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Abstract 
 

3‟,5‟-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that 

regulates multiple physiological functions by acting in distinct subcellular microdomains. Over 

the last few years, several targeted biosensors have been developed and used in cell lines or 

neonatal cardiomyocytes to investigate the molecular mechanisms behind cAMP 

compartmentation. However, it is unclear whether such biosensors can be successfully used 

for expression in vivo, especially in the context of disease such as cardiac hypertrophy. 

Importantly, cAMP regulates cardiac function by acting in distinct subcellular microdomains 

which are independently regulated and confined from the bulk cytosol. Today, this 

phenomenon is a well accepted paradigm known as cAMP compartmentation. In the heart, 

one of these microdomains is believed to be located around the sarcoplasmic/endoplasmic 

reticulum calcium ATPase 2a (SERCA2a). SERCA2a is crucial for diastolic calcium (Ca2+) 

reuptake and is negatively regulated by phospholamban (PLN). cAMP binding to PKA leads 

to increased PLN phosphorylation thereby relieving the inhibitory effect of PLN on SERCA2a. 

Interestingly, SERCA2a expression and activity are known to be downregulated during 

cardiac disease but cAMP dynamics in such microdomains and their alterations in cardiac 

disease such as hypertrophy are not well understood. Therefore, the first transgenic mouse 

model expressing a cardiac specific SERCA2a targeted fluorescence resonance energy 

transfer (FRET)-based cAMP sensor, namely Epac1-PLN, has been developed in this PhD 

study.                      

Freshly isolated adult cardiomyocytes of the transgenic mouse line have been used to 

directly monitor cAMP with high temporal and spatial resolution within the SERCA2a 

microdomain. To understand the molecular mechanisms that confine the SERCA2a 

microdomain from the bulk cytosol, FRET results gained in Epac1-PLN cardiomyocytes were 

compared to those obtained in cardiomyocytes expressing the cytosolic cAMP FRET sensor 

Epac1-camps. In healthy cells, local cAMP levels in the SERCA2a microdomain after β-

adrenergic receptor (β-AR) stimulation were ~4-fold higher compared to the bulk cytosol, 

which was due to direct phosphodiesterase (PDE)-dependent receptor-microdomain 

communication. Under basal conditions (in the absence of β-AR stimulation) PDE3 and 

PDE4 were crucial for confining the SERCA2a microdomain from the cytosol. However, in 

cardiac hypertrophy induced by transverse aortic constriction, the local basal PDE4-mediated 

cAMP degradation was significantly diminished, while the cytosolic cAMP dynamics were 

altered only after β-AR stimulation. Strikingly, local cAMP degradation but not whole-cell 

changes in PDE activity in hypertrophy led to a dramatic loss of receptor-microdomain 
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communication. In this study, the biocompatibility of the targeted Epac1-PLN biosensor and 

its potential for real-time monitoring of compartmentalized cAMP signalling in adult 

cardiomyocytes isolated from healthy mice and from in vivo cardiac disease model was 

confirmed. In particular, data show that real-time dynamics of cAMP in the SERCA2a 

microdomain are vastly different from bulk cytosolic cAMP due to local PDE effects and 

direct receptor-microdomain communication. In cardiac hypertrophy, these processes are 

dramatically altered which might explain impaired regulation of SERCA2a activity in disease. 

Ca2+ and cAMP play a critical role for cardiac excitation-contraction-coupling and are known 

to interact with each other, for example via Ca2+-dependent modulation of PDE1 and adenylyl 

cyclases 5 and 6 activities. Currently, many FRET studies analyse cAMP signalling and its 

regulation in resting cardiomyocytes devoid of electrical stimulation to avoid contraction 

artefacts during the FRET measurements. However, it is not known how such data are 

comparable with the behaviour of cells under more physiologically relevant conditions during 

contraction. In this thesis, cAMP-FRET responses to β-AR stimulation and PDE1 inhibition 

were directly compared in resting vs. electrically stimulated adult mouse ventricular 

cardiomyocytes expressing Epac1-camps. Interestingly, no significant differences in cAMP 

dynamics could be detected, suggesting low impact of rapidly changing Ca2+ concentrations 

on cytosolic cAMP levels associated with β-AR signalling measured with this FRET sensor. 

On the other hand, after direct adenylyl cyclase activation, PDE1 contribution to total PDE-

mediated cAMP hydrolysis increased significantly in field stimulated cardiomyocytes. This 

could be mimicked by pretreatment of the cells with Ca2+ elevating agents under resting 

conditions. However, since β-AR stimulation reflects the more physiological situation that is 

used in the FRET experiments to analyse PDE contributions to cAMP hydrolysis, the use of 

resting cells for FRET-based cAMP measurements can be justified. 
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1. Introduction 
 

1.1 cAMP: a universal second messenger           
                

3‟-5‟- cyclic adenosine monophosphate (cAMP) is a universal intracellular second messenger 

which regulates a large amount of different, independent cellular functions. Dependent on the 

cell type, these effects include for example the regulation of memory formation (Kandel, 

2001; Morozov et al., 2003), insulin secretion (Holz, 2004; Leech et al., 2010; Tengholm and 

Gylfe, 2009), gene expression and metabolism (Altarejos and Montminy, 2011), immune 

reactions (Bodor et al., 2012; Brudvik and Tasken, 2012; Torgersen et al., 2002) and 

regulation of heart rate (Zagotta et al., 2003). 

The cAMP signalling cascade starts with the extracellular activation of various G-protein 

coupled receptors (GPCRs) by their respective ligands. This process leads either to the 

activation or inhibition of cAMP-synthesizing enzymes adenylyl cyclases (ACs), via 

stimulatory (Gs) or inhibitory (Gi) G-proteins, respectively. Gs induced AC dependent cAMP 

production happens within 2 seconds after receptor stimulation (Hein et al., 2006). 

Subsequently, cAMP activates three different downstream effectors such as cyclic nucleotide 

gated channels (CNGCs) (Biel et al., 1999; Craven and Zagotta, 2006), exchange protein 

directly activated by cAMP (Epac, isoforms are Epac1and Epac2) (Biel et al., 1999; Gloerich 

and Bos, 2010; Kawasaki et al., 1998) and cAMP-dependent protein kinase A (PKA) 

(Jurevicius and Fischmeister, 1996; Tasken and Aandahl, 2004; Taylor et al., 1990). In 

higher animals, PKA is a tetramer built of two regulatory (R)- and two catalytic (C)-subunits 

(Kim et al., 2005; Taylor et al., 1990). There are four different PKA-R isoforms (PKA-RIα, 

PKA-RIβ, PKA-RIIα and PKA-RIIβ) which are all expressed in cardiomyocytes (Scholten et al., 

2007). Upon cAMP binding, the C-subunits dissociate from the R-subunits (Krebs and 

Beavo, 1979; Taylor et al., 2008) and phosphorylate a myriad of downstream targets critical 

for the regulation of cellular physiology. One of these downstream targets is the transcripton 

factor cAMP response element- binding protein (CREB) (Altarejos and Montminy, 2011; 

Muller et al., 2001). In muscle cells, PKA phosphorylates several downstream effectors 

important for the regulation of calcium (Ca2+) homeostasis and excitation/contraction coupling 

(ECC) (Lompre et al., 2010) such as troponin I (TnI) (Bers, 2002), L-type Ca2+ channels 

(LTCCs) (Keef et al., 2001), the ryanodine receptor 2 (RyR2) (Takasago et al., 1989) and 

phospholamban (PLN) (Kirchberger et al., 1972; MacLennan and Kranias, 2003). cAMP 

hydrolysing enzymes phosphodiesterases (PDEs) are crucial for negatively regulating cAMP 

levels and therefore, to control the duration of each specific cAMP signalling event (Figure 1). 
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This whole cAMP cascade serves to amplify extracellular signals: a single GPCR, activated 

by nanomolar amounts of an extracellular hormone, can switch on several G-proteins, each 

leading to the activation of an AC and to the generation of micromolar amounts of the second 

messenger cAMP within a second (Lamb and Pugh, 1992). In the end of each cascade, an 

extracellular stimulus has been translated into an intracellular, physiological response. 

 

1.2 cAMP compartmentation 

Besides the different physiological effects of cAMP in different cell types, it has been shown 

over the last 35 years that cAMP can trigger different responses even within the same cell. 

The various effects depend on the nature of the extracellular stimulus and the associated 

receptor. For example, the β-adrenergic agonist isoproterenol (ISO) and the prostaglandin 

receptor agonist prostaglandin E1 both lead to an increase of cAMP within rabbit 

cardiomyocytes, but only ISO can trigger phosphorylation of TnI (Brunton et al., 1979; Hayes 

et al., 1979). Besides, ISO has been shown to stimulate cAMP in both membrane and 

cytosolic fractions of cardiomyocytes, whereas prostaglandin exclusively stimulated cAMP in 

the cytosolic fraction (Brunton et al., 1981; Buxton and Brunton, 1983). These results led to 

the hypothesis that cAMP signalling is organized in spatially defined subcellular 

Figure 1. Schematic representation of the cAMP signalling cascade. Upon extracellular 
stimulation of a GPCR, cAMP production is induced via Gs dependent AC activation. cAMP activates 
three different downstream effectors: CNGCs, Epac and PKA. The catalytic (C) subunits of the PKA 
dissociate from the regulatory (R) subunits and phosphorylate several downstream targets such as 
CREB and PDEs. PDEs are important for the degradation of cAMP and therefore, for the termination 
of the signalling cascade. Some PDEs become stimulated upon PKA dependent phosphorylation. 
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compartments, so called microdomains, which are independent from the bulk cytosol 

regarding their receptor and enzyme composition or their specific regulation (Fischmeister et 

al., 2006; Zaccolo, 2009). Each cAMP microdomain contains a specific subset of differentially 

localised receptors and A-kinase anchoring proteins (AKAPs) which target protein kinases, 

PDEs and phosphatases in close proximity to their substrates (Diviani et al., 2011; Mauban 

et al., 2009; Scott et al., 2013; Troger et al., 2012). Besides AKAPs, PDEs are most 

important for maintaining the subcellular cAMP microdomains by shaping intracellular cAMP 

gradients and by confining the local cAMP pools from the bulk cytosol (Conti and Beavo, 

2007; Fischmeister et al., 2006; Houslay et al., 2007).               

Today, the cAMP microdomain hypothesis is a well-accepted paradigm known as cAMP 

compartmentation. Cardiac specific cAMP compartmentation is described in more detail in 

section 1.4. 

 

1.3 The role of cAMP in the heart 

In the mammalian heart, cAMP primarily regulates chronotropic (beating frequency), inotropic 

(force of contraction) and lusitropic (force of relaxation) effects in the so called “fight or flight” 

response (Perera and Nikolaev, 2013). As already described in 1.1, stimulation of GPCRs 

such as β-adrenergic receptors (β-ARs) via adrenaline or noradrenaline, leads to the 

regulation of intracellular cAMP production. There are three different types of β-ARs 

expressed in mammalian hearts: β1-, β2- and β3-ARs. The β1-ARs represent 70-80 % of total 

cardiac β-ARs and couple to Gs proteins, thereby leading to increased cAMP production. 

However, chronic β1-adrenergic stimulation leads to congestive heart failure accompanied by 

a downregulation of the β1-AR and a loss of cardiac pump function (Lohse et al., 2003; Michel 

et al., 1990). β2-ARs represent 20-30 % of total β-ARs and couple to both, Gs- and Gi- 

proteins.. A switch from Gs to Gi coupled β2-AR signalling occurs upon prolonged agonist 

application to decrease the cAMP signal (Xiao, 2001). β2-AR stimulation has been shown to 

have more beneficial effects on the heart as it protects from cardiac hypertrophy, heart failure 

or apoptosis (Communal et al., 1999) via Gi-mediated activation of protein kinase B (Akt) and 

phosphoinositide 3 kinases (Bernstein et al., 2005; Patterson et al., 2004). β3-ARs represent 

less than 10% of total β-ARs and are associated with the Gi/ nitric oxide pathway to suppress 

cardiac contractile function (Lohse et al., 2003).             

In the heart, increased cAMP production leads to the activation of CNGCs, Epac1 and PKA 

which in turn phosphorylates several downstream targets crucial for cardiac contraction. PKA 

downstream targets involve Ca2+ handling proteins crucial for the cardiac ECC. These 

proteins include LTCCs, the RyR2, contractile proteins as TnI and PLN. PLN phosphorylation 

relieves its inhibition from the Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a 



  Introduction 

4 
 

(SERCA2a) Ca2+ pump (Lompre et al., 2010; Strang et al., 1994) and facilitates Ca2+ 

reuptake into the sarcoplasmic reticulum (SR). Besides SERCA2a, the sodium-Ca2+ 

exchanger (NCX) is important for the extrusion of Ca2+ from the cytosol by exchanging one 

Ca2+ against 3 Na+ (Schlotthauer and Bers, 2000). The driving force for this reaction is built 

up by the Na+/K+ ATPase which is negatively regulated by phospholemman (PLM). Upon 

PKA phosphorylation of PLM, this inhibition is relieved (Despa et al., 2005; Fuller et al., 2004; 

Pavlovic et al., 2007; Silverman et al., 2005). Plasma membrane Ca2+ ATPase provides the 

third mechanism for cytosolic Ca2+ extrusion but with very minor contribution (Mohamed et 

al., 2013). For an overview of cardiac ECC and the involvement of PKA see Figure 2.           

In vivo, mouse hearts show a contraction rate of 500-600 beats per minute (bpm) associated 

with a constant and rapid Ca2+ cycling within each cardiomyocyte during each contraction 

cycle. Besides its crucial role for cardiac contraction, Ca2+ is also known to dynamically 

regulate intracellular cAMP levels. This occurs for example via the stimulation of the 

Ca2+/calmodulin-dependent PDE1 (Sonnenburg et al., 1993) or by inhibition of cardiac AC 

5/6 activity (Willoughby and Cooper, 2007). However, it is still unclear whether or not 

fluctuations in cytosolic Ca2+ levels during contraction cycles may directly affect intracellular 

cAMP levels.                   

In addition to β-ARs, other cardiac receptors involved in cAMP signalling include the 

prostaglandin and glucagon receptors, whose cAMP pools are not associated with the 

regulation of cardiac contractility (Buxton and Brunton, 1983; Di Benedetto et al., 2008; Vila 

Petroff et al., 2001). 

.  

1.4 Mechanisms for cAMP compartmentation in the heart 

In cardiomyocytes, several cAMP microdomains have been proposed which are located, for 

example, around Ca2+ handling proteins such as LTCCs, RyR2 and SERCA2a (Figure 2) 

(Fischmeister et al., 2006; Lompre et al., 2010). The intracellular regulation of these Ca2+ 

handling proteins is crucial for proper cardiac contraction and function. Therefore, alterations 

in cAMP microdomain regulation and organization might be associated with cardiac disease 

such as hypertrophy which could ultimately lead to heart failure.      

PDEs are critical for the maintenance of subcellular microdomains by shaping intracellular 

cAMP gradients and restricting local cAMP pools within the cell. At least five families of 

cAMP hydrolysing enzymes PDEs (PDE1-4 and 8) are expressed in mammalian 

cardiomyocytes (Conti and Beavo, 2007; Fischmeister et al., 2006; Houslay et al., 2007; 

Zaccolo and Movsesian, 2007). PDE1, 2 and 3 are dual specific for cAMP and 3‟-5‟-cyclic 

guanosine monophosphate (cGMP), whereas PDE4 and 8 hydrolyse cAMP exclusively. PDE 

activity can be regulated by several molecular mechanisms. For example, PDE1 plays an 
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important role in the cAMP/Ca2+ crosstalk (Miller and Yan, 2010) as it can be activated by 

Ca2+/calmodulin (Sonnenburg et al., 1993). PDE2 is a homodimer and its cAMP hydrolysing 

activity increases upon cGMP binding to the enzyme‟s GAF domains via an allosteric 

mechanism (Martinez et al., 2002). In contrast, the PDE3 family (PDE3A and PDE3B 

subfamilies) gets inhibited by cGMP and therefore, is believed to play an important role in the 

regulation of cAMP/cGMP crosstalk (Stangherlin et al., 2011). The PDE3A subfamily is 

proposed to be the most important cAMP- degrading PDE in human cardiomyocytes and the 

second most important in rodent cardiomyocytes (Abi-Gerges et al., 2009; Molina et al., 

2012; Weishaar et al., 1987). However, PDE4 is the predominant cAMP- degrading enzyme 

in mouse cardiomyocytes (Leroy et al., 2008). Four genes (PDE4A-D), which encode 20 

isoforms, have been described in the mammalian system. PDE4A, B and D have been 

shown to be expressed in human and rodent hearts (Kostic et al., 1997; Richter et al., 2011). 

Due to their unique N-terminal regions, these different isoforms show specific subcellular 

localisation (Houslay and Adams, 2003) making them crucial for cAMP compartmentation 

within cardiomyocytes. For example, PDE4D8 has been shown to directly interact with β1-

ARs via the receptor‟s C-terminus, thereby regulating cAMP concentrations within this 

microdomain under basal conditions (Richter et al., 2008). On the other hand, PDE4D8 

dissociates from the complex upon β1-AR stimulation (De Arcangelis et al., 2010; Richter et 

al., 2008). PDE4D5, together with β-arrestin, has been shown to be recruited to the β2-AR 

upon receptor stimulation. This leads to enhanced PDE associated cAMP degradation and a 

switch from Gs to Gi coupled signalling via β-arrestin (Baillie et al., 2003; Perry et al., 2002; 

Richter et al., 2008). Furthermore, PDE4 activity can be stimulated by PKA dependent 

phosphorylation, leading to a negative feedback loop of cAMP regulation (MacKenzie et al., 

2002).                

The second cAMP specific PDE is the PDE8 family which is encoded by two genes (PDE8A-

B) of which only PDE8A has been shown to be expressed in the mouse and human heart 

(Soderling et al., 1998). Similar to PDE4, PDE8 can be phosphorylated and activated by PKA 

(Brown et al., 2012). 

As already mentioned in section 1.2, AKAPs are crucial for building up functional cAMP 

microdomains. They localise to subcellular membrane locations for example due to 

electrostatic attraction of positively charged amino acids to negatively charged membrane 

lipids (Horner et al., 2012) to bring together PKA, other kinases, PDEs and phosphates 

(Diviani et al., 2011; Mauban et al., 2009; Scott et al., 2013; Troger et al., 2012) (Figure 2). It 

is believed that AKAPs anchor PKA due to a tight protein-protein interaction between an 

amphipathic helix and the dimerization and docking domain of the PKA-R subunit (Wong and 

Scott, 2004). Besides, PKA dependent autophosphorylation of the PKA-R subunit enhances 

the interaction between AKAPs and PKA (Zakhary et al., 2000a). However, different PKA-R 



  Introduction 

6 
 

isoforms have been shown to locate in different subcellular regions with PKA-RI mainly 

located in the cytosol and PKA-RII in the particulate fraction (Brunton et al., 1981; Corbin et 

al., 1977). It has been described that this compartment specific localisation is mediated via 

interaction of PKA-R subunits with different endogenous AKAPs, thereby creating distinct 

cAMP compartments that are controlled by specific PDE subsets (Di Benedetto et al., 2008). 

For example, AKAP79 interacts with the LTCC via a LTCC leucine zipper motif (Gao et al., 

1997) and mediates anchoring of PKA and AC 5/6 in caveolin-3 rich membrane 

compartments close to the LTCC (Nichols et al., 2010). Here, PKA phosphorylates the LTCC 

which leads to increased Ca2+ influx after β-AR stimulation. PDE4B has been shown to 

restrict cAMP signals in this microdomain, thereby regulating PKA dependent LTCC 

phosphorylation (Leroy et al., 2011). Recently, experiments in cardiomyocytes of PDE8A 

knockout mice revealed an involvement of PDE8A in the regulation of Ca2+ homeostasis 

associated with the LTCC (Patrucco et al., 2010). Besides, AKAP18α acts together with 

AKAP79 to regulate β-AR dependent Ca2+ transients (Hulme et al., 2003; Scott and Santana, 

2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of cardiac excitation contraction coupling and the 
involvement of PKA within the different cAMP microdomains. With each action potential, 
voltage gated LTCCs open and Ca2+  flows into the cell, thereby facilitating Ca2+ release from the 
RyR2 (called Ca2+ induced Ca2+ release (Fabiato and Fabiato, 1977) ). Ca2+ then binds for example 
to TnI to increase the sensitivity of the myofilaments to Ca2+. SERCA2a and NCX are most 
important for the removal of intracellular Ca2+. Upon β1-AR stimulation, cAMP gets produced and 
activates PKA. PKA phosphorylates several downstream targets important for Ca2+ handling such 
as LTCC, RyR2, PLN, PLM and TnI, thereby increasing chronotropy, inotropy and lusitropy. The 
different Ca2+ handling proteins are part of so called cAMP microdomains, which also contain 
different pools of PKA (not shown here for simplicity) 
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It has been shown that mAKAP is responsible for targeting PKA and PDE4D3 to the RyR2 

microdomain in close proximity to the protein phosphatases 1/2 and calstabin. This whole 

complex is crucial for the regulation of Ca2+ release from the SR during each contraction of 

the heart (Dodge et al., 2001; Marx et al., 2000). The microdomain associated PDE4D3 is 

important for the control of local cAMP levels thereby preventing excessive RyR2 

phosphorylation that else would be associated with arrhythmia and heart failure (Lehnart et 

al., 2005). Besides, experiments in PDE8A knockout cardiomyocytes showed a leaky RyR2 

phenotype (Patrucco et al., 2010), similar to that described in PDE4D deficient mice (Lehnart 

et al., 2005).                

The SERCA2a microdomain was the object of extensive studies within this PhD thesis and 

will be described in more detail in the next section. 

 

1.5 Composition and regulation of the SERCA2a microdomain 

The SR is the Ca2+ storage in cardiomyocytes and is crucial for the regulation of intracellular 

Ca2+ concentrations during ECC and therefore, contractile function. After each contraction 

cycle, Ca2+ is extruded from the cytosol and pumped back into the SR by SERCA2a, so that 

it would be available for the next contraction round.         

The SERCA family consists of three gene products (ATP2A1-3) each giving rise to at least 

two differentially spliced isoforms. In the heart, SERCA2a isoform is the most abundant 

protein in the SR (Anger et al., 1994; Lompre et al., 1994; Lompre et al., 1991) and is 

responsible for the extrusion of 90-95 % of Ca2+ during diastole in mouse and rat ventricular 

cardiomyocytes (Bers, 2002). SERCA2a, a P-type ATPase of 110 kDa (MacLennan, 1970), 

is activated by cytosolic Ca2+ concentrations greater than 100 nM and pumps Ca2+ back into 

the SR against a concentration gradient at the expense of ATP hydrolysis (Arai, 2000).   

