach and its

extensibility have made R a very popular tool in many areas of bioinformatics.

Several online repositories are available, the Comprehensive R Archive Network

(CRAN, Hornik, 2012), Bioconductor (Gentleman et al., 2004) and the Omega

Project for Statistical Computing (Lang, 2000) which currently contain 4705,

671 and 98 R packages, respectively.

Within this thesis R is used for several tasks: For the statistical analysis of

gene expression of the experimental data, for the assessment and analysis of

network reconstruction and for the implementation of a software package to

integrate pathway data into R.

2.4.1 Packages for Statistical Bioinformatic Analyses

A great variety of packages is available for the user to pursue bioinformatic

analysis in R, many of them available through the online repository Bioconduc-

tor (Gentleman et al., 2004). One example is the differential gene expression

analysis, which essentially tests whether the expression levels of genes between

two groups are deregulated. The results of a differential gene expression analysis

of perturbation experiments can be used as input to compute Nested Effects

Models, as described in Section 2.2.

Assessing differentially expressed genes is achieved by computing statistical

tests to search for genes which show a significantly increased or decreased

expression level under different experimental conditions. A differential gene
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expression analysis is comprised by a number of sequential steps. An exemplified

workflow from experimental data to differential gene list is depicted in Figure 2.5.

Retrieve
Raw Data

Pre-process 
Data

Log-transform

Normalize

Background 
correction

Statistical
Test

List of Differentially
Expressed Genes

Sample1 - Gene1
Sample1 - Gene2
Sample1 - Gene3
Sample2 - Gene1
Sample2 - Gene2
Sample2 - Gene3

...

Sample1 - Gene1
Sample1 - Gene2
Sample1 - Gene3
Sample2 - Gene1
Sample2 - Gene2
Sample2 - Gene3

...

Control Group Treated Group

Group-wise comparison Gene1 ~ p=0.xxx
Gene2 ~ p=0.xxx
Gene3 ~ p=0.xxx
Gene4 ~ p=0.xxx
Gene5 ~ p=0.xxx
Gene6 ~ p=0.xxx

...

FIGURE 2.5 This figure shows the testing for differentially expressed genes, a common
analysis performed in statistical bioinformatics to find genes which differ significantly between
two groups.

Gene expression data must be read in from the file system or from an online

data repository, e.g. the Gene Expression Omnibus (Edgar et al., 2002) or

ArrayExpress (Brazma et al., 2003), which store and annotate data of microarray

experiments. In order to retrieve data from these repositories, the R packages

ArrayExpress (Brazma et al., 2003) or GEOquery can be used. Depending on

the platform used to measure gene expression levels, the retrieved data files are

often encoded using a proprietary format. However, packages exist to parse this

data, for example the affy package (Gautier et al., 2004). After data has been

retrieved and read in, it is usually log-transformed and a number of further pre-

processing steps are available, i.e. background correction and normalization,

depending on experimental design and microarray platform. Background

correction can be useful for microarrays, where a scanner reads fluorescent light

intensities from the arrays and always returns a minimum intensitity due to

background noise. However, the necessity and use of background correction is

disputed (Smyth et al., 2003). In order to account for different distributions

of intensities, normalization can be applied depending on experimental design.

Two kinds of normalizations are commonly applied, normalization for all

microarrays of an experiment and/or for all microarrays of the specific groups

within the experiment. Different types of normalizations can be used, common

choices are quantile normalization and loess normalization (Dudoit et al., 2002;

Bolstad et al., 2003). Nevertheless, the specific use cases and best practices are
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disputed (Quackenbush, 2002; Qiu et al., 2013). Packages to parse proprietary

microarray data formats often include background correction and normalization,

for example the affy package (Gautier et al., 2004) for Affymetrix microarrays

and the lumi package (Du et al., 2008) for the Illumina platform. Finally, a

number of packages are available to test the pre-processed data for significantly

regulated genes. The most commonly used package in this context is the limma

package by Smyth and colleagues (Smyth, 2005). Its main procedure computes

an empirical Bayes-moderated T-statistic of the gene expression levels between

groups on a gene-by-gene basis. The resulting p-values are usually adjusted

in order to account for the multiplicity problem, for example using Bonferroni

correction to control the family-wise error rate. However, in high-throughput

data analysis it is common to use the more liberal approaches, i.e. to control

the false discovery rate (Benjamini and Hochberg, 1995).

2.4.2 Packages for the Integration of Pathway Data

The use of various pathway models, gene or protein identifiers and restrictions

of the available R classes as well as slow execution times make the integration

of pathway data into R a complex task. In order to integrate BioPAX-encoded

pathway knowledge into R, a new software package was implemented, see

Section 3.1 ”rBiopaxParser” of the Results chapter. The rBiopaxParser parses

BioPAX data, resembles its ontology within R and offers a general approach to

work with pathway data in R (Kramer et al., 2013). The aim was to enable

the user to integrate data from different sources and allow the merging of

these different knowledge sources. BioPAX ontologies are encoded in the OWL

format, which is based on XML/RDF encoding. The XML package (Lang,

2013), a wrapper for the Linux library libxml2, is used in order to read these

XML/RDF files into R for further processing. The integrated data downloader

for rBiopaxParser is based on the RCurl package (Lang, 2007), which is a

wrapper for the libcurl library for data transfer using various network protocols.

Mapping operations between different identifiers, e.g. UniProt ID and Entrez

Gene ID, is performed using the biomaRt package (Durinck et al., 2009).
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2.4.3 Nested Effects Models in R

Nested Effects Models, as described in section Section 2.2, are used for network

reconstruction within the scope of this thesis. Nested Effects Models have been

implemented in the R software package nem, which is available at the online

repository Bioconductor and has been published (Fröhlich et al., 2008a).

A NEM is comprised of a network hypothesis and a bipartite graph attaching

specific effected genes to perturbed genes. The various implementations of

network inference differ regarding enumeration of search space for the network

hypotheses and regarding the probabilistic model for attachment of the effected

genes. Prior knowledge can be supplied in form of an adjacency matrix for the

network hypothesis and as prior assumptions for the effected gene positions.

Furthermore, a number of features are available, for example feature selection,

which leaves out irrelevant effected genes, or statistical assessment of stability

and robustness by applying bootstrap or jackknife methods. Finally, post-

processing features enable the user to merge indistinguishable nodes and to

compute the transitive reduction of the NEM graph.

The central function of the package is nem, which expects the data matrix,

the inference model and a hyperparameter, containing all other relevant pa-

rameters, for example prior knowledge input. The plot.nem function offers a

number of features and parameters to visualize the NEM.

Nested Effects Models expect prior network knowledge input in the form

of an adjacency matrix of regulatory interactions between perturbed genes.

Therefore, the common type of visualization for pathways within this thesis is

the SBGN activity flow diagram, generated in R using Graphviz. Nodes within

these graphs represent molecules, edges represent regulatory interactions with

activating edges rendered green and inhibiting edges rendered red.
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Chapter 3

Results

Following the workflow in Figure 1.1, as defined in Section 1.1 Aim and

Organization of the Thesis, several steps are required to complete the task

of integrating pathway data as prior knowledge into methods for network

reconstruction. Figure 3.1 gives an overview of the results presented in this

chapter.

Three central and novel results of this thesis are presented in this chapter:

First, the newly implemented software package rBiopaxParser, which

enables the import of BioPAX-encoded pathway databases into R is described.

Functionality and internal data model of the software are explained in this

section.

Second, in Section 3.2 Prior Knowledge Generation, the features of the

parser are used to exemplify the steps from pathway databases, to interactome

and finally to a merged consensus network of prior knowledge. These steps are

pursued with the aim to generate prior knowledge input from multiple data

sources for network reconstruction purposes via NEMs. The prior knowledge is

transformed into a graph depicting the directed signaling interactions between

the genes perturbed in the experimental dataset introduced in Section 2.3.

Third, in Section 3.3 Network Reconstruction, the results of network recon-

struction based on the generated prior knowledge and the experimental dataset

are detailed. The results are reconstructed networks of 16 genes, based on

the high-throughput data of the 16 knockdown experiments, with a network

topology mirroring the signaling flow cascade of these genes.
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FIGURE 3.1 Detailed workflow of the integration of prior knowledge into methods for
network reconstruction within this thesis.

