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Summary 

 

  

SUMMARY 
 

Small-bodied folivorous primates are rare because processing leaves often requires 

extensive gut adaptations and lengthy retention times for fiber fermentation.  However, 

Lepilemur leucopus (white-footed sportive lemur) persists on a folivorous diet despite 

small body size (<1kg). To improve our knowledge about how small-bodied folivores 

adapt their behavioral and dietary strategies to satisfy their nutritional needs, I aimed to 

investigate how extrinsic (i.e. food quantity and quality) and intrinsic (i.e. reproductive 

state) factors influence foraging strategies, food choices and social relationships. I 

collected data on activity patterns, feeding behavior, social interactions and ranging 

behavior in a spiny forest population of L. leucopus at Berenty Reserve, Madagascar, over 

a complete annual cycle. I determined habitat structure and phenology of the spiny forest 

and collected foods for chemical analyzes of nutritional content. There was no consistent 

evidence that the seasonal decrease in food quantity had a major impact on feeding 

behavior or social interactions in L. leucopus, presumably due to its low dietary 

selectivity and reliance on the most common food species, and any feeding stress may 

have been more related to food quality than quantity. In more particular, dietary protein 

may have been in limited supply as L. leucopus prioritized protein over non-protein intake 

across seasons and reproductive stages. As changes in activity patterns and social 

interactions were unrelated to food quantity, bottom-up processes seem to be less 

important than top-down processes in shaping the social system of L. leucopus. The 

findings also support the idea that quantitative food shortage during the dry season may 

be subordinate to leaf quality as a selection pressure on folivorous primate populations.  
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Zusammenfassung 

 

  

ZUSAMMENFASSUNG 
 

Kleine blattfressende Primaten sind selten, da die Verarbeitung von Blättern oft 

umfangreiche Anpassungen des Verdauungsapparates und lange Retentionszeiten für die 

Fermentierung der Blattfasern erfordert. Dennoch basiert die Nahrung von Lepilemur 

leucopus (Weißfuß-Wieselmaki) auf Blättern trotz kleinem Körpergewichts (<1 kg). Um 

unser Verständnis darüber voranzutreiben wie kleine Blattfresser ihre 

Verhaltensstrategien anpassen um ihre Nahrungsbedürfnisse zu stillen, beabsichtigte ich 

zu untersuchen wie extrinsische (i.e. Nahrungsquantität und -qualität) und intrinsische 

Faktoren (i.e. Fortpflanzungsstatus) Strategien der Nahrungssuche, Nahrungswahl und 

soziale Interaktionen beeinflussen. Ich sammelte Daten bezüglich Aktivitätsmuster, 

Fressverhalten, sozialer Interaktionen und Streifverhalten in einer Population von L. 

leucopus in Berenty Reserve (Madagaskar) über einen kompletten Jahreszyklus. Ich 

erhob Daten zur Habitatstruktur und Phänologie des Dornenwaldes und sammelte 

Blattproben für die chemische Analyse des Nährstoffgehaltes. Es gab keine eindeutigen 

Anhaltspunkte, dass die saisonale Abnahme in der Nahrungsverfügbarkeit einen 

beträchtlichen Einfluss auf Fressverhalten oder soziale Interaktionen in L. leucopus hatte, 

vermutlich aufgrund der geringen Nahrungsselektivität und der Nutzung der am 

häufigsten im Wald vorkommenden Pflanzenarten, und Nahrungsstress stand 

wahrscheinlich eher mit Nahrungsqualität als -quantität in Verbindung. Nahrungsprotein 

scheint nur begrenzt zur Verfügung gestanