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1 Kurzfassung

In der Stromversorgung vollzieht sich seit etwa zwanzig Jahren ein grundlegender Wandel
von konventioneller Stromerzeugung durch hauptsächlich Kohle- und Atomkraftwerke hin
zu erneuerbaren Stromerzeugung durch hauptsächlich Windkraft- und Solaranlagen. Die
Hauptunterschiede zwischen diesen beiden Formen der Erzeugung liegt in der geringeren
Leistung, die eneuerbare Erzeuger typischerweise gegenüber konventionellen Erzeugern pro-
duzieren und in dem vermehrten Auftreten von Fluktuationen in deren Leistungserzeu-
gung. Aufgrund dieser fundamentalen Unterschiede zwischen diesen beiden Formen der
Stromerzeugung stellt dieser Wandel das stabile Funktionieren des Stromnetzes vor gros̈se
Herausforderungen.

In dieser Arbeit werden anhand eines einfachen Modells für Stromnetze verschiedene Fragestel-
lungen die Stabilität des Stromnetzes betreffend untersucht. Im ersten Teil der Arbeit wird
das Modell im Detail vorgestellt. Anschlies̈send wird das Modell für das einfachst möglich-
ste Stromnetz untersucht, hier bestehend aus einem Erzeuger und einem Verbraucher. In
diesem einfachen Fall lassen sich die mathematischen Gleichungen des Modells analytisch
lösen, was Einsichten in die Eigenschaften des Modells erlaubt. Diese Eigenschaften sind
auch bei grös̈seren Netzen vorzufinden. Es wird gezeigt, dass das Modell die wichtigsten
Eigenschaften des realen Netzes erfasst, an erster Stelle dass die Entwicklung der Dynamik
des Stromnetzes sowohl hin zu einem stabilen Zustand, als auch zu einem instabilen Zus-
tand hin möglich ist, abhängig von dem aktuellen Zustand des Netzes.

Im zweiten Teil der Arbeit wird das Phänomen der Dezentralisierung untersucht. Da
Erzeuger, die auf erneuerbaren Energieträgern basieren, typischerweise weniger Leistung
produzieren koennen als konventionelle Kraftwerke, müssen, um einzelne konventionelle
Kraftwerke zu ersetzen, mehrere erneuerbare Erzeuger neu an das bestehende Stromnetz
angeschlossen werden. Dies führt zu der sogenannten Dezentralisierung, womit gemeint
ist, dass die neu angeschlossen Kraftwerke oftmals weit von der Masse der Verbraucher,
zum Beispiel gros̈ser Städte, entfernt sind. Dies hat verschiedene Konsequenzen auf die
Stabilität des Stromnetzes, welche in diesem Kapitel im Einzelnen untersucht werden.
Zusammenfassend lässt sich sagen, dass die Robustheit des Netzes gegen gros̈se Störungen
fuer dezentrale Netze geringer ist als für zentrale, während die strukturelle Stabilität gegen
einzelne Leitungsausfälle zunimmt.

Im letzten Teil der Arbeit wird die strukturelle Stablität des Stromnetzes genauer un-
tersucht. Es werden neuartige Verfahren entwickelt, um Vorhersagen zu können, welche
Leitungen, falls sie ausfallen sollten, einen systemweiten Stromausfall nach sich ziehen und
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1. Kurzfassung

welche nicht. Es wird gezeigt, dass die Leistung, die eine Leitung transportiert, kein ausre-
ichendes Kriterium ist, um präzise Vorhersagen für das Verhalten des gesamten Netzes im
Falle des Ausfalls einer Leitung zu treffen. Abschliessend werden im Detail neue Kriterien
entwickelt, die sich für Vorhersagen als geeignet herausstellen.
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2 Abstract

We are currently witnessing a change of electrical power supply from conventional power
generation to power generation based on renewable energy sources such as wind and solar
power. The main differences between these two ways of power generation are that power
generation based on renewables produces typically less and more fluctuating power output.
The changes in power production therefore pose a problem for the stability of power grids.

In this thesis we analyze different effects of these changes for the stability of power grids.
In the first part we introduce in detail the power grid model we are using. We analyze
the model for the simplest possible system, a system consisting of one generator and one
consumer. For this system an analytical analysis of the model is possible. We demonstrate
that the model contains the most important features of real-world power grids and is such
a useful tool for investigations of larger networks. The most important feature is that
there exists both a stable and an unstable state and the dynamics depend on the initial
conditions, i.e., the current state of the network.

In the second part of the thesis we investigate the process of decentralization of power
generation. This process is ongoing due to the replacement of conventional power sources
with renewables. As renewable power sources are typically far away from consumers the
replacements process ends up with a decentralized power grid. Our main results are that
dynamical stability, i.e., stability against large scale power perturbations, is decreased for
decentralized power grids compared with centralized ones. On the other hand, structural
stability, i.e., stability against single transmission line failures, is increased for decentralized
grids.

In the last part we analyze structural stability in more detail. We develop a novel criterion
to predict which transmission lines can induce large scale power outages if they fail and
which not. We demonstrate that the load of a transmission line alone is not a good predictor
for this behavior.
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3 Introduction

A reliable supply of electric power fundamentally underlies the function of most of our
technical infrastructure and affects all aspects of daily life [1, 2]. It is thus an essential
task to maintain a stable operation of the power grid and to minimize the risk of power
outages. The supply of electric power consists of power generation, power distribution and
trade. It is based on a complex technical infrastructure and a regulatory framework. These
conditions are subject to constant changes.

Today we are witnessing a time of rapid changes of power generation. These changes
are mainly driven by concerns for environment and climate. It is nowadays scientific
consensus that one of the main reasons for global warming is the human-caused emission
of greenhouse gases such as carbon dioxide and methane [3]. To reduce global warming,
Germany has committed itself to reduce the production of greenhouse gases until 2050 by
80% to 95% compared to the production level of 1990 [4]. Among the main producers of
carbon dioxide are conventional coal-fired power plants [3], which have been a major power
source since the early years of power grids and in 1990 still produced more than 60% of the
total power in Germany [5]. As carbon dioxide is one of the main greenhouse gases causing
global warming, the reduction of power generation by coal-fired power plants is one of
the main concepts to reduce the output of carbon dioxide and thus to meet the reduction
commitment [4]. Therefore, the amount of power generation by renewable energy sources
has constantly been increasing in Germany for the last 20 years. In 1990 the fraction of
renewable energy sources on the total power production was only 3.4%, in 2000 it was 6.2%
and in 2012 it already amounted to 23.5% [6]. According to the so-called “Energiewende”
[4], planned by the German government, the goal is to increase this fraction to 35% in 2020
and even to 80% in 2050 [7]. Renewable energy sources are mainly based on wind, solar
and hydroelectric power and produce a lot less greenhouse gases than coal power plants.
Consequently, the amount of greenhouse gases is today already reduced by 25% compared
to the level of 1990 [4]. Renewable energy sources are therefore the desired form of energy
production in the future.

The increase of the inclusion of renewable energy sources into the power grid gained mo-
mentum in Europe when in 1996 the European Union issued a directive to liberalize energy
markets (see [8]). In Germany the inclusion of renewable energy sources into the power grid
gained momentum after the enacting of the “Erneuerbaren-Energien-Gesetz” in 2000 [9].
However, the change from conventional power sources to renewable energy sources is not
only a simple change of sources in power production. On the contrary, renewable energy
sources have entirely different properties regarding power generation than conventional
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3. Introduction

sources. They typically produce less and constantly fluctuating power, whereas conven-
tional power sources can provide a constant and controllable power output [2, 4, 6, 7]. The
change of power generation is thus rather a paradigm change for the entire European power
grid, bringing new challenges for power grid operation.

The reason behind the power fluctuations of renewable power sources is that their power
output depends critically on external factors such as wind power or solar radiation, which
are of course not controllable by power grid operators. Therefore, the power output of
renewable energy sources typically strongly fluctuates [4, 10–12]. Furthermore, the possible
geographical locations for power plants based on renewable energies depend on geographical
factors. This will often lead to a stronger spatial separation between power sources and
consumers, for instance in Germany [13]. Power sources based on wind power are typically
located in Northern Germany or offshore, where more reliable wind power is present. Solar
power plants, on the other hand, are typically located in Southern Germany, in areas with
more hours of sunshine. These developments lead to a stronger burden on the existing
power grid. For example, transmission lines have to be capable of carrying stronger loads
over longer distances in times of high wind and/or solar power.

Furthermore, renewable power sources typically have less power output than conventional
power sources [14]. For instance a typical wind farm consists of a few dozen wind turbines,
where each turbine has a power output of up to 5 MW, whereas a nuclear power plant
has an output of around 1 GW [4]. There are only few exceptions such as large offshore
wind farms [15] or huge solar parks like Desertec [16]. In order to get the same total power
output a large number of renewable power sources is needed to replace one conventional
power plant. Because renewable power sources cannot be located everywhere, this process
implies decentralized power generation. Decentralization is one of the main developments
taking place in today’s power grids [17]. This technical term means that electric power is no
longer generated in only few power plants which are geographically close to their attached
consumers as for example large cities. The opposite of this concept is called centralized
power generation. Centralized power grids have the advantage of being in principle easier
to control, as power production that takes place close to the consumer does not require
a complex topology of the power grid. In contrast, for decentralized power grids, many
small power plants are spread out geographically all over the grid. Their locations can
be close or far away from large cities. Decentralization will therefore obviously alter the
topology of the existing power grid as new transmission lines have to be built and generally
a more complex topology of transmission lines is required. In Germany, for instance, new
transmission lines are planned from the North to the South to connect wind farms, which
are located predominantly in the north, to consumers in the south of Germany according
to the grid developing plan (“Netzentwicklungsplan”) [18]. The process of decentralization
does a priori not necessarily depend on the inclusion of renewable energy sources but,
conversely, the inclusion of renewable energies naturally leads to decentralization, because
of the aforementioned constraints. This development can be observed in today’s power
grids.
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As of now, power grids are still dominated by large conventional power plants based on
fossil fuel or nuclear material and exhibiting a large power output [4]. Essentially, the
effective topology of power grids is locally star-like with transmission lines going from
large plants to regional consumers. As more and more renewable power sources contribute,
this topology is about to change and power production will become more decentralized and
more recurrent [18]. The topologies of current grids vary largely, with large differences, e.g.,
between grids on islands, such as Great Britain [19], and those in continental Europe, or
between areas of different population densities. Decentralization will strongly modify these
structures in a yet unknown way. The synchronization dynamics of many power grids with
a special topology are well analyzed [20], such as the European power transmission network
[21].

In order to get a differentiated view of the so-called Energiewende three major developments
must be clearly distinguished: decentralization, spatial separation and fluctuations of the
power output. In this thesis we aim at a thorough analysis of the effects of the decentral-
ization process on the stability of power grids. We show that already the decentralization
process alone has diverse effects on the stability of future power grids.

Modern power grids are a geographically wide-ranging technical infrastructure consisting of
numerous different elements. They can be distinguished into four different interconnected
grids with different voltage levels [22]. The grids with the lowest voltage are called the
low-voltage grid. Most consumers obtain electric power from the low-voltage grid, with
only few exceptions such as industrial consumers with a high power demand. The middle-
voltage grids are fed from transformer stations with the high-voltage grid. Its function is
to distribute the power into the low-voltage grids. The high- and maximal-voltage grid
connects the power sources with the transformer stations [22]. In this thesis we consider
the high-voltage grids. The transformer stations between the high and the middle-voltage
grid are regarded as consumers.

There exist many fine-tuned operation directives to ensure stable operation of power grids.
First of all, power generation and consumption must be balanced at any time, which
is achieved by the so-called primary, secondary and tertiary control on the generators’
side [23]. Primary control serves to compensate an imbalance between power generation
and consumption, where the additional power has to be available on short time scales
(30 s). Secondary control has the same purpose as primary control but with a focus on
the singular control areas where the imbalances originated. The additional power has
to be available on slightly longer time scales (5 min). Tertiary control serves mainly for
economic optimizations and has to be activated manually [22]. Second, the grid must
be able to transport the generated power to the consumers. The so-called (N-1)-rule
demands that this condition must be satisfied even if a single arbitrary transmission line
fails. That is, the load of each transmission line must be smaller than a limiting value
in the fully intact network (so-called N-0 case) as well as after a random breakdown of
any single element [24]. Furthermore, according to power grid operations, the local voltage
and frequency must match the reference values of 230 V and 50 Hz, respectively, up to
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3. Introduction

only small tolerable deviations [25]. Constant measurements of the grid frequency serve as
the key instrument to maintain stable operation of the grid [25]. If deviations larger than
±0.2 Hz of the measured frequency to the desired grid frequency of 50 Hz occur, different
countermeasures are executed depending on the size of the deviations [25].

However, although power grids work reliably under normal operating conditions there are
still numerous threats such as cataclysms, technical or human failures or even intentional
attacks, which can cause large scale power outages with potentially catastrophic conse-
quences and huge economic losses [26]. Still, despite all these threats, the functionality of
power grids is often seen as a given fact. But, not surprisingly, sometimes large scale out-
ages happen that affects millions of people. One example is the large scale power outage
in the United States and Canada in August 2003, which left 50 million people without
electric power for about 16 hours. The largest power outage ever to this date occurred in
India in July 2012. It left over 600 million people without electric power for a time span
ranging from several hours to more than one day. Another example is the power outage
in Western Europe in November 2006, which left approximately 15 million people without
electricity for about two hours. The second example is especially interesting, as it was
caused by the shutdown of just one transmission line and a following violation of the N-1
safety criterion [27]. This event thus demonstrates that it is in general not always possible
to calculate the consequences of failures of certain elements of the power grid and that the
technical infrastructure of power grids is still in need of improvements to prevent power
outages [28].

To analyze the behavior of power grids under different scenarios different classes of models
are in use. We can roughly distinguish between two different classes of models, detailed
and abstract. It is virtually impossible to simulate a large-scale power grid including
the details of every machine in the grid simply because of the size of the grid. Large
modern power grids consist of thousands of different elements and such a model would
thus have so many parameters and variables that computer simulations become extremely
time consuming, and still insights into the dynamic behavior of power grids would be
restricted. Nevertheless, such detailed models which cover every element exist, but they
only allow for calculations that represent the behavior of systems of the size of a few streets
in a city. However, calculations on this scale are not sufficient to gain insights into the
behavior of larger grids. The second class of models are the abstract, large-scale network
models. However, although these models are accessible to methods of statistical physics
or nonlinear dynamics, they provide only statistical information or a pure directed current
(DC) picture. In this thesis we study an oscillator model for power grid operation recently
introduced by Filatrella et al. [29]. This model captures the essential dynamical features
of a power grid on coarse scales, but is still simple enough to allow for a comprehensive
understanding of the fundamental properties of power grid dynamics.

The thesis is organized as follows. The introduction is followed by chapter 4, which gives
an overview over the different existing model classes. We provide an exact derivation of
the oscillator model introduced by Filatrella et al. [29] and compare this model to the
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well known Kuramoto model [30]. In chapter 5 we present an analytical investigation of
the smallest possible non-trivial power grid within the oscillator model framework, a grid
consisting of one generator and one consumer. We demonstrate that already this simple
grid contains essential features of power grids, in particular the coexistence of a stable and
an unstable state in the parameter space of the model. This feature of coexistence is also
present in larger grids and most importantly, also in real-world power grids. In chapter 6
we analyze the effects of decentralization in detail. We demonstrate that for decentralized
power grids the onset of stable operation is promoted for smaller transmission capacities.
In chapter 7 we provide a detailed analysis of failures of one transmission line. We develop
new measures to determine the importance of the failed transmission line for power grid
operations. Chapter 8 summarizes the results obtained in this thesis and gives a brief
outlook on future research.
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4 An oscillator model for power grid
operation

In this thesis we consider a power grid model which was recently introduced by Filatrella et
al. [29]. This model is based on first principle equations of electric circuits of synchronous
machines and contains many important parameters and features of power grids and allows
for large scale simulations. It is thus valuable for getting insights into a variety of problems
regarding the dynamical behavior of power grids under different scenarios.

The first section of this chapter gives an overview over the large variety of different existing
power grid models. In particular we discuss different abstract models on the one hand and
detailed models on component level mostly used by engineers on the other hand. In the
second section we provide a detailed derivation of the Filatrella model. We show the
basic first principle equations for electric circuits of synchronous machines and the model’s
underlying assumptions for power grids of alternating current (AC) of the model. In the
third section we discuss the advantages and limitations of this model compared to other
models described in the overview section. Finally, we compare the model to the famous
Kuramoto model for coupled limit cycle oscillators [30].

4.1 Overview

Large modern power grids typically have a geographical span of several thousands kilo-
meters, for instance the European high voltage transmission grid [31]. The total length of
transmission lines in the German power grid alone sums up to about 1.7 million kilometers
[32]. Modern power grids are therefore often described as the largest man-made machines
in existence [20]. Not surprisingly, a rigorous mathematical description of power grids as
a whole does not exist. Advanced numerical methods are needed to calculate the voltage-
current characteristics of larger grids [22]. There exist different model classes with different
strengths and weaknesses.

Every generator and consumer is modeled as a node and every transmission line as an
edge. Classically, load-flow calculations are used to describe the static operation of power
grids. Load-flow calculations determine the voltage and phase of every node in the power
grid [22]. With known voltage and phase for every node the active and reactive power of
every edge can be determined. There are in principle two different methods in use for
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load-flow calculations [22]. The first method is calculating the sums of all currents at every
node of the grid. The voltages of the nodes can then be determined via Kirchhoff’s circuit
laws [33] and the admittances of the grid. For the second method the sum of the power
demands of every node are calculated instead of the currents. Kirchhoff’s first law can
then be formulated for power demands instead of currents. The voltages can then again
be calculated by using Kirchhoff’s laws and the admittances of the grid. However, these
methods can only be used to calculate static states of the grid and do not capture its
dynamics. They are thus insufficient for dynamical calculations.

To analyze the structural stability of power grid dynamics often large-scale abstract models
are considered. This is especially done to describe cascading failures of transmission lines,
which are complicated to describe via load-flow calculations. Examples can be found in [34–
37]. These models are applicable for methods of nonlinear dynamics [38]. Although these
models provide valuable insights into the behavior of power grids, the principal problem
remains that these insights are only of statistical nature or are based on a pure directed
current (DC) picture.

Another class are detailed dynamical models on component level. These models are used
mostly by engineers for specific simulations. An example can be found in [39]. However,
these models require a huge number of parameters and variables. Due to this vast number
of parameters and variables it is hard to values gain insights into the dynamic behavior of
power grids on large scales which are independent of the specific parameter setting.

4.2 Oscillator model

In this section we introduce the power grid model of coupled oscillators by Filatrella et al.
[29]. We start with a review of fundamental aspects of AC power systems. We continue
with the derivation of the equation of motion of the oscillators from basic equations of
synchronous machines. We finally provide an estimate of realistic parameter ranges for
the model with regard to real world power grids and compare the model to the famous
Kuramoto model.

4.2.1 Synchronous machines

A synchronous generator as illustrated schematically in Figure 4.2.1 consists of two essential
elements, rotor and stator. The field windings are located on the rotor and the armature
winding on the stator. The rotor is driven by a turbine. The three-phase armature windings
aa’, bb’ and cc’ are apart by 120 degrees in space to each other. The field winding carries
directed current and produces a magnetic field with a north pole N and a south pole S.
The rotating magnetic field induces a three-phase alternating current voltage shifted by 120
degrees in time in the armature windings. The frequency of the induced alternating current
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4.2 Oscillator model

Figure 4.1: Schematic diagram of a three-phase synchronous generator. Figure from [24].

is synchronous to the angular velicity of the rotor, hence the name synchronous machine.
The alternating currents in the armature windings induce a rotating magnetic field in the
air-gap with the same frequency as the rotor in the steady state. Both magnetic fields
interact which each other. The resulting electromagnetic moment of torque counteracts
against the rotation of the rotor. To maintain a constant rotation frequency the mechanical
moment of torque has to work against this effect. To raise or lower the electrical power
output of the synchronous generator the mechanical moment of torque has to be increased
or decreased. To operate a synchronous machine as a motor the roles of the electromagnetic
and mechanical moment of torque are reversed. Synchronous machines can thus either
produce electric power (Generator) or consume electric power (Motor) [24].

4.2.2 Alternating current

The operation of almost all modern power grids is based on alternating current. Therefore,
we here present the basic definitions and relations in the theory of alternating current. The
main feature of alternating current (AC) is time dependent voltage Ũ(t) and current Ĩ(t)

Ũ(t) = Û cos(ωt+ φu), (4.1a)
Ĩ(t) = Î cos(ωt+ φi), (4.1b)
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4. An oscillator model for power grid operation

with amplitudes Û and Î, frequency ω and phases φu and φi. It is now useful to switch to
complex values for voltage and current.The voltage Ũ(t) and the current Ĩ(t) are the real
parts of the complex variables

U(t) = Ûei(ωt+φu), (4.2a)
I(t) = Îei(ωt+φi). (4.2b)

The effective values U and I are defined as the respective values of directed current, which
would produce the same power P at an Ohmic resistance over time [40]. Thus:

P = UI = U
2

R
= 1
T

∫ T

0

U2(t)
R

dt = Û2ei2φu

2R . (4.3)

Hence the effective values are

U = Û√
2
eiφu ⇒ |U | = Û√

2
(4.4)

and
I = Î√

2
eiφi ⇒ |I| = Î√

2
. (4.5)

With U∗(t) as the complex conjugate of U(t) we have the following relation:

U(t) + U∗(t) = Ûei(ωt+φu) − Ûe−i(ωt−φu) (4.6a)
= 2Û cos(ωt+ φu) = 2< (U(t)) . (4.6b)

The active power P is defined as the mean over time of the product of the real parts of
U(t) and I(t) [40]. Hence:

P = 1
T

∫ T

0
(< (U(t)) · < (I(t))) dt (4.7a)

= 1
T

∫ T

0

(1
2(U(t) + U∗(t))1

2(I(t) + I∗(t))
)
dt (4.7b)

= 1
T

∫ T

0

(1
4(U(t)I∗(t) + U∗(t)I(t) + U(t)I(t) + U∗(t)I∗(t))

)
dt (4.7c)

= 1
T

∫ T

0

(1
2< (U(t)I∗(t) + U(t)I(t))

)
dt (4.7d)

= 1
T

∫ T

0

(1
2<

(
Û Îei(φu−φi) + Û Îei(2ωt+φu+φi)

))
dt (4.7e)

= <
(
UI∗

)
. (4.7f)

The complex power S is now defined as S = UI∗, such that the active power is the real
part of S with P = <

(
S
)
. The imaginary part =

(
S
)
is called reactive power Q. We thus
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4.2 Oscillator model

have
S = UI∗ = P + iQ (4.8)

with
P = <

(
S
)

= Û Î

2 cos(φu − φi) (4.9)

and
Q = =

(
S
)

= Û Î

2 sin(φu − φi). (4.10)

Active power can be transmitted over long distances and results in grid transmission of
energy and can be thus used by consumers. Reactive power is the portion of electricity that
establishes and sustains the electric and magnetic fields of alternating-current equipment.
Reactive power cannot be transmitted over long distances and cannot be used by consumers
[23]. In the following we consider only the active power and discard the reactive power.

4.2.3 Power transmission in alternating current circuits

The basic elements of a power grid are generators, consumers and transmission lines. In
graph theory every generator and consumer is modeled as a node and every transmission
line as an edge. Every node i is then assigned a voltage Ui and every edge (i, j) between
the nodes i and j an impedance Zij and a current Iij.

In normal operation the magnitude of the voltage amplitude is approximately equal at
every node. In fact, strict safety regulations exist for voltage stability [24, 41]. To keep the
dynamical model as simple as possible we thus assume that

∀ij Ûi = Ûj = Û , (4.11)

such that there are only phase differences φij between the nodes. The current Iij between
two nodes i and j depends on the phase difference of the voltages of these two nodes and
the electrical impedance Zij of the edge:

Iij = Ui − Uj
Zij

(4.12a)

= 1√
2
Ûeiφi − Ûeiφj

Zij
. (4.12b)

The electrical impedance Zij consists of a real and an imaginary part. The real part is the
Ohmic resistance Rij and the imaginary part the reactance Xij, consisting of a capacitive
and inductive part, such that

Zij = Rij + iXij. (4.13)

We further assume that we have no Ohmic losses in transmission lines, such that we have
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4. An oscillator model for power grid operation

for all edges (i, j)
Rij = 0. (4.14)

The current between two nodes (cf. equation 4.12b) now reads

Iij = Û

i
√

2Xij

(
eiφi − eiφj

)
. (4.15)

We model every node as a synchronous machine which produce three-phase alternating
current (cf. section 4.2.1). Three-phase alternating current consists of three identical al-
ternating currents of the same frequency, which are phase shifted by 120 degrees. The
complex power flow Sij between two nodes is thus (cf. equation 4.8)

Sij = 3U i · I
∗
ij (4.16a)

= −3Û√
2
eiφi

Û

i
√

2Xij

(
e−iφi − e−iφj

)
(4.16b)

= − 3Û2

i2Xij

(1− cos(φi − φj)− i sin(φi − φj)) . (4.16c)

The power flow consists of a real part and an imaginary part, such that

Sij = Pij + iQij (4.17a)

= 3Û2

2Xij

[sin(φi − φj) + i (1− cos(φi − φj))] . (4.17b)

The active power flow is therefore

Pij = 3Û2

2Xij︸ ︷︷ ︸
Pmax
ij

sin(φi − φj), (4.18)

with Pmax
ij as the new parameter for the maximum transmission capacity of an edge.

4.2.4 Coupled oscillator model for power grids

In the model by Filatrella et al. every node of the power grid is modeled as a synchronous
machine [29]. Each machine is either a generator or a consumer [24]. Every element i is
described by the same equation of motion derived from the dynamics of synchronous ma-
chines. Every element has a generalized parameter Pi, which is the generated or consumed
active power. The generated power has a positive value (Pi > 0), the consumed power a
negative value (Pi < 0). The state of each element is determined by its phase angle φi(t)
and velocity φ̇i(t). During regular operation, generators as well as consumers within the
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4.2 Oscillator model

Figure 4.2: Scheme of a syn-
chronous machine. The machine
receives input power Psource and
stores (Pkin), dissipates (Pdiss)
and transmits (Ptrans) this power.
Figure adapted from [42].

grid run with the same frequency Ω = 2π × 50 Hz or Ω = 2π × 60 Hz. The phase of each
element i is then written as

φi(t) = Ωt+ θi(t), (4.19)

where θi denotes the phase difference to the set value ωt.

The equation of motion for all φi(t) can now be obtained from the energy conservation law:
The generated or consumed energy P source

i of each single element must equal the energy
sum given to or taken from the grid plus the accumulated and dissipated energy of this
element (see Figure 4.2). The dissipation power of each element is

P diss
i = κi(φ̇i)2, (4.20)

the accumulated power, i.e. the change of the kinetic energy of the rotating synchronous
machine,

P acc
i = 1

2Ii
d

dt
(φ̇i)2 (4.21)

and the transitional active power between two elements is

P trans
ij = Pmax

ij sin(φi − φj), (4.22)

see (4.18). The energy conversation law thus reads

P source
i = P diss

i + P acc
i +

∑
j

P trans
ij . (4.23)

A scheme of the power flow of such a synchronous machine is illustrated in Figure 4.2. The
phase difference between two elements is

φi(t)− φj(t) = θi(t)− θj(t). (4.24)

An energy flow between two elements is only possible if there is a phase difference between
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4. An oscillator model for power grid operation

these two. Inserting equations (4.20), (4.21) and (4.22) into equation (4.23) leads to

P source
i = κi(φ̇i(t))2 + 1

2Ii
d

dt
(φ̇i(t))2 −

∑
j

Pmax
ij sin(θj(t)− θi(t)) (4.25a)

= κi
(
Ω + θ̇i(t)

)2
+ 1

2Ii
d

dt

(
Ω + θ̇i(t)

)2
−
∑
j

Pmax
ij sin(θj(t)− θi(t)) (4.25b)

= κiΩ2 + 2κiΩθ̇i(t) + κiθ̇
2
i (t) + IiΩθ̈i(t) + Iiθ̈i(t)θ̇i(t)−

∑
j

Pmax
ij sin(θj(t)− θi(t))

(4.25c)
= κi

(
Ω2 + θ̇2

i (t)
)

+ IiΩθ̈i(t) +
(
2κiΩ + Iiθ̈i(t)

)
θ̇i(t)−

∑
j

Pmax
ij sin(θj(t)− θi(t)).

(4.25d)

We can simplify this equation under the assumption of only slow phase changes compared
to the frequency Ω, i.e., |θ̇i| � Ω and

∣∣∣θ̈i∣∣∣ � Ω. The dynamics of the ith machine is then
given by

θ̈i = P source
i − κiΩ2

IiΩ2 − 2κi
Ii
θ̇i +

∑
j

Pmax
ij

IiΩ
sin(θj − θi). (4.26)

The elements
Kij =

Pmax
ij

IiΩ
(4.27)

constitute the connection matrix of the power grid which decodes whether or not there
is a transmission line between two elements (i and j). We assume that we have an equal
moment of inertia Ii for all nodes i, such that Kij = Kji holds. For convenience we define
the new parameters Pi and αi

Pi = P source
i − κiΩ2

IiΩ
(4.28)

and
αi = 2κi

Ii
(4.29)

The equation of motion than assumes the simple form

d2θi
dt2

= Pi − αi
dθi
dt

+
∑
j

Kij sin(θj − θi). (4.30)

Under the assumption of αi = αj = α for all i and j we rescale the equation with s = αt
and new variables P̃ = P/α2 and K̃ = K/α2. This leads to

d2θi
ds2 = P̃i −

dθi
ds

+
∑
j

K̃ij sin(θj − θi). (4.31)
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4.2 Oscillator model

In the steady state both derivatives dθi
ds

and d2θi
ds2 are zero, such that

0 = Pi +
∑
j

Kij sin(θj − θi) (4.32)

holds for each element. For the sum over all equations, one for each element i, the following
holds

−
∑
i

Pi =
∑
i<j

Kij sin(θj − θi) +
∑
i>j

Kij sin(θj − θi) = 0, (4.33)

because Kij = Kji and the sin-function is antisymmetric. This means it is a necessary
condition that the sum of the generated power (Pi > 0) equals the sum of the consumed
power (Pi < 0) in the steady state.

4.2.5 Parameter setting

The equation of motion (4.30) contains three types of parameters: the produced or con-
sumed power Pi and the damping α and the transmission capacity Kij of edge ij. In
the following numerical examples we assume that large centralized power plants generate
P source
i = 100 MW each [43, 44]. A synchronous generator of this size would have a moment

of inertia of the order of Ii = 104 kg m2 [20, 43, 44]. The mechanically dissipated power
κiΩ2 usually is a small fraction of P source only. A major overhead power line can have a
transmission capacity of up to Pmax

ij = 700 MW. We take Ω = 2π × 50 Hz. This leads to
the following estimates for Pi, α and Kij:

Pi = 95 MW
2π × 50 Hz× 104 kg m2 (4.34a)

≈ 30 1
s2 , (4.34b)

α = 2× 5 MW
104 kg m2 × (2π × 50 Hz)2 (4.35a)

≈ 0.021
s . (4.35b)

and

Kij = 700 MW
104 kg m2 × 2π × 50 Hz

(4.36a)

≈ 200 1
s2 . (4.36b)

25



4. An oscillator model for power grid operation

However, in a realistic power grid there are additional sources of dissipation, especially
Ohmic losses and losses caused by damper windings [25], which are not taken into account
directly in the coupled oscillator model. Therefore, for our simulations we take a higher
value for α of α = 0.1s−1 and a smaller value for P of Pi = 10s−2 for large power plants.
Decentralized sources are characterized by lower values of Pi. For a typical consumer we
assume Pi = −1s−2, corresponding to a small city. A transmission line connecting a small
city to the grid usually has a smaller transmission capacity, such that Kij < 102 s−2 is
realistic. These values are in the order of magnitude commonly used in the literature [19,
29].

4.2.6 Comparison with Kuramoto model

The Kuramoto model for coupled oscillators was introduced by Y. Kuramoto in 1984 [30].
It is based on an idea by A. Winfree [45]. It considers N coupled oscillators with their
dynamics governed by the set of equations

θ̇i = ωi +
N∑
j=1

Γij (θj − θi) , i = 1, ...., N. (4.37)

Here θi oscillator i’s phase, ωi its intrinsic frequency and Γij is the coupling strength
between oscillators i and j. This model has proven to be useful for analyzing a huge number
of phenomena [46]. They reach from synchronizing behavior of light flashing fireflies [47]
to the synchronizing footsteps of humans walking across the Millennium Bridge in London
[48]. There is rich literature in the field, for an overview see e.g. [49]. However, the obvious
difference between the model derived by Filatrella et al. and the Kuramoto model is that
the former contains second order oscillators while equation (4.37) is of first order. There is
much less knowledge about the synchronization behavior of damped second order oscillators
compared to the insights gained on the Kuramoto model [46].

The model introduced by Filatrella et al. essentially combines the swing equation of a
synchronous machine [50] with damping Di, angular momentum Mi and the difference of
mechanical and electrical power, Pm − Pe,

Mi = d2θi
dt2

+Di
dθi
dt

= Pm − Pe, (4.38)

with active power transmission derived from the dynamics of alternating currents (AC) as
the coupling term (cf. section 4.2.3). It was only recently shown by Dörfler et al. [51] that
interconnected swing equations [50] for oscillators can be expressed via the non-uniform
Kuramoto model. This comparison has drawn a lot of interest in the last years in the
scientific community especially with regards to synchronization. Buzna et al. [52] analyzed
the synchronization dynamics of populations of Kuramoto oscillators with two different
frequencies, especially the minimal required coupling strength between the oscillators for
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global synchronization. Other examples for the relation between interconnected swing
equations and Kuramoto oscillators can be found in [20, 53–56]. In summary, different
models for the study of interconnected swing equations are available. In this thesis we
choose to directly study the model introduced by Filatrella et al. [29].

4.3 Discussion

In this chapter we introduced the model derived by Filatrella et al. [29] on which the
further analysis in this thesis is based. The model is based on the dynamics of synchronous
machines. The coupling term for active power transmission between two nodes of the grid
is derived from circuits of alternating current. To derive the equation of motion of the
oscillator model we made two major assumptions. The first is that all elements of the
power grid can be described as a network of synchronous machines. The second is that
we have no Ohmic losses in transmission lines. Both assumptions are not completely
fulfilled in real world power grids. For instance, solar power plants cannot be described
as synchronous machines and Ohmic losses are present in real transmission lines. But,
with the main exception of solar power plants, most other power plants can be described
as synchronous machines, which are the vast majority. Ohmic losses are indeed small due
to high-voltage transmission [40], such that this assumption is common in the literature,
see for example [57]. Therefore, although the model has its limitations, it still provides a
reasonable description of real world power grids.