3.1 rBiopaxParser

The software rBiopaxParser is an R package specifically implemented to

make pathway data, which is encoded using the BioPAX ontology, available

within the R Project for Statistical Computing. The software package has

been published as open source on the online version control website GitHub(1)

and has been released as part of Bioconductor 2.12(2). An application note

(1)rBiopaxParser Repository on GitHub: https://github.com/frankkramer/rBiopaxParser
(2)rBiopaxParser Realease on Bioconductor:

http://www.bioconductor.org/packages/release/bioc/html/rBiopaxParser.html
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describing the implementation and features of the package has been published

in Bioinformatics (Kramer et al., 2013). As of December 2013, version 1.3 of the

R package is available. The project includes about 7000 lines of source code in

66 functions, a reference manual (54 pages) documenting the available functions,

and a vignette (17 pages) describing working examples. The documentation is

not attached in an appendix, due to the extensive length, but can be readily

downloaded from the GitHub repository as well as the Bioconductor website.

This section describes the steps of parsing BioPAX encoded data, the internal

data model used to represent the BioPAX ontology within R, an example on

accessing, modifying and visualising a pathway, as well as a description how to

create an interaction network from pathway data.

3.1.1 Retrieving Pathway Data

Several online pathway databases offer an export in BioPAX format. The

rBiopaxParser package gives the user a shortcut to download BioPAX exports

directly from database providers from the web. A list of links to commonly

used databases is stored internally and the user can select from which source

and which export to download. The data is stored in the working directory of

the active R session. Currently, the website of the NCI(3), where exports of the

Pathway Interaction Database (PID), BioCarta and Reactome are available,

and the Reactome website(4) are linked. For example, the following command

downloads the Pathway Interaction Database export from the NCI website.

> file = downloadBiopaxData("NCI","PID")

After the download is finished the on-screen output informs the user of

success and name of the downloaded file. Subsequently, the downloaded

database export can be parsed using the functionality described in Section 3.1.2.

Another valid option to retrieve pathway data is to manually retrieve BioPAX

encoded data from websites or via database providers.

(3)National Cancer Institute: http://pid.nci.nih.gov
(4)Reactome: http://www.reactome.org
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3.1.2 Parsing of Pathway Data in BioPAX Format

The BioPAX ontology models biological pathway concepts and their relation-

ships. Implemented in the Web Ontology Language OWL and encoded using an

RDF/XML-based markup language, it allows the users to store and exchange

pathway knowledge in a well-documented and standardized way. The rBiopax-

Parser can parse BioPAX encoded data into R from the local file system using

the XML library. The readBiopax function reads in a BioPAX .owl file and

generates the internal data format used within this package (see Section 3.1.3).

As this function has to traverse the whole XML-tree of a database export, it is

computationally intensive and may have a long run-time depending on the size

of the BioPAX files. Large databases like the Pathway Interaction Database or

Reactome contain millions of lines of XML-encoded data. Parsing this data

using a system library wrapped into an R package and handling the data within

R can result in parsing times between several minutes up to an hour.

The following command reads in the previously downloaded BioPAX file

into variable biopax and prints its summary.

> biopax = readBiopax(file)

> print(biopax)

The latest released version of the ontology is BioPAX Level 3. This package

currently supports BioPAX Level 2 and Level 3.

3.1.3 Internal Data Representation

The BioPAX-format definition and the data content are encoded as an ontology

using the Ontology Web Language (OWL). The OWL-file is encoded using the

Resource Description Framework (RDF) which in turn is encoded based on the

Extensible Markup Language (XML).

The first element of the XML-file contains a tag specifying the used XML ver-

sion and the character encoding of the file. This is followed by an RDF-element

with various attributes specifying further element definitions and namespaces,

i.e. the XMLSchema namespace, the RDF-schema namespace, and the OWL

namespace. The root RDF-element further contains an Ontology-element point-

ing to the BioPAX definition hosted at biopax.org and the complete encoded
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data encoded according to the specified BioPAX definition. These schemata

and namespace definitions are saved in order to be able to reproduce a modified

version of this parsed BioPAX file and write it out to the file system later on.

The BioPAX ontology models the domain of biological pathway knowledge.

Classes like Protein, RNA, Interaction and Pathway are the defined entities

in this domain. Their specific properties, for example, NAME, SEQUENCE,

CONTROLLER and PATHWAY-COMPONENT, define the characteristics of

and the links between the instances of these classes. An overview of the main

classes in BioPAX Level 3 is shown in Section 2.1.2 of Chapter 2 Material and

Methods. In simplified terms one can say that the main class, the pathway,

is built up from a list of interactions. Interactions are linking controlling

molecules to controlled reactions. Reactions are biochemical reactions which

converse, transport or assemble educt molecules to product molecules. In order

to illustrate the conversion from XML/RDF to R data.frame, a minimalistic

example pathway in BioPAX representation with one enzyme regulating a

biochemical reaction of two proteins modeled as instances of BioPAX classes is

depicted in Figure 3.2. Of course, much more extensive and complex pathways

can be constructed using the BioPAX ontology.

Table 3.1 shows the internal data of the minimal BioPAX example, as

introduced in Figure 3.2. This internal data model uses an R data.frame to

represent instances as a collection of their properties. The first column specifies

the class and the second column specifies the id of the instance. The properties,

for example ”NAME”, can either be of rdf:datatype, usually a string like ”Small

Pathway”, or of type rdf:resource, which is a reference to another instance, like

”#Reaction 1”. For comprehensive databases, this data.frame can reach quite

extensive sizes. The data.frame itself can be accessed either directly via the

parsed object or by using one of the implemented functions to ease selection

and modification of BioPAX instances.

The transformation needed in order to visualize the parsed pathway knowl-

edge is illustrated in Section 3.1.5.

Mapping the XML/RDF representation of the BioPAX data from the OWL

file to R is a time consuming task, especially considering the size of many

complete exports of popular databases. The Pathway Interaction Database of

the NCI currently includes more than 175000 BioPAX instances, for example.
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[...]
<bp:Protein rdf:id=”p_1”>

<bp:name rdf:datatype="string">A</bp:name>
</bp:Protein>
<bp:Protein rdf:id=”p_2”>

<bp:name datatype="string">B</bp:name>
</bp:Protein>
<bp:Protein rdf:id=”p_3”>

<bp:name datatype="string">C</bp:name>
</bp:Protein>
<bp:BiochemicalReaction rdf:ID="R_1">
  <bp:direction rdf:datatype="string">

LEFT-TO-RIGHT </bp:direction>
  <bp:left rdf:resource="p_2"/>
  <bp:right rdf:resource="p_3"/>
</bp:BiochemicalReaction>
<bp:Control rdf:ID="control_1">
  <bp:controlType rdf:datatype="string">

ACTIVATION  </bp:controlType>
  <bp:controller rdf:resource="p_1"/>
  <bp:controlled rdf:resource="Reaction_1"/>
</bp:Control>
<bp:Pathway rdf:ID="pathway_1">
  <bp:name rdf:datatype="string">

Small Pathway  </bp:controlType>
  <bp:pathwayComponent rdf:resource="control_1"/>
</bp:Pathway>
[...]
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Property NAME = B

Property NAME = C

BioPAX encoding

Property DIRECTION = ...

Property LEFT  = p_1

Property RIGHT= p_2

Property controlType = ...

Property CONTROLLER  = p_1

Property CONTROLLED = R_1

Property NAME = ...

    Property PW-COMP = control_1

FIGURE 3.2 A minimal example of a BioPAX pathway with a single pathway component.
Protein A is acting as a catalysis for a biochemical conversion reaction of two other proteins.

Mapping these instances to R objects and managing them within lists is not

feasible due to the speed issues of searching inside of lists. List objects in R are

generic and can contain any type of object. Subsequently, objects within a list

can not be indexed for specific properties, for example a name variable, further

obstructing quick search algorithms. Therefore, the classes and their respective

properties are internally mapped to a single R matrix and then converted to

a flat data.frame. This allows more efficient indexing and selecting of subsets

from this data.frame when compared to lists.
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class id property property attr property attr value property value
pathway pathway 1 NAME rdf:datatype string Small Pathway
pathway pathway 1 PATHWAY-COMPONENTS rdf:resource #control 1
control control 1 CONTROL-TYPE rdf:datatype string ACTIVATION
control control 1 CONTROLLER rdf:resource #p 1
control control 1 CONTROLLED rdf:resource #Reaction 1
bioChem Reaction 1 DIRECTION rdf:datatype string LEFT-TO-RIGHT
bioChem Reaction 1 LEFT rdf:resource #p 2
bioChem Reaction 1 RIGHT rdf:resource #p 3
protein p 1 NAME rdf:datatype string A
protein p 2 NAME rdf:datatype string B
protein p 3 NAME rdf:datatype string C

TABLE 3.1 Example of parsed BioPAX data encoding a small pathway.

