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Abstract

Agent- or individual-based modelling is a modelling approach where the heterogeneity of
entities, i.e. agents, matters. In the past ten to twenty years agent-based models became
increasingly popular and were applied in many different research areas, from computer
science over sociology and economy to ecology. Built by rule systems instead of differen-
tial equations they cannot be solved analytically but have to be implemented as computer
software and analysed by running simulations. As the field of agent-based modelling is rela-
tively young compared to, for example, mathematical modelling with differential equations,
established standards in developing, implementing, describing, and analysing are missing or
currently being arising. Instead, many modellers build, implement and analyse their models
from scratch and reinvent the wheel.

The work at hand aims to support the process of establishment of standards in agent-
based modelling. After a short general introduction in the first chapter, the second chapter
gives an introduction into the history of agent-based modelling in different research areas,
discusses open issues in agent-based modelling, presents the most important toolkits/lan-
guages/Integrated Development Environments (IDE) for implementing agent-based models,
and closes with a deeper look on the IDE/language NetLogo and some extensions developed
here.

In the third chapter a framework for building and analysing agent-based models by link-
ing two existing and well-known toolkits/languages, NetLogo and R, is described. Such
a seamless integration of an agent-based modelling environment with a statistics software
enables the modeller to design simulation experiments, store simulation results, and anal-
yse simulation output in a more systematic way. It can therefore help close the gaps in
agent-based modelling regarding standards of description and analysis.

The fourth chapter of this theses provides a "cookbook" of many important methods for
calibration of agent-based models as well as for sensitivity analysis. Such a comprehensive
overview of well-known and established techniques enables the modeller to become aware
of existing methods, learn what they can deliver and where to apply them. Furthermore,
the recipes contain application examples implemented and adaptable to other models im-
plemented in NetLogo under the use of the framework introduced in the third chapter.

A key feature of science - the replication of experiments - is discussed in chapter five with
focus on the field of agent-based modelling in ecology. It should encourage the community
to replicate models and publish the replications. Replication of models fulfils different pur-
poses: it uncovers implementation-dependent differences in model results, it shows lacks in
documentation and/or documentation protocols as well as robustness tests, and it is a first
step towards community-tested standard models or model components.

The work closes with an integrated discussion and outlook on open issues.
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CHAPTER I

Introduction

"All models are wrong, some are useful."

(George E. P. Box, * 1919 † 2013)

Grimm and Railsback [2005, p. 3] describe modelling as the "attempts to capture the
essence of a system well enough to address specific questions about the system". Thus, the
core of modelling is a purpose-oriented abstraction and simplification. Imboden and Koch
[2003] get it to the heart: a model is not a copy of the real system, it is the glasses seeing
the real system applying some filter. This is in good accordance to other definitions of mod-
elling from various research areas [e.g., Squazzoni, 2012, Töllner et al., 2010, Soetaert and
Herman, 2009, Pretzsch, 2001, Lutz, 1998]. Stachowiak [1973], for example, character-
izes a model by three features: mapping, reduction and pragmatism. The mapping feature
describes that models are representations of real systems, which themselves could also be
models. The reduction feature defines that a model does not cover all features of the repre-
sented system but only those that are relevant to the purpose. The last feature - pragmatism
- means that the mapping between the model and the real system does not need to be un-
ambiguous. It is purpose-oriented, e.g., for a limited time period. Such properties apply to
models from various research areas and will be used here as a general characterization of a
model.

Müller and Müller [2003] give a lot of examples of models where the mentioned proper-
ties are complied, ranging from model-cars used as a toy by small children, over archaeolog-
ical reconstructions of, e.g., Pompeii to learn about life in the ancient world or a primeval
man counting his hunted mammoths by pebbles. Following Weisberg [2013], these exam-
ples fit to the class of concrete models, i.e., real, physical objects.

A second class of models are mathematical ones [Weisberg, 2013]. Often, such models
are described by differential equations. These models can be constructed with pen and
paper and consist of a set of equations. They can sometimes be analysed, i.e., solved, with
some algebra analytically. The most popular example from population ecology is the Lotka-
Volterra predator-prey model [Lotka, 1925, Volterra, 1931].

Beside these two classes a third one exists: computational or simulation models. These
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models can also be defined with pen and paper, however, results can only be processed rea-
sonably by converting them into computer code, i.e., algorithms, and running simulations,
i.e., executing the computer code. As Weisberg [2013] points out, computational models
can also be mathematical models. For example, models defined by a large set of differential
equations can make it desirable to be solved numerically by computer simulations as they
are too complex for being solved analytically. However, there is another type of models
which fits into the class of computational models but is not described by equations alone.
Sometimes they are called complex or bottom-up models and are built by a set of rules. The
first models of this class are called grid-based models and have been extensions of Cellular
Automata models, processing rules on grid cells [Grimm, 2002b]. Later on, a related type,
so-called agent-based models, has evolved. This is the kind of model this thesis focuses on.

I.1. Agent-Based Modelling

The specific nature of agent-based models (ABMs) is the representation of unique entities of
a system as heterogeneous entities in the model. This is in contrast to equation-based math-
ematical models where the heterogeneous entities are averaged into a stock variable, i.e.,
treated as being homogeneous. However, North and Macal [2007] stated that the whole
of many systems is greater than the simple sum of their constituent parts. Thus, ABMs
instead consist of multiple individual agents, which can be humans, animals, organisms,
institutions, vehicles, computers and so on, with explicitly represented traits and behaviours
[Grimm and Railsback, 2005, Gilbert, 2007, Squazzoni, 2012]. A key characteristic of this
modelling approach is the emergence of simulation results from the more or less complex
interactions among the agents. Therefore, such models are useful when local interactions on
the micro level are essential for the description of patterns on the macro level [Page, 2012].
Grimm [2008] suggests selecting an ABM approach when at least one of the three following
agent-level aspects is considered important for explaining system-level behaviour: hetero-
geneity among individuals, local interactions, and adaptive behaviour based on decision
making.

As described more detailed in Chapter II the origins of the ABM approach in computer
science go back to the late 1970s [e.g., Hewitt, 1976] with the development of so-called
multi-agent systems (MAS) as a part of the distributed artificial intelligence (DAI) research
area [Green et al., 1997, Sycara, 1998]. Their wider use in computer science began only
in the 1990s [Luck et al., 2003, Wooldridge, 2005, Weiss, 1999]. Definitions of the term
MAS and what an agent is, can be found, for example, in Wooldridge [2005] and Jennings
[2000]. Examples for the use of MAS with intelligent agents in the field of computer science
include computer games, computer networks, robotics for manufacturing, and traffic-control
systems [for examples, see Oliveira, 1999, Luck et al., 2003, Shen et al., 2006, Moonen,
2009].

With increasing importance of questions about coordination and cooperation within the
MAS the connections to social sciences arose [Conte et al., 1998] and the field of agent-
based social simulation (ABSS), that is, an agent-based modelling approach as part of com-
putational sociology became a "counter-concept" to the classical top-down system dynamics
and microsimulation approaches [Gilbert, 1999, Squazzoni, 2010]. ABSS is mainly used
for theory testing and development [Macy and Willer, 2002, Conte, 2006] and applied to
simulations of differentiation, diffusion, and emergence of social order in social systems
[for examples, see listings in Macy and Willer, 2002, Squazzoni, 2010] as well as to ques-
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tions about demographic behaviour [Billari and Prskawetz, 2003]. The most famous models
in social sciences are Schelling’s segregation model [Schelling, 1969] and the Sugarscape
model of Epstein and Axtell [1996].

Strongly related to the development of ABMs in social sciences is the establishment of the
ABM approach in economics, which is called agent-based computational economics (ACE)
and related to the field of cognitive and evolutionary economics. The aims of ACE can be
divided into four categories: empirical understanding, normative understanding, qualitative
insight as well as theory generation and methodological advancement [for details, see Tes-
fatsion, 2006]. ACE was applied, for example, to the reproduction of the classical cobweb
theorem [e.g., Arifovic, 1994], to model financial/stock markets [see LeBaron, 2000, for a
review] as well as to the simulation of industry and labour dynamics [e.g., Leombruni and
Richiardi, 2004].

In contrast to ABSS and ACE, the agent-based modelling approach has a slightly longer
tradition in ecology [Grimm and Railsback, 2005]. The development of so called individual-
based models is less closely related to the developments of MAS, because ecologists early
became aware of the restrictions in classical population models (differential equation mod-
els) and looked for alternatives. Over the last three to four decades hundreds of IBMs were
developed in ecology [DeAngelis and Mooij, 2005]. For reviews see, for example, Grimm
[1999] and DeAngelis and Mooij [2005].

Besides these four main research areas, there are many other disciplines in which ABMs
are increasingly used, often within an interdisciplinary context. Examples include ecologi-
cal economics [e.g., Heckbert et al., 2010], marketing/socio-psychology [e.g., North et al.,
2010], archaeology/anthropology [e.g., Griffin and Stanish, 2007], microbiology [e.g., Fer-
rer et al., 2008], biomedicine/epidemiology [e.g., Carpenter and Sattenspiel, 2009], crim-
inology [strongly related to ABSS, e.g., Malleson et al., 2010] and land-use management
[e.g., Meyer et al., 2012, Matthews et al., 2007].

I.2. Rigorous Agent-Based Modelling

As shown, the ABM approach is relatively new compared to, for example, classical mathe-
matical modelling. Therefore, it is missing an established theoretical framework as known
from mathematics with its notations, well-known formulas, and methods. Standards or best-
practices for designing, implementing, analysing and communicating ABMs are still missing
or under establishment [Galán et al., 2009, Janssen et al., 2008, Grimm, 2008, Grimm and
Railsback, 2005]. On the conceptional level, recently several attempts to develop such stan-
dards in ABM have been made. The most important ones are described in the following.

Modelling Strategy For designing, fitting and validating ABMs, for example, the Pattern-
Oriented Modelling (POM) approach was proposed by Grimm et al. [2005]. The idea of
POM is that complex systems usually can be characterized by multiple patterns that can be
observed at different hierarchical levels (i.e., individual and system) and scales (i.e., spa-
tial and temporal). These patterns reflect the internal organization of a system. POM then
means to decode this information and thereby reveal the internal organization. Examples
of patterns at the population level include size-distributions of animals, frequency-area dis-
tributions of wildfires, and sex ratios [Grimm and Railsback, 2012]. At the individual level,
patterns can be, for example, distribution of body sizes at certain ages or of life spans. A
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central idea of POM is to design models so that in principle they can reproduce the entire set
of multiple patterns simultaneously. Focusing only on the problem, i.e., a single pattern that
should be addressed with a model, often results in too simple models whereas designing a
model on the basis of available data make models often more complex than necessary and
useful. POM make models fall into the "Medaware zone", the zone with intermediate com-
plexity where pay-off of a model regarding answering a research question is maximized.
POM can be used for the selection of adequate submodels that are able to represent the
formerly selected processes. For this, different submodel implementations of varying com-
plexity are treated as alternative hypotheses for the represented processes. The submodel
with the lowest complexity but ability to reproduce the multiple patterns simultaneously is
selected. In a similar manner, POM can be applied to parameter fitting. Here, not submodels
are selected but values of entire sets of parameters that are uncertain but essential. For this,
a model is run with large numbers of parameter sets, sometimes more than a billion, and
those sets are selected that make the model reproduce the multiple patterns (see also Chap-
ter IV). Patterns are also critical for validation. With the POM strategy, new and independent
patterns which are observed in the model output but have not been used or known during
model development are taken to validate the model. POM is a widely accepted strategy in
ABM, often applied intuitively but increasingly used systematically. A mini-review of model
studies following the POM approach can be found in Grimm and Railsback [2012].

Model Communication One initiative to establish a standard protocol for documenting
and communicating ABMs was started by Grimm et al. [2006]. With the Overview-Design
Concepts-Details (ODD) protocol model descriptions should become more structured and
complete to support understandability and reproducibility. It is a hierarchical model doc-
umentation protocol with increasing levels of detail starting with very general information
from a meta-perspective to a very detailed description at the end of the documentation.
By using the questions catalogue of Grimm et al. [2010], it can not only be used for the
description of models but can also serve as a model development guide. Therefore, ODD
also supports designing ABMs and can be embedded into the model structure development
process in POM [Grimm and Railsback, 2012]. In the Overview section the modeller pro-
vides a short description of the model’s purpose, entities, state variables and scales as well
as an overview of the processes and their schedule. In the Design Concepts section the
underlying concepts of the model are shortly described. Eleven categories are available:
basic principles, emergence, adaptation, objectives, learning, prediction, sensing, interac-
tion, stochasticity, collectives, and observation. In the Details section information about the
initialization of the model and external input data as model drivers are given. Furthermore,
this section contains a complete and detailed description of the submodels. For the proto-
col update Grimm et al. [2010] listed 54 publications where the ODD protocol was used.
Furthermore, it has been successfully tested for the application to land-use management
models [Polhill et al., 2008], used as a basis for the Dahlem ABM documentation guidelines
[Wolf et al., 2013], extended to the ODD+D protocol for human decisions [Müller et al.,
2013], and is recommended by the openABM Consortium [openABM Consortium, 2012].
The ODD protocol is currently on a promising way to become an established and accepted
standard [Grimm et al., 2013].

Beside the ODD protocol, several other less successful attempts have been undertaken
to develop and establish standards for ABM descriptions, like AGENT UML [Bauer et al.,
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2001]. AGENT UML is an extension of the Unified Modelling Language for the specific
purposes of ABMs and can be used not only for the documentation of models but also
for the development based on the model-driven architecture (MDA) approach known from
Computer Science. The same way was gone with the Agent Modelling Language (AML)
proposed by Cervenka and Trencansky [2007], which is not only a protocol like ODD but a
modelling language.

Modelling Guidelines A new guideline for planning, performing, and documenting simu-
lation models along the modelling cycle was presented recently by Grimm et al. [2014] and
Schmolke et al. [2010]. The Transparent and Comprehensive Ecological Modelling (TRACE)
document structure serves as a best-practice guideline developed in the context of agent-
based models for environmental decision support. The transparency requirements for such
models are very high because decision making requires traceable information. Nevertheless,
scientific requirements for replicability also need a high level of transparency. Therefore,
such a best-practice guidance is required for all kinds of agent-based models. It ensures
"that a model was thoughtfully designed, correctly implemented, thoroughly tested, well
understood, and appropriately used for its intended purpose" [Grimm et al., 2014]. The
TRACE structure comprises eight sections: problem formulation, model description, data
evaluation, conceptual model evaluation, implementation verification, model output verifi-
cation, model analysis, and model output corroboration.

The first section starts with the problem formulation, i.e., gives a definition of the ques-
tions the model should answer and the target audience. In the next section, the above
mentioned ODD protocol can be placed for the model description. This is followed by the
data evaluation section where the modeller should document which data have been used for
the design and parameterization of the model. Furthermore, the reliability of the data used
should be discussed and the parameters that have been calibrated should be named. In the
next section, conceptual model evaluation, a list of the most important conceptual design
decisions and a discussion of their choice to show why they have been selected, should be
provided. Next, the section implementation verification refers to tests of the implementa-
tion to assess that the model implementation is doing what it is intended to do. The sixth
section, model output verification, shows how well a model matches real system patterns by
defining features and quantitative criteria, which refers to the aforementioned POM strat-
egy. The modeller should also show here how much of this match results from calibration,
how the fittings have been performed, and where extrapolations have been needed. In the
model analysis section, the modeller shows that model mechanisms have been understood
by running and explaining simulation experiments. Moreover, the importance, uncertainty,
and functioning of parameters and submodels is assessed and explained by performing and
documenting a sensitivity analysis in this section. In the last section, model output corrobo-
ration, the modeller compares model output with independent empirical data that have not
been used for model design and development.

As the TRACE documentation format is new, it is currently in an early establishment phase
and not an accepted standard. However, it addresses all parts needed for transparent and
replicable modelling studies and could be used not only as a documentation schema but
also as a modelling notebook guiding the modeller through the model development and
application process.

Rand and Rust [2011] proposed another guideline for the rigorous use of ABM in the
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context of marketing research. Their two main topics are verification and validation. Three
major steps are summarized under rigorous verification. The first is documentation meaning
documenting both the conceptual design and the implementation. The second is program-
matic testing of the model code containing unit tests, code and debugging walkthroughs,
and formal logical testing. The last step in verification is test cases and scenarios. This
contains extreme value tests, checks of specific scenarios, and tests of known input-output
relationships. Rigorous validation contains four major steps. First one is micro-face vali-
dation meaning checks on individual level that processes and properties correspond to the
real world. The same is done on system level called macro-face validation. The third step,
empirical input validation, refers to model input data corresponce to real world data. The
last step is the empirical output validation where model outputs are compared to real world
data and is therefore the key element of validation. Depending on the model purpose and
data availability three different methods can be used for this task, namely stylized facts,
real-world data, or cross-validation. As this guideline does not include a standard way of
documentation and does not necessarily need to be cited in studies where it is used it is not
possible to measure its acceptance and usage. However, as shown in Chapter IV it seems
that it is not yet a widely accepted standard in Ecology and Social Sciences.

A subset of the former mentioned guidelines is addressed with the Visual Debugging
method proposed by Grimm [2002a]. The idea is to use Graphical User Interfaces that
integrate elements of classical debugging and graphical representations of the model’s state
variables for testing. Grimm [2002a] listed eleven features a Visual Model Debugger, i.e., a
model implementation, must provide: a trace mode with a step-by-step model run, an au-
tomatic mode running the model for a longer time without user interaction, a batch mode
without GUI for fast runs, input screens for changing all model and control parameters,
input screens to select all model variants, input screens to manipulate low-level state vari-
ables, controls for random processes, graphical representations of state variables, file output
of raw data, and file output of all simulation results that are represented graphically. Again,
the acceptance of such a standard way of implementation and testing is hard to measure.
However, all modern agent-based modelling platforms for implementing models provide all
these features.

Process Representation Rigorous agent-based modelling can also be supported by stan-
dardization of the model representation of real-world processes. One example is the ab-
straction of competition processes in ecology among plants. Several approaches have been
developed to describe the competition process of plants and have been used by others again
[Berger et al., 2008]. A very prominent example is the Zone-of-Influence (ZOI) approach
where a circular zone of influence around the centre of each plant is drawn [see, e.g.,
Wyszomirski, 1983, Wyszomirski et al., 1999, Weiner, 1982]. The size of the circle is de-
rived from plant properties such as age or diameter. Overlapping circles imply competition
between the plants. This competition process abstraction has been used many times in dif-
ferent models and became one standard, but not the only one, in plant modelling [see, e.g.,
review in Berger et al., 2002].

Berger et al. [2002] proposed the Field-of-Neighbourhood (FON) approach as a new stan-
dard for plant competition modelling. The FON approach is an extension of ZOI where the
circle of influence has a decreasing competition value with increasing distance to the plant’s
position using a scalar field. Thus, it merges the widespread ZOI approach with the idea of
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the more realistic Ecological Field (EF) approach, which has been too hard to parametrize
and computer power demanding for being successfully applied to large areas [Berger et al.,
2002]. Therefore, FON is a nice example of incremental submodel development, however,
it was not that successful in becoming standard than expected by the authors, may be due
to missing comprehensive documentation and reference implementations.

Consortium An indispensable element of standardization efforts is the establishment of
an community-accepted consortium managing, developing and publishing standard defini-
tions. A step in this direction was the foundation of the openABM Consortium [Janssen et al.,
2008]. A very promising activity was the provision of a model archive with review process
and citeable Digital Object Identifier (DOI) assignment to foster incremental model devel-
opment. However, the consortium seems not yet having the necessary influence to declare
standards that are either directly accepted by the modellers or indirectly by journal editors.

As ABMs are computational models, those standards on the conceptional level need to
be applied on the technical level. As algorithms are needed for the definition as well as
implementation of ABMs, the borders can become fluid between conceptional and techni-
cal solutions. Therefore, it is desirable to have a common language for implementing and
documenting models. Furthermore, it is meaningful to reuse as much well-tested program
code as possible. This will reduce the time for implementing models, the time for chang-
ing models and the risk of programming errors. This is realized best by using specified
programming languages for ABM implementation providing pre-defined commands and in-
cluded into high-level modelling platforms [Railsback, 2001]. Such a standard language
further simplifies not only the implementation and communication but also increases the
chance of reuse, testing and extension by other modellers.

There are several programming environments available tailored to the implementation
of ABMs. Following Railsback et al. [2006], the most popular ones under an open-source
license are Swarm [Minar et al., 1996], MASON [Luke et al., 2005], Repast [Collier et al.,
2003], and NetLogo [Wilensky, 1999]. The ABM programming environments themselves,
however, provide only limited support for advanced model analysis [Bakshy and Wilen-
sky, 2007]. Therefore, analysis of ABMs is often weak and ad hoc [Schmolke et al., 2010,
Janssen and Ostrom, 2006] although it is one of the most important tasks in the modelling
cycle [Railsback and Grimm, 2012]. This thesis presents attempts to provide tools to profes-
sionalize model implementation, parametrization and analysis to make ABM more rigorous
and support above mentioned conceptional standardization by linking, extending, and using
existing software platforms. It is aimed that modellers need to invest less time in technical
parts of modelling and can invest more time in analysing and interpreting models.

I.3. NetLogo

As Railsback and Grimm [2012] conclude, NetLogo stands apart among the various plat-
forms for ABMs especially for beginners. It provides a simple programming language and
a development and simulation environment to build and observe ABMs very fast. Never-
theless, it is also flexible enough to implement also fairly complex scientific models in Net-
Logo, see, for example, the BEEHAVE model with nearly 6000 lines of code [Becher, 2014].
Furthermore, it has a complete set of documentation and tutorial materials and an active
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user community. The importance of NetLogo is underlined by the development of ReLogo,
a NetLogo language implementation in the Repast environment [Ozik, 2013, Lytinen and
Railsback, 2012].

NetLogo is developed and maintained since 1999 by the Center for Connected Learning
and Computer-based Modeling at the Northwestern University, Illinois. Since 2011 it is re-
leased under an open-source license and programmed in Java and Scala. It provides many
predefined methods (so-called primitives and reporters) for behavioural rules of the agents.
Because it has a Logo-like syntax and standard agent types (turtles, patches, links), in com-
bination with a built-in GUI, it is very easy to learn. The specialized language tailored to
ABM development can be, in contrast to classical object-oriented languages, perfectly used
not only for implementing but also for documenting parts of a model in, for example, the
details section of the ODD-Protocol. Therefore, the work of this thesis focuses on develop-
ments for the NetLogo platform as the most promising language for becoming standard in
ABMs.

I.4. Structure of This Thesis

This thesis consists of different research papers. A general introduction into the foundations,
history and techniques of agent-based modelling is given in Chapter II based on Thiele et al.
[2011]: Agent- and Individual-Based Modelling with NetLogo: Introduction and New NetLogo
Extensions.

Chapter III describes techniques for linking NetLogo and R and hosts four different pa-
pers. The first paper, Thiele et al. [2012b]: Agent-Based Modelling: Tools for Linking NetLogo
and R, gives an overview of the three tools R-Extension, Rserve-Extension, and RNetLogo
and describes their purpose as well as similarities and differences. The second paper Thiele
and Grimm [2010]: NetLogo Meets R: Linking Agent-Based Models With a Toolbox for Their
Analysis describes the R-Extension in more detail and provides some usage examples from
ecology. The third paper Thiele et al. [2012a]: RNetLogo: An R Package for Running and Ex-
ploring Individual-Based Models Implemented in NetLogo is structurally similar to the former
one but describes the RNetLogo package in the context of ecology. The last paper in this
chapter, Thiele [2014]: R Marries NetLogo: Introduction to the RNetLogo Package, provides
an in-depth presentation of the functioning and possibilities of the RNetLogo package in an
application neutral context.

Chapter IV provides a cookbook for parameter fitting and sensitivity analysis published as
Thiele et al. [2014]: Facilitating Parameter Estimation and Sensitivity Analysis of Agent-Based
Models: A Cookbook Using NetLogo and R. This paper aims to make agent-based modellers
aware of existing methods and tools for parameter estimation and sensitivity analysis and
to provide accessible tools for using these methods based on NetLogo and R using the RNet-
Logo package. The long-term target is the establishment of an advanced culture of relating
agent-based models to data and patterns observed in real systems and to foster rigorous and
structured analysis of agent-based models.

Chapter V wraps back to the beginning of Chapter II and leaves the technical level. The
manuscript Thiele and Grimm [minor revisions]: Modellers in Ecology: Replicate!, highlights
the importance of replication and robustness analysis in agent-based modelling and present
this fundamental scientific practice as a key of increasing trustability in ABM. Furthermore,
it shows that replication is essential for theory-building and advancement.
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Chapter VI closes this thesis with a review of the impact of the developed tools and gives
an outlook to further tools and concepts supporting rigorous agent-based modelling.

I.5. References

J. Arifovic. Genetic Algorithm Learning and the Cobweb Model. Journal of Economic Dy-
namics and Control, 18(1):3–28, 1994.

E. Bakshy and U. Wilensky. Turtle Histories and Alternate Universes: Exploratory Modeling
with NetLogo and Mathematica. In M.J. North, c.M. Macal, and D.L. Sallach, editors,
Proceedings of the Agent 2007 Conference on Complex Interaction and Social Emergence,
pages 147–158. IL: Argonne National Laboratory and Northwestern University, 2007.

B. Bauer, J.P. Müller, and J. Odell. Agent UML: A Formalism for Specifying Multia-
gent Software Systems. In Paolo Ciancarini and MichaelJ. Wooldridge, editors, Agent-
Oriented Software Engineering, volume 1957 of Lecture Notes in Computer Science, pages
91–103. Springer Berlin Heidelberg, 2001. ISBN 978-3-540-41594-7. doi: 10.1007/
3-540-44564-1_6. URL http://dx.doi.org/10.1007/3-540-44564-1_6.

M. Becher. BEEHAVE - The Model, 2014. URL http://beehave-model.net/download/. (last
accessed 2014/06/03).

U. Berger, H. Hildenbrandt, and V. Grimm. Towards a Standard for the Individual-Based
Modeling of Plant Populations: Self-Thinning and the Field-Of-Neighborhood Approach.
Natural Resource Modeling, 15(1):39–54, 2002.

U. Berger, C. Piou, K. Schiffers, and V. Grimm. Competition Among Plants: Concepts,
Individual-Based Modelling Approaches, and a Proposal for a Future Research Strategy.
Perspectives in Plant Ecology, Evolution and Systematics, 9:121–135, 2008.

F.C. Billari and A. Prskawetz. Agent-Based Computational Demography: Using Simulation
to Improve Our Understanding of Demographic Behaviour. Contributions to Economics.
Physica, 2003.

C. Carpenter and L. Sattenspiel. The Design and Use of an Agent-Basedased Model to Sim-
ulate the 1918 Influenza Epidemic at Norway House, Manitoba. American Journal of
Human Biology, 21(3):290–300, 2009.

R. Cervenka and I. Trencansky. The Agent Modeling Language - AML. Birkhäuser, 2007.

N. Collier, T. Howe, and M.J. North. Onward and Upward: The Transition to Repast 2.0. In
First Annual North American Association for Computational Social and Organizational Sci-
ence Conference, Pittsburgh, PA USA, 2003. North American Association for Computational
Social and Organizational Science.

R. Conte. From Simulation to Theory (and Backward). In F. Squazzoni, editor, Epistemolog-
ical Aspects of Computer Simulation in the Social Sciences, Second International Workshop,
EPOS 2006, Brescia, Italy, October 5-6, volume 5466 of Lecture Notes in Computer Science,
pages 29–47. Springer, 2006.

R. Conte, N. Gilbert, and J.S. Sichman. MAS and Social Simulation: A Suitable Commitment.
In J.S. Sichman, R. Conte, and N. Gilbert, editors, Multi-Agent Systems and Agent-Based

9

http://dx.doi.org/10.1007/3-540-44564-1_6
http://beehave-model.net/download/


Chapter I. Introduction

Simulation, First International Workshop, MABS ’98, Paris, France, July 4-6, volume 1534
of Lecture Notes in Computer Science, pages 1–9. Springer, 1998.

D.L. DeAngelis and W.M. Mooij. Individual-Based Modeling of Ecological and Evolutionary
Processes. Annual Review of Ecology, Evolution, and Systematics, 36:147–168, 2005.

J.M. Epstein and R. Axtell. Growing Artificial Societies: Social Science from the Bottom Up.
The Brookings Institution, Washington, DC, 1996.

J. Ferrer, C. Prats, and D. López. Individual-Based Modelling: An Essential Tool for Microbi-
ology. Journal of Biological Physics, 34(1-2):19–37, 2008.

J.M. Galán, L.R. Izquierdo, S.S. Izquierdo, J.I. Santos, R. Del Olmo, A. López-Paredes, and
B. Edmonds. Errors and Artefacts in Agent-Based Modelling. Journal of Artificial Societies
and Social Simulation, 12(1), 2009. URL http://jasss.soc.surrey.ac.uk/12/1/1.html. (last
accessed 2014/01/06).

N. Gilbert. Simulation: A New Way of Doing Social Science. American Behavioral Scientist,
40:1485–1487, 1999.

N. Gilbert. Agent-Based Models. Quantitative Applications in the Social Sciences. Sage, Los
Angeles, CA, 2007.

S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers, and R. Evans. Software Agents: A
Review. Technical Report TCD-CS-1997-06, Trinity College Dublin, Department of Com-
puter Science, 1997.

A.F. Griffin and C. Stanish. An Agent-Based Model of Prehistoric Settlement Patterns and
Political Consolidation in the Lake Titicaca Basin of Peru and Bolivia. Structure and Dy-
namics, 2:1–46, 2007.

V. Grimm. Ten Years of Individual-Based Modelling in Ecology: What Have We Learned and
What Could We Learn in the Future? Ecological Modelling, 115:129–148, 1999.

V. Grimm. Visual Debugging: A Way of Analyzing, Understanding, and Communicating
Bottom-Up Simulation Models in Ecology. Natural Resource Modeling, 15:23–38, 2002a.

V. Grimm. Bottom-Up Simulation Modelling in Ecology: Strategies and Examples, 2002b.
Habilitation Thesis, Univ. Potsdam.

V. Grimm. Individual-Based Models. In S.E. Jørgensen, editor, Ecological Models, pages
1959–1968. Elsevier, Oxford, 2008.

V. Grimm and S.F. Railsback. Individual-Based Modeling and Ecology. Princeton University
Press, Princeton, N.J., 2005.

V. Grimm and S.F. Railsback. Pattern-Oriented Modelling: A ’Multi-scope’ for Predictive
Systems Ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 367
(1586):298–310, 2012.

V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W.M. Mooij, S.F. Railsback, H.-H. Thulke,
J. Weiner, T. Wiegand, and D.L. DeAngelis. Pattern-Oriented Modeling of Agent-Based
Complex Systems: Lessons from Ecology. Science, 310(5750):987–991, 2005.

V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand,
S.K. Heinz, G. Huse, A. Huth, J.U. Jepsen C. Jørgensen, W.M. Mooij, B. Müller, G. Pe’er,

10

http://jasss.soc.surrey.ac.uk/12/1/1.html


I.5. References

C. Piou, S.F. Railsback, A.M. Robbins, M.M. Robbins, E. Rossmanith, N. Rüger, E. Strand,
S. Soissi, R.A. Stillman, R. Vabø, U. Visser, and D.L. DeAngelis. A Standard Protocol for
Describing Individual-Based and Agent-Based Models. Ecological Modelling, 198:115–126,
2006.

V. Grimm, U. Berger, D.L. DeAngelis, J.G. Polhill, J. Giske, and S.F. Railsback. The ODD
Protocol: A Review and First Update. Ecological Modelling, 221:2760–2768, 2010.

V. Grimm, G.P. Polhill, and J. Touza. Documenting Social Simulation Models: The ODD
Protocol as a Standard. In B. Edmonds and R. Meyer, editors, Simulating Social Complexity
– A Handbook, pages 117–133. Springer, 2013.

V. Grimm, J. Augusiak, A. Focks, B.M. Frank, F. Gabsi, A.S.A. Johnston, C. Liu, B.T. Martin,
M. Meli, V. Radchuk, P. Thorbek, and S.F. Railsback. Towards Better Modelling and De-
cision Support: Documenting Model Development, Testing, and Analysis Using TRACE.
Ecological Modelling, 280:129–139, 2014.

S. Heckbert, T. Baynes, and A. Reeson. Agent-Based Modeling in Ecological Economics.
Annals of the New York Academy of Sciences, 1185:39–53, 2010.

C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. A.I.Memo 410. MIT
Press, 1976.

D. Imboden and S. Koch. Systemanalyse. Eine Einführung in die mathematische Modellierung
natürlicher Systeme. Springer, Berlin, Heidelberg, 2003.

M.A. Janssen and E. Ostrom. Empirically Based, Agent-Based Models. Ecology and Society,
11:37, 2006. URL http://www.ecologyandsociety.org/vol11/iss2/art37/. (last accessed
2014/05/21).

M.A. Janssen, L.N. Alessa, M. Barton, S. Bergin, and A. Lee. Towards a Community Frame-
work for Agent-Based Modelling. Journal of Artificial Societies and Social Simulation, 11
(2) 6, 2008. URL http://jasss.soc.surrey.ac.uk/11/2/6.html. (last accessed 2014/01/06).

N.R. Jennings. On Agent-Based Software Engineering. Artificial Intelligence, 117:277–296,
2000.

B. LeBaron. Agent-Based Computational Finance: Suggested Readings and Early Research.
Journal of Economic Dynamics and Control, 24(5-7):679–702, 2000.

R. Leombruni and M. Richiardi. Industry and Labor Dynamics: The Agent-based Computa-
tional Economics Approach: Proceedings of the Wild@ace2003 Workshop, Torino, Italy, 3-4
October 2003. World Scientific, 2004.

A.J. Lotka. Elements of Physical Biology. Williams and Wilkins, Baltimore, MD, 1925.

M. Luck, P. McBurney, and C. Preist. Agent Technology: Enabling Next Generation Comput-
ing (A Roadmap for Agent Based Computing). AgentLink, Southampton: University of
Southampton, 2003.

S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. MASON: A Multi-Agent
Simulation Environment. Simulation, 82:517–527, 2005.

M. Lutz. Operations Research Verfahren - verstehen und anwenden. Fortis Verlag FH, Wien,
Mainz, 1998.

11

http://www.ecologyandsociety.org/vol11/iss2/art37/
http://jasss.soc.surrey.ac.uk/11/2/6.html


Chapter I. Introduction

S.L. Lytinen and S.F. Railsback. The Evolution of Agent-Based Simulation Platforms: A
Review of NetLogo 5.0 and Relogo. In Proceedings of the Fourth International Symposium
on Agent-Based Modeling and Simulation, 2012. URL http://condor.depaul.edu/slytinen/
abm/Lytinen-Railsback-EMCSR_2012-02-17.pdf. (last accessed 2014/05/19).

M.W. Macy and R. Willer. From Factors to Actors: Computational Sociology and Agent-Based
Modeling. Annual Review of Sociology, 28:143–166, 2002.

N. Malleson, A. Heppenstall, and L. See. Crime Reduction Through Simulation: An Agent-
Based Model of Burglary. Computers, Environment and Urban Systems, 34(3):236–250,
2010.

R.B. Matthews, N.G. Gilbert, A. Roach, J.G. Polhill, and N.M. Gotts. Agent-Based Land-Use
Models: A Review of Applications. Landscape Ecology, 22(10):1447–1459, 2007.

K.M. Meyer, M. Vos, W.M. Mooij, W.H.G. Hol, A.J. Termorshuizen, and W.H. van der Putten.
Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Above-
ground and Belowground Community. PLoS ONE, 7(11):e49034, 2012.

N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation System: A
Toolkit for Building Multi-Agent Simulations. Working Paper 96-06-042, Santa Fe Insti-
tute, Santa Fe, 1996.

B Müller, F Bohn, G. Dreßler, J. Groeneveld, C. Klassert, R. Martin, M. Schlüter, J. Schulze,
H. Weise, and N. Schwarz. Describing Human Decisions in Agent-Based Models – ODD
+ D, an Extension of the ODD Protocol. Environmental Modelling & Software, 48:37–48,
2013.

T. Müller and H. Müller. Modelling in Natural Sciences. Design, Validation and Case Studies.
Springer, Berlin, Heidelberg, 2003.

J.M. Moonen. Multi-Agent Systems for Transportation Planning and Coordination. ERIM Ph.D.
Series Research in Management. Erasmus Research Institute of Management (ERIM),
Erasmus University Rotterdam, 2009.

M.J. North and C.M. Macal. Managing Business Complexity: Discovering Strategic Solutions
with Agent-Based Modeling and Simulation. Oxford University Press, Oxford etc., 2007.

M.J. North, C.M. Macal, J.S. Aubin, P. Thimmapuram, M.J. Bragen, J. Hahn, J. Karr,
N. Brigham, M.E. Lacy, and D. Hampton. Multiscale Agent-Based Consumer Market Mod-
eling. Complexity, 15(5):37–47, 2010.

E. Oliveira. Applications of Intelligent Agent-Based Systems. In Proceedings of SBAI - Simpó-
sium Brasileiro de Automação Inteligente. 1999: São Paulo, pages 51–58, 1999.

openABM Consortium. Standards, 2012. URL http://www.openabm.org/page/standards.
(last accessed 2014/06/30).

J. Ozik. ReLogo Getting Started Guide, July 2013. URL http://repast.sourceforge.net/docs/
ReLogoGettingStarted.pdf. (last accessed 2014/05/19).

S.E. Page. Aggregation in Agent-Based Models of Economics. The Knowledge Engineering
Review, 27:151–162, 2012.

J.G. Polhill, D. Parker, D. Brown, and V. Grimm. Using the ODD Protocol for Describing

12

http://condor.depaul.edu/slytinen/abm/Lytinen-Railsback-EMCSR_2012-02-17.pdf
http://condor.depaul.edu/slytinen/abm/Lytinen-Railsback-EMCSR_2012-02-17.pdf
http://www.openabm.org/page/standards
http://repast.sourceforge.net/docs/ReLogoGettingStarted.pdf
http://repast.sourceforge.net/docs/ReLogoGettingStarted.pdf


I.5. References

Three Agent-Based Social Simulation Models of Land-Use Change. Journal of Artificial
Societies and Social Simulation, 11, 2008. URL http://jasss.soc.surrey.ac.uk/11/2/3.html.
(last accessed 2014/05/19).

H. Pretzsch. Modellierung des Waldwachstums. Parey, Berlin, Wien, 2001.

S.F. Railsback. Concepts From Complex Adaptive Systems as a Framework For Individual-
Based Modelling. Ecological Modelling, 13:47–62, 2001.

S.F. Railsback and V. Grimm. Agent-Based and Individual-Based Modeling: A Practical Intro-
duction. Princeton University Press, 2012.

S.F. Railsback, S.L. Lytinen, and S.K. Jackson. Agent-Based Simulation Platforms: Review
and Development Recommendations. Simulation, 82:609–623, 2006.

W. Rand and R.T. Rust. Agent-Based Modeling in Marketing: Guidelines for Rigor. Interna-
tional Journal of Research in Marketing, 28:181–193, 2011.

T.C. Schelling. Models of Segregation. The American Economic Review, 59(2):488–493,
1969.

A. Schmolke, P. Thorbek, D.L. DeAngelis, and V. Grimm. Ecological Modelling Support-
ing Environmental Decision Making: A Strategy for the Future. Trends in Ecology and
Evolution, 25:479–486, 2010.

W. Shen, Q. Hao, H.J. Yoon, and D.H. Norrie. Applications of Agent-Based Systems in
Intelligent Manufacturing: An Updated Review. Advanced Engineering Informatics, 20(4):
415–431, 2006.

K. Soetaert and P.M.J. Herman. A Practical Guide to Ecological Modelling: Using R as a
Simulation Platform. Springer, Dordrecht, 2009.

F. Squazzoni. The Impact of Agent-Based Models in the Social Sciences After 15 Years of
Incursions. History of Economic Ideas, XVIII/2010/2:197–233, 2010.

F. Squazzoni. Agent-Based Computational Sociology. John Wiley & Sons, 2012.

H. Stachowiak. Allgemeine Systemtheorie. Springer, Wien a.o., 1973.

K.P. Sycara. Multiagent Systems. AI Magazine, 19(2):79–92, 1998.

L. Tesfatsion. Agent-Based Computational Economics: A Constructive Approach to Economic
Theory. In L. Tesfatsion and K.L. Judd, editors, Handbook of Computational Economics,
volume 2, chapter 16, pages 831–880. Elsevier, 2006.

J.C. Thiele. R Marries NetLogo: Introduction to the RNetLogo Package. Journal of Statistical
Software, 58(2):1–41, 2014.

J.C. Thiele and V. Grimm. NetLogo Meets R: Linking Agent-Based Models with a Toolbox
for Their Analysis. Environmental Modelling & Software, 25(8):972–974, 2010.

J.C. Thiele and V. Grimm. Modellers in Ecology: Replicate! Oikos, minor revisions.

J.C. Thiele, W. Kurth, and V. Grimm. Agent- and Individual-Based Modeling with NetLogo:
Introduction and New NetLogo Extensions. In K. Römisch, A. Nothdurft, and U. Wunn,
editors, 22. Tagung der Sektion Forstliche Biometrie und Informatik des Deutschen Verban-
des Forstlicher Forschungsanstalten und der Arbeitsgemeinschaft Ökologie und Umwelt der

13

http://jasss.soc.surrey.ac.uk/11/2/3.html


Chapter I. Introduction

Internationalen Biometrischen Gesellschaft - Deutsche Region, 20-21th September 2010 in
Göttingen (Germany), Die Grüne Reihe, pages 68–101, 2011.

J.C. Thiele, W. Kurth, and V. Grimm. RNetLogo: An R Package for Running and Exploring
Individual-based Models Implemented in NetLogo. Methods in Ecology and Evolution, 3:
480–483, 2012a.

J.C. Thiele, W. Kurth, and V. Grimm. Agent-Based Modelling: Tools for Linking NetLogo
and R. Journal of Artificial Societies and Social Simulation, 15 (3) 8, 2012b. URL http:
//jasss.soc.surrey.ac.uk/15/3/8.html. (last accessed 2014/01/06).

J.C. Thiele, W. Kurth, and V. Grimm. Facilitating Parameter Estimation and Sensitivity Analy-
sis of Agent-Based Models: A Cookbook Using NetLogo and R. Journal of Artificial Societies
and Social Simulation, 17 (3) 11, 2014. URL http://jasss.soc.surrey.ac.uk/17/3/11.html.
(last accessed 2014/07/02).

A. Töllner, T. Jungmann, M. Bücker, and T. Brutscheck. Modelle und Modellierung. In
G. Bandow and H.H. Holzmüller, editors, Das ist gar kein Modell! Unterschiedliche Modelle
und Modellierungen in Betriebswirtschaftslehre und Ingenieurwissenschaften, pages 3–22.
Gabler, Wiesbaden, 2010.

V. Volterra. Variations and Fluctuations of the Number of Individuals in Animal Species
Living Together. Animal Ecology, pages 409–448, 1931. (Reprint).

J. Weiner. A Neighborhood Model of Annual-Plant Interference. Ecology, 63:1237–1241,
1982.

M. Weisberg. Simulation and Similarity. Oxford University Press, New York, 2013.

G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT
Press, Cambridge, MA, 1999.

U. Wilensky. NetLogo. Center for Connected Learning and Computer-Based Modeling, 1999.
URL http://ccl.northwestern.edu/netlogo. (last accessed 2014/01/06).

S. Wolf, J.-P. Bouchaud, F. Cecconi, S. Cincotti, H. Dawid, H. Gintis, S. Hoog, C.C. Jaeger,
D. Kovalevsky, A. Mandel, and L. Paroussos. Describing Economic Agent-Based Models -
Dahlem ABM Documentation Guidelines. Complexity Economics, 2(1):63–74, 2013.

M.J. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, New York, NY,
2005.

T. Wyszomirski. A Simulation Model of the Growth of Competing Individuals of a Plant
Population. Ekologia Polska, 31:73–92, 1983.

T. Wyszomirski, I. Wyszomirska, and I. Jarzyna. Simple Mechanisms of Size distribution
Dynamics in Crowded and Uncrowded Virtual Monocultures. Ecological Modelling, 115:
253–273, 1999.

14

http://jasss.soc.surrey.ac.uk/15/3/8.html
http://jasss.soc.surrey.ac.uk/15/3/8.html
http://jasss.soc.surrey.ac.uk/17/3/11.html
http://ccl.northwestern.edu/netlogo


CHAPTER II

Agent- and Individual-Based Modelling with NetLogo:
Introduction and New NetLogo Extensions

This manuscript is published as: JC Thiele, W Kurth, and V Grimm [2011]. Agent- and
Individual-Based Modelling with NetLogo: Introduction and New NetLogo Extensions. In:
K Römisch, A Nothdurft, and U Wunn (eds.): Die Grüne Reihe. 22. Tagung der Sektion
Forstliche Biometrie und Informatik des Deutschen Verbandes Forstlicher Forschungsanstal-
ten und der Arbeitsgemeinschaft Ökologie und Umwelt der Internationalen Biometrischen
Gesellschaft - Deutsche Region, 20-21th September 2010 in Göttingen (Germany), pages
68-101, ISSN 1860-4064.

15



Chapter II. Agent- and Individual-Based Modelling with NetLogo

Authorship

• Winfried Kurth wrote the paragraph about Functional-Structural Plant Modelling and
supported the writing of the rest of the manuscript.

• Volker Grimm supported the writing of the manuscript.

16



II.1. Abstract

II.1. Abstract

Agent-based models (ABM) or individual-based models (IBM), as they are called in ecology
and biology, are a widely used modelling approach when local interactions on the micro
level are essential for the description of patterns on the macro level. This chapter is di-
vided into four sections. In the first section, the history and definitions of ABMs in various
research disciplines, namely computer science, social science, economics and ecology, are
reviewed. This section closes with a discussion of similarities and differences in the differ-
ent research fields and a discussion of current challenges in agent-based modelling. One
of these difficulties is the lack of accepted standards for communication and programming.
The second section refers to this point by a presentation of some widely used ABM libraries,
namely Swarm, Mason, Repast and NetLogo and is followed by a more detailed description
of NetLogo as a potential standard tool in ABM communication. In the last section exten-
sions to NetLogo, developed by the authors of this chapter, are presented. This includes
the MultiView-Extension, the R-Extension and the NetLogo Plug-In for the Pygments syntax
highlighter. The chapter closes with an outlook to further tools for NetLogo which aim at
making NetLogo even more relevant as a standard tool in ABM.

II.2. Agent-/Individual-Based Modelling

II.2.1. Introduction

Building and using models is part of everybody’s life. For example, if we wait for the train,
we decide where to stay so that we can get into the train fast and get a good seat. We
include our former experience about where it is best to find a seat: in the middle, the front
or the back of the train. Furthermore we check the other passengers waiting on the track.
People carrying heavy luggage are slower than others and so on. But it will be impossible
to include all information and details. Therefore, simplification and aggregation of the real
system (abstraction) is the key in modelling. Starfield et al. [1990] called this "purposeful
representation", which means that the real system is represented only by those elements
which are important for answering the question the model is designed for. Thus, the problem
to solve should stand at the beginning of the model building process. The second step is
the definition of the system and its boundaries which leads to a verbal, conceptual model
[Bossel, 1994] followed by the selection of the formal model structure with scales, state
variables, processes and parameters. If such a model is too complex to calculate its outcome
analytically, it has to be implemented as a computer model, called computer simulation
model, before the model can be analysed and developed [see Modelling Cycle in Grimm
and Railsback, 2005].

There are different reasons to perform a computer simulation. They are useful to test
theories and to try understanding system behaviour, but they are also used to make forecasts
and to design experiments which could not be done in real life (e.g., for ethical or technical
reasons).

With increasing computer power and growing criticism of conventional modelling meth-
ods, a new approach to simulation models, agent-based modelling (ABM), established in
different kinds of scientific fields. Since the development of ABM took place more or less
independently in different scientific fields, they differ in definitions, history and context.
Therefore, we will give a short overview over the most important sectors: computer science,
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sociology, economics and ecology. But it should be mentioned that ABM is now increasingly
applied interdisciplinary, which makes the following separate descriptions slightly obsolete.

II.2.2. ABM in Computer Science

The basis for agent-based modelling in many other fields has been the development of so-
called multi-agent systems (MAS) in computer science as a part of the distributed artificial
intelligence (DAI) research area [Green et al., 1997, Sycara, 1998]. The development of
MAS started around the late 1970s [e.g., Hewitt, 1976] but their wider use began only in
the 1990s, mainly to distribute large computational problems over multiple computers [Luck
et al., 2003, Wooldridge, 2005, Weiss, 1999]. Later influenced and adapted by different dis-
ciplines, it is not surprising that many different definitions of the term MAS and what an
agent is exist [e.g., Jennings et al., 1998, Jennings, 2000]. In a very general case a MAS is
defined as a system which is composed of multiple (semi-) autonomous components to reach
a common goal [Jennings et al., 1998]. Many modular software systems could be summa-
rized under this weak definition. A narrower definition is given by Wooldridge and Jennings
[1995]. They added the requirement of using intelligent agents to their definition of MAS.
Their (computational) agents have been characterized as autonomous, social, reactive and
pro-active entities. In this concept, an agent takes input from the environment and produces
actions as outputs that affect the environment but with incomplete information at the agent
level and without a global control mechanism [Wooldridge, 2005]. Some classical exam-
ples for the use of MAS with intelligent agents can be found in computer games, computer
networks, robotics for manufacturing, or traffic-control systems [for examples, see Oliveira,
1999, Luck et al., 2003, Shen et al., 2006, Moonen, 2009]. But the more autonomous the
local agents became, the more important the question about coordination and cooperation
within the system was. These questions had strong similarities to the research questions in
sociology [Conte et al., 1998].

II.2.3. ABM in Social Sciences

Since some researches from the DAI area adapted ideas from social sciences, sociologists
became aware of the MAS techniques in the 1990s, encouraged by the advent of personal
computers and the development of object-oriented programming languages [Epstein and
Axtell, 1996, Gilbert, 1999, Squazzoni, 2010]. As a part of computational sociology, the ap-
proach is called agent-based social simulation (ABSS) or just agent-based modelling (ABM)
[Conte et al., 1998, Gilbert, 2007, Macy and Willer, 2002]. In such ABMs, agents typically
represent social actors which can be individual persons, organizations (e.g., companies),
or countries [Gilbert, 2007] which are simulated as an artificial society [Epstein and Axtell,
1996]. Gilbert [2007] defined an ABM as a "computational method that enables a researcher
to create, analyse and experiment with models composed of agents that interact within an
environment", which is very similar to the definition given by [Wooldridge, 2005] for MAS.

The ABM approach differs substantially from former microsimulation and system dynam-
ics approaches in social computations. The latter typically consists of sets of differential
equations which describe the change of stock variables and is known as "top-down" ap-
proach. In this way, individual social actors are averaged and their behaviour is aggregated.
A famous example for that kind of models is the world model of Forrester [1971], which
was used by Meadows [1974] for predicting the ecological limitation of economic and de-
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mographic growth. Such models have been mainly used for quantitative forecasts, are often
highly sensitive to the (frequently unknown) model parameters, and ignore the hetero-
geneity of individuals. Therefore, they are rarely appropriate for social sciences, which are
mainly interested in understanding and explanation [Gilbert and Troitzsch, 1999].

The classical microsimulation approach incorporates individual heterogeneity but not in-
teractions between individuals [Macy and Willer, 2002]. This approach is based on tran-
sition probabilities for each individual, which are typically derived from empirical data,
and delivers quantitative forecasts [Gilbert and Troitzsch, 1999]. Such data-driven mi-
crosimulations have been applied mainly to forecast the effects of policy changes and are
highly related to macroeconomic analysis but also well established in non-social sciences
like traffic/transportation analysis and economic research. Example applications in social
sciences include tax-benefit analysis, analysis of demographic developments, social security
and labour analysis. Reviews can be found in Spielauer [2007], Zaidi and Rake [2001] or
Algers et al. [1997].

With the introduction of ABM, interactions between complex, adaptive individuals [Macy
and Willer, 2002] and the opportunity to take spatial effects into account [Gilbert, 2007]
were added to social computer simulations. The main idea is to analyse the way in which
macro-level system properties emerge from interaction of the agents on microlevel to de-
scribe social systems [Davidsson, 2002]. Therefore, it is mainly used for theory testing and
development [Macy and Willer, 2002, Conte, 2006]. Furthermore, the development of an
ABM constrains the social scientist to clearly define his assumptions of local behaviour which
helps to clearly communicate basic ideas [Gilbert, 2004].

In general, ABMs are a good choice for studying social processes that do not include
central coordination [Macy and Willer, 2002]. ABMs in social science have been applied to
the simulation of differentiation, diffusion and emergence of social order in social systems
[for examples, see listing in Macy and Willer, 2002 and references in Li et al., 2008 and
Squazzoni, 2010 as well as to questions about demographic behaviour Billari and Prskawetz,
2003]. Most famous models in social sciences are Schelling’s [1969, 1971] segregation
model and the Sugarscape model of Epstein and Axtell [1996], which have often been cited
and extended. However, as stated by Macy and Willer [2002] and recently by Hamill [2010],
ABMs are still considered very sceptically by many sociologists and have been used rather
rarely compared to other disciplines, although Squazzoni [2010] reported about a constant
increase of ABM awareness in recent years. This could be the result of the increasing use
of ABM techniques in interdisciplinary projects with socio-ecological and socio-economical
contexts.

II.2.4. ABM in Economics

The neoclassical Walrasian general equilibrium (GE) model as well as the (New) Keynesian
framework are still the most used fundamental paradigms in (Macro-) economics [Tesfat-
sion, 2006, Oeffner, 2008]. They simplify the economic system by representing (averaged)
agents with perfect rationality, information and foresight. Furthermore, interactions be-
tween agents (e.g., firms and households) take place only indirect, in case of Walrasian GE
model, for example, by pricing using the concept of "Walrasian auctioneer" [Oeffner, 2008].

Such "top-down" approaches were developed despite Smith [1776] and others stated that
economic processes are the result of parallel, local interactions between large numbers of
individuals. Therefore, Gun [2004] criticized macroeconomic approaches as he wrote: "How
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can any reasonable person admit, that, for example, the evolution of the US aggregates’
results from decisions made by a single individual who owns all factories and who decides
how much to produce, how much labour to use, how production will be distributed between
consumption and investment, and so on?". Consequently, to overcome these weaknesses the
ABM approach was adapted to economic modelling by using heterogeneous, interacting
(and learning) agents [Farmer and Foley, 2009].

The ABM approach in economics is called agent-based computational economics (ACE)
and is related to the field of cognitive and evolutionary economics. Arthur [2006] described
this as follows: "Standard neoclassical economics asks what agent’s actions, strategies, or ex-
pectations are in equilibrium with (consistent with) the outcome or pattern these behaviours
aggregatively create. Agent-based computational economics enables us to ask a wider ques-
tion: how agent’s actions, strategies or expectations might react to - might endogenously
change with - the pattern they create. In other words, it enables us to examine how the
economy behaves out of equilibrium, when it is not at a steady state." The beginnings of
ACE are going back to the work of the Santa Fe Institute which started in the late 1980s
with its work on describing and analysing the economy as an evolving and complex sys-
tem encouraged by the development of personal computers and object- and agent-oriented
programming languages [Richiardi, 2007].

Tesfatsion [2006] has defined ACE as "the computational study of economic processes
modelled as dynamic systems of interacting agents" and an agent as "bundled data and
behaviour methods" which could represent individuals, social grouping and institutions, bi-
ological or physical entities. This definition is nearly identical to the definition of social
ABMs given by Gilbert [2007], which is not surprising since there is no strict boundary be-
tween both disciplines. Even the aims of ACE have similarities to those of social ABMs. They
can be divided into four main categories: empirical understanding, normative understand-
ing, qualitative insight as well as theory generation and methodological advancement [for
details, see Tesfatsion, 2006]. Therefore, ACE can be used complementary to mathematical
theorizing as well as a substitute for it [Phan, 2004, Axtell, 2000]. ACE have been used,
for example, for the reproduction of classical cobweb theorem [e.g., Arifovic, 1994], for
modelling financial/stock markets [for a review, see LeBaron, 2000] as well as for simu-
lating industry and labour dynamics [e.g., Leombruni and Richiardi, 2004]. Nevertheless,
many economists still prefer the conventional mathematical models by tradition [Buchanan,
2009].

II.2.5. ABM in Ecology

In contrast, in the field of ecology the agent-based approach has a slightly longer tradition
and is well established nowadays [Grimm and Railsback, 2005], although there are critics
as well [Caswell, 2001]. The development of so called individual-based models (IBM) is
less closely related to the developments of MAS as it is the case in social sciences, because
ecologists early became aware of the restrictions in classical population models (differential
equation models) and looked for alternatives. The most obvious approach for the simulative
reproduction of observed population-level effects was to take the heterogeneous properties
of the individuals into account.

Since sufficient computational power became available in the early 1970s, first ecologists
started to develop such IBMs [e.g., Myers, 1976, DeAngelis et al., 1980]. One of these pi-
oneer works is the forest succession model JABOWA of Botkin et al. [1972]. In his review,
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however, Grimm [1999] distinguishes this work, which often was pragmatically motivated,
from the later paradigmatic motivations of the IBM approach, in which IBMs are not used be-
cause of the limitation of more aggregate models but because of the motivation to overcome
the limitations of the population-level paradigm of theoretical ecology. Grimm [1999] refers
to Kaiser [1974] and Lomnicki [1978, 1988] as the pioneers of the paradigmatic motivation,
but noticed that still only a minority of ecological IBMs directly addressed theoretical issues.
The main driver of the success of IBMs in ecology was and still is the pragmatic motivation.

Milestones in the establishment of the IBM approach in ecology were the review of Huston
et al. [1988], followed by the substantial conference proceedings of DeAngelis and Gross
[1992] and the influential articles of Hogeweg and Hesper [1990], Judson [1994], Uch-
manski and Grimm [1996], Grimm [1999], Lomnicki [1999], DeAngelis and Mooij [2005]
as well as the monograph of Grimm and Railsback [2005]. As Grimm and Railsback [2005]
noticed, up to mid-1990s, a clear definition of IBMs was still missing and the use of the term
became fuzzy.

Therefore, Uchmanski and Grimm [1996] defined criteria for the classification of ecologi-
cal models which allow separating IBMs from classical state-variable approaches [for details
see Uchmanski and Grimm, 1996 or Grimm and Railsback, 2005]: IBMs include (poten-
tially) heterogeneous, discrete entities which represent real individuals. These individuals
can be adaptive in behaviour and life history. Moreover, IBMs include feedbacks between
dynamic (food) resources and individuals. In contrast, age- or state-structured population
models and models defining resources via constant carrying capacities do not fulfil these
conditions. Grimm and Railsback [2005] defined such models in the middle between un-
structured population models and IBMs.

Over the last three to four decades hundreds of IBMs were developed in ecology [DeAn-
gelis and Mooij, 2005]. For reviews see, for example, Grimm [1999], Grimm and Railsback
[2005], Hogeweg and Hesper [1990], DeAngelis et al. [1990], DeAngelis and Gross [1992],
DeAngelis et al. [1994] and DeAngelis and Mooij [2005]. See also Bunsing and Mailly
[2004] and Liu and Ashton [1995] on IBMs of forest dynamics. In case of modelling forests,
these IBMs are sometimes called individual-tree models [e.g., by Pretzsch, 2009 and Coates
et al., 2003].

A family of models in biology which has some common features with IBMs is that of
functional-structural plant models (FSPM) [Godin and H.Sinoquet, 2005, Vos et al., 2007].
In an FSPM, a plant individual is decomposed into morphological units like internodes,
leaves, root segments etc., which all have their own functions and state variables and which
interact with each other. The three-dimensional architecture of a plant and its functioning
are both represented in the same model. Since the morphological units are modelled as
entities with certain autonomy, this approach can be considered as an extension of IBMs
to a spatial scale level below that of the individual. However, FSPMs can also be used to
model interactions between several individuals and thus the behaviour of whole plant stands
[Hemmerling et al., 2008, Cournède et al., 2010].

II.2.6. Synopsis

As we have seen, there are strong similarities in the definitions of ABMs in the different
fields but there are also some differences. The narrowest definition gave Uchmanski and
Grimm [1996] in the field of ecology while no strict line can be drawn between ACE and
ABSS. In the last two fields, however, the influence of MAS from computer sciences was
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much stronger than in ecology. Whilst ABMs in social science and economy are often more
paradigmatic and abstract, they are usually pragmatic and specific in ecology. Nevertheless,
they have in common that they present an alternative to aggregated state-variable (equi-
librium) models; they do not impose system-level results but are dedicated to answer the
question how system-level patterns emerge from adaptive behaviour and local interactions.

Although we here focused on the research fields computer science, sociology, economy
and ecology, there are many other disciplines in which ABMs are increasingly used, often
within an interdisciplinary context. Examples are ecological economics [e.g., Heckbert et al.,
2010, Drechsler et al., 2007], marketing/socio-psychology [e.g., North et al., 2010, Ben
Said et al., 2002], archaeology/anthropology [e.g., Griffin and Stanish, 2007, Premo, 2007,
Premo and Kuhn, 2010], microbiology [e.g., Ferrer et al., 2008, Ginovart et al., 2002],
biomedicine/epidemiology [e.g., An, 2009, Carpenter and Sattenspiel, 2009], criminology
[strongly related to ABSS, e.g., Malleson et al., 2010], land-use management [e.g., Polhill,
2009, Matthews et al., 2007] and forest management planning [e.g., Simon and Etienne,
2009].

The wide use of the ABM approach in all these disciplines has in common that it was
strongly related to the increasing availability and power of personal computers and the
development of object- and agent-oriented programming languages.

II.2.7. Current Challenges in ABMs

As with every method there is no light without shadow. There are several challenges as
well as stereotypes related to the ABM approach. Some of them are shortly discussed in the
following.

ABMs are often seen as very data hungry [e.g., Reed et al., 2002]. It is true that data
are needed when building ABMs, but it is wrong to believe that an ABM should not be
built without complete information [Starfield, 1997]. As Grimm and Railsback [2005] and
Squazzoni [2010] noticed, ABMs can be used to test hypothesis about unknown parts of a
system and can help empiricists to identify which are the important things to measure. Fur-
thermore, it can be easier to collect data at the level of the individual than to collect them at
an (abstract) macro-level [Hogeweg and Hesper, 1990, Huston et al., 1988], and the model
might react less sensibly on parameter variations at the level of the individual [Breckling,
2002]. The main problem with the measurements is that results of laboratory experiments
with sometimes isolated individuals/humans could be invalid for natural conditions. In gen-
eral, Grimm [1999] reported about a tendency towards an overuse of empirical knowledge
in IBMs in the sense of putting all available data into a model. He advised to find the ap-
propriate level of aggregation through the modelling process and not through availability of
data or the aim to let the model (not the outcome) look more "realistic".

This leads directly to the next point, the difficulties in analysing, validating and under-
standing the outcomes of an ABM due to its complexity. ABMs should be kept as simple as
possible otherwise they could contain unnecessary details to answer the research question
[Macy and Willer, 2002, Hiebeler, 1994]. Nevertheless, even in simple ABMs outcomes can
be hard to understand. Different guidelines about how to analyse ABMs are available [e.g.,
Richiardi et al., 2006, Gilbert, 2007, Windrum et al., 2007, Galán et al., 2009]; Grimm and
Railsback [2005] dedicated a whole chapter to this topic. But an accepted standard way of
analysing ABMs is still missing.

The communication of ABMs is also very difficult, since ABMs are simulation models and
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cannot be described completely by means of mathematics. Therefore, several communica-
tion protocols have been proposed. Some are based on an extension of the Unified Modelling
Language (UML) but such approaches are usually too technical for non-computer scientists.
The ODD protocol of Grimm et al. [2006] is much simpler and allows providing a precise
overview over the general properties of the model. It has the potential to become a standard
protocol for ABMs [Grimm et al., 2010, Polhill, 2010, Janssen et al., 2008].

However, since the ODD protocol only provides a structure for verbal model descriptions
but does not specify how to document the details of the model it will be just one half of an
overall model documentation. It does not yet provide a "lingua franca" by itself, which via
some kind of pseudo code would allow describing all submodels unambiguously. In the next
two sections we will discuss how the software platform NetLogo [Wilensky, 1999] might fill
this gap.

The last point to be discussed here is the high risk of programming "bugs" in ABM imple-
mentations [Lorek and Sonnenschein, 1999, Gilbert, 2007]. A bug means that the computer
is doing something different to what the programmer/modeller intended. Such bugs can
lead to misinterpretations of the model outcomes [Axelrod, 1997].

Simulation platforms for agent-based models can help reducing the risk of programming
bugs and can increase the understandability of the source code. Furthermore, such platforms
will make the implementation process much easier [Hamill, 2010]. Heath et al. [2009]
surveyed 279 ABM articles of which just 175 offered details about their programming lan-
guage/tool. He identified 68 different tools/languages. Heath et al. [2009] conclude that
there will never be one standard programming language.

We think, however, that the fact that modellers usually are not computer scientists and
the challenges of ABMs described so far should encourage us to try and find a common
language and standard procedures or template (sub) models. There is actually no point in
implementing an ABM from scratch, using a general purpose programming language like
Java or C++ because ABM libraries exist which provide standard software designs and
code. Standardized model descriptions and implementations would facilitate to understand
the underlying concepts, structure and algorithms of ABMs. Without such standards, it is
difficult or even impossible to reproduce the results of published models, which undermines
the scientific credibility of the ABM approach [Janssen et al., 2008].

Therefore, the next part of this chapter focuses on software platforms and languages for
ABMs and is followed by a more detailed description of the NetLogo language and platform.

II.3. Software Libraries, Environments and Languages for ABMs

As discussed above, to decrease implementation time and the risk of making errors and to
increase re-usability, traceability and communicability, it is helpful to use established soft-
ware libraries or languages that were especially designed for implementing ABMs. One
of the first programming languages which provided features for object-oriented modelling
and simulation was SIMULA [Dahl et al., 1967]. It was indeed used for ABMs in ecology
[e.g., Reuter, 1998], but required still considerable skills in mastering a general-purpose
language, and its supportive features for ABMs were rather limited. Since that time, many
general and special purpose libraries and platforms for the development of ABMs have been
developed. Wikipedia [2010] lists 69 different agent-based modelling software libraries/-
platforms and several reviews can be found in the literature [e.g., Allan, 2009, Nikolai and
Madey, 2009, Berryman, 2008, Gilbert, 2007, Railsback et al., 2006, Tobias and Hofmann,
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2004]. The most popular, non proprietary general-purpose ones are Swarm [Minar et al.,
1996], MASON [Luke et al., 2005], Repast [Collier et al., 2003], and NetLogo [Wilensky,
1999], which are briefly presented in the following. Besides we would like to mention that
any review of ABM software platforms is due to be outdated within a year or two because
some platforms develop rapidly while others are no longer maintained. Therefore, in the
following we do not list software features in detail but describe the history and the main
concepts underlying the platforms.

Swarm can be seen as the mother of many other ABM libraries. The project was initiated
in 1994 at the Santa Fe Institute, New Mexico [Hiebeler, 1994] and is maintained since
1999 by the Swarm Development Group [Swarm, 2010a]. The aim of Swarm is to provide a
vocabulary and a set of standard computer tools for the development of multi-agent simula-
tion models [Swarm, 2010b]. It comes as an open source library collection for Objective-C
and has a port for using it in Java, which both follow the object-oriented programming
(OOP) paradigm. Applications using Swarm often contain a hierarchical structure, with an
observerSwarm object responsible for the creation of screen displays and a modelSwarm
object, which manages the individual agents and schedules their activities in discrete time
intervals as well as delivers information to the observer [Swarm, 2010b]. Agents are in-
stances of user-written classes derived/extended from the class SwarmObject. Further-
more, the Swarm libraries provide classes for the creation of Graphical User Interfaces (GUI)
for controlling simulations and for visualization [Swarm, 2010b]. Since Swarm consists just
of libraries, the models are written in the language of the chosen library (Objective-C or
Java). This requires strong programming skills but gives a maximum of flexibility and ex-
tendibility to the (experienced) user.

MASON is considerably younger as the project was initiated in 2003 at the George Mason
University, USA [Balan et al., 2003]. It is written as an open-source library in Java and is
conceptually strongly inspired by Swarm. The main development goal was a good compu-
tational performance to allow simulations with many runs, a large number of agents and a
good support for 3D-simulations and visualizations [Luke et al., 2004]. It is, like Swarm, a
pure but very concise library. The implementation of a simulation model in MASON is encap-
sulated completely from the code for visualization. The highest level of a simulation model
is the SimState super-class which holds an instance of the Schedule class for managing
the time and sub-schedules in the model. Agents can be added to the simulation/schedule
by instancing user-written classes, which have to implement the interface Steppable with
the agent schedule method step. Space can be represented by using the grid-based or con-
tinuous space classes whereas networks are created by using the classes Network and Edge
[Mason, 2010]. The same as for Swarm holds about flexibility and required programming
skills.

Repast (Recursive Porous Agent Simulation Toolkit) is slightly older than MASON as the
first release was available in 2000 offered by a group of researches of the University of
Chicago [Collier et al., 2003]. Started as a pure Java library, it was available for the pro-
gramming languages Java (Repast J), Microsoft .Net (Repast .Net) and Python (Repast Py)
in the meantime since Version 3.0, which was released in 2004 [Road, 2010a]. In 2008
the Repast development team, more precisely the Repast Organization for Architecture and
Development (ROAD), introduced Repast Simphony (called Repast S), a customized version
of the integrated development environment (IDE) Eclipse, which enables the user to build
models using graphical editing tools via drag and drop. At the end of 2010, a beta version
of Repast S 2.0 was released and opened different ways to build models: the point-and-click
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flowcharts, Java, Groovy and ReLogo as a Logo dialect and an import and translation rou-
tine for NetLogo models [Road, 2010b]. In December 2010 as well, a first beta version of
Repast High Performance Computing (HCP) was published, designed to run simulations in
parallel on large-scale distributed computer platforms such as clusters and supercomputers.
Models for Repast HCP can be implemented in standard or Logo-style C++ [Road, 2010c].
Although the Repast toolkit has its origins in social sciences, it is usable for the implemen-
tation of most agent-based models. The basis of a classical Repast model is a Context
which is built by the ContextBuilder class. A Context manages a set of agents, like
a population. Agents are user-defined classes for each type of agents (e.g., one for wolves
and another for sheep) which implements behaviours by methods and state variables by
class members. If spatial aspects are required, a Projection can be added to a Context,
which places the agents into a Grid or ContinousSpace. To create relations between
agents, the NetworkBuilder class is used [Collier and North, 2010]. The ReLogo part is
conceptually equivalent to that of NetLogo, what is not surprising, since ReLogo is adapted
from/inspired by NetLogo. Therefore, details about the ReLogo concept can be left out here
as NetLogo is described in detail later. The Java/Groovy and ReLogo part of Repast deliver
an expendable standard window for simulation visualization, a way for creating stand-alone
programs and an option to run them in batch mode as well as a couple of interfaces to help-
ful programs like GNU R, GRASS GIS or MATLAB.

By now, the presented modelling libraries are conceptually very similar, except for Re-
Logo. Models are written in a common high level programming language by implementing
interfaces or extending classes of the used libraries. There is always a top-level class coordi-
nating the simulation and bundling the simulation entities. The class or interface which are
extended or implemented by agent classes are unspecific, i.e., do not differentiate between
different types of agents. Space is added explicitly to agent classes. Although some helping
methods for implementing the behavioural rules for the agents exist, a lot of code has to be
written by hand.

Because NetLogo is not a library but a complete language especially designed for the im-
plementation of ABM, it provides many pre-defined methods for the implementation of the
behavioural rules of the agents. Furthermore, its Logo-like syntax (see next section) and
different standard agent types (Turtles, Patches, Links) in combination with a point-
and-click GUI-building mechanism make it possible to learn the language very fast without
programming experiences. No less important are the excellent and comprehensive docu-
mentation of the NetLogo language and simulation environment and the different tutorials.
Moreover, there is a very large library of sample models and code examples as well as a
very active mailing list. Furthermore, textbooks with practical introductions to agent- and
individual-based modelling using NetLogo are available [e.g., Railsback and Grimm, 2012,
Wilensky and Rand, 2014].

Because of these features, NetLogo is very popular and widely used. It has the potential
to become a standard language for describing ABMs (as pseudo language) and is ideal for
prototyping since in no other language ABMs can be written and changed as fast as in
NetLogo. This hypothesis is underlined by the ReLogo project, which adapted the NetLogo
language as described above and opens the possibility to translate NetLogo models to Repast,
which allows to run also models which are computational very expansive. Therefore, in the
following NetLogo is in focus as it has the potential to help to overcome the weakness of
missing standards in ABMs in respect to the description of model details.
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II.4. NetLogo: Modelling Language and Simulation Platform

II.4.1. History of NetLogo

The development of NetLogo started in 1999 [Wilensky, 1999] and the first beta version
was released in 2000 by Uri Wilensky [Tisue and Wilensky, 2004a]. It is now maintained
by the Center for Connected Learning and Computer-based Modeling at the Northwestern
University, Illinois [Wilensky, 1999]. NetLogo is the successor of the StarLogo simulation
environment family. Although StarLogo was mainly developed for the use in education it
was used more and more by researches. This led to the development of NetLogo, which was
designed for educational and research purposes [Tisue and Wilensky, 2004b]. Milestones in
the development of NetLogo were

• the release of the first stable version 1.0 in 2002,

• the introduction of the HubNet functionality in 2003,

• the Extension and Controlling API as well as a headless mode for GUI-free command
line runs in 2004,

• the System Dynamics Modeler for models including ordinary differential equations
and a 3D view in 2005,

• an improved compiler that speeded up many models and the introduction of links as
own agent type for network models in 2007,

• a GIS-Extension published in 2008 and

• BehaviorSpace, a tool for running NetLogo repeated with different parameter val-
ues, became open source and supports running multiple simulations with the Behav-
iorSpace in parallels in 2009 [NetLogo, 2010a].

The current version, released in December 2010, is 4.1.2.
A drawback of NetLogo is that although it is available free of charge, its source code is

not available (with exception for BehaviorSpace and the extensions). This is often criti-
cized in reviews as it means that the proper functioning of built-in NetLogo procedures,
called "primitives", can only be validated by testing and not by inspecting and directly test-
ing the underlying source. On the other hand, this is more a theoretical than a practical
discussion: NetLogo includes a compiler [Sondahl et al., 2006] whose implementation is
presumably beyond the programming skills of most modellers, who are often not computer
scientists. Nevertheless, it is not good practice to make use of open source libraries, like
the MersenneTwisterFast from the Repast project or the MovieEncoder from the MASON
project, without opening the own project [NetLogo, 2010b]. But on the FAQ page of the
NetLogo project the NetLogo team wrote, that "We are working on eventually releasing the
source under an open source license." [NetLogo, 2010c].

II.4.2. NetLogo Programming Language

The NetLogo language is especially designed for the implementation of ABMs. As the name
suggests, it is an extension of the Logo language. Logo was designed as a functional pro-
gramming language for educational use in the 1960s and is a dialect of Lisp [Logo Foun-
dation, 2010]. Logo is often known for its turtle, which is used to create graphics on the

26



II.4. NetLogo: Modelling Language and Simulation Platform

monitor by giving movement commands to the turtle. NetLogo adapted this turtle approach
and combined it with the concept of multiple turtles/agents and concurrency from *Lisp
("StarLisp"). The design goal of the Logo language was "low threshold and no ceiling",
which was borrowed for the development of NetLogo [Tisue and Wilensky, 2004a]. Low
threshold stands for easy to learn also by people with less or without modelling and pro-
gramming experiences. No ceiling means that it should not be restrictive for advanced users,
who need high flexibility.

The basic entity in NetLogo is the agent. There are different pre-defined types of agents:
the observer, patches, turtles, and links. The observer is the global instance which provides
global variables and manages and has access to the other agents. There is only one observer.
Patches are immobile agents, i.e., spatial units with a location in space. All patches together
form the grid of the world and define the extent of the world. Patches have pre-defined
variables, such as x- and y-coordinates, a colour and a label, but the user can add further
variables to the patches. Patches are, like all other agents, programmable. Turtles are,
contrary to the patches, mobile agents. They can move on the patches in continuous space
within the world defined by the patches. Turtles have, like patches, pre-defined variables,
like their position, shape etc. but can get user-defined variables. It is possible to declare
different types of turtles, called breeds; breeds inherit all variables of the turtles, but can
have additional own variables. The last agent type is the link, which is a connection between
two turtles. All agents can communicate and interact with each other.

The available data types in NetLogo are numbers (double and integer), boolean, string,
colour, agent, agentset and list. The agentset data type is a collection of agents and the list
data type is a vector to store multiple values. Blocks of code are defined by embedding them
into squared brackets and comments are available just as line comments beginning with a
semicolon.

Variable declarations and assignments can be done by using the operator set or by using
let for local variables, as shown in Listing II.1. Advanced programmers need to get used to
it, but for the novice this is a very natural way for assignments, as it is written like a spoken
command.

Listing II.1: Declaration (and assignment) of a new local variable in the first line and re-
assignment in the second line. The assignment of global variables is the same
as the re-assignment of local variables. This code fragment could be embedded
into a user defined procedure.

let my-local-var 10 ; declaration and first assignment
set my-local-var 20 ; re-assignment

The NetLogo language distinguishes between commands and reporters. Commands are
instructions to an agent whereas reporters calculate and return a value. There are around
400 built-in commands and reporters, called primitives. Some of them have to be executed
in a specific agent type context, for example, move-to is just for turtle context since it
does not make sense to ask a patch for moving away as they are immobile. User-defined
commands and reporters are called procedures and can consist of sequences of commands
and reporters. They are defined by the opening keyword to or to-report followed by
the name given to the procedure, which includes the things to do, and are closed by the
keyword end. An example is given in Listing II.2.
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Listing II.2: A user defined procedure with the name setup which resets everything and
creates two turtles.

to setup
clear-all
create-turtles 2

end

If necessary, input variables for procedures can be defined. Commands and reporters are
executed by using their name. If inputs should be passed to the command or reporter, the
user has to write them directly after the name of the command or reporter in a whitespace
separated list. Because reporters return values on the right side of a reporter call, there has
to be an output command or an assignment. Typical for Logo languages is that commands
and reporters, although comparable with functions or methods in other languages, do not
have parentheses after the name containing the input variables. There is no terminal char-
acter, like the semicolon in Java or C++. Everything is separated just by whitespace. In
some cases, when a primitive gets optional or repeatable inputs, the primitive and its inputs
have to be declared as belonging together by using parentheses.

A very important command is ask which iterates over the given agentset and executes the
commands and reporters given in a block with the context of the current agent of the iterated
agentset. This ask command is very powerful in combination with the with reporter,
which creates a new agentset containing only those agents that satisfy a given condition. A
scheduler for a simulation model could then look like the procedure go in Listing II.3 and
would be executed in observer context.

Listing II.3: A (fragmented) example of a model source code with a user-defined turtle type
(beech breed), a setup procedure to initialize the simulation, a go procedure
as a scheduler for one simulation step which iterates over all beech-turtles and
some other procedures called from the go procedure.

breed [beeches beech] ; create a new breed (turtle subtype)
named beech

to setup ; a user-defined procedure setup, to initialize
simulation

...
end

to go ; procedure, executed in observer context
tick ; increment internal simulation time
ask patches [ ; do for all patches
update-soil-water ; call procedure update-soil-water in

patch context
]
ask beeches [ ; do for all beeches
grow
mortality

]
end
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to update-soil-water
...

end

to grow
...

end

to mortality
...

end

II.4.3. NetLogo Integrated Simulation Environment

As mentioned before, NetLogo comes with an integrated, interactive simulation environ-
ment. There are three basic tabs, one for the model source code (Procedures Tab), one for
the model description (Information Tab) and one for the Graphical User Interface (Interface
Tab), as shown in Figure II.1.

When leaving the Procedures Tab or when dropping the Check Button, NetLogo runs the
spell checker, reports errors, if found (see Figure II.2), and tokenize as well as compiles parts
of the code for execution/interpretation (for details on the combined compiler-interpreter
architecture with the byte code inlining technique see Sondahl et al. [2006]).

Graphical elements can be placed somewhere on the Interface Tab by drag-and-drop. The
user can add Buttons, Sliders, Switches, Choosers, Inputs, Monitors, Plots (Scatter, Line,
and Bar plots), Outputs and Notes. Some of them take additional NetLogo commands or
reporters. For example, a button, when pushed, executes the command the user gave to it,
like the execution of a procedure.

One graphical element which is always there is the View, which visualizes the patches
and the turtles. If one wants to implement a non-spatial model, it is possible to hide the
turtles and reduce the world to just one remaining patch, which could be leaved unused
and hidden behind a plot. If a spatial model is implemented, users can choose a wrapping
world, choose the number and size of the patches and set the location of the origin of the
coordinates. Within the View, patch, link and turtle variables can be inspected by clicking on
the desired agent with the mouse. The variables of this agent are shown in a new window
and can be watched and changed during and after the simulation. If required, NetLogo
offers a 3D view of the world for perspective visualizations.

Furthermore, users can control the speed of a simulation via a slider which opens the
possibility to slow down the simulation to observe the turtle’s movement in detail.

With the Command Center, NetLogo delivers an interpreter. It is possible to execute any
command or reporter during the simulation within the context of the observer, patch, turtle
or link.

II.4.4. NetLogo Extensions and Controlling API

Due to NetLogo’s design philosophy "low threshold, no ceiling", the developers included an
interface for everyone to extend the NetLogo language. The Extension API offers a way to
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Figure II.1.: NetLogo GUI, Interface Tab with the View/World on the right, some control
widgets on the left and Command Center at the bottom.
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Figure II.2.: NetLogo GUI, Procedures Tab with Syntax Checker indicating an error.

extend the language by adding user-defined primitives [Stonedahl et al., 2008]. Extensions
can be written in Java or Scala and can access NetLogo objects, like turtles or lists.

NetLogo comes with a bundle of standard extensions, like the GIS-Extension, which adds
functionality to import raster and vector datasets into a NetLogo model or the array, table
and matrix extensions, which add multi-dimensional data storages. The Controlling API
allows running the NetLogo application by remote control. It is possible to open models and
execute NetLogo commands and reporters from other Java and Scala programs.

II.5. Extensions to NetLogo

This last section of this chapter gives an overview over new extensions to and tools for
NetLogo written by the authors of this chapter. The extensions were developed to extend
the functionality of NetLogo for making this software more relevant as a standard tool of
ABM and, in case of the R-Extension, to combine ABMs with standardized methods from
statistics and to avoid hand-written solutions.

II.5.1. MultiView

As described above, NetLogo visualizes the patches in the world widget. For this, the built-in
patch variable pcolor is used by default. The value of pcolor or any other patch variable,
if defined, determines the colour of each patch. But there is no way to create more than
one world widget to visualize more than one patch variable at a time. For example, if we
take a model like BEFORE [Rademacher et al., 2004] this could be a restriction. BEFORE
simulates the dynamic of natural beech forests. It distinguishes four horizontal layers which
are characterized by their coverage percentage. The forest itself is divided into quadratic
patches, which are represented in NetLogo by the patches of the NetLogo world. The cover-
age percentage of each horizontal layer is stored in a user-defined patch variable. There is
no useful way to visualize the four patch variables simultaneously.

Another example is a model where we want to compare different temporal stages at a
time. For example, if one defines a patch variable which saves the value of the variable of
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interest of the last simulation step there is no way to see the current spatial pattern of the
patch variables and the pattern of the last simulation step simultaneously.

Therefore, we developed an extension which adds new windows to the simulation show-
ing the patches of the world. The windows contain a copy of the view, i.e., uses the set-
tings of the view regarding patch size and the number of patches. The user can define the
patch variable which is to be used for colourization of the patches in the new view window.
There is also the right mouse click functionality within the view window available to inspect
patches and to export the view into an image file (see Figure II.3 and Listing II.4). The user
can add as many additional view windows as desired.

Listing II.4: An example for the usage of the MultiView-Extension which creates two addi-
tional view windows, one as a copy of the original NetLogo world view and a
second with a colourization using variable pcolor2.

; load the extension
extensions [multiview]

; a patch variable to save the 2nd colour (beside pcolor) for
the 2nd view window

patches-own [ pcolor2 ]

globals [
view1 ; a variable to save the reference to a view window
view2 ; a 2nd variable to save the reference to a 2nd view

window
]

to setup
; clear-all, closes the view windows as well, view1 & view2

has value 0
ca
; create two turtles
crt 2 [ set xcor random xcor set ycor random ycor]
; set the colours of the patches, pcolor and pcolor2 will be

the same initially
ask patches [
set pcolor random 300
set pcolor2 pcolor

]
; open the 1st view window, using pcolor (as in the NetLogo

world view) to
; colourize the patches
; first parameter "pcolor" is the title of the window
; second parameter "pcolor2" is the patch variable used for

colouring the patches
; save the reference to the view window in the variable

"view1"
set view1 multiview:newView "pcolor" "pcolor"
; open the second view window, using pcolor2
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set view2 multiview:newView "pcolor2" "pcolor2"
end

to go
tick
; change the colour values of the patches
ask patches [
set pcolor random 300
set pcolor2 random 100

]
; update the colours of the view windows (using the

predefined patch variables,
; see above: multiview:newView)
multiview:repaint view1
multiview:repaint view2

end

Figure II.3.: NetLogo GUI on the right with two additional view windows on the left created
by the MultiView- Extension. The additional view window on the top uses the
pcolor variable for colourization and is therefore a duplication of the original
view, the bottom view uses the pcolor2 variable for colourization as shown
in Listing II.4. On the bottom view, the right click functionality is shown. The
user can export the current view into an image file and can inspect the selected
patch.

The extension adds just four new primitives to the NetLogo language: One for the cre-
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ation of a new window, one for repainting/updating the view, another for renaming the
window and a last for (tidy) closing the window. The extension is available for download
at the official NetLogo web page: http://ccl.northwestern.edu/netlogo/resources.html. It is
released under the GNU GPL v2 open source license and comes with a short documentation
(see also Appendix A) and the source code.

II.5.2. R-Extension

NetLogo already provides some primitives for data analysis, like mean, median, mode, vari-
ance and standard-deviation but it lacks advanced methods. Therefore, we developed an
extension to link NetLogo directly to the statistical software GNU R [Thiele and Grimm,
2010]. There are two typical use cases of this extension that we had in mind while devel-
oping it. First, the integration of advanced statistical methods within the model itself and
second the integrated and immediate stepwise analysis of simulation results.

The first goal includes methods like regression analysis or just random numbers from
special random distributions. Imagine, for instance, that the amount of food intake of an
agent is dependent on the expectations for the future which is based on the experiences
of the past and current circumstances. Here, non-linear regression models could be fitted
to the past values and used to make the forecast. In such a case, the stepwise fitting of the
regression model and the forecast could be computed using GNU R and used by the NetLogo
simulation. This would require an interactive use of both software packages.

An example of the second intended use of our R-Extension of NetLogo is the analysis of
the spatial distribution of agents using spatial point pattern statistics like Ripley’s K. Another
example is the calculation of diversity indices. Furthermore, as R delivers advanced plotting
functionalities, the R-Extension can be used to extend the limited plotting capabilities of
NetLogo. Moreover, connections to all common databases could be established via GNU R.

By using the R-Extension, the modeller can save a lot of work and time by using R func-
tions instead of programming statistical analysis from scratch. This guarantees to use reli-
able functions implemented and tested by the R programmers/contributors and users. Be-
cause R is a standard tool in statistical analysis, listing the R functions used describes the
used methods comprehensively. Therefore, using the R-Extension keeps the NetLogo code
short, clear, traceable and reduces the chance of doing bugs.

The extension makes use of the rJava package for GNU R [Urbanek, 2013] and the Ex-
tension API of NetLogo. Via the rJava package, or more precisely the JRI library within the
rJava package, it is possible to create R data types from Java via the Java Native Interface
(JNI) and C. The NetLogo data types are accessed via the Extension API and converted into
R data types within the R-Extension. R commands are evaluated within the R-Extension and
return values are converted into NetLogo data types. Even NetLogo turtles, links, patches
and lists are supported as well as R vectors, lists and data frames.

The R-Extension adds nine new primitives to the NetLogo language for the interaction
between NetLogo and R and six additional primitives for debugging purposes. Table II.1
lists the different basic primitives.
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A nice, but often not recognized, feature is the r:interactiveShell primitive. If
NetLogo has been started via the shell/command line/MS-DOS prompt and uses the R-
Extension the user can redirect the connection to the underlying R session to the shell.
Then, the user can work directly in the R session, can access the variables created with the
R-Extension in NetLogo, can execute R commands and access newly created R variables
within NetLogo using the R-Extension (see Figure II.4).

Figure II.4.: NetLogo started from an MS-DOS prompt with calculation of Spearman’s
Rho over time using the R-Extension (on the right hand side); using the R-
Extension’s interactiveShell primitive to get access to the R session in the MS-
DOS prompt (on the left hand side) and checking the content of the turtles
variable created by the R-Extension in NetLogo as well as listing the content of
the R session.

Figure II.5 shows an example for the usage of the R-Extension in spatial statistics. The
point pattern of the agent positions is used to calculate the L-function (based on Ripley’s K)
with Monte-Carlo-Simulations for the null hypotheses test (complete spatial randomness).
For this, the agent positions are sent to an R data frame via the primitive r:putagentdf.
By using the R package spatstat [Baddeley and Turner, 2013] this agent positions data
frame is transformed into a planar point pattern object (ppp) and used as input for the
envelope function, which performs 99 replicated simulations (Monte-Carlo-Simulation) for
the hypotheses test. The point wise critical envelopes for L(r) are then plotted using the
standard plot function of R, which creates a grey band for the envelope with a dotted line
for the theoretical value under complete spatial randomness and a solid line for the observed
pattern. The code for this operation in NetLogo is shown in Listing II.5. In Figure II.5 you can
see that it is also possible to send the result of the envelope calculation back to NetLogo and
make a simple plot there, but without the nice grey bands and dotted lines. The NetLogo
code for this step, which requires some data transformations for the plot routine, can be
found in the examples which are delivered with the R-Extension.
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II.5. Extensions to NetLogo

Listing II.5: An example for the usage of the R-Extension. In the setup procedure some
turtles are created with a clustered spatial distribution. Furthermore, the R
package spatstat for spatial statistics is loaded. In the go_with_Rplot proce-
dure the turtles walk around randomly first. Then, the positions of the turtles
are sent to R into a data frame. This data frame is used to create a point pattern
object which is used to calculate the L-function with critical bands. The result
of the L-function calculation/simulation is plotted using R.

extensions [r]

to cluster_setup
; clear all
ca
r:clear
ask patches [ set pcolor 9.9]
random-seed 1234567
; load R package spatstat for spatial statistics
r:eval "library(spatstat)"
ask n-of 10 patches [
ask neighbors [
sprout 3 [
right random 360
forward random 2

]
]

]
end

to go_with_Rplot
tick
; let the turtles walk around randomly
ask turtles [
right random 360
forward random 4

]
; send agent variables into an R data frame
(r:putagentdf "agentset" turtles "who" "xcor" "ycor")
; create point pattern with vectors of x- and y-coordinates

of turtles and the
; dimension of the world
let revalstring (word "agppp <- ppp(agentset$xcor,

agentset$ycor, c("min-pxcor","max-pxcor"),
c("min-pycor","max-pycor"))")

r:eval revalstring
; calculate L-function with critical bands from 99

Monte-Carlo-Simulations
r:eval "Lsim <- envelope(agppp, Lest)"
; plot the L-function
r:eval "plot(Lsim, main=\"L function (based on Ripley’s K)\")"
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end

Figure II.5.: NetLogo GUI on the left, GNU R plot window called from NetLogo R-Extension
on the right; the results of the L-function calculation are sent back to NetLogo
and are visualized in a plot on the bottom of the NetLogo GUI as well.

The R-Extension is specific to the version number of GNU R/r-Java and NetLogo. It comes
with documentation (see Appendix C) and different examples as well as the source code
under the GNU GPL v2 open source license. It is available for download at the BerliOS
repository: http://netlogo-r-ext.berlios.de/. The extension is tested on Windows XP, Win-
dows Vista, Windows 7, Linux (Ubuntu, SuSe) and Apple Macintosh. It runs also on 64-bit
systems. Since the release at the beginning of 2010 until December of 2010, it was down-
loaded more than 300 times. The most frequent problem which has been reported was the
installation/configuration process. To create the connection to R, the user has to set two
environment variables, which turned out to be too difficult for some users.

II.5.3. Pygments Parser

Not a real extension but a small supporting tool is the NetLogo language definition for
Pygments [Pocco, 2010]. Pygments is an open source syntax highlighting engine written
in Python which takes source code and produces output in different formats that contain
syntax highlighting markup. Output formats include HTML, LaTeX, RTF, GIF, PNG, JPEG
and others. It can be used as a library or as a command-line tool.
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II.6. Outlook

The NetLogo language definition makes it possible to generate automatically NetLogo
model source code in different formats, as mentioned above, directly from the original
source file. The output looks like in the Procedures Tab of NetLogo with respect to the
colourization as well as the indentation and is therefore easily available and editable for
publications in text processing software or for using it on websites.

It is written as a Plug-In for Pygments with a lexer based on regular expressions and
keyword lists as well as a style definition for the colourization. It works for the primitives of
the bundled extensions as well as for the MultiView- and R-Extension.

The Plug-In includes a setup script which automatically adds the Plug-In to Pygments. A
command line call for creating an HTML output could look as shown in Listing II.6. The
user can choose between an embedded css-style (Cascading Style Sheet) definition within
the HTML file or without. It is possible to create a separate css-file based on the style
definition.

Listing II.6: An example for the usage of the Pygments NetLogo Plug-In to create an HTML
file (test1.html) from a NetLogo model file (test1.nlogo) with embedded css-
style (a) and separated css-file (b).

# a. with embedded css-style:
pygmentize -l NetLogo -O full,style=NetLogo -f html -o

test1.html test1.nlogo

# b. with extra css-file:
# b.I. Create the html file:
pygmentize -l NetLogo -f html -o test1.html test1.nlogo

# b.II. Export the style to css file:
pygmentize -f html -S NetLogo -a .syntax > netlogosyle.css

The Pygments Plug-In for NetLogo language is available at http://www.uni-goettingen.
de/de/72779.html (see also Appendix B).

II.6. Outlook

To further extend the functionality of NetLogo, which will help to strengthen its potential as
a standard tool, further tools for NetLogo are currently in preparation. One of these tools is
RNetLogo, a package for GNU R to include NetLogo simulations within R. This is the reverse
connection of the R-Extension with its own strength. It will overcome the difficulties in the
setup process of the R-Extension with the creation of environment variables and will have
the functionalities of the Mathematica Link for NetLogo described in Bakshy and Wilensky
[2007]. It could be used to establish a standard protocol for calibrating and analysing
ABMs. GNU R with its huge amount of packages is the ideal basis for designing simulation
experiments and analysing their results.

Another important functionality, which is currently missing in NetLogo, is a stepwise de-
bugger as mentioned by Railsback et al. [2006]. Such a tool is currently under development
and will fill this gap.
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Chapter III. Linking NetLogo and R

III.1.1. Abstract

A seamless integration of software platforms for implementing agent-based models and for
analysing their output would facilitate comprehensive model analyses and thereby make
agent-based modelling more useful. Here we report on recently developed tools for linking
two widely used software platforms: NetLogo for implementing agent-based models, and R
for the statistical analysis and design of experiments. Embedding R into NetLogo allows the
use of advanced statistical analyses, specific statistical distributions, and advanced tools for
visualization from within NetLogo programs. Embedding NetLogo into R makes it possible to
design simulation experiments and all settings for analysing model output from the outset,
using R, and then embed NetLogo programs in this virtual laboratory. Our linking tools have
the potential to significantly advance research based on agent-based modelling.

III.1.2. Introduction

Agent-based models (ABMs) are simulation models that explicitly represent individual
agents, which can be humans, institutions, or organisms with their traits and behaviour
[Grimm and Railsback, 2005, Gilbert, 2007, Squazzoni, 2012]. They are an established and
increasingly used tool in a wide range of research fields including social sciences, economics,
ecology and evolution [Thiele et al., 2011].

To learn as much as possible from ABMs, it would be desirable if they were routinely anal-
ysed in a comprehensive and structured way. However, in the ABM literature such analyses
are the exception rather than the rule. One reason seems to be that software platforms for
implementing ABMs and for statistical analysis are separated, so that thorough model anal-
ysis requires the cumbersome transfer of data via file output and input. Thorough model
analysis could be simplified if agent-based simulation platforms were embedded into sta-
tistical analysis tools. A seamless integration of software for implementation and analysis
would support, for example, the design of simulation experiments, the systematic storage
of simulation results, and the use of advanced statistics for analysing model outputs. Fur-
thermore, it is sometimes useful to use the functions provided by statistical software directly
within an ABM implementation, for example, specific random distributions, or advanced
graphical output.

Such a seamless link already exists between NetLogo [Wilensky, 1999] and Mathemat-
ica [Wolfram Research Inc., 2013]: the NetLogo-Mathematica link [Bakshy and Wilensky,
2007]. It would, however, also be desirable to link NetLogo with open source statistical
software. NetLogo, which was designed for implementing ABMs, has become an established
and widely used free software platform and language. It has a flat learning curve, includes
powerful software concepts, and is on the way to becoming a standard tool in ABM develop-
ment and prototyping [Railsback and Grimm, 2012]. Page et al. [2012] show that the use
of NetLogo has increased dramatically in recent years and it was the most frequently used
ABM platform in 2009.

We scanned agent-based modelling studies published between January 2010 and Jan-
uary 2012 in JASSS regarding the language or software platform used for implementation
(Figure III.1). In nearly one-third of the ABM studies where information about the lan-
guage/toolkit was given, NetLogo was used. Moreover, at the end of 2011, the NetLogo
source code was opened to the public under GPL license [Wilensky, 2011], increasing its
relevance as a scientific tool [Greve, 2003].
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Figure III.1.: Review of agent-based simulation studies published in JASSS between January
2010 and January 2012 regarding the language/software platform used for the
model implementation. Languages/platforms used less than three times are
summarized into "others", which are namely Delphi, Python, LISP, AnyLogic,
Fortran, JAS, PS-I, LEADSTO/TTL, Blanche and Cormas. "No info" means that
no information about the language/platform used was given in the article.
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On the statistics side, R [R Core Team, 2013a] is already the standard open-source soft-
ware for scientific statistical analysis as indicated, for example, by the large number of text-
books. There are currently more than 30 textbooks available on R [R Core Team, 2013b],
e.g., Crawley [2005]; Dalgaard [2008]; Zuur et al. [2009]. Furthermore, the R language
ranked 19th in the TIOBE Programming Community Index for the year 2011 and competes
with general purpose languages [Smith, 2012]. In doing so, it outpaced SAS, S, S-Plus, and
Matlab [Smith, 2011]. Due to its extensibility a huge number of packages exist which extend
the basic functionality of R or connect R to other software. Examples are the gam package
[Hastie, 2013] for fitting generalized additive models, the sna package [Butts, 2010] for
analysing social networks, or the survival package [Therneau, 2013] for survival analysis.
There are several so-called CRAN Task Views, where lists of available packages addressing
specific topics can be found, like "Statistics for the Social Sciences" [Fox, 2013] or "Com-
putational Econometrics" [Zeileis, 2014]. Two other Task Views of potential interest in the
context of social simulation are "Psychometric Models and Methods" [Mair and Hatzinger,
2013] and "Empirical Finance" [Eddelbuettel, 2013].

The purpose of this communication is to make agent-based modellers in the social sciences
aware of recently developed tools that allow them to link NetLogo with R. Two of these have
been described in more detail elsewhere [Thiele and Grimm, 2010, Thiele et al., 2012], but
the Rserve-Extension is new.

III.1.3. Embedding R in NetLogo

The R-Extension [Thiele and Grimm, 2010] and the Rserve-Extension of NetLogo have been
developed to make the functionality of R available in NetLogo. Both extensions make it
possible to send NetLogo variables to R and to get results from R back to NetLogo. They
include functions (called primitives/reporters in NetLogo language) for sending variable
values of agents to R, which are then transformed to appropriate R data structures. Potential
uses of these extensions of NetLogo are advanced plots provided by R, the calculation of
home ranges in ecological models, spatial statistics, network analysis, and the usage of
specific random distributions.

The difference between the R- and the Rserve-Extension is the underlying technique for
communicating with R. As shown in Figure III.2, the R-Extension uses a direct path via the
R package rJava [Urbanek, 2013a] whereas the Rserve-Extension communicates via a net-
work connection with an Rserve server (for details about Rserve see Urbanek, 2013b). Both
extensions share the same syntax, but the Rserve-Extension does not offer the possibility to
attach the underlying R session in an interactive R editor/console to NetLogo (called inter-
activeShell). The Rserve-Extension makes it possible to connect not only to local servers but
also to remote servers. This means that multiple users can share the same R installation via a
network connection and, for example, some basic data and custom functions can be supplied
via a central Rserve remote server. This functionality may be of interest for class rooms or
summer schools where the R-Extension is not to be configured on every computer or where
a team is working with large, centrally maintained datasets in R. Furthermore, Rserve can
be used simultaneously with the RNetLogo package (described in the next section).

After a successful installation, as described in the documentation, the R- and Rserve-
Extension can be included into a NetLogo model by pasting extensions [r] and
extensions [rserve], respectively, at the top of the Procedures Tab. For the Rserve-
Extension one has to connect to an Rserve server with the rserve:init primitive, first.
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Figure III.2.: Communication of NetLogo’s R- and Rserve-Extension with R. For the R-
Extension, NetLogo uses the extension to communicate directly with R’s rJava
package (A). The R-Extension locates R and the rJava/JRI package by using
environment variables of the operating system. For the Rserve-Extension, Net-
Logo uses a local network connection to communicate to an Rserve server run-
ning locally on the same machine (B) or one or multiple NetLogo clients use
the Rserve-Extension to connect to a remote Rserve server via a network con-
nection (C).
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After this, it is possible to send NetLogo variables to R using primitives like r:put,
r:putdataframe or r:putagent (for the Rserve-Extension just replace the r: part in
the primitives by rserve:). Assuming a NetLogo model contains two lists, mylist1 and
mylist2, with the same number of entries, a call of (r:putdataframe "df1" "v1"
mylist1 "v2" mylist2) would create an R data.frame with the name df1 and two
columns v1 and v2. The values of the columns would come from the values of the two
NetLogo lists. The same would be possible with agent variables. Assuming the NetLogo
turtles have two turtle-own variables v1 and v2, one could create a data.frame with the
same structure as above by executing (r:putagentdf "df1" turtles "v1" "v2").

To execute an R function there is the r:eval primitive available. To get a visual impres-
sion of the above created data.frame one could create a boxplot in R by executing r:eval
"boxplot(df1)". Furthermore, calculating a Spearman’s correlation coefficient on the
data.fame is possible by executing r:eval "cor <- corr.test(df1$v1, df1$v2,
method=\"spearman\")" in NetLogo.

To get values/variables from R into NetLogo there is the r:get reporter available.
For example, to use the result of the correlation analysis in NetLogo just execute r:get
"cor$estimate" to receive the correlation coefficient and r:get "cor$p.value" to
get the corresponding p-value.

It is also possible to get the result of an R function directly into NetLogo. For example,
a NetLogo list with ten random values following a Weibull distribution can be processed by
simply executing r:get "rweibull(10, shape=1)". This calls the rweibull function
of R and sends the result to NetLogo.

Some examples of use are included in the examples folder of the extensions and one ex-
ample is visualized in Figure III.3. The extensions are available for download at sourceforge:
http://r-ext.sourceforge.net and http://rserve-ext.sourceforge.net, respectively.

III.1.4. Embedding NetLogo in R

As experienced modellers know, it is much more time consuming and complicated to analyse
ABMs than to formulate and implement them. It therefore makes sense to use model anal-
ysis software as the primary working basis for simulations. The RNetLogo package [Thiele
et al., 2012] for R makes it possible to control and analyse NetLogo simulations from R.
NetLogo can be started in the so-called GUI mode or in the headless mode. The first option
opens the NetLogo Graphical User Interface (GUI). In this mode, the modeller can control
simulations from R as well as from the NetLogo GUI. In the headless mode, NetLogo runs in
the background without a GUI. In this case, it is possible to start several NetLogo sessions in
one R session.

The RNetLogo package has functions for loading models, sending commands from R to
NetLogo and reporting NetLogo variables to R. While using R, parameter values of the Net-
Logo program can be set, primitives, procedures and reporters can be executed, and values
of agents can be assigned to R variables. Agents can be created and even NetLogo model
source code can be extended and changed from within R.

Potential uses include the exploration of models (Figure III.4), the comparison of an-
alytical models with ABM implementations, simultaneous visualizations of different state
variables, and self-documentation and reporting of simulation experiments using tools like
Sweave [Leisch, 2002], odfWeave [Kuhn et al., 2012] or SWord [Baier, 2009]. Furthermore,
with the RNetLogo package and tools like RExcel [Heidberger and Neuwirth, 2009], NetL-
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Figure III.3.: Example application of the R-Extension to calculate Ripley’s L (from package
spatstat; Baddeley and Turner, 2013) for analysing the spatial distribution of
happy people based on the Segregation model [Wilensky, 1997b] from NetL-
ogo’s Model Library. The upper left window shows the interactiveShell editor
(an R console for using/accessing the underlying R session opened directly
from NetLogo; available since R-Extension version 1.0beta). The lower left
window is the R plot showing Ripley’s L-function, and on the right window is
the NetLogo interface.
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ogo simulations can be embedded into spreadsheets. RNetLogo is available for download at
RForge and CRAN.

Figure III.4.: Example application of the RNetLogo package for model exploration, here of
the Fire model [Wilensky, 1997a] from NetLogo’s Model Library (full example
can be found in the tutorial of the RNetLogo package). On the right hand side
is the basic R shell, on the upper left the NetLogo instance controlled by the R
shell, and on the lower left the R plot window with the aggregated output of
multiple runs for model exploration.

III.1.5. Conclusions

Agent-based models usually include a large number of entities, processes, variables, and
parameters quantifying relations between state variables. Therefore, in contrast to simple
mathematical models, simulation experiments are required to test the model’s implemen-
tation, to compare model output to data, patterns, and stylized facts [Meyer, 2011], and
to understand how model behaviour emerges. Such experiments fully correspond to real
experiments in empirical research: they need to be carefully designed and controlled, and
their output needs to be analysed thoroughly [Lorscheid et al., 2012].

Agent-based modelling has not yet adopted the professional attitude of experimenters.
Often, simulation experiments are designed ad hoc, are not comprehensive, and are not

58



III.1. Agent-Based Modelling: Tools for Linking NetLogo and R

well communicated [Schmolke et al., 2010]. A change in this situation will be an indicator
of the maturation of agent-based modelling as a scientific tool. To foster this development,
the next generation of modellers will need to be better trained in model analysis [Railsback
and Grimm, 2012, Squazzoni, 2012]. And, we need software tools that allow agent-based
modellers to make direct use of the vast amount of software available for model analysis.
This is the purpose of the tools we presented here.

III.1.6. Acknowledgements

We thank an anonymous reviewer for valuable comments on an earlier version of the paper.

III.1.7. References

A. Baddeley and R. Turner. Package ’spatstat’ Manual. R package version 1.35-0, 2013. URL
http://cran.r-project.org/web/packages/spatstat/. (last accessed 2014/01/06).

T Baier. SWordInstaller: SWord: Use R in Microsoft Word (Installer). R package version 1.0-2,
2009. URL http://cran.r-project.org/src/contrib/Archive/SWordInstaller/. (last accessed
2014/01/06).

E. Bakshy and U. Wilensky. Turtle Histories and Alternate Universes: Exploratory Modeling
with NetLogo and Mathematica. In M.J. North, c.M. Macal, and D.L. Sallach, editors,
Proceedings of the Agent 2007 Conference on Complex Interaction and Social Emergence,
pages 147–158. IL: Argonne National Laboratory and Northwestern University, 2007.

C.T. Butts. Package ’sna’ Manual. R package version 2.3-1, 2010. URL http://cran.r-project.
org/web/packages/sna/. (last accessed 2014/01/06).

M.J. Crawley. Statistics: An Introduction Using R. John Wiley & Sons, 2005.

P. Dalgaard. Introductory Statistics with R. Springer, New York, 2nd edition, 2008.

D. Eddelbuettel. CRAN Task View: Empirical Finance. Version 2013-12-20, 2013. URL http:
//cran.fyxm.net/web/views/Finance.html. (last accessed 2014/01/06).

J. Fox. CRAN Task View: Statistics for the Social Sciences. Version 2013-12-10, 2013. URL
http://cran.r-project.org/web/views/SocialSciences.html. (last accessed 2014/01/06).

N. Gilbert. Agent-Based Models. Quantitative Applications in the Social Sciences. Sage, Los
Angeles, CA, 2007.

G.C.F. Greve. Brave GNU World. Linux Magazine, 12:89–91, 2003. URL http://www.
linux-magazine.com/w3/issue/37/Brave_GNU_World.pdf. (last accessed 2014/08/07).

V. Grimm and S.F. Railsback. Individual-Based Modeling and Ecology. Princeton University
Press, Princeton, N.J., 2005.

T. Hastie. Package ’gam’ Manual. R package version 1.09, 2013. URL http://cran.r-project.
org/web/packages/gam/. (last accessed 2014/01/06).

R.M. Heidberger and E. Neuwirth. R Through Excel: A Spreadsheet Interface for Statistics,
Data Analysis, and Graphics. Springer, New York, 2009.

M. Kuhn, S. Weston, N. Coulter, P. Lenon, and Z. Otles. odfWeave: Sweave Processing of Open

59

http://cran.r-project.org/web/packages/spatstat/
http://cran.r-project.org/src/contrib/Archive/SWordInstaller/
http://cran.r-project.org/web/packages/sna/
http://cran.r-project.org/web/packages/sna/
http://cran.fyxm.net/web/views/Finance.html
http://cran.fyxm.net/web/views/Finance.html
http://cran.r-project.org/web/views/SocialSciences.html
http://www.linux-magazine.com/w3/issue/37/Brave_GNU_World.pdf
http://www.linux-magazine.com/w3/issue/37/Brave_GNU_World.pdf
http://cran.r-project.org/web/packages/gam/
http://cran.r-project.org/web/packages/gam/


Chapter III. Linking NetLogo and R

Document Format (ODF) Files. R package version 0.8.2, 2012. URL http://CRAN.R-project.
org/package=odfWeave. (last accessed 2014/01/06).

F. Leisch. Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis.
In W. Härdle and B. Rönz, editors, Compstat 2002 - Proceedings in Computational Statistics,
pages 575–580. Physica, 2002.

I. Lorscheid, B.-O. Heine, and M. Meyer. Opening the ’Black Box’ of Simulations: Increased
Transparency and Effective Communication Through the Systematic Design of Experi-
ments. Computational & Mathematical Organization Theory, 18(1):22–62, 2012.

P. Mair and R. Hatzinger. CRAN Task View: Psychometric Models and Methods. Version
2013-12-01, 2013. URL http://cran.r-project.org/web/views/Psychometrics.html. (last
accessed 2014/01/06).

M. Meyer. Bibliometrics, Stylized Facts and the Way Ahead: How to Build Good Social
Simulation Models of Science? Journal of Artificial Societies and Social Simulation, 14(4)
4, 2011. URL http://jasss.soc.surrey.ac.uk/14/4/4.html. (last accessed 2014/01/06).

C. Le Page, N. Becu, P. Bommel, and F. Bousquet. Participatory Agent-Based Simulation for
Renewable Resource Management: The Role of the Cormas Simulation Platform to Nur-
ture a Community of Practice. Journal of Artificial Societies and Social Simulation, 15(1)
10, 2012. URL http://jasss.soc.surrey.ac.uk/15/1/10.html. (last accessed 2014/01/06).

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, 2013a. URL http://www.r-project.org/. (last accessed
2014/01/06).

R Core Team. Book Related To R, 2013b. URL http://www.r-project.org/doc/bib/R-books.
html. (last accessed 2014/01/06).

S.F. Railsback and V. Grimm. Agent-Based and Individual-Based Modeling: A Practical Intro-
duction. Princeton University Press, 2012.

A. Schmolke, P. Thorbek, D.L. DeAngelis, and V. Grimm. Ecological Modelling Support-
ing Environmental Decision Making: A Strategy for the Future. Trends in Ecology and
Evolution, 25:479–486, 2010.

D. Smith. R Overtakes SAS and Matlab in Programming Language Popular-
ity. Revolutions Blog, 2011. URL http://blog.revolutionanalytics.com/2011/02/
r-overtakes-sas-and-matlab-in-programming-language-popularity.html. (last accessed
2014/01/06).

D. Smith. R Jumps from 25 to 19 in Annual TIOBE Rankings of Programming Language
Popularity. Revolutions Blog, 2012. URL http://blog.revolutionanalytics.com/2012/01/
r-jumps-from-25-to-19-in-tiobe-rankings.html. (last accessed 2014/01/06).

F. Squazzoni. Agent-Based Computational Sociology. John Wiley & Sons, 2012.

T. Therneau. Package ’survival’ Manual. R package version 2.37-4, 2013. URL http://cran.
r-project.org/web/packages/survival/. (last accessed 2014/01/06).

J.C. Thiele and V. Grimm. NetLogo Meets R: Linking Agent-Based Models with a Toolbox
for Their Analysis. Environmental Modelling & Software, 25(8):972–974, 2010.

60

http://CRAN.R-project.org/package=odfWeave
http://CRAN.R-project.org/package=odfWeave
http://cran.r-project.org/web/views/Psychometrics.html
http://jasss.soc.surrey.ac.uk/14/4/4.html
http://jasss.soc.surrey.ac.uk/15/1/10.html
http://www.r-project.org/
http://www.r-project.org/doc/bib/R-books.html
http://www.r-project.org/doc/bib/R-books.html
http://blog.revolutionanalytics.com/2011/02/r-overtakes-sas-and-matlab-in-programming-language-popularity.html
http://blog.revolutionanalytics.com/2011/02/r-overtakes-sas-and-matlab-in-programming-language-popularity.html
http://blog.revolutionanalytics.com/2012/01/r-jumps-from-25-to-19-in-tiobe-rankings.html
http://blog.revolutionanalytics.com/2012/01/r-jumps-from-25-to-19-in-tiobe-rankings.html
http://cran.r-project.org/web/packages/survival/
http://cran.r-project.org/web/packages/survival/


III.1. Agent-Based Modelling: Tools for Linking NetLogo and R

J.C. Thiele, W. Kurth, and V. Grimm. Agent- and Individual-Based Modeling with NetLogo:
Introduction and New NetLogo Extensions. In K. Römisch, A. Nothdurft, and U. Wunn,
editors, 22. Tagung der Sektion Forstliche Biometrie und Informatik des Deutschen Verban-
des Forstlicher Forschungsanstalten und der Arbeitsgemeinschaft Ökologie und Umwelt der
Internationalen Biometrischen Gesellschaft - Deutsche Region, 20-21th September 2010 in
Göttingen (Germany), Die Grüne Reihe, pages 68–101, 2011.

J.C. Thiele, W. Kurth, and V. Grimm. RNetLogo: An R Package for Running and Exploring
Individual-based Models Implemented in NetLogo. Methods in Ecology and Evolution, 3:
480–483, 2012.

S. Urbanek. Package ’rJava’ Manual. R package version 0.9-6, 2013a. URL http://cran.
r-project.org/web/packages/rJava/. (last accessed 2014/01/06).

S. Urbanek. Package ’Rserve’ Manual. R package version 1.7-3, 2013b. URL http://cran.
r-project.org/web/packages/Rserve/. (last accessed 2014/01/06).

U. Wilensky. NetLogo Fire Model, 1997a. URL http://ccl.northwestern.edu/netlogo/
models/Fire. (last accessed 2014/01/06).

U. Wilensky. NetLogo Segregation Model, 1997b. URL http://ccl.northwestern.edu/
netlogo/models/Segregation. (last accessed 2014/01/06).

U. Wilensky. NetLogo. Center for Connected Learning and Computer-Based Modeling, 1999.
URL http://ccl.northwestern.edu/netlogo. (last accessed 2014/01/06).

U. Wilensky. Open Source, Message on the NetLogo Mailing List at October 27th, 2011,
2011. URL http://groups.yahoo.com/group/netlogo-users/message/13238. (last ac-
cessed 2014/01/06).

Wolfram Research Inc. Mathematica, Version 9.0, 2013. URL http://www.wolfram.com/
mathematica/. (last accessed 2014/01/06).

A. Zeileis. CRAN Task View: Computational Econometrics. Version 2014-01-01, 2014. URL
http://cran.r-project.org/web/views/Econometrics.html. (last accessed 2014/01/06).

A.F. Zuur, E.N. Ieno, and E. Meesters. A Beginner’s Guide to R. Use R. Springer, 2009.

61

http://cran.r-project.org/web/packages/rJava/
http://cran.r-project.org/web/packages/rJava/
http://cran.r-project.org/web/packages/Rserve/
http://cran.r-project.org/web/packages/Rserve/
http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/models/Segregation
http://ccl.northwestern.edu/netlogo/models/Segregation
http://ccl.northwestern.edu/netlogo
http://groups.yahoo.com/group/netlogo-users/message/13238
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
http://cran.r-project.org/web/views/Econometrics.html


III.2. NetLogo Meets R: Linking Agent-Based Models With a Toolbox for Their
Analysis

This manuscript is published as: JC Thiele and V Grimm [2010]. NetLogo Meets R: Link-
ing Agent-Based Models With a Toolbox for Their Analysis. Environmental Modelling &
Software (25): 972-974.

62



III.2. NetLogo Meets R: Linking Agent-Based Models With a Toolbox...

Authorship

• Volker Grimm wrote the abstract, introduction and discussion of the manuscript and
supported the writing of the other parts.

63
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III.2.1. Abstract

NetLogo is a software platform for agent-based modelling that is increasingly used in eco-
logical and environmental modelling. So far, for comprehensive analyses of agent-based
models (ABMs) implemented in NetLogo, results needed to be written to files and evalu-
ated by using external software, for example R. Ideally, however, it would be possible to call
any R function from within a NetLogo program. This would allow sophisticated interactive
statistical analysis of model structure and dynamics, using R functions and packages for
generating certain statistical distributions and experimental design, and for implementing
complex descriptive submodels within ABMs. Here we present an R extension of NetLogo.
It consists of only nine new NetLogo primitives for sending data between NetLogo and R
and for calling R functions (six additional primitives for debugging). We demonstrate the
usage of the R extension with three short examples.
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III.2.2. Introduction

Agent-based models (ABMs) have become an established tool in ecological and environmen-
tal modelling [Huse et al., 2002, Porté and Bartelink, 2002, Parker et al., 2003, Bousquet
and Page, 2004, Grimm and Railsback, 2005]. In these models, individual agents, which
can be organisms, humans, or institutions, and their behaviour are represented explicitly.
ABMs are used when one or more of the following individual-level aspects are considered
important for explaining system-level behaviour: heterogeneity among individuals [Uch-
manski, 2000], local interactions, and adaptive behaviour which is based on decision mak-
ing [Grimm, 2008]. Implementing and analysing ABMs can be a challenge because even
simple ABMs can generate complex behaviours. For implementing ABMs, various software
platforms have been developed [Railsback et al., 2006] which provide specific libraries or
programming languages. One of these platforms, NetLogo [Wilensky, 1999], has become
very popular in recent years. Originally being more designed for teaching, it is increasingly
used for research. It is easy to learn, provides powerful concepts for implementing ABMs,
and it has continuously been supported by its developers and a large and growing user
community for more than ten years. NetLogo also provides tools for analysing ABMs. For
interactive work, a suite of elements for a graphical user interface exists that allow changes
of parameters and settings, visual inspection [Grimm, 2002] of the model world’s structure
and dynamics, and summary outputs. For batch simulations, the "BehaviorSpace" tool al-
lows simulations to be run repeatedly for different parameter combinations and also allows
individual- and system-level output to be written to files. These files are then further anal-
ysed with other software, for example, Excel or statistics software packages such as R [R
Core Team, 2013]. Usually, ABM developers using NetLogo would develop and test their
model and program using the interactive mode of analysis and only later, once the model is
considered good enough to be analysed more thoroughly, would they run simulation experi-
ments via batch mode and use, e.g., R to analyse the results of these experiments. However,
only being able to fully use the statistics and analysis toolbox provided by toolboxes like R
in the batch mode can limit model development, testing, and understanding. It would be
desirable also to have access to the full toolbox in the interactive mode, so that the direct
interaction with the model would include the option of calculating complex summary statis-
tics or other tools for experimental design and analysis provided by R. For example, if we
want to understand how model rules and parameters affect the spatial distribution of agents,
it would be good to see immediately, without the detour via output files and using exter-
nal programs, how point pattern statistics such as Ripleyś K respond. Here we present an
extension of NetLogo that allows any R function (except functions with multi-line string re-
turn values) to be called directly from NetLogo programs (see Figure III.5 and Listing III.1).
This extension is based on NetLogo’s interface (Extension API) for user defined extensions
programmed in Java.

Listing III.1: Sending coordinates of NetLogo agents (turtles) to R and plotting them.

extensions [r]
...
;; send turtles variables "who", "xcor" and "ycor" to a new R

list with the name "agentlist"
(r:putagent "agentlist" turtles "who" "xcor" "ycor")
;; open the plot window of R
r:eval "Windows()"
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Figure III.5.: An example of the interaction between NetLogo and R. Coordinates of NetLogo
agents (on the left hand side) were submitted to R and plotted there (on the
right) using the new primitive "r:putagent".

;; plot the x- and y-positions of the turtles in the R window
r:eval "plot(agentlist$xcor, agentlist$ycor)"
...

III.2.3. New Primitives

NetLogo’s programming language consists of a large number of commands, or "primitives".
Our R extension adds only nine primitives (see documentation in Appendix C and Table III.1)
and six additional primitives for debugging (see Table III.2). The new primitives provide
means for sending data from NetLogo to R and vice versa, for evaluating any R command
(with the exception mentioned above) and for observing the processes.
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III.2.4. Examples

Three examples illustrate how our R-Extension of NetLogo can be used. The NetLogo pro-
gram code in the listings contains only the parts where the R-Extension is used. The com-
plete programs are provided in the examples folder of our R-Extension of NetLogo.

In the first example, (Listing III.2) the R-Extension is used in the setup procedure to get
random values from a Beta and a Weibull distribution, which are not available in NetLogo.
In the go procedure the correlation coefficient (Spearman’s rho) between the turtle’s weight
and height variables is calculated and plotted.

Listing III.2: Example 1: Random values and Spearman’s rho (correlation).

extensions [r]

turtles-own [weight height]

to setup
...
;; create turtles with weight and height randomly chosen from

Weibull and Beta distribution
crt 40
[
set weight r:get "rweibull(1,1)"
set height r:get "rbeta(1,1,1)"

]
end

to go
tick
...
;; create R list from turtles
(r:putagent "turtles" turtles "weight" "height")

;; calculate correlation between weight and height
r:eval "c <- cor.test(turtles$weight,turtles$height, method =

'spearm', alternative = 'g'"
let rho r:get "c$p.value"
let p r:get "c$estimate"
...

end

The second example makes use of the R package adehabitat [Calenge, 2006] (List-
ing III.3). Three animals move for 100 time steps and the points visited are stored in a
list. These lists are transformed into an R data-frame, which is used for the home range
analysis. The points of vertices of the home range polygons are sent back to NetLogo and
plotted for visualization. In a second step, the adehabitat package is used to calculate the
size of the home range area depending on different home range levels, i.e., the percentage
of removed locations for the estimation of the home range polygon. The higher the level,
the lower the removal percentage (see documentation of adehabitat package for details).
The results are visualized in a NetLogo plot (Figure III.6).
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(a) (b)

(c)

Figure III.6.: Using R function mcp from package adehabitat to calculate home ranges from
animal movement data generated by a NetLogo model. (a): movement path of
three animals; (b): home ranges as determined by the R package adehabitat
for home range level=95, i.e., 5% of the visited locations have been removed
for the home range estimation; (c): area of the estimated home range polygons
at different home range levels (the higher the level, the lower the percentage
of removed locations farthest away from the barycenter of the home range; see
documentation of adehabitat package for details).
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Listing III.3: Example 2: Home Range Analysis with NetLogo and R.

extensions [r]
...
to calc-homerange
;; load R package adehabitat
r:eval "library(adehabitat)"

;; create an empty data-frame
r:eval "turtles <- data.frame()"

;; merge the Name-, X- and Y-lists of all animals to one
data-frame

ask animals
[
(r:putdataframe "turtle" "X" X "Y" Y)
r:eval (word "turtle <- data.frame(turtle, Name = '" Name

"')")
r:eval "turtles <- rbind(turtles, turtle)"

]

;; split the data-frame into coordinates and factor variable
r:eval "xy <- turtles[,c('X','Y')]"
r:eval "id <- turtles$Name"

;; calculate home range
r:eval "homerange <- mcp(xy, id)"
...

end

to mark-homeranges
...
ask animals
[
pen-up

;; get the points of the home range polygon for the current
animal

r:eval (word "temp <- subset(homerange, ID=='"Name"')")
let tempX r:get "temp$X"
let tempY r:get "temp$Y"
let tempXY (map [list ?1 ?2] tempX tempY)
...

]
end

to plot-area
...
let precstart 20
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let precincre 5

;; calculate the size of the home range depending on home
range level

r:eval (word "area <- mcp.area(xy, id, unout='m2', percent =
seq(" precstart ",100, by = " precincre "), plotit=FALSE)")

...
end

In the third example we used the R package spatstat [Baddeley and Turner, 2013] to
analyse spatial point patterns. It is possible to calculate the L-function (based on Ripley’s K)
for the spatial distribution of the turtles for every time step of the simulation together with
the theoretical Poisson function and confidence bands of Complete Spatial Randomness
(CSR) from Monte-Carlo-Simulations (Listing III.4). In the setup procedure, turtles are
created with random positions. In each simulation step (go procedure) turtles move around
randomly. The new positions are sent to R into a data-frame and are transformed into a
point pattern. The L-function is then calculated for this point pattern and the results are
sent back to NetLogo, where they are transformed and plotted. For illustration purposes we
created three extreme scenarios directly in the setup procedure (Figure III.7).

Listing III.4: Example 3: Point pattern analysis with NetLogo agents.

extensions [r]

to setup
...
;; load R package spatstat for spatial statistics
r:eval "library(spatstat)"
...

end

to go
...
;; send agent variables into an R data-frame
(r:putagentdf "agentset" turtles "who" "xcor" "ycor")

;; create point pattern with vectors of x- and y-coordinates
of turtles and the dimensions of the window/world

let revalstring (word "agppp <- ppp(agentset$xcor,
agentset$ycor, c(" min-pxcor "," max-pxcor "), c("
min-pycor "," max-pycor "))")

r:eval revalstring

;; calculate L-function with simulation of goodness-of-fit
envelope

r:eval "Lsim <- envelope(agppp, Lest)"

;; get results from R
let r r:get "Lsim$r"
let obs r:get "Lsim$obs"
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(a) (b)

(c) (d)

(e) (f)

Figure III.7.: Using R functions Lest and envelope from the package spatstat to calculate
the L-function (based on Ripley’s K) with confidence envelopes of three differ-
ent point patterns (spatial distributions of turtles in a NetLogo model). On the
left the analysed point patterns are shown, on the right side the plots of the
corresponding L-functions (values of L(r) vs. different radii r). The L-function
was calculated using R and plotted with NetLogo. The area between the dark
grey lines marks the 98% confidence envelope of the L-function under com-
plete spatial randomness (CSR) calculated from 99 Monte-Carlo-Simulations;
the light gray line shows the theoretical L-function under CSR; the black line
shows the L-function for the observed pattern. (a): turtles are distributed ran-
domly in space using uniformly distributed random values; (b): the values of
the L-function for the spatial distribution of the turtles do not deviate from
the envelope of the CSR at almost all distances (r), i.e., there is no significant
deviation from CSR ; (c): nearly regular distribution of turtles; (d): there are
significant differences to CSR with a tendency to regularity (obs < theo) espe-
cially at short distances, whereby the steps of the function values correspond to
the horizontal, vertical and diagonal distances between the turtles; (e): turtles
are clustered; (f): the black line (obs) shows a significant deviation from the
CSR envelope with a tendency to aggregation (obs > theo) over all radii.
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let theo r:get "Lsim$theo"
let high r:get "Lsim$hi"
let low r:get "Lsim$lo"
...

end

III.2.5. Concluding Remarks

Both NetLogo and R are powerful tools with growing user communities. In the fields of
agent-based modelling and statistics, respectively, they are increasingly considered as stan-
dard software platforms. Combining these tools to tackle environmental and ecological
problems provides many benefits. NetLogo users can utilize the power of R without need-
ing to communicate via data files. This offers new and fascinating opportunities to analyse
agent-based models interactively and to implement submodels of, for example, delineating
home ranges that are then sensed by the model animals. R users, on the other hand, may
be motivated to use NetLogo in cases where R is too limited to implement full-fledged ABMs
[Petzoldt and Rinke, 2007].

Our R extension requires users to be familiar with both NetLogo and R, but does not add
further complexity. The interface created by our extension consists of only additional nine
NetLogo primitives (six additional for debugging), dealing with the communication between
NetLogo and R via data and with calling R functions. Our extension will require future
updates since the implementation and overall rationale of R and, in particular, NetLogo are
continually changing. We will of course attempt to perform these updates ourselves, but
since our extension is based on open-source Java code, this process does not depend on us.
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III.3.1. Abstract

1. NetLogo is a free software platform for implementing individual-based and agent-based
models. However, NetLogo’s support of systematic design, performance and analysis of
simulation experiments is limited. The statistics software R includes such support.
2. RNetLogo is an R package that links R and NetLogo: any NetLogo program can be
controlled and run from R and model results can be transferred back to R for statistical
analyses. RNetLogo includes 16 functions, which are explained and demonstrated in the
user manual and tutorial. The design of RNetLogo was inspired by a similar link between
Mathematica and NetLogo.
3. RNetLogo is a powerful tool for making individual-based modelling more efficient and
less ad hoc. It links two fast growing user communities and constitutes a new interface for
integrating descriptive statistical analyses and individual-based modelling.

III.3.2. Introduction

Individual-based models (IBMs) are simulation models that explicitly represent individual
organisms and how they interact with each other and their environment [Grimm and Rails-
back, 2005, Thiele et al., 2011]. IBMs are an established and widely used tool in ecology
and evolution [DeAngelis and Mooij, 2005]. A remaining challenge, however, is that anal-
yses of many IBMs are still more or less superficial [Grimm, 1999, Grimm and Railsback,
2005, Lorscheid et al., 2011]. Much more could be learned from IBMs if they would be
embedded in a rigorous framework for designing simulation experiments [Oh et al., 2009],
storing simulation results in a systematic way and using statistical toolboxes for analysing
these results.

RNetLogo is designed for this purpose. It is a package for the free statistics software R
[R Core Team, 2013] which allows running and analysing IBMs that are implemented in
NetLogo [Wilensky, 1999], a free software platform for implementing individual-based or
agent-based models. Both R and NetLogo are increasingly used in their fields, slowly but
surely turning into standard software platforms which are also the basis for training the next
generation of researchers [see, e.g., Bolker, 2008, Railsback and Grimm, 2012].

Linking NetLogo with R is therefore desirable. One such link already exists: the R-
Extension of NetLogo [Thiele and Grimm, 2010]. It allows calling any R command from
a NetLogo program. It is mainly designed for using R commands to support the implemen-
tation of IBMs, or their sub models. For example, if a population model of a territorial
animal requires, while the model is running, to calculate home range sizes based on the
animals’ movement, existing R packages for calculating home range sizes can be used [e.g.,
Calenge, 2006]. Or, if random numbers are needed from probability distributions which are
not provided by NetLogo, they can easily be imported from R. There are, however, good rea-
sons for linking R and NetLogo also the other way round, i.e. to call NetLogo programs and
commands from R: the R user community is much larger than the NetLogo user community
so it makes sense to provide a tool that starts with R; the R-Extension can, for technical rea-
sons, be cumbersome to install whereas RNetLogo is as easy to load as any other R package;
RNetLogo can be used to create self-documented simulation experiments and reports using
Sweave [Leisch, 2002], SWord [Baier, 2009] or odfWeave [Kuhn et al., 2012]; RNetLogo
opens a way to integrate NetLogo simulation into spreadsheets using RExcel [Heidberger
and Neuwirth, 2009], ROOo [Drexel, 2011] or R4Calc [Gryc, 2008].
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RNetLogo is not designed for using R within NetLogo programs but for running and ex-
ploring simulation experiments of a given NetLogo program. R is already widely used to
analyse file output of simulation models, including those implemented in NetLogo. However,
a seamless integration of both tools would facilitate the combined use of R and NetLogo.
Such a seamless integration was already the reason for linking Mathematica [Wolfram Re-
search Inc., 2013] and NetLogo [Bakshy and Wilensky, 2007], which was designed to make
use of the Mathematica tools for "advanced import capabilities, statistical functions, data
visualization and document creation. With the NetLogo-Mathematica link, you can run all
of these tools side-by-side with NetLogo" [Bakshy and Wilensky, 2007], RNetLogo’s scope is
virtually the same: all these tools support systematic and comprehensive analyses of model
behaviour.

NetLogo itself includes a flexible tool for performing experiments on models, Behavior-
Space [Shargel and Wilensky, 2002], which is routinely used by NetLogo users. However,
links to Mathematica or R provide direct access to a wide array of additional ready-to-use
powerful tools which go beyond BehaviorSpace’s scope.

For an overview of RNetLogo, its main functions are listed in Table III.3. Basic usage
examples of the different functions are shown in the examples section of the manual pages
and are included in the examples/code_samples folder of the package. In the following we
briefly describe typical example applications. These and further examples are included in
the tutorial and the examples/applications folder of the package.
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III.3.3. Examples

Exploring models Simulation experiments can be defined, run and evaluated using RNet-
Logo for any existing NetLogo program (Figure III.8). For this, first model and simulation
parameters are set and then the central go procedure, which contains the schedule of an
IBM, is run for a given number of time steps or repetitions. Simulation output can be con-
veniently stored in R data.frames, lists or matrices and then processed for visualization and
statistical analyses. Running simulation experiments via R has the advantage that modellers
more easily and directly adopt the perspective of experimentalists, which will facilitate more
thorough model analyses than with homespun designs programmed in NetLogo. R contains
a large number of powerful packages that can be used for analysing simulation models (see,
for example, the R function and package listings of Groemping [2013] for Design of Ex-
periments, Simpson [2013] for the analysis of ecological and environmental data, Montana
[2013] for statistical genetics, Bivand [2013] for the analysis of spatial data, Allignol and
Latouche [2011] for the analysis of survival data or Hyndman and Zeileis [2013] for the
analysis of time series data).

Linking to analytical models For many ecological and evolutionary questions, it can be
helpful to compare output from simulation models to analytical approximations. By using
R packages for solving analytical models, for example, Ryacas [Goedman et al., 2012], this
can be performed directly via RNetLogo.

Visualization R comes with all kinds of graphics packages which facilitate visual analyses
of model output. In particular, it can be used to overcome the limitation of NetLogo that
only one instance of the model world can be displayed. If a model’s grid cells and individuals
have several state variables, which usually is the case, it is helpful to visualize them simul-
taneously in separate panels, plus any summary statistics of interest. If in addition such
visualizations for a given time are stored for entire simulations, modellers can "slide" forth
and back through the output of a simulation run, thereby developing a better understanding
of spatio-temporal dynamics and how they are related to aggregated output variables. The
RNetLogo tutorial includes such an example.

Database For complex models, exploratory simulations can create so much output data
that it can be difficult to store them in a logical, consistent and easily accessible way. Es-
pecially the small, file-based SQLite [Hipp, 2011] database enables the modeller to save
model results together with model metadata (like inputs such as parameter sets) in a single
file. R comes with all kinds of database management packages, which can be used by the
individual-based modeller via RNetLogo. This later allows for the use of database query
language (SQL) to extract the right data needed for further analyses.

III.3.4. Conclusions

RNetLogo links two "worlds" and related software platforms. R is a free and open source
software and has turned into a standard tool, which is clearly indicated by the growing
number of R textbooks [Crawley, 2007, Bolker, 2008, Dalgaard, 2008]. In RNetLogo, R
represents the world of statistics, including design of experiments, visualizations and all
kinds of statistical inference. R can also be used for implementing simple simulations [e.g.,
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Figure III.8.: R Console (on the left) with loaded RNetLogo package and a NetLogo (on the
upper right) instance started in interactive mode with Graphical User Interface.
The Fire model [Wilensky, 1997] was loaded from within R and the model
output (percentage of burned forest patches) has been evaluated over different
initial forest density values from 1% to 100% (R plot window A). The critical
range between 30% and 60% of forest density is then evaluated with repeated
simulations to take into account stochasticity in the model, with a step width
of 5% and 10 replications (R plot window B) and with a step width of 1% and
20 replications (R plot window C). The full code for this analysis is shown in
red in the RConsole (29 lines of code).
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Petzoldt and Rinke, 2007] but does not provide specific support for making model develop-
ment and simulation efficient. NetLogo was originally developed as a teaching tool, but is
increasingly used for research. In RNetLogo, it represents the world of individual-based and
agent-based modelling, which has considerably matured over the last 10 years but still has
not yet established a culture of systematic design and analysis of simulation experiments.

RNetLogo is easy to install and use and thereby opens R and NetLogo users’ access to each
others’ world and software platform. This, we hope, will lead to more rigorous model anal-
yses and, thereby, to making better use of individual- and agent-based models for answering
theoretical and applied questions in ecology and evolution.

The RNetLogo package is available on CRAN (http://cran.r-project.org/web/packages/
RNetLogo) and R-Forge (http://rnetlogo.r-forge.r-project.org). This package includes the
aforementioned user manual and tutorial. See Appendix E for installation and quick start
usage instructions.
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III.4.1. Abstract

The RNetLogo package delivers an interface to embed the agent-based modelling platform
NetLogo into the R environment with headless (no graphical user interface) or interac-
tive GUI mode. It provides functions to load models, execute commands, push values,
and to get values from NetLogo reporters. Such a seamless integration of a widely used
agent-based modelling platform with a well-known statistical computing and graphics en-
vironment opens up various possibilities. For example, it enables the modeller to design
simulation experiments, store simulation results, and analyse simulation output in a more
systematic way. It can therefore help close the gaps in agent-based modelling regarding
standards of description and analysis. After a short overview of the agent-based modelling
approach and the software used here, the paper delivers a step-by-step introduction to the
usage of the RNetLogo package by examples.

III.4.2. Introduction

Agent- and individual-based modelling

Agent-based models (ABMs) or individual-based models (IBMs), as they are called in ecol-
ogy and biology, are simulation models that explicitly represent individual agents, which can
be, for example, humans, institutions, or organisms with their traits and behaviour [Grimm
and Railsback, 2005, Gilbert, 2007, Thiele et al., 2011]. A key characteristic of this mod-
elling approach is that simulation results emerge from the more or less complex interactions
among the agents. Therefore, such models are useful when local interactions on the micro
level are essential for the description of patterns on the macro level.

The origins of the ABM approach go back to the late 1970s [e.g., Hewitt, 1976] with
the development of so-called multi-agent systems (MASs) in computer science as a part
of the distributed artificial intelligence (DAI) research area [Green et al., 1997, Sycara,
1998]. Their wider use in computer science began only in the 1990s [Luck et al., 2003,
Wooldridge, 2005, Weiss, 1999]. Definitions of the term MAS and what an agent is, can
be found for example in Wooldridge [2005] and Jennings [2000]. Examples for the use
of MASs with intelligent agents in the field of computer science include computer games,
computer networks, robotics for manufacturing, and traffic-control systems [for examples,
see Oliveira, 1999, Luck et al., 2003, Shen et al., 2006, Moonen, 2009].

With increasing importance of questions about coordination and cooperation within the
MASs the connections to social sciences arose [Conte et al., 1998] and the field of agent-
based social simulation (ABSS), that is, an agent-based modelling approach as part of com-
putational sociology became a "counter-concept" to the classical top-down system dynamics
and microsimulation approaches [Gilbert, 1999, Squazzoni, 2010]. ABSS is mainly used
for theory testing and development [Macy and Willer, 2002, Conte, 2006] and applied to
simulations of differentiation, diffusion, and emergence of social order in social systems
[for examples, see listings in Macy and Willer, 2002, Squazzoni, 2010] as well as to ques-
tions about demographic behaviour [Billari and Prskawetz, 2003]. The most famous models
in social sciences are Schelling’s segregation model [Schelling, 1969] and the Sugarscape
model of Epstein and Axtell [1996].

Strongly related to the development of ABMs in social sciences is the establishment of the
ABM approach in economics, which is called agent-based computational economics (ACE)
and related to the field of cognitive and evolutionary economics. The aims of ACE can be
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divided into four categories: empirical understanding, normative understanding, qualita-
tive insight as well as theory generation and methodological advancement [for details, see
Tesfatsion, 2006]. It was applied, for example, to the reproduction of the classical cobweb
theorem [e.g., Arifovic, 1994], to model financial/stock markets [see LeBaron, 2000, for a
review] as well as to the simulation of industry and labour dynamics [e.g., Leombruni and
Richiardi, 2004].

In contrast to ABSS and ACE, the agent-based modelling approach has a slightly longer
tradition in ecology [Grimm and Railsback, 2005]. The development of so called individual-
based models is less closely related to the developments of MASs, because ecologists early
became aware of the restrictions in classical population models (differential equation mod-
els) and looked for alternatives. Over the last three to four decades hundreds of IBMs were
developed in ecology [DeAngelis and Mooij, 2005]. For reviews see, for example, Grimm
[1999] and DeAngelis and Mooij [2005].

Besides these four main research areas, there are many other disciplines in which ABMs
are increasingly used, often within an interdisciplinary context. Examples include ecologi-
cal economics [e.g., Heckbert et al., 2010], marketing/socio-psychology [e.g., North et al.,
2010], archaeology/anthropology [e.g., Griffin and Stanish, 2007], microbiology [e.g., Fer-
rer et al., 2008], biomedicine/epidemiology [e.g., Carpenter and Sattenspiel, 2009], crim-
inology [strongly related to ABSS, e.g., Malleson et al., 2010] and land-use management
[e.g., Matthews et al., 2007].

Links to statistics

Links to statistics can be found in agent-based modelling along nearly all stages of the mod-
elling cycle. Often, models are developed on the basis of empirical/field data. This gives
the first link to statistics as data are analysed with statistical methods to derive patterns, fit
regression models and so on to construct and parametrize the rules and to prepare input as
well as validation data.

Often, agent-based model rules depend on statistical methods applied during a simulation
run. In very easy cases, for example, animal reproduction could depend on the sum of the
food intake in a certain period but it is also possible for agent behaviours to be based on
correlation, regression, network, point pattern analysis etc.

The third link comes into play when the model is formulated and implemented and some
parameters of the model are unknown. Then, methods of inverse modelling with different
sampling schemes, Bayesian calibration, genetic algorithms and so on can be used to obtain
feasible parameter values.

In the next stage, the model application, methods like uncertainty and sensitivity analysis
provide important tools to gain an understanding of the systems’ behaviour and functioning,
i.e., to open the black box of complexity.

The last link to statistics is the further analysis of the model output using descriptive as
well as inferential statistics. Depending on the type of model, this can include correlation
analysis, hypothesis testing, network analysis, spatial statistics, time series analysis, survival
analysis etc.

The focus in this article is on those parts where statistical methods are applied in combi-
nation with the model runs.
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NetLogo

Wilensky’s NetLogo [Wilensky, 1999] is an agent-based modelling tool developed and main-
tained since 1999 by the Center for Connected Learning and Computer-Based Modeling at
Northwestern University, Illinois. It is an open-source software platform programmed in
Java and Scala and especially designed for the development of agent-based simulation mod-
els. It comes with an integrated development and simulation environment. It provides many
predefined methods (so-called primitives and reporters) for behavioural rules of the agents.
Because it has a Logo-like syntax and standard agent types (turtles, patches, links), in com-
bination with a built-in GUI, it is very easy to learn. Due to its simplicity and relatively large
user community, it is becoming the standard platform for communicating and implementing
ABMs that previously has been lacking.

For an introduction to NetLogo see its documentation [Wilensky, 2013]. An introduction
into agent-based modelling using NetLogo can be found, for example, in Railsback and
Grimm [2012] or Wilensky and Rand [2014].

R

R [R Core Team, 2014a] is a well-known and established language and open source envi-
ronment for statistical computing and graphics with many user-contributed packages.

For NetLogo users not yet familiar with R: R is very well documented; see, for example, the
R language definition [R Core Team, 2014b]. Furthermore, many tutorials can be found in
the web, for example, Maindonald [2008], Venables et al. [2014], Kabacoff [2013], Owen
[2010]; and many books are available, for example, Zuur et al. [2009], Crawley [2005],
Kabacoff [2010], Venables and Ripley [2002].

Note on this article

This work is a mixture of scientific article and tutorial for a scientific tool; writing styles
differ between these two elements, but section headings indicate what element each section
contains.

III.4.3. Introducing RNetLogo

RNetLogo [Thiele, 2014] is an R package that links R and NetLogo; i.e., any NetLogo model
can be run and controlled from R and simulation results can be transferred back to R for sta-
tistical analyses. This is desirable as NetLogo’s support of systematic design, performance,
and analysis of simulation experiments is limited. In general, much more could be learned
from ABMs if they were embedded in a rigorous framework for designing simulation exper-
iments [Oh et al., 2009], storing simulation results in a systematic way, and using statistical
toolboxes for analysing these results. RNetLogo can be used to bridge this gap since R
(together with the enormous number of packages) delivers such tools. Such a seamless
integration was already the scope of the NetLogo-Mathematica Link [Bakshy and Wilen-
sky, 2007b], which was designed to make use of Mathematica’s functionality for "advanced
import capabilities, statistical functions, data visualization, and document creation. With
NetLogo-Mathematica Link, you can run all of these tools side-by-side with NetLogo" [Bak-
shy and Wilensky, 2007a]. RNetLogo offers such a framework for two freely available open
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source programs with fast-growing communities. RNetLogo itself is open-source software
published under the GNU GPL license.

RNetLogo consists of two parts: R code and Java code (Figure III.9). The R code is respon-
sible for offering the R functions, for connecting to Java, and for doing data transformations,
while the Java code communicates with NetLogo.

To connect the R part of RNetLogo to the Java part the rJava package for R [Urbanek,
2013b] is used. The rJava package offers the ability to create objects, call methods and
access class members of Java objects through the Java Native Interface [JNI, Oracle, 2013]
from C. The Java part of the RNetLogo package connects to the Java Controlling API of
NetLogo. This API allows controlling NetLogo from Java (and Scala) code [for details, see
Tisue, 2012].

When NetLogo code is given to an RNetLogo function, i.e., to the R part of RNetLogo,
it is submitted through rJava to the Java part of RNetLogo, and from there to NetLogo’s
Controlling API and thence to NetLogo. In case of reporters, i.e., primitives with return
values, the return value is collected by the Java part of RNetLogo, transformed from Java to
R by rJava and sent through the R part of RNetLogo to R.

Figure III.9.: RNetLogo consists of two parts: an R and a Java part. The R part adds the
RNetLogo functions to R and uses rJava to connect the Java part. The Java
part connects to NetLogo via the Controlling API of NetLogo.

Currently RNetLogo provides 17 functions (Table III.4).
The functions that handle NetLogo code, like NLCommand or NLReport, expect it as a

string. Some other functions, e.g., NLGetAgentSet, construct such strings internally from
the different function arguments in the R part of RNetLogo. This string is then sent to the
Java part of RNetLogo and from there it is evaluated through NetLogo’s Controlling API.
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When the submitted NetLogo code is not valid NetLogo throws an exception of type
"LogoException" or "CompilerException" containing the corresponding error mes-
sage. This exception is further thrown by the Java part of RNetLogo, handled by rJava,
and requested finally by the R part of RNetLogo and printed to R’s command line. Runtime
errors in NetLogo, like "java.lang.OutOfMemoryError", are reported in the same man-
ner. A message in R’s command line is printed. But errors where the JVM crashes can cause
crashes in rJava, which can affect the R session as well.

Some functions of RNetLogo, like NLDoCommand or NLDoReportWhile, re-
quire further control flow handling, i.e., loops and condition checkings, which are
done by the Java part of RNetLogo. The methods command and report of class
org.nlogo.workspace.Controllable of NetLogo’s Controlling API are used as
interfaces to NetLogo. All other things are done by the R and the Java part of RNetLogo.
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What else?

If only the integration of R calculations into NetLogo (i.e., the other way around) is of
interest, a look at the R-Extension to NetLogo at http://r-ext.sourceforge.net/ [see also
Thiele and Grimm, 2010] can be useful.

If we want to use the R-Extension within a NetLogo model controlled by RNetLogo, we
should use the Rserve-Extension instead (available at http://rserve-ext.sourceforge.net), be-
cause loading the R-Extension will crash as it is not possible to load the JRI library when
rJava is active.

III.4.4. Using RNetLogo - Hands-on

Installation

To install and use RNetLogo we must have R (available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/) and NetLogo (http://ccl.northwestern.
edu/netlogo/download.shtml) installed. The RNetLogo package is available from CRAN
(http://CRAN.R-project.org/package=RNetLogo/) and is installed like any other R pack-
age; see chapter 6 of R’s installation and administration manual [R Core Team, 2014c] for
information on how to install a package. However, RNetLogo requires the rJava package
[Urbanek, 2013b], available from CRAN. It can happen that we have to reconfigure Java/R
after installing rJava on Unix machines. This topic has been discussed several times; see,
for example, RWiki [2006]. The following sections provide an introduction to the usage of
RNetLogo, however, there are some pitfalls described in section III.4.6 one should be aware
before starting own projects.

Loading NetLogo

To use the RNetLogo package the first time in an R session we have to load the package, like
any other packages, with

R> library("RNetLogo")

When loading RNetLogo it will automatically try to load rJava. If this runs without any
error we are ready to start NetLogo (if not, see section III.4.4). To do so, we have to know
where NetLogo is installed. What we need is the path to the folder that contains the NetL-
ogo.jar file. On Windows machines this could be C:/Program Files/NetLogo 5.0.5/.
Here, we assume that the R working directory is set (see function setwd(<path>)) to the
path where NetLogo is installed.

Now, we have to decide whether we want to run NetLogo in the background without
seeing the graphical user interface (GUI) and control NetLogo completely from R or if we
want to see and use the NetLogo GUI. In the latter case, we can use NetLogo as it was
started independently, i.e., can load models, change the source code, click on buttons, see
the NetLogo View, inspect agents, and so on, but also have control over NetLogo from R.
The disadvantage of starting NetLogo with GUI is that we cannot run multiple instances of
NetLogo in one R session. This is only possible in the so called headless mode, i.e., running
NetLogo without GUI (see section III.4.4 for details). Linux and Mac users should read the
details section of the NLStart manual page (by typing help(NLStart)).
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Due to the NetLogo’s Controlling API changes with the NetLogo version, we have to use
an extra parameter nl.version to start RNetLogo for NetLogo version 4 (nl.version=4
for NetLogo 4.1.x, nl.version=40 for NetLogo 4.0.x). The default value of nl.version
is 5, which means that we do not have to submit this parameter when using NetLogo 5.0.x.
Since NetLogo 5.0.x operates much faster on lists than older versions it is highly recom-
mended to use it here (see also the RNetLogo package vignette "Performance Notes and
Tests", Appendix G).

To keep it simple and comprehensible we start NetLogo with GUI by typing:

R> nl.path <- getwd()
R> NLStart(nl.path)

If everything goes right, a NetLogo Window will be opened. We can use the NetLogo
window as if it had been started independently, with the exception that we cannot close
the window through clicking. On Windows, NetLogo appears in the same program group
at the taskbar as R. If possible, arrange the R and NetLogo windows so that we have them
side by side (Figure III.10), and can see what is happening in NetLogo when we submit the
following examples.

Figure III.10.: NetLogo (on the right) started and controlled from R (on the left).

Loading a model

We can now open a NetLogo model by just clicking on File -> Open... or choosing one of the
sample models by clicking on File -> Models Library. But to learn to control NetLogo from
R as when starting NetLogo in headless mode, we type in R:

R> model.path <- file.path("models"', "Sample Models", "Earth
Science", "Fire.nlogo")

R> NLLoadModel(file.path(nl.path, model.path))
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The Forest Fire model [Wilensky, 1997b] should be loaded. This model simulates a fire
spreading through a forest. The expansion of the fire depends on the density of the forest.
The forest is defined as a tree density value of the patches, while the fire is represented by
turtles. If we want, we can now change the initial tree density by using the slider on the
interface tab and run the simulation by clicking on the setup button first and then on the go
button. In the next section, we will do the same by controlling NetLogo from R.

Principles of controlling a model

In a first step, we will change the density value, i.e., the position of the density slider, by
submitting the following statement in R:

R> NLCommand("set density 77")

The slider goes immediately to the position of 77 percent. We can now execute the setup
procedure to initialize the simulation. We just submit in R:

R> NLCommand("setup")

And again, the command is executed immediately. The tick counter is reset to 0, the View
is green and first fire turtles are found on the left side of the View. Please notice that the
NLCommand function does not press the setup button, but calls the setup procedure. In
the Forest Fire example it makes no difference as the setup button also just calls the setup
procedure, but it is possible to add more code to a button than just calling a procedure. But
we can copy and paste such code into the NLCommand function as well.

We now want to run one tick by executing the go procedure. This is nothing new; we just
submit in R:

R> NLCommand("go")

We see that the tick counter was incremented by one and the red line of the fire turtles on
the left of the View extended to the next patch.

As we have seen, the NLCommand function can be used to execute any command which
could be typed into NetLogo’s command center. We can, for example, print a message into
NetLogo’s command center with the following statement:

R> NLCommand("print \"Hello NetLogo, I called you from R.\"")

The backslashes in front of the quotation marks are used to "mask" the quotation marks;
otherwise R would think that the command string ends after the print and would be
confused. Furthermore, it is possible to submit more than one command at once and in
combination with R variables. We can change the density slider and execute setup and go
with one NLCommand call like this:

R> density.in.r <- 88
R> NLCommand("set density ", density.in.r, "setup", "go")
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In most cases, we do not want to execute a go procedure only a single time but for, say,
ten times (ticks). With the RNetLogo package we can do this with:

R> NLDoCommand(10, "go")

Now we have run the simulation eleven ticks and maybe want to have this information in
R. Therefore, we execute:

R> NLReport("ticks")

Output:

[1] 11

As you might expect, we can save this value in an R variable by typing:

R> ticks <- NLReport("ticks")
R> print(ticks)

Output:

[1] 11

This was already the basic functionality of the RNetLogo package. In the following section
we mostly modify and/or extend this basic functionality.

NetLogo users should note that there is no "forever button". To run a simulation for
several ticks we can use one of the loop functions (NLDoCommand, NLDoCommandWhile,
NLDoReport, NLDoReportWhile) or write a custom procedure in NetLogo that runs the
go procedure the desired number of times when called once by R.

To quit a NetLogo session, i.e., to close a NetLogo instance, we have to use the NLQuit
function. If we used the standard GUI mode without assigning the NetLogo instance to an
R variable, we can write:

R> NLQuit()

Otherwise, we have to specify which NetLogo instance we want to close by specifying
the R variable storing it. Please note that there is currently no way to close the GUI mode
completely. That is why we cannot run NLStart again in the same R session when NetLogo
was started with its GUI.

Advanced controlling functions

In subsection III.4.4, we used the NLDoCommand function to run the simulation for ten
ticks. Here, we will run the model for ten ticks as well, but we will collect the percentage of
burned trees after every tick automatically:

R> NLCommand("setup")
R> burned <- NLDoReport(10, "go", "(burned-trees /

initial-trees) * 100")
R> print(unlist(burned))
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Output:

[1] 0.4192073 0.7821574 1.1287747 1.4790215 1.8238240 2.1649971
[7] 2.5116144 2.8836382 3.2629210 3.6349448

This code ran the simulation for ten ticks and wrote the result of the given reporter (the
result of the calculation of the percentage of burned trees) after every tick into the R list
burned.

If we want to run the simulation until no trees are left and know the percentage of burned
trees in every tick, we can execute:

R> NLCommand("setup")
R> burned <- NLDoReportWhile("any? turtles",
+ "go",
+ c("ticks",
+ "(burned-trees / initial-trees) * 100"),
+ as.data.frame = TRUE,
+ df.col.names = c("tick", "percent burned"))
R> plot(burned, type = "s")

Figure III.11.: The percentage of burned trees over time as the result of
NLDoReportWhile, which runs as long as there are turtles (any?
turtles).

The first argument of the function takes a NetLogo reporter. Here, the go procedure will
be executed while there are turtles in the simulation, i.e., any? turtles reports true.
Moreover, we have used not just one reporter (third argument) but a vector of two reporters;
one returning the current simulation time (tick) and a second with the percentage of
burned trees. Furthermore, we have defined that our output should be saved as a data
frame instead of a list and we have given the names of the columns of the data frame by
using a vector of strings in correspondence with the reporters. At the end, the R variable
burned is of type data.frame and contains two columns; one with the tick number and
a second with the corresponding percentage of burned trees. By using the standard plot
function, we graph the percentage of burned trees over time (Figure III.11).
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To demonstrate the NLGetAgentSet function, we use a different model. Therefore, we
load the Tumor model from NetLogo’s Models Library, set it up and run it for 20 ticks, as
follows:

R> model.path <- file.path("models", "Sample Models",
"Biology", "Tumor.nlogo"

R> NLLoadModel(file.path(nl.path, model.path))
R> NLCommand("setup")
R> NLDoCommand(20, "go")

After we have run 20 ticks, we load the x and y positions of all tumour cells (which are
turtles) into a data frame and show them in a plot. But before we call the plot function, we
will get the spatial extent of the NetLogo World to use in the plot window (Figure III.12):

R> cells <- NLGetAgentSet(c("xcor", "ycor"), "turtles")
R> x.minmax <- NLReport("(list min-pxcor max-pxcor)")
R> y.minmax <- NLReport("(list min-pycor max-pycor)")
R> plot(cells, xlim = x.minmax, ylim = y.minmax, xlab = "x",

ylab = "y")

Figure III.12.: A visualization of turtle locations obtained via NLGetAgentSet. Turtle lo-
cations are displayed in the original NetLogo simulation (right) and in the R
GUI of Windows (left).

In a second step, we get only the metastatic cells and plot them again (Figure III.13):

R> cells.metastatic <- NLGetAgentSet(c("xcor", "ycor"),
+ "turtles with [metastatic? = True]")
R> plot(cells.metastatic, xlim = x.minmax, ylim = y.minmax,
+ xlab = "x", ylab = "y")
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Figure III.13.: Same as in Figure III.12 but only with a subset of turtles that fulfil a condition
(are metastatic cells).

We can use the NLGetAgentSet function to get patches and links as well. But there is
a special function for patches, called NLGetPatches, which makes life easier by returning
the patch values as a matrix. We test this function by using the Fur model about patterns on
animals’ skin self-organization and plot the result in a simple raster image (Figure III.14).
We load the model, set it up and get the patches as a matrix

R> model.path <-file.path("models", "Sample Models",
"Biology", "Fur.nlogo")

R> NLLoadModel(file.path(nl.path, model.path))
R> NLCommand("setup")
R> NLDoCommand(5, "go")
R> patches.matrix <- NLGetPatches("pcolor", "patches",

as.matrix = TRUE)

Now, we reorganize the matrix to make it fit for the image function and define the image
colours:

R> patches.matrix.rot <- t(patches.matrix)
R> patches.matrix.rot <- as.data.frame(patches.matrix.rot)
R> patches.matrix.rot <- rev(patches.matrix.rot)
R> patches.matrix.rot <- as.matrix(patches.matrix.rot)
R> col <- c("black", "white")

Afterwards, we get the x and y limits (of the World) to use them for the image and draw
the matrix as an image:
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R> x.minmax <- NLReport("(list min-pxcor max-pxcor)")
R> y.minmax <- NLReport("(list min-pycor max-pycor)")
R> image(x.minmax[1]:x.minmax[2], y.minmax[1]:y.minmax[2],
+ patches.matrix.rot, col = col, xlab = "x", ylab = "y")
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Figure III.14.: A simple visualization of the result of NLGetPatches as an image.

The code produced a simple raster image from the patches. It is also possible to create
a spatial object from the result of NLGetPatches as we see in the next example, where
packages gstat [Pebesma, 2004] and sp [Pebesma and Bivand, 2005] are used.

We start by loading the required packages and get the patches or, more precisely, the
colours and coordinates of the patches:

R> library("sp", "gstat")
R> patches <- NLGetPatches(c("pxcor", "pycor", "pcolor"),

"patches")

Next, we convert the patches data.frame to a "SpatialPointsDataFrame" and then
use this "SpatialPointsDataFrame" to create a "SpatialPixelsDataFrame":

R> coordinates(patches) <- ~ pxcor + pycor
R> gridded(patches) <- TRUE

Now, we convert pcolor to a factor, define the colours for the plot and create it (not
shown here, similar to Figure III.14):

R> patches$pcolor <- factor(patches$pcolor)
R> col <- c("black", "white")
R> spplot(patches, "pcolor", col.regions = col, xlab = "x",

ylab = "y")
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We see that it is possible to get the whole NetLogo View. As we can see in its manual page,
we can save the result of NLGetPatches into a list, matrix or, like here, into a data frame.
Furthermore, we can reduce the patches to a subset, e.g., all patches that fulfil a condition,
as we have done in the NLGetAgentSet example.

There are two other functions that operate the other way around. With NLSetPatches
and NLSetPatchSet we can push an R matrix/data frame into the NetLogo patches.
NLSetPatches function works only if we fill all patches, i.e., if we use a matrix which
has the dimension of the NetLogo World. For filling just a subset of patches we can use the
NLSetPatchSet function.

The following example shows the usage of the NLSetPatches function.
We reuse the patches.matrix variable from NLGetPatches, change the values from 0

(black) to 15 (red) and use this new matrix as input for the NetLogo patch variable pcolor
(Figure III.15):

R> my.matrix <- replace(patches.matrix,
+ patches.matrix == 0,
+ 15)
R> NLSetPatches("pcolor", my.matrix)

Figure III.15.: A screenshot while NLSetPatches is executing. The colour of the NetLogo
patches on the right hand side is changed gradually from black to red.

Another function, NLGetGraph, makes it possible to get a NetLogo network built by
NetLogo links into an igraph network. This function requires the R package igraph [Csárdi
and Nepusz, 2006]. As an example, we can use the Small World model from NetLogo’s
Models Library. We build the NetLogo link network and transform it into an igraph network
and finally plot it.

We start by loading as well as setting up the model and get the graph from NetLogo:

R> model.path <- file.path("models", "Sample Models",
"Networks", "Small Worlds.nlogo")
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R> NLLoadModel(file.path(nl.path, model.path))
R> NLCommand("setup", "rewire-all")
R> my.network <- NLGetGraph()

Now, the directed network graph plot (Figure III.16) can be obtained with:

R> plot(my.network, layout = layout.circle,
+ vertex.label = V(my.network)$name,
+ vertex.label.cex = 0.7,
+ asp = FALSE)
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Figure III.16.: A graph generated by NetLogo links, sent to R via NLGetGraph, and plotted
using the igraph package [Csárdi and Nepusz, 2006].

There are two further functions, which are not presented here in detail. The first one is
the NLSourceFromString function, which enables us to create or append model source
code from strings in R. A usage example is given in the code sample folder (No. 16) of
the RNetLogo package. Another helper function to send a data frame into NetLogo lists is
NLDfToList. The column names of the data frame have to be equivalent to the names of
the lists in the NetLogo model. The code sample folder (No. 9) includes a usage example.

Headless mode/Multiple NetLogo instances

As mentioned above, it is possible to start NetLogo in background (headless mode) without
a GUI. For this, we have to execute the NLStart function with a second argument. This
will fail if we do not open a new R session (after using RNetLogo in GUI mode) because, as
mentioned above, we cannot start several NetLogo sessions if we have already started one
in GUI mode.

The NLStart function will save the NetLogo object reference in an internal variable
in the local environment .rnetlogo. If we want to work with more than one NetLogo
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model/instance at once, we can specify an identifier (as a string) for the NetLogo instance
in the third argument of NLStart.

We start with the creation of three NetLogo instances (maybe beside the one with the
default identifier which is _nl.intern_):

R> my.netlogo1 <- "my.netlogo1"
R> NLStart(nl.path, gui = FALSE, nl.obj = my.netlogo1)
R> my.netlogo2 <- "my.netlogo2"
R> NLStart(nl.path, gui = FALSE, nl.obj = my.netlogo2)
R> my.netlogo3 <- "my.netlogo3"
R> NLStart(nl.path, gui = FALSE, nl.obj = my.netlogo3)

All functions presented until now take as last (optional) argument (nl.obj) a string
which identifies a specific NetLogo instance created with NLStart. Therefore, we can
specify which instance we want to use. When working in headless mode, the first thing to
do is always to load a model. Executing a command or reporter without loading a model in
headless mode will result in an error. Therefore, we load a model into all instances:

R> model.path <- file.path("models", "Sample Models", "Earth
Science", "Fire.nlogo")

R> NLLoadModel(file.path(nl.path, model.path)), nl.obj =
my.netlogo1)

R> NLLoadModel(file.path(nl.path, model.path), nl.obj =
my.netlogo2)

R> NLLoadModel(file.path(nl.path, model.path), nl.obj =
my.netlogo3)

Now, we will set up and run the models over different simulation times.
We run the first instance (my.netlogo1) for 25 ticks:

R> NLCommand("setup", nl.obj = my.netlogo1)
R> NLDoCommand(25, "go", nl.obj = my.netlogo1)

Then, we run the second instance (my.netlogo2) for 15 ticks:

R> NLCommand("setup", nl.obj = my.netlogo2)
R> NLDoCommand(15, "go", nl.obj = my.netlogo2)

and we simulate 5 ticks with the third instance:

R> NLCommand("setup", nl.obj = my.netlogo3)
R> NLDoCommand(5, "go", nl.obj = my.netlogo3)

To check if the above worked well, we compare the number of burned trees in the different
instances, which should be different:

R> NLReport("burned-trees", nl.obj = my.netlogo1)
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Output:

[1] 1289

R> NLReport("burned-trees", nl.obj = my.netlogo2)

Output:

[1] 1067

R> NLReport("burned-trees", nl.obj = my.netlogo3)

Output:

[1] 413

At the end, we quit the NetLogo sessions (the standard session with internal identifier
_nl.intern_ as well, if open):

R> NLQuit(nl.obj = my.netlogo3)
R> NLQuit(nl.obj = my.netlogo2)
R> NLQuit(nl.obj = my.netlogo1)
R> NLQuit()

III.4.5. Application examples

The following examples are (partly) inspired by the examples presented for NetLogo-
Mathematica Link [see Bakshy and Wilensky, 2007a]. These are all one-directional ex-
amples (from NetLogo to R), but the package opens the possibility of letting NetLogo and R
interact and send back results from R (e.g., statistical analysis) to NetLogo and let the model
react to them. Even manipulation of the model source by using the NLSourceFromString
function is possible. This opens the possibility to generate NetLogo code from R dynamically.

Exploratory analysis

A simple parameter sensitivity experiment illustrates exploratory analysis with RNetLogo,
even though NetLogo has a very powerful built-in tool, BehaviorSpace [Shargel and Wilen-
sky, 2002], for this simple kind of experiment. Here, we will use the Forest Fire model
[Wilensky, 1997b] from NetLogo’s Models Library and explore the effect of the density of
trees in the forest on the percentage of burned trees as described in Bakshy and Wilensky
[2007a].

We start, as always, by loading and initializing the package (if not already done) and
model:

R> library("RNetLogo")
R> nl.path <- file.path(getwd(), "NetLogo 5.0.5")
R> NLStart(nl.path, gui = FALSE)
R> model.path <- file.path("models", "Sample Models", "Earth

Science", "Fire.nlogo")
R> NLLoadModel(file.path(nl.path, model.path))
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Next, we define a function which sets the density of trees, executes the simulation until
no turtles are left, and reports back the percentage of burned trees:

R> sim <- function(density) {
+ NLCommand("set density ", density, "setup")
+ NLDoCommandWhile("any? turtles", "go");
+ ret <- NLReport("(burned-trees / initial-trees) * 100")
+ return(ret)
+ }

We run the simulation for density values between 1 and 100 with a step size of 1, to
identify the phase transition (Figure III.17):

R> d <- seq(1, 100, 1)
R> pb <- sapply(d, function(dens) sim(dens))
R> plot(d, pb, xlab = "density", ylab = "percent burned")
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Figure III.17.: Results of the Forest Fire model varying the density of trees. The y-axis is the
percentage of burned trees after no burning patches (i.e., no turtles) were left
in the simulation.

As we know the region of phase transition (between a density of 45 and 70 percent), we
can explore this region more precisely. As the Forest Fire model uses random numbers, it is
interesting to find out how much stochastic variation occurs in this region. Therefore, we
define a function to repeat the simulations with one density several times:

R> rep.sim <- function(density, rep)
+ lapply(density, function(dens) replicate(rep, sim(dens)))
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To get a rough overview we use this new function for densities between 45 and 70 percent
with a step size of 5, and 10 replications each (Figure III.18):

R> d <- seq(45, 70, 5); res <- rep.sim(d, 10)
R> boxplot(res, names = d, xlab = "density", ylab = "percent

burned")
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Figure III.18.: Boxplots of repeated simulations (10 replications) with the Forest Fire model
with varying density (45-70 percent) of trees and the percentage of burned
trees after no turtles were left in the simulation.

Now, we have seen that the variation of burned trees at densities below 55 and higher
than 65 is low. As a result, we can skip these values and have a deeper look into the region
of density values between 55 and 65. Therefore, we perform a simulation experiment for
this value range with a smaller step size of 1 percent and a higher amount of replication of
20 per density value (Figure III.19):

R> d <- seq(55, 65, 1)
R> res <- rep.sim(d, 20)
R> boxplot(res,names = d, xlab = "density", ylab = "percent

burned")

Database connection

There are R packages available to connect R to all common database management systems,
e.g., RMySQL [James and DebRoy, 2012], RPostgreSQL [Conway et al., 2012], ROracle
[Mukhin et al., 2013], RJDBC [Urbanek, 2013a], RSQLite [James, 2013] or RODBC [Ripley,
2013]. Thus the RNetLogo package opens the possibility to store the simulation results into
a database.
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Figure III.19.: Boxplots of repeated simulations (20 replications) with the Forest Fire model
with varying density (55-65 percent) of trees and the percentage of burned
trees after no turtles were left in the simulation.

In the following example we use the RSQLite package [James, 2013], which provides a
connection to SQLite databases [Hipp, 2012], because this is a very easy-to-use database in
a single file. It does not need a separate database server and is, therefore, ideal for agent-
based modelling studies, where no large database management systems (DBMS) are used.
The database can store the results of different simulation experiments in different tables
together with metadata in one file. This makes it very easy to share simulation results. There
are small and easy-to-use GUI-programs available to browse and edit SQLite databases; see,
for example, the SQLite Database Browser [Piacentini, 2013].

In a first step we have to set up the connections to NetLogo (if not already done) and load
as well as initialize the example model:

R> library("RNetLogo")
R> nl.path <- file.path(getwd(), "NetLogo 5.0.5")
R> NLStart(nl.path, gui = FALSE)
R> model.path <- file.path("models", "Sample Models", "Earth

Science", "Fire.nlogo")
R> NLLoadModel(file.path(nl.path, model.path))
R> NLCommand("setup")

Then, we load the required RSQLite package and database driver as well as cre-
ate a connection to the database. If the database does not exist, this creates a file
test_netlogo.db:

R> library("RSQLite")
R> m <- dbDriver("SQLite")
R> database.path = "test_netlogo.db"
R> con <- dbConnect(m, dbname = database.path)
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Next, we run the model for ten ticks and save the results (ticks and burned-trees) in the
table Burned1 of the database:

R> dbWriteTable(con, "Burned1",
+ NLDoReport(10, "go", c("ticks", "burned-trees"),
+ as.data.frame = TRUE, df.col.names = c("tick", "burned")),
+ row.names = FALSE, append = FALSE)

Afterwards, we can send a first query: how many lines has the new table?

R> dbGetQuery(con, "select count(*) from Burned1")[[1]]

Output:

[1] 10

In the second query, we select all rows from table Burned10 where tick is greater than
5:

R> rs <- dbSendQuery(con, "select * from Burned1 where tick >
5")

Then, we ask for the result of the query and print it:

R> data <- fetch(rs, n = -1)
R> str(data)

Output:

'data.frame': 5 obs. of 2 variables:
$ tick : num 6 7 8 9 10
$ burned: num 547 606 665 716 757

Next, we delete/clear the query:

R> dbClearResult(rs)

Afterwards, we append further results to the existing table:

R> dbWriteTable(con, "Burned1",
+ NLDoReport(10, "go", c("ticks", "burned-trees"),
+ as.data.frame = TRUE, df.col.names = c("tick", "burned")),
+ row.names = FALSE, append = TRUE)

and take a look at the table:

R> select.all <- dbGetQuery(con, "select * from Burned1")
R> str(select.all)

Output:
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'data.frame': 20 obs. of 2 variables:
$ tick : num 1 2 3 4 5 6 7 8 9 10 ...
$ burned: num 141 227 319 398 471 547 606 665 716 757 ...

Now, we create a second table and save the results of ten repeated simulations of 20 ticks
each:

R> for (x in 1:10)
+ {
+ NLCommand("setup")
+ dbWriteTable(con, "Burned2",
+ NLDoReport(20, "go", c("ticks", "burned-trees"),
+ as.data.frame = TRUE, df.col.names = c("tick", "burned")),
+ row.names = FALSE, append = TRUE)
+ }

and calculate the mean number of burned trees (out of the 10 repetitions) for each tick,
get the result of the query and show it:

R> rs <- dbSendQuery(con, "select avg(burned) as mean_burned
+ from Burned2 group by tick")
R> data <- fetch(rs, n = -1)
R> str(data)

Output:

'data.frame': 20 obs. of 1 variable:
$ mean_burned: num 146 228 309 381 447 ...

Finally, we delete/clear the query and close the connection to the database:

R> dbClearResult(rs)
R> dbDisconnect(con)

Note that there is also an extension to connect databases directly to NetLogo (see http:
//code.google.com/p/netlogo-sql/).

Analytical comparison

The example application of Bakshy and Wilensky [2007a] compares results of an agent-
based model of gas particles to velocity distributions found by analytical treatments of ideal
gases. To reproduce this, we use the Free Gas model [Wilensky, 1997a] of the GasLab
model family from NetLogo’s Models Library. In this model, gas particles move and collide
with each other without external constraints. Bakshy and Wilensky [2007a] compared this
model’s results to the classical Maxwell-Boltzmann distribution. R itself is not symbolic
mathematical software but there are packages available which let us integrate such software.
Here, we use the Ryacas package [Goedman et al., 2012] which is an interface to the open-
source Yacas Computer Algebra System [Pinkus et al., 2007].

113

http://code.google.com/p/netlogo-sql/
http://code.google.com/p/netlogo-sql/


Chapter III. Linking NetLogo and R

We start with the agent-based model simulation. Because this model is based on random
numbers we run repeated simulations.

We start with loading and initializing the RNetLogo package (if not already done) and the
model:

R> library("RNetLogo")
R> nl.path <- file.path(getwd(), "NetLogo 5.0.5")
R> NLStart(nl.path, gui = FALSE)
R> model.path1 <- file.path("models", "Sample Models",

"Chemistry & Physics", "GasLab")
R> model.path2 <- "GasLab Free Gas.nlogo"
R> NLLoadModel(file.path(nl.path, model.path1, model.path2))
R> NLCommand("set number-of-particles 500", "no-display",

"setup")

Next, we run the simulation for 40 times of 50 ticks (= 2000 ticks), save the speed of the
particles after every 50 ticks, and flatten the list of lists (one list for each of the 40 runs) to
one big vector:

R> particles.speed <- NLDoReport(40, "repeat 50 [go]",
+ "[speed] of particles")
R> particles.speed.vector <- unlist(particles.speed)

To calculate the analytical distribution, we have to solve the following equations:

B(v) = v · e(−m·v)2·(2·k·T)−1
(III.1)

normalizer =
∫ ∞

0
B(v) dv (III.2)

B(v)normalized =
B[v]

normalizer
f or v = [0, max(speed)] (III.3)

Now, Yacas/Ryacas will be used. For this, we define Equation III.1 with the mean energy
derived from the NetLogo simulation. We then define the normalizer integral and solve it
numerically.

We start by loading the Ryacas package:

R> library("Ryacas")

We can install Yacas, if currently not installed (only for Windows - see Ryacas/Yacas doc-
umentation for other systems) with:

R> yacasInstall()

Next, we get the mean energy from the NetLogo simulation and define the function B and
register it in Yacas:
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R> energy.mean <- NLReport("mean [energy] of particles")
R> B <- function(v, m = 1, k = 1)
+ v * exp((-m * v^2) / (2 * k * energy.mean))
R> yacas(B)

Then, we define the integral of function B from 0 to infinity and register the integral
expression in Yacas:

R> B.integr <- expression(integrate(B, 0, Infinity))
R> yacas(B.integr)

Now, we calculate a numerical approximation using Yacas’s function N() and get the
result from Yacas in R (the result is in the list element value):

R> normalizer.yacas <- yacas(N(B.integr))
R> normalizer <- Eval(normalizer.yacas)
R> print(normalizer$value)

Output:

[1] 50

In a further step, we calculate the theoretical probability values of particle speeds using
Equation III.1. We do this from 0 to the maximum speed observed in the NetLogo simulation.

First, we get the maximum speed from the NetLogo simulation:

R> maxspeed <- max(particles.speed.vector)

Next, we create a sequence vector from 0 to maxspeed, by stepsize, and calculate the
theoretical values at the points of the sequence vector:

R> stepsize <- 0.25
R> v.vec <- seq(0, maxspeed, stepsize)
R> theoretical <- B(v.vec) / normalizer$value

At the end, we plot the empirical/simulation distribution together with the theoretical
distribution of particle speeds (Figure III.20):

R> hist(particles.speed.vector, breaks =
max(particles.speed.vector) * 5,

+ freq = FALSE, xlim = c(0, as.integer(maxspeed) + 5),
+ ylab = "density", xlab = "speed of particles", main = "")
R> lines(v.vec, theoretical, lwd = 2, col = "blue")
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Figure III.20.: Empirical probability distribution of particle speeds generated by the agent-
based model (bars) with the theoretical Maxwell-Boltzmann distribution
(blue line).

Advanced plotting functionalities

R and its packages deliver a wide variety of plotting capabilities. As an example, we present
a three-dimensional plot in combination with a contour map. We use the "Urban Site -
Sprawl Effect" model [Felsen and Wilensky, 2007] from NetLogo’s Models Library. This
model simulates the growth of cities and urban sprawl. Seekers (agents) look for patches
with high attractiveness and also increase the attractiveness of the patch they stay on. There-
fore, the attractiveness of the patches is a state variable of the model, which can be plotted
in R.

First, we initialize the RNetLogo package (if not already done) and load the model:

R> library("RNetLogo")
R> nl.path <- file.path(getwd(), "NetLogo 5.0.5")
R> NLStart(nl.path, gui = FALSE)
R> model.path <- file.path("models", "Curricular Models",

"Urban Suite")
R> model.name <- "Urban Suite - Sprawl Effect.nlogo"
R> NLLoadModel(file.path(nl.path, model.path, model.name))

We resize NetLogo’s World and set the parameter values:

R> NLCommand("resize-world -20 20 -20 20")
R> NLCommand("set smoothness 10",
+ "set max-attraction 5",
+ "set population 500",
+ "set seeker-search-angle 200",
+ "set seeker-patience 15",
+ "set wait-between-seeking 5")
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Then, we set up the simulation and run it for 150 ticks:

R> NLCommand("setup")
R> NLDoCommand(150, "go")

Next, we get the value of the variable attraction from all patches as a matrix as well
as the dimensions of NetLogo’s World:

R> attraction <- NLGetPatches("attraction", as.matrix = TRUE)
R> pxcor <- NLReport(c("min-pxcor", "max-pxcor"))
R> pycor <- NLReport(c("min-pycor", "max-pycor"))

Now, we define the advanced plotting function with a three-dimensional plot and a con-
tour map (adapted from Francois, 2011):

R> kde2dplot <- function(d, ncol = 50, zlim = c(0, max(z)),
+ nlevels = 20, theta = 30, phi = 30)
+ {
+ z <- d$z
+ nrz <- nrow(z)
+ ncz <- ncol(z)
+ colors <- tail(topo.colors(trunc(1.4 * ncol)), ncol)
+ fcol <- couleurs[trunc(z / zlim[2] * (ncol - 1)) + 1]
+ dim(fcol) <- c(nrz, ncz)
+ fcol <- fcol[-nrz, -ncz]
+ par.default <- par(no.readonly = TRUE)
+ par(mfrow = c(1, 2), mar = c(0, 0, 0, 0), cex = 1.5)
+ persp(d, col = fcol, zlim = zlim, theta = theta, phi = phi,
+ zlab = "attraction", xlab = "x", ylab = "y")
+
+ par(mar = c(2, 2, 0.5, 0.5))
+ image(d, col = colors)
+ contour(d, add = TRUE, nlevels = nlevels)
+ box()
+ par(par.default)
+ }

We merge the data and execute the plot function (Figure III.21):

R> d <- list(x = seq(pxcor[[1]], pxcor[[2]]),
+ y = seq(pycor[[1]], pycor[[2]]),
+ z = attraction)
R> kde2dplot(d)
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Figure III.21.: Spatial distribution of attractiveness of patches after 150 simulation steps. 3D
plot (left) and contour plot (right).

Time sliding visualization

As agent-based models are often very complex, more than three dimensions could be rel-
evant for their analysis. With the RNetLogo package it is possible to save the output of a
simulation in R for every tick and then click through, or animate, the time series of these
outputs, for example a combination of the model’s View and distributions of state variables.
As a prototype, we write a function to implement a timeslider to plot turtles. This function
can be extended to visualize a panel of multiple plots by tick. With a slider we can browse
through the simulation steps. To give an example, we use the Virus model [Wilensky, 1998]
from NetLogo’s Models Library to visualize the spatial distribution of infected and immune
agents as well as boxplots of the time period of infection and the age in one plot panel.

We first load the required package rpanel [Bowman et al., 2007] and define a helper
function to set the plot colours for the logical variables (sick, immune) of the turtles:

R> library("rpanel")
R> color.func <- function(color.var, colors, timedata) {
+ color <- NULL
+ if (!is.null(color.var)) {
+ index.color <- which(names(timedata) == color.var)
+ color <- timedata[[index.color]]
+ color[color == FALSE] <- colors[1]
+ color[color == TRUE] <- colors[2]
+ }
+ return(color)
+ }

Next, we define the main function containing the slider and what to do if we move the
slider. The input is a list containing data frames for every tick. When the slider is moved,
we send the current position of the slider (i.e., the requested tick) to the plotting function,
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extract the corresponding data frame from the timedata list and draw a panel of four plots
using this data frame.

R> plottimedata <- function(timedata.list, x.var, y.var,
boxplot.var1,

+ boxplot.var2, color.var1 = NULL,
+ colors1 = "black", color.var2 = NULL,
+ colors2 = "black", mains = NULL, ...)
+ {
+ timeslider.draw <- function(panel) {
+ index.x <- which(names(timedata.list[[panel$t]]) == x.var)
+ index.y <- which(names(timedata.list[[panel$t]]) == y.var)
+ index.b1 <- which(names(timedata.list[[panel$t]]) ==

boxplot.var1)
+ index.b2 <- which(names(timedata.list[[panel$t]]) ==

boxplot.var2)
+
+ color1 <- color.func(color.var1, colors1,

timedata.list[[panel$t]])
+ color2 <- color.func(color.var2, colors2,

timedata.list[[panel$t]])
+
+ par(mfrow = c(2, 2), oma = c(0, 0, 1, 0))
+ plot(timedata.list[[panel$t]][[index.x]],
+ timedata.list[[panel$t]][[index.y]],
+ col = color1, main = mains[1], ...)
+ plot(timedata.list[[panel$t]][[index.x]],
+ timedata.list[[panel$t]][[index.y]],
+ col = color2, main = mains[2], ...)
+ boxplot(timedata.list[[panel$t]][[index.b1]], main =

mains[3])
+ boxplot(timedata.list[[panel$t]][[index.b2]], main =

mains[4])
+ title(paste("at time ",panel$t), outer = TRUE)
+ panel
+ }
+ panel <- rp.control()
+ rp.slider(panel, resolution = 1, var = t, from = 1,
+ to = length(timedata.list), title = "Time",
+ showvalue = TRUE, action = timeslider.draw)
+ }

In the third step, we initialize and run the NetLogo simulation and collect the results into
the timedata list. Here, we run 100 ticks and use the NLGetAgentSet function to collect
data from the turtles.

R> library("RNetLogo")
R> nl.path <- file.path(getwd(), "NetLogo 5.0.5")
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R> model.path <- file.path("models", "Sample Models",
"Biology", "Virus.nlogo")

R> NLStart(nl.path)
R> NLLoadModel(file.path(nl.path, model.path))
R> NLCommand("setup")
R> nruns <- 100
R> timedata <- list()
R> for(i in 1:nruns) {
+ NLCommand("go")
+ timedata[[i]] <- NLGetAgentSet(c("who", "xcor", "ycor",

"age",
+ "sick?", "immune?", "sick-count"),
+ "turtles")
+ }

In the last step, we collect the dimension of the NetLogo World to use it for the axis extent
of the plot and define the colours used for the variables sick (green = FALSE, red =
TRUE) and immune (red = FALSE, green = TRUE). Finally, we call the above-defined
plottimedata function to create the timeslider.

R> world.dim <- NLReport(c("(list min-pxcor max-pxcor)",
+ "(list min-pycor max-pycor)"))
R> colors1 <- c("green", "red")
R> colors2 <- c("red", "green")
R> plottimedata(timedata.list = timedata, x.var = "xcor",

y.var = "ycor",
+ xlab = "x", ylab = "y", color.var1 = "sick?",
+ color.var2 = "immune?", boxplot.var1 = "sick-count",
+ boxplot.var2 = "age", colors1 = colors1, colors2 = colors2,
+ mains = c("Sick", "Immune", "Sick-count", "Age"),
+ xlim = world.dim[[1]], ylim = world.dim[[2]])

Then we can move the slider and the plot is updated immediately (Figure III.22).

III.4.6. Pitfalls

Amount of data

Please note that we are not able to stop the execution of a NetLogo command without closing
our R session. Therefore, it is a good idea to think about the amount of data which should be
transformed. For example, if we use the NLGetPatches function with the standard settings
of the Forest Fire model from NetLogo’s Models Library, we are requesting 63001 patch
values. If we ask for the pxcor, pycor and pcolor values, we are requesting for 63001 · 3 =
189003 values. All these values have to be transformed from NetLogo data type to Java and
from Java to R. This may take a while. For technical reasons, we are not informed about
the progress of data transformation. Therefore, it looks like the program crashed, but if we
are patient, the program will return with the result after some time. That’s why it is always
a good idea to test our code with a very small example (i.e., small worlds, low number of
agents etc.). As mentioned in Section III.4.4, NetLogo 5.0.x is much faster at transferring
data than NetLogo 4.x.
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Figure III.22.: Timeslider example using the Virus model.

121



Chapter III. Linking NetLogo and R

Table III.5.: Mapping from NetLogo data types to R data types.
NetLogo R
Boolean Boolean
String String
Number Double
List of strings Vector of strings
List of booleans Vector of booleans
List of numbers Vector of doubles
Nested list (one nesting) List of vectors
Nested list (multi-level nesting) List of lists, lowest level: vectors

Endless loops

If we use the functions NLDoCommandWhile and NLDoReportWhile, we should double
check our while-condition. Are we sure that the condition will be met some time? To prevent
endless loops, these functions take an argument max.minutes with a default value of 10.
This means that the execution of these functions will be interrupted if it takes longer than
the submitted number of minutes. If we are sure that we do not submit something that
will trigger an endless loop, we can switch off this functionality by using a value of 0 for
the max.minutes argument. This will speed up the operation because the time checking
operation will not be applied.

Data type

The general mapping of NetLogo data types to R data types in RNetLogo is given in Ta-
ble III.5.

We should think about the data types we are trying to combine. For example, an R vector
takes values of just one data type (e.g., string, numeric/double or logical/boolean) unlike a
NetLogo list, which can contain different data types. Here are some examples.

First, we get a NetLogo list of numbers:

R> NLReport("(list 24 23 22)")

Second, we get a NetLogo list of strings:

R> NLReport("(list \"foo1\" \"foo2\" \"foo3\")")

Third, we try to get a NetLogo list of combined numbers and string:

R> NLReport("(list 24 \"foo\" 22)")

The first two calls of NLReport will run as expected but the last call will throw an error,
because NLReport tries to transform a NetLogo list into an R vector, which will fail due to
the mixed data types. This is also relevant for the columns of data.frames.
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Table III.6.: Examples of results of NLDoReportwith different NetLogo data structures. The
Forest Fire model is used with a world of only 3 x 3 patches and a density of 99
percent. The model is reset before each example.

Call Output of str(<Call>)
NLDoReport(2, "go",
"(list count fires count embers)")

List of 2
$ : num [1:2] 2 2
$ : num [1:2] 0 4

NLDoReport(2, "go",
c("count fires", "count embers"))

List of 2
$ :List of 2
..$ : num 2
..$ : num 2
$ :List of 2
..$ : num 0
..$ : num 4

Data structure

Since RNetLogo does not restrict how NetLogo reporters are combined, it is very flexible
but makes it necessary to think very carefully about the data structure that will be returned.
How a NetLogo value is transformed in general is already defined in Table III.5.

But this becomes more complex for iteration functions like NLDoReport where the return
values of one iteration are combined with the results of another iteration, especially when
requesting the result as a data frame instead of a list.

For example, it makes a difference in the returned data structure when we request two
values as a NetLogo list or as two single reporters in a vector (Table III.6). Requesting the
values as a NetLogo list returns a top-level list containing a vector of two values for all
requested iterations. Requesting two single reporters returns these in a list as an entry of
a top-level list. Therefore, this results in a nested list structure. There is not a wrong or
preferred solution, it just depends on what we want to do with the result.

Requesting the result of NLDoReport as a data frame converts the top-level list to a
data frame in a way that the top-level list entries become columns of the data frame and
one iteration is represented by a row. This becomes problematic when nested NetLogo lists
are requested (Table III.7). In such a case, the nested NetLogo lists are transformed into
R lists and the resulting data frame contains lists in its columns. Such a data structure is a
valid, but uncommon, data frame and some functions, like write.table, can operate only
with a data frame that contains just simple objects in its columns. To make a data frame
with nested lists fit for functions like write.table we have to use the I(x) function for
the affected columns to treat them "as is" (see help(I) for details, e.g., my.df$col1 <-
I(my.df$col1)).

Furthermore, using an agentset in an NLDoReport iteration with data frame return value
can become problematic. As long as the number of members of the agentset does not
change, it can be requested without problems in a data frame. The data frame contains
one column for each agent and one row for each iteration. If the number of agents changes
during the iterations the resulting data frame is not correct as it contains entries that do not
exist. The number of columns equals the maximum number of agents over all iterations.
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Table III.7.: Examples of results of NLDoReportwith different NetLogo data structures. The
Forest Fire model is used with a world of only 3 x 3 patches and a density of 99
percent. The model is reset before each example.

Call Output of str(<Call>)
NLDoReport(2, "go",
"(list count fires count embers)",
as.data.frame=TRUE)

’data.frame’:
2 obs. of 2 variables:
$ X1: num 0 0
$ X2: num 4 4

NLDoReport(2, "go",
c("count fires", "count embers"),
as.data.frame=TRUE)

’data.frame’:
2 obs. of 2 variables:
$ X1: num 0 0
$ X2: num 4 4

NLDoReport(2, "go",
c("count turtles",
"(list count fires count embers)"),
as.data.frame=TRUE)

’data.frame’:
2 obs. of 2 variables:
$ X1: num 4 4
$ X2:List of 2
..$ : num 0 4
..$ : num 0 4

For those iterations that contain less agents the columns of the data frame are filled with
copied information from a former column. In short, the information is wrong. The following
example illustrates this. The Forest Fire model is used with a world of only 5 x 3 patches.

R> res <- NLDoReport(3, "go", "[who] of turtles",
as.data.frame = TRUE)

R> str(res)

Output:

'data.frame': 3 obs. of 7 variables:
$ X1: num 2 4 0
$ X2: num 0 2 6
$ X3: num 3 0 4
$ X4: num 1 3 1
$ X5: num 2 1 5
$ X6: num 0 4 3
$ X7: num 3 2 2

The first iteration contains four turtles, the second five and the third seven turtles. The
returned data frame therefore contains seven columns. Entries in columns for the first and
the second row (i.e., iteration) are repeated from the first columns. But fortunately we are
warned by R that the length of the vectors differ. When we cannot be sure that the number
of return values is always the same over the iterations we should use the default list data
structure instead of the data frame return structure. Furthermore, if we want to request
an agentset, we should better use the NLGetAgentSet function in an R loop, as shown in
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Section III.4.5, because it returns the requested values in a sorted order; for agents by their
who number and in case of patches from upper left to lower right.

These examples illustrate that it is necessary to think about the data structure that is
required for further analyses and which function can process such a data structure.

Working directory

We should avoid changing the working directory of R manually, because NetLogo needs to
have the working directory pointed to its installation path. As the R working directory and
the Java working directory depend on each other, changing the R working directory can
result in unexpected behaviour of NetLogo. Therefore, we should use absolute paths for
I/O processes in R instead of submitting setwd(...). Note that the RNetLogo package
changes the working directory automatically when loading NetLogo and changes back to
the former working directory when the last active NetLogo instance is closed with NLQuit.

III.4.7. Discussion

This article gave a theoretical and practical introduction to the RNetLogo package. The
reader should be well-prepared to start his/her own projects based on RNetLogo after study-
ing the examples. Since there are so many interesting packages available in R with connec-
tions to many other programs, it is really amazing what this connection offers to both, R
users and NetLogo users.

Note that there are code samples for all functions in the example folder
(RNetLogo/examples/ code_samples) of the RNetLogo package. Furthermore,
there are some example applications in the example folder, similar to those presented here.

As presented the RNetLogo package successfully links the statistical computing environ-
ment R with the agent-based modelling platform NetLogo. Thereby it brings together the
world of statistics and data analysis with the world of agent-based modelling. From the
viewpoint of an R user it opens the possibility to access a rule-based modelling language
and environment. Therefore, (nearly) all types of agent-based and system-dynamics models
can be easily embedded into R. NetLogo’s Models Library gives a nice impression of what
kind of models can be built, from deterministic to stochastic, from non-spatial to spatial
models, from 2D to 3D, from cellular automata over network models and artificial neural
networks to L-Systems and many others more.

Bringing simulation models to R is not entirely new. There are, on the one hand, other
modelling environments, like Repast [North et al., 2006], that open the possibility to send
data to R. But the ability to control simulation experiments from R is new for such mod-
elling tools. NetLogo was selected because it is very easy to learn, very well designed, and
much better documented than other ABM platforms. It has a very active user community
and seems to be the most appropriate basis for all kinds of modellers, from beginners to
professionals and from ecology over social sciences to informatics. On the other hand, there
are packages available to build simulation models directly in R, like simecol [Petzoldt and
Rinke, 2007]. Especially simecol is fast and very flexible and a good choice in comparison
to implementations in pure R but it does not provide specific support for making model
development and simulation efficient as agent-based model environments like NetLogo and
Repast do.

Some first use-cases of RNetLogo have been presented in this article. Beside the advanced
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visualization possibilities and connections to other software an important application area
is the design and analysis of simulation experiments in a systematic, less ad-hoc, way. R de-
livers all necessary functions of the design of experiments (DoE) principles. With RNetLogo
the technical connection between all kinds of DoE and ABM is available.

There are already ready-to-use solutions for model analysis/DoE techniques available for
agent-based modelling, like BehaviorSearch [Stonedahl and Wilensky, 2013], MEME [Iványi
et al., 2007], and openMOLE [Reuillon et al., 2010], but they are less flexible and adapt-
able than R. Often, for one task, several packages in R are available and if not, writing own
functions is flexible and fast, especially because many scientists know R already from its ap-
plication for data analysis. Since RNetLogo does not restrict the user to predefined analysis
functions it opens up a large flexibility. But RNetLogo can only check the submitted NetL-
ogo code strings at runtime. This is a disadvantage, although the NetLogo code strings are
typically simple and lack of automated checking encourages well-designed analysis. Never-
theless, RNetLogo requires the user to understand data types and structures of both NetLogo
and R.

RNetLogo pushes the documentation and therefore the reproducibility of agent-based
modelling studies, a key feature of science, to a new level. Using RNetLogo in conjunc-
tion with tools like Sweave [Leisch, 2002], odfWeave [Kuhn et al., 2012] or SWord [Baier,
2009] will contribute to replicability and reproducibility of agent-based simulation studies
by automatic and self-documented report generation. For example, Sweave can embed R
code in a LaTex text document. When compiling the Sweave document, the R code is eval-
uated and the results (not only numeric but also images) can be embedded automatically
in the LaTex document. The RNetLogo package opens up the possibility to embed not only
results of R, but also the result of a NetLogo simulation. We can create a self-documented
report with NetLogo simulations and R analytics (with or without source code). For an
example see the Sweave code of this article.

Since models become more complex their computational requirements are increasing as
well. A lot of these requirements are compensated by increasing computational power, but
the use of modern model development and analysis techniques for stochastic models, like
Bayesian calibration methods, make a large number of repeated simulations necessary. Us-
ing RNetLogo includes, of course, an overhead when converting model results from NetLogo
to R and vice versa, but there are already techniques available to spread such repetitions to
multi-cores and computer clusters (see the RNetLogo package vignette Parallel Processing
with RNetLogo, Appendix H).

To sum up, I expect that this contribution will make agent-based modelling with NetLogo
more popular and easier in the R community and will support the methodological develop-
ments towards rigorous model development, testing and analysis in the ABM community.
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IV.1. Abstract

IV.1. Abstract

Agent-based models are increasingly used to address questions regarding real-world phe-
nomena and mechanisms; therefore, the calibration of model parameters to certain data
sets and patterns is often needed. Furthermore, sensitivity analysis is an important part
of the development and analysis of any simulation model. By exploring the sensitivity of
model output to changes in parameters, we learn about the relative importance of the vari-
ous mechanisms represented in the model and how robust the model output is to parameter
uncertainty. These insights foster the understanding of models and their use for theory de-
velopment and applications. Both steps of the model development cycle require massive
repetitions of simulation runs with varying parameter values. To facilitate parameter esti-
mation and sensitivity analysis for agent-based modellers, we show how to use a suite of
important established methods. Because NetLogo and R are widely used in agent-based
modelling and for statistical analyses, we use a simple model implemented in NetLogo as an
example, packages in R that implement the respective methods, and the RNetLogo package,
which links R and NetLogo. We briefly introduce each method and provide references for
further reading. We then list the packages in R that may be used for implementing the meth-
ods, provide short code examples demonstrating how the methods can be applied in R, and
present and discuss the corresponding outputs. The Supplementary Material includes full,
adaptable code samples for using the presented methods with R and NetLogo. Our overall
aim is to make agent-based modellers aware of existing methods and tools for parameter es-
timation and sensitivity analysis and to provide accessible tools for using these methods. In
this way, we hope to contribute to establishing an advanced culture of relating agent-based
models to data and patterns observed in real systems and to foster rigorous and structured
analyses of agent-based models.

IV.2. Introduction

In agent-based models (ABMs), individual agents, which can be humans, institutions, or
organisms, and their behaviours are represented explicitly. ABMs are used when one
or more of the following individual-level aspects are considered important for explaining
system-level behaviour: heterogeneity among individuals, local interactions, and adaptive
behaviour based on decision making [Grimm, 2008]. The use of ABMs is thus required for
many, if not most, questions regarding social, ecological, or any other systems comprised of
autonomous agents. ABMs have therefore become an established tool in social, ecological
and environmental sciences [Gilbert, 2007, Thiele et al., 2011, Railsback and Grimm, 2012].

This establishment appears to have occurred in at least two phases. First, most ABMs
in a certain field of research are designed and analysed more or less ad hoc, reflecting the
fact that experience using this tool must accumulate over time. The focus in this phase is
usually more on how to build representations than on in-depth analyses of how the model
systems actually work. Typically, model evaluations are qualitative, and fitting to data is not
a major issue. Most models developed in this phase are designed to demonstrate general
mechanisms or provide generic insights. The price for this generality is that the models
usually do not deliver testable predictions, and it remains unclear how well they really
explain observed phenomena.

The second phase in agent-based modelling appears to begin once a critical mass of mod-
els for certain classes of questions and systems has been developed, so that attention shifts
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from representation and demonstration to obtaining actual insights into how real systems
are working. An indicator of this phase is the increased use of quantitative analyses that
focus on both a better mechanistic understanding of the model and on relating the model
to real-world phenomena and mechanisms. Important approaches during this stage are
sensitivity analysis and calibration (parameter fitting) to certain data sets and patterns.

The use of these approaches is, however, still rather low with agent-based modelling. A
brief survey of papers published in the Journal of Artificial Societies and Social Simulation and
in Ecological Modelling in the years 2009-2010 showed that the percentages of simulation
studies including parameter fitting were 14 and 37%, respectively, while only 12 and 24%
of the published studies included some type of systematic sensitivity analysis (for details
of this survey, see Supplement SM1). There are certainly many reasons why quantitative
approaches for model analysis and calibration are not used more often and why the usage
of these approaches appears to differ between social simulation and ecological modelling,
including the availability of data and generally accepted theories of certain processes, a
focus on theory or application, and the complexity of the agents’ decision making (e.g.,
whether they are humans or plants).

There is, however, a further important impediment to using more quantitative methods
for analysing models and relating them more closely to observed patterns [Grimm et al.,
2005a, Railsback and Grimm, 2012] and real systems: most modellers in ecology and social
sciences are amateurs with regard to computer science and the concepts and techniques
of experimental design [Lorscheid et al., 2012]. They often lack training in methods for
calibration and sensitivity analysis and for implementing and actually using these methods.
Certainly, comprehensive monographs on these methods exist [e.g., Saltelli et al., 2004,
Kleijnen, 2008], but they tend to be dense and therefore not easily accessible for many
modellers in social sciences and ecology. Moreover, even if one learns how a certain method
works in principle, it often remains unclear how it should actually be implemented and
used.

We therefore in this article introduce software and provide scripts that facilitate the use
of a wide range of methods for calibration, the design of simulation experiments, and sensi-
tivity analysis. We do not intend to give in-depth introductions to these methods but rather
provide an overview of the most important approaches and demonstrate how they can eas-
ily be applied using existing packages for the statistical software program R [R Core Team,
2014] in conjunction with RNetLogo [Thiele et al., 2012], an R package that allows a Net-
Logo [Wilensky, 1999] model to be run from R, sends data to that model, and exports the
model output to R for visualisation and statistical analyses.

R is a free, open-source software platform that has become established as a standard tool
for statistical analyses in biology and other disciplines. An indicator of this is the rapidly
increasing number of textbooks on R or on certain elements of R; currently, there are more
than 30 textbooks on R available [R Core Team, 2013], e.g., Crawley [2005], Dalgaard
[2008], Zuur et al. [2009]. R is an open platform, i.e., users contribute packages that
perform certain tasks. RNetLogo is one of these packages.

NetLogo [Wilensky, 1999] is a free software platform for agent-based modelling that was
originally designed for teaching but is increasingly used for science [Railsback and Grimm,
2012, Wilensky and Rand, 2014]. Learning and using NetLogo requires little effort due
to its easy and stable installation, the excellent documentation and tutorials, a simple but
powerful programming language, and continuous support by its developers and users via
an active user forum on the internet. Moreover, NetLogo’s source code was made available
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to the public in 2011, which might lead to further developments and improvements, in par-
ticular regarding computational power, which can sometimes be limiting for large, complex
models.

NetLogo comes with BehaviorSpace [Wilensky and Shargel, 2002], a convenient tool for
running simulation experiments, i.e., automatically varying parameters, running simula-
tions, and writing model outputs to files. However, for more complex calibrations, simu-
lation experiments, or sensitivity analyses, it would be more efficient to have a seamless
integration of NetLogo into software where modules or packages for these complex meth-
ods exist and can easily be used and adapted. Such a seamless link has been developed for
Mathematica [Bakshy and Wilensky, 2007] and, more recently, also for R [RNetLogo, Thiele
et al., 2012]. RNetLogo merges the power of R with the power and ease of use of NetLogo.

The software tool BehaviorSearch calibrates ABMs implemented in NetLogo [Stonedahl
and Wilensky, 2013]; it implements some of the calibration methods that we describe be-
low and appears to be powerful and robust [for an example use, see Radchuk et al., 2013].
Still, for many purposes, the professional agent-based modeller might need to take advan-
tage of the wider range of calibration methods available via R packages and to control the
operation of these methods in more detail. We recommend using the "cookbook" presented
here in combination with BehaviorSearch. For models implemented in languages other than
NetLogo, the scripts in our cookbook can be adapted because they are based on R, whereas
BehaviorSearch cannot be used.

In the following, we will first explain how R, NetLogo, and RNetLogo are installed and
how these programs can be learned. We introduce a simple example model, taken from
population ecology, which will be used for all further demonstrations. We then present a
wide range of techniques of model calibration, starting with a short general introduction
and closing with an intermediate discussion. Afterwards, we do the same for sensitivity
analysis techniques. Our main purpose is to provide an overview, or "cookbook", of methods
so that beginners in parameter estimation and sensitivity analysis can see which approaches
are available, what they can be used for, and how they are used in principle using R scripts.
These scripts can also be adapted if platforms other than NetLogo are used for implementing
the ABM, but then the users must replace the "simulation function" in the R scripts, where the
data exchange between R and NetLogo occurs, with an appropriate alternative. All source
codes, i.e., the NetLogo model implementation and the R/RNetLogo scripts, are available in
the Supplementary Material.

We will not discuss the backgrounds of the methods in detail, as there is already a large
body of literature on calibration and sensitivity analysis methods [e.g., Saltelli et al., 2000,
2004, 2008, Helton et al., 2006, Kleijnen, 1995, 2008, Cournède et al., 2013, Gan et al.,
2014]. We will therefore refer to existing introductions to the respective methods. We also
did not fine-tune the methods to our example model and did not perform all of the checks
required for thorough interpretation of results, e.g., convergence checks. Therefore, the
methods presented have the potential to produce more detailed and robust results, but for
simplicity, we used default settings whenever possible. The purpose of this article is not to
present the optimal application of the methods for the example model but to provide a good
starting point to apply the methods to readers’ own models. As with a real cookbook, readers
should benefit from reading the general sections but might decide to browse through the list
of approaches demonstrated and selectively zoom into reading specific "recipes".

Readers not familiar with R will not understand the R scripts in detail but can still see how
easily R packages can be employed to perform even complex tasks. Readers not familiar with
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statistical methods, e.g., linear regression, will not understand the interpretation of some
of the results presented, but they should still grasp the general idea. Again, as with a real
cookbook, you will not be able to follow the recipe if you never learned the basics of cooking.
However, hopefully this article will convince some readers that learning these basics might
pay off handsomely.

IV.2.1. Software Requirements

The model used and described in the next section is implemented in NetLogo [Wilensky,
1999]. NetLogo can be downloaded from http://ccl.northwestern.edu/netlogo/. Parameter
fitting and sensitivity analysis is performed in R [R Core Team, 2014]. R can be downloaded
from http://cran.r-project.org/. Because RNetLogo is available on CRAN, installation from
within an R shell/RGUI can be performed by typing install.packages("RNetLogo").
For further details see the RNetLogo manual, available at http://cran.r-project.org/web/
packages/RNetLogo/index.html. When RNetLogo is installed, loading the example model
works in this way (path and version names might need to be adapted):

# 1. Load the package.
library(RNetLogo)

# 2. Initialize NetLogo.
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path, nl.version=5, gui=FALSE, obj.name="my.nl1")

# 3. Load the NetLogo model.
model.path <- "C:/models/woodhoopoe.nlogo"
NLLoadModel(model.path, nl.obj="my.nl1")

This code was used in all application examples. The source codes of all examples as well
as the R workspaces with simulation results are in the Supplementary Material. In many of
the examples presented in this article, additional R packages are used. In most cases the
installation is equivalent to the installation of RNetLogo. References are provided where
these packages are used.

IV.2.2. The Example Model

The model description following the ODD protocol [Grimm et al., 2010] is adopted from
Railsback and Grimm [2012]. Because they are simple, a description of the submodels is
included in the section Process overview and scheduling. The source code of the NetLogo
model is included in the Supplementary Material.

The model represents, in a simplified way, the population and social group dynamics of
a group-living, territorial bird species with reproductive suppression, i.e., the alpha couple
in each group suppresses the reproduction of subordinate mature birds. A key behaviour in
this system is the subordinate birds’ decision as to when to leave their territory for so-called
scouting forays, on which they might discover a free alpha, or breeding, position somewhere
else. If they do not find such a position, they return to their home territory. Scouting forays
come with an increased mortality risk due to raptors. The model provides a laboratory for
developing a theory for the scouting foray decision, i.e., alternative submodels of the deci-
sion to foray can be implemented and the corresponding output of the full model compared
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to patterns observed in reality. Railsback and Grimm [2012] use patterns generated by a
specific model version, and the educational task they propose is to identify the submodel
they were using. In this article, we use the simplest model version, where the probability of
subordinates undertaking a scouting foray is constant.

Purpose. - The purpose of the model is to explore the consequences of the subordinate
birds’ decisions to make scouting forays on the structure and dynamics of the social group
and the entire population.

Entities, state variables, and scales. - The entities of the model are birds and territories.
A territory represents both a social group of birds and the space occupied by that group.
Territories not occupied by a group are empty. Territories are arranged in a one-dimensional
row of 25 NetLogo patches with the boundary territories "wrapped" so that the model world
is a ring. The state variables of a territory are the coordinate of its location and a list of the
birds occupying it. The state variables of birds are their sex, age (in months), and whether
they are alpha. The time step of the model is one month. Simulations run for 22 years, and
the results from the initial two years are ignored.

Process overview and scheduling. - The following list of processes is executed in the
given order once per time step. The order in which the birds and territories execute a process
is always randomised, and state variables are updated immediately after each operation.

• Date and ages of birds are updated.

• Territories try to fill vacant alpha positions. If a territory lacks an alpha but has a
subordinate adult (age > 12 months) of the right sex, the oldest subordinate becomes
the new alpha.

• Birds undertake scouting forays. Subordinate adults decide whether to scout for a
new territory with a vacant alpha position. If no other non-alpha is in the current
territory, a subordinate adult definitely stays. If there are older non-alphas on the
current home territory, a subordinate adult scouts with probability scout-prob. If the
bird scouts, it randomly moves either left or right along the row of territories. Scouting
birds can explore up to scouting-distance territories in their chosen direction. Of those
territories, the bird occupies the one that is closest to its starting territory and has no
alpha of its sex. If no such territory exists, the bird goes back to its starting territory.
All birds that scout (including those that find and occupy a new territory) are then
subjected to a predation mortality probability of 1.0 - scouting-survival.

• Alpha females reproduce. In the last month of every year, alpha females that have an
alpha male in their territory produce two offspring. The offspring have their age set to
zero months and their sex chosen randomly with equal probability.

• Birds experience mortality. All birds are subject to stochastic background mortality
with a monthly survival probability of survival-prob.

• Output is produced.
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Design concepts.

• Emergence. The results we are interested in are the three patterns the model is sup-
posed to reproduce (see Observation); they all emerge from the decision making for
scouting but also may strongly depend on other model parameters, such as reproduc-
tion and mortality rates.

• Adaptation. There is only one adaptive decision: to undertake a scouting foray or not.

• Objectives. The subordinate birds’ objective is to become an alpha so they can repro-
duce. If the individual stays at its home territory, all the older birds of its sex must die
before the individual is able to become an alpha. If the individual scouts, to succeed
it must find a vacant alpha position and it must survive predation during scouting.

• Sensing. We assume that birds know nothing about other territories and can only
sense whether an alpha position is open in another territory by actually going there.
Birds know both the status and age of the other birds in their group.

• Collectives. The social groups are collectives. Because the model’s "territory" entities
represent the social groups as well as their space, the model treats the behaviours of
the social groups (promoting alphas) as behaviours of the territories.

• Observation. In addition to visual displays to observe individual behaviour, three char-
acteristic patterns are observed at different hierarchical levels of the model: the long-
term mean number of birds (mean or abundance criterion), the standard deviation
from year to year in the annual number of birds (variation criterion) and the aver-
age percentage of territories that lack one or both alpha animals (vacancy criterion).
The observational data are collected in November of each year, i.e., the month before
reproduction occurs.

Initialisation. - Simulations begin in January (month 1). Every territory begins with two
male and two female birds, with ages chosen randomly from a uniform distribution of 1 to
24 months. The oldest adult of each sex becomes alpha.

Input data. - The model does not include any external input.

Submodels. - Because all submodels are very simple, their full descriptions are already
included in the process overview above. The model includes five parameters, which are
listed in Table IV.1.

Table IV.1.: Model parameters. *Base values used by Railsback and Grimm [2012]
Parameter Description Base value*
fecundity Number of offspring per reproducing female 2
scouting-distance Distance over which birds scout 5
scouting-survival Probability of surviving a scouting trip 0.8
survival-prob Probability of a bird to survive one month 0.99
scout-prob Probability to undertake a scouting trip 0.5
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IV.3. Parameter Estimation and Calibration

Typically, ABMs include multiple submodels with several parameters. Parameterisation, i.e.,
finding appropriate values of at least some of these parameters, is often difficult due to the
uncertainty in, or complete lack of, observational data. In such cases, parameter fitting or
calibration methods can be used to find reasonable parameter values by combining sam-
pling or optimisation methods with so-called inverse modelling, also referred to as pattern-
oriented parameterisation/modelling [POM; Grimm and Railsback, 2005], or Monte Carlo
Filtering, as the patterns are applied as filters to separate good from bad sets of parameter
values [Grimm and Railsback, 2005]. The basic idea is to find parameter values that make
the model reproduce patterns observed in reality sufficiently well.

Usually, at least a range of possible values for a parameter is known. It can be obtained
from biological constraints (e.g., an adult human will usually be between 1.5 and 2.2 metres
tall), by checking the variation in repeated measurements or different data in the literature,
etc. During model development, parameter values are often chosen via simple trial and er-
ror "by hand" because precision is not necessary at this stage. However, once the design of
the model is fixed and more quantitative analyses are planned, the model must be run sys-
tematically with varying parameter values within this range and the outcome of the model
runs compared to observational data.

If the parameters are all independent, i.e., the calibrations of different parameters do
not affect each other, it is possible to perform model calibration separately for all unknown
parameters. Usually, though, parameters interact because the different processes that the
parameters represent are not independent but interactive. Thus, rather than single param-
eters, entire sets of parameters must be calibrated simultaneously. The number of possible
combinations can become extremely large and may therefore not be processable within ad-
equate time horizons.

Therefore, more sophisticated ways of finding the right parameter values are needed. This
can also be the case for independent parameters or if only one parameter value is unknown,
if the model contains stochastic effects and therefore needs to be run multiple times (Monte
Carlo simulations) for each parameter combination [Martínez et al., 2011] or if the model
runs very slow. Therefore, efficient sampling or optimisation methods must be applied.
Here, "sampling" refers to defining parameter sets so that the entire parameter space, i.e.,
all possible parameter combinations, is explored in a systematic way.

To assess whether a certain combination of parameter values leads to acceptable model
output, it is necessary to define one, or better yet multiple, fitting criteria, i.e., metrics that
allow one to quantify how well the model output matches the data. Such criteria should be
taken from various hierarchical levels and possibly different spatial or temporal scales, e.g.,
from single individuals over social groups, if possible, to the whole population.

Two different strategies for fitting model parameters to observational data exist: best-
fit and categorical calibration. The aim of calibration for the first strategy is to find the
parameter combination that best fits the observational data. The quality measure is one
exact value obtained from the observational data, so it is easy to determine which parameter
set leads to the lowest difference. Of course, multiple fitting criteria can be defined, but they
must be aggregated to one single measure, for example, by calculating the sum of the mean
square deviation between the model and the observational data for all fitting criteria. An
example for the application of such a measure can be found in Wiegand et al. [1998]. The
problem with best-fit calibration is that even the best parameter set may not be able to

141



Chapter IV. Facilitating Parameter Estimation and Sensitivity Analysis

reproduce all observed patterns sufficiently well. Furthermore, aggregating different fitting
criteria to one measure makes it necessary to think about their relation to each other, i.e.,
are they all equally important or do they need to be weighted?

These questions are not that important for the second strategy, categorical calibration.
Here, a single value is not derived from the observational data, but rather, a range of plau-
sible values is defined for each calibration criterion. This is particularly useful when the
observational data are highly variable or uncertain by themselves. In this case, the number
of criteria met is counted for a parameter set, i.e., the cases when the model result matches
the defined value range. Then, the parameter set that matches all or most criteria is se-
lected. Still, it is possible that either no parameter combination will match the defined value
range or that multiple parameter sets will reproduce the same target patterns. In such a
case, the fitting criteria (both their values and importance) and/or the model itself need to
be adjusted. For further details on practical solutions to such conceptual problems, see, for
example, Railsback and Grimm [2012].

IV.3.1. Preliminaries: Fitting Criteria for the Example Model

We assume, following Railsback and Grimm [2012], that the two parameters survival-prob
and scout-prob have been identified as important parameters with uncertain values. We
assume that reasonable value ranges for these two parameters are as follows:

• scout-prob: 0.0 to 0.5

• survival-prob: 0.95 to 1.0

These parameters should be fitted against the three response variables (fitting criteria/
patterns) described in the Observation section of the model description.

Railsback and Grimm [2012] define categorical calibration criteria. The acceptable value
ranges derived from observational data they used are as follows:

• mean abundance (abundance criterion): 115 to 135 animals

• annual std. dev. (variation criterion): 10 to 15 animals

• mean territories lacking one or both alpha animals (vacancy criterion): 15 to 30%

When using these categorical fitting criteria, each criterion is fulfilled when the corre-
sponding metric falls within the desired range.

Some of the calibration methods used below require a single fitting criterion, the best-fit
criterion. To keep the patterns as they are, we use a hybrid solution by defining condi-
tional equations to transform the categorical criteria to a best-fit criterion. The following
is just a simple example of how such an aggregation can be performed. For more powerful
approaches, see, for example, Soetaert and Herman [2009] for a function including a mea-
sure of accuracy of observational data. However, such transformations always involve a loss
of more or less important information that can be non-trivial. Furthermore, differences in
the results of different methods, for example, using categorical criteria versus using best-fit
criteria, can have their origin in the transformation between these criteria.
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To calculate the three above-defined categorical criteria as quantitative measures, we use
conditional equations based on squared relative deviations to the mean value of the accept-
able value range and sum them over the different criteria as follows:

abundancecrit(x) =

0, if 115 ≤ x ≤ 135(
mean(115,135)−x

mean(115,135)

)2
, else

(IV.1)

variationcrit(y) =

0, if 10 ≤ y ≤ 15(
mean(10,15)−y

mean(10,15)

)2
, else

(IV.2)

vacancycrit(z) =

0, if 15 ≤ z ≤ 30(
mean(15,30)−z

mean(15,30)

)2
, else

(IV.3)

cost(x, y, z) = abundancecrit(x) + variationcrit(y) + vacancycrit(z) (IV.4)

with x,y,z being the corresponding simulation result, e.g., x is the mean abundance of
the simulation as mentioned above. If the simulation result is within the acceptable range,
the cost value of the criteria becomes 0; otherwise, it is the squared relative deviation. By
squaring the deviations, we keep the values positive and weigh large deviations dispro-
portionately higher than low deviations (Eqs. IV.1-IV.3). This has an important effect on
Eq. IV.4. For example, if we find small deviations in all three criteria, the overall cost value
(Eq. IV.4) still stays low, but when only one criterion’s deviation is rather high, its criterion
value and therefore also the overall cost value becomes disproportionately high. We use this
approach here because we think that small deviations in all criteria are less important than
a single large deviation.

Alternatives to this are multi-criterion approaches where each criterion is considered sep-
arately and a combined assessment is performed by determining Pareto optima or fronts
[Miettinen, 1999, de Weck, 2004]. See, for example, the package mco [Trautmann et al.,
2013] for Pareto optimisation with a genetic algorithm. Multi-criterion approaches, how-
ever, have their own challenges and limitations and are much less straightforward to use
than the cost function approach that we used here.

Because the example model includes stochastic effects, we repeat model runs using the
same initialisation and average the output. Following Martínez et al. [2011] and Kerr et al.
[2002], we ran 10 repetitions for every tested parameter set. However, for "real" simulation
studies it is advisable to determine the number of repetitions by running the model with an
increasing number of repetitions and calculating the resulting coefficient of variation (CV)
of the simulation output. At the number of repetitions where the CV remains (nearly) the
same, convergence can often be assumed [Lorscheid et al., 2012]. However, in cases of non-
linear relationships between the input parameters and simulation output, this assumption
may not be fulfilled.

If we have replicates of observational data and a stochastic model, which is not the case
for our example, we should compare distributions of the results rather than using a single
value comparison, as recommended in Stonedahl and Wilensky [2010]. The calculation of
the pomdev measure [Piou et al., 2009], which is already implemented in the R package
Pomic [Piou et al., 2009], could be of interest in such a case.

143



Chapter IV. Facilitating Parameter Estimation and Sensitivity Analysis

If we want to compare whole time series instead of single output values, the aggregation
procedure can become more difficult. Such data could also be compared by mean square
deviations [see, for example, Wiegand et al., 1998], but then small differences in all mea-
surement points can yield the same deviation as a strong difference in one point. Hyndman
[2013] provides an overview of R packages helpful for time series analysis.

IV.3.2. Full Factorial Design

A systematic method for exploring parameter space is (full) factorial design, known from
Design of Experiments (DoE) methodology [Box et al., 1978]. It can be applied if the model
runs very quickly or if the numbers of unknown parameters and possible parameter values
are rather small. For example, Jakoby et al. [2014] ran a deterministic generic rangeland
model that includes nine parameters and a few difference equations for one billion param-
eter sets.

In DoE terminology, the independent variables are termed "factors" and the dependent
(output) variables "responses". For full factorial design, all possible factor combinations are
used. The critical point here is to define the possible factor levels (parameter values) within
the parameter ranges. For parameter values that are integer values by nature (e.g., number
of children) this is easy, but for continuous values it can be difficult to find a reasonable
step size for the factor levels. This can be especially difficult if the relationship between the
factor and the response variables is non-linear.

For our example model, we assume the following factor levels [taken from Railsback and
Grimm, 2012]:

• scout-prob: 0.0 to 0.5 with step size 0.05

• survival-prob: 0.95 to 1.0 with step size 0.005

There are several packages available in R for supporting DoE; for a collection, see, for ex-
ample, Groemping [2013b]. To run a full factorial design in R, the function expand.grid
from the base package can be used as follows:

# 1. Define a function that runs the simulation model
# for a given parameter combination and returns the
# value(s) of the fitting criteria. See Supplementary
# Material (simulation_function1.R) for an
# implementation example using RNetLogo.
sim <- function(params) {

...
return(criteria)

}

# 2. Create the design matrix.
full.factorial.design <- expand.grid(scout.prob =

seq(0.0,0.5,0.05), survival.prob = seq(0.95,1.0,0.005))

# 3. Iterate through the design matrix from step 2 and call
# function sim from step 1 with each parameter combination.
sim.results <- apply(full.factorial.design, 1, sim)
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We include this example because it is a good starting point for proceeding to more sophis-
ticated methods, such as the fractional factorial design. If you want to use a classical full
factorial design with NetLogo, we recommend using NetLogo’s BehaviorSpace [Wilensky
and Shargel, 2002].

Figure IV.1.: Left: Results of the full factorial design (121 parameter sets) using categorical
evaluation criteria. Black points symbolise the tested parameter combinations,
and the three different symbols show whether the evaluation criteria were met
(red triangle: abundance criterion, blue cross: variation criterion, green x: va-
cancy criterion). Right: Results of the full factorial design based on conditional
best-fit equations (Eqs. IV.1- IV.3), summed up to the one metric cost (Eq. IV.4).
The cost values are truncated at 10.0 (max. cost value was 842). Grey cells
indicate high cost values, and white cells represent low values, i.e., better solu-
tions. One cell represents one simulation with parameter values from the cell’s
midpoint corresponding to the left panel.

The results of the model calibration procedure with categorical calibration criteria can be
explored visually. Figure IV.1 (left panel) shows such a figure for the example model. We
see that none of the 121 tested parameter combinations met the three calibration criteria
simultaneously. Still, the figure provides some useful hints. The central region of parameter
space appears to be promising. The failure to meet all three criteria simultaneously might
be due to the step width used.

Using the same output data that underlie Figure IV.1 (left panel), we can calculate the
conditional best-fit equations (Eq. IV.4) and plot the results as a raster map (Figure IV.1,
right panel). This plot shows more directly than the left panel where the most promising
regions of parameter space are located (the white cells), which can then be investigated in
more detail.

Overall, full factorial design is useful for visually exploring model behaviour regarding its
input parameters in a systematic way but only if the number of parameters and/or factor
levels is low. To gain a coarse overview, full factorial design can be useful for calibrating
a small number of parameters at a time because the number of combinations can be kept
small enough. Fractional factorial designs can be used for a larger number of parameters by
selecting only a subset of the parameter combinations of a full factorial design [Box et al.,
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1978]; the application in R is very similar, see the above-mentioned collection by Groemping
[2013b].

IV.3.3. Classical Sampling Methods

One common method of avoiding full factorial designs, both in simulations and in real ex-
periments, is the usage of sampling methods. The purpose of these methods is to strongly
reduce the number of parameter sets that are considered but still scan parameter space in a
systematic way. Various algorithms exist to select values for each single parameter, for ex-
ample, random sampling with or without replacement, balanced random design, systematic
sampling with random beginning, stratified sampling etc.

Simple Random Sampling

The conceptually and technically simplest, but not very efficient, sampling method is simple
random sampling with replacement. For each sample of the chosen sample size (i.e., number
of parameter sets), a random value (from an a priori selected probability density function)
is taken for each parameter from its value range. The challenge here, and also for all other
(random) sampling methods, is finding an appropriate probability density function (often
just a uniform distribution is used) and the selection of a useful sample size. Applying a
simple random sampling in R can look like the following:

# 1. Define a simulation function (sim) as done for
# Full factorial design.

# 2. Create the random samples from the desired random
# distribution (here: uniform distribution).
random.design <- list('scout-prob'=runif(50,0.0,0.5),

'survival-prob'=runif(50,0.95,1.0))

# 3. Iterate through the design matrix from step 2 and call
# function sim from step 1 with each parameter combination.
sim.results <- apply(as.data.frame(random.design), 1, sim)

Despite the fact that this simple random sampling is not an efficient method and could
rather be considered a trial-and-error approach to exploring parameter space, it is used
quite often in practice [e.g., Molina et al., 2001]. We nevertheless included the source code
for this example in the Supplementary Material because it can be easily adapted to other,
related sampling methods.

The results of an example application using 50 samples with categorical calibration crite-
ria are shown in Figure IV.2. The sampling points are distributed over the parameter space
but leave large gaps. The overall pattern of the regions where the different criteria were met
looks similar to that of the full factorial design (Figure IV.1). In this example application,
we were not able to find a parameter combination that meets all three evaluation criteria.
In general, the simple random sampling method is not an efficient method for parameter
fitting.
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Figure IV.2.: Results of using simple random sampling based on categorical calibration crite-
ria with 50 samples. Black points symbolise the tested parameter combinations,
and the three different symbols show whether the evaluation criteria were met
(red triangle: abundance criterion, blue cross: variation criterion, green x:
vacancy criterion).

Latin Hypercube Sampling

As a more efficient sampling technique to scan parameter spaces, Latin hypercube sampling
(LHS) [McKay et al., 1979] is widely used for model calibration and sensitivity analysis as
well as for uncertainty analysis [e.g., Marino et al., 2008, Blower and Dowlatabadi, 1994,
Frost et al., 2009, Meyer et al., 2009]. LHS is a stratified sampling method without re-
placement and belongs to the Monte Carlo class of sampling methods. It requires fewer
samples to achieve the same accuracy as simple random sampling. The value range of each
parameter is divided into N intervals (= sample size) so that all intervals have the same
probability. The size of each interval depends on the used probability density distribution of
the parameter. For uniform distributions, they all have the same size. Then, each interval of
a parameter is sampled once [Marino et al., 2008]. As there are some packages for creating
Latin hypercubes available in R, such as tgp [Gramacy and Taddy, 2013] and lhs [Carnell,
2012], it is easy to use this sampling method. For our small example model, the code for
generating a Latin hypercube with the tgp package is as follows:

# 1. Define a simulation function (sim) as done for
# Full factorial design.

# 2. Create parameter samples from a uniform distribution
# using the function lhs from package tgp.
param.sets <- lhs(n=50, rect=matrix(c(0.0,0.95,0.5,1.0), 2))

# 3. Iterate through the parameter combinations from step 2
# and call function sim from step 1 for each parameter
# combination.
sim.results <- apply(as.data.frame(param.sets), 1, sim)
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As with simple random sampling, the challenge of choosing appropriate probability den-
sity distributions and a meaningful sample size remains. Using, as shown above, a uniform
random distribution for the two parameters of our example model, the results using cat-
egorical criteria for 50 samples are shown in Figure IV.3. We have been lucky and found
one parameter combination (scout-prob: 0.0955, survival-prob: 0.9774) that met all three
criteria. The source code for creating a Latin hypercube in the Supplementary Material also
includes an example of applying a best-fit calibration (Eq. IV.4).

Figure IV.3.: Results from the Latin hypercube sampling using categorical evaluation criteria
with 50 samples. Black points symbolise tested parameter combinations, and
the three different symbols show whether the evaluation criteria were met (red
triangle: abundance criterion, blue cross: variation criterion, green x: vacancy
criterion).

IV.3.4. Optimisation Methods

In contrast to the sampling methods described above, optimisation methods create param-
eter sets not before the simulations are started but in a stepwise way based on the re-
sults obtained with one or more previously used parameter sets. These methods are used
in many different disciplines, including operations research, physics etc. [Aarts and Korst,
1989, Bansal, 2005]. As the relationships between the input parameters and the output vari-
ables in ABMs are usually non-linear, non-linear heuristic optimisation methods are the right
choice for parameter fitting. We will give examples for gradient and quasi-Newton methods,
simulated annealing and genetic algorithms. There are, however, many other optimisation
methods available, such as threshold accepting, ant colony optimisation, stochastic tun-
nelling, tabu search etc.; several packages for solving optimisation problems are available in
R. See Theussl [2013] for an overview.

Gradient and Quasi-Newton Methods

Gradient and quasi-Newton methods search for a local optimum where the gradient of
change in parameters versus change in the fitting criterion is zero. In cases where multiple
local optima exist, the ability to find the global optimum depends on the starting conditions
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[Sun and Yuan, 2006]. A popular example of gradient methods is the so-called conjugate
gradient method (CG). Because the standard CG is designed for unconstrained problems
(i.e., the parameter space cannot be restricted to a specific value range), it is not useful
to apply it to parameter estimation problems of ABMs. Quasi-Newton methods instead are
based on the Newton method but approximate the so-called Hessian matrix and, therefore,
do not require the definition of the second derivative [Biethahn et al., 2004]. An introduc-
tion to these methods can be found in Fletcher [1987]. The implementation of both the
gradient and quasi-Newton methods requires a gradient function to be supplied, which is
often difficult in ABMs. Implementations in R can often approximate the gradient numer-
ically. Here, we selected the L-BFGS-B method by Byrd et al. [1995], which is a variant
of the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [Bonnans et al., 2006]
because it is the only method included in the function optim of R’s stats package [R Core
Team, 2014], which can take value ranges (upper and lower limits) for the parameters into
account. The strength of the L-BFGS-B method is the ability to handle a large number of
variables. To use the L-BFGS-B method with our example ABM, we must define a function
that returns a single fitting criterion for a submitted parameter set. For this, we use the
single fitting criterion defined in Eq. IV.4. The usage of this method is as follows:

# 1. Define a function that runs the simulation model
# for a given parameter combination and returns the
# value of the (aggregated) fitting criterion. See
# Supplementary Material (simulation_function2.R) for
# an implementation example using RNetLogo.
sim <- function(params) {
...
return(criterion)
}

# 2. Run L-BFGS-B. Start, for example, with the maximum of
# the possible parameter value range.
result <- optim(par=c(0.5, 1.0),

fn=sim, method="L-BFGS-B",
control=list(maxit=200),
lower=c(0.0, 0.95), upper=c(0.5, 1.0))

Other packages useful for working with gradient or quasi-Newton methods are Rcgmin
[Nash, 2013], optimx [Nash and Varadhan, 2011] and BB [Varadhan and Gilbert, 2009].
The source code, including the L-BFGS-B, is in the Supplementary Material and can easily
be adapted for other gradient or quasi-Newton methods.

The variation of the aggregated value of the conditional equations (cost value) over the
80 model evaluations (including evaluations for gradient approximation) of the L-BFGS-B
method is shown in Figure IV.4 (upper panel). The algorithm checks the cost value of the
start parameter set and the parameter values at the bounds of the valid parameter values,
resulting in strong variations of the cost value over the number of iterations. Another source
of the strong variation is intermediate simulation for the approximation of the gradient
function. As we are only interested in the regions with low cost values, we truncated the
high cost values in the graph to obtain a more detailed look at the variation of the lower cost
values over the iterations. The lower panels of Figure IV.4 show the histograms of the tested
parameter values. We see that the search by the L-BFGS-B method for an optimal value for
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Figure IV.4.: Results of the L-BFGS-B method (includes intermediate simulations, e.g., simu-
lations for gradient approximation). A: Performance of the cost value (Eq. IV.4)
over the calls of the simulation function (x-axis, truncated at cost value 100,
max. cost value was 317). B: Histogram of the tested parameter values for pa-
rameter scout-prob. C: Histogram of the tested parameter values for parameter
survival-prob.
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both model parameters, in the configuration used here, shortly checked the extreme values
of the value range but focused on the middle range of the parameter space. We see that
the method stopped quickly and left large areas out of consideration, which is typical for
methods searching for local optima without the ability to also accept solutions with higher
costs during the optimisation. For survival-prob, the minimum possible value is checked more
precisely and smaller parts of the parameter space remain untested. The best fit was found
with parameter values of 0.3111 for scout-prob and 0.9778 for survival-prob, which resulted
in a cost value of 1.1. This cost value indicates that the three categorical criteria were not
matched simultaneously; otherwise the cost value would be zero. However, keep in mind
that the application of the method was not fine-tuned and a finite-difference approximation
was used for calculating the gradient.

Simulated Annealing

In simulated annealing, temperature corresponds to a certain probability that a local opti-
mum can be left. This avoids the problem of optimisation methods becoming stuck in local,
but not global, optima. Simulated annealing is thus a stochastic method designed for finding
the global optimum [Michalewicz and Fogel, 2004].

There are several R packages that include simulated annealing functions, for example,
stats [R Core Team, 2014], subselect [Cerdeira et al., 2013] or ConsPlan [VanDerWal and
Januchowski, 2010]. As for the gradient and quasi-Newton methods, to use simulated an-
nealing with an ABM we must define a function that returns a single fitting criterion for a
submitted parameter set. Using the GenSA package [Gubian et al., 2013], which allows one
to define value ranges for the parameters, running a simulated annealing optimisation looks
like this:

# 1. Define a simulation function (sim) as done for the
# L-BFGS-B method.

# 2. Run SA algorithm. Start, for example, with the maximum
# of the possible parameter value range.
result <- GenSA(par=c(0.5,1.0), fn=sim,

lower=c(0.0, 0.95), upper=c(0.5, 1.0))

As with the gradient and quasi-Newton methods, the choice of the starting values as
well as the number of iterations can be challenging. Furthermore, specific to simulated
annealing, the selection of an appropriate starting temperature is another critical point.

The result of an application example with 256 model evaluations is shown in Figure IV.5.
In the upper panel, we see the variation of the cost value over the iterations, i.e., the simu-
lation function calls. The algorithm found a good solution very fast, but then the algorithm
leaves this good solution and also accepts less good intermediate solutions. Because we are
primarily interested in the regions with low cost values, i.e., good adaptations of the model
to the data, we truncated the graph to obtain a better view of the variation in the region of
low cost values. In the lower panels, we see that more of the parameter space is tested than
with the previous L-BFGS-B method (Figure IV.4). The focus is also in the middle range of
the parameter space, which is the region where the best solution was found and which is
the most promising part of the parameter space, as we already know from the full factorial
design. The minimum cost value found in this example was 0.65 with corresponding param-
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Figure IV.5.: Results of the simulated annealing method. A: Performance of the cost value
(Eq. IV.4) over the calls of the simulation function (x-axis, truncated at cost
value 100, max. cost value was 317). B: Histogram of the tested parameter
values for parameter scout-prob. C: Histogram of the tested parameter values
for parameter survival-prob.
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eter values of 0.225 for scout-prob and 0.9778 for survival-prob. As with the quasi-Newton
method, the cost value indicates that the three criteria have not been met simultaneously.

Evolutionary or Genetic Algorithms

Evolutionary algorithms (EA) are inspired by the natural process of evolution and feature in-
heritance, selection, mutation and crossover. Genetic algorithms (GA) are, like evolutionary
strategies, genetic programming and some other variants, a subset of EAs [Pan and Kang,
1997]. GAs are often used for optimisation problems by using genetic processes such as
selection or mutation on the parameter set. The parameter set, i.e., a vector of parameter
values (genes), corresponds to the genotype. A population is formed by a collection of pa-
rameter sets (genotypes). Many books and articles about this methodology are available,
e.g., Mitchell [1998], Holland [2001], or Back [1996]. Application examples of EA/GA for
parameter estimation in the context of ABMs can be found in Duboz et al. [2010], Guichard
et al. [2010], Calvez and Hutzler [2006], or Stonedahl and Wilensky [2010].

