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ABSTRACT

MicroRNAs are noncoding transcripts with crucial functions in probably every organ

system. The roles of miRNAs in neuronal processes and cognitive functions are recently being

appreciated. The discovery of neuronal activity regulated miR-212/132 family with their

relatively high expression in brain, functional roles in synaptic remodeling and altered

expression in disease states oriented special focus on their function in neuronal systems. In order

to elucidate the in vivo functions of the miR-212/132, a mutant mouse line was generated via

deletion of the genomic regions encoding pre-miR-212 and pre-miR-132 sequences. The β-

galactosidase reporter gene knocked-in into the targeted locus in this mouse line allowed us to

study the spatial expression pattern of miR-212/132. ß-galactosidase expression was detected in

distinct layers of the cerebral cortex, CA3, CA1 and DG regions of the hippocampus in varying

levels through its dorsal to ventral axis, as well as in lateral amygdala and striatum. The miR-

212/132 null mutant mice did not show any overt structural alterations in the brain, which led us

to investigate possible phenotypes in the cognitive and electrophysiological functions of this

mouse line.

Hidden platform water maze assay results revealed alterations in the spatial memory of

the miR-212/132-/- mice when compared with their WT littermates. In the open field test miR-

212/132-/- mice were observed to be slightly hyperactive although they exhibited normal anxiety

levels. The baseline excitatory synaptic transmission on Schaffer collateral synapses of the miR-

212/132 null hippocampus was normal. On the other hand the paired pulse ratios at different

stimulus-intervals were higher in the miR-212/132 null hippocampus indicating alteration in the

short-term synaptic facilitation. Moreover, long-term potentiation (LTP) on Schaffer collateral

pathway, which is widely accepted as an assay modeling learning and memory, was enhanced in

miR-212/132-/- mice.

To elucidate the molecular mechanisms leading to the observed defects in the behavior

and synaptic transmission of miR-212/132-/- mice, temporal regulation of immediate early genes

(IEG) were studied ex vivo. Arc, c-Fos and BDNF, which are the mediators of neuronal activity

dependent changes in neurons, were downregulated in miR-212/132-/- hippocampal neurons.

Kainic acid treatment of neuronal cultures, which results in a robust neuronal activity, revealed a
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phenotypical difference in the induction of IEG expression in miR-212/132-/- neurons. The

relative levels of c-Fos, Arc and BDNF were similar in miR-212/132-/- and WT neurons upon

incubation with kainic acid for 30 min or 3 hrs. In contrary the upregulation of c-Fos and Arc

were significantly higher in miR-212/132-/- neurons after 6 hrs of kainic acid treatment, which

indicates that the loss-of-function of miR-212/132 alters the regulation of c-Fos and Arc upon

longer neuronal induction.

Cyclic AMP response element binding protein (CREB) is a transcription factor that is

phosphorylated after neuronal activation and subsequently mediates the expression of many

downstream effector genes including c-Fos, Arc and BDNF. My results in this thesis have

demonstrated that the loss of miR-212/132 function attenuates the phosphorylation of CREB in

hippocampal neurons, and thereby providing evidence that miR-212/132 family is involved in

the regulation of synaptic remodeling in hippocampal networks and consequently long-term

spatial memory via regulating the CREB signaling which in turn influences the IEG expression.
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1. INTRODUCTION

1.1. MicroRNA

MicroRNAs (miRNA) are ~20-24 nucleotide long non-coding RNAs with functions in

almost every aspect of cellular metabolism1. Twenty years ago, the first miRNA, lin-4, was

discovered in Caenorhabditis elegans2,3. It was recognized that lin-14 mRNA has sites at its 3’

untranslated region (3’UTR) that is complementary to the lin-4. It has been already shown that

the microRNA lin-4 represses the translation of lin-14 mRNA4. Negative regulatory sequences in

the lin-14 3’-untranslated region are necessary to generate a temporal switch during C.elegans

development. Therefore the role of this small RNA, which does not encode any protein, was

shown to repress the translation of its target mRNA post transcriptionally by aligning with it.

After the initial discovery of miRNA, it took 7 years to first realize that the miRNAs are

expressed in a variety of organisms5. Since then, via high throughput RNA sequencing,

microRNAs have been detected in more than 206 different animal and plant species. There are

24521 hairpin precursor miRNAs expressing 30424 mature miRNAs, which have been

discovered in various organisms6, including 1100 miRNAs in Homo sapiens, 717 in Mus

musculus, 387 in Rattus norvegicus, 186 in Drosophila melanogaster and 233 in Caenorhabditis

elegans 7. Although miRNAs constitute 1-2% of genes in nematodes, insects and mammals8-10,

more than 60% of protein coding genes are predicted as targets of the miRNAs11.

1.1.1. miRNA sequence

MiRNA-mRNA interaction is mediated by Watson-Crick base pairing. In plants, the

complementarity of miRNA to its targeting mRNA is usually almost complete12. However, in

metazoans, the alignment is generally imperfect, with some exceptions13-17. Specific 7 nucleotide

long motifs in 3’UTRs of the mRNAs are crucial for the miRNA to bind and function. The

complementary sequences of these binding motifs on the miRNAs are called “seed sequence”

that determines the identity and targets of the miRNAs. The seed sequence starts at 2nd

nucleotide from the 5’ end of the mature miRNA and composed of 6-7 nucleotides18. Any

mispairing in the seed sequence greatly interferes with the posttranscriptional repression.
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Mismatches or bulges in the central region of miRNA-mRNA heteroduplex (~ between the 9th

and 12th nucleotide), is important for the endonucleolytic cleavage of the mRNA. Moreover

complementarity at 3’ half of the miRNA increases the stability of the duplex18,19. A miRNA

does not necessarily bind only to the 3’UTR of its target. Some mRNAs have miRNA target sites

within their 5’UTRs and coding sequences (CDS)20. As another layer of complexity more than

one kind of miRNA may bind to different parts of one transcript and silence its translation by

acting in concert. Nanog is a good example for such a transcript. MiR-126 and miR-470 targets

Nanog within its CDS while miR-134 binds to the site at 3’UTR. Those three miRNAs act

cooperatively to regulate Nanog expression21.

The sequence of miRNA is not only important to determine its target but also matters for

the stability of miRNA-mRNA duplex and the way of posttranscriptional repression22. The

miRNA sequence also directs the localization of the miRNA and its turnover. MiR-29b contains

a hexamer motif which mediates its nuclear import. Insertion of this sequence into another

miRNA directs it into nucleus as well. MiR-29b might be sequestering its targets into nucleus

and repress their translation by decreasing their concentration in cytoplasm23. MiRNAs are

known to be relatively stable molecules with half-lives of 5 days24 to 2 weeks25. Interestingly the

motif located at the 3’ end of miR-382 is responsible for its instability in HEK293 cells26. The

miRNA turnover can also be regulated by posttranscriptional-“postprocessing” modifications.

For example uridylation of miR-29b and miR-29c in human cells and bantam (fly miRNA) at

specific positions trigger their turnover27.

1.1.2. miRNA Biogenesis

A miRNA gene can be found as an independent genomic unit or might be located in an

intron or exon of a protein-coding or non-coding genes28. They are usually transcribed by RNA

polymerase II. MiRNAs that are located at downstream of tRNAs, Alu and other short

interspersed nuclear elements were shown to be transcribed by RNA polymerase III29-31. The

transcript of a miRNA gene is known as primary miRNA (pri-miRNA) and contains a stem-loop

structure that folds into hairpin structures with stem being composed of imperfect base pairs. A

typical pri-miRNA is composed of stem segment which is ~33bp long, terminal loop and

flanking ends28. The pri-miRNAs show the properties of class II gene transcripts which are the
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3’poly(A) tail and 7-methyguanosine cap (m7Gppp) at 3’ and 5’ ends respectively32-38. Pri-

miRNAs does not necessarily encode single miRNA but can bear multiple miRNAs which may

or may not be members of a functionally related miRNA family39.

Figure 1: Illustration of microRNA Biogenesis Pathway (Ameres et al. 2013. Permission to reuse the
illustration was given by Nature Publishing group. License #:3297570668022)
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In the next step, the pri-miRNA, is further processed or trimmed into pre-miRNA in the

nucleus. In the metazoans, RNase III enzyme called Drosha processes pri-miRNA into 60-70

nucleotide long precursor miRNA (pre-miRNA), which has a stem-loop structure40,41.

Alternatively the pre-mRNA splicing mechanism, linearization by lariat debranching and 5’-to-

3’ or 3’-to-5’ trimming can generate pre-miRNA via bypassing the Drosha42. Drosha interacts

with double stranded RNA binding protein DGCR8 in animals43 and Pasha in C.elegans44 which

function as the cofactor for Drosha. This interaction defines the targets of the Drosha and

increases its affinity to them. Moreover, DGCR8 precisely determine the cleavage site22,45.

In animals, the cropping of pri-miRNA into pre-miRNA is mediated in the nucleus41,46.

Then the pre-miRNA is exported into the cytoplasm by the Ran-GTP dependent nuclear

transport receptor called exportin 5 through the nuclear pores47,48. The transport of the pre-

miRNA takes place in a sequence independent manner49. However an efficient export requires

RNA to have hairpin stem-loop structure with at least 16 bp and ~2 nucleotide 3’ overhang50.

This structure might be considered as a signature motif for exportin 5 to selectively export the

pre-miRNA.

The exported pre-miRNA is recognized by another RNase III enzyme called Dicer and

further cleaved into ~22 nucleotide long miRNA-miRNA* duplex51-54. The 65 Å distance

between the PAZ domain, which is the RNA binding domain, and the catalytic site of Dicer

corresponds to the length spanned by the miRNA-miRNA* duplex. Therefore it was claimed that

Dicer acts as a ruler while determining the cleavage site55-57. However there are cases in which

Dicer is not involved in the biogenesis of the miRNA. In zebrafish and mice, pre-miR-451 is not

recognized by Dicer. Instead, it is further processed by AGO2 after being loaded into RNA-

induced silencing complex (RISC)58-60.

The interaction partners of Dicer can determine its substrate specificity and modulate its

activity. In flies, Loquacious-PA, –PB (Loqs-PA, Loqs-PB) and R3D1-L increases the Dicer1

specificity towards to pre-miRNAs61-63 while R2D2 that interacts with Dicer-2 restricts its

activity on long dsRNA substrates64. TRBP in mammals and Loqs-PB in flies can change the site

where the Dicer cleaves the pre-miRNA, which eventually gives rise to miRNAs with common

precursor but different seed sequences. Those miRNAs with new target specificity are called

isomiRs65,66.
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Subsequently the miRNA-miRNA* duplex is loaded into Argonuate protein by HSC70-

HSP90 chaperone proteins67-71. Importantly the duplex is sorted in a specific way such that the

correct strand can be selected. Therefore the selection does not take place in a random fashion.

Otherwise the targeted gene set would be completely different. The strand which is incorporated

into RISC complex is called “guide strand”. The other strand is either unwounded and later on

degraded or incorporated into RISC complex as well. It is called “passenger strand” or miRNA*.

Thermodynamic properties, the AGO proteins within the RISC complex and the terminal

nucleotide of miRNA-miRNA* duplex affect its sorting process. The guide strand in worms, fly

and plants preferably have Uridine at their 5’ends while in human Uridine or Adenosine is

favored72-76. The RNA-protein interaction at Mid domain of AGO2 in human exclude Guanosine

or Cytidine at 5’ end of loaded miRNA. The nucleotide specific interaction is conserved in all

types of human AGO proteins, AGO1 in flies and ALG-1 and ALG-2, which are miRNA

acceptors in C.elegans74,75,77. Since the sites of cleavage on pre-miRNA, thus the location of 5’

terminal nucleotide is determined by Dicer, it also determines later on the sorting features of the

miRNA strands. This association implies a direct role of Dicer in the regulation of miRNA

function22. (Fig. 1)

The removal of miRNA* is the beginning of RISC maturation. Then the methyl-

transferase HEN1 methylates the AGO2 bound single stranded RNA which creates mature AGO-

RISC complex78,79. Exceptionally there are some cases where miRNA* is also incorporated into

RISC complex72.

1.1.3. miRNA function

The tight association between miRNA expression and diverse array of diseases reflects

the significance of miRNA function80. They affect almost all cellular pathways, which are

involved from development to oncogenesis. It is widely accepted that miRNAs regulate gene

expression post-transcriptionally. However the detailed nature of the regulatory mechanism is

still being debated. The target repression in plants are mostly mediated by endonucleolytic

cleavage which is the result of extensive complementarity between the miRNA and the target

mRNA81-87. Blockage of translation was also observed in plants88,89. Oppositely, in animals

miRNA-target base pairing is generally imperfect, this is therefore not sufficient to mediate
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mRNA cleavage. Although there are some examples of perfect miRNA-target match, it is not

clear whether there is decrease in the levels of the target transcript in those cases16,17,90,91. It is

known that in metazoans, the translational control is mostly mediated by the block of ribosome

or deadenylation of mRNAs1. On the other hand, more than 84% of the miRNA-mRNA

interaction that leads to decreased protein translation is attributed to decreased mRNA level in

mammalian cells92. This suggests that the translational repression mechanisms which are distinct

from endonucleolytic cleavage eventually also give rise to mRNA destruction22.

Taken together, it is obvious that miRNAs regulate the expression of their hundreds of

target genes through translational repression. However there are also cases that miRNA activity

increases expression of its target. For example, miR-373 enhances the transcription of E-cadherin

and cold-shock domain containing protein C2 (CSDC2) by targeting specific sequence at their

promoters93. Hepatitis C virus requires endogenous miR-122 for enhancement of internal

ribosomal entry site (IRES) directed translation and efficient viral replication94,95. Under optimal

conditions miR-369-3 binds to 3’UTR of tumor necrosis factor-α (TNF-α) and represses its

translation. However upon serum starvation, miR-369-3 mediates an increase in TNF-α levels by

recruiting AGO2 and fragile X mental retardation related protein 1 (FXR1)96,97. MiR-10a

enhances the translation of ribosomal protein genes by binding to the 5’TOP motif at

downstream of the transcript which thereby can control the global protein synthesis98.

1.1.4. Regulation of miRNA activities

MiRNAs are regulatory elements. However, their activity is also subject to regulation.

Spatiotemporal regulation of miRNA activity is especially important in neurons, where the

expression of learning and memory related genes are regulated at the correct time and at correct

neuronal compartment. As a good example, miR-134 inhibits Lim-domain-containing protein

kinase 1 (LIMK1) translation at synapses. LIMK1 is a kinase that predominantly found in

neurons. It regulates actin filament dynamics by phosphorylating ADF/cofilin family proteins99.

The miR-134 overexpression and Limk1 knockout mice show similar alteration in dendritic spine

structure100. When cultured neurons are exposed to brain derived neurotrophic factor (BDNF),

the miR-134-mediated repression is relieved which leads to synaptic remodeling101. MiR-138

which is expressed in fly olfactory neurons and rat hippocampal neurons suppresses translation
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of APT1 at dendritic spines102. When there is a neuronal stimulation, RISC assembly factors

Armitage (in fly) and MOV10 (in rat) are degraded which abolishes the miRNA meditated

suppression103,104. Fragile X mental retardation 1 protein (FMRP) is known to be a translational

repressor105,106. MiR-125b, which interacts with FMRP suppresses NMDA receptor subunit

NR2A. The effect of miR-125b overexpression can be rescued by depletion of FMRP, which

suggests that the NR2A silencing is mediated by FMRP-miR-125b synergy107.

Similar to the protein coding genes, the miRNA genes are also under the control of cis

and trans acting regulatory elements34. The promoters of the miRNA genes also contain TATA

box sequences, CpG islands and are subjected to histone modifications. Therefore it is expected

that the microRNA encoding genes are under the control of transcription factors, enhancers,

histone modifying enzymes and epigenetic modifications35. For example p53 enhances the

transcription of miR-34 and miR-107 which is required for the cell cycle arrest and apoptosis.

RE1 silencing transcription factor (REST) silences miR-124a expression in non-neuronal cells

and neuronal progenitors probably by recruiting histone deacetylases to the promoter of miR-

124a gene108. It was shown that 10% of miRNA genes were misregulated when DNMT1 and

DNMT3b methyltransferases were knocked out109.

1.2. MiR-212/132

MiR-212/132 family is comprised of miR-212 and miR-132, which are located on the

same primary transcript. MiR-212 was firstly identified in HeLa cells110. MiR-132 was initially

isolated from adult mouse brain tissue and defined as predominantly brain specific111. MiR-

212/132 cluster is found on chromosome 17 in human, 11 in mouse and 10 in rat. It was detected

in many organisms including Gallus gallus, Xenopus tropicalis, Monodelphis domestica, Macaca

mulatta, Eguus caballus, Bos Taurus, Tetraodon lineatus, Canis lupus familiaris, Rattus

norvegicus, Mus musculus, Macaca mulatta, and Homo sapiens which suggests that the gene

family is highly conserved in vertebrates.

1.2.1. miR-212/132 gene family structure and expression

MiR-212 is located upstream of the miR-132 in the primary transcript. Pre-miR-212 and

pre-miR-132 encoding sequences are separated by only 203 nucleotides. The stem-loop structure
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of pre-miR-132 and pre-miR-212 are 66 and 90 nucleotides long respectively. Mature miR-132

and miR-212 molecules are composed of 22 and 21 nucleotides respectively112. The sequences of

mature miR-132 and miR-212 are highly similar with only 4 nucleotide differences in their

3`part and an additional nucleotide in miR-132 sequence. They have a conserved ‘seed’ region,

which suggests that they both target same set of genes although with variable affinities due to

differences on their 3’ side. However it is known that considering only the complementarity of

the seed sequence in target recognition is not always accurate, since the level of complementarity

at the 3’ side of the miRNA also influences the targeting efficiencies based on the stability of the

predicted miRNA-mRNA binding113,114.

MiR-212 and miR-132 can be classified as neither intronic nor exonic miRNA. Two

transcript variants in miR-212/132 locus were detected in different tissues115-117. In the variant 1,

the miR-212 and miR-132 encoding sequences are located between two exons of a yet another

non-coding gene116,117. However miR-212 and miR-132 are located in one of the exons of the

variant 2. The variant 1 was detected in brain and testis, while variant 2 is expressed in brain,

testis, heart and in epithelial and stromal fractions of mammary gland115. So far the transcript

(DQ223059 in rat and AK006051 in mouse) encoded from the miR-212/132 loci were not shown

to be translated. The transcript is claimed to be a non-coding RNA since it does not have an open

reading frame.

MiR-212/132 locus encodes 4 miRNAs; miR-212, miR-132, and the miRNAs that arise

from their complementary strands; miR-212* and miR-132*. BDNF treatment of cortical

neurons induces the expression of miR-212, miR-132 and also the corresponding star sequences.

However the levels of miR-132 is higher than miR-212 and miR-132*, while the expression

levels of miR-212 and miR-212* are similar to each other117,118. The seed sequences of miR-

212* and miR-132* are completely different (Fig. 2). Their detection by quantitative RT-PCR in

cell culture systems suggests that they should be protected from degradation and may have some

functional roles in these cells. However so far no experimentally confirmed functions of miR-

212* and miR-132* have been reported.
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Figure 2: miR-212/132 sequence and structures. a) The structure of pre-miR-212 and pre-miR-132 is depicted. The
region, which will become mature miRNA are shaded in red. b) The mature miR-212, miR-132, miR-212* and miR-132*
sequences are shown. The seed sequences are typed in red.

In the mouse brain, primary transcript levels of miR-212/132 and mature miR-132 levels

increase with age. As detected by qPCR, miR-132 expression in the hippocampus, striatum and

olfactory bulb of developing mice is first observed at birth and then progressively increases

during postnatal life and reaches to adult levels at 3 weeks of age119,120. The miR-212/132 loci

bears 4 cyclic AMP response element (CRE) binding sites of  which two are located at upstream

of miR-212 and the other two are between miR-212 and miR-132 sequences121. Cyclic AMP

response element binding protein (CREB) controls the expression of miR-212/132 by binding to

consensus CRE sequences in neurons116,117,122,123. They were attributed as neuronal activity

regulated miRNAs since the expression of miR-132 was shown to be induced by treatments with

forskolin, NMDA, KCl or bicuculline in neuronal cultures116,117,119,123-125. High frequency

stimulation (HFS) in vivo and injection of epileptic seizure inducing drugs, pilocarpine and

kainic acid, increases the pri-, pre- and mature-miR-132 levels in hippocampus. Cocaine was

also found to be an inducer of miR-132 expression in the hippocampus and

cerebellum120,122,126,127. Moreover BDNF induces miR-212/132 transcription in neurons while

basic fibroblast growth factor (bFGF) mediates the upregulation of miR-132 expression in both

neurons and astrocytes.116,128,129.
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MiR-212/132 locus is also subjected to transcriptional repression by repressor element 1

silencing transcription factor (REST). There is one REST binding site between miR-212 and

miR-132 coding sequences. Expression of dominant-negative REST mutant in mouse embryonic

fibroblasts (MEFs) leads to an increase in pre-miR-132 levels while ectopic expression of wild-

type REST in cortical neurons downregulates the levels of pre-miR-132 transcript within 48

hours108.

As stated above neuronal activity inducing and neuromodulatory agents influence the

expression of miR-212/132 in vitro and in vivo. However treatments with these agents represent

an artificial method of neuronal stimulations. The natural course of neuronal stimulation

generally requires an exposure to a neurostimulatory chemokine or another stimulated cell.

Exploring a novel environment, experiencing fear or activation of sensory systems such as

visual, auditory or tactile systems, activates various neuronal pathways and initiate new

transcriptional programs. Seeing, hearing or tasting activates many neuronal pathways and

initiate new transcriptional programs. MiR-212/132 transcription was also shown to be

experience dependent. The levels of pri- and mature miR-132 in the visual cortex of postnatal

mice increased as the mice become adolescent. Interestingly this increase in the RNA levels was

abolished when the mice were reared continuously in dark throughout their juvenile life. It was

concluded in that study that monocular deprivation decreases the mature miR-132 levels.

However when the eyes are exposed to light again, miR-132 levels increases back to the normal

levels130,131. Expression of miR-132 in suprachiasmatic nucleus (SCN) also depends on the

exposure to light and assigns it as an important modulator of circadian clock123,132. It was also

shown that exploring behavior in Barnes maze increases the miR-212/132 expression in CA1 and

CA3 regions and granule cell layer (GCL)133. When the mice were exposed to an odorant, the

upregulation of pri-miR-132 level was observed within 15 minutes and reached to its highest

levels in 45 minutes. Additionally exploring a novel environment and fear conditioning also

induced pri-miR-132 transcription120,134.

In the context of miRNA dependent regulation of gene expression, the catabolism of

miRNAs is as important as the regulation of their biogenesis. It was shown that the neuronal

activity dependent miRNA turnover is a common feature of neuronal miRNAs. In cultured

hippocampal neurons, the turnover of miR-124, -128, -134 and -138 initiates soon after the cells
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are exposed to glutamate. However when the neuronal activity is suppressed by application of 6-

nitro-2,3-dioxo-1,4,-dihydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), which blocks α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), kainate receptors and

(±)-3-(2-carboxycpiperazin-4-yl)propyl-1-phosphonic acid that blocks N-Methyl-D-aspartic acid

receptor (NMDAR), no significant change in the levels of miR-124, -128, -134 and -138 was

observed. Interestingly under those conditions where neuronal activity is blocked, the levels of

miR-132 progressively declines and reaches to a significantly low level within half an hour135.

Structurally different non-coding transcripts, which are expressed from the miR-212/132

gene family loci, give rise to miR-212 and miR-132. In the neuronal systems, the regulation of

the miR-212/132 gene is influenced by the neuronal activity. Pharmaceutical activation of

neurons in vivo and in vitro induces miR-212/132 transcription. Besides sensory stimulation and

exploratory behavior enhances the gene transcription as well. CREB, REST and some epigenetic

modifications are known to be involved in the regulation of miR-212/132 transcription. However

still there is no clear picture regarding the spatiotemporal regulation of miR-212/132 expression

in vivo. Moreover the mechanism of differential expression of miR-212 and miR-132 is not

known.

1.2.2. miR-212/132 function

Most of the miR-212/132 functional studies have been done in vitro and there are only a

few reports of miR-212/132 function using a knockout mouse model. Twenty molecular targets

of miR-212/132 have been validated experimentally up to now since first experimental detection

of miR-132 in 2002136 (Table 1). The role of miR-212/132 was reported in neuronal

morphogenesis, drug addiction, newborn neuron integration, cognitive functions, ocular

dominance plasticity, circadian rhythmicity, mammary gland development, cardiac hypertrophy,

angiogenesis and immune functions136,137. Correlation between some neurological disorders and

alteration in the levels of miR-212/132 were also detected. Considering that miRNA target

prediction tool TargetScan predicts 314 putative targets of miR-212/132 with highly conserved

sites, it is very likely that there are still yet a large number of unknown molecular functions of

miR-212/132 waiting to be revealed in future studies.
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Table 1: Experimentally confirmed targets of miR-132 and miR-212.