The conversion of BioPAX ontology data to the internal R data model is

performed as revertible as possible, with one caveat, however. The XML struc-

ture of the original data would allow an infinite nesting of instance declarations.

An example would be to instantiate an external publication reference within a

protein instance, which could itself be instantiated in another instance. This is

not desirable when attempting to map the data to a tabular format such as a

data.frame. Identifying these nested instances is easy: the parser reaches an

instance declaration within another instance. The trick here is to move these

nested instances into the main XML tree and reference the specific instance

with an rdf:resource attribute from within the parsed instance.

3.1.4 Accessing Pathway Data

A number of convenience functions are available, which aid the user in selecting

specific parts or instances of the BioPAX model. Generally, these functions

require the parsed BioPAX object as parameter and other parameters that

differ from function to function.

The most basic function to select distinct instances is selectInstances.

This function allows the user to specify conditions like class, ID or name to select

a subset of the internal data.frame meeting these conditions. This function is

vectorized to allow the user to select multiple instances. The user can extend

the selection criteria by several parameters, for example to include inherited

class types or all referenced instances.

The next type of functions return, in comparison to the internal data.frame,

lists in a human-readable format: listInstances, listPathways,
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listPathwayComponents, and listComplexComponents. These functions re-

turn a list of classes, IDs and names of instances.

The functions getReferencedIDs and getReferencingIDs, which can op-

tionally be executed recursively, are passed the BioPAX object and an instance

ID as parameters. The return value is a vector of IDs of all instances that

are referenced by or are referencing the supplied instance. These functions

can be used to traverse the database, retrieving molecules used within specific

pathways or pathways including specific molecules.

While these functions cover the basic querying capabilities to the structured

pathway data, more complex problems can be addressed by combining and

extending these functions. Further operations, which can be used to modify,

transform and merge pathway data are described in Section 3.2.

3.1.5 Visualizing Pathway Data

As described in Section 1.2.4 of Chapter 2 Material and Methods, different

approaches to visualize biological pathways are possible offering differing granu-

larity of details. Within this thesis the focus is on generating interaction graphs

visualizing the different types of interactions within signaling pathways, similar

to SBGN activity flow diagrams.

The function pathway2RegulatoryGraph transforms the BioPAX-encoded

knowledge of a signaling pathway and compiles it into an interaction graph,

which can be used as prior knowledge input for methods for network recon-

struction. These graphs rely solely on the available BioPAX information about

activations and inhibitions, by classes of or inheriting from, class control. In-

volved molecules, represented by nodes, are connected via edges depending on

the encoded knowledge. This functions breaks up the inherent mechanistic rep-

resentation of pathways in BioPAX, where an interaction connects a controlling

molecule to a controlled biochemical reaction edge. Here, interaction graph is

generated by connecting controller molecules and products of the controlled

biochemical reaction via an interaction edge. The parameter “splitComplex-

Molecules” can be used to split all complexes into their most atomic members,

with all members sharing the same in- and outgoing edges.
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The generated graph objects can be layouted using layoutRegulatoryGraph

and visualized using Rgraphviz or RCytoscape.
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FIGURE 3.3 Rgraphviz plot of the “wnt signaling pathway” parsed from BioCarta.

Figure 3.3 shows the Rgraphviz plot of the “Wnt signaling network” pathway

parsed from PID using the following commands:

> wnt_pwid = "pid_p_100002_wntpathway"

> wnt_pw_graph = pathway2RegulatoryGraph(biopax, wnt_pwid, splitComplexMolecules=TRUE)

> wnt_pw_graph_laidout = layoutRegulatoryGraph(wnt_pw_graph)

> plotRegulatoryGraph(wnt_pw_graph_laidout)

3.2 Generation of Prior Knowledge Networks from Path-

way Databases

This section details the steps how a prior knowledge graph is built from

interaction information by using the R software package rBiopaxParser to parse

the pathway databases Reactome, Pathway Interaction Database and Biocarta.
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Figure 3.4 illustrates the workflow for generating a prior knowledge network

appropriate as input for network reconstruction from pathway databases.

The aim of this section is to transform the parsed prior knowledge into a

graph depicting the directed signaling interactions between the genes perturbed

in the experimental dataset introduced in Section 2.3. This yields a graph with

16 nodes (the knockdown genes) and their specific interactions extracted from

the pathway databases.

Set of Signaling
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Pathway 

Databases

Interactome Reduced Subgraph Prior Knowledge

Parse

Merge Select & Reduce Transform

Transform

Parsed BioPAX
Data in R

FIGURE 3.4 This figure shows the steps to parse, transform and merge the prior knowl-
edge retrieved from pathway databases to an input graph suitable for the given network
reconstruction task.
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Within this section a detailed report of the extent and the compatibility

of the parsed databases is given first. Second, the handling of identifiers for

genes, overlaps of pathways and ambiguity of names and identifiers is reported.

Finally, the steps of reducing the wealth of regulatory information to a network

of the target genes are described. These include the steps of generating a

comprehensive interactome for each database and subsequently reduction and

merging of these interactomes.

3.2.1 Pathway Data from Reactome, Biocarta and PID

The pathway databases PID, Reactome and Biocarte serve as a basis of literature

knowledge, which is compiled into a consensus network and used as prior

knowledge input for network reconstruction. The three databases have been

described in the corresponding sections of Chapter 2 Material and Methods.

The exports of PID and Biocarta in BioPax Level 3 have been retrieved from

the PID website(5) on March 8th, 2013. The BioPAX Level 3 data export of

the Reactome database has been downloaded from the Reactome website(6) on

March 3rd, 2013.

Database PID Reactome BioCarta
Size (MB) 50.4 117.1 6.9
Parsed Size (Entries) 635331 965426 85588
Physical Entities 25241 24711 3988
Interactions 24067 9306 4727
Pathways 2047 1377 386

TABLE 3.2 Overview of parsed BioPAX databases used for generating the consensus prior
knowledge network.

Table 3.2 lists the extent of the generated interactomes of the pathway

databases Reactome, PID and BioCarta as nodes and edges. The pathway

databases range from 7 to 117 MB file size resulting in parsed tables with 85000

to almost 1 million rows. Within these 4000 to 25000 entities are encoded

taking part in 5000 to 25000 interactions organized into a total of 386 to 2047

pathways.

(5)National Cancer Institute: http://pid.nci.nih.gov
(6)Reactome: http://www.reactome.org
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3.2.2 Identifier Handling

The three databases use different identifiers for proteins, molecules and pathways

within their BioPAX models and each database has a different extent of data

annotation. The mapping between identifiers is used for two operations within

this work: First, the knockdown genes given by the experimental dataset

introduced in Section 2.3, are identified within the pathway databases in order

to select the revelant sub-networks to generate prior knowledge input. Second,

in order to evaluate overlaps and discrepancies between the used databases,

a generic comparison of interactions encoded in the pathway databases is

performed.

3.2.2.1 Database-specific Identifiers

All BioPAX instances have a unique internal identifier. However, these are

proprietary, non-functional, internal identifiers and might change between

database exports.

Pathway names are not standardized and database curators use slightly

different names and descriptions, e.g. the WNT signaling pathway is called

Signaling by Wnt in Reactome, wnt signaling pathway in BioCarta and the

PID contains this pathway split into Wnt receptor activity, Signaling by Wnt

and Wnt signaling network. Interactions and reactions usually remain without

a defined name. Furthermore, database curators are not bound by specific

naming standards for physical entities. Instances can either be identified via

their specific name property or using references to external annotations like

UniProt or Entrez IDs.

In Reactome, protein instances have at least one or more gene names or

symbols by HGNC nomenclature. Small molecules have one or more chemical

names and might have the corresponding ChEBI ID as name. Protein instances

in BioCarta are sometimes named using their HGNC gene name and sometimes

using the gene symbol. Small molecules are named according to their chemical

nomenclature. The Pathway Interaction Database uses HGNC gene symbols

and sometimes additionally gene names and UniProt IDs for their protein

names. Small molecules are named according to their chemical nomenclature

and ChEBI ID. Within all databases, the names of complexes are compiled by
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pasting complex component names, sometimes separated by white space and

somtimes by character ’\’. However, component names and order of complex

components differ, which makes direct comparisons of complex entities between

databases difficult.

The databases use different annotations to reference to external identifiers

for encoded instances. In Reactome, the annotation of entities is performed by

using Reactome proprietary database IDs for all entities. Additionally, proteins

are annotated according to UniProt ID and small molecules with ChEBI IDs.

