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1 Zusammenfassung 

Diese Arbeit besteht aus drei Teilen. Im ersten Teil wurde Holz mit verschiedenen, 

kommerziell erhältlichen Kieselsolen behandelt, die unterschiedliche pH-Werte und 

Oberflächenmodifikationen aufwiesen. Basische Kieselsole vermochten nicht in das 

Holz einzudringen, da ihr pH-Wert während des Eindringens absinkt und es zur 

Ausfällung des Kieselsols im Holz kommt. Neutrale und saure Kieselsole hingegen 

konnten problemlos in das Holz eingebracht werden. Eines der sauren Kieselsole, 

welches mittels Aluminumoxychlorid kationisch modifiziert war, reduzierte die 

Wasseraufnahme und den pilzlichen Abbau durch die Braunfäule Coniophora 

puteana (Kiefer) und die Weißfäule Trametes versicolor (Buche). Im Bläuetest 

zeigte sich ein verminderter Befall durch Aureobasidium pullulans, allerdings kein 

kompletter Schutz gegen diesen Pilz. Auch die kleinsten verfügbaren Partikelgrößen 

für Kieselsole ergaben keinerlei Zunahme des Zellwandvolumens (chemische 

Quellung, Bulking), was darauf hinweist, dass eine Eindringung in die Zellwand 

nicht stattfand. Es erscheint daher nicht möglich, Kieselsole in die Zellwand 

einzubringen und die Dimensionsstabilität des Holzes zu verbessern. Da Kieselsol 

lediglich in die Lumen der Holzzellen eingebracht werden kann, kann die 

Behandlung nicht als wirkliche Holzmodifizierung angesehen werden. 

Wegen der vielversprechenden Ergebnisse in den Wasseraufnahmeversuchen 

und den Pilztests wurde mit dem kationischen Kieselsol behandeltes Holz 

thermogravimetrisch und in einem Brandtest untersucht. Im thermogravimetrischen 

Test zeigte sich eine leicht verminderte Pyrolysetemperatur (eine übliche Wirkung 

von Feuerschutzmitteln), die Holzkohlemenge war jedoch nicht erhöht. Dies zeigt, 

dass die Menge an brennbaren Gasen, die während der Pyrolyse freiwerden, durch 

das Kieselsol nicht vermindert wurde. Auch zeigte die resultierende Holzkohle 

gleiche Oxidationseigenschaften wie die Holzkohle der Kontrollen. Im Brandtest 

wurden die Branddauer, die Brandgeschwindigkeit und der Gewichtsverlust 

vermindert. Das Nachglühen der Holzkohle wurde komplett unterbunden. Alle diese 

Effekte waren jedoch relativ klein verglichen mit den Effekten eines kommerziell 

erhältlichen Feuerschutzsalzes, welches ebenfalls als Referenzbehandlung getestet 

wurde.  

Im zweiten Teil der Arbeit wurden acetoxyfunktionelles Silan und 

verschiedene Polydimethylsiloxane (PDMS) mit Acetanhydrid kombiniert, um Holz 

zu acetylieren. Die PDMS hatten die folgenden Funktionalitäten: Amino, Acetoxy, 

Hydroxy und nicht-funktionell. Die beste Hydrophobierung des acetylierten Holzes 

wurde durch die Kombination mit acetoxyfunktionellem PDMS erreicht, welches 

anschließend in verschiedenen Konzentrationen getestet wurde. Eine Konzentration 
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von 1% in Acetanhydrid zeigte bereits eine maximale Hydrophobierung, welches 

darauf schließen lässt, dass die inneren Oberflächen des Holzes mit dem PDMS 

belegt und hydrophobiert wurden. Die Pilzresistenz des behandelten Holzes wurde 

durch die Kombination mit dem PDMS nicht beeinflusst. Bei Wasserlagerung zeigte 

sich eine leichte Überquellung des Holzes, welches mit der Kombination von 

Acetanhydrid und PDMS acetyliert worden war. Untersuchungen der Biegefestigkeit 

und Bruchschlagarbeit ergaben jedoch keinen Einfluss.  

Im dritten Teil der Arbeit wurden wasserbasierte Emulsionen von funktionellen 

PDMS zur Imprägnierung von Holz eingesetzt. Es wurde untersucht, ob Resistenz 

gegen pilzlichen Abbau und Hydrophobierung wie auch erhöhte Dimensionsstabilität 

mit dieser Behandlung erreicht werden kann. Die α-ω-gebundenen Funktionalitäten 

der PDMS waren: Amino, Carboxy, Epoxy und Carbobetain. Die stärkste 

Hydrophobierung wurde mit dem carbobetain-funktionellen PDMS erreicht, 

allerdings ergab diese Behandlung keine verbesserte Pilzresistenz gegenüber einem 

Abbau durch Coniophora puteana und Trametes versicolor. In dieser Hinsicht die 

beste Wirkung zeigte die Behandlung mit carboxy-funktionellem PDMS. Dieses 

Material verminderte jedoch die Wasseraufnahmerate nur ungenügend und wurde 

außerdem stark ausgewaschen. Daher wurden in der Folge amino-funktionelles und 

carboxy-funktionelles PDMS kombiniert, um durch eine Salzbildung der beiden 

Funktionalitäten eine verbesserte Fixierung des carboxy-funktionellen Siloxans zu 

erreichen. Die Kombination zeigte bei einem Überschuss an amino-funktionellem 

PDMS eine gute Fixierung, jedoch ansonsten keine Synergieeffekte. Die 

Dimensionsstabilität des Holzes wurde durch die Behandlungen nur sehr geringfügig 

verbessert. Hierfür müsste eine gute Eindringung der Chemikalien in die Zellwand 

erfolgen und ein dauerhaftes Bulking erzielt werden. Die Eindringung der 

Chemikalien in die Zellwand war jedoch in allen Fällen nur gering. 

2 Abstract 

The study can be divided into three sections. In the first section, wood was treated 

with different commercially available silica sols of varying pH and surface 

modification. While alkaline silica sols could not be impregnated into the wood due 

to lowering of pH and precipitation, neutral and acidic silica sols showed good 

penetration. One of the tested silica sols with an acidic pH value and cationic surface 

modified with aluminum-oxychloride reduced water uptake and fungal decay due to 

incubation with the brown rot fungus Coniophora puteana (pine sapwood) and the 

white rot fungus Trametes versicolor (beech wood) in a fungal decay test according 

to EN 113. Blue stain test revealed some inhibition of staining by the fungus 

Areobasidium pullulans, but no absolute resistance if wood had been treated with this 
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silica sol. Even the smallest available particle sizes of the silica sols did not result in 

positive increase in cell wall volume (chemical swelling, bulking), indicating, that 

silica sols cannot penetrate the cell wall of wood and induce increased dimensional 

stability. Since silica sols are not able to penetrate the cell wall and are solely 

deposited in the lumens of the cell, the treatment cannot be regarded as a real wood 

modification.  

Due to the promising results in water uptake and fungal decay test, wood 

treated with cationic silica sol was further investigated in a thermo gravimetric 

analysis (TGA) and burning test. In the TGA the silica sol revealed reduced thermal 

degradation temperature (a common feature of fire retardant salts), but only to a 

minor extent. The charcoal yield after pyrolysis was not increased, indicating no 

reduction of flammable volatiles released during pyrolysis. Furthermore oxidation 

behavior of the charcoal was similar to the control. In the burning test, the burning 

duration, burning speed and mass loss of the samples were reduced. Glowing of the 

charcoal was completely prevented. All these effects were, however, small if 

compared to a commercially available fire retardant.  

In the second part of the study, acetoxy-functional silane and PDMS with 

amino-, acetoxy- and hydroxy-function as well as non-functional PDMS were tested 

in combination with acetic anhydride for the acetylation of wood. Best water 

repellence was obtained with acetoxy-functional PDMS, which was further 

investigated in different concentrations. An addition of 1% proved to be sufficient for 

maximum water repellence, which indicated coverage of the inner surfaces of the 

wood rendering them water repellent. Decay resistance was only governed by acetyl-

content of the acetylated wood; the PDMS did not show an influence. Even though 

the PDMS treated samples showed a slight over-swelling in water, bending strength 

and impact bending strength were not affected by the combined treatment.  

In the third section of the study, water based emulsions of functional PDMS 

were tested for their suitability to improve decay resistance and water related 

properties of wood. The α-ω attached functionalities were: amino, carboxy, epoxy 

and carbobetain. While best results in reducing water uptake were obtained using 

carbobetain-functional PDMS, decay by Coniophora puteana and Trametes 

versicolor was most effectively reduced by carboxy-functional PDMS. This material, 

however, showed no proper reduction in water uptake and additionally exhibited 

high leaching. Combining carboxy- and amino-functional PDMS will result in salt 

formation of the two functionalities and was thought to increase fixation of carboxy-

functional siloxane. However, the combination did not show promising synergistic 

effects. Dimensional stability was hardly achieved by the treatments with PDMS 
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emulsions. The PDMS did not penetrate the cell walls of wood sufficiently and did 

not cause a high and stable bulking, which is needed for dimensional stabilization.  

3 Introduction 

3.1 Background 

Wood is a widely used and important renewable resource. Although it has been 

substituted by other materials in some areas, wood will likely be a scarce resource in 

the future due to increasing demand for energy production as well as in the 

construction sector. More than half the world’s wood harvest is still used for cooking 

and heating purposes today (Rowell, 2005) and this demand is likely to increase if 

fossil fuels become more expensive. Another aspect of increasing demand of wood is 

an increasing environmental awareness accompanied with the idea of green building, 

which increases the demand for wood in construction as a renewable, CO2 binding 

resource with a low level of embodied energy (Falk, 2010). To meet all these goals, 

it will become very important in the future to increase service life of wood in use and 

thus decrease the demand.  

Wood has a unique structure, which gives it high strength combined with low 

weight, favorable appearance and color. But there are certain drawbacks to wood 

which limit its application. Most important, wood is broken down by organisms such 

as fungi, insects and marine borers. While this is a valuable feature for disposal of 

wood, it reduces service life considerably in applications, where it will be exposed to 

such organisms. Furthermore, wood can be deteriorated by physical, mechanical and 

chemical means depending on the surroundings of its application. Other 

disadvantages of wood are its shrinking, swelling and its anisotropy (Kollmann, 

1951).  

Natural durability offers a certain degree of resistance, but especially home 

grown timber species such as spruce, pine, larch, Douglas fir or hardwoods do not 

show sufficient natural durability and cannot be used in outside applications or in 

marine environments without further protection. Large amounts of durable tropical 

timber were therefore used in the last decades in European industry to avoid these 

problems. This wood was mainly applied in use classes 3 and 4 (EN 335, 2006), for 

example for use in windows, doors and with ground contact (Militz et al., 1997). 

Tropical timbers in many cases show higher natural durability, good quality and fine 

appearance compared to home grown timber. Use of tropical timber, however, often 

has a strong environmental impact because it is harvested from old growth forests 

and its use is therefore not sustainable. Additionally, the quality of tropical wood on 

the market has declined while it is becoming scarcer and besides that, the public 



5 

 

regards the utilization of tropical woods very critical due to devastation of the rain 

forests. Although many plantations will produce tropical woods sustainably in the 

future, these factors have led to a decline of consumption of tropical woods in many 

European countries (Militz et al., 1997).  

3.2 Wood preservation 

Alternatively to natural durability, the drawbacks of home grown timber can be 

overcome by treatment of wood. Wood preservation is known since ancient times 

and research has resulted in many chemical wood preservatives nowadays, which 

increase service life and are preferably relatively harmless to humans and nature. 

These treatments do not change properties such as moisture sorption and swelling or 

shrinkage of wood, but only protect the wood against biological degradation. 

Biocides, however, are currently regarded more critically due to environmental and 

health concerns. The trend is going to low toxicity products; many effective wood 

preservatives have been forbidden due to their toxicity to humans or the 

environment. Another important aspect of wood treatments in the future will be the 

disposal or reuse of treated wood (Falk and Mc Keever, 2004). Nowadays, most 

wood is incinerated to produce energy and avoid disposal on landfills. Inorganic 

salts, used as biocidal wood preservatives are concentrated in the ash which 

afterwards has to be treated as hazardous waste. Therefore treatments which do not 

result in toxic residues such as ash or gases are preferred. Reuse of wood will 

become more important in the future due to rising costs of the raw material. Solid 

wood can be chipped and used for the production of particle boards or other wood 

composites. For these usages it is important that the wood is not treated with harmful 

biocides. 

3.3 Wood modification systems 

The alternative to biocidal treatment of wood can be found in the field of wood 

modification. While the principles of wood modification are known since many 

decades (see for example Kollmann, 1955), it has drawn considerable interest in 

recent years due to the reasons mentioned above. The goal of wood modification is, 

different from the biocidal treatment, to change the basic chemistry or structure of 

the wood substrate itself, and by this approach overcome undesired properties (Militz 

et al., 1997). The main difference between preservative treatment of wood and 

modification of wood is therefore the mode of action. If wood is protected from 

decay by a preservative, the decay is prevented by biocidal action on the decay 

organism. The preservative, however, does usually not act specifically on the target 

organisms, but can also affect other organisms or even humans. If, on the other hand, 

the wood is protected by means of modification, the wood substrate is changed in a 
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way that material properties are improved (for example durability and dimensional 

stability), but the wood remains nontoxic and no release of toxic substances takes 

place, neither during service, nor during disposal or recycling. (Hill, 2006).  

Goals of wood modification include increased resistance of wood to biological 

and physical degradation, increased dimensional stability, reduction of moisture 

sorption and improved mechanical properties. Wood modification systems can be 

divided into several different mechanisms. Treatment of wood can either affect the 

cell walls (Figure 1a) or lumens of wood (Figure 1b). While deposition of chemicals 

in the lumens can certainly affect many properties of wood, such as water uptake rate 

or hardness, sorption properties or dimensional stability are usually not changed. 

Treatments with polymers, which are deposited in the lumens only, are therefore not 

considered as “real” modifications (Mai, 2010). Modifications can further be 

classified into active modifications, which involve the altering of the chemical nature 

of wood (Figure 1d,e), and passive modifications, where the treatment does not alter 

the woods chemistry (Figure 1c). By far the most abundant reactive sites in wood are 

the hydroxyl groups on cellulose, hemicelluloses and lignin. Most chemical 

modifications involve the reaction of these functional groups (Rowell, 1983) and 

result in either blocking of the hydroxyl groups (Figure 1d) or in the crosslinking of 

two or more hydroxyl groups (Figure 1e). Acetylation, which involves the linkage of 

an acetyl group to a hydroxyl group of the cell wall, is an example of blocking of 

hydroxyl groups (Figure 1d). Each hydroxyl group reacts with one separate molecule 

to form an ester (Hill, 2006). Other chemicals, for example formaldehyde, can react 

with two (or even more) hydroxyl groups to form an acetal and crosslink the cell wall 

(Figure 1e) (Stamm, 1959). The deposition of chemicals into the cell wall usually 

leads to cell wall bulking, a permanent increase in volume of the treated wood.  
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Figure 1: Mechanisms of wood modification, a: cell wall modification, b: lumen modification, c: 

bulking modification, d: reaction with hydroxyl groups in the cell wall and e: cross-linking of 

hydroxyl groups in the cell wall (from Hill, 2006). 

In passive wood modifications the properties of the wood are changed by simple 

deposition of chemicals into the cell wall (Figure 1c). These cell wall treatments 

usually involve the treatment of wood with a monomer solution of a certain 

chemical, which is able to diffuse into the cell wall and undergo polymerization in 

the cell wall by which it is fixed and leaching is prevented (Stamm, 1964). While 

PEG, sugars and salts are chemicals that can easily be impregnated into wood (if the 

appropriate molecular mass is used) and result in considerable bulking and, in many 

cases, biological durability. Furthermore they are unable to undergo polymerization 

and are therefore easily leached out (Kollmann et al., 1975). Phenol-formaldehyde 

resins, melamine-formaldehyde resins and furfuryl alcohol are examples of 

chemicals that can be impregnated into the wood as solutions of small molecules and 

afterwards condense in the cell wall. These treatments are stable towards leaching 

and result in considerable bulking. (Goldstein, 1955; Kollmann et al., 1975). 

A different approach is the thermal modification of wood. If wood is heated to 

a temperature between 160°C to 220°C in absence of oxygen, cleavage and 

conversion of wood components lead to hydrophobation, increased dimensional 

stability and to improved biological resistance (Militz, 2002; Stamm, 1964). These 

improvements are, however, accompanied with a considerable loss in strength, which 

forbids the use of thermally modified wood as construction material (Militz, 2002). 
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Several parameters are important to evaluate the success of a chemical 

modification. The wood gains weight, when chemicals are deposited in the cell walls. 

This weight gain is usually reported as weight percent gain (WPG) and calculated as 

follows: 

 

where mm is the oven-dry mass of the modified wood and mu the oven-dry mass of 

the unmodified wood (Hill, 2006).  

If a chemical consists of molecules that are smaller than the pores of the 

swollen cell wall, it will diffuse into the cell wall. Many attempts have been made to 

determine the sizes of the cell wall pores and several different methods were 

developed. Although different sizes for the maximum pore diameter were found 

depending on the method used, it can be regarded as a fact that the pores of the cell 

wall swollen in water have a diameter smaller than 4 nm (Hill and Papadopoulos, 

2001). In all cases it is necessary to swell the wood to open up the pores and allow 

the chemical to enter the cell wall if a bulking treatment is pursued. If the chemical is 

not solvable in water and does not swell the wood itself, a solvent or catalyst has to 

be added, which is capable of opening up the pores (Rowell, 1983). It was shown, 

that the increase in volume of wood through the treatment with a cell wall 

penetrating chemical after drying (bulking) is directly related to the theoretical 

volume of the chemical located in the cell wall (Rowell and Ellis, 1978). When this 

bulked wood comes into contact with water, minor additional swelling can take 

place, which is the mechanism responsible for the increased dimensional stability of 

wood modified with a bulking treatment (Figure. 1c,d) (Rowell et al., 1976). Bulking 

of the cell wall is therefore an important measure to estimate the success of many 

active and passive wood modification treatments and is calculated as depicted in the 

following formula: 

 

where Am and Au are the cross sectional areas of the modified and unmodified wood 

respectively.  

If dimensional stability is imparted by the modification, the difference between 

the fully water-swollen and the oven dry cross sectional area is smaller. This increase 

in dimensional stability can be evaluated using the anti-shrink efficiency (ASE): 
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where Su and Sm are the swelling coefficients of the unmodified and modified wood 

respectively (Hill, 2006). Dimensional stability i.e. a positive ASE value can only be 

achieved with chemicals entering the cell wall and either bulk the wood (Figure 

1c,d), cross link it (Figure 1e) or cause a combination of both bulking and cross 

linking.  

4 Wood modification by acetylation and with silicon 

compounds 

4.1 Acetylation 

The Acetylation of wood is one of the most studied modifications and has undergone 

market introduction. It involves a chemical reaction, in which the accessible 

hydroxyl groups of the wood components are esterified with acetic acid derivatives. 

Acetylation of wood was first carried out by Fuchs (1928) on spruce wood and Horn 

(1928) on beech wood. Stamm and Tarkow (1947) acetylated wood in a mixture of 

acetic anhydride and pyridine, the latter as a swelling agent and catalyst for the 

reaction. Although acetylation can be carried out with different chemicals, by far the 

most common is acetic anhydride, which can be used in liquid or vapor phase. Each 

molecule reacts with one hydroxyl group and in the process splits off an acetic acid 

molecule (Figure 2). This mechanism results in a loss of at least 50% of the reaction 

chemical and makes the process of acetylation very expensive. Furthermore, the 

resulting acetic acid partly remains in the wood after reaction and causes unpleasant 

smell of the wood. This can be a major drawback of acetylated wood especially for 

indoor use. 

Wood Wood

 

Figure 2: Acetylation of wood with acetic anhydride. 

While acetylation can be catalyzed by acids or bases, it is mostly carried out without 

catalyst. It is a single site reaction, which means, that one acetyl group per hydroxyl 

group is formed, WPG of the samples can be directly related to the number of 

blocked hydroxyl groups (Rowell, 1983). Introduction of acetyl groups into the cell 

wall is accompanied with swelling of the wood (bulking) and dimensional 

stabilization. This dimensional stabilization is a function of the partial specific 
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volume of the acetyl groups added within the cell wall (Kollmann et al., 1975) and 

therefore directly related to the WPG.  

Acetylation to a WPG of 20-25% results in an ASE of approx. 70% (Hill and 

Jones, 1996). Directly related to the WPG and bulking is an increase in fungal 

resistance of the treated wood, weight loss caused by fungi decreases with rising 

WPG until it reaches a WPG threshold value, above which no decay takes place. 

Typically, acetylated wood is resistant to attack by brown and white rot fungi as well 

as soft rot decay above a WPG of approx. 17-20%. Hill et al. (2005) have shown that 

the mechanism of protection most likely is the reduction in cell wall moisture content 

or the blocking of the micro pores in the cell wall. Mechanical properties of wood are 

not significantly affected by acetylation (Hill, 2006).  

4.2 Silicon compounds 

4.2.1 Inorganic silicon compounds 

Many different silicon compounds have been used for the treatment of wood in 

recent years. Silicon itself is the 2
nd

 most abundant element on earth following 

oxygen (50%), and makes up about 25% of the earth’s crust (Römpp, 2001). Silicon 

is mostly found in form of silicate minerals (salts or esters of silicic acid) and, less 

frequent, as pure silicon dioxide. It usually comprises tetravalent bonding character 

and is very affine to oxygen. Silicon is regarded as harmless to humans and is 

required for formation of bones and connective tissue (Römpp, 2001).  

In nature, wood is sometimes naturally silicified in millions of years by 

monomeric silicic acid (Si(OH4)). The silicic acid penetrates the wood and, through 

polycondensation, forms silica gel. Silicified wood can further transform to quartz 

and opal (Selmeier, 1990).  

Silicate can be brought into solution as water glass with high contents of base, 

such as potassium oxide or sodium oxide. These clear and colloidal solutions are 

highly alkaline (pH>12) and precipitate upon addition of acids or polyvalent metal 

cations (Römpp, 2001). Treatment of wood with water glass has a long history. It 

was first described as a fire-retarding agent for wood by Fuchs (1825) and was later 

intensely studied for coating of wood to render it fire retardant (Metz, 1942). To 

improve properties such as dimensional stability, decay resistance and water uptake, 

wood was treated with water glass by several authors either in a single step (Matthes 

et al., 2002) or in a two-step procedure (Furuno and Imamura, 1998; Furuno et al., 

1991; Furuno et al., 1993; Furuno et al., 1992). In the latter cases the wood was 

treated with sodium water glass in the first step, which was in the second step 

precipitated inside the wood structure using metal salt solutions. Several different 
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salts such as aluminum sulfate, calcium chloride, barium chloride, boric acid, borax, 

boron trioxide, potassium borate and ammonium borate were investigated (Furuno 

and Imamura, 1998; Furuno et al., 1991; Furuno et al., 1993; Furuno et al., 1992).  

The treatment resulted in very high WPG, the silicate was found to be mainly 

deposited in the lumens of the cells. Because silicates as well as the metal salts are 

hygroscopic, the treated wood showed negative moisture excluding efficiencies. 

Leaching of the samples resulted in considerable loss of WPG. This was partly 

reduced by soaking of the specimens in 5% acetic acid after water glass impregnation 

and before leaching (Furuno et al., 1992). Positive ASE values between 3% and 69% 

were found, although bulking of the specimens was rather small (Furuno et al., 

1992). Fire resistance was increased except for specimens treated with barium 

chloride (Furuno et al., 1991; Furuno et al., 1993; Furuno et al., 1992).  