Target Targeted by

Heparin-binding EGF-like growth factor (HB-EGF)138 miR-132 and miR-212

Methyl CpG binding protein 2 (MeCP2)125,132 miR-132 and miR-212

Matrix metalloproteinase 9 (MMP9)115 miR-132 and miR-212

Retinoblastoma tumor suppressor 1 (Rb1)139 miR-132 and miR-212

Cardiac L-type Ca2+ channel β2 subunit protein140 miR-132

Acetylcholinesterase (AchE)141 miR-132

Jumonji, AT-rich interactive domain 1A (JARID1A)132 miR-132

RAS P21 Protein Activator (p120RasGAP)142 miR-132

Rac GTPase activating protein (p250GAP)116,119,143 miR-132

E1A binding protein p300 (p300)132,144 miR-132

Polyadenylate-binding protein- interacting protein 2 (PAIP2A)132 miR-132

Polypyrimidine tract binding protein 2 (PTBP2)145 miR-132

Regulatory factor X, 4 (RXF4)123 miR-132

Sirtuin 1 (SirT1)146 miR-132

Signal transducer and activator of transcription 4 (STAT4)147 miR-132

B-cell translocation gene 2 (BTG2)132 miR-132

Nuclear receptor subfamily 4 group A member 2 (Nurr1)148 miR-132

Sprouty-related EVH1 domain containing 1 (SPRED1)122 miR-212

Zonula occludens 1 (ZO-1)149 miR-212

Phosphoprotein enriched in astrocytes 15 (PED/PEA-15)150 miR-212

1.2.2.1. miR-212/132 in neuronal morphogenesis

Ectopic expression of miR-132 in cortical neurons increases the total neurite length and

the number of neurite outgrowths while blocking miR-132 activity with antisense 2’ O-methyl

RNA attenuates the neurite sprouting116. MiR-132 targets p250GAP, which is a brain enriched

GTPase activating protein151. P250GAP enhances intrinsic GTPase activity of GTP-binding

proteins which carries them from GTP-bound active state to GDP-bound inactive state152. As

primary hippocampal neuron culture gets mature, the levels of miR-132 and the spine density on

their dendrites increase in parallel. Interestingly the miR-132 and the p250GAP levels show

reverse correlation at different day in vitro (DIV) stages of hippocampal neuron cultures119.
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When p250GAP is silenced by shRNA, the neurite sprouting is enhanced in a similar way as

observed after miR-132 overexpression116. Moreover, when neuronal cultures are exposed to

bicuculline, which is a GABA receptor antagonist used to lower the action potential threshold,

the spine density on dendrites, the width and size of spine heads increase. The observation of the

similar phenotype upon miR-132 expression and p250GAP silencing reveals the association

between neuronal activity, miR-132 expression and p250GAP repression119.

Rho family of small GTPase Rac1, and Rac guanine exchange factor (Rac GEF) Kalirin-

7 function in the downstream of miR-132-p250GAP pathway. Rac1, which is inactivated by

p250GAP, has a functional role in the stability of dendritic spines.151,153,154. Kalirin-7 is an

alternatively spliced form of kalirin155. It is expressed in spines and regulates the spine

formation156-158. Kalirin-7 can rescue the phenotype caused by miR-132 inhibition, thereby

suggesting that the neuronal activity dependent spine formation should be dependent on both

p250GAP repression by miR-132 and kalirin-7 mediated Rac1 activation119.

There are inconsistent and controversial findings among different studies regarding the

effect of miR-132 overexpression and deletion. Edbauer et al. showed that miR-132

overexpression in hippocampal neuronal cultures leads to a decrease in spine density and an

increase in spine width with no effect on the spine length. They also demonstrated that knocking

down the miR-132 levels by sponging does not influence the spine length, density or width. It

rather only causes a decrease in the primary dendrite ramification and the area covered by

dendritic branches107. Siegel et al. however, reported decreased spine volume upon transfection

of neurons by miR-132 antisense RNA102. In the study of Mellios et al., lentiviral infection of V1

cortical neurons at layer 2/3 with miR-132 sponge reduced the spine density and the number of

mushroom spines while increasing the abundance of filopodia. The size of the dendrites of the

sponge infected neurons remained normal130. On the other hand, Hansen et al. demonstrated that

the dendrites of CA1 pyramidal neurons of miR-132 overexpressing mice have higher spine

density compared to control mice133,159. Magill et al. analyzed the newborn neurons of adult

hippocampus and revealed that genetic deletion of miR-212/132 leads to decrease in spine

density, dendrite length and arborization118. Luikart et al. showed that inhibition of miR-132 in

newborn neurons at subgranular zone by retroviral infection of sponge vector only decreased

their spine density at 21 days post infection (DPI)160. Pathania et al. infected newborn neurons



________________________________________________________________1. Introduction

16

with retrovirus carrying miR-132 sponge at subventricular zone. They have observed a decrease

in dendritic complexity, dendrite length and spine density. When miR-132 was overexpressed

spine density, dendritic complexity and spine length was increased161. Remenyi et al. reported

another contradictory in vivo neuronal morphology data such as that they did not observe any

difference in the spine density in CA1 neurons of conventional miR-212/132 knockout mice.

However the cultured cortical neurons obtained from miR-212/132 knockout mice showed a

rather small decrease in the dendrite length and branching after 24 hour in culture. Interestingly

this difference disappears at 48 hours of culturing162.

The studies explained above are obviously not demonstrating consistent results.

Therefore further studies are necessary in order to elucidate the functional roles of miR-212/132

on neuronal morphogenesis.

1.2.2.2. miR-212/132 in newborn neuron integration

Neurogenesis does not only take place during the development of the nervous system but

also required for the homeostasis of the nervous system throughout the whole life of the

organism. There are two sites known where neurogenesis takes place in the adult brain;

subventricular zone (SVZ) of the lateral ventricles and subgranular zone (SGZ) of the dentate

gyrus (DG). The newborn neurons in the SVZ migrate into the olfactory bulb through rostral

migratory stream (RMS) and differentiate into the periglomerular and granule neurons. New

neurons generated within the SGZ differentiate in order to become dentate granule neurons

which later incorporate into the granule cell layer of dentate gyrus163.

1.2.2.2.1. Neurogenesis at SGZ

MiR-132 is not expressed by the neuronal progenitors in DG. However the newborn

neurons at SGZ start to express miR-132 upon differentiation and as the neurons get mature the

expression levels then progressively increase. The knockdown of miR-132 by specific sponge

vector in newborn neurons can be achieved by retroviral transduction in vivo. The frequency of

spontaneous excitatory postsynaptic current (sEPSC) was decreased substantially in neurons

after miR-132 knockdown although the amplitude was not affected. Paired recordings from the

miR-132 sponge transduced or control neurons upon stimulation of the perforant path revealed
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that evoked EPSC was smaller in sponge expressing neurons. However, paired pulse ratio was

not affected upon miR-132 knockdown160. These findings suggest that although miR-132 loss-of-

function does not result in a change in the neurotransmitter release probability, it may lead to a

decrease in the synapse amount or in AMPAR levels found at individual synapses. Therefore

miR-132 is essential for the proper integration and functioning of newborn neurons. Interleukin-

6 (IL-6) was found to be increased in the neurons upon miR-132 knockdown. Since IL-6 is

known to block the neuronal differentiation via its effect on neural stem cells164,165, increase in

IL-6 upon miR-132 inhibition may explain the observed impairment of the neurogenesis.

1.2.2.2.2. Neurogenesis at SVZ

Similar to neurogenesis at SGZ, the neurons generated by neuronal stem cells at SVZ

also initiates the miR-132 expression only when newborn neurons starts to differentiate and to be

integrated into the neuronal networks within the olfactory bulb. If the miR-132 function is

blocked in newborn neurons at SVZ by in vivo neonatal electroporation of specific sponge

vector, these neurons show a decreased frequency and amplitude of EPSCs but normal

GABAergic PSC. On the other hand, the overexpression of miR-132 increases the frequency, but

not the amplitude of GABAergic currents.

In the natural course of adult neurogenesis, half of the newborn neurons die within the

first 15-45 days. Their survival depends on the neuronal input they receive166. If the ectopic miR-

132 overexpression is mediated in neuroblasts at the time of their birth, the number of cells that

express miR-132 is decreased by 34%. Since more activated caspase-3 was detected in miR-132

overexpressing neuroblasts at RMS, it is claimed that the decrease is due to increase in apoptosis

of neuroblasts. However when the overexpression is induced in the neuroblasts 7 days after birth

of mouse, the survival rate of newborn neurons increases161. These results indicate the

spatiotemporal regulation of the miR-132 expression is important for the synaptic integration and

survival of newborn olfactory bulb neurons.

1.2.2.3. miR-212/132 in dopaminergic neuron differentiation

Dopaminergic neurons are mainly found in the midbrain167. They function in motor

control, reward system, motivation and emotional behavior168. Degeneration of dopaminergic
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neurons is implicated as the basis of Parkinson’s disease (PD)169. Stem cell therapy to replace the

dopaminergic neurons is considered as a promising therapeutic option against PD170. Therefore it

is crucial to understand the mechanisms of dopaminergic neuron differentiation. MiR-132 was

found to be also involved in this process. The overexpression of miR-132 decreases the rate of

differentiation while blocking the miR-132 activity augments the differentiation of dopaminergic

neurons. Nurr1 is an essential transcription factor for the induction of dopaminergic neuron

differentiation171. MiR-132 was shown to regulate the expression of Nurr1. Although the

mechanism is not clear, it was claimed that the homeostatic interaction between miR-132 and

Nurr1 might be important for the regulation of dopaminergic neuron differentiation148.

1.2.2.4. miR-212/132 in synaptogenesis

1.2.2.4.1. Synaptic transmission

Impey et al. showed that the inhibiton of miR-132 in hippocampal neurons by antisense

RNA reduced the miniature excitatory postsynaptic current (mEPSC) frequency by 30% without

affecting its amplitude, rise or decay time119. MiR-132 inhibition downregulated the surface

expression levels of GluR1119. In contrary Edbauer et al. demonstrated that miR-132 silencing by

sponging does not affect mEPSC amplitude or frequency. In vivo miR-132 sponging experiments

showed no change in the mEPSC frequency of V1 cortical neurons at layer 2/3 while the

amplitude has decreased.130 Oppositely miR-132 overexpression increases the mEPSC amplitude

and frequency107. On the other hand the analysis performed on autaptic hippocampal neurons by

Lambert et al. showed that lentiviral overexpression of miR-132 does not cause any change in

size or frequency of mEPSC. The paired-pulse ratio was enhanced and the synaptic depression

amount was decreased. Those phenotypes were not due to the alteration in basal synaptic

transmission, change in the amount or rate of refilling of readily releasable pool (RRP) of

synaptic vesicle size, calcium dependence of the synaptic release or postsynaptic receptor

desensitization172. Furthermore the EPSC was not different in miR-132 overexpressing neurons.

Size of a postsynaptic response to a single nerve impulse depends on the probability of

presynaptic vesicle release, quantal response to a single vesicle and the number of synapses173.

Therefore it is possible to conclude that miR-132 overexpression does not change the presynaptic

vesicle release172.
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Being familiar to an object is a component of visual recognition memory. The acquisition

and consolidation of the memory is dependent on synaptic plasticity in perirhinal cortex

(PRh)174-177. Scott et al. reported that lentiviral overexpression of miR-132 in PRh of mice does

not affect the baseline synaptic transmission. Induction of long-term potentiation (LTP), which is

considered as representative of molecular and cellular aspects of learning and memory178,

resulted in no difference between control group and miR-132 overexpressing PRh slices in terms

of synaptic strength following high frequency stimulation (HFS). Long-term depression (LTD) is

defined as the long lasting weakening of synaptic connections. It is an important molecular and

cellular mechanism for modulation of neuronal networks, thereby the neuronal plasticity178. The

chemical induction of LTD is possible by treatment with carbachol (CCh) that activates

muscarinic acethylcholine (Ach) receptors179. CCh treatment on PRh slice of miR-132

overexpressing mice caused higher depression of synaptic transmission compared to control

group. Moreover, following the washout of CCh, although field EPSC (fEPSC) amplitudes came

back to normal levels in the control group, the depression stayed significantly higher in miR-132

overexpressing slices179. Those findings suggest that miR-132 modulates the level of synaptic

depression in PRh slices without affecting the basal synaptic transmission.

In vivo loss-of-function study performed by Remenyi et al. revealed interesting functional

roles of miR-212/132 family during synaptogenesis. The basal synaptic transmission is decreased

in the Schaffer collateral pathway of miR-212/132 knockout mice. However no difference was

observed in paired pulse ratio between miR-212/132 mutant and control groups, which suggests

that there is no alteration in synaptic vesicle release probability. LTP was observed to be higher

in miR-212/132 mutant hippocampi. Interestingly LTP was observed to be lower in the

neocortex of mice. Additionally 40% decrease in the amplitude and size of the mEPSC was

observed in the neocortex upon miR-212/132 deletion.

The studies on the roles of miR-212/132 in synaptic transmission are either not

supportive or contradicting with each other. As explained in the section 1.2.2.1 the research

about the influence of miR-212/132 on neuronal morphology revealed contradicting results as

well. Since it is known that the structural plasticity and synaptic transmission is highly dependent

on each other180,181, having contradictory results may also have same reasons in both cases (for
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further discussion see the section 4.2). Therefore the experimental results should be evaluated

individually by considering each parameter that potentially influences the outcome.

1.2.2.4.2. Ocular dominance plasticity

Complex instinctual behaviors of animals are shaped under influence of genetic and

environmental factors. The characteristics of repertoire of behaviors like mating, fighting,

foraging, curiosity or anxiety is dependent on patterns of connectivity in the brain of individual.

The development of the neuronal networks are indeed influenced by the environment, especially

during the early periods of life, which are called critical periods. The critical period for zebra

finches to learn how to tweet is the first 100 days of their life182. One can learn a foreign

language and speak it as fluently as native speaker if s/he learned it till the age of seven183.

Critical period in the visual system development was well studied in monkeys, cats, rats and

mice. The plasticity of afferents, which reach to visual cortex, changes their pattern of

connectivity depending on the light stimulus received by each of the two individual retinas. This

phenomena is called ocular dominance plasticity and considered as a good model to investigate

synaptic plasticity under different circumstances184. It has been demonstrated that the

distributions of neurons, which receive signal from one of the eyes or both show Gaussian

distribution. This means that most of the neurons can receive signal from both retinas while

relatively lower amount of cells receive input from one of the retinas. When one eye is sutured,

the distribution of activated neurons is shifted towards the neurons that receive signal from the

intact eye. If the deprivation is performed during the critical period, the ocular dominance is

altered irreversibly185-187.

As an important regulator of synaptic plasticity, the functional role of miR-132 in ocular

dominance was also recently demonstrated. It has been shown that miR-132 inhibition by

lentiviral transduction of miR-132 sponge into V1 neurons abolishes the ocular dominance shift,

which normally is observed 4 days after the monocular deprivation130. As explained above, the

miR-212/132 expression in visual cortex neurons is dependent on the neuronal stimuli supplied

by light exposure. When the downregulation of the miR-132 levels upon monocular deprivation

is restored by miR-132 mimic infusion, the shift in the ocular dominance plasticity is prevented
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as well131. Those findings suggest that proper spatiotemporal regulation of miR-212/132 is

essential for the ocular dominance plasticity.

Furthermore light exposure leads to histone modifications at CRE binding sites of miR-

212/132 loci. Phosphorylation of serine 10, acetylation of lysine 14 and demethylation of lysine

4 on histones are the observed modifications which are associated with light exposure and

thought to be the epigenetic changes that induce miR-212/132 expression131.

Different studies revealed the role of miR-212/132 in the modulation of neuronal

networks and the differential regulation of the miR-212/132 loci upon neuronal activity. The

research on the role of miR-212/132 in ocular dominance plasticity also revealed that the ability

of environmental factors to modulate the neuronal networks is dependent on proper regulation of

miR-212/132 expression.

1.2.2.5. miR-212/132 in behavior

Response to external stimuli is a common inheritable feature of all living organisms.

Behavior is an array of responses that living organisms execute depending on the various internal

or external stimuli. Organisms learn and recall what they have experienced in order to be able to

accurately and appropriately respond under different circumstances. This allows them to increase

their chances of survival. Thus, they regulate their inner homeostasis depending on external cues,

like light, abundance of food or heat. Organisms must have motivations to perform an action and

to keep that action sustainable which would be crucial for their survival like feeding or

reproduction. Alteration in any of those mechanisms would be reflected as a change in the

behavior of the organism.

1.2.2.5.1. miR-212/132 in learning and memory

Learning is a behavioral process of skill or knowledge acquisition through experience.

The storage of the acquired information is called memory. The stored information in the memory

can be recalled which in turn may cause a change in the behavior of the organism. Brain is a

complex adaptive system which undergoes modifications at cellular and subcellular level during

the process of learning and memorization. As explained above, miR-212/132 regulates various
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aspects of synaptogenesis. Therefore it is likely that this gene family is also involved in learning

and memory.

Using novel object recognition test, Hansen et al. studied the visual recognition memory

of the transgenic mice overexpressing miR-132 specifically in the adult forebrain neurons159. In

the training phase of this behavioral assay, the transgenic and control mice were allowed to

explore two identical objects for a certain time and then placed back in their home cage for 30

min. In the test phase, one of these objects was replaced with a novel but similar object and the

time spent by mice on each object was measured. Although mice in the control group expectedly

spent more time to explore the novel object, the transgenic mice spent equal amount of time on

both objects. This finding suggests that miR-132 overexpression impairs short-term visual

recognition memory.

Lentiviral mediated overexpression of miR-132 in PRh altered specifically the short-term

visual recognition memory188. These miR-132 overexpressing mice spent less time exploring the

novel object compared to the control mice when the test was performed 20 min after the

habituation. However no impairments could be observed when mice were tested 24 hours after

the habituation.

Barnes maze assay measures the ability of mice to learn, memorize and recall the long-

term memories of spatial cues189. In this assay system, mice are placed on a brightly illuminated

round table that has 18 evenly spaced holes. One of the holes let the mice to escape into a dark

box, which is considered by mice as a safe place to stay rather than to be on the open and bright

surface of the table. After several training sessions, mice are expected to find the correct hole in

a shorter time and with less trial errors. Two-fold induction of miR-132 expression in the adult

forebrain neurons improved the performance of transgenic mice in Barnes maze assay.

Compared with the control group, the escape latency and the trial errors were lower in the group

of transgenic mice between the 2nd and 4th days of trials. On the 5th day both the scores became

similar between transgenic and control groups. However if the miR-132 expression was induced

by approximately around 4-folds in the adult forebrain neurons, the performance of these

transgenic mice in this behavioral assay become poorer in comparison with the control group133.

Therefore maintaining optimal levels of miR-132 expression in forebrain neurons is crucial for

the establishment of the proper spatial memory.
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Fear conditioning test measures the ability of mice to associate aversive experience with

environmental cues190,191. The overall procedure of the test is based on an unconditioned stimulus

(US) followed by a conditioned stimulus (CS) that evoke a conditional response (CR). US can be

the spatial cues, odor or audio stimulus. Conditioned stimulus is an aversive stimulus which is

generally a foot shock. Conditional response is the freezing behavior, which is expressed as no

movement except respiration. After conditioning by applying US followed by CS for several

times, the test phase begins. To detect the conditioned fear memory, the mice are exposed only to

US and the reaction of mice as the duration of freezing response is measured192. There are 2

types of fear conditioning; delayed fear conditioning and trace fear conditioning. In the delayed

fear conditioning, US is immediately followed by CS while there is delay between two stimuli in

trace fear conditioning. Trace conditioning is a more challenging task for mice. They have to

associate the US and the CS. Therefore it requires more repetition during conditioning193. Unlike

the delayed conditioning, which is hippocampus independent, the trace conditioning requires

hippocampal function, suggesting that the absence of contiguity is compensated by the

hippocampal activity194,195. It was shown that mature miR-132 levels increase 30 min after the

trace fear conditioning and then returns back to normal levels within 2 hours. The freezing

behavior was impaired when the hippocampal miR-132 levels were knocked-down by infusion

of lentivirus carrying anti-miR-132 hairpin RNA into the third ventricle. This finding suggests

that the miR-132 function is important to overcome the absence of stimulus contiguity134.

1.2.2.5.2. miR-212/132 in circadian rhythm

In all organisms the homeostasis is dependent on cyclic events that influence the

regulation of biochemical pathways. The day and light cycle is the most prominent periodical

environmental cue, which influences the organismal behavior and metabolism of all multicellular

organisms. The circadian rhythm is the observed changes in an organism, which are dependent

on external factors, in particular the ‘light’. Circadian clock is the molecular mechanisms that

keep the inner time196.

SCN is a structure in the mammalian brain that harbors the master circadian pacemaker

of the body. MiR-132 shows rhythmic expression in SCN but not in cortex. The pre-miR-132

and mature miR-132 induction is light dependent and phase restricted. The brief light exposure



________________________________________________________________1. Introduction

24

of the mice in the middle of the respective day did not enhance the expression, whereas the

induction could be mediated only during the early and late night phases. The induction is

ERK/MAPK pathway dependent. The infusion of miR-132 antagomir into the lateral ventricles

potentiated the light induced phase shifting by 2-folds. The mice that were kept in complete

darkness for 8-10 days were briefly exposed to a certain bright level of light. In the mice of

control group, such brief exposure cause 65±8.4 min phase delay. However in miR-132

antagomir infused mice the delay was 55±9.7 min which is significantly lower compared with

the control group123. On the other hand, overexpression of miR-132 in forebrain neurons,

including the SCN, led to a 45±5.8 min phase delay while the delay in the control group was

98±7.7 min132. These results suggest that miR-132 functions as a negative regulator of circadian

clock resetting.

Per1 and Per2, are period genes which involve in the regulation of the feedback loops of

circadian rhythm genes196. MiR-132 expression increases Per1 transactivation in vitro, while

miR-132 antagomir treatment reduces its abundance in vivo upon brief light induction which

indicates that miR-132 positively modulates the Per1 transactivation123. On the other hand in

vivo overexpression of miR-132 in the mouse SCN leads to a decrease in the amplitude of Per1

levels’ rhythmic fluctuations132.

Regulatory factor X4 (RFX4), Jumonji, AT-rich interactive domain 1A (JARID1A),

methyl Cpg-binding protein 2 (MecP2), p300, B-cell translocation gene 2 (BTG2),

polyadenylate-binding protein-interacting protein 2 (PAIP2A) were shown to be targets of miR-

132 in the mouse SCN. RFX4 is a helix-loop-helix transcription factor, which is highly

expressed in the SCN and the testis. Its expression is inducible by light exposure during the night

phase197,198. RFX4 was shown to be a target of miR-132 in vitro. As expected, the ectopic

expression of miR-132 in HEK293 cells leads to decreased RFX4 protein levels123.

MecP2 binds to the methylated CpG dinucleotides that are mostly located at actively

transcribed loci in the genome. MecP2 was first defined as a gene expression repressor199.

However gain- and loss-of-function studies showed that 80% of the genes whose expression are

associated with MecP2 are actually activated by MecP2. This activation requires interaction of

MecP2 with CREB200. It also functions during alternative RNA splicing201. The level of MecP2

is downregulated in miR-132 overexpressing SCN. Oppositely the miR-132 antagomir treatment
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augmented its levels. MecP2 binds to the 5’ regulatory regions of Per1 and Per2 gene and their

transactivation is positively modulated by MecP2 in a CREB dependent manner132. Therefore the

downregulated MecP2 levels in miR-132 overexpressing SCN may explain the observed

reduction of Per1 levels in these mice.

P300 functions in chromatin remodeling via its intrinsic acetyltransferase activity202. It

has been shown to be a molecular target of miR-132 in Kaposi’s sarcoma-associated herpesvirus

(KSHV) and human cytomegalovirus (HCMV) infected monocytes144. Reduction and

upregulation of p300 levels were observed in the SCN of miR-132 overexpressing transgenic

mice and miR-132 antagomir treated mice respectively.

H3K4Me3 and H3K4Me2 are the histone codes for the active transcription sites in the

genome203. Removal of methyl groups from lysine 4 residue of histone 3 by JARID1A

suppresses the gene expression204. The increased abundance of H3K4Me2 within the SCN of

miR-132 overexpresing transgenic mice might be due to the downregulated levels of

JARID1A132.

BTG2 interacts with POP2/CAF1, which is subunit of deadenylase complex

CCR4/POP2. This interaction increases the rate of POP2/CAF1 mediated polyA shortening,

which is an important determinant of mRNA turnover205. Overexpression of miR-132 attenuates

the BTG2 levels132. On the other hand, another miR-132 target PAIP2A is a suppressor of

translation, which inhibits the interaction between 5’cap binding EIF4G and polyadenylate

binding protein (PABP). The circularization of mRNA, which is an important step to mediate the

efficient translation, is prevented by PAIP2A function206,207. PAIP2A levels were upregulated in

the SCN of miR-132 overexpressing mice although the in vitro data suggested that miR-132

targets PAIP2A. Nevertheless overexpressing BTG2 and PAIP2A in vitro increases the turnover

of Per1 and Per2. Therefore the altered levels of BTG2 and PAIP2A in miR-132 overexpressing

mice might be associated with dampened Per1 levels132.