Furthermore, we used a homogeneous parameter setting. We assumed that all transmission
lines have the same capacity, with the exception of those directly connected to a power
source. These are modeled with a higher capacity to avoid trivial overloads. Every con-
sumer uses an equal amount of power; similarly, each small (large) generator produces the
same amount of power as every other small (large) generator. The goal of this thesis is
to gain insights into the principal behavior of large power grids depending on the network
topology, particularly their capability to synchronize. This can be seen most clearly for a
homogeneous set of parameters. An application to the heterogeneities of real-world grids
deserves further studies, but we are confident that our results can serve as a guideline for
such a study.

However, it is very hard to derive a realistic power grid model which captures all features
of real world power grids and is still applicable for large scale simulations. Models which
capture all these features are limited to the scale of very few generators and transmission
lines. The model by Filatrella et al. is applicable for large scale simulations and captures
the dynamics of the power grid. The model is therefore useful to get ideas how real power
grids behave under certain scenarios. It is of course necessary to test these ideas with real
data in concrete situations.
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5 Dynamics & self-organization of an
elementary model

In this chapter we present and analyze an elementary example model of a power grid
consisting of only two elements, a generator and a consumer. The steady state representing
normal operation of this system is analytically derived. Although it is the simplest possible
system, already this simple system reveals the existence of three different stability regimes
that are also present in larger model systems later analyzed in this thesis.

First we set up the effective equations of motion for this system. Using these equations
we demonstrate that deviations to the grid frequency ω already occur if the condition of
equal power production and consumption is violated. We thus show that the measurement
of these deviations is a way to check the power balance and a potential guideline to power
adaptation processes. Two steady states exist if the transmitted active power does not
exceed the transmission capacity of the line connecting generator and consumer: a linear
stability analysis (e.g. [59]) shows that the system has a stable as well as an unstable fixed
point. The stable fixed point allows stable operation of the power grid. Furthermore, we
show that the system has three different stability regimes in its parameter space, ranging
from a globally stable to a globally unstable region with an additional region of coexistence
of both states. We argue that real power grids operate in the region of coexistence such that
their dynamics and stability sensitively depend on the initial state. Thus, a purely static
evaluation of the operation of a power grid, as being common in many flow calculations of
engineering is incomplete.

Notably, the effective equations of motion of the example system can be mapped exactly
to the motion of a particle in a tilted washboard potential. This mapping provides a clear
illustration of the three different stability regimes in the parameter space of the system.
Finally, we discuss how the balance of generated and consumed power, a necessary condition
for a stable operation at the grid reference frequency, can be achieved by different control
schemes based on local frequency measurements. The chapter closes with a brief summary
and outlook.

Parts of this chapter have been previously published in [19, 58].
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5. Dynamics & self-organization of an elementary model

5.1 Effective equations of motion

In the following we analyze a power grid consisting of a generator, a consumer and a
transmission line connecting both with capacity K. The generator produces the power
P1 > 0. The consumer consumes the power P2 < 0. This power grid can only operate in
a stable manner if the power is balanced, i.e., P1 = −P2 as shown in section 4.2.4 ( see
(4.33)). The equations of motion (4.30) for both the generator and the consumer are now:

θ̈1 = P1 − αθ̇1 +K sin(θ2 − θ1) (5.1a)
θ̈2 = P2 − αθ̇2 +K sin(θ1 − θ2). (5.1b)

I is convenient to reduce these equations of second order oscillators to equations of first
order by introducing the new variables χi := θ̇i, i.e.,

χ̇1 = P1 − αχ1 +K sin(θ2 − θ1) (5.2a)
χ̇2 = P2 − αχ2 +K sin(θ1 − θ2) (5.2b)
θ̇1 = χ1 (5.2c)
θ̇2 = χ2. (5.2d)

We simplify this set of equations by taking both the difference and the sum between the
first two and the last two equations respectively. With ∆P = P2 − P1 = 2P2, the phase
difference ∆θ = θ2 − θ1, the velocity difference ∆χ = χ2 − χ1, the sum of the velocities∑
χ = χ1 + χ2 and the sum of the phases ∑ θ = θ1 + θ2 the equations read

∆χ̇ = ∆P − α∆χ− 2K sin ∆θ (5.3a)
∆θ̇ = ∆χ (5.3b)∑
χ̇ = −α

∑
χ (5.3c)∑

θ̇ =
∑

χ. (5.3d)

The first two equations are the effective equations of motion of the system as ∑χ evolves
to the steady state ∑χ = 0 and thus also ∑ θ reaches a steady state.
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5.2 Bifurcation structure

5.2 Bifurcation structure

In a steady state both derivatives ∆χ̇ and ∆θ̇ must be zero. The effective equations of
motion thus read:

0 = ∆P − α∆χ− 2K sin ∆θ (5.4a)
0 = ∆χ. (5.4b)

These equations have two solutions for ∆P < 2K, such that the system has two fixed
points T1 and T2 in the steady state for ∆P < 2K, which are analyzed in detail below.
The two fixed points of the effective equations of motion (5.3) are in terms of the phase
difference ∆θ and the velocity difference ∆χ:

T1 :=
(

∆χ∗1
∆θ∗1

)
=
(

0
arcsin ∆P

2K

)
(5.5)

and
T2 :=

(
∆χ∗2
∆θ∗2

)
=
(

0
π − arcsin ∆P

2K

)
. (5.6)

For ∆P > 2K no fixed point exists, because the arcsin function has no solution for ∆P >
2K. The critical coupling strength Kc for the existence of a fixed point is therefore

Kc = ∆P
2 . (5.7)

At the critical point, for ∆P = 2K only one fixed point exists, T1 = T2, at(
∆χ∗
∆θ∗

)
=
(

0
π
2

)
. (5.8)

Stable operation of this simple power grid is enabled by the existence of a stable fixed point.
The local stability of the two fixed points existing for K > Kc = ∆P/2 is determined by
the eigenvalues of the Jacobian of the dynamical system (5.3), given by

J =
(
−α −2K cos ∆θ∗
1 0

)
. (5.9)

The eigenvalues λ∗± of J are:

λ∗± = −α2 ±
√
α2

4 − 2K cos ∆θ∗. (5.10)
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Applying the trigonometric identity cos2 = 1− sin2 and using (5.5) and (5.6) this yields

λ
(1)
± = −α2 ±

√
α2

4 −
√

4K2 −∆P 2 (5.11a)

=: α2 ±
√
D (5.11b)

with D = α2

4 −
√

4K2 −∆P 2 at the first fixed point T1 and

λ
(2)
± = −α2 ±

√
α2

4 +
√

4K2 −∆P 2 (5.12)

at the second fixed point T2, respectively. The eigenvalues at the critical point Kc with
∆P = 2K are thus λ+ = 0 and λ− = −α. A nonlinear stability analysis would thus be
necessary in order to determine the stability of the fixed point in this marginal case.

Depending on K, the eigenvalues at T1 are either both real and negative or complex with
negative real values. One eigenvalue at T2 is always real and positive, the other one real
and negative. Thus only T1 is stable and enables a stable operation of the power grid. It
has real and negative eigenvalues if K ∈ (Kc, K2) where K2 is defined by D > 0 in (5.11b),
such that

K2 =
√
α4

64 + ∆P 2

4 = ∆P
2

√
α4

16∆P 2 + 1. (5.13)

Thus K ∈ (Kc, K2) is only possible for α considerably larger than 1. For K ≥ K2 the
eigenvalues of T1 are complex with a negative real value

<(λ(1)
± ) = −α2 (5.14)

for which the power grid exhibits damped oscillations around the fixed point. As power
grids should work with only minimal dissipation (α ≤ 1) and thus K ≥ K2, this is the
practically relevant setting.

Stable operation of the power grid is guaranteed by the existence of a globally stable fixed
point. The fixed point is globally stable if the change in the energy E of the system
averaged over one period T is negative, i.e.,

〈
dE
dt

〉
< 0, such that the trajectories always

converge to the stable fixed point [60]. Otherwise a limit cycle coexists with the fixed
point [60]. An analytical approximation for the border between the globally stable and the
coexistence regime can be obtained in the low-friction limit [60]. Taking the difference of
both equations (5.1) with x(t) := ∆θ(t) yields

ẍ = ∆P − 2K sin(x)− αẋ (5.15a)

= −∂E
∂x

+ ∆P − αẋ (5.15b)
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with ∆P as the acceleration and ẋ as the friction of the system. The energy E of the
system is defined as

E = (ẋ)2

2 − 2K cos(x) (5.16)

with the potential −2K cos(x). The change of energy is thus

dE

dt
= ẍẋ+ 2K sin(x)ẋ. (5.17)

Inserting equation (5.15a) into (5.17) yields

dE

dt
= (∆P − 2K sin(x)− αẋ) ẋ+ 2K sin(x)ẋ (5.18a)

= ∆Pẋ− α(ẋ)2. (5.18b)

The condition for the border between the globally stable and the coexistence regime is
given by

dE

dt

T

= 0. (5.19)

Hence
∆PẋT − αẋ2T = 0 (5.20)

is the condition for the border between the globally stable and the coexistence regime. The
period T is defined by [60]:

T =
∫ T

0
dt =

∫ π

−π

1
ẋ
dx. (5.21)

We can now calculate
ẋ
T = 1

T

∫ T

0
ẋdt = 1

T

∫ π

−π
dx = 2π

T
(5.22)

and

ẋ2T = 1
T

∫ T

0
ẋ2dt = 1

T

∫ π

−π
ẋdx (5.23a)

= 1
T

∫ π

−π

√
2E + 4K cos(x)dx. (5.23b)

For the critical line we hence find (see (5.20))

∆P 2π
T

= α

T

∫ π

−π

√
2E + 4K cos(x)dx. (5.24)

The energy of the power grid on the border between the globally stable and the coexistence
regime in the low-friction limit is the maximum of the potential, i.e., 2K. If the power grid
has a smaller energy in the low-friction limit the fixed point is globally stable, otherwise
the power grid is in the coexistence regime. To approximate the border between these two
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regimes we can thus simplify the integral in equation (5.24) in the low friction limit with
E = 2K: ∫ π

−π

√
4K + 4K cos(x)dx = 2

√
K
∫ π

−π

√
1 + cos(x)dx. (5.25)

With u := x
2 and the trigonometric identity cos(2u) = cos2(u) − sin2(u) we can solve the

integral (5.25):

2
√
K
∫ π

−π

√
1 + cos(x)dx = 2

√
K
∫ π

2

−π2

√
1 + cos(2u)2du (5.26a)

= 4
√
K
∫ π

2

−π2

√
1 + cos2(u)− sin2(u)du (5.26b)

= 4
√
K
∫ π

2

−π2

√
2 cos2(u)du (5.26c)

= 4
√
K ·
√

2
∫ π

2

−π2
cos(u)du (5.26d)

= 4
√

2K [sin(u)]
π
2
−π2

= 8
√

2K. (5.26e)

We thus find for the low-friction approximation the following border between the globally
stable and the coexistence regime (cf. (5.24))

∆P
2K = 2 ·

√
2

π
· α√

K
. (5.27)

The excellent agreement of the low-friction approximation (blue line) for α/
√
K < 0.6 with

the numerically calculated border (black curve) separating the two regimes is illustrated
in Figure 5.1.

5.3 Global stability properties

In the last section we have shown that the simple model of a power grid has different
stability properties for different parameter settings. The different stability regimes are
illustrated in Figure 5.1 for the parameter space of the system. In the upper region of
Figure 5.1 for ∆P

2K > 1 no steady state exists (cf. section 5.2). The physical reason is that
the load exceeds the capacity of the transmission line. No stable operation is possible and
all trajectories converge to a limit cycle. In real-world power grids the limit cycle cannot
be reached, because an overload of transmission lines leads to a power outage.

For ∆P
2K < 1 two different regimes exist, a regime where only the fixed points exist and a

coexistence regime where both the fixed points and the limit cycle exist (cf. section 5.2).
The regime with the fixed point only covers the area on the right hand side of the border
(black curve) in the lower region of parameter space (cf. Figure 5.1). In this regime all
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Figure 5.1: Stability phase diagram in parameter space. Blue line: low-friction approximation
for the border between the globally stable and the coexistence regime.

trajectories converge to the fixed point and the system is globally stable. The reason is
that the high damping α in this regime slows down the dynamics independently of the
initial conditions.

Most interestingly, in the remaining region of parameter space, the fixed point and the
limit cycle coexist. In the coexistence regime the dynamics depends crucially on the initial
conditions. The trajectories can converge either to the fixed point or the limit cycle. Prac-
tically, this is the most relevant case. Power systems are optimized to have low dissipation
[25] and thus a low damping rate α in the considered model. In fact, damped oscillations
towards the stable fixed point are regularly observed in real power grids [25].

Exemplary trajectories with two different initial conditions are illustrated along with the
phase portrait of all three regions of the parameter space in Figure 5.2. The dynamics of
the globally unstable regime with the limit cycle depicted as a red line are illustrated in
Figure 5.2(a). The evolution of the phase difference ∆θ and phase derivative difference
∆χ is illustrated in Figure 5.2(b,c) for two exemplary trajectories with different initial
conditions, (∆χ,∆θ/2π) = (0, 0.5) (dashed red line) and (∆χ,∆θ/2π) = (0, 0.1) (solid
blue line). Both trajectories converge to the limit cycle. The phase difference ∆θ is
constantly growing and the phase derivative difference ∆χ is constantly oscillating for
both trajectories. The system is thus incapable of reaching a steady state in this region of
parameter space.

The phase portrait of the globally stable regime is illustrated in Figure 5.2(d). The stable
fixed point is marked with a red cross. The evolution of the phase difference ∆θ and phase
derivative difference ∆χ for two exemplary trajectories starting from same initial conditions
as above is illustrated in Figure 5.2 (e,f). Both trajectories converge into the stable fixed
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Figure 5.2: Dynamics of an elementary network with one generator and one consumer (α =
1 s−1). Initial Conditions: blue: (∆χ,∆θ/2π) = (0, 0.1), red: (∆χ,∆θ/2π) = (0, 0.5). (a,b,c)
Globally stable limit cycle for ∆P = 2 s−2 and K = 0.5 s−2. Both example trajectories converge
to the limit cycle. (d,e,f) Globally stable phase locking (normal operation) for ∆P = 2 s−2 and
K = 2 s−2. Both example trajectories converge into the stable fixed point. (g,h,i) Coexistence
of phase locking and limit cycle for ∆P = 2 s−2 and K = 1.1 s−2. The trajectory with initial
condition (∆χ,∆θ/2π) = (0, 0.1) converges into the fixed point while the trajectory with initial
condition (∆χ,∆θ/2π) = (0, 0.5) into the limit cycle.

point. The phase derivative difference thus goes to zero and the phase difference has a
fixed value. The system always converges to its stable state for all initial conditions.

The phase portrait of the coexistence regime is illustrated in Figure 5.2(g). The phase
portrait contains both the limit cycle and the stable fixed point, which are depicted by
the red line and the red cross, respectively. The evolution of the phase differences and
phase derivative differences for two trajectories again with the same initial conditions is
illustrated in Figure 5.2(h,i). The trajectory with initial conditions (∆χ,∆θ/2π) = (0, 0.1)
(solid blue line) converges to the stable fixed point, the trajectory with initial conditions
(∆χ,∆θ/2π) = (0, 0.5) (dashed red line) converges to the limit cycle. Therefore the phase
derivative difference is either going to zero for the trajectory that converges to the stable
fixed point or is fluctuating for the trajectory converging to the limit cycle. Consequently,
the phase difference has a constant value or is constantly growing. Which behavior the
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system exhibits depends crucially on the initial conditions.

We can thus conclude that if the power grid is in the coexistence regime of parameter space
and its stable state is perturbed, it is not a priori certain that the system can reach the
stable fixed point again after the perturbation is removed. On the contrary, the system’s
further behavior depends on the position of its state in phase space. If the current lies
still in the basin of attraction of the stable fixed point after the perturbation is removed
it converges back into the stable fixed point of normal operation, otherwise it converges
into the limit cycle and we thus have a power outage. A perturbation can for instance
occur because the condition P1 = −P2 is violated for a certain period of time. Another
possible perturbation could be the change of the value of the transmission capacity K in
one or more transmission lines. In case of such an event, the structure of parameter space
changes – in particular the position of the stable fixed point in parameter space and the
corresponding basin of attraction. Therefore, the capability of the system to maintain its
stable state depends on its current state.

Most real power grids are operating in the region of coexistence. Perturbations frequently
occur in real-world power grids, but most of the time power grids are capable of preserving
stable operation. Nevertheless, power outages occur from time to time. There are many
examples for outages in real world power grids, one of them is the well known power outage
in November 2006 in Western Europe, caused by the cutting of one transmission line in
Germany [27]. The power grid model that we have introduced in this section contains this
important feature of real-world power grids, the coexistence of a stable and an unstable
state.