Decay resistance of two step water glass treated wood to white and brown rot 

fungi was found to be increased by water glass treatment but highest if boron salts 

were introduced in a combined treatment (Furuno et al., 1992). Wood treated in a 

single step procedure with water glass exhibited also high decay resistance to 

basidiomycetes with and without leaching according to EN 84. The pH of the treated 

wood was found to be very high (pH 8-9), which can explain the retardation of 

fungal growth (Matthes et al., 2002). In general, fungal decay tests on water glass 

treated wood showed high leaching of chemicals during the test and sometimes too 

high moisture contents (according to EN 113) of the specimens, which can also 

prevent colonization of the wood by fungi (Matthes et al., 2002). 

Another possibility to introduce silicon into the wood is the sol-gel process 

using silicic acid esters. The formation of a stable gel can be divided into two steps. 

At first the silicic acid esters are hydrolyzed by water molecules to form silanol 

groups (Figure 3a).  
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Figure 3: Mechanism of the sol-gel process (from Mai and Militz, 2004b) 

These silanol groups condense further to polysilicic acid (sol) and finally to a gel of 

silicon dioxide (Figure 3b) (Mai and Militz, 2004b). The application of this process 

was studied by Saka et al. (1992) who treated hinoki wood either conditioned to 

different moisture contents or water saturated with alcoholic solutions of 

tetramethoxy-silane (TMOS), tetraethoxy-silane (TEOS) and tetrapropoxy-silane 

TPOS) acidified with acetic acid. The bound water inside the cell wall of the 

conditioned specimens was supposed to initiate the sol-gel process only, if the 

chemical penetrated the cell wall and thus get a deposition of silicon exclusively 

therein and not in the lumens of the cells. This technique worked out well; while 

water saturated samples exhibited deposition of silicon in the lumens without 

achieving any ASE, conditioned wood showed ASE of up to 42% with a WPG of 

10% and no deposition of silicon dioxide in the lumens. The deposition of silicon in 

the cell wall was further verified by X-ray mapping (SEM-EDX) (Saka et al., 1992). 

WPG of specimens treated with TEOS could be increased, if an ultrasonic treatment 

was applied during the impregnation procedure (Ogiso and Saka, 1993).  

Flammability of the treated wood was evaluated by means of the oxygen index; 

higher WPG resulting in an increased index (Saka et al., 1992). Further investigation 

revealed that SiO2 gel in the cell wall was more effective in raising the oxygen index 

as compared to gel deposited in the cell lumina. Thermo-gravimetric analysis 

showed, that the degradation temperature of the treated wood was increased; this, 

again, more effectively, if the SiO2 gel was deposited exclusively in the cell walls 

(Ogiso and Saka, 1993).  

Durability of sol-gel modified wood was tested by Reinsch et al. (2002). Oven-

dry pine sapwood (Pinus sylvestris L.) was treated with tetraethoxy silane in a sol-gel 

process and incubated with the brown rot fungus Poria placenta. Weight loss of the 
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specimens was decreased to 12-15% (control specimens: 40%) depending on the 

WPG, but resistance was not achieved. Donath et al. (2004) treated pine sapwood 

(Pinus sylvestris L.) and beech wood (Fagus sylvatica L.) with TEOS either solved 

in pure acidified ethanol and, alternatively, prehydrolysed in acidified water-ethanol 

mixture. While TEOS solved in ethanol showed good penetration of the cell wall 

with positive bulking values and ASE of approx. 30%, prehydrolysed TEOS was not 

able to impart high ASE. The treated beech wood was incubated with the white rot 

fungus Trametes versicolor and showed high decay resistance only, if the wood had 

been treated with TEOS solved in ethanol, prehydrolysed TEOS did not increase 

durability. This shows the importance of depositing the modification chemical into 

the cell wall to increase durability towards wood decaying fungi. A soil block test on 

treated pine and beech wood revealed only a delay of fungal decay, but no increase 

of resistance after 24 weeks of incubation (Donath et al., 2004). This phenomenon 

was also reported by Scheithauer et al. (1998), who found initial resistance of TEOS 

treated pine wood to the brown rot fungus Coniophora puteana; after longer 

exposure, this effect was lost.  

Another group of inorganic silicon compounds are silica sols. If alkali from 

water glass is removed through ion exchange techniques in a controlled manner, the 

lack of stabilizing ions initiates condensation of the silicic acid molecules which then 

form growing colloid particles of amorphous silicon dioxide. This condensation 

process can be stopped at a certain stage by addition of some alkali and a sol of poly-

silicic acid molecules is obtained (Römpp, 2001). Silica sols are therefore alkaline 

and precipitate upon acidification, because the particles are stabilized by their 

negatively charged surface. However, silica sols can also be stabilized sterically 

(surface modification with silanes) or by positive charge (cationic surface of the 

particles) and then be stable under neutral or acidic conditions as well (Greenwood, 

2010).  

Götze et al. (2008) treated spruce and oak wood with commercially available, 

alkaline silica sol. Although the wood was partly damaged due to the alkalinity of the 

solution, water uptake after 6 days was reduced by 18% (oak) and accordingly 30% 

(pine). Yamaguchi (1994a) impregnated Japanese cedar with a monomeric silica sol, 

which had been prepared from water glass by ion exchange technique and, 

alternatively with acidified silica sol prepared by addition of phosphoric acid to a 

commercially available silica sol. Especially the monomeric silica sol was able to 

penetrate into the cell wall when applied in 5% solution and resulted in a positive 

ASE of approx. 30% and reduced water uptake of the wood. Fungal resistance to 

brown rot (F. palustris) was only improved by these treatments if the wood had not 
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been leached before incubation. By combining the silicic acid with boric acid, high 

decay resistance was achieved (Yamaguchi, 2002). 

Temiz et al. (2006) treated pine sapwood (Pinus sylvestris L.) with non-

functional alkaline silica sols with particle sizes of 15nm and 30nm. Water uptake 

rate was only reduced to a minor extent and no considerable ASE was imparted to 

the wood. Incubation with the brown rot fungus Coniophora puteana according to 

EN 113 revealed increased decay resistance of treated wood only, if the samples had 

not been leached before. If leached samples were incubated, no increased decay 

resistance was observed.  

While unmodified silica sols are not classified as biocidal products (Römpp, 

2001) and apparently do not reduce fungal decay of wood, they can be modified by 

embedding soluble biocides into the silica matrix or by covalently grafting biocides 

to the sol particle surface (Böttcher, 2000; Böttcher et al., 1999; Haufe et al., 2005). 

Covalently bonded biocides are often polycationic and are assumed to interact with 

the negatively charged cell membranes of microorganisms. This can lead to removal 

of anionic phospholipids from the cell membrane and leakage of the cells (Mahltig et 

al., 2008; Tiller, 2011). 

4.2.2 Organic silicon compounds  

In contrast to the inorganic silicon compounds discussed in the previous chapter, 

organic silicon compounds can be altered in their properties by different organic 

groups attached to the silicon (Mai and Militz, 2004a). Methyl groups can impart 

high hydrophobicity to the material combined with high thermal stability, while other 

groups might act biocidal or affect the orientation of the molecules after application 

to wood.  

The sol-gel process mentioned above, which applies tetraalkoxysilanes can be 

varied by taking organosilanes as precursors. These molecules contain up to three 

silicon functional alkoxy groups and one to three organo-functional groups, which 

can increase hydrophobicity of the gel or form covalent bonds to other constituents. 

Organo-silanes are used in many applications such as adhesion promotion, cross 

linking or surface modification (Mai and Militz, 2004a).  

Schneider and Brebner (1985) used the coupling agent γ-

methacryloxypropyltrimethoxysilane to treat different wood species in a sol-gel 

process and found ASE values of up to 70%. Donath et al. (2004) used, besides the 

before mentioned TEOS, also organo functional alkoxysilanes and found good 

incorporation into the cell wall, when conditioned wood was impregnated with 

alcoholic solutions of the two silanes methyltriethoxysilane and 
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propyltriethoxysilane. ASE values of up to 30% were measured, but this value 

decreased over time due to ageing of the gel in the cell wall. Durability of the treated 

wood towards the white rot fungus Trametes versicolor was increased considerably 

but especially, when the silane penetrated and bulked the cell wall. In a soil block 

test, decay was delayed, but not prevented. Further trials with the two 

alkylalkoxysilanes and two additional, oligomeric and water-borne silane systems 

revealed strong hydrophobation of the treated wood. This was more pronounced for 

the two oligomeric silane systems, and in addition the hydrophobation remained after 

several wetting and drying cycles, while it was reduced for the two 

alkylalkoxysilanes (Donath et al., 2006b).  

Hill et al. (2004) treated pine sapwood (Pinus nigra) with the two coupling 

agents γ-methacryloxypropyltrimethoxysilane and vinyltrimethoxysilane. They 

found incorporation of the silicon material into the cell wall and ASE values of up to 

40%. Fungal decay tests revealed only little increase of resistance to the brown rot 

fungus Coniophora puteana. Incubation with the white rot fungi Trametes versicolor 

and Phanerochaete crysosporium displayed decay resistance of the treated wood 

above a WPG of approx. 40% for Trametes versicolor and approx. 40-50% for 

Phanerochaete crysosporium (Hill et al., 2004).  

Higher decay resistance was found, if amino-functional silanes were applied. 

Donath et al. (2006a) treated wood with an amino-functional oligomeric silane 

system and found complete decay resistance of pine sapwood (Pinus sylvestris L.) to 

the brown rot fungus Coniophora puteana with a WPG of 16% even after prolonged 

incubation of 18 weeks. Beech wood (Fagus sylvatica L.) treated with the same 

silane and showing a WPG of 11%, however, showed considerable mass loss after 

incubation with Trametes versicolor (Donath et al., 2006a). Weathering of pine wood 

(Pinus sylvestris L.) revealed, that the water repellent effect of three monomeric 

alkylalkoxysilanes and two oligomeric silane systems remained stable over one year. 

Sorption, however, was not affected and checking of the weathered samples not 

reduced as compared to control specimens (Donath et al., 2007).  

Nami Kartal et al. (2009) treated wood with two different alkyl-alkoxy-

functional silanes in combination with boric acid to limit boron leaching from the 

treated wood. They were able to reduce boron leaching by approx. 40% through this 

combination. The treated wood showed increased resistance to fungal and termite 

decay compared to wood treated solely with silane or boron. 

While all studies mentioned above aimed on simply depositing the silicon 

material in the wood, a different approach is the covalent bonding of the silicon 

material to the wood. Sèbe et al. (2004) treated wood with different organo-
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functional alkoxysilanes and were able to graft the silicon compounds to the 

hydroxyl groups of wood via carbamoylation and etherification by use of the organo-

functionality and also by alcoholysis, which results in a direct reaction of the silanol 

with hydroxyl groups of the cell wall. The reactions were confirmed by WPG, 

infrared spectroscopy (FTIR) and 
13

C and 
29

Si NMR CP-MAS analysis. The 

treatment, however, resulted only in small ASE values, which decreased in a 

subsequent water soaking test (Sèbe et al., 2004). Further work on the 

carbamoylation of wood using isocyanatopropyltriethoxysilane was done by Tingaut 

et al. (2005; 2006).  

Besides alkoxy silanes, chlorosilanes are a group of very reactive silicon 

compounds. Hydrophobation of organic material (paper) by methylchlorosilanes was 

first observed by W. Patnode in 1940 while producing methyl-chlorosilanes in a lab. 

Evaporating silane hydrolyzed upon contact with the moisture in the air and reacted 

on and with the paper present in the lab (Rochow, 1991). This observation led to the 

idea of hydrophobizing materials with chlorosilanes (Patnode, 1942). During 

hydrolyzation of chlorosilanes, HCl is released, which is the major drawback of this 

idea, because wood, being sensitive to acid breakdown, will be degraded. Still some 

work was performed to treat wood with different chlorosilanes. Owens et al. (1980) 

treated wood with tetrachlorosilane and found increased decay resistance of the 

treated wood to brown and white rot fungi. Stevens (1981) used tetrachlorosilane, 

methyltrichlorosilane, dimethyldichlorosilane, methyldichloro-hydrogensilane and 

chlorotrimethylsilane to treat pine and beech wood in vapor and liquid phase. To 

avoid the degradation of wood by HCl, besides hexane different basic hydrochloric 

acid acceptors were used as solvents (triethylamine, formamide, 

dimethylformamide). This time the treatments, however, did not result in high decay 

resistance of pine sapwood (Pinus sylvestris L.) to Poria placenta and Gloeophyllum 

trabeum as well as beech wood (Fagus sylvatica L.) to Trametes versicolor and 

Coniophora puteana. Best results (weight losses of 5-10%) were obtained with the 

two materials dimethyldichlorosilane and methyldichlorohydrogensilane. Further 

examination of the effect on blue stains and moulds revealed only low effects of 

chlorosilane treatment (Stevens, 1985). 

Another group of organo-silicon compounds are the silicones. These are 

polymeric materials with a silicon-oxygen backbone and hydrocarbon radicals 

attached directly to the silicon (Noll, 1968). The name silicone derives from the term 

silicon ketone, because the empirical formula (R2SiO)n is similar to the ketones from 

organic chemistry (R2CO) (Noll, 1968). The basic repeating unit in silicones is the 

siloxane, while the most common silicones are polydimethylsiloxanes (Figure 4). 
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Depending on the chain length and attached functionalities, PDMS are a class of 

polymers ranging from fluids to elastomers.  

 

Figure 4: Unfunctional polydimethylsiloxane. 

The synthesis of silicones uses methyl-chlorosilanes as precursors, which are 

prepared from elemental silicon by a direct synthesis found by Rochow and Müller 

simultaneously in 1940 (Schliebs and Ackermann, 1987) and which was the starting 

point for mass production of silicones: 

2 CH3 Cl + Si 
[Cu]

300°C
(CH3)2SiCl2

 

These chlorosilanes are further hydrolyzed under formation of HCl and the resulting 

silanol groups subsequently polymerize to form polydimethylsiloxane (Ackermann 

and Damrath, 1989). Silicones are the only important polymer with an inorganic 

backbone, are physiological inert and hard to inflame. The methyl groups attached to 

the silicon have proved to be superior over other organic groups due to their small 

size and absence of carbon-carbon bonds which render the silicone very stable 

towards heat and chemicals (Rochow, 1991). That is the reason, why 

polydimethylsiloxane has become the most common silicone.  

Recently, functionalized PDMS have attracted interest. Introduction of 

functional groups into the silicone structure offers the possibility to alter the 

properties of the silicone in specific ways, for example combine hydrophobic and 

hydrophilic properties. Examples for functional groups are esters, epoxides, vinyl-, 

allyl-, amino- and carboxy groups. Functionalized siloxanes have especially proved 

valuable for the combination of natural materials such as textiles and wood with 

PDMS. While unfunctional silicones do not interact with surfaces of textiles and 

wood, amino groups have proved to increase binding and orientation of PDMS on 

textile surfaces (Bereck et al., 2001). Due to the extreme flexibility of the siloxane 

backbone and the low surface energy, PDMS can spread on the surface of fibrous 

substrates and reduce friction of the fibers and increase hydrophobicity (Kim, 2001).  

Bereck et al. (1996) studied the application of amino silicones on cotton and 

cotton-polyester textiles. The strongest influence on the properties of the treated 
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textiles was found in the amino group content of the siloxane. The position of amino 

groups on the siloxane backbone was also found to have a significant effect. 

Softening of textiles was better for siloxane with aminogroups attached to the sides 

of the backbones compared to α-ω functional amino silicones, while the material also 

became more hydrophobic.  

Kim (2001) studied hydrophobation of textiles with siloxane and found amino 

siloxanes very effective. A strong influence on hydrophobation was found for 

functionality, amino content, attachement of functional group and application of 

siloxane. Heating of the treated textile material after application of siloxane 

increased orientation of the PDMS (with hydrophilic parts facing the textile) and 

significantly enhanced hydrophobation.  

While silicone treatment of masonry to improve water repellence without 

reduction of water vapor permeability and to increase service life is common, 

treatment of wood has not gained such an importance (Hager, 1995). Rochow, who is 

one of the inventors of the direct synthesis of methylchlorosilanes has laid the 

foundation for mass production of silicones He treated his wooden house in 1958 

with a coating of silicones and even 30 years later found little degradation of the 

coating (Rochow, 1991). This shows the potential of silicone application for the 

protection of wooden constructions.  

To avoid the use of organic solvents, water-borne formulations are preferred 

for treatment of wood. SMK micro emulsions (Wacker SMK
®
 technology) were used 

by Hager (1995) to impregnate wood. The technology combines silanes, siloxanes 

and functional polysiloxanes, which are at the same time temporary emulsifiers and 

co-emulsifiers. After drying the emulsifiers lose their ability and serve as adhesion 

promoters and catalysts. Upon mixing with water, the system emulsifies itself and 

forms droplets of 10-80nm diameter, which are able to penetrate the wood structure 

and deposit the silicone in the lumens of the cells. Hager (1995) found a 70% 

reduction of water uptake even after two years of outside weathering (10% silicone 

treatment), showing the long term effectiveness of the silicone. Lukowsky et al. 

(1997) further investigated SMK type formulations of silicones and found high water 

repellence with long lasting stability. ASE, however, was not found and gluing of the 

specimens with PVAc revealed strong reduction of glue bond strength. Although the 

results are promising, the SMK technology has the major drawback of a short pot life 

of <24h, which is not applicable for the use in impregnation plants. Furthermore 

methanol and ethanol are split off and cause further problems in the treatment and 

drying processes. 
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Simon et al. (2011) treated wood with solvent based solutions of silicones and 

found strongly reduced water uptake of the treated wood. The concentrations (and 

WPG) that were used, however, were very high (up to 90%) and therefore not viable 

in practice. De Vetter et al. (2010) treated wood with different water-borne 

emulsions of silicones and found no significantly improved water repellence and no 

ASE for low WPG of approx. 5-6%. They concluded that only functionalized 

silicones may be effective enough for the treatment of wood.  

The development of functional silicones, which have proved to be superior to 

unfunctional silicones in textiles, in combination with the similarities of the 

substrates cotton (textiles) and cellulose (wood) have led to the idea of using 

functional silicones to improve properties of wood. Weigenand et al (2007) studied 

the impregnation of wood with two amino-functional silicones formulated as micro- 

and macroemulsion, respectively. They found good penetration of the emulsions into 

the wood and also into the cell wall resulting in positive bulking values. These were 

higher for the micro- compared to the macroemulsion and resulted in positive ASE 

values. The cell wall penetration was further confirmed by x-ray mapping (SEM-

EDX). Water repellence was especially high in the initial phase of water uptake, later 

on water repellent effectiveness (WRE) decreased.  

The amino-silicone microemulsion was further investigated for its ability to 

impart decay resistance to the treated wood (Weigenand et al., 2008). Pine sapwood 

(Pinus sylvestris L.) and beech wood (Fagus sylvatica L.) was treated with 2, 5 and 

15% concentrations of the amino-silicone and incubated with the brown rot fungi 

Coniophora puteana, Antrodia vaillantii, Gloeophyllum trabeum and Serpula 

lacrymans as well as the white rot fungi Trametes versicolor and Ceriporiopsis 

subvermispora and the soft rot fungus Hypoxylon fragiforme.  

Decay in a test according to EN 113 was strongly reduced by the treatments for 

all fungi but the soft rot, when the wood had been treated with 15% emulsions. The 

resistance was mainly explained with the amino groups attached to the silicone 

(Weigenand et al., 2008).  

The influence of silicone functionality on fungal decay of the treated wood was 

further evaluated by Ghosh et al. (2008). They treated pine sapwood (Pinus sylvestris 

L.) and beech wood (Fagus sylvatica L.) with three emulsions of commercially 

available silicones bearing different functionalities: alkyl-functional, amino-

functional and quaternary-ammonium-functional. While the alkyl-functional silicone 

did not impart any resistance to wood in a mini block test according to Bravery 

(1978), the two other silicones considerably reduced mass loss due to incubation with 

Coniophora puteana (pine) and Trametes versicolor (beech) if high treatment 
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concentrations of 15% were used. In an unsterile soil bed test according to EN 807 

silicone treated wood showed slightly reduced mass loss and loss of MOE compared 

to untreated wood. In both tests, amino-silicone showed somewhat better results than 

quarternary-ammonium-silicone (Ghosh et al., 2008).  

The same silicone emulsions were tested on their ability to impart resistance to 

blue stain and mold fungi. While even treatment with 10% emulsions of alkyl- and 

quarternary-ammonium-functional silicone did not inhibit colonization by blue stain, 

amino-functional silicone did radically reduce infestation even with a concentration 

of 4%. Treatment with 10% amino-silicone also resulted in a certain resistance to 

mold growth, while the other two silicones showed lower effectiveness (Ghosh et al., 

2009).  

Further work revealed high effectiveness of the three silicone emulsions to 

termite attack. A field test with the two termite species Coptotermes acinaciformis 

(Froggatt) and Mastotermes darwiniensis (Froggatt) resulted in complete protection, 

when the pine sapwood had been treated with 5% emulsions of amino- and 

quarternary-ammonium-functional silicone. Alkyl-functional silicone treatment 

reduced mass loss, but was slightly less effective (Ghosh et al., 2012b).  

As quarternary-ammonium- and amino-functional silicones showed promising 

results, further trials focused on these materials using different chain length. The 

silicones were solved in a mixture of water and organic solvents to avoid influence of 

the emulsifiers. Positive bulking and increased dimensional stability was found for 

pine sapwood; 30% treatment with amino-silicone with a chain length of 9 resulted 

in an ASE of approx. 60%. Pine sapwood and beech wood showed greatly reduced 

mass loss after 12 weeks of incubation with Coniophora puteana (pine) and 

Trametes versicolor (beech). Treatment with 15% short-chained quarternary-

ammonium- and amino-functional silicone resulted in mass losses of less than 5% for 

pine sapwood. Increasing effectiveness against decay was found for decreasing chain 

length of the particular silicone (Ghosh, 2009).  

4.3 Aim of the study 

The aim of this study was to assess the possibility to enhance water related properties 

and fungal resistance of wood by treatment with silica sols, silanes and 

polydimethylsiloxanes. This study can be illustrated in three sections. In the first 

part, wood was treated with silica sols of different pH and surface modification. The 

objectives of this part were: 
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 Screening of different silica sols to gain understanding of the influence of pH 

and surface modification on penetration of the silica sols into wood and to 

identify silica sols for the treatment of wood. 

 Study the effects of different silica sols on wood properties such as water 

uptake, fungal decay resistance and staining. 

 Investigate, if silica sols can penetrate the cell wall and be regarded as a 

bulking (impregnation) modification of wood. 

 Study the mode of action of silica sols. 

In the second part, acetylation of wood was combined with silanes and different 

PDMS which were mixed into the reaction chemical acetic anhydride. While usually 

water is the only commercially acceptable solvent, which can be used as a delivery 

system for wood treatment chemicals, acetylation offers the possibility to carry 

chemicals into the wood by help of acetic anhydride, which is a good solvent for 

silicon compounds with certain functionalities. The aims of this section of the study 

were: 

 Synthesize acetoxy-functional PDMS for the treatment of wood. 

 Test acetoxy-functional silane and several PDMS with different chain length 

and different functionalities (acetoxy-, amino-, hydroxy- and non-functional 

PDMS) for the capability to be combined with acetic anhydride for the 

acetylation of wood. 

 Study water uptake and other properties of the treated wood. 

 Investigate the mode of action of the silicon compound. 

The third section dealt with treatment of wood by use of short-chained functional 

PDMS formulated in water. The objectives of this part were: 

 Screen polysiloxanes with different functionalities for treatment of wood. 

These were epoxy-, amino-, carbobetain- and carboxy-functionality. 

 Use of water based systems and formulation by help of emulsifiers to avoid 

organic solvents in the impregnation process. 

 Study the properties of the treated wood such as water uptake, dimensional 

stability and fungal resistance. 