PLN, a small transmembrane protein in the SR consisting of 52 amino acids (Zamoon et al., 

2003), is known to be the negative regulator of SERCA2a (Limas et al., 1987). It does so by 

decreasing SERCA2a‟s apparent Ca2+ affinity (James et al., 1989; Kim et al., 1990). Under 

basal conditions, Ca2+ binding to SERCA2a leads to a dissociation of the SERCA2a/PLN 

complex, possibly due to a Ca2+ induced conformational change within SERCA2a (Asahi et 

al., 2003). In addition to that, PLN activity in vivo is critically regulated by the phosphorylation 

of two residues, the PKA site Serine-16 (Ser-16) and the Ca2+-calmodulin-dependent protein 

kinase (CaMKII) site Threonine-17 (Thr-17) (Movsesian et al., 1984; Simmerman et al., 

1986), thereby relieving PLN inhibition on SERCA2a and leading to enhanced SR Ca2+
 

transport (Inui et al., 1986; Tada and Katz, 1982). Upon catecholaminergic stimulation of β1-

ARs, PLN gets phosphorylated at both sites, whereby Thr-17 phosphorylation has been 

shown to depend on the intracellular increase of cAMP that leads to a rapid rise of 
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intracellular Ca2+ which is necessary for CamKII activation (Kuschel et al., 1999a; Lindemann 

et al., 1983; Lindemann and Watanabe, 1985; Mundina-Weilenmann et al., 1996; Vittone et 

al., 1990). However, Ser-16 phosphorylation upon β1-AR stimulation is sufficient enough for 

relieving PLN dependent inhibition of SERCA2a and for mediating maximal cardiac response 

(Chu et al., 2000). Therefore, the physiological importance of Thr-17 phosphorylation is still 

controversial (Mattiazzi et al., 2005). In vitro experiments could show additional 

phosphorylation of PLN at Ser-10 by protein kinase C (PKC) and at Ser-16 by cGMP-

dependent protein kinase (PKG) (Frantz et al., 2013). PLN is supposed to be in a dynamic 

equilibrium between a monomeric and a pentameric form in which the monomer is believed 

to be the active, SERCA2a inhibiting form, and the pentamer the inactive storage form 

(Cornea et al., 1997; MacLennan and Kranias, 2003; Reddy et al., 1999). Upon 

phosphorylation, PLN has been believed to dissociate from SERCA2a, thereby relieving its 

inhibitory effect (Chen et al., 2010; James et al., 1989; Mueller et al., 2004). However, other 

studies showed that PLN pentamers are also able to inhibit SERCA2a activity (Zhai et al., 

2000). Interestingly, latest studies on the interaction between SERCA2a and PLN showed 

that SERCA2a binds to completely phosphorylated PLN (Dong and Thomas, 2014) and that 

PLN exists in a conformational equilibrium between different intramolecular states which are 

phosphorylation dependent and differ in their SERCA2a inhibition characteristics 

(Gustavsson et al., 2013). Therefore, SERCA2a inhibition might be mediated by PLN-

phosphorylation induced conformational changes within the SRECA2a-PLN complex rather 

than by dissociation of the complex.         

Furthermore, latest studies in Epac1 knockout mice identified Epac1 as an important 

regulator of PKA-independent PLN phosphorylation via a phospholipase C/ protein kinase C 

pathway, thereby mediating cardiac responses to stress (Okumura et al., 2014).               

PLN mainly gets dephosphorylated by phosphatase 1 (PP1), thus restoring its SERCA2a 

inhibiting nature (MacDougall et al., 1991; Steenaart et al., 1992). PP-1 itself is regulated by 

its endogenous inhibitors, inhibitor-1 (I-1) and inhibitor-2 (I-2). Upon β1-adrenergic 

stimulation, I-1 gets PKA phosphorylated at Thr-35. In cardiomyocytes that overexpress I-1 

adenovirally, this Thr-35 phosphorylation led to I-1 induced PP-1 inhibition and sustained 

PLN-phosphorylation at Ser-16, which ultimately led to enhanced SERCA2a activity (El-

Armouche et al., 2003). Sarcolipin (SLN), a small (31 amino acids) PLN homologue 

(Hellstern et al., 2001), regulates SERCA2a activity in a similar mechanism as PLN and has 

been originally co-purified with SERCA1a from skeletal muscle (Odermatt et al., 1998). In the 

heart, SLN is mainly expressed in the atria but significantly less in ventricular cardiomyocytes 

(Babu et al., 2007; Minamisawa et al., 2003). As this PhD thesis discusses the SERCA2a 

regulation within ventricular cardiomyocytes, there is no detailed description of the SLN-

SERCA2a interaction given at this point. 
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Another protein located within the SERCA2a microdomain is the small heat shock protein 20 

(Hsp20). It has been shown to have cardioprotective effects (Fan et al., 2005; Fan et al., 

2006) and is the only small Hsp containing a consensus motif for PKA/PKG dependent 

phosphorylation (Chu et al., 2004). Indeed, sustained β-adrenergic stimulation induces PKA 

dependent Hsp20 phosphorylation at its Ser-16 site (Qian et al., 2009). This leads to a direct 

interaction between Hsp20 and PP-1, thereby inhibiting PP-1 enzymatic activity (Qian et al., 

2011) and increasing SERCA2a activity as described for I-1 induced PP-1 inhibition (Figure 

3). 

 

 

 

 

 

 

 

 

 

Recently, it has been shown that the HS-1 associated protein X-1 (HAX-1), a mitochondrial 

protein with anti-apoptotic function (Han et al., 2006), localises to the SR via direct interaction 

with PLN. The interaction occurs in the PLN region including the regulatory sites Ser-16 and 

Thr-17 and is diminished upon PLN phosphorylation by PKA or CaMKII. Hence, HAX-1 is 

believed to regulate PLN function in the heart (Vafiadaki et al., 2007). Indeed, binding of 

HAX-1 to non-phosphorylated PLN seems to increase PLN monomer formation, thereby 

having an inhibitory effect on SR Ca2+ reuptake by SERCA2a (Zhao et al., 2009). Besides, 

HAX-1 has been shown to directly interact with SERCA2a and to modulate its protein levels 

to promote cell survival (Vafiadaki et al., 2009).               

Another protein involved in the SERCA2a microdomain regulation is a low affinity Ca2+ 

binding protein within the SR lumen, namely the histidine-rich Ca2+ binding protein (HRC). 

HRC regulates SERCA2a function in a Ca2+ dependent manner (Arvanitis et al., 2007), and 

direct interaction between HRC and SERCA2a inhibits SR Ca2+ uptake (Gregory et al., 

2006).  

Figure 3. Regulation of SERCA2a activity via PLN modulation. cAMP leads to the activation of 
PKA, hereupon phosphorylating PLN (at Ser-16), I-1 (at Thr-35) and Hsp20 (at Ser-16). 
Phosphorylation of I-1 and Hsp20 leads to inhibition of PP-1, thereby preventing PLN 
dephosphorylation. SERCA2a activity is enhanced and Ca2+ is pumped from the cytosol back to the 
SR lumen. 
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Moreover, it has been shown that that SERCA2a lifetime and activity could be prolonged and 

increased due to reversible covalent linking of a cytosolic protein called small ubiquitin 

related modifier-1 (SUMO1) in a process called sumoylation (Kho et al., 2011). This is 

possibly another essential mechanism for the regulation and maintenance of the SERCA2a 

microdomain.            

PDEs are crucial for creating local cAMP pools, and different PDEs are supposed to restrict 

cAMP within the SERCA2a microdomain. For example, studies in PDE4D-/- mice could detect 

PDE4D as a critical regulator of baseline SR Ca2+ release associated with increased PLN 

phosphorylation (Beca et al., 2011). Besides, PDE3A has been shown to interact with 

SERCA2a, thereby regulating basal myocardial contractility in studies using PDE3A-/-
 and 

PDE3B-/- mice (Beca et al., 2013).              

As already mentioned, AKAPs are most important for the generation and maintenance of 

cAMP microdomains. For the association of the SERCA2a microdomain, AKAP18δ has been 

shown to play a critical part as it enables PKA dependent phosphorylation of PLN,  thereby 

enhancing Ca2+ reuptake into the SR (Lygren et al., 2007). In addition, AKAP18δ has been 

shown to associate with I-1 and PP-1, bringing them in close proximity to allow direct 

regulation of PLN function (Singh et al., 2011) .           

For a summary of SERCA2a microdomain composition see Figure 4. 

 

 

 

 

 

 

 

1.6 Changes in cAMP compartmentation during heart disease with a focus on 
alterations in the SERCA2a microdomain. 

Today, cardiovascular diseases are the leading cause of mortality worldwide (Global status 

report on noncommunicable diseases 2010. Geneva, World Health Organization, 2011). For 

example, pathological cardiac hypertrophy is the main adaptive response to hypertension 

Figure 4. Proposed composition of the SERCA2a microdomain. SERCA2a activity is regulated 
by PLN phosphorylation status and interaction with SUMO-1, HRC and HAX-1 proteins. PLN gets 
dephosphorylated by PP-1 which in turn is inhibited by I-1 and Hsp20. PDE3A and PDE4D 
subfamilies have been shown to be associated with this microdomain. AKAP18δ mediates the 
localisation of SERCA2a microdomain associated proteins such as PKA, PP-1 and I-1. 



  Introduction 

11 
 

(Brilla et al., 1990; Devereux et al., 1987). It is characterized by cardiac remodelling which 

leads to the progression of compensated to decompensated hypertrophy and heart failure 

(Ganau et al., 1992). Compensated hypertrophy is characterized by a significant increase in 

wall thickness due to cardiomyocyte enlargement associated by increased cardiomyocyte 

protein expression and assemby of additional sarcomeric units (Bernardo et al., 2010). At 

this point, cardiac function is mostly preserved. On the other hand, progression to 

decompensated hypertrophy is associated with a drop in cardiac performance provoked by 

left ventricular dilatation due to cardiomyocyte apoptosis, necrosis and increased fibrosis 

(Diwan and Dorn, 2007). It is accompanied by reduced contractility, which, if the heart fails to 

provide proper blood flow to fulfil the physiological needs of the body, finally leads to heart 

failure (Levy et al., 1996; Rosca et al., 2013). On the molecular level, heart failure is 

associated with a desensitization and decreased expression of β1-ARs which impairs cardiac 

performance even more (Bristow et al., 1982; Ungerer et al., 1993).             

During cardiac disease, many changes in cAMP compartmentation have been described.    

In general, disrupted interaction between AKAPs and their binding partners leads to the 

collapse of important microdomains in diseased cardiomyocytes.                   

For example, PKA interaction with AKAPs is significantly decreased in the diseased human 

heart due to decreased PKA-R subunit phosphorylation (Zakhary et al., 2000b) which leads 

to decreased phosphorylation of proteins involved in cardiac Ca2+ handling. However, a 

disruption of the mAKAP/RyR2 complex has been reported caused by a distinct dissociation 

of calstabin from this complex due to RyR2 hyperphosphorylation (Huang et al., 2006; Marx 

et al., 2000; Shan et al., 2010). This PKA dependent hyperphosphorylation might result from 

a PDE4D depletion from the RyR2 complex under chronic β-AR stimulation (Lehnart et al., 

2005) and leads to spontaneous Ca2+ release from „leaky‟ RyR2 channels (Wehrens et al., 

2003). Increased CaMKII activity increases RyR2 „leakiness‟ even more (Maier et al., 2007; 

Neef et al., 2010). In addition to PDE4D depletion in the RyR2 complex, whole cell changes 

in PDE3A, PDE4A and PDE4B expression and activity were observed in hypertrophied rat 

cardiomyocytes (Abi-Gerges et al., 2009). On the other hand, expression of PDE1, 2, 4 and 5 

have been shown to be increased in early cardiac hypertrophy induced by chronic 

angiotensin II perfusion of rat hearts (Mokni et al., 2010).           

Recently, it has been shown that β1-AR stimulation leads to far reaching cAMP signals within 

cardiomyocytes, whereas β2-AR stimulation remains locally defined at the T-tubular 

membranes (Nikolaev et al., 2006; Nikolaev et al., 2010). Besides, β2-AR stimulation has no 

effect on PLN phosphorylation (Kuschel et al., 1999b). Combined scanning ion conductance 

microscopy (SICM) with FRET revealed that in failing rat cardiomyocytes, β2-AR redistributed 

from the T-tubules to the call surface whereas β1-AR localisation remained unchanged. This 

receptor redistribution was accompanied with diffuse β2 cAMP signals throughout the cytosol, 
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which might lead to increased PLN phosphorylation (Nikolaev et al., 2010).    

Heart failure has been associated with a decrease in SR Ca2+ transport (Arai et al., 1993; 

Hasenfuss et al., 1994; Nagai et al., 1989) which might be due to decreased SERCA2a 

expression and activity and/or enhanced SERCA2a inhibition via PLN. Indeed, a dramatic 

drop in SERCA2a expression levels and activity has been observed in failing cardiomyocytes 

(Hasenfuss et al., 1994). SERCA2a gene transfer using a recombinant adeno-associated 

virus (AAV) has been shown to increase SERCA2a expression in rats, leading to an 

improvement of intracellular Ca2+ handling in vitro and in vivo  in a rat model of heart failure 

(Houser et al., 2000; Jaski et al., 2009; Lyon et al., 2011). Furthermore, isolated 

cardiomyocytes from patients with end stage heart failure showed restored contraction and 

Ca2+ handling after SERCA2a adenoviral gene transfer and patients treated with AAV 

carrying SERCA2a showed improvement of heart parameters (Jessup et al., 2011). This 

AAV approach is now in phase 3 clinical trials.         

PLN protein levels are not altered during cardiac disease (Meyer et al., 1995), whereas PLN 

phosphorylation is diminished, probably because of attenuated β-adrenergic signalling due to 

receptor desensitization, downregulation and uncoupling, which enhance SERCA2a 

inhibition via PLN (Barki-Harrington et al., 2004; Ferguson, 2001; Schwinger et al., 1999). 

Additionally, increased activation of PP-1 in human failing heart and experimental models of 

heart failure (Boknik et al., 2000; Neumann et al., 1997) has been shown to contribute to 

diminished PLN phosphorylation (Huang et al., 1999; Sande et al., 2002). This altered PP-1 

activity might be due to differential regulation via I-1. Indeed, studies in human and rat failing 

hearts uncovered a depressed phosphorylation of I-1 at its Thr-35 site (El-Armouche et al., 

2004; Gupta et al., 2005), possibly due to attenuated PKA activity. In addition to alterations in 

I-1 phosphorylation, decreased I-1 levels on the mRNA and protein level have been detected 

in human failing hearts (El-Armouche et al., 2004; El-Armouche et al., 2003) and canine and 

rat models for heart failure (El-Armouche et al., 2007; Gupta et al., 2003). These data 

suggest that I-1 downregulation and inactivation might be a crucial event for increased PP-1 

activity and hence, decreased PLN phosphorylation.     

Interestingly, increased Hsp20 protein levels and increased Hsp20 phosphorylation in human 

diseased hearts have been detected (Qian et al., 2009). This might serve as a protective 

mechanism for counterbalancing increased PP-1 activity. Moreover, it has been shown that 

Hsp20 directly interacts with PDE4D. Disruption of this interaction leads to PKA dependent 

phosphorylation of Hsp20, thereby protecting against the hypertrophic response in neonatal 

rat cardiomyocytes after chronic β-AR stimulation (Sin et al., 2011).                    

All these mechanisms lead to decreased SR Ca2+ content and less Ca2+ availability for each 

contraction round, thereby promoting the progression of cardiac disease to heart failure. 
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Although alterations in global PDE activity have been reported in a rat model of cardiac 

hypertrophy and in human failing hearts (Abi-Gerges et al., 2009; Mehel et al., 2013), nothing 

is known about local changes in PDE composition around the SERCA2a microdomain. 

Besides, alterations in cAMP signalling and subsequent alterations in PKA activity seem to 

be crucial for the subsequent abnormalities in Ca2+ handling during cardiac disease. 

Therefore, cAMP dynamics in the SERCA2a microdomain and their differential regulation 

during cardiac disease such as hypertrophy are the object of intensive examination in this 

PhD thesis. 

 

1.7 Methods for cAMP detection in subcellular microdomains 

The widely accepted paradigm of compartmentalized cAMP signalling emphasizes the need 

for efficient detection methods that can resolve subcellular cAMP dynamics with high 

temporal and spatial resolution.          

Biochemical assays such as radioimmunoassays or immunoblot analysis can be used for 

reliable direct or indirect measure of cAMP concentrations (Brooker et al., 1979; Harper and 

Brooker, 1975; Williams, 2004). However, these methods do not provide any insight into real 

time cAMP dynamics with spatial resolution under physiologically relevant conditions and 

consume a vast amount of cell material or tissue.           

Jurevicius and colleagues used LTCC currents as an indirect read out for cAMP/PKA activity 

in frog cardiomyocytes. They could show that β2AR stimulation leads to locally confined 

cAMP signals that depend on PDE activity, while direct activation of ACs with forskolin led to 

a global increase in intracellular cAMP (Jurevicius and Fischmeister, 1996).          

Another elegant tool for indirect visualization of cAMP increases within a cell are cyclic 

nucleotide gated channels (CNGCs) based sensors. Sarcolemmal CNGCs are activated 

upon cyclic nucleotide binding, thereby promoting a cation current and an increase in 

intracellular Ca2+ (Frings et al., 1995) which can be measured via patch clamp technique or 

using Ca2+ sensitive dyes, respectively (Abi-Gerges et al., 2009; Ghigo et al., 2012; Rochais 

et al., 2004). CNGCs based sensors contributed significantly to the clarification of some 

molecular mechanisms behind cAMP compartmentation at the plasma membrane, such as 

PDE3 and PDE4 dependent regulation of β2AR associated cAMP signals (Rochais et al., 

2004) but their restriction to only one cellular compartment points out the necessity for more 

diverse localised cAMP biosensors.                      

One promising tool for direct visualization of different subcellular cAMP compartments in 

living cells are fluorescence resonance energy transfer (FRET) based cAMP biosensors that 

are described in more detail in the next section. 



  Introduction 

14 
 

1.7.1 Fluorescence resonance energy transfer based cAMP biosensors          

Fluorescent resonance energy transfer (FRET) is a non-radiative energy transfer, whereby a 

donor fluorophore is excited by light of a specific wavelength and transfers its emission 

energy to an acceptor fluorophore (Förster, 1948). This leads to a reduction of the donor 

fluorescence and an increase in the acceptor emission intensity. A crucial requirement for 

this phenomenon to occur is that the emission spectrum of the donor fluorophore should 

overlap with the excitation spectrum of the acceptor fluorophore (Figure 5A). To allow proper 

energy transfer, the two fluorophores, usually variants of the green fluorescent protein (GFP) 

(Tsien, 1998), need to be in a favourable spatial orientation with a close proximity of less 

than 10 nm (Wu and Brand, 1994). According to the Jablonski-diagram (Figure 5B), photon 

absorption by the donor fluorophore lifts the donor electrons from the singlet state (S0) to an 

excited state (S1). As the excited electrons “fall back” to their ground state, energy is emitted 

as fluorescence that can be partially absorbed by an acceptor fluorophore to lift the acceptor 

electrons from S0 to the S1 state. Again, fluorescence is emitted as the acceptor electrons 

return to the S0 state.  

 

 

 

 

 

 

 

 

 

 

Figure 5. FRET mechanism using the CFP-YFP FRET pair. (A) The emission of the donor 
fluorophore (CFP) has to overlap with the excitation spectrum of the acceptor fluorophore (YFP) to 
allow fluorescence resonance energy transfer (FRET). The overlapping spectra are coloured grey. (B) 
Schematic representation of the Jablonski-diagram: after absorption of photon energy, the donor 
electrons are transitioned from a ground state (S0) to an excited state (S1). The donor fluorophore can 
partly transfer its energy from its lowest S1 level to the electrons of an acceptor fluorophore with a 
lower energetic excitation spectrum (fluorophore distance must be ≤10 nm). Acceptor electrons are 
lifted from their S0 to the S1 state and fluorescence (hv) is emitted when the acceptor electrons “fall 
back” into their S0 state. (C) Cartoon of FRET between CFP (donor) and YFP (acceptor). In the 
absence of cAMP, the two fluorophores are in close proximity and FRET occurs leading to quenched 
CFP emission and increased YFP emission. Upon cAMP binding to the sensor, the two fluorophores 
move apart, FRET is disrupted and YFP emission decreases while CFP emission increases.    
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One prominent FRET pair that meets this requirement are CFP (cyan fluorescent protein) 

and YFP (yellow fluorescent protein), where CFP represents the donor and YFP the acceptor 

fluorophore that quenches CFP emission (Figure 5C). The degree of FRET can be measured 

via ratiometry by detecting the emission intensities of the donor and acceptor fluorophores 

and calculating a donor/acceptor or acceptor/donor ratio which describes the FRET signal. 

Several biosensors for cAMP have been generated based on this technique (Sprenger and 

Nikolaev, 2013).              

PKA is one of the essential cAMP downstream targets which mediates phosphorylation of 

several effectors in different cellular compartments. The first cAMP FRET biosensor named 

FlCRhR (abbreviation for “fluorescin-labelled PKA catalytic subunit and rhodamine-labelled 

regulatory subunit”, “flicker”) was produced by Roger Tsien and co-workers as a huge sensor 

complex consisting of chemically labelled R and C PKA subunits (Adams et al., 1991). To 

circumvent complex purification procedures and sensor microinjection, genetically encoded 

PKA based biosensors, using R and C PKA subunits fused to CFP and YFP, respectively, 

were first developed by Zaccolo and co-workers (Zaccolo et al., 2000; Zaccolo and Pozzan, 

2002). This sensor allowed the first cAMP measurements in subcellular compartments at the 

Z-lines in neonatal rat ventricular myocytes (NRVMs), thereby uncovering the importance of 

PDE3 and PDE4 in cAMP compartmentation within NRVMs (Mongillo et al., 2004). Besides, 

measurements in adult rat cardiomyocytes were possible due to adenoviral transduction with 

this biosensor (Warrier et al., 2005). In another study, differentially localised PKA as well as 

Epac1 based FRET sensors expressed in HEK293A cells showed that PDEs might act as 

cAMP sinks creating different, independent subcellular pools of different cAMP 

concentrations (Terrin et al., 2006). To gain reasonable results with the tetrameric PKA 

based FRET sensors, equal expression of the sensor subunits is an inescapable requirement 

and the cooperative binding of cAMP to the different subunits results in relatively slow sensor 

kinetics. Besides, sensor subunits might associate with wildtype (WT) PKA subunits, thereby 

attenuating and/ or decelerating the actual FRET responses (Diller et al., 2001; Nikolaev et 

al., 2004). To avoid these problems, single chain cAMP biosensors were generated which 

contain just one single cAMP binding domain of the PKA-R subunit, such as PKA-camps 

(PKA-cAMP sensor) (Nikolaev et al., 2004). Another group of cAMP FRET biosensors are 

the A-kinase activity reporters (AKAR1-4) which contain a PKA phosphorylation site. 

Phosphorylation at this site leads to a change in the FRET signal and gives an indirect 

measure of PKA activity and cAMP changes in the cell (Allen and Zhang, 2006; Depry et al., 

2011; Zhang et al., 2005; Zhang et al., 2001). The AKAR3 sensor has been fused to the 

transmembrane domain of PLN, leading to a localisation of this SR-AKAR3 to the SR 

membrane. Here, high PDE4 activity was detected which regulates PKA activity under basal 

conditions in NRVMs and adult rat ventricular myocytes transduced with SR-AKAR3 
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adenovirus (Liu et al., 2011).                