There are several packages for evolutionary and genetic algorithms available in R; see the
listing in Hothorn [2013]. Using the package genalg [Willighagen, 2012] enables us to take
ranges of permissible values for the parameters into account. The rbga function of this
package requires a function that returns a single fitting criterion, as we have also used for
the quasi-Newton and simulated annealing methods. The procedure in R is as follows:

# 1. Define a simulation function (sim) as done for the
# L-BFGS-B method.

# 2. Run the genetic algorithm.
result <- rbga(stringMin=c(0.0, 0.95),

stringMax=c(0.5, 1.0),
evalFunc=sim, iters=200)

Challenges with EAs/GAs include selecting an appropriate population size and number
of iterations/generations, as well as meaningful probabilities for various genetic processes,
such as mutation.

The fitting process using the genalg package with 290 function evaluations resulted in
a best cost value of 0.35 with scout-prob of 0.3410 and survival-prob of 0.9763. The per-
formance of the cost value over the model evaluations is shown in the upper panel of Fig-
ure IV.6. We find a very strong oscillation because successive runs are more independent
than in the other methods above, e.g., by creating a new population. Therefore, this graph
looks much more chaotic, and truncating the vertical axis to zoom into the region of low
cost values is less informative in this specific case. As we can see in the lower panels of
the figure, a wide range of parameter values has been tested, with slightly higher frequency
around the best parameter value for scout-prob and a more diffuse pattern for survival-prob.
However, the best parameter combination found is very similar to the one found by the other
optimisation methods. In general, it appears that the promising value range of survival-prob
is much smaller than that for scout-prob. The values of (sub-) optimal solutions for survival-
prob are always close to 0.977, whereas the corresponding value of scout-prob varies on a
much wider value range with only a small influence on the cost value. This pattern was
already shown in Figure IV.1 (right panel). For investigating such a pattern in more detail,
Bayesian methods can be very help- and powerful, as presented below.
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Figure IV.6.: Results of the genetic algorithm method for 10 populations and 50 generations.
A: Performance of the cost value (Eq. IV.4) over the calls of the simulation func-
tion (x-axis, truncated at cost value 100, max. cost value was 2923). B: His-
togram of the tested parameter values for parameter scout-prob. C: Histogram
of the tested parameter values for parameter survival-prob.

154



IV.3. Parameter Estimation and Calibration

IV.3.5. Bayesian Methods

Classical statistical maximum likelihood estimation for model parameters cannot be applied
to complex stochastic simulation models; the likelihood functions are either intractable or
hard to detect because this is computationally too expensive [Jabot et al., 2013]. By us-
ing the Bayesian strategy, the true/posterior probability density functions of parameters are
calculated by point-wise likelihood approximations across the parameter space. The basic
idea, as described in Jabot et al. [2013], is to run the model a very large number of times
with different parameter values drawn from distributions we guess are underlying (prior
distributions). Then, the simulation results and the observational data are compared using
so-called summary statistics, which are some aggregated information calculated from the
simulation and the observational data to reduce the dimensionality of the data. Only those
parameter values where the difference between the simulated and the observed summary
statistics is less than a defined threshold (given by a tolerance rate) are kept. At the end,
an approximation of the posterior distribution is formed by the retained parameter values.
Such methods, called Approximate Bayesian Computing (ABC), have been increasingly used
for simulation models in recent years [e.g., May et al., 2013, Martínez et al., 2011, Sottoriva
and Tavaré, 2010; and review by Hartig et al., 2011]. They not only deliver a best estimate
for the parameter values but also provide measures of uncertainty with consideration of cor-
relations among the parameters [Martínez et al., 2011]. Introductions to Bayesian statistical
inference using ABC can be found in Beaumont [2010], Van Oijen [2008], or Hartig et al.
[2011].

A list of useful R packages around Bayesian inference can be found in Park [2013]. The
most relevant packages regarding ABC are abc [Csillery et al., 2012a], EasyABC [Jabot
et al., 2013], pomp [King et al., 2013], FME [Soetaert and Petzoldt, 2010] and MCMChy-
bridGP [Fielding, 2011]. If a specific method is not available in an out-of-box package, there
are several R packages that can assist in developing custom implementations, such as the
MCMC package [Geyer and Johnson, 2013] with its Markov chain Monte Carlo Metropolis-
Hastings algorithm or the coda package [Plummer et al., 2006] for the analysis of Markov
chain Monte Carlo results. An R interface to the openBUGS software [Lunn et al., 2009]
comes with the BRugs package [Thomas et al., 2006] and enables the advanced user to
define models and run Bayesian approximations in openBUGS, which is beyond the scope
of this paper. MCMC in an ABC framework can also be used to compute some measures of
model complexity [Piou et al., 2009]. The Pomic package [Piou et al., 2009] is based on an
adaptation of the DIC measure [Spiegelhalter et al., 2002] to compare the goodness of fit
and complexity of ABMs developed in a POM context.

Note that Bayesian methods require deeper knowledge and understanding than the other
methods presented above to be adapted properly to a specific model. The methods presented
above could be understood in principle without previous knowledge, but this is not the case
for Bayesian methods. We recommend first reading Wikipedia or other introductions to
these methods before trying to use the methods described in this section. Nevertheless,
even for beginners, the following provides an overview of the inputs, packages, and typical
outputs of Bayesian calibration techniques.
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Rejection and Regression Sampling

The easiest variant of ABC regarding the sampling scheme is rejection sampling. Here,
the user first defines a set of summary statistics, which are used to compare observations
with simulations. Furthermore, a tolerance value, which is the proportion of simulation
points whose parameter set is accepted, must be selected. Then, parameter sets are drawn
from a user-defined prior distribution and tested for acceptance. At the end, the posterior
distribution is approximated from the accepted runs [Beaumont et al., 2002].

Such sampling can be performed in R using the package abc [Csillery et al., 2012a] or the
package EasyABC [Jabot et al., 2013]. The abc package offers two further improvements to
the simple rejection method based on Euclidean distances: a local linear regression method
and a non-linear regression method based on neural networks. Both add a further step to
the approximation of the posterior distribution to correct for imperfect matches between the
accepted and observed summary statistics [Csillery et al., 2012b].

Because the abc package expects random draws from the prior distributions of the param-
eter space, we must create such an input in a pre-process. For this, we can, for simplicity,
reuse the code of the Latin hypercube sampling with separate best-fit measures for all three
fitting criteria used as summary statistics (see Eqs. IV.1-IV.3). Also for simplicity, we ap-
ply a non-informative uniform (flat) prior distribution [for further reading see Hartig et al.,
2011]. As summary statistics, we use the three criteria defined in the model description. We
assume that the observed summary statistic is calculated as the mean of the minimum and
the maximum of the accepted output value range, i.e., we assume that the value range was
gained by two field measurements and we use the mean of these two samples to compare it
with the mean of two simulated outputs. The procedure of using the abc function in R (for
simple rejection sampling) is as follows:

# 1. Run a Latin hypercube sampling as performed above.
# The result should be two variables, the first
# containing the parameter sets (param.sets) and
# the second containing the corresponding summary
# statistics (sim.sum.stats).

# 2. Calculate summary statistics from observational data
#(here: using the mean of value ranges).
obs.sum.stats <- c(abundance=mean(c(115,135)),

variation=mean(c(10,15)),
vacancy=mean(c(0.15,0.3)))

# 3. Run ABC using observations summary statistics and the
# input and output of simulations from LHS in step 1.
results.abc <- abc(target=obs.sum.stats, param=param.sets,

sumstat=sim.sum.stats,
tol=0.3, method="rejection")

The results, i.e., the accepted runs that form the posterior distribution of simple rejection
sampling and of the local linear regression method, can be displayed using histograms,
as presented in Figure IV.7 (upper and middle panels). These results are based on Latin
hypercube sampling with 30,000 samples and a tolerance rate of 30 per cent, which defines
the percentage of accepted simulations. The histograms can be used to estimate the form
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of the probability density function (kernel density), which is shown in the lower panels
of Figure IV.7. These density estimations can be taken subsequently to gain distribution
characteristics for the two input parameters, as shown in Table IV.2. Afterwards, the density
estimations can be used to run the model not only with the mean or median of the parameter
estimation but also for an upper and lower confidence value, which would result not only in
one model output but in confidence bands for the model output. See Martínez et al. [2011]
for an example.

We see that there are considerable differences in results between the simple rejection
sampling and the rejection sampling with local linear regression correction. For example,
the mean value of scout-prob is much lower with the regression method than with the simple
rejection method. Furthermore, the posterior distribution of survival-prob is narrower with
the regression method than with the simple rejection method.

Table IV.2.: Posterior distribution characteristics for the two parameters gained from the
ABC rejection sampling (first and third columns) and the local linear regression
method (second and fourth columns; weighted).

scout-prob survival-prob
rej. sampl. loc. lin. reg. rej. sampl. loc. lin. reg.

Minimum 0.0003 -0.1151 0.9695 0.9746
5% percentile 0.0622 -0.0185 0.9733 0.9774
Median 0.2519 0.1423 0.9817 0.9803
Mean 0.2596 0.1485 0.9826 0.9803
Mode 0.2270 0.0793 0.9788 0.9805
95% percentile 0.4666 0.3296 0.9946 0.9832
Maximum 0.5000 0.5261 0.9999 0.9863

Looking at the joint posterior density in Figure IV.8, we see how the densities of the two
parameters are related to each other. Not surprisingly, we see strong differences for the
two methods, as we already know from Figure IV.7 that the distributions differ. However,
we also see that the additional local linear regression condenses the distribution very much
and uncovers a linear correlation between the two parameters. A Spearman correlation
test between the two parameter samples delivers a ρ of 0.66 (p-value <2.2e-16) for the
method with the additional local linear regression, whereas ρ is only 0.02 (p-value =0.11)
for the simple rejection sampling. This result for the method with the additional local linear
regression is in good accordance with the results of the following method and has many
similarities to the pattern we know from the results of the full factorial design (Figure IV.1,
right panel).

Because the application of the additional local linear regression method is based on the
same simulation results as the simple rejection sampling, it comes with no additional compu-
tational costs. Therefore, it is a good idea to run both methods and check their convergence.

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is an efficient sampling method where the selection
of the next parameter combination depends on the last parameter set and the resulting
deviation between the simulation and the observation [Hartig et al., 2011]. Therefore,
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Figure IV.7.: Posterior distribution generated with the ABC rejection sampling method as
well as the rejection sampling method followed by additional local linear re-
gression. A: Histogram of accepted runs for scout-prob using rejection sam-
pling. B: Histogram of accepted runs for survival-prob using rejection sam-
pling. C: Histogram of accepted runs for scout-prob using the local linear re-
gression method. D: Histogram of accepted runs for survival-prob using the
local linear regression method. E & F: Density estimation for scout-prob (E)
and survival-prob (F) by rejection sampling (green line), by the local linear
regression method (blue line) and from a prior distribution (red line).
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Figure IV.8.: Joint posterior density estimation based on A: ABC rejection sampling, B: rejec-
tion sampling with additional local linear regression. Both with 10-90% high-
est density contours. The last contour is invisible without zooming in, meaning
high density is concentrated in a small area.

sampling is concentrated in the regions with high likelihood. This makes the method more
efficient in comparison with rejection sampling. Only the initial parameter set is drawn
from the prior distribution. In the long run, the chain of parameter sets will converge to the
posterior distribution. The advantage of the MCMC methods over the rejection sampling
methods is that it does not sample from the prior distribution. See, for example, Beaumont
[2010] for further reading.

The R package EasyABC [Jabot et al., 2013] delivers several different algorithms for per-
forming coupled ABC-MCMC schemes. The usage in R looks like this:

# 1. Define a function that runs the simulation model for a
# given parameter combination and returns all summary
# statistics.
# See Supplementary Material (simulation_function4.R)
# for an implementation example using RNetLogo.
sim <- function(params) {

...
return(sim.sum.stats)

}

# 2. Calculate summary statistics from observational data
# (here using the mean of ranges).
obs.sum.stats <- c(abundance=mean(c(115,135)),

variation=mean(c(10,15)),
vacancy=mean(c(0.15,0.3)))

# 3. Generate prior information.
prior <- list('scout-prob'=c("unif",0.0,0.5),

'survival-prob'=c("unif",0.95,1.0))

# 4. Run ABC-MCMC.
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results.MCMC <- ABC_mcmc(method="Marjoram", model=sim,
prior=prior, summary_stat_target=obs.sum.stats)

The results of applying the ABC-MCMC scheme to the example model with a total of
39,991 function calls and 3,000 samples in the posterior distribution are prepared in the
same manner as the results of the rejection method and are shown in Figure IV.9. The
results are very similar to those of the rejection sampling method with local linear regression
correction but with even narrower posterior distributions. The numerical characteristics of
the posterior distributions are processed using the package coda [Plummer et al., 2006] and
are given in Table IV.3.

The ABC-MCMC scheme is more efficient than rejection sampling, but there are many
more fine-tuning possibilities, which can also make its use more complicated.

Table IV.3.: Posterior distribution characteristics for the two parameters gained from the
ABC-MCMC algorithm.

scout-prob survival-prob
Minimum 0.0034 0.9758
5% percentile 0.0280 0.9769
Median 0.1392 0.9785
Mean 0.1474 0.9785
Mode 0.0863 0.9758
95% percentile 0.2840 0.9802
Maximum 0.4296 0.9817

Sequential Monte Carlo

A sequential Monte Carlo (SMC) method, such as ABC-MCMC, is also used to concentrate
the simulations to the zones of the parameter space with high likelihood [Jabot et al., 2013],
i.e., to make the sampling more efficient compared to the rejection method. In contrast to
MCMC, each step contains not only one parameter set but a sequence of sets (also called a
particle or population). A sequence depends on its predecessor, but the simulations within a
sequence are independent. The first sequence contains points from the prior distribution and
performs a classical rejection algorithm. The successive sequences are then concentrated to
those points of the former sequence with the highest likelihood, i.e., points that are nearest
to the observed data [Jabot et al., 2013]. Therefore, the sequences converge to the posterior
distribution based on, in contrast to ABC-MCMC, independent samples. The risk of getting
stuck in areas of parameter space that share little support with the posterior distribution is
lower than in ABC-MCMC [Hartig et al., 2011]. For further reading see Hartig et al. [2011],
Jabot et al. [2013] and references therein.

The EasyABC package [Jabot et al., 2013] for R delivers four variants of SMC. The usage
is very similar to the application of ABC-MCMC:

# 1. Define a simulation function (sim) as done for the
# ABC-MCMC method.

# 2. Generate observational summary statistics
# (using the mean of ranges).
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Figure IV.9.: Posterior distribution generated with ABC-MCMC. A: Histogram of accepted
runs for scout-prob. B: Histogram of accepted runs for survival-prob. C & D:
Density estimation for scout-prob (C) and survival-prob (D) by MCMC sampling
(blue line) and from prior distribution (red line). E: joint posterior density es-
timation of scout-prob and survival-prob by SMC sampling with 10-90% highest
density contours.
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obs.sum.stats <- c(abundance=mean(c(115,135)),
variation=mean(c(10,15)),
vacancy=mean(c(0.15,0.3)))

# 3. Generate prior information.
prior <- list('scout-prob'=c("unif",0.0,0.5),

'survival-prob'=c("unif",0.95,1.0))

# 4. Define a sequence of decreasing tolerance thresholds for
# the accepted (normalised) difference between simulated and
# observed summary statistics (in case of multiple summary
# statistics, like here, the deviations are summed and
# compared to the threshold); one value for each step, first
# value for the classical rejection algorithm, last value for
# the max. final difference.
tolerance <- c(1.5,0.5)

# 5. Run SMC.
results.MCMC <- ABC_sequential(method="Beaumont", model=sim,

prior=prior, summary_stat_target=obs.sum.stats,
tolerance_tab=tolerance, nb_simul=20)

The results of an application of the ABC-SMC scheme to the example model, prepared in
the same manner as for the other ABC schemes, are given in Figure IV.10 and Table IV.4.
They are based on 11,359 function calls and 3,000 retained samples for the posterior dis-
tribution. The distributions share some similarities with the resulting posterior distributions
of the other ABC schemes regarding the value range but have different shapes. The pos-
terior distribution of scout-prob does not have its peak at the very small values and is not
that different from the prior distribution. The posterior distribution of survival-prob is also
broader than with the other schemes. These differences from the other schemes could be the
result of the lower sample size, differences in the methodologies, and missing fine-tuning.
The multiple fine-tuning options in particular make this method complex for satisfactory
application.

Table IV.4.: Posterior distribution characteristics for the two parameters gained from the
ABC-SMC algorithm.

scout-prob survival-prob
Minimum 0.0003 0.9700
5% percentile 0.0785 0.9742
Median 0.2968 0.9825
Mean 0.2852 0.9826
Mode 0.0003 0.9700
95% percentile 0.4741 0.9925
Maximum 0.4999 0.9975
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Figure IV.10.: Posterior distribution generated with ABC-SMC. A: Histogram of accepted
runs for scout-prob. B: Histogram of accepted runs for survival-prob. C & D:
Density estimation for scout-prob (C) and survival-prob (D) by SMC sampling
(blue line) and from the prior distribution (red line). E: Joint posterior den-
sity estimations of scout-prob and survival-prob by SMC sampling with 10-90%
highest density contours.
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IV.3.6. Costs and Benefits of Approaches to Parameter Estimation and Calibration

We presented a range of methods for parameter calibration; from sampling techniques over
optimisation methods to Approximate Bayesian Computation. Not only the knowledge re-
quired to properly apply these methods but also the efficiency of parameter estimation in-
crease in exactly this order. Those modellers who are not willing to become familiar with the
details of the more complex methods and are satisfied with less accurate/single parameter
values should use the approved Latin hypercube sampling. Those who are interested in very
good fits but do not need to worry too much about distributions and confidence bands for
the parameter values should take a closer look into the various optimisation methods. The
details can become tricky, but methods such as genetic algorithms and simulated annealing
are widely used methods with lots of documentation. The ABC methods deliver the most
recent approach to parameter calibration but require a much deeper statistical understand-
ing than the other methods as well as sufficient computational power to run a very large
number of simulations; on the other hand, these methods deliver much more information
than the other methods by constructing a distribution of parameter values rather than one
single value. This field is currently quickly evolving, and we see an ongoing development
process of new approaches especially designed for the parameterisation of complex dynamic
models [e.g., Hartig et al., 2013].

It is always a good idea to start with a very simple approach, such as Latin hypercube
sampling, to acquire a feel for the mechanisms of the model and the response to varying
parameter values. From there, one can decide whether more sophisticated methods should
be applied to the fitting problem. This sequence avoids the situation in which a sophis-
ticated method is fine tuned first, and it is later realised that the model was not able to
produce the observed patterns, requiring a return to model development. Furthermore, it
can be interesting to first identify those unknown/uncertain parameters that have a consid-
erable influence on the model results. Then, intensive fine tuning of model parameters can
be restricted to the most influential ones. For such an importance ranking, the screening
techniques presented in the next section about sensitivity analysis can be of interest.

As an attempt to rank the methods, we plotted their costs versus the combination of the
information generated by the method and the efficiency with which the method generates
them (Figure IV.11). Under costs, we summarised the amount of time one would need to
understand the method and to fine-tune its application as well as the computational effort.
The most desirable method is the ABC technique, but its costs are much higher than those
of the other methods. In the case of large and computationally expensive models, however,
the application of ABC techniques may be impossible. Then, the other techniques should be
evaluated. For pre-studies, we recommend the application of LHS because it is very simple,
can be set up very quickly based on the scripts delivered in the Supplementary Material and
can be easily parallelised.

For more complex ABMs, runtime might limit the ability to take full advantage of the
methods presented here because the models cannot just be run several thousand times.
Here, submodels could at least be parameterised independently. For example, in an animal
population model, a submodel describing the animals’ energy budget could be parame-
terised independent of the other processes and entities in the full model [e.g., Martin et al.,
2013]. A limitation of this "divide and conquer" method of parameterisation is that interac-
tions between submodels might in fact exist, which might lead to different parameter values
than if the full ABM were parameterised.
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Figure IV.11.: A rough categorisation of the parameter fitting/calibration methods used re-
garding their cost vs. information and efficiency. Cost includes the computa-
tional costs as well as the time required for understanding and fine-tuning the
methods. Information and efficiency includes aspects of the type of output
and the way to reach it.

IV.4. Sensitivity Analysis

Sensitivity analysis (SA) is used to explore the influence of varying inputs on the outputs
of a simulation model [Ginot et al., 2006]. The most commonly analysed inputs are model
parameters. SA helps identify those parameters that have a strong influence on model out-
put, which indicates which processes in the model are most important. Moreover, if inputs
of the model are uncertain, which is usually the case, sensitivity analysis helps assess the
importance of these uncertainties. If the model is robust against variations in the uncertain
parameters, i.e., model output does not vary strongly when the parameter values are varied,
the uncertainties are of low importance. Otherwise, the parameter values should be well-
founded on empirical values [Bar Massada and Carmel, 2008, Schmolke et al., 2010]. SA is
therefore closely related to uncertainty analysis [Ginot et al., 2006]. In addition to model
parameters, entire groups of parameters, initial values of state variables, or even different
model structures can also be considered as inputs to be analysed in SA [Schmolke et al.,
2010].

With sensitivity analysis, three approaches are differentiated: screening, local and global
sensitivity analysis [Saltelli, 2000; sometimes screening methods are added to global SA
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methods, see, for example, Cariboni et al., 2007]. Screening methods are used to rank input
factors by their importance to differentiate between more and less important inputs. These
methods are often useful for computationally expensive models because they are very fast
in identifying the important parameters, which should be analysed in more detail, but they
cannot deliver a quantification of the importance [Saltelli, 2000].

Originating from the analysis of models based on ordinary differential equations, local
sensitivity analysis quantifies the effect of small variations in the input factors [Soetaert and
Herman, 2009, Marino et al., 2008]. Classical local sensitivity analysis is often performed as
ceteris paribus analysis, i.e., only one factor is changed at a time (the so-called one-factor-
at-time approach, OAT) [Bar Massada and Carmel, 2008]. In contrast, in global sensitivity
analysis, input factors are varied over broader ranges. This is of special importance if the
inputs are uncertain [Marino et al., 2008], which is mostly the case for ABMs. Furthermore,
in global sensitivity analysis several input factors are often varied simultaneously to evaluate
not only the effect of one factor at a time but also the interaction effect between inputs; the
sensitivity of an input usually depends on the values of the other inputs.

IV.4.1. Preliminaries: Experimental Setup for the Example Model

For simplicity, we will restrict the following examples of sensitivity analyses to three pa-
rameters: scout-prob, survival-prob, and scouting-survival. The value ranges and base values
used (e.g., for local sensitivity analysis) for the three parameters covered by the sensitivity
analysis are listed in Table IV.5.

To control stochasticity in the simulation model, we apply the same approach with 10
repeated model runs as described for parameter fitting.

Table IV.5.: Model parameters used in sensitivity analysis. *Base values used by Railsback
and Grimm [2012]

Parameter Description Base
value*

Base value
used here

Min.
value

Max.
value

scout-prob Probability of undertak-
ing a scouting trip

0.5 0.065 0.0 0.5

survival-
prob

Probability of a bird sur-
viving one month

0.99 0.978 0.95 1.0

scouting-
survival

Probability of surviving
a scouting trip

0.8 0.8 0.5 1.0

IV.4.2. Local Sensitivity Analysis

As mentioned above, local sensitivity analysis is often performed as a one-factor-at-time
analysis with small variations of the input values. With ABMs, this is often achieved by
varying the selected inputs by a specified percentage around their nominal, or default, value.
This method provides only limited information regarding model sensitivity, but it is still
often used and could be considered a first step in a more detailed analysis when applying
a multi-step approach, as proposed, for example, by Railsback et al. [2006]. However,
when performing such analyses, it should always be kept in mind that interactions between
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parameters are ignored and that local sensitivities might be completely different if another
set of nominal, or default, parameter values were chosen.

A local sensitivity analysis procedure in R can work in this way:

# 1. Define a simulation function (sim) as done for
# Full factorial design.

# 2. Run simulation using sim function defined in step 1
# for the standard input factor values.
base.param <- c(0.065, 0.978, 0.8)
sim.result.base <- sim(base.param)

# 3. Define a function for changing one of the parameter
# values (here with min and max constraints).
change <- function(i, base, multiplier) {

mod <- base
mod[i] <- min(max(mod[i] * multiplier, 0.0), 1.0)
return(mod)

}

# 4. Create lists of parameter sets with reduced and
# increased parameter values (90% and 110%).
min.params <- lapply(1:length(base.param), change,

base=base.param, multiplier=0.9)
max.params <- lapply(1:length(base.param), change,

base=base.param, multiplier=1.1)

# 5. Run separate simulations (function in step 1) with
# input factor values varied by +-10%.
sim.results <- list()
sim.results$min <- lapply(min.params, sim)
sim.results$max <- lapply(max.params, sim)

# 6. Calculate the deviation between the base model output
# and the outputs using 90% and 110% of the standard value.
dev.min <- sapply(sim.results$min, function(x) {
return((x-sim.result.base)/sim.result.base * 100)})

dev.max <- sapply(sim.results$max, function(x) {
return((x-sim.result.base)/sim.result.base * 100)})

We selected a variation of 10% for the values, which results, for example, in values for
survival-prob of 0.8802 and 1.0 (truncated because the probability cannot exceed 100 per
cent). This means that we ran the simulation with three different values of survival-prob:
0.8802, 0.978 and 1.0. To measure the sensitivity of a parameter, we calculate here the
change in the output relative to the output with base parameter values. Therefore, we obtain
a dimensionless sensitivity measure for all tested parameters that can be easily compared
against each other. Of course, there are other sensitivity measures possible. Examples
include the calculation of the partial derivative by dividing the change in the output by
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the change in the parameter value or the calculation of the standard deviation of the output
over multiple replications [Railsback and Grimm, 2012].

Table IV.6.: Results of a local sensitivity analysis. The columns list the different model out-
puts and the rows the different input variables (parameters). Values shown are
per cent deviations of output values. When changing one parameter, all other
parameters are kept constant. Negative output values indicate a reduction of
the output value.

abundance variation vacancy
scout-prob.min -1.0 -6.2 13.7
scout-prob.max 4.0 -8.0 15.4
survival-prob.min -99.9 -97.3 468.6
survival-prob.max 199.0 456.1 -100.0
scouting-survival.min -0.3 -3.7 -1.4
scouting-survival.max 4.9 32.4 -9.8

Table IV.6 lists the result of this simple local sensitivity analysis for the example model.
It shows that the three outputs are relatively insensitive to small variations in the parame-
ters scout-prob and scouting-survival. In contrast, the model outputs are highly sensitive to
variations in parameter survival-prob. However, this conclusion is based on the base values
used. Choosing other base values or a different variation percentage could result in com-
pletely different conclusions, as the dependence of model output on a single input could be
non-linear. Furthermore, we have only learned something about main effects and nothing
about the interaction effects when two or more inputs are varied at the same time.

IV.4.3. Screening Methods

Screening methods try to answer the question which of a large set of potentially impor-
tant inputs actually have a strong influence on the simulation output of interest. They are
designed to be computationally efficient and able to explore a large set of inputs. Often,
one-factor-at-time approaches are applied but, in contrast to local sensitivity analysis, with
variations of the inputs over a wide range of values [Campolongo et al., 2000b]. We restrict
ourselves here to Morris’s elementary effects screening, which appears to be the most impor-
tant suitable method for ABMs. Other well-known methods are often not suitable for ABMs.
For example, to use Bettonvil’s sequential bifurcation, available in package sensitivity [Pujol
et al., 2013], the user needs to know the sign of the main effects of all tested parameters
in advance, which often cannot be logically deduced in ABMs, as the relationships between
parameter values and model outputs are complex and non-linear.

Morris’s Elementary Effects Screening

The Morris method was developed to explore the importance of a large number of input fac-
tors in computer models that cannot be analysed by classical mathematical methods [Morris,
1991]. Furthermore, the method is free of assumptions about the model, for example, the
signs of effects [Saltelli et al., 2004]. Based on individually randomised one-factor-at-a-time
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designs, it estimates the effects of changes in the input factor levels, i.e., the parameter val-
ues, which are called elementary effects (EEs). The EEs are statistically analysed to measure
their relative importance. The results of the Morris method are two measures for every
investigated input factor: µ, the mean of the elementary effects, as an estimate of the over-
all influence of an input factor/parameter, and σ, the standard deviation of the elementary
effects, as an estimate of higher order effects, i.e., non-linear and/or interaction effects
[Campolongo et al., 2007]. Still, this method does not identify interactions between specific
input factors but instead delivers only lumped information about the interaction effect of
one factor with the rest of the model [Campolongo et al., 2000a]. Examples for the appli-
cation of the Morris screening method in the context of ABM can be found in Imron et al.
[2012], Vinatier et al. [2013], and Vinatier et al. [2009].

The Morris screening method is available in R through the sensitivity package [Pujol et al.,
2013]. The function morris includes the Morris method with improvements in sampling
strategy and the calculation of µ* to avoid Type-II errors [Campolongo et al., 2007]. When
positive and negative effects occur at different factor levels, they can cancel each other out
in the calculation of µ, whereas µ* can handle this case. The application of the morris
function in R can be performed as follows:

# 1. Define a simulation function (sim) as done for
# Full factorial design.

# 2. Create an instance of the class morris and define min
# (referred to as binf) and max (bsup) values of the
# parameters to be tested, the sampling design (design, here
# oat = Morris One-At-a-Time design with 5 levels), and the
# number of repetitions of the design (r).
mo <- morris(model = NULL, factors = 3, r = 4,

design = list(type = "oat", levels = 5,
grid.jump = 3), binf = c(0.0, 0.95, 0.5),

bsup = c(0.5, 1.0, 1.0), scale=TRUE)

# 3. Get simulation model responses for sampling points using
# the sim function defined in step 1.
sim.results <- apply(mo$X, 1, sim)

# 4. Add simulation results to the morris object.
tell(mo, sim.results)

For the interpretation of the results, Saltelli et al. [2004] recommend comparing the val-
ues of σ and µ, or better µ*. High values of µ indicate that a factor has an important overall
influence on the output and that this effect always has the same sign [Saltelli et al., 2004].
In contrast, when there is a high value of µ* and a low value of µ, it indicates that there is
a non-monotonic effect on the output. High values of σ indicate that the elementary effects
strongly depend on the choice of the other input factors, whereas a high µ or µ* and a low σ

indicate that the elementary effect is almost independent of the values of the other factors,
which means that it is a first-order/main effect. In summary, the Morris screening method
delivers measures of relative importance but cannot quantify the strength of the effects.

The results of an application of the Morris screening method to our example model with
40 function calls is shown in Figure IV.12. The plots on the left side (panels A, C, and
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Figure IV.12.: Results of the Morris screening method. Red rectangle: scout-prob, blue point:
survival-prob, green triangle: scouting-survival. A: Test for overall importance
(high µ) and non-monotonic relationship (low µ and high µ*) for the abun-
dance output. B: Test for interaction (high σ) and main effect (high µ* and
low σ) for the abundance output. C: same as A for variation output. D: same
as B for variation output. E: same as A for vacancy output. D: same as B for
vacancy output.
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E) indicate high overall influences of survival-prob for all three outputs, the abundance,
variation, and vacancy criteria. The other two factors, scout-prob and scouting-survival, have
a less important influence, but still are influential, on the abundance output (panel A). On
the variation output (panel C), all three input factors are of nearly the same importance, and
no clear importance ranking can be performed. From panel E, we learn that the other two
factors, scout-prob and scouting-survival, are irrelevant for the vacancy output. Moreover, in
panel A we see that the absolute values of µ and µ* are the same for scout-prob but with
a negative sign for µ. This leads to the conclusion that the influence of scout-prob on the
abundance output is monotonic but negative. The same also applies to the variation output
and to the influence of survival-prob on the vacancy output. No case of low µ but high
µ* value can be found; therefore, we can conclude that all effects are mostly monotonic.
Panels B, D, and F deliver information about non-linear and/or interaction effects. Because
all three factors are important for the abundance and variation outputs, we should check
all three of these factors for non-linear/interaction effects. Panel B shows that the values
of σ are highest for scout-prob and scouting-survival, although their µ* values are relatively
low. This leads to the conclusion that the influence of these two factors on the abundance
output is strongly non-linear and/or dependent on the values of the other factors. Although
the σ value for survival-prob is relatively low, compared to the other factors, it remains
high (~66% of µ*). This means that there is also an interaction and/or non-linear effect of
survival-prob on the abundance output, but with a lower contribution to the overall influence
relative to the other two factors. From the variation output in panel D we see that there is
a very strong interaction/non-linear effect for scout-prob and scouting-survival and a lesser,
but still very strong, interaction/non-linear effect detected for survival-prob. For the vacancy
output, we do not have to interpret the σ values for scout-prob and scouting-survival because
these factors have been identified as unimportant. For survival-prob, the only important
factor for the vacancy output, the σ value is low (approx. 4% of µ*). Therefore, we can
conclude that it is mostly a main-/first-order effect.

Overall, we learned a great deal about the example model by applying the Morris screen-
ing method. Furthermore, a graphical analysis of the relationship between µ* and µ as well
as between µ* and σ is simple but very useful. If one is only interested in ranking the input
factors by their importance, a comparison of the values of µ* should be sufficient.

IV.4.4. Global Sensitivity Analysis

In global sensitivity analysis, input variables are varied over the full range of their possible
values. This distinguishes these methods from local sensitivity analysis. Moreover, in global
sensitivity analysis effects are quantified, which is different from screening methods, which
deliver only a ranking of the input variables by their importance for the output without
quantification.

For some methods described below, such as partial correlation coefficients, it can be useful
to perform a graphical analysis first to obtain a basic idea of the relationships between inputs
and outputs. For such graphical analyses, for example, scatter and interaction plots, full
factorial design and Latin hypercube sampling can be appropriate.
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Excursion: Design of Experiment

The Design of Experiment (DoE) methodology, which was first formulated for experiments
in agriculture [Lorscheid et al., 2012], can be used for sensitivity analysis. Introductions to
the application of classical DoE for ABMs can be found, for example, in Campolongo and
Saltelli [2000], Happe [2005], or Lorscheid et al. [2012].

As a first step, an experimental design must be selected. For simplicity, we use a full
factorial design of the two extreme values of each of the k inputs (2k, i.e., eight function
calls for the example), which has also been used by Lorscheid et al. [2012] and Happe
[2005]. Then, we run the simulation for the design points, i.e., parameter sets, and add
the (averaged, in the case of stochastic models) simulation results to the so-called design
matrix. This procedure can be run using package FrF2 [Groemping, 2013a] or DoE.base
[Groemping, 2013c] and could look like this:

# 1. Define a function that runs the simulation model
# for a given input factor combination and returns the
# simulation output (averaged) as well as the output of
# each iteration into anova.df in case of repeated
# simulations for stochastic models. See Supplementary
# Materials (simulation_function5.R) for an
# implementation example using RNetLogo.
sim <- function(input, anova.df.name=="anova.df") {

...
return(output)

}

# 2. Create full factorial design (2^k, i.e., k = number of
# parameters; therefore, only extreme values are tested).
ff <- FrF2(nruns=2^3, nfactors=3, randomize=False,

factor.names=c('scout-prob',
'survival-prob',
'scouting-survival'))

# 3. Get simulation model response (sim.results and
# anova.df) for sampling points (ff) using sim function
# defined in step 1.
anova.df <- data.frame()
sim.results <- apply(as.data.frame(ff), 1, sim,

anova.df.name="anova.df")

# 4. Add simulation model response to the design matrix.
ffr <- add.response(ff, response=sim.results)

Happe [2005] analysed the results by fitting a linear regression model (so-called meta-
model) with the simulation inputs as independent variables and the simulation output as a
dependent variable. Not performed by Happe [2005], but also known in DoE, is the usage
of the metamodel to predict the results of input value combinations that have not been sim-
ulated (look for a predict function for the method you used to produce the metamodel in
R). Non-parametric alternatives to linear or non-linear regression models for prediction as
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recommended by Helton et al. [2006] are generalised additive models [GAM, see R pack-
age gam, Hastie, 2013], locally weighted regression (LOESS, see function loess in R’s base
package) and projection pursuit regression (function ppr in R’s base package). For example,
GAM was used by Han et al. [2012] for analysing a complex, stochastic functional-structural
fruit tree model. Kriging, a geostatistical method, has also been applied for metamodel con-
struction in ABMs; see, for example, Salle and Yildizoglu [2012]. Kriging methods are avail-
able in several R packages, see, for example, DiceEval [Dupuy and Helbert, 2013], kriging
[Olmedo, 2011], or RandomFields [Schlather et al., 2013]. The approach of using meta-
models to predict the model output of non-simulated input factor combinations is strongly
related to the response surface method [RSM, see R package rsm, Lenth, 2009] [Ascough II
et al., 2005].

The procedure described in Happe [2005] can be realised in R as follows:

# 5. Create effect plots.
MEPlot(ffr)
IAPlot(ffr)

# 6. Perform stepwise fitting of a (linear) regression model
# to the data of step 4 (stepAIC requires package MASS,
# Venables and Ripley, 2002).
in.design <- cbind(as.data.frame(ff), sim.results)
min.model <- lm(abundance ~ scout_prob, data=in.design)
max.model <- lm(abundance ~ scout_prob * survival_prob *

scouting_survival, data=in.design)
lms <- stepAIC(min.model, scope=list(lower=min.model,

upper=max.model))

The resulting main effect and two-way interaction effect plots are shown in Figure IV.13
and IV.13, respectively. The strongest main effects for all outputs are detected for the input
factor survival-prob, with positive signs for abundance and variation and a negative sign for
the vacancy output. For the two other input factors, no main effects for the vacancy output
and a small one for the other two outputs were detected, with negative signs for scout-
prob and positive signs for scouting-survival. The two-way interaction effect plots indicate
interaction effects if the lines for a factor combination are not parallel. The less parallel
the lines are, the higher is the expected interaction effect. We see interaction effects for all
factor combinations for the abundance and the variation outputs but no two-way interaction
effects for the vacancy output. These results are in accordance with the results from the
Morris screening method.

Looking at Table IV.7, we see the results of a stepwise linear regression fitting (metamod-
elling). Survival-prob was retained in all three of the final regression models for the different
outputs and was statistically significant (see column Pr(> |t|)). Furthermore, the sign of
the estimate for survival-prob is in accordance with the visual findings. The other main
effects found in the visual detection have not been retained in or added to the metamodel
because they were not able to improve the model regarding the Akaike information criterion
(AIC). In contrast, the main effect of scouting-survival has been added to the metamodel for
the vacancy output, which was not detected in the visual analysis. However, this predic-
tive variable has no statistically significant effect on the metamodel and should therefore be
removed in a further step.

173



Chapter IV. Facilitating Parameter Estimation and Sensitivity Analysis

Our visual findings about the interaction effects have not been selected for the meta-
model by the stepwise regression fitting. Only for the vacancy output has the interaction
effect between survival-prob and scouting-survival been included, but this effect also has no
significant effect on the metamodel but just improves the AIC. Therefore, it should be re-
moved. These results can strongly depend on the selection measure used - here AIC, but R2

and others are also possible - and on the direction of the stepwise search, here "forward"
selection.

Figure IV.13.: Main effect plots (based on linear regression model). Parameters in columns
(left: scout-prob, middle: survival-prob, right: scouting-survival) and outputs
in rows (top: abundance, middle: variation, bottom vacancy). Horizontal
lines (without rectangles) in rows visualise mean values. Right rectangle
higher than left rectangle indicates a main effect with a positive sign and
vice versa. Rectangles on the same output value (y-axis) indicate no main
effect.
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Figure IV.14.: Interaction effect plots (based on linear regression). Left column: scout-prob
interacting with survival-prob. Red dotted line: value of survival-prob is 0.95,
black solid line: value of survival-prob is 1.0. Middle column: survival-prob
interacting with scouting-survival. Red dotted line: value of scouting-survival
is 0.5, black solid line: value of scouting-survival is 1.0. Left column: scouting-
survival interacting with scout-prob. Red dotted line: value of scout-prob is 0.0,
black solid line: value of scout-prob is 0.5. Output in rows (top: abundance,
middle: variation, bottom: vacancy). Lines in parallel indicate no interaction
effect.
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Table IV.7.: Results of a stepwise linear regression fitting based on 2k-design. Names in
the first column are the input factors. Single names are main effects. Names
combined with a colon are interaction effects.

Estimate Std. Error t-Value Pr(> |t|)
a) abundance output
Final Model: abundance ~survival-prob (adj. R2: 0.6958)
Intercept -10238 2550 -4.02 0.00699 **
survival-prob 10783 2614 4.13 0.00618 **
b) variation output
Final Model: variation ~survival-prob (adj. R2: 0.5127)
Intercept -4034 1436 -2.81 0.0307 *
survival-prob 4257 1472 2.89 0.0276 *
c) vacancy output
Final Model: vacancy ~survival-prob + scouting-survival +
survival-prob:scouting-survival (adj. R2: 1.0)
Intercept 19.70 0.09 230.31 2.13e-09 ***
survival-prob -19.70 0.09 -224.63 2.36e-09 ***
scouting-survival -0.20 0.11 -1.81 0.14
survival-prob:scouting-survival 0.20 0.11 1.77 0.15

An alternative approach to that used by Happe [2005] was used by Lorscheid et al.
[2012]. They calculated an effect matrix that delivers a description of the main and in-
teraction effects. In a preliminary step, the results of all simulations (data.frame anova.df
of step 3 in the R code above) are analysed for significant main and interaction effects using
an ANOVA (or non-parametric substitute). If needed, this process can be run iteratively as
a "cascaded DoE" for complex inputs, i.e., factors that represent several sub-factors, as de-
scribed in Lorscheid et al. [2012]. A non-iterative procedure, which could be easily adapted
to an iterative one, can be realised in R as follows (steps 1-4 correspond to the previous R
code example):

# 5. Calculate ANOVA with anova.df data.frame from step 3
glm(formula = output ~ scout_prob * survival_prob *

scout_survival, data=anova.df)

# 6. Define a function that calculates the effects between
# parameters after Saltelli et al. [2000]1.

# 7. Calculate main and interaction effects using the
# function defined in step 6 and data in ffr from step 4 up
# to the desired interaction level. Use desnum(ffr) to obtain
# the level signs needed for the effect calculation. See
# Supplementary Materials (SM14b_DoE_effect_matrix.R) for an
# implementation example.

1Ej =

n
∑

i=1
(Sijyj)

(n/2)
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Table IV.8.: Results of the ANOVA. Signif. codes: ’***’ 0.001 ’**’ 0.01 ’*’ 0.05. Names in
the first column are the input factors. Single names are main effects. Names
combined with a colon are interaction effects.

Df Sum Sq. Mean Sq. F value Pr(> |t|)
1) abundance output
scout-prob 1 342330 342330 309953 < 2e-16 ***
survival-prob 1 5813439 5813439 5263611 < 2e-16 ***
scouting-survival 1 343050 343050 310604 < 2e-16 ***
scout-prob:survival-prob 1 341010 341010 308757 < 2e-16 ***
scout-prob:scouting-survival 1 341153 341153 308887 < 2e-16 ***
survival-prob:scouting-survival 1 340292 340292 308107 < 2e-16 ***
scout-prob:survival-prob:
scouting-survival 1 342186 342186 309822 < 2e-16 ***
Residuals 72 80 1
2) variation output
scout-prob 1 108419 108419 52704 < 2e-16 ***
survival-prob 1 905960 905960 440401 < 2e-16 ***
scouting-survival 1 109103 109103 53036 < 2e-16 ***
scout-prob:survival-prob 1 108228 108228 52611 < 2e-16 ***
scout-prob:scouting-survival 1 108216 108216 52606 < 2e-16 ***
survival-prob:scouting-survival 1 107547 107547 52280 < 2e-16 ***
scout-prob:survival-prob:
scouting-survival 1 108430 108430 52710 < 2e-16 ***
Residuals 72 148 2
3) vacancy output
scout-prob 1 0 0 1.03e-1 0.749
survival-prob 1 19.11 19.11 2.33e+5 < 2e-16 ***
scouting-survival 1 0 0 1.46e-1 0.231
scout-prob:survival-prob 1 0 0 1.03e-2 0.749
scout-prob:scouting-survival 1 0 0 8-33e-1 0.364
survival-prob:scouting-survival 1 0 0 1.46e-1 0.231
scout-prob:survival-prob:
scouting-survival 1 0 0 8.33e-1 0.364
Residuals 72 0.006 0

The results of the ANOVA for the identification of significant effects are given in Table IV.8.
For the abundance and variation outputs, all terms are highly significant, whereas only the
input factor survival-prob is significant for the vacancy output.

Table IV.9.: DoE main/first-order and second-order effect matrix.
scout-prob survival-prob scouting-survival

1) abundance
scout-prob -130.830 -130.578 130.605
survival-prob 539.140 130.440
scouting-survival 130.968
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2) variation
scout-prob -73.627 -73.562 73.558
survival-prob 212.833 73.330
scouting-survival 73.859
3) vacancy
scout-prob 0.0007 -0.0007 0.0019
survival-prob -0.9776 0.0025
scouting-survival -0.0025

When comparing the ANOVA results (Table IV.8) with the effect matrix (Table IV.9, cal-
culated in step 7 of the R code sample above), we see that the findings from the ANOVA
correspond to the values in the effect matrix, i.e., we find high main effect values (on the di-
agonal of each sub-matrix) for the abundance and variation outputs for all parameters, and
for vacancy, a considerable effect (with negative sign) only for the main effect of survival-
prob. The main effect of scout-prob and the interaction between scout-prob and survival-prob
have negative signs for the abundance and variation outputs, whereas the other effects have
positive signs. These findings correspond to the main and interaction plots based on linear
regressions from the previous method.

A 2k -design, as used by Happe [2005] and Lorscheid et al. [2012], will only be appropri-
ate for linear and monotonic relationships between inputs and outputs. Of course, different
sampling designs with space-filling curves like Latin hypercube sampling (LHS) could be ap-
plied, and in case of metamodelling, non-linear regression models, splines, neural networks
or Kriging methods can be used [Siebertz et al., 2010]. However, methods that build on the
fundamentals of DoE and were especially developed for sensitivity analysis are already avail-
able and more efficient. For non-linear and non-monotonic responses, see, for example, the
Sobol’ method (see below) as an adaption of DoE principles to computational experiments.
Nevertheless, the adapted DoE methods presented here are relatively easy to understand
and communicate and do not require extensive computations (depending on the sampling
scheme). Therefore, if the model characteristics fit the methods’ requirements, they can be
used for a quick but still useful first global sensitivity analysis.

Regression-Based Methods

Partial (rank) correlation coefficient Correlation techniques measure the strength of a lin-
ear relationship between an input and an output variable. Partial correlation techniques
enable the user to measure the strength of the relationship of more than one input variable
[Campolongo et al., 2000b]. Therefore, if linear relationships are expected, the partial cor-
relation coefficient (PCC) can be applied as a sensitivity measure. Instead, if non-linear but
monotonic associations are expected, partial rank correlation coefficients (PRCC) are used
to measure the strength of the relationship. Both methods are robust measures as long as
input factors are uncorrelated [Marino et al., 2008]. An example of the application of PRCC
to an ABM can be found in Marino et al. [2008].

For both PCC and PRCC, a sample of model outputs must be created first. It is preferable
to use a Latin hypercube sampling (LHS) scheme [Blower and Dowlatabadi, 1994], but
other sampling schemes could also be applied. Both PCC and PRCC are implemented in the
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sensitivity package for R [Pujol et al., 2013]. Therefore, calculating the PCC/PRCC in R can
look like this:

# 1. Define a simulation function (sim) as done for
# Full factorial design.

# 2. Create parameter samples from, for example, a uniform
# distribution using function lhs from package tgp
# [Gramacy and Taddy, 2013].
param.sets <- lhs(n=100, rect=matrix(c(0.0,0.95,0.5,1.0), 2))

# 3. Iterate through the parameter combinations from step 2
# and call function sim from step 1 for each parameter
# combination.
sim.results <- apply(as.data.frame(param.sets), 1, sim)

# 4. Calculate the partial (rank) correlation coefficient
# based on the simulation results of step 3.
pcc.result <- pcc(x=param.sets, y=sim.results, nboot = 100,

rank = FALSE)

The result of an application of PCC/PRCC on the example model with 200 samples is
shown in Figure IV.15. Obviously, there is a very strong positive linear relationship between
the survival-prob input factor and the abundance output as well as a strong negative linear
relationship between the same input factor and the vacancy output. Because the (absolute)
values for the PRCC for scout-prob and scouting-survival in panel C are greater than for PCC,
this could indicate a non-linear but monotonic relationship between these two factors and
the vacancy output. For the abundance output (panel A), there is a weak linear relationship
detected for the input factors scout-prob (with a negative sign) and scouting-survival (with
a positive sign). For the variation output (panel B) there is no obvious importance ranking.
Either there is only a small influence of the input factors on the output, the relationship is
non-monotonic or the input factors are not independent (which is actually the case, as we
will see later using variance decomposition).

In summary, the PCC and especially the PRCC are often used as importance measures.
They are relatively easy to understand, interpret and communicate and are a quantitative
alternative to qualitative, visual sensitivity analysis using, for example, scatterplots [Hamby,
1995].

Standardised (rank) regression coefficient The methods of standardised regression co-
efficient (SRC) and standardised rank regression coefficient (SRRC) deliver similar results
to those of PCC/PRCC but are more strongly influenced by the distribution from which the
tested parameter values are drawn [Campolongo et al., 2000b]. In a first step, fitting a linear
regression model to the simulation data delivers measures of the relationship between the
inputs and output of the simulation model. The regression coefficients are standardised by
multiplication with the ratio between standard deviations of input factor and output value.
In SRRC, the original values are replaced by ranks. As with PCC and PRCC, SRC is only able
to measure linear relationships, whereas SRRC can also be used for non-linear but mono-
tonic associations between input and output variables when little or no correlation between
the input factors exists [Marino et al., 2008].

179



Chapter IV. Facilitating Parameter Estimation and Sensitivity Analysis

Figure IV.15.: Results of the PCC/PRCC. A: for abundance output. B: for variation output.
C: for vacancy output. Circles (to the left of each x-axis tick) show original
PCC values (measure of linear relationship). Triangles (to the right of each
x-axis tick) show original PRCC values (measure of linear or non-linear but
monotonic relationship). Sticks show bootstrapped 95% confidence intervals
of corresponding sensitivity indices. Numbers on x-axis for all plots: 1: scout-
prob, 2: survival-prob, 3: scouting-survival.
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These methods are also implemented in the sensitivity package for R [Pujol et al., 2013],
and the application is equivalent to that of PCC/PRCC (therefore not shown here; see PC-
C/PRCC and replace the function call pcc with src).

Figure IV.16.: Results of the SRC/SRRC. A: for abundance output. B: for variation output.
C: for vacancy output. Circles (to the left of each x-axis tick) show original
SRC values (measure of linear relationship). Triangles (to the right of each
x-axis tick) show original SRRC values (measure of linear or non-linear but
monotonic relationship). Sticks show bootstrapped 95% confidence intervals
of corresponding sensitivity indices. Numbers on x-axis for all plots: 1: scout-
prob, 2: survival-prob, 3: scouting-survival. Top R2 in each plot corresponds
to SRC and bottom R2 belongs to SRRC, giving the proportion of variation in
the data captured by the regression model.

The results of an application of the SRC/SRRC method to the example model based on
Latin hypercube sampling with 200 samples drawn from a uniform distribution for all pa-
rameters are given in Figure IV.16. Campolongo et al. [2000b] recommend calculating the
coefficient of determination (R2), which is not processed by the sensitivity package. There-
fore, we wrote a small function to calculate it (see Supplementary Materials) because it tells
us how well the linear regression model reproduces the output, i.e., how much of the out-
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put’s variance is explained by the regression model [Campolongo et al., 2000b]. In the case
of non-linear relationships, using rank transformation (SRRC) can improve the R2 but will
also alter the model because it becomes more additive and therefore includes less of the in-
teraction effects [Campolongo et al., 2000b]. In general, when there are strong interaction
effects or non-monotonic relationships, R2 will be low and the application of SRC/SRRC is
not very useful. Saltelli et al. [2008] recommend the usage of these methods only for models
where R2 is greater than or equal to 0.7. As shown in Figure IV.16, this condition is met for
the abundance and vacancy outputs but not for the variation output (panel B). Therefore,
we should discard the results for the variation output. For the remaining two outputs, there
is a strong dominance of the survival-prob input factor. There is only a small change in the
coefficient values when using SRRC instead of SRC, and the R2s for SRC are already very
high. This leads to the conclusion that there is a strong linear effect of survival-prob on these
two outputs, with a positive sign for the abundance (SRC: 0.9865) and a negative sign for
the vacancy output (SRC: -0.9987). Note that the absolute value of the SRC or SRRC gives
a measure of the effect strength, and the sign defines the direction of the effect. All in all,
the results are very similar to the findings with PCC/PRCC.

Variance Decomposition Methods

For the investigation of non-linear and non-monotonic relationships between the inputs and
outputs one should apply variance decomposition methods [Marino et al., 2008], but they
can also be applied to models with monotonic and/or linear relationships. The three meth-
ods presented here are so-called total sensitivity indices (TSi) because they quantify the
parameters’ main effects as well as all interaction effects of any order [Ascough II et al.,
2005]. These methods are, compared to the other sensitivity methods presented so far,
computationally expensive. Therefore, it is recommended to first identify the important
parameters by using, for example, Morris screening, and then restrict the variance decom-
position methods to the most important parameters [Campolongo et al., 2000b].

In analogy to ANOVA, the methods use techniques for the decomposition of the total
variance of model output into first- (main) and higher-order (interaction) effects for each
input factor [Confalonieri et al., 2010]. When model input is varied, model output varies
too, and the effect is measured by the calculation of statistical variance. Then, the part of
the variance that can be explained by the variation of the input is determined [Marino et al.,
2008].

Sobol´ method The Sobol´ method delivers a quantitative measure of the main and
higher-order effects. It is very similar to effect calculation in DoE theory [Saltelli et al.,
1999] and can be considered the adaptation of classical DoE to computer simulations. The
idea is that the total variance is composed of the variance of the main and the interaction
effects. Therefore, multiple integrals for the partial effect terms of different orders are ex-
tracted by decomposition and evaluated using Monte-Carlo methods instead of using factor
levels, as is performed in classical DoE. For further details see, for example, the original
work of Sobol’ [1990] or that of Chan et al. [2000].

An implementation of the Sobol´ method can be found in the sensitivity package for R
[Pujol et al., 2013]. The sobol function is used in this way:

# 1. Define a simulation function (sim) as done for
# Full factorial design.
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# 2. Create two random input factor samples (input.set.1,
# input.set.2) as required by the Sobol´ method, for
# example two Latin hypercube samples
# (see also Partial (rank) correlation coefficient).

# 3. Create an instance of the class sobol using the result
# of step 2. Choose the order of variance decomposition:
so <- sobol(model = NULL, X1 = input.set.1,

X2 = input.set.2, order = 2, nboot = 100)

# 4. Get the simulated model response for all input factor
# combinations needed by the sobol method by calling the
# function defined in step 1.
sim.results <- apply(so$X, 1, sim)

# 5. Add the simulation results to the sobol instance.
tell(so, sim.results)

A modification of the Sobol´ method exists that reduces the required number of model
evaluations and delivers a main and total effect index, similar to the eFAST method. The
implementation of this optimised method is also included in the sensitivity package [Pujol
et al., 2013]. The call of the sobol2007 function is similar to the sobol function with the
exception that the number of orders of effects that should be calculated cannot be defined
because this method cannot deliver single two- or higher-order effects explicitly as the origi-
nal method can. Note that there are further modified versions of Sobol´ algorithms available
in the package sensitivity (see functions sobol2002, sobolEff and soboljansen).

The results of a usage example of the sobol2007 function with 3000 simulation function
calls are shown in Figure IV.17. For every output and every input factor there are two
candle sticks, the left one for the 95% confidence interval of the main/first-order effect
index and the right one for the 95% confidence interval of the total effect index. When the
confidence bands are very large, this can be an indicator of too-small samples. Furthermore,
it can happen that the index values are negative or exceed 1 due to numerical errors in the
calculation, but these can be treated as 0 and 1, respectively [Saltelli et al., 2008]. The
values of the indices are percentage measures of the contribution of the input factor to the
variance of the output.

For pure additive models, the sum of the main effect indices (Si) is 1; for others, it is be-
low 1 and can never exceed 1 (only due to numerical errors). For example, the abundance
output (panel A in Figure IV.17) sums up to approx. 0.74 (bias corrected), which means
that the model is largely additive, i.e., only rather small interactions between the parame-
ters occur, with a very strong contribution of the main effect of survival-prob (responsible
for approx. 72% of the variation of the output). However, the quantification of the main
effect contains considerable uncertainty, as indicated by the confidence interval. For the
vacancy output (panel C), the contribution of survival-prob to the variance of the output
is approx. 95%, i.e., the output variation depends nearly completely on the main effect of
survival-prob. For the variation output (panel B), the main effects contribute only a very
small proportion to the variance of the output. They sum up to approx. 13%.

The total sensitivity index (STi) contains the main effect and all interaction effects with the
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Figure IV.17.: Results of the Sobol´ method with modifications by Saltelli (sobol2007
function). A: for abundance output. B: for variation output. C: for vacancy
output. Circles (to the left of each x-axis tick) show bias-corrected original
first-order sensitivity index values (Si), i.e., main effects. Triangles (to the
right of each x-axis tick) show bias-corrected original total sensitivity index
values (STi), i.e., main and all interaction effects. Sticks show bootstrapped
95% confidence intervals of corresponding sensitivity indices. Negative values
and values above 1, due to numerical errors, are set to 0 and 1, respectively.
Numbers on x-axis for all plots: 1: scout-prob, 2: survival-prob, 3: scouting-
survival.
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other input factors. Therefore, it is often greater than the main effect index (Si). Equality
between Si and STi means that the input factor has no interaction terms with the other input
factors. In contrast to Si, the sum of all indices of STi is often greater than 1. Only if the
model is perfectly additive, i.e., no interactions between the parameters exist, the sum is
equal to 1 [Saltelli et al., 2008].

In Figure IV.17, we see that there is nearly no interaction effect for the vacancy out-
put (panel C), and the model is strongly additive. In contrast, strong interaction effects
are uncovered by the STi for the variation output (panel B). The most important factor is
survival-prob, but the confidence bands for all factors are large for STi , i.e., the conclusions
are very uncertain. For the abundance output (panel A), we see an interaction effect ex-
plaining approx. 20% of the variance of the output and small interaction effects for the
other two factors. Ostromsky et al. [2010] provide some rules of thumb for the categori-
sation of input factors. They classified input factors with total sensitivity index (STi) values
of greater than 0.8 as very important, those with values between 0.5 and 0.8 as important,
those with values between 0.3 and 0.5 as unimportant and those with values less than 0.3
as irrelevant. Using this classification, we come to the conclusion that the input factors
scout-prob and scouting-survival are irrelevant for the abundance output, whereas survival-
prob is very important. For the variation output, the input factor survival-prob is important
whereas scout-prob and scouting-survival are unimportant (with high uncertainty), and for
the vacancy output survival-prob is very important whereas the other two input factors are
irrelevant.

Applying the standard Sobol´ method also enables us to analyse the higher-order effects
separately. We calculated the Sobol´ index up to the second order with 3500 simulation
function calls (Figure IV.18). The results for the main effects exhibit the same pattern as
described for the sobol2007 function but are numerically not exactly identical because this
calculation is based on a new data sample. Taking into account second-order effects (Sij)
shows that the main part of the interaction effects previously identified for survival-prob on
the abundance output (panel A) results from interactions with both of the other input fac-
tors, scout-prob and scouting-survival, whereas there is no interaction effect between scout-
prob and scouting-survival. For the variation output (panel B) we find the same pattern but
with a much higher proportion of the interaction between scout-prob and survival-prob. This
explains the very large differences between the main effect index and the total sensitivity
index from function sobol2007 for the variation output (panel B). In accordance with the
results of the sobol2007 function, we see no remarkable second-order sensitivity index
value for the vacancy output in panel C.

As we have seen, the Sobol´ method is able to deliver all information needed for a com-
prehensive global sensitivity analysis. The method, however, is computationally more de-
manding than the other methods presented so far, and understanding the method in detail
can be challenging.

Extended Fourier amplitude sensitivity test Extended Fourier amplitude sensitivity test
(eFAST) uses, as the name suggests, Fourier series expansion to measure the strength of the
influence of uncertain inputs on the model output. Being an extension of the original FAST
[Cukier et al., 1973], eFAST adds the calculation of a total effects index (STi), which is the
sum of main and all higher-order effects [Saltelli et al., 1999]. For details on this method see
Saltelli et al. [1999] or Chan et al. [2000]. eFAST delivers the same measures of sensitivity
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Figure IV.18.: Results of the Sobol´ method. A: for abundance output. B: for variation
output. C: for vacancy output. Circles show bias-corrected original sensi-
tivity index values. Sticks show bootstrapped 95% confidence intervals of
corresponding sensitivity indices. Negative values and values above 1, due
to numerical errors, are set to 0 and 1, respectively. Numbers on x-axis for
all plots: 1: scout-prob, 2: survival-prob, 3: scouting-survival. Single numbers
are main/first-order effects (Si) whereas numbers combined with colons show
second-order interaction effects (Sij).
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as the Sobol´ method (except specific interaction indices) but requires fewer simulations
and is therefore computationally less expensive than the classical Sobol´ method [Ravalico
et al., 2005]. Furthermore, it is more robust, especially at low sample sizes, to the choice of
sampling points [Saltelli et al., 1999].

The classical FAST algorithm is available in package fast for R [Reusser, 2013], and the
eFAST algorithm is included in the package sensitivity [Pujol et al., 2013]. Using the fast99
function of the sensitivity package in R works in this way:

# 1. Define a simulation function (sim) as done for
# Full factorial design.

# 2. Create an instance of class fast99 with quantile
# functions for all input factors.
f99 <- fast99(model = NULL, factors = 3, n = 1000,

q = c("qunif","qunif","qunif"),
q.arg = list(list(min=0.0,max=0.5),

list(min=0.95,max=1.0),
list(min=0.5,max=1.0)))

# 3. Get the simulated model response for all input factor
# combinations needed by the fast99 method by calling the
# function defined in step 1.
sim.results <- apply(f99$X, 1, sim)

# 4. Add the simulation results to the fast99 instance.
tell(f99, sim.results)

The interpretation of the results of the eFAST method is the same as for the Sobol´ method
(function sobol2007). The method returns a main/first-order sensitivity index (Si) as well
as a total sensitivity index (STi) that also contains interaction effects. Figure IV.19 shows the
results based on 600 simulation function calls. The results are very similar to the results of
the Sobol´ method. There is a strong effect of input factor survival-prob for the abundance
(panel A) and vacancy (panel C) outputs. There are nearly no interaction effects for the
vacancy output and just minor interaction effects for the abundance output, whereas the
main reasons for variance in the variation output are interaction effects. In contrast to the
results of the Sobol´ method from the previous section, here the input factor scout-prob
explains slightly more of the variance in the variation output than the survival-prob input
factor, whereas with the Sobol´ method it was the other way around and the STi of scouting-
survival was larger than the STi of scout-prob. The reasons for this could be due to differences
in the methods themselves or to differences in the sampling schemes, too-small sample sizes,
and/or a lack of convergence regarding stochastic effects, i.e., not enough replications for
one parameter set. We have already observed that the confidence bands calculated for the
Sobol´ indices have been large, i.e., the results are uncertain. Therefore, it is not surprising
that the results for the variation output differ. Nevertheless, the overall picture is the same
between the Sobol´ and eFAST methods. The choice of one or the other method depends
primarily on the question of whether someone is interested only in main- and total-effect
indices (then select eFAST; if confidence intervals are of interest then select the optimised
Sobol´ method), or if one wants also to know the second- and higher-order effect indices
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explicitly (then select the original Sobol´ method, but keep in mind that it will not deliver
total-effect indices).

Figure IV.19.: Results of the eFAST method. A: for abundance output. B: for variation out-
put. C: for vacancy output. Numbers on x-axis for all plots: 1: scout-prob,
2: survival-prob, 3: scouting-survival. White bar: first-order effects (Si), i.e.,
main effects. Sum of white and grey bars: total effect (STi), i.e., main and all
interaction effects.

FANOVA decomposition with Gaussian Process The method of fitting a Gaussian process
(GP) to replace a computationally expensive model is related to the metamodel approach
in DoE. A GP is a stochastic process, i.e., a generalisation of a probability distribution to
functions of random variables, where each finite collection follows a joint (multivariate)
normal distribution [Grimmett and Stirzaker, 1993, Rasmussen and Williams, 2006, Snel-
son, 2007]. GPs are used for interpolation, extrapolation and smoothing of time series
[Wiener, 1950] and spatial data. The geostatistical Kriging method, for example, is based
on GPs [Snelson, 2007]. A GP, as a surrogate or emulator of a computer model, can be
further used for a Functional Analysis of Variance (FANOVA), as performed by Dancik et al.
[2010]. The R package mlegpFULL [Dancik, 2009, available on request from the developer
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of the online available mlegp package] can perform the fitting procedure and the FANOVA
decomposition. The following shows how this works:

# 1. Run a Latin hypercube sampling as done above
# (see Partial (rank) correlation coefficient).
# The result should be two variables: the first containing
# the input factor combinations (param.sets) and the second
# containing the corresponding model responses (sim.results).

# 2. Fit a Gaussian process to the simulation results.
fit <- mlegp(param.sets, sim.results, param.names =

c('scout-prob',
'survival-prob',
'scout-survival'))

# 3. Calculate the FANOVA decomposition.
FANOVADecomposition(fit, verbose=FALSE)

We used a Latin hypercube sampling with only 500 samples, i.e., only 500 simulation
function calls, to fit the Gaussian process. The results of the FANOVA decomposition using
this Gaussian process are shown in Table IV.10. They contain results for main/first-order
as well as second-order interaction effects but do not deliver total sensitivity indices as
eFAST and Sobol´ with modification by Saltelli do. Nevertheless, the results here are in
good accordance with the results of the eFAST and Sobol´ methods. The variation in the
abundance output is mostly determined by the variation of the input factor survival-prob
(ca. 81%), and there are only small second-order interaction effects. The second-order
interaction effects here are primarily determined under participation of survival-prob with
the other two input factors. There is nearly no interaction effect between scout-prob and
scouting-survival, as we already know from the Sobol´ method. The variance in variation
output is determined to a large extent by the interaction effects of survival-prob with the
other two input factors. The main effects are less important, but the ranking of importance
of the three input factors differs in comparison to the eFAST and Sobol´ methods. From
the Sobol´ method we already know that the results for the variation output are uncertain.
Therefore, this difference is not surprising. For the vacancy output the results here again
fully match the results of the eFAST and Sobol´ methods. The most important factor is
survival-prob, explaining approx. 99% of the variance with its first-order effect (eFast: 98%,
Sobol’: 99%, optimised Sobol’: 95%).

Table IV.10.: Results of the FANOVA decomposition method using a fitted Gaussian process.
Names in the first column are the input factors. Single names are main effects.
Names combined with a colon are (second-order) interaction effects.

abundance variation vacancy
scout-prob 1.733 10.984 0.107
survival-prob 80.561 13.272 98.828
scouting-survival 2.487 12.160 0.022
scout-prob:survival-prob 5.820 31.400 0.653
scout-prob:scouting-survival 0.134 2.862 0.022
survival-prob:scouting-survival 4.655 26.914 0.530
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Overall, the results fit very well with the results of the other variance decomposition
methods even though we used fewer simulation runs. Nevertheless, FANOVA decomposi-
tion can only be as good as the Gaussian process is, and the goodness of fit is limited by
how well the sample represents the simulation model behaviour with respect to the varied
input factors, which depends primarily on the sampling design and the number of samples.
Furthermore, the GP is only useful in cases where the response surface is a smooth function
of the parameter space [Dancik et al., 2010].

IV.4.5. Costs and Benefits of Approaches to Sensitivity Analysis

In the previous section we presented different sensitivity analysis techniques. Despite the
fact that it is impossible to list all existing methods, we presented, from our point of view,
the most commonly used and interesting ones in the context of ABMs and provided starting
points for adaptations to others. In Figure IV.20, we compare the methods presented here
in the same manner as the fitting methods in the intermediate discussion (see Figure IV.11).
There is quite some overlap between the different methods, and the ranking in terms of
costs and gains is not as clear as with the fitting methods. Furthermore, the purposes of the
methods as well as their requirements for the models are different.

As with the fitting methods, for sensitivity analysis it is often useful to start with a simple
method and then apply a more informative but computationally more demanding method
to explore only the most important input factors. It is always a good idea to start with a
graphical method, e.g., scatterplots, to obtain a rough feeling for the relationships of inputs
and outputs and their linearity or non-linearity. In a next step, one can, for example, use
Morris’s elementary effects screening to identify the most important factors and apply the
Sobol´ method afterwards to these factors or, as performed by Marino et al. [2008], apply
the partial (rank) correlation coefficient method first and use the eFAST method afterwards.

IV.5. Discussion

One might argue that most ABMs are too complex and computationally expensive to run
them hundreds or thousands of times with varying parameter values and starting conditions
for parameter fitting or sensitivity analysis. However, the way for ABM to become an ac-
cepted research method is not to make the models as realistic and complex as possible. An
important, if not decisive, design criterion for ABMs, as well as any other simulation mod-
els, is that they must run quickly enough to be amenable to comprehensive and systematic
analysis. This requires that a single run should be fast enough to allow for both interactive
cursory and automatic systematic model analysis. Thus, it is essential to test submodels and
make a great effort to find the simplest ones that still serve their purpose.

There can be limits to simplification, for example if a model is no longer able to repro-
duce multiple patterns simultaneously [Grimm and Railsback, 2012, Railsback and Grimm,
2012]; in such cases, using computing clusters, which currently are often available, can help
to still perform the high number of simulations required by some of the methods described
here.

A point we have so far not discussed in detail is the variability of simulation outputs
caused by stochastic components, which are usually included in ABMs. A single simulation
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Figure IV.20.: Rough categorisation of sensitivity methods used regarding their cost vs. in-
formation and efficiency. Cost includes the computational costs (i.e., number
of simulations, which depend itself on the model and the number of parame-
ters) as well as the time consumed by fine-tuning of the methods. Information
and efficiency includes aspects about the type of output and the way reaching
it. Partly adapted from Campolongo et al. [1999].
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run may thus not be representative for the spectrum of possible simulation outputs. Us-
ing different seeds for the function generating random numbers can result in completely
different dynamics.

This issue is often addressed in textbooks about agent-based modelling [e.g., North and
Macal, 2007, Railsback and Grimm, 2012, Squazzoni, 2012, Tesfatsion and Judd, 2006]. It is
recommended to run a model with the same configuration repeatedly with different random
seeds. Then, the mean of the model outputs is calculated, as we did here; confidence
intervals should also be calculated. However, this solution implies two further issues. First,
the question of how many iterations are needed must be answered. The classical textbooks
do not answer this question. It is often solved by an ad hoc definition that, for example,
10 or 50 replications are sufficient for a specific model [e.g., Kerr et al., 2002, Arifin et al.,
2013, Martínez et al., 2011, Squazzoni, 2012, Railsback and Grimm, 2012]. Very likely,
just 10 iterations, as used here, will often not be enough. However, an established general
accepted strategy for finding an adequate number of repetitions is missing. Nikolic et al.
[2013] recommend performing a LHS over the parameter space with 100 replicated runs
for each parameter set to identify the most variable metric and parameter value set. Then,
this parameter value set producing the most variable metric is used to estimate the number
of replications needed to gain a defined confidence level. A similar approach was applied
by Kelso and Milne [2011]. In combination with the method suggested by Lorscheid et al.
[2012], discussed at the beginning of this article, it is a good starting point to avoid ad
hoc assumptions about appropriate replication numbers while a general strategy is missing.
This approach becomes less reliable when non-linear processes are involved but is the best
approach currently available in terms of the cost-benefit ratio.

The second issue affects the interpretation of the output of ABMs: variation in model
output represents variation in reality, i.e., in environmental drivers and the properties and
behaviours of a model’s entities. Ignoring this variation by only considering averaged model
outputs might thus be misleading. Still, averages should capture overall trends, and sensi-
tivity analyses should thus still be informative of the relative importance of processes. The
sensitivity of model output to uncertainties in model inputs, though, might be blurred by
the stochasticity inherent to the system to be represented. Real uncertainty might thus be
higher than the uncertainty detected by sensitivity analyses, which is focused on averaged
model outputs. Therefore, it might often be advisable to consider not only the sensitivity of
the averaged outputs but also that of the variance of the outputs.

Sensitivity analyses can help understand how a model works, but it should be noted
that at least two more general approaches will usually be required for full understanding:
simulation experiments and some type of regression analysis. In simulation experiments,
one parameter at a time is varied over its full range, and the response of one or more output
metrics is studied. These experiments are usually designed like real experiments: only
one or a few factors are varied systematically, whereas all other factors are kept constant.
Simulation experiments are basically designed to test simple hypotheses, i.e., the model
settings are "controlled" to such a degree that we can make predictions of how the model
should behave. Important typical experiments include the use of extreme parameter values;
turning processes on and off; exploring smaller systems; exploring submodels separately;
making drivers constant; making the environment spatially more homogeneous, etc.

With regression analysis, we here refer to statistical methods that explore how much
certain processes, represented by their corresponding parameters, affect one or more model
outputs. Typical approaches for this include analysis of variance, generalised linear models,
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regression trees, path analysis, and many more. For all of these methods, packages exist in
R, so they can in principle be used for analysing ABMs in the same way as done here for
sensitivity analysis.

Some readers, if not the majority, might have been lost while reading about the more
complex methods described here, primarily because they are not familiar with the statistical
methods employed for interpreting the results of the sensitivity analyses. Still, we always
tried to describe in detail what the output of the analyses means in terms of the sensitivity of
single parameters, or parameter interactions, and all this for different model outputs. After
such detailed and partly technical considerations, it is always important to step back and ask
yourself the following: what have we learned about the relative importance of processes,
how processes interact, and how uncertainties in parameter values would affect simulation
results?

For our example model, the main lessons learned are as follows: All three tested pa-
rameters have a considerable influence on the model results, or, expressed the other way
round, the model is sensitive to variations in these parameter values. However, the influ-
ence strongly differs regarding both the output measure considered and the parameters.
Therefore, it is important to not analyse simulation results on the basis of a single output
measure.

In all analyses, survival-prob has been identified as the most important parameter. This
is not surprising, as this survival probability affects all individuals every month. We varied
this probability by only 5 per cent. This means, on the one hand, that the population is
very vulnerable regarding its survival probability, and on the other hand, that the more
uncertain the value of survival-prob is, the more uncertain the models’ outputs are, for
example, assessments of extinction risks. Is this sensitivity real, or is it an artefact of the
selected model structure? In reality, individuals are different, so some individuals should
have a higher survival chance than others. It has been shown that this variability serves as
a "buffer mechanism", reducing extinction risk [Grimm et al., 2005b].

Still, even if we focus on survival probability as represented in the example model, improv-
ing survival to reduce extinction risk might not be sufficient because there are considerable
interaction effects, especially regarding the standard deviation of the annual abundance
(variation criterion). Although the main-effects of scout-prob and scouting-survival were
unimportant, their influence caused by interactions with survival-prob was very important
for the variation criterion. Furthermore, we observed both linear effects and non-linear
effects of parameter variations.

We based the technical implementation on two commonly used software tools, NetLogo
and R. R in particular, with its many user-contributed packages, delivers all commonly used
methods for parameter fitting and sensitivity analysis. Nevertheless, we would again like
to remind readers of other tools for parameter fitting and/or sensitivity analysis for models
implemented in NetLogo. The most prominent ones are BehaviorSearch [Stonedahl and
Wilensky, 2013], openMole [Reuillon et al., 2010], MASS/MEME [Iványi et al., 2007], and
Simlab [Simlab, 2012]. Other general-purpose statistical/mathematical software systems,
such as MatLab [The MathWorks Inc., 2010] and Mathematica [Wolfram Research Inc.,
2013], also provide many of the described methods, but these systems are mostly propri-
etary.

What we wanted to foster with this "cookbook" is to avoid re-inventing the wheel. In
young research areas, such as the field of agent-based modelling, it is common for users to
implement their own solutions when standards are missing. Often, however, several com-
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ponents have already been implemented. We believe that re-inventing the wheel in every
ABM project is a major waste of time and money and liable to introduce errors. Rather than
trying to implement existing methods from scratch, or trying something new but untested,
one should try and use existing tested software tools. This is in contrast to the everyday
practice of most agent-based modellers, who are accustomed to programming virtually ev-
erything from scratch. With regard to parameterisation and sensitivity analysis, this ad hoc
approach would be inefficient and highly uncertain.

We hope that our cookbook lowers the threshold for using fitting and sensitivity analysis
methods in ABM studies and delivers a contribution towards rigorous agent-based mod-
elling. Nevertheless, this paper cannot (and is not intended to) replace the intensive study
of more detailed literature about these topics and the specific methods. It was our intention
to give a rough overview of the most popular methods available to make modellers aware of
them. Furthermore, we wanted to show what the methods can bring to modellers and how
to apply the methods to an agent-based model in a reusable way. We based the technical
implementation on two commonly used software tools, NetLogo and R, to achieve a less
steep learning curve. Moreover, both NetLogo and R are supported by large user groups
and have established discussion forums on the internet, where beginners can post questions
regarding the methods presented here or browse the forums’ archives for similar questions.

Still, reading a cookbook does not make you a chef; it only shows you how to start and
gives you an idea of what you could achieve if you work hard enough. We hope that this
contribution helps more ABM cooks to produce wonderful meals: models that aid in under-
standing, in a predictive way, and managing real agent-based complex systems.

IV.6. Supplemental Materials

Supplemental Materials are available at:
http://sourceforge.net/projects/calibrationsensitivityanalysis/.
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V.1. Highlights

V.1. Highlights

• Computational modellers should more often start from the replication of an existing
model than from scratch.

• Replication facilitates robustness analysis, which explores where model mechanisms
explaining given observations break down.

• A culture of replication would lead to increased credibility, coherence, and efficiency
of computational modelling and thereby facilitate theory development.

V.2. Abstract

There are two major limitations to the potential of computational models in ecology for
producing general insights: their design is path-dependent, reflecting different underlying
questions, assumptions, and data, and there is too little robustness analysis exploring where
the model mechanisms explaining certain observations break down. We here argue that
both limitations could be overcome if modellers in ecology would more often replicate and
modify existing models. Replication comprises the re-implementation of an existing model
and the replication of its results. The benefits of replication include less effort being spent
to enter the iterative stage of model development and having more time for systematic
robustness analysis. A culture of replication would lead to increased credibility, coherence,
and efficiency of computational modelling and thereby facilitate theory development.

V.3. Introduction

Computational models have become indispensable in ecology and any other discipline deal-
ing with agent-based complex systems [Grimm et al., 2005]. They allow essential features
of the real world that have to be ignored in mathematical models to be taken into account
[Evans et al., 2013]. General insights, however, are often hard to distil from computational
models. One reason is their higher complexity. To limit the degrees of freedom in model
structure and parameters, models must often be tied to specific real systems. We here argue,
though, that an equally important reason is that computational modellers in ecology almost
exclusively develop models from scratch.

The prevalence of de novo computational models is largely a consequence of the path-
dependence of modelling. Models do not represent systems per se, but only with regard
to specific questions or problems. Thus, modellers start from different questions and make
different model assumptions, depending on their conceptual understanding of the system,
on the experts and data involved, on their preferred modelling approach, and even on such
mundane things as the available software and hardware. Each assumption constrains the
potential of a model to reproduce observations in a different way, leading to different sub-
sequent model assumptions, etc. The final models represent chains, or paths, of submodels
and parameter values that were needed to obtain sufficiently realistic output. Even for the
same system, they can be completely different. This leads to models of, e.g., savannahs,
forest fire ecosystems, or cycling voles that are so different that they are harder to compare
than apples and oranges, which is a major obstacle to distilling general insights.

There is nothing wrong in principle with the path-dependent assembly of models. It
cannot be avoided, and it is usually along the path that modellers develop understanding.
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Nevertheless, once a model reproduces observations, to distinguish signal from noise in the
model, the path must be conceptually reversed [Grimm and Railsback, 2005] to systemat-
ically explore alternative submodels and simplified environments in a robustness analysis.
There seems to be a psychological barrier, though, to reversing the path [Grimm, 1999]:
constructing a realistic model can be a long and thorny enterprise. It can sometimes take
years to make a model produce realistic output. It is understandable that the modeller then
uses the model as given for its intended purpose, which again can take a long time. Sooner
or later, as Francis Crick noticed [Crick, 1988], modellers fall in love with their models,
which makes it unlikely that they themselves will ever perform a robustness analysis.

If we had a culture of model replication where modellers do not always start from scratch
but also from existing models that they replicated, robustness analysis and distilling general
insights would become a community task. If you replicated a model, there is no psycho-
logical barrier against radical scrutinising, modification, and simplification. Moreover, by
replication, we would multiply the manpower available for learning from interesting mod-
els.

So far, the replication of computational models and its benefits have mostly been discussed
in the social sciences [Axtell et al., 1996, Edmonds and Hales, 2003, Rouchier et al., 2008].
In ecology, where models tend to be more complex and more closely linked to real systems,
replication is virtually absent. We want to change this by arguing here that ecological mod-
elling indeed needs a culture of replication. We summarise arguments for replication, list
tools, and emphasise the important role of open source software. Most importantly, we will
argue that replication is not only good for scientific practice, as it increases the credibility
and robustness of models, but provides direct benefits to those who replicate models. But,
first let us discuss in more detail what replication involves.

V.4. What Does Model Replication Involve?

Model replication can be defined as the re-implementation of a model that has been de-
veloped and implemented by others. By ïmplementationẅe refer to a computer program.
Usually, a replication is based on the verbal or conceptual description of the original model.
If the code of the original implementation is also available, details of the original model,
which can be ambiguous in verbal descriptions, can be adopted from the original code.
However, usually and preferably, the re-implementation uses a different programming lan-
guage so that the details of model algorithms are also implemented independently. Replica-
tion should also include differences in one or more of the hardware used, the software tools
such as program libraries, and the algorithms employed [Wilensky and Rand, 2007].

Replication is tested by comparing the output of the re-implementation to the output of
the original implementation. For comparison, three different replication standards of de-
creasing selectivity were proposed [Axtell et al., 1996]: numerical identity, distributional
equivalence, and relational equivalence. Numerical identity is hard to achieve, some-
times even with the same computer and implementation, as stochasticity and the details
of floating-point algorithms may lead to differences. Distributional equivalence means that
the output of many runs of the two different models cannot be distinguished statistically.
Relational equivalence means that although there are distributional differences, the rela-
tions between the input and output of the original and replicated models are qualitatively
the same.

Successful replication according to one or more of these standards increases the credibility
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of both the original and replicated model, which can be important by itself as the credibility
of computational models is often doubted. Replication is considered the hallmark of the
scientific method, although in practice is it quite rare [Collins, 1985, Giles, 2006, Goodstein,
2010, Jasny et al., 2011]. The reason for this, both in real and simulation experiments,
is that merely increasing the credibility of a general approach (for example, agent-based
modelling,) or of a specific model or experiment usually does not provide sufficient incentive
for scientists to invest time and energy into replication.

V.5. Robustness Analysis

The more interesting aspect of replication is, as we call it here, "robustness analysis", which
involves checking whether the results of the original model are "robust to substantial exten-
sions over time, explanatory variables, and/or alternative estimation procedures" [Burman
et al., 2010]. These criteria were formulated for statistical models in econometrics but can
be extended to simulation models as well: how robust are the output and the conclusions
from the original model if we change its temporal and spatial resolution and extent, mod-
ify its representation of model entities and processes, analyse the model output with other
methods, or explore additional model output? These modifications should particularly in-
clude systematic simplification, including more homogeneous settings for environmental
variables, such as habitat features or environmental drivers.

Replication is thus a means for exploring where the explanations and predictions provided
by a given model break down. The resulting robustness analysis is a critical tool for over-
coming one of the main limitations of computational models: the path-dependence of their
development and, hence, their analysis. Nevertheless, replication of computational models
is still rare, because not only scientists but also journal editors and reviewers seem not to be
sufficiently aware of the benefits of replicating computational models.

V.6. Benefits of Replication

Replication can provide considerable returns to the replicator. When modelling from scratch,
even if modellers scan existing models and copy their designs to some degree, it can take
a long time for a model to first be conceptually formulated, then be implemented, tested,
and analysed. A direct benefit of replication is that the modeller starts from existing hy-
potheses and submodels and therefore enters the "modelling cycle" [Grimm and Railsback,
2005] of iterative model formulation, implementation, simulation, and analysis much more
quickly. This leaves more time for the critical but time-consuming task of in-depth model
analysis, which is often performed only superficially because too much time had been spent
developing the first conceptual model.

Some modellers argue, though, that the gradual development of a conceptual model from
scratch is important, as the modeller gradually gets familiar with the system and the ques-
tion to be addressed and develops conceptual understanding. This is a valid argument, but
replication is different from just running an existing model, which indeed can be quite lim-
ited for gaining new insights. Replication stands between modelling from scratch and the
mere use of existing models, as it requires that we understand the conceptual model, and
its rationale, in all detail before we can re-implement [Grimm et al., 2010]. Thus, grad-
ually developing understanding is also an integral part of replication, but it is faster than
modelling from scratch, as it starts from existing building blocks.
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Starting a new modelling project with the replication of one or more existing models
also facilitates publication, for several reasons: in introductions, it can be easier to use the
hypotheses and findings of existing models as the point of departure, as they provide a
seamless link to existing work and knowledge; by showing that we start with an implemen-
tation that replicates the output of the original model, we add considerable credibility to
our own model and its implementation; by explicitly referring to robustness analysis, we
indicate that we will not present just another case study, but contribute to the development
of theory, which is also important for broadening the scope of applied models.

Last but not least, even if we decide, after replication, to design an entirely new model,
we very likely can use some building blocks of the replicated model and its implementation.
Many animal models, for example, include home range dynamics [Wang and Grimm, 2007,
Börger et al., 2008]. As these should follow some general principles, it is likely that we can
transfer and adapt home range submodels to our own model. This example also shows that
we do not always have to replicate an entire model. If the original submodel was tested
separately, as it should be [Grimm et al., 2014], we can compare the output of the original
and the replicated submodels.

All these direct benefits to replicators also imply indirect benefits via improving scientific
conduct. Computational models are put into a more rigorous framework, where artefacts
from erroneous code or model assumptions are detected early on; re-implemented submod-
els, which are used in different contexts, can be assembled into a library of tested and useful
submodels of certain behaviours, which in turn facilitates developing new models and re-
viewing them; and robustness analysis contributes to theory development by overcoming
the path-dependence of modelling.

V.7. Examples

In contrast to ecology, the replication of computational models has been discussed for almost
two decades in the social sciences [Axtell et al., 1996, Edmonds and Hales, 2003, Rouch-
ier et al., 2008]. A reason might be that modelling is a relatively new approach in social
sciences, so it was important to convince modelling sceptics that simulation is a rigorous
approach. Ecology has a long history of mathematical modelling. Moreover, the rigorous-
ness, testing, and predictions of models were rarely discussed, because most mathematical
models were designed for demonstrating concepts rather than making testable predictions
[Grimm and Railsback, 2005, Evans et al., 2013].

Often, the replication of social models was discussed in the broader context of "model
alignment", wherein the question is under what conditions two or more models with differ-
ent structures and histories would make the same, or similar, predictions when addressing
the same scenario and issue [Axtell et al., 1996, Edmonds and Hales, 2003, Rouchier et al.,
2008].

A good example of replication and its benefits started with the agent-based model of
Macy and Sato [2002] which explored how trust can be build among distant people. Will
and Hegselmann [2008] failed to replicate the results of this model. A specific rule was then
identified in the source code of the original model that was missing in the model description
but was essential for replicating the published results. Will [2009] considered the effect of
this rule an artefact and developed a revised model. Macy and Sato [22], in turn, claimed
that in fact the revised model supported their original hypothesis, if parameter values were
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varied more systematically. Further examples of replication can be found in Edmonds and
Hales [2003], Merlone et al. [2008], Miodownik et al. [2010], and Radax and Rengs [2010].

In ecology, Mooij and DeAngelis [1999] were not able to reproduce the results regarding
the sensitivity of dispersal success to dispersal mortality. The original authors [Ruckelshaus
et al., 1997] varied mortality between 2, 8, 16, 24 and 32 per cent and found extremely high
sensitivity already for 2 per cent, which would render any prediction of spatially explicit
simulation models too uncertain. This work was therefore frequently cited as an argument
against the usefulness of spatially explicit, individual-based population models.

Only after obtaining the original code from the original authors [Ruckelshaus et al., 1997]
did Mooij and DeAngelis [1999] realise that not mortality, but survival per movement step
was varied between 2 and 32 per cent, leading to unrealistically high mortalities which had
caused the extreme sensitivities observed. With the correct implementation of mortality,
sensitivity to uncertainty did not completely disappear, but was much lower.

A further example is Cortés-Avizanda et al. [2014], who re-implemented a model of vul-
tures searching for carcasses which they considered unrealistic [Jackson et al., 2008], and
then confronted this, and alternative models, with patterns observed in field experiments.
The original model, which was designed to explore ideas rather than making predictions,
produced numbers that were far too high of vultures arriving at a carcass shortly after it
had been found by the first vulture. Box 1 provides another example where the replica-
tion of a simple model, which was performed in less than a day, allowed the parameter
space analysed with the original model to be extended, which immediately led to questions
challenging the original conclusions.
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Box 1: Example replication of a C-S-R coexistence model

Kerr et al. [2002] presented a theoretical grid-based model of three competing species
(C-S-R) inspired by Escherichia coli bacterial systems. The model is used to analyse
how coexistence depends on the localness of interactions and dispersal under varying
parameter values. It is based on simple stochastic rules in the style of a rock-paper-
scissors (R-P-S) game. The model world consists of cells arranged in a 250 x 250 grid,
each initialised randomly by assigning it to one species. The model is run for 10,000
time steps. In each step, an asynchronous update of each cell occurs. The probability of
state transition of a cell depends on its own state and the states of its neighbours.

For the state transition rule, Kerr et al. [2002] applied a local Moore neighbourhood
rule as well as a global neighbourhood rule, and showed that coexistence only emerges
under the local neighbourhood rule. Furthermore, they demonstrated that the emer-
gence of coexistence is robust to variations in the parameters ∆R (death probability of
R) and τ (toxicity of C).

We re-implemented the model of citetKerrEtAl2002 in NetLogo [Wilensky, 1999] and
produced a model that was relationally equivalent to the original. Then, we reviewed
the rule given by Kerr et al. [2002], ∆S,0 < ∆R < ∆C <

∆S,0+τ
1+τ , which ensures that S

displaces R, R displaces C, and C displaces S. From this rule, the permitted parameter
value range of ∆R and τ under fixed values of ∆S,0 = 1

4 and ∆C = 1
3 can be derived:

• min. ∆R : 1
4 , max. ∆R : 1

3

• min. τ : 1
8 , max. τ : Inf. or 3

4 (because of ∆S,0 + τ ∗ fC; with fC being the propor-
tion of neighbouring cells occupied by species C)

Using this full range of permitted values for a robustness analysis reveals that coexis-
tence is not as robust against the changes in the interaction and dispersal regime as was
suggested by Kerr et al. [2002]. The proportion of runs with coexistence after 10,000
steps decreases from 61 % with the parameter range used by Kerr et al. [2002] to only
30 % with the full parameter value range used here (Figure V.1). This does not imply
that the coexistence mechanism reported by Kerr et al. [2002] does not exist, but that
it is less general than they claim.
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Figure V.1.:
Robustness of a coexistence mechanism based on rock-paper-scissor inter-
actions between three species of bacteria to variations in two model param-
eters, ∆R (mortality of "rock" species) and τ (toxicity of "scissors" species).
The red box delineates the originally explored parameter ranges Kerr et al.
[2002]. For each parameter set, 10 repeated simulations with 10,000 time
steps were run. Grayscale indicates the number of runs with coexistence;
i.e., the lighter, the higher the number of runs with coexistence (white:
10 out of 10, i.e., always coexistence; black: 0 out of 10, i.e., always ex-
tinction). Results reported from the red box indicate that a quite general
coexistence mechanism was found, suggesting that this might also be a ro-
bust explanation of coexistence observed in reality, whereas results from
the entire parameter space show that the coexistence mechanism is less
robust and, in turn, is likely to be less relevant in reality.

V.8. Tools Supporting Replication

A major obstacle to replication used to be the lack of a common format for model descrip-
tions. Fortunately, this situation is now changing, as use of the ODD (Overview, Design
concepts, Details) protocol for describing computational models [Grimm et al., 2006, 2010]
has been increasing over the last several years. It is estimated that more than 60 % of
the descriptions of new agent-based models in ecology currently follow this protocol. The
ODD protocol makes it easier to identify the structure, processes, and the details of a sub-
model’s implementation; it is designed as a verbal description, but it can include equations,
pseudo-code, and, for very complex models [e.g., Becher et al., 2014], links to short pieces
of code. Replication of a model described via ODD still requires that the replicator fully
understand the original model. Even if the original model description does not follow ODD,
rewriting it to the ODD format has turned out to be useful for replication [M. Janssen, pers.
communication, C. LePage, pers. communication].

A further means for facilitating replication is the increased use of the same software plat-
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form for the same type of models, rather than using general-purpose programming lan-
guages such as C++ or Java. In agent-based modelling, NetLogo [Wilensky, 1999, Railsback
and Grimm, 2012] already dominates in social sciences and is gaining ground in ecology.
Thus, when replication based on a model description fails, checking the code is easier if
we all use the same programming language. However, being able to program in more than
one programming language is still important, as subtle mistakes are often specific to the de-
sign of a certain language. Because most of the software testing for computational models
will focus on submodels, which are usually relatively simple, simple languages available in
spreadsheets or statistical software will be sufficient for producing independent implemen-
tations.

Ultimately, we might assemble libraries of tested submodels representing specific be-
haviours or processes. If these have been independently tested and used in many projects,
replication would turn to a mixture of writing one’s own code and using existing proce-
dures from software libraries. This workflow is already associated with standard models
representing interactions between plants, e.g., vertical competition for light in individual-
based models of forests ["gap models", Botkin et al., 1972, Bugmann, 2001], or horizontal
competition via overlapping "zones of influence" [Weiner et al., 2001], as well as for energy
budgets [Kooijman, 2010, Martin et al., 2013], but it might also work for certain behavioural
"primitives" [Ginot et al., 2002], such as habitat selection, foraging, or dispersal.

Standard formats for model description, standard software platforms, and standard sub-
models are not sufficient, but must be complemented by routinely making code implement-
ing a model available on permanent and non-proprietary websites. This is the only way to
ensure successful replication some indefinite time after a model is first published. Currently,
code is not routinely made available, and if so, links to websites are often outdated. For
example, of the agent-based or individual-based models published in the journals Ecological
Modelling and Environmental Modelling & Software in the years 2009 to 2010, in 12 per cent
of the studies the source code or a link/URL to it was given in articles published in Ecological
Modelling, and 43 per cent for Environmental Modelling & Software, but only 21 per cent of
those weblinks were still working as of today.

If journals would require that authors add their source code to their submissions as part
of the supplementary material, replication and all its benefits would be considerably facil-
itated. Most journals, though, are proprietary, and subscription to the journal is required
to have access to the supplements. One important initiative has already started to change
this situation: the COMSES network (www.openabm.org) maintains a library of models,
consisting of a model description, the code, and all files and information needed to re-run
simulations [Rollins et al., 2014]. Authors can require certification, which is obtained after
peer-review checking the documentation, completeness, and readability of the source code.
Certified models are made available under a permanent web address, which is similar to the
commercial DOI (digital object identifiers) system.

Facilitation requires that we have free access to the software that was used to implement
the original model, because when replication fails, we need to compare the model output
of the original and replicated models in detail. If the original model was implemented
using proprietary software, this may not work because the underlying algorithms are not
accessible or because not everyone might have the resources to buy that software. Using
non-proprietary software platforms is advisable for many reasons [Greve, 2003], not the
least being that it opens a model to replication.
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Having a culture of replication would have many benefits, both for replicators and for their
science in general. How can we establish such a culture? Both a bottom-up and a top-down
approach are needed. Bottom-up means that if modellers are convinced that replication
is a good starting point for their project, then they should be bold and submit their work
without any excuses or justification for why they did not start from scratch. If the work
leads to new insights, its chances of getting printed and having impact are not different
from work based on de novo models; actually, the chances might be higher. Moreover, using
libraries such as the one maintained by the COMSES network (www.openabm.org) allows us
to turn even the replication itself, without any further analysis, into a citeable product, which
could be categorised under "peer-reviewed software"; this could be particularly valuable for
modelling neophytes.

The top-down approach starts from the type of work a journal is willing to accept. We
would encourage journal editors, as Palmer [2000] has already done for ecology in general,
to create a new category of "Model Replication" where modellers can publish their repli-
cation exercises if they led to new and important insights. In econometrics, journals have
already defined such a category. Burman et al. [2010] call for replication papers and envis-
age three types of replication: positive, where the replication fully worked; negative (type
1), where replication only worked after contacting the original authors; and negative (type
2), where replication worked, but the results were not found to be robust.

Having "replication" as an explicit category would encourage replication, and make "com-
munity modelling" an explicit part of modelling and theory development. Of course, none
of these proposals deny the role of models developed from scratch. Ideally, modelling in
ecology and other fields dealing with agent-based complex systems would encompass the
full spectrum of models, from those fully developed from scratch to those fully based on a
replicated model.
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CHAPTER VI

Discussion and Outlook

The present thesis aims to contribute to the development of a rigorous framework of agent-
based modelling by linking, extending and using existing software platforms. As shown, the
thesis focuses more on technical solutions by a full-fledged integration of NetLogo and R.
However, software tools can only be seen as successful when users accept and use them.
Therefore, evaluating the objective can only be done by analysing the impact of the work in
the community.

VI.1. Impact

The main output of this thesis are the R-/Rserve-Extension to NetLogo and the RNetLogo
package for R. Since making these two software tools available to the public they have been
used by many researches from various fields. A short overview of impacts and feedbacks is
given in Table VI.1 for the R-/Rserve-Extension and in Table VI.2 for the RNetLogo package.

Furthermore, the paper Thiele et al. [2012b]: Agent-based modelling: Tools for linking
NetLogo and R is placed on rank 8 of most viewed papers in Journal of Artificial Societies
and Social Simulation with 785 views within eight weeks calculated on January 8th, 2014
[JASSS, 2014]. Therefore, it is the most-viewed paper published in 2012 of these eight
weeks. Moreover, the paper Thiele et al. [2012a]: RNetLogo: An R Package for Running and
Exploring Individual-Based Models Implemented in NetLogo is within the top ten per cent of
all 1.1 million articles tracked by Altmetric measuring online attraction of scholarly articles
on January 8th, 2014 [Altmetric, 2014].

ISI Web of Knowledge (requested on 2014/07/02) lists seven citations of the paper about
the R-Extension in Environmental Modelling & Software [Thiele and Grimm, 2010], with
two being self-citations and one refering to the R-Extension but using RNetLogo. Google
Schoolar lists 17 citations (requested on 2014/07/03) with three self-citations and also the
one incorrect citation.

The paper published in Methods in Ecology and Evolution about the RNetLogo package
[Thiele et al., 2012a] was cited three times following ISI Web of Knowledge (requested on
2014/07/02), whereas Google Schoolar lists 9 citations (requested on 2014/07/03), one
being a self-citation.

For the summary paper in Journal of Artificial Societies and Social Simulation about all
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three tools to connect R and NetLogo, Thiele et al. [2012b], Google Schoolar registered
three citations (requested on 2014/07/03).

However, it can be assumed that the tools are much more often used as indicated by
Table VI.1 and Table VI.2 and citations do not appear because either the usage was not men-
tioned or the studies are not published until now. Therefore, citations are a weak measure
of impact for software tools.

An example of the application of the R-Extension can be found in Ibarra and Janssen
[2012]. They used the R-Extension to generate different landscape configurations with R
as initial condition for their NetLogo patches. Fernández [2011] used the R-Extension to
connect NetLogo with an open source software that models hydraulic and water quality in
water distribution piping systems. [Falbo, 2011] used the R-Extension in conjunction with
the spatstat package to analyse the spatial point pattern of positions of the individuals.

A use-case of the RNetLogo package can be found in Vinatier et al. [2013]. In this paper,
the RNetLogo package was obviously used to run a NetLogo model systematically from R
and collect seemlessly simulation results to conduct a sensitvity analysis with the Morris
screening method, perform an ANOVA, and to calibrate parameter values. Thus, the RNet-
Logo package has been applied in the way that was proposed in Chapter IV. Frank and
Baret [2013] also used the RNetLogo package to control the model run from RNetLogo and
transfer data from NetLogo to R to perform a sensitivity analysis starting with the Morris
screening method and analysing the most influential parameters in detail with the Sobol’
method. Roberts and Lee [2012] used the RNetLogo package to fit general linear models
to the simulation output data and to create advanced graphics for the results of a model of
peer influence on the behavior among teenage drivers in a social network.

Beside the applications the tools presented have been stimulating others to develop similar
tools. For example, MatNet, a Matlab-Extension to NetLogo, is partly built on the code of
the R-Extension [Biggs, 2013, Biggs and Papin, 2013] and the pyNetLogo library providing
a connection between Python and NetLogo re-uses code of the RNetLogo package [Kwakkel,
2013, 2014]. Moreover, the stats-Extension was inspired by the R-Extension [Stealin, 2012].

This impact and feedback overview suggests that this work already contributed towards
rigorous agent-based modelling. It seems that it made the life of many agent-based mod-
ellers easier and saved time of implementation which can be invested into model analysis.
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Table VI.1.: R-/Rserve-Extension. Impact and feedback.
1. Downloads

586 downloads of R-Extension version 1.2 within one year from sourceforge.
295 downloads of Rserve-Extension version 0.1beta within one year

from sourceforge.
2. Books

Railsback and Grimm [2012, p. 313]
"In the other direction, a NetLogo R extension gives access to any R command from within Net-
Logo (Thiele and Grimm, in press). This extension makes R’s very large library of mathematical
and statistical functions work essentially as NetLogo primitives. For example, you can use R’s
spatial analysis packages to analyse movement of your turtles (how big of an area did each
turtle use?); or you can use R to program more efficient simulation experiments, for example
by using latin hypercube sampling to conduct parameter sensitivity analysis with fewer model
runs."

O’Sullivan and Perry [2013, p. XXIV]
"Most of the figures were directly generated from these models using the excellent NetLogo-R
extension described by Thiele and Grimm (2010)."

3. Courses
http://www.forst.tu-dresden.de/summerschool/index.php?page=2009-3
(last accessed 2014/01/08)

Summer School Individual- and Agent-based Modelling 2010 by Uta Berger, Volker Grimm,
Steven Railsback, and Cyril Piou, Lecture 15: R-Extension.

http://torinor.net/wp-content/uploads/2012/12/Connecting_R_with_
PythonNetLogo_20121129_PietroTerna.pdf (last accessed 2014/01/08)

Tutorial "Connecting R with..." by Pietro Terna, Connecting NetLogo and R (using Rserve tool).
http://simulatingcomplexity.wordpress.com/tag/r-extension/
PythonNetLogo_20121129_PietroTerna.pdf (last accessed 2014/07/03)

Tutorial "R you experienced? Using the R extension for NetLogo" by Benjamin Davies.
4. Direct Feedbacks (subset)

N. Klepeis, USA (eMail, Sep. 2013)
"I love your R extension for NetLogo. I have succeeded in incorporating sophisticated numeri-
cal modeling into ABM’s using my existing R scripts."

T. Filatova, The Netherlands (eMail, Feb. 2013)
"I am a big fan of both NetLogo and R and was very happy to find out about the R-extension
for NetLogo you designed. Thanks for that!"

P. Smaldino, USA (eMail, Feb. 2013)
"I am taking a stab at using your NetLogo-R-Extension, which seems like it will be extremely
valuable."

M. Fernandez (eMail, Sep. 2012)
"After following your excellent install instructions, probably the best I’ve seen ever, it works
fine."

C. Liu, New Zealand (eMail, Oct. 2011)
"First thank you for your handy examples in R-NetLogo Extension. They are quite helpful to
me."

F. Ascensao, Portugal (eMail, Jun. 2011)
"Before anything, my sincere thankfulness for your work with the NetLogo R extension. It’s
definitely going to improve the analysis I’m doing for my PhD."

U. Wilensky, USA (eMail, Feb. 2011)
"Just wanted to drop a note to express our appreciation for your commitment to keeping up
the "R" extension. It’s a very useful extension to many of our users."

P. Terna, Italy (eMail, Jan. 2011)
"Thanks for your wonderful initiative and effort in connecting NetLogo and R."

C. Piou, France (eMail, Apr. 2010)
"Just to tell you that your application to meet R and NetLogo got a new fan... that’s great!
Thanks for the hard work on connecting the 2 and the nice documentations (and paper!)."

E. Bruch, USA (eMail, Apr. 2010)
"I recently discovered your wonderful extension to NetLogo for R"

E.R. Crema, UK (eMail, Apr. 2010)
"Fristly, thanks a lot for your extension, its’ a wonderful Idea and for sure It’s the most useful
thing I’ve ever seen in any ABM software."

D. Birks, Australia (eMail, Apr. 2010)
"Firstly, thank you for working on the R extension for NetLogo. [...] Currently all of my model
outputs are batch processed by R, having read your paper, the ability to produce real-time
advanced statistics through R within NetLogo is something I have long dreamt about."
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Table VI.2.: RNetLogo. Impact and feedback.
1. Downloads

1583 downloads of version 0.9-6 between Apr. 2013 and Dec. 2013 from CRAN.
2. Books

Railsback and Grimm [2012, p. 313]
"Similarly, R (www.r-project.org) is a very popular platform for statistical programming and
analysis. A new optional package for R allows users to execute NetLogo programs from within
an R program (Thiele et al., in prep.)."

O’Sullivan and Perry [2013, p. XXIV]
"The analyses we present were all conducted using the freely available R environment (R-
Development-Core-Team, 2012), some taking advantage of the RNetLogo library (Thiele et al.,
2012) which allows NetLogo to run within R and so takes advantage of the latter’s analytical
capabilities."

3. Courses
http://www.forst.tu-dresden.de/summerschool/index.php?page=2012-2
(last accessed 2013/06/12)

Summer School Individual- and Agent-based Modelling 2012 by Uta Berger, Volker Grimm,
and Cyril Piou, Lecture 14: RNetLogo.

http://www.demogr.mpg.de/de/ausbildungkarriere/international_
advanced_studies_in_demography_3279/courses_3280/agent_based_
modeling_and_simulation_abm_abs_3287/default.htm
(last accessed 2014/01/08)

Agent-based modeling and simulation (ABM-ABS), Course coordinator: Frans Willekens, Short
course 2: Agent-based modeling using ODD protocol, the NetLogo programming platform and
the RNetLogo package for linking NetLogo and R (instructors: Dr. Jürgen Groeneveld, Depart-
ment Ökologische Systemanalyse, Helmholtz-Zentrum für Umweltforschung (UFZ), Leipzig,
and Dr. Katrin Meyer, University of Goettingen).

4. Internet Resources
Review on openABM, 2012/07/12, http://www.openabm.org/story/
rnetlogo-new-package-links-netlogo-r (last accessed 2014/01/08)

"RNetLogo, a New Package That Links NetLogo & R. [...]"
Note at RBloggers, 2012/01/23, http://www.r-bloggers.com/rnetlogo-
a-package-for-running-netlogo-from-r/ (last accessed 2014/01/08)

"RNetLogo - A package for running NetLogo from R. [...]"
Blog Post, 2013/09/08, http://sgsong.blogspot.de/2013/09/
rnetlogo.html (last accessed 2014/01/08)

"The RNetLogo package is a small piece of wonder. One can conduct agent-based simula-
tion, try different model parameters, and then collect and conduct statistical analysis of the
simulation results."

Message on Google Group Modelling4All, 2013/05/17, https://groups.
google.com/forum/#!topic/modelling4all/DUjgmfpaQiU
(last accessed 2014/01/08)

"I found a couple of nice pages describing RNetLogo and I thought it would be worth mention-
ing since the topic is becoming popular..."

5. Direct Feedbacks (subset)
E. van der Vaart, UK (eMail, Aug. 2013)

"I just wanted to thank you for your wonderful RNetLogo package."
D. Worm (eMail, Jun. 2013)

"First of all, this package is exactly what I am looking for."
J. Lello, UK (eMail, Apr. 2013)

"Thank you for this great package and extremely kind support."
P. Galpern, Canada (eMail, Sep. 2012)

"I want to thank you for a superb interface to NetLogo. It is has increased my productivity
substantively. I now treat NetLogo essentially as an interpreter/engine and design simulation-
s/explore parameter spaces from R."

A. Kane (eMail, Nov. 2012)
"I’d like to thank you for your RNetLogo Package, it’s proving to be really helpful."

M. Barton, USA (eMail, Jul. 2012)
"RNetLogo is an R package with a lot of potential. Thanks for doing it."

F. Rebaudo, France (eMail, Mar. 2012)
"First of all thanks for RNetLogo, I don’t remember how it was possible to work without it!"

S.C. Robert, USA (eMail, Feb. 2012)
"I have been working with your RNetLogo package as a part of a class project. The package
has made it extremely easy for me to use NetLogo and analyze the resulting data in R."
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VI.2. Challenges and Shortcomings

The R-/Rserve-Extension and the RNetLogo package make several things easier and more
rigorous. However, where there is light, there is also shadow: The new tools introduce new
challenges to the users.

For the R-Extension I often observed problems with the installation. Setting environment
variables seems to be challenging to some users. Thus, I further extended the documenta-
tions, provided detailed step-by-step guides and included an extension which can be used to
evaluate the set up. This addressed also the problem that was introduced when R switched
to a separate 32-/64-bit installation since R 2.12, whereas NetLogo comes with a 32-bit Java
on Windows machines by default. Furthermore, when large amounts of data are transferred
between NetLogo and R memory issues can arise. This is due to the fact that both, Net-
Logo and R, share a common system process and therefore a common memory. Whereas
advanced users are able to increase the memory at start up of NetLogo this becomes difficult
to inexperienced users. Furthermore, the amount of data is often underestimated. I saw, for
example, cases where users created so much data that R vectors required several Gigabytes
of memory which would become also critical when running R stand-alone.

Overcoming these challenges was one motivation for introducting the Rserve-Extension.
Here, NetLogo and R run in separated system processes and do not share a common memory
block. While this makes the installation easier it brings new drawbacks: running the Behav-
iorSpace with multiple processes in parallel is not supported. Furthermore, the user must
be able to install and start an Rserve server, however, this is relatively easy and I observed
problems with this very rarely.

The installation and set up of the RNetLogo package is much easier and can be automated
via CRAN. However, on Linux and Macintosh machines the required rJava package does not
run in pure R and needs to be started from JGR for example, currently. This is not special
to the RNetLogo package but applies to all packages requiring rJava. Not recognizing this
advice in the manual is an often observed issue. Furthermore, using a mediator software
between R and NetLogo slows down the simulations. However, some improvements in the
transfer strategy and a guideline showing how to use the RNetLogo package best reduced
this problem as shown in a package vignette. In another package vignette, I showed how
RNetLogo can be used in combination with the parallel package to run multiple NetLogo
simulations distributed on several system processes and controlled by RNetLogo.

A challenge that applies to all the solutions coupling R and NetLogo is that users should
have enough knowledge of both softwares. Necessary is at least a good knowledge of the
data types and concepts. Many of the problems I saw resulted from sending lists with mixed
data types, which is supported in NetLogo, to an R vector, which does not support such
mixing. Maybe such pitfalls must be highlighted more strongly in documentations and need
an automatic checking mechanism in future versions.

In general, such software tools are only successful when continuous developments and
adaptations are done. During the last years several adaptations of the extensions and the
package had to be done due to changes in NetLogo and R. Because the source code of
the software tools is released under an open-source license and is given to the community,
continuous updates can be done by everyone. Furthermore, the code can be used to inspire
others for further developments.
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VI.3. Open Issues

Although this thesis contributes a step ahead towards rigorous agent-based modelling and is
already bearing fruits as shown in the impact analysis, it is just one piece of a larger puzzle.
There are many other open topics not directly addressed in this thesis so far. Some of them
are discussed and first concepts are given in the following. However, only the realization of
a concept does not make it a standard. It takes a long way and depends on the continuous
support by the developers of the software tools and the acceptance by the community, which
is not always predictable.

VI.3.1. Analysis of ABMs

Many ABMs include stochastic effects, i.e., random variables, generated by random number
generators, are used for some parameters, inputs or initializations instead of fixed values.
This means that running the same model with same settings but a different random seed
results in different simulation results [see also North and Macal, 2007]. However, often
single runs of an ABM are interpreted. Of course, this is not wrong and makes sense to un-
derstand cause-reaction mechanisms but can be insufficient to derive general conclusions.
Single runs can be non-representative and reflect extreme cases. Therefore, repeated sim-
ulations are needed additionally. Then, mean values, confidence bands and extreme values
for each time step can be calculated and plotted. However, a general rule for choosing the
number of repetitions to assume convergence is currently missing as shown in Chapter IV.
The Bayesian methods (like Approximate Bayesian Computation) could help here, however,
the large number of repetitions require a lot of computer power and can be limiting for large
and processing-intensive models. Although Railsback and Grimm [2012], North and Macal
[2007], Grimm and Railsback [2005], for example, already address challenges in stochastic
models and model analysis briefly, a further sensitization of modellers to such problems and
additional guidelines could help to overcome these challenges.

VI.3.2. Debugger

Integrated development environments (IDE) for software programming include convenient
step-wise debuggers, nowadays. Such debuggers provide functionalities to set break points
where the execution stops and the state of the system can be checked and changed. Fur-
thermore, one can walk through code execution step-wise, go into called functions/meth-
ods, move back to the calling code and so on. Such a mechanism is currently provided in
ABM development environments where the model is directly implemented by using "only"
libraries of a higher, general-purpose programming language, like in Java with Repast or
Maven. However, this is using the standard debugging provided with the programming lan-
guage and, therefore, the debugger is not restricted to the user-defined model code but goes
deeper to the linked libraries as well. For the averaged modeller with rather weak program-
ming background, this is not very comfortable. For NetLogo there is currently no debugging
mechanism available, although Railsback et al. [2006] already pointed to the importance
of such a functionality. At the moment, one can only use "print"-statements, execute code
blocks separately, or use agent monitors for debugging purposes.

For NetLogo a first concept was developed during preparation of this thesis. I called this
concept a "NetLogo Pseudo-Debugger". The idea is to separate the debugger from the Net-
Logo compiler and use the Controlling API of NetLogo to run the simulation stepwise. Thus,
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Figure VI.1.: Top: Original unformatted but valid NetLogo code. Bottom: The same piece
of code after running the NLFormatter. Every independent block of code is in
a separated line. Nesting hierarchies are identified by indentation levels. This
structure is the basis for line-by-line executions.

the debugger is placed into a separate application. The window has, like NetLogo itself,
several tabs; one with the NetLogo interface and another with the code.

The original idea was to write a domain-specific language (DSL) definition with Xtext for
Eclipse [Foundation, 2013] to make it possible to use Eclipse for writing, debugging, and
running NetLogo models. This requires a context-free grammar definition, for example in
Backus-Naur form. However, there is no such a grammar definition of the NetLogo language
available and difficult to create as the NetLogo language does not know line end specifiers,
function end tokens nor a fixed number of function arguments [Harvey, 2006].

Therefore, I changed the concept to a slightly easier solution without Eclipse and the def-
inition of a DSL. In this concept, the code written in the code tab is formatted specially;
every block of commands that can be separated reasonably is written in a separate line (Fig-
ure VI.1). Opening and closing brackets are also in separate lines if they do not belong to a
primitive or reporter. Nested blocks of commands, like in loops or if-clauses, are indented
hierarchically. This enables the modeller to set breakpoints to specific lines. The program-
ming work for this formatting task is already finished and called NLFormatter (available at
http://sourceforge.net/projects/nlformatter/).

In a second step, the different code lines in the code tab are mapped to an internally
"resolved" code. In this resolved code, calls of user-defined procedures are recognized and
linked. Furthermore, loops are resolved and restructured so that they can be processed
line-by-line for each iteration. For example, for an "ask turtles" call, first, an agentset of
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the turtles is created. Afterwards, for each turtle each line of the belonging code block is
processed separately, meaning the modeller can execute each iteration line-by-line.

Similar things are done for if-else-clauses. The code blocks are saved separately and, first,
only the reporter is executed. Depending on the result, the cursor of the debugger jumps to
the mapped code line for true or for false (else-block).

Using the Controlling API [Tisue, 2012] it is also possible to change variable values of
agent variables as well as global variables during the stepwise model execution. With Net-
Logo’s org.nlogo.lite.InterfaceComponent class [Tisue, 2012], the NetLogo interface tab can
be included into the Pseudo-Debugger application window. The code tab will be written
from scratch, because it needs the options of setting breakpoints, highlight the line that is
currently processing and so on. An additional component has to be written to check and
change values of agents and global variables equivalent to NetLogo’s Command Center.

With this concept the full range of debugging functionalities can be realized without
changing NetLogo itself. Of course, the code executing will become much slower in
the Pseudo-Debugger by resolving all process flows and executing everything line-by-line
through the Controlling API, however, executing speed does not matter during debugging.
After the modeller finished the debugging and is happy with the model code she/he will
switch back to the original NetLogo program.

The development of this concept started when the NetLogo code was not released under
an open source license and was not available. In the recent time a growing number of addi-
tional tools and documentations is available. Therefore, it is maybe possible to reuse several
things from the NetLogo developers, like the JFlex definition of the tokenizer and parser
[Tisue, 2014b], the syntax highlighting [Tisue, 2014c] or the language testing functional-
ities [Tisue, 2014a], to simplify the implementation of the Pseudo-Debugger and, maybe,
come back to the idea to implement it with Eclipse.

VI.3.3. ODD-Generator

Often, model code and ODD model description are written independently. The model code
is written within the modelling environment and the description is written in a text editor.
NetLogo comes with an info tab for model description, however, it does not follow the ODD
protocol and it is still separated from the model code. However, it is desirable to integrate
the model description into the model code to see any discrepancy very fast. Furthermore,
some parts of the ODD documentation could be directly derived from the model code, like
the dimension of the world, the simulation step size, the entities, the state variables and so
on. To keep it comfortable, a functionality to see model and code side by side as well as
hide one part should exist.

Ideally, one would write the model description and then insert, or where possible auto-
matically generate, the corresponding model code. Similar mechanisms are already known
from software development with documentation generators, like Javadoc [Oracle, 2014],
Doxygen [van Heesch, 2014] or Sphinx [Brandl, 2014], and code generators in the con-
text of model-driven software engineering, like the Eclipse Modeling Framework. Visual
programming is already possible with Repast [Road, 2010], and the use of Unified Mod-
elling Language (UML) for ABM model descriptions has been described by Bersini [2012].
Also the application of a documentation generator to produce an ODD description has been
done by [Topping et al., 2010] by using Doxygen for a model written in C++. However, a
community-accepted general strategy and a toolset for NetLogo or all frequently used ABM
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toolkits is missing, currently. I am sceptical that UML can become a standard in ABM since
the hurdles for non-programmers, which most of agent-based modellers from outside infor-
matics are, are too high. However, the approach of Topping et al. [2010] should be pursued
further. For NetLogo, adapting this approach is not easy since Doxygen does not support this
language. I suggest to first define an implementation-independent definition of code mark-
ers for ODD protocol generation, meaning that there are annotations defined indicating the
different parts of the ODD protocol. Afterwards, we need platform specific implementations
of the ODD markers. Once this is done, one can write annotated comments into the code.
The code editors should have buttons to switch off code or ODD parts, functions to export
the ODD to various formats and insert details generated from code. In a further step, mech-
anisms adapted from tools like JDiff [Doar, 2007] should be implemented, which allow the
modeller to generate reports of what has changed between two versions of the model/model
description.