 Understand the mechanism causing water uptake reduction and fungal 

resistance of the treated wood. 
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 Investigate, if synergistic effects can be achieved by combining carboxy- and 

amino-functional PDMS, which results in salt formation of the functional 

groups. 

5 Results and Discussion 

5.1 Inorganic silicon compounds 

5.1.1 Results 

In the first part of the study, different silica sols were investigated for their ability to 

be impregnated into wood and impart increased resistance to fungal decay and blue 

stain and decrease water uptake rate of the treated wood. Several typical 

commercially available products were used to impregnate wood with a 15% solution 

(Table 1). 

Table 1: Commercially available silica sols used for the impregnation of wood. 

No. Name Concentration 

of stock 

solution (%) 

Surface-modification pH of 

stock 

solution 

1 Levasil 200E 20 Unmodified 2.9 

2 Levasil 200S 30 Aluminum oxychloride 3.7 

3 Bindzil CC151 17.5 Epoxypropylsilane 7.6 

4 Modified 

Bindzil CC151  

17.5 Epoxypropylsilane 6 

5 Levasil 200A 30 Aluminate 10 

6 Levasil 50 50 Unmodified 9.5 

7 Bindzil CAT 650 15 Aluminum oxychloride 3.6 

Tests on penetration of the different silica sols into the wood revealed, that the 

neutral and acidic silica sols were able to enter the wood structure while alkaline 

silica sols did not penetrate the wood properly. Alkaline silica sols change their pH 

value when entering the acidic wood structure and precipitate. This may cause 

blocking of the penetration paths and insufficient impregnation.  

After drying of the specimens, high WPG values were assessed, which were 

very stable towards leaching with water. Bulking, however, was not observed, which 

indicates, that none of the tested silica sols was able to enter the cell wall of wood. 

This can be explained by too large particle diameters of the silica sols compared to 

the nanopores in the cell wall.  
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Water uptake rate was assessed on small samples in a simple submersion test. 

One of the tested materials, Levasil 200S, was able to reduce water uptake 

considerably in the first hours of the test. After 24h, water uptake was still approx. 

15% lower than that of the control specimens. All other silica sols increased water 

uptake as compared to the control specimens.  

Further work focused on silica sols No. 1-4 due to their more promising results. 

A fungal decay test according to EN 113 was performed on pine sapwood 

(Coniophora puteana) and beech wood (Trametes versicolor) treated with 15% 

solutions of the silica sols No. 1-4. Levasil 200S strongly reduced mass loss due to 

incubation with the fungi, while all other materials proved to be ineffective. The 

silica sols were mixed into the malt-agar growth medium of the two fungi in different 

concentrations and the petri dishes were inoculated with the fungi to assess a biocidal 

effect. Again Levasil 200S showed reduction in growth for both fungi if mixed into 

the malt-agar medium with 2% concentration, while all other silica sols did not 

reduce fungal growth. A laboratory blue stain test on pine sapwood treated with 15% 

of the silica sols No. 1-4 revealed reduced staining for wood treated with Levasil 

200S on the surface, that did not face the vermiculite, on the other surface, staining 

was equal to the control. All other silica sols did not decrease staining considerably. 

A bulking test revealed slightly negative bulking values for several of the silica 

sols. Bulking was further examined on wood treated with Levasil 200S. It was found 

to become more negative with increasing drying temperature accompanied with 

reduced maximum swelling of the treated wood. This result indicates a thermal 

breakdown of the wood even at a temperature of 103°C, leading to shrinkage and 

negative bulking. A reduction of the thermal decomposition temperature is often 

caused by fire retardant treatments. Through a layer of insulating charcoal on top of 

the wood formed at low temperature, burning can be inhibited and the underlying 

wood protected. A simple burning test was carried out on pine sapwood treated with 

5, 10 and 15% concentrations of the silica sol Levasil 200S. For comparison a 

commercially available fire protection salt was used. Silica sol treatment was able to 

reduce burning speed, weight loss of the samples and burning time. Glowing of the 

samples after extinction of the fire was completely prevented by the treatment. 

Compared to the commercially available fire protection salt, the differences were 

rather small. Further investigation using thermo gravimetric analysis (TGA) revealed 

a minor reduction of pyrolysis temperature as well as a minor increase in charcoal 

yield after pyrolysis. Oxidation behavior of the charcoal was not altered. All these 

differences proved to be small compared to the commercial fire protection salt, 

which strongly reduced pyrolysis temperature, increased char coal yield and 

increased oxidation temperature of the resulting charcoal.  
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5.1.2 Discussion 

Particles of unmodified silica sols with alkaline pH are stabilized by negative charge. 

By acidification of the solution, the silanol groups, which are weak acids, are 

protonated and the stabilization is removed, which results in condensation and 

precipitation of the silica sol. The same reaction takes place if alkaline silica sols are 

impregnated into wood. Wood itself is an acidic material, typically exhibiting a pH 

between 4 and 6 (Kollmann, 1951). If silica sols are entering the wood structure, the 

wood will buffer the impregnation solution to the same pH value, which causes 

precipitation of alkaline silica sols and blocking of the main penetration pathways. If, 

on the other hand, the silica sols are modified in a way, that they are stabilized 

sterically or by positive charge and already have a neutral or acidic pH, impregnation 

can be done without any precipitation and good penetration. It can be concluded, that 

only neutral or acidic silica sols have the potential to be used for the impregnation of 

wood.  

The silica sol was only deposited in the lumen of the cells as can be deduced 

from the bulking, which was never found to be positive. For entering the cell walls of 

wood, the particles or molecules need to be smaller than the micro-pores of the cell 

wall. These have been reported to have a maximum diameter of 2-4nm (Hill and 

Papadopoulos, 2001). The sizes of the silica sol particles can be calculated using the 

surface area. Assuming a density of 2gcm
-
³ and a surface area of 200gm

-
² (Levasil 

200S) results in a mean diameter of 15nm, while a surface area of 650m²g
-1

 (Bindzil 

CAT 650) corresponds to a mean diameter of 5nm. Silica sols exhibit a Gaussian 

distribution of particle diameters around the mean value; therefore CAT 650 contains 

particles bigger and also smaller than 5nm. Still, the particles were not able to 

penetrate the cell wall and induce bulking, which may be due to a very narrow 

distribution around the mean value or due to some agglomeration of particles during 

the impregnation. This result corresponds to Temiz et al. (2006), who found minor 

penetration of silica sol into the cell wall and very low ASE values. Yamaguchi 

(1994a), on the other hand, was able to obtain cell wall penetration and ASE values 

of approx. 30% with a silica sol prepared from sodium silicate by ion-exchange 

technique. The silica sol had just been prepared before impregnation and was a 

“living” system with growing particles; obviously the particles were still small 

enough to enter the cell wall. However, the material gelled within a few hours 

(Yamaguchi, 1994b), making this material unsuitable for use in impregnation plants.  

Reduction of water uptake rate was only found for Levasil 200S. Silica is a 

hydrophilic material which is not expected to hydrophobize the wood but only block 

penetration pathways of water such as ray cells or tracheids. While water glass 

treatments usually result in highly negative moisture exclusion efficiencies (Furuno 



25 

 

et al., 1992; Matthes et al., 2002) due to hygroscopic counter ions, silica sols contain 

considerably smaller amounts of counter ions for stabilization. Temiz et al. (2006) 

found a reduced water uptake rate for wood treated with silica sols. Götze et al. 

(2008) treated spruce wood with silica sol and found a reduction in water uptake of 

25% after 6 days of immersion. This shows, that even with a hydrophilic material it 

is possible to reduce water uptake rate. However, blocking of penetration pathways is 

a relatively ineffective way of reducing water uptake; high amounts of material are 

needed as can be seen from the high WPG used in this study.  

Fungal decay of treated wood was considerably reduced by the cationic silica 

sol Leavsil 200S, while all other silica sols did not impart increased decay resistance 

to wood. This finding supports the assumption, that silica sol itself is a non-toxic 

material (Römpp, 2001). Modification of silica sols by covalently binding biocides to 

the surface can render silica sols biocidal. Often these biocides are polycationic and 

lead to removal of anionic phospholipids from the cell membrane and leakage of the 

cells (Mahltig et al., 2008; Tiller, 2011). The same mode of action is believed to 

cause the inhibition of fungal decay in the case of Levasil 200S. A further study of 

biocidal properties by mixing the silica sols into the malt agar growth medium 

revealed the (relatively low) effectiveness of Levasil 200S even if not impregnated 

into wood. A blue stain test on Aureobasidium pullulans showed some effect on 

staining fungi as well, although the sensitivity of the staining fungus seemed to be 

very low.  

While the burning test revealed some effectiveness of Levasil 200S to increase 

fire resistance, TGA only showed minor differences compared to control specimens. 

Treatment with the commercial fire retardant resulted in strongly reduced pyrolysis 

temperature in the TGA. The slight downshift of pyrolysis temperature of silica sol 

treated wood compared to the control was in contrast rather small. Pyrolysis of wood 

at lower temperature can be caused by acidic reaction of the fire retardant and 

induces the formation of a protecting charcoal layer on top of the wood which 

protects the wood from further burning (Rowell and LeVan-Green, 2005). The 

reduction of combustible volatiles is another feature of many fire retardants. A 

reduction of combustible volatiles is shown by a high charcoal yield after pyrolysis. 

In contrast to the fire retardant, the silica sol only increased the charcoal yield to a 

minor extent and thus did hardly reduce the amount of combustible gases (Rowell 

and LeVan-Green, 2005). The resulting charcoal of silica sol treated wood showed 

the same oxidation behavior as the charcoal of the control.  

Different effects, which are not reflected in the TGA measurements, can 

explain the relatively strong fire retardance of Levasil 200S revealed in the burning 
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test. The formation of a charcoal layer at lower temperatures was mentioned above. 

A second reason may be increased density accompanied with increased heat capacity 

of the treated wood. As a result more energy is needed to heat up the wood to a 

temperature where combustible gases are released (Metz, 1942). If wood is heated 

up, combustible gases are released, exit the wood structure through the lumen and 

burn outside of the wood. Through impregnation with silica sols, the release of 

combustible gases from the wood might be hindered through blockage of the lumens 

and thus flammability decreased.  

The heat conductivity might be increased by the treatment with silica sols. This 

distributes incoming heat and prevents the wood from being heated up locally to a 

burning point (Metz, 1942). Moisture content of the silica sol treated wood was 

comparable to control samples; this can therefore not have caused increased fire 

resistance.  

The prevention of glowing of the resulting charcoal can be explained by 

decreased porosity. It is know that charcoal from diffused porous wood glows easier, 

because air has better access to the charcoal. If the porosity of the charcoal is 

reduced, air cannot penetrate as easily and glowing can be reduced or prevented 

(Metz, 1942).  

Effects of silicon compounds on fire resistance of wood have mainly been 

studied with tetraethoxysilane (TEOS). Saka et al. (1992) found increased fire 

resistance of TEOS treated wood, which was further enhanced by combining TEOS 

with trimethylphosphit and/or trimethylborate. Fire resistance was tested on a similar 

burning test compared to the test used in this study (Miyafuji and Saka, 1996). 

However, the chemicals used were quiet different to the silica sols used in this study. 

Furthermore, the silica formed by TEOS was at least partly incorporated into the cell 

wall (as indicated by positive bulking values), while our silica sols were only 

deposited in the lumens of the cells.  

5.1.3 Outlook 

According to the definition of wood modification being a change of the wood 

substrate itself (Hill, 2006), silica sol treatment cannot be classified as a wood 

modification technique. The wood substrate is not chemically changed; silica sols do 

not react with the wood and are therefore no active wood modification. Furthermore, 

the tested silica sols are not a passive wood modification either, because they are not 

able to enter the cell walls and induce bulking, which would also lead to a change of 

the wood substrate and durability towards fungi. The material is simply deposited in 

the lumen of the cells; effectiveness against fungal decay is based on a biocidal 

action of the cationic particle surface. This statement is supported by the results of 
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the biocidal test in the petri dish, which showed inhibition of the fungi by cationic 

silica sol intermixed with the agar growth medium.  

Silica sol is produced from water glass, which is a very cheap material. The 

synthesis of silica sol, however, makes it about ten times more expensive than water 

glass. While water glass is available for a price of around 0.2€kg
-1

, silica sol costs 

around 1.8€kg
-1

 to 2€kg
-1

 for a 30% solution of Levasil 200S. If we assume a 

required WPG of 20% for the protection of wood against fungal decay and the 

density of wood being 500kgm
-
³, we can estimate a price for the silica sol of more 

than 600€m
-
³ of wood, which makes silica sol treatment not competitive on the 

markets nowadays. 

The only effective silica sol for protection of wood against fungal decay and 

water uptake turned out to be Levasil 200S, a cationic material, which is stabilized 

by cationic charge and chloride as negative counter ions.  

Sol Particle

 

Figure 5: Idealized structure of a Levasil 200S silica sol particle. 

Incineration of treated wood after service life should be possible without formation 

of toxic products. However, highly toxic dioxins can be formed, if chloride is present 

in high temperature oxidation processes of hydrocarbons (Römpp, 2001). This makes 

the disposal of wood treated with cationic silica sol potentially problematic and 

expensive. Furthermore, silica sol deposition in wood will increase wear of wood 

working machines and require more frequent sharpening and replacement of tools. 

This is another drawback of this wood treatment process.  

In Summary, the costly silica sols with problematic disposal and additional 

machining costs render the application for wood preservation economically 

unattractive and therefore an unlikely product in the industry.  
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5.2 Organic silicon compounds 

5.2.1 Results 

5.2.1.1 Acetylation in combination with silicon compounds 

In a first study a polysiloxane treatment was combined with acetylation of wood. 

Different functional and unfunctional polysiloxanes and one silane were tested for 

their compatibility with acetic anhydride, the acetylation agent. Reduction of the rate 

of water uptake as the main goal of polysiloxane treatment was assessed for the 

treated wood. While all polysiloxanes did reduce water uptake rate as compared to 

purely acetylated wood, acetoxyfunctional siloxane proved to have the highest 

efficiency. Subsequently, different concentrations of acetoxyfunctional siloxane in 

the acetylation reagent were tested for their effect. While WPG increased due to 

increasing deposition of siloxane in the wood, bulking increased only very slightly. 

On the other hand, the acetyl content of wood acetylated with a mixture of 

acetanhydride and polysiloxane decreased with increasing concentration of siloxane. 

The water uptake rate was strongly reduced by the combination as compared to 

acetylated wood. While in the first test higher concentrations of up to 20% siloxane 

increased hydrophobation, these differences vanished in subsequent tests and 1% 

siloxane in the acetylation reagent seemed to be sufficient for maximum water 

repellence. The subsequent tests resulted in increased water repellence of the treated 

wood. Fungal decay resistance and mechanical properties such as bending and 

impact bending strength were not affected by the treatment.  

5.2.1.2 Treatment of wood with short chained functional polysiloxanes 

Further studies were performed on short chained polysiloxanes emulsified in water to 

increase water repellence and decrease fungal decay. In a first study different α-ω 

attached functionalities were examined, these were amino-, carboxy, epoxy- and 

carbobetain-functionality. All siloxanes were formulated in water as 30% stock 

solution using three fatty alcohol ethoxylate emulsifiers. These stock solutions were 

diluted to 10% for the treatment of wood. The initial WPG of the treated wood was 

high, because the emulsifiers contributed to the weight gain. By leaching the 

samples, the WPG was reduced and all but carboxy-functional siloxane showed 

moderate leaching stability. Carboxy-siloxane showed relatively high leaching 

values, after two severe leaching cycles, only 22% of the material was left in the 

wood. For all treatments bulking was between 1% and 2.5%, resulting in only 

negligible ASE values. Water uptake rate was reduced by the treatments in the first 

water uptake test, in a second test, however, carboxy-functional siloxane actually 

increased water uptake rate as compared to the control specimens. All other materials 

only induced small reductions in water uptake after 24h. A fungal decay test on pine 
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sapwood (C. puteana) and beech (C. puteana and T. versicolor) showed increased 

fungal resistance, the most effective material being the carboxy-functional siloxane, 

which reduced mass loss below 3% in two cases (pine, C. puteana and beech, T. 

versicolor). An unsterile soil bed test revealed decreased mass loss of the treated 

samples, but no resistance to soft rot.  

The good effectiveness of carboxy-functional siloxane to reduce fungal decay 

combined with the leaching instability and absence of water repellent properties on 

the one hand, and amino-functional siloxane with higher effectiveness in reducing 

water uptake and higher leaching stability on the other hand led to the idea of 

combining these two materials. If amino-functional and carboxy-functional siloxanes 

are combined, salt formation is expected to take place between the two 

functionalities. This was thought to increase fixation in the wood and increase 

effectivity against fungi.  

The two functional siloxanes were mixed in ratios of 80:20 and 20:80 and 

formulated in water with a siloxane content of 20%. While the amino-functional 

siloxane was only used with a chain length of 10, carboxy functional siloxane was 

used with chain lengths 10 and 46. Additionally the two pure materials with chain 

length 10 were tested. Pine sapwood was treated with 5% and 10% emulsions of the 

siloxanes. Leaching stability of the mixture containing 20% carboxy siloxane was 

good, showing, that the salt formation was able to increase fixation to some extent. 

The mixture with 80% carboxy, however, showed high leaching values, the amino 

content being too low. Penetration into the cell wall and bulking was low, which was 

expected regarding the results from the first study. Water uptake rate was at first 

stronger reduced for the formulations containing pure or 80% carboxy-siloxane, but 

in a second and third experiment amino-functional siloxane and mixtures thereof 

with 20% carboxy-siloxane showed better results. The high water repellent 

effectiveness of carboxy-siloxane in contrast to the values found in the first study 

shows the importance of the formulation on the obtained results. A fungal decay test 

on pine sapwood (C. puteana) and beech (C. puteana and T. versicolor) revealed 

highest effectiveness to reduce decay for pure carboxy-functional siloxane. 

Synergistic effects and increased effectivity for the mixtures of the two siloxanes 

were not observed. Blue stain test, on the other hand, showed the opposite result, 

amino-functional siloxane being the most effective and carboxy-functional siloxane 

having no inhibiting effect on Aureobasidium pullulans.  

Paintability was tested on beech wood treated with 5% and 10% of different 

mixtures of amino- and carboxy-siloxane. After application of the pain, paint 

adhesion was tested in a dolly test. Acrylic water based paint was found to show 
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strongly reduced dry and wet adhesion on treated wood. Observation of the area of 

fracture revealed no penetration of the paint into the treated wood, while wood 

treated only with emulsifier or control wood showed good penetration. Alkyd based 

paint did not give valid test results due to insufficient adhesion between the three 

paint layers.  

Glueability was tested on beech wood treated with the same siloxane. Most 

common glues for industrial application, PVAc glue, phenolic glue and PUR glue 

were used. No considerable reduction in bond strength was observed, although wood 

failure was reduced for some treatment and glue combinations. 

Wood was further repeatedly impregnated with low concentrations of a mixture 

of 80% amino-siloxane and 20% carboxy-siloxane both with a chain length of D10. 

The impregnation was done with 1*1.6%, 2*1.6% and 3*1.6% and additionally also 

with 1*4.8% concentration of the emulsion. The results of water uptake clearly 

showed, that the highest effect is imparted by only the first 1.6% and higher loadings 

of siloxane have a much lower effect on water uptake rate. It was also observed, that 

repeated impregnation with lower concentration gives just the same results as single 

impregnation with higher concentration.  
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Figure 6: Water uptake of wood samples impregnated with different concentrations of 

polysiloxane emulsion containing amino-functional and carboxy-functional PDMS (Mean 

values). 

5.2.2 Discussion 

5.2.2.1 Acetylation in combination with silicon compounds 

By combining acetoxyfunctional siloxane with acetic anhydride in an acetylation 

procedure it was possible to reduce water uptake considerably. In general two ways 

for the reduction of water uptake can be considered. These are a) blocking of the 

main penetration pathways of water and b) rendering the inner surfaces of wood 

hydrophobic. It was found, that even with 1% concentration of siloxane in the 

acetylation reagent maximum water repellence was achieved, which suggests, that 

the inner surfaces of wood had been rendered water repellent. Otherwise increased 

concentrations would have led to reduced water uptake. Furthermore, water 

repellence of the treated wood increased in subsequent water uptake tests which were 

always followed by drying at 103°C. This phenomenon is known from other 

applications of siloxanes. Kim (2001) found improved water repellence of textiles 

treated with functional polysiloxanes, when the drying temperature was raised. This 

was explained with increased orientation of the PDMS in a way, that the hydrophilic 

parts of the chain are facing the substrate and the hydrophobic parts orient towards 

the outside. Amino functional PDMS have amino groups as their most hydrophilic 

parts, which will orient towards the wood (Bereck et al., 2001), non-functional 

PDMS will orient towards the wood with its siloxane-oxygen backbone while the 

hydrophobic methyl groups will orient outwards (Burrell et al., 2004; Kim, 2001; 
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Noll, 1968; Weigenand et al., 2007). The process of increasing orientation of PDMS 

by heat treatment is called activation. The same mechanism of improved chain 

orientation should be true for wood in our case of several wetting and high 

temperature drying cycles. 

Increased bulking accompanied with decreasing acetyl content in acetylated 

wood when siloxane was mixed into the reagent suggests incorporation of PDMS 

into the cell wall. This can also explain lower acetyl content; the PDMS may have 

blocked the hydroxyl groups of the cell wall and prevented acetylation. Penetration 

of PDMS into the cell wall was found before by Ghosh (2009), who treated wood 

with water-solvent based solutions of PDMS of very similar chain length and found 

positive bulking values. This suggests that PDMS despite their high molecular mass 

are able to penetrate the cell wall, but only to a small extent.  

Fungal resistance of acetylated wood was solely governed by acetyl content 

and not altered by the introduction of PDMS. Functional PDMS was found to reduce 

fungal decay before (Ghosh, 2009; Weigenand et al., 2008), but in this case a 

reactive PDMS was introduced into the wood which is expected to polymerize upon 

drying and form a long chained and unfunctional siloxane structure in the wood. 

Many studies on PDMS have previously shown the biological inertness of PDMS 

with longer chain length (Ackermann and Damrath, 1989; Noll, 1968).  

5.2.2.2 Treatment of wood with short chained functional polysiloxanes 

Impregnation of wood with water based emulsions of PDMS of different 

functionality revealed great differences in the properties of treated wood. While none 

of the material was able to penetrate the cell wall considerably and cause high 

bulking values, the stability against leaching was quiet different. To be fixed in the 

wood, the functional PDMS can interact with functional groups of the cell wall. This 

is especially likely for amino-functional PDMS, the amino group being cationic 

under the acidic conditions of wood. Functional groups in the wood are usually 

anionic, for example carboxylic groups of hemicelluloses or phenolate groups in 

lignin. Carboxy-functional PDMS on the other hand is expected to be negatively 

charged and thus does not find counterparts in the cell wall to form ionic pairs. This 

can very well explain the high leaching of pure carboxy-functional PDMS. 

Combining amino- and carboxy-functional PDMS lead to increased leaching 

stability, if high proportions of amino-functional PDMS were present. The two 

functionalities can form salts and the carboxy functional PDMS can thus be fixed in 

the wood via an amino-functional PDMS.  