1.2.2.5.3. miR-212/132 in drug addiction

Substance dependence, commonly known as drug addiction, is a compulsive need by a

person to function normally. The substance abuse is a rewarding behavior which reinforces them
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to be repeated208. The dopamine release from the nucleus accumbens (NA), which is located at

ventral striatum, is crucial for self-stimulation, feeding, sexual activity and exercise mediated

reinforcements and addiction to morphine, amphetamine, cocaine, ethanol, nicotine and Δ9-

tetrahydro-cannabinol192. The dopaminergic pathway in the rat brain originates from A10 ventral

tegmental cell bodies and terminate in the NA, olfactory tubercles and medial frontal cortex209.

Rett syndrome is an X-linked neurodevelopmental disorder which is the most common

reason of mental retardation among females210. The patients suffer from developmental

stagnation, difficulty in speech, incessant stereotypies, social incompatibility, loss of motor

skills, deficit in cognitive functions, anxiety and seizures211. MecP2 dysfunction, which involves

loss-of-function and overexpression, was determined as molecular basis of Rett syndrome212.

MecP2 is an important factor for neuronal activity dependent gene regulations, consequently for

synaptic plasticity and thus for learning and memory213-215. Since drug addiction is considered as

a neuroplasticity disorder216,217, MecP2 was proposed to have some roles in the mechanisms of

reward and reinforcement218.

Extended (6 hours) but not restricted (1 hour) self-administration of cocaine increases the

MecP2 levels in dorsal striatum of rat. If the MecP2 is knocked down in the striatum of mice by

lenti-sh-MecP2 infection, the motivation of rats to use cocaine is abolished. Blocking miR-212

however, rescues the decreased motivation to cocaine self-administration in lenti-sh-MecP2 rats.

Extended cocaine administration increases the miR-212/132 levels in the dorsal striatum,

hippocampus and cerebellum of rats122. When MecP2 is knocked down in HEK-293 cells the

miR-212/132 levels increases. Moreover MecP2 knockdown boosts the miR-212/132 induction

upon cocaine exposure in the dorsal striatum219.

MecP2 is an experimentally confirmed target of miR-132 in cortical neurons125. Forskolin

or KCl treatment, which upregulates miR-132, decreases MecP2 levels. Knockdown of miR-132

prevents this decrease. On the other hand, blocking miR-132 increases BDNF levels. If MecP2 is

knocked down, this increase, which is due to inactivation of miR-132, is not observed. MecP2

knockout mouse, a model of Rett syndrome, shows lower levels of miR-132 and BDNF.

Therefore miR-132 downregulates MecP2 and BDNF is induced by MecP2. Since BDNF is

known to be miR-132 inducer, there seems to be a homeostatic regulatory loop125.
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The MecP2 and BDNF regulation in striatum upon extended cocaine exposure is different

than their regulation in cortical neurons. BDNF levels increase in dorsal striatum of rats which

have extended access to cocaine for 24 hours. Lenti-sh-MecP2 rats show reduced BDNF levels

in restricted and extended groups. MiR-212 targets MecP2 in striatum as well. Blocking miR-

212 decreases BDNF levels in both restricted and extended groups. When BDNF antibody is

administered to striatum of rat, decrease in motivation to cocaine consumption is observed.

Therefore MecP2 blocks miR-212 and BDNF while miR-212 attenuates BDNF in an indirect

way. Homeostatic interaction between MecP2 and miR-212 control the magnitude of BDNF

expression in striatum upon cocaine exposure219.

MiR-212 was found to be involved in CREB signaling while regulating motivation for

cocaine intake. Lentiviral miR-212 overexpression in the dorsal striatum of rat decreased the

motivation of cocaine consumption. MiR-212 overexpression potentiates the CREB signaling,

which can also be mediated by forskolin treatment. Phosphorylation of CREB and induction of

Fos mRNA and protein, is enhanced when miR-212 is overexpressed. This enhancement is

dependent on TORC, which is a CREB coactivator. Cyclic adenosine monophosphate (cAMP)

protects TORC from degradation by triggering CBP/p300 mediated acetylation of TORC220.

MiR-212 expression increases TORC and acetylated TORC levels. Raf1 is a kinase that activates

adenylyl cyclases221. It needs to be phosphorylated in order to be activated as well222. MiR-212

overexpression increases the levels of phosphorylated Raf1 and Raf1 activation increases TORC,

phosphorylated CREB (pCREB) and cAMP levels. Sprouty-related, EVH1 domain containing 1

(SPRED1) is Raf1 repressor223. It is targeted by miR-212. The overexpression of miR-212 in

dorsal striatum decreases SPRED1 levels. SPRED1 knockdown potentiates pCREB induction by

forskolin treatment without altering total CREB (tCREB) levels and increases TORC expression,

which phenocopies the miR-212 overexpression. However the expression of the transgenic

SPRED1 that lacks 3’UTR attenuates but not blocks the stimulatory effect of miR-212 on

pCREB levels122. Therefore at least in part miR-212 activates TORC-CREB pathway through

activation of Raf1 by repressing SPRED1.
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1.2.3. miR-212/132 in neurological disorders

Misregulation of miR-212/132 expression was observed in various neurological

disorders. Analysis of postmortem tissues obtained from schizophrenic patients showed

downregulation of miR-212 while patients suffering from bipolar disorder had upregulated miR-

212/132 levels224,225.

A severe form of neural tube defect, anencephaly, is the result of unclosed neural tube in

the cranial region. The fetus, which does not develop telencephalon, cannot survive 226. The brain

samples obtained from the fetuses with anencephaly shows downregulated miR-212 levels227.

Differential expression of miRNAs was also shown in patients with certain

neurodegenerative diseases, such as Huntington’s, Parkinson’s and Alzheimer’s diseases. Both in

the mouse model of Huntington’s disease and patients’ postmortem brain samples, miR-132

were shown to be downregulated228,229. The mouse Parkinson’s model α-synuclein(A30P)

transgenic mice also shows lower levels of miR-212 and miR-132 in their brainstem230. MiR-212

was shown to be downregulated in the white matter of Alzheimer’s disease patients231.

Hippocampus and medial frontal gyrus, which are the regions primarily affected in Alzheimer’s

disease had lower miR-212 levels in Alzheimer’s patients compared to healthy subjects232.

Additionally the change in miR-212 levels seems like in correlation with the appearance of

neurofibrillary tangles, a marker for the late stage Alzheimer’s disease231.

Progressive supranuclear palsy (PSP) is a form of taupathy, which is caused by the

hyperphosphorylation and aberrant accumulation of microtubule associated protein tau in

neurons. Tau protein has 6 isoforms generated by alternative splicing of exon 2, 3 and 10.

Inclusion of exon 10 leads to production of three or four (3R-tau or 4R-tau) microtubule binding

repeats233. The imbalance of 4R-tau to 3R-tau (4R:3R-tau) is observed in the taupathies234.

Altered 4R:3R-tau ratio and downregulated miR-132 was observed in the prefrontal and

temporal lobes of PSP patients. Polypyrimidine tract-binding protein 2 (PTBP2) that has role in

exon inclusion in alternative splicing, is targeted by miR-132. It is upregulated in prefrontal and

temporal lobes of PSP patients. The knockdown of PTBP2 alters 4R:3R-tau ratio. Therefore the

alteration in tau production might be linked to PTBP2 upregulation which might be due to the

miR-132 downregulation in PSP patients145.
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It was shown that evoking status epilepticus in mice by intra-amygdalar kainic acid

application upregulates miR-132 levels in the CA3 region of the hippocampus. Interestingly in

the preconditioned mice which are tolerant to damaging insult of epileptic seizures, miR-132 was

downregulated compared to intolerant mice. When miR-132 was depleted by antagomir

treatment, seizure-induced neuronal death was observed to be attenuated127.

Serum levels of BDNF and miR-132 was shown to be different in patients suffering from

depression compared to healthy individuals. Therefore, measuring the BDNF and miR-132 levels

in the serum was proposed as a diagnostic test for clinical depression.

1.3. HIPPOCAMPUS

Hippocampus is part of medial temporal lobe. There are 2 hippocampi located under the

cortex and they are responsible for the acquisition and consolidation of different aspects of

memory235. The term “hippocampus” was first used by the Italian anatomist Arantius in 1564.

Hippocampus is the Greek word for “seahorse” and obviously got this name from its sea-horse

like appearance. Hippocampus is also reminiscent of ram’s horn. In 1742, Parisian surgeon Rene

Jacques Croissant de Garengeot suggested the name “cornu ammonis” or “Ammon’s horn”

which refers to the Egyptian god Amun Kneph, whose symbol is a ram. Cornu Ammonis (CA)

became the three different subdivisions of hippocampus, CA1, CA2 and CA3, which are

identified by American neuroanatomist Rafael Lorente de Nó in 1934.

1.3.1. Hippocampal formation

Several different cytoarchitectural structures are grossly defined as hippocampus or

hippocampal formation. The subdivisions of hippocampus are dentate gyrus (DG), CA1, CA2,

CA3, subiculum, presubiculum and parasubiculum. Entorhinal cortex (EC) is part of

parahippocampal cortex together with perirhinal cortex and postrhinal cortex236. Hippocampus

and parahippocampal gyrus make up the medial temporal lobe237. If the DG is considered as the

proximal site, the order of structures down to the distal site is DG, CA3, CA2, CA1, subiculum,

presubiculum, parasubiculum and EC.

DG is U or V shaped structure with three layers. The layer between the granule cell layer

and CA1 is called the suprapyramidal blade. The CA1 and suprapyramidal blade is separated by
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hippocampal fissure. The opposite portion is called the infrapyramidal blade. The region linking

two blades is the crest.

The CA1, CA2 and CA3 differ in terms of their afferents and efferents. Besides, the size

of the pyramidal cells in CA2 and CA3 is greater than CA1. The principal cellular layer is

pyramidal cell layer. The layer that contains the basal dendrites of pyramidal cells is called the

stratum oriens (so). In the CA3 region, the area which is occupied by mossy fibers is called

stratum lucidum (sl). Stratum radiatum (sr) is located superficial to sl in CA3 and pyramidal cell

layer in CA2 and CA1. Stratum lacunosum-moleculare (sl-m) is the most superficial layer of the

hippocampus.

Subiculum, presubiculum and parasubiculum are altogether called subicular complex.

The border between the CA1 and subiculum is where the Schaffer collateral projections from the

CA3 region end. It is the point that condensed pyramidal cell layer of CA1 broadens into thicker

layer of the subiculum. The presubiculum lies adjacent to subiculum. It is characterized by the

external cellular layer composed of small and densely packed pyramidal cells. Parasubiculum

has wedge-shaped layer II with pyramidal cells that are larger and less compact than the cells in

presubiculum. EC is multilamellar (layer I to IV). Layer I is cell-poor but rich in fibers with

transverse orientation. Layer II contains stellate cells and clusters of pyramidal cells. Layer III

contains predominantly pyramidal cells. Layer IV is a cell-free layer especially at caudal levels

of EC. Cells from layer III and V invade the layer IV that gives patchy appearance in the rest of

the EC. Layer Va is composed of densely packed large pyramidal neurons. The packaging

density is lower at deeper parts and the cells are smaller which makes up layer Vb.

Heterogeneous cell size and shape is found at layer VI. The density of cells decrease as the

subcortical white matter is approached235.

1.3.2. Hippocampal Networks

The feature of hippocampus which makes it unique among the brain structures is that the

information flow through the hippocampal subdivisions is unidirectional. Highly convergent and

divergent design of its connections enables it to receive and further processes the multimodal

sensory information from the variety of neocortical connections.
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1.3.2.1. Connections of DG

DG receives input dominantly from the EC via perforant pathway. The projections

mainly arise from the layer II of EC while some afferents are from layer V and VI238. The

perforant path fibers terminate only in the molecular layer of DG239. Projections from medial

septal nuclei and diagonal band of Broca, which are found at basal forebrain, project to

polymorphic layer of DG via fimbria, dorsal fornix, supracallosal stria and ventral route through

and around amygdaloid complex240. Projections from supramammillary area in the hypothalamus

terminate mainly in the narrow zone of the molecular layer where dendrites of granule cell layer

are found241. DG receives several different afferents from brain stem. Locus coeruleus projects

noradrenergic fibers to polymorphic layer of DG and sl of CA3242. Some minor dopaminergic

projections arise from ventral tegmental area243. Serotonergic projections from medial and dorsal

raphe nuclei terminate in the polymorphic layer of DG244.

DG projects exclusively to CA3 region via axons called mossy fibers. The projections

terminate just at the border of CA3 and CA2. Not getting input from mossy fibers is

distinguishing feature of CA2 from CA3245. Each granule cell has ability to activate 15 CA3

pyramidal neurons. Each CA3 pyramidal neurons receive input from 72 granule cells246.

1.3.2.2. Connections of CA region

The perforant path that originated from layer II of EC terminates both at DG and

CA3/CA2 region247. Therefore it can be speculated that the information carried from EC to DG

and CA3/CA2 are the same. The projections from EC to CA1 arise in layer III. The connection

between CA1 and EC is reciprocal. CA1 sends its axon from where it receives. Proximal CA1

cells project to medial EC while distal CA1 neurons project to lateral EC248.

There is no known connection between CA3/CA2 regions to neocortex. CA3 receives

input from basal nucleus of amygdaloid complex. CA1 projects to amygdaloid complex and has

reciprocal connection with the perirhinal cortex as well. Moreover CA1 sends its axons to

postrhinal and retrosplenial area249,250.

The major forebrain region where CA3 gets input is septum. The projections arise from

medial septal nucleus and the nucleus of the diagonal band of Broca like the projections reach to
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DG. CA3 sends its axons to lateral septal nucleus via fimbria and precommissural fornix. CA1

also project to lateral septal nucleus. However CA1 projection to lateral septal nucleus is

ipsilateral while CA3 is bilateral251.

The known hypothalamic connection with CA region is between CA2 and

supramammillary area and the tuberomammillary area at posterior hypothalamus. The projection

is from hypothalamus to CA2241. The nucleus reuniens, located in the thalamus, give rise to

projections to sl-m of CA1, where the fibers overlap with the axons from EC. The projections

terminate on both principal cells and GABAergic interneurons252.

Hippocampus receives noradrenergic and serotonergic inputs from brain stem.

Noradrenergic fibers that arise from locus coeruleus are distributed in sl and sl-m layers.

Serotonergic fibers do not form synaptic connections and appear to release the neurotransmitters

into extracellular space of CA3 region. CA1 receives more monoaminergic fibers than CA3,

which effects LTP243.

Although hippocampus receives many inputs from diverse structure of the brain, the

major input is coming from the hippocampus itself. The CA3 projection to CA3 and CA2 is

called associational connections. The axons that arise from CA3 and reaches to CA1 field are

Schaffer collaterals. The CA3 neurons, which lay close to DG, project more heavily to septal

levels of CA1. CA3 neurons located closer to CA1 project to temporal levels of CA1. The CA3

neurons also distribute its fibers to the same regions of contralateral hippocampus as within

ipsilateral hippocampus253,254. The projections that reach to the contralateral hippocampus are

called commissural projections255. Interestingly commissural projections are less abundant in

monkey than rat and mice, and almost absent in humans.

1.3.2.3. Connections of Subiculum

Subiculum is the primary source of efferent connections from the hippocampal formation.

Therefore it can be considered as the last step in the information processing through the

hippocampus. Subiculum projects to layer I and II of the presubiculum and parasubiculum. It is

connected reciprocally to the EC. Fibers that arise from layer III and II of EC terminate in the
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subiculum. The projections from subiculum reaches to every region of EC but most prominently

at layer V256.

The subiculum projects strongly to layer II and III of retrosplenial cortex and perirhinal

cortex257. It receives projections from the amygdaloid complex and projects back to accessory

basal nucleus. Ventral subiculum projects strongly to the bed nucleus of the stria terminalis and

moderately to claustrum and endopiriform nucleus249.

The main projection of subiculum to the basal forebrain is to lateral septal nuclei and

nucleus accumbens. The connection between subiculum and the nucleus accumbens is

unidirectional however subiculum receives some weak cholinergic fibers from septal nucleus.

Subiculum is connected to mammillary nucleus in hypothalamus. It projects to and

receives fibers from medial and lateral mammillary nuclei. The thalamic inputs to subiculum are

like thalamic inputs that CA1 receives. The inputs mainly arise at the nucleus reuniens, the

paraventricular nucleus and the parataenial nucleus. Subicular input to thalamus terminate at

nucleus reuniens, nucleus interanteromedialis, paraventricular nucleus and nucleus gelatinosus.

1.3.2.4. Connections of presubiculum and parasubiculum

Presubicular fibers only project to medial EC. The fibers terminate mostly at layer III and

at small extent at layer I. Parasubiculum innervates at layer II of the medial and lateral EC. The

presubiculum projects to layer I and II of parasubiculum. Parasubiculum project back to layer I

and III of the presubiculum.

The most dominant neocortical input to presubiculum comes from retrosplenial cortex.

Fibers from layer V of retrosplenial cortex terminates in layer I, III and V of the presubiculum.

Projections back to retrosplenial cortex arise from layer V of presubiculum and terminate at layer

I and II. Layer V of the visual area 18b innervate to layer I and III of presubiculum257.

Presubiculum and parasubiculum reciprocally connect with anterior thalamic nuclear

complex. Thalamic projections terminate at layer I, III and IV of presubiculum. The presubicular

projections to anterior thalamic nuclear complex arise from layer IV.



________________________________________________________________1. Introduction

34

Layer II of presubiculum also receives input from medial septal nucleus and diagonal

band of Broca. Serotonergic projections from dorsal and ventral raphe nuclei terminate at layer I

and noradrenergic locus coerulus at plexiform layer of presubiculum. Hypothalamic connections

of presubiculum at medial and lateral mammillary nuclei are reciprocal258.

1.3.2.5. Connections of entorhinal cortex

EC is the main structure where the processed sensory information coming from

hippocampus enters and relays back to the neocortex. It is the beginning and end point of the

loop of information processing. Father of modern neuroscience Ramon y Cajal says that

whatever the rest of the hippocampal formation is doing depends on what the EC has done.

Perforant path that arise from lateral and medial EC projects to DG, CA region and

subiculum. Projections from layer II terminates at DG and CA3 and layer III neurons project to

CA1 and subiculum. DG and CA3 do not project back to EC. The return projections from CA1

and the subiculum terminates at layer I, V and VI248,259.

EC receives substantial amount of “raw material” to be processed in the hippocampal

formation from the extrinsic connections. The percentages of inputs the EC receives from

different cortical regions are summarized in table 2260.

Table 2: The percentages of projections that EC receives from different associational cortices.

% of total input to lateral EC % of total input to medial EC

Piriform cortex 34 31

Temporal cortex 26 21

Frontal cortex 11 10

Insular cortex 21 6

Cingulate cortex 3 11

Parietal cortex 3 9

Occipital cortex 2 12

The neocortical inputs that terminate in layer I and II of the EC yield information to

neurons which then project to DG, CA region and subiculum. The layer IV and VI neurons,
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which are innervated by neocortical regions as well, receive information from other hippocampal

areas and give rise to feedback projections to certain neocortical regions.

Olfactory bulb, anterior olfactory nucleus and piriform cortex project strongly to layer I

and II of EC. Prominent postrhinal and perirhinal projections terminate in the medial EC and

lateral EC respectively. Perirhinal and postrhinal cortex are convergence area of variety of

sensory cortices. Perirhinal cortex is composed of area 35 and 36. Area 36 receives most of the

inputs from ventral temporal associational area, postrhinal cortex and EC. Area 35 receives

projections from piriform, entorhinal and insular cortices. Perirhinal projections to EC arise

mostly from area 35261. Agranular insular cortex, infralimbic, prelimbic, anterior cingulate

cortices and the retrosplenial cortex give rise to projections to EC as well262.

The return projections to olfactory areas originate from layers II, III and Va. The

projections from EC to infralimbic, prelimbic, orbitofrontal, agranular insular, retrosplenial

cortex, perirhinal and postrhinal cortices originate from layer Va.

Among the subcortical connections to EC, lateral amygdaloid nucleus fibers terminate at

layer I, II and III. Projections from basal nucleus arrive to III and V and fibers from cortical

nucleus and periamygdaloid cortex innervate to layer I and II. Feedback projections from EC to

amygdala arise from layer V250. EC neurons at layer V also projects to nucleus accumbens in

striatum.

EC receives cholinergic inputs from septum at layer II and projects back from neurons at

layer Va and II. EC also receives inputs from supramammillary nucleus and tuberomamillary

nucleus distributed diffusely throughout the EC. Thalamic inputs to EC originate in nucleus

reuniens, nucleus centralis medialis, rhomboid, paraventricular and parataenial nuclei. Nucleus

reuniens fibers innervate layer I, II and III263.

EC receives dopaminergic input from ventral tegmental area, serotonergic input from the

dorsal and central raphe nuclei and noradrenergic inputs from locus coeruleus258.
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1.3.3. Spatial representation system

In 1957, to relieve seizures of antiepileptic drug-resistant patient H.M., medial aspects of

temporal lobes (hippocampus, amygdala, collateral sulcus, perirhinal cortex, EC and mammillary

nucleus) were resected. Seizures decreased and personality, early memories, general intelligence

and technical skills of H.M. were intact however anterograde amnesia was reported. It was the

first time that involvement of hippocampus in memory formation was expressed264.

Long-term memory is composed of declarative and non-declarative memory. Declarative

memory is further divided into semantic and episodic memories. Semantic memory is the

memory of facts about the living things, objects, places and events without temporal or

contextual references like “water is liquid” or “the capital city of Germany is Berlin”. On the

other hand, episodic memory deals with the first-person experiences with space and time

components. For example “I visited the Louvre Museum in Paris 2 years ago” can be an example

for episodic memory. It is self-referenced (egocentric). Non-declarative memory is the memory

without awareness. Recognizing a face without denying that the face is familiar, learning

complex motor actions like riding bike or learning a conditioned response like Pavlov’s dogs

salivate as they  hear the ring of the bell are examples for non-declarative memory. Declarative

memory is highly dependent on hippocampal-entorhinal system while non-declarative is not265.

Water maze assay is a behavioral assay that is used to study the spatial learning ability of

mice and rats. The task is that the animal should escape from water onto a hidden platform. The

animal navigates itself onto the platform by using the spatial cues around. If the animal has intact

spatial memory, it shows decreasing escape latency in each repetition266. When the hippocampus,

subiculum or both of the structures are lesioned, the rats do not swim to the target quadrant while

sham controls do267. Therefore hippocampal formation is required for proper spatial memory.

The patient E.P., who had bilateral damage to their hippocampus and related medial

temporal lobe structures, could not remember recently acquired spatial information. However he

could recall the spatial features of his neighborhood that he left 50 years ago. Therefore

hippocampus is important for the acquisition and consolidation of spatial memory for certain

amount of time268.



________________________________________________________________1. Introduction

37

It was 1971 when it was realized that group of neurons in the hippocampus fires

depending on the position of the rat in a space and the neighboring cells fire when the animal

changes its position269. Those neurons are pyramidal neurons and called place cells270. Almost all

pyramidal cells in CA region are place cells271-273. At presubiculum and parasubiculum and at the

upstream of the “place cells”, mainly in the layer II and III of the medial EC, there are “grid

cells”274-276. Those cells have firing fields that covers the space in triangular pattern277,278.

Presubiculum, thalamus and deep layer of EC contain “head direction cells” which fire as the

animal turns its head to another direction275,279. Another kind of neurons which constitute >10%

of local neuron population of EC and parasubiculum, fire when the animal is close to the borders

of the space. Those cells are called “border cells”280.

Place cells inform the location of the subject. Grid cells create a neural representation of

the geometry of the environment. Head direction cells provide information about the orientation

of the body in space and border cells contribute by determining the size of the discoverable

space. Presence of those cells in EC-hippocampal system, lesion studies and investigation of

patients with medial temporal lobe damage, suggest that hippocampal formation has important

functions in spatial processing.
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1.4. Scope of the thesis

The emerging understanding of functions of miRNAs presents them as indispensable

molecular factors in the regulation of dynamic neuronal processes. MiR-132, which was first

defined as a brain specific miRNA111, and miR-212 has been studied for more than 8 years.

However their functions in cognition, synaptic plasticity and the regulation of relevant molecular

pathways have not been fully understood.

The main goal of this study is to elucidate the in vivo functional roles of miR-212/132

family with particular focus on neuronal systems by utilizing the miR-212/132 loss-of-function

mutant mouse model (miR-212/132-/-). Towards this goal, different experimental approaches had

been used in this study:

1. The spatial expression pattern of miR-212/132 gene in adult mouse brain and expression

levels of miR-212/132 in peripheral mouse organs was studied.

2. A large battery of behavioral assays were performed in order to demonstrate the role of

miR-212/132 in the regulation of cognitive behaviors in mouse

3. Electrophysiological assays were performed to reveal the involvement of miR-212/132 in

the regulation of the synaptic transmission.