In addition to the PKA dependent FRET biosensors, further single chain cAMP FRET 

sensors have been developed based on the Epac protein. For example, the CFP-Epac-YFP 

sensors contain either a full-length or truncated Epac1 sequence and are located in the 

cytosol and to some extend at the nuclear envelope when expressed in mammalian cells 

(Ponsioen et al., 2004). The group around Jin Zhang also used full length Epac1 or truncated 

Epac2 and fused it to CFP and Citrine to generate ICUE (indicator of cAMP using Epac) 

FRET probes. The ICUE1 sensor construct localised to the cytosol and was also used to 

generate several targeted versions for subcellular specific cAMP measurements (DiPilato et 

al., 2004). The ICUE2 sensor represents an improved version of the ICUE1 construct 

showing larger FRET signals (Violin et al., 2008). Another prominent group of Epac based 

single chain cAMP biosensors are the Epac1-camps and Epac2-camps sensors that use a 

single cAMP binding domain of either human Epac1 or murine Epac2, respectively, fused to 

CFP and YFP (Nikolaev et al., 2004). Epac1-camps showed a slightly lower affinity for cAMP 

than Epac2-camps (2 and 1 µM, respectively) but larger FRET changes in Epac1-camps 

made it the preferred tool for subsequent studies. Epac1-camps is evenly distributed 

throughout the cytosol of mammalian cells and was used to detect cAMP diffusion in neurons 

and macrophages with a speed amounted to 40 µm/s. This sensor was also used to 

generate a transgenic (TG) mouse model (CAG-Epac1-camps) with ubiquitous sensor 

expression to enable the detection of cAMP dynamics under highly physiological conditions 

(Calebiro et al., 2009). Several fusion proteins with Epac1-camps have been generated. For 

example, when fused to Hsp20, the new Epac1-camps biosensor uncovered the existence of 

a PDE4-Hsp20 complex in NRVMs (Sin et al., 2011). In another study, Epac1-camps was 

fused to PKA-RI (RI-epac) and PKA-RII (RII-epac) N-terminal dimerization and docking 

domains to directly monitor cAMP dynamics in the localisation sites of the different PKA 

isoforms within NRVMs. Here, β-adrenergic stimulation led to FRET changes exclusively in 

the RII-epac sensor associated with PLN and TnI phosphorylation, whereas stimulation with 

PGE1 only stimulated RI-epac molecules (Di Benedetto et al., 2008). Epac1-camps was also 

combined with PDE3 and PDE4 to monitor cAMP dynamics in direct vicinity to these PDEs 

(Herget et al., 2008).               

The group around Viacheslav Nikolaev developed another TG mouse model expressing the 

so called HCN2-camps sensor cardiac specific. This sensor contains a single cAMP binding 

domain from the murine hyperpolarization activated cyclic nucleotide gated potassium 

channel 2 (HCN2) fused to CFP and YFP. Using freshly isolated cardiomyocytes from this 

sensor mouse, far reaching β1-AR-associated cAMP signals have been detected, whereas 

β2-AR signals were found strictly confined at the cell membrane (Nikolaev et al., 2006). 
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In the current PhD study, the cytosolic 

Epac1-camps cAMP biosensor was 

fused to the N terminus of full length 

PLN to allow the direct detection of 

cAMP dynamics within the SERCA2a 

compartment of adult ventricular 

mouse cardiomyocytes (Figure 6). 

Upon cAMP binding, the two 

fluorophores CFP and YFP move apart 

leading to a decrease of the FRET 

signal represented in this thesis as an 

increase of the donor/acceptor ratio 

(CFP/YFP). 

 

 

1.8 Aims of this PhD thesis 

The aim of this PhD thesis was to generate a novel mouse model expressing the SERCA2a 

targeted cAMP FRET biosensor Epac1-PLN in a cardiac specific manner. Freshly isolated 

cardiomyocytes of this mouse line should be used for real time FRET measurements of local 

cAMP dynamics in healthy and diseased cardiomyocytes. As molecular alterations in the 

SERCA2a microdomain are associated with cardiac disease, the novel mouse line could be 

used as an in vivo model for cardiac hypertrophy to analyse altered SERCA2a-associated 

cAMP signals in the diseased cardiomyocytes. To understand the molecular mechanisms 

behind cAMP compartmentation in the SERCA2a microdomain, FRET results gained in 

Epac1-PLN cardiomyocytes should be compared with those gained in cardiomyocytes 

expressing the cytosolic Epac1-camps cAMP FRET sensor. These measurements would 

help to shed light on the role of local cAMP changes for disease progression. 

In a side project, Ca2+ influence on FRET cAMP measurements using the cytosolic FRET 

sensor Epac1-camps should be investigated. It is known, that Ca2+ influences several 

important cAMP regulating enzymes within the cell. Therefore, it was important to analyse 

whether rapid Ca2+ changes during diastole and systole translate into cAMP changes 

recorded using the FRET measurements. 

 

 

Figure 6. Cartoon of the Epac1-PLN biosensor and 
its estimated localisation to the SERCA2a microdomain 
within TG cardiomyocytes.  
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2. Materials and Methods 
 

2.1 Materials  

 

2.1.1 Cells 

HEK293A      Invitrogen, #R705-07   

 

2.1.2 Plasmids 

pcDNA3.0      Invitrogen (Life Technologies) 
α-MHC       Nikolaev et al., 2006 
Epac1-PLN (pcDNA3.0)    AG Lohse, Würzburg 
truncated Epac1-PLN (pcDNA3.0)   AG Lohse, Würzburg 
Epac1-camps R279E  (pcDNA3.0)   AG Lohse, Würzburg 
Epac1-PLN R279E (pcDNA3.0)   this PhD thesis 
Epac1-PLN dark YFP (pcDNA3.0)   this PhD thesis 
Epac1-PLN dark CFP (pcDNA3.0)   this PhD thesis 
Epac1-PLN (α-MHC)     this PhD thesis 
Gateway® pDONR™ 221    Invitrogen 
Gateway® pAd/CMV/V5-DEST™   Invitrogen    
            

 

2.1.3 Bacteria strains 

One Shot® TOP10 chemically competent E. coli  Invitrogen 
One Shot® OmniMax2T1    Invitrogen 
 

2.1.4 Animals 

FVB/NRj mice were obtained from Janvier Labs (Saint Berthevin, France) and used for 

pronuclear injection with the Epac1-PLN construct by the Max Planck Institute of 

Experimental Medicine. All animal experiments were performed in accordance with 

institutional and governmental guidelines. 
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2.1.5 Oligonucleotides 

 

The rabbit PLN sequence was kindly provided by Dr. med. Joachim Schmitt, Würzburg. 

Rabbit PLN sequence 5‟- ATG GAG AAA GTT CAA TAC CTC ACT CGC TCT 
GCT ATA AGA AGG GCC TCA ACC ATT GAA ATG 
CCT CAA CAA GCA CGT CAA AAC CTC CAG AAC 
CTA TTT ATC AAT TTC TGT CTC ATC TTG ATA TGT 
CTC CTG CTG ATC TGC ATC ATC GTC ATG CTT 
CTC TGA-3‟ 

All other oligonucleotides were purchased from MWG Biotech GmbH, Ebersberg 

CFPXbaIFor    5‟-AAATCTAGAGTGAGCAAGGGCGAGG-3‟ 
CFPBamHIRev   5‟-AAAGGATCCCTTGTACAGCTCGTCCATG-3‟ 
GAPDHFor    5‟-GTTGTCTCCTGCGACTT-3‟ 
GAPDHRev    5‟- GGTCCAGGGTTTCTTACT-3‟ 
MHCseqFor    5‟-TGACAGACAGATCCCTCCTAT-3‟ 
pcDNA3attBFor   5‟-GGGGACAAGTTTGTACAAAAAAGCAGGCTGACTC
     ACTATAGGGAGACCC-3‟ 
pcDNA3attBRev   5‟-GGGGACCACTTTGTACAAGAAAGCTGGGTAGCGA
     GCTCTAGCATTTAGG-3‟ 
PLBBamP4linHaseFor  5‟-AAGGATCCATGCCCTTGGTGGATTTCTTCTGCGA
     GAAAGTTCAATAC-3‟ 
PLBXhostHaseRev   5‟-AAACTCGAGTCAGAGAAGCATGACGAT-3‟ 
PLNFor    5‟-CAATACCTCACTCGCTC-3‟ 
PLNRev    5‟-ATGATGCAGATCAGCAG-3‟ 
TruncNheIFor    5‟- AAAGCTAGCGAAATGCCTCAGCAAGCAC-3„ 
YFPRev    5‟-CATGGCGGACTTGAAGAAGT-3‟ 

 

 

2.1.6 Chemicals 

AG 1-X8 Resin      Biorad, # 140-1441 
Albumin Fraction V      Applichem, # A1391.0100 
Ammonium persulfate     Sigma, # A3678 
Ampilcillin       Roth, # K029.1 
Ampuwa® water Fresenius Kabi Deutschland 

GmbH 
BAY 60-7550       Santa Cruz, # sc-205219 
BES buffer grade      Applichem, A1062 
β-Mercaptoethanol      Sigma, # M3148 
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Bromphenol Blue sodium salt    Applichem, # A1120 
8-Br-2‟-O-Me-cAMP-AM     Biolog, # B028 
2,3- Butanedione monoxime     Sigma, # B0753 
Caffeine       Sigma, # C0750 
Calcium chloride dihydrat     Merck, # 17257 
Calcium ionophore A23187     Sigma # C7522 
cAMP        Sigma, # A9501 
cAMP [5',8-3H]      Hartmann analytic GmbH, # 1790 
Cesium chloride      Sigma, # C3032 
CGP-20712A methanesulfonate salt    Sigma, # C231 
Cilostamide       Sigma, # C7971 
Crotalus atrox Snake venom     Sigma, # V7000 
Dimethyl Sulphoxide HYBRI-MAX®    Sigma, # D2650 
DirectPCR-Tail      Peqlab, # 31-102-T 
D(+) Sucrose       Roth, # 4621.2 
dNTPs        Promega, # U1240 
EDTA        Roth, # 8040.3 
EGTA        Sigma, # E4378 
Ethanol Rotipuran >99,8%     Roth, # 9065.1 
Ethidium bromide - Solution 1%    Applichem, # A1152 
Fluo3-AM       Invitrogen, # F-1242 
Forskolin       Sigma, # F6886 
Fura2-AM       Invitrogen, # F-1201 
Glucose       Sigma, # G7021 
Glycerol       Sigma, # G8773 
Glycine       Roth, # 3908.3 
H-89 dihydrochloride hydrate     Sigma, # B1427 
Hematoxylin       Fluka # 51260 
HEPES       Sigma, # H4034 
Hydrochloride acid 37%     Sigma, # 84422 
ICI-118.551 hydrochloride     Sigma, # I127 
Iron(III) chloride hexahydrate     Roth, # P742.1 
3-Isobutyl-1-methylxanthin     Applichem, # A0695 
Isoproterenol hydrochloride     Sigma, # I6504 
Laminin       Sigma, # L2020 
LB- Agar powder Miller     Applichem, # A0927 
LB- Medium powder Miller     Applichem, # A0954 
Loading buffer DNA IV (for Agarose gels)   Applichem, # A3481 
Magnesium chloride hexahydrate    Applichem, # A1036 

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CD4QFjAC&url=http%3A%2F%2Fwww.carlroth.com%2Fcatalogue%2Fcatalogue.do%3FfavOid%3D000000010000071300020023%26act%3DshowBookmark%26lang%3Den-de%26market%3DDE&ei=zi1lUoOULMrCtQbjhYCQCg&usg=AFQjCNFEI3399fnnKZSVShHGciFpbanasw&bvm=bv.54934254,d.Yms
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Magnesium sulfate heptahydrate    Sigma, # M2773 
MDL-12,330A hydrochloride     Sigma, # M182 
Methanol       Roth, # HN41.2 
8-methoxymethyl-3-isobutyl-1-methylxanthine  Sigma, # M2547 
Milkpowder       Roth, # T145.1 
N,N,N′,N′-Tetramethylethylenediamine   Sigma, # T9281 
peqGOLD Universal Agarose    Peqlab, # 35-1020 
PhosStop       Roche, # 04906837001 
Ponceau S       Sigma, # P3504 
Potassium bicarbonate     Sigma, # P7682 
Potassium chloride      Sigma, # P5405 
Potassium dihydrogen phosphate    Merck, # 4873 
RNAse free water      Ambion, # AM9937 
Phenol red sodium salt     Sigma, # P5530 
Protease Inhibitor Cocktail     Roche, # 11872580001 
Protein Marker V      Peqlab, #27-2211 
Quick-Load® 100bp DNA ladder    Biolabs, # NO467S 
Quick load® 1 kb DNA ladder     Biolabs, # NO468S 
Rolipram       Sigma, # R6520 
Roticlear®       Roth, # A538.5 
Roti-Histofix® 4%      Roth, # P087.5 
Rotiphorese® Gel 30      Roth, # 3029.1 
Sodium azide       Sigma, # S2002 
Sodium bicarbonate      Sigma, # S5761 
Sodium chloride      Sigma, # S5886 
Sodium dodecyl sulfate solution 20%   Fluka, # 05030 
Sodium hydroxide      Roth, # 6771.3 
Sodium phosphate dibasic      Sigma, # 255793 
Sodium phosphate dibasic dihydrate    Sigma, # 71643 
Sucrose       Sigma, # S0389 
TAE-buffer (50x)      Applichem, # A1691 
Target Retrieval Solution, Citrate pH6 (10x)   Dako, # S2369 
Taurine       Sigma, # T8691 
Thapsigargin       Sigma, # T9033 
TRIS        Roth, # 4855.3 
Triton-X® 100       Applichem, # A1287.0025 
Tween-20®       Sigma, # P1379 
Vectashield® Mounting Medium    Vector Laboratories, # H-1000 
Lectin from Triticum vulgaris (wheat)   Sigma, # L5266 

http://www.sigmaaldrich.com/catalog/product/sigma/l5266
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2.1.7 Cell culture 

 

Antibiotic-Antimycotic, 100x     Gibco, # 15240062 
DMEM, 4.5 % glucose     Biochrom, # F0445 
FCS        Biochrom, # S0615 
Glutamine       Biochrom, # K0283 
Iscove Basal Medium      Biochrom, # FG 0465 
Lipofectamine®2000 Reagent    Invitrogen, # 11668 
OPTI-MEM®I       Gibco, # 11058 
PBS Phosphate Buffered Saline (Dulbecco)   Biochrom, # L1825 
Penicillin/Streptomycin     Biochrom, # A2213 
Plaque  GP Agarose      Biozym, # 850110 
Trypsin/ EDTA solution     Biochrom, # L2143 
 

 

2.1.8 Enzymes and Kits 

 
EcoRI        New England Biolabs, # R0101 
Gateway® BP Clonase II Enzyme Mix   Invitrogen, # 11789-020 
Gateway® LR Clonase™ II Enzyme Mix   Invitrogen, # 11791-020 
GoTaq DNA Polymerase, 500U    Promega, # M3175 
iScript cDNA Synthesis Kit     Biorad, # 170-8890 
KpnI        New England Biolabs, # R3142 
Liberase DH        Roche, # 05401054001 
NotI        New England Biolabs, # R3189 
PacI        New England Biolabs, # R0547 
Pfu DNA Polymerase      Promega, # M774B 
Pierce BCA Protein Assay Kit    Thermo Scientific, # 23227 
Plasmid Midi Kit      Qiagen, # 12945 
Plasmid Mini Kit      Qiagen, # 12125 
Proteinase K       Applichem, # A3830-0500 
QiaShredder       Qiagen, # 79654 
QIAquick Gel Extraction Kit     Qiagen, # 28704 
QIAquick PCR purification Kit    Qiagen, # 28104 
Qproteome Cell compartment Kit    Qiagen, # 37502 
RNeasy Fibrous Tissue Mini Kit    Qiagen, # 74704 
Sodiumacetate solution 3M     Applichem. # 3947 

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fwww.biochrom.de%2Fprodukte%2Fpuffer-und-loesungen%2Fpbs-phosphate-buffered-saline-dulbecco%2F&ei=viplUtPoM8GEtAaVmYDwAg&usg=AFQjCNFDSE1hif_MBFJeRmGLh2VOzihZ1A&bvm=bv.54934254,d.Yms
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Super Signal West Pico Chemol. Substrate   Thermo Scientific, # 34080 
SYBR® Green Super Mix for iQ™    Quanta Biosciences, # 95053 
T4 DNA Ligase      NEB, # M0202S 
Trypsin 2,5%       Gibco #15090 
XhoI        New England Biolabs, # R0146 

 

 

2.1.9 Antibodies 

 
Table 1 Primary antibodies for Immunoblot (WB) and Immunhistology (IH). Buffer for 
antibody dilution was prepared in TBS-T (WB) or in PBS (IH) including milk powder or BSA 

Antibody Dilution 
 

   anti- Calsequestrin 
 

WB 1:10.000 
in 3% BSA 

Thermo Scientific # PA1-913 
 

anti- CaV1.2a 
 

WB 1:160 
in 5% milk 

Alomone Labs # ACC-013 
 

anti- GAPDH 
 

WB 1:36.000 
in 5% milk 

HyTest Ltd, # 5G4 
 

anti- GFP 
 

WB 1:500 
in 5% milk 

Santa Cruz, # sc-9996 
 

 

IH   1:500 
in 1% BSA 

 anti- NCX 
 

WB 1:5000 
in 5% milk 

Swant, # R3F1 
 

anti- PDE2A 
 

WB 1:750 
in 3% BSA 

Fabgennix, # 101AP 
 

anti- PDE4D 
 

WB 1:200 
in 5% milk 

Santa Cruz, # sc-25814 
 

anti- PDE4D8 
 

WB 1:2000 
in 5% milk 

Gift by M. Conti, San Francisco 
 

anti- PKA-RI 
 

WB 1:500 
in 5% milk 

BD Transduction, # 610165 
 

Anti- PKA-RIIα 

 

WB 1:500 
in 5% milk 

BD Transduction, # 612242 
 

anti- PLN Phospho Serine-16 
 

WB 1:5000 
in 3% BSA 

Badrilla, # A010-12 
 

anti- PLN Phospho Threonine-17 
 

WB 1:5000 
in 5% milk 

Badrilla # A010-13 
 

anti- PLNA1 
 

WB 1:5000 
in 5% milk 

Badrilla, # A010-14 
 

anti- PMCA Clone 5F10 
 

WB 1:500 
in 5% milk 

Sigma # P6363 
 

anti- SERCA2a anti-Serum 
 

WB 1:5000 
in 5% milk 

Badrilla, # A010-20 
 

 
IH   1:100 

 

 

in 1% BSA 
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Table 2 Secondary antibodies for Immunoblot (WB) and Immunhistology (IH). Buffer for 
antibody dilution was prepared as for the associated primary antibody 

Antibody Dilution 
 

   Alexa Fluor ® 633 Goat Anti-Rabbit IgG IH   1:300 Invitrogen, # A21070 
Alexa Fluor ® 514 Goat Anti-Mouse IgG IH   1:500 Invitrogen, # A31555 
Immun-Star Goat Anti-Mouse (GAM)-HRP WB 1:5000 Biorad, # 170-5047 
Immun-Star Goat Anti-Rabbit (GAR)-HRP WB 1:5000 Biorad, # 170-5046 

    

 

2.1.10 Microscope devices and software 

 

Arduino I/O board      Sparkfun Electronics 

Attofluor® cell chamber     Invitrogen 

AxioObserver A1 epifluorescence microscope   Carl Zeiss MicroImaging 

AxioCam ICc1       Carl Zeiss MicroImaging 

Axiovert 200 microscope     Carl Zeiss MicroImaging 

Axio Vision software      Carl Zeiss MicroImaging 

Binocular macroscope     Olympus 

CFP/YFP filter set      Chroma Technology 

CoolLED 440 nm      CoolLED 

CoolSNAP-HQ CCD-camera     Visitron Systems 

DualView filter slider      Photometrics 

DV2 DualView (505dcxr filter)    Photometrics 

ImageJ Software      National Institutes of Health 

Inverted fluorescent microscope    Nikon 

710 NLO microscope      Carl Zeiss MicroImaging 

Microsoft Office Picture Manager    Microsoft Corporation 

Oil immersion 63x objective     Carl Zeiss MicroImaging 

ORCA-03G camera      Hamamatsu Photonics 

Polychrome V light source      TILLPhotonics 

Stemi 2000-C microscope binocular    Carl Zeiss MicroImaging 

ZEN 2010 Software      Carl Zeiss MicroImaging 

 

 

 

http://de.wikipedia.org/wiki/National_Institutes_of_Health
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2.1.11 Calcium measurement devices and software 

 

Fluorescence System Interface    IonOptix 

Fluo-3 Filter       Chroma Technology 

Fura-2 Filter       Chroma Technology 

Hyper Switch Light Source     IonOptix 

IonWizard- Core and Analysis    IonOptix 

MyoCam-S       IonOptix 

MyoPacer Cell Stimulator     IonOptix 

Sarcomere Length Acquisition Module   IonOptix 

 

 

2.1.12 General devices and software 

 

AlphaImager® software     ProteinSimple 

Biotek Reader (for BCA assay)    BIOTEK Instruments 

Centrifuges       Thermo Scientific 

MicroBeta2       Perkin Elmer, Inc. 

MicroBeta2 Windows Workstation    Perkin Elmer, Inc. 

MS-400 MicroScan Transducer    Linear Array Technology 

MultiImage Light Cabinet     Alpha Innotech Corporation 

NanoDrop 2000      Thermo Scientific 

Powerpac HC       Biorad 

Thermocycler       Sensoquest 

ThermoMix compact      Eppendorf 

iCycler        Biorad 

Microtom Leica RM 2165     Leica 

Mini-PROTEAN® Electrophoresis System   Biorad 

Mupid-One Gel Electrophoresis Unit     ADVANCE Co., Ltd. 

Origin Pro 8.5 Software     OriginLab Corporation 

pH meter       Inolab 

Tracheal tube       Hugo Sachs Electronic 

Ultracentrifuge L-70       Beckman 

Ultra-Turrax MicraD-1     Art-Labortechnik 

UV Table IL-350-M      Bachofer 

Vevo 2100        VisualSonics (Toronto, Canada) 
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Ventilator Minivent      Hugo Sachs Electronic 

X-Ray Film processor SRX 101A    Konica 

 

 

2.1.13 Other materials 

 

Dialysis Tubing for virus dialysis    Medical International Ltd. 

Elca®med       Asid Bonz GmbH 

Eppendorf tubes      Eppendorf 

Ethilon suture 9-0      Ethicon 

Falcon tubes       BD Falcon 

Fiber pads for Western blot     Bio Rad, #1703933 

Filter Unit 0.2 RC Spartan 13 0.2 µm (DNA filtration) Whatman, # 10463040 

Forene®       Abbott 

21-gauge needle      BD Microlane 

26-gauge needle      BD Microlane 

Gauze        Th Geyer, # 9.068291 

Glass Cover Slips 24 mm     Thermo Scientific, # 004710781 

Microscope Slides Thermo Scientific,                       # J1800AMNZ 

Medical X-Ray Film      Fujifilm, # 4014403 

Prolene suture 6-0      Ethicon 

Protran Nitrocellulose Transfer Membrane   Whatman, # 4018650 

Quickseal Centrifuge Tubes (virus centrifugation)  Beckmann, # 342413 

Scintilation Liquid Lumasafe Plus    Lumac LSC, # 3097 

Serological pipettes       Sarstedt 

Slide-A-Lyzer Dialysis Cassettes, 10K MWCO  Thermo Scientific, # 66383 0.5ml 

Spacer Plates for Western blot    Bio Rad, #1653311 

Steriflips       Millipore, # SCGP00525 

Short Plates for Western blot     Bio Rad, #1653308 

Temgesic®       Essex Pharma GmbH 

U-40 Insulin 30Gx1/2      Braun, # 40012525 

U-40 Insulin Omnifix Solo     Braun, # 9161309v 

Water bath       Julabo 

6 Well Plates       Starlab, # CC7682-7506 

96 Well Plates       Nunc, # 167008 

96 Well Plate for MicroBeta     Perkin Elmer, Inc. #1450-401 
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2.1.14 Buffers 

 

All buffers were prepared in aqua dest. 

 

Table 3 Buffer for plasmid dialysis 

Buffer Composition 
   

     TE Buffer Tris, 1M,  pH 7.4 5    ml 
  

 
EDTA, 0.5 M, pH 8 0.2 ml 

  
 

Ampuwa 1000 ml 
  

 
sterile under hood! 