Water uptake was reduced by the treatments, but strong water repellence could 

not be achieved. Generally the functional PDMS used are less water repellent than 
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unfunctional siloxanes due to the hydrophilic properties of the functional groups, 

which offset the properties of the relatively short siloxane backbone. While amino 

functional PDMS will orient the functional groups towards the cell wall, carboxy 

functional PDMS will not, which causes even higher influence of functional group 

and less water repellence of the treated wood. Combining the two materials did not 

lead to improvements regarding the reduction in water uptake. If we assume salt 

formation between the two functionalities, the orientation of the amino PDMS will 

be worsened, the amino groups therefore will not strictly face the wood surface 

anymore. This effect exposes the functional groups to incoming water and therefore 

an improvement of water repellence cannot be expected by the combination of these 

two materials. The increase in chain length of the carboxy PDMS, which was also 

tested in combination with the amino PDMS, is on the other hand expected to 

increase water repellence. The siloxane chain is water repellent; with increasing 

chain length the properties of the chain should dominate over the properties of the 

hydrophilic functional carboxy groups and increased water repellency is therefore 

expected. This finding suggests a different mode of action as was discussed above 

for the acetylation experiments. Most likely, the PDMS in these cases blocked the 

penetration pathways of water inside the wood (for example ray cells and pits). This 

assumption is supported by the fact, that higher loadings of PDMS (5% versus 10%) 

still increased water repellent effectiveness, even though these concentrations are 

already high and more than sufficient to cover the inner surfaces of wood. Support 

comes also from the fact that water repellent effectiveness decreased in subsequent 

water uptake tests, which is just the opposite of what was found in the acetylation 

experiments. This finding can be explained by the cleaning effect the trials had on 

the penetration paths which in turn decreased water repellent effect of the treatment. 

A third hint on the mode of action is given by the results of repeating impregnation 

with low concentrations of PDMS. While a treatment with 1.6% siloxane reduced the 

water uptake strongly, the next impregnations with 1.6% showed a much lower 

effect. It can be concluded, that the first 1.6% acted at least partly by modification of 

the inner surface of wood and thus effectively reduced water uptake. Once the 

surfaces are covered, however, water uptake reduction takes place via pathway 

blocking. This mode of action makes much less efficient use of the siloxane material 

and therefore the reduction of water uptake with a certain amount of siloxane is low 

compared to the first impregnation. 

To be able to evaluate the findings above and to understand, at which treatment 

concentration PDMS will start to block penetration paths rather than cover the inner 

surfaces of wood it is valuable to estimate a concentration threshold value. To alter 

the inner surface of wood, only a thin or even monomolecular layer of PDMS is 
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needed. Because PDMS in this study did only penetrate the cell walls to a minor 

extent, the surface area of the tracheid lumens should therefore be regarded as a 

starting point. If we neglect the small proportion of resin ducts and ray cells and 

suppose, that the tracheid lumens are continuous cylindrical tubes, the internal 

surface area of our wood can be estimated. Assuming an average tracheid diameter 

of d=1/300cm (Stamm, 1964) and an average density of the used pine wood of 

0.5g/cm³ we get an average fractional void volume of  

 

where 0.5 is the specific gravity of our wood and 1.46 is the specific gravity of the 

pure wood substance. The average lumen diameter l is then  

 

and the corresponding circumference amounts to  

 

This value multiplied by 1cm length and by the number of lumen in a square 

centimeter of a cross section (300 300 = 90,000) gives the total lumen area of one 

cubic centimeter of wood:  

 

Using the specific gravity of 0.5 gives 1530cm²g
-1

 (Stamm and Millett, 1941). This 

area corresponds relatively well to experimental results. Stamm and Millet (1941) 

used the selective adsorption of stearic acid from a benzene solution to determine the 

inner surface area of sugar pine wood. They determined a value of 2200cm²g
-1

. The 

wood had a density of 0.34 gcm
-
³, which is considerably lower than that of our pine 

sapwood and which can explain the somewhat higher surface area. With decreasing 

density of the wood, ceteris paribus, inner surface area will increase.  

Our amino-functional PDMS with a chain length of D10 has a molar mass of 

1162gmol
-1

. If we roughly assume, that its length amounts to 2nm and its width to 

0.5nm, one molecule can cover a surface of 1nm². Our inner surface of 1530cm²g
-1

 is 

equal to 1.53 10
17

nm². One mol of our PDMS covers 6 10
23

nm². Therefore 

2.55 10
-7

mols or 2.96 10
-4

g of siloxane are needed to cover the inner surface of our 

wood. A typical solution uptake of pine sapwood in a vacuum pressure impregnation 

process amounts to 150%, which means 1.5g solution per gram of wood. To 

impregnate the required amount of siloxane into the wood hence a concentration of 

approx. 0.02% is needed.  
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The whole inner surface of wood which is accessible to a swelling agent such 

as water is, on the other hand much greater. Estimations and experimental results 

range from 200 - 400m²g
-1

 of wood (Kollmann, 1951; Stamm, 1964; Stamm and 

Millett, 1941) and are therefore approx. 1500 to 2000 times higher than the value 

calculated above. To cover this whole surface area, concentration of the treatment 

solution would therefore need to be approx. at a 30-40% level.  

These rough estimations show, in which range the concentration should be to 

get an effective coverage of the inner surfaces of wood. Because there was hardly 

any penetration of the cell walls by our treatment, the first value should be a good 

estimation of the amount, which is needed in practice. Even if we assume, that some 

PDMS is entering the cell walls and considerable amounts might be deposited in ray 

cells after impregnation (as these are main penetration pathways), the amount to 

cover the inner surface of wood is much lower than any concentrations used in our 

studies. To effectively alter the surface properties of wood, very low concentrations 

of the siloxane should therefore be used. Burell et al. (2004) investigated the 

orientation of α-ω amino-propyl functional PDMS of several chain lengths on 

cellophane film by XPS. They found a preferred orientation of the amino groups 

towards the cellulosic surface and proposed interaction of the amino groups with the 

hydroxyl groups of cellulose, which was also suggested by Bereck et al. (2001). 

They further studied the influence of film thickness on orientation of the siloxane and 

found best orientation of PDMS with a film thickness close to a monolayer. Increase 

in film thickness resulted in significant decrease of orientation, which also indicates 

decreased effectivity of the PDMS material.  
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Figure 7: Model proposed for the orientation of amino-functional PDMS on cellulosic surfaces 

for a: thick film, b: monolayer and c: submonolayer coverage (from Burell et al., 2004). 

To make most efficient use of amino-functional PDMS in reducing water 

uptake, treatment should therefore aim on monolayer coverage of the inner surfaces 

of wood. Additional material will not be oriented strictly towards the wood surface 

with its hydrophilic amino groups and therefore not increase water repellence, but 

rather decrease it. The only mode of action obtainable with high amounts is pathway 

blocking, which makes very poor use of the material and results in high costs and 

high WPG of the treated wood. 

Fungal decay test revealed highest effect by the treatment with carboxy 

functional PDMS. While amino-functional silicon compounds have been found to be 

effective against fungal decay before, which was explained with the amino group 

content (Donath et al., 2006a; Weigenand et al., 2008), later a strict relationship 

between amino group content and fungal resistance was not found (Ghosh et al., 

2012a). The effect was explained by penetration of the siloxane into the cell wall and 

micro pore blocking as well as interaction with the cell wall. Micro-pore blocking as 

the mode of action against fungal decay has been discussed previously for other 

types of chemical modification (Hill et al., 2005). Papadopoulos and Hill (2002) 

reacted wood with different carboxylic anhydrides and found, that not the number of 

reacted hydroxyl groups in the cell wall governed decay resistance, but rather the 

degree of bulking. Incorporation of chemicals into micro-pores alone (without 

reaction with the cell wall) can reduce the availability of water in the cell wall and 

the penetration of fungal decay agents into the cell wall and thus impart fungal 

resistance. In the case of PDMS treatment by Gosh et al. (2012a), however, low 

bulking values resulting in high fungal decay resistance make micro pore blocking 



37 

 

unlikely to be the only reason for the effectiveness of functional PDMS. Interaction 

with the cell wall is also an unlikely explanation regarding our results, carboxy-

functional PDMS being most effective against fungi on one hand, but easily washed 

out and therefore not interacting strongly with the wood on the other hand.  

In previous studies the charge of the functional groups of the silicon compound 

was regarded to be important for increasing fungal resistance (Donath et al., 2006a; 

Weigenand et al., 2008). In our study functional groups with different charge were 

tested. Besides the cationic amino group, anionic carboxy functionality and also the 

uncharged epoxy group (hydrolyzed to dihydroxy functionality upon contact with 

water) were examined. Although cationic biocides, such as quaternary ammonium 

compounds and others are commonly used and have proved to be effective, in this 

case the charge of the functional group does not seem to be the main cause of 

effectiveness against fungi. Especially the cationic properties of amino groups did 

not impart highest fungal resistance, even though cationic biocides are known to be 

effective. The explanation can be the orientation of the PDMS. If the amino groups 

are oriented strictly towards the wood and find ionic counterparts in the cell wall, the 

effectivity may be lost.  

The combination of PDMS with amino and carboxy functionality did not show 

synergistic effects in the fungal decay test. The salt formation did apparently not 

increase resistance to fungi. Although amino groups are cationized, the salt of amino- 

and carboxy groups combined is neutral, which can explain, why no differences were 

observed.  

Hydrophobation as the reason for effectiveness can be ruled out because none 

of the functional PDMS imparted high water repellence. Furthermore, the treated 

specimens after incubation showed comparable moisture content as the control 

specimens. This leads to the assumption, that the mobility of the siloxane chain may 

be responsible for effectiveness. The functionality paired with a short siloxane 

backbone imparting high mobility to the PDMS and thus increasing the effect on 

fungi. Immobile PDMS should therefore be ineffective against fungi, which was 

clearly shown in the combination of PDMS with acetylation. 

Adhesion of acrylic based paint on wood treated with the PDMS emulsions 

was strongly reduced. This is most probably due to insufficient penetration of the 

paint into the wood. Glueability test on the other hand did not show considerably 

lower strength of the glue bonds of treated wood. This was true even though reduced 

wood failure for some of the treated wood indicated decreased penetration of the glue 

into the wood. Glueability of wood treated with microemulsions of PDMS was tested 

previously by Lukowsky et al. (1997). The wood had been treated with the SMK 
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formulations mentioned above and glueability was tested using PVAc glue. Wood 

treatment with a 10% formulation strongly reduced tensile shear strength of the glue 

bond by more than 50% compared to the control. Jusoh et al. (Jusoh et al., 2005) 

treated wood flakes for flakeboard production with self-emulsifying alkoxysiloxane. 

The flakeboards were glued with phenolic resin. Only 1% PDMS reduced internal 

bond strength by approx. 37%. Different from these studies, our formulations 

contained high amounts of emulsifiers and functional polysiloxanes with short chain 

length. As was mentioned before, these properties reduce water repellence of the 

material and can therefore explain the good glueability. Furthermore the emulsifiers, 

which stayed in the wood after treatment (wood was not leached), can promote 

penetration of glue into the wood and also increase glueability. In line with our 

findings are the results obtained by Kurt et al. (Kurt et al., 2008), who treated wood 

with a 5% microemulsion of aminofunctional PDMS and found no reduced bond 

strength when gluing treated wood with PVAc glue. It therefore seems to be possible 

to glue wood treated with functional siloxanes even with typical water based glues 

like PVAc or phenolics. It is, however, not clear, to what extent glueability is 

dependent on the content of emulsifiers in the wood, which can enhance penetration 

of the glue. 

5.2.3 Outlook 

Water uptake rate can be reduced strongly by combining acetylation with a PDMS 

treatment. This is even possible with low concentrations of siloxanes, which 

suggests, that the inner surfaces of the wood are coated by the siloxane and very 

effective use is being made of the material. Other properties such as ASE, fungal 

resistance or mechanical properties of the wood are not affected by the combination 

with PDMS. It was shown, that acetoxyfunctional silane is able to acetylate wood if 

an acidic catalyst is present. Furthermore it was concluded, that the short chained 

acetoxyfunctional PDMS entered the cell wall. Therefore we can state, that treatment 

with acetoxyfunctional PDMS in this case is a real wood modification. It is an active 

wood modification, because it can react with the wood and alter the chemistry of the 

wood (acetylation), and at the same time a passive wood modification, because it is 

entering the cell wall to some extent (siloxane).  

Acetylation itself is a very complex process which results in excellent wood 

properties. It imparts fungal resistance as well as high dimensional stability and also 

reduces water uptake rate. The additional reduction in water uptake by PDMS seems 

to be dearly bought by further increasing the complexity of the process and the price 

of the treatment chemicals. In addition a process for combining PDMS with the 

acetylation has to be developed before application. Therefore it seems to be quiet 
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unlikely, that the combination of PDMS with acetylation will be widely used. Only 

applications in special products appear to be realistic.  

Wood treatment with short chained PDMS formulated in water mainly deposits 

chemicals in the lumen of the wood. Penetration of the cell wall takes place to a 

minor extent, which is visible in small bulking and ASE values. Water uptake was 

reduced, but not very strongly. Furthermore, water repellent efficiency declined in 

subsequent water uptake tests.  

Fungal resistance seems to be not imparted by altering the chemistry of the 

wood or reducing the available moisture in the cell wall, but rather by the PDMS 

itself. It is therefore concluded, that the mobility of the PDMS is an important feature 

for the inhibition of fungi, the PDMS acting directly against the fungi. Mobility can 

be increased by hydrophilic functional groups as well as by a short siloxane 

backbone. The most mobile siloxane (as can be seen by high leaching), the carboxy 

functional PDMS had the strongest effect on fungi. Reduction of chain length has 

been shown to increase effectivity of PDMS to inhibit fungal growth (Ghosh et al., 

2012a), which supports this theory.  

According to the definition of wood modification (Hill, 2006), we can consider 

the PDMS treatment neither an active nor a passive modification of wood. Firstly the 

PDMS is not able to react with the wood and alter its chemistry and it is further 

hardly entering the cell wall and can therefore not be regarded as a bulking treatment.  

The high WPG which is required to obtain resistance to fungal decay (approx. 

10%-15%), combined with the relative low water repellence of the treatments make 

PDMS treatment with the goal of protecting wood against fungal decay quiet 

expensive. Another approach, combining low concentrations of short chained PDMS 

with biocides to induce fungal decay resistance and water repellence seems to be 

more promising. The concentration which is needed to effectively alter the inner 

surface of wood was estimated above. Due to low concentrations, costs for the 

chemical would be much lower in this case. The treatment can be regarded closely 

related to the combination of PDMS with acetylation. In both cases, fungal resistance 

(and other features) is imparted by an additional treatment and PDMS is merely 

reducing water uptake and used as an internal coating for wood.  

It has to be considered, however, if the approach of applying an internal water 

repellent is the most efficient way to protect wood from moisture uptake. The 

treatment is only shedding the wood from uptake of liquid water; it is not reducing 

swelling and shrinkage or uptake of moisture from air. To exclude liquid water from 

wood usually coatings or water repellents are applied to the surface (Williams, 
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1999). Water repellents are non-film forming, penetrating and transparent wood 

finishes, which protect the wood from liquid water uptake. They usually contain a 

resin or drying oil, a solvent and a wax to impart water repellence (Williams, 2010). 

These water repellents are easily applied and do not need surface preparation prior to 

application. They are, however, not long lasting and are often only effective for one 

year (Williams, 1999). Wood in outside application needs open porous coatings to 

allow water vapor to escape from the wood. PDMS has shown to impart very water 

repellent surfaces to different construction materials (including wood) with an open 

porous character.  

Coating of the inner surfaces of wood has some drawbacks compared to the 

surface treatments. First of all, these treatments involve an impregnation step. Due to 

the interconnection between all cell walls only small defects in the inner coating can 

reduce the effectivity of the coating severely. Furthermore the coating cannot be 

repaired, which might result in short service life. Therefore the approach of treating 

the surface of wood with PDMS based water repellents appears to be more 

promising. Research on the application of functional PDMS should focus on 

development of PDMS based water repellents preferably in the form of emulsions, 

which can easily be applied and renovated.  

6 Conclusion 

In this study treatment of wood with silanes, polysiloxanes and silica sols was 

investigated to evaluate their potential to be used for wood protection. In the first 

section, silica sols were used for the treatment of wood. Only neutral and acidic silica 

sols were able to penetrate the wood structure and be used for impregnation of solid 

wood. Even the smallest particle sizes did not result in positive bulking values, 

indicating, that silica sols cannot enter the cell wall. Therefore the treatment cannot 

be regarded as a real modification of wood because the chemicals are solely 

deposited in the lumen of the cells. Relatively high reduction of water uptake rate 

and fungal decay could be achieved with an acidic silica sol which was surface 

modified with aluminum-oxychloride. Fungal decay resistance was not imparted by 

modifying the wood itself, but rather by direct action of the cationic sol surface on 

the fungal organism. Further proof for this assumption was gained in a petri dish test, 

which analyzes the direct effect of chemicals on fungi. Even though aluminum-

oxychloride modified silica sol decreased the thermal degradation temperature of 

wood, the treated wood did only show minor enhancement of fire related properties. 

This indicates that the effect of the sol on thermal degradation of wood is only 

negligible. High WPG needed for decay resistance of the treated wood combined 

with relatively high price of the chemical make the treatment of wood with silica sols 
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expensive. Another, in this study not further evaluated question, is disposal of the 

treated wood. The only effective silica sol contains chloride as stabilizing counter 

ions, which might prohibit the incineration of treated wood due to formation of 

dioxine.  

In the second part of the study, acetic anhydride for acetylation was combined 

with a silane and different PDMS. The most promising combination of 

acetoxyfunctional PDMS with acetic anhydride led to actual modification of wood 

through acetylation and possibly (and only to a small extent) by the released silanol 

compound. Water uptake rate was strongly reduced by the PDMS, which was 

probably due to rendering the inner surfaces of the treated wood water repellent. This 

conclusion can be drawn from the fact that higher concentrations of PDMS did not 

result in increasing water repellence of the wood. Other properties of the acetylated 

wood as there are fungal resistance, dimensional stability and physical properties 

were not affected by the silicon material. 

In the third part of the study, wood was treated with functional PDMS 

formulated in water. It was possible to increase fungal resistance and decrease the 

rate of water uptake by the treatment with certain PDMS. The treatment cannot be 

regarded as a “real” wood modification because the compounds were neither able to 

react with the wood (active modification) nor did they penetrate the cell walls 

considerably and alter the nano-structure of the wood (passive bulking modification). 

Action against fungi was probably related to the mobility of the siloxane chain and 

therefore was based on a direct effect of the chemical on fungi and not on altering the 

wood surface or structure as a modification would do. Water uptake reduction was 

probably not imparted by rendering the inner surface of the wood water repellent, but 

rather by blocking main penetration pathways in the wood, a relatively ineffective 

way of adding water repellence to wood. Support for this assumption comes from the 

observations, that firstly increasing concentration of the treatment chemical to very 

high levels still decreased water uptake rate and secondly, some water repellence was 

lost after each leaching cycle.  

While best results in the fungal decay test were obtained with carboxy-

functional siloxane, this material did not show good leaching stability. Experiments 

to increase fixation via salt formation by combining it with amino-functional PDMS 

did not lead to promising results. Furthermore, the required WPG to impart fungal 

decay resistance to the treated wood seems to be too high to be competitive in the 

market, regarding the price of the chemical. Therefore it was concluded, that 

functional PDMS might be used as internal water repellents for wood in low 

concentration in combination with a biocide to impart required fungal resistance. If 
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PDMS are used as internal coatings, very low concentrations (<1%) should be 

studied to get most efficient use of the material and preferably a thin or even 

monomolecular coverage of the inner wood surface, which is most efficient and 

results in best orientation of the PDMS on the cellulosic surfaces of wood. It has to 

be considered, however, if internal coatings are the most effective way to impart 

water repellence to wood. In the case, that the PDMS treatment does not impart any 

valuable properties beside the exclusion of water, external water repellents applied 

onto the surface of wood seem to be more effective and promising. In this field, 

functional PDMS could be effective and compete with the mostly oil- and wax-based 

water repellents on the market.  
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Abstract Wood was treated with the cationic silica sol

(CSS) Levasil 200S and dried at various temperatures

(room temperature, 40, 60, 80 and 103 �C). A water

leaching test revealed fixation of the silica in wood even

after drying at room temperature. Maximum cross sectional

swelling of the specimens decreased from 15.6 %

(untreated control) to 13.0 %, when treated wood was dried

at 103 �C; cell wall bulking values were also negative

(-2.3 %), indicating a thermal degradation of the cell wall

polymers catalyzed by the CSS. Penetration of the CSS into

the cell wall did not occur. A simple flammability test

revealed increased fire resistance of the treated wood. Mass

loss and velocity of mass loss as well as burning time were

reduced; glowing of the formed charcoal was completely

prevented. The effectiveness increased with increasing

weight percent gain of the CSS in the wood. Thermo

gravimetric analysis under nitrogen atmosphere displayed

only minor reduction in the initial temperature of thermal

decomposition for wood treated with CSS as compared to

the control. In the presence of oxygen the resulting char-

coal showed comparable thermal behaviour to the control.

The yield of charcoal after pyrolysis was increased to a

minor extent (from 19.9 to 23.0 %), indicating that the

release of combustible gases was hardly reduced. The

mode of action of enhanced fire resistance due to CSS-

treatment is discussed.

Brandverhalten von mit kationisch modifiziertem

Kieselsol behandeltem Holz

Zusammenfassung Kiefernsplintholz wurde mit dem

kationisch modifizierten Kieselsol Levasil 200S behan-

delt und bei verschiedenen Temperaturen getrocknet

(Raumtemperatur, 40, 60, 80 und 103 �C). Das Kieselsol

war nach der Trocknung stabil gegenüber einer

Auswaschung mit Wasser, selbst nach Trocknung bei

Raumtemperatur. Die maximale Quellung der Quers-

chnittsfläche des Holzes verringerte sich von 15,6 %

(Kontrollen) auf 13,0 % bei behandeltem Holz, welches

bei 103 �C getrocknet wurde. Die Querschnittsfläche im

darrtrockenen Zustand verringerte sich ebenfalls (2,3 %),

was auf einen thermischen Abbau des Holzes katalysiert

durch das Kieselsol schließen lässt. Eine Eindringung

des Sols in die Zellwand fand nicht statt. Ein einfacher

Brandversuch zeigte erhöhte Feuerresistenz des behan-

delten Holzes. Der Gesamtmasseverlust, die Ges-

chwindigkeit des Masseverlusts als auch die Brenndauer

wurden reduziert. Das Nachglühen der entstandenen

Holzkohle wurde komplett unterbunden. Die Wirkung

stieg mit steigender Beladung des Holzes mit dem Kie-

selsol. Eine thermogravimetrische Analyse (TGA) unter

Stickstoffatmosphäre ergab nur eine sehr geringe

Abnahme der Pyrolysetemperatur. Die anschließende

Verbrennung der entstandenen Holzkohle in Anwesenheit

von Sauerstoff verlief vergleichbar zu den Kontrollpro-

ben. Die Holzkohleausbeute nach der Pyrolyse wurde

durch die Behandlung nur leicht erhöht (von 19,9 % auf

23,0 %), die Freisetzung von brennbaren Gasen aus dem

Holz wurde dementsprechend unwesentlich verringert.

Der Wirkungsmechanismus des kationischem Kieselsols

auf das Brandverhalten des behandelten Holzes wird

diskutiert.

M. Pries � C. Mai (&)

Wood Biology and Wood Products, Burckhardt Institute,

Georg-August-University Göttingen, Büsgenweg 4,

37077 Göttingen, Germany
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1 Introduction

Wood is a widely used building material which has, besides

many advantages such as high weight-to-strength ratio,

good insulating properties and favoured appearance, some

natural drawbacks in use. The most important drawbacks

are water related. Wood swells and shrinks under the

conditions of changing ambient humidity. If unbound,

liquid water is present in wood, fungal degradation can

occur; insects can even destroy wood under dry conditions.

Another important issue is the flammability of wood.

Several attempts have been made to overcome these dis-

advantages; recently wood modification techniques such as

acetylation, heat treatment or furfurylation have entered the

market of biocide-free wood treatments (Hill 2006).