4. Molecular function studies were performed to investigate miR-212/132 function in the

regulation of prospective signaling pathways.
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2. MATERIALS AND METHODS

2.1. Methods

2.1.1. Ethics Statement

All animal procedures were performed as approved by the institutional animal care and

use committee of Max-Planck Institute for Biophysical Chemistry and Max-Planck Institute of

Experimental Medicine with permission (33.42502/02-07.05 A) of the Bezirksregierung

Braunschweig (Local Animal Care and Use Committee) in accordance with the German Animal

Protection Law.

2.1.2. Behavioral tests

The behavioral tests were performed by Dr. Konstantin Radyushkin in the research group

of Prof. Dr. Dr. Hannelore Ehrenreich in Max Planck Institute for Experimental Medicine. Age-

matched male wild-type (+/+, n=23) and miR-212/132-/- mutant (-/-, n=22) littermates were used

in behavioral tests. Mice were housed at 4–5 animals per cage in a room with 12 hrs light-dark

cycle and ad libitum access to food/water. Mice were 10-11 weeks old at the beginning of the

assays. Inter-test interval was at least 1-2 days. The tests were performed in the following order:

Elevated plus maze, open field, rotarod, social interaction, pre-pulse inhibition, 8-arm maze test,

Morris water maze, cued and contextual fear conditioning. The order of testing was designed

according to increasing invasiveness to minimize a possible influence of experimental history281.

All mice were used for all behavioral tests. The experimenter was unaware of the genotype of

mice.

2.1.2.1. Elevated plus maze

The test of anxiety was performed as described previously282. The behavior of the mice,

which was placed in the central platform, recorded for 5 min to measure the time spent in open

and closed arms, total distance traveled, number of arm visits and the velocity. The ratio of time

spent in open arm to closed arms was used to interpret the anxiety levels of the mice.
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2.1.2.2. Hole board

The mice were put in the middle of hole board chamber with equally spaced 12 holes.

The distance traveled and the number of head dips into holes were assessed for 3 min.

2.1.2.3. Open field

The attitude of mice in Perspex arena was observed to examine the spontaneous activity

in the open field. Mice were allowed to explore the arena for 7 min. Then the behavior of mice

was recorded to calculate the velocity, distance traveled, and time spent in central, intermediate

or peripheral zones of the open field.

2.1.2.4. Rotarod

The rotarod test is performed to check whether the motor function, balance and

coordination of mice are altered. Mice were placed individually on the drum, which was

accelerated from 4 to 400 rpm in 5 min. The latency of falling off the drum was measured.

2.1.2.5. Social interaction

The social interaction test was performed as described previously283. The social testing arena was

a rectangular, 3-chambered box with access into each chamber. The mice were let for habituation

in the middle chamber for 5 min. An unfamiliar C57BL/6NCrl male mouse (stranger 1) was

enclosed in a small rectangular wire cage in one of the side chambers. The location of the

stranger 1 was changed from the left chamber to the right chamber or vice versa between trials.

An identical empty wire cage was placed in the opposite chamber. After habituation period

mouse was allowed to explore all chambers of the test arena for a 10 min/session. The number of

entries into each chamber and the time spent in each chamber were recorded. At the end of the

first 10 min-trial, each mouse was tested in a second 10 min-session to quantify social preference

for a new stranger (stranger 2). The stranger 2 was placed into the empty wire cage. The test

mouse preference to spend time with the familiarized stranger 1 versus stranger 2 was measured

by recording the amount of time the test mouse was present in each chamber and the number of
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transitions between the chambers. The ‘sociability index’ and a ‘social memory index’ were

calculated according to the following formulas:

Social index = ((Timestranger 1/(Timestranger 1 + Timeempty)) x 100) – 50.

Memory index = ((Timestranger 2/(Timestranger 2 + Timestranger 1)) x 100) – 50.

2.1.2.6. Pre-pulse inhibition test:

Prepulse inhibition test is performed to assess sensorimotor gating. The mice were put in

a small cage which restricts the movement of mice and can record the vertical movements of the

floor. Acoustic stimuli delivered from a loudspeaker evoked a startle response and consequently

created a transient force which is due to the movement of the platform. The force was recorded.

To test pre-pulse inhibition, the 120 dB/40 ms startle pulse was applied either alone or following

a pre-pulse stimulus of 70 db, 75 db, or 80 dB intensity and 20 ms duration. Background white

noise was applied between each pre-pulse and pulse stimulus for 100 ms. The trials were

repeated in an interval of 8 to 22 seconds. The startle response was expressed as the difference

between the maximum force detected during the recording time and the force measured

immediately after the stimulus application. Pre-pulse inhibition was calculated as the percentage

of the startle response using the following formula:

% pre-pulse inhibition = 100 – [(startle amplitude after pre-pulse and pulse) / (startle amplitude

after pulse only) x 100]

2.1.2.7. 8-Arm radial maze test:

The mice which are deprived of water were trained to explore and consume the liquid

reward in the magazine located at the end of each arm of 8-arm radial maze. Following the

training sessions, the mice were located to the central platform of the maze and allowed to

consume the liquid rewards on each arm for 15 min. Each trial was stopped either when 15 min

is over or all rewards were consumed. The working memory was expressed as the errors done

while choosing an arm to visit and latency to consume all the rewards. Errors were defined as

revisit to arms.
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2.1.2.8. Morris water maze:

The spatial learning and memory abilities of mice were investigated in Morris water

maze. The mice were trained to find the visible platform located at different locations of the

maze without extra-maze cues for 2 days. The mice were trained to find the hidden platform,

which is located at the center of one of the 4 quadrants of the pool. The mice were expected to

navigate by using the extra maze cues that were placed on the walls around the pool. 4 trials

were performed each day. The mice were put to one of the 4 quadrants randomly. If the mice

could not find the platform in 90 sec, they were guided to the platform. Animals stayed on the

platform for 20 sec. The training continued for 8 days. The escape latency, swim speed, path

length, and trajectory of swimming were recorded for each mouse. Following the hidden

platform training, probe trial was performed. The platform was removed and mice were allowed

to swim for 90 sec. The time spent in each quadrant and the number of times that the mice

crossed the point where the hidden platform used was recorded.

2.1.2.9. Cued and contextual fear conditioning:

The fear-conditioning test was performed as described earlier284. The mice were exposed to the

context for 2 min to assess the baseline activity. Then conditioned stimulus (CS), which is 5kHz,

85 dB tone were delivered for 5 sec. 0.4 mA foot shock for 2 sec, as unconditioned stimulus

(US) was applied immediately after the CS. The same CS-US pairing was repeated 13 sec later.

The mice were kept in the same chamber for additional 23 sec. 2 days later the contextual

memory test was performed by exposing the mice to the same context. The mice were monitored

for 2 min to assess the freezing reflex. 52 hrs after the training, the mice were transferred into

new chamber to test the cued memory. Baseline activity was recorded for the first 2 min. Then

the tone was presented and the mice were monitored 2 more minutes to assess the freezing

behavior of mice upon the cue. Freezing behavior is defined as the lack of any movement except

respiratory movement.

2.1.3. Electrophysiological analyses

2.1.3.1. Slice preparation



_____________________________________________2. Materials and Methods

43

Electrophysiological analyses were performed by Dr. Jeong Seop Rhee in Max Planck

Institute for Experimental Medicine. 400 m thick transverse acute hippocampal slices were

prepared from 4 or 5-weeks-old wild-type and miR-212/132-/- mutant mice. The recovery of the

slices were performed in artificial cerebrospinal fluid (ACSF) bubbled with 95% O2 and 5% CO2

for 2 hrs at 30C. Then the slices were perfused with ACSF at flow rate of 2 ml/min and

maintained in a submerge chamber at 25-28C throughout all experiments. The epileptiform

activity and trysynaptic pathway activation was prevented by surgically cutting DG-CA3

synapses. 50 μM picrotoxin (GABAA receptor antagonist) was used to isolate field excitatory

postsynaptic potentials (fEPSC). Schaffer collateral afferents were stimulated by using bipolar

stainless steel electrodes. FEPSPs were measured in the stratum radiatum of CA1 with 2 M

NaCl-filled glass electrodes (2-3 M).

2.1.3.2. I-O curve and PPR protocol

The ratio of 2nd fEPSP slope to the 1st fEPSP slope were taken at interstimulus intervals

of 25, 50, 100, 200, 500 and 1000 ms and three consecutive responses were averaged to obtain

paired-pulse ratios (PPRs). For input-output (I-O) curves, fEPSPs were evoked with 0.1 ms

stimuli at 0.033 Hz and three consecutive responses were averaged. The slopes of fEPSP were

plotted against synaptic volleys.

2.1.3.3. LTP, LTD and depotentiation protocol

The basal fEPSP were obtained at 0.033 Hz. The adjusted stimulation intensity evoked

fEPSP that was 30%-35% of maximal slope. Early-phase long-term potentiation (LTP) was

induced by applying one train of high frequency stimulation (HFS; 100 Hz, 1 sec). For induction

of late-phase LTP, 3 trains of HFS were applied at intervals of 20 seconds. To induce LTD,

stimulation intensity was adjusted to evoke fEPSP that were about 50% of maximal fEPSP slope

and low frequency stimulation (LFS: 1 Hz for 15 min) was applied. FEPSP slopes were

expressed relative to normalized baseline and were averaged into 2 min intervals in experiments.

Depotentiation was analyzed as described previously285-287. Initially LTP was induced by 2 trains

of HFS at intervals of 20 seconds; and then depotentiation was induced either by applying LFS
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(2 Hz for 10 min) 2 min after the induction of LTP, or by applying LFS (1 Hz for 15 minutes) 40

min after the induction of LTP.

2.1.4. -Galactosidase staining

Brains dissected from 5 weeks old wild-type and miR-212/132 mutant mice were used in

whole-mount staining for -Galactosidase activity. After dissection, mouse brains were fixed in

fixation solution for 1 hr at 4C and washed three times in PBS before staining in -

Galactosidase staining solution  for 2 hrs at 37C. The staining was stopped by washing the

samples in PBS and subsequently pictured using SZX-10 microscopes (Olympus).

For -Galactosidase staining on brain sections, brains of 5 weeks old wild-type and miR-

212/132 mutant mice were dissected and fixed in the fixation solution for 1 hr at 4C. After

fixation, brains were washed in PBS and embedded in tissue freezing medium (Leica

Microsystems, 020108926). 50 m thick sections were prepared. Sections were further fixed in

0.2% glutaraldehyde solution for 10 min and washed in LacZ buffer at 4C. -Galactosidase

staining was performed in -Galactosidase staining solution at 37C for 72 hrs. After the

completion of the staining, sections were fixed in 4% paraformaldehyde for 10 min and washed

in PBS. Sections were mounted in Prolong® Gold antifade reagent (Invitrogen, P36935) with

DAPI or with moviol and analyzed with BX-40 and SZX-10 microscopes (Olympus). The

distinct histological structures on brain sections, including different cortical layers, hippocampal

granular layers and locations of amygdalar nuclei have been determined based on the nuclear

DAPI staining results.

2.1.5. RNA Isolation

2.1.5.1. RNA isolation from tissue

The procedure was performed as described previously with some modifications288. 1 ml

of Trizol was used to isolate RNA from 100 mg of tissue. The tissue was homogenized by tissue

homogenizer. Before starting the homogenization, the rod of the homogenizer was operated in

DEPC-treated H2O for cleaning. The excess water in the rod was cleaned by soaking the rod in

acidic phenol (AppliChem, A1624,0500). Then the tissue was pushed to the bottom of the falcon
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tube by the tip of the rod and the homogenizer was operated for at least 30 sec. Before

continuing the homogenization with the next tissue, the rod was cleaned by operating in DEPC-

treated H2O for 2 times and phenol was applied. The DNA in the homogenate was sheared by

flushing the liquid through 23G, 26G and 27G size needles, 2 times each. The homogenate was

kept at RT for 5 min. Chloroform was added in 1:5 (volume:volume) ratio, shook vigorously for

30 sec and centrifuged at 6900 rpm, 4°C, for 22 min. The upper liquid phase was transferred into

a clean tube. Isopropanol at 1:1 (volume:volume) ratio was added and mixed vigorously. If the

amount of RNA is expected to be low (depending on the size of the starting tissue) the mixture

was incubated at -20°C minimum for 2 hrs. Then the mixture was centrifuged at 6900 rpm, 4°C

for 30 min. The supernatant was removed. To obtain highly pure RNA, phenol-chloroform

extraction protocol was followed. The pellet was dissolved in 1 ml of TES. 1 ml of water

saturated phenol was added. The mixture was vortexed and centrifuged for 5 min at 13000 rpm,

at RT. The upper phase was removed into new eppendorf tube. 1:1 (volume:volume) ratio of

chloroform was added to remove the excess phenol. The mixture was centrifuged for 5 min at

13000 rpm. The upper phase was removed into new clean tube. NaOAc was added to have final

concentration of 0.3 M. After mixing isopropanol at 1:1 (volume:volume) ratio was added. The

mixture was incubated at -20°C for at least 2 hrs. The suspension was centrifuged at 13000 rpm,

RT for 10 min. The supernatant was removed. 1 ml of 75% EtOH was added. The centrifugation

was repeated and the supernatant was removed. To get rid of the residual EtOH, short spinning

was performed. The pellet was dried at 37°C by shaking for 2-3 min and dissolved in appropriate

amount of DEPC-treated H2O. To facilitate the dissolving process, the solution was incubated at

55°C for 5 min. The concentration and purity of RNA was determined by using Nanodrop

ND1000 Spectrophotometer. The RNA integrity was determined by running 100 ng-1 μg of

RNA in 1% agarose gel. RNA was stored at -80°C.

2.1.5.2. RNA isolation from neurons

The culture medium was aspirated and cells were washed with chilled DEPC-treated 1X

HBSS. 1 ml of Trizol was added into a well of 24-well plate. The cells were homogenized by

flushing the liquid through 27G needle for 3 times. 200 μl of chloroform (1:5, volume:volume)

was added and centrifuged for 20 min at 13000 rpm, RT. The upper phase was transferred into

new tube. 1:1 ratio of isopropanol was added and vortexed. The mixture was kept at -20°C for
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o/n. Then the RNA was precipitated by centrifuging for 20 min at 13000 rpm at RT. The pellet

was washed once in 1 ml of 75% EtOH. The pellet was recollected by centrifuging for 10 min at

13000 rpm at RT. Then it was dissolved in 450 μl of DEPC-treated H2O. 50 μl of 3 M NaOAc

and 500 μl of isopropanol was added and vortexed. The solution was kept at -20°C for o/n. The

RNA was precipitated for the second time by centrifugation at 13000rpm at RT for 20 min. The

supernatant was removed and 1 ml of 75% EtOH was added. The pellet was recollected by

centrifugation for 10 min at 13000rpm at RT. The washing step was repeated for one more time.

The pellet was dried at 37°C by shaking for 2-3 min and dissolved in appropriate amount of

DEPC-treated H2O. To facilitate the dissolving process, the solution was incubated at 55°C for 5

min. The concentration and purity of RNA was determined by using Nanodrop ND1000

Spectrophotometer. The RNA integrity was determined by running 100 ng-1 μg of RNA in 1%

agarose gel. RNA was stored at -80°C.

2.1.6. Protein isolation from hippocampus

250 μl of chilled lysis buffer was used to homogenize hippocampus dissected from single

lobe of a mouse brain. The hippocampus was homogenized by tissue grinder in lysis buffer. The

tubes were incubated on rotating shaker at 4°C for 1 hr. The undissolved portion was precipitated

by centrifugation at 13000 rpm at 4°C for 20 min. The supernatant was transferred into a new

tube. The samples were aliquoted in appropriate amount of volumes and stored at -80°C.

2.1.7. Protein isolation from neuron cultures

200 μl of chilled lysis buffer was used to lyse hippocampal neurons within 24-well plates.

The cells were homogenized by pipetting up and down and collected into eppendorf tubes. The

tubes were incubated on rotating shaker at 4°C for 30 min. The undissolved portion was

precipitated by centrifugation at 13000 rpm at 4°C for 20 min. The supernatant was transferred

into a new tube. The samples were aliquoted in appropriate amount of volumes and stored at -

80°C.
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2.1.8. Western Blotting

The protein samples were mixed with appropriate amount of loading buffer and boiled at

96°C for 5 min and cooled to 4°C. Equal amount of samples were loaded into each lane of

stacking. 50 V of constant electrical field was applied to the SDS-Page gel till the protein

reached to the resolving gel. Then the voltage was increased to 120 V. After the run is complete,

the stacking gel was cut out. The resolving gel and blotting membrane was sandwiched between

2 sheets of Whatmann paper. The wet blotting was mediated in transfer buffer for 70 min at 400

mA current. The transfer buffer was prevented to be heated by covering the chamber with ice.

When the transfer was completed, the membrane was removed and washed in TBST for 10 min.

It was blocked in either 5% skim milk (AppliChem, A0830,0500) or 1% BSA (Thermo

Scientific, 37520) for 1 hr by shaking at RT. Before primary antibody incubation, excess

blocking buffer was removed from the membrane by washing it in TBST for 10 min. The

primary antibodies that were dissolved in blocking buffer were incubated with the membrane at

4°C by shaking for o/n. Then the membrane was washed for 5 times, each 5 min at RT in TBST.

Secondary antibody which was dissolved in appropriate blocking buffer was incubated with the

membrane for 1-3 hrs at RT by shaking. Unbound secondary antibody was removed by washing

in TBST for 5 times, 5 min each. 5 ml of developing solution was prepared by mixing pico and

femto chemiluminescent substrates (Thermo Scientific, 34087, 34094) at appropriate ratios.

After the membrane was incubated in developing solution for 5 min by shaking, the membrane

was put into developing cassette. The Cl-Xposure film (Thermo Scientific, 34090) was exposed

to the membrane for appropriate amount of time and the film was developed in film developer.

2.1.9. Hippocampal Neuron  Culturing

The procedure was performed as described previously with some modifications289.

2.1.9.1. Poly-L-lysine coated plate preparation

Poly-L-lysine solution was applied into each well of 24-well plates. The plates were

incubated at 37°C for at least 1 hr. Then the wells were washed with ddH2O twice. The plates

were stored at 4°C with ddH2O within the wells.
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2.1.9.2. Hippocampus dissection from embryonic brains

The pregnant mouse bearing embryo at E17.5 or E18.5 stage was sacrificed and the

abdomen of the mouse was rinsed thoroughly with ethanol. The skin and the peritoneum were

incised to expose the viscera and the uterus. The uterus was cut out of the abdominal cavity and

put into chilled 1X HBSS in 50 ml falcon tube. The uterine horns were transferred into laminar

flow hood. The uterus and the embryonic sac were cut to release the embryos. To dissect the

brain, the embryos were hold by the neck with a forceps. Tip of a Dumont no. 7 forceps was

inserted just above the nose and pushed to the rear of the skull. The skull and the skin were

broken by pulling the forceps upward and pushed aside. The brain was pushed out by squeezing

the forceps gently. The dissected brain was transferred into chilled 1X HBSS. The lobes were

separated along the midline. The telencephalon was separated and the meningitis was peeled off

from the inner and outer surface of the cortex. The exposed hippocampus was cut out with 80

mm micro scissors and transferred into chilled 1ml of 1X HBSS in 15 ml falcon tube. The

hippocampi were kept on ice till the dissection of at most 8 pairs of hippocampi is complete.

2.1.9.3. Trituration of the hippocampal tissue

1ml of Trypsin solution was added and incubated at 37°C for 30 min. After the

incubation, 250 μl of Dnase was added to prevent the clumping of tissue due to the released

DNA from the dead cells. The mixture was kept at RT for couple of minutes. To inactivate the

trypsin, the hippocampi was washed by adding 8 ml of DMEM/10% FBS. The hippocampi

within the suspension were let to settle to the bottom of the tube. The supernatant was aspirated

and the wash step was repeated. The volume was adjusted to 1 ml. The hippocampi were

disturbed into small pieces by flushing through Pasteur pipette with wide opening for 10 times.

Another Pasteur pipette was fire polished to narrow down the opening. The tissue chunks were

homogenized into single cell suspension by pipetting the solution up and down through the

Pasteur pipette for 10 times. The cell suspension was left untouched for 2 min in order to let the

remained tissue pieces to settle down to the bottom of the tube. The precipitates were removed

out of the suspension by a Pasteur pipette.



_____________________________________________2. Materials and Methods

49

2.1.9.4. Layering the neurons

10 μl of cell suspension was mixed with 90 μl of Trypan blue. The cells were counted

with hematocytometer. The cell suspension were diluted to appropriate concentration with

DMEM/10% FBS. Neurons were layered to have 52600 cells/cm2 in each well. Plates were

incubated at 37°C for 2 hrs to let the neurons attach to the surface of the wells. Afterwards the

cell medium was replaced with 1 ml of culturing medium.

2.1.9.5. Maintenance of neurons

Hippocampal neuron cultures were incubated in a humidified cell culture incubator with

5% CO2 at 37°C. Half of the culture medium was replaced with fresh Neurobasal medium with

B27 supplement but without glutamate at day in vitro 4 (DIV4). The purpose in this step is to

decrease the glutamate concentration by half. Drug application and protein/RNA isolation were

performed on DIV9.

2.1.10. Drug application

The volume in each well was checked in order to assess the volume loss during culturing

due to the evaporation. The missing part was replaced with Neurobasal medium without any

additive. Appropriate amount of forskolin, which was dissolved in DMSO, was diluted in pure

Neurobasal medium to the concentration of 110 μM. 100 μl of the dilution was added into the

wells which made the final forskolin concentration 10 μl. Control hippocampal neurons were

treated with DMSO only. When the incubation period was over the culture medium was

aspirated. The cells were washed with 1 ml of chilled 1X HBSS. Then the RNA or protein

isolation protocols were followed.

2.1.11. Real Time PCR Assays

2.1.11.1. Mature miRNA expression assays

The levels of mature miR-132, -212, -134 were detected by using Taqman MicroRNA

reverse transcription kit (Applied Biosystems, 4366596) and Taqman Universal PCR master mix

with UNG (4304437, Applied Biosystems) according to manufacturer’s protocol with some
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modifications. Sno-202 was used as endogenous control. The RT and Q-PCR primers for hsa-

miR-132, mmu-miR-212, mmu-miR-132 and sno-202 were obtained from Taqman MicroRNA

assay kits (Applied Biosystems).

2.1.11.1.1. Reverse transcription

The RNA samples were diluted to the concentration of 24 ng/μl with DEPC-treated H2O.

The RT reaction was prepared as the following:

Table 3: miRNA RT reaction protocol

Component (stock concentration) Volume to be used for 20μl of RT reaction (μl)

dNTP (100mM) 0.2

Reverse Transcriptase (50U/μl) 1.3

10X reverse transcription buffer 2

Rnase inhibitor (20U/μl) 0.25

DEPC-treated H2O 3.9

7.75 μl of RT master mix and 5 μl of RNA (120 ng) were mixed by tipping gently and

centrifuged for 1 min at 2000 rpm. 7.32 μl of RT primer was added. The mixture was mixed by

tipping and centrifuged at 2000 rpm for 1 min. The reaction mixture was kept on ice for 5 min

and the reaction was performed with the thermal cycler that was programmed with the following

parameter values.

Table 4: Thermal cycler program for miRNA RT reaction.

Time (min) Temperature (°C)

30 16

30 42

5 85

∞ 4

The synthesized cDNAs were stored at -20°C.
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2.1.11.1.2. Q-PCR

The master mix for Q-PCR reaction was prepared as the following:

Table 5: MiRNA specific Q-PCR reaction protocol

Component Volume to be used for 20μl of reaction (μl)

Taqman Master mix 10

Q-PCR primer 1

ddH2O 7.67

cDNA 1.33

The reaction mixture was transferred into wells of 96-well plate (twin.tec real time PCR

plate, 0030132.530). Each reaction was performed in technical triplicates. The plate was loaded

into the thermal cycler (Master cycler ep realplex, Eppendorf) with the following parameters.

Table 6: Thermal cycler program for miRNA specific Q-PCR

Step Temperature (°C) Time

UNG enzyme activity 50 2 min

UNG enzyme inactivation 95 10 min

40 cycles Denaturation 95 15 sec

Annealing and extension 60 1 min

The Ct values were calculated automatically by the built-in algorithm of the thermo

cycler software. Quantitation of the miRNA expression was performed according to the

comparative Ct method.

2.1.11.2. Gene expression assays

BDNF, c-Fos and Arc transcripts were reverse transcribed by using first strand cDNA

synthesis kit (GE Healthcare, 27-9261-01) according to the manufacturer’s instructions. Taqman

gene expression master mix (Applied Biosystems, 4369016) and Taqman gene expression assays

(Applied Biosystems) were used to detect the expression levels of the transcripts.
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2.1.11.2.1. Reverse transcription

The RNA samples were diluted to the concentration of 40 ng/μl with DEPC-treated H2O

and incubated at 65°C for 10 min for denaturation. The RT reaction was prepared as the

following:

Table 7: mRNA RT reaction protocol

Component Volume to be used for 33μl of RT reaction (μl)

Primer pd(N)6 1

Dithiothrietol (DTT) 1

Reaction mix 11

RNA 20

The program of the thermal cycler for RT reaction was as shown below.