5.4 Equivalence to the dynamics in a tilted washboard
potential

The system of one generator and one consumer can be mapped to the Newtonian motion
of a particle in a tilted washboard potential [43]. In order to demonstrate this equivalence
we directly subtract the two equations of (5.1) from each other,

θ̈2 − θ̈1 = P2 − P1 − α
(
θ̇2 − θ̇1

)
− 2K sin(θ2 − θ1). (5.28)

With ∆θ := θ2 − θ1 this leads to

∆θ̈ = ∆P − α∆θ̇ − 2K sin(∆θ). (5.29)

Through a rescaling of time by τ = αt together with the introduction of new variables,
∆p := ∆P

α2 , k := K
α2 and x(τ) := ∆θ(τ) the equation of motion becomes

ẍ+ ẋ+ 2k sin(x)−∆p = 0. (5.30)
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Figure 5.3: The potential V (x) = −∆px − 2k cos(x) for k = 1 and different values of ∆p. (a)
∆p = 1, (b) ∆p = 1.5, (c) ∆p = 2 and (d) ∆p = 3.

This equation can now also be regarded as the equation of motion for a particle in a tilted
washboard potential,

ẍ = −ẋ− dV

dx
, (5.31)

with the potential V (x)
V (x) = −∆px− 2k cos(x). (5.32)

The potential V (x) is illustrated in Figure 5.3. For ∆p < 2k local minima of different
depth exist as illustrated in Figure 5.3(a,b). The larger the difference between ∆p and 2k
is the deeper is the minimum and thus the more difficult it is for the system to overcome
the potential barrier. The system has thus a larger tolerance against perturbations for
deeper minima in the sense that the system is still capable of reaching its stable state.
The marginal stable case of ∆p = 2k is illustrated in Figure 5.3(c). As illustrated in
Figure 5.3(d) if ∆p is larger than 2k, no minimum exists and the system does not reach a
stable state. The system is in this case in the globally unstable region of parameter space.

The phase difference of two oscillators cannot be larger than 2π. Therefore we can confine
the potential V (x) to the interval [0, 2π). Because all minima are equivalent, there is no
information lost via this confinement. The local minimum V (xmin) of the potential is now
found at

xmin = arcsin
(

∆p
2k

)
for ∆p < 2k. (5.33)

Reaching the minimum of the potential is equivalent to reaching the stable steady state
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of the original system. We have a constant phase difference between the two oscillators in
the stable state. In addition a local maximum V (xmax) exists at

xmax = π − arcsin
(

∆p
2k

)
. (5.34)

The local maximum is equivalent to the unstable fixed point T2 (cf. section 5.2). If the
particle crosses the potential barrier for any reason, it depends crucially on the system
parameters whether it does relax back to a steady state. The particle gains kinetic energy
because of the tilting of the potential which is proportional to ∆p. However, it also loses
kinetic energy due to friction. In the globally stable regime of parameter space friction is
so strong that the kinetic energy always decreases. The particle finally comes to rest. In
the coexistence region a limit cycle exists where the average friction loses exactly matches
the average increase of kinetic energy due to the tilting. The particle then converges to
the limit cycle as soon as it crosses the potential barrier.

5.5 Imbalanced power production and consumption

As argued in the previous sections, power grids generally operate in the coexistence region
of parameter space. For imbalanced power generation and consumption, i.e., |P1| 6= |P2|,
the system does not exhibit a stable fixed point. The fixed points exist again as soon as
equal power generation and production is restored. Whether the system does or does not
relax back to the steady state when the power balance is restored or not, depends on the
strength of the perturbation, which drives the system away from the steady state. We
calculate the sum of both equations (5.1) and solve for the mean frequency

θ̇1 + θ̇2

2 = − 1
α

(
P1 + P2

2 − θ̈1 + θ̈2

2

)
. (5.35)

During stable operation we find P1 + P2 = 0 and the phases are locked with θ̇1 = θ̇2 = 0
and θ̈1 = θ̈2 = 0 (cf. section 5.1). The mean frequency is a measure for the deviation from
the grid frequency Ω. The system thus runs with the grid frequency in the stable state.

If the system has imbalanced power production and consumption, no steady state with
θ̇1 = θ̇2 = 0 exists. Still generator and consumer can remain phase-locked such that a
steady power flow is guaranteed. Phase-locking implies that θ1 − θ2 = const, such that
θ̇1 = θ̇2 = const. The second derivatives on the right hand side of equation (5.35) still
vanish, but we have constant values for the first derivatives. With θ̈1 = θ̈2 = 0 we thus
have

θ̇1 + θ̇2

2 = −P1 + P2

2α . (5.36)

Two examples for such a relaxation are illustrated in Figure 5.4(a,b) for weak and in
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Figure 5.4: Imbalanced power production and consumption. Parameters are: α = 1 s−1, K =
3 s−2 and P1 = 1.5 s−2. red: generator (θ1 and θ̇1), blue: consumer (θ2 and θ̇2). (a,b) Consumer
with a slightly higher demand: P2 = −2 s−2. (c,d) Consumer with a strongly higher demand:
P2 = −3 s−2. The phases of generator and consumer are locked with constant phase derivatives.
The difference between the phases and the phase derivatives are larger for stronger imbalances
between power production and consumption.

Figure 5.4(c,d) for strong inequalities of power production and consumption. For both
inequalities we have a deviation from the desired grid frequency Ω for both the generator
and the consumer. The deviations increase with the strength of the inequality between
power production and consumption as illustrated in Figure 5.4(b,d). However, both ele-
ments have the same deviation regardless of weak or strong inequalities, such that they are
still phase-locked. The phase difference θ1 − θ2 is constant. The phase difference between
the elements increases with increasing deviations from the grid frequency as illustrated
in Figure 5.4(a,c). Thus the difference between the phase derivatives ∆χ = θ1 − θ2 is
always zero, but the difference between the phases ∆θ increases with growing deviations.
As it is illustrated in Figure 5.2(h,i) the system cannot reach the stable fixed point again
if the difference between the phases is too large. In order to avoid this danger, there is a
boundary for tolerable deviations from the grid frequency implemented for the operation
of real-world power grids. This boundary for tolerable deviations from the grid frequency
is ±0.2 Hz [25]. If larger deviations occur countermeasures are executed [25].

5.6 Self-organized adaptation

If the condition of equal power generation and consumption is violated, the oscillators may
still synchronize, but at a different value than the grid’s reference frequency. As shown in
the preceding section, if the generated power exceeds the consumed power the oscillators
accelerate until the excess power is balanced by increased friction losses. This is strongly
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Figure 5.5: Adaptation principles. The upper panels (a,c,e) show the power generation P1 (solid
blue line) and the demand P2 (dashed red line), the lower panels (b,d,f) show the deviations of
θ̇1/2π (blue) and θ̇2/2π (red) from the grid reference frequency Ω/2π. Parameters: α = 0.1 s−1,
P1 = 45 s−2, P2 = −45 s−2, K = 50 s−2. At t = 0 the power demand is increased to P2 = −46 s−2.
(a,b) Without any adaptation process the system relaxes to a phase-locked state, but the local
frequency deviates significantly from the grid reference frequency. (c,d) The local frequency
adapts to the grid frequency and the produced power P1 adapts proportional to the generator’s
deviation from the grid frequency with Ṗ1 = −cθ̇1 with c = 0.1 s−2. (e,f) Same adaptation process
as in (c,d) which sets in whenever the deviation from Ω exceeds the value

∣∣∣θ̇1
∣∣∣ = 2π · 0.1 Hz. The

grid stabilizes with less oscillations but a remaining offset.

undesirable from a technical viewpoint, because many important electrical machines are
optimized for a fixed grid frequency. Therefore the grid has to be controlled to guarantee
frequency stability. Currently, this is achieved by the so-called primary control in power
plants [22]. In primary control, the grid frequency is constantly measured. If deviations
from the grid reference frequency are detected, the produced power needs to be adapted.

Here we demonstrate different principles of adapting the produced power in a power grid.
We assume that the power grid is initially in its stable steady state. At t = 0 we increase the
consumed power from P2 = −45 s−2 to P2 = −46 s−2. The frequency dynamics that results
without adaption is illustrated in Figure 5.5(a,b). The system relaxes to a synchronous
state at a frequency 0.8 Hz below the reference frequency Ω/2π, a deviation which is signif-
icantly larger than allowed by current stability regulation [25]. If such an event occurs the
grid operater has to carry out immediate countermeasures up to an emergency shutdown
to prevent large scale outages.

To prevent such an event, the produced power has to be adapted according to the demand.
The dynamics of two different adaption strategies are illustrated in Figure 5.5(c,d,e,f). In
panels (c,d) we assume that adaptation of the produced power sets in as soon as deviations
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5. Dynamics & self-organization of an elementary model

from the grid frequency occur. The produced power adapts according to

Ṗ1(t) = −cθ̇1 (5.37)

with c = 0.1 s−2. The system reaches balanced power production and consumption and
runs with the exact desired grid frequency.

In panels (e,f) power adaptation only sets in whenever the deviations are larger than a
tolerance of 2π · 0.1 Hz. The produced power adapts according to

Ṗ1 =


−c

(
θ̇1 − 2π · 0.1Hz

)
for θ̇1 > 2π · 0.1Hz

−c
(
θ̇1 + 2π · 0.1Hz

)
for θ̇1 < −2π · 0.1Hz

0 otherwise
(5.38)

with c = 0.1 s−2. The relaxation is faster if a band of tolerable deviations is employed, but
a small tolerable frequency deviation remains.

5.7 Discussion

In summary, we conducted a detailed analysis of a simple power grid consisting of one
generator and one consumer. We derived the effective equations of motion of the power grid
and carried out a detailed stability analysis. We identified three different stability regimes.
A globally unstable regime with a limit cycle where no steady state exists, a globally
stable regime, where the dynamics converge to the limit cycle for all initial conditions
and a coexistence regime, where both the stable fixed point and the limit cycle exist. This
regime is the most interesting one, because here the dynamics crucially depend on the initial
conditions. We provided an analytical approximation for the border in parameter space
between the globally stable and the coexistence regime. Furthermore, we demonstrated
that the dynamics of the power grid is equivalent to the dynamics of a particle in a tilted
washboard potential. We showed that the motion of the particle also converges either to
a resting state, i.e., to the stable fixed point or to a limit cycle. We continued with an
analysis of a state with imbalanced power production and consumption. Here the stable
fixed point does not exist. Depending on the strength of the imbalance the power grid then
operates at a different frequency, which deviates from the desired grid frequency. Finally,
we demonstrated different adaptation principles for power production. We showed that
the inclusion of small tolerable deviations from the grid frequency allows for a faster power
adaptation process.

It is important to note, that the existence of the coexistence regime is one of the most
important features of real-world power grids. Most major power grids are operating close
to the edge of stability, i.e., in the region of coexistence, at least during periods of high
loads. Therefore the dynamics depends crucially on the initial conditions and static power
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grid models are insufficient. The oscillator power model captures this important feature. It
thus allows the extensive study of the decentralization process in the next chapter, because
it is a priori not clear if the dynamics converge to the fixed point or the limit cycle. We
proceed with a study of the synchronization transition and robustness against dynamic
perturbations of larger power grids in the next chapter.
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6 Decentralized power generation in
future power grids

In this chapter we investigate, how decentralizing power generation changes the collective
dynamical features of power grids. The decentralization process itself takes place due to
the inclusion of more and more renewable energy sources into the grid as a replacement
for conventional power sources. Decentralization is an ongoing process in real world power
grids. It is even called the “new power paradigm for the next millennium by Borbely
and Kreider [17]. The International Energy Agency (IEA) lists a number of reasons for
the decentralization process [61], which are in short: new developments in distributed
generation technologies, constraints in the construction of new transmission lines, increased
customer demand, electricity market liberalization and climate concerns [62].

The decentralization process will alter the topology of the existing power grid in a yet
unknown way as power production will become more recurrent [18]. However, the general
impact of grid topologies on collective dynamics is not systematically understood, in partic-
ular with respect to decentralization. It is for instance still an open question if the addition
of new transmission lines into power grids decreases their vulnerability against outages of
individual elements [61, 63] or opens the door to the possibility of cascading failures [64].
In the following we analyze the effects of the decentralization process on the capability of
power grids of maintaining stable operation for three different general topologies (regular,
random and small-world) and the special topology of the British power grid. With regard
to our model, maintaining stable operation is equivalent to maintaining a phase-locked
state (cf. section 5.2) where all elements oscillate with the same frequency.

Furthermore, we analyze the structural stability of power grids. We determine if a power
grid can maintain stable operation if one transmission line fails and count the number
of critical transmission lines that are indispensable for the operation of the grid, as a
global measure of network stability. This resembles the N-1 safety criterion [24], which is
defined as follows: No transmission line may become overloaded, i.e., needs to carry a load
bigger than its transmission capacity if any other transmission line fails [24]. This criterion
has to be fulfilled for the European power grid by power grid regulations [23]. For the
power outage in Western Europe in November 2006 this criterion was violated [18]. The

Parts of this chapter have been previously published in [19, 58].
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structural stability is thus a global measure of the amount of critical transmission lines,
i.e., transmission lines that would cause power outages if they failed.

In the first section we introduce four model networks with different topological properties
and the decentralization process for each of them. In the next section we demonstrate
that the onset of phase-locking in dependance of the parameters of the grid, such as the
capacity of transmission lines, is promoted for higher degrees of decentralization. We
proceed with an analysis of the synchronization time, i.e., the time needed to reach the
stable state, in dependance of the degree of decentralization. We show that decentralization
has no negative effect on the speed of synchronization. Furthermore, we analyze the
robustness of power grids against dynamical perturbations as for example an increase in
power demand by the consumers. We demonstrate that centralized grids generally have a
higher robustness against such perturbations. Finally, we show that structural stability,
e.g. the tolerance against a breakdown of a transmission line, is increased for a higher
degree of decentralization. The chapter concludes with a brief summary and discussion.

6.1 Modeling the decentralization process

In this section we introduce the different classes of model networks analyzed in the follow-
ing. We consider four different topology classes: three established network ensembles and
the topology of the British power grid as an example of a real-world power grid. As ex-
amples of network ensembles, we consider quasi-regular grids, Erdős-Rényi random graphs
[65, 66] and Watts-Strogatz small-world models [67]. For each network we define a different
decentralization process for power production. Generally, the conventional power sources
are removed from the grid and replaced by small decentralized power sources located all
over the grid. We explain the details of the decentralization process in the following.

6.1.1 Modeling the decentralization process of random network
ensembles

Sketches of a quasi-regular grid, an Erdős-Rényi random graph [65, 66] and a Watts-
Strogatz small-world grid [67] are illustrated in Figure 6.1. In the following we consider
power grids of NC = 100 consumer units with the same power load −P0 each. In all
simulations we assume P0 = 1 s−2 and α = 0.1 s−1 as discussed in section 4.2.5. We
distinguish between large centralized power plants and small decentralized ones. The large
power plants produce a power of PP = 10P0 each, the small decentralized sources produce
PR = 2.5P0 each (cf. section 4.2.5). The amount of centralized power sources NP varies
from NP ∈ {0, . . . , 10}, the amount of small decentralized power sources NR complements
the large power sources in such a way, that the total demand is matched. For instance, in
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6.1 Modeling the decentralization process

Figure 6.1: Small size cartoons of different network topologies: (a) Quasi-regular grid, (b)
random network and (c) small-world network.

a network with NP = 5 centralized power plants and NR = 5 ·4 = 20 decentralized sources,
50% of the total power is produced by decentralized power sources.

The quasi-regular network illustrated in Figure 6.1(a) consists of a square lattice, where
every node has four connections to its nearest neighbors on the square lattice. The power
plants are randomly located in the middle of the squares of the lattice. They are connected
to its four nearest neighbors as depicted. The decentralization process is simulated as
follows. We start with NP = 10 and NR = 0, i.e., the power is entirely produced by large
centralized power plants. We remove one of these generators from the grid and replace it
by four small generators, which are placed randomly onto free squares of the grid. This
procedure continues until no large power plants remains in the grid.

Next we define the decentralization process for an Erdős-Rényi random graph where every
node has an average of six completely random connections to the other nodes. Networks
which are not connected are discarded. The decentralization process works as described
above. We remove one of the large power plants from the grid and add four small power
sources into the grid, connecting them with an average of six random connections into the
grid. A sketch of an Erdős-Rényi random graph with an average of three connections is
illustrated in Figure 6.1(b).

A sketch of a Watts-Strogatz small-world network with four connections is illustrated in
Figure 6.1(c). The small-world network we consider is obtained by a standard rewiring
algorithm as described in [67]. Starting from a regular ring network, where every node i
is connected to its four nearest neighbors, each connection ij between nodes i and j is
randomly rewired with a probability of 0.1. If a connection ij starting from node i is
rewired to a different node k with k 6= j, the node k is chosen from an uniform probability
distribution of all nodes that avoids self-loops and link duplications. The decentralization
process is the same as described above. We remove one of the large centralized power
sources from the grid and replace it by four small generators. The small generators are
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Figure 6.2: The Figure illustrates the
simulated decentralization of the British
grid, replacing large centralized power
plants by small distributed ones. First
step of decentralizing: one power plant
(marked by violet square) is disabled, i.e.,
the generated power is set to zero (Pj =
0). Instead, ten new small generators are
added to the grid at random positions
(green diamonds). For clarity the Figure
demonstrates an example where the small
decentralized generators are only added to
the grid at outside positions.

connected into the grid with the same rewiring process.

6.1.2 Modeling the decentralization process of the British grid

The coarse grained structure of the British power grid is illustrated in Figure 6.2. The
British high-voltage power grid consists of 120 nodes and 165 transmission lines [37]. Ini-
tially, ten nodes are randomly selected to be centralized power plants, the others are
consumers. Power plants are connected to their neighbors with a higher capacity cK with
c ≥ 1. The remaining transmission lines have a capacity K. Each consumer has the same
power load −P0 with P0 = 1 s−2 as described above. We have α = 0.1 s−1 for all simu-
lations (cf. section 4.2.5). To further strengthen the effects of decentralization we choose
slightly different parameters of PP = 11P0 and PR = 1.1P0 for the power outputs of large
centralized and small decentralized power sources, respectively. Large power sources are
thus replaced by ten smaller ones.