Wood is usually pressure impregnated with fire retar-

dants, mostly inorganic salts such as mono/diammonium

phosphate, ammonium sulfate, zinc chloride, sodium tet-

raborate and boric acid (White and Dietenberger 2010).

Fire retardants can be divided into six different classes

based on their modes of action, although most fire retar-

dants operate via several mechanisms (Rowell and LeVan-

Green 2005). They can, for example, increase charring of

wood at lower temperature and, thus, form an insulating

layer of non-flammable charcoal. In addition, they often

have the side effect of diluting the flammable gases with

non-combustible gases (e.g. ammonia gas from ammonium

phosphate) and increasing the amount of resulting char-

coal; the latter results in a diminished formation of com-

bustible gases. Most of the fire retardant salts are not stable

towards leaching out with water and can, therefore, only be

used for materials used indoor. Coatings, which form

insulating layers, constitute another class of fire protection

agents. These coatings protect the wood by rapidly building

up a thick insulating foam layer when exposed to temper-

atures between 180 and 200 �C (Scheer and Peter 2009).

Silicon materials have long been used as fire retardants.

Water glass was found to render wood fire resistant as early

as 1825 (Fuchs 1825). It was later used as cheap short-term

protection coating against fire especially in already erected

buildings where pressure impregnation is not possible

(Metz 1942). Water glass coating protects wood against fire

by melting and forming an insulating foam layer on the

surface of wood. Unfortunately, the water glass coating is

not long-term stable due to neutralization in contact with

air, which results in reduced foam formation and detach-

ment of the coating from the substrate. Other silicon

compounds have also been used to improve fire resistance

of wood. Wood treated with inorganic composites based on

tetraethoxysilane exhibited enhanced fire resistance (Saka

et al. 1992); combination of tetraethoxysilane with tri-

methylphosphit/-borate led to further increase (Miyafuji

and Saka 1996). Silica sols are another group of inorganic

silicon compounds. They are produced by controlled

removal of alkali from water glass through ion exchange

techniques. This causes the silicic acid to polymerize and

to form particles of amorphous silicon dioxide. To obtain a

sol of polysilicic acid molecules, this polycondensation

process is stopped at a certain stage by addition of alkali

(Römpp 2001). Unmodified silica sols are therefore, alka-

line and the colloids are stabilized by negative charge.

Acidification of these sols leads to protonation of Si–O-

anions and precipitation of the silica particles from the

colloid. Sols can be stabilized sterically through modifi-

cation of the colloid particle surface (e.g. with silanes) or

by introducing positive charge (cationic groups). These

modified sols are also stable under neutral or acidic con-

ditions (Greenwood 2010). Silica sols have previously been

used to impregnate wood (Böttcher et al. 1999; Götze et al.

2008; Temiz et al. 2006) in order to enhance resistance to

fungi and water related properties. Influence on fire resis-

tance has not been examined.

In a recent study, the use of various silica sols to protect

wood against fungal colonization and water uptake was

examined and significant improvements were found only

with a cationic sol, which is modified with aluminium-

oxychloride (Pries and Mai 2012). This study focuses on

the fire resistant properties of wood modified with this

CSS.

2 Experimental

2.1 Materials

Pine sapwood (Pinus sylvestris L.) specimens were cut

from straight grained wood free of knots. Specimens to test

anti-shrink-efficiency (ASE) had the dimensions 20 9

20 9 10 mm3 (T 9 R 9 L), those to test fire resistance

measured 13 9 4 9 125 mm3 (T 9 R 9 L); growth rings

were oriented 45� with the tangential surface.

The silica sol used was Levasil 200S (Akzo Nobel,

Düren, Germany) with a solid content of 30 % and a pH of

3.7. Its surface is cationically modified with aluminium

oxychloride; the counter ions of the cationic surface are

chloride ions (Fig. 1).

Impralit F3/66 (Rütgers Organics, Mannheim, Ger-

many), a commercial fire retardant, was used as a

reference.

2.2 Treatment of wood

For impregnation, the specimens were placed in a desic-

cator and a vacuum of 7 mbar absolute pressure was

applied for 15 min. Subsequently, the solution was injected

and the vacuum released. The specimens were left in the
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solution for 2 h and subsequently dried as described below.

The specimens were weighed after impregnation and dry-

ing to assess solution uptake and weight percent gain

(WPG).

2.3 Fixation of chemical

ASE specimens were treated with 15 % solutions (w/w) of

Levasil 200S as described above. After treatment they were

pre-dried at room temperature for 5 days. Subsequently

eight specimens at a time were exposed to different tem-

peratures for 3 days. The temperatures were: room tem-

perature, 40, 60, 80 and 103 �C. After this treatment the

specimens were leached in water according to EN 84

(1997) and afterwards dried at room temperature and

subsequently at 103 �C (24 h each).

2.4 Water uptake

The eight ASE specimens dried at defined temperatures

(fixation test) were submerged in 300 ml water and

weighted after 2, 4, 6 and 24 h of submersion time. After

the last weighing a vacuum of approximately 40 mbar was

applied for 1 h. The specimens were left in the water for

another day to ensure maximum water uptake. Water

uptake was calculated based on the dry weight of the

specimens before treatment (thus influence of the weight

percent gain was eliminated).

2.5 Weight percent gain (WPG), cell wall bulking

and maximum swelling

WPG and cell wall bulking (volume increase of the spec-

imens in the dry state after chemical modification) were

calculated according to the following formulas with all

measurements taken in an oven dry state:

Bulking (% ) =
radAfter treatment � tanAfter treatment

radBefore treatment � tanBefore treatment

� 1

WPG (% ) =
WeightAfter treatment

WeightBefore treatment

� 1

where ‘‘rad’’ is radial lengths and ‘‘tan’’ tangential lengths

of the ASE specimens.

Maximum cross-sectional swelling was calculated from

the dimensions of the fully saturated specimens of the

water uptake test.

2.6 Fire resistance

The wood specimens were treated with 5, 10, and 15 %

solutions (w/w) of Levasil 200S as described above. After

impregnation, the wood specimens were dried at room

temperature and subsequently at 103 �C (24 h each). As a

reference, wood specimens were treated in the same way

with a solution (10 %, w/w) of the commercial fire retar-

dant Impralit F3/66 (Rütgers Organics, Mannheim, Ger-

many). Ten replicates for each treatment were used. Prior

to fire resistance testing, they were conditioned at 20 �C

and 65 % RH; water leaching was not performed.

The specimens were clamped into a holder at one end

forming an angle of 45�. The specimen holder was placed

on a balance in a way that the specimen was hanging down

next to the scale. The balance was tarred before clamping

the specimen. From the starting mass of the specimens, the

moisture content based on the original dry mass of the

wood (before treatment) was calculated.

The specimens’ tip was ignited with a Bunsen burner for

30 s. In doing so the flame of the Bunsen burner was

always equal in height and strength for all specimens. The

weight of the specimen was recorded in 10 s intervals; at

the same time it was assessed whether the specimen was

burning or glowing. The mass loss of the specimens was

related to the original dry weight (before treatment) and

depicted as a function of experimental time. Total mass

loss, maximum mass loss per ten-second interval (burning

rate), burning time and glowing time were calculated. The

test was repeated, when the specimen broke during testing.

2.7 Thermo-gravimetric analysis (TGA)

The treated and control specimens were milled with a

centrifugal mill using a mesh of 0.5 mm (Retsch ZM 100,

Retsch, Germany). TGA was performed using Netsch

TG209 F1 IRIS (Selb, Germany); approximately 10 mg

were weighted in aluminium-oxide crucibles. The tem-

perature program is specified in Table 1. The flow rate of

Sol Particle

Cl–
O

Al
+

O

O

Al
+

O

Si

O

Si

O

Si

O
Si

Fig. 1 Idealized cationic silica sol particle modified with aluminium

oxide

Abb. 1 Idealisierter, mit Aluminiumoxychlorid modifizierter

Kieselsolpartikel
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the nitrogen protective gas was 20 ml min-1 in each seg-

ment (Table 1).

A measurement with an empty crucible served as cor-

rection curve, which was subtracted from the sample

measurements. Onset and end of the mass loss curves

(Fig. 6a, b) as well as the maximum of the first derivative

were recorded. The mass losses at the various segments of

the program were recorded as absolute weight. To deter-

mine the percentage mass loss of the two mass loss steps

(step 1: segment 3; step 2: segment 7, Table 1), all curves

were shifted in a way that the final point of the thermo-

grams was equal to the ash content of the control specimen

(0.84 %). In doing so the influence of the silica add-on in

the specimens, i.e., the WPG, was avoided. In order to

allow for direct comparison of the percentage weight losses

of all treated specimens, the starting point for the calcu-

lations (0 % mass loss) was the begin of the 3rd segment.

In the 1st and 2nd segment the specimens were only dried

to exclude any effects of different moisture content.

3 Results and discussion

3.1 Fixation of chemical

Irrespective of the drying temperature, the weight percent

gains (WPG) of CSS-treated specimens after leaching were

equal (Fig. 2). This revealed that the drying temperature

did not have an effect on the stability of the silica towards

water leaching, when the drying time is sufficient. The

treatment, which actually resulted in lowest mean value,

was the treatment at 103 �C (Fig. 2).

While silica particles in sols form a colloidal solution, they

agglomerate in wood upon drying and form insoluble con-

densation products which are apparently stable to water

leaching. This process does not require elevated temperatures.

It has been suggested to fix silica in wood by covalent

bonding in order to increase leaching stability of tetraeth-

oxysilane (Ogiso and Saka 1994); this, however, is

apparently not necessary for silica sol-treatment. Water

glass has also been used to treat wood and was always

found to be unstable towards water leaching (Furuno et al.

1992; Matthes et al. 2002). The reason for the high solubility in

water is the high content of alkali in water glass, which forms

anionic silanolate groups. Water glass can be precipitated by

addition of acids or by divalent ions. In wood this is achieved

by ambient carbon dioxide which forms carbonic acid and

causes protonation of the silanolate groups. The cationic

colloid particles of the CSS used in this study, on the other

hand, are only stabilized by small addition of chloride ions and

are directly insoluble upon drying.

3.2 Water uptake

Treatment with CSS significantly decreased velocity of

water uptake. Mean values of water uptake were lower for

specimens, which were dried at higher temperatures

(Fig. 3). Although the variation of water uptake was high, a

Table 1 Temperature program of the thermogravimetric analysis (TGA)

Tab. 1 Temperaturprogramm der thermogravimetrischen Analyse (TGA)

Segment

No.

Type Final temperature

(�C)

Slope

(K min-1)

Time

(min)

Oxygen purge gas

(ml min-1)

Nitrogen purge gas

(ml min-1)

1 Dynamic 100 20 4 0 50

2 Isothermal 100 – 5 0 50

3 Dynamic 550 10 55 0 50

4 Isothermal 550 – 5 0 50

5 Dynamic 250 -40 7.30 0 50

6 Isothermal 250 – 5 0 50

7 Dynamic 650 20 20 10 40

8 Isothermal 650 – 5 10 40

Room temp. 40 60 80 103
0

5

10

15

20

25

 Drying temperature [0C]

W
P

G
 [%

]

Fig. 2 WPG of ASE specimens after water leaching as a function of

various temperatures; mean values and standard deviations

Abb. 2 WPG der ASE-Proben nach der Auswaschung mit Wasser in

Abhängigkeit der Trocknungstemperatur nach der Behandlung;

Mittelwerte und Standardabweichungen
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t test revealed, that the water uptake of the specimens dried

at 103 �C was significantly lower (significance level 0.05)

for the points at 4, 6 and 24 h as compared to the speci-

mens dried at room temperature and it was always signif-

icantly lower than water uptake of specimens dried at

40 �C. Silica usually is a hydrophilic material and is

therefore not expected to render wood water repellent.

Especially, water glass has been reported to increase

hygroscopicity of the treated wood. This was explained by

the hygroscopic salts (silanolate and alkali ions) left in the

wood after treatment (Furuno et al. 1992; Matthes et al.

2002). Silica sol on the other hand has previously shown to

reduce water uptake. Treatment of spruce wood samples

with silica sols reportedly reduced water uptake by approx.

25 % after 6 days of water immersion (Götze et al. 2008).

Wood treated with alkaline silica sols of two different

particle sizes, 15 and 30 nm, showed reduction in water

uptake; the bigger particle size resulted in lower water

uptake (Temiz et al. 2006).

It can be concluded, that the CSS Levasil 200S is better

suited for reducing water uptake of wood than water glass.

This can be explained by the much lower surface charge and

respective lower content of counter ions in silica sols as

compared to water glass. CSS reduces capillary water uptake

probably by partial blocking of the main penetration paths for

water such as ray cells and tracheids (Pries and Mai 2012).

3.3 Cell wall bulking and maximum swelling

The cross-sectional area of the specimens after treatment

with CSS was lower than before treatment; thus cell wall

bulking was negative. The higher the drying temperature, the

more negative was the bulking. Bulking of specimens dried at

103 �C was significantly lower than bulking of specimens

dried at room temperature, 40 and 60 �C (Fig. 4). Maximum

swelling in water also decreased with increased drying tem-

perature. While the control and specimens dried at room

temperature showed maximum cross-sectional swelling of

approx. 15.5 %, specimens dried at 103 �C displayed only a

mean maximum swelling of 13.0 %; the latter was signifi-

cantly lower than the former. This is attributed mostly to the

hydrolysis of hemicelluloses, which are the most susceptible

wood polymers to hydrolysis (Stamm 1964), because bound

aluminium chloride in Levasil 200S may act as a Lewis acid

(Pries and Mai 2012).

Acid releasing chemicals can be used as fire retardants,

because they induce charring of wood at low temperatures

and thus form an insulating layer at the surface (White and

Dietenberger 2010). CSS might therefore, act in the same

way by reducing the degradation temperature of wood

constituents in case of fire and thereby rendering the wood

more fire retardant.

3.4 Fire resistance and thermo-gravimetric analysis

(TGA)

The weight percent gain (WPG) of the specimens treated with

CSS in the concentrations of 5, 10 and 15 % were 8.8, 17.2,

and 27.6 %, respectively. Treatment with the commercial fire

retardant Impralit F3/66 resulted in a WPG of 11.2 %.

The moisture content of the CSS-treated specimens

(12.9, 15 % CSS) was somewhat higher than that of the

controls (11.4 %). Specimens treated with the fire retardant
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peraturen getrocknet wurden (Mittelwerte)

Control Room temp. 40°C 60°C 80°C 103°C

-2

0

10

12

14

16

18

M
ax

. s
w

el
lin

g 
an

d 
ce

ll 
w

al
l b

ul
ki

ng
 [%

]

Max. Swelling
Bulking

Fig. 4 Maximal cross-sectional swelling and cross-sectional bulking

of specimens treated with CSS and dried at various temperatures;

mean values and standard deviations

Abb. 4 Maximale Quellung der Querschnittsfläche sowie das
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were even more hygroscopic and displayed a moisture

content of 14.4 % (Fig. 5a).

The fire resistance test revealed a strong reduction in the

maximum burning rate as compared to the untreated con-

trol (Fig. 5b). The burning rate usually reached its maxi-

mum right after removing the Bunsen burner. While the

control specimens lost approx. 8.4 % per 10 s, specimens

treated with 15 % CSS showed only a maximum mass loss

rate of 3.8 % per 10 s. Treatment with the fire retardant

caused the lowest burning rate of 2.2 % per 10 s. Parallel

to this reduction in the burning rate, a strong reduction in

total mass loss occurred, because the treated specimens did

not burn completely. While the mass loss of the controls

amounted to approx. 80 %, specimens treated with 15 %

CSS underwent only a mass loss of 20 %; specimens

treated with the fire retardant lost only 13 % of their mass.

The control specimens burned completely with a mean

burning time of approx. 120 s. After burning, the speci-

mens continued to glow with a mean glowing time of 80 s.

All treated specimens ceased to burn before complete

burning of the specimen and none of the treated specimens

exhibited any glowing after extinction of the fire. Mean

burning time of specimens treated with 15 % CSS

amounted to 49 s, while specimens treated with the fire

retardant burned only 18 s.

Fire retardance of wood by chemicals can be indicated

in a TGA through a decrease of the initial temperature of

pyrolysis and an increase of the amount of produced

charcoal which indirectly indicates a reduction of volatile,

combustible gases (Rowell and LeVan-Green 2005). In the

present study, TGA revealed only minor differences in the

pyrolysis behaviour between the control and CSS-treated

wood. The onset of mass loss in the pyrolysis of CSS-

treated wood was at slightly lower temperature (294.4 �C)

than of the control (304.0 �C). The temperature of maximal

mass loss per time (maximum of first derivative) was also

shifted from 353.5 �C (control) to 339.7 �C (15 % CSS).

Wood treated with the fire retardant showed an onset of

pyrolysis at 264.7 �C and a temperature of maximum mass

loss per time at 291.9 �C (Figs. 6a, 7a).

After the pyrolysis, the resulting charcoal was burned in

the presence of oxygen (Figs. 6b, 7a). The burning

behaviour of charcoal from CSS-treated wood was very

similar to that of the control. While the onset of burning in

case of the control was at 438.9 �C and the maximum mass

loss per time at 491.1 �C, the respective points for wood

treated with 15 % CSS were at 438.9 and 486.1 �C. The

coal from wood treated with the fire retardant showed

higher fire resistance with an onset at 461.7 �C and a

temperature of maximum mass loss at 522.5 �C (Fig. 7a).

The remaining charcoal is an important measure of how

much burnable gas was released during pyrolysis. Charcoal

yield increased only very slightly due to treatment with

CSS. While the control yielded 19.9 % charcoal, wood

treated with 15 % CSS yielded 23.0 %. Wood treated with

the fire retardant increased the charcoal yield to 34.4 %

(Fig. 7b).

TGA revealed only a slight downshift of pyrolysis

temperature of CSS-treated wood as compared to the

control, while treatment with the commercial fire retardant

resulted in strongly reduced pyrolysis temperature. Pyro-

lysis of wood at lower temperature can be due to acidic

reaction of the fire retardant. Proton donators and Lewis

acids such as zinc chloride or aluminium chloride can

lower the initial temperature for thermal decomposition,

which can lead to the formation of an insulating charcoal

layer. Aluminium chloride has been used as a fire retardant,

the performance, however, was not good enough for wider

usage (Kollmann 1951; Metz 1942).

The reduction of combustible volatiles is another

important feature of fire retardants. This includes the

inhibition of formation of levoglucosan a breakdown

product of cellulose (Rowell and LeVan-Green 2005). A

reduction of combustible volatiles is shown by a high
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Fig. 5 Results of a burning test of untreated, CSS-treated and wood treated

with a commercial fire retardant; (mean values and standard deviations)

Abb. 5 Ergebnisse eines Brandversuchs der Kontrollen, der mit

kationischem Kieselsol sowie der mit einem kommerziellen Feuers-

chutzsalz behandelten Proben; Mittelwerte und Standardabweichungen
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charcoal yield after pyrolysis. In contrast to the fire retardant,

the CSS only increased the charcoal yield to a minor extent

and thus did hardly reduce the amount of combustible gases.

The resulting charcoal of CSS-treated wood showed the same

burning behaviour as the charcoal of the control.

The relatively strong fire retardance revealed in the

burning test can be explained by several effects, which are

not reflected in the TGA. The formation of a charred layer

at lower temperatures is mentioned above. Another reason

might be the increased density, which causes a higher heat

capacity. As a consequence, more energy is needed to heat

the wood to a temperature where combustible gases are

released (Metz 1942).

Incorporation of CSS into the wood lumens might also

hinder the release of volatile gases and thus reduce the

combustibility. When wood is heated, combustible gases

are released from the cell wall and exit the wood structure

through the lumen to burn outside the wood. It was found

that diffused porous wood burns better than ring porous

wood, because the homogenous distribution of vessels

facilitates diffusing of the gases to the wood surface. Ring

porous wood on the other hand shows worse burning

behaviour, because most vessels are small and hinder the

gases from exiting. The same is true for the very small

tracheids of many soft woods (Metz 1942).

CSS treatment might also influence the porosity of

charcoal formed during pyrolysis. Especially the charcoal

from diffused porous wood glows easier, because air has

better access to the charcoal. Nonporous charcoal cannot be

easily penetrated by air and the dangerous after-glowing is

prevented (Metz 1942). None of the treated wood speci-

mens exhibited any glowing after the fire stopped; this

indicates that the charcoal was less porous and, therefore,

air was not able to enter properly.
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Another mode of action could be that silica sol incor-

porated into the lumen might increase the thermal con-

ductivity of the wood. This might lead to increased fire

retardance because the wood cannot be heated up locally as

easily as untreated one and thus does not inflame as fast

(Metz 1942).

High moisture content due to the incorporation of

hygroscopic chemicals into the wood might be another

reason. The increase in moisture content of CSS-treated

wood, however, was so minor that this effect was ruled out.

Effects of silicon compounds on fire resistance of wood

have mainly been studied with tetraethoxysilane (TEOS)

and mixtures of it. TEOS treatment alone increased fire

resistance (Saka et al. 1992). This effect was enhanced by

combining TEOS with trimethylphosphit and/or trimeth-

ylborate in a burning test similar to the test done in this

study (Miyafuji and Saka 1996). The chemicals used by

Miyafuji and Saka (1996), however, were located in the

cell walls (positive bulking and ASE was observed), while

silica in this study was located only in the lumens.

4 Conclusion

Wood treatment with CSS decreased the maximum swell-

ing of wood, when the treated wood was dried at 103 �C.

This was mostly attributed to the hydrolysis of hemicel-

luloses. Reduction of the initial degradation temperature

upon heating is known to be one mode of action of fire

retardants, because it leads to the formation of an insulating

charcoal layer. Fire retardant properties of CSS-treated

wood were demonstrated in a simple burning test, while

TGA only revealed minor changes as compared to

untreated wood. CSS treatment can increase fire retardancy

of wood but in general the effect is minor compared to the

commercial fire retardant tested. Still, treatment of wood

with CSS at 15 % concentration improves some important

wood properties such as low capillary water uptake and

resistance to decay fungi. Increased fire retardancy, as

shown in this study, is an additional positive effect of the

treatment.
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Abstract Scots pine sapwood was acetylated with ethyltriacetoxysilane using

acetic acid as a solvent and sulfuric acid as a catalyst. A weight percent gain (WPG)

of 14 % and cell wall bulking of 7 % were obtained after 5 h of reaction time. Pine

specimens were acetylated with acetic anhydride in the presence of 1 % ethyltri-

acetoxysilane, dihydroxy-functional siloxane, acetoxy-functional siloxane, amino-

functional siloxane and non-functional siloxane, respectively. Acetoxy-functional

siloxane induced the greatest reduction in water uptake with a water repellent

effectiveness after 24 h of up to 62 % as compared to acetylated wood. WPG and

cell wall bulking increased compared to solely acetylated wood with increasing

concentrations of acetoxy-functional siloxane in acetic anhydride; anti-shrink effi-

ciency, however, did not increase. Fungal resistance of pine sapwood and beech as

well as mechanical strength properties did not change when 20 % acetoxy-func-

tional siloxane was added to acetic anhydride compared to solely acetylated

specimens.

Introduction

Chemical modification has the potential to greatly improve properties of wood

(Rowell 1983). The most studied process is by far the acetylation of wood which has

undergone market introduction. Acetylation reportedly improved fungal resistance,

photo-stability, dimensional stability and weathering performance of wood (Brelid

et al. 2000; Chang and Chang 2001; Hill et al. 2005; Rowell 1983). The most
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abundant reaction sites in wood, the hydroxyl groups, are acetylated in the process

by use of acetic anhydride (AA) under release of acetic acid. Because of the greater

volume of acetyl groups compared to hydroxyl groups, cell wall bulking is observed

(Stamm 1964). Reduction in capillary water uptake, however, occurs only to a

minor extent.