Table 8: Thermal cycler program for mRNA RT

Time Temperature (°C)

1 hr 37

10 min 98

2.1.11.2.2. Q-PCR

The master mix for Q-PCR reaction was prepared as following:

Table 9: Q-PCR reaction formula for gene expression assay

Component Volume to be used for 20μl of reaction (μl)

2X Taqman Mastır Mix 10

20X Gene Expression Assay 1

ddH2O 7.6

cDNA 1.4
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The reaction mixture was transferred into wells of 96-well plate. Each reaction was

performed in technical triplicates. The plate was loaded into the thermal cycler (Master cycler ep

realplex, Eppendorf) with the following parameters.

Table 10: Thermal cycler program for gene expression assay.

Step Temperature (°C) Time

UNG enzyme activity 50 2 min

UNG enzyme inactivation 95 10 min

40 cycles Denaturation 95 15 sec

Annealing and extension 60 1 min

The Ct values were calculated automatically by the built-in algorithm of the thermo

cycler software. Quantitation of the miRNA expression was performed according to the

comparative Ct method.

2.2. Materials

2.2.1. Buffers and solutions

1X Artificial Cerebrospinal Fluid (ACSF)

 124 mM NaCl
 1 mM MgCl2

 4 mM KCl
 2 mM CaCl2

 26 mM NaHCO3

 1.25 mM NaH2PO4

 10 mM D-glucose

10 X Phosphate Buffered Saline (PBS)

 1.36 M NaCl
 26 mM KCl
 42 mM Na2HPO4.2H2O
 15 mM KH2PO4

 Stored at RT
pH:7.3
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1X Fixation Solution

 1% formaldehyde
 0.5% glutaraldehyde
 0.2% NP40
 0.1% Sodium deoxtcholate
 Dissolve in 1X PBS
 Prepared before use

X-gal Stock Solution (40mg/ml)

 Invitrogen, Cat No: 15520-018
 Dissolved in dimethyl formamide
 Stored at -20°C

1X -Galactosidase Staining Solution

 2 mM MgCl2

 0.02% NP40
 0.01% Sodium deoxycholate
 2.5 mM K3Fe(CN)6
 2.5 mM K4Fe(CN)6
 1 mg/ml X-gal
 Dissolved in PBS
 Prepared before use

1X LacZ Buffer

 2 mM MgCl2

 0.02% NP40
 0.01 % sodium deoxycholate
 Dissolved in PBS
 Stored at RT

Mounting Medium

 Moviol

o Get the protocol from Sabine

DEPC-treated H2O

 0.1% DEPC
 Dissolved by shaking at 37°C for o/n
 Autoclaved



_____________________________________________2. Materials and Methods

55

TES

 10 mM Tris
 0.1 mM EDTA
 0.5% SDS
 After autoclaving acidic phenol was added to have 1% final concentration.

GTC Denaturating Solution

 4 M Guanidin thiocyanate (GTC)
 0.02 M Tri-sodium citrate dehydrate
 0.5% Sarcosyl
 Add 1.5 fold less DEPC-treated H2O than the final volume
 Dissolve by stirring for o/n at 37°C.
 Complete the volume to the final volume.

Trizol

 50 ml GTC denaturating solution (final volume 105 ml)
 0.01 M NaOAc
 50 ml acidic phenol (final volume 105 ml)
 0.05 M β-mercaptoethanol (14.3 M is the stock concentration)
 Mix well and keep at 4°C in dark bottle.

1X Lysis Buffer

 50 mM Tris-HCl (pH: 7.4)
 1% NP40
 0.25% NaDOC
 150 mM NaCl
 1 mM EDTA
 Store at 4°C
 Just before use, protease inhibitor (cOmplete, EDTA-free, Roche, 11873580001)

and phosphatase inhibitor (PhosSTOP, Roche, 04906845001) tablets were
dissolved in 10 ml of lysis buffer.

5X SDS Loading Buffer

 143 mM Tris-HCl (pH:6.8)
 286 mM DTT
 4.3 mM bromophenol blue
 14.2% Glycerol
 200 mM SDS
 Dissolved in ddH2O by rotating at 37°C for o/n. Aliquoted and stored at -20°C.
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10% SDS-Page Resolving Gel

 10% acrylamide mix (Rotiphorese Gel 30, 37.5:1, Roth, 3029.2)
 375 mM Tris (pH: 8.8)
 0.1% SDS
 0.1% (w/v) ammonium persulfate
 2.7 mM Tetramethylethylenediamine (TEMED)
 Dissolved in ddH2O. Mixed vigorously and poured into 1mm BioRad Mini-

Protean gel system. The upper layer was covered with isopropanol to flatten the
surface. The gel was let for freezing at RT for 15 min. Then the isopropanol was
discarded and the residual isopropanol was cleaned by washing with dH2O.

SDS-Page Stacking Gel

 5.1% acrylamide mix
 125 mM Tris (pH: 6.8)
 0.1% SDS
 0.1% (w/v) ammonium persulfate
 6.7 mM TEMED
 Dissolved in ddH2O. Mixed vigorously and poured onto the 10% SDS-Page

resolving gel. Immediately after the gel comb was placed. The gel was let for
freezing for 15 min.

10X TBS

 1.37 M NaCl
 27 mM KCl
 250 mM TRIS
 pH was set to 7.4 and autoclaved.
 Dilute 10X TBS by 10 folds
 Add Tween20 to have final concentration of 0.1%.

10X Tris-Glycine Electrophoresis Buffer

 250 mM TRIS
 2.5 M Glycine
 1% SDS
 The mixture was dissolved in ddH2O at 37°C for 2-3 hours by stirring
 The pH was set to 8.3

10X Transfer Buffer

 386 mM Glycine
 480 mM TRIS
 13 mM SDS



_____________________________________________2. Materials and Methods

57

 The mixture was dissolved in ddH2O.
 The pH was set to 8.3

2.2.2. Cell Culture Medium

DMEM/10% FBS

 450 ml DMEM-High Glucose, No glutamine (Gibco, 11960-044)
 50 ml heat inactivated 10% FBS (Hyclone-Thermo Scientific, SH30070.01HI)
 Aliquoted and stored at 4°C.

Culture medium

 500 ml 1X Neurobasal Medium (Gibco, 21103-049
 10 ml of 50X B27 serum-free supplement (Gibco, 17504-044)
 1.25 ml of 200mM L-Glutamine (Final Concentration 0.5 mM) (Gibco, 25030)
 Aliquoted and stored at 4°C

2.2.3. Drugs

Kainic acid

 5mg kainic acid (Santa Cruz, sc-200454) was dissolved in 1 ml of ddH2O to

obtain 23.45 mM stock solution.

 Aliquoted and stored at -20°C in dark.

Forskolin

 10 mg forskolin (Cell Signaling, 3828) was dissolved in 812 μl of DMSO to
obtain 30 mM stock solution.

 Stored at -20°C in dark.
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2.2.4. Antibodies

Table 11: Primary antibodies used for western blotting experiments.

Primary Antibodies Dilution Blocking Manufacturer and Catalog #

Mouse monoclonal CREB 1/500 Milk Cell Signaling

Rabbit anti-mouse polyclonal pCREB 1/1000 BSA Cell Signaling, 91918

Rabbit anti-mouse polyclonal SIRT1 1/1000 Milk Millipore, 07131

Mouse monoclonal α-TUBULIN 1/10000 Milk/BSA Sigma, T6199

Rabbit anti-mouse polyclonal MecP2 1/500 BSA Millipore, 07-013

Rabbit anti-mouse polyclonal

P250GAP

1/1000 BSA Abgent

Table 12: Secondary antibodies used for western blotting experiments.

Secondary Antibodies Dilution Manufacturer and Catalog #

ECL, Rabbit IgG, HRP-Linked Whole 2° Ab (from donkey) 1/20000 GE Healthcare

ECL, Mouse IgG, HRP-Linked Whole 2° Ab (from sheep) 1/10000 GE Healthcare

2.2.5. Gene and miRNA Expression Assays

Gene expression assays (Applied Biosystems)

Table 13: Gene expression assay ID numbers.

Assay Name Assay ID

c-Fos Mm00487425_m1

Arc Mm00479619_g1

BDNF Mm04230607_s1

Zif268 Mm00656724_m1

Gapdh Mm99999915_g1

MiRNA expression assays (Applied Biosystems)
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Table 14: miRNA expression assay ID numbers.

RT primer Volume to be used for

20μl of reaction (μl)

Assay ID

miR-132 1.83 000457

miR-212 1.83 002551

miR-134 1.83 001186

sno-202 1.83 001232
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3. RESULTS

3.1. miR-212/132 mull mutant mice longevity and body weight

As stated in an earlier study, miR-212/132 null mutant (miR-212/132-/-) mice are viable

and fertile115. To check if there is any metabolic defect that in turn may affect the body weight of

mice, male mice at different ages between 40 and 289 days old were weighed. The age-

dependent weight gain of miR-212/132-/- mice was similar as their wild type (WT) littermates.

There was no difference in the body weights of miR-212/132-/- and WT mice at any age groups

analyzed (Fig 3). Therefore miR-212/132 deletion does not alter the body weight of mice.
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Figure 3: Body weight measurement of WT and miR-212/132-/- mice at different ages. The mice were grouped
according to their ages as younger than 1 month, 1-2 months old, 2-3 months old and older than 3 months. 2-
way ANOVA for age versus genotype interaction F(3,59) = 0.34, p = 0.8; for difference between mice at
different age groups F(3,59) = 26.4, p<0.0001; for difference between genotypes F(1,59) = 0.18, p=0.67: 1mo>x:
+/+, n=4, -/-, n=8; 2mos>x>1mos: : +/+, n=16, -/-, n=11; 3mos>x>2mos: +/+, n=10, -/-, n=5; x>3mos: +/+, n=8, -
/-, n=5.

The possible loss-of-function phenotype of miR-212/132 on the longevity was studied by

keeping the mice in house cages in a room at 24°C with 12h light-dark cycle and ad libitum

access to food and water. The health status of these mice was checked regularly. If any symptom

causing pain or sign of tumor formation were observed, the mice were sacrificed immediately

and the date of killing was recorded. Eight WT mice out of 18 (44%) died during the course of
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the experiment and 10 of them (56%) were observed to develop tumor at old ages. Eleven out of

29 miR-212/132-/- mice (37%) died during the longevity experiments and tumor formation was

detected in 18 of them (62%) (Fig. 4b). However Fisher’s exact test revealed that genotype of

mice is not a determinant factor for tumor formation or death due to any other reason.
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Figure 4: Survival analysis on miR-212/132-/- mice. The health status of WT and miR-212/132-/- mice with ad
libitum access to water and food were observed continuously. (a) The date of death of each mouse was
recorded and (b) the presence of tumors was evaluated as the cause of death. If an obvious tumor formation
was observed, the mice were classified in “tumor formation” group. If the mice were found death in cage or
tumor formation was not observed they were grouped as “unknown cause of death”. (a) Mantel-Cox test,
p=0.0038; Gehan-Breslow-Wilcoxon test, p=0.02. (b) Fisher’s exact test, two-sided, p=0.76.

The life expectancy of miR-212/132-/- mice compared to WT littermate controls was

analyzed by Kaplan-Meier survival assay. According to Mantel-Cox test the longevity of miR-

212/132-/- is significantly higher than the control mice (Fig. 4a). The median survival duration

for miR-212/132-/- is 773 days while control mice survive for 688 days. The hazard ratio is

2.933, which means that the rate of death of WT mice is 2.933-fold more than the miR-212/132-/-

mice. Those data implies that miR-212/132 may have an important functional role in the

determination of the life-span of mice.
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3.2. Expression of miR-212/132 in various organs of mouse
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Figure 5: The levels of mature miR-212 and miR-132 in different mouse organs. The organs were dissected
and RNA isolation was performed. Equal concentration of cDNA was used to perform RT Q-PCR. Sno202
was used as endogenous control. The miR-212 and miR-132 levels in thyroid gland were set to 1 and the fold
expressions were calculated accordingly.

MiR-132 was first defined as a brain specific miRNA111 and miR-212 was detected in

HeLa cells110. To study the expression of miR-212/132 in various mouse organs, total RNAs

from thyroid gland, mammary gland, adrenal gland, pituitary gland, liver, testis, spleen, lung,

heart, kidney, uterus, ovary and brain were isolated. MiR-212 and miR-132 specific Q-RT PCRs

were performed (Fig. 5). The fold difference of miR-212 and miR-132 expression levels were

plotted in comparison to their levels in the thyroid gland, in which the relative levels of miR-212

and miR-132 were lowest and therefore were set arbitrarily as 1. The expression levels of miR-

132 and miR-212 are roughly similar in spleen, lung, kidney, and adrenal gland. MiR-212 levels

are higher than miR-132 in liver, testis, heart, mammary gland, ovary and pituitary gland. In

contrary higher miR-132 expression levels were detected in brain compared with miR-212

levels. The strongest expression of both miR-212 and miR-132 were observed in the brain and

pituitary gland.
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This data shows that miR-212 and miR-132 are expressed strongly in brain and pituitary

gland as well as in peripheral organs albeit in lower levels. The high levels of expression in

pituitary gland and brain may correlate with their potential functional roles in those tissues.

Nevertheless, relatively lower expression levels in other organs do not necessarily exclude any

potential roles of miR-212/132 in those tissues.

3.3. miR-212/132 expression studies in brain

Earlier studies using RT PCR showed that miR-212/132 is expressed in neurons and its

expression is induced by neuronal activity. However knowledge on its spatiotemporal expression

pattern is necessary in order to be able to predict and analyze the possible functions of miR-

212/132 appropriately. The widely used method for studying the spatial expression of a gene on

tissue sections is in situ hybridization (ISH). However the small size of mature miRNAs leads to

difficulties in designing efficient ISH probes. Therefore, locked nucleic acid (LNA) probes have

been used to increase the specificity and sensitivity of the assay. Different LNA probes against

miR-212 and miR-132 were used to study its expression in adult brain sections. However no

specific binding of the LNA probes were detectable (data not shown). Therefore ISH could not

be used as a successful method to study the spatial expression pattern of miR-212/132 at

histological level.

As an alternative approach, the knocked-in ß-Galactosidase gene in the miR-212/132-/-

mouse line115 was used to follow the spatiotemporal expression of miR-212/132 in the brain. For

the generation of the deletion mutant, only 900 bp of the expressed sequence of the non-coding

transcript that encompasses both miRNAs was deleted. It can therefore be assumed that the

regulatory sequences in the miR-212/132 loci are intact and would drive the expression of the

inserted lacZ sequence mimicking the expression of miR-212/132.

3.3.1. Arguments to utilize miR-212/132-/- mice for β-

galactosidase staining

Detailed analyses of histological sections of WT and heterozygous as well as

homozygous mutant brain failed to reveal any overt structural phenotypes. β-galactosidase

staining was first performed on tissue sections of mice that were heterozygous for the knock-in
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LacZ reporter gene (miR-212/132+/-). 50 μm thick coronal brain sections which were incubated

in LacZ staining solution at 37°C for 72 hrs stained positively, but rather weakly. This approach

might therefore exclude the detection of brain regions that are expressing the miR-212/132 at a

low level. Since the miR-212/132-/- did not have any overt structural phenotype in the brain (data

not shown), to obtain a stronger β-Galactosidase staining brain sections from homozygous

mutant brains were then utilized. The staining pattern on brain samples of miR-212/132-/- and

miR-212/132+/- mice were compared in order to see if there is any significant alteration in the

spatial distribution of the staining (Fig. 6). On the whole mount staining of miR-212/132+/- and

miR-212/132-/- brains, the staining at dorsal side can be observed along the cortex, and relatively

low at retrosplenial area (RSP) (Fig. 6a, left). On the ventral side the staining is detectable at

hippocampal formation (HPF) and taenia tecta (TT) (Fig. 6a, right). The brain regions where the

staining is most intensive were selected as representative planes to demonstrate the levels of

staining at deeper structures (Fig. 6b, c). As expected, the staining in cerebral cortex of the

homozygous miR-212/132-/- brain was much stronger than the cortex of the heterozygous miR-

212/132+/- mouse brain. Nevertheless, the expression pattern in both genotypes overlapped

appropriately (Fig. 6a). Dense population of cells stained in DG, CA1 and CA3 regions are

visible in miR-212/132-/- dorsal hippocampus. On the other hand, the sections from the

heterozygous mutant brains also had the staining in DG, CA1 and CA3 region as well, even

though staining levels were weaker (Fig. 6d, e).
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Figure 6: The staining patterns on miR-212/132+/- and miR-212/132-/- brains were compared. (a) Whole mount
staining of brains of +/- and -/- mice were visualized from dorsal and ventral sides. RSP: retrosplenial area,
TT: taenia tecta, HPF: Hippocampal formation. (b,c) The brain sections, where β-galactosidase staining was
most prominent, were shown here as representative planes. (d, e) Higher magnification pictures on dorsal
hippocampus of the sections shown in (b) and (c). The arrows point dotted staining. Scale bars represent
5mm in (a), 2mm in (b, c) and 500 μm in (d, e).

3.3.2. Spatial expression of miR-212/132 in brain

To analyze the expression of miR-212/132 in the brains of young adolescent mice, brains

of 5 weeks old mice were dissected and sectioned for β-galactosidase staining. The LacZ
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expression in the cortical plate exhibits distinct layer specificity (Fig. 7a-c). Abundant expression

in the layers 2/3, 4 and 6 were observed. The expression in layer 5 is relatively lower than the

other layers. The layer 1 is mostly occupied by axons that are projected from thalamus and other

cortical layers and tuft dendrites of layer 2/3 and 5 neurons290,291. Layer 1 is remarkable with

sparseness of neurons. The existing neurons in this layer are exclusively inhibitory neurons292.

No LacZ expression was detected in layer 1 (Fig. 7c). However since the β-galactosidase locates

at the periphery of the nucleus and does not migrate through axons or dendrites, the absence of

staining in layer 1 does not rule out the possible localization of miR-212/132 at layer 1 synapses.

Strong LacZ expression was detectable in the hippocampus. The highest expression was

observed in the CA3 region (Fig. 7d, f). Only some neurons scattered throughout the pyramidal

layers of CA1 and CA2 were stained for β-galactosidase activity (Fig. 7e). The spatial

distribution of LacZ-positive neurons in CA1 and CA2 regions showed variability in different

mice. Since miR-212/132 is a neuronal activity regulated gene, therefore the LacZ-positive

neurons might reflect the subset of neurons that show activity at the time of dissection. LacZ

expression in certain restricted regions of dorsal striatum and lateral amygdala (LA) were also

observed (Fig. 7h,i).
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Figure 7: β-galactosidase staining on whole adult brain and coronal sections. (a) Whole mount β-galactosidase
staining of 5 weeks-old mouse brain showed miR-212/132 expression in cortical plate. (b-i) β-galactosidase
staining on coronal sections demonstrated LacZ expressing cells in spatially restricted regions of the
forebrain (b), which is shown in higher magnification for somatosensory cortex (c), hippocampus (d), CA1
and CA2 regions of hippocampus, CA3 region of hippocampus (f), dentate gyrus (g), striatum (h) and
amygdala (i). (c),(d), (h) and (i) are higher magnification pictures of the regions shown within white
rectangles in (b). The regions shown within white rectangles in (d) are shown in high magnification in (e), (f),
and (g). TT, taenia tecta; SSp, primary somatosensory area; PTLp, posterior parietal association areas; CA,
cornu ammonis; DG, dentate gyrus; ST, striatum; LA, lateral amygdalar nucleus. The histological
boundaries for cortical layers and hippocampal structures are determined according to the DAPI staining
results of the same sections. Scale bars represent 5 mm in (a), 2 mm in (b), 500 µm in (c) and (d), 200 µm in
(e-i).

Dentate gyrus (DG) showed differential expression pattern of the β-galactosidase activity

at the anteroposterior axis. The LacZ expression was detected at both dorsal and ventral arms of
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the DG in the dorsal hippocampus. However the restriction of the expression to the dorsal arm of

the DG was observed in more posterior brain sections (Fig. 8a-e, f-j). Additionally no staining

was detected in the subgranular zone of DG. Subgranular zone is the region where the neuronal

progenitors reside293-295 (Fig. 7g, Fig. 8). This data confirms the previous finding that miR-

212/132 expression increases as the granule neurons differentiate into mature neurons160. The

staining pattern in hippocampus is similar in both genders (Fig. 8a-e, f-j).

Figure 8: LacZ staining on the coronal sections of different planes of 5-weeks old male (a-e) and female (f-j)
miR-212/132-/- mouse brains demonstrated that mir-212/132 is expressed on both dorsal and ventral arms of
the dentate gyrus in the anterior hippocampus, whereas its expression gets restricted to only dorsal arm of
the dentate gyrus in the posterior hippocampus. Scale bars represent 500 µm.
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To verify that the detected β-galactosidase gene expression reflects the existence of

mature miR-212 and miR-132, tissue samples from the thalamus, the CA3 and the cortex were

dissected and total RNA from these samples were isolated. Quantitative RT-PCR was performed

with probes specific to mature miR-132 and miR-212 sequences. The fold differences in miR-

212 and miR-132 levels in the CA3 and the cortex were calculated in comparison to their levels

in the thalamus. The results for representative 2 independent experiments (depicted as A and B)

are presented in fig. 9. MiR-132 and miR-212 levels in the CA3 region are slightly higher than

their expression levels in the thalamus while the miR-132 and miR-212 expression levels are

approximately 8 and 6 folds higher in cortex compared to their levels in the thalamus,

respectively. In all these analyzed tissues miR-132 levels are higher than miR-212 levels, which

is consistent with the results obtained for whole brain (Fig. 5). The obtained expression levels in

the CA3 were lower than expected. CA3 is a very small area in the brain compared to cortex or

thalamus. Therefore, there might have been some contamination from other tissues in its

peripheries during dissection. In that case, the levels of miR-212 and miR-132 might be diluted

and thus reflected as lower miRNA expression levels. Nevertheless, these results support that the

β-galactosidase gene expression is correlated with the expression of mature miR-212 and miR-

132.
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Figure 9: Relative expression levels of mature miR-212 and miR-132 in thalamus (TH), CA3 and cortex. One
mm thick brain sections obtained from the section plane that corresponds to the dorsal hippocampus.
Samples from TH, CA3 and cortex were dissected by Harris tissue corer for quantitative RT-PCR296. The
relative fold change was calculated according to TH by setting the TH values to 1. A and B represents two
individual mice.
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3.4. miR-212/132-/- mouse behavioral assays

The expression of miR-212/132 in the cerebral cortex, hippocampus, amygdala and

striatum implies that miR-212/132 might have role(s) in the regulation of behavior. However

there are so far no studies that conducted wide array of behavioral assays using the miR-212/132

knockout, knockdown or overexpression experimental mouse model systems. The behavioral

assays that were conducted in this work on miR-212/132-/- and wild-type control mice evaluated

their explorative activity, anxiety levels, sensorimotor gating, sociability, motor balance,

coordination, conditioned learning, working memory and spatial memory.

3.4.1. Anxiety levels, explorative activity, motor balance and

coordination of miR-212/132-/- mice

Mice explore its environment for the sake of optimal survivability. However they prefer

not to be in an open space, which otherwise would make them accessible for the predators.

Consequently, they avoid any open space as much as possible during their explorative activities.

Elevated plus maze consist of a plus-shaped lifted maze with two arms that are exposed and two

closed arms. This test measures the amount of time spent in each arm. It assesses the tendency of

mice to hide or explore and the results can be correlated with the level of anxiety. The amount of

time that miR-212/132-/- mice spent in the open arm, closed arm or at the center of the maze is

not different than the WT control mice (Fig. 10a), indicating that the levels of anxiety is not

impaired due to the loss-of- miR-212/132 function. Furthermore, the total distance covered on

the maze is similar in both genotype groups, which suggests that the motor activity or the

motivation to explore the arms is not altered in miR-212/132-/- mice (Fig. 10b).

The rotarod is a turning drum and the mice can run on it. As the drum accelerates, the

mouse eventually falls. Quantifying the latency to fall assesses the motor balance and

coordination of the mouse. The falling latency of miR-212/132-/- and WT mice were not

significantly different (Fig. 10c). The same test was performed on the second day to measure the

motor learning. Both groups of mice stayed on the rotarod longer and falling latencies were still

not different (Fig. 10c). These results demonstrate that the motor learning, balance and

coordination of miR-212/132-/- mice are not altered.
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The hole-board test is used to quantify the number of head dipping into the holes as an

indication for directed exploration and locomotor activity192,297. The number of times that miR-

212/132-/- and WT mice dip their head into the holes were not significantly different (Fig. 10d).