The decentralization process works as follows. The output of the large centralized power
plants are set to zero one after another and new decentralized power sources are connected
by one new transmission to a randomly chosen node of the existing grid. This process
continues until no centralized power source is left. An example for the first step of the
decentralization process for the British power grid is illustrated in Figure 6.2. One large
centralized power plant marked by the violet square is disabled, i.e., its power output is set
to zero. After that ten new small decentralized power sources marked by green diamonds
are added into the grid. This process continues until all large power plants are replaced by
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small decentralized power plants and we thus have 100% power generation by renewable
power plants.

6.2 The synchronization transition

Synchronization of Kuramoto oscillators is defined as the state, where all oscillators run
with same frequency and have the same phase [68]. In our considered model, stable oper-
ation of a power grid requires only that all machines run with the same frequency. The
phases of the machines are generally different, but the phase differences are constant in
time in stable operation (cf. section 5.3). Stable operation of a power grid thus requires
a phase-locked state. However, because the phases of the machines are generally different
such a state is not synchronized in the Kuramoto sense. The degree of phase-locking can
be measured by the order parameter (see below) or the so called phase cohesiveness [51].
The phase cohesiveness gives an upper bound to the phase differences between adjacent
nodes in the networks. If all machines of the grid run with the same frequency the system
is thus always phase cohesive. If the machine do not all run with the same frequency the
system is not phase cohesive.

The phase-locked state must be distinguished from the partly synchronous state commonly
analyzed in the context of the Kuramoto model [68]. Here, a fraction of the Kuramoto
oscillators remain incoherent. Such a state has a non-vanishing order parameter but is not
phase-cohesive.

The capability of a power grid to reach a stable state depends on the power grid’s param-
eters. In this section we analyze the synchronization transition, i.e., the minimal required
transmission capacity Kc for the onset of phase-locking between generators and consumers.
At first we calculateKc for simple motif networks that serve as building blocks for the larger
networks. The obtained results for these analytically tractable motif networks can be re-
garded as lower bounds for the results of our for different larger network topologies [68].
If the transmission capacity K exceeds Kc the system is either in the globally stable or
the coexistence regime of parameter space. The boundary between these two regimes can
only be determined numerically. However, we can generally say that if K is still close to
Kc, the system is in the coexistence regime. It is globally stable only for K � Kc. If K is
below Kc the system is unstable.

6.2.1 Synchronization transition of motif networks

The two motif networks are illustrated in Figure 6.3. They can be considered as building
blocks of the large-scale quasi-regular network that will be analyzed in the next chapter.
A simple network, where a small renewable energy source provides the power for N = 3
consumer units with d = 3 connections, is illustrated in Figure 6.3(a). To analyze the
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Figure 6.3: Two motif networks with simplified phase description.

most homogeneous setting we assume that all consumers have the same phase θ1 and a
power load of −P0 and that all transmission lines have the same capacity K. The power
generator has the phase θ0 and provides a power of NP0. The reduced equations of motion
then read

θ̈0 = N P0 − αθ̇0 + dK sin(θ1 − θ0), (6.1a)
θ̈1 = −P0 − αθ̇1 +K sin(θ0 − θ1). (6.1b)

For this motif class the condition |N | = |d| always holds, such that the steady state is
determined by sin(θ0 − θ1) = P0/K. The condition for the existence of a steady state is
thus (cf. section 5.2)

K > Kc = P0, (6.2)

i.e., each transmission line must be capable of transmitting the power load of one consumer
unit.

As a second motif, we analyze a part of the quasi-regular grid with N = 12 consumer units.
The motif is illustrated in Figure 6.3(b). The central power source with phase θ0 and the
nearest consumers with phase θ1 have d1 = 4 connections. The consumers with phase θ1
and those with phase θ2 have d2 = 2 connections. Due to the symmetry of the system we
have to consider only three different phases. The reduced equations of motion then read

θ̈0 = N P0 − αθ̇0 + d1K sin(θ1 − θ0), (6.3a)
θ̈1 = −P0 − αθ̇1 + d2K sin(θ2 − θ1) +K sin(θ0 − θ1), (6.3b)
θ̈2 = −P0 − αθ̇2 +K sin(θ1 − θ2). (6.3c)

For the steady state we thus find the relations

sin(θ0 − θ1) = (NP0)/(d1K), (6.4a)
sin(θ1 − θ2) = P0/K. (6.4b)
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The transmission capacity K must now be higher than the critical coupling strength

Kc = NP0

d1
(6.5)

to enable a stable operation. For the example motif we thus have a higher critical coupling
strength of Kc = 3P0 compared to the previous motif for the existence of a steady state.
This is immediately clear from physical reasons, as the transmission lines leading away
from the power plant now have to serve three consumer units instead of just one.

The study of motif networks reveals one immediate mechanism of how decentralization
affects the synchronization transition in power grids. However, there is also a significant
effect beyond this rather obvious mechanism as we will show in the following. To reveal
these more subtle effects, we increase the transmission capacity of transmission lines in-
cident to a large power by a factor of c ≥ 1 in the study of the British power grid (cf.
section 6.2.3).

6.2.2 Synchronization transition of random model networks

For the large model networks of random, small-world and regular grids we introduce the
order parameter r(t) to quantify the degree of synchronization. The order parameter [30]
is now defined as

r(t) = 1
N

N∑
j=1

eiθj(t). (6.6)

If the system is fully synchronized, i.e., all phases are equal, the real part of the order
parameter is <(r(t)) = 1. In a phase-locked state the real part of the order parameter r(t)
can in general be any positive value between zero and one. Here <(r(t)) is in fact close to
one for all of our model networks if the system is in a phase-locked state. If the system
does not reach a phase-locked state, the real part of the order parameter fluctuates around
zero.

An example for the relation between the phases of the machines and the order parameter
is illustrated in Figure 6.4. The dynamics of the phases θj(t) of all machines j and the real
part of the order parameter are shown for two different values of the coupling strength K.
Without coupling, K = 0, all elements of the grid oscillate with their natural frequency ω.
For small values of K with K < Kc, only the phases of the decentralized generators and
the consumers are close together as illustrated in Figure 6.4(a). The system is thus not
in its stable state and the real part of the order parameter fluctuates around zero. If the
coupling strength is further increased, as illustrated in Figure 6.4(b), such that we have
K > Kc, all generators phase-lock as well, such that a stable operation of the power grid
is possible. Consequently, the real part of the order parameter is close to one.

In the long time limit, the system will either relax to a steady phase-locked state or to
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Figure 6.4: Phase dynamics of a quasi-regular power grid. (a) For weak coupling the phases
θj(t) of the small renewable decentralized generators (green lines) are close to the consumer’s
phases (blue lines), but not the phases of the large power plants (red lines). Thus the order
parameter r(t) fluctuates around a zero mean. (b) Global phase-locking of all generators and
consumers is achieved for a large coupling strength, such that the real part of the order parameters
r(t) has a positive value (here close to one).

a limit cycle where the generators and consumers are decoupled and <(r(t)) oscillates
around zero. In order to quantify synchronization in the long time limit we thus define the
averaged order parameter

r∞ := lim
t1→∞

lim
t2→∞

1
t2

∫ t1+t2

t1
r(t)dt. (6.7)

In numerical simulations the integration time t2 must be finite, but large compared to the
oscillation period if the system converges to a limit cycle. Furthermore, we consider the
averaged squared phase velocity

v2(t) = 1
N

N∑
j=1

θ̇j(t)2 (6.8)

and its limiting value
v2
∞ := lim

t1→∞
lim
t2→∞

1
t2

∫ t1+t2

t1
v2(t)dt (6.9)

as a measure of whether the grid relaxes to a steady state or not. In the steady state we
have v∞ = 0 because all phase derivatives are zero (cf. section5.2). If we have v∞ 6= 0, the
system is not in its stable state. The two quantities r∞ and v∞ are plotted in Figure 6.5 as
a function of the coupling strength K/P0 for 20 realizations of a quasi-regular network with
NC = 100 consumers and 40% renewable energy sources. The onset of phase-locking is
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Figure 6.5: The synchronization transition as a function of the coupling strength K: The order
parameter r∞ (left-hand side) and the phase velocity v∞ (right-hand side) in the long time limit.
The dynamics has been simulated for 20 different realizations of a quasi-regular network consisting
of 100 consumers, NP = 6 large power pants and NR = 16 small power generators.

clearly visible: If the transmission capacity is smaller than the critical value Kc, no steady
phase-locked state exists and we have r∞ = 0. Increasing K above Kc leads to the onset of
phase-locking such that r∞ jumps to a non-zero value. The critical value of the coupling
strength is found to lie in the range Kc/P0 ≈ 3.1− 4.2 where v∞ reaches zero. The critical
value depends on the random realization of the network topology.

The synchronization transition is quantitatively analyzed for the three different general
network topologies in Figure 6.6. We plotted r∞ and v∞ averaged over 100 random re-
alizations for each amount of decentralized energy sources and for every topology. The
synchronization transition strongly depends on the structure of the network and in par-
ticular the amount of power provided by small decentralized energy sources. Each line in
Figure 6.4 corresponds to a different fraction of decentralized energy 1−NP/10, where NP

is the number of large conventional power plants feeding the grid. Most interestingly, the
introduction of small decentralized power sources (i.e. the reduction of NP ) promotes the
onset of phase-locking. The onset of phase-locking is most obvious for the random and the
small-world structures as illustrated in Figure 6.6(a,b).

Let us analyze the quasi-regular grid in the limiting cases NP = 10 (only large power
plants) and NP = 0 (only small decentralized power stations) in detail. The existence
of a phase-locked steady state requires that the transmission lines leading away from a
generator have enough capacity to transfer the whole power, i.e., 10P0 for a large power
plant and 2.5P0 for a small power station. In a quasi-regular grid every generator is
connected with exactly four transmission lines, which leads to the following estimate for
the critical coupling strength (cf. (6.5)):

Kc = 10P0/4 forNP = 10, (6.10a)
Kc = 2.5P0/4 forNP = 0. (6.10b)

These values only hold for a completely homogeneous distribution of the power load and
thus rather present a lower bound for Kc in a random network realization. Indeed, the
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Figure 6.6: The synchronization transition for different fractions of decentralized energy sources
1−NP /10 feeding the grid and for different network topologies: (a) Quasi-regular grid, (b) random
network and (c) small-world network. The order parameter r∞ and the phase velocity v∞ have
been averaged over 100 realizations for each network structure and each fraction of decentralized
sources.

numerical results illustrated in Figure 6.6(a) yield a critical coupling strength of Kc ≈
3.2×P0 andKc ≈ 1×P0, respectively (cf. (6.5) and (6.2)). However, the motifs provide only
rough estimates and may serve as lower bounds for the actual synchronization transition
because topological disorder typically increases the synchronization threshold [68].

6.2.3 Synchronization transition of the British grid

Generally, larger networks of complex topologies exhibit self-organized phase-locking as
shown in the previous subsection. This holds true for the coarse-scale topology of the
British power grid as well. For every realization of the British grid ten different nodes are
randomly selected to be centralized power plants. The network of one realization of the
coarse-scale topology of the British power grid [37] is illustrated in Figure 6.7(a). Trans-
mission lines connecting the power plants into the grid have a factor c higher transmission
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Figure 6.7: Synchronization transition to self-organized phase-locking in the British power grid.
(a) Topology of the British power grid, consisting of 120 nodes and 165 transmission lines (black
lines) [37]. Ten nodes are randomly selected to be centralized power plants (Pj = 11P0, �),
the others are consumers (Pj = −P0, ◦). Power plants are connected to their neighbors with a
higher capacity cK, c ≥ 1 (thick lines), the remaining transmission lines have a capacity K (thin
lines). (b,c) Dynamics of the generators’ (red) and consumers’ (blue) frequencies dφj/dt and the
respective order parameter r(t) (b) for weak and (c) strong coupling. (d) The order parameter
r∞ and the asymptotic mean frequency difference v∞ as a function of the coupling strength K
for c = 2.

capacity.

There are two different possible scenarios. If the capacity of the transmission lines is be-
low the critical value Kc, no steady state of the power grid exists. This is illustrated in
Figure 6.7 (b). Consequently, the real part of the order parameter r(t) fluctuates around
zero in the upper panel. In the lower panel the phase derivatives of the generators and
consumers are depicted. All machines develop large frequency deviations to the grid fre-
quency ω over time. The generators accumulate energy such that their phases θj(t) are
accelerated while the majority of consumers slow down. Notably, the generators do not
desynchronize at once but rather in a cascade of failures (cf. [35, 37, 69]). Due to the
damping, the system tends towards a limit cycle where the average phase velocity

v(t) = 1
N

N∑
j=1

θ̇j(t) (6.11)
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Figure 6.8: Promotion of self-organized phase-locking due to the replacement of centralized
power plants. (a,b) Order parameter |r∞| and the mean phase velocity v∞ as a function of
coupling strength K for c = 2. (c,d) Order parameter and the mean phase velocity as a function
of coupling strength for c = 10. (e) Change of critical coupling strength Kc for the onset of phase-
locking due to the replacement of centralized power plants for c = 10. Quantities are averaged
over 100 realizations, as in Fig. 6.6. The shaded area shows the standard deviation.
and the mean phase velocity v∞ (b,d)

assumes a non-zero value in the long time limit:

v∞ > 0. (6.12)

If the capacity of the transmission lines is above Kc, all machines of the power grid phase-
lock as illustrated in Figure 6.7 (c). The system now has a fixed point, and therefore stable
operation is possible without an active phase control of the machines. The real part of
the order parameter converges now to a fixed positive value as shown in the upper panel.
Consequently, the average phase velocity v∞ goes to zero. Both the average phase velocity
v∞ and the order parameter r∞ are plotted as a function of the coupling strength K in
Figure 6.7(d), demonstrating the onset of phase-locking above a critical coupling strength
K ≥ Kc ≈ 13P0.

The synchronization transition is quantitatively analyzed in Figure 6.8 for the decentral-
ization process introduced in section 6.1.2. We find that self-organized phase-locking is
possible for lower transmission line capacities if additional but smaller and decentralized
sources are present in the grid. This result is in accordance with the results shown in the
previous section for model networks of regular, small-world and random topologies.

Figure 6.8(a,b,c,d) illustrates how the capability of the power grid to phase-lock is affected
by the decentralization process for different values of c. Intuitively, the transmission lines
connecting the power plants to the rest of the grid are heavily loaded and thus most likely
to fail. Therefore stability would be increased just because these lines become less loaded
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if large generators are replaced by several smaller ones. This notwithstanding, decentral-
ization itself, by its more distributed nature, supports phase-locking. To demonstrate this,
we increase the transmission capacities of transmission lines that connect power plants to
the grid by a factor c compared to the capacities of the other transmission lines. Self-
organized phase-locking is still promoted by decentralization for c = 2 as demonstrated
in Figure 6.8(a,b). It is even promoted for c = 10, completely compensating the ten-fold
difference in the power output of large and small decentralized generators as demonstrated
in Figure 6.8(c,d,). Most interestingly the phase order parameter r∞ increases with de-
centralization. At the same time, the average phase velocity v∞ decreases. The critical
coupling strength Kc for the onset of phase-locking thus decreases, i.e., phase-locking can
be already realized with less transmission capacity as illustrated in Figure 6.8(e).

This is remarkable, as it has been questioned whether a network of many small, distributed
power sources can be effectively synchronized without the help of a reference signal gen-
erated by large power grids (see, e.g., [70]). We conclude that at least for stationary
operation, further decentralizing a grid promotes self-organized phase-locking.

6.3 Synchronization time

A sufficiently large coupling of the nodes leads to the phase-locking of all nodes of a
power grid as demonstrated in the preceding sections. In this section we analyze the
synchronization time, i.e., the time the grid needs to reach a stable phase-locked state for
different degrees of decentralization. In real power grids this process has to be reasonably
quick. Starting from an arbitrary state in the basin of attraction, the network relaxes to the
stable phase-locked state with a characteristic time scale τsync. For instance, Figure 6.9(a)
illustrates the damped oscillations of the phase θj(t) of a power plant and a consumer in
a quasi-regular grid with K = 10 and NP = 10. In order to quantify the relaxation, we
calculate the distance to the steady state

d(t) =
 N∑
j=1

d2
1(θj(t), θj,st) + d2

2(θ̇j(t), θ̇j,st)
 1

2

, (6.13)

where the subscript ’st’ denotes the steady state values. For the phase velocities d2 denotes
the common Euclidean distance

d2
2

(
α̇, β̇

)
= |α̇− β̇|2, (6.14)

while the circular distance of the phases is defined as

d1(α, β) = 1− cos(α− β). (6.15)

57



6. Decentralized power generation in future power grids

0 40 80
−0.1

0

0.1

time t [s]

θ j/2
π

(a)

0 30 60
10

−6

10
−4

10
−2

time t [s]

di
st

an
ce

 d
(t

)

(b)

100% 80% 60% 40% 20% 0%
0.9

1  

1.1

τ sy
nc

 [1
/α

]

(c)

fraction of distributed energy sources

Figure 6.9: Relaxation to the phase-locked steady state. (a) Illustration of the relaxation
process (K/P0 = 10 and Np = 10). We have plotted the dynamics of the phases θj/2π only for
one generator (red) and one consumer (blue) for the sake of clarity. (b) Exponential decrease
of the distance (cf. (6.13)) to the steady state (blue line) and a fit according to d(t) ∼ e−t/τsync

(black line). (c) The synchronization time τsync as a function of the fraction of decentralized
energy sources 1 − NP /10 for a regular (◦), a random (�) and a small-world grid (�). Cases
where the system does not relax are discarded.