   
      

Table 4 Buffer and media for E.coli transformation 

Buffer Composition 
   

     5x KCM buffer CaCl2 150 mM 
  

 
MgCl2 250 mM 

  
 

KCL 500 mM 
  

     
     LB medium LB medium powder 25 g/l 

  
 

sterilized by autoclaving 
   

 
Ampicillin 100 µg/ml 

  
     
     LB plates LB agar powder 40 g/l 

  
 

sterilized by autoclaving 
   

 
Ampicillin 100 µg/ml 

  
      

Table 5 Solutions for HEK293A cell transfection 

Buffer Composition 
   

     2x BBS Na2HPO4 1.5 mM 
  sterile filtrate BES 50 mM 
  

 
NaCl 280 mM 

  
 

pH 6.95 with NaOH 
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     CaCl2 CaCl2 2.5 M 
  sterile filtrate 

    
     
     Table 6 Solutions for adenovirus purification 

Buffer Composition 
    

      10x Sucrose buffer Tris 24.22 g 
   sterile filtrate MgCl2x6H2O 8.13 g 
   

 
D(+) Sucrose 800      g 

   
 

pH 8 
   

 
Aqua dest. ad 2000 ml 

  
      
      Table 7 Solutions for cardiomyocyte isolation 

Buffer Composition 

   
     Stock Perfusion Buffer NaCl 1.13 M 

  10x KCl 47 mM 
  sterile filtrate KH2PO4 6 mM 
  

 
Na2HPO4x2H2O 6 mM 

  
 

MgSO4x7H2O 12 mM 
  

 
Phenol red 0.32 mM 

  
 

NaHCO3 120 mM 
  

 
KHCO3 100 mM 

  
 

HEPES 100 mM 
  

 
Taurine 300 mM 

  
     
     Perfusion Buffer 1x Stock Perfusion Buffer 10x 10 ml 

  sterile filtrate BDM solution 2 ml 
  

 
Glucose 100 mg 

  
 

Aqua dest. ad 100 ml 
  

     
     BDM Solution BDM 500 mM 

  
     
     BSA Solution BSA 10 % (w/v) 

  sterile filtrate 
    

     
     



  Materials and Methods 
 

29 
 

CaCl2 Solution 100mM CaCl2 100 mM 
  sterile filtrate 

    
     
     CaCl2 Solution 10 mM CaCl2 10 mM 

  sterile filtrate 
    

     
     Liberase Solution Liberase DH 50 mg 

  sterile conditions Aqua dest. 12 ml 
  

     
     Digestion Buffer Perfusion Buffer 1x 2.6 ml 

  
 

CaCl2 solution 100 mM 3.75 µl 
  

 
Trypsin 2.5% 200 µl 

  
 

Liberase Solution 300 µl 
  

     
     Stopping Buffer 1 Perfusion Buffer 1x 2.25 ml 

  
 

BSA Solution 250 µl 
  

 
CaCl2 Solution 100 mM 1.25 µl 

  
     
     Stopping Buffer 2 Perfusion Buffer 1x 9.5 ml 

  
 

BSA Solution 500 µl 
  

 
CaCl2 Solution 100 mM 3.75 µl 

  
      

Table 8 Tyrode solutions 

Buffer Composition 
   

     FRET buffer NaCl 144 mM 
  

 
KCl 5.4 mM 

  
 

MgCl2 1 mM 
  

 
CaCl2 1 mM 

  
 

HEPES 10 mM 
  

 
pH 7.3 

  
     
     Tyrode NaCl 149 mM 

  Ca2+ measurements KCl 1 mM 
  

 
MgCl2 1 mM 

  
 

HEPES 5 mM 
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Glucose 10 mM 

  
 

CaCl2 1 mM 
  

 
pH 7.54 

    

Table 9 Immunoblot solutions 

Buffer Composition 

   
     Homogenization Buffer HEPES 10 mM 

  
 

Succrose 300 mM 
  

 
NaCl 150 mM 

  
 

EGTA 1 mM 
  

 
CaCl2 2 mM 

  
 

Triton X 100 10 % 
  

 
pH 7.4 

  
  

10 ml + 1 tablet PhosStop 

  

+ 1 tablet Protease Inhibitor 
Cocktail 

     
     SDS Stop 3x Tris 200 mM 

  
 

SDS 6 % (v/v) 
  

 
Glycerol 15 % (v/v) 

  
 

Bromphenol Blue 
   

 
β-Mercapthoethanol 10 % (v/v) 

  
 

pH 6.7 
  

     
     4x Tris/SDS pH 6.8 Tris 500 mM 

  
 

SDS 0.4 % (v/v) 
  

 
pH 6.8 

  
     
     4x Tris/SDS pH 8.8 Tris 1.5 M 

  
 

SDS 0.4 % (v/v) 
  

 
pH 8.8 

  
     
     APS solution APS 10 % (w/v) 

  
     
     10x SDS Running Buffer Tris 250 mM 

  
 

Glycine 1.9 M 
  

 
SDS 1 % (v/v) 
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pH 8.3 

  
     
     10x Transfer Buffer Tris 325 mM 

  
 

Glycine 1.9 M 
  

     
     1x Transfer Buffer 10x Transferbuffer 10 % (v/v) 

  
 

Methanol 20 % (v/v) 
  

     
     Ponceau S Solution Ponceau S 0.5 % (w/v) 

  
 

in 10 % acetic acid 
   

     
     10x TBS Buffer Tris 100 mM 

  
 

NaCl 1.5 M 
  

 
pH 7.5 (HCl) 

  
     
     1X TBS-Tween Buffer 10x TBS Buffer 10 % (v/v) 

  
 

Tween 20 0.1 %(v/v) 
  

     
     Stacking Gel Acrylamide 500 µl 

  (3.8 ml; 2 Gels) 4x Tris/SDS pH 6.8 940 µl 
  

 
Aqua dest. 2.31 ml 

  
 

10 % APS 18.8 µl 
  

 
TEMED 7.5 µl 

  
     
     Seperating Gel 10% Acrylamide 4 ml 

  (12 ml; 2 Gels) 4x Tris/SDS pH 8.8 3 ml 
  

 
Aqua dest. 5 ml 

  
 

10 % APS 48 µl 
  

 
TEMED 18 µL 

  
     
     Seperating Gel 15% Acrylamide 6 ml 

  (12 ml; 2 Gels) 4x Tris/SDS pH 8.8 3 ml 
  

 
Aqua dest. 3 ml 

  
 

10 % APS 48 µl 
  

 
TEMED 18 µL 

  
     



  Materials and Methods 
 

32 
 

Table 10 Solutions for PDE activity assay 

Buffer Composition 
   

     Wash Buffer Tris 40 mM 
  

 
pH 8.0 (HCl) 

  
     
     Homogenation Buffer Wash Buffer 10 ml 

  
 

MgCl2 10 mM 
  

 
PhosStop 1 tablet 

  
 

Protease Inhibitor 
   

 
Cocktail 1 tablet 

  
     
     cAMP Stock Solution cAMP 1mM 

  
     
     BSA Stock Solution BSA 10 % (w/v) 

  
     
     [3H]cAMP Stock Solution [3H]cAMP 1 mCi/ml 

  
     
     Ready to use MgCl2 10 mM 

  Reaction Buffer β-Mercaptoethanol 10 mM 
  

 
cAMP 2 µM 

  
 

BSA 1.5 % (w/v) 
  

 
[3H]cAMP 2.5 µl/ml 

  
 

in Wash Buffer 
   

     
     Stop Solution EDTA 15 mM 

  
 

pH 8.0 (NaOH) 
 

 
in Wash Buffer 

   
     
     Crotalus atrox Snake Venom 1 mg/ml 

  Snake Venom 
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2.2 Methods 

 

2.2.1 Cell culture and transfection 

HEK293A cells were cultivated at 37°C and 5 % CO2 in DMEM medium with 4.5 g/l glucose, 

10 % FCS, 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin.        

For transfection of HEK293A cells with plasmid DNA, cells were plated on 6 well plates 

prepared with 24 mm round glass coverslips. After 24 h, when the cells reached 60 % 

confluency, the following precipitation mix was prepared under sterile conditions: 

H2O     440 µl       

 Plasmid DNA (1µg/µl)     10 µl       mix      

 2.5 M CaCl2     50 µl 

2x BBS   500 µl 

After 10 min incubation at RT, 166 µl of the reaction mix were added dropwise to each well. 

24 h after transfection, cells were used for FRET measurements.  

 

2.2.2 Generation of Epac1-PLN biosensors      

                                 

2.2.2.1 Epac1-PLN (pcDNA3.0 vector) 

For the generation of the pcDNA3.0 

Epac1-PLN construct, which was the 

basis for the following constructs used 

in this PhD thesis, the pcDNA3.0 

vector containing the DNA sequence 

of the cytosolic cAMP sensor Epac1-

camps (Nikolaev et al., 2004) was 

double digested via XbaI/ XhoI. Then 

it was fused to the 5´-end of a full 

length rabbit PLN coding sequence 

via a flexible linker encoding a 

GSMPLVDFFC amino acid motif. 

Therefore, CFP without the stop 

Figure 7. Plasmid map of the pcDNA3.0 Epac1-PLN 
construct with highlighted relevant restriction sites. The 
cytomegalovirus (CMV) promoter allows constitutive 
expression in mammalian cells. 
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codon, the first insert, was PCR amplified (Primer: CFPXbaIFor and CFPBamHIRev) and 

digested with XbaI/ BamHI. The second insert was a full length rabbit PLN sequence that 

was kindly provided by Prof. Dr. med. Joachim Schmitt from Würzburg. The PLN sequence 

was amplified introducing a BamHI site including the linker sequence (Primer: 

PLBBamP4linHaseFor) and a XhoI site (Primer: PLBXhostHaseRev). See Figure 7 for 

plasmid map. 

 

2.2.2.2 Truncated Epac1-PLN (pcDNA3.0 vector) 

A PLN truncated version of Epac1-PLN was generated by amplifying a truncated PLN 

sequence (including glutamic acid at position 19 to leucine at position 52, E19-L52; Primer: 

TruncNheIFor, PLBXhostHaseRev) that was digested via NheI and then fused to Epac1-

camps without a linker sequence. Apart from that, the cloning strategy was as for the full 

length Epac1-PLN.                         

The full length and truncated pcDNA3.0 Epac1-PLN constructs were already generated in 

Würzburg by Dr. Viacheslav Nikolaev. 

 

2.2.2.3 Epac1-PLN R279E (pcDNA3.0 vector) 

For some control experiments in HEK293A cells, a cAMP insensitive mutant of pcDNA3.0 

Epac1-PLN was generated. Therefore, an Epac1-camps construct generated by Dr. 

Viacheslav Nikolaev in Würzburg was used, which contains a mutation in the Epac1 cAMP 

binding site (Arginine exchanged for Glutamic acid at position 297, R279E). The mutated 

R279E-Epac1 sequence was excised from this plasmid via EcoRI/ XbaI double digestion of 

10 µg plasmid DNA. Because pcDNA3.0 Epac1-PLN vector cannot be digested via EcoRI 

and XbaI without also losing the CFP and PLN sequence, CFP was extracted from 10 µg 

pcDNA3.0 Epac1-PLN via XbaI/ BamHI digestion. 6µg of the pcDNA3.0 Epac1-PLN vector 

were digested with EcoRI/ BamHI to dispose of the CFP and Epac1 sequence. After 

purification of the digested fragments and vector on a 1 % agarose gel, DNA was extracted 

using the Qiaquick Gel Extraction Kit. The digested pcDNA3.0 Epac1-PLN vector was eluted 

in 50 µl elution buffer and the CFP and mutated R279E-Epac1 fragments each were eluted in 

25 µl elution buffer. Ligation of the digested fragments and vector was performed in a 

reaction using T4 ligase overnight (o.n.) at 14°C: 
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pcDNA3.0 Epac1-PLN (~6300 bp)        1 µl     
 CFP (~700 bp)    6.5 µl    
 R279E Epac1 (~500 bp)       5 µl     
 T4 Ligase buffer 10x    1.5 µl     
 T4 Ligase           1 µl 

 

2.2.2.4 Epac1-PLN (α-MHC vector) 

To generate Epac1-PLN transgenic sensor mice in this thesis, the pcDNA3.0 Epac1-PLN 

construct was digested via BamHI restriction sites and subcloned into a vector containing the 

α-myosin heavy chain (α-MHC) promoter for cardiac specific expression (Nikolaev et al., 

2006). To delete the dispensable 12 bp sequence between the α-MHC promoter and the 

sensor, the construct was digested via KpnI. Sequencing analysis of this construct revealed 

several amino acid replacements in the YFP region like Asparagine replaced by Isoleucine 

(N147I), Methionine by Threonine (M154T), Valine by Alanine (V164A) and Asparagine 

replaced by Histidine (N165H). To exclude these mutations, YFP from the already published 

HCN2-camps cAMP sensor (Nikolaev et al., 2006) was excised via EcoRI and KpnI digestion 

of 10 µg plasmid DNA. The Epac1-CFP-PLN sequence part of the α-MHC Epac1-PLN was 

not altered according to sequencing analysis and was extracted from this plasmid via EcoRI 

and XhoI double digestion also using 10 µg of plasmid DNA. 6 µg of the α-MHC Epac1-PLN 

vector were digested with KpnI and XhoI to dispose of the YFP mutated Epac1-PLN sensor 

sequence. Fragment purification was performed as for R279E-Epac1. Ligation of the 

digested fragments and vector was performed in a reaction using T4 ligase o.n. at 14°C: 

α-MHC Epac1-PLN (~8800 bp)    1 µl      

 YFP (~700 bp)       4.5 µl      

 Epac-CFP-PLN (~1400 bp)        7 µl      

 T4 Ligase buffer 10x   1.5 µl      

 T4 Ligase       1 µl 

α-MHC Epac1-PLN construct was used for the generation of TG mice (Nikolaev et al., 2006). 

 

2.2.2.5 Transformation of E.coli for plasmid amplification 

To amplify plasmid DNA, the ligation mix was introduced into E. coli TOP10 (competence 

1x109 cfu/µg DNA) using the following reaction mix: 
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E.coli TOP10    100 µl       

 Ligation Mix       15 µl      

 H2O         65 µl      

 5x KCM Buffer     20 µl 

The reaction mix was incubated on ice for 20 min followed by 10 min incubation at RT. To 

allow bacterial growth, 1 ml of LB medium without antibiotics was added to the mix and the 

solution was incubated for 50 min at 37°C in a ThermoMix (700 rpm). Afterwards, bacteria 

were plated on ampicillin selective LB- medium plates. Colonies were grown o.n. at 37°C and 

single colonies were harvested and incubated in 3 ml LB medium with ampicillin o.n. at 37°C. 

Plasmid DNA was extracted using the Qiagen Plasmid Mini Kit with subsequent restriction 

analysis. Positive colonies were grown in 200 ml LB medium with ampicillin over night at 

37°C and plasmid DNA was extracted using the Qiagen Plasmid Midi Kit. Plasmid DNA 

concentration was measured using the Nanodrop device, and plasmid DNA sequencing was 

performed at Eurofins. 

 

2.2.3 Generation of Epac1-PLN adenovirus 

Epac1-PLN adenovirus generation was performed using the Invitrogen Gateway® Cloning 

system. 

To amplify the Epac1-PLN sensor sequence, pcDNA3.0 Epac1-PLN was used as PCR 

template: 

H2O      81 µl      

 10x Pfu buffer     10 µl      

 dNTPs 10 mM         2 µl      

 pcDNA3attBFor (10 pmol/µl)  2.5 µl      

 pcDNA3attBRev (10 pmol/µl)  2.5 µl      

 pcDNA3 Epac1 PLN (200 ng)    1 µl      

 Pfu DNA Polymerase      1 µl 

The PCR reaction was as follows: 

94°C 5 min          

 94°C 30 sec          

 55°C 30 sec           35x         

 72°C 5 min 20 sec         

 72°C 7 min 
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The PCR product was purified on a 1% agarose gel in TAE buffer stained with ethidium 

bromide (0.5 µg/ ml). The band was excised under UV light using a scalpel and extracted 

using the Qiaquick Gel extraction Kit. DNA concentration was measured using the Nanodrop 

device. To generate the entry clone, in vitro recombination of the PCR product and the Donor 

vector Gateway® pDONR™ 221 was performed using the Gateway® BP Clonase™ II 

Enzyme Mix. The recombinant entry clone was amplified in One Shot®OmniMax2T1 bacteria 

o.n. at 37°C on a kanamycin selective LB- medium plate. Single colonies were harvested and 

grown as described in section 2.2.2 and analysed via EcoRI/ XhoI double digestion.  To 

generate the virus expression clone, in vitro recombination between the entry clone and the 

destination vector pAd/CMV/V5-DEST™ was performed using the Gateway® LR Clonase™ II 

Enzyme Mix. The recombinant Epac1-PLN adenoviral vector DNA was amplified and 

analysed as described for the entry clone but using ampicillin instead of kanamycin selective 

LB medium plates. All procedures were performed regarding manufacturer´s instructions. 

Before HEK293A transfection, Epac1-PLN adenoviral vector DNA was linearized as follows: 

DNA          5   µg       

 10x buffer NEB1     2.5   µl       

 100x BSA    0.25  µl       

 PacI          2   µl       

 H2O   ad 25  µl 

For ethanol precipitation of the digested vector, 70 µl of ice-cold 100 % ethanol and 10 µl 3M 

sodiumacetate solution were added to the digestion mix and incubated for 30 min at -20°C. 

After centrifugation for 10 min at 13.300 rpm, the DNA pellet was washed with 500 µl ice-cold 

75 % ethanol and centrifuged again for 5 min at 13.000 rpm. The DNA pellet was 

resuspended in 10 µl H2O and used for transfection of a 10 cm plate with HEK-293A (80 % 

confluency) via lipofectamine®2000 reagent in OPTI-MEM® regarding manufacturer´s 

instructions. After 7-14 days, virus production within the HEK293A cells was completed. The 

virus containing supernatant was collected and used for further HEK293A transduction and 

virus amplification in Iscove Basal Medium (5% FCS, 1% antibiotic, antimycotic). The virus 

was concentrated via ultracentrifugation of the lysed HEK293A cell supernatant at 40.000 

rpm o.n. at 16°C in a cesium chloride gradient. The virus band was collected using a 21 

gauge needle and dialyzed in 1x sucrose buffer. For physical virus concentration OD260nm 

was measured. The virus solution was then diluted 1:100 with sucrose buffer containing 10 

% glycerol and aliquots were stored at -80°C. Biological virus activity (expressed as plaque 

forming units per ml) was assessed via Plaque assay as previously described (Cooper, 

1961) in HEK293A cells covered with 1.5 % plaque GP agarose. Adult rat ventricular 

cardiomyocytes were isolated and provided by Gudrun Müller from the Department of 
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Cardiology. Cells were transduced with Epac1-PLN virus (MOI 300) and used for analysis 48 

h after transduction.  

 

2.2.4 Generation of Epac1-PLN transgenic mice 

For microinjections, the generated Epac1-PLN construct was linearized using NotI digestion 

overnight at 37°C as follows: 

DNA  50 µg                  

 NotI  10 µl           

 Buffer4 20 µl         

 100xBSA   2 µl           

 H2O       ad 200 µl 

The linearized construct was purified on a 1 % agarose gel in TAE buffer stained with 

ethidium bromide (0.5 µg/ ml), extracted using the Qiaquick Gel extraction Kit and eluted in 

100 µl sterile TE buffer. DNA concentration was measured using the Nanodrop device. After 

filtration of the linearized and purified Epac1-PLN construct through a 2 µm filter under sterile 

conditions, the DNA was transferred into a sterile dialysis chamber. Dialysis was performed 

in 500 ml TE buffer which was exchanged every 4 hours (overall 2 l TE buffer). The dialysis 

chamber was unloaded under sterile conditions and DNA concentration was measured using 

the Nanodrop device. A concentration of 20-40 ng/µl was considered sufficient for 

microinjections. The pronuclear injection of FVB/N mice with the Epac1-PLN construct was 

performed by the Max Planck Institute of Experimental Medicine as previously described 

(Buitrago et al., 2005). 

 

2.2.5 Genotyping PCR 

The Founder mice and their resulting heterozygote offspring were genotyped by a standard 

PCR. Tail biopsies were digested overnight in 200 µl DirectPCR-Tail buffer including 

Proteinase K 500 µg/ml at 55°C and 1000 rpm in a ThermoMix. The reaction was terminated 

by incubation at 85°C for 45 min. After the lysates cooled down, they were used for the 

following PCR reaction: 
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DNA       0.5   µl      

 H2O     14.7   µl      

 5x GoTaq buffer     4.0   µl      

 dNTPs 10 mM         0.5   µl      

 MHCseqFor (100 pmol/µl)    0.05 µl      

 YFPnewRev (100 pmol/µl)    0.05 µl      

 GoTaq Polymerase     0.2   µl 

The PCR reaction was as follows: 

94°C 4 min            

94°C 30 sec            

62°C 30 sec        35x            

72°C 50 sec            

72°C 7 min 

The PCR reaction was mixed with 6x loading dye and analysed on a 2 % agarose gel in TAE 

buffer stained with ethidium bromide (0.5 µg/ ml). A 100 bp DNA Ladder (Quickload) was 

used as DNA marker. Results were documented using the MultiImage Light Cabinet gel 

documentation system. Positive male founder mice were mated with WT FVB/NRj females to 

produce heterozygous offspring.  

 

2.2.6 Transverse aortic constriction (TAC) 

All animal experiments were performed in accordance with institutional and governmental 

guidelines. Female FVB/N mice aged 8-12 weeks were randomized into sham or TAC 

groups. 3 days before surgery, mice received analgesic therapy with metamizole. Right 

before surgery, mice were anesthetized using 2 % isoflurane (Forene®) in pure oxygen. A 

suprasternal incision was made, and the aortic arch was visualized using a binocular 

operating stereoscope. TAC interventions used a spacer-defined (26-gauge) constriction 

fixed by a 6-0 polyviolene suture between the first and second trunk of the aortic arch (Hu et 

al., 2003). For sham, the aorta was exposed as for TAC but not constricted. 3 days later, 

Doppler velocity was measured using a 20 MHz probe to quantify the pressure gradient 

across the TAC/ sham region by transthoracic echocardiography. A pressure gradient of at 

least 80 mmHg was defined as appropriate for the following experiments. During 1 week 

after surgery, mice received analgesic therapy with metamizole and animal health status was 

checked every day. 8 weeks after surgery, mice were analysed by echocardiography and 

hearts were harvested for ventricular cardiomyocyte isolation or histology. Surgeries were 
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performed by Julia Steinbrecher (AG Lehnart, Cardiology and Pneumology, University 

Medical Centre Göttingen). 

 

2.2.7 Echocardiography 

Heart function of untreated, sham or TAC operated mice was characterized by 

echocardiography (Vevo 2100) using a 30 Hz transducer (MS-400 MicroScan Transducer). 

Untreated animals received echocardiography at the age of 3 and 6 months, whereas TAC 

and MI treated animals were characterized 8 and 12 weeks after surgery, respectively. The 

echocardiographic results were used to analyse the animal heart morphology and function: 

septum thickness, left ventricular enddiastolic diameter (LVEDD), left ventricular endsystolic 

diameter (LVESD), enddiastolic volume (EDV), endsystolic volume (ESV), heart frequency 

and heart weight to body weight ratio. These parameters were used to calculate 

characteristic variables such as ejection fraction (EF) and fractional shortening (FS). 

Echocardiography and data analysis were performed by the SFB service team as well was 

by Kirsten Koschel and Sabrina Wollborn (Cardiology and Pneumology, University Medical 

Centre Göttingen) in a blind test for the untreated and treated animals.  

 

2.2.8 Heart weight to body weight and heart weight to tibia length calculation 

Mice were euthanized and death was guaranteed by cervical dislocation. Mouse weight was 

determined before the heart was cut out and transferred into a petri dish filled with ice-cold 

PBS. Here, the aorta was connected to a 21G cannula filled with PBS to perfuse the heart 

until blood free. Heart weight was estimated and hearts were shock frozen for biochemical 

analysis. Tibia length was calculated using an electronic ruler. 