Silicones have experienced a widespread use in many industrial applications.

They are widely used in the construction sector to improve water repellence of

masonry (Mayer 1998) or to improve properties of textiles (Kim 2001). Silicones

have been tested on wood to enhance water repellence and showed great

effectiveness in reducing water uptake (Hager 1995; Lukowsky et al. 1997). Hager

(1995) used silicone micro-emulsions to treat wood and found a reduction in

capillary water uptake by 80 % as compared to the control after 24 h at 1 % silicone

content in the emulsion. Lukowsky et al. (1997) tested the effectiveness of similar

micro-emulsions and some additional silicone formulations and found water

repellent effectiveness in a submersion test of up to 50 % after 24 h. Ghosh (2009)

found high water repellence when wood was treated with a water solvent–based

solution of amino-functional silicones. A water repellent effectiveness of approx-

imately 50 % was reached after 24 h of water submersion with an amino-functional

silicone comprised of 30 dimethyl siloxane units.

Silicones can therefore be used to hydrophobize wood; however, they are not

easy to solubilize in water because of their strong water repellence. Real solutions

can only be made by using high proportions of organic solvents in the solution

which restricts the application in conventional impregnation plants. If emulsions are

used, costs of emulsifiers have to be considered. In addition, the emulsifier will stay

in the wood after impregnation and offset hydrophobation of the material by

silicone. The micro-emulsions used by Hager (1995) and Lukowsky et al. (1997)

solved this problem by using silanes and functionalized polysiloxanes as emulsifier

or co-emulsifier, respectively. These emulsions, however, are not stable and a short

solution stability of only approximately 24 h is obtained. This makes the use of

these formulations not viable in impregnation plants (Lukowsky et al. 1997).

Another possibility is the impregnation of solid wood with silicone using

supercritical CO2 as solvent (Eastman et al. 2009).

The acetylation procedure with acetic anhydride offers the opportunity to solve

silicones directly in the acetylation reagent to impregnate wood without further

treatment steps. Acetoxysilanes can acetylate hydroxyl groups via transesterification

and releasing silanol compounds as leaving group; release of acetic acid from the

silane is therefore omitted.

Materials and methods

Organo-silicon compounds

Ethyltriacetoxysilane (TAS) was used as silicon-based acetylation chemical. A

short-chained silicone (Si 200 TP 3031), containing 70–100 % of a-x-functional

polydimethylsiloxanediol with a mean of 6 dimethylsiloxane units (D6) and 0–30 %
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of octamethylcyclotetrasiloxane was used as a siloxane backbone, which can easily

be combined with ethyltriacetoxysilane. The silicone oils M5 and M100 are non-

functional polydimethylsiloxanes (PDMS). M5 has a mean chain length of D6-7 and

M100 of D80. Amino D9 and Amino D28 are a-x-functional diaminopolydi-

methylsiloxanes with a chain length of D9 and D28. All organo-silicon-compounds

were supplied by Momentive Performance Materials GmbH (Leverkusen,

Germany).

Wood samples

Pine sapwood (Pinus sylvestris L.) blocks (defined as ASE specimens) measuring

20 9 20 9 10 mm3 (r 9 t 9 l) were used to determine weight percent gain

(WPG), cell wall bulking, anti-shrink efficiency (ASE) and water uptake. Blocks of

beech wood (Fagus sylvatica L.) and pine sapwood (P. sylvestris L.) according to

EN 113 (1996) were used for basidiomycete testing. Pine sapwood (P. sylvestris L.)

stakes measuring 10 9 10 9 180 mm3 (r 9 t 9 l) were used to determine bending

strength and those measuring 10 9 10 9 150 mm3 (r 9 t 9 l) to determine impact

bending strength. Pine sapwood had an average density of 0.51 g cm-3, while the

beech wood showed a density of 0.68 g cm-3.

Acetylation of wood with ethyltriacetoxysilane

Acetylation with ethyltriacetoxysilane (TAS) was carried out with pure TAS and in

a mixture with acetic acid serving as a solvent and swelling agent for wood

(Mantanis et al. 1994). The mixture consisted of 30 % TAS mixed with 70 % acetic

acid statically dried over molecular sieves (4 Å).

Acetylation was performed with and without catalyst. The reaction of pure TAS

was catalyzed with 0.25 % H2SO4 (w/w of TAS), while the following catalysts were

used in the mixture of 30 % TAS with 70 % acetic acid: MgCl2 (0.8 % w/w),

potassium acetate (KAc), triethylamine (1 % w/w) and H2SO4 (0.07 % w/w). To

apply KAc, the wood specimens were vacuum impregnated with 10 % (w/w)

aqueous solution according to EN 113 and dried prior to the acetylation process at

103 �C (Obataya and Minato 2008). The other catalysts were directly mixed into the

treatment solution.

After impregnation with the acetylation reagent (according to EN 113), the

specimens were heated in the solution to 120 �C for 5 h, while protected against

moisture by a CaCl2 tube. After the reaction, the specimens were extracted in a

soxhlet extractor with acetic acid for 6 h under exclusion of moisture by CaCl2 and

subsequently with ethanol for 6 h to remove acetic acid. The acetylation reaction

was assessed by measuring WPG, cell wall bulking and recording IR spectra.

Preparation of an acetoxy-functional polydimethylsiloxane

TAS was brought into a round-bottomed flask equipped with a reflux condenser and

a dropping funnel, and Si 200 was added drop-wise until a ratio of 2 mol of TAS to

1 mol Si 200 was reached. During the addition, the temperature rose from

Wood Sci Technol (2013) 47:685–699 687

123



approximately 20–38 �C. After the addition, the product was confirmed by 1H NMR

spectroscopy in CDCl3 on a 400 MHz spectrometer Bruker Avance 400 (Bruker,

Bremen, Germany). A NMR diffusion experiment (DOSY) was applied to

distinguish between ethyl groups (0.96–1.14 ppm) attached to a silane [diffusion

coefficient from 10-8.83 m2 s-1 (monomer) to 10-8.96 m2 s-1 (dimer and trimer)]

and attached to a polysiloxane backbone (diffusion coefficient from 10-9.09 to

10-9.17 m2 s-1). After the reaction, no acetyl groups were left which were only

attached to a silane. The structure of the product is depicted in Fig. 1.

Acetylation of wood in the presence of organo-silicon compounds

Impregnation of all wood specimens was done according to EN 113 (1996). The

specimens were left in the solution and heated to 120 �C for 5 h. After the reaction,

the samples were dropped into deionized water to quench the reaction. They were

left in water for 2 days with a water change after 1 day. Subsequently, the

specimens were dried at room temperature for 2 days and finally dried at 103 �C for

24 h. Eight ASE specimens at a time were treated with a solution of acetic

anhydride (AA) and the following organo-silicon compounds:

1. 1 % acetoxy-functional silane (1st educt of No. 3).

2. 1 % Si 200 (2nd educt of No. 3).

3. 1 % acetoxy-functional siloxane (product of No. 1 and 2).

4. 1 % M5.

5. 1 % M100.

6. 1 % Amino D9.

7. 1 % Amino D28.

In another approach, the acetoxy-functional siloxane (No. 3) was mixed with AA

in various ratios (1, 3, 6, 10 and 20 %). These solutions were used to impregnate 16

ASE specimens at a time and to determine WPG, cell wall bulking, water uptake

and acetyl content.WPG and cell wall bulking were calculated according to Xiao

et al. (2010).

Infrared spectroscopy

Fourier-transform infrared (FT-IR) spectra were recorded of the cross-sections of

the specimens by means of the attenuated total reflection (ATR) technique

(DuraSamplIRII, SensIR Technologies, Warrington, UK), using a Vektor 22

spectrophotometer (Bruker, Bremen, Germany) (32 scans, 4 cm-1 resolution).

Background spectra were collected with the empty ATR unit. Three spectra of each

Fig. 1 Mean structure of Si200 (left) and idealized product (right)
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specimen were normalized to an absorption of 2 absorption units at 1,505 cm-1

(aromatic stretch vibration of lignin), baseline corrected using the rubber band

method in the OPUS software (64 points, Bruker, Bremen, Germany) and

subsequently averaged.

Water uptake test

Eight ASE specimens per treatment were submerged in approximately 300 ml water

and weighted after 2, 4, 6 and 24 h of submersion. Water uptake and water repellent

effectiveness (WRE) were calculated according to Donath et al. (2006).

Determination of the acetyl content

Eight ASE specimens were milled in a centrifugal mill (Retsch ZM100, Retsch,

Germany) using a 0.5 mm sieve; the milled material was soaked in water and dried

subsequently at 103 �C to remove acetic acid. Approximately 0.5 g of each material

was weighted into a flat-bottomed flask and 10 ml of 75 % (v/v) ethanol–water

mixture was added. This mixture was heated under agitation to 50 �C for 30 min.

NaOH (25 ml, 0.5 mol l-1) was added and the flasks were kept at 50 �C for 30 min.

To neutralize the mixture 25 ml H2SO4 (0.25 mol l-1) was added, the mixture was

filtered and diluted with water to 250 ml.

The acetic acid content was determined with an HPLC equipped with an RI-

detector (Waters 1525 pump, Waters 717plus auto sampler, Waters 2414 RI-detector,

Waters Corporation, Milford, MA, USA) using 0.005 M H2SO4 as solvent. The

acetyl content was related to the weight of the specimen tested.

Fungal decay test

Resistance to basidiomycetes was assessed according to EN 113 (1996). Twenty

pine sapwood specimens and 20 beech wood samples were impregnated either with

acetic anhydride or with a mixture of acetoxy-functional siloxane (20 % w/w) in

acetic anhydride as described above. Afterward the specimens were heated in the

solution to 120 �C. Ten specimens of each kind were heated for 1 h and the other

ten for 2 h. After the reaction time, the specimens were submersed into cold water

and kept submerged to perform leaching according to EN 84 (1997).

After careful oven-drying (103 �C), weighing and conditioning (20 �C, 65 %

RH), the specimens were incubated in kolle flasks with Coniophora puteana (BAM

Ebw. 15) (pine sapwood) and Trametes versicolor (CTB 863 A) (beech wood) for

16 weeks. Two treated and two untreated control specimens, respectively, were

incubated in one kolle flask according to CEN/TS 15083-1 (2004). After incubation,

the mass loss was determined.

Bending and impact bending test

Bending strength and modulus of elasticity were assessed according to DIN 52186

(1978) with 9 replicates per treatment (Zwick/Z010, Zwick, Ulm Germany) and
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impact bending strength according to DIN 52189 (1981) with 12 replicates per

treatment (Resil Impactor, Ceast, Turin, Italy). The specimens were acetylated with

pure acetic anhydride (AA) and with mixtures of 1, 5 and 10 % acetoxy-functional

polysiloxane and AA for 6 h in the same way as described above. The reaction was

quenched with water, and the WPG of the dry specimens was determined after

2 days of water leaching. Prior to testing, the specimens were conditioned at 20 �C

and 65 % RH, and the equilibrium moisture content (EMC) was determined.

Results and discussion

Acetylation with ethyltriacetoxysilane (TAS)

Ethyltriacetoxysilane (TAS) can acetylate hydroxyl groups of wood via a

transesterification reaction (Fig. 2). The resulting silanol groups produced from

TAS can form siloxane groups upon dehydration and further generate a three-

dimensional silicon dioxide network within the wood structure. In contrast to

acetylation with acetic anhydride, this reaction principally does not release any

acetic acid and the generated polysiloxane might further enhance the properties of

the products.

The reaction of pure ethyltriacetoxysilane (TAS) with wood resulted only in

negligible WPG and cell wall bulking. Soaking of ASE specimens in pure TAS

revealed slight shrinkage (0.04 % of the cross-sectional area) after impregnation

rather than swelling. This indicates that TAS does not penetrate into the cell wall

and is therefore not able to react with the cell wall matrix. The minor shrinkage was

probably due to complete dehydration of the specimens by the silane, which reacts

with water upon formation of silanol groups and acetic acid.

The addition of H2SO4 as a catalyst in TAS resulted in mean bulking of 1.3 %

and WPG of 7.8 %. It therefore seems possible to acetylate wood without a solvent

by using pure TAS, but effective acetylation in a reasonable time is not achievable.

Swelling of the cell wall is indispensable (Rowell 1983) to acetylate wood more

successfully with TAS. A 30 % solution of TAS in acetic acid caused swelling of

the wood to an extent comparable to water and allowed the silane to enter the cell

wall. In absence of a catalyst, no reaction of TAS with wood took place.

Triethylamine and H2SO4 induced noteworthy WPG and bulking, while magnesium
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chloride and potassium acetate did not. Using triethylamine, the treatment resulted

in a WPG of 3.3 % and a bulking of 2.7 %; acetylation in the presence of H2SO4 led

to a WPG of 14 % and a bulking of 7 % after 5 h of reaction time.

Infrared spectra revealed successful acetylation (Fig. 3). Absorption at

1,740 cm-1 (C=O stretching), 1,370 cm-1 (methyl vibration), 1,220 cm-1 (C–O

stretching) and 897 cm-1 (methyl vibration) were strongly increased in the

specimens acetylated with a mixture of TAS, acetic acid and H2SO4 as compared to

the control. The peak at approximately 1,000 cm-1 (assigned to C–O stretch

vibration in polysaccharides) probably increased due to the presence of silicon–

oxygen bonds, which were formed despite of the extraction after treatment.

Acetylation catalyzed with triethylamine resulted in much smaller WPG and cell

wall bulking. A slightly increased absorption appeared at 1,740 and 1,220 cm-1

assigned to acetyl groups. Other absorption peaks did not differ from those of the

control.

Bulking, WPG and water uptake after modification with various combinations

of polysiloxane and acetic anhydride

The two non-functional polydimethylsiloxanes (PDMS) (M5 and M100), especially

M100, did not dissolve well in AA. The amino-functional siloxanes easily dissolved

only in warm AA, while the other three materials, TAS, Si200 and acetoxy-

functional siloxane, easily dissolved in cold AA. WPG and bulking of all treated

specimens were very similar and did not differ from the solely acetylated specimens

(Fig. 4).
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Fig. 3 FTIR spectra of control (bottom), triethylamine catalyzed acetylation (middle) and H2SO4

catalyzed acetylation (top)
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The non-functionalized siloxane (M5 and M100) as well as the amino-functional

siloxane (D9 and D28) reduced water uptake only to a minor extent compared to the

acetylated control. The acetoxy-functional siloxane, however, clearly reduced the

water uptake to a greater extent than all other materials (Fig. 5a) with a WRE of

33 % related to acetylated wood. In subsequent water submersion tests, the two

educts TAS, Si200 and their product, the acetoxy-functional siloxane, exhibited

major changes. In the second test, TAS and acetoxy-functional siloxane did not

differ, but in the third (not shown) and fourth tests the acetoxy-functional siloxane

again reduced the water uptake more than both of its educts (Fig. 5b) with a WRE of

49 % as compared to the acetylated controls.

In general, water uptake of wood can be reduced through (a) blocking of

penetration pathways for capillary water uptake and (b) altering of the surface

properties of the wood in a way that hinders water uptake. The gradual decrease in

water uptake from the first to the fourth experiment observed with the specimens

treated with acetoxy-functional PDMS, TAS and Si200 suggests an alteration of the

wood surface rather than pathway blocking. The reason for the reduction in water

uptake in subsequent tests may be the increasing orientation of the siloxane chain

due to several steps of wetting and high-temperature drying. Kim (2001) also found

a strong increase in hydrophobation of textile materials after treatment with amino-

functional siloxanes when the drying temperature was raised. The heat treatment is

expected to increase the orientation of the siloxane in a way that the hydrophilic

parts of the chain are facing toward the wood cell wall and the hydrophobic parts

orient toward the lumens. This process is called activation (Kim 2001). In non-

functional siloxane, the Si–O-backbone will mostly face toward the wood matrix
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Fig. 4 WPG and bulking values of wood treated with various siloxanes in combination with acetic
anhydride, mean values and standard deviations
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while the hydrophobic methyl groups are directed outwards (Kim 2001; Noll 1968).

In contrast to previous studies (Ghosh 2009), the amino-functional siloxane did not

cause strong hydrophobation. The previously found strong reduction in water uptake

by amino-functional siloxane (which is a relatively hydrophilic material) was

suggested to be due to pathway blocking which prevented capillary penetration of

water (Ghosh 2009; Weigenand et al. 2007). In this study, the interaction of amino

groups with the wood surface (as described for textiles by Bereck et al. 2001) might

be weakened because of the introduction of acetyl groups. These might interfere

with the interactions which are normally formed with hydroxyl groups. In addition,

acetylation of amino groups can occur in the presence of acetic anhydride (Naik

et al. 2004). The following studies focused on acetoxy-functional siloxane, because

best results were obtained with this material.

WPG, bulking and acetyl content after modification with combinations

of acetoxy-functional siloxane and acetic anhydride

The WPG increased linearly with increasing content of the acetoxy-functional

siloxane in AA (Fig. 6). Cell wall bulking increased slightly but significantly with
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increasing siloxane content in AA (Fig. 6). Analysis of variance gave a p value of

\0.0001 indicating high significance. Bulking was significantly different from the

control when 6, 10 and 20 % siloxane were added to AA.

Bulking of acetylated wood is caused by acetyl groups introduced into the cell

wall (Rowell 1983). Therefore, the acetyl content should increase with increasing

bulking. Determination of the acetyl content, however, revealed that higher bulking

was not attributable to a higher degree of acetylation in case of higher PDMS

content in the mixture (Fig. 7). Obviously, the siloxane was able to penetrate the

wood cell wall to a certain extent and to increase bulking. Ghosh (2009) treated

wood with water solvent–based solutions of siloxanes with similar chain length as

used here and found considerable bulking. This suggests that siloxanes are able to

penetrate the cell wall despite their high molecular mass. While the ASE of the

acetylated specimens was 48.4 %, that of the 20 % mixture amounted to 48.7 % and

hence did not significantly increase. The reason for this unchanged ASE was a slight

increase in maximum swelling in water as compared to the untreated control and the

solely acetylated specimens which offset the greater bulking.

Water uptake

The water uptake test revealed a strong hydrophobation of the wood treated with

acetoxy-functional siloxane. The first submersion test still indicated differences

between 1 % on the one hand and 3, 6, 10 and 20 % on the other hand (Fig. 8a, c).

The specimens were soaked in water and dried two times at 103 �C prior to a second

submersion. In this second test, the differences between the treatments nearly

disappeared (Fig. 8b); the WRE ranged from 62 % (1 % siloxane) to 71 % (6 %

siloxane) without showing a clear trend (Fig. 8d). Addition of 1 % acetoxy-
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functional siloxane therefore appeared to be sufficient to decrease the water uptake

to a maximum extent. This result indicates that pathway blocking is not the major

reason for increased hydrophobation, because it can hardly explain increasing

hydrophobation in subsequent water uptake tests. Furthermore, an increased

concentration of the siloxane should lead to increased pathway blocking and thus

enhance hydrophobation but this was not the case. It is therefore assumed that water

uptake is reduced due to alteration of the (inner) wood surface; addition of 1 %

siloxane seems to be sufficient for covering the inner surface of the wood. For

maximum reduction in water uptake at 1 % siloxane concentration, however, a more

intense activation process is needed, which encompasses extended heating to

enhance the orientation of the siloxane chains.

Fungal decay

In order to study the influence of the acetoxy-functional siloxane, a low degree of

acetylation was established which still allowed fungal decay. The WPG of the

specimens increased by addition of acetoxy-functional siloxane to AA, but the mass

loss after fungal incubation was nearly the same (Table 1). A t test performed,

respectively, on the pairs ‘‘acetylation (x h) and acetylation ? 20 % siloxane (x h)’’

only revealed a different result between acetylation for 2 h in beech wood and

acetylation with 20 % siloxane in beech wood for 2 h (Table 1). Thus, the

resistance to fungal decay is exclusively attributable to the acetyl content and not to

the presence of siloxane chains. The significantly higher mass loss in the case of

beech (2 h acetylation) can be explained by a lower acetyl content which resulted
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from the high amount of siloxane in the treatment solution (see above for the

decrease in acetyl content).

Micro-pore blocking was previously discussed as the main reason for fungal

resistance imparted by chemical modifications such as acetylation (Hill et al. 2005).

Blocking of cell wall pores can reduce the availability of water as well as the

penetration of enzymes (Papadopoulos and Hill 2002). A threshold value of

approximately 20 % WPG was found to impart fungal resistance by acetylation,
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Table 1 WPG and mass loss in a fungal decay test after 16-week incubation with C. puteana (pine) and

T. versicolor (beech) (mean values and, in brackets, standard deviations)

Pine sapwood Beech wood

WPG (%) Mass loss (%) WPG (%) Mass loss (%)

Control – 28.0 (9.8) – 25.2 (1.9)

Acetylation 1 h 0.5 (0.1) 33.0 (3.1) 2.5 (0.4) 20.1 (1.6)

Acetylation ? siloxane 1 h 8.6 (0.8) 35.5 (4.1) 5.5 (1.2) 21.5 (2.0)

Acetylation 2 h 4.5 (0.3) 26.0 (4.9) 10.2 (0.2) 11.5 (0.9)

Acetylation ? siloxane 2 h 12.5 (0.4) 29.7 (10.4) 15.6 (0.9) 14.2 (1.5)

Bold values are significantly different from each other with 95 % confidence
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which is accompanied with cell wall bulking of approximately 8 % in case of Scots

pine sapwood (experimental results by the authors). A reduction in fungal decay has

been reported previously for various functionalized siloxanes. Ghosh et al. (2012)

attributed the effectiveness of siloxane treatment against fungal decay to the

penetration of the siloxanes into the cell wall and micro-pore blocking as well as

interaction with the cell wall. Treatment with amino siloxanes-induced fungal

resistance to wood when a bulking value of approximately 4 % was reached (Ghosh

2009). Cell wall bulking of 4 %, however, cannot impart complete fungal resistance

if the modification chemical is biologically inactive. It is therefore assumed that

amino silicones used by Ghosh et al. (2012) exhibited a certain biological

effectiveness in addition to micro-pore blocking. This effectiveness probably

depends on the mobility of the siloxane chain, because higher effectiveness of the

materials was found, when chain length decreased (Ghosh et al. 2012). In contrast to

amino siloxanes used by Ghosh et al. (2012), acetoxy-functionalized siloxanes were

applied in this study, which are able to undergo condensation and form a three-

dimensional network within the wood. In this network, the siloxane chains are

immobilised which is also evident in a completely stable WPG after severe leaching

(data not shown). This immobility and the lack of functionality are the reasons why

the siloxanes do not affect the physiology of decay fungi and do not prevent fungal

decay. Many studies have previously shown the biological inertness of siloxanes

with longer chain length (Ackermann and Damrath 1989; Noll 1968).

Mechanical properties

Specimens treated with mixtures of AA and acetoxy-functional siloxane displayed a

slightly greater maximum swelling in water than solely acetylated specimens. A

similar result was found by Obataya et al. (2002), combining acetylation with a

bulking treatment of glucose-pentaacetate. Greater swelling can be attributed to

‘‘solving’’ or weakening of lignin or to a distortion of the crystalline parts of

cellulose. To investigate, if this has any effect on the mechanical properties, a

bending test and an impact bending test were performed (Table 2).