BioCarta annotates proteins with Entrez Gene IDs and uses GO terms for

some molecules. PID annotates proteins with Entrez Gene IDs, publications

evidence for interactions with PubMed IDs and small molecules using CheBI

IDs.

3.2.2.2 Identifier Mapping

Network reconstruction via Nested Effects Models requires a prior knowledge

input containing the perturbed molecules as nodes and their interactions as

edges. Therefore, the respective genes have to be identified in the pathway

databases in order to compile fitting prior knowledge graphs. From the identi-

fiers used in the experimental dataset, a mapping table of the 16 perturbed

genes was compiled for HUGO gene symbols and names, Entrez Gene IDs and

UniProt IDs. Table 2.1 in Section 2.3 Experimental Data lists the perturbed

genes along with their specific identifiers. All perturbed genes are present in the

parsed databases. In order to calculate the overlaps of interactions in pathway

databases, all molecules in all databases were mapped to UniProt IDs. The

mapping between the identifiers has been achieved by using the documented

annotations within the pathway databases and the R package biomaRt (Durinck

et al., 2009).

3.2.3 Generating the Interactome

In order to compile a comprehensive set of knowledge stemming from each

database, a so-called interactome is generated for every database. These inter-

actomes are the assembly of all known regulatory interactions of all pathways
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into a single large graph. The process and the specific steps to generate an

interactome can be formalized using pseudo-code as shown in Algorithm 1.

Algorithm 1: This algorithm describes the process to generate interac-

tomes for the supplied pathway databases.

Data: Pathway Databases PID, BioCarta, Reactome

Result: Interactome of each Pathway Database

for every Pathway Database pwdb do

Interactome ←− ∅;
for all Pathways pw in pwdb do

Interactome + = all Interactions of pw;

end

generate interaction graph from Interactome;

end

The output of these steps are three independent interactomes and the cor-

responding interaction graphs, one for every input database. These interaction

graphs are very large (see Table 3.3), reflecting all regulatory interactions

contained within the databases.

In Figure 3.5, the actual graph of the interactome of the PID database

is depicted. It consists of 11364 nodes, representing molecular entities, and

of 60921 edges, representing activating or inhibiting regulatory interactions.

Table 3.3 lists the extent of the generated interactomes of the pathway databases

Reactome, PID and BioCarta as nodes and edges. In order to break the graphs

down to single gene level data, both controlling and controlled complexes were

split into their complex components as described in Section 3.1 rBiopaxParser.

Interactome PID Reactome BioCarta
Nodes 11364 6917 1980
Edges 60921 57492 6292

TABLE 3.3 Table of Interactome Sizes

Unfortunately, the extent and the hairball-like topology make a visual

analysis of the graphs impossible and warrant further computational processing
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FIGURE 3.5 The interaction graph of the interactome of the Pathway Interaction Database
rendered using the RedeR software package(Castro et al., 2012).

and reduction of the interactomes to retrieve a prior knowledge input graph

suitable for network reconstruction via Nested Effects Models.

3.2.4 Graph Reduction

Depending on the required outcome many different approaches on how the in-

teractomes can be handled are possible. Within this thesis, the prior knowledge

input for network reconstruction using NEMs requires a directed graph with

the intervention experiments as nodes and interactions as edges. The nodes are

specified by the 16 genes knocked down in the experimental data introduced in

Section 2.3.

In the setting of directed graphs the transitive closure means that whenever

there are edges X → Y and Y → Z then there is also an edge X → Z. For

the purposes of the interactome the transitive closure answers the question

of reachability. Therefore, applying transitive closure is a way to locate the

paths between specific nodes within a graph. The subgraph containing only

the perturbed genes is extracted from the transitively closed interactome. This

subgraph contains only the perturbed genes as nodes and there is an edge from

G1→ G2 whenever there is any path of directed edges from G1 to G2 in the
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interactome. This trait is used in order to compile the reachability for the

perturbed genes of interest for all interactomes.

PID Reduced interactome
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HSPB8

MAPK1

STAT5B STC2

TMEM45B

TP53

XBP1DDR1GDF15

GPR30

FIGURE 3.6 The (transitively reduced) representation of the subgraph of 16 knockdown
genes from the interactome of the Pathway Interaction Database.

The first step is to calculate the transitive closure of the current interactomes.

The transitive closure results in transitively closed interactomes with vastly

increased number of edges: The transitively closed interactome of BioCarta,

Reactome and PID have 719084, 3882911 and 18837458 edges, respectively.

The subgraphs contain only the nodes corresponding to the genes knocked

down in the experimental setting.

The output of these steps are three subgraphs of the transitive closure of

the interactomes, one for every pathway database. Each of these graphs has

the perturbed genes as nodes and their interactions as directed edges. The

transitively closed subgraphs of Reactome, PID, and Biocarta have a total of

61, 94 and 63 edges, excluding self-loops, connecting the 16 knockdown gene

nodes.

The results of the interactome subgraphs for PID, Reactome and BioCarta

are illustrated in transitively reduced graphs in Figure 3.6, Figure 3.7 and

Figure 3.8 in order to increase readability. However, for further calculations
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Reactome Reduced interactome
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FIGURE 3.7 The (transitively reduced) representation of the subgraph of 16 knockdown
genes from the interactome of Reactome.
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FIGURE 3.8 The (transitively reduced) representation of the subgraph of 16 knockdown
genes from the interactome of BioCarta.
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the transitively closed graphs are used. Different approaches than the one used

here are possible to reduce the interactome according to the requirements.

AKT1 AKT2 BCL2 CCNG2 DDR1 ESR1 FOXA1 GDF15 GPR30 HSPB8 MAPK1 STAT5B STC2 TMEM45B TP53 XBP1
AKT1 PBR PBR -BR --- PB- PB- --- PB- -B- PBR PBR PBR --- PB- ---
AKT2 --- --- --- --- --- --- --- --- --- --- --- -B- --- --- ---
BCL2 --- PB- -B- --- P-- PB- --- PB- --- --- PB- PB- --- PB- ---
CCNG2 --- PB- P-- --- P-- P-- --- P-- --- P-- P-- PB- --- P-- ---
DDR1 P-R PBR PBR PBR PB- PB- --- PB- -B- PBR PBR PBR P-- PB- ---
ESR1 --R P-R --R --R --- P-- --- --R --- --R P-R P-R --- --- ---
FOXA1 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
GDF15 P-- PB- P-- PB- --- P-- P-- P-- PB- P-- P-- PB- P-- P-- ---
GPR30 --R PBR --R -BR --- P-- PB- --- --- --R PBR PBR --- PB- ---
HSPB8 --R PBR P-R PBR --- P-R P-R --- P-R P-R P-R PBR --- P-R ---
MAPK1 --- PBR PBR -B- --- PB- PB- --- PB- -B- PB- PBR --- PB- ---
STAT5B --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
STC2 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
TMEM45B P-- PB- P-- PB- --- P-- P-- --- P-- -B- P-- P-- PB- P-- ---
TP53 --R P-R --R --R --- P-- P-- --- --- --- --R P-R P-R --- ---
XBP1 --R -BR --R -BR --- --R --R --- --R -BR --R --R -BR --- --R

TABLE 3.4 This matrix shows which edges were found in the pathway databases. P stands
for PID, B for BioCarta, and R for Reactome.

Subsequently, it is interesting to see the concordance of the parsed prior

knowledge data. Table 3.4 shows in form of an adjacency matrix which of

the 256 possible edges of the network of 16 perturbed genes are found in the

pathway databases.

No Edge 128
Reactome 21
Biocarta 7
PID 30
Biocarta & Reactome 6
PID & Reactome 14
PID & Biocarta 30
PID & Biocarta & Reactome 20
Sum 256

TABLE 3.5 This table shows the distribution of the 256 possible edges in the 16 nodes
prior knowledge graphs.

Out of 128 edges found in total, 58 are found in exactly one pathway

database, 50 are found in exactly two pathway databases, and 20 edges are

found in all three databases. A summary of overlaps is shows in Table 3.5.
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3.2.5 Generated Prior Knowledge Regulatory Network

In a final step to assemble a consensus network of three pathway databases,

the reduced interactomes are merged to a single graph. This step is a straight-

forward union of edge sets of the three graphs, no union of the node sets is

required since these are already identical. The merged graph is shown in a

transitively reduced fashion in Figure 3.9. It has to be noted that the merged

graph is not necessarily transitively closed anymore.
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AKT1

AKT2

BCL2

CCNG2

DDR1

ESR1FOXA1

GDF15

GPR30

HSPB8

MAPK1

STAT5B

STC2

TMEM45B

TP53

XBP1

FIGURE 3.9 The (transitively reduced) graph of the merged interactome subgraphs of
PID, Reactome and BioCarta.