 

2.2.9 Cardiomyocyte isolation via Langendorff perfusion 

Adult ventricular cardiomyocytes were isolated via the Langendorff perfusion as previously 

described (Borner et al., 2011). Mice were euthanized and death was guaranteed by cervical 

dislocation. The heart was harvested by cutting the aorta and then quickly transferred into a 

petri dish filled with ice-cold PBS. Here, the aorta was connected to a 21G cannula filled with 

perfusion buffer. The heart was Langendorff perfused at 37°C with perfusion buffer (flow rate 

3.5 ml/min) for 3 min followed by perfusion with 30 mL digestion buffer. Afterwards, the atria 

were carefully excised and discarded, whereas the digested ventricles were dissected for 30 
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sec in 2.5 mL digestion buffer. To stop the digestion, 2.5 mL Stop buffer I were added to the 

cell suspension, which was then homogenized using a 1 mL syringe without a needle for 3 

min. 10 min after sedimentation, the cardiomyocyte pellet was transferred into Stop buffer II 

for recalcification. The recalcification process was as follows, with 4 min adaptation time 

between each step: 

50 µL CaCl2  10 mM  final concentration   62 µM                       

50 µL CaCl2  10 mM  final concentration 112 µM                    

100 µL CaCl2  10 mM  final concentration 212 µM 

30 µL CaCl2  100 mM final concentration      500 µM                                                      

50 µL CaCl2  100 mM final concentration    1000 µM 

After recalcification, the cardiomyocytes were plated onto laminin (Sigma) coated round 

glass coverslides (24 mm, Thermo Sientific) and incubated at 37°C and 5% CO2 until use. 

For immunoblot analysis, cardiomyocyte isolation was performed as described but with BSA 

free Stop buffer II. 

Lagendorff isolated rat cardiomyocytes were provided by Gudrun Müller from the cardiology 

department.  

 

2.2.10 FRET measurements in cardiomyocytes and data analysis 

Laminin coated coverslides with isolated cardiomyocytes were mounted in the imaging 

chamber. The cells were washed once with 300 µL of FRET buffer and 300 µL of fresh FRET 

buffer were added to the chamber. The different compounds to be used in the following 

imaging experiments were diluted in FRET buffer. For FRET measurements in paced 

cardiomyocytes, FRET buffer was replaced with Tyrode for Ca2+ measurements. FRET 

measurements were performed using an inverted fluorescent microscope and ImageJ 

software (Sprenger et al., 2012). CFP, the FRET donor, was excited at 440 nm using a 

CoolLED single-wavelength light emitting diode. The emitted light from the sample was split 

into CFP and YFP signals using a dual view and detected via a CCD camera (Figure 8). 

Cardiomyocytes with optimal sensor expression were selected using live fluorescent light. To 

avoid photobleaching of the FRET sensor, the fluorescent light was switched off immediately 

after finding an appropriate cell. An exposure time of 10 ms usually led to good signal-to-

noise ratio and images were acquired in CFP and YFP emission channels every 5 s. 300 µL 

of the desired compound solution were transferred into the chamber as soon as the FRET 

ratio reached a stable baseline. 
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FRET experiments in paced cardiomyocytes were performed at 1 Hz field stimulation and 20-

30 V but under the same conditions as described before.      

FRET imaging data were analysed offline using Origin 8.5 software and Excel. The single 

CFP and YFP intensities from each experiment were measured using ImageJ and copy-

pasted into an Excel or Origin spreadsheet to calculate the corrected FRET ratio. We 

corrected for the bleedthrough of the donor fluorescence (CFP) into the acceptor (YFP) 

channel, in our case 

Ratio = (YFP – 0.63 x CFP) / CFP.  

For more detailed description of the microscope setup and FRET analysis, please refer to the 

following literature (Sprenger et al., 2012).        

 

2.2.11 Quantitative real time PCR 

Heart tissue RNA was isolated using the RNeasy purification Kit, and subsequent cDNA 

synthesis was performed using the iScript cDNA Synthesis Kit according to manufacturer 

instructions. Standard genes for GAPDH (primer GAPDHFor and GAPDHRev) and 

phospholamban (primer PLNFor and PLNRev) were amplified using the following reaction 

mix: 

Figure 8. FRET microscope setup. (A) Overview of the FRET microscope setup. (B) The Cool 
LED light source is used for CFP excitation at 440 nm within the transgenic cardiomyocytes. The 
Dual View splits the emitted sample fluorescence into an acceptor channel (YFP) and a donor 
channel (CFP). Both signals are detected via a CCD camera and transferred to a computer that 
calculates the FRET ratio using ImageJ software. 
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wt cDNA 1:10         2.5 µl                 

H2O    33.125 µl            

5x GoTaq buffer   10.0   µl                  

dNTPs 10 mM       1.25   µl                 

PrimerFor (10 pmol/µl)   1.25  µl                 

PrimerRev (10 pmol/µl)   1.25   µl                 

GoTaq Polymerase    0.2   µl 

and PCR protocol: 

94°C  4 min         

 94°C  30 sec         

 55°C  30 sec         35x         

 72°C  40 sec         

 72°C  7 min 

Standards were purified using the Qiagen PCR Kit according to manufacturer instructions 

and eluted in 30 µL of buffer EB. Purity of the standards was assured by agarose gel 

electrophoresis of 2 µL standard eluate. Standard dilutions ranging from 100 pg/µl to 1 ag/µL 

were prepared in RNase free H2O. Quantitative real time PCR was conducted using the 

SYBR Green Super Mix for iQ and the iCycler according to the following protocol: 

95°C  3min         

 95°C   15 sec         

 55°C  10 sec     40x       

 72°C  15 sec         

 95°C  1min         

 55°C  1min         

 55-95°C +0.5°C/10 sec    80x  

Data were analysed using BioRad iQ5 software, and phospholamban mRNA levels were 

normalized to GAPDH mRNA levels of the same cDNA sample. 

 

2.2.12 Fractionation and immunoblot analysis 

To harvest the hearts for fractionation analysis, mice were euthanized, the thorax was cut 

open and the heart was excised at the aorta and quickly transferred into a petri dish filled 

with ice-cold PBS. Here, the aorta was connected to a 21G cannula filled with ice-cold PBS. 

The heart was perfused with ice-cold PBS until blood free and then shock frozen. Heart 
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tissue was processed using the Qproteome Cell Compartment Kit (Qiagen) according to 

manufacturer protocol and cytosolic and membrane fractions were subjected to 10-15 % 

SDS-PAGE and to immunoblotting.               

To analyse phospholamban phosphorylation under basal and various stimulated conditions, 

freshly isolated cardiomyocytes were sedimented in Stop buffer II without BSA and then 

incubated either with vehicle, 100 nM ISO, 100 nM BAY 60-7550, 10 μM cilostamide, 10 μM 

rolipram or 100 μM IBMX for 15 min at 37°C. To analyse specific protein compositions under 

healthy and diseased conditions, cardiomyocytes from untreated, sham and TAC animals 

were isolated and collected.              

Cell pellets were shock frozen, homogenized in homogenation buffer and quantified using 

BCA Protein Assay. 10-30 µg protein were diluted in homogenation buffer including 3xSDS 

stop buffer and loaded on 8-15 % SDS-PAGE modified from Laemmli (Laemmli, 1970), 

depending on the protein size, and transferred onto a nitrocellulose membrane according to 

Towbin (Towbin et al., 1979). Proteins were detected using the antibodies listed in Table 1 

and 2. Band densitometry analysis was performed using ImageJ software. 

 

2.2.13 Histology and morphometric analysis 

For histology and morphometric analysis, mice were euthanized, the thorax was cut open 

and the heart was excised at the aorta and quickly transferred into a chamber filled with ice-

cold PBS. Here, the aorta was connected to a 21G cannula filled with ice-cold PBS to 

perfuse the heart until blood free. The heart was fixed in 4% Roti Histofix at 4°C overnight. 

The fixed hearts were paraffin embedded and 5 μm heart cross sections were generated at a 

Microtom (Leica RM 2165). For the following applications, paraffin cross sections were 

dewaxed in xylol (20 min twice) and rehydrated with 6 subsequent decreasing ethanol series 

(100 % - 25 %, 5 min each step) and with Aqua dest.         

The hematoxylin-eosin stain of WT and TG heart sections was performed in the pathology 

department of the University Medical Center Göttingen using a standard automated 

procedure. Cell nuclei were stained thrice with hematoxylin (2 min each), and after 2 min 

washing the cytosol was stained twice using eosin (2 min each). After rehydration and 

mounting, heart sections were analysed using a Stemi 2000-C microscope binocular with 

associated AxioCam ICc1 and Axio Vision Software.           

To determine cardiomyocyte dimensions, WT and TG heart cross-sections were incubated 

with Wheat Germ Agglutinin (WGA, 75 μg/ μl) for 30 min in the dark, washed with PBS thrice, 

mounted with VectaShield and observed under a Axiovert 200 microscope. AxioVision 

software was used for image acquisition and cell diameters of 100 cells from each heart 

section were measured and analysed using ImageJ.            
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Immunostaining of TG Epac1-PLN heart cross sections was performed after heat induced 

epitope retrieval in citrate buffer (dilution 1:10 in Aqua dest.). After rehydration, heart sections 

were blocked wit 4% BSA in PBS for 1h at 37°C. Primary antibodies for SERCA2a and GFP 

(for Epac1-PLN detection) were used. The secondary antibodies were Alexa Fluor 633 and 

Alexa Fluor 514, respectively. For antibody dilution see Table 1 and 2. Antibody incubation 

was 1h at 37°C. After rehydration, the stained heart sections were mounted with 

VectaShield, and image acquisition was performed using confocal microscopy. 

 

2.2.14 Confocal Microscopy 

To analyse immunostained Epac1-PLN heart cross sections, confocal microscopy was 

performed using Zeiss LSM 710 NLO microscope equipped with a Plan-Apochromat 

x63/1.40 oil-immersion objective. Images were acquired for Alexa Fluor 514 (514 nm diode 

laser excitation) and Alexa Fluor 633 (633 nm diode laser excitation). ZEN 2010 software 

and Microsoft Office Picture Manager were used for image analysis.  

 

2.2.15 Calcium transients of single cardiomyocytes 

Freshly isolated cardiomyocytes were plated onto laminin coated glass coverslides and 

incubated with 1 μM Fura2-AM (Caffeine experiments) or 1 mM Fluo-3 (Ca2+ decay 

estimation) for 15 min at 37°C in Tyrode solution for Ca2+ measurements. After washing the 

cells thrice with Tyrode solution, myocytes were field stimulated at 1 Hz and 20-30 V until 

steady state was achieved, and then Ca2+ transients were recorded for 60 sec using the 

IonOptix system. For sarcoplasmic reticulum Ca2+ content estimation, 10 mM caffeine was 

added to the resting cardiomyocytes. To analyse changes in Ca2+ transients under beta 

adrenergic stimulation, cardiomyocytes were treated with 100 nM isoprenaline. F/F0 values in 

Fura2-AM experiments were calculated from the ratios of 510 nm emission light measured at 

340 and 380 nm excitations. Fluo3-AM loaded cardiomyocytes were excited at 506 nm and 

emission was measured at 526 nm. Data were analysed using the IonWizard software. 

 

2.2.16 PDE activity assay 

Freshly isolated cardiomyocytes were lysed and processed for in vitro measurement of 

cAMP-PDE hydrolysing activity following the standard method by Thompson and Appleman 

in presence of 1 µM cAMP substrate, as previously described (Thompson and Appleman, 
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1971). After sedimentation of the isolated cardiomyocytes in Stop buffer I, cells were washed 

with washing buffer and lysed in 500 µL homogenation buffer. Proteins were quantified using 

BCA Protein Assay. 30 µg protein were set to a total volume of 200 µl homogenation buffer 

containing PDE inhibitors. Contributions of individual PDE families were calculated from the 

effects of 100 nM BAY 60-7550 (PDE2), 10 µM cilostamide (PDE3), 10 µM rolipram (PDE4), 

and 100 µM IBMX (unselective PDE inhibitor).  For maximal cAMP breakdown, each sample 

was incubated with 200 µL reaction buffer for 10 min at 33°C. Reaction was terminated after 

addition of 200 µL Stop solution for 1 min at 95°C. The samples were incubated with 50 µg of 

Crotalus atrox snake venom for 20 min at 33°C to hydrolyse the 5‟-AMP. The samples were 

loaded onto columns containing 50 mg AG1-X8 resin for anion exchange chromatography to 

separate the adenosine. Quantification was performed by scintillation counting (MicroBeta2) 

in 96 well format (96 well plate for MicroBeta). Data were collected with the MicroBeta2 

Windows Workstation. 

 

2.2.17 Statistics 

Echocardiographic, morphometric, real time PCR, immunoblot, Ionoptix and FRET data were 

analysed using the Origin Pro 8.5 software (OriginLab Corporation, Northhampton, MA). 

Normal distribution was tested by the Kolmogorov-Smirnov test, and differences between the 

groups were analysed using one-way ANOVA or Mann-Whitney followed by Bonferroni‟s 

post-hoc test as appropriate at the significance level of 0.05. 
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3. Results 

 

3.1 Generation of Epac1-PLN construct 

In the first experiment, the previously generated pcDNA3.0 based Epac1-PLN FRET sensor 

constructs were tested regarding their FRET efficiency in transiently transfected HEK 293A 

cells. The truncated Epac1-PLN sensor (∆ PLN, Figure 9A) showed only relatively small 

changes in FRET upon β-adrenergic stimulation with isoprenaline (ISO) (Figure 9 B,C). On 

the other hand, the full length Epac1-PLN construct (Figure 9A) showed significantly larger 

FRET responses to β-adrenergic stimulation (Figure 9 B,C). Therefore, the full length Epac1-

PLN construct was used in further experiments and for the generation of TG animals. 

 

Figure 9. FRET responses of the full length PLN and truncated Epac1-PLN sensors. (A) Cartoon of 
the truncated ∆ PLN and the full length PLN FRET sensors. (B) Responses to cAMP stimulation 
with1µM isoproterenol (ISO) in transiently transfected HEK293A cells show higher signal amplitude for 
the full-length PLN construct. Quantification is in (C), shown are means± SE, n= 8-9 cells per group. * 
- significant difference at p<0.05. 

 

PLN is a phosphorylation target for PKA. To exclude that FRET changes in the Epac1-PLN 

construct are due to PKA modification of the sensor PLN, HEK cells were either transfected 

with full length PLN or the cAMP insensitive Epac1-PLN R279E mutant (Figure 10 A). Epac1-

PLN expressing cells showed the same FRET change after ISO stimulation independently of 

the presence of PKA inhibitor H-89. Besides, no FRET change was detected in the Epac1-

PLN R279E expressing cells (Figure 10 B, C). These results show that the FRET change in 
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the Epac1-PLN sensor truly represents cAMP binding to the Epac1-PLN construct rather 

than PKA associated sensor PLN phosphorylation artefacts.  

 

Figure 10. FRET responses of the Epac1-PLN under PKA inhibition and of the cAMP insensitive 
Epac1-PLN R279E mutant. (A) Cartoon of the Epac1-PLN and Epac1-PLN R279E FRET sensors. (B) 
Responses to cAMP stimulation with 1µM isoproterenol (ISO) in transiently transfected HEK293A cells 
show no significant differences in untreated and cells preincubated with the PKA inhibitor H-89 (10 µM 
for 10 minutes). Epac1-PLN R279E transfected HEK293A cells show no response to 1 µM ISO. 
Quantification is in (C), shown are means± SE, n= 8-12 cells per group. * - significant difference at 
p<0.05. 

 

After these control experiments in HEK293A, it was possible to start the generation of 

cardiomyocyte specific Epac1-PLN TG animals. Therefore, the full length pcDNA3.0 Epac1-

PLN sensor construct was subcloned into an α-MHC expression vector via XhoI/ KpnI double 

digestion (Figure 11 A). Epac1-PLN positive clones showed a ~2100 bp fragment 

(representing the 2127 bp Epac1-PLN coding sequence) on a 1 % agarose gel after control 

digestion (Figure 11 B). This α-MHC Epac1-PLN sensor construct was used for the 

generation of TG animals, expressing Epac1-PLN in cardiomyocytes. 
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3.2 Analysis of Epac1-PLN adenovirus 

The aim of this PhD thesis was to generate a TG mouse model expressing the Epac1-PLN 

FRET biosensor. In case of unexpected problems with TG mouse generation, it was 

important to have an alternative experimental system for the analysis of SERCA2a 

microdomain associated cAMP dynamics. Therefore, adenovirus expressing Epac1-PLN was  

 

 

 

 

 

 

Figure 11. The α-MHC Epac1-PLN construct. (A) Plasmid map of the α-MHC Epac1-PLN construct. 
The α-MHC promoter allows cardiomyocyte specific expression of the FRET sensor. (B) Control 
digestion of the Epac1-PLN clones with KpnI/ XhoI leads to a ~2100 bp DNA fragment (representing 
the 2127 bp Epac1-PLN coding sequence) on a 1% agarose gel.  

 

Figure 12. Epac1-PLN adenovirus. (A) Control digestion of the Epac1-PLN positive entry vector 
with EcoRI/ XhoI leads to a 1.4 kp DNA fragment on a 1% agarose gel. (B) Epifluorescent image of 
Epac1-PLN adenovirus transduced adult rat cardiomyocytes shows a striated sensor expression 
pattern. (C) Epac1-PLN adenovirus transduced adult rat cardiomyocytes respond to β-adrenergic 
stimulation with 100 nM isoprenaline (ISO) with a change in FRET ratio, indicating the functionality of 
the Epac1-PLN sensor in these cells. 
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generated using the Invitrogen Gateway® Cloning system. This adenovirus could be used for 

transduction of adult rat cardiomyocytes. When control digested with EcoRI/ XhoI, Epac1-

PLN positive entry clones showed a 1.4 kb fragment on a 1 % agarose gel (Figure 12 A).  

The positive entry clone was used for the generation of the adenoviral expression clone 

which was then transfected into HEK293A cells for Epac1-PLN adenovirus production. When 

analysed at the epifluorescence microscope, virus transduced adult rat cardiomyocytes 

showed an Epac1-PLN expression pattern that strongly resembled typical SERCA2a 

stainings (Figure 12 B). Thus, the adenoviral Epac1-PLN sensor seemed to be localised in 

the desired destination within the cell. β-adrenergic stimulation of the transduced 

cardiomyocytes with ISO led to FRET changes similar to those in transfected HEK293A cells 

(Figure 9 B), indicating that the adenoviral Epac1-PLN construct is functional in adult rat 

cardiomyocytes. However, because of the successful generation of the Epac1-PLN TG 

mouse line (see next section), the adenovirus approach was not further pursued within this 

PhD thesis. 

 

3.3 Generation and characterization of the transgenic Epac1-PLN mice 

To study cAMP dynamics under real time conditions in adult mouse ventricular 

cardiomyocytes, TG mice expressing the SERCA2a targeted Epac1-PLN sensor in adult 

myocardium (under the control of the α-MHC promoter, Figure 11) were generated. 

Pronuclear injections were performed at the Max Planck Institute for Experimental Medicine 

in Göttingen. The advantage of such a TG mouse model is that one can perform cAMP 

measurements in freshly isolated cardiomyocytes, excluding cultivation artefacts due to e.g. 

prolonged cell culture or adenoviral sensor transduction, thereby allowing the detection of 

cAMP dynamics under more physiological conditions. 

 

3.3.1 Generation of Epac1-PLN transgenic mice, sensor localisation and function 

Epac1-PLN TG mice were identified via standard genotyping PCR (Figure 13). 

 

 

 

Figure 13. Representative Genotyping PCR. Positive bands were detected at 340 bp. H2O served 
as a negative, Epac1-PLN plasmid DNA as a positive control. bp = basepairs 
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Two positive founder mice were obtained one of which showed good breeding performance 

and sensor expression in virtually all cardiomyocytes of the offspring animals.        

To confirm proper Epac1-PLN sensor localisation to the SERCA2a compartment, 

immunofluorescence analysis of TG heart cross sections of the offspring line were 

performed. Overlapping fluorescence signals for SERCA2a and Epac1-PLN were detected 

when analysed by confocal microscopy (Figure 14 A). Besides, immunoblot analysis of heart 

fractions of TG and WT animals revealed Epac1-PLN localisation only in the membrane 

fraction of TG hearts together with SERCA2a, but not in the cytosol. The sensor was double-

detected via an anti-GFP antibody and an anti-PLN antibody against the fluorophores and 

the PLN part of the sensor construct, respectively, at ~70 kDa (Figure 14 B). As mentioned in 

Figure 11, Epac1-PLN coding sequence is 2127 bp long, which should result in a ~77 kDa 

protein if the average amino acid size is supposed to be 110 Da. Therefore, it is assumed 

that the detected ~ 70 kDa band truly represents the Epac1-PLN sensor.   

               

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Epac1-PLN (E1-PLN) localisation and function. (A) Representative confocal image of 
immunostained transgenic E1-PLN heart cross-section. E1-PLN and SERCA2a colocalisation is 
confirmed by the intensity overlay of both fluorescent signals. (B) Whole heart fractions of wildtype 
(WT) and E1-PLN transgenic (TG) animals show E1-PLN monomer (~77 kDa) localisation exclusively 
in the membrane fractions. (C) Representative single YFP and CFP intensities and CFP/YFP ratio of 
E1-PLN cardiomyocytes upon stimulation with isoproterenol (ISO). An increase in the FRET ratio 
represents an increase in local cAMP.  
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To test the function of the Epac1-PLN sensor in TG cardiomyocytes, freshly isolated cells 

were treated with the β-adrenergic agonist ISO. A clear increase of the CFP/YFP ratio, 

indicative of an increase in local microdomain cAMP levels, was detected and proved the 

sensor functionality in the TG animals (Figure 14 C). 

 

3.3.2 Characterization of Epac1-PLN transgenic mice 

TG and WT animals were compared in context of heart morphology, function and physiology 

to identify possible alterations in TG animals associated with Epac1-PLN expression.         

WT and TG hearts showed no differences in heart-weight-to-body-weight (HW/BW) or heart-

weight-to-tibia-length (HW/TL) ratios at the age of 3 and 6 months (Figure 15 A). 

Furthermore, histological analysis revealed no alterations in cardiomyocyte dimensions of 

WGA-stained WT and TG heart cross section (Figure 15 B). Likewise, hematoxylin-eosin 

stainings also did not show any abnormalities in the TG Epac1-PLN hearts compared to 

those of WT littermates (Figure 15 C). 

Figure 15. Morphometric characterization of Epac1-PLN transgenic mice. (A) Heart-weight-to-
body-weight (HW/BW) and heart-weight-to-tibia-length (HW/TL) ratios at the age of 3 and 6 months 
do not show any abnormalities in the transgenic (TG) animals (means ± SE, n= 10-11 mice per 
group). (B) Diameter of TG Epac1-PLN cardiomyocytes was not altered compared to wildtype (WT) 
cells at the age of 3 and 6 months as investigated by WGA assay. Data are means ± SE from 3-5 WT 
and TG hearts with 100 cells counted per each section. (C) Representative hematoxylin and eosin 
stainings of heart cross sections at the age of 3 and 6 months. Scale bars are 1 mm.  
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Similar to endogenous PLN, Epac1-PLN (monomer ~77 kDa) was also able to form 

oligomeric complexes as well as to exist in a monomeric form within TG cardiomyocytes 

(Figure 16 A). Besides, β-adrenergic stimulation of WT and TG cardiomyocytes induced a 

PKA dependent phosphorylation at Serine-16 (PSer16) of the WT PLN and the TG sensor and 

endogenous PLN (Figure 16 B). PLN phosphorylation was analysed at the pentamer and 

sensor oligomer level. Interestingly, WT cells showed a significant increase in PLN 

phosphorylation, whereas the differences in the TG sensor and endogenous PLN were not 

significantly altered compared to control conditions without ISO (Figure 16 C). However, 

when endogenous and sensor PLN of the TG cardiomyocytes were analysed as a single 

entity, the differences between ISO stimulated and control cells were also significant (Figure 

16 D). This might indicate an interplay between endogenous and sensor PLN in the 

regulation of SERCA2a activity within TG cardiomyocytes after β-adrenergic stimulation. 