VI.3.4. Community-Based Submodel Collection

Currently, I have the impression that many ABMs are built from scratch. Former devel-
opments are maybe discussed in the introduction of an article, however, processes are of-
ten re-invented, although sometimes there are similarities in several submodels with other
models. My idea is to establish a toolbox of commonly used submodels implemented in all
commonly used languages. An institution, like the openABM Consortium, defines submodels
with pen and paper, and a well-tested reference implementation in one language is provided
alongside the submodel description. Later, users of other ABM toolkits can provide their im-
plementations of the same submodels. The consortium will put them in incubation phase
and after acceptance they get marked. This could reduce the often seen re-invention process
and could lead to further rigour in ABM. Model description could contain only reference to
the labels of the submodels and everybody in the community knows which submodel is ref-
erenced to, or can check the definition on the submodel documentation collection of the
consortium. Furthermore, when somebody modifies an accepted submodel, the modeller
can only document what was changed and, thus, give a clear description what was intended
when using a different submodel. We already find first attempts to something similar with
the model archive of the openABM Consortium [Janssen et al., 2008], but this is currently
for whole models, not for model parts, and it is not put into a larger strategy of rigorous
submodel collection with definitions and reference implementations. Also, some similari-
ties can be found in the Modelling4All project [Kahn, 2014], where users can construct a
NetLogo model by choosing from different submodels. However, such a project should be
built on the shoulders of a consortium. This idea is inspired by the situation in the geospa-
tial sector: The Open Geospatial Consortium (OGC) releasing implementation-independent
technical definitions in the context of geographic information systems [OGC, 2014] and the
Open Source Geospatial Foundation (OSGeo) supporting and promoting the collaborative
development of such software [OSGeo, 2014]. When a software implements the technical
definitions it is labelled as OGC-compliant and when it passes the incubation it is labelled
as a OSGeo-project.

My dream is that a whole framework for rigorous agent-based modelling exists with con-
ceptional and technical definitions, specification of interfaces, and corresponding techni-
cal implementations. Later on, also models could be labelled as, for example, openABM-
compliant.
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VI.3.5. Open Source Licensing Model for ABMs

As already discussed in Chapter V about replication of agent-based models, one piece of
puzzle to make ABMs more reliable and increase their acceptance is to make their source
code public, i.e., to assign an open-source license. Although there are many different open
source licenses already available [see, e.g., Wikipedia, 2014, for a comparison] they all miss
one point: When a modified version of the model is published there is no guarantee for
being cited. Only the copyright notice in the source file must be given. Furthermore, as
we look into the future and assume that models are commonly described with the ODD
protocol [Grimm et al., 2010], it should be obligated to publish the modified model also by
adapting the ODD protocol and make it public available. Therefore, it is desirable to create
an open source licensing model based on one of the commonly used open source licenses
already available and adapt it to the specific purposes of ABMs. Here, a cooperation with
legal experts should be established.

VI.3.6. Outlook

So far, a step towards rigorous agent-based modelling was done with this thesis. A lot of
users already use the presented tools. However, as partly shown a lot of steps are still
missing. I hope that especially the aforementioned ideas will find other enthusiasts who are
willing to help taking ABM to the next level of scientific acceptance.
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APPENDIX A

Documentation of MultiView-Extension

A.1. Introduction

The MultiView-Extension gives you the opportunity to visualize more than one patch vari-
able at a time within different views. A second usage scenario is that you preserve the state
of former simulation steps in different windows, to see the spatial and temporal (patch)
pattern during the simulation.

It creates new windows, in which you see the NetLogo World/View (only the patches,
without turtles). For each window you can define a patch variable which should be used for
the colourization of the patches as it is done for the normal view with the pcolor variable.
The new window(s) has/have a context menu which gives you the opportunity to inspect
the patches and to export the view into a png image file.

A.2. Author and Copyright

Jan C. Thiele, 2010
University of Goettingen, Germany
Department of Ecoinformatics, Biometrics and Forest Growth
This software is published under the terms of the GNU GPL (General Public License) v2.

A.3. Caution

The MultiView-Extension is new and experimental. It is not yet tested extensively. Nonethe-
less, I hope it will find some users. Please let me know about your experiences (jthiele at
gwdg dot de, http://www.uni-goettingen.de/en/72779.html).

A.4. Usage

Unzip the package directly (without creating a new folder) into the extensions folder of
your NetLogo installation. You should find a folder multiview now and within this folder a
file multiview.jar as well as some other folders. See folder example for a short and simple
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demonstration of the functionality of the extension. To use the extension in your model, add
a line to the top of your Procedures Tab:

extensions [multiview]

If your model already uses other extensions, then it already has an extensions line in
it, so just add multiview to the list.

For more information on using NetLogo extensions, see the Extensions Guide.

A.4.1. Some Remarks

To use a new View Window you should declare a new global variable, for example like this:

globals[
view1

]

You will need such a global variable for every View Window you want to use. Then define
your patch variables, for example:

patches-own[
pcolor2

]

In your setup procedure you will create the new window and save the (object) reference
into the global variable. This could look like this:

to setup[
; create a new window with the title "visualization for

pcolor2" which will use the patch variable "pcolor2" for
visualization

set view1 multiview:newView "visualization for pcolor2"
"pcolor2"

]

Every time you want an update of the colourization of the patches of your new View
Window you have to call the repaint primitive for every View Window. In most cases you
will do this in the go procedure like this:

to go[
... ; do something
multiview:repaint view1

]

Please note that you cannot call the multiview:repaint primitive for a window which
you have already closed via a mouse click, because the reference saved in the global variable
will not be found and the call of multiview:repaint will fail. If you close NetLogo, load
a new model or call the clear-all primitive, all currently open View Windows will be
closed.

A.5. Primitives

A.5.1. multiview:close
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multiview:close variable

Will close (and destroy) the View Window (if open) specified in the variable argument.
Please remember that it is not possible to call the repaint primitive for the variable again
after execution finished. But you can create a new window, stored in the variable, again.
A.5.2. multiview:newView

multiview:newView title patch-variable

A reporter to create a new View Window. The window uses the settings defined for the
NetLogo World/View (i.e., max-pxcor, min-pxcor, patch-size etc.) at the time of the
call of the primitive. You cannot change these settings after creation of the View Window.
To close the current window and create a new one will help. The first argument, title,
is any string (surrounded by quotation marks) and will be used as title of the new window.
The second argument, patch-variable, is the patch-variable which will be used for the
colourization of the patches in the new View Window. This argument should be given as a
string (surrounded by quotation marks). You should save the return value of this reporter
into a global variable.
A.5.3. multiview:rename

multiview:rename variable title

Primitive to change the title of a View Window. The first argument is the variable which
holds the reference to the window and the second argument is a string (surrounded by
quotation marks) with the new window title.
A.5.4. multiview:repaint

multiview:repaint variable

Primitive to repaint/update a View Window saved in variable. This should be called in
every simulation step, when the NetLogo World is updated/repainted. But it is also possible
to save the state of a former simulation step in such a window. In this case, you should not
call the repaint primitive in a go procedure.
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APPENDIX B

Documentation of Pygments-Plug-In

This is a Pygments-Plug-In to support NetLogo syntax. It enables you to create syntax high-
lighting and formatting from NetLogo model files into different output formats, for example
HTML, RTF or LaTeX.

B.1. Installation

• Install Python (http://www.python.org/download/)

• Install easy_install (http://pypi.python.org/pypi/setuptools)

• open Shell/MS DOS prompt and type (as administrator): easy_install Pygments

• Voila! If this runs without error, Pygments is successfully installed!

• Next step: Install the NetLogo-Plug-In.

• Unzip the NetLogo-Plug-In.zip file

• Open Shell/MS DOS prompt, navigate to the extracted Plug-In folder, where the
setup.py file is located and type: python setup.py install

• If this runs without errors: Congratulations! The NetLogo Plug-In is installed and
ready to use!

B.2. Usage

See Pygments Documentation (http://pygments.org/docs/) for details. The following ex-
amples are all command line examples.

1. Create an image file of the NetLogo code test1.nlogo:

(Python Image Library (PIL) has to be installed! (http://www.pythonware.com/
products/pil/))

a) for bitmap:

235

http://www.python.org/download/
http://pypi.python.org/pypi/setuptools
http://pygments.org/docs/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/


Appendix B. Documentation of Pygments-Plug-In

pygmentize -l NetLogo -O full,style=NetLogo -f bmp -o
test1.bmp test1.nlogo

b) for gif:

pygmentize -l NetLogo -O full,style=NetLogo -f gif -o
test1.gif test1.nlogo

c) for png:

pygmentize -l NetLogo -O full,style=NetLogo -f png -o
test1.png test1.nlogo

d) for jpeg:

pygmentize -l NetLogo -O full,style=NetLogo -f jpeg -o
test1.jpeg test1.nlogo

2. Create an rtf file for NetLogo model test1.nlogo:

pygmentize -l NetLogo -O full,style=NetLogo -f rtf -o
test1.rtf test1.nlogo

3. Create an html output for NetLogo model test1.nlogo:

a) with embedded css-style:

pygmentize -l NetLogo -O full,style=NetLogo -f html -o
test1.html test1.nlogo

b) with extra css-file:

Create the html file:

pygmentize -l NetLogo -f html -o test1.html test1.nlogo

Export the style to css file:

pygmentize -f html -S NetLogo -a .syntax >
netlogosyle.css

Finally paste header and footer around your html-code (test1.html):

header:

<html>
<head>
<title>NetLogo Code highlighted with NetLogo-Plugin

for Pygments</title>
<link rel="stylesheet" href="netlogostyle.css">
<meta http-equiv="content-type" content="text/html;

charset=utf-8">
</head>
<body>
<div class="syntax"><pre>
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footer:

</pre></div>
</body>
</html>

4. Create a latex file for NetLogo model test1.nlogo:

pygmentize -l NetLogo -O full,style=NetLogo -f latex -o
test1.latex test1.nlogo

5. Create an svg file for NetLogo model test1.nlogo:

pygmentize -l NetLogo -O full,style=NetLogo -f svg -o
test1.svg test1.nlogo
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Documentation of R-Extension

Version: 1.3 (August 2013)
The R-Extension of NetLogo provides primitives to use the statistical software R (Gnu S)
(see http://www.r-project.org/) within a NetLogo model. There are primitives to create R
variables with values from NetLogo variables or agents and others to evaluate commands in
R with and without return values.

There are two other projects related to this one:

• The Rserve-Extension: similar to this R-Extension but uses no direct connection to R.
It communicates via an Rserve server. This has some advantages (e.g., easier installa-
tion -> no environment variables; independent R process -> own process that can be
configured independently from NetLogo and can also run on a different computer) as
well as disadvantages (e.g., no interactiveShell).

• The RNetLogo package for R: this is the other way around. R is the basis and NetLogo
is started and controlled from R.

C.1. Installation/Configuration

Please follow the instructions here. If you have problems please see "Troubleshooting" and
also the FAQ web page. To use this extension you will need this extension, NetLogo 5.x, R
(>=3.0), Java (>=1.5), rJava package (>=0.9.4) and, if you want to use the plot device,
JavaGD package.

Note that the rJava package can be installed for 32- or 64-bit architectures. You have
to decide if you want to run ALL required software (NetLogo, R, rJava) with 32- or 64-bit
architecture.

Attention: The environment variable names (R_HOME, JRI_HOME) are case-sensitive!
First, system-independent step: Copy the folder of the R-Extension (name is r) into the

extensions folder of your NetLogo installation.

239



Appendix C. Documentation of R-Extension

C.1.1. Windows

This manual assumes you have Windows Vista, 7, or 8. Note: There are two additional pdf
files with detailed step-by-step guides for Vista/Win7/Win8 64-bit users. One, explaining
how to setup NetLogo and the R-Extension running with 32-bit (the easy way) and another
one showing how to run both in 64-bit mode (the slightly more tricky way, because you have
to make sure that NetLogo runs with a 64-bit Java).

1. Download and install R (see http://www.r-project.org/).

2. Install the rJava package (and the JavaGD package if you want to use the included
plot device, see also notes to Plotting) in R. There are two different ways to do this:

a) Start the RGui from your program list, click on the item Packages in the menu bar
and then on Install Package(s). Select your favourite server and find rJava in the
list of packages.

b) Open a console, type R (Environment variable PATH has to contain R for this,
see 3.). Then type install.packages("rJava") and follow the instructions
(for further information see http://www.rforge.net/rJava/index.html).

3. Set Environment Variables of the operation system: Control Panel -> System -> Ad-
vanced Environment Variables -> System Variables:

a) Create a new entry:
Variable Name: R_HOME
Variable Value: <Path to folder of your R-Installation, e.g., C:\Program Files\R\R-
3.0.1\>

b) Add a value to variable PATH:
Variable Name: PATH

i. for 32-bit: Variable Value: ...;%R_HOME%\bin\i386

ii. for 64-bit: Variable Value: ...;%R_HOME%\bin\x64
Go to the path and look if there is an R.dll file!

c) Create a new entry:
Variable Name: JRI_HOME
Variable Value: <Path to folder of jri in rJava in your R-library-Path, e.g.,
C:\Users\<username>\Documents\R\win-library\3.0\rJava\jri
Hint: If you do not know where the rJava package is installed, you
can start R and type library(rJava) to load rJava and then type
path.package("rJava") to get installation path. Now append /jri and
use this path for setting the JRI_HOME environment variable.

C.1.2. Linux

Java (JRE or JDK) and R must be installed. If you have installed it via a package manager, it
should be callable after installation in the console when typing R. Make sure that Java and
R are running in the same architecture: 32- or 64-bit.
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If R is running, install the R-package rJava (and JavaGD if you want to use the included
plot device), type install.packages("rJava") and follow the instructions (for further
information see http://www.rforge.net/rJava/index.html). Then you have to set two global
environment variables by typing:

1. export R_HOME= <path to your R installation, e.g., /usr/lib/R>

2. export JRI_HOME= <path to the jri-folder of the rJava library,
e.g., /usr/lib/R/library/rJava/jri or /usr/local/lib/R/site-
packages/jri>
Hint: If you do not know where the rJava package is installed, you can start R and
type library(rJava) to load rJava and then type path.package("rJava") to
get installation path. Now append /jri and use this path for setting the JRI_HOME
environment variable.

Then start NetLogo from this shell. If you do not want to set the variables after a restart
again, you can save the commands in your .profile file. If you have problems in get it
running, see Troubleshooting and have a look into the two additional pdf file for Windows
(32-bit, 64-bit). Especially section 9. can also be applied here to check, if rJava works.

C.1.3. Macintosh

Many thanks to Enrico R. Crema, Erich Neuwirth and Simone Gabbriellini for providing
their solutions.

For Mac OS until Mountain Lion (submitted by Enrico R. Crema) First install R and the
rJava package (and JavaGD package, if you want to use the included plot device) in R.
Next, set the environment variables R_HOME and JRI_HOME. You need to edit the file envi-
ronment.plist inside ~/.MacOSX as follows:

<?xml ve r s ion ="1.0" encoding="UTF−8"?>
<!DOCTYPE p l i s t PUBLIC "−//Apple //DTD PLIST 1.0//EN" " h t tp ://www.

apple . com/DTDs/ P rope r t yL i s t −1.0. dtd">
<p l i s t ve r s ion ="1.0">
<dic t >
<key>JRI_HOME</key>
<s t r i ng >/L ib ra ry /Frameworks/R . framework/ Resources / l i b r a r y / rJava /

j r i </s t r i ng >
<key>R_HOME</key>
<s t r i ng >/L ib ra ry /Frameworks/R . framework/ Resources </s t r i ng >
</dic t >
</p l i s t >

If you do not want to use the terminal for editing (and actually creating the en-
vironment.plist file) you can use this package: http://www.rubicode.com/Software/
RCEnvironment/ which allows the creation and the management of the environment.plist
file. See Figure C.1 for an example of the file with the settings for the R-Extension. The
path to R_HOME and JRI_HOME should be the same for any user and if this works editing
manually the environment.plist file should perfectly work. Hint: If you do not know where
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Figure C.1.

the rJava package is installed, you can start R and type library(rJava) to load rJava
and then type .path.package("rJava") to get installation path. Now append /jri and
use this path for setting the JRI_HOME environment variable.

Since Mountain Lion (reported by Simone Gabbriellini) Open a Terminal Window.
Use the command sudo nano /etc/launchd.conf.
Enter your password.
Add the environment variables (R_HOME and JRI_HOME, see above) using the following
syntax:

setenv NAME_OF_VARIABLE valueOfTheVariable

Press Ctrl + o to save the file.
Press enter to accept the name of the file.
Press Ctrl + x to exit the editor.

Other Solution (by Erich Neuwirth) Ctrl-Click on the NetLogo Application and select Show
Package Contents. In the directory Contents you will find a file info.plist with the following
last few lines:

<key>NSJavaRoot</key>
<s t r i n g>. .</ s t r i n g>
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</ d i c t>
</ p l i s t>

Add a few lines so that the last lines now are:

<key>NSJavaRoot</key>
<s t r i n g>. .</ s t r i n g>
<key>LSEnvironment</key>
<d i c t>
<key>JRI_HOME</key>
<s t r i n g>/ L ib ra ry /Frameworks/R . framework/ Resources / l i b r a r y / rJava /

j r i</ s t r i n g>
<key>R_HOME</key>
<s t r i n g>/ L ib ra ry /Frameworks/R . framework/ Resources</ s t r i n g>
</ d i c t>
</ d i c t>
</ p l i s t>

If XCode is installed on your machine, there is another way of adding the environment
variables:

Ctrl-Click on the NetLogo Application and select Show Package Contents. In the directory
Contents you will find a file info.plist. Double-click it, it will open with the PList editor of
Xcode. On the Editor drop down menu, check the Show Raw Keys & Values item.

Select the list line in the editor window and select Add Item on the Editor drop down
menu. A new line will appear; on the drop down of this line, select LSEnvironment. The
editor then will set the type to dictionary. When the line is selected, you will see a + sign.
Pressing it will allow you to define the two environment variables you need (R_HOME and
JRI_HOME, see above).

Based on: http://groups.yahoo.com/group/netlogo-users/message/15188.

C.2. Troubleshooting

In the R-Extension folder you can find a folder rsystemcheck. Just copy this folder to your
NetLogo extensions directory. Then, you can open the NetLogo model Systemcheck.nlogo,
which is inside the rsystemcheck folder.

This model enables you to check the requirements of the R-Extension. Things to check are
the Java version (used for NetLogo and R: yes, they can differ, since NetLogo comes with its
own Java, e.g., on Windows), the availability of R from a terminal/shell, the availability of
the rJava/JRI package and the availability of the JavaGD package (just in case you want to
use the included plotting device).

Some notes on common errors:

1. NetLogo closes immediately after leaving the Code Tab or pressing the check button:
This indicates that the extension was not able to start R. Please check, if you can start
R from a terminal/shell. Please use the RSystemCheck-Extension!

2. You get a java.lang.NoClassDefFoundError: org/rosuda/REngine/
REngine at org.nlogo.extension.r.Entry.runOnce error: The extension
was not able to connect to the JRI-library. Please check, if you are able to load the rJava
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package within an R shell (library(rJava)) and have a look at your JRI_HOME
environment variable. Please use the RSystemCheck-Extension!

3. You are a Windows 64-bit user: Please note that R (since version 2.12) will be in-
stalled as dual 32-/64-bit version, while NetLogo comes with it is own Java (JRE, Java
Runtime Environment) with 32-bit. You have to harmonize your NetLogo, Java in ter-
minal/shell and R in terminal/shell and your R packages (rJava, JavaGD) to 32- or to
64-bit. Please use the RSystemCheck-Extension to get information about and test your
configuration. You can configure your R to a 32-bit version (since R version 2.12)
by changing the entry in your PATH environment variable from %R_HOME%/bin to
%R_HOME%/bin/i386. To start NetLogo directly from a terminal/shell could enable
you to run NetLogo with the same Java version as R does (and enables you to use
64-bit Java). Just open a terminal/shell/ms-dos prompt, navigate to your NetLogo
installation folder and type java -jar NetLogo.jar.

Have a look into the two additional pdf files for Windows in the doc folder of the extension
(also interesting for other OS). Especially section 9. can also be applied to check, if rJava
works.

C.3. How to Use

To use the extension in your model, add a line to the top of your Procedures Tab:

extensions [r]

If your model already uses other extensions, then it already has an extensions line in
it, so just add r to the list.

For more information on using NetLogo extensions, see the Extensions Guide.
For examples of the usage of the R-Extension, see the folder examples in the folder of this

extension.
For a first description on how to use the extension in applets, see r-extension-in-

applets.html in folder doc of the extension.

C.3.1. Some Tips

Plotting If you want to use the plot function of R, you can activate the JavaGD plot
device via r:setPlotDevice, see plot-example1.nlogo. This is the preferred method!
For this, the JavaGD package has to be available for the R-Extension. By default,
only the global system-wide library path is available. Therefore, the JavaGD pack-
age has to be installed there (as Administrator/superuser) or you have to append
the library path before activating the JavaGD device. This can be done for exam-
ple by using the .libPaths() function (e.g., on Windows something like: r:eval
".libPaths(c(\"C:/Users/username/Documents/R/win-library/3.0\",
.libPaths()))"). A third (permanent) option is to set the R_LIBS environment variable.

But you can also use the standard R device, but then, you have to give R some cpu time,
e.g., by running an evaluation of sys.sleep(0.01) with a forever button. See the plot-
example2.nlogo. (Many thanks to Thomas Petzold.). The creation of plots into files is also
possible. See the plot-into-file-example.nlogo in the examples folder.
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Load and Save data from/into file It is possible to load and save data from file directly
in R via r:eval "dataname <- read.table(’<path to file>’)" and r:eval
"write.table(dataname, file=’<filename>’)", respectively.

Data.frame with vector in cells Normally, a data.frame cell contains only a single value.
Each column is represented as a vector and if you will put a vector of vectors to a data.frame,
it will be split into several columns. With the R-Extension it is possible to put a vector into a
data.frame cell, when you assign a NetLogo list to a column which contains nested NetLogo
lists for each row. If you want, for example, to use write.table on this data.frame, you
have to mark this column as class="AsIs". You can do this by using the I(x)-function.
Example: If the column of interest has the name col1 of the data.frame df1 you can exe-
cute r:eval "df1$col1 <- I(df1$col1)". Call help(I) from within an R terminal
for further details.

Load an R-Script Furthermore, you can define functions in an R-Script, load it, and use
the functions. Load R-files via r:eval "source(’<path to r-file>’)".

Load a Package It is also possible to load R packages via r:eval "library(<name of
package>)".

Note that the underlying R session does not know user-specific library paths. If the
package you want to load is installed in such a user-specific library path you have to
add it. You can check the current library path with the R function .libPaths().
Just add your user-specific library path, for example under Windows, like this: r:eval
".libPaths(c("C:/Users/<username>/Documents/R/win-library/3.0",
.libPaths()))".

When you compile your code containing extensions [r] you will create a new R
workspace. Until you reload the extension, open a new model or submit the primitive
r:clear, all R variables assigned in this session will be available like you would use R
from the command line or in the R Console.

interactiveShell You can open an Interactive R Shell via r:interactiveShell. This
shell is a port to the underlying R instance. This shell works on the global environment (see
R environments) while the extension itself works on a custom local environment. But there
is one automatic variable nl.env in the global environment, which is a reference to the
local environment of the extension. Do not delete this variable! You can access a variable
created by the extension via get("<variable name>",nl.env), for example myvar
<- get("myvar",nl.env). If you want to plot from the interactiveShell you should
use the included JavaGD plot device (see r:setPlotDevice). You can save and load the
history of entered R commands via a right mouse button context menu. Please read the
notes at the top of the output text area after opening the shell! On Linux OS it can happen
that you see an error message from X11. Please check, if everything worked correctly. If so,
you can ignore these messages. If not, please write a report to jthiele @ gwdg.de.

R Environments When you load a model the R-Extension creates a new R environment.
When you create an R variable using the R-Extension, this variable is created in the local
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R environment. Furthermore, all calls from the R-Extension work on this local environ-
ment. This new environment concept enables you to use the extension in BehaviorSpace
experiments. Therefore, you do not have to care about the environment while you are
not using the interactiveShell or other tools, which work on the global environment. You
can explicitly assign a variable to the global environment by using the «- operator or by
executing assign(<name>,<value>,envir=.GlobalEnv). If you work with the in-
teractiveShell, see the notes at the top of the output text area after opening the shell. Type
help(environment) in an R shell to learn more about environments.
You can/should clear (i.e., remove all variable and free memory) the local environment via
r:clearLocal. If you want to clear also the global environment (the whole workspace),
call r:clear.

Memory With the R-Extension you can load R into the process of NetLogo. Because of the
architecture of R, both softwares share one system process and therefore the memory given
to NetLogo.

In some circumstances it can happen that you receive an out of memory error due to
Java’s heap space. You can increase the heap space before starting NetLogo by adapting
the -Xmx JVM-parameter (see also http://ccl.northwestern.edu/netlogo/docs/faq.html#
windowsmemory). But on 32-bit systems, this is very limited. Therefore, it is a good idea
to use a 64-bit system if you want/need to use high amount of RAM. You can see the
memory usage of R by starting the interactiveShell (r:interactiveShell) and type
there: memory.size(max=F) and memory.size(max=T). Furthermore, you can check
the memory limit by typing: memory.limit().
See also:

• http://stat.ethz.ch/R-manual/R-patched/library/base/html/memory.profile.html

• http://stat.ethz.ch/R-manual/R-patched/library/utils/html/object.size.html

• http://stat.ethz.ch/R-manual/R-devel/library/utils/html/memory.size.html

If you call the garbage collector in the interactiveShell by typing gc(), you will get some
information about the current memory usage (see also http://stat.ethz.ch/R-manual/R-
patched/library/base/html/gc.html). If you type gc(nl.env) you will see the percentage
of memory used for cons cells and vectors. Do not forget to call the r:gc primitive after
removing an R variables and do not forget to remove R variable you do not need anymore!
See how the memory usage changes after removing variables and calling r:gc.

If you use too much memory, it can happen that NetLogo will close abruptly. In such a
case, check if there is a way to reduce the memory used. If not, try to switch over to the
Rserve-Extension. With the Rserve-Extension both softwares, NetLogo and R, run indepen-
dently. There is, of cause, also a limit of transferable data amount with one request, but it is
less restrictive.

One last note on this topic: Keep in mind that R is a vector-oriented language. Prevent
mass calls with single values whenever possible and replace them by vector operations. This
is much faster and more stable.
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C.4. Primitives

Figure C.2.

Headless Since R-Extension version 1.1 it is possible to use the extension when Net-
Logo is running in headless mode. This is for example the case, when you run Behav-
iorSpace experiments from the command line (see http://ccl.northwestern.edu/netlogo/
docs/behaviorspace.html#advanced). The difference is that the interactiveShell is not ini-
tialized/instantiated. You can use the extension as you know it from GUI mode, but it is not
possible to open the interactiveShell (r:interactiveShell) and to set the plot device
(r:setPlotDevice). But one additional thing has to be done: You have to call r:stop
finally when running NetLogo headless to stop the R engine. Otherwise NetLogo will not
be closed and you will not get back your command line prompt. When setting up a Behav-
iorSpace experiment, there is the option to set final commands. This is a good place to add
the r:stop command (see Figure C.2).

C.4. Primitives

C.4.1. r:clear

r:clear

It clears the R-Workspace. All variables in R will be deleted. It evaluates the R com-
mand rm(list=ls()) and rm(list=ls(nl.env)). Therefore, it deletes variables cre-
ated in global as well as local environment (see R Environments for details about environ-
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ments). It is always a good idea to add this command to your setup procedure under your
clear-all call.

;; clear the R workspace
r:clear

C.4.2. r:clearLocal

r:clearLocal

It clears the local R environment, which is used by the extension. All variables which
have been created in the local environment will be deleted. It evaluates the R com-
mand rm(list=ls(nl.env)). See R Environments for details about environments. See
r:clear for deleting all variables, i.e., the globals as well.

;; delete the local variables
r:clearLocal

C.4.3. r:eval

r:eval R-command

It evaluates the submitted R command. The R command should not return a value.

;; creates a new vector in R with a sequence from 1 to 10
r:eval "x <- seq(1,10)"
show r:get "x"

C.4.4. r:__evaldirect

r:__evaldirect R-command

It evaluates the submitted R command in the global environment (not in the local envi-
ronment like r:eval does) and without a check (not using try-function internally). This
can be necessary for some R packages, like gglopt2. Please note that you can produce name
clashes when creating new variables using this primitive. The variable will be created into
the global environment and will not overwrite variables with the same name that have been
created into the local environment. If you request a variable with r:get it will search in
the local environment first. Therefore, if there are variables with the same name in the local
and the global environment, it will report the variable from the local environment and not
the variable created via r:__evaldirect. If there is only one variable with the requested
name in the global environment, everything will be fine - r:get will report the value of
this variable. If you want to remove a variable created via r:__evaldirect, i.e., in the
global environment, call r:eval "rm(myvar, envir=.GlobalEnv)", replace myvar
by the name of your variable. The R command should not return a value. This primitive is
experimental.

;; creates a new vector in R with a sequence from 1 to 10
r:__evaldirect "x <- seq(1,10)"
show r:get "x"

C.4.5. r:gc

r:gc
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Calls the garbage collector of Java (i.e., the R-Extension) and R. Call this primitive after
removing an R variable to free the memory.

;; create a variable
r:eval "x <- 1:10"
;; remove the variable
r:eval "rm(x)"
;; call the garbage collector
r:gc

C.4.6. r:get

r:get R-command

Reports the return value of the submitted R command. Return type could be a string,
number, boolean, NetLogo list or a NetLogo list of lists. R lists will be converted into a
NetLogo list. If the R list itself contains further lists, it will be converted into a NetLogo list
with nested NetLogo lists. Lists containing values of different data types are also supported
(e.g., mixed strings, numbers and booleans/logicals). Data.frames will be converted into a
NetLogo list with nested list for each column, but the column names will be lost (same for
named R lists). R matrices can be received, but they are converted into one NetLogo list.
NULL and NA values are not converted and will throw an error, because NetLogo has no
corresponding value.

;; returns a list with 10 variables show
r:get "rnorm(10)"

C.4.7. r:interactiveShell

r:interactiveShell

Opens a window with two text areas. The upper one is the R output stream and in the
lower one you can type R commands. This is the access to the underlying R session. You
can type multi-line commands. To submit commands press Ctrl+Enter. With "PageUp" and
"PageDown" in the input area you can browse through the history of submitted commands.
With right mouse click context menu, you can save and load an RHistory (interchangeable
with R terminal and other R GUIs).

Please note that the interactiveShell works on the global environment, while commands
submitted from NetLogo live in a local environment. A reference to this local environ-
ment is automatically added to the global environment (named nl.env, please do not
delete this variable. With a call of r:clear you can restore it but this will empty your
workspace). You can use this to have access to variables which you have created from
NetLogo by get("<variable name>",nl.env). To copy for example a variable with
the name var1 from the local environment to the global environment, type var <-
get("var",nl.env). See section R Environments for details. If you just want to see
the contents of a variable which lives in the local environment, you can submit your com-
mand, for example in the NetLogo Command Center, and the result will be shown in the
output area of the interactiveShell. For example:

r:put "test" (list world-width world-height)
r:interactiveShell
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r:eval "print(test)"
r:eval "str(test)"

Variables which have been created in the interactiveShell are available from NetLogo,
even if they are created in the global environment. But if there is a variable with the same
name in the local environment, you will get this variable in NetLogo instead the one from
the global environment.

If you want to execute plot commands from the interactiveShell you should activate the
integrated JavaGD plot device via r:setPlotDevice first.

;; opens interactiveShell
r:interactiveShell

C.4.8. r:put

r:put name value

Creates a new variable in R with the name name. The value can be a string, number,
boolean or list. NetLogo lists are converted to R vectors, if all entries are of the same data
type. If a NetLogo list contains different data types (mixed strings, numbers or booleans), it
will be converted into an R list. If a NetLogo list contains other/nested NetLogo lists it will
be converted into an R list and the nested lists are handled by the same rule (vectors if all
items are of the same data type, ...).

;; creates an R variable "testvar" with the size of turtle 0
r:put "testvar" [size] of turtle 0
show r:get "testvar"

C.4.9. r:putagent

r:putagent name agent|agentset variable
(r:putagent name agent|agentset variable1 variabl2 ...)

Creates a new named list in R with the name name. Variable is repeatable and can
be every variable of the agent or agentset. Names of the elements of the R list will be the
same as the names of the agent variables. Turtles will be assigned in ascending order of
their who variable. Patches will be assigned in lines from upper left to lower right. Since
the arguments of this primitive are repeatable, do not forget the parentheses around the
statement.

;; creates an R-list "agentlist1" with the size and the id of
turtles, do not forget the parentheses

(r:putagent "agentlist1" turtles "size" "who")
show r:get "agentlist1$who"
;; creates an R-list "agentlist2" with the pcolor, pxcor and

pycor of patches
(r:putagent "agentlist2" patches "pcolor" "pxcor" "pycor")
show r:get "agentlist2$pcolor"

C.4.10. r:putagentdf

r:putagentdf name agent|agentset variable
(r:putagentdf name agent|agentset variable1 variable2 ...)
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Same as r:putagent but creates an R data.frame instead of a list. Please read the notes
about data.frames, if one of your agent variables contains NetLogo lists.

;; creates an R-list "agentlist2" with the pcolor, pxcor and
pycor of patches, do not forget the parentheses

(r:putagentdf "df1" patches "pcolor" "pxcor" "pycor")
show r:get "class(df1)"

C.4.11. r:putdataframe

r:putdataframe name varname value
(r:putdataframe name varname1 value1 varname2 value2 ... )

Same as r:putnamedlist but creates an R data.frame instead of a list. If you send
more than one list to NetLogo and the lists are of different length, the smaller ones will be
filled with NA values. If you send nested NetLogo lists (e.g., of type: [ [ ] [ ] ... ])
to one column please read the notes about data.frames with vectors in cells.

;; creates an R-list "agentlist2" with the pcolor, pxcor and
pycor of patches, do not forget the parentheses

(r:putdataframe "df1" "v1" [12 13 14 15 16] "v2" ["foo1"
"foo2" "foo3" "foo4" "foo5"] "v3" [1.1 2.2 3.3 4.4 5.5])

show r:get "df1$v3"

C.4.12. r:putlist

r:putlist name value
(r:putlist name value1 value2 ... )

Creates a new list in R with the name name. Value is repeatable and can be a number,
boolean or list. Each valuewill get the name of its position (1, 2, 3,...). Since the arguments
of this primitive are repeatable, do not forget the parentheses around the statement.

;; creates an R-list "list1", do not forget the parentheses
(r:putlist "list1" 25.5 [25 43 32 53] "testvalue" [44.3 32.32

321.2 4.2])
show r:get "class(list1)"
show r:get "list1[[1]]"
show r:get "list1$'0'"
show r:get "list1[[2]]"

C.4.13. r:putnamedlist

r:putnamedlist name varname value
(r:putnamedlist name varname1 value1 varname2 value2 ... )

Creates a new named list in R with the name name. Value is repeatable and can be a
number, boolean or list. Each variable will get the name varname. Since the arguments of
this primitive are repeatable, do not forget to put the statement into parentheses.

;; creates an R-list "list1" , do not forget the parentheses
(r:putnamedlist "list1" "v1" 25.5 "v2" [25 43 32 53] "v3"

"testvalue" "v4" [44.3 32.32 321.2 4.2])
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show r:get "class(list1)"
show r:get "list1[[1]]"
show r:get "list1$v1"

C.4.14. r:setPlotDevice

r:setPlotDevice

To open an R plot in a window you can use the JavaGD plot device. With this primitive
you can activate this device and all following calls of R plots will be printed with this device.

To use this device, you have to install the JavaGD package in R. Open
an R terminal or the interactiveShell (see r:interactiveShell) and type
install.packages("JavaGD").

With this plot window you can save the plot to a file of various graphics formats and you
can copy the plot to the clipboard. Please note that on Linux OS it can be necessary to
allow to add images to the clipboard (e.g., in KDE you have to configure KLIPPER to allow
images). The resolution for raster images depends on the size of the plot window. If you
need high resolution maximize the window (and do not use jpeg, because the driver is bad)
or better use a vector image format. Please see the notes about plotting for other details.

;; activate the JavaGD plot device
r:setPlotDevice

C.4.15. r:stop

r:stop

Stops the R engine. This is needed (only) if NetLogo is running in headless mode,
for example when running BehaviorSpace experiments from the command line with
something like this: java -cp NetLogo.jar org.nlogo.headless.Main -model
mymodel.nlogo -experiment exp1 -table outtab1.csv. Should be the last call
in headless simulation. See usage notes above for details.

r:stop
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Version 0.1beta (August 2011)
The Rserve-Extension of NetLogo provides primitives to use the statistical software GNU

R (see http://www.r-project.org/) via the Rserve package (based on TCP/IP connection)
within a NetLogo model. There are primitives to create R variables with values from NetLogo
variables or agents and others to evaluate commands in R with and without return values.

This extension is designed to work together with the RNetLogo package. If you do not
want to use RNetLogo and just look for an extension to call R code from NetLogo without
using a remote server we recommend to use the R-Extension based on rJava/JRI instead of
this Rserve-Extension.

D.1. Installation/Configuration

To use this extension you will need this extension, NetLogo 5.x, R (>=2.12), Java (>=1.5)
and Rserve package >= 0.6-5 (lower versions are untested).

All you have to do is to install NetLogo, R and the Rserve package (available on CRAN)
from within R.

D.2. Usage

First, start the Rserve TCP/IP server (Note that it is possible to start the Rserve server in
debug mode.). Make sure that no firewall is blocking the port. For information how to do
this on your operation system please see the Rserve documentation. If you have not changed
the default settings and run it on the same machine as your NetLogo program, the server
will run on "localhost" on port 6311.

To use the extension in your model, add a line to the top of your Procedures Tab:

extensions [rserve]

If your model already uses other extensions, then it already has an extensions line in
it, so just add rserve to the list.

For more information on using NetLogo extensions, see the Extensions Guide.
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For examples of the usage of the Rserve-Extension, see the folder examples in the folder
of this extension.

D.3. Some Tips

Plotting If the server supports plotting, you can open plot devices. But, depending on
your operation system, you have to give some cpu time to R by executing rserve:eval
"Sys.sleep(0.01)" with a forever button. Otherwise the plot frame will be locked. Plots
from packages such as ggplot2 are not supported by Rserve and are therefore not available.

Load and Save data from/into file It is possible to load and save data from file directly
in R via rserve:eval "dataname <- read.table(’<path to file>’)" and
rserve:eval "write.table(dataname, file=’<filename>’)", respectively.
Please note that if you use a remote connection to R, the file has to be on the server and the
Rserve server must support file operations.

Data.frame with vector in cells Normally, a data.frame cell contains only a single value.
Each column is represented as a vector and if you put a vector of vectors to a data.frame, it
will be split into several columns. With the R-Extension it is possible to put a vector into a
data.frame cell, when you assign a NetLogo list to a column which contains nested NetLogo
lists for each row. If you want, for example, to use write.table on this data.frame, you have
to mark this column as class="AsIs". You can do this by using the I(x)-function.
Example: If the column of interest has the name col1 of the data.frame df1 you can
execute rserve:eval "df1$col1 <- I(df1$col1)". Call help(I) from within an
R terminal for further details.

Load an R-Script Furthermore, you can define functions in an R-Script, load it, and use the
functions. Load R-files via rserve:eval "source(’<path to r-file>’)". Please
note that if you use a remote connection to R, the file has to be on the server and the Rserve
server must support file operations.

Load a Package It is also possible to load R packages via rserve:eval
library(<name of package>). Please note that the library must be installed in
the R used by Rserve.

R Environments All calls of rserve:init will create a new local environment. This
should enable you to use the extension in BehaviorSpace experiments. But, as the Rserve
developer mentioned on their project website, this concept does not work on Windows
operation systems. Furthermore, on Windows, it is not possible to connect more than one
NetLogo process to Rserve in parallel. You have to close one connection first before you can
establish another. Otherwise, your NetLogo will crash. On Linux, using several connections
in parallel works without problems. Currently, there are no experiences on Mac OS. Until
you close the connection or execute rserve:clear, all R variables assigned in this session will
be available like you would use R from the command line.
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D.4. Primitives

D.4.1. rserve:clear

rserve:clear

It clears the R-Workspace. All variables in R will be deleted. It evaluates the R com-
mand rm(list=ls()) and rm(list=ls(nl.env)). Therefore, it deletes variables cre-
ated in global as well as local environment (see R Environments for details about environ-
ments). It is always a good idea to add this command to your setup procedure under your
clear-all call.

;; clear the R workspace
rserve:clear

D.4.2. rserve:close

rserve:close

It closes the connection to Rserve server, if there is one.

;; close the connection/disconnect
rserve:close

D.4.3. rserve:eval

rserve:eval R-command

It evaluates the submitted R command. The R command should not return a value.

;; creates a new vector in R with a sequence from 1 to 10
rserve:eval "x <- seq(1,10)"
show rserve:get "x"

D.4.4. rserve:get

rserve:get R-command

Reports the return value of the submitted R command. Return type can be a string,
number, boolean, NetLogo list or a NetLogo list of lists. R lists will be converted into a
NetLogo list. If the R list itself contains further lists, it will be converted into a NetLogo list
with nested NetLogo lists. Lists containing values of different data types are also supported
(e.g., mixed strings, numbers and booleans/logicals). Data.frames will be converted into a
NetLogo list with nested list for each column, but the column names will be lost (same for
named R lists). R matrices can be received, but they are converted into one NetLogo list.
NULL and NA values are not converted and will throw an error, because NetLogo has no
corresponding value.

;; returns a list with 10 variables
show rserve:get "rnorm(10)"

D.4.5. rserve:init

rserve:init port host <username> <password>
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Initializes a connection to an Rserve server. There can be only one connection at a time.
Close the active connection first (via rserve:close) before initializing another. The first
argument is the port number. The default port of Rserve is 6311. The second argument is
the host name. If you run the server locally, i.e., on the same machine as your NetLogo, than
it is "localhost". The username and password are optional parameters. If the server you
try to connect needs authentication, you can submit the required login information with
these two last parameters. Do not forget parentheses around the whole primitive if you use
these two optional parameters. Please note that Windows OS does not support more than
one connection at a time, i.e., you cannot connect two NetLogo models at the same time.
See Rserve documentation for details.

;; example for initialization without login
rserve:init 6311 "localhost"
;; example for initialization with login
(rserve:init 6311 "localhost" "myname" "secret")

D.4.6. rserve:isConnected

rserve:isConnected

Reports if there is a connection established.

;; is there a connection to an Rserve serve established?
print rserve:isConnected

D.4.7. rserve:put

rserve:put name value

Creates a new variable in R with the name name. The value can be a string, number,
boolean or list. NetLogo lists are converted to R vectors, if all entries are of the same data
type. If a NetLogo list contains different data types (mixed strings, numbers or booleans), it
will be converted into an R list. If a NetLogo list contains other/nested NetLogo lists it will
be converted into an R list and the nested lists are handled by the same rule (vectors if all
items are of the same data type, ...).

;; creates an R variable "testvar" with the size of turtle 0
rserve:put "testvar" [size] of turtle 0
show rserve:get "testvar"

D.4.8. rserve:putagent

rserve:putagent name agent|agentset variable
(rserve:putagent name agent|agentset variable1 variabl2 ...)

Creates a new named list in R with the name name. Variable is repeatable and can
be every variable of the agent or agentset. Names of the elements of the R list will be the
same as the names of the agent variables. Turtles will be assigned in ascending order of
their who variable. Patches will be assigned in lines from upper left to lower right. Since
the arguments of this primitive are repeatable, do not forget the parentheses around the
statement.
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;; creates an R-list "agentlist1" with the size and the id of
turtles, do not forget the parentheses

(rserve:putagent "agentlist1" turtles "size" "who")
show rserve:get "agentlist1$who"
;; creates an R-list "agentlist2" with the pcolor, pxcor and

pycor of patches
(rserve:putagent "agentlist2" patches "pcolor" "pxcor" "pycor")
show rserve:get "agentlist2$pcolor"

D.4.9. rserve:putagentdf

rserve:putagentdf name agent|agentset variable
(rserve:putagentdf name agent|agentset variable1 variable2 ...)

Same as rserve:putagent but creates an R data.frame instead of a list. Please read
the notes about data.frames, if one of your agent variables contains NetLogo lists.

;; creates an R-list "agentlist2" with the pcolor, pxcor and
pycor of patches, do not forget the parentheses

(rserve:putagentdf "df1" patches "pcolor" "pxcor" "pycor")
show rserve:get "class(df1)"

D.4.10. rserve:putdataframe

rserve:putdataframe name varname value
(rserve:putdataframe name varname1 value1 varname2 value2 ... )

Same as rserve:putnamedlist but creates an R data.frame instead of a list. If you
send more than one list to NetLogo and the lists are of different length, the smaller ones will
be filled with NA values. If you send nested NetLogo lists (e.g., of type: [ [ ] [ ] ...
]) to one column please read the notes about data.frames with vectors in cells.

;; creates an R-list "agentlist2" with the pcolor, pxcor and
pycor of patches, do not forget the parentheses

(rserve:putdataframe "df1" "v1" [12 13 14 15 16] "v2" ["foo1"
"foo2" "foo3" "foo4" "foo5"] "v3" [1.1 2.2 3.3 4.4 5.5])

show rserve:get "df1$v3"

D.4.11. rserve:putlist

rserve:putlist name value
(rserve:putlist name value1 value2 ... )

Creates a new list in R with the name name. Value is repeatable and can be a number,
boolean or list. Each valuewill get the name of its position (1, 2, 3,...). Since the arguments
of this primitive are repeatable, do not forget the parentheses around the statement.

;; creates an R-list "list1", do not forget the parentheses
(rserve:putlist "list1" 25.5 [25 43 32 53] "testvalue" [44.3

32.32 321.2 4.2])
show rserve:get "class(list1)"
show rserve:get "list1[[1]]"
show rserve:get "list1$'0'"
show rserve:get "list1[[2]]"
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D.4.12. rserve:putnamedlist

rserve:putnamedlist name varname value
(rserve:putnamedlist name varname1 value1 varname2 value2 ... )

Creates a new named list in R with the name name. Value is repeatable and can be a
number, boolean or list. Each variable will get the name varname. Since the arguments of
this primitive are repeatable, do not forget to put the statement into parentheses.

;; creates an R-list "list1" , do not forget the parentheses
(rserve:putnamedlist "list1" "v1" 25.5 "v2" [25 43 32 53] "v3"

"testvalue" "v4" [44.3 32.32 321.2 4.2])
show rserve:get "class(list1)"
show rserve:get "list1[[1]]"
show rserve:get "list1$v1"

D.4.13. rserve:setSendBufferSize

rserve:setSendBufferSize

Primitive to set the maximum buffer size for submissions (in bytes, min=32k, max=1GB).
See Rserve documentation for details.

;; change maximum buffer size print
rserve:setSendBufferSize 2052
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Quickstart Guide RNetLogo

E.1. Getting RNetLogo

Prerequisites To use RNetLogo you have to install Gnu R (currently tested with 2.12.x
and 2.13.x), NetLogo (currently tested with 4.1.x and 5.0beta3 and 5.0beta4) and the rJava
package for R (and maybe a Java Runtime Environment). Sources of dependent software:

1. Gnu R: http://cran.r-project.org/

2. rJava package for R: either install it via install.packages("rJava") or down-
load it from http://cran.r-project.org/web/packages/rJava/index.html or http://
www.rforge.net/rJava/ and install it manually via install.packages("<path to
rJava>",repos=NULL). It can be necessary to setup Java support for R via R
CMD javareconf. See documentation of rJava and mailing list for details. Make
sure that the rJava package works properly. Try to load rJava in an R session via
library(rJava) and run .jinit() to test the initialization.

3. Java Runtime Environment (JRE): e.g., Oracle JRE http://java.com/. It can be neces-
sary to set an environment variable JAVA_HOME to the jre directory such that R can
find the JRE.

4. NetLogo: http://ccl.northwestern.edu/netlogo/download.shtml

Installation of RNetLogo RNetLogo can be installed like any other R package. Either you
use the automatic installation from CRAN by typing install.packages("RNetLogo")
into an R shell or you download the package manually from http://cran.r-project.
org/web/packages/RNetLogo/index.html and type install.packages("<path to
RNetLogo>", repos=NULL).

E.2. Kick-Starting RNetLogo

1. Start R

2. Load the Package:
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library(RNetLogo)

3. Start NetLogo session:

NLStart("C:/Program Files/NetLogo 4.1.2", gui=TRUE,
nl.version=4)

4. Load a model:

NLLoadModel("C:/Program Files/NetLogo 4.1.2/models/Sample
Models/Earth Science/Fire.nlogo")

5. Submit a command:

NLCommand("setup")
NLDoCommand(10, "go")

6. Get a value:

br.trees <- NLReport("burned-trees")
print(br.trees)

E.3. Manuals and Tutorials to RNetLogo

The functions of RNetLogo are documented on the manual pages (type ??RNetLogo or/and
help(<function name>)). Furthermore, there is a tutorial (<RNetLogo installation
folder>/tutorial/tutorial.pdf) which comes with the RNetLogo package and gives an intro-
duction to the different functions and shows some application examples. Furthermore, there
is a folder examples/code_samples in the RNetLogo package, which gives a small usage ex-
ample for all functions.
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RNetLogo Manual

RNetLogo-Package Provides an interface to the agent-based modelling platform Net-
Logo

Description

Interface to use and access Wilensky’s NetLogo (Wilensky 1999) from R (R Core Team
2013) using either headless (no GUI) or interactive GUI mode. Provides functions
to load models, execute commands, and get values from reporters. Mostly anal-
ogous to the NetLogo Mathematica Link http://ccl.northwestern.edu/netlogo/docs/
mathematica.html.

Details

Package: RNetLogo
Type: Package
Version: 0.9-6
Date: 2013-04-24
License: GNU GPL v2
LazyLoad: yes

Start by creating a NetLogo instance by using NLStart. Then load a model with the
function NLLoadModel and then use commands and reporters to do what you like.

It is possible to use NetLogo 3D. Just set the is3d argument in NLStart to TRUE. This
functionality is experimental. All RNetLogo functions should work in NetLogo 3D as
they do in conventional 2D NetLogo except NLSetPatches, which is not implemented
to work with NetLogo 3D properly. NLSetPatchSet delivers a similar functionality
usable also with NetLogo 3D but uses a data.frame instead of a matrix.

261

http://ccl.northwestern.edu/netlogo/docs/mathematica.html
http://ccl.northwestern.edu/netlogo/docs/mathematica.html


Appendix F. RNetLogo Manual

Note for MAC users: If you want to run RNetLogo in headless mode (without
GUI, i.e., setting argument gui=FALSE in NLStart) you have to disable AWT be-
fore loading the package. Just execute Sys.setenv(NOAWT=1) before executing
library(RNetLogo). If you want to run RNetLogo in GUI mode you have to start it
from the JGR application (see http://cran.r-project.org/web/packages/JGR/index.html
and the note at http://groups.yahoo.com/group/netlogo-users/message/14817). It can
be necessary to run Sys.setenv(NOAWT=1) before loading the JGR package and run
Sys.unsetenv("NOAWT") before starting JGR via JGR().

Note for Linux users: If you want to run RNetLogo in GUI mode you should start
RNetLogo from JGR (see http://cran.r-project.org/web/packages/JGR/index.html).

Note for Windows 32-bit users: Starting RNetLogo (in GUI mode) on 32-bit Win-
dows (not 64-bit Windows running in 32-bit mode) may fail in R version 2.15.2
and 2.15.3 (see description here: https://stat.ethz.ch/pipermail/r-devel/2013-January/
065576.html). The reason could be the increased C stack size in 2.15.2 and 2.15.3. If
you execute Cstack_info() you can see how large the C stack size is. The problem
seems to be resolved with 3.0.0. A workaround is to use R 2.15.1 or 3.x or to start
RNetLogo from JGR (see http://cran.r-project.org/web/packages/JGR/index.html) or
RStudio (see http://www.rstudio.com/).

If you want to increase the Java Heap Space and set other parameters of the Java Virtual
Machine (JVM) see notes at NLStart.

See the paper located in folder tutorial in the installation path of the package for an
introduction. Example codes for all functions can be found in the folder examples in
the installation path of the package. For performance notes see Appendix G and for an
introduction how to run RNetLogo in parallel on multicore computers or clusters/grids
see Appendix H.

References

For NetLogo see http://ccl.northwestern.edu/netlogo. For R-Extension for NetLogo see
http://r-ext.sourceforge.net/. For Rserve-Extension for NetLogo see http://rserve-ext.
sourceforge.net/. The RNetLogo package is analogous to (and inspired by) the Net-
Logo Mathematica Link http://ccl.northwestern.edu/netlogo/docs/mathematica.html.
Wilensky, U. (1999) NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Con-
nected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.
R Core Team (2013) R: A Language and Environment for Statistical. R Foundation for
Statistical Computing.Vienna, Austria. http://www.R-project.org.

See Also

NLStart, NLLoadModel, NLQuit, rJava package

Examples

## Not run:
library(RNetLogo)
nl.path <- "C:/Program Files/NetLogo 5.0.4"
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NLCommand

NLStart(nl.path, nl.version=5)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""))
NLCommand("setup")
NLDoCommand(10, "go")
burned <- NLReport("burned-trees")
print(burned)
NLQuit()

## End(Not run)

NLCommand Executes a command in the referenced NetLogo instance.

Description

NLCommand executes a NetLogo command (submitted as a string) in the (submitted)
NetLogo instance.

Usage

NLCommand(..., nl.obj=NULL)

Arguments

... An undefined number of strings with the NetLogo command(s) to be
executed. Vectors, lists and data.frames will be represented as NetLogo
lists. To set a NetLogo list you can write ’set mylist’,c(1,2,3) if
the current NetLogo model knows a list named mylist. Furthermore,
you can execute multiple commands in series, e.g., ’setup’,’go’

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

The command can be anything which can be submitted from the NetLogo Command
Center. A command has no return value! If you want to return a value from NetLogo
use NLReport and other report functions.

Value

No return value.
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See Also

NLDoCommand, NLDoCommandWhile, NLReport

Examples

## Not run:
NLStart("C:/Program Files/NetLogo 5.0.4")
NLCommand("create-turtles 10")

## End(Not run)

NLDfToList Transforms a data.frame into a NetLogo list or multiple NetLogo
lists (one for each column of the data.frame).

Description

NLDfToList pushes the values of a data.frame into NetLogo lists. The column names
of the data.frame are used as names for the NetLogo lists (but the lists must already
exist in the current NetLogo model).

Usage

NLDfToList(in.data.frame, nl.obj=NULL)

Arguments

in.data.frame

The data.frame to fill the NetLogo lists.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

Remember: There must be lists in the NetLogo model with the names of the columns of
the submitted data.frame.

Value

No return value.

See Also

NLDoCommand, NLDoCommandWhile, NLReport
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Examples

## Not run:
NLStart("C:/Program Files/NetLogo 5.0.4")
df1 <- data.frame(x=c(1,2,3,4),y=c(5,6,7,8))
# the current NetLogo model must have two variables ('x' and

'y')
# add the variables
NLSourceFromString("globals [x y]", append.model=FALSE)
# set the variables to the data.frame
NLDfToList(df1)

## End(Not run)

NLDoCommand Repeats execution of a command in the referenced NetLogo in-
stance for a defined number of times.

Description

NLDoCommand executes a NetLogo command (submitted as a string) in the submitted
NetLogo instance more than one time. It works like NLCommand.

Usage

NLDoCommand(iterations, ..., nl.obj=NULL)

Arguments

iterations An integer defining the number of times the command is executed.

... An undefined number of string(s) with the NetLogo command(s) to be
executed. See NLCommand for details.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

This function is used to execute a command more than one time. It is usually used to
call a procedure (e.g., go) for a defined number of times.

Value

No return value.
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See Also

NLCommand, NLDoCommandWhile, NLReport

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""))
NLCommand("setup")
NLDoCommand(10, "go")

## End(Not run)

NLDoCommandWhile Repeats a command in the referenced NetLogo instance while a
reporter returns TRUE.

Description

NLDoCommandWhile function executes a NetLogo command (submitted as a string) in
the submitted NetLogo instance more than one time. It works like NLCommand but will
be repeated as long as the reporter returns TRUE.

Usage

NLDoCommandWhile(condition, ..., max.minutes=10, nl.obj=NULL)

Arguments

condition A string with a NetLogo conditional reporter.

... An undefined number of string(s) with the NetLogo command(s) to be
executed. See NLCommand for details.

max.minutes (optional) If max.minutes > 0 the execution stops after the defined
number of minutes (with an error). By default, all executions are
stopped after 10 minutes, to prevent the execution of endless loops.
If you need more time, increase the value. If you are sure what you
do, you can set this value to 0. Then it will run while the condition
is true (i.e., endlessly when the condition is never met. In GUI mode,
you can press Tools -> Halt in the NetLogo menu to interrupt a running
process.). This can speed up the execution, because the time checking
is not applied in this case.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.
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Details

This function is used to execute a command for more than one time. It can be used, for
example, to run a simulation (by calling go) while a variable is below some limit.

The condition is evaluated before the submitted commands are executed. If the condi-
tion is FALSE at the first evaluation, the commands will never be executed.

Attention: Make sure that the condition switches from TRUE to FALSE sometime, oth-
erwise you will run an endless loop (which is stopped after 10 minutes by default, see
argument max.minutes).

Value

No return value.

See Also

NLCommand, NLDoCommandWhile, NLReport

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""))
NLCommand("setup")
NLDoCommandWhile("burned-trees < 500", "go")

## End(Not run)

NLDoReport Repeats a command and a reporter in the referenced NetLogo in-
stance for a defined number of times.

Description

NLDoReport executes a NetLogo command (submitted as a string) in the NetLogo in-
stance for more than one time, and executes the reporter after each iteration. It works
like a combination of NLReport and NLDoCommand.

Usage

NLDoReport(iterations, command, reporter,
as.data.frame=FALSE, df.col.names=NULL, nl.obj=NULL)
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Arguments

iterations An integer defining how many times the command is repeated.

command A string with the NetLogo command to be executed.

reporter A string containing a NetLogo reporter. This argument
can also be an R vector containing multiple strings with
different NetLogo reporters (separated by commas), like
c("count patches", "count turtles"). (A similar effect
can be reached by using a NetLogo reporter returning a NetLogo list,
like
"(list count patches count agents)" as a single string argu-
ment. But the result will not be an R list with nested R lists but an R list
with nested R vectors because NetLogo lists are converted to R vectors.)

as.data.frame

(optional) If TRUE the function will return a data.frame instead of a list.
Default is FALSE, which returns a list.

df.col.names

(optional) If as.data.frame=TRUE, it contains the names of the
columns of the returned data.frame. The argument is a vector contain-
ing the names as strings in the same order as the submitted reporters.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

This function is used to execute a command more than one time and reports a value or
a number of values after each iteration. It is often used to call a procedure (e.g., go) for
a defined number of times and to save the value of a state variable each time.

Value

A list/nested list or data.frame with the value(s) of the reporter after each execution of
the command.

See Also

NLDoCommand, NLReport, NLDoReportWhile

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""))
NLCommand("setup")
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burned10 <- NLDoReport(10, "go", "burned-trees")
initburned10 <- NLDoReport(10, "go",

c("initial-trees","burned-trees"), as.data.frame=TRUE,
df.col.names=c("initial","burned"))

str(initburned10)

## End(Not run)

NLDoReportWhile Repeats execution of a command and a reporter in the referenced
NetLogo instance while a conditional reporter returns TRUE.