The merged graph contains a total of 128 edges excluding self-loops of nodes.

This merged consensus graph of the three databases is used as prior knowledge

input for the network reconstruction described in the next section.

A thorough discussion of the used databases, their con- and discordance and

the steps of prior knowledge generation is performed in Section 4.2 of Chapter

Discussion.
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3.3 Network Reconstruction

In this final section of the chapter, the main parts of this thesis are assembled

and the results of reconstructing the regulatory structure of the pertubated

genes using the generated prior knowledge network are described. First, the

details of the statistical analysis for differential genes between the perturbation

and the control groups for the experimental data are presented. Second, the

merged consensus network generated in the previous section is integrated into

the method for network reconstruction. Finally, the assessment of the nested

effects model is described and the results of network reconstruction, with and

without the integration of prior knowledge, are detailed.

3.3.1 Statistical Analysis of Experimental Data

In this thesis, network reconstruction is conducted based on observed experi-

mental data of gene interventions with the aim to reconstruct the topology of a

network of 16 genes. The experimental data has been introduced in Section 2.3.

Two groups of breast cancer cell line samples have been grown independently

for each of the knocked down genes: a knockdown group and a control group.

Following a dyeswap design, one sample from each group has been measured

using a two-color microarray chips with 26618 probes. For every gene 2, 3 or

4 microarray replicates were performed. A more detailed description of the

experimental data is given in the corresponding section of Chapter 2 Material

and Methods.

The log2 fold-changes of normalized gene expression values between the dyes

were tested for differentially expressed genes by fitting linear models separately

for each gene using the empirical Bayes method and the R package limma

(Smyth, 2004). P-values were adjusted for multiple testing using the method by

Benjamini-Hochberg (Benjamini and Hochberg, 1995). P-values < 0.05 were

considered significant.

The result of this statistical analysis is a list of 26618 p-values and log-fold

changes between knockdown and control samples for each of the 16 knocked

out genes. These lists of differentially expressed genes represent the observed

effects of each knockdown and is the basis for the network reconstruction.
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In order to provide an overview of the results, Table 3.6 lists the number of

differentially expressed genes for each knockdown experiment with p < 0.05 as

well as p < 0.05 and the absolute value of log2 fold-change between knockdown

and control bigger than 1.5.

Knockdown p < 0.05 p < 0.05 & abs(log2(FC)) > log2(1.5)
AKT1 6489 50
AKT2 5461 1456
BCL2 1990 97
CCNG2 6016 618
ESR1 3012 521
FOXA1 4437 503
HSPB8 1728 31
MAPK1 1463 281
STAT5B 3978 43
STC2 4244 819
TMEM45B 4655 238
TP53 903 24
XBP1 4036 146
DDR1 7199 113
GDF15 5203 235
GPR30 4280 905

TABLE 3.6 Table of Differentially Expressed Genes for all Perturbation Experiments.

Only genes which showed a significant p-value (p < 0.05) and a high fold

change (abs(log2(FC)) > log2(1.5)) in more than one knockdown experiment

were used as effects for network reconstruction.

3.3.2 Prior Knowledge Network

The merged consensus network of the pathway databases PID, BioCarta and

Reactome created in Section 3.2.5 is used as prior knowledge input for the

network reconstruction algorithm.

3.3.3 Nested Effects Models

Network reconstruction is performed using Nested Effects Models described

in Section 2.2.1 of Chapter 2 Material and Methods. Network reconstruction

is performed on the introduced experimental data, once including and once
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FIGURE 3.10 The (transitively reduced) graph of the merged interactome subgraphs of
PID, Reactome and BioCarta is used as prior knowledge for NEMs.

excluding prior knowledge. Greedy hillclimbing is used as inference scheme

for the network topology of all NEMs. The Bayesian inference scheme is used

for the linking positions of effected genes to network nodes. Bootstrapping

(100x) is performed on the linking positions of effected genes in order to assess

the statistical stability of networks. A total of 1199 genes were identified as

relevant based on the results of the statistical analyzes in Section 3.3.1, and

are used as effected genes input. Prior knowledge is included as introduced

in Section 2.2.2 by choosing the influence of prior knowledge via an inverse

gamma distribution.

3.3.4 Reconstructed Network

Figure 3.11 shows the reconstructed network topologies with and without

integrated prior knowledge in comparison. The numbers next to the edges

indicate the percentage of times in which each edge was reconstructed over the

total number of 100 bootstrap runs. Only edges reconstructed in at least 50%

of the bootstrap runs are included in the figures.
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Nested Effects Model Results with and without Prior Knowledge
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FIGURE 3.11 The transitively reduced graphs of the computed NEMs:
1) Bayesian inference scheme for effect positions, 100x bootstrap, greedy hillclimbing, without
prior knowledge.
2) Bayesian inference scheme for effect positions, 100x bootstrap, greedy hillclimbing, with
prior knowledge integrated.

3.3.4.1 Overlap of Literature Knowledge and Reconstructed Network

Table 3.7 shows how many reconstructed edges overlap with the ones found in

the three pathway databases. The table shows the amount of edges present in

literature knowledge in contrast to edges found in network reconstruction.

Literature Knowledge Network Reconstruction

without PK with PK
No Edge Edge No Edge Edge

No Edge 65 63 65 63
Edge 90 38 88 40

Sum 155 101 153 103

TABLE 3.7 Contingency table showing the overlaps and disagreements of the parsed
literature knowledge and the network reconstruction results with and without integrated prior
knowledge.
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For literature knowledge, the 256 possible edges of the 16 node network are

divided into rows detailing which pathway database(s) an edge is present or

“No Edge”. The network reconstruction column contains the information for

reconstruction with and without integrated prior knowledge. These edges are

split corresponding where each edge is found in the specific literature knowledge.

Literature Knowledge Network Reconstruction

without PK with PK
Sum No Edge Edge No Edge Edge

No Edge 128 65 63 65 63
Reactome 21 13 8 12 9
Biocarta 7 3 4 3 4

PID 30 17 13 17 13
Biocarta & Reactome 6 4 2 4 2

PID & Reactome 14 14 0 14 0
PID & Biocarta 30 21 9 21 9

PID & Biocarta & Reactome 20 18 2 17 3
Sum 256 155 101 153 103

TABLE 3.8 Detailed contingency table showing the overlaps and disagreements of the
parsed literature knowledge and the network reconstruction results with and without integrated
prior knowledge.

Table 3.8 shows a more detailed contingency table differentiating between

the literature knowledge extracted from the specific pathway databases. For

the network reconstructed without integrated prior knowledge, 38 out of the

101 inferred edges are found in at least one of the pathway databases. 26 of

these interactions are present in at least two databases and two reconstructed

interactions are present in all databases. For the network reconstructed with

integrated prior knowledge, 40 out of the 103 inferred edges are found in any

of the pathway databases. 26 of these interactions are present in at least two

databases and three edges are present in all pathway databases.

3.3.4.2 Influence of Prior Knowledge

The influence of prior knowledge on the reconstructed network can be assessed

by comparing the results of the reconstructed networks with and without

integrated prior knowledge when using a Bayesian prior.
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It can be seen in Table 3.7 that the integration of prior knowledge into the

network reconstruction approach led to two additionally inferred edges. As

explained in Section 3.3.3, only edges which are inferred in at least 50% of the

bootstrap runs are considered. In order to compare the results of NEMs with

and without integrated prior knowledge, the differences in the frequencies of

how often a certain edge was inferred can be analyzed.

AKT1 AKT2 BCL2 CCNG2 DDR1 ESR1 FOXA1 GDF15 GPR30 HSPB8 MAPK1 STAT5B STC2 TMEM45B TP53 XBP1
AKT1 0.00 0.00 0.03 0.07 0.00 0.03 0.00 -0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00 -0.08
AKT2 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01
BCL2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.00
CCNG2 0.00 0.00 0.04 0.00 0.00 -0.12 0.00 0.00 0.01 0.01 -0.01 0.00 0.00 0.00 0.00 -0.07
DDR1 0.00 0.00 0.60 0.00 0.00 0.00 0.00 -0.01 0.00 0.05 0.00 0.00 0.00 0.00 -0.04 0.00
ESR1 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.03 -0.01 0.00 0.00 0.00 0.00 0.00
FOXA1 0.00 0.00 0.00 0.05 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.10
GDF15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
GPR30 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00
HSPB8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAPK1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
STAT5B 0.00 0.00 0.03 0.07 0.00 0.03 0.00 -0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00 -0.08
STC2 0.00 0.00 0.03 0.07 0.00 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 -0.08
TMEM45B 0.00 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.10
TP53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
XBP1 0.00 0.00 0.08 0.00 0.00 -0.12 0.00 0.00 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

TABLE 3.9 Differences of network reconstruction with and without integrated prior knowl-
edge.