As it was also demonstrated by the elevated plus maze assay, this data shows that the absence of

miR-212/132 does not alter the exploratory behavior and locomotor activity of mice.
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Figure 10: Elevated plus maze, rotarod and explored hole assays on WT and miR-212/132-/- mice. (a, b) In the
elevated plus maze test, times spent in different zones (a) and the total distance traveled (b) are similar
between miR-212/132-/- and WT littermates. (c) In the rotarod test, miR-212/132-/- mice had similar falling
latencies in both days compared to the WT controls. (d) In the hole-board test, the number of explored holes
by the miR-212/132-/- mice is similar to their WT mice. These experiments were conducted by Dr. Konstantin
Radyushkin in the research group of Prof. Dr. Dr. Hannelore Ehrenreich.
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3.4.2. Sensorymotor gating, sociability, conditional learning

and working memory of miR-212/132-/- mice

Habituation to redundant sensory information is required to protect overloading of central

nervous system with irrelevant stimuli298. Sensorimotor gating is the neurological process which

filters out the irrelevant stimuli. Prepulse inhibition is the attenuation of reaction of an organism

to a startling stimulus by the inhibitory effect of a prestimulus. Alteration in sensorimotor gating

is associated with schizophrenia299. The prepulse inhibition in mice is tested by applying startle

acoustical stimuli after a prepulse stimulus and measuring the startle response. In WT mice the

inhibition of the startle response increases as the intensity of the prepulse stimulus increases. The

same pattern was also seen in miR-212/132-/- mice (Fig. 11a). The magnitude of the startle

response is same for both genotypes, which rule out the possibility of auditory defects (Fig.11b).

Therefore, these results suggest that the mechanisms of sensorimotor gating are not altered in the

miR-212/132-/- mice.

For mice, recognition of conspecifics is important for maintaining social hierarchy and

for mate choice. The social interaction test is used to measure the social affiliation and social

memory of the mice, by measuring the time it spends with familiar and unfamiliar mice. The

social index can be defined as the amount of time spent around a wire chamber where a stranger

mouse is kept compared to the time spent to explore an empty chamber. The difference between

the social indices of WT and miR-212/132-/- mice was statistically insignificant (Fig. 11c). The

memory index, which shows the ability of mouse to distinguish the familiar mouse from

unfamiliar mouse, was also similar in both genotypes (Fig. 11d). Therefore the sociability and

ability to remember the acquaintance (social memory) is not altered in miR-212/132-/- mice.

The fear-conditioning test is used to assess the ability of mice to learn and remember the

association between an environmental cue and an aversive stimulus300. The “baseline”

measurement was done by putting the mice into a novel context and recording the freezing

response for 2 min. Then a tone, which was also used as conditioned stimulus (CS), was applied

and the percentage of freezing was recorded to determine the “basecue”. To mediate the fear

conditioning, CS and foot shock was delivered. The mouse exposed to the aversive experience

was expected to learn and remember the association between the spatial cues of the chamber, the
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auditory stimulus and the foot shock. Two days later contextual memory was tested by putting

these mice into the same chamber. They showed freezing behavior as a sign of fear, which is

associated with the previously experienced foot shock. The miR-212/132-/- showed similar

amount of freezing response (Fig. 11e). To measure the ability of mice to associate foot shock

with the CS, they were put into a cage, which is different than the chamber and the CS was

delivered. The percentage of freezing in WT mice was not different than miR-212/132-/- mice

(Fig. 11e) which indicates that miR-212/132 deficiency has no significant influence on

conditional memory formation.

8-arm radial maze test measures the working memory (short-term memory) capabilities

of mice. Water deprived mice were put into the middle of maze where there are 8 radial arms.

The mice were expected to explore the arms and consume the liquid reward at the end of each

arm in 15 min. The same session was repeated for 11 times in consecutive days. Working

memory is measured when the mice enter each arm a single time. Any error in the working

memory would lead to re-entry into the arms. Visiting the already explored arms was recorded as

a mistake. The number of mistakes done by WT animals decreased as the trial sessions progress.

MiR-212/132-/- animals performed as good as their WT littermates (Fig. 11f). This data suggest

that the short-term memory is not impaired due to lack of miR-212/132.
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Figure 11: Sensorimotor gating, sociability, fear conditioning and 8-arm maze assays on WT and miR-
212/132-/- mice. (a, b) In the prepulse inhibition test, miR-212/132-/- mice demonstrated similar levels of
inhibition (a) and startle amplitudes (b) as WT littermates. (c, d) In the tripartite chamber test, both social (c)
and memory (d) indices of miR-212/132-/- mice were similar to WT controls. (e) In cued and contextual fear
conditioning tests, miR-212/132-/- mice displayed similar levels of freezing behavior compared to their WT
littermates. (f) In 8-arm radial maze task, the number of mistakes done was similar between miR-212/132-/-

and WT mice. These experiments were conducted by Dr. Konstantin Radyushkin in the research group of
Prof. Dr. Dr. Hannelore Ehrenreich.
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3.4.3. Activity levels and spatial memory of miR-212/132-/-

mice

The open field assay evaluates the behavior for the anxiety, motor function and

exploratory behavior components301. It can be considered as a modified version of elevated plus

maze. Mice are put into a circular arena and the time spent in different compartments of the

arena and the total distances they have covered are recorded. As the mice explore the arena, they

move to the intermediate and the central zones. However they prefer to spend most of their time

at the periphery especially when they feel anxiety or fear. Additionally the total distance they

cover gives clues about the locomotor activity of mice. Interestingly the miR-212/132-/- mice

covered slightly but significantly more distance than WT mice in the open field arena (Fig. 12a).

However the time spent in different zones of the arena does not differ between the genotypes

(Fig 12b). Therefore these results indicate that miR-212/132-/- mice are slightly hyperactive than

WT littermates but their anxiety levels are normal.

Morris water maze is an assay that assesses the learning and memory abilities of mice or

rats302. The mice are put into a pool divided into quadrants and filled with opaque or transparent

water. A platform is located into one of the quadrants of the pool that mice can climb and escape

the water. During the training sessions mice are expected to learn, memorize and then recall the

location of the platform by considering the spatial cues. In normal situations, during the course

of the trainings, escape latency of mice decreases, which is mainly because mice spends less time

for seeking the platform but rather remembers the position and directly swims towards it.

Initially visible platform test was performed to check if miR-212/132-/- mice have any defect in

vision or motivation and ability to escape the water. The escape latencies of mice of either

genotype did not differ (Fig. 12c). When the platform was hidden, the escape latencies of WT

and miR-212/132-/- mice decreased from 60 sec to approximately 40 sec in 3 days (Fig. 12d).

The escape latency of WT mice continued to decrease following the 3rd day in the trial and

reached to a plateau phase at 7th day. In contrast miR-212/132-/- mice could not develop their

performance after the 3rd day and the escape latency stayed the same till the end of the training

sessions (Fig. 12d). The platform was removed to conduct a probe trial. The time spent in the

target quadrant (where the platform was located) was longer for WT mice compared to miR-

212/132-/- mice. The representative trajectory of mice shows that WT mice were making focal
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search for the platform at the target quadrant. However miR-212/132-/- mice were most likely

using nonspatial, chaining strategy (Fig. 12e). During the first 2-3 days of the trial, mice use

nonspatial strategies like thigmotaxic, random or chain swimming. Later on they develop spatial

strategies, which substantially reduces the escape latency303,304. MiR-212/132-/- mice perform

worse than their WT littermates in navigating towards the platform in subsequent days after the

3rd day of the trials (Fig. 12d). Therefore these results demonstrate that the spatial-memory

related cognitive capabilities are impaired in the miR-212/132-/- mice. The swimming velocity of

WT and miR-212/132-/- were similar (Fig. 12f). Together with the results in the visible platform

test, this finding rules out the possibility that the performance of miR-212/132-/- mice is

influenced by other alterations in sensory or motor functions or the motivation and ability to

escape the water.
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Figure 12: Open field and Morris water maze assays on WT and miR-212/132-/- mice. (a,b) In the open field
test, the total distance traveled within 7 min period was higher for miR-212/132-/- compared to WT
littermates (a), but the time spent in  different zones were similar (b), indicating hyperactivity but no anxiety
in miR-212/132-/- mice. (Mann-Whitney U-test, **: p<0.0062, n=22-23.) (c-f) In the Morris water maze test,
the learning performances of miR-212/132-/- mice were similar to WT littermates in visible platform version
(c), but significantly worse in the hidden platform version of the test (2-way ANOVA for repeated measures
for genotype versus trials interaction F(7,266) =13.3, p<0.0001, n=22-23;). In the hidden platform version, the
time spent in the target quadrant was less for miR-212/132-/- mice (Mann-Whitney U-test, *: p<0.003, n=22-
23) although the average velocity of miR-212/132-/- mice was similar to WT mice (f). Representative swimming
trajectories of WT and miR-212/132-/- mice are shown in (e). The place of the hidden platform is shown with a
circle within the upper left target quadrant. These experiments were conducted by Dr. Konstantin
Radyushkin in the research group of Prof. Dr. Dr. Hannelore Ehrenreich.
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3.5. Electrophysiological characterization of miR-212/132-/- mice

Electrophysiology is the study of the electrical properties of single cells or tissues. It

measures the electrical voltage or current change from single ion channels or even tissues. Thus

electrical activity or action potential activity of neurons located in the hippocampus can be

recorded.

High expression of miR-212/132 in different hippocampal regions and observation of

impaired spatial memory in miR-212/132-/- mice suggests functional role of the gene in

hippocampal networks. Since miR-212/132 expression in CA3 and CA1 region was observed,

electrophysiological analyses on Schaffer collateral pathway was performed to assess the

functional role of miR-212/132 in hippocampal networking.

3.5.1. miR-212/132 increases the synaptic facilitation without

affecting the synaptic transmission

Invading action potential mediates the opening of calcium channels at presynaptic

compartment where Ca2+ ions influx through the channels. The Ca2+ concentration declines to

basal levels in couple of hundred milliseconds. However if second action potential arrives in a

shorter time to the same compartment, more Ca2+ is added up to the residual Ca2+, which in turn

increases the neurotransmitter release probability. This short-term synaptic plasticity

phenomenon is called paired pulse facilitation (PPF)305,306. Paired pulse ratio (PPR) protocol

applied on Schaffer collateral pathway of acute hippocampal slices obtained from 4-5 weeks old

WT and miR-212/132-/- mice revealed that there is a significant increase in the PPR of miR-

212/132-/- animals compared to their WT littermates as well (Fig. 13a). This data demonstrates

increase in short-term synaptic facilitation in miR-212/132-/- Schaffer collateral-CA1 synapses.

To check if the difference in short-term synaptic facilitation is due to any alteration in basal

excitatory synaptic transmission, the input-output relationship of Schaffer collateral inputs to

postsynaptic CA1 neurons was measured. However no difference between mutant and WT

samples was detected (Fig. 13b), suggesting that the synaptic transmission is not impaired in

miR-212/132 mutant mice.
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Figure 13: (a) Paired-Pulse Ratios (PPRs) are higher in miR-212/132-/- mice hippocampal slices compared to
WT controls. (Unpaired t-test, two-tailed, *:p<0.05, **:p<0.01, ***:p<0.001) The number of slices (n)
analyzed are depicted on the graphs. Representative fEPSP traces for both experiments are shown above the
corresponding graphs. (b) Input-output curve of field excitatory postsynaptic potential (fEPSP) at Schaffer
collateral-CA1 synapses is similar in both miR-212/132-/- and WT hippocampal slices. These experiments
were conducted by Dr. JeongSeop Rhee.

3.5.2. miR-212/132 is essential for proper regulation of L-

LTP but not for E-LTP

Long-term potentiation (LTP) is the persistent increase in the size of excitatory postsynaptic

current (EPSC), EPSP or field EPSP (fEPSP). The increase in synaptic response can last for

hours. LTP is considered as cellular mechanism, which composes the fundamentals of learning

and memory dependent plasticity in the brain. LTP has two forms; early-LTP (E-LTP) and late-

LTP (L-LTP), which are protein-kinase dependent and protein synthesis dependent respectively.

E-LTP lasts for 1-2 hours while L-LTP can stay stable as long as the hippocampal slice is

alive307. High frequency stimulation (HFS) was applied on Schaffer collateral axons to induce

LTP in miR-212/132-/- and WT acute hippocampal slices. E-LTP was not affected in miR-

212/132-/- Schaffer collateral pathway (Fig. 14a), however L-LTP was significantly enhanced for

2 hours following the induction compared to WT counterparts (Fig.14b). These results suggest

that miR-212/132 is involved in the regulation of maintenance of LTP rather than initiation of it.
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Figure 14: Early-phase LTP (E-LTP) and late-phase LTP (L-LTP) on WT and miR-212/132-/- hippocampal
slices. (a) E-LTP was similar in miR-212/132-/- and WT hippocampal slices, whereas (b) late-phase LTP was
significantly enhanced in miR-212/132-/- slices compared to WT slices. The number of slices (n) analyzed are
depicted on the graphs. (Unpaired t-test, two tailed, at analyzed time points: 0.001<p<0.01). These
experiments were conducted by Dr. JeongSeop Rhee.

3.5.3. miR-212/132 does not have significant influence on

LTD and depotentiation

Long-term depression (LTD) is the mirror image of LTP. It is long-lasting and activity-

dependent decrease in synaptic potentiation. LTD is a component of synaptic plasticity, which is

essential for the establishment of new neuronal networks to encode information307. Low

frequency stimulation (LFS) was applied on Schaffer collaterals of miR-212/132-/- and WT

hippocampal slices. LTD was induced at the same rates in both genotypes (Fig 15), which

suggest that miR-212/132 deficiency does not impair the regulation of LTD.
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Figure 15: LTD on miR-212/132-/- and WT hippocampal slices. LFS application (1 Hz for 15 min) showed that
NMDAR-dependent LTD levels were not altered in miR-212/132-/- hippocampal slices. The number of slices
(n) analyzed are depicted on the graphs. This experiment was conducted by Dr. JeongSeop Rhee.

Depotentiation is the reversal of LTP, which means weakening of synapse that was

already potentiated. In a previous study, it was speculated that miR-212/132 expression is

mGluR dependent, thus functionally it is correlated with depotentiation rather than LTP126.

Therefore the depotentiation capacity on hippocampal slices was studied to check if the absence

of miR-212/132 alters the depotentiation in Schaffer collateral-CA1 system. LFS was applied 2

min and 40 min following the application of HFS. The depotentiation at Schaffer collateral-CA1

synapses of miR-212/132-/- mice was not different than their WT littermates (Fig. 16a, b). Taken

together, miR-212/132 dependent deficiency in synaptic plasticity leads to higher PPF and L-

LTP but does not influence E-LTP, LTD and depotentiation.
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Figure 16: Depotentiation experiment on miR-212/132-/- and WT hippocampal slices. (a,b) Induction of the
depotentiation 40 min (a) or 2 min (b) after the HFS showed no difference in depotentiation capacity of miR-
212/132-/- hippocampal slices compared to WT slices. 2 trains of 100 Hz for 1 sec were applied as HFS. 2 Hz
for 10 min or 1 Hz for 15 min was applied as LFS. The number of slices (n) analyzed are depicted on the
graphs. Representative fEPSP traces for all experiments are shown above the corresponding graphs. These
experiments were conducted by Dr. JeongSeop Rhee.

3.6. The molecular functions of miR-212/132 in hippocampal

neurons

Electrophysiological assays can be used to explain the mechanism of the observed

impaired spatial memory and hyperactivity of miR-212/132-/- mice at the cellular level.

However, to have a deeper insight into the molecular mechanism of the miR-212/132 function, it

is necessary to characterize the molecular functions and interactions of miR-212/132.

3.6.1. Primary hippocampal neuron cultures as experimental

setup

MecP2, p250GAP and SIRT1 were shown to be the targets of miR-212/132 in several

studies (Table 1). To confirm if they are indeed targeted by miR-212/132 in the murine

hippocampus the levels of MecP2, p250GAP and SIRT1 were checked in total protein lysates

obtained from whole hippocampi of age-matched miR-212/132-/- and WT mice (Fig. 17a; each
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lane represents an individual mouse hippocampus). MecP2 and p250GAP levels were not

different in total hippocampal lysates obtained from mice of either genotype. SIRT1 levels tend

to be higher in miR-212/132-/- hippocampi, although the difference did not reach to statistically

significant levels (Fig. 17a,b).

The expression of miR-212/132 is spatially restricted in specific regions of the mouse

hippocampus (Fig 8, 9) and expressed by a relatively minor population of cells within the

hippocampus. When total protein is isolated from the whole hippocampus, the impact of the loss

of miR-212/132 might have been underestimated due to the dilution of the proteome of miR-

212/132-expressing cells by the proteome of the miR-212/132 negative cells. This dilution may

bring the threshold of detection of biologically relevant differences far below the sensitivity of

western blotting. Moreover, there is a high variation in the levels of MecP2, SIRT1 and

p250GAP (Fig. 17a) among individual samples. Although mice used in these experiments were

selected as being littermates and being housed in the same cage, the levels of proteins in the

hippocampus of each individual mouse might be different at the time of dissection. In other

words the heterogeneity of the system might be the explanation underlying the observed

inconsistent data with the findings in the literature.

To be able to decrease the heterogeneity-related variations between samples I decided to

use the primary hippocampal neuron cultures. In this regard it can be assumed that each cultured

cell will be exposed to the same culture conditions and drug applications will affect all the cells

in the same manner, which subsequently may decrease the dilution effect and the heterogeneity-

related variations.
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Figure 17: MecP2, SIRT1 and p250GAP levels in WT and miR-212/132-/- mice hippocampus. (a)
Approximately 2 months old male mice hippocampi were dissected and the total protein was isolated. Equal
concentration of protein was loaded into each lane. Every lane represents an individual mouse sample. (b)
The densitometric analysis was performed by Fiji software. α-tubulin was used as endogenous control.
Unpaired t-test, two-tailed, p>0.05, +/+: n=5; -/-: n=7.

3.6.2. Induction of mature miR-212/132 production in

hippocampal neuron cultures

Neuronal activity regulates miR-212/132 gene expression (as explained in section 1.2.1).

To check if miR-212/132 expression can be enhanced by pharmaceutical induction of neuronal

activity in hippocampal neuron cultures, kainic acid was administered for 6 hrs. Kainic acid is a

kainate receptor agonist, which mediates robust neuronal activation308-310. It was also shown to

induce miR-132 expression in mouse hippocampus127. After 6 hours of incubation, total RNA

was isolated from neurons and mature miRNA specific RT Q-PCR was performed. The levels of

miR-212 and miR-132 were induced by 2 and 1.7 folds respectively in kainic acid treated

neurons as compared to untreated neurons (Fig. 18a, b). This result demonstrates that the

biogenesis of mature miR-212 and miR-132 can be upregulated by inducing neuronal activity in
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this experimental setup, which allows me to study the alterations in the mutant hippocampal

neurons under miR-212/132 inducing conditions.
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Figure 18: Increase in miR-212, -132 and -134 levels. 30 μM kainic acid treatment for 6 hrs upregulated
mature miR-212 (a), miR-132 (b) and miR-134 (c) production. Paired t-test, two-tailed p-value, **: <0.01,
****:<0.0001, n=6.

3.6.3. Impaired immediate early gene regulation

In contrast to the short-term memory, the long-term memory is transcription and

translation dependent311. If protein synthesis inhibitors are administered to an animal just after

learning process, the long-term memory storage can be prevented. However if the administration

is done several hours after the learning, then long-term memory cannot be blocked. The same

phenomenon is valid for LTP312, which is considered as the model of learning. Therefore, the

gene expression, which is induced just after neuronal activity, is required to encode and store

memories. The group of neuronal activity induced genes is called immediate early genes (IEG).

Those genes mediate the neuronal activity dependent remodeling of synapses313. Since miR-

212/132-/- mice show improper LTP, there might be a possible defect in the regulation of Arc, c-

Fos and BDNF in kainic acid treated miR-212/132-/- hippocampal neurons.

C-Fos induction and relative transcript levels were checked in kainic acid treated and

untreated WT and miR-212/132-/- hippocampal neurons. The induction of neuronal activity in

hippocampal neurons by 30 min of kainic acid application was sufficient to obtain upregulated

levels of c-Fos transcript in the WT neurons. The c-Fos levels increased further till 3 hours and

subsequently decreased after 6 hrs of incubation. The levels of c-Fos in miR-212/132-/- neurons
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showed the same trend of increase in 30 min and 3 hrs and then decreased after 6 hrs.

Interestingly the upregulation levels were significantly higher in miR-212/132-/- neurons at each

time point compared to WT neurons (Fig. 19). The level of c-Fos was significantly lower in

untreated miR-212/132-/- neurons, compared to WT neurons (Fig 22a). The relative transcript

amounts were at the same levels at 30 min and 3 hrs time points (Fig. 22b,c). However, there

were 1.5 fold more c-Fos transcripts in miR-212/132-/- neurons compared to WT neurons after 6

hours of incubation with kainic acid (Fig. 22d). These results suggest that although the basal

levels of c-Fos is lower in miR-212/132-/- neurons, observed increase in fold induction

compensates the c-Fos levels in 30 min and 3 hrs of kainic acid application. However, since the

c-Fos transcription obviously cannot be suppressed properly, this leads to higher c-Fos transcript

levels at the time point of 6 hrs.
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Figure 19: C-Fos transcript levels in cultured hippocampal neurons. 30μM kainic acid treatment was
performed for indicated amount of time. Relative fold changes were calculated by comparing the time points
to the untreated group of the same genotype. Bonferroni multiple comparison test, ****: p<0.0001. 2-way
ANOVA for genotype versus treatment interaction F(3,23) = 20.34, p<0.0001; for difference between genotypes
F(1,23) = 149.76, p<0.0001; for difference over treatment time F(3,23) = 44.77, p<0.0001, untreated; n=4, 30 min;
n=4, 3hrs; n = 3, 6 hrs; n=4
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The levels of Arc, which is an important regulator of LTP maintenance and long-term

memory, was therefore checked in WT and miR-212/132-/- hippocampal neurons. Similar to c-

Fos, the transcript levels of Arc were also lower in untreated miR-212/132-/- hippocampal

neurons compared to the control group (Fig. 22a). Treatment with kainic acid for 30 min

enhanced the Arc level in WT neurons as well as in miR-212/132-/- neurons. However the fold

induction in WT neurons was approximately 2 fold while the induction was by 10 fold in miR-

212/132-/- neurons. The fold differences of Arc at 3 hrs and 6 hrs time point group relative to

levels in the corresponding untreated groups were higher in miR-212/132-/- neurons compared to

the WT neurons as well (Fig. 20). Although the basal level of Arc was lower in miR-212/132-/-

neurons, the levels were not different at 30 min and 3 hrs time points (Fig. 22b, c). However,

approximately 2 fold more Arc transcripts were observed in miR-212/132-/- hippocampal neurons

after 6 hrs of kainic acid application (Fig. 22d). Lower basal levels of Arc in miR-212/132-/-

neurons was compensated after 30 min and 3 hrs and then its levels got even higher after 6hrs of

kainic acid treatment compared to WT neurons. The alteration in the regulation of induction and

suppression of the Arc might be the leading cause of observed differences in fold changes and

relative levels.
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Figure 20: Arc transcript levels in cultured hippocampal neurons. 30μM kainic acid treatment was
performed for indicated amount of time. Relative fold changes were calculated by comparing the time points
to the untreated group of the same genotype. Bonferroni multiple comparison test, ****: p<0.0001, **:p<0.01.
2-way ANOVA for genotype versus treatment interaction F(3,23) = 17.8, p<0.0001; for difference between
genotypes F(1,23) = 84.31, p<0.0001; for difference over treatment time F(3,23) = 32.86, p<0.0001, untreated; n=4,
30 min; n=4, 3hrs; n = 3, 6 hrs; n=4.

Previous studies showed an association between the regulation of BDNF and miR-

212/132125,128,219,314,315. Therefore, I checked the regulation of BDNF expression in WT and miR-

212/132-/- hippocampal neurons at different time points after kainic acid induced neuronal

activation. Unlike c-Fos and BDNF, 30 min of kainic acid treatment was not sufficient to

observe the induction of BDNF expression (Fig. 21). However after 3 hours of kainic acid

treatment, the BDNF levels were induced by approximately 1.5 fold in WT and 2.5 fold in miR-

212/132-/- neurons (Fig 21). The fold increase after 6 hrs of kainic acid treatment was higher in

miR-212/132-/- neurons compared to WT neurons as well (Fig 21). The level of BDNF

transcripts in untreated and 30 min kainic acid treated miR-212/132-/- neurons was lower than

WT neurons (Fig. 22a, b). No difference in the levels were observed at 3 hrs and 6 hrs treatment

time points (Fig. 22c, d). These results indicate that the loss of miR-212/132 function leads to
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downregulated BDNF levels in hippocampal neurons and alteration in the regulation of BDNF

expression which is then reflected as high fold induction upon kainic acid treatment.
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Figure 21: BDNF transcript levels in cultured hippocampal neurons. 30μM kainic acid treatment was
performed for indicated amount of time. Relative fold changes were calculated by comparing the time points
to the untreated group of the same genotype. Bonferroni multiple comparison test, ****: p<0.0001, **:p<0.01.
2-way ANOVA for genotype versus treatment interaction F(3,23) = 6.8, p = 0.0018; for difference between
genotypes F(1,23) = 30.06, p<0.0001; for difference over treatment time F(3,23) = 31.24, p<0.0001, untreated; n=4,
30 min; n=4, 3hrs; n = 3, 6 hrs; n=4

The loss-of-function of miR-212/132 results in the downregulation of c-Fos, Arc and

BDNF in untreated hippocampal neurons. Interestingly, kainic acid treatment mediates stronger

gene induction in miR-212/132-/- neurons and the absolute levels of c-Fos and Arc in miR-

212/132-/- neurons exceeds the levels in WT after 6 hrs. These results indicate that the regulation

of c-Fos, Arc and BDNF expression is impaired in the absence of miR-212/132 function.
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Figure 22: Relative transcript levels at different time points of kainic acid treatment. 30μM of kainic acid
treatment was performed for (b) 30 min, (c) 3 hrs, (d) 6hrs. (a) No treatment was applied on the control
group. The transcript levels of +/+ groups were set to 1 and relative transcript levels in -/- groups were
calculated. Unpaired t-test, two tailed, *: p<0.05, **: p<0.01, ***:p<0.001, ntreated; n=10, 30 min; n=4, 3hrs;
n = 3, 6 hrs; n=9.