The distance d(t) decreases exponentially during the relaxation to the steady state as
illustrated in Figure 6.9(b). The black line is a fit with the function d(t) = d0 exp(−t/τsync).
Thus synchronization time τsync measures the local stability of the stable fixed point, being
the inverse of the stability exponent λ (cf. the discussion in section 5.2).

The dependance of the synchronization time on the structure of the network and the mix-
ture of power generators is illustrated in Figure 6.9(c). For several paradigmatic systems of
Kuramoto oscillators it has been demonstrated that the time scale of the relaxation process
depends crucially on the network structure [71–73]. Here, however, we have a network of
damped second order oscillators. Therefore the relaxation is almost exclusively given by
the inverse damping constant α−1. Indeed, we find

τsync & α−1. (6.16)

For the given parameter values we observe neither a systematic dependence of the synchro-
nization time τsync on the network topology nor on the number of large (NP ) and small
(NR) power generators. The mean value of τsync is always slightly larger than the relaxation
constant α−1. Furthermore, also the standard deviation of τsync for different realizations of
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the random networks is at most 3% of the mean value.

6.4 Robustness against dynamic perturbations

Renewable energy sources possess a fluctuating energy output [4, 10, 11, 74]. In addition,
also the local power consumption fluctuates depending on the decisions of the consumers.
Therefore, power grids which include these power sources have to be especially robust
against power fluctuations. Here we test the robustness of the four different topology classes
(cf. section 6.1) against perturbations of the power demand of the consumers. With respect
to the oscillator model (see [29]), perturbations on the consumers’ side are equivalent
to perturbations of the generators, such that we can restrict our analysis to adding a
perturbation on the consumers’ side for a certain period of time. As we demonstrated
in section 5.3 power grids operate in the coexistence regime, at least during periods of
high loads. The aim is now to quantify the maximum tolerable perturbations that does
not lead to power outage of the grid, i.e., does not drive the system out of the basin of
attraction of the stable fixed point. Real-world power grids have a large tolerance against
such perturbations, otherwise power outages would occur frequently.

6.4.1 Robustness of random network ensembles against dynamic
perturbations

We test the stability of the three different network structures described in section 6.1.1
against perturbations on the consumers’ side. We perturb the system after it has reached
a stable state and measure if the system relaxes back to a steady state after the perturbation
has been switched off again. The perturbation is realized by an increased power demand of
each consumer during a short time interval of ∆t = 10s as illustrated in the upper panels of
Figure 6.10. Therefore the power balance condition (see (4.33)) is violated and the system
cannot remain in its stable state. After the perturbation is switched off again, the system
either does or does not relax back to a steady state, depending on the strength of the
perturbation. Examples for the dynamics of weak and strong perturbations are illustrated
in Figure 6.10(a,b).

These simulations are repeated 100 times for every value of the perturbation strength for
each of the network topologies. We count the fraction of networks which are unstable,
i.e, do not relax back to a steady state. The results are summarized in Figure 6.11 for
the different network topologies. The Figure illustrates the fraction of unstable grids as a
function of the perturbation strength and the fraction of decentralized power generation
which is given by NR/100 where NR is the number of small decentralized generators in the
grid. For all topologies, the situation with highest robustness against power perturbations
is found if the power is generated by large power plants as well as small power generators
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Figure 6.10: Effects of weak and strong perturbations. The upper panels show the time-
dependent power load of the consumers. A perturbation of strength Ppert is applied in the time
interval t ∈ [5, 6]. The lower panels show the resulting dynamics of the phases θj/2π and the
frequencies θ̇j of the consumers (blue lines) and the power plants (red lines). The dynamics
relaxes back to a steady state after the perturbation for a weak perturbation (a), but not for a
strong perturbation (b). In both cases we assume a regular grid with NP = 10.

with approximately 30% decentralization. A possible explanation is that the power output
of large centralized sources is higher, which leads to a higher tolerance against power
perturbations. On the other hand, a more distributed arrangement of power stations
favors a stable phase-locked operation as demonstrated in section 6.2.

Furthermore, the variability between the different realizations of the power grids is stronger
for small values of NP , i.e., few large power plants. The results do not change much for
networks which many power sources (i.e. high NP ) because more power sources are dis-
tributed in the grid. Thus, the different realizations of the networks differ only weakly, and
we can observe a sharp transition between tolerable and intolerable perturbations. This is
different if only few large power plant are present in the network. For certain arrangements
of power stations the system can reach a steady state even for strong perturbations. But
the system can also fail to do so for only small perturbations if the power stations are
clustered. This emphasizes the necessity for a careful planning of the topology of a power
grid to guarantee maximum robustness.
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are unstable against a perturbation as a function of the perturbation strength Ppert and the
fraction of decentralized energy 1−NP /10. (a) Quasi-regular grid, (b) random network and (c)
small-world network.

6.4.2 Robustness of the British power grid against dynamic
perturbations

It was demonstrated in the previous subsection that the best situation in terms of a tol-
erable perturbation strength is found for about 30% distributed sources for all considered
model networks. Here we test the stability against power perturbations for the topology of
the British power grid. As in the previous section, we increase the demand of all consumers
for a short period of time (here: 0 s - 5 s) as illustrated in Figure 6.12(a,b) and test whether
the grid relaxes back to a steady state. We evaluate the robustness as a function of the
perturbation strength Ppert and the decentralization of the grid (cf. section 6.1.2) for two
different values of c.

The results are summarized in Figure 6.12(c) for c = 2 and in Figure 6.12(d) for c = 10. We
find that the maximally allowed perturbation strength shrinks with decentralization, but
both grids are stable up to a perturbation strength a few times larger than the unperturbed
load. A notable difference to the results in the previous section is that here both grids
have no peak for the maximum tolerable perturbation. Instead the maximum tolerable
perturbation always increases with less distributed power production. Furthermore, the
British power grid has no difference of the sharpness of the transition between tolerable
and intolerable perturbations. We assume that the differences in the response to such
perturbations are due to the different decentralization processes.

61



6. Decentralized power generation in future power grids

−5 0 5 10 15
−2000

0

2000
(b) strong perturbation

time (s)

unstable

−5 0 5 10 15
−20

−10

0

10
(a) weak perturbation

time (s)

θ
j/2

π

stable

Figure 6.12: Robustness of the British power grid against perturbations in power demand.
(a,b) Time evolution of the phases of the generators (red) and consumers (blue) for weak and
strong power perturbations in the time interval 0 s – 5 s (shaded area). (c,d) The colormaps
indicate the fraction of random grids which are unstable against a perturbation as a function
of the perturbation strength Ppert and the fraction of small distributed generators. Numerical
results have been averaged over 100 realizations, where the replacing smaller power sources were
randomly placed in the grid. Parameters are K = 20 and c = 2 in (c) and K = 20 and c = 10 in
(d).

6.5 Stability against structural damages

Decentralization requires the addition of new transmission lines into the power grid [18,
75]. This raises the still open question if the addition of new transmission lines makes
the grid more stable, [61, 63], or not, [64]. Here we analyze the stability of the British
power grid against structural damages to its transmission lines. We have simulated the
impact of the breakdown of single transmission lines on the capability of the power grid to
maintain stable operation. An example is illustrated in Figure 6.13(a) for the British power
grid, comparing the stability properties of a fully centralized grid with one where 10% of
the power sources are decentralized. The importance of each link for the stability of the
phase-locked state is indicated by the color of the lines. Green indicates non-crucial lines
that can be removed without losing phase-locking for both grids. Black colors indicates
bridges, whose removal disconnects the grids. Two transmission lines (blue) are crucial for
the stability of the initial grid, but not anymore when the marked power plant is replaced
by distributed generators. Red lines are crucial in both grids.
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Figure 6.13: Structural stability of the British power grid. (a) The color of the links illustrates
their relevance for the global structural stability of the power grid (see main text). Removing
certain single links causes power outage: two links (blue arrows) are crucial for the stability of the
initial grid, but not anymore when the marked power plant is replaced by distributed generators.
Six links (red arrows) are crucial in both cases. Parameters are K = 12 and c = 10. To simulate
the decentralization of the grid, we repeatedly replace one large centralized power plant by 10
small distributed generators as described in section 6.1.2. (b) Change of structural stability.
The panel shows the number of critical links in the network, whose removal leads to a loss of
synchrony and thus a major power outage, discarding bridges. Here, the coupling strength is
fixed to K = 15 and c = 10. Quantities are averaged over 100 realizations, as in Fig. 6.12. The
shaded area shows the standard deviation.

Extensive numerical simulations demonstrate how the decentralization of the British power
grid affects the structural robustness of the grid. The results are illustrated in Fig-
ure 6.13(b). We find that the average number of critical links decreases significantly
compared to systems with many small sources. Thus, decentralization leads to a higher
stability against structural damages. Further inspection of the detailed consequences of
removing links suggests a rough intuitive explanation: the probability of a global failure is
highest when there is no pathway in the immediate neighborhood which can take over the
respective power load. This is more often the case for grids with few, large power plants,
as there are less transmission paths in the network. This issue will be analyzed in detail
in the following chapter. We conclude that replacing large power plants by distributed
generators may not only promote phase-locking but also increase the robustness of the
power grid with respect to structural damages.
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6. Decentralized power generation in future power grids

6.6 Summary and discussion

In summary, we have analyzed how the ongoing decentralization of power grids due to the
development of renewable energy sources effects the onset of phase-locking and the stabil-
ity of power grids with complex topologies. We showed that the onset of phase-locking is
promoted for lower line transmission capacities for decentralized power grids. We demon-
strated this effect for all four considered grid topologies. Furthermore, the synchronization
time, i.e., the time the power grid needs to reach the stable fixed point, is not negatively
effected by decentralization. The synchronization time depends always crucially on the
damping for all degrees of decentralization. We analyzed the robustness of the power grid
against large-scale perturbations for all four considered grid topologies. We demonstrated
that all grid topologies possess a high tolerance against power perturbations. However, the
three general topologies (random, small-world and quasi-regular) possess the largest toler-
ance against power perturbations for approximately 30% of decentralization. The British
power grid has a large, but with decentralization constantly decreasing tolerance against
power perturbations. We assume that these different behaviors are due to the different
decentralization process for the three general grid topologies and the British grid. We an-
alyzed the structural stability of power grids. The structural stability is a global measure
of the amount of critical transmission lines, i.e., transmission lines that would cause power
outages if they fail. We counted the number of critical transmission lines that are indis-
pensable for the operation of the grid. We showed that the number of critical transmission
lines decreases with decentralization.

Intriguingly, we thus found two counteracting tendencies due to decentralization: As might
be expected, networks become generally less stable against short-term, large-amplitude
dynamic perturbations with increasing decentralization. At the same time, networks with
more distributed power sources are less vulnerable to transmission line failures, i.e., struc-
tural damages. Taken together, our results indicate that decentralizing power sources may
moderately decrease the grids’ dynamic stability, but support the onset of self-organized
phase-locking and the stability against structural damages.
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7 Power outages and critical
transmission lines

Modern power grids consist of thousands of transmission lines [32]. It is likely that failures
of transmission lines occur from time to time due to their vast number. Such an event
typically has no impact on the normal operation of power grids. However, in periods of high
loads the breakdown of single infrastructures such as transmission lines can cause a global
cascade of failures implying large-scale outages with potentially catastrophic consequences
[34–37, 76–84]. An example of such a cascade of failures is the power outage in Western
Europe triggered by the shutdown of one single transmission line in Germany in a period
of high load in November 2006 [18]. In fact, most power outages can be traced back to
failures of certain single transmission lines [85]. Periods of extreme loads are expected to
become more likely in future grids as power from renewable sources, such as wind turbines,
is often generated far away from the consumers (e.g. off-shore) [13] and moreover strongly
fluctuating [2, 10, 11]. Maintaining a stable operation of the grid and minimizing the risk
of power outages is thus an important challenge for the future operation of the grid.

In the previous chapter we analyzed the structural stability of power grids. We showed
that that the number of critical transmission lines decreases with decentralization (cf. sec-
tion 6.5). However, the structural stability does not provide any information why certain
transmission lines are critical while others are not. In this chapter we identify which
properties of transmission lines are crucial for their criticality. We analyze different topo-
logical and dynamic measures of transmission lines that may determine their importance
for grid operation. We demonstrate that the edge redundancy is the key indicator for
dynamic network robustness and that the relative remaining capacity prior to a line failure
indicates outages with high accuracy. It is of fundamental importance to identify critical
infrastructures that are indispensable for network operation [86]. Our findings indicate that
potential outages resulting from the failure of specific lines may be predicted by topological
and other stationary properties of normal network operation, i.e., the known state prior to
any breakdown.

We illustrate the problem in the first section and introduce the simulation methods in the
second. We distinguish between breakdowns in periods of low and high loads in the next
two sections. For periods of low loads we show that the maximum flow after a breakdown
can be predicted by simply rerouting the flow over the remaining paths of the network.
This directly leads to the definition of quantitative measures of redundancy for single
transmission lines. For periods of high loads we demonstrate that the redundant capacity
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Figure 7.1: Breakdowns of neighboring transmission lines with similar loads may or may not
cause large scale network outage. (a) Transmission line loads (color code) in the steady state in a
coarse-grained model of the British high-voltage transmission grid (see Fig. 6.7 with K0 = 12P0).
Generators with P = 11P0 are marked by a square, consumers with P = −P0 are marked by
a circle. (b,c) Dynamics after the breakdown of a single edge at t = 0, the edges being marked
by arrows in panel (a) with power outage in (b) and maintaining stable operation in (c). Is it
possible to predict a large scale outage from simple characteristics before line breakdown?

is indeed a reliable predictor for the criticality of transmission lines. The chapter ends with
a brief summary and discussion.

7.1 Transmission line failures

The addressed problem in this chapter is illustrated in Figure 7.1 for the oscillator power
grid model introduced in section 4.2.4. The failure of two neighboring transmission lines
with similar loads shown in Figure 7.1(a) may have completely different consequences
for global network operation. Whereas the failure of one transmission line is causing a
desynchronization of parts of the grid and consequently a large scale power outage as
illustrated in Figure 7.1(b), the removal of the other transmission line leaves the entire
network fully functional as illustrated in Figure 7.1(c). We find that such phenomena
emerge across networks and line pairs even if the transmission lines (i) have the same
capacity, are (ii) similarly located, e.g. in the same chain of transmission lines connecting
two remote network nodes, and (iii) although only one edge apart from each other, as in
the example. Such surprising examples yield the question of how to predict the impact
of a local failure on the emergence of power outages on the basis of the topology and the
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prior state of the network?

7.2 Simulation methods

To reveal essential aspects of what determines the dynamic stability of complex supply
networks, we consider the coarse-scale oscillatory model of power grids introduced in sec-
tion 4.2.4. As a brief recapitulation, the equations of motion for the phase difference of
each machine i to the reference phase Ωt is given by

d2θi
dt2

= Pi − α
dθi
dt
−
∑
j

Kij sin(θj − θi). (7.1)

In this model the power flow between two nodes of the network is given by

Fij = Kij sin(θj − θi). (7.2)

We performed direct numerical simulations of the model defined via the set of equa-
tions (7.1). Each simulation starts from a stationary phase-locked state of the intact
network. We then simulate the dynamics after the breakdown of a single transmission line
and test whether the network relaxes back to a stable operation. Specifically, we consid-
ered the British high-voltage transmission grid consisting of 120 nodes and 165 transmission
lines [19, 37]. For each out of 100 random realizations, we fixed the network topology by
randomly selecting ten nodes to be generators with power production of Pi = +11P0. All
other nodes are consumers with power consumption of Pi = −P0 with P0 = 1 s−2 (cf.
section 6.1.2). Edges connecting generator nodes to the remaining grid are assumed to
have a larger transmission capacity Kij = 10K0, marked by thick lines in Figure 7.1(a)
than the remaining edges with Kij = K0 to compensate for otherwise trivially occurring
overloads. For the statistical analysis (compare Figure 7.4 and Table 7.1) we thus gener-
ated 100 network realizations with various generator positions, thus testing 16.500 edges
in total. We note that the network allows for a stable operation only if the transmission
capacity exceeds a certain threshold value, K0 ≥ Kc (cf. section 6.2) [19, 58]. Networks not
supporting a steady state before any edge breakdown were not considered.

7.3 Breakdowns of transmission lines in periods of low
loads

To understand the effects of damages, we first consider power grids with Fij � K =
30 rms−2, such that the transmission lines are far away from being overloaded, i.e., the
system is far away from being in the globally unstable regime (cf. section 5.3). Here, the
breakdown or removal of a single non-bridge transmission line leads to a redistribution of
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Figure 7.2: Change of network flows after the removal of one transmission line during normal
operation. (a) Initial network flows

∣∣∣F (0)
a,b

∣∣∣ in the unperturbed steady state in a coarse-grained
model of the British high-voltage transmission grid. (b,c) Change of the network flows when one
of the non-bridge edges (a, b) is removed. Plotted is (b) the maximum change (cf. equation 7.3)
and (c) the maximum value (cf. equation 7.4) of the network flows as a function of the load of the
removed edge. We classify the removed edge according to their local edge connectivity λ(a, b) as
illustrated in Fig. 7.3. The maximum flow change

∣∣∣∆Fmax
(a,b)

∣∣∣ shown in (b) exactly equals the flow

of the removed edge
∣∣∣F 0
a,b

∣∣∣ when there is only one redundant path, i.e. λ(a, b) = 2, with parallel

flow (red squares). The maximum network flow
∣∣∣Fmax

(a,b)

∣∣∣ after the removal shown in (c) is large

when
∣∣∣F (0)
ab

∣∣∣ is large and the local edge connectivity is small, i.e. λ(a, b) = 2 (red squares and
magenta diamonds). The load Fa,b is given in units of the power P0. The transmission capacity is
K0 = 30 s−2. All other parameter values and number of generators and consumers are the same
as in Fig. 7.1.

the network flows, but does not induce a dynamical instability. We analyze how the change
of network flows depend on the characteristics of the removed edge.