Table 3.9 presents the differences of reconstruction frequencies between the

NEM bootstraps with integrated prior knowledge and the NEM bootstraps

without integrated prior knowledge in matrix format. A value of 0 indicates

that a certain edge is reconstructed as frequently with and without prior

knowledge over 100 bootstrap runs. A negative value indicates that an edge

was reconstructed in more runs without prior knowledge compared to runs with

prior knowledge included. A positive value indicates that an edge was more

often reconstructed in runs with prior knowledge included.

These network reconstruction results are further evaluated in the following

Chapter 4 Discussion in Section 4.2.
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Chapter 4

Discussion

This chapter contains the discussion of various points emerging from the

methods used within this thesis, from the implemented software solution and

from the generated results described in the previous chapters. First, the

rBiopaxParser and its design is discussed in the light of current research

and compared to similar approaches. Second, the generated prior knowledge

is assessed concerning the integrated pathway databases and their overlaps

and differences. Finally, the results of network reconstruction are analyzed

with regard to the influence of integrated prior knowledge, the biological

feasibility and the overlaps of the results of network reconstruction and literature

knowledge.

4.1 rBiopaxParser

The use of various pathway models, gene or protein identifiers and restrictions

of the available R classes, as well as slow execution times, make the integration

of pathway data into R not a trivial task. In order to assess the rBiopaxParser

in the context of current research and state-of-the-art software, it is discussed

in two different directions. First, the design decision to use the BioPAX model

for data encoding are discussed and compared to similar modeling approaches.

Second, the implementation are compared to similar R packages which offer

the integration of pathway data.
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4.1.1 Data Model

Within this thesis the BioPAX ontology was chosen as a means to access pathway

knowledge. The rBiopaxParser currently supports the parsing of data encoded

in BioPAX Level 2 and Level 3 (Demir et al., 2010). However, a number of other

approaches to standardized encoding for one or several types of pathways have

been published, for example the KEGG Markup Language (KGML, Kanehisa

et al., 2004), the Systems Biology Markup Language (SBML, Hucka et al., 2003)

and the Human Proteome Organization’s Proteomics Standards Initiative’s

Molecular Interaction format (PSI-MI, Hermjakob et al., 2004). Comparisons of

pathway modeling approaches have been published by Strömbäck and Lambrix

(2005) and by Cary et al. (2005).

KGML is a markup language for encoding pathways within the widespread

KEGG database. It aims at encoding the pathway diagrams, including the

layout of metabolic and signaling pathways. However, KEGG, as a proprietary

database, restricted access to the bulk data download and introduced a paid

subscription format in 2011, causing licensing worries(1). Furthermore, the use

of the KGML format is not explicitly supported for other databases and the

development not openly documented (Strömbäck and Lambrix, 2005).

SBML aims at modeling metabolic pathways as reaction networks including

mathematical relations for each reaction. SBML is mainly focused on quan-

titatively modeling the reactant levels and the cell state in system biology

approaches. SBML does not support references to external databases and

publications (Cary et al., 2005).

The main goal for PSI-MI is to standardize the encoding of protein-protein

interaction knowledge. PSI-MI supports links to evidence, i.e. publications,

and external databases. However, PSI-MI lacks the concept of pathways or

networks and focuses entirely on protein binding and interaction information

(Hermjakob et al., 2004).

The BioPAX ontology has the most complex model, enabling the encoding

of metabolic and signaling pathways alike. Different biological concepts can

be encoded either in detail or at a coarser granularity level. This allows for

a generalization of concepts, for example using a control interaction instead

(1)KEGG: http://www.kegg.jp/kegg/docs/plea.html
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of a catalysis (Demir et al., 2010). External databases and publications can

be referenced. However, mathematical modeling of biochemical reactions is

currently not possible (Cary et al., 2005).

Lately, the different standards have been extending from their niches to

cover further concepts. For example, PSI-MI previously only supported protein

interactions and has been extended to cover small molecules and RNA as well

(Kerrien et al., 2007). Chaouiya et al. (2013) introduced SBML Qualitative

Models as a means to model pathway knowledge in SBML, a qualitative instead

of a quantitative way. Additionally, a number of tools attempting conversion

between formats have been published. Wrzodek et al. (2013) generate SBML

models from KEGG pathways. Büchel et al. (2012) automatically generate basic

SBML models from BioPAX knowledge. Ruebenacker et al. (2009) published an

intermediate model allowing conversion between SBML and BioPAX. Webb and

Ma’ayan (2011) introduced a tool to integrate files from the Simple Interaction

Format (SIF) into BioPAX models.

The choice of using the BioPAX model for the rBiopaxParser in order to

import pathway data into R was based on several criteria: The model had to

encode signaling pathways, be openly available and support linking to external

databases for identifier matching and merging. Furthermore, BioPAX is well

documented, actively developed and supported by a large number of databases

(Bader et al., 2006). Additionally, using the strict aspects of ontologies to model

pathway knowledge improves documentation, collaboration of research groups,

and the use of external data sources. This eases the sharing and understanding

of the underlying model as well as the modeled knowledge.

4.1.2 Comparison with other R Packages

The field of R software for pathway data integration is rapidly developing, even

though identifier handling and incompatible encoding standards pose serious

obstacles. A thorough review of R packages for the integration of pathway data

has been published recently (Kramer et al., 2014).

Several packages are available that offer pathway data for R, each of them

with different approaches to integration, storing and visualization of data. In

general these packages can be divided into two categories: Packages which
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directly supply parsed pathway data and packages which offer a generic parsing

of encoded data.

Graphite (Sales et al., 2012) is an example from the former group of packages,

as it supplies pathways of a number of different pathway databases as R graph

objects. These objects are generated by parsing and conversion of the data

export of the pathway databases. Subsequently the graphs are bundled into

an R package and made available via Bioconductor. Graphite supplies the

contents of the pathway databases PID, Biocarta, Reactome, KEGG, and Spike

(Paz et al., 2011). In a similar fashion the package CePa (Gu and Wang, 2013)

includes PID, BioCarta and Reactome.

The other group of packages are generic parsers for specific encoding stan-

dards. KEGGgraph (Zhang and Wiemann, 2009) enables the user to parse

KGML files into layouted graphs in R. The package rsbml uses the linux library

called libSBML (Bornstein et al., 2008) to parse and generate graphs for SBML

data.

A completely different approach is taken by the PSICQUIC connector

package. It enables the user to query PSI-MI-query compatible web services to

retrieve PSI-MI interaction information (Aranda et al., 2011).

The rBiopaxParser is a generic parser for BioPAX-encoded data. The

generic parsers have the advantage over pathway data supplied directly via

packages that the user is able to independently load, archive and modify

new versions of pathway data directly from the pathway database providers.

Furthermore, the rBiopaxParser has the advantage over other parsers that

it is not limited to supplying graph objects, but that its internal data model

preserves the complete information, including annotations and links to external

databases. Additionally, this internal data model allows the user to either

modify the data on BioPAX-encoding level or to generate new graph objects

from the modified data.

4.2 Prior Knowledge Generation

It is obvious that many possible ways exist to generate a consensus prior

knowledge network from a number of different data sources. These possibilities

are influenced by the target pathway type, the choice of pathway databases
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and other factors. This also implies that the workflow within this thesis is

by no means obligatory to generate and integrate prior knowledge. However,

several noteworthy elements of the generation of prior knowledge within this

thesis warrant a discussion. First, the overlaps of the interactomes of the

used pathway databases are presented. Second, the steps for transforming and

merging the pathway databases into the required format are discussed. The

third part of this section analyzes the prior knowledge networks resulting from

the chosen pathway databases concerning their concordance and discordance .

4.2.1 Pathway Databases

Several properties were considered for the choice of the pathway databases. A

basic requirement for a database was to be available in BioPAX-encoding and

to supply information on the interactions in signaling pathways. Furthermore,

a certain level of good credibility or reputation, for example via publications

or citations, is desireable. Another aspect is the curation and maintenance

work, which must be continuously funded by a corporation or governmental

institution. Moreover, databases which were too focused, for example the

Rat Genome Database (RGD, Petri et al., 2011) and the Microbial Signal

Transduction database (MiST, Ulrich and Zhulin, 2010), and meta-databases,

merging already existing other databases, for example Pathway Commons

(Cerami et al., 2011) and ConsensusPathDB (Kamburov et al., 2011), were not

considered for prior knowledge generation.