Analysis of variance revealed that the bending strength and the modulus of

elasticity did not exhibit any significant differences at a 5 % confidence level. The

impact bending strength of acetylated wood was significantly higher than that of the

Table 2 Results of mechanical tests (mean values and, in brackets, standard deviations)

Bending

strength

(N mm-2)

Modulus of

elasticity

(N mm-2)

Impact bending

strength

(kJ m-2)

WPG (%) Equilibrium moisture

content at 20 �C/65 %

RH (%)

Control 119 (11) 13,200 (1,276) 30,285 (7,855) – 10.6 (0.1)

Acetylation 138 (22) 13,183 (1,510) 43,513 (9,992) 21.0 (0.3) 5.2 (0.1)

?1 % Siloxane 138 (25) 13,000 (1,669) 36,310 (9,733) 21.6 (0.3) 5.2 (0.1)

?5 % Siloxane 122 (26) 12,256 (1,516) 40,047 (7,381) 24.1 (0.2) 5.2 (0.1)

?10 % Siloxane 141 (17) 13,583 (1,164) 34,758 (11,945) 28.7 (0.4) 5.2 (0.0)
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control specimens with 95 % confidence. There were, however, no differences

between the solely acetylated wood and acetylated wood combined with siloxane.

Conclusion

Combining acetylation with polysiloxane treatment can enhance the water

repellence of acetylated wood without any apparent drawbacks. ASE, mechanical

properties and fungal resistance were not changed by the treatment. Small amounts

of siloxane are sufficient to reduce water uptake to a great extent, because only the

inner surfaces of the wood need to be covered by the siloxane. Fungal resistance of

acetylated wood is solely brought about by the acetyl content; fungal resistance is

not increased by introduction of acetoxy-functional siloxane probably because of

the immobility of the condensed siloxane in the wood.
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Effect of combinations of functional siloxanes on fungal decay and blue stain 
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Effect of amino- and carboxy-siloxane combinations on the 

resistance of pine (Pinus sylvestris L.) and beech (Fagus 

sylvativa L.) against fungal decay and blue stain 

Abstract 

Pine sapwood and beech wood were treated with water-based emulsions of 

polysiloxanes, which were amino- or carboxy-functional. Amino-functional siloxane 

had a chain length of 10 dimethylsiloxane units (D10), while carboxy-functional 

siloxane had a chain length of D10 or D46. The emulsions contained either 

polysiloxanes of one functionality or combinations of the two in ratios of 20:80 and 

80:20. Even with a weight percent gain (WPG) of approx. 20%, cell wall bulking of 

pine sapwood was low and led to negligible anti shrink efficiency (ASE). Water 

uptake rate in the first submersion cycle was lowest for pure carboxy siloxane. In the 

second and third submersion cycle, however, amino siloxane and mixtures of 80:20 

with carboxy showed lower water uptake rates. Synergistic effects between the two 

materials, which reduced water uptake, were not found. Leaching of carboxy 

siloxane and mixtures containing 80% carboxy siloxane was high, fixation of 

carboxy siloxane was enhanced by combination with amino siloxane in a ratio of 

80% amino and 20% carboxy siloxane. Mass loss in a fungal decay test after 16 

weeks of incubation with Coniophora puteana and Trametes versicolor according to 

EN 113 (1996) and CEN TS 15083-1 (2004) was reduced by the treatments; the 

most effective material turned out to be pure carboxy siloxane. Synergistic effects 

were not found. Staining of wood due to attack by Aureobasidium pullulans was 

reduced by amino-functional siloxane, while carboxy-functional siloxane did not 

cause inhibition. Again there were no synergistic effects further enhancing the 

inhibition of blue stain.  

Introduction 

The search for alternative wood preservation is growing due to increasing restrictions 

for the use of conventional and toxic wood preservatives. It has been proved possible 

to protect wood from fungal decay through use of non-toxic chemicals simply by 

incorporating these into the cell wall and blocking the micro pores as well as 

decreasing the availability of water in the cell wall (Stamm, 1964). While some wood 
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modifications such as the acetylation have undergone market introduction, research 

for other modification techniques are ongoing (Evans, 2003).  

Organo-silicon compounds have previously been used to protect and modify 

wood (Donath et al., 2004; Donath et al., 2006a; Hill et al., 2004; Mai et al., 2003). 

The most important groups of organo-silicon compounds for the treatment of wood 

are silanes and polydimethylsiloxanes (silicones). Silicones are found in many 

industrial applications and are also widely used in construction to improve water 

repellence of masonry (Mayer, 1998). Water repellence of wood can also be 

enhanced by the treatment with silicones (Hager, 1995; Lukowsky et al., 1997). 

Weigenand et al. (2008) treated Scots pine sapwood with an emulsion of amino 

silicones of 300-400 dimethylsiloxane units (DMS) and found high decay resistance 

to white and brown rot fungi, when the silicones were applied in high concentrations. 

Penetration of silicones into the cell wall was found to be higher, when the silicones 

were formulated as a micro- instead of a macro-emulsion (Weigenand et al., 2007). 

These results demonstrate the possibility to achieve fungal decay resistance and 

dimensional stabilization by polysiloxane treatment. Gosh et al. (2008) found 

effectiveness against wood-decaying fungi with quarternary-ammonium-functional 

and especially amino-functional siloxane. Effectiveness against fungi and increasing 

dimensional stability of the treated wood was detected with decreasing chain length 

of the polysiloxanes down to a chain length of 7 DMS. Water uptake in a submersion 

test, on the other hand, increased with decreasing chain length, reflecting the rising 

importance of the functionality for very short polysiloxane chains (Ghosh, 2009). 

Quarternary-ammonium compounds are used in commercial wood preservatives and 

known for their effectiveness against fungal colonization of wood (Pernak et al., 

1998; Worley and Sun, 1996; Zabielska-Matejuk et al., 2004). The more surprising 

was the finding of higher effectiveness of amino-functional siloxanes against wood 

decaying fungi and also against discoloration of treated wood (Ghosh et al., 2012). 

Silanes bearing amino-functionality were found to be effective against wood 

decaying fungi (Donath et al. (2006a). Apparently, functionality of the silicone 

material plays a crucial role in the effectiveness of the material. Several mechanisms 

are considered for the high fungal resistance: a) hydrophobation of the wood 

substrate due to interaction of the silicone-functional group with the wood surface; 

b) micro-pore blocking in the wood cell wall with cell wall penetrating chemicals 
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that may reduce water availability in the wood cell wall and hinder the intrusion of 

low molecular weight agents released by the fungi to degrade wood (Hill et al., 2005; 

Papadopoulos and Hill, 2002). 

In a previous study we investigated polysiloxanes with different 

functionalities for the protection of wood against decaying fungi. Two functionalities 

have proved to be effective, amino-functionality and carboxy-functionality. 

However, the most effective material, which was carboxy-functional, easily leached 

out of the wood and caused high water uptake rates. The less effective amino 

siloxane on the other hand, showed good stability and reduced water uptake rates 

(Pries et al. 2012). In this study we investigated the combination of these two 

functionalities to improve water-related and fungal properties of the treated wood 

and avoid problems such as leaching by salt formation of the two functionalities. 

Amino- and carboxy-functional siloxanes were mixed in different ratios, formulated 

in water and wood was treated with these emulsions. Water uptake, dimensional 

stability, decay resistance and resistance to blue stain were assessed. 

Materials and Methods 

Preparation of silicone emulsions 

Silicones with α-ω carboxy- and amino-functionality were synthesized.  

With R =

(a)

(b)

 

Figure 1: Siloxane chain with a: aminofunctionality and b: carboxyfunctionality. 

While amino-functional siloxane was only synthezised with a chain length of 10 

dimethylsiloxane units (DMS), carboxy-functional material was synthesized with 

chain length of 10 and 46 DMS (D10, D46). The materials were mixed in different 
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ratios and then formulated in water using acetic acid and three different emulsifiers. 

The formulations, all with a siloxane concentration of 20%, are depicted in Table 1.  

Table 1: Siloxane formulations for the treatment of wood. 

Siloxane Amino 

D10 

Carboxy 

D10 

Carboxy 

D46 

Water Acetic 

acid 

Imbentin 

T30 

Imbentin 

T60 

Imbentin 

T120 

A 20.0%   64.0% 6.0% 5.0% 3.0% 2.0% 

B 16.0% 4.0%  64.0% 6.0% 5.0% 3.0% 2.0% 

C 16.0%  4.0% 64.0% 6.0% 5.0% 3.0% 2.0% 

D 4% 16.0%  64.6% 4.0% 2.0% 6.4% 3.0% 

E 4.0%  16.0% 64.0% 2.0% 2.0% 8.0% 4.0% 

F  20.0%  60.0%   13.6% 6.4% 

 

Prior to treatment of wood, the formulations were diluted to the required 

concentrations with deionised water. Tests were conducted according to a three 

factor full factorial design with the factors: a: Ratio of amino to carboxy, b: Chain 

length of carboxy-siloxane and c: Concentration. Additionally, the two pure 

materials with chain length D10 were tested for comparison (Table 2). 

Table 2: Experimental plan for siloxane treatment of wood. 

Experiment\Factor a b c 

1 Ratio 16:4 Carboxy D10 5% Concentration 

2 Ratio 4:16 Carboxy D10 5% Concentration 

3 Ratio 16:4 Carboxy D46 5% Concentration 

4 Ratio 16:4 Carboxy D10 10% Concentration 

5 Ratio 4:16 Carboxy D46 5% Concentration 

6 Ratio 4:16 Carboxy D10 10% Concentration 

7 Ratio 16:4 Carboxy D46 10% Concentration 

8 Ratio 4:16 Carboxy D46 10% Concentration 

9 - Amino D10 5% Concentration 

10 - Amino D10 10% Concentration 

11 - Carboxy D10 5% Concentration 

12 - Carboxy D10 10% Concentration 
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Wood samples 

Scots pine (Pinus sylvestris L.) sapwood specimens (25×25×10 mm³ R×T×L, “ASE 

samples”) were used to assess WPG, bulking and water uptake. Specimens according 

to EN 113 (1996) were cut from Scots pine (Pinus sylvestris L.) and European beech 

(Fagus sylvatica L.) to determine WPG and resistance to basidiomycetes. Scots pine 

(Pinus sylvestris L.) sapwood specimens (5 × 40 × 40 mm
3
; R×T×L, growth rings 

oriented at 45° with the tangential face) were used to assess resistance to 

Aureobasidium pullulans.  

Silicone treatment 

Impregnation of wood was done in a vacuum-pressure process. The oven dried 

specimens were placed in plastic containers and weights were put on top to prevent 

floating. Afterwards the emulsions were poured into the containers. A vacuum of 

approx. 100 mbar was applied for 1 h, then released and a pressure of 11 bar applied 

for another 2 h. The specimens were then weighed, pre-dried for one week at 

20°C/65% RH and finally dried at 103°C for two days. 

Weight percent gain (WPG), cell wall bulking 

After drying, the weight of the specimens was determined to calculate the weight 

percent gain (WPG), theoretical WPG and cross-sectional bulking according to Pries 

et al. (2012). 

Water uptake 

ASE samples were immersed in approximately 300 ml of water and the weight was 

determined after 2, 4, 6, and 24 h. To establish maximum water uptake, a vacuum of 

approx. 40 mbar was applied for 1 h and afterwards the specimens were kept in the 

water for one more day. The water uptake was related to the oven dry weight of the 

specimens prior to the silicone treatment. Water repellent effectiveness (WRE) was 

calculated according to Donath et al. (2006b). 

Resistance to white and brown rot fungi 

The treated wood specimens were subjected to accelerated ageing according to 

EN 84 (1997), dried (to determine leaching) and conditioned at 20°C/65% RH until 
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they reached equilibrium moisture content. They were sterilized at 121°C for 20 min 

and inoculated on 4% malt and 1.5% agar in kolle flasks according to EN 113 

(1996). Two treated and accordingly two untreated specimens were inoculated 

together in one flask as described in the standard CEN-TS 15083.1 (2004). Ten 

replicates were used per treatment. Treated and untreated specimens of Scots pine 

(P. sylvestris) were tested with C. puteana (CTB 863A). Treated and untreated 

specimens of European beech (F. sylvatica) were tested with C. puteana and 

T. versicolor (BAM Ebw. 15).  

Blue stain testing 

Blue stain specimens were treated with siloxane emulsions as described above, 

subjected to accelerated ageing according to EN 84 (1997), dried at 103°C and 

subsequently conditioned at 20°C/65% RH. They were sterilized at 121°C for 20 min 

and then dipped in a spore suspension of Aureobasidium pullulans (de Barry). 

Afterwards the samples were placed in plastic containers on stainless steel sample 

holders over 120 ml sterilized vermiculite and 45 ml of water inoculated with 15 ml 

spore suspension. Ten untreated samples of the same dimensions were used as 

controls. Two samples from each treatment were placed in one plastic container; 10 

replicates were used per treatment. The inoculated samples were incubated for 6 

weeks in a climate chamber at 22°C/70% RH. The blue stained area was analysed 

using an Epson Expression 10000XL scanner (Seiko Epson Corp., Nagano-Ken, 

Japan) and GIMP image processing software (GNU General Public Licences). For 

this analysis the front and reverse side were scanned and converted to black and 

white pictures by adjusting a threshold value in a way that the stained areas were 

converted to black and the unstained areas to white. This way it was possible to 

determine the percentage of the surface that was stained by the fungus.  

Results and discussion 

WPG and Bulking 

WPG of the specimens after treatment exceeded the theoretical WPG. This was due 

to the emulsifier content, which contributes to the WPG (Figure 2). Leaching of the 

samples according to EN 84 (1997) removed the water soluble emulsifiers and 
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probably some siloxane. WPG of the samples after leaching was close to the 

theoretical WPG.  
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Figure 2: Weight percent gain (WPG) of EN 113 specimens, a: pine sapwood (Pinus sylvestris L.) 

and b: beech wood (Fagus sylvatica L.) treated with 10% emulsions of various combinations of 

amino- and carboxy-functional siloxanes. 

ASE samples showed a similar picture after treatment (Figure 3a). After three water 

uptake and leaching cycles, WPG especially of the wood treated with the materials 

D,E,F was strongly reduced. The leaching in ASE samples was much more severe 

compared to EN 113 samples due to vast cross sectional-area to volume ratio. Pure 

carboxy siloxane and also material D showed the lowest leaching stability, 

apparently the 20:80 mixture of amino-carboxy siloxane did not improve fixation of 

the material. Leaching was a little lower when the chain length of carboxy was 

longer (material E), but it showed in general the same picture. Amino-functional 

siloxane, on the other hand, turned out to be much more stable against leaching. Pries 

et al. (2012) studied treatment of wood with different functional siloxanes and also 

found good stability of amino-functional siloxane and high leaching of carboxy-

functional siloxane. Ghosh (2009) treated wood with amino siloxanes and explained 
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fixation of amino siloxane with cationic properties of the functional group as well as 

with possible covalent bond formation of primary amino groups with the 

polysaccharides in wood. While amino groups brought into wood are expected to be 

positively charged, carboxy groups are expected to be either negatively or uncharged. 

The cell wall, on the other hand, contains mainly negatively charged groups (e.g. 

phenolate groups, carboxy groups) to interact with the siloxane functionalities. 

Therefore the amino-functional siloxane can interact strongly with the cell wall and 

be kept from leaching, while carboxy siloxane is easily leached out. Salt formation of 

the two siloxanes, which is expected to take place in the emulsions containing both 

functionalities, did apparently stabilize the carboxy-functional siloxane in materials 

B and C, but the amino-siloxane content was too low to stabilize materials D and E 

and fix the siloxane in the wood.  
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Figure 3: Weight percent gain (WPG) (a) and cell wall bulking (b) of ASE specimens treated 

with various siloxane emulsions. 

Bulking after the treatment was very similar for all siloxanes (Figure 3b). Leaching 

of the samples strongly reduced bulking. In total, bulking values were too low to 

effectively reduce swelling and resulted only in negligible anti-shrink-efficiency.  

Water uptake 

Water uptake was reduced by all treatments compared to the control samples. Two 

groups of materials can be identified, if the water repellent effectiveness (WRE) after 

24 h is regarded (Figure 4). Materials A, B and C showed a very low WRE in the 

first water uptake, which increased to a maximum in the second water uptake and 

then started to decrease. Materials D, E and F showed the highest WRE in the first 

water uptake, WRE decreased in the following water uptake tests. These two 

behaviours are due to the different formulations. While materials A, B and C had the 

same emulsifier mixture, D, E and F contained different ratios of the three 

emulsifiers. The values of the first water uptake can be regarded as strongly affected 
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by the emulsifier in the wood. After leaching, the effect of the pure siloxane becomes 

more important.  
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Figure 4: Water repellent effectiveness (WRE) after 24 h of pine sapwood treated with various 

siloxane emulsions. 

The high WRE values for materials containing high amounts of carboxy-functional 

siloxane were unexpected based on earlier results. Pries et al. (2012) found stronger 

reduction of water uptake with amino-functional siloxane as compared to carboxy-

functional siloxane. The reason for these differences can be attributed to the different 

formulations. While Pries et al. (2012) formulated the material to 30% stock 

solutions, a different formulation was used in this study with only 20% concentration 

of siloxane and higher amounts of emulsifier. This reflects the importance of the 

formulation on the properties of treated wood. Apparently the material was 

distributed differently in the wood and was therefore not able to effectively reduce 

water uptake in the former study.  

A synergistic effect of amino and carboxy siloxane on water uptake was not 

found. Material A, containing only amino siloxane showed similar or better results in 

the second and, especially, in the third water uptake test compared to all other 

materials.  

While unfunctional siloxanes can very effectively reduce water uptake of 

wood (Hager, 1995; Lukowsky et al., 1997), functional groups such as the ones used 

here increase the polarity of the siloxanes and reduce hydrophobation of the treated 
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wood. When the chain length decreases, properties of the functional groups become 

even more important, with the result of more polar siloxanes. In this study, the chain 

length of the siloxanes was very short (D10 and D46); hydrophobation of the wood 

was therefore low. The results are, however, comparable to Ghosh (2009), who 

found similar values of WRE after 24 h when amino-functional siloxanes in a 

solution of water and organic solvents were impregnated into wood.  

Two ways of water uptake reduction can be distinguished; first, altering the 

inner surfaces of the wood to become water repellent and, second, blocking of the 

penetration paths of water. Amino-functional siloxanes can very effectively render 

textile materials water repellent, if the polar amino groups are oriented towards the 

cell wall surface. In this way, the surface properties are changed (Bereck et al., 

2001). The polar siloxanes in this study probably do not greatly alter the surface of 

the wood but block the penetration paths of water and thus reduce water uptake rate 

(Weigenand et al., 2007). This assumption is supported by the fact that the treatments 

with 5% siloxane showed lower WRE values (not shown) as compared to those with 

10%. For covering the inner surfaces of the wood, however, concentrations of only a 

few percent are sufficient and any additional material will not reduce water uptake 

rate any more (Pries et al., 2013). Apparently, effective orientation of the amino 

siloxane, as described by Bereck et al. (2001), has not taken place; only just enough 

amino groups were oriented towards the wood surface to stabilize the material 

against leaching. 

Fungal decay 

The control specimens reached a mean mass loss of more than 20% indicating a 

sufficient virulence of the fungal cultures used. In the case of pine sapwood 

incubated with C. puteana (Figure 5a) the concentration of the treatment emulsion 

had a strong effect. While 5% treatment only resulted in a high decay resistance 

when pure carboxy siloxane was used, all treatments resulted in a mean mass loss of 

lower than 5%, when 10% siloxane emulsions were used. A synergistic effect of the 

combination of the two materials was not observed.  

In general, the effectiveness of all materials was much lower in beech wood 

(Figure 5b and c). This can be explained with the higher density of beech wood, 

which resulted in lower WPG values. The effect of concentration was strong, 
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samples treated with 5% siloxane often revealed higher mass losses than the control 

specimens. In most cases increasing ratio of carboxy siloxane in the emulsion 

resulted in lower mass losses, synergistic effects could not be seen. 
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Figure 5: Mass loss of a: pine sapwood, b: beech wood after incubation with Coniophora puteana 

and c: beech wood after incubation with Trametes versicolor. Mean values and standard 

deviation. 

Amino-functional silicon based materials have shown to be effective against wood-

decaying fungi in several studies. Ghosh et al. (2008) treated wood with different 

commercially available polysiloxanes and found amino-functionality to be effective 

against fungal decay. Furthermore they found increasing effectiveness of amino-

functional siloxane with decreasing chain length (Ghosh et al., 2012). The amino-

functionality was previously regarded as the main factor to reduce fungal decay 

(Donath et al., 2006a; Weigenand et al., 2008), but this suggestion was not supported 

by results of Ghosh et al. (2012) and it was concluded, that fungal resistance is 

mainly imparted by interaction with the cell wall and micro-pore blocking. In this 

study, amino-functional siloxane did show major reduction of fungal decay in pine 
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sapwood, but the effectiveness in beech was low, indicating that high WPG are 

required to obtain protection against fungal decay.  

Carboxy-functional siloxane, on the other hand, was only recently found to be 

even more effective than amino-functional siloxane (Pries et al. 2012). Because the 

carboxy-functionality itself is thought to be non-toxic and should not have any 

inhibiting effect on the fungus, it was concluded, that it may enhance mobility of the 

siloxane. This might be crucial for effectiveness against decay. Different from amino 

functionality, which can interact with negatively charged counterparts in the cell 

wall, e.g. carboxy groups or phenolate groups, the carboxy functionality cannot 

interact strongly with the cell wall. This lack of interaction, on the other hand, has 

the disadvantage of low fixation of the material in the wood and leaching instability. 

To overcome this problem, carboxy-siloxane was combined with amino-functional 

siloxane in this study to induce salt formation and thus improve leaching properties. 

Amino-groups are thought to prevent fungal attack only if cationised (Donath et al., 

2006a) which can be promoted by addition of carboxy siloxane. Carboxy siloxane, 

on the other hand, may be fixed in the wood and prevented from leaching by addition 

of amino-functional siloxane (Donath et al., 2006b) and furthermore increase fungal 

resistance of the treated wood. This goal was not achieved and no synergistic effects 

were seen. While water uptake reduction and leaching stability was highest with 

materials containing high amounts of amino siloxane, fungal resistance was highest 

with pure carboxy siloxane; mixtures of the two functionalities in no case showed 

better results than the pure materials. 

Blue stain colonisation 

The blue stain test revealed reduction of staining by Aureobasidium pullulans only 

for amino siloxane containing formulations, while pure carboxy siloxane did not 

show any reduction of staining (Table 3). None of the materials, however, was able 

to prevent staining completely. Best results were obtained with pure amino siloxane 

and with materials containing high amounts of amino siloxane (Materials A, B, C). 

Synergistic effects of the two siloxane materials were not observed; there was a clear 

trend to higher reduction of staining with increasing amino siloxane content of the 

treatment emulsion. There was not a clear trend for higher resistance against staining 

with increasing concentration of the siloxane emulsion. Materials A and B showed 
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very similar results for both concentrations, while material C even showed lower 

colonisation areas for the 5% treatment. In most cases, the bottom side of the 

specimens showed stronger staining than the top side; the staining fungi apparently 

started to grow from the surface facing the vermiculite. This can be explained with 

higher moisture content between wood and vermiculite and also by the high 

concentration of spores in the vermiculite (Ghosh et al., 2009).  

Table 3: Blue stain colonisation, mean stained area and, in brackets, standard deviations. 