Taken together, these data strongly suggest that the Epac1-PLN sensor behaves like 

endogenous PLN and does not alter the physiology within the SERCA2a microdomain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Transgenic Epac1-PLN construct can form oligomers and becomes PKA 
phosphorylated. (A) Similar to wildtype (WT) PLN, immunoblot analysis of transgenic (TG) 
cardiomyocytes shows the ability of Epac1-PLN (monomers at ~77 kDa) to form oligomers. (B) 
Immunoblot analysis of WT and TG cardiomyocytes regarding PLN Serine-16 phosphorylation 
(PSer16) confirms PKA-dependent phosphorylation of WT PLN pentamers and TG Epac1-PLN 
oligomers upon stimulation with 100 nM of ISO. (C) Quantification of PSer16 in WT PLN and TG 
endogenous and sensor PLN (D) Quantification of WT PLN and TG endogenous+sensor PLN. 
Means ± SE, n=3 mouse hearts per group, * - significant differences at p<0.05 
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Besides PLN phosphorylation after β-adrenergic stimulation, it was also important to exclude 

an abnormal phosphorylation of the Epac1-PLN sensor under basal conditions which might 

be associated with a modified regulation of the SERCA2a microdomain. Therefore, 

immunoblot analysis of WT vs. TG cardiomyocytes under non-stimulated conditions were 

performed and investigated regarding PKA (PSer16) (Figure 17 A,B) and CaMKII (PThr17) 

(Figure 17 C,D) dependent PLN phosphorylation. No significant differences were detected in 

WT vs. TG total PLN phosphorylation patterns. 

 

 

 

 

 

 

 

 

 

 

 

To analyse in vivo heart dimensions and function, echocardiography of WT and TG animals 

was performed. No dramatic alterations were revealed, apart from an increase in contractility 

in TG hearts (Table 11). 

 

 

 

 

 

Figure 17. Basal PKA and CaMKII dependent PLN phosphorylation is not altered in transgenic 
(TG) vs. wildtype (WT) cardiomyocytes. (A,B) Immunoblot analysis of WT vs. TG Epac1-PLN 
cardiomyocytes revealed no significant differences in PKA dependent phosphorylation at Serine-16 
(PSer16) in WT vs. TG cardiomyocytes. (C,D) Immunoblot analysis of WT vs. TG Epac1-PLN 
cardiomyocytes revealed also no significant differences in CaMKII dependent phosphorylation at 
Threonine-17 (PThr17) in WT vs. TG cardiomyocytes under basal conditions. Means ± SE, n=3 mouse 
hearts per group, * - significant differences at p<0.05. 
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Table 11.  Echocardiographic phenotyping of the wildtype vs. Epac1-PLN transgenic mice at 3 months 
of age. Shown are means ± SE, * - significant differences at p<0.05. LV-EDD, left ventricular end-
diastolic dimension; LV-ESD, left ventricular end-systolic dimension; FS, fractional shortening; FAS, 
fractional area shortening; EF, ejection fraction; HR, heart rate; n, number of mice analysed per group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because Epac1-PLN sensor expression increases the natural amount of PLN in the TG 

cardiomyocytes, quantitative real-time PCR was performed to quantify PLN overexpression 

in TG Epac1-PLN hearts. It revealed a two-fold overexpression of PLN in Epac1-PLN hearts. 

Interestingly, SERCA2a expression in TG hearts analysed by immunoblot was also 

increased, ultimately leading to unchanged SERCA2a/PLN ratio (Figure 18 A-D).     

Due to these alterations in protein expression, it was crucial to analyse calcium (Ca2+) 

handling within the TG cardiomyocytes. Ca2+ decline kinetics ( Ca
2+) in beating 

cardiomyocytes, as a measure of SERCA2a activity, showed no significant differences 

between WT and TG cardiomyocytes in absence and presence of ISO stimulation. 

Furthermore, SR Ca2+ load, determined by caffeine treatment of the cardiomyocytes, was 

unchanged (Figure 18 E,F) in the TG vs. WT cells. These results indicate that Ca2+ handling 

in the TG Epac1-PLN cardiomyocytes is not altered compared to WT. 

 

 

 

Parameter 

Genotype 

Wildtype Transgenic 

LV-EDD (mm) 

LV-ESD (mm) 

Septum (mm) 

FS (%) 

FAS (%) 

EF (%) 

HR 

n 

4.1 + 0.1 

2.7 + 0.1 

0.82 + 0.02 

33.2 + 1.0 

54.2 + 1.2 

60.0 + 1.1 

500 + 18 

10 

3.9 + 0.1 

2.4 + 0.1* 

0.94 + 0.05* 

38.3 + 0.9* 

61.8 + 1.3* 

66.7 + 1.2* 

462 + 16 

9 
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To further characterize the protein composition of Epac1-PLN expressing cardiomyocytes, 

immunoblot analysis of TG and WT cardiomyocyte lysates was performed. Besides 

SERCA2a (Figure 18 B), further important Ca2+ handling proteins, such as the NCX and the 

LTCC (CaV1.2 as a subunit) were analysed. Surprisingly, NCX expression seemed to be 

slightly increased in the TG cardiomyocytes, whereas no significant alterations in CaV1.2 

expression were detected (Figure 19).  

Figure 18. PLN and SERCA2a expression and calcium cycling. (A) Quantitative real time PCR 
analysis showed a ~2-fold overexpression of PLN in Epac1-PLN hearts (means ± SE, n=4 mouse 
hearts per group). (B-D) Immunoblot analysis revealed an increase in SERCA2a protein expression 
but unchanged PLN/SERCA2a ratio (means ± SE, n=3 mouse hearts per group, * - significant 
differences at p<0.05 ) (E) Quantification of Ca2+ transients in beating cardiomyocytes loaded with 
Fluo-3 show no dramatic changes in Ca2+-decay time constant ( Ca

2+) in transgenic (TG) 
cardiomyocytes at basal and ISO (100 nM) stimulated states compared to wildtype (WT) (means ± 
SE, n=28-56 cells from 2 hearts per group). (F) Analysis of sarcoplasmic reticulum (SR)-calcium load 
by the addition of caffeine to resting cardiomyocytes loaded with Fura-2 demonstrates no changes in 
TG compared to WT cells (means ± SE, n=18-19 cells from 2 mouse hearts per group). 
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PDE4D is believed to play a crucial role for the regulation of cAMP dynamics within the 

SERCA2a microdomain and was not differentially expressed in TG vs. WT cardiomyocytes. 

Besides, no significant differences in the expression of PDE2 and PDE4D8, which has been 

shown to associate with the β1-AR, were detected (Figure 20). 

 

 

PKA is a crucial mediator between cAMP and its different downstream effectors. Therefore, it 

was important to analyse possible alterations in PKA-R subunit expression levels between 

WT and Epac1-PLN TG cardiomyocytes. This was also done via immunoblot analysis of TG 

vs. WT cardiomyocytes, and no difference in expression was detected (Figure 21). 

Figure 19. Immunoblot analysis 
of wildtype (WT) vs. Epac1-PLN 
transgenic (TG) cardiomyocytes 
regarding NCX and CaV1.2 
expression. (A-D) Immunoblot 
analysis of WT vs. TG Epac1-PLN 
cardiomyocytes revealed no 
significant differences in sodium 
calcium exchanger (NCX) or L-
type calcium channel (CaV1.2) 
expression (means ± SE, n=3 
mouse hearts per group, * - 
significant differences at p<0.05). 

 

Figure 20. 
Immunoblot analysis 
of wildtype (WT) vs. 
Epac1-PLN 
transgenic (TG) 
cardiomyocytes 
regarding PDE 
expression. (A-D) 
Immunoblot analysis 
of WT vs. TG Epac1-
PLN cardiomyocytes 
revealed no significant 
differences in total 
PDE4D, PDE4D8 and 
PDE2 expression 
(means ± SE, n=3-4 
mouse hearts per 
group, * - significant 
differences at p<0.05). 
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All these results indicate that the TG expression of the Epac1-PLN FRET biosensor does not 

dramatically affect cardiomyocyte function and protein expression patterns of the TG 

animals. 

 

3.4 FRET measurements in Epac1-camps vs. Epac1-PLN cardiomyocytes 

To investigate the molecular mechanisms that confine the SERCA2a microdomain from the 

bulk cytosol, cAMP FRET measurements in freshly isolated adult cardiomyocytes from 

previously established Epac1-camps (Calebiro et al., 2009) (cytosolic cAMP FRET sensor) 

and Epac1-PLN (SERCA2a targeted cAMP FRET sensor) TG mice were performed. 

Differences in cAMP dynamics should give a deeper insight into the regulation and 

maintenance of subcellular cAMP microdomains.   

 

3.4.1 FRET measurements in Epac1-camps and Epac1-PLN cardiomyocytes reveal 
PDE dependent β-adrenergic receptor (β-AR) signaling 

In the first series of experiments, FRET recordings under selective stimulations of β1- and β2-

ARs were conducted to analyse contributions of individual β-AR subtypes into cAMP signals. 

Interestingly, strong β1-AR-cAMP signals were present in both the SERCA2a microdomain 

and the bulk cytosol (Figure 22 A,B), while much smaller β2-AR-cAMP responses were 

detectable only in the cytosol and barely “reached” the SERCA2a microdomain (Figure 22 

Figure 21. Immunoblot 
analysis of wildtype (WT) 
vs. Epac1-PLN transgenic 
(TG) cardiomyocytes 
regarding PKA expression. 
(A-C) Immunoblot analysis of 
WT vs. TG Epac1-PLN 
cardiomyocytes revealed no 
significant differences in PKA-
RI and PKA-RIIα expression 
(means ± SE, n=4 mouse 
hearts per group, * - 
significant differences at 
p<0.05). 
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C,D). Unexpectedly, the relative amplitudes of 100 nM isoproterenol (ISO) induced β-

adrenergic FRET change and selective β1-AR responses measured with Epac1-PLN were 

higher than the signals recorded in the bulk cytosol via Epac1-camps (Figure 22 E). This 

difference was still present when using even more saturating ISO concentrations of 300 nM 

(Figure 22 F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. β1-AR stimulation induces stronger FRET changes in the SERCA2a compartment 
compared to the bulk cytosol. (A,B) Representative FRET traces from Epac1-camps and Epac1-
PLN cardiomyocytes upon β1-AR-selectively stimulation (100 nM ISO plus 50 nM of the β2-AR blocker 
ICI 118551). (C,D) Representative FRET traces from Epac1-camps and Epac1-PLN myocytes after 
β2-AR-selective stimulation (100 nM ISO plus 100 nM of the β1-AR blocker CGP-20712A). β2-AR had 
almost no effect on cAMP in the SERCA2a compartment. Maximal stimulation of adenylyl cyclase 
was achieved by 10 µM of forskolin and the maximal FRET response was induced by the unselective 
PDE inhibitor IBMX (100 µM). (E) Quantification of the FRET experiments shown in A-D. β-AR and 
selective β1-AR stimulations led to stronger FRET responses in the SERCA2a microdomain 
compared to bulk cytosol. (F) Quantification of FRET experiments in Epac1-camps and Epac1-PLN 
cardiomyocytes after β-adrenergic stimulation with 300 nM ISO. Means ± SE, n=8-10 cells from 3 
mouse hearts per condition.   
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The FRET experiments were performed in resting cardiomyocytes devoid of electrical field 

stimulation to avoid signal artefacts due to movement of the cell and to increase cell survival 

during the measurements. However, in vivo, mouse hearts show a contraction rate of 500-

600 bpm including a constant and rapid Ca2+ cycling within each cardiomyocyte during each 

contraction cycle. To test if these rapid changes in Ca2+ concentration in the SERCA2a 

microdomain under electric field stimulation might lead to different FRET results than in 

resting cells, β-adrenergic responses in resting and paced Epac1-PLN cardiomyocytes were 

analysed. However, there were no significant differences detected (Figure 23), justifying the 

use of resting cardiomyocytes in the following FRET experiments. 

 

 

 

 

 

 

 

 

To rule out the possibility that differences in cytosolic and SERCA2a microdomain specific 

FRET signals are due to different sensor affinities, sensitivities of both sensors to cAMP in 

presence of the adenylyl cyclase inhibitor MDL12,330A were directly compared and found a 

slightly lower affinity of the targeted Epac1-PLN (EC50 = 5.3 ± 1.1 μM) sensor compared to 

the cytosolic Epac1-camps (EC50 = 1.8 ± 0.3 μM) (Figure 24 A). Besides, stimulation of 

Epac1-camps or Epac1-PLN cells with increasing ISO concentrations revealed enhanced 

sensitivity of Epac1-PLN to ISO (Figure 24 B). These results might imply that the differences 

between the β-AR responses in the SERCA2a microdomain and the bulk cytosol are even 

bigger than detected. 

 

 

 

 

Figure 23. β-AR stimulation in Epac1-PLN 
cardiomyocytes under resting and field stimulated 
conditions. Quantification of FRET experiments in 
Epac1-PLN cardiomyocytes after β-adrenergic 
stimulation with 100 nM ISO under resting and electric 
field stimulated conditions (paced at 1Hz, 20-30V). No 
significant differences between the two groups were 
detected. Means ± SE, n=6 cells per condition from the 
same mouse heart. 
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Using these in vitro calibration curves (Figure 24) and a previously described protocol 

(Borner et al., 2011), FRET ratios from Figure 22 could be converted into absolute cAMP 

concentrations. ISO stimulated cAMP values in the SERCA2a microdomain were about 4-

fold higher as compared to the bulk cytosol (3.9 ± 0.4 µM in the cytosol vs. 15.3 ± 2.8 µM at 

SERCA2a, respectively, means ± SE, p<0.01).               

To understand the mechanism behind this cAMP channelling between the β-AR and the 

SERCA2a microdomain, TG cardiomyocytes were pre-treated with different PDE inhibitors 

and then stimulated with a sub-maximal dose of ISO (Figure 25). Pre-inhibition of PDE3 or 

PDE4 alone did not compensate ISO induced differences in FRET change between the 

cytosol (Epac1-camps sensor) and the SERCA2a microdomain (Epac1-PLN sensor) (Figure 

25 A,B). Interestingly, treatment with combined PDE3 and PDE4 inhibition abolished the 

differences in β-adrenergic responses (Figure 25 C). Besides, unselective PDE inhibition with 

3-isobutyl-1-methylxanthin (IBMX) also blunted the difference in ISO induced FRET 

responses between the cytosol and the SERCA2a microdomain (Figure 25 D,E). These 

Figure 24. Sensitivity of Epac1-camps and Epac1-PLN to cAMP and increasing isoproterenol 
(ISO) concentrations. (A,B) Representative FRET traces In Epac1-camps and Epac1-PLN 
cardiomyocytes treated with increasing concentrations of the membrane-permeable cAMP analogue 
8-Br-2‟-O-Me-cAMP-AM (having the same affinity for Epac1 as cAMP but being resistant to 
degradation via PDEs). (C) Concentration-response dependencies for 8-Br-2‟-O-Me-cAMP-AM 
measured with Epac1-camps (EC50 = 1.8 ± 0.3 μM) and Epac1-PLN (EC50 = 5.3 ± 1.1 μM) 
transgenic cardiomyocytes (n=8-11 cells from 2-3 mice each). Measurements were performed in the 
presence of the adenylyl cyclase inhibitor MDL12,330A (100 µM). (D) Stimulation of Epac1-camps or 
Epac1-PLN cells with increasing ISO concentrations reveals enhanced sensitivity of Epac1-PLN to 
ISO (n=6 cells from 2-3 mouse hearts).  
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results suggest that two PDEs act in concert to facilitate the direct receptor-microdomain 

communication between membrane-localised β1-AR and the SERCA2a-associated 

microdomain. These data also show that the targeted sensor and the new mouse model can 

be used to monitor the local, microdomain-specific pool of cAMP which is different from the 

cAMP levels measured in the bulk cytosol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. The difference between Epac1-camps and Epac1-PLN in the magnitude of β-AR-
cAMP signals is abolished after PDE pre-inhibition. (A,B,C) Quantification of FRET 
experiments in Epac1-camps (cytosolic sensor) and Epac1-PLN (SERCA2a specific sensor) 
cardiomyocytes pre-treated with PDE3- (cilostamide, 10µM) and PDE4- (rolipram, 10µM) 
inhibitors and subsequently with a sub-maximal dose of isoproterenol (ISO, 1nM) for β-AR 
stimulation. (D) Representative FRET traces from Epac1-camps and Epac1-PLN transgenic 
cardiomyocytes pre-treated with the unselective PDE inhibitor IBMX (100 μM). Forskolin (10 μM) 
was used to achieve complete adenylyl cyclase activation at the end of each experiment. (E) 
Quantification of FRET experiments shown in D. Means ± SE, n=10-16 cells from 3-4 mouse 
hearts per condition.  * - significant differences at p<0.05.  
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3.4.2 PDE profiles after β-adrenergic stimulation in Epac1-camps and Epac1-PLN 
cardiomyocytes analysed by FRET 

PDEs are most important for shaping cAMP dynamics within cardiomyocytes, especially after 

β-adrenergic stimulation. To investigate which PDE family plays the predominant role in the 

control of β-AR cAMP signal termination within the cytosol vs. the SERCA2a compartment, 

freshly isolated cardiomyocytes from Epac1-camps (cytosolic sensor) and Epac1-PLN 

(SERCA2a targeted sensor) mice were treated with ISO and subsequently with several PDE 

specific inhibitors (Figure 26 A,B). As appropriate PDE1 and PDE8 specific inhibitors are still 

lacking and PDE2-4 represent the predominant PDE families in the heart, the following 

experiments focussed on PDE2, PDE3 and PDE4 inhibition.     

Figure 26. PDE4 plays the predominant role for cAMP degradation after β-AR stimulation in 
both the cytosol and the SERCA2a compartment. (A,B) Representative FRET traces of Epac1-
camps and Epac1-PLN cardiomyocytes after β-AR stimulation with isoprenaline (ISO) and 
subsequent PDE4 inhibition with rolipram (Roli). IBMX is used to induce total PDE inhibition. (C) 
Quantification of PDE inhibitor experiments after β-AR stimulation revealed significantly higher 
response to ISO in the SERCA2a compartment compared to the bulk cytosol leading to 
significantly higher ISO-PDE inhibitor percentage in the SERCA2a compartment. To circumvent 
this fact, PDE inhibition was quantified after ISO stimulation (D) showing a significantly higher 
PDE4 contribution to cAMP hydrolysis in the bulk cytosol compared to the SERCA2a 
compartment. However, PDE4 also plays the predominant role in the SERCA2a microdomain. 
Means ± SE, n=10-12 cells from 3 mouse hearts per condition.  * - significant differences at 
p<0.05. Substance concentrations: ISO 100 nM, IBMX 100 µM, BAY 60-7550 100 nM (PDE2 
inhibition), cilostamide 10 µM (PDE3 inhibition), rolipram 10 µM (PDE4 inhibition). 

 

See Figure 3F for quantification. 
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ISO stimulation led to a significantly higher cAMP-FRET response in the SERCA2a 

microdomain compared to the bulk cytosol (Figure 26 C, Figure 22). To avoid imprecise 

quantification of PDE contributions (Figure 26 C), only the percentage of individual PDE 

inhibitor effects, without the ISO portion, from the total PDE inhibition by the unselective 

inhibitor IBMX was quantified (Figure 26 D). In this case, the contribution of PDE4 after β-

adrenergic stimulation was significantly higher in the cytosol vs. the SERCA2a compartment. 

 

3.4.3 Basal PDE profiles in Epac1-camps and Epac1-PLN cardiomyocytes analysed by 
FRET 

PDEs have been shown to shape subcellular cAMP gradients after β-AR stimulation and to 

segregate individual subcellular cAMP microdomains from the bulk cytosol. In the next step, 

FRET analysis of PDE contributions under basal conditions were performed, to identify PDE 

families crucial for confining the SERCA2a compartment in absence of β-adrenergic 

stimulation and for regulating the access of cytosolic cAMP pools to the microdomain. 

Therefore, TG cardiomyocytes were treated with several specific PDE inhibitors without ISO 

prestimulation. Almost no changes in the FRET ratio of Epac1-camps expressing 

cardiomyocytes upon inhibition of any PDE family was detected, whereas a significantly 

higher contribution to cAMP degradation by PDE3 and especially PDE4 was detected in the 

SERCA2a compartment compared to the cytosol (Figure 27 A-E) . Immunoblot analysis of 

freshly isolated WT cardiomyocytes showed that these PDE inhibitors could increase PLN 

phosphorylation when applied without ISO pre-stimulation (Figure 27 F). These results 

confirmed that the FRET experiments correlated well with the PKA dependent 

phosphorylation of PLN and that PDE3 and 4 are involved in functional segregation of the 

SERCA2a microdomain from the bulk cytosol. 
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3.5 FRET measurements in Epac1-camps vs. Epac1-PLN cardiomyocytes after TAC 
surgery 

To directly address the hypothesis that alterations in subcellular cAMP dynamics are a 

molecular hallmark of cardiac disease, transverse aortic constriction (TAC) surgery in Epac1-

camps (cytosolic sensor), Epac1-PLN (SERCA2a targeted sensor) as well as in WT animals 

Figure 27. PDE contribution to cAMP hydrolysis under basal conditions. (A,B) 
Representative FRET traces of Epac1-camps and Epac1-PLN transgenic cardiomyocytes after 
basal PDE3 (cilostamide, Cilo) and (C,D) PDE4 (rolipram, Roli) inhibition. IBMX inhibits multiple 
PDEs, and isoprenaline (ISO) stimulates the β-adrenergic response leading to maximal FRET 
change. (E) Quantification of FRET experiments uncovered PDE3 and PDE4 as the PDE families 
crucial for confining the SERCA2a compartment from the bulk cytosol. Means ± SE, n=9-13 cells 
from 3-4 hearts per condition.  * - significant differences at p<0.05 (F) Stimulation of freshly isolated 
wildtype cardiomyocytes with vehicle, PDE inhibitors (BAY 60-7550, PDE2 inhibition; Cilo, PDE3 
inhibition; Roli, PDE4 inhibition; IBMX, total PDE inhibition) or ISO for 15 min. PKA dependent PLN 
phosphorylation (PSer16) increased especially after PDE3 and PDE4 inhibition. Bar graphs quantify 
the immunoblot results. Means ± SE, n=8-10 mouse hearts per condition.  * - significant differences 
at p<0.05. Substance concentrations were as in Figure 26. 

 

See Figure 3F for quantification. 
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was performed to induce cardiac hypertrophy. Eight weeks after TAC, heart function was 

significantly decreased in TAC vs. sham control group as measured by echocardiography 

(Table 12). 

 

Besides, TAC surgery did not lead to any visible alteration of Epac1-PLN sensor localisation 

in TG heart cross sections (Figure 28). 