The flows in a coarse-grained model of the British power grid in a stable operation are
illustrated in Figure 7.2(a). Each transmission line is far from being overloaded for the
given parameters. We then remove one non-bridge edge (a, b) and analyze how the flow
over the remaining edges (i, j) changes. In particular, we consider the maximum change
of the flows

∆Fmax
(a,b) := max

ij

(
F

(1)
ij − F

(0)
ij

)
(7.3)

and the maximum absolute value of the flow in the modified network

Fmax
(a,b) := max

ij

(
F

(1)
ij

)
. (7.4)
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Figure 7.3: Network motifs and the definition of local edge connectivity λ(a, b) between two
nodes a and b. (a,b) Cutting two links (green) disconnects the network. Nodes in the two
different components G1 and G2 thus have a local edge connectivity of at most two, λ ≤ 2.
Furthermore, it is of fundamental importance for network robustness, whether the flow over the
two links is parallel or anti-parallel as indicated by the direction of the arrows. (c) Cut between
two components with a higher local edge connectivity, here λ = 3.

Here, the superscripts (0) and (1) denote the flows before and after the removal, respec-
tively.

When an edge (a, b) is removed, the load F (0)
a,b has to be rerouted. Thus the change of loads

in the other edges (i, j) depends on two quantities. First, the original load of the edge F (0)
a,b

itself is decisive as this is the load that has to be rerouted. As we are never rerouting more
than the initial load of the removed edge (a, b), we find the inequality∣∣∣∆Fmax

(a,b)

∣∣∣ 6 ∣∣∣F (0)
(a,b)

∣∣∣ . (7.5)

The second decisive quantity is the redundancy of the removed edge. We introduce the local
edge connectivity λ(a, b) as a topological measure for edges. The local edge connectivity
of an edge (a, b) that connects the nodes a and b is defined as the minimum number of
edges, that would need to be cut to completely disconnect the nodes a and b [87], such
that they are in two different components of the network as illustrated in Figure 7.3. If
we have λ(a, b) = 2 we can further distinguish two scenarios. The power flow in the
two edges can be parallel or antiparallel. The scenario of parallel flow is illustrated in
Figure 7.3(a), for antiparallel flow in Figure 7.3(b). A third scenario with λ(a, b) = 3 is
shown in Figure 7.3(c).

If the local edge connectivity is low, i.e. λ(a, b) = 2, the complete load F
(0)
(a,b) has to be

rerouted over one edge (c, d), that belongs to the alternative shortest path from a to b.
Then

|F (1)
(c,d)| − |F

(0)
(c,d)| = ±|F

(0)
(a,b)| (7.6)

depending on whether the flow on c → d is parallel or anti-parallel to the flow a → b. If
λ(a, b) > 3 there are several alternative pathways along which F (0)

(a,b) can be rerouted.
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7. Power outages and critical transmission lines

The quantities
∣∣∣∆Fmax

(a,b)

∣∣∣ and ∣∣∣Fmax
(a,b)

∣∣∣ are plotted in Figure 7.2(b,c) as a function of the
load of removed edge |F (0)

ab |. The colored symbols refer to the different scenarios depicted
in Figure 7.3. Red squares symbolize edges with λ(a, b) = 2 and parallel flow, magenta
diamonds edges with λ(a, b) = 2 and antiparallel flow and blue circles edges with λ(a, b) ≥
3. We thus find that all red squares are on the diagonal for the maximum change of flows
as expected. Results are shown for one realization of the network.

More important for network stability is the maximum absolute load defined in equation 7.4.
It is plotted in Figure 7.2(c). For most removed edges (a, b) this quantity is only weakly
affected because the flow F

(0)
(a,b) has to be rerouted through a path that has a lot of free

capacity. A large increase of the maximum flow is only found if the removed edge was
heavily loaded and weakly redundant, i.e. λ(a, b) = 2. Edges satisfying these two conditions
have a strong impact on the flows in a steady state of the network. However, this does not
imply that they are equally important for the existence of a steady state.

7.4 Breakdowns of transmission lines in periods of high
loads

In the previous section we analyzed scenarios of low loads. Such a situation is a priori
not very dangerous, because the transmission lines have a lot of free unused transmission
capacity. In case of breakdowns there are thus many possibilities to redirect the power
flow. We showed that only scenarios with only one alternative pathway are potentially
dangerous.

In this section we analyze scenarios where the power grid is heavily loaded. In such a
scenario the power grid is vulnerable to large scale outages triggered by breakdowns of
single transmission lines. It is also expected that scenarios with heavy load will occur
more frequently in power grids with lots of sustainable power sources [88, 89].

7.4.1 Stability or large scale outage?

It is well established, that in period of high loads, the breakdown of a single edge can
trigger a large scale outage in power grids, with potentially catastrophic effects [37, 76,
79, 82]. However, to find the criteria which determine whether an edge is critical for the
operation of the grid or not is still an open challenge. To analyze how to identify these
edges we simulated the dynamics of a large set of model grids after the breakdown of an
edge (a, b), sampling all edges in the network. In particular, we call an edge “stable” if the
network relaxes back to an attractive stable phase-locked state, i.e. a state with θ̇i = 0 for
all i. Otherwise we call the edge “critical”. Examples for both a stable and an unstable
scenario are shown in Figure 7.1(b,c).
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Figure 7.4: A statistical analysis demonstrates that critical edges cannot be reliably identified
by the load or the power flow. Shown are histograms of the power flow

∣∣∣F (0)
ab

∣∣∣ (a,b) and the load

Lab = F
(0)
ab /Kab (c,d) of stable (left hand side) and critical edges (right hand side) for edges with

λ(a, b) = 2. Results are collected for 100 random realizations of the British grid. The flow is
given in units of P0.

Intuitively, it seems likely that heavily loaded edges are most critical for grid operation.
However, a systematic statistical analysis reveals that neither the power flow F(a,b) nor the
load Lab = Fab/Kab is a reliable indicator to decide whether an edge (a, b) is critical or
not. This is illustrated in Figure 7.4. We find edges to be stable despite being heavily
loaded (a,c) as well as critical edges which are only weakly loaded (b,d) for both the load
illustrated in Figure 7.4(a,b) and the power flow illustrated in Figure 7.4(c,d). Moreover,
among the critical edges we find weakly loaded ones even more often than heavily loaded
ones. Thus, load and power flow are not useful measures in determining the stability of an
edge.

7.4.2 Redundancy in power grids

Instead of the absolute flow or the relative load, redundancy is the key concept to detect
critical edges. A general criterion of redundancy in technical systems is how many alterna-
tives are available if a piece of infrastructure fails. In a supply network, this is quantified by
the local edge connectivity λ(a, b), which counts the number of independent paths between
two nodes a and b [87]. If λ(a, b) = 1 there is no redundant path such that a breakdown
of the edge (a, b) inevitably causes desynchronization. On the contrary, the breakdown
of a highly redundant edge with λ(a,b) ≥ 3 causes a global desynchronization only in few
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Figure 7.5: A statistical analysis shows that critical edges can be reliably identified by the local
edge connectivity. Shown are histograms of the local edge connectivity λ(a, b) (a,b) and the ratio
of the redundant capacity Kred

(a,b) and the flow |Fab| (c,d) of stable (left hand side) and critical
edges (right hand side). Critical edges can be reliably identified by low values of Kred

(a,b)/|F(a,b)|.
Results are collected for 100 random realizations of the British grid.

exceptional cases as illustrated in Figure 7.5(a,b). We thus conclude that the local edge
connectivity yields good predictions for the criticality of edges, certainly for λ(a, b) = 1
and λ(a, b) ≥ 3. It is thus a more reliable predictor than the load or the power flow.
However, for λ(a, b) = 2 both stable and critical edges can still be found with a noteworthy
probability.

Thus, a more careful treatment is required to obtain a reliable predictor for the stability
of edges, which works also for the intermediate scenario λ(a, b) = 2. If the edge (a, b) fails,
the flow F

(0)
ab has to be rerouted over alternative paths in the network. However, the edges

along these paths have only a limited residual capacity to take over this flow. Therefore
we define the redundant capacity Kred

ab of an edge a → b as the maximum additional flow
that the network can transmit from node a to b. Here, the maximum is defined in a purely
graph-theoretical way, i.e. we search for a flow which satisfies |Fij| < Kij for all i, j and flow
conservation at every node. This definition depends only on the structure of the network
and the steady state flow and can thus be applied to every model of a supply network. It
does not take into account whether such a flow is dynamically possible or stable for the
particular network type under consideration.

Furthermore, we note that the redundant capacity Kred
ab of an edge (a, b) depends on the

direction of the flow of this particular edge (see Figure 7.3). It is thus directed, i.e. Kred
ab 6=
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7.4 Breakdowns of transmission lines in periods of high loads

Edge is critical stable
λ(a, b) = 1 1700 (10.3%) 0 (0.0%)
λ(a, b) = 2 Kred

ab < hF
(0)
ab 606 (3.7%) 398 (2.4%)

Kred
ab ≥ hF

(0)
ab 27 (0.2%) 5669 (34.4%)

λ(a, b) ≥ 3 Kred
ab < hF

(0)
ab 93 (0.6%) 32 (0.2%)

Kred
ab ≥ hF

(0)
ab 39 (0.2%) 7936 (48.1%)

Table 7.1: Proposed simple classification of critical vs. stable edges. Out of the total of 16500
edges, 96.99% have been correctly classified for a threshold value of h = 1.8. Parameters and the
data set are the same as in Fig. 7.5.

Kred
ba . This is immediately clear from the fact that the flow is directed. If an edge (i, j)

is fully loaded in the sense that Fij = −Fji = Kij, then it cannot transmit any additional
flow from node i to node j. However, it can transmit additional flow in the other direction
from j to i. In fact, this would lower the net flow over the edge (i, j) and thus the load of
the edge.

The redundant capacity of the edge (a, b) is calculated using a modification of the Edmonds-
Karp algorithm [87]. As discussed above, Kred

ab 6= Kred
ba such that the algorithm works with

directed graphs. In the following we present the work steps of the algorithm.

Input: Capacity matrix K, Initial flow matrix F , edge a→ b
Output: Redundant capacity Kred

ab of the edge a→ b.
Step 1: Delete the edge (a, b) from the effective network:

Kab, Kba, Fab, Fba ← 0.
Step 2: Initialize Kred

ab ← 0.
Step 3: Calculate the residual capacity matrix Kf ← K − F .
Step 4: Construct a shortest path p from a to b in the directed graph defined

by the capacity matrix Kf .
Step 5: If there is no path p from a to b: STOP.
Step 6: Calculate the maximum available capacity along the path p:

Kf
max ← max(i→j)∈pK

f
ij.

Step 7: Increase the flow along the path p: Fij ← Fij + Kf
max for all edges

(i→ j) ∈ p.
Step 8: GOTO step 3.

If edges have low redundant capacities they are with a higher probability critical than
stable, if they have high redundant capacities they are almost always stable. A reliable
criterion to identify critical edges is thus given by the ratio Kred

(a,b)/|Fab| as illustrated in
Figure 7.5(c,d). In particular we propose the following classification system for critical and

73



7. Power outages and critical transmission lines

stable edges:

Kred
ab < h× |F (0)

ab | ⇒ predicted to be critical, (7.7a)
Kred
ab ≥ h× |F (0)

ab | ⇒ predicted to be stable, (7.7b)

where h is a threshold value that can be optimized for the specific task.

We find for the British power grid that if the redundant capacity for an edge is higher
than a threshold value of h = 1.8 times the flow of an edge (Kred

(a,b) ≥ 1.8 × F
(0)
(a,b)), the

edge is almost always stable. This holds for all values of the local edge connectivity. For
redundant capacities below that threshold we find that edges have a higher probability
to be critical than stable. Bridges with local edge connectivity λ(a, b) = 1 are of course
always critical. The results are summarized in Table 7.1.

7.4.3 Performance of the statistical testing methods

In this section we analyze the performance of the redundant capacity as a predictor for the
criticality of edges in detail and compare it with other possible predictors. We show that
it is possible to identify or classify critical infrastructures by the ratio of the redundant
capacity Kred

ab and the flow
∣∣∣F (0)
ab

∣∣∣. To evaluate the performance of such a classification
scheme we must first define the possible outcomes of a prediction, where we distinguish
between two systematically different kinds of errors:
True positive: Edge is predicted critical and is critical.
False positive: Edge is predicted critical but is stable.
False negative: Edge is predicted stable but is critical.
True negative: Edge is predicted stable and is stable.

Generally it is impossible to rule out both false negative and false positive predictions such
that a compromise must be achieved. In the current setting, the number of false negative
predictions can be minimized by choosing a high value of h, while the number of false
positive predictions can be minimized by choosing a small value of h.

A common evaluation of the performance of a classifier is given by the so-called receiver
operating characteristics (ROC) [90]. Here, one considers the true positive rate of the test,
also called the sensitivity (SEN)

SEN := #true positive predictions
#true positive predictions + #false negative predictions (7.8)

and the false positive rate (FPR)

FPR := #false positive predictions
#false positive predictions + #true negative predictions (7.9)
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Figure 7.6: Receiver operating characteristics (ROC) of different classifier systems for critical
and stable edges. The ROC curve shows the sensitivity (SEN) of the classifier vs. the false
positive rate (FPR) for various values of the threshold value h. The proposed classification (cf.
equation 7.7) based on the ratio Kred

ab /|Fab| (thick blue line) closely approaches the perfect values
(0, 1). Other possible classification schemes based on the edge connectivity λ(a, b) (−−), the load
Lab (—) or the absolute flow |Fab| (−·−) clearly perform worse. The inset shows a magnification
around the point (FPR,SEN) = (0, 1). The threshold h is optimized by choosing the point where
the ROC-curve has slope of 1 (marked by an arrow). The curves are based on the simulation of
100 random realizations of the British power grid with heterogeneous generation (cf. section 7.2).

For a perfect classifier, the ROC is a point at (FPR, SEN) = (0, 1). If the classification
depends on a threshold value h one can plot SEN vs. FPR for different values of h as in
Figure 7.6. Here, h can be optimized to the task of the test. For a fully random classification
this ROC-curve would yield a straight line with slope 1 through the origin. Therefore, a
classifier is judged to be better, the nearer the ROC-curve approaches the point (0, 1), i.e.,
the upper left corner of the plot. Alternatively, one can judge the classifier by the area
under the ROC-curve [90].

We propose to identify critical infrastructures by the ratio of the redundant capacity Kred
ab

and the flow F
(0)
ab (cf. (7.7)). The ROC shown in Figure 7.6 illustrates the performance of

the load (red line), the power flow (magenta line), the local edge connectivity (green line)
and the redundant capacity (blue line) as a predictor for different values of h. We find
that for both the load and the power flow we either have very low false positive rates of
under 20% combined with a low sensitivity around 20% or a high sensitivity over 80%, but
combined with a high false positive rate of over 50% depending on the value of h. None of
these scenarios are reliable as a predictor. Thus there exists no value of h for which either
the load or the power flow is a reliable predictor.
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7. Power outages and critical transmission lines

(a) Edge is critical stable
Kred
ab < h1F

(0)
ab 2399 430 PPV = 84.80%

Kred
ab ≥ h1F

(0)
ab 66 13605 NPV = 99.52%

SEN = 97.32% SPE = 96.94%
(b) Edge is critical stable
Kred
ab < h2F

(0)
ab 2193 0 PPV = 100.0%

Kred
ab ≥ h2F

(0)
ab 272 14035 NPV = 98.10%

SEN = 88.97% SPE = 100.0%
(c) Edge is critical stable
Kred
ab < h3F

(0)
ab 2465 3807 PPV = 39.30%

Kred
ab ≥ h3F

(0)
ab 0 10228 NPV = 100.0%

SEN = 100.0% SPE = 72.87%

Table 7.2: Classification of critical and stable edges according to the ratio Kred
ab /|F

(0)
ab | for three

different values of the threshold h. (a) Threshold value h1 = 1.8 for which the ROC curve
has a slope of 1. (b) No false positive results occur for low threshold value h2 = 1.18. (c)
No false negative results occur for a high threshold value h3 = 5.76. The specificity SPE is
defined as SPE:=1-FPR. PPV and NPV denote the positive predictive value (cf. (7.10)) and the
negative predictive value (cf. (7.11)), respectively. Shown is the contingency table summarizing
the results for 100 random realizations of the British power grid with heterogeneous generation
(cf. section 7.2).

For the local edge connectivity we have either very low false positive rates down to 0%
combined with a sensitivity of 68% or a high sensitivity over 90% combined with a false
positive rate of over 40%. The local edge connectivity is thus clearly a more reliable
predictor than the load or the power flow. However, the redundant capacity performs even
better as it comes closest to the desired point (0, 1). Figure 7.6 reveals that this classifier
performs extremely well: It closely approaches the perfect operation point (FPR, SEN) =
(0, 1).