Based on the properties mentioned above, the pathway databases PID

(Schaefer et al., 2009), BioCarta (Nishimura, 2001), and Reactome (Croft et al.,

2011) were chosen as suppliers of prior knowledge, see Section 2.1.3 of Chapter 2

Material and Methods. The databases differ in size and coverage, as shown in

Table 3.2, the pathway databases range from 7 to 117 MB file size, resulting

in parsed tables from 85000 up to almost 1 million rows. Within this data

between 386 to over 2000 pathways are encoded, with 4000 to 25000 entities

taking part in 5000 to 25000 interactions.

In order to put the accumulated data into context it is interesting to assess

the overlaps of the pathway databases between each other and with a meta-

database, i.e. Pathway Commons. Table 4.1 shows the overlaps of the generated

interactomes from the pathway databases. The overlap of all interactions of
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two molecules, where both molecules can be mapped to UniProt identifiers,

was calculated.

PID BioCarta Reactome Pathway Commons
PID 5693/37380 (15%) 20362/37380 (54%) 27773/37380 (74%)

BioCarta 3757/4070 (92%) 447/4070 (11%) 3015/4070 (74%)
Reactome 21163/39830 (53%) 777/39830 (2%) 25166/39830 (63%)

Pathway Commons 53586/91939 (58%) 7435/91939 (8%) 50305/91939 (55%)

TABLE 4.1 This table shows for each database listed per row, the overlaps of all its
interactions with the pathway databases listed per column.

It can be seen that a main problem of comparing database contents are the

differences in size: Almost 40000 interactions in Reactome and PID cannot

possibly be contained in the 4000 interactions contained in BioCarta. Further-

more, direct interactions encoded within a smaller database might have been

extended and only be contained as indirect interactions within another, more

comprehensive, database.

Overall, the differences in the available literature knowledge are most

probably also a result of different foci and curation processes. On the one

hand, Reactome has the broadest focus of the three databases and is currently

well-maintained, documented and growing quickly(2). PID on the other hand

set its focus on cancer research(3) and received its last updates in 2012. Lastly,

Biocarta is a long-standing project mainly focused on pathway sketches and

was manually curated into a database format in 2004 by the NCI(4).

4.2.2 Pathway Data Transformation

The process of generating prior knowledge is strongly dependant on the actual

usage and purpose of the prior knowledge. Often the order in which certain

actions are performed on the graphs might change the outcome, for example

the merging of graphs from different databases or the removal of irrelevant

nodes from a graph. This also means that the steps performed within this

thesis cannot be seen as a strict manual for the generation of prior knowledge,

but rather as one possible way to reach the desired outcome. The choice of

transformations needed on the raw pathway data is influenced by the raw data

(2)Reactome: http://wiki.reactome.org/index.php/Past Reactome Calendar
(3)PID: http://pid.nci.nih.gov/userguide/introduction.shtml
(4)Biocarta:http://pid.nci.nih.gov/PID/userguide/database content.shtml
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itself, the decision whether metabolic, signaling or gene regulatory networks

are of interest, and by the requirements of further algorithms or analyzes, for

example concerning the cyclic-ness or directed-ness of graphs. For network

reconstruction using NEMs, the prior knowledge input must be a directed

graph, containing the perturbed targets as nodes and their interactions as

edges.

The first design choice within this thesis was to include all pathways per

pathway database. In order to achieve this the interactome for each database

was generated, i.e. a single pathway consisting of all interactions found within

all pathways of the pathway database, as described in Algorithm 1. The output

of this transformation step is one interaction graph including all the pathways

for each pathway database. Another possible solution would have been to

restrict the integrated knowledge to specific pathways which are known to be

associated with the perturbed genes. However, as this includes manual curation

and might introduce a bias on already well-studied interactions, all pathways

were considered. Furthermore, instead of using a specific interactome for every

pathway database and moving on from there, it would have been possible to

merge all interactomes into a consensus interactome of all pathway databases.

The second transformation applied to the data was to split the complexes

which participate in interactions, into the corresponding genes and to treat

these as controlling or controlled instances. This transformation is a direct

consequence of the requirements of the network reconstruction algorithm. The

perturbation experiments knocked down single genes, therefore the recon-

structed network and the expected prior knowledge network consist of singular

genes as nodes.

This also implies the third transformation: The removal of nodes not needed

for the prior knowledge network. This was accomplished by applying transitive

closure on the generated interactomes, answering the question of reachability

in directed graphs. Selecting the subgraph of the 16 perturbed genes from this

transitive closure inherently returns a graph with edges between nodes, which

are connected via any path in the original interactomes. Another convenient

aspect of using transitive closure for the graph reduction is that NEMs assume a

nesting of effects and reconstruction results are transitively closed graphs. The

output of this transformation step are three transitively closed subgraphs, one
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per pathway database, with perturbation genes as nodes and edges between all

nodes connected via a path within the interactome. These three subgraphs were

shown in a transitively reduced manner in Figure 3.8, Figure 3.7, and Figure 3.6

in the previous chapter, Results. Naturally, endless possibilities exist at this

point to select and transform the data extracted from the pathway databases.

The transitive closure was chosen here due to simplicity and the elegance

of being able to directly extract the reachability graphs for the knockdown

genes. Another tested approach, not shown here, was the computation of

shortest paths between the knockdowns and assembly of a graph based on this

information.

The last transformation step is the straightforward union of the three tran-

sitively closed interactome subgraphs into a single prior knowledge consensus

network. Figure 3.9 shows the result of this union.

4.3 Network Reconstruction

Several aspects of the network reconstruction and its results can be discussed.

A first point to debate is the weighting of the prior knowledge network when

performing NEMs in this thesis as well as network reconstruction approaches in

general. The second aspect to be discussed is the overlap of the reconstructed

networks with the integrated literature knowledge. Third, the impact of the

integration of prior knowledge on the network reconstruction results is assessed.

Finally, the sensibility of the additional edges reconstructed with integrated

prior knowledge is discussed.

4.3.1 Weighting Prior Knowledge

In order to avoid a possibly biased outcome by choosing an arbitrary regular-

ization parameter lambda, the NEMs within this thesis were computed with

a Bayesian prior which was scaled using an inverse gamma distribution as

proposed by Fröhlich et al. (2008b). This method was also found to work very

well for the integration of prior knowledge (Fröhlich et al., 2009).

The methods presented for NEMs specify a topology prior, i.e. a prior

whether specific edges should exist. The integration of prior knowledge in NEMs
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is currently limited to priors on the network topology. However, further solutions

for integrating prior knowledge into methods for network reconstruction are

possible. One of these alternative approaches would be to specify structural

priors, for example the preferral of sparse networks, i.e. a penalization for every

additionally reconstructed edge (Husmeier, 2003; Werhli and Husmeier, 2007).

Similarly, certain networks could be preferred or penalized depending on their

structural properties like connectivity scores, for example the disconnectivity

index.

4.3.2 Comparison of Network Reconstruction Results and Prior

Knowledge

Another interesting aspect to be discussed is in how far the literature knowledge

overlaps with the reconstructed network based on the experimental data. Ta-

ble 3.7 in Chapter 3 Results illustrated these overlaps. It is shown that 38 out

of 101 reconstructed edges of the NEM without integrated prior knowledge are

found in the literature knowledge. The NEM with integrated prior knowledge

reconstructed two additional edges (40 out of 103), both overlapping with the

data retrieved from the pathway databases.

Neither an exact overlap of interactions between the pathway databases,

discussed in Section 4.2.1, nor an exact overlap of reconstructed network and

prior knowledge were to be expected. This is due to the fact that the prior

knowledge also contains pathways which might only be active under specific

conditions or in specific tissues. Examples of this are pathways which are only

active in diseases like diabetes or cancerous cell, under stress conditions or in a

specific phase of the cell cycle.