 

 

Parameter 

Wildtype Epac1-PLN transgenic Epac1-camps transgenic 

sham TAC sham TAC sham TAC 

Gradient(mm Hg) 

FS (%) 

FAS (%) 

EF (%) 

HW/BW (mg/g) 

AWThd (mm) 

LV-EDD (mm) 

HR 

n 

3.9 + 0.5 

34.6 + 1.5 

55.4 + 1.4 

60.8  + 1.2 

4.2 + 0.3 

0.79 + 0.02 

3.8  + 0.1 

498 + 21 

5 

76.2 + 7.1* 

27.3 + 2.2* 

46.1  + 3.2* 

52.2 + 2.9* 

6.6 + 0.4* 

0.97 + 0.04* 

4.0 + 0.1* 

512 + 9 

7 

6.6 + 2.2 

41.3 + 5.0 

62.7 + 5.4 

68.2 + 5.2 

4.6 + 0.6 

0.85 + 0.13 

4.0 + 0.3 

389 + 57 

13 

92.6 + 22.6* 

28.5 + 5.6* 

44.0 + 10.1* 

51.6 + 8.1* 

6.6 + 1.1* 

1.09 + 0.19* 

4.1 + 0.3 

422 + 52 

16 

4.9 + 1.7 

31.3 + 7.4 

45.5 + 7.7 

51.5 + 7.8 

4.4 + 0.4 

0.81 + 0.07 

4.1 + 0.3 

481 + 45 

7 

77.2 + 9.1* 

22.7 + 6.2* 

36.5 + 8.9 

42.8 + 7.8 

6.8 + 1.4* 

1.02 + 0.17* 

4.4 + 0.1* 

466 + 39 

8 

Table 12.  Echocardiographic phenotyping of wildtype, Epac1-PLN and Epac1-camps 
transgenic mice 8 weeks after TAC vs sham surgery. AWThd, anterior wall thickness in diastole. 
HW/BW, calculated heat-to-body-weight ratio. All other parameters were as described in the legend 
for Table 11. 

Figure 28. Epac1-PLN localisation is not altered in TAC mice. Confocal image of a representative 
immunostained transgenic Epac1-PLN heart cross section 8 weeks after TAC surgery. Epac1-PLN 
and Serca2a showed proper colocalisation as demonstrated by the fluorescence intensity overlay. 
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Eight weeks after surgery, cardiomyocytes of sham and TAC treated animals were isolated 

and used for the following experiments.         

 

3.5.1 PDE contributions after TAC induced hypertrophy in the bulk cytosol vs. the 
SERCA2a compartment. 

FRET experiments in diseased cardiomyocytes after β-adrenergic stimulation with ISO and 

subsequent treatment with various PDE inhibitors revealed that the strong effects of the 

PDE4 family in the bulk cytosol (Epac1-camps sensor) were significantly decreased after 

TAC (Figure 29 A,C,E). 

 

Figure 29. Contributions of 
PDEs to cAMP hydrolysis 
after β-AR stimulation in 
sham and TAC 
cardiomyocytes. (A,C) 
Representative FRET traces 
from sham and TAC 
cardiomyocytes expressing 
Epac1-camps or (B,D) Epac1-
PLN, treated with 1 nM ISO for 
submaximal β-AR stimulation 
and subsequently with PDE4 
inhibitor rolipram (Roli, 10 µM) 
or PDE2 inhibitor (BAY 60-
7550, 100 nM), respectively. 
(E) Quantification of cytosolic 
(Epac1-camps) FRET 
experiments revealed a 
significant decrease of PDE4 
contribution after TAC. (F) 
Quantification of SERCA2a 
specific (Epac1-PLN) FRET 
experiments revealed a 
significant increase of PDE2 
contribution in TAC cells, while 
other PDEs were not affected. 
PDE3 was inhibited by 10 µM 
cilostamide. (G) Comparison of 
the magnitudes of ISO 
responses measured with both 
sensors in an experiment 
performed as described in 
Figure 22E. These data argue 
for the loss of receptor-
microdomain communication 
after TAC. Means ± SE, n=9-
12 cells from 3-4 mouse hearts 
per condition. * - significant 
differences at p<0.05.  
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This was in line with a previously described reduction of the overall cytosolic PDE4 activity in 

hypertrophied and failing hearts (Abi-Gerges et al., 2009). In sharp contrast, the PDE4 

inhibitor effects in the SERCA2a microdomain (Epac1-PLN sensor) were unchanged after 

TAC. Instead, there was a significant increase in PDE2 contribution to local cAMP 

degradation (Figure 29 B,D,F).          

PDEs seem to be important for the communication between β1-AR and the SERCA2a 

microdomain (Figure 25). Therefore, the next step was to test whether the change in 

microdomain-specific PDE-dependent effects after TAC might affect this communication. 

Sham cells were treated with 100 nM ISO, which led to a stronger FRET change in the 

SERCA2a microdomain compared to the bulk cytosol, as expected (Figure 29 G and Figure 

22). Since the selective β2-AR stimulation only induced very small FRET changes in the 

previous experiments (Figure 22), one can assume that the observed FRET changes were 

almost exclusively β1-AR dependent. Interestingly, the TAC cells did no longer show a 

difference between cytosolic (Epac1-camps sensor) and SERCA2a microdomain (Epac1-

PLN sensor) specific responses to ISO, suggesting that the β1-receptor-microdomain 

communication is dramatically impaired in cardiac hypertrophy (Figure 29 G).  

 

 

 

 

 

 

 

 

 

 

 

Figure 30. TAC-associated changes in cAMP hydrolysis under basal conditions. 
Representative FRET traces from sham (A) or TAC (B) Epac1-PLN cardiomyocytes stimulated with 
the PDE4 inhibitor rolipram (Roli) under basal conditions before maximal stimulation with IBMX and 
ISO. (C) Quantification of FRET experiments in Epac1-PLN cardiomyocytes revealed a significant 
decrease of PDE4 contribution to basal cAMP hydrolysis in TAC cells. (D) Quantification of FRET 
experiments in Epac1-camps cardiomyocytes did not show any change in PDE inhibitor effects. 
Means ± SE, n=7-17 cells from 3-5 mouse hearts per condition. * - significant differences at p<0.05. 
Compound concentrations were as in Figure 26. 
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Surprisingly, basal PDE inhibition in Epac1-camps TAC vs. sham cardiomyocytes did not 

show any significant differences in any of the tested PDE families (Figure 30 D) whereas 

basal PDE4 inhibition in Epac1-PLN TAC cardiomyocytes led to a significant decrease of 

FRET change (Fig. 30 A-C).                                                               

However, in contrast to the FRET data, PDE activity assays in lysates from WT 

cardiomyocytes did not reveal any changes in whole-cell PDE activities in TAC vs. sham 

cardiomyocytes (Figure 31 A). Furthermore, PDE protein expression levels were not altered 

after TAC (Figure 31 B,C). These results might imply that alterations of PDE activity at the 

local microdomain-specific rather than at the whole-cell level occur at this stage of cardiac 

hypertrophy. Therefore, these changes can be detected only by the targeted FRET sensor 

approach, as in contrast to cytosolic sensors and classical biochemical techniques. 

 

 

 

 

 

 

 

 

 

 

 

  

3.5.2 Calcium handling in TAC cardiomyocytes  

Immunoblot analysis of WT healthy and diseased cardiomyocytes revealed a tendency 

towards decreased SERCA2a expression levels in TAC vs. sham cells (Figure 32 A). This 

decreased SERCA2a expression was accompanied by significantly slower Ca2+ decline 

kinetics ( Ca
2+), as a measure of SERCA2a activity in beating cardiomyocytes (Figure 32 B), 

Figure 31. Whole-cell PDE activity and PDE protein levels are not significantly altered in TAC 
vs. sham mice. (A) cAMP-PDE activities measured in wildtype cardiomyocyte lysates using in vitro 
PDE activity assays were not significantly different in TAC vs. sham cells (Means ± SE ,n=2-3 mice 
per group). (B) Immunoblot analysis of PDE4D  and PDE2A protein levels in wildtype cardiomyocytes 
(C) Immunoblot quantifications showed no significant alterations of PDE4D and PDE2A protein levels 
in TAC vs. sham cells (Means ± SE ,n=3 hearts per group). 
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suggesting an impaired SERCA2a activity in diseased hearts which cannot be fully 

compensated by increased local cAMP levels. 

  

 

 

 

 

 

 

 

 

 

 

3.6 Influence of calcium on global cAMP FRET signals 

Many research groups use FRET based sensors to study cAMP signals in cells like 

cardiomyocytes. To enhance cell survival and to avoid signalling artefacts due to contraction, 

these measurements are usually performed under resting conditions. To study the influence 

of cytosolic Ca2+ fluctuations associated with cardiomyocyte contraction on cAMP dynamics 

detected by FRET, we measured cytosolic cAMP responses in resting and electrical field 

stimulated Epac1-camps cardiomyocytes. The pacing protocol led to proper Ca2+ transients 

in freshly isolated WT cardiomyocytes loaded with Fura-2 (Figure 33 A) but no differences in 

basal FRET ratio intensity were detected between resting and paced Epac1-camps 

cardiomyocytes (Figure 33 B). 

In the first step, the effects of contraction on AC activity detected by FRET in Epac1-camps 

cardiomyocytes were analysed. The cells were stimulated either with ISO to increase the β-

AR dependent cyclase activity (Figure 33 C) or with the direct AC activator forskolin (Figure 

Figure 32. Reduced SERCA2a expression and delayed calcium (Ca2+) transient decay in TAC 
cells. (A) Immunoblot analysis of SERCA2a protein levels in cardiomyocytes revealed a tendency 
towards lower SERCA2a protein amounts in wildtype TAC vs. sham cells (n=3 hearts per group). (B) 
Ca2+ transient measurements in beating wildtype cardiomyocytes loaded with Fura-2 revealed an  
increased Ca2+-decay time constant ( Ca

2+) and thus, impaired diastolic calcium reuptake. Means ± 
SE, n=26-30 cells from 3 hearts per group, * - significant difference at p<0.05.  
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33 E). These stimulating agents both led to an increase in cAMP, shown by an increase in 

the FRET signal which was comparable in its amplitude in resting and paced 

cardiomyocytes. Upon inhibition of the major murine cAMP-hydrolysing PDE4 family, the 

cytosolic cAMP levels increased even further, while the subsequent addition of the non-

selective PDE inhibitor IBMX had only minor additional effects. No significant difference 

between control and paced cardiomyocytes regarding PDE4 contribution to total PDE 

inhibition were detected, regardless of whether we stimulated them with ISO or with forskolin 

(quantifications shown in Figure 33 D and F, respectively). These data suggest that rapid 

changes in intracellular Ca2+ during contraction do not significantly affect the AC derived 

cAMP detection via FRET.  

 

 

 

 

 

 

 

 

 

 

 

Figure 33. cAMP dynamics in adult mouse ventricular cardiomyocytes upon treatment with 
cAMP elevating reagents and PDE4 inhibition. (A) Representative calcium traces in Fura-2 
loaded WT cardiomyocytes under resting conditions and upon electric field stimulation at 1 Hz with 
20-30 V, respectively. (B) Pacing does not lead to altered basal FRET ratios between resting and 
field stimulated Epac1-camps cardiomyocytes. (C) Representative FRET traces from Epac1-camps 
cardiomyocytes stimulated with the β-AR agonist isoproterenol (ISO, 100 nM) or (E) the direct AC 
activator forskolin (10 µM) which both lead to an increase of cAMP visualized as an increase in the 
FRET ratio. Inhibition of PDE4 by rolipram (Roli, 10µM) strongly enhances this effect, whereas the 
unspecific PDE inhibitor 3-Isobutyl-1-methylxanthin (IBMX, 100µM) has only little additional effect 
after rolipram application. (D) and (F) Quantification of FRET results reveal no significant differences 
in FRET changes between control and paced cardiomyocytes. Shown are the means ± SE (n=6 
cells from 3 mouse hearts per condition; * - significant difference at p<0.05)  

 

 

 

http://www.google.de/url?sa=t&rct=j&q=AppliChem+IBMX&source=web&cd=1&ved=0CDcQFjAA&url=http%3A%2F%2Fwww.applichem.com%2Fde%2Fshop%2Fproduktdetail%2Fas%2F3-isobutyl-1-methylxanthin-ibiochemicai%2F&ei=hxd5Uab_EISctAaRnYHoAQ&v6u=http%3A%2F%2Fs-v6exp1-ds.metric.gstatic.com%2Fgen_204%3Fip%3D134.76.124.179%26ts%3D1366890375587329%26auth%3Dzcgzctwugbkq7vfqo7akpbuzs5jqlocf%26rndm%3D0.6378533353729541&v6s=2&v6t=4516&usg=AFQjCNHleGW3ogsmlYZTASvDJbwKeDBi0g
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PDE1 hydrolytic activity towards cAMP is known to be stimulated by Ca2+ via calmodulin 

(Sonnenburg et al., 1993), so that a potential decrease of cAMP levels upon Ca2+ elevation 

can be expected. Therefore it was important to investigate whether Ca2+ fluctuations 

associated with contraction have any influence on PDE1 activity dependent cAMP signals 

detected in FRET experiments. Therefore, measurements similar to those shown in Figure 

33 were performed, but using PDE1 inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine 

(8-MMX) (Figure 34). Again, no significant differences in the amplitude or kinetics of the 

FRET signals between control and paced cardiomyocytes stimulated with ISO have been 

detected, suggesting no effect of rapid Ca2+ transients on the overall PDE1 activity upon β-

adrenergic stimulation detected by FRET (Figure 34 A,B). Interestingly, stimulation of the 

cells with the direct AC activator forskolin elevated PDE1 contribution to overall PDE 

inhibition significantly in field stimulated compared to resting cardiomyocytes. This effect was 

mimicked by cardiomyocyte preincubation with Ca2+ elevating substances thapsigargin and 

calcium ionophor (Figure 34 C,D).  

Figure 34. cAMP dynamics in adult mouse cardiomyocytes upon treatment with cAMP 
elevating agents and PDE1 inhibition. (A) Representative FRET traces of Epac1-camps 
cardiomyocytes after stimulation with the β-AR agonist isoproterenol (ISO, 100nM) or (C) the direct 
AC activator forskolin (10 µM) leads to an increase of cAMP visualized as an increase in FRET ratio. 
Inhibition of PDE1 via 8-MMX (30 µM) enhances this effect. Stimulation with the unspecific PDE 
inhibitor 3-Isobutyl-1-methylxanthin (IBMX, 100 µM) leads to a further increase of cAMP. (B,D), 
Quantification of experiments shows no significant difference in FRET responses between control and 
paced cardiomyocytes stimulated with ISO. Forskolin stimulated cardiomyocytes show significant 
differences in PDE1 contribution to total PDE inhibition in paced compared to resting cells. 
Pretreatment with calcium elevating reagents such as thapsigargin (100nM) and calcium ionophore 
(10 µM) resemble the effect of field stimulation. Cells were passed at 1 Hz and 20-30 V. Means ± SE 
(n=6-10 cells from 2-3 mouse hearts per condition; * - significant difference at p<0.05) 
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4. Discussion  

 

4.1 Successful generation of transgenic Epac1-PLN mice 

To measure cAMP dynamics under real time conditions with high temporal and spatial 

resolution, a TG cAMP reporter mouse line namely CAG-Epac1-camps expressing the 

cytosolic Epac1-camps FRET biosensor was initially developed (Calebiro et al., 2009). This 

sensor mouse allows the investigation of global cAMP changes in the bulk cytosol under 

physiological conditions in living tissues and single cells such as cardiomyocytes. 

Today, cAMP compartmentation is a well-accepted paradigm (Fischmeister et al., 2006). 

Therefore, it is essential to generate subcellular cAMP probes to get a deeper understanding 

of the molecular mechanisms that regulate the compartmentation of this universal second 

messenger. Although the already existing targeted cAMP FRET biosensors provided 

important insights into the molecular mechanisms behind cAMP compartmentation, these 

probes were either expressed in HEK293A cells, neonatal cardiomyocytes or adult rat 

cardiomyocytes via virus transduction (Sprenger and Nikolaev, 2013).        

Alterations in SERCA2a activity are known to be associated with cardiac disease (Hasenfuss 

et al., 1994; Nagai et al., 1989) and are probably connected with a complex modification of 

cAMP/ PKA dependent SERCA2a regulation. To provide a more physiologically relevant 

system for the detection of subcellular cAMP dynamics, a novel TG mouse model expressing 

a heart specific SERCA2a targeted FRET based cAMP biosensor, namely Epac1-PLN, was 

generated within this PhD project. The novel sensor mouse enables the detection of local 

cAMP dynamics with high temporal and spatial resolution in adult cardiomyocytes. Besides, 

TG cardiomyocytes are freshly isolated and can be used for FRET measurements 

immediately after cell isolation. This excludes cultivation artefacts due to adenoviral sensor 

transduction and allows cAMP measurements under more physiological conditions. 

Importantly, this novel Epac1-PLN sensor mouse can be combined with various genetic and 

experimental disease models and thus enables the study of altered cAMP signalling under 

pathological conditions such as cardiac hypertrophy induced by TAC surgery. 

The first SR-specific FRET measurements were performed by Liu and co-workers that used 

the AKAR3 PKA activity reporter (Zhang et al., 2001) and the Epac based ICUE3 cAMP 

sensor (Sample et al., 2012)  fused to the transmembrane domain of PLN (Liu et al., 2012; 

Liu et al., 2011). In this thesis, the already published cytosolic Epac1-camps FRET biosensor 

(Nikolaev et al., 2004) was also either fused to a truncated (∆1-18 PLN, including the 

transmembrane domain) or full length version of PLN (Figure 9). This led to the localisation 
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of the sensor constructs to the SERCA2a microdomain. Analysis of both sensors in 

HEK293A cells revealed stronger FRET changes in the full length compared to the truncated 

sensor version. Therefore, the full length PLN based Epac1-PLN sensor was used for further 

experiments and for the generation of TG mice. Besides, the use of full length PLN was 

believed to sustain the physiology within the SERCA2a microdomain, whereas a truncated 

version might insert unwished artificiality to this compartment, for example because it can 

neither be PKA-phosphorylated nor form pentamers as the endogenous PLN does. 

Importantly, one might speculate that PKA dependent phosphorylation of the sensor PLN 

might lead to intramolecular rearrangement resulting in FRET changes independent of cAMP 

binding. However, this was not the case for the Epac1-PLN construct (Figure 10) so one can 

be sure that the detected FRET changes truly represent cellular cAMP dynamics.       

To analyse cAMP compartmentation within adult ventricular cardiomyocytes, an α-MHC 

based Epac1-PLN sensor construct was cloned and used for the generation of the novel TG 

sensor mouse line (Figure 11). The α-MHC promoter allows cardiomyocyte specific 

expression of the sensor construct, thereby avoiding undesirable side effects due to 

needless global sensor expression.              

To be prepared for unexpected problems in TG mouse line generation, an Epac1-PLN 

adenovirus for transduction of rat cardiomyocytes was generated as an alternative strategy 

(Figure 12). Proper FRET responses to ISO induced cAMP increases were detected in adult 

rat cardiomyocytes transduced with this adenovirus. Therefore, the adenoviral approach 

would have been a possible alternative to the use of TG Epac1-PLN mouse cardiomyocytes. 

Anyway, as already mentioned, cultivation of adult cardiomyocytes can be associated with 

experimental artefacts and therefore the TG mouse line was the favoured tool during the 

following experiments within this work.            

The novel TG mouse line showed Epac1-PLN sensor expression in virtually all 

cardiomyocytes. Besides, the sensor showed proper co-localisation with SERCA2a in 

stained heart cross sections and in heart fractions (Figure 14), thereby complying with the 

basic requirement for SERCA2a microdomain specific cAMP measurements. Epac1-PLN TG 

hearts showed a two-fold overexpression of PLN on the mRNA level (Figure 18 A) which is 

also common for other PLN overexpressing mouse lines (Kiriazis and Kranias, 2000).  

Importantly, no adverse effects on cardiac morphology and function were detected in TG 

animals (Figure 15). Earlier PLN TG mouse models did also not show any severe cardiac 

phenotype apart from a slightly depressed systolic function at similar amounts of PLN 

overexpression. This effect was explained by the increased inhibition of SERCA2a function 

due to PLN overexpression (Kadambi et al., 1996; Kiriazis and Kranias, 2000). Surprisingly, 

cardiac function was slightly elevated in the TG Epac1-PLN animals compared to their WT 

littermates (Table 11). This unexpected increase in heart function might be due to some 
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compensatory mechanisms associated with altered Ca2+ handling, similarly to the situation 

observed in a mouse model with overexpression of a PLN mutant which cannot be PKA 

phosphorylated (Brittsan et al., 2003). For example, Epac1-PLN TG cardiomyocytes showed 

a tendency of increased NCX expression (Figure 19 A,B) which might allow faster Ca2+ 

extrusion at the end of each systole, thereby promoting lusitropy (cardiac relaxation). PLN 

overexpression in TG Epac1-PLN cardiomyocytes was also shown to be associated with 

SERCA2a overexpression. This would also lead to faster Ca2+ extrusion from the cytosol into 

the SR and an increase in inotropy (cardiac contractility) and lusitropy. However, the PLN/ 

SERCA2a ratio in WT vs. TG cardiomyocytes was not altered (Figure 18 B-D), again pointing 

towards a compensatory mechanism to balance the enhanced SERCA2a inhibition by the 

TG sensor PLN. Besides, Ca2+ imaging showed almost unaltered Ca2+ decline kinetics in WT 

vs. TG Epac1-PLN cardiomyocytes in the absence and presence of ISO stimulation. 

Additionally, SR- Ca2+ load was unchanged which might be explained by the stable PLN/ 

SERCA2a ratio in WT vs. TG animals. Due to this steady PLN/ SERCA2a ratio one can 

assume that, although SERCA2a is upregulated in TG Epac1-PLN cardiomyocytes, 

microdomain specific cAMP measurements with this FRET sensor are still reliably recorded 

within the SRECA2a microdomain.        

Endogenous PLN exists in a monomeric and a pentameric form (Kimura et al., 1997; Zvaritch 

et al., 2000) and also the Epac1-PLN sensor (monomer ~77 kDa) is able to form oligomers 

either with itself or the endogenous PLN (Figure 16 A). Besides, Epac1-PLN mimicked 

endogenous PLN for PKA phosphorylation (PSer16) upon stimulation with 100 nM ISO without 

affecting endogenous PLN phosphorylation (Figure 16 B-D). Additionally, the sum of total 

basal PKA and CaMKII dependent phosphorylation of PLN was not altered in WT vs. TG 

cardiomyocytes. These results assure that a functionally normal PLN was introduced via 

Epac1-PLN expression and that in TG Epac1-PLN cardiomyocytes, the function and 

molecular composition of the SERCA2a microdomain is preserved.         

However, there is controversy about the nature of PLN dependent SERCA2a regulation. It 

has been believed that upon PKA dependent phosphorylation, PLN monomers dissociate 

from SERCA2a to form pentamers, thereby relieving its inhibition on the Ca2+ pump (Chen et 

al., 2010; James et al., 1989; Mueller et al., 2004). On the other hand, PLN pentamers have 

also been shown to inhibit SERCA2a function (Zhai et al., 2000). Latest studies revealed that 

active SERCA2a binds to fully phosphorylated PLN (Dong and Thomas, 2014) and that PLN 

exists in a conformational equilibrium between different, phosphorylation dependent 

intramolecular states that differ in their SERCA2a inhibition characteristics (Gustavsson et 

al., 2013). Therefore, SERCA2a inhibition might be mediated due to phosphorylation 

dependent conformational changes within the SRECA2a-PLN complex rather than by 

dissociation of PLN. These results indicate that Epac1-PLN monomers as well as Epac1-
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PLN pentamers are tightly targeted to SERCA2a, thereby allowing reliable measurements of 

local SERCA2a associated cAMP dynamics with the Epac1-PLN sensor construct. 