Finally, the threshold value h can be chosen according to the specific application of the
classification system. A common choice is the point at which the slope of the ROC-curve is
1 [90]. This represents a compromise between the conflicting goals of large sensitivity and
small false positive rate. For the present network data set this strategy is illustrated in
the inset of Figure 7.6; it yields the value h = 1.8 for the redundant capacity. A different
strategy would be to minimize false negative results such that every critical link is detected.
For the given network data the number of false negative results can be reduced to zero for
h ≥ 5.76. This strategy reveals all critical links but also yields a comparably large number
of false positive predictions. Similarly, the number of false positive results can be reduced
to zero by choosing a low threshold value h ≤ 1.18 at the expense of a comparably low
sensitivity. The results are summarized in the contingency Table 7.2. In addition to the
absolute number of true and false predictions, we also give some statistical quantities to
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characterize the classifier: the sensitivity ( cf. (7.8)), the specificity SPE := 1 − FPR (cf.
(7.9)) and the positive predictive value (PPV)

PPV := #true positive predictions
#true positive predictions + #false positive predictions (7.10)

and the negative predictive value (NPV)

NPV := #true negative predictions
#true negative predictions + #false negative predictions (7.11)

show that the flow and the redundant capacity correctly predict the stability of the network
in 99.33% of all cases for the given network structure.

7.5 Response to small local changes

Alterations of the capacities of a single transmission line can strongly impact the global
operation of a network already far before the line breaks down. To characterize the rel-
evance of an edge in this respect, we analyze how a local perturbation affects the global
steady state in linear response theory. We assume again that every transmission line has
the same capacity. We thus consider a small perturbation κij of the network at a single
edge (a, b) such that K ′ij = Kij + κij with κab = κba = κ and κij = 0 for all other edges.
We thus have

K ′ab = Kab + κ, (7.12a)
K ′ij = Kij for (ij) 6= (ab). (7.12b)

This perturbation induces a small change

θi → θ′i (7.13)

of the steady state phases of the network. We thus define the square of the edge suscepti-
bility

χ2
ab := lim

κ→0

∑
i |θ′i − θi|2

κ2 . (7.14)

as the squared relative change of the steady state relative to the perturbation strength κ.
Here we fix an overall phase shift by imposing the constraint that ∑i θi = 0 = ∑

i θ
′
i. To

relate the susceptibility of an edge to its load and its redundancy, we calculate the response
pattern

ξi := θ′i − θi (7.15)

in linear response.
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7. Power outages and critical transmission lines

The steady state of the original network is defined via (cf. section 4.2.4)

0 = Pi +
N∑
j=1

Kij sin(θj − θi). (7.16)

Consequently, the steady state of the perturbed network is

0 = Pi +
∑
j

K ′ij sin(θj + ξj − θi − ξi). (7.17)

For the perturbed network we expand the steady state condition to leading order in κij
and ξj := θ′j − θj with the result

0 = Pi +
∑
j

K ′ij sin(θj − θi) +
∑
j

K ′ij cos(θj − θi)(ξj − ξi) (7.18a)

= Pi +
∑
j

Kij sin(θj − θi)︸ ︷︷ ︸
=0

+
∑
j

κij sin(θj − θi) +
∑
j

Kij cos(θj − θi)(ξj − ξi) +O(ξ2)

(7.18b)

=
N∑
j=1

Kij cos(θj − θi)(ξj − ξi) +
N∑
j=1

κij sin(θj − θi) (7.18c)

for all i ∈ {1, . . . , N}. We can simplify this result using the definition of the power flow Fij
(cf. (7.2)) under the assumption of |θj − θi| ≤ π/2. This assumption almost always holds,
the only exceptions that may occur are for heavily loaded transmission lines. However, here
we are considering transmission lines that carry loads considerably below their maximum
transmission capacity. Using the trigonometric identity cos2(x) + sin2(x) = 1 yields

Kij cos(θj − θi) =
√
K2
ij − (Kij sin(θj − θi))2, (7.19a)

=
√
K2
ij − F 2

ij. (7.19b)

The expression
√
K2
ij − F 2

ij can be understood as the residual capacity of each edge, i.e., the
free capacity which can be used to react to the perturbation (cf. section 7.4.2). Because the
system is in the stability region and far away from being overloaded we have |Fij| < Kij.
Equation (7.18c) then reads

0 =
N∑
j=1

√
K2
ij − F 2

ij(ξj − ξi) + κ
Fab
Kab

qi (7.20)
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7.5 Response to small local changes

for all i ∈ {1, . . . , N} with

qi =


1 for i = a
−1 for i = b
0 else .

(7.21)

With the definition of the residual network K̃ij as

K̃ij :=
√
K2
ij − F 2

ij (7.22)

we thus have

κ
Fab
Kab

qi =
N∑
j=1

K̃ij(ξi − ξj) (7.23a)

=
N∑
j=1

K̃ijξi −
N∑
j=1

K̃ijξj. (7.23b)

The degree matrix D of a matrix M is defined as the diagonal matrix whose i-th diagonal
entry, dii, is ∑kmik, the sum of the entries in the i-th row of M . The matrix K̃ is
symmetric, therefore the first sum of equation (7.23b) is equal to the product of the degree
matrix of K̃ and ~ξ. The second sum equals the product of K̃ and ~ξ. In a short-hand
vectorial notation, we thus find

L
(
K̃
)
~ξ = κ

Fab
Kab

~q, (7.24)

where the matrix L
(
K̃
)
the Laplacian matrix of the residual network K̃ij. The Laplacian

matrix of a matrix is defined as the difference of its degree and adjacency matrix [91].

For the response pattern ~ξ we thus have

~ξ = κ
Fab
Kab

L†
(
K̃
)
~q (7.25)

with L†
(
K̃
)
[92] as the so called generalized inverse of L

(
K̃
)
. The eigenvalues of a

Laplacian matrix are 0 = a1 < a2 < · · · aN with corresponding eigenvectors ~vn [93]. The
eigenvalues of the generalized inversed of the Laplacian matrix are 1/an with 1/a1 excluded
[92]. The eigenvectors are the same with the exclusion of ~v1 [92]. We thus have

~ξ = κ
Fab
Kab

N∑
n=2

1
an
|~vn · ~q| . (7.26)

A deeper understanding of the susceptibility of each edge can be obtained by solving
equation (7.26) for ~ξ and substituting the result into the definition (7.14). Then the edge
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Figure 7.7: The edge susceptibility χab is determined by the load and the algebraic connectivity.
(a) For a given network, the susceptibility is approximately proportional to the load of the edge
Lab. It is increased if the edge (a, b) couples two weakly connected components of the residual
capacity graph K̃, indicated by a large overlap with the Fiedler vector |~q · ~v2| (shown as a color
code and in the inset). (b) On a global scale, the average susceptibility is proportional to the
inverse algebraic connectivity 1/a2. The plot shows 1/a2 (�) and the ratio χab/ |Lab| averaged
over all edges (◦) as a function of the transmission capacity K0. The shading shows the standard
deviation of χab/ |Lab|. The network is as in Fig. 7.1.

susceptibility is given by

χ2
ab = L2

ab

N∑
n=2

1
a2
n

|~vn · ~q|2. (7.27)

This expression shows three important results:

(1) The edge susceptibility generally scales with the load of the edge Lab = F
(0)
ab /Kab.

(2) The prefactors 1/a2
n decrease with n. In particular for a heavily loaded network the

factor 1/a2
2 is very large compared to the others and the term n = 2 dominates the sum.

Then the susceptibility of all edges in the network scales inversely with the eigenvalue
a2, which measures the algebraic connectivity [94–96]. Hence, the susceptibility is large if
the network defined by the residual capacities

√
K2
ij − F 2

ij is weakly connected. This is
illustrated in Figure 7.7(b).
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2) The prefactors 1/a2
n decrease with n. In particular for a heavily loaded network the

factor 1/a2
2 is very large compared to the others and the term n = 2 dominates the sum.

Then the susceptibility of all edges in the network scales inversely with the eigenvalue a2,
which measures the algebraic connectivity [94–96]. Hence, the susceptibility is large if the
network defined by the residual capacities

√
K2
ij − F 2

ij is has a low algebraic connectivity.
This is illustrated in Figure 7.7(b).

(3) For a heavily loaded network, the edge susceptibility scales with the overlap |~v2 · ~q|,
where ~v2 is the so-called Fiedler vector [97]. This overlap can be interpreted as a measure of
the local algebraic connectivity of the nodes a and b. To see this note that the Fiedler vector
can be used to partition a graph into two weakly connected parts [95, 96]. The overlap
with the vector ~q is largest if the nodes a and b are in two different weakly connected parts
of the grid. To make this reasoning most clearly, we consider the limiting case a2 → 0, i.e.,
the residual network defined by

√
K2
ij − F 2

ij becomes disconnected into two components.
The Fiedler vector then reads ~v2 ∼ (1, . . . , 1,−1, . . . ,−1), with entries +1 for the nodes in
the first component and −1 for the nodes in the second component [98, 99]. The overlap
is then given by (cf. (equations 7.21))

|~v2 · ~q| =
{

0 if a and b are in the same fragment
2√
N

if a and b are in different fragments. (7.28)

Therefore the susceptibility tends to infinity as a2 → 0 if the edge (a, b) links the two
fragments, whereas it remains finite otherwise. This is illustrated in Figure 7.7 (a).

The numerical data shown in Figure 7.7 clearly confirm these findings. The susceptibility
of the individual edges scales with the load Lab and the overlap to the Fiedler vector |~v2 ·~q|,
whereas the average susceptibility is proportional to the inverse connectivity 1/a2.

7.6 Discussion

In summary, we have characterized critical infrastructures of complex power grids. We
linked the graph theoretical measure of edge connectivity with dynamical features of com-
plex power grids. We thereby demonstrated that a grid’s response to both small damages
and complete breakdowns of single edges, can be predicted with high accuracy from topo-
logical and load properties of the grid’s original unperturbed state that are a priori acces-
sible. The breakdown of a single edge is very likely to cause a global desynchronization of
the power grid if there is at most one redundant path with low redundant capacity to take
over the flow of the failing edge. In contrast, the load of the edge alone does not provide a
reliable indicator for the criticality of an edge. To quantify the effects of small damages, we
have defined the edge susceptibility which measures the change of the global steady state
caused by a small local perturbation. The edge susceptibility is essentially determined by
the load and the algebraic connectivity of the network.
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7. Power outages and critical transmission lines

Our work applies especially to situations of extreme loads where the power grid becomes
vulnerable to large-scale outages. These situations are expected to become much more
frequent in future sustainable power grids. The criteria identified may thus find valuable
applications for predicting, and potentially preventing large scale outages in real world
networks. In particular their a priori nature permits ad-hoc analysis of grid operation in
real-time, also because they avoid simulations of outages that may be highly computation-
ally demanding and time-critical. They may thus improve existing stability regulations for
power grid operation [23] and moreover be used for a rapid assessment of grid structures
in network planning and optimization.
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8 Conclusions

In this thesis, we studied the synchronization properties in models of power grids and
how they relate to stable operation thereof. In the class of models considered, every
generator and consumer of a grid is represented by a second order oscillator (nodes) and
the different oscillators are coupled by transmission lines (edges). The collective dynamics
of the power grid therefore depends on the interactions of the oscillators. We focused on
two challenges for power grids. The first is to determine the influence of decentralization
of power generation on the operation of power grids. The second is to determine which
transmission lines are the most crucial for the operation of the grid, i.e., can cause power
outages in case of their failure.

To study the large-scale dynamic behavior of power grids we used the oscillator power
grid model derived by Filatrella et al. [29]. This model allows to simulate the dynamics
of power grids with a set of parameters, which model the power output of real power
sources. To model the largely complex power grid a number of simplifications had to be
implemented. They are, in short, the reduction of the elements of the power grid to three
different elements: generators, consumers and transmission lines. Every consumer and
generator is represented by a synchronous machine. Ohmic losses in transmission lines are
discarded and we chose a homogeneous set of parameters. Although these simplifications
are well reasoned, real power grids possess of course none of these simplifications. Still,
despite all these shortcomings, the oscillator power grid model is a powerful tool to analyze
the behavior of power grids. It can represent one of the most important features of real
power grids, that is the coexistence of a stable and an unstable state. For instance, only
this feature allows studies about the reaction of the power grid to perturbations of power
consumption, because it is a priori not clear if the grid can go back to a steady phase-
locked state after the perturbation is removed or not. Thus, the model is an appropriate
tool to analyze collective power grid dynamics. We studied the collective dynamics of power
grids for four different topology classes, three general topologies, random, small-world and
quasi-regular, and the special topology of the British high-voltage power grid.

In the first part of the thesis (Chapter 4 and 5) we presented the model and analyzed the
special case of a power grid consisting of only two elements, a generator and a consumer.
This special case is analytically tractable. We presented a detailed bifurcation study of this
power grid. We showed that already this simple system contains features that are evidently
also present in real power grids, mainly the coexistence of a stable and an unstable state
of power grid operation. Therefore the collective dynamics of the model crucially depend
on the initial conditions, they can either converge to stable fixed point or the limit cycle.
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Thus, the model allows insights into the behavior of more complex topologies.

In the second part (Chapter 6) we studied the process of decentralization of power gen-
eration within the oscillator power grid model – an ongoing process in real world power
grids. We analyzed different aspects of this process. First, we showed that for decentralized
power grids the capability of reaching a steady phase-locked state of power grid operation
can be achieved with lower transmission line capacities than for centralized power grids.
Second, we showed that the synchronization time, i.e., the time the grid needs to actually
reach the steady phase-locked state, does not increase by decentralizing the grid. Third, we
demonstrated that the dynamical stability, i.e., the capability of the power grid to main-
tain stable operation in case of uneven power production and consumption, is negatively
affected by decentralization. Finally, we showed that the structural stability, i.e., the ca-
pability to maintain stable operation for transmission line failures, generally increases for
decentralized power grids. Thus already the decentralization of the grid, which is only one
aspect of the so-called Energiewende, has complex, oppositional effects on the structural
stability of the grid.

The third part (Chapter 7) of the thesis is devoted to a more detailed analysis of the
structural stability. We showed that the load of a transmission line has almost no influence
on the global stability in case of its failure. Instead, redundancy is the key concept to
detect critical transmission lines in power grids. A rough prediction of grid stability is
already provided by the local edge connectivity, which essentially measures the number of
different alternative paths for the power flow of a transmission line. A reliable prediction
is feasible by comparing the load of the failing edge with the redundant capacity of the
grid. Intuitively, the redundant capacity is a measure of how much more free transmission
capacity is left for the rerouting of the power flow of the failed transmission line. It
is calculated on the basis of the grid structure and the operation before the failure using
graph-theoretic algorithms and requires neither dynamical simulations nor knowledge of the
details of the supply network model. Furthermore, we analytically derived the susceptibility
of the power grid in response to a small change in the capacity of one transmission line
of the power grid. We confirmed that the local algebraic connectivity of the network of
the residual capacities is decisive for the susceptibility of the grid to small damages of
single transmission lines. To our knowledge, the concept of the residual capacities and the
derivation of the edge susceptibility is fundamentally new and previously unknown in the
literature.

Our findings regarding the structural stability and the reasons for the criticality of trans-
mission lines are examples of finding fundamental principles. Although real power grids
possess of course a more inhomogeneous parameter setting than our model, we expect that
their principal behavior regarding the structural stability is comparable. Therefore our
findings can be viewed as fundamental predictions regarding the behavior of real power
grids. Our results regarding decentralization of power generation and the structural sta-
bility are the prime examples. They can serve as a guideline for the development of a
protocol that determines power grid stability: Our model points towards the properties of
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transmission lines that have to be checked in real power grids to predict their criticality
for power grid operations prior to potential breakdowns, such that countermeasures can be
executed in time. Our results can also be used to identify permanently critical transmis-
sion lines, which have low redundant capacities and thus serve as a guideline to identify
necessities for the building of new redundant transmission lines.

Extensions of the work presented in this thesis open further novel perspectives to inter-
esting questions of power grid operation. For instance, the concept of residual capacities
may be used as a guideline to analyze possible counteracting strategies for the failures of
power sources. Which other power sources should optimally increase their power output
as a compensation? Furthermore, it will be necessary to implement storage facilities into
a power grid consisting of mainly renewable power sources [12]. This raises the related
question of how they should operate in the event of failures of power sources.

It will be an interesting future task to confirm our results regarding the properties that
determine the criticality of transmission lines with data of real power grids. Although the
N-1 safety criterion [24] (that the grid should always be capable of maintaining its stable
state despite the breakdown of any given transmission line), is already established for real
power grids, violations of this criterion occur from time to time. To show that these events
may be related to a state of a weakly connected graph of residual capacities prior to the
breakdown line should be an aim of future research.

Maintaining stable operation was always a challenging problem for power grids. Current
sophisticated strategies have been developed over the last few decades. With the ongoing
changes in power generation with an increasing fraction of renewable sources and thus
more fluctuations in the power output, it is a priori not clear if these strategies will hold.
For instance an enormous challenge for the development of power grids is that often wind
energy sources are built predominantly at the seaside such that energy is generated far away
from consumers. The insights and methods presented here may further our understanding
of the collective dynamics of today’s power grids as well as help investigating different
scenarios for upgrading the grid. Here we have contributed to the development of new
strategies of maintaining stable operation for future power grids.
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