3.6.4. Influence of miR-212/132 on SIRT1-miR-134-CREB

pathway

SIRT1 is the mammalian homolog of the NAD-dependent deacetylase Silent Information

Regulator (Sir2) present in S.cerevisia, C. elegans and Drosophila. It has been known to be

involved in ageing, ageing related disorders, metabolism control, oxidative stress regulation,

circadian rhythms and cocaine addiction316-322. Recently it was shown that SIRT1 represses the

expression of miR-134. One of the targets of miR-134 is cyclic AMP response element binding
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protein (CREB), which is a transcription factor. CREB has crucial function in linking the

neuronal activity to gene expression. Membrane depolarization that drives influx of Ca2+ through

ligand- and voltage-gated ion channels mediates the phosphorylation of CREB, which in turn

activates its target genes by binding to the cAMP response element (CRE) in the regulatory

sequences313,323. SIRT1 deficiency causes upregulation of miR-134, which in turn downregulates

CREB and BDNF in mouse hippocampus and consequently impairs synaptic plasticity and

memory formation324.

SIRT1 is targeted by miR-132146. Longer lifespan of miR-212/132-/- mice (Fig. 4a) might

therefore be associated with misregulation of SIRT1 in the absence of miR-132. Data presented

in Fig. 22a shows that BDNF is downregulated in cultured primary hippocampal neurons.

Moreover miR-212 and miR-132 are known as CREB regulated miRNAs116. Therefore, I

hypothesized that miR-212/132 family might be involved in the SIRT1-miR-134-CREB

pathway, which would then link the SIRT1 and CREB, thus creating a feedback loop (Fig. 23).

Based on this hypothesis, it could be expected that in miR-212/132-/- hippocampal neurons,

SIRT1 levels would be higher, which in turn would downregulate miR-134 levels. Since miR-

134 targets CREB325, lower miR-134 levels might then lead to higher CREB levels. Upon

induction of neuronal activity, higher CREB levels might accordingly be reflected as increased

levels of phosphorylated CREB (pCREB). This putative molecular model may explain the

observed increased fold induction of CREB regulated IEGs in miR-212/132-/- hippocampal

neurons as well (Fig. 19-21). According to this model there might be a feedback loop by which

CREB and miR-212/132 family would regulate each other’s’ expression levels.

Figure 23: Proposed molecular model. SIRT1 represses miR-134. CREB is downregulated by miR-134325. The
phosphorylation of CREB is driven by neuronal activity313,323. Neuronal activity regulated miR-212/132
expression is induced by pCREB (refer to section 1.2.1). MiR-212/132 would be the link between CREB and
SIRT1, which constitute a feedback loop.
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To validate this hypothesis I first asked if miR-134 is an activity regulated miRNA

similar as miR-212 and miR-132. Six hours of kainic acid induction enhanced its expression

level approximately 50% (Fig. 18c) which suggests that miR-134 is an activity regulated gene

and the kainic acid treatment on hippocampal neuron cultures provides appropriate conditions to

mediate the miR-134 induction.

The expression levels of miR-134 did not vary in miR-212/132-/- or WT hippocampal

neurons (Fig. 24a). To find out if there is any alteration in the fold induction of miR-134 after

neuronal activity induction as observed for IEGs (Fig. 19-22), the levels of miR-134 before and

after kainic acid treatment in WT and miR-212/132-/- neurons were compared. However no

significant differences in fold changes were observed (Fig. 24b). These results indicate that miR-

134 regulation is not dependent on miR-212/132 function.
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Figure 24: Mature miR-134 levels in cultured hippocampal neurons. (a) Relative miR-134 levels in naïve miR-
212/132-/- hippocampal neurons were calculated according to the miR-134 levels in +/+ neurons. (b) 30μM
kainic acid treatment was performed for 6 hrs. Relative fold changes were calculated by comparing the time
point to the untreated group of the same genotype. Unpaired t-test, two-tailed, *: p<0.05, **:p<0.01, n=6.

To further examine the SIRT1-miR-134-CREB pathway, the CREB and pCREB levels in

total protein lysates obtained from WT and miR-212/132-/- hippocampal neurons were compared.

Kainic acid, as robust neuronal activity inducer, mediates phosphorylation of CREB at Ser133

residue310. However, the phosphorylation of CREB upon induction of hippocampal neuron

cultures by kainic acid was not prominent enough according to the results I obtained. Therefore,

I decided to use forskolin, which is a potent drug in mediation of CREB phosphorylation by

increasing the intracellular cAMP concentration326,327. To assess the levels of pCREB, an
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antibody that specifically binds to phosphorylated Ser-133 residue was used. The pCREB levels

were normalized by total CREB levels. The phosphorylation of CREB was mediated

successfully in WT neurons as well as in miR-212/132-/- neurons (Fig. 25a, b). The comparison

of the absolute levels of pCREB before and after forskolin treatment in WT and miR-212/132-/-

neurons revealed that the basal levels of pCREB in WT and miR-212/132-/- neurons were same.

However, interestingly there were lower amount of pCREB in miR-212/132-/- neurons upon

equal concentration of forskolin treatment compared to WT neurons (Fig. 25d). This data

demonstrates that miR-212/132 deficiency results in the attenuation of CREB phosphorylation.

If SIRT1 were a target of miR-212/132 family in hippocampal neurons, then an

upregulation of SIRT1 would be expected in miR-212/132-/- neurons. The forskolin treatment did

not modulate the levels of SIRT1 in WT and miR-212/132-/- neurons (Fig. 25c). This is

consistent with the previous study showing that the SIRT1 levels in U2OS cells did not change

after 1 hrs of forskolin treatment328. When SIRT1 levels in untreated WT neurons are compared

with the levels in miR-212/132-/- neurons no statistical difference was observed, although the

level in miR-212/132-/- neurons was tend to be lower (Fig. 25e). Interestingly the difference in

the SIRT1 levels between the forskolin treated WT and miR-212/132-/- neurons was more

prominent, thus statistically significant (Fig. 25e). Therefore SIRT1 would be slightly

downregulated in the absence of miR-212/132 and this effect would be enhanced upon forskolin

treatment. Since the observation is opposite than the expectation of higher SIRT1 levels in miR-

212/132-/- neurons, it is possible that SIRT1 level is influenced by miR-212/132 in an indirect

manner.
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Figure 25: Western blotting for CREB, pCREB and SIRT1. (a) 10 μM of forskolin treatment was performed
on cultured hippocampal neurons for 30 min. DMSO was applied to untreated group of cells. Equal amount
of total protein was loaded into each lane, which represents a replica. Densitometry analysis was performed
by Fiji software. (b, d) pCREB level was normalized according to the CREB levels. (c, e) SIRT1 level was
normalized according to the α-tubulin levels. The pCREB (b) and SIRT1 (c) levels in forskolin untreated
groups of both genotypes were set to 1. Relative amounts of pCREB and SIRT1 was calculated according to
the untreated group. The pCREB (d) and SIRT1 (e) levels in untreated and forskolin treated groups were
compared for different genotypes by setting the protein amount of +/+ group to 1 and calculating the protein
amount in -/- accordingly. (b) Paired t-test, two-tailed, *: p<0.05, **: p<0.01, (d,e) Bonferroni multiple
comparison test, *:p<0.05.
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4. DISCUSSION

In this thesis the in vivo functions of miR-212/132 family with particular focus on

mechanisms of learning and memory were analyzed by using the miR-212/132 knockout mouse

line. High expression levels in the brain compared to peripheral organs, and observed expression

pattern in the forebrain suggest a possible role of miR-212/132 in cognitive functions. Behavioral

assays demonstrated impairment in long-term spatial memory in miR-212/132-/- mice, and

electrophysiological assays revealed enhanced short-term synaptic facilitation and long-term

potentiation (LTP) in Schaffer collateral pathway of miR-212/132-/- hippocampal slices. The

regulation of immediate early genes, which reside at the forefront of the factors that mediate the

neuronal activity dependent changes in neurons, are disrupted upon the lack of miR-212/132

activity. In miR-212/132-/- hippocampal neurons c-Fos, Arc and BDNF levels are downregulated.

However, 6 hrs of pharmaceutical neuronal activity induction results in abnormally higher levels

of c-Fos and Arc transcripts in miR-212/132-/- neurons. The phosphorylation of the transcription

factor cyclic AMP response element binding protein (CREB), which regulates the expression of

c-Fos, Arc and BDNF, is attenuated in miR-212/132-/- hippocampal neurons. Therefore altered

CREB signaling pathway is likely to be the underlying molecular defect in miR-212/132-/-

neurons causing observed behavioral and electrophysiological phenotypes.

4.1. The correlation between miR-212/132 expression level and

phenotype in various tissues

The expression of miR-212/132 was detected in various organs with strongest expression

being in the brain and the pituitary gland. However the abundance of the miRNA expression in a

given tissue does not necessarily correlate with the observed loss-of-function phenotypes.

Histological analyses of the brain of 6 weeks old mutant mice did not reveal any overt phenotype.

In contrast, in the mammary gland that expresses these microRNAs at a very low level, an

obvious phenotype was detected. MiR-212/132 expression in the mammary gland is restricted to

a small number of stromal cells. The pubertal ductal outgrowth during the mammary gland

development is defective in miR-212/132-/- female mice, which leads to impaired nourishment of

their pups. Both miR-212 and miR-132 target matrix metalloproteinase 9 (MMP9) in stromal



_______________________________________________________ 4. Discussion

96

cells. In WT mammary glands, high MMP9 expression in the periductal stroma of terminal end

buds (TEB) and low MMP9 expression in the periductal stroma of growth-quiescent ducts was

observed. However, in the absence of miR-212/132, high MMP9 expression can be observed in

both periductal stromal cells of TEB and fibroblasts scattered in the fat pad. MMP9 activates the

latent tumor growth factor- β (TGF-β) which has a role in the suppression of epithelial cell

division. Alteration in the regulation of MMP9 expression within the mammary glands of miR-

212/132-/- mice causes hyperactivation of TGF-β signaling pathway, which in turn prevents

ductal tree outgrowth115.

The expression of a miRNA can be enhanced upon stress. MiR-212/132 was shown to be

upregulated in failing human heart329. The upregulation of miR-212/132 was observed in cultured

primary cardiomyocytes upon treatment with hypertrophy inducing agents such as angiotensin-2,

insulin-like growth factor-1, phenylephrine/isoprenaline or fetal calf serum. Transaortic

constriction (TAC) operation, which induces cardiac hypertrophy in vivo, increases the levels of

miR-212/132 family in the heart as well. Overexpression of miR-212/132 in cardiomyocytes acts

like an acute hypertrophy stimulant in vivo, which causes enlargement of the heart and eventually

the heart failure. However, miR-212/132-/- mice are protected against TAC induced hypertrophy

and consequent heart failure. FoxO3 is an anti-hypertrophic and pro-autophagic transcription

factor which is targeted by miR-212/132 family.  The upregulation of miR-212/132 under

hypertrophy inducing conditions or the overexpression of miR-212/132 in cardiomyocytes

decreases the levels of FoxO3 expression. Inhibition of autophagy in these conditions contributes

to the enlargement of cardiomyocytes in size and the development of hypertrophy330.

These phenotypes in miR-212/132-/- mice suggest that miR-212/132 activity is required

during the regulation of pubertal ductal outgrowth and for the hypertrophic response of

cardiomyocytes. As demonstrated in these phenotypes, the restricted spatiotemporal expression

of miR-212/132 is essential for the maintenance of proper homeostasis.

4.2. miR-212/132 and compensation of gene function

Genomic deletion of most miRNA genes in C.elegans revealed that majority of the

miRNAs are dispensable for growth and viability331. The same observation is also valid for the

majority of the miRNA knockout mouse models332. The redundancy among different miRNAs
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which target the same transcripts can be the reason of the observed dispensable roles of particular

miRNAs. Such redundancy is observed for miR-17-92 and miR-106b-25 clusters. MiR-106b-25

knockout mice have no vital phenotype, however, deletion of both miR-17-92 and miR-106b-25

clusters result in embryonic lethality at midgestation333. Mice that lacks either miR-133a-1 or

miR-133a-2 exhibit no phenotype, while ablation of both miRNAs results in heart failure334.

MiRNAs with different seed sequences that act on the same target mRNA can regulate the

particular transcript in the same manner. Moreover, different miRNAs can influence different

cellular networks that consequently have a similar effect on cellular processes. For example miR-

208b and miR-499, which have 1 nucleotide difference in their seed sequences, were also shown

to be redundant in the determination of muscle fiber identity335. MiRNAs with different targets

may influence the same cellular processes through different molecular networks. For instance,

cytosine is found at the 4th position of miR-141 seed sequence, where there is uracil at the same

position of miR-200c. It was suggested that although miR-141 and miR-200c have different

targets, their impact on cellular division is the same336.

MiR-212 and miR-132 constitute a miRNA family. They have the identical seed

sequences, but their 3’ end has 4 nucleotide differences (Fig. 2). It is known that 3’ region of a

miRNA has a crucial role in determining the target specificity of the miRNAs337. Therefore,

although it is likely that both miR-212 and miR-132 have same sets of target mRNAs, it is

inappropriate to claim without experimental validation that miR-132 and miR-212 functions can

be compensatory to each other. Nevertheless, to avoid any potential redundancy effect, genomic

sequences encoding both miR-212 and miR-132 were deleted in the mutant mouse line studied

here.

As explained in detail in the sections 1.2.2.1 and 1.2.2.4.1, the previous studies

demonstrating the roles of miR-212/132 in neuronal morphology and synaptic transmission

yielded several apparently contradictory data so far. The inconsistencies between the results of

these studies might be explained based on the differences in the type of neurons used (e.g.

cortical versus hippocampal), in the maturation state of those cultured neurons, the applied

culturing conditions, and the targeting approaches used in order to obtain the miR-212/132 gain-

or loss-of-function phenotypes. Moreover, most of these studies focused on the function of the

miR-132 alone while the fact that simultaneous expression of miR-212 together with miR-132
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under normal conditions was ignored. This might be especially important in the miR-132-specific

knockdown studies since an intact miR-212 in these neurons might lead to functional

redundancy. Additionally transfecting neurons with a high concentration of antisense

oligonucleotides or sponge vectors to knock-down miR-212 and/or miR-132 may suffer from

non-specific bindings of these molecules, thus showing unavoidable off-target effects338,339.

Transfecting cells with miRNA mimics to mediate an overexpression might also be altering the

endogenous miRNA biogenesis pathway340. Among all the applied techniques so far, genomic

deletion of miR-212/132 is the cleanest system for studying the loss-of-function phenotypes,

since this approach avoids various uncontrollable parameters associated with knockdown or other

similar methods.

4.3. miRNAs with role in adaptation

Extensive research on miRNAs suggests that miRNAs regulate cellular behavior under

physiologic and/or pathophysiologic stress332. MiR-208a knockout mice show no aberrant defect

in heart development or baseline function. However, its functional importance is revealed only

when the cardiac hypertrophy is experimentally induced25. Deletion of miR-143 and miR-145 in

mice does not lead to an alteration in smooth muscle differentiation or vasculogenesis. However,

neointima formation does not occur in these mice in response to vascular injury341. MiR-212/132

null mutant mice do not show significant phenotype on heart development and the function.

However, the heart requires miR-212/132 activity in order to adapt to the conditions that requires

mediation of the hypertrophic response.

Environmental stresses encourage adaptation. Therefore, it would be reasonable to

consider adaptation as an organismal response to stress. The brain, which is a highly plastic

system, is the most complex organ of mammalians. For example in the neocortex of a young man

or woman, there are 22.8 and 19.3 billion neurons respectively. The total length of axons in

young individuals varies from 150000 to 180000 km. Total number of synapses in human

neocortex was calculated as 150 trillion342. The complex network of connectivity in a brain must

be continuously modified according to the sensory inputs. The plastic feature of a brain, which

occurs at the level of axons and dendrites, underlies its ability to adapt the external environment

by acquiring, consolidating and recalling the information343. The precise control of connectivity
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at each synapse requires dynamic and local regulatory mechanisms. Diverse array of miRNAs is

expressed in post-mitotic neurons at the time of synapse development, and they are associated

with polyribosomes, where active translation takes place344. Additionally, most of the neuronal

miRNAs were detected in dendrites as well as in soma345. Moreover, an interesting feature of

miRNAs is that they do not act as on-off regulators but mostly as fine-tuners346,347. Their activity

does not exclusively result in the degradation of its target but translational silencing1. This feature

of miRNAs fits with the scenario that mRNAs must be regulated dynamically by silencing the

translation and storing or translating depending on the state of neuron348. Therefore, miRNAs are

functionally suitable factors that may execute such regulations in synapses. Considering these

facts, the lack of any overt structural phenotypes in miR-212/132-/- mouse brain is not surprising.

Interestingly, the impairment in cognitive, behavior and synaptic transmission suggests that miR-

212/132 family is involved in the neuronal network modulation as a component of adaptation of

brain to the environmental changes. Moreover the increase in the levels of miR-212/132

expression as the precursor neurons differentiate into the mature neurons and integrate into the

circuits supports the role of miR-212/132 in such adaptation mechanism160.

4.4. Roles of miR-212/132 in behavior

A large battery of behavioral assays was conducted on miR-212/132 null mutant mice and

their control littermates. The anxiety (elevated plus maze, Fig. 10a, b), motor balance and control

(rotarod test, Fig. 10c), explorative activity (hole-board test, Fig. 10d), sensorimotor gating

(prepulse inhibition, Fig. 11a, b), sociability and social memory (social interaction assay, Fig.

11c, d), conditional learning and memory (cued and contextual fear conditioning, Fig. 11e),

working memory (8-arm radial maze, Fig. 11f) of these mice were evaluated. None of these

assays revealed any significant difference between miR-212/132-/- and WT mice. This indicates

that the genomic deletion of miR-212/132 does not cause substantial sensory deficits and

generalized impairments in the behavior.

Open field test revealed that the anxiety level of miR-212/132-/- mice is not different from

WT mice, which is consistent with the elevated plus maze results. However, miR-212/132-/- mice

cover more distance in the open field than the WT mice. This data indicates that miR-212/132-/-

mice show more motor activity compared to control littermates. Normally, mice reduce their
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explorative activity as they get familiar with the environment and spend more time grooming or

waiting in immobile posture. Mice with frontal cortex or hippocampal lesions show slower

habituation to a novel environment, which tend to make animals hyperactive349. The expression

of miR-212/132 was detected in CA1, CA3, and DG regions of the hippocampus as well as in the

frontal cortex. Therefore, the deletion of miR-212/132 may alter the flow of information through

the hippocampal and cortical circuits, which might eventually display a phenocopy of

hippocampal lesions.

Deletion of miR-128 in the forebrain neurons and more specifically, in dopamine-1

receptor (Drd1)-expressing neurons, which has a role in motor control350, increases the

excitability of neurons. This is reflected as hyperactivity in the open field test, and results in the

development of fatal epileptic seizures. Upon Drd1 agonist application, neurons with higher

excitability also show increased expression levels of FosB, Dusp1, Arc, Nr4a1, JunB, Jun and

Fosl2, which are IEGs. Overexpression of miR-128 show the opposite phenotype, such as

attenuation of neuronal excitability, decrease in motor activity and seizures351. Higher expression

levels of IEGs, c-Fos (Fig. 19), Arc (Fig. 20) and BDNF (Fig. 21) in kainic acid treated miR-

212/132-/- neurons, indicate a similar increase in the excitability as well. Therefore, the observed

hyperactivity in miR-212/132-/- mice may be explained by enhanced excitability of neurons,

which correlate with the induction of IEGs.

Morris water maze assay demonstrated an increase in the escape latency of miR-212/132-/-

mice although other criteria such as motivation to escape the water, motor activity or visual

abilities of mutant mice were same as their WT littermates. These results suggested that, the long-

term spatial memory is impaired in the miR-212/132-/- mice.

Spatial memory is considered as a subset of declarative memory, which also includes the

semantic and episodic memory. Spatial memory is hippocampus and parahippocampus

dependent237. The neuroimaging studies revealed that neuronal activation in human hippocampus

and parahippocampus is greater when trying to find a path rather than following an already

known path352 and while remembering topographic information than recalling a nonspatial

information353. Therefore, the medial temporal lobe actively participates in encoding and

recalling the spatial memory. The Morris water maze test performed with the miR-212/132-/-

mice and their control littermates was composed of 8 days of training sessions and the probe trial
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in the consecutive day. The navigational tactics are started to be used by WT mice on the 3rd to

4th day of the training period303. After the 4th day, the spatial memory is acquired and encoded. At

this time point, the miR-212/132-/- mice showed worse performance compared to WT mice,

indicating that miR-212/132-/- mice are impaired in acquisition and/or recall of spatial memory.

Long-term spatial memory is generated but not stored in the hippocampus. The amnesic

patients with limited hippocampal damage cannot develop new memories, however, they can

recall semantic and episodic memories of the past couple of years of pre-amnesia354,355. On the

other hand, patients with temporal and frontal lobe volume reduction cannot recall

autobiographical memory of their early life356. Experiments using animal models confirm

findings observed on patients with amnesia. If the hippocampal lesion were done 1 day after the

eye blink conditioning test, the conditioned response was abolished. However, damaging the

hippocampus 4 weeks later had no effect on the response. On the contrary, damage on medial

prefrontal cortex did not impair the conditioned response 1 day after but partially after 2 weeks

and severely in 4 weeks357. These observations assign neocortex as the region where memories

are stored for long-term. Expression of miR-212/132 was detected throughout the neocortex of

mice (Fig. 7a). This finding hints that miR-212/132 may have a role in the consolidation of the

spatial memory in the neocortex for long-term storage. Therefore, to further understand the role

of miR-212/132 in memory storage, other behavioral assays testing the long-term memory

storage must be conducted in future studies.

4.5. miR-212/132, neuronal networks and synaptic transmission

Hippocampus receives inputs from associative cortices via entorhinal cortex (EC). The

information that reaches the hippocampus flows through two parallel pathways; trisynaptic

pathway (TSP) and monosynaptic pathway (MSP). TSP starts from layer II of EC, then

sequentially to DG, CA3, CA1 and back to layer V-VI of EC either directly or through

subiculum. MSP starts from layer III of EC, projects to CA1 and to the deep layers of EC again

via subiculum or directly236,358. CA3 is required for one-trial contextual memory, pattern

completion, fine tuning of excitability rate and spatial tuning of CA1 cells. However, MSP can

substitute TSP in incremental spatial learning which means the CA3 output is dispensable359.

CA3 stores associative/sequential information and recalls the information upon exposure to
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partial cue360. The CA3 conveys the information to CA1 via Schaffer collaterals. CA1 compares

the prior experience dependent information with sensory information arrives from layer III of EC

via perforant path, thus mediates the novelty detection361. DG and the input from DG to CA3 via

perforant path is indispensable for encoding and retrieval of spatial memory362.

Short-term synaptic facilitation and enhanced late-phase LTP were observed in Schaffer

collateral synapses of miR-212/132 null mutant mice (Fig. 13a, 14b). Short-term facilitation is

one type of short-term plasticity. The synaptic efficacy mediated by synaptic facilitation is

temporary, which is in the order of a couple of hundred milliseconds. Such fast processes can

occur in sensory information processing363 and working memory364. However, short-term

facilitation in miR-212/132-/- mice was not displayed as an alteration in behavior, as shown in the

obtained results of the visual platform assay in Morris water maze (Fig. 12c) and 8-arm radial

maze (Fig. 11f) .

BDNF is required for docking of synaptic vesicles at presynaptic compartments365 and

enhances the glutamate release366. It was demonstrated that the mice without functional Myo6

and GIPC6, the factors required for proper BDNF mediated downstream signaling at presynaptic

terminals, show lower paired pulse facilitation367. Therefore, alteration of BDNF regulation (Fig

21, 22a) in miR-212/132-/- mice might be associated with the observed increase in synaptic

facilitation (Fig. 13a).

In principle, the gain-of-function and the loss-of-function studies for a gene may reveal

opposite phenotypes. However, miRNAs may represent an exception to this principle. Since

miRNAs are considered as fine tuners, any dysregulation in their expression may have similar

phenotypic consequences347. Therefore, the detection of higher synaptic facilitation in both miR-

132 overexpressing neurons in the study of Lambert et al. and in Schaffer collaterals of miR-

212/132-/- mice (Fig. 13a) might be the result of miR-132 dysregulation. However one cannot rule

out the influence of synaptic connections on synaptic facilitation in the dense network of

hippocampal slices, which does not exist in autaptic neuron cultures.