Mean area of staining (%) Concentration Material 

Bottom Top 

A 9.9 (4.3) 0 (0) 

B 7.6 (7.0) 0 (0) 

C 13.8 (15.7) 0.5 (1.5) 

D 34.3 (13.3) 23.9 (20.0) 

E 34.9 (13.9) 10.7 (10.3) 

5% 

F 84.6 (15.8) 79.4 (13.6) 

A 8.8 (6.4) 0 (0) 

B 9.9 (6.1) 1.9 (3.5) 

C 19.0 (10.3) 0 (0) 

D 58.2 (12.0) 60.4 (20.0) 

E 20.1 (7.9) 4.3 (2.5) 

10% 

F 85.2 (7.0) 70.9 (13.1) 

Control 75.9 (22.3) 72.6 (13.5) 

 

It was previously shown, that silicone treatment of wood can reduce staining by 

A. pullulans. Ghosh et al. (2009) treated wood with commercially available 

functionalised silicones and found strong reduction of staining when wood was 

treated with amino siloxane emulsions. Ghosh et al. (2012) treated wood with 

solutions of functional siloxane in water and organic solvents. This way, the 

influence of the emulsifier was avoided. It was found, that quat- and amino-

functional siloxane both reduce staining by A. pullulans to a great extent. In both 

studies, the side facing the vermiculite was stained stronger than the top side of the 
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specimens, which is in line with our findings. But in both studies there was also a 

clear trend for greater reduction of staining with higher concentration of the 

treatment formulation which was not found in this study. It is certain, that this trend 

has to exist to some degree below our lowest concentration. Probably 5% treatment 

concentration was sufficient in this study to cover the inner surfaces of the wood and 

prevent staining to a maximum extent; higher concentrations of siloxane did not 

reduce staining any further. These results indicate a totally different mode of action 

for the inhibiting of A. pullulans by siloxanes as compared to the inhibition of white 

and brown rot fungi. While the mobility of the siloxane chain was concluded to be 

important for the inhibition of wood decaying fungi and therefore carboxy-functional 

siloxane being most effective (Pries et al. 2012), inhibition of A. pullulans seems to 

be caused by the amino groups or the alteration of the inner surface of wood and 

therefore resulting in amino-functional siloxane to be the most effective material 

(Ghosh et al., 2012).  

Conclusion 

Wood was treated with water-based emulsions of amino and carboxy siloxanes. The 

two functionalities were combined to obtain synergistic effects in fungal decay 

protection, improved fixation of carboxy siloxane in wood and at the same time 

strong reduction of water uptake rate.  

Fixation of carboxy siloxane was achieved only when low concentrations of carboxy 

siloxanes were present in the material (80:20 mixture). When carboxy siloxane 

represented the major part of the mixture (20:80 mixture), fixation of the material 

was low.  

Water uptake rate was reduced most effectively by pure amino siloxane and 

80:20 mixtures with carboxy siloxane. No synergistic effects of the two materials 

reduced water uptake rate any further, when mixtures of the siloxanes were used.  

Mass loss due to fungal decay was reduced most effectively by pure carboxy 

siloxane. The idea that the combination of the two functionalities with resulting salt 

formation might enhance fungal resistance was not verified. Mixtures of carboxy 

siloxane with amino siloxane showed equal or worse results than pure carboxy 

siloxane. Staining was most effectively inhibited by pure amino siloxane, while all 
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mixtures showed equal or worse results and especially pure carboxy siloxane did not 

inhibit staining fungi at all. Again synergistic effects to improve resistance to 

staining were not found. 
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Painting and gluing capability of beech wood (Fagus 

sylvativa L.) treated with functionalized polydimethylsiloxanes 

Abstract 

Beech wood (Fagus sylvatica L.) was treated with different water-based emulsions 

of short-chained amino- and carboxy-siloxanes. Thereafter the painting capability of 

the treated wood was tested with typical acrylic water-based and alkyd solvent-based 

paints. While no valid test results were obtained for alkyd-based paint, acrylic-based 

paint showed strongly reduced adhesion on treated wood in a self-aligning Posi-Test. 

The glueing capability was tested on the treated wood using three typical adhesives; 

PVAc-D4 adhesive, phenolic resin and PUR adhesive. With the PVAc-adhesive none 

of the treatments reduced bond strength, although silicone with high amino-content 

reduced wood failure, indicating some interaction of basic amino groups with the 

polyvinyl acetate. Bond strength of phenolic resin and PUR adhesive was reduced in 

some cases, but generally the reductions were relatively small and do not seem to 

impede the use of these adhesives for wood treated with these functional 

polysiloxanes.  

Introduction 

Due to regulations and environmental concerns, new alternatives for the treatment of 

wood with biocides are sought for (Evans, 2003). Aside from other treatments, 

organo-silicon treatments have been studied for the protection of wood against fungal 

decay in a number of studies (Donath et al., 2006; Mai and Militz, 2004; Weigenand 

et al., 2008). While certain silicon materials can inhibit fungal growth, they usually 

render the wood more water repellent (Hager, 1995; Lukowsky et al., 1997). This 

attribute is mostly desired, because moisture causes shrinkage/swelling and fungal 

degradation of wood, but can cause problems in painting and gluing. Wood used in 

outside applications is susceptible to weathering and attack by microorganisms. 

While attack by microorganisms can be prevented by biocides or wood modification, 

weathering and degradation by UV light can only be prevented by pigmented 

coatings. Common wood coatings can be divided based upon the two most important 

binding agents which are water-borne latexes (acrylic or vinyl-acrylic polymers) and 

solvent-borne oil-alkyd paints (Williams, 2010). Coating performance is greatly 
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affected by the wood substrate; high extractive contents, including resins, and 

swelling/shrinkage of wood can reduce adhesion and service life of coatings 

(Williams, 2010). For proper adhesion, the paint has to penetrate into the wood. 

While oil-alkyd-based paints are expected to penetrate into the cell wall as well as 

into the lumens, aqueous acrylic binders have emulsion particles which are too big to 

enter the cell wall, therefore only penetrate into the lumens of the cells and 

mechanically interlock with the wood (Williams, 2010). Treatment with siloxanes 

can render wood water repellent and, at the same time, act abherent (oleophobic) 

which can also cause problems regarding paint adhesion and coating performance. 

Especially water borne coatings are expected to show poor wetting of the water 

repellent surface. Proper penetration into the wood may therefore be prevented by 

pretreatment with siloxanes and thus prevent proper adhesion of paints to the treated 

wood. 

For efficient use of wood resources, gluing of wood is becoming increasingly 

important. It is closely related to the topic of paint adhesion. Adhesion is governed 

by chemical and mechanical factors. One mechanism of adhesion is mechanical 

interlocking. It takes place when the adhesive penetrates into the wood structure 

beyond surface debris and damaged fibers (Frihart and Hunt, 2010). Attractive forces 

between the adhesive and wood also contribute to bond strength. To achieve a strong 

bond, adhesive and wood molecules must come into close contact with each other. 

Extractives or impregnated chemicals can prevent close contact or proper wetting of 

the surface and hereby reduce bonding strength. Many types of wood adhesive are 

water-based and expected to show worse wetting and bonding qualities when wood 

is treated with siloxanes. Lukowsky et al. (1997) treated wood with water-based 

silicone emulsions and found greatly reduced adhesion strength of PVAc. Jusoh et al. 

(2005) treated wood for flake board production with siloxanes and found severe 

reduction of bonding strength, when the flakes were glued with phenolic resin. Kurt 

et al. (2008), on the other hand, did not find any reduced bonding strength in dry 

state for wood that had been treated with amino-functional siloxane and was glued 

with PVAc. Performance of adhesives seems to be strongly dependent on the type of 

siloxane that is used for the treatment of wood. 

In this study, we investigated the possibility to coat and glue wood that had 

been treated with different short-chained functional siloxanes formulated in water. 
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Typical types of paints and adhesives were tested with regard to their adhesion 

properties. While adhesives were tested for shear strength, paints were tested in a 

pull-off test in dry and wet state.  

Materials and Methods 

Wood 

Glueability test (EN 302-1, 2004): Beech wood (Fagus sylvatica L.) samples of size 

130×10×300 mm³ (R×T×L) were prepared and treated with the polysiloxane 

emulsions. After drying and conditioning, the boards were freshly planed to 5 mm 

thickness and two boards of equal treatment were immediately glued together. After 

7 days of drying, 10 specimens of size 20×10×145 mm³ were cut out of these boards 

for glueability testing. In the middle of these specimens, cuts with the saw were 

made perpendicular to the fiber direction on both sides with a depth of 10 mm to 

obtain an overlapping zone of 20mm×10mm for testing of bond strength. 

Paintability testing (ASTM 4541; Pr-ENV 927-8): Beech wood samples of size 

50×4×300 mm³ (R×T×L) were prepared for paintability testing.  

Chemicals 

Polysiloxanes with two different α-ω-functionalities were synthesized. The 

functionalities contained diamino-groups and carboxyl-groups (Figure 1).  

(a)

(b)

With R =

n

Si
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Si Si

ROO

O

N H 2

N
H

O H

O H

O

O

O

O H

O

 

Figure 1: Siloxane chain with a: aminofunctionality and b: carboxyfunctionality. 
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Silicones with the following numbers (n) of dimethyl-siloxane (DMS) units were 

synthesized for the respective functionalities: 

Diamino-functional (a): 10 

Carboxy-functional (b): 10, 46 

The silicones were dispersed in water using acetic acid and three commercially 

available surfactants; Imbentin T120, T060 and T030 (Kolb, Hedingen, Switzerland). 

All emulsions contained 20% (w/w) of the polysiloxanes (Table 1).  

Table 1: Composition of the formulations of different functional siloxanes. 

Label 

Amino 

D10 

Carboxy 

D10 

Carboxy 

D46 

Water Acetic 

acid 

Imbentin 

T30 

Imbentin 

T60 

Imbentin 

T120 

Treatment 

concentration 

Amino 20%   64% 6% 5% 3% 2% 10% 

80:20 16% 4%  64% 6% 5% 3% 2% 5% 

20:80 4% 16%  64.6% 4% 2% 6.4% 3% 10% 

Carboxy  20%  60%   13.6% 6.4% 5% 

80:20 long 16%  4% 64% 6% 5% 3% 2% 5% 

20:80 long 4%  16% 64% 2% 2% 8% 4% 5% 

Emulsifier 

control 
   84% 6% 5% 3% 2% 10% 

 

Impregnation of wood 

The specimens were dried at 103°C for 48 h and the dry weight was determined. 

Subsequently the specimens were placed in the solutions stated above. A vacuum of 

approx. 100 mbar was applied for 1 h and afterwards a pressure of 13 bar for 2 h (all 

pressures in absolute values). The samples were weighed in the wet state, slowly 

dried to prevent cracking and finally oven dried at 103°C. The dry weight was 

determined and the samples were then conditioned at 20°C / 65% RH prior to 

painting and gluing. The weight percent gain (WPG) was calculated according to 

Pries et al. (2012). 

Due to material shortage a non-orthogonal experimental design was used. 

Table 1 lists the different treatments and concentrations (right column). 
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Paints and application of paint 

Two different paints were used: 

Rubbol Ventura Satin plus (Akzo Nobel, Amsterdam, Netherlands) 

Rubbol WF 361 (Akzo Nobel, Amsterdam, Netherlands) 

Sikkens Rubbol Ventura Satin plus is a typical alkyd-based paint solved in organic 

solvents. It can be applied in three layers without a special primer. In the first test, 

treated and untreated control specimens were conditioned at 20°C / 65% RH and the 

surface was sanded with 240 grit sand paper. The paint was applied in three layers 

with a quantity of approx. 90ml m
-
² per layer. After application of each layer, the 

samples were left to dry for 24 h, the paint was lightly sanded and dust removed 

before the next layer was applied. In the second test, the conditioned specimens were 

planed directly before application of paint. The paint was applied in three layers with 

a quantity of approx. 90ml m
-
² per layer. The paint was left to dry for 3 h before the 

next layer was applied. This procedure was done to ensure maximum adhesion 

between the paint layers.  

Rubbol WF 361 is a typical acrylic-based paint dispersed in water. It can be 

applied without special primer in three layers. The treated and untreated conditioned 

(20°C / 65% RH) wood specimens were sanded with 240 grit sand paper 

immediately before application of the paint; three layers of paint were applied with a 

quantity of approx. 70ml m
-
² per layer. After application of each layer, the samples 

were left to dry for 24 h, the paint was lightly sanded and dust removed before the 

next layer was applied. 

Adhesives and procedure of gluing 

Three different adhesives were tested: 

Prefere 6415 (Dynea, Helsinki, Finland) 

Prefere 4040 with hardener Prefere 5839 (Dynea, Helsinki, Finland) 

PUR 1968 (Akzo Nobel, Amsterdam, Netherlands) 

Treated and untreated conditioned (20°C / 65% RH) wood specimens were planed 

immediately prior to application of the adhesives. 
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Prefere 6415 is a one-component polyvinylacetate (PVAc) adhesive for D4 

application according to European standard EN 204 (2001). Approx. 200g m
-
² were 

applied one-sided and always two samples of the same polysiloxane treatment were 

pressed together for 12 h with a constant pressure of 1.2 N mm
-
² in a hydraulic press. 

Prefere 4040 is a phenol-resorcinol resin, which was mixed with hardener in a 

quantity of 5 parts adhesive to 1 part hardener. Approx. 200g m
-
² of resin were 

applied on each side of two samples with the same polysiloxane treatment (400g m
-
² 

in total). Two specimens were pressed for 12 h with a constant pressure of 

1.0 N mm² in a hydraulic press. 

PUR 1968 is a one-component polyurethane adhesive. Approx. 200g m
-
² of 

resin was applied on each side of two samples with the same polysiloxane treatment 

(400g m
-
² in total). Specimens were pressed together for 12 h with a constant 

pressure of 0.8N mm
-
² in a hydraulic press. 

Paint adhesion 

The paint adhesion test was carried out according to ASTM D 4541 and 

Pr ENV 927-8. After conditioning the coated specimens at 20°C / 65% RH, five 

aluminum dollies per wood specimen were glued onto the coating using a two 

component epoxy resin (Araldite 2011, Huntsman, Michigan, USA). After three 

more days in the climate, a slot was cut into the film around the dollies until the 

surface of the wood substrate was visible and the dollies were pulled off in a dry 

state. Five dollies for each paint-siloxane/emulsifier combination and five control 

dollies were tested for dry adhesion.  

In another test, the slot around the dolly was filled with water and kept for 2 h 

to moisten the interface of the film along with the wood substrate and then the dollies 

were removed. The measurements were only taken as valid, if the coating broke 

between the wood and the first paint layer. Five dollies for each paint-

siloxane/emulsifier combination and five control dollies were tested for wet 

adhesion. 

Glueability 

Glueability was tested according to EN 302-1 (2004), alternative A1, table 1. After 

cutting the specimens, they were conditioned at 20°C / 65% RH and subsequently 
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shear strength was tested on a Zwick /Z010 (Zwick, Ulm, Germany). Strain was 

increased with a speed of 2 kN min
-1

. The percentage of wood failure was estimated. 

Ten specimens for each glue-siloxane/emulsifier combination and ten control 

specimens were tested. 

Statistics 

Significant differences of the treated wood compared to the control were examined 

by use of t-tests, comparing control and treated samples. Significance is reported, if 

the p-value is below 0.05. 

Results and Discussion 

Weight percent gain (WPG) 

WPG of the samples was caused by siloxane and emulsifier. Water and acetic acid 

was expected to evaporate completely during drying. Specimens treated with 5% 

formulations had a mean WPG of 7 - 10%. Carboxy D10 imparted the highest WPG 

due to the highest emulsifier content. The 10%-treatment resulted in a WPG of 

approx. 16%. Pure emulsifier caused a WPG of approx. 5%. All WPG values were 

slightly lower than expected; the theoretical WPG caused by pure siloxane was 

calculated based upon the solution uptake (Figure 2).  
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Figure 2: WPG of siloxane treated samples and theoretical WPG (retention) based on solution 

uptake. Mean values and standard deviations (n=10). 
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Paintability 

Rubbol WF 361 

While the influence of the emulsifier on the dry pull-off strength was minor and 

insignificant, the siloxane treated samples showed a significantly reduced paint 

adhesion (Figure 3). The influence of the concentrations appeared to be minimal; 

specimens treated with “Amino D10” at 10% concentration even exhibited a higher 

pull off strength than those treated with “80:20” at 5% concentration. 
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Figure 3: Dry and wet paint adhesion in a pull-off test on siloxane treated beech wood. Sample 

annotations are to be found in table 1. Mean values and standard deviations (n=5). 

The reason for the low paint adhesion can be attributed to the minor penetration of 

the paint into the wood. The untreated control samples and the samples treated with 

pure emulsifier both broke between paint and wood, but the paint had penetrated the 

untreated wood as was noticeable by the white color of the wood. The siloxane-

treated samples on the other hand did not show any penetration of paint into the 

wood. (Figure 4). 
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Figure 4: Comparison between untreated control (right) and treated sample after pull-off test.  

Wet adhesion testing showed in general the same results. The control samples, 

however, did not give valid test results according to the requirements of the standard, 

because the paint always broke in between the paint layers. It can be assumed, that 

the values reported for the control are estimates for the lower limit of adhesion 

strength. Testing of samples treated with the emulsifier was valid and did not result 

in significant differences to the controls, although the emulsifiers were expected to 

enhance water uptake of the wood. Treatment with 5% concentration of “80:20” did 

also not reduce wet adhesion strength significantly as compared to the control. All 

other treatments reduced wet adhesion significantly. Three of these treatment 

formulations contained high amounts of carboxy-functional siloxane, which is a very 

hydrophilic material. In addition, these formulations had the highest emulsifier 

contents. Both can increase the velocity of water uptake and thus decrease wet 

adhesion. Reduction in penetration depth of paint caused by all treatments can also 

strongly reduce wet adhesion, because incoming water can penetrate between paint 

and wood and destroy the bond between these materials. Furthermore siloxanes can 

act abherent (oleophobic) and can thereby reduce adhesion of the coating. 

Rubbol Ventura Satin plus 

In a first test, where Rubbol Ventura Satin plus was applied in three layers with 

drying of the layers in between the application steps did not result in valid tests. In all 

cases, the paint broke in between the applied layers and therefore the adhesion 

between wood and paint was not assessed. That is why a second test was done with 

application of the next layer of paint, when the former one was still wet. This, again, 

did not result in valid test results, because the bottom layers were sealed by the top 

layers and could not dry completely, even after extended drying times of several 

months.  
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Glueability 

Bond strength of treated samples glued with phenolic resin was significantly reduced 

by the four treatments with “Amino D10”, “20:80”, “80:20 long” and “20:80 long”. 

Even in these cases the reduction was minor and none of the treatments clearly 

reduced bond strength (Figure 5A). Wood failure did also not differ among the 

treatments and amounted to 100% in all but the “20:80”-treatment. This indicates a 

relatively good penetration of the adhesive into the wood despite of the siloxane 

treatment and no abherent properties of the siloxane towards phenolic resin 

(Figure 5A). 
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Figure 5: Bond strength and proportion of wood failure of siloxane treated specimens glued 

with A: phenolic resin, B: PVAc glue and C: PUR glue. Mean values and standard deviations 

(n=10). 

Samples glued with polyvinylacetyte (PVAc) showed a slightly different picture 

(Figure 5B). None of the treatments resulted in reduced bond strength. Four 

treatments; pure emulsifier, “Carboxy D10”, “80:20” and “20:80” all significantly 

increased bond strength as compared to the controls. With regard to wood failure, 

two treatments differed strongly from the control; these were treatment with 

“Amino D10” and “80:20 long”. Both formulations mainly consist of amino 

functional siloxane. Reduction of wood failure with PVAc can be attributable to the 

alkaline amino-groups. The amino-funcional siloxane is acidic after impregnation of 
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wood. During the drying process the main part of the acetic acid evaporates leaving 

behind deprotonated alkaline amino groups. These alkaline amino-groups might 

contribute in saponification of the ester groups of vinyl acetate to polyvinyl alcohol 

and thus change the adhesive properties. Polyvinyl alcohol is water sensitive and 

hydrophilic. While the ratio of amino to carboxy groups in “80:20 long” is very high, 

the ratio in “80:20 short” is much lower and the treated wood in this case did not 

show a great decrease in wood failure. 

Bonding of wood with polyurethane (PUR) adhesive revealed significant 

reduction in bond strength for all but the treatment with “Amino D10” as compared 

to the control (Figure 5C). Even the control samples did not exhibit wood failure, 

indicating some penetration problems of the adhesive. Once more, emulsifier 

treatment seems to enhance adhesion. In total, reduction in bond strength by siloxane 

treatments was minor. 

Glueability of siloxane-treated wood was previously assessed on wood treated 

with micro-emulsions of silicones (Lukowsky et al., 1997). The silicones in this 

study were formulated using emulsifiers and co-emulsifiers, which were both 

simultaneously active ingredients and consisted of silanes and short-chained 

polysiloxanes. This offers the possibility to formulate the silicones without any 

emulsifiers as is the case in this study. On the other hand, it makes the formulations 

stable for only a short time. Treatment resulted in highly hydrophobic properties of 

the wood. Glueability of the wood treated with 10% formulations of such materials 

was problematic; tensile shear strength decreased by more than 50% compared to 

control when PVAc was used (Lukowsky et al., 1997). Jusoh et al. (2005) treated 

wood flakes for flakeboard production with a self-emulsifying alkoxysiloxane. 

Manufactured flakeboards glued with phenolic resin were tested for bonding 

strength. The controls displayed an internal bond strength of 0.41 MPa, while those 

manufactured from flakes treated with 1% polysiloxane showed internal bond 

strength of 0.26 MPa; this is a decrease of approx. 27%. Our study differed in several 

aspects from the former: Functionality of the silicones, shorter chain length and the 

high amount of emulsifier. The functionality of the silicones combined with the short 

chain has an impact on water related properties of the material. In general, the 

siloxane chain is water repellent and can, at the same time, act oleophobic. With 

decreasing chain length, the properties are influenced more and more by the 
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functionality of the siloxane. Amino-groups and carboxy-groups are both hydrophilic 

and therefore render the siloxane more hydrophilic. Emulsifiers, which remain 

present in the wood after treatment increase the hydrophilic properties of the 

material. These two combined effects induce a high bond strength and glueability of 

the siloxane treated wood, when water-based adhesives (phenolic and PVAc) are 

used. Kurt et al. (2008) treated wood with a 5% micro-emulsion of amino-functional 

siloxane and tested the glueability with PVAc. They did not find reduced bond 

strength of treated wood as compared to the control when tested in dry state. This 

result is very similar to the results obtained in this study. It seems as if wood treated 

with functional siloxanes can be glued with typical water-based adhesives such as 

PVAc or phenolic resins. One must not overlook the fact that testing was only done 

in dry state. According to EN 302-1 (2004) table 1, several wet adhesion experiments 

must be carried out before a final conclusion can be drawn. It was further not 

evaluated, to which extent glueability was influenced by the emulsifiers, which were 

left inside the wood after treatment and can enhance penetration of the adhesives. 

Conclusion 

Paintability with acrylic-based paint showed insufficient penetration of paint into the 

wood and low paint adhesion in both the dry and wet state. It can be concluded, that 

penetration of the paint was inhibited by the siloxane (because pure emulsifier 

treatment did not reduce penetration). Abherent properties of the siloxane may also 

be responsible for low paint adhesion. Water-based acrylic paint can therefore not be 

used to coat wood treated with siloxane emulsions of the type tested in this study. 

Further testing of paints, especially siloxane containing coatings, should be done in 

order to identify candidates for coating of siloxane treated wood. 

Glueability was not as severely affected by siloxane treatment. While some 

treatments reduced bond strength significantly for phenolic and PUR adhesives, no 

reduction was so severe that it seemed to prevent the use of these adhesives. PVAc 

revealed increased bonding strength in some cases but also reduced wood failure in 

two others. It was concluded, that amino-groups in the functional siloxane may cause 

saponifcation of ester groups in PVAc. Despite reduced wood failure, the bond 

strength was not reduced and gluing of siloxane treated wood with PVAc seems to be 

possible.  
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Gluing of wood treated with certain siloxane-emulsions can easily be done 

with the most common adhesives for solid wood. The reduction in wood failure in 

some cases does not seem to affect bond strength. Emulsifiers remaining in the wood 

may enhance penetration of adhesives into the wood structure. However, tests were 

only done on conditioned wood. For final evaluation, glueability needs to be tested in 

wet state as described in EN 302-1, table 1. 
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