 

4.2 Localised FRET measurements reveal differentially regulated cAMP dynamics in 
healthy Epac1-camps and Epac1-PLN cardiomyocytes 

To understand the molecular mechanisms that confine the SERCA2a microdomain from the 

bulk cytosol, cytosolic cAMP FRET measurements have been performed in TG Epac1-

camps cardiomyocytes and compared to SERCA2a localised cAMP dynamics measured in 

TG Epac1-PLN cardiomyocytes. Several differences have been observed that are discussed 

in the following sections. 

 

4.2.1 Local PDE effects are essential for channelling cAMP from the β1-AR to the 
SERCA2a microdomain 

Recently, it has been shown that β1-AR stimulation leads to far-reaching cAMP signals within 

cardiomyocytes whereas β2-AR signals remain locally confined (Nikolaev et al., 2006). 

Besides, β2-AR stimulation has been shown to have no effect on PLN phosphorylation 

(Kuschel 1999). These results are in line with the findings in Epac1-PLN TG cardiomyocytes. 

Here, specific β2-AR stimulation has almost no effect on the FRET signal in the SERCA2a 

compartment (Figure 22) which lies deep within the cell reflecting the highly 

compartmentalized β2-AR associated cAMP dynamics under the control of PDE4D5 (Richter 

et al., 2008).                  

However, β1-AR stimulation of freshly isolated Epac1-camps and Epac1-PLN TG 

cardiomyocytes showed significantly stronger FRET changes in the SERCA2a compartment 

when normalized to the maximal FRET response, although the used ISO concentrations 

should have been almost saturating for both sensors (Figure 22 and Figure 24). In fact, 

Epac1-PLN seems to be more sensitive to lower ISO concentrations than Epac1-camps 

although having a slightly lower affinity for cAMP (Figure 24). Recently, it has been shown 

that PDE4D8 is associated with the β1-AR, thereby regulating cAMP signalling around this 

receptor (Richter et al., 2008). Since the expression of PDE4D8 in WT vs. Epac1-PLN TG 

cardiomyocytes is not altered (Figure 20 A,C), one can exclude the possibility that increased 

cAMP sensing in the SERCA2a compartment is due to decreased PDE4D8 expression at the 

β1-AR. This indicates that a specific cAMP compartment deep inside the cell might have 

privileged access to and preferentially communicates with the receptor, thereby sensing 

higher cAMP levels compared to the bulk cytosol. This intriguing possibility can be described 
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as a “channelling” of cAMP from the surface membrane to its downstream targets such as 

PKA in the subcellular SERCA2a microdomain.             

To avoid measurement artefacts due to cardiomyocyte contraction, FRET experiments were 

performed without field stimulation although it is known that Ca2+ is able to influence cAMP 

dynamics during cardiac contraction (Wikman-Coffelt et al., 1983). Interestingly, experiments 

in field stimulated Epac1-PLN cardiomyocytes did not differ from those under resting 

conditions (Figure 23), which might be due to insufficient sensitivity of the Epac1-PLN sensor 

for sensing such rapid fluctuations. However, the absent differences between paced and 

resting Epac1-PLN cardiomyocytes justify the favoured use of resting cells in the FRET 

experiments.                         

In HEK293A cells, it has been shown that upon PGE1 stimulation, PDEs, rather than acting 

as diffusion barriers (Jurevicius and Fischmeister, 1996), act as local sinks that drain cAMP 

to specific compartments (Terrin et al., 2006). This would allow the coexistence of multiple 

cAMP microdomains independent of their distance from the site of cAMP synthesis. Indeed, 

if PDE3 and PDE4 were blocked at the same time, the previously detected differences in the 

β-adrenergic response between the bulk cytosol and the SERCA2a compartment were 

abolished (Figure 25 A-C). The same was detected when PDEs were blocked with the 

unselective inhibitor IBMX (Figure 25 D,E). This reinforces the hypothesis that cytosolic 

PDEs, especially PDE3 and PDE4, may somehow channel the cAMP from its site of 

synthesis into a compartment deep within the cell and simultaneously prevent cAMP diffusion 

into the cytosol. This would allow cAMP to perform its signalling effect directly at its specific 

PKA targets. One might also speculate about the involvement of AC signalling on 

internalized vesicles (Calebiro et al., 2009) or the activation of soluble ACs deep inside the 

cells (Chen et al., 2012). At the same time, cytosolic PDEs might also act as cAMP sinks 

which keep cytosolic cAMP concentrations relatively low. However, the exact molecular 

mechanisms behind this phenomenon remain to be defined. 

 

4.2.2 PDE4 plays the predominant role in restricting cAMP signals after β-AR 
stimulation and under basal conditions 

Upon β-AR stimulation, PDE4 inhibition led to the strongest FRET change in both the bulk 

cytosol and in the SERCA2a compartment, followed by PDE3 and PDE2 inhibition. This 

might lead to the assumption that there is a certain hierarchy in PDE contribution to shaping 

cAMP signals connected with β-AR stimulation (PDE4 > PDE3 > PDE2). However, PDE4 

contribution after ISO treatment was significantly stronger in the cytosol compared to the 

SERCA2a compartment (Figure 26). This indicates a crucial role of PDE4 under conditions 

with high cAMP concentrations to avoid excessive diffusion of cAMP to other subcellular 
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locations and potentially detrimental cAMP spillover. Over the last few years, PDE4 has been 

reported to play a critical role in cAMP compartmentation. For instance, the RyR2 signalling 

complex has been shown to be associated with PDE4D3 (Lehnart et al., 2005). Besides, 

PDE4D8 and PDE4D5 could be linked to β1- and β2-ARs signalling complexes, respectively 

(Richter et al., 2008). Together with these results, the findings within this PhD thesis suggest 

a major role of PDE4 in generating multiple subcellular cAMP microdomains. Under basal 

conditions, PDEs are most important for confining and protecting the subcellular 

compartments from basal cytosolic cAMP levels (~1 μM (Iancu et al., 2008)) to avoid 

inappropriate PKA substrate phosphorylation. In this thesis, first direct evidence is provided 

that under basal conditions without β-AR stimulation, PDE3 and especially PDE4 families 

play a critical role in confining the SERCA2a microdomain from the bulk cytosol to limit basal 

PLN phosphorylation (Figure 27). Studies in neonatal rat cardiomyocytes expressing a 

targeted PKA activity reporter AKAR3 fused to PLN recently showed that PKA activity in this 

microdomain is also lower and controlled by PDE4 under basal conditions (Liu et al., 2011). 

Besides, studies using PDE3A-/- and PDE3B-/- mice showed that PDE3A interacts with 

SERCA2a thereby regulating basal myocardial contractility (Beca et al., 2013). Inhibition of 

PDE3 in human hearts increases cardiac contractility, relaxation and diastolic function 

(Colucci, 1991; Osadchii, 2007). These observations are consistent with the findings of this 

PhD thesis that PDE3 is crucial for the regulation of baseline cAMP dynamics around the 

SERCA2a compartment in healthy hearts. PDE3 inhibition would induce a local increase of 

cAMP and subsequent PKA dependent phosphorylation of PLN (Figure 27 F), thereby 

leading to increased SERCA2a function and contraction. However, in end stage heart failure 

patients, PDE3 inhibitors provide only short term benefit whereas prolonged treatment leads 

to increased mortality, primarily as a result of arrhythmias and sudden death (Movsesian et 

al., 2009; Nony et al., 1994; Packer et al., 1991).                 

Studies in PDE4D-/-
 mice could identify PDE4D as a critical regulator of baseline SR Ca2+ 

release via PDE4D co-immunoprecipitation with SERCA2a and by investigating Ca2+ 

transients and PLN phosphorylation status (Beca et al., 2011). Inhibition of PDE4 and 

ablation of PDE4D in mice elevated contractility, SR Ca2+ loads, Ca2+ transients and PLN 

phosphorylation (Beca et al., 2011; Kerfant et al., 2007). These results are supported by the 

findings in this PhD thesis that show increased cAMP signals after PDE4 inhibition in TG 

Epac1-PLN cardiomyocytes under basal conditions (Figure 27) which again should enhance 

SERCA2a activity due to increased PLN phosphorylation (Figure 27 F). Interestingly, total 

PDE4 expression is not increased in Epac1-PLN TG cardiomyocytes compared to WT 

cardiomyocytes (Figure 20 A,B), although SERCA2a levels are elevated in the TG cells 

(Figure 18 B,C). Because PDE4 has been shown to be critically involved in the regulation of 

basal cAMP levels within the SERCA2a microdomain, one might assume that the relative 
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PDE4 amount in the SERCA2a microdomain of Epac1-PLN TG cardiomyocytes is slightly 

lower than in WT cells. Therefore, the basal PDE4 inhibition effect on the SERCA2a 

associated cAMP levels might be even stronger than those observed in the Epac1-PLN 

FRET experiments. However, the results gained in the FRET experiments could be 

confirmed in immunoblot analysis by investigating basal PLN phosphorylation after selective 

PDE inhibition which was significantly increased after PDE3 and PDE4 inhibition (Figure 27 

F). Interestingly, the group around Rudolphe Fischmeister showed increased basal PLN 

phosphorylation only after PDE4 inhibition combined with PDE3 inhibition. One explanation 

for this discrepancy might be that their results were gained in adult rat ventricular myocytes 

and the amount of PLN phosphorylation was normalized to cardiac calsequestrin expression 

instead of total PLN. Besides, they analysed PLN pentamer phosphorylation whereas in this 

PhD thesis PLN monomer phosphorylation after sample denaturation was analysed. 

However, together with these findings, the data gained in this PhD thesis indicate that PDE3 

and PDE4 are both involved in the regulation of basal cAMP dynamics in the SERCA2a 

microdomain and therefore in the regulation of heart contraction due to modulation of PLN 

phosphorylation.                    

To extend these studies in the future, PDE3- and PDE4- isoform selective inhibitors (Houslay 

et al., 2005) or crossing Epac1-PLN mice with specific PDE3A-/- PDE4D-/- mice would be of 

great benefit.            

 

4.3 Localised FRET measurements reveal differentially regulated cAMP dynamics in 
diseased Epac1-camps and Epac1-PLN cardiomyocytes 

Cardiac hypertrophy may ultimately lead to heart failure. Therefore, it was interesting to 

understand the molecular mechanisms behind this disease to identify possible targets for 

intervention in disease progression. Changes in local cAMP signalling are supposed to be a 

molecular hallmark of cardiac disease such as hypertrophy. To address this hypothesis, 

Epac1-camps, Epac1-PLN and WT mice were subjected to TAC surgery to induce cardiac 

hypertrophy.                 

This PhD project provides the first direct insights into alterations of local cAMP dynamics at 

SERCA2a in cardiac hypertrophy. Despite the slightly increased heart function of TG Epac1-

PLN mice, animals developed a significant reduction of cardiac performance 8 weeks after 

TAC, confirming that Epac1-PLN mice are a valuable tool to investigate cAMP dynamics in 

cardiac hypertrophy. Also Epac1-camps mice showed significant reduction in heart function 

after TAC surgery. For instance, a pronounced hypertrophy was indicated by a significant 

increase in HW/BW ratio and AWThd and significantly diminished heart function as 

demonstrated by the changes in FS, FAS and EF. Besides, LV-EDD values suggest a slight 
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ventricular dilatation which is typical for decompensated hypertrophy and heart failure (Diwan 

and Dorn, 2007) (Table 12). Therefore, the TAC model used in this PhD thesis provides an 

insight into cardiac hypertrophy with a tendency for transitioning to heart failure. However, 

Epac1-PLN sensor was still localised to SERCA2a in TAC treated animals allowing reliable 

cAMP measurements in the diseased cardiomyocytes (Figure 28). 

 

4.3.1 After β-AR stimulation, PDE4 and PDE2 contributions are altered in TAC treated 
cardiomyocytes from Epac1-camps and Epac1-PLN mice, respectively. 

In cardiomyocytes from TAC treated animals, PDE4 contribution after β-AR stimulation was 

shown to be significantly decreased in the cytosol (Epac1-camps sensor) (Figure 29 A,C,E). 

This is consistent with results gained in rats with compensated hypertrophy (Abi-Gerges et 

al., 2009) where the activity of both PDE4A and PDE4B was significantly reduced.          

In sharp contrast to the results gained in Epac1-camps cardiomyocytes, PDE2 inhibition after 

β-AR stimulation in Epac1-PLN cardiomyocytes led to a significantly higher FRET change in 

the SERCA2a compartment in TAC vs. sham control cells (Figure 29 B,D,F). This indicates 

an increased contribution of PDE2 to cAMP hydrolysis in the SERCA2a compartment during 

hypertrophy. Recently, it has been shown that PDE2 is markedly upregulated in end stage 

failing human hearts, thereby blunting catecholamine responsiveness (Mehel et al., 2013). 

Besides, a dramatic upregulation of PDE2 has been observed on the whole-cell level in 

various models of chronic cardiac disease. Additionally, diseased rat cardiomyocytes 

transduced with the Epac2-camps FRET sensor (Nikolaev et al., 2004) revealed a global 

increase in PDE2 contribution to cAMP hydrolysis (Mehel et al., 2013). However, in this PhD 

thesis, no difference in PDE2 contribution to cAMP degradation in the bulk cytosol of healthy 

vs. diseased Epac1-camps cardiomyocytes was observed (Figure 29 E). This aberration 

might be due to the different disease models used (rats subjected to chronic ISO infusion vs. 

mice after TAC surgery) and cultivation of rat cardiomyocytes during Epac2-camps virus 

transduction vs. freshly isolated TG cardiomyocytes. Mehel et al. also analysed PLN 

phosphorylation in PDE2 overexpressing cardiomyocytes, uncovering a significant decrease 

of PKA associated PLN phosphorylation after ISO stimulation but no effect under basal 

conditions. These results are consistent with the findings that PDE2 inhibition in 

hypertrophied Epac1-PLN cardiomyocytes induced a FRET change exclusively upon ISO 

stimulation and not under basal conditions (Figure 29 F and Figure 30 C). This might indicate 

a mechanism by which local PDE2 upregulation compensates for decreased PDE4 

contribution to cAMP degradation, thereby protecting the heart and especially the SERCA2a 

compartment from cAMP overflow and excessive PLN phosphorylation in diseased 

cardiomyocytes. This PhD study shows that this mechanism does not only occur in end 
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stage failing hearts but also in hypertrophy with decreased cardiac function after TAC 

surgery. However, in the TAC model used for this PhD thesis, whole-cell PDE activities 

measured by a classical in vitro activity assay as well as PDE4D and PDE2 protein levels 

were not yet decreased, suggesting that at the investigated time point of disease 

progression, local microdomain-specific rather than whole-cell changes in PDE activity and 

possibly also localisation (Lehnart et al., 2005) might take place (Figure 31). It is noteworthy 

that PDE2 hydrolytic activity is stimulated by cGMP (Francis et al., 2011) suggesting an 

important function of this negative crosstalk mechanism within the SERCA2a microdomain 

during cardiac disease.          

Interestingly, differences in β1-AR stimulation between the bulk cytosol (Epac1-camps 

sensor) and the SERCA2a microdomain (Epac1-PLN sensor) were abolished in 

hypertrophied cardiomyocytes (Figure 29 G), similar to cardiomyocytes pre-treated with PDE 

inhibitors (Figure 25). Together with the observed alterations in PDE contribution to cAMP 

degradation in hypertrophied cardiomyocytes, these results reinforce the hypothesis that the 

privileged communication between the β1-AR and the SERCA2a microdomain is mediated by 

PDE dependent channelling of cAMP from the receptors to this subcellular compartment. 

This argues for the fact that the remodelling of PDE in various microdomains affects cAMP 

compartmentation in cardiac hypertrophy.  

 

4.3.2 Under basal conditions, PDE4 contribution to cAMP degradation is decreased in 
the SERCA2a compartment after TAC surgery. 

Under basal conditions, no significant differences in PDE contribution to cAMP degradation 

were detected in the bulk cytosol (Epac1-camps sensor) of TAC cardiomyocytes (Figure 30 

D). In sharp contrast to this, basal PDE4 inhibition in cardiomyocytes of Epac1-PLN TAC 

mice led to a significant decrease in FRET change. This indicates a decreased basal PDE4 

contribution to cAMP hydrolysis in the SERCA2a compartment of hypertrophied 

cardiomyocytes. However, this does not result in a decreased PLN function, as shown by 

Ca2+ transient measurements. Instead, the increased time of Ca2+ decay in TAC 

cardiomyocytes indicates a decrease in SERCA2a function associated by a tendency of 

decreased SERCA2a expression (Figure 32 A). As decreased PDE4 expression would 

increase local cAMP concentration and PLN phosphorylation, these results point toward the 

possibility that the local PDE4 downregulation represents a protective mechanism to initially 

compensate for the loss of SERCA2a function. However, the hearts of the TAC model used 

in this PhD study seem to be already transitioning towards a functionally decompensated 

state where the decrease of PDE4 activity can no longer compensate for the loss of 

SERCA2a, thereby increasing time of Ca2+ decay. In addition, a possible loss of local PKA 
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activity in the SERCA2a microdomain (Zakhary et al., 2000b) might derogate the regulatory 

feedback loops associated with PKA-dependent PDE4 phosphorylation. A previous study 

showed the association of PDE4D with the SERCA2a/ PLN complex (Beca et al., 2011) and 

studies in human failing heart tissues revealed decreased PDE4D activity resulting from 

reduced expression levels (Richter et al., 2011). In contrast to this, PDE4D activity in rats 

with compensated hypertrophy was shown to be not significantly altered compared to sham 

animals (Abi-Gerges et al., 2009). In the TAC model used during this PhD thesis, PDE4D 

protein levels were not significantly decreased in cardiomyocytes from TAC compared to 

sham animals (Figure 31 B, C). This might indicate that in hypertrophied mouse hearts 

PDE4D activity, rather than PDE4D expression, is decreased. However, PDE activity assay 

in sham vs. TAC treated WT mice did not show any significant differences in the activity of 

any PDE family (Figure 31 A). It is important to mention that in this case, PDE activity has 

been performed using a global PDE4 inhibitor. Therefore, PDE4D isoform specific inhibition 

would be of great advantage for following studies regarding PDE activity assays and FRET 

dependent cAMP measurements under real time conditions in diseased cardiomyocytes. 

However, as overall PDE activity does not seem to be altered in the TAC model used during 

this PhD thesis, one might hypothesise that PDE4 and PDE2 could be relocated during 

progression of hypertrophy within the cardiomyocytes to different microdomains. This would 

lead to altered regulation of cAMP dynamics in different subcellular locations.   

 

4.4 Calcium fluctuations do not influence FRET measurements via Epac1-camps  

Previously, using a classical biochemical assay and a rapid freezing technique, it has been 

shown that cAMP levels can rapidly change during each contraction cycle of the rat heart 

(Wikman-Coffelt et al., 1983). In this PhD thesis, it was demonstrated that such rapid 

changes do not translate into sustained changes of cytosolic AC activities under cAMP-

stimulating conditions in isolated mouse ventricular cardiomyocytes detected by FRET 

(Figure 33 and 34). A possible reason for this might be that the Ca2+ changes in field 

stimulated cardiomyocytes are too small and too rapid to affect the AC activities and 

therefore, sustained changes in cytosolic cAMP levels. However, it cannot be excluded that 

the rapid Ca2+ fluctuations indeed influence AC activity and cAMP levels in the cytosol but 

that the Epac1-camps biosensor might be not sensitive enough to sense these rapid 

fluctuations. Anyway, when cardiomyocytes are treated with the direct AC activator forskolin, 

this leads to a significant increase of PDE1 contribution to total PDE inhibition in field 

stimulated, thapsigargin or calcium ionophor treated vs. resting cells (Figure 34 D). This 

might be due to stronger or less compartmentalized cAMP elevation upon direct AC 

activation compared to β-adrenergic stimulation, unmasking the elevated PDE1 activity due 



                    Discussion 
 

83 
 

to increased Ca2+ flux (Conti and Beavo, 2007). However, direct AC activation does not 

represent physiological conditions and is therefore usually not used in FRET experiments 

investigating PDE contributions to cAMP hydrolysis. As discussed elaborately in this PhD 

thesis, cAMP signalling in cardiomyocytes is known to be compartmentalized (Fischmeister 

et al., 2006; Zaccolo, 2009). Therefore, in the future it would be exciting to investigate 

whether Ca2+-induced local changes in AC 5/6 activity at the plasma membrane might also 

propagate into subcellular compartments deep within the cell. At least measurements with 

the novel Epac1-PLN sensor did not show such alterations between resting and paced 

cardiomyocytes (Figure 23). This sensor construct contains the cytosolic Epac1-camps 

sensor fused to PLN, supposing the same sensor associated limitations as for the 

measurements in the bulk cytosol. Therefore, to really understand the Ca2+-cAMP crosstalk, 

one might think about the generation of cAMP sensors more sensitive to rapid changes in 

Ca2+ concentrations. However, in this PhD thesis it was important to exclude possible 

tampering of crucial FRET results simply due to the fact of using resting instead of field 

stimulated cardiomyocytes. Indeed, it has been shown that, at least when using the Epac1-

camps based FRET sensors, resting cardiomyocytes reflect the same condition as paced 

cardiomyocytes.   

 

4.5 Summary and Conclusions 

A novel TG mouse model expressing the localised FRET based cAMP biosensor Epac1-PLN 

has been successfully developed during this PhD project. Biocompatibility of the Epac1-PLN 

sensor has been proved, making this mouse a valuable tool to directly analyse real-time 

cAMP dynamics around the SERCA2a compartment in adult TG mouse cardiomyocytes with 

high temporal and spatial resolution. One advantage of this TG mouse line is that freshly 

isolated cardiomyocytes can be directly used for experiments and therefore, experimental 

artefacts due to virus transduction of cardiomyocytes and subsequent cultivation can be 

excluded. Besides, it allows the analysis of altered cAMP dynamics in in vivo models of heart 

disease such as hypertrophy. Using this novel Epac1-PLN sensor mouse, it has been 

demonstrated that the SERCA2a compartment is differentially regulated and confined from 

the bulk cytosol via several PDE families and their different contributions to cAMP hydrolysis. 

This PDE pattern changed dramatically during progression of hypertrophy, thereby affecting 

the privileged β1-receptor-microdomain communication which here has been identified as a 

mechanism of cAMP compartmentation (Figure 35).       

Therefore, the Epac1-PLN mouse model offers exciting new possibilities to study 

microdomain-specific signalling in a physiologically interesting setting of healthy and 

diseased organism. In the future, crossing the Epac1-PLN mouse with different disease 
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models or PDE deficient mice would be of great advantage to get a more specific insight into 

the molecular mechanisms behind cAMP compartmentation and its alterations during 

progression of cardiac disease.                

 

In a side project, a comparative analysis between resting and field stimulated Epac1-camps 

TG cardiomyocytes has been performed. It showed that rapid changes of cytosolic Ca2+ 

during contraction and β-AR stimulation do not translate into sustained changes of 

intracellular cAMP, at least not detectable by the Epac1-camps FRET biosensor. Therefore, 

measurements of cAMP using Epac1-camps in resting cardiomyocytes truly represent the 

dynamics of this second messenger under physiologically relevant conditions.  

Figure 35. Schematics 
showing proposed changes 
in local cAMP signalling 
occurring in cardiac 
hypertrophy.  

(A) In healthy cardiomyocytes, 
β1- but not β2-AR-cAMP pools 
reach the SERCA2a 
microdomain, whereby there is 
a privileged communication 
between β1-AR and the 
microdomains through an 
imaginary “channel” formed by 
the orchestrated action of 
PDEs. The access of the 
cytosolic cAMP to SERCA2a in 
absence of receptor stimulation 
is controlled by the local pools 
of PDE3 and PDE4.  

(B) In hypertrophy, the local 
PDE4 effect at SERCA2a is 
lost, while PDE2-dependent 
effects are increased, 
especially under β-AR 
stimulation. This remodelling of 
cellular PDEs leads to a loss of 
effective receptor-microdomain 
communication. 
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