Unfortunately, meta-information concerning the relevant context for path-

ways, e.g. specific cell lines or diseases, cannot be stored in any of the current

encoding standards. However, recent publications have moved the definition of

context-specific pathways into the focus of research and might trigger further

extensions to encoding standards (Mitra et al., 2013; Lan et al., 2013; Amar

et al., 2013). This shift of focus might, in the long run, enable researchers to

programmatically limit the integrated prior knowledge to specific pathways

relevant to an experimental setting.
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4.3.3 Impact of the Integration of Prior Knowledge on Network

Reconstruction Results

As seen in Table 3.9, which shows the influence of integrated prior knowledge

on the results, the overall small differences for almost all edges indicate a very

robust network reconstruction result. The integration of prior knowledge leads

to two additionally inferred edges, DDR1 → BCL2 and GPR30 → BCL2,

when considering the threshold of only including edges which are inferred in at

least 50% of the bootstrap runs.
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FIGURE 4.1 Transitively reduced visualization of the overlaps and differences of recon-
structed networks with and without integrated prior knowledge.

The graphs in Figure 4.1 illustrate the transitively reduced results of network

reconstruction. The first graph represents the network reconstructed without

prior knowledge. The second graph shows the network reconstructed with prior

knowledge. The third graph illustrates the differences between the first two
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graphs: The green edge (DDR1→ BCL2) and the red edge (GPR30→ BCL2)

are added. Due to the transitively reduced visualization, the blue edges are

redundant with the red edge (GPR30→ BCL2) and not visible in the second

graph due to the transitive reduction.

In order to gain further insights, literature research is conducted using the

pathway databases and the rBiopaxParser or by performing PubMed-based

literature analyzes.

As demonstrated in Section 3.1 the rBiopaxParser can be used to retrieve

numerous properties of pathways and molecules from pathway databases. For

example in this case, interesting aspects about the inferred edges are the

pathways these molecules participate in and their overlaps. Furthermore, it

can be tested whether there is a direct edge between the individual molecules

or if the path between these molecules spans several pathways.

A comparison with Table 3.8 in the previous section shows that the edge

DDR1→ BCL2 is present in all three databases, while the edge GPR30→
BCL2 is only present in the Reactome database.

In PID the molecules DDR1 and BCL2 take part in 4 and 26 pathways

respectively. The molecules have one pathway in common, the il-2 receptor beta

chain in t-cell activation pathway. Although the molecules share a pathway,

the shortest signaling path between these molecules is DDR1 → CDK1 →
PRKAR2A→ BCL2, spanning across 3 pathways shown in Table 4.2.

Edge Pathway
DDR1→ CDK1 estrogen responsive protein efp controls cell cycle and breast tumors growth
CDK1→ PRKAR2A stathmin and breast cancer resistance to antimicrotubule agents
PRKAR2A→ BCL2 regulation of bad phosphorylation

TABLE 4.2 Shortest path DDR1→ BCL2 in PID.

Similarly, in the BioCarta database DDR1 and BCL2 take part in 4

and 15 pathways respectively, sharing pathway il-2 receptor beta chain in t-

cell activation as well. However, the shortest signaling path between these

molecules differs, being DDR1 → CCNB1 → BCL2, spanning 2 pathways

(see Table 4.3).

Within Reactome, DDR1 and BCL2 take part in 67 and 43 pathways re-

spectively. Reactome has a different, very hierarchical organisation of pathways,
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Edge Pathway
DDR1→ CCNB1 cyclins and cell cycle regulation
CCNB1→ BCL2 il-2 receptor beta chain in t-cell activation

TABLE 4.3 Shortest path DDR1→ BCL2 in BioCarta.

where both molecules are shared within the top-level Disease pathway. The

shortest path is DDR1 → JNK1 → BCL2, connecting the NRAGE signals

death through JNK and Innate Immune System pathways.

Edge Pathway
DDR1→ JNK1 NRAGE signals death through JNK
JNK1→ BCL2 Innate Immune System

TABLE 4.4 Shortest path DDR1→ BCL2 in Reactome.

Edge GPR30→ BCL2 is only present in the Reactome database, with the

molecules taking part in 224 and 43 pathways respectively. The two molecules

share 19 pathways and have a shortest path within the Activation of BAD and

translocation to mitochondria via DDR1→ PPP3CB → BCL2.

Edge Pathway
GPR30→ PPP3CB Activation of BAD and translocation to mitochondria
PPP3CB → BCL2 Activation of BAD and translocation to mitochondria

TABLE 4.5 Shortest path GPR30→ BCL2 in Reactome.

Although it is only present in one database, the addition of edge GPR30→
BCL2 is reasonable for the reconstructed network in so far as it merges the

signaling strands ESR1→ GPR30→ TP53 and ESR1→ BCL2→ TP53 to

ESR1→ GPR30→ BCL2→ TP53. Furthermore, it coincides and overlaps

with the other added edge DDR1→ BCL2(→ TP53), overlapping with the

prior knowledge network.

Finally, PubMed analyzes reveal findings that link the gene expression levels

of the genes of both edges, which have been observed in several peer-reviewed

publications. Liu et al. (2011) found that “[. . . ] the anti-apoptotic activity

of GPR30 was dependent on the expression of Bcl-2 and pro-caspase-3.” (Liu

et al., 2011). Hsieh et al. (2007) report that they “[. . . ] found that suppression

of GPR30 but not ER-α prevented E2-BSA- or E2-induced PKA activation

and Bcl-2 expression.”(Hsieh et al., 2007). Berthier et al. (2005) reported a link
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between BCL2 and DDR1 when studying the involvement of pro- and anti-

apoptotic calcium-dependent transduction pathways. Additionally, Kanda and

Watanabe (2003) published that “GPR30 anti-sense oligonucleotide did [. . . ]

suppress 17β-estradiol-induced cAMP signal, cAMP response element-binding

protein phosphorylation, Bcl-2 expression, and apoptosis resistance.”(Kanda

and Watanabe, 2003).

These findings further strengthen the belief that the integration of prior

knowledge into network reconstruction yields new insights into the inner work-

ings of cells.



 Discussion



Chapter 5

Conclusion

With increasing amounts of literature knowledge available electronically and

an information overflow in biology and medicine, searching and retrieving data

poses a real problem for researchers nowadays. This has turned the focus on

archiving complex knowledge in an organized and structured way by faciliating

standardized encodings, for example using ontologies to model the knowledge

domain. Extending the current knowledge on cellular processes and functions

can help to develop new drugs and treatments to address currently lethal

diseases and aim for new findings in the field of life sciences in general. The

integration of prior knowledge into bioinformatic methods translates into using

the accumulated knowledge of the last decades as building blocks for future

discoveries. Ultimately, this has been the driving motivation for this thesis.

This thesis touches upon a number of important aspects in bioinformatics, for

example the developing research fields of pathway knowledge modeling, pathway

databases and the integration of this knowledge into bioinformatic methods.

The thesis contains an introduction to methods and underlying concepts used to

model pathway knowledge and network reconstruction approaches. Furthermore,

a newly implemented open-source software package to work with BioPAX-

encoded pathway data within R is presented. Additionally, a workflow to

access, merge and transform literature knowledge from various sources into

suitably-formated prior knowledge aims at showing possible approaches for the

integration of prior knowledge.

Unfortunately, many hurdles in the usage of archived literature knowledge

persist. Overall a trend to abiding by standards for encoding pathway knowledge
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is noticeable and almost all popular pathway databases are available in one

of the current encoding standards. However, the integration and sharing

of structured data in medicine and biology remains an underdeveloped field

given the current tools and documentation. Furthermore, in the short-term

this situation is likely to persist due to rapid development of and changes to

current standards. Nevertheless, fundamental steps have been made towards

the archiving and reproducible use of structured data. Hopefully, these steps

can be used as a leverage to enable new discoveries and findings in biology and

medicine.
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Novère, N. L., and Zell, A. (2012). Qualitative translation of relations from

BioPAX to SBML qual. Bioinformatics, 28(20):2648–2653.

Burkhardt, H. and Smith, B. (1991). Handbook of metaphysics and ontology.

Philosophia Verlag, Muenchen.

Cary, M. P., Bader, G. D., and Sander, C. (2005). Pathway information for

systems biology. FEBS Letters, 579(8):1815–1820.

Castro, M. A., Wang, X., Fletcher, M. N., Meyer, K. B., and Markowetz, F.

(2012). RedeR: R/Bioconductor package for representing modular structures,

nested networks and multiple levels of hierarchical associations. Genome

Biology, 13(4):R29. PMID: 22531049.

Cerami, E. G., Gross, B. E., Demir, E., Rodchenkov, I., Babur, O., Anwar,

N., Schultz, N., Bader, G. D., and Sander, C. (2011). Pathway Commons, a

web resource for biological pathway data. Nucleic Acids Research, 39(suppl

1):D685–D690. PMID: 21071392.
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