Interestingly Remenyi et al. reported that synapses in Schaffer collateral of miR-212/132

knockout mice show defective synaptic transmission and no synaptic facilitation, which is

contradictory to my findings in this study. These differences in the short-term plasticity
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phenotypes might be due to the differences in the gene targeting strategies. Remenyi et al.

generated their knockout mouse line by inserting LoxP sites in the 1st intron and 2nd exon of the

miR-212/132 expressing non-coding transcript by using an embryonic stem cell line derived from

C57Bl/6N strain. The deletion of miR-212/132 was mediated by crossing the conditional

knockout mice with Cre recombinase expressing transgenic mice under the control of a

constitutive promoter162. The mouse model that I have used in this study was generated by

targeting the miR-212/132 locus in 129SvJ embryonic stem cells with a targeting vector that

disrupts mature miR-212/132 sequences and replaces it with a LacZ reporter gene. After the

generation of this mouse line in 129SvJ background, it was gradually backcrossed into C57Bl/6N

background. These differences in targeting strategies might be influencing the regulation of the

genes located at nearby genomic loci, which can be functionally relevant with the synaptic

transmission and the short-term plasticity. Additionally, Remenyi et al. showed that LTP in miR-

212/132 knockout hippocampal slice is enhanced when the LTP induction is done by theta burst

stimulation. This data is supportive to the findings in my thesis. Since the molecular mechanisms

of short-term plasticity and LTP are different, the differences in the experimental setups might

not be influencing the LTP formation.

Hippocampus is a heterogeneous organ in terms of differential gene expression pattern

and connectivity along the dorsoventral axis. Rat and mouse hippocampus can be divided into 3

compartments as ventral (VH), intermediate (IH) and dorsal (DH) hippocampus 368. The lesion

that is restricted to 25% of the DH is sufficient to impair the spatial memory369, while a damage

at VH has no effect on the spatial memory370. The place field density in DH is greater compared

to VH370. Interestingly, it was shown that mice with lesion in VH but not in DH or amygdala

enter to the open arm of elevated plus maze more often than control animals, demonstrating

altered anxiety371. Based on these and other findings, the DH and VH are considered to have

distinct roles. DH is involved in navigation and VH is important in emotion and stress372. In this

respect, observing differential miR-212/132 expression along dorsoventral axis of dentate gyrus

(Fig. 8) implies an association with its functional relevance. Conditional miR-212/132 loss-of-

function and/or gain-of-function studies restricted to specific sites of the hippocampus must be

conducted in order to gain deeper understanding of miR-212/132 functions in neuronal networks

regulating these distinct behaviors.
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Interestingly, DH receives a substantial amount of cortical projection from retrosplenial

area373, which is involved in the regulation of environmental exploratory behavior374. The whole-

mount LacZ staining on brain demonstrated relatively lower β-galactosidase expression at

retrosplenial area compared to other cortical areas (Fig. 6a, 7a). The expression of miR-212/132

loci at retrosplenial area might be dynamically regulated depending on the exploratory behavior

of mice. The expression may increase as mouse explores a novel environment as shown

previously for CA1 and DG regions133. Since the mice used for β-galactosidase staining were

kept in their home cages, the expression in miR-212/132 loci might not be prominent at

retrosplenial area. To address this issue in future studies, mice can be exposed to a novel place or

object for a certain time before the dissection of the brain to analyze.

4.6. Influence of miR-212/132 on c-Fos and Arc expression

C-Fos is a bZIP transcription factor, which can be used to map the activated neurons in

the brain of animals375. Conventional knockout of c-Fos shows developmental defects376.

Therefore, the gene deletion was restricted conditionally to the central nervous system (c-

FosΔCNS). When a single tetanization at 100Hz was performed on acute hippocampal slices, c-

FosΔCNS samples yielded lower LTP compared to controls. However, when the tetanization was

repeated 4 times (theta-burst stimulation), no impairment was observed377. Therefore, the

intensity of the stimulation is crucial for the involvement of c-Fos in LTP formation. Remenyi et

al. showed that LTP formation in miR-212/132 knockout Schaffer collaterals is not different

from the control group when the induction protocol is single tetanization. However, theta-burst

stimulation reveals enhanced LTP in miR-212/132 knockout group162. The alteration in the

regulation of c-Fos expression in miR-212/132-/- neurons (Fig. 22) may explain the altered LTP

formation in miR-212/132 loss-of-function mutant hippocampi. Moreover, the c-FosΔCNS mice

spent less time in target quadrant of the water maze assay compared to control mice and the

freezing response of c-FosΔCNS mice were less on a contextual fear conditioning test 24 hrs after

the training. The hippocampus dependent spatial and fear memories are impaired in c-FosΔCNS

animals377. MiR-212/132-/- mice did not show any defect in conditional fear memory (Fig. 11e).

Therefore, c-Fos mediated fear memory formation might be miR-212/132 independent. On the

other hand, the impaired spatial memory in miR-212/132-/- mice may be dependent on the

indirect regulation of c-Fos by miR-212/132 family.
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Arc is required to stabilize learning and synaptic plasticity378. Arc transcripts are enriched

in the postsynaptic compartment379. Exposure to a novel environment induces expression of Arc

in CA1 pyramidal neurons380. It mediates the endocytosis of AMPA receptors (AMPAR) and

thus reduces the AMPAR surface expression381. The regulation of AMPAR trafficking at

postsynaptic membrane by Arc leads synaptic scaling of AMPAR. When there are high levels of

neuronal activity in neurons, Arc is induced, which then internalizes the AMPAR in the plasma

membrane of synapses. If the neuronal activity is low, Arc levels are downregulated, which leads

AMPAR to localize on membranes. Therefore Arc functions as a “homeostasis keeper” that

maintains the neuronal response in an optimal range382. Arc knockout (Arc-/-) mice show

impairment of long-term memory as it was shown in water maze, contextual and cued fear

conditioning, conditioned taste aversion and object recognition assays. However short-term

memory remains intact. Moreover, LTP cannot be maintained in Arc-/- mice, and LTD is lower378.

Remenyi et al. claimed that miR-212/132 has a role in the regulation of postsynaptic AMPAR

localization and that the absence of miR-212/132 causes a decrease in AMPAR expression in

postsynaptic compartment under basal conditions162. Therefore, the dysregulation of Arc in miR-

212/132-/- hippocampal neurons (Fig. 20, 22) might be the underlying molecular cause of the

impaired AMPAR regulation.

4.7. Functions of miR-212/132 at the molecular level

CREB is a transcription factor with important roles in neuronal development, synaptic

plasticity, learning, memory, addiction, circadian rhythm and neuronal survival383. The primary

function of CREB in neurons is linking the gene expression to neuronal activity313. Neuronal

activity dependent Ca2+ influx through voltage gated calcium channels (VGCCs), NMDAR384,

AMPAR385 and nicotinic acetylcholine receptor386 (nAChR) mediates further Ca2+ release from

internal calcium stores and activation of downstream signaling factors. Calmodulin that binds to

Ca2+ activates the calcium/calmodulin-dependent protein kinase IV (CaMKIV), which in turn

phosphorylates CREB387. The CREB-mediated gene activation cannot occur unless Ras-MAPK

signaling pathway is activated323. Moreover, the rise in the internal Ca2+ concentration activates

the adenylyl cyclase, which is a G-protein coupled receptor. Adenylyl cyclase catalyzes cAMP

production. Protein kinase A (PKA), which is activated by cAMP phosphorylates CREB388.
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CREB function is regulated at the post-translational level through phosphorylation at

different residues383, as well as post-transcriptionally by miR-134. The expression of miR-134

was shown to be repressed by SIRT1 (Fig. 23). Mice expressing in brain the mutated SIRT1 that

have no catalytic activity, had lower levels of BDNF in their hippocampus, and exhibited

impaired LTP and spatial memory325. Downregulation of BDNF levels upon blockage of miR-

212 activity was shown in the dorsal striatum219. I have also found a decrease in the BNDF

transcript levels of untreated miR-212/132 -/- hippocampal neurons compared to WT neurons

(Fig. 22a). Besides, miR-212/132-/- mice have approximately 3 months longer lifespan compared

to their WT littermates as shown in fig. 4a. Sir-2, which is the C.elegans homolog of SIRT1, was

defined as a factor determining the lifespan389. Although this claim was challenged 10 years

later390, it is clear that SIRT1 is an important factor for healthy aging in mice391, which may

reflect itself as an increase in lifespan. Since it is known that SIRT1 is targeted by miR-132146,

the increase in the lifespan of miR-212/132-/- mice might be associated with miR-212/132-

mediated regulation of SIRT1. In that case the underlying reason of the impaired spatial memory

and LTP in miR-212/132-/- mice might also be due to the altered regulation of CREB-SIRT1

pathway. However, no significant difference in the levels of miR-134 (Fig. 24) was detectable.

Lower level of SIRT1 was detected in forskolin treated miR-212/132-/- neurons compared to WT

neurons (Fig. 25c, e), which is contrary to the expectations. Therefore, there may be an indirect

link between SIRT1 and miR-212/132.

I have shown that forskolin treatment induced CREB phosphorylation is attenuated in

miR-212/132-/- hippocampal neurons and c-Fos, Arc and BDNF transcripts are downregulated in

untreated neurons (Fig. 25a, b). Conversely, miR-212 overexpression in human embryonic

kidney (HEK) cells enhances forskolin dependent CREB phosphorylation. Moreover, c-Fos is

upregulated in HEK cells and the fold induction is enhanced upon forskolin treatment122. As

explained in section 1.2.2.5.3, potentiation in CREB phosphorylation is TORC dependent, which

is a CREB coactivator. TORC acetylation, mediated by CBP/p300, protects TORC from

proteolytic degradation and the activation of CBP/p300 is cAMP dependent220. Increased level of

Raf1, which activates adenylyl cyclase, mediates the rise in the intracellular concentration of

cAMP in miR-212 overexpressing HEK cells. On the other hand, Raf1 is suppressed by SPRED1,

which is targeted by miR-212. Interestingly, the reciprocal interaction between p300 and miR-

132 was previously shown. Upon infection of monocytes by herpes simplex virus-1 (HSV-1),
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miR-132 suppresses CBP/p300. Eventually, interferon-stimulated genes are attenuated, which in

turn enhances the viral replication. Additionally CBP/p300, which interacts with CREB, is

required for miR-132 expression144. Therefore, the levels of cAMP, CBP/p300, Raf1 and

SPRED1 in miR-212/132-/- neurons should be investigated in future studies to reveal if the

attenuation of CREB phosphorylation in miR-212/132-/- hippocampal neurons is dependent on a

similar cellular mechanism.

The role of BDNF in mature neural circuits was revealed after its discovery as a

neurotrophic factor392. BDNF enhances the neurotransmitter release367,393-395. It increases the

postsynaptic response by increasing the NMDA receptor conductance396 and AMPAR surface

expression397 and decreasing the GABAAR surface expression398. Besides, BDNF increases the

spine density and dendrite outgrowth399-401. Basal synaptic transmission and synaptic facilitation

are impaired in BDNF knockout (BDNF-/-) mice compared to control mice. LTP measurements

on Schaffer collaterals of BDNF-/- hippocampi show lower LTP levels compared to WT

hippocampi. The LTP levels can be rescued by application of recombinant BDNF protein402.

BDNF levels were shown to be upregulated in cortical neurons when miR-132 was knocked

down, and this increase was MecP2 dependent. MecP2 is targeted by miR-132 in cultured

cortical neurons125. However, knocking down miR-212 in dorsal striatum of mice decreased the

BDNF levels. MecP2 inhibition in dorsal striatum increases the miR-212/132 expression and

miR-212 overexpression decreases MecP2 levels219. I have shown that the basal BDNF levels in

miR-212/132-/- hippocampal neurons were downregulated. However neither I (Fig. 17), nor

Remenyi et al. could confirm the alteration in the levels of MecP2 in miR-212/132 knockout

hippocampus and cortex respectively162. The contradiction regarding the MecP2 and BDNF

levels might be due to the differences in the employed loss-of-function approaches, since the

alteration in the level of MecP2 that was observed in a knockdown study cannot be reproduced in

these two knockout systems. A technical explanation for this discrepancy might be the possible

off-target effects of the employed miR-132 knockdown strategy by Klein et al. Nevertheless the

downregulation and change in the fold inductions of BDNF in miR-212/132-/- neurons (Fig. 21,

22a) would then be independent of MecP2 but dependent on CREB signaling.

Taken altogether, the expression of miR-212/132 in forebrain is crucial for proper

synaptic transmission and spatial memory. The attenuated CREB phosphorylation and alteration
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in the regulation of IEGs in miR-212/132-/- hippocampal neurons suggest that miR-212/132 is

primarily important for CREB signaling.
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List of Abbreviations

3’UTR 3’ untranslated region
3R-tau three microtubule binding repeats
4R-tau four microtubule binding repeats
5’UTR 5’ untranslated region
Ach acethylcholine
AchE acetylcholinesterase
ACSF artificial cerebrospinal fluid
AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
BDNF brain derived neurotrophic factor
bFGF basic fibroblast growth factor
BTG2 B-cell translocation gene 2
CA cornu Ammonis
CaMKIV calcium/calmodulin-dependent protein kinase IV
cAMP cyclic adenosine monophosphate
CCh carbachol
CDS coding sequences
CR conditional response
CRE cyclic AMP response element
CREB cyclic AMP response element binding protein
CS conditioned stimulus
CSDC2 cold-shock domain containing protein C2
DG dentate gyrus
DH dorsal hippocampus
DIV day in vitro
DPI days post infection
Drd1 dopamine-1 receptor
EC entorhinal cortex
E-LTP early-LTP
EPSC excitatory postsynaptic current
fEPSC field excitatory postsynaptic potentials
FXR1 fragile X mental retardation related protein 1
GCL granule cell layer
GTC Guanidin thiocyanate
HB-EGF Heparin-binding EGF-like growth factor
HCMV human cytomegalovirus
HEK human embryonic kidney cells
HFS high frequency stimulation
HPF hippocampal formation
HSV-1 herpes simplex virus-1
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IEG immediate early genes
IH intermediate hippocampus
IL-6 Interleukin-6
I-O input-output
IRES internal ribosomal entry site
ISH in situ hybridization
JARID1A Jumonji, AT-rich interactive domain 1A

KSHV Kaposi’s sarcoma-associated herpesvirus
LA lateral amygdala
LFS low frequency stimulation
LIMK1 Lim-domain-containing protein kinase 1
L-LTP late long-term potentiation
LNA Locked-nucleic acid
Loqs-PA Loquacious-PA
Loqs-PB Loquacious PB
LTD long-term depression
m7Gppp 7-methyguanosine cap
MeCP2 methyl CpG binding protein 2
MEFs mouse embryonic fibroblasts
mEPSC miniature excitatory postsynaptic current
miRNA microRNA
MMP9 matrix metalloproteinase 9
MSP monosynaptic pathway
NA nucleus accumbens
nAChR nicotinic acetylcholine receptor
NBQX 6-nitro-2,3-dioxo-1,4,-dihydrobenzo[f]quinoxaline-7-sulfonamide ()

NMDAR
(±)-3-(2-carboxycpiperazin-4-yl)propyl-1-phosphonic acid that blocks N-Methyl-
D-aspartic acid receptor

p120RasGAP RAS P21 Protein Activator
p250GAP Rac GTPase activating protein
p300 E1A binding protein p300
PABP polyadenylate binding protein
PAIP2A polyadenylate-binding protein- interacting protein 2
PBS phosphate Buffered Saline
pCREB phosphorylated cyclic AMP response element binding protein
PD Parkinson’s disease
PED/PEA-15 phosphoprotein enriched in astrocytes 15

PKA protein kinase A
PPF paired pulse facilitation
PPRs paired-pulse ratios
pre-miRNA precursor microRNA
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PRh perirhinal cortex
pri-miRNA primary microRNA
PSP progressive supranuclear palsy
PTBP2 polypyrimidine tract binding protein 2
Rac GEF Rac guanine exchange factor
Rb1 retinoblastoma tumor suppressor 1
REST repressor element 1 silencing transcription factor
RFX4 regulatory factor X4
RISC RNA-induced silencing complex
RMS rostral migratory stream
RRP readily releasable pool
RSP retrosplenial area
RXF4 regulatory factor X, 4
SCN suprachiasmatic nucleus
sEPSC spontaneous excitatory postsynaptic current
SGZ subgranular zone
Sir2 silent information regulator
SirT1 sirtuin 1
sl stratum lucidum
sl-m stratum lacunosum-moleculare
so stratum oriens
SPRED1 sprout-related EVH1 domain containing 1
sr stratum radiatum
STAT4 signal transducer and activator of transcription 4
SVZ subventricular zone
TAC transaortic constriction
tCREB total cyclic AMP response element binding protein
TEB terminal end buds
TEMED tetramethylethylenediamine
TGF-β tumor growth factor- β
TH thalamus

TNF-α tumor necrosis factor-α
TSP trisynaptic pathway
TT taenia tecta
US unconditioned stimulus
VGCCs voltage gated calcium channels
VH ventral hippocampus
WT wild type
ZO-1 Zonula occludens 1
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Figure Legends

Figure 1: Illustration of microRNA Biogenesis Pathway (Ameres et al. 2013. Permission to reuse

the illustration was given by Nature Publishing group. License #:3297570668022) ......................5

Figure 2: miR-212/132 sequence and structures. a) The structure of pre-miR-212 and pre-miR-

132 is depicted. The region, which will become mature miRNA are shaded in red. b) The mature

miR-212, miR-132, miR-212* and miR-132* sequences are shown. The seed sequences are typed

in red...............................................................................................................................................11

Figure 3: Body weight measurement of WT and miR-212/132-/- mice at different ages. The mice

were grouped according to their ages as younger than 1 month, 1-2 months old, 2-3 months old

and older than 3 months. 2-way ANOVA for age versus genotype interaction F(3,59) = 0.34, p =

0.8; for difference between mice at different age groups F(3,59) = 26.4, p<0.0001; for difference

between genotypes F(1,59) = 0.18, p=0.67: 1mo>x: +/+, n=4, -/-, n=8; 2mos>x>1mos: : +/+, n=16,

-/-, n=11; 3mos>x>2mos: +/+, n=10, -/-, n=5; x>3mos: +/+, n=8, -/-, n=5...................................60

Figure 4: Survival analysis on miR-212/132-/- mice. The health status of WT and miR-212/132-/-

mice with ad libitum access to water and food were observed continuously. (a) The date of death

of each mouse was recorded and (b) the presence of tumors was evaluated as the cause of death.

If an obvious tumor formation was observed, the mice were classified in “tumor formation”

group. If the mice were found death in cage or tumor formation was not observed they were

grouped as “unknown cause of death”. (a) Mantel-Cox test, p=0.0038; Gehan-Breslow-Wilcoxon

test, p=0.02. (b) Fisher’s exact test, two-sided, p=0.76..................................................................61

Figure 5: The levels of mature miR-212 and miR-132 in different mouse organs. The organs were

dissected and RNA isolation was performed. Equal concentration of cDNA was used to perform

RT Q-PCR. Sno202 was used as endogenous control. The miR-212 and miR-132 levels in

thyroid gland were set to 1 and the fold expressions were calculated accordingly........................62
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Figure 6: The staining patterns on miR-212/132+/- and miR-212/132-/- brains were compared. (a)

Whole mount staining of brains of +/- and -/- mice were visualized from dorsal and ventral sides.

RSP: retrosplenial area, TT: taenia tecta, HPF: Hippocampal formation. (b,c) The brain sections,

where β-galactosidase staining was most prominent, were shown here as representative planes.

(d, e) Higher magnification pictures on dorsal hippocampus of the sections shown in (b) and (c).

The arrows point dotted staining. Scale bars represent 5mm in (a), 2mm in (b, c) and 500 μm in

(d, e). ..............................................................................................................................................65

Figure 7: β-galactosidase staining on whole adult brain and coronal sections. (a) Whole mount β-

galactosidase staining of 5 weeks-old mouse brain showed miR-212/132 expression in cortical

plate. (b-i) β-galactosidase staining on coronal sections demonstrated LacZ expressing cells in

spatially restricted regions of the forebrain (b), which is shown in higher magnification for

somatosensory cortex (c), hippocampus (d), CA1 and CA2 regions of hippocampus, CA3 region

of hippocampus (f), dentate gyrus (g), striatum (h) and  amygdala (i). (c),(d), (h) and (i) are

higher magnification pictures of the regions shown within white rectangles in (b). The regions

shown within white rectangles in (d) are shown in high magnification in (e), (f), and (g). TT,

taenia tecta; SSp, primary somatosensory area; PTLp, posterior parietal association areas; CA,

cornu ammonis; DG, dentate gyrus; ST, striatum; LA, lateral amygdalar nucleus. The histological

boundaries for cortical layers and hippocampal structures are determined according to the DAPI

staining results of the same sections. Scale bars represent 5 mm in (a), 2 mm in (b), 500 µm in (c)

and (d), 200 µm in (e-i). .................................................................................................................67

Figure 8: LacZ staining on the coronal sections of different planes of 5-weeks old male (a-e) and

female (f-j) miR-212/132-/- mouse brains demonstrated that mir-212/132 is expressed on both

dorsal and ventral arms of the dentate gyrus in the anterior hippocampus, whereas its expression

gets restricted to only dorsal arm of the dentate gyrus in the posterior hippocampus. Scale bars

represent 500 µm............................................................................................................................68

Figure 9: Relative expression levels of mature miR-212 and miR-132 in thalamus (TH), CA3 and

cortex. One mm thick brain sections obtained from the section plane that corresponds to the

dorsal hippocampus. Samples from TH, CA3 and cortex were dissected by Harris tissue corer for
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quantitative RT-PCR296. The relative fold change was calculated according to TH by setting the

TH values to 1. A and B represents two individual mice...............................................................69

Figure 10: Elevated plus maze, rotarod and explored hole assays on WT and miR-212/132-/- mice.

(a, b) In the elevated plus maze test, times spent in different zones (a) and the total distance

traveled (b) are similar between miR-212/132-/- and WT littermates. (c) In the rotarod test, miR-

212/132-/- mice had similar falling latencies in both days compared to the WT controls. (d) In the

hole-board test, the number of explored holes by the miR-212/132-/- mice is similar to their WT

mice. These experiments were conducted by Dr. Konstantin Radyushkin in the research group of

Prof. Dr. Dr. Hannelore Ehrenreich. ..............................................................................................71

Figure 11: Sensorimotor gating, sociability, fear conditioning and 8-arm maze assays on WT and

miR-212/132-/- mice. (a, b) In the prepulse inhibition test, miR-212/132-/- mice demonstrated

similar levels of inhibition (a) and startle amplitudes (b) as WT littermates. (c, d) In the tripartite

chamber test, both social (c) and memory (d) indices of miR-212/132-/- mice were similar to WT

controls. (e) In cued and contextual fear conditioning tests, miR-212/132-/- mice displayed similar

levels of freezing behavior compared to their WT littermates. (f) In 8-arm radial maze task, the

number of mistakes done was similar between miR-212/132-/- and WT mice. These experiments
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Hannelore Ehrenreich.....................................................................................................................77

Figure 13: (a) Paired-Pulse Ratios (PPRs) are higher in miR-212/132-/- mice hippocampal slices
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experiments are shown above the corresponding graphs. These experiments were conducted by

Dr. JeongSeop Rhee. ......................................................................................................................82

Figure 17: MecP2, SIRT1 and p250GAP levels in WT and miR-212/132-/- mice hippocampus. (a)

Approximately 2 months old male mice hippocampi were dissected and the total protein was

isolated. Equal concentration of protein was loaded into each lane. Every lane represents an

individual mouse sample. (b) The densitometric analysis was performed by Fiji software. α-

tubulin was used as endogenous control. Unpaired t-test, two-tailed, p>0.05, +/+: n=5; -/-: n=7.84

Figure 18: Increase in miR-212, -132 and -134 levels. 30 μM kainic acid treatment for 6 hrs

upregulated mature miR-212 (a), miR-132 (b) and miR-134 (c) production. Paired t-test, two-

tailed p-value, **: <0.01, ****:<0.0001, n=6. ...............................................................................85

Figure 19: C-Fos transcript levels in cultured hippocampal neurons. 30μM kainic acid treatment

was performed for indicated amount of time. Relative fold changes were calculated by comparing

the time points to the untreated group of the same genotype. Bonferroni multiple comparison test,

****: p<0.0001. 2-way ANOVA for genotype versus treatment interaction F(3,23) = 20.34,

p<0.0001; for difference between genotypes F(1,23) = 149.76, p<0.0001; for difference over

treatment time F(3,23) = 44.77, p<0.0001, untreated; n=4, 30 min; n=4, 3hrs; n = 3, 6 hrs; n=4.....86

Figure 20: Arc transcript levels in cultured hippocampal neurons. 30μM kainic acid treatment

was performed for indicated amount of time. Relative fold changes were calculated by comparing

the time points to the untreated group of the same genotype. Bonferroni multiple comparison test,
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