Description

NLDoReportWhile function executes a NetLogo command (submitted as a string)
more than one time and executes the reporter after each iteration. It works like
NLDoReport but will be repeated while the conditional reporter returns TRUE.

Usage

NLDoReportWhile(condition, command, reporter,
as.data.frame=FALSE, df.col.names=NULL, max.minutes=10,
nl.obj=NULL)

Arguments

condition A string with a NetLogo conditional reporter.

command A string with the NetLogo command to be executed.

reporter A string containing a NetLogo reporter. This argument
can also be an R vector containing multiple strings with
different NetLogo reporters (separated by commas), like
c("count patches", "count turtles"). (A similar effect
can be reached by using a NetLogo reporter returning a NetLogo list,
like
"(list count patches count agents)" as a single string argu-
ment. But the result will not be an R list with nested R lists but an R list
with nested R vectors because NetLogo lists are converted to R vectors.)

as.data.frame

(optional) If TRUE the function will return a data.frame instead a list.
Default is FALSE which returns a list.

df.col.names

(optional) If as.data.frame=TRUE, it defines the names of the
columns of the returned data.frame. The argument is a vector con-
taining the names as strings in the same order as the reporters.
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max.minutes (optional) If max.minutes > 0 the execution stops after the defined
number of minutes (with an error and no return value). By default,
all executions are stopped after 10 minutes, to prevent the execution
of endless loops. If you need more time, increase the value. If you are
sure what you do, you can set this value to 0. Then, it will run while
the condition is true (i.e., endlessly when the condition is never met. In
GUI mode, you can press Tools -> Halt in the NetLogo menu to interrupt
a running process.). This can speed up the execution, because the time
checking is not applied in this case.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

This function executes a command more than one time and reports a value or a number
of values after each iteration. It is usually used to call a procedure (e.g., go) while
a variable is below a boundary value and to save the value of a state variable each
time. Attention: Make sure that the condition switches from TRUE to FALSE sometime,
otherwise you will run an endless loop (which is stopped after 10 minutes by default,
see argument max.minutes).

Value

A list/nested list with the value(s) of the reporter after each execution of the command.

See Also

NLDoCommandWhile, NLReport, NLDoReport

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""))
NLCommand("setup")
burnedLower2200 <- NLDoReportWhile("burned-trees < 2200",

"go", "burned-trees")
str(burnedLower2200)

## End(Not run)
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NLGetAgentSet Reports variable value(s) of one or more agent(s) as a data.frame
(optional as a list or vector)

Description

NLGetAgentSet is an easy way to access variable value(s) of one or more agent(s) (in
a sorted way) by specifying the name of the agent or the name of an agentset containing
the agents. An agent is a turtle, breed, patch, or link. An agentset is a collection of
agents.

Usage

NLGetAgentSet(agent.var, agentset, as.data.frame=TRUE,
agents.by.row=FALSE, as.vector=FALSE, nl.obj=NULL)

Arguments

agent.var A string or vector/list of strings with the variable names of the agent(s).

agentset A string specifying the agent or agentset to be queried.
as.data.frame

(optional) If TRUE (default) the function will return a data.frame with
a column for each agent.var and a row for each agent. The col-
umn names are taken from the names of the agent.var argument. If
FALSE the function will return a list instead of a data.frame (little bit
faster when not using agents.by.row=TRUE).

agents.by.row

(optional) This argument has an effect only in combination with
as.data.frame=FALSE, i.e. when a list is returned. If
agents.by.row=FALSE (default) the returned list contains one
list element for each agent.var. Each list element contains a
vector with the values of the different agents (agentset). If
agents.by.row=TRUE the returned list contains one list element
for each agent. Each list element contains a vector with the values of
the different requested agent variables
(agent.var). Attention: agents.by.row=TRUE makes the function
very slow, especially when many agents are requested.

as.vector (optional) Set this argument to TRUE for getting the result as a sim-
ple vector in case of requesting only one agent variable. This is the
fastest way to access one agent variable. It does not make sense to
set this variable to TRUE together with as.data.frame=TRUE, but
as.vector is processed first and will win the race if you accidentally
set as.data.frame to TRUE as well. By default as.vector is FALSE.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.
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Details

It is possible to use all variables of an agent, which can be found in NetLogo’s Agent
Monitors. It is not possible to get values from different types of agents (i.e., turtles,
patches, links) with one call of NLGetAgentSet. See Appendix G for performance
details and notes on changes since version 0.9.3.

Value

Returns a data.frame (optionally a list) with the variable value(s) of an agent/agents
of an agentset. One row for each agent and one column for each agent variable. The
result is sorted in the same manner as using sort agentset in NetLogo, i.e., turtles
are sorted by their who variable and patches from upper left to lower right.

To get the same result as with default settings until RNetLogo version 0.9.2 use:
as.data.frame=FALSE and agents.by.row=TRUE.

See Also

NLReport, NLGetPatches, NLGetGraph

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
# NLLoadModel(...)
NLCommand("create-turtles 10")

colors <- NLGetAgentSet(c("who","xcor","ycor","color"),
"turtles with [who < 5]")

str(colors)

# or as a list (slightly faster):
colors.list <- NLGetAgentSet(c("who","xcor","ycor","color"),

"turtles with [who < 5]", as.data.frame=FALSE)
str(colors.list)

# or as a list with one list element for each agent
# (very slow!, not recommended especially for large

agentsets)
colors.list2 <-

NLGetAgentSet(c("who","xcor","ycor","color"), "turtles
with [who < 5]", as.data.frame=FALSE, agents.by.row=TRUE)

str(colors.list2)

# getting the ends of links is a little bit more tricky,
because they store only the

# reference to the turtles and turtles cannot directly be
requested.
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# A way to go is:
# create some links
NLCommand("ask turtles [ create-links-with n-of 2 other

turtles ]")
link.test <- NLGetAgentSet(c("[who] of end1","[who] of

end2"),"links")
str(link.test)

## End(Not run)

NLGetGraph Captures a network.

Description

NLGetGraph converts a set of NetLogo Link agents into an igraph graph object (see
package igraph for details on graph objects).

Usage

NLGetGraph(link.agentset="links", nl.obj=NULL)

Arguments

link.agentset

(optional) A string defining an agentset of NetLogo Links. Default is
"links", which are all links.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

Saves a link network in a graph object of package igraph for network analysis.

Value

Returns a graph object of package igraph.

See Also

NLGetAgentSet
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Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
model.path <-
"/models/Sample Models/Networks/Preferential

Attachment.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""))
NLCommand("setup")
NLDoCommand(4, "go")
graph1 <- NLGetGraph()
plot(graph1, layout=layout.kamada.kawai,

vertex.label=V(graph1)$name, vertex.shape="rectangle",
vertex.size=20, asp=FALSE)

## End(Not run)

NLGetPatches Reports the values of patch variables as a data.frame (optional as
a list, matrix or simple vector)

Description

NLGetPatches is an easy way to access variables of all patches (default) or of a subset
of patches.

Usage

NLGetPatches(patch.var, patchset="patches", as.matrix=FALSE,
as.data.frame=TRUE, patches.by.row=FALSE,
as.vector=FALSE, nl.obj=NULL)

Arguments

patch.var A string or vector/list of strings with the names of patch variables to
report.

patchset (optional) A string defining which patches to request. By default, values
of all patches are returned.

as.matrix (optional) If this variable is TRUE (default is FALSE), the function will
return the result as a matrix representing the NetLogo world. (This
option is only available if the argument patchset is not used, i.e., if
you request all patches and there is only one patch variable, i.e., length
of patch.var is 1.)
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as.data.frame

(optional) If TRUE (default) the function returns a data.frame with one
column for each patch.var and one row for each patch. The col-
umn names are taken from the names of the patch.var argument. If
FALSE the function will return a list instead of a data.frame (little bit
faster, when not using patches.by.row=TRUE).

patches.by.row

(optional) This argument has an effect only in combination with
as.data.frame=FALSE, i.e., when a list is returned. If
patches.by.row=FALSE (default) the returned list contains one
list element for each patch.var. Each list element contains a
vector with the values of the different patches (patchset). If
patches.by.row=TRUE the returned list contains one list element
for each patch. Each list element contains a vector with the values
of the different requested patch variables (patch.var). Attention:
patches.by.row=TRUE makes the function very slow, especially
when many patches are requested.

as.vector (optional) Set this argument to TRUE for getting the result as a sim-
ple vector in case of requesting only one patch variable. This is the
fastest way to access one patch variable. It does not make sense
to set this variable to TRUE together with as.data.frame=TRUE or
as.matrix=TRUE, but as.vector is processed first and will win the
race if you accidentally set as.data.frame or as.matrix to TRUE
as well. By default as.vector is FALSE.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

It is possible to use all the variables of a patch, which can be found in NetLogo’s Agent
Monitors. See Appendix G for performance details and notes on changes since version
0.9.3.

Value

Returns a data.frame (optionally a list) with the variable value(s) of a patch/patches of
a patchset. One row for each patch and one column for each patch variable. The result
is sorted (like using sort patchset in NetLogo), e.g., patches are sorted from upper
left to lower right.

To get the same result as with default settings until RNetLogo version 0.9.2 use:
as.data.frame=FALSE and patches.by.row=TRUE.

See Also

NLReport, NLGetAgentSet, NLGetGraph
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Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
# NLLoadModel(...)

allpatches <- NLGetPatches(c("pxcor","pycor","pcolor"))
str(allpatches)

# only a subset of patches
subsetpatches <- NLGetPatches(c("pxcor","pycor","pcolor"),

"patches with [pxcor < 5]")
str(subsetpatches)

# or as a list (slightly faster):
colors.list <- NLGetPatches(c("pxcor","pycor","pcolor"),

"patches with [pxcor < 5]", as.data.frame=FALSE)
str(colors.list)

# or as a list with one list element for each patch
# (very slow!, not recommended especially for large

patchsets)
colors.list2 <- NLGetPatches(c("pxcor","pycor","pcolor"),

"patches with [pxcor < 5]", as.data.frame=FALSE,
patches.by.row=TRUE)

str(colors.list2)

## End(Not run)

NLLoadModel Loads a model into the NetLogo instance.

Description

NLLoadModel loads a model (*.nlogo file) into the submitted NetLogo instance.

Usage

NLLoadModel(model.path, nl.obj=NULL)

Arguments

model.path A string containing either the absolute path to the model file (*.nlogo
file) or a relative path to the model file starting from the NetLogo in-
stallation directory specified in NLStart.
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nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Value

No return value.

See Also

NLStart, NLQuit

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
absolute.model.path <- paste(nl.path,model.path,sep="")
NLLoadModel(absolute.model.path)

relative.model.path <- "models/Sample Models/Earth
Science/Fire.nlogo"

NLLoadModel(relative.model.path)

## End(Not run)

NLQuit Quits a NetLogo instance.

Description

Quits the NetLogo workspace and closes the GUI window (if started with GUI).

Usage

NLQuit(nl.obj=NULL, all=FALSE)

Arguments

nl.obj (optional) A string identifying a reference to the NetLogo instance de-
fined in nl.obj of NLStart.

all (optional) A boolean variable: If TRUE all active instances of NetLogo
created with NLStart are closed. Then, nl.obj argument is not used.
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Value

No return value.

Warning

There is currently no way to kill a NetLogo instance with GUI completely. After executing
NLQuit on a GUI instance, you cannot run NLStart again. You have to quit your R
session first and start a new one. The reason is that NetLogo quits via System.exit
(and has no functionality to quit all threads manually) but executing System.exit
will terminate the whole JVM which will also terminate rJava and finally R. But there
is a trick to run RNetLogo in GUI mode multiple times described in Appendix H. It
can happen that some memory is not released although you have executed NLQuit,
because shutting down the running JVM via rJava and unloading the required libraries
is not possible. Therefore, it is a good idea to start a new R session if possible when you
load a new model.

See Also

NLStart

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
NLQuit()

## End(Not run)

NLReport Reports a value or list of values

Description

NLReport reports NetLogo data back to R.

Usage

NLReport(reporter, nl.obj=NULL)

Arguments

reporter A string containing a NetLogo reporter. (Or a vector of strings.)

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.
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Details

Every reporter (commands which return a value) that can be called in the NetLogo
Command Center can be called with NLReport.

Value

A vector of length one if only one value is returned. Otherwise it is a list or, if necessary,
a nested list with the reported values.

See Also

NLDoReport, NLDoReportWhile, NLGetPatches, NLGetAgentSet

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""))
NLCommand("setup")
NLDoCommand(10, "go")
noburned <- NLReport("burned-trees")
str(noburned)

## End(Not run)

NLSetAgentSet Sets a variable of one or more agent(s) to value(s) in a data.frame
or vector.

Description

NLSetAgentSet is an easy way to set the variable value(s) of one or more agent(s)
(by specifying the name of the agent or the name of an agentset containing the agents)
to the value(s) of a data.frame or vector.

Usage

NLSetAgentSet(agentset, input, var.name=NULL, nl.obj=NULL)
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Arguments

agentset A string specifying the agent or agentset for which values should be
changed.

input A data.frame or vector. If a data.frame, it must have one column with
the corresponding agent variable name for each agent variable to be
set and one row for each agent. The rows have to be sorted in the
order NetLogo is processing the agentset with sort agentset (e.g.,
turtles are sorted by their who value). If a vector, only one agent vari-
able can be set and the name has to be given by the optional argument
var.name.

var.name If input is a simple vector instead of a data.frame it gives the name of
the agent variable as a string which should be set with the values of the
vector submitted in input. With a vector you can only set one agent
variable at a time.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

The agent variable values contained as columns in the input data.frame are changed.
The columns of the data.frame have to be named exactly like the agent variables which
should get the values. The rows have to be sorted as NetLogo would process the agentset
using the sort reporter.

Value

No return value.

See Also

NLSetPatches, NLGetAgentSet, NLGetGraph, NLDfToList

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
# NLLoadModel(...)
ag <- NLGetAgentSet(c("xcor","ycor"),"turtles")
ag2 <- data.frame(xcor=ag$xcor, ycor=ag$xcor)
NLSetAgentSet("turtles", ag2)

## End(Not run)
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NLSetPatches Sets a variable of all patches in the NetLogo world to the values in
a matrix.

Description

NLSetPatches is an easy way to set the values of all patches to the values of a matrix.

Usage

NLSetPatches(patch.var, in.matrix, nl.obj=NULL)

Arguments

patch.var The name of the patch variable to set.

in.matrix A matrix that represents the NetLogo world (has the same dimensions).

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

The matrix must have the same x- and y-dimensions as the NetLogo world, indices
beginning with (1,1). The upper-left cell (1,1) of the matrix represents the upper-left
patch of the NetLogo world, no matter where the origin of the NetLogo world is set. This
function is not available when running NetLogo 3D. Use NLSetPatchSet instead.

Value

No return value.

See Also

NLReport, NLGetAgentSet, NLGetGraph, NLDfToList

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
m1 <- matrix(1:1089 , 33)
NLSetPatches("pcolor", m1)

## End(Not run)
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NLSetPatchSet Sets the variable value of one or more patch(es) to value(s) in a
data.frame.

Description

NLSetPatchSet is an easy way to set the variable value of one or more patch(es) to
the value(s) of a data.frame.

Usage

NLSetPatchSet(patch.var, input, nl.obj=NULL)

Arguments

patch.var This argument gives the name of the patch variable as a string which
should be set to the values of the third (for NetLogo 2D) or fourth col-
umn (for NetLogo 3D) of the data.frame submitted in input.

input A data.frame with columns giving the coordinates of a patch and the
values for the patch variable to be changed. For conventional 2D NetL-
ogo there has to be a pxcor and a pycor column , for NetLogo 3D there
has to be a pxcor, a pycor, and a pzcor column. The name of the column
that contains the new values for the patch variable has to be equal to
the argument patch.var.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.

Details

This function is used to update one patch variable for patches identified by their pxcor,
pycor (and pzcor in case of NetLogo 3D) values based on values given in a data.frame.

Value

No return value.

See Also

NLSetPatches, NLGetAgentSet, NLGetGraph, NLDfToList
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Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
# NLLoadModel(...)

# for NetLogo 2D:
input <- NLGetPatches(c("pxcor","pycor","pcolor"))
str(input)
# for NetLogo 3D:
input <- NLGetPatches(c("pxcor","pycor","pzcor","pcolor"))
str(input)

input$pcolor <- floor(abs(rnorm(nrow(input))*100))
patch.var <- "pcolor"
NLSetPatchSet(patch.var, input)

## End(Not run)

NLSourceFromString

Creates or appends NetLogo code from R.

Description

NLSourceFromString is a way to create/append a NetLogo model’s source code dy-
namically from R.

Usage

NLSourceFromString(..., append.model=TRUE, nl.obj=NULL)

Arguments

... An undefined number of strings containing NetLogo model source code
to be printed into the Procedures Tab. Line breaks within a string can
be represented as \n.

append.model

(optional) Determines whether existing code in the Procedures Tab (i.e.,
a loaded model) will be appended by the new code or will be replaced.
By default, all existing code will be appended.

nl.obj (optional) A string identifying a reference to a NetLogo instance created
with NLStart.
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Details

This function only works with NetLogo instances with GUI. It does not work in headless
mode.

Value

No return value.

See Also

NLReport, NLGetAgentSet, NLGetGraph, NLDfToList

Examples

## Not run:
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
setup <- "to setup\n ca\n crt 10\nend \n"
go <- "to go\n ask turtles [\n set xcor random-xcor\n set

ycor random-ycor\n ]\nend \n"
reporter1 <- "to-report noturtles\n report count turtles\n

end \n"
NLSourceFromString(setup,go,reporter1, append.model=FALSE)
NLCommand("setup")
NLCommand("go")
noturtles <- NLReport("noturtles")
print(noturtles)

## End(Not run)

NLStart Creates an instance of NetLogo

Description

NLStart creates a new instance of NetLogo in either headless (without the Graphical
User Interface) or GUI mode.

Usage

NLStart(nl.path, gui=TRUE, nl.obj=NULL, nl.version=5,
is3d=FALSE)
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Arguments

nl.path An absolute path to your NetLogo installation (the folder where the Net-
Logo.jar is) starting from the root. On Windows, for example, something
like "C:/Program Files/NetLogo 5.0.4".

gui (optional) A boolean value: if TRUE, NetLogo will be started with GUI
(only one instance with GUI can be created currently!). FALSE will start
NetLogo in headless mode.

nl.obj (optional) A string which is used to identify the created NetLogo in-
stance reference internally (in .rnetlogo environment). To refer to
this instance just use the same name in the other functions of this pack-
age. If nl.obj=NULL (default), the internal name to the reference is
_nl.intern_ and is not needed to be submitted to the other func-
tions of this package. After using NLQuit, the identical name can be
used again for a new instance.

nl.version (optional) An integer value specifying the (major) version of NetL-
ogo being started. Do not try to start a NetLogo version 4.x with
nl.version=5 and vice versa. It is not possible to mix NetLogo ver-
sions in one R session. Please use different R sessions if you want to start
RNetLogo with version 4 and version 5. The default is nl.version=5
for NetLogo 5.0. For NetLogo 4.1.x use nl.version=4. For NetLogo
4.0.x use nl.version=40. Please note that the data transformation
is much faster in NetLogo 5.0 than in NetLogo 4.x. Therefore, using
NetLogo 5 is strongly recommended. See Appendix G for performance
details.

is3d (optional) A boolean value: if TRUE, NetLogo 3D will be started. FALSE
will start the conventional 2D NetLogo. This functionality is experimen-
tal. All RNetLogo functions should work in NetLogo 3D as they do in
conventional 2D NetLogo except NLSetPatches, which is currently not
implemented to work in NetLogo 3D properly.

Details

You can start multiple instances of NetLogo in headless mode and store each in another
variable (using nl.obj) but it is not possible to start multiple instances in GUI mode.
(It would result in an crash of R since there is no way to detach the Java Virtual Machine
via rJava.) But there is a trick to run RNetLogo in GUI mode multiple times described in
Appendix H.

Note for Mac OS users: If you want to run RNetLogo in headless mode (without GUI,
i.e., setting argument gui=FALSE) you have to disable AWT before loading the pack-
age. Just execute Sys.setenv(NOAWT=1) before executing library(RNetLogo).
If you want to run RNetLogo in GUI mode you have to start it from the JGR ap-
plication (see http://cran.r-project.org/web/packages/JGR/index.html and the note
at http://groups.yahoo.com/group/netlogo-users/message/14817). It can be nec-
essary to run Sys.setenv(NOAWT=1) before loading the JGR package and run
Sys.unsetenv("NOAWT") before starting JGR via JGR().
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Note for Linux users: If you want to run RNetLogo in GUI mode you should start RNet-
Logo in the JGR application (see http://cran.r-project.org/web/packages/JGR/index.
html).

Note for Windows 32-bit users: Starting RNetLogo (in GUI mode) on 32-bit Win-
dows (not 64-bit Windows running in 32-bit mode) may fail in R version 2.15.2
and 2.15.3 (see description here: https://stat.ethz.ch/pipermail/r-devel/2013-January/
065576.html). The reason could be the increased C stack size in 2.15.2 and 2.15.3. If
you execute Cstack_info() you can see how large the C stack size is. The problem
seems to be resolved with 3.0.0. A workaround is to use R 2.15.1 or 3.x or to start
RNetLogo from JGR (see http://cran.r-project.org/web/packages/JGR/index.html) or
RStudio (see http://www.rstudio.com/).

Avoid manually changing the working directory of R, because NetLogo needs to have
the working directory pointed to its installation path. As the R working directory and
the Java working directory depend on each other, changing the R working directory can
result in unexpected behaviour of NetLogo. Therefore, you should use absolute paths for
I/O processes in R instead of submitting setwd(...). Note that the RNetLogo package
changes the working directory automatically when loading NetLogo and changes back
to the former working directory closing the last active instance of NetLogo with NLQuit.

As mentioned in NLQuit, it is currently not possible to quit NetLogo completely.

If you want to specify options for the underlying Java Virtual Machine
(JVM), like increasing the Java Heap Space for large models, execute
options(java.parameters="...") before loading the RNetLogo package with
library(RNetLogo) or require(RNetLogo). For increasing the Java Heap Space
it can be options(java.parameters="-Xmx1024m"), for example. Use a vector
of strings for setting multiple options, for example
options(java.parameters=c("-server","-Xmx1300m")). See also
http://ccl.northwestern.edu/netlogo/docs/faq.html#howbig and
http://permalink.gmane.org/gmane.comp.lang.r.rosuda.devel/1284.

See the directory examples in the installation directory of the package for example codes
to all RNetLogo functions.

See the paper in directory tutorial in the installation directory of the package for a step-
by-step usage tutorial.

See Appendix G for performance notes.

See Appendix Hon how to run RNetLogo on multiple processors/clusters in parallel.

Value

No return value.

Warning

It is not possible to run multiple instances of NetLogo in GUI mode! Closing NetLogo
from the NetLogo Window is blocked, because it would quit the whole R process. To
close the NetLogo call NLQuit. If you use the headless mode you should first load
a model with NLLoadModel before executing other commands or reporters. In GUI
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mode you can execute commands and reporters already with the initial empty model
without loading a specific one.

See Also

NLQuit

Examples

## Not run:
library(RNetLogo)
nl.path <- "C:/Program Files/NetLogo 5.0.4"
NLStart(nl.path)
NLCommand("create-turtles 10")
noturtles <- NLReport("count turtles")
print(noturtles)

# create a second NetLogo instance in headless mode (=
without GUI)

# stored in a variable
nlheadless1 <- "nlheadless1"
NLStart(nl.path, gui=F, nl.obj=nlheadless1)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""),

nl.obj=nlheadless1)
NLCommand("setup", nl.obj=nlheadless1)
burned1 <- NLDoReport(20, "go", c("ticks","burned-trees"),

as.data.frame=TRUE, df.col.names=c("tick","burned"),
nl.obj=nlheadless1)

print(burned1)

# create a third NetLogo instance in headless mode (=
without GUI)

# with explicit name of stored object
nlheadless2 <- "nlheadless2"
NLStart(nl.path, gui=F, nl.obj=nlheadless2)
model.path <- "/models/Sample Models/Earth

Science/Fire.nlogo"
NLLoadModel(paste(nl.path,model.path,sep=""),

nl.obj=nlheadless2)
NLCommand("setup", nl.obj=nlheadless2)
burned2 <- NLDoReport(10, "go", c("ticks","burned-trees"),

as.data.frame=TRUE, df.col.names=c("tick","burned"),
nl.obj=nlheadless2)

print(burned2)

## End(Not run)
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APPENDIX G

Performance Notes to the RNetLogo Package

G.1. Abstract

RNetLogo is a flexible interface for NetLogo to R, however, it was noticed that the perfor-
mance is slow for large datasets in some circumstances. Here, I show that these problems
are solved for newer versions of RNetLogo/NetLogo, and give some specific hints for using
RNetLogo in situations where runtime is critical. Specifically, I present the results of an ex-
ecution time measurement study of NLGetAgentSet using NetLogo 4.0.5, 4.1.3, and 5.0
as well as RNetLogo 0.9.2 and 0.9.3. The results show that using NetLogo 5.0 is highly
recommended since its transformation times/list operations are substantially faster than in
older versions of NetLogo. Some further speed improvements (for NLGetAgentSet or
NLGetPatches) can be achieved by using RNetLogo >= 0.9.3.

G.2. Preliminary Note

All tests and measurements have been performed on Windows XP Professional SP3 (32-bit)
with a DELL Latitude D630 notebook with an Intel(R) Core(TM)2 Duo T9500 chipset with
2.60GHz and used RAM of 3.49 GB.

The simulations have been run only once. This does not deliver reliable performance mea-
sures, because system background processes can cover the real execution times. Normally,
one would run simulations multiple times and take only the minimum execution times. But
to get a rough impression of the dimensions, running one simulation should be sufficient for
the purpose here.

G.3. Motivation

Some of the users of the RNetLogo package recognized that the data transfer using functions
like the NLGetAgentSet was very slow on large datasets/numbers of agents. Moreover,
the processing time increased non-linearly with an increasing number of datasets/agents. To
make it possible to work also with large datasets/number of agents I systematically analysed
the problem and identified some reasons. This paper documents the problem analysis as well
as shows how to resolve the bottleneck. It also shows what has changed in RNetLogo 0.9.3
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in the functions NLGetAgentSet and NLGetPatches especially regarding the return data
types.

G.4. Changes in NLGetAgentSet and NLGetPatches

G.4.1. Until RNetLogo 0.9.2

The results shown in the following are produced using the Fireflies model from NetLogo’s
Model Library. This model is initialized with different numbers of flies (i.e., turtles). After-
wards the NLGetAgentSet function from the RNetLogo package is used to get variables
from all flies/turtles from NetLogo into R.

With RNetLogo 0.9.2 there are two data type variants for the output of the
NLGetAgentSet function available: an R list (default) and an R data.frame.

The structure of the list is as follows: In case of multiple requested agent variables: for
each agent there is one list element. Each of these elements contains the requested agent
variables in a vector. In case of just one requested agent variable: only a single vector with
the values of the different agents instead of a list is returned.

For example (using RNetLogo 0.9.2):

R> #RNetLogo version:
R> print(vers)
R> nl.path <- "C:/Program Files/NetLogo 5.0"
R> NLStart(nl.path, nl.version=5, gui=F)
R> model.path <- "/models/Sample

Models/Biology/Fireflies.nlogo"
R> NLLoadModel(paste(nl.path, model.path, sep=""))
R> NLCommand("set number 10")
R> NLCommand("setup")

R> #RNetLogo version:
R> print(vers)

Output:

$Version
[1] "0.9.2"

R> # for only one agent variable it is just a vector
R> test_t5 <- NLGetAgentSet("who", "turtles", as.data.frame=F)

R> str(test_t5)

Output:

num [1:10] 0 1 2 3 4 5 6 7 8 9

R> is.list(test_t5)
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Output:

[1] FALSE

R> # for more than one agent variable it is a list
R> # with one list element for each agent and a
R> # vector in each list element containing
R> # the values of the requested agents variables
R> test_t6 <- NLGetAgentSet(c("who", "xcor", "ycor"),
+ "turtles", as.data.frame=F)

R> str(test_t6)

Output:

List of 10
$ : num [1:3] 0 -35.45 9.24
$ : num [1:3] 1 -14.1 31.1
$ : num [1:3] 2 -14.34 6.19
$ : num [1:3] 3 18.5 -31.1
$ : num [1:3] 4 -31.5 -26.3
$ : num [1:3] 5 9.68 -21.5
$ : num [1:3] 6 -24.9 -24
$ : num [1:3] 7 -31.4 -18.8
$ : num [1:3] 8 -34.4 -21.1
$ : num [1:3] 9 -10.2 -27.9

R> is.list(test_t6)

Output:

[1] TRUE

If we request a data.frame, we have to set the argument as.data.frame to TRUE and
should submit the names for the data.frame columns in the argument df.col.names.

If we request only one agent variable, again, just a single vector is returned. But if we
request more than one agent variable a data.frame is constructed with the agent variables
in the columns and the values of each agent in rows.

For example:

R> # for only one agent variable it is just a vector
R> test_t1 <- NLGetAgentSet("who", "turtles", as.data.frame=T,
+ df.col.names=c("who"))

R> str(test_t1)

Output:

num [1:10] 0 1 2 3 4 5 6 7 8 9
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R> is.data.frame(test_t1)

Output:

[1] FALSE

R> # for more than one agent variable it is a data.frame
R> # with agent variables in columns and
R> # one row for each agent
R> test_t2 <- NLGetAgentSet(c("who", "xcor", "ycor"),

"turtles",
+ as.data.frame=T, df.col.names=c("who",
+ "xcor", "ycor"))

R> str(test_t2)

Output:

'data.frame': 10 obs. of 3 variables:
$ who : num 0 1 2 3 4 5 6 7 8 9
$ xcor: num -35.4 -14.1 -14.3 18.5 -31.5 ...
$ ycor: num 9.24 31.08 6.19 -31.14 -26.29 ...

R> is.data.frame(test_t2)

Output:

[1] TRUE

This pattern is the same for the NLGetPatches function, since its functioning is equiva-
lent to NLGetAgentSet.

In the manual of RNetLogo 0.9.2 it was mentioned that the data.frame variant is much
faster when requesting more than one agent variable.

This is one of the reasons why I decided to change the default return value of
NLGetAgentSet/ NLGetPatches in RNetLogo 0.9.3.

G.4.2. Since RNetLogo 0.9.3

Since RNetLogo 0.9.3 the argument df.col.names is not available anymore because the
names of the requested agent variables are used as column names of the data.frame. This
prevents mistakes in the order of variables and their names. If you want to replace these
names just use R’s names function.

Because the data.frame is the default return type now, it means that the function argument
as.data.frame is TRUE by default. This was done because the data.frame is the standard
data type in R. But if we change as.data.frame to FALSE we are not getting the data
structure as known from RNetLogo 0.9.2 but a list where the list elements are the agents
variables (instead of the agents) and these list elements contain vectors with the values for
the agents. Therefore, it is very similar to the data structure of the data.frame. The list
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elements are also named with the names of the agent variables. This new list structure is
created substantially faster than the old one.

If you want to produce the default list structure known from RNetLogo 0.9.2 instead, you
have to set a further argument called agents.by.row to TRUE in combination with setting
as.data.frame to FALSE.

Since RNetLogo 0.9.3 you will always get the expected data type independent from the
number of agent variables requested. In RNetLogo 0.9.2 we got a vector when we re-
quested only one agent variable. Now, since RNetLogo 0.9.3, we are getting either a list or
data.frame depending on what was requested. This new behaviour will prevent unexpected
return types for single agent requests. You will now consequently get what you asked for.

There is also the option to get a simple vector when requesting only one agent variable.
Therefore, we have to set the function argument as.vector to TRUE. The result is equiva-
lent to the output of RNetLogo 0.9.2 when requesting one agent variable independent from
the requested output data type (see above).

Maybe it is more clear to see it with an example (using RNetLogo 0.9.3):

R> library(RNetLogo)
R> vers <- (packageDescription("RNetLogo")["Version"])
R> nl.path <- "C:/Program Files/NetLogo 5.0"
R> NLStart(nl.path, nl.version=5, gui=F)
R> model.path <- "/models/Sample

Models/Biology/Fireflies.nlogo"
R> NLLoadModel(paste(nl.path, model.path, sep=""))
R> NLCommand("set number 10")
R> NLCommand("setup")

R> #RNetLogo version:
R> print(vers)

Output:

$Version
[1] "0.9.3"

R> # the equivalent to the RNetLogo 0.9.2 default:
R> # the list variant for only one agent variable
R> # (but now as list not as vector)
R> test_t5 <- NLGetAgentSet("who", "turtles", as.data.frame=F,

agents.by.row=T)

R> str(test_t5)

Output:
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List of 10
$ : num 0
$ : num 1
$ : num 2
$ : num 3
$ : num 4
$ : num 5
$ : num 6
$ : num 7
$ : num 8
$ : num 9

R> is.list(test_t5)

Output:

[1] TRUE

R> # for more than one agent variable
R> test_t6 <- NLGetAgentSet(c("who", "xcor", "ycor"),

"turtles",
+ as.data.frame=F, agents.by.row=T)

R> str(test_t6)

Output:

List of 10
$ : num [1:3] 0 13.1 -18
$ : num [1:3] 1 -30.6 15.6
$ : num [1:3] 2 16.7 29.8
$ : num [1:3] 3 -15.5 31.6
$ : num [1:3] 4 -16.5 -4.93
$ : num [1:3] 5 -23.64 -7.98
$ : num [1:3] 6 -21.6 33.6
$ : num [1:3] 7 3.98 -30.96
$ : num [1:3] 8 -1.09 13.02
$ : num [1:3] 9 7.06 -30.02

R> is.list(test_t6)

Output:

[1] TRUE

R> # now the new default: the data.frame
R> # it is a data.frame independent from
R> # the number of agent variables requested
R> test_t1 <- NLGetAgentSet("who", "turtles")
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R> str(test_t1)

Output:

'data.frame': 10 obs. of 1 variable:
$ who: num 0 1 2 3 4 5 6 7 8 9

R> is.data.frame(test_t1)

Output:

[1] TRUE

R> # with three agent variables:
R> test_t2 <- NLGetAgentSet(c("who", "xcor", "ycor"),

"turtles")

R> str(test_t2)

Output:

'data.frame': 10 obs. of 3 variables:
$ who : num 0 1 2 3 4 5 6 7 8 9
$ xcor: num 13.1 -30.6 16.7 -15.5 -16.5 ...
$ ycor: num -18.02 15.59 29.83 31.61 -4.93 ...

R> is.data.frame(test_t2)

Output:

[1] TRUE

R> # Next, the new list style (similar to the data.frame):
R> test_t3 <- NLGetAgentSet("who", "turtles", as.data.frame=F)

R> str(test_t3)

Output:

List of 1
$ who: num [1:10] 0 1 2 3 4 5 6 7 8 9

R> is.list(test_t3)

Output:

[1] TRUE
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R> # for three agent variables:
R> test_t4 <- NLGetAgentSet(c("who", "xcor", "ycor"),

"turtles", as.data.frame=F)

R> str(test_t4)

Output:

List of 3
$ who : num [1:10] 0 1 2 3 4 5 6 7 8 9
$ xcor: num [1:10] 13.1 -30.6 16.7 -15.5 -16.5 ...
$ ycor: num [1:10] -18.02 15.59 29.83 31.61 -4.93 ...

R> is.list(test_t4)

Output:

[1] TRUE

R> # the old data structure for one agent variable
R> # (a simple vector):
R> test_t7 <- NLGetAgentSet("who", "turtles", as.vector=T)

R> str(test_t7)

Output:

num [1:10] 0 1 2 3 4 5 6 7 8 9

R> is.list(test_t7)

Output:

[1] FALSE

R> is.vector(test_t7)

Output:

[1] TRUE

Later on, we will have a look on the performance of the NLGetAgentSet function de-
pending on the different output data structures.

But first, we will look on the performance depending on the NetLogo version used in
conjunction with RNetLogo.
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G.5. NetLogo Dependent Performance

G.5.1. RNetLogo 0.9.2

NetLogo 4.1.3

In this section I will give you an impression of the performance of the NLGetAgentSet
function in dependence of the NetLogo version used with RNetLogo.

From postings on the NetLogo mailing list like this one: http://groups.yahoo.com/group/
netlogo-users/message/12919, we know that the performance of list operations can be ex-
pected to be much better in NetLogo 5.0 than in NetLogo 4.1.2. As the NetLogo prim-
itive sort is used in the background of the NLGetAgentSet function (as well as the
NLGetPatches function), list operations are very important for the performance of this
function.

As support for NetLogo 4.0.x comes first with RNetLogo 0.9.3, we can only test NetLogo
4.1.x (here I will use 4.1.3) against NetLogo 5.0 with RNetLogo 0.9.2.

Let us start with defining a function which sets up the Fireflies model and requests all flies
with different numbers of agent variables (t1 & t5: one variable; t2 & t6: three variables)
and different returning data types (t1 & t2: data.frame; t5 & t6: list). Then, we call this
function with different numbers of flies (i.e., turtles) starting with 100 and multiplying it
with 2 until 409.600 turtles.

R> library(RNetLogo)
R> vers <- (packageDescription("RNetLogo")["Version"])
R> nl.path <- "C:/Program Files/NetLogo 4.1.3"
R> NLStart(nl.path, nl.version=4, gui=F)
R> model.path <- "/models/Sample

Models/Biology/Fireflies.nlogo"
R> NLLoadModel(paste(nl.path, model.path, sep=""))
R> f_GetAgentSet <- function(x) {
+ NLCommand(paste("set number ",x,sep=""))
+ NLCommand("setup")
+
+ t1 <- system.time(df_a_1 <- NLGetAgentSet("who",

"turtles",as.data.frame=T,
+ df.col.names=c("who"))
+ )[["user.self"]]
+ t2 <- system.time(df_a_3 <- NLGetAgentSet(c("who", "xcor",

"ycor"),
+ "turtles", as.data.frame=T,
+ df.col.names=c("who", "xcor", "ycor"))
+ )[["user.self"]]
+
+ t5 <- system.time(li2_a_1 <- NLGetAgentSet("who", "turtles",
+ as.data.frame=F)
+ )[["user.self"]]
+ t6 <- system.time(li2_a_3 <- NLGetAgentSet(c("who", "xcor",

"ycor"),
+ "turtles", as.data.frame=F)
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Figure G.1.: Execution time of NLGetAgentSet with list output for different numbers of
turtles using RNetLogo 0.9.2 and NetLogo 4.1.3. Left: one agent variable,
Right: three agent variables requested.

+ )[["user.self"]]
+ return(data.frame(t1,t2,t5,t6))
+ }
R> it <- c(100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600,

51200, 102400, 204800, 409600)
R> times_092_NL413 <- lapply(it, function(x)

{f_GetAgentSet(x)})
R> #NLQuit()

The execution time for getting the agent variables within a plain list output (one list
element for each agent) with one (t5) as well as three (t6) agent variables is shown in
Figure G.1.

We see that the execution time increases more than linearly with an increasing number of
turtles in both cases.

Now, we will have a look on the performance of the same procedure but with the
data.frame as return type shown in Figure G.2.

We see that the pattern is the same as with the list output type. The data.frame output
type with one requested agent variable (t1) is in all cases slightly slower than the list output
type. The opposite is true when three agent variables are requested (t2 vs. t6) with an
exception for the last step (409.600 turtles).

NetLogo 5.0

Now, let us do the same with NetLogo 5.0.
The execution times for producing the plain list output (one list element for each agent)

with one (t5) as well as three (t6) agent variables is given in Figure G.3. Maybe you wonder
why the execution time can be higher for smaller agentsets. If you have some experiences
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Figure G.2.: Execution time of NLGetAgentSet with data.frame output for different num-
bers of turtles using RNetLogo 0.9.2 and NetLogo 4.1.3. Left: one agent vari-
able, Right: three agent variables requested.

with NetLogo you may have seen that execution time of NetLogo strongly varies (partly due
to system background process but also due to NetLogo internals). Because the execution
times are very small now, we can see these variations in the plots which have been covered
before by the extremely long (and increasing) operation time.

Let us also have a look on the results for the data.frame output type shown in Figure G.4.
All in all, we see an extremely large reduction of the execution time by just switching from

NetLogo 4.1.3 to NetLogo 5.0. For example, transforming 409.600 turtles with three agent
variables into a data.frame, the execution time reduced from approximately 4495 seconds
to only 8.46 seconds, which is a reduction of more than 530 times! This is the reason
why NetLogo 5.0 is the default version since RNetLogo 0.9.3 (argument nl.version in
NLStart).

But, even this performance can be improved as you can see when switching to RNetLogo
0.9.3.

G.5.2. RNetLogo 0.9.3

NetLogo 5.0

Let us start with NetLogo 5.0, as we know, this is the most interesting version. At the end,
we will have a short look on the comparison with NetLogo 4.1.3 and NetLogo 4.0.5.

As mentioned above, RNetLogo 0.9.3 offers three output types. The classical list output
where the list elements represent the agents (which was the default until RNetLogo 0.9.2),
the new list style where each list element represents an agent variable (the fastest variant
for requesting multiple agent variables), and the data.frame where each agent variable is
represented in a column and each agent is represented by a row (the default in NetLogo
0.9.3).

Here is the definition of the function to iterate through different numbers of turtles:
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Figure G.3.: Execution time of NLGetAgentSet with list output for different numbers of
turtles using RNetLogo 0.9.2 and NetLogo 5.0. Left: one agent variable, Right:
three agent variables requested.
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Figure G.4.: Execution time of NLGetAgentSet with data.frame output for different num-
bers of turtles using RNetLogo 0.9.2 and NetLogo 5.0. Left: one agent variable,
Right: three agent variables requested.
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R> library(RNetLogo)
R> vers <- (packageDescription("RNetLogo")["Version"])
R> nl.path <- "C:/Program Files/NetLogo 5.0"
R> NLStart(nl.path, nl.version=5, gui=F)
R> model.path <- "/models/Sample

Models/Biology/Fireflies.nlogo"
R> NLLoadModel(paste(nl.path, model.path, sep=""))
R> f_GetAgentSet <- function(x) {
+ NLCommand(paste("set number ",x,sep=""))
+ NLCommand("setup")
+
+ t1 <- system.time(df_a_1 <- NLGetAgentSet("who", "turtles")
+ )[["user.self"]]
+ t2 <- system.time(df_a_3 <- NLGetAgentSet(c("who", "xcor",

"ycor"),
+ "turtles")
+ )[["user.self"]]
+
+ t3 <- system.time(li_a_1 <- NLGetAgentSet("who", "turtles",
+ as.data.frame=F)
+ )[["user.self"]]
+ t4 <- system.time(li_a_3 <- NLGetAgentSet(c("who", "xcor",

"ycor"), "turtles",
+ as.data.frame=F)
+ )[["user.self"]]
+
+ t5 <- system.time(li2_a_1 <- NLGetAgentSet("who", "turtles",

as.data.frame=F,
+ agents.by.row=T)
+ )[["user.self"]]
+ t6 <- system.time(li2_a_3 <- NLGetAgentSet(c("who", "xcor",

"ycor"), "turtles",
+ as.data.frame=F,
+ agents.by.row=T)
+ )[["user.self"]]
+
+ t7 <- system.time(ve_a_1 <- NLGetAgentSet(c("who", "xcor",

"ycor"), "turtles",
+ as.vector=T)
+ )[["user.self"]]
+ return(data.frame(t1,t2,t3,t4,t5,t6,t7))
+ }
R> it <- c(100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600,

51200, 102400, 204800, 409600)
R> times_093_NL5 <- lapply(it, function(x) {f_GetAgentSet(x)})
R>
R> #NLQuit()
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Figure G.5.: Execution time of NLGetAgentSet with one requested agent variable for dif-
ferent numbers of turtles using RNetLogo 0.9.3 and NetLogo 5.0. Left: simple
vector, Second from left: old list style, Second from right: data.frame, Right:
new list style.

Let us start with a comparison of the performance of the three different output types for
requesting one agent variable as shown in Figure G.5.

We see that the execution times for the old list style (which was the default in RNetLogo
<= 0.9.2) are larger than in RNetLogo 0.9.2. The explanation for this is very easy: the old
RNetLogo version returned just a vector when the user requested only one agent variable
while the new version constructs the requested list which is more logical but takes more
time. The same is true for the data.frame construction. Furthermore, we see that the new
list style is not faster than the data.frame construction when requesting only one agent
variable.

But this conclusion changes when we look on the execution times for three agent variables
(Figure G.6).

The time for requesting three agent variables in the old list style takes approximately
the same time with RNetLogo 0.9.3 as with the old version. But the performance of the
data.frame is much better than with the old version when requesting more than one agent
variable. For 409.600 turtles with three variables it took approximately 8.46 seconds with
RNetLogo 0.9.2 and now, with RNetLogo 0.9.3, it takes approximately 1.26 seconds, which
is a reduction of more than six times. Furthermore, we see that the new list style is even
slightly faster than the data.frame with only 0.7 seconds for 409.600 turtles with three
variables (i.e., the transformation of 1.228.800 values!).

NetLogo 5.0 vs. 4.1.3 vs. 4.0.5

Just for interest, we will compare also the performance of NetLogo 4.1.3 with the one of
NetLogo 4.0.5, which is possible since RNetLogo 0.9.3, as well as with NetLogo 5.0.

The results for only one agent variable are shown in Figure G.7 and the results for re-
questing three agent variables are given in Figure G.8.
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Figure G.6.: Execution time of NLGetAgentSet with three requested agent variables for
different numbers of turtles using RNetLogo 0.9.3 and NetLogo 5.0. Left: old
list style, Middle: data.frame, Right: new list style.
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Figure G.7.: Execution time of NLGetAgentSet with one requested agent variable for dif-
ferent numbers of turtles using RNetLogo 0.9.3 and NetLogo 4.0.5 (dots), 4.1.3
(triangle), and 5.0 (plus). Left: old list style, Middle: data.frame, Right: new
list style.
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Figure G.8.: Execution time of NLGetAgentSet with three requested agent variables for
different numbers of turtles using RNetLogo 0.9.3 and NetLogo 4.0.5 (dots),
4.1.3 (triangle), and 5.0 (plus). Left: old list style, Middle: data.frame, Right:
new list style.

In (nearly) all cases, NetLogo 4.0.5 performs better than NetLogo 4.1.3 but it is also far
behind NetLogo 5.0.

G.6. Conclusion

We have seen that, whenever possible, NetLogo 5.0 should be preferred over NetLogo 4.x.
The performance of NLGetAgentSet is substantially better with NetLogo 5.0. These re-
sults are representative for other operations/functions. Furthermore, RNetLogo 0.9.3 per-
forms better than older versions when requesting more than one agent variable with the
NLGetAgentSet or NLGetPatches functions. The old list style should be avoided. The
data.frame is now the default return type and performs well. But if it is sufficient to proceed
with a list, the new list style is even faster than the data.frame and should be preferred.

With NetLogo 5.0 and RNetLogo 0.9.3, in most cases the data transformation from Net-
Logo to R should be fast enough even for requesting large numbers of turtles or patches.
To get three agent variables for 409.600 turtles (i.e., 1.228.800 values) from NetLogo into
R took in the example only 1.26 seconds for a data.frame and 0.7 seconds for the new list
style. The setup procedure in the Fireflies model in pure NetLogo (without using RNetLogo
and switching off the visual update) with 409.600 turtles took for example approximately
61 seconds and the execution of one simulation step (go procedure) with this number of
turtles took approximately 80 seconds. In conclusion, I think you will find RNetLogo is not
a bottleneck.
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APPENDIX H

Parallel Processing with the RNetLogo Package

H.1. Abstract

RNetLogo is a flexible interface for NetLogo to R. It opens various possibilities to connect
agent-based models with advanced statistics. It opens the possibility to use R as the starting
point to design systematic experiments with agent-based models and perform parameter
fittings and sensitivity analysis. Therefore, it can be necessary to perform repeated (inde-
pendent) simulations which can be parallelized. Here, I present how such a parallelization
can be done for the RNetLogo package. The techniques presented here can be used to run
multiple simulations in parallel on a single computer with multiple processors or to spread
multiple simulations to several processors in computer clusters/grids. Using the parallel
package has a positive side effect: It enables you to start more than one NetLogo instance
with GUI in parallel, which is not possible without parallelization.

H.2. Motivation

Since modern computers mostly have more than one processor and agent-based simulations
are often complex and time consuming it is desirable to spread repeated simulations, for
example for parameter fitting or sensitivity analysis, to multiple processors in parallel. Here,
I will present one way of how it is possible to spread multiple NetLogo simulations controlled
from R via the RNetLogo package to multiple processors.

H.3. Parallelization in R

R itself is not able to make use of multiple processors of a computer. But there are several R
packages available, which enable the user to spread repeated processes to multiple proces-
sors. There is a CRAN Task View called "High-Performance and Parallel Computing with R"
at http://cran.r-project.org/web/views/HighPerformanceComputing.html. Since R version
2.14.0 there is the parallel package included in every standard R installation. In the follow-
ing I will present how to use this parallel package in conjunction with RNetLogo. Therefore,
to follow the examples it requires that you have an R version >= 2.14.0 installed. There
is a pdf file coming with the parallel packing giving a short introduction into the usage of
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the package and the platform specific differences. You should always start by reading this
document. A last note, before we start: The commands presented in the following have
been tested on Windows and Linux operation systems only. If you have experiences with
Mac OS please let me know.

H.4. Parallelize a Simple Process

The basic concept of the parallel package is to parallelize an apply (or lapply, sapply
etc.) operation. This means that the process you want to parallelize has to be a process
which is applied to an array, matrix, list, etc.

Let us start with a simple example without using RNetLogo. First, we define a simple
function which calculates the square of an input number.

R> testfun1 <- function(x) {
+ return(x*x)
+ }

We can apply this simple function to a vector of values using sapply like this:

R> my.v1 <- 1:10
R> print(my.v1)

Output:

[1] 1 2 3 4 5 6 7 8 9 10

R> my.v1.quad <- sapply(my.v1, testfun1)
R> print(my.v1.quad)

Output:

[1] 1 4 9 16 25 36 49 64 81 100

The result is a vector with the squared values of the input vector, i.e., the function was
applied sequentially to each element of the input vector.

One way to use the parallel package is to run the parallel version of the sapply function
which is called parSapply.

Before we can use this function, we have to make/register a cluster, as you know from
the manual of the parallel package. Therefore, we could, for example, detect the number
of cores of our local computer and start a local cluster with this number of processors, as
shown here:

R> # load the parallel package
R> library(parallel)
R> # detect the number of cores available
R> processors <- detectCores()

R> # create a cluster
R> cl <- makeCluster(processors)
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Then, we can run our simple function on this cluster. At the end, we should always stop
the cluster.

R> # call parallel sapply
R> my.v1.quad.par <- parSapply(cl, my.v1, testfun1)
R> print(my.v1.quad.par)

Output:

[1] 1 4 9 16 25 36 49 64 81 100

R> # stop cluster
R> stopCluster(cl)

H.5. Parallelize RNetLogo

As you know from the RNetLogo manual, it requires an initialization using the NLStart
and (maybe) NLLoadModel function. To parallelize RNetLogo we need this initialization
to be done for every processor, because they are independent from each other (which is
a very important property, because, for example, random processes in parallel simulations
should not being influenced by each other).

Therefore, it makes sense to put the initialization, the simulation, and the quitting process
into separate functions. These functions can look like the following (if you want to test these,
do not forget to adapt the paths appropriately):

R> # the initialization function
R> prepro <- function(dummy, gui, nl.path, model.path) {
+ library(RNetLogo)
+ NLStart(nl.path, nl.version=5, gui=gui)
+ NLLoadModel(model.path)
+ }
R> # the simulation function
R> simfun <- function(x) {
+ NLCommand("print ",x)
+ NLCommand("set density", x)
+ NLCommand("setup")
+ NLCommand("go")
+ NLCommand("print count turtles")
+ ret <- data.frame(x, NLReport("count turtles"))
+ names(ret) <- c("x","turtles")
+ return(ret)
+ }
R> # the quit function
R> postpro <- function(x) {
+ NLQuit()
+ }
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H.5.1. With Graphical User Interface (GUI)

Now, we have to start the cluster, run the initialization function in each processor, which
will open as many NetLogo windows as we have processors.

Note that this is also a nice way to run multiple NetLogo GUI instances in parallel, which
is not possible within one R session without this parallelization.

R> # load the parallel package, if not already done
R> require(parallel)
R> # detect the number of cores available
R> processors <- detectCores()
R> # create cluster
R> cl <- makeCluster(processors)
R> # set variables for the start up process
R> # adapt path appropriately (or set an environment variable

NETLOGO_PATH)
R> gui <- TRUE
R> nl.path <- Sys.getenv("NETLOGO_PATH", "C:/Program

Files/NetLogo 5.0.4")
R> model.path <- "models/Sample Models/Earth

Science/Fire.nlogo"
R> # load NetLogo in each processor/core
R> invisible(parLapply(cl, 1:processors, prepro, gui=gui,
+ nl.path=nl.path, model.path=model.path))

After the initialization is done in all processors, we can run the simulation. Here, we will
use the Fire model from NetLogo’s Model Library. We will vary the density value from 1 to
20, i.e., we will run 20 independent simulations each with a different density value.

R> # create a vector with 20 density values
R> density <- 1:20
R> print(density)

Output:

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R> # run a simulation for each density value
R> # by calling parallel sapply
R> result.par <- parSapply(cl, density, simfun)

R> print(data.frame(t(result.par)))

Output:

x turtles
1 1 252
2 2 261

308



H.5. Parallelize RNetLogo

3 3 261
4 4 264
5 5 261
6 6 265
7 7 269
8 8 269
9 9 277
10 10 276
11 11 273
12 12 284
13 13 279
14 14 289
15 15 282
16 16 289
17 17 302
18 18 296
19 19 300
20 20 294

At the end, we should stop all NetLogo instances and the cluster.

R> # Quit NetLogo in each processor/core
R> invisible(parLapply(cl, 1:processors, postpro))
R> # stop cluster
R> stopCluster(cl)

H.5.2. Headless

The same is possible with the headless mode, i.e., without the GUI. We just have to set the
variable gui to FALSE.

It can look like this:

R> # run in headless mode
R> gui <- FALSE
R> # create cluster
R> cl <- makeCluster(processors)
R> # load NetLogo in each processor/core
R> invisible(parLapply(cl, 1:processors, prepro, gui=gui,
+ nl.path=nl.path, model.path=model.path))

R> # create a vector with 20 density values
R> density <- 1:20
R> print(density)

Output:

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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R> # run a simulation for each density value
R> # by calling parallel sapply
R> result.par <- parSapply(cl, density, simfun)

R> print(data.frame(t(result.par)))

Output:

x turtles
1 1 253
2 2 256
3 3 259
4 4 258
5 5 268
6 6 267
7 7 272
8 8 272
9 9 278
10 10 278
11 11 280
12 12 281
13 13 276
14 14 284
15 15 290
16 16 295
17 17 296
18 18 295
19 19 300
20 20 289

R> # Quit NetLogo in each processor/core
R> invisible(parLapply(cl, 1:processors, postpro))
R> # stop cluster
R> stopCluster(cl)

H.6. Conclusion

We have seen one way of how it is possible to spread repeated and independent simulations
to multiple processors using the parallel package. Therefore, RNetLogo can be efficiently
used to perform parameter fittings and sensitivity analysis where large numbers of repeated
simulations are required.
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APPENDIX I

ODD Model Description to Kerr et al. [2002]

The model description follows the ODD (Overview, Design concepts, Details) protocol for
describing individual- and agent-based models [Grimm et al. 2006, 2010].

I.1. Purpose

The model analyses the effect of local interactions and dispersal on coexistence of three
competing species in the context of theoretical analysis of the mechanisms that maintain
biodiversity.

I.2. Entities, State Variables, and Scales

The model consists of 250 x 250 equal-sized grid cells. Each grid cell is described by its
x- and y-coordinates and a state variable "species" defining by which of the three species
C (colicinogenic cells), S (sensitive cells), R (resistant cells), or none it is occupied. The
boundaries of the world are wrapped around. A time step is called an "epoch" meaning that
all grid cells are updated once. A run for coexistence check comprises 10,000 epochs.

I.3. Process Overview and Scheduling

In one time step (epoch) all grid cells are updated asynchronously in a random order. Updat-
ing means that, first, the relative share of neighbouring grid cells occupied by each species
are determined. If the current cell is not settled by a species it is recolonized depending
on the states of the neighbours. Otherwise, mortality takes place - as natural background
mortality and, in case of species S, by poisoning by species C from neighbouring grid cells.

to go
; iterate all patches (in random order)
ask patches [
; get relative share of species among neighbours
let f_c 0.0
let f_r 0.0
let f_s 0.0
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; local interaction alternative
set f_c count neighbors with [species = 0] / 8.0
set f_r count neighbors with [species = 1] / 8.0
set f_s count neighbors with [species = 2] / 8.0

; update species state
ifelse (species = 3)
[ recolonization f_c f_r f_s ]
[ mortality f_c ]

]

; increase time
tick

end

I.4. Design Concepts

Basic principles. The hypothesis underlying the model is that coexistence and in turn
maintenance of biodiversity depends on the locality of interactions and dispersal of compet-
ing species. The model is constructed on stochastic neighbourhood interaction rules only.
No further aspects, like species-specific habitat suitability is taken into account. The inter-
action between the species follows the principles of the children’s game rock-paper-scissors,
where rock crushes scissors, scissors cuts paper, and paper covers rock.

Emergence. Running the model over multiple epochs coexistence or extinction of species
emerge from the neighbourhood interactions.

Adaptation. No adaptive traits.

Objectives. No objectives.

Learning. No learning.

Prediction. No prediction.

Sensing. No sensing.

Interaction. Neighbouring grid cells are able to occupy empty grid cells and cells occupied
by species C increase mortality probability on neighbouring grid cells settled by species S.

Stochasticity. All processes are random, namely the order of grid cells update, the re-
colonization of empty grid cells and mortality.

Collectives. No collectives.
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I.5. Initialization

Observation. The number of grid cells occupied by the different species are counted in
each time step. After all time steps this list is checked if all species are present, i.e., coexis-
tence has taken place.

I.5. Initialization

At the beginning of a simulation the state variable "species" of all 250 x 250 grid cells is
initialized randomly. The three different species as well as no species (i.e., empty grid cell)
are assigned with equal probability.

I.6. Input Data

No input data.

I.7. Submodels

I.7.1. Re-Colonization

Re-colonization takes place when a cell is not occupied by a species. The re-colonization is
a stochastic process with probabilities depending on the species shares of the neighbouring
grid cells.

to recolonization [f_c f_r f_s]
let rand random-float 1.0
ifelse ((rand < f_c) and f_c > 0.0)
[ set species 'C' ]
[
ifelse (rand < (f_c + f_r) and f_r > 0.0)
[ set species 'R' ]
[
if (rand < (f_c + f_r + f_s) and f_s > 0.0)
[ set species 'S' ]

]
]

end

I.7.2. Mortality

If a grid cell is occupied by species S or R, mortality takes place. Mortality is a stochastic
process with mortality probability of species S depending on the share of species C among
the neighbouring grid cells. If mortality takes place the grid cell is assigned as empty.

to mortality [f_c]
let mort_prob 0.0
ifelse (species = 'C')
[ set mort_prob delta_c ]
[
ifelse (species = 'R')
[ set mort_prob delta_r ]
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[ set mort_prob delta_s0 + tau * f_c ]
]
let rand random-float 1.0
if (rand < mort_prob)
[
set species 'empty'

]
end

with parameter values:

• delta_c: fixed at 1/3

• delta_r: varied between 1/4 and 1/3 (base value: 10/32)

• delta_s0: fixed at 1/4

• tau: varied between 1/8 and 3/4 (base value: 3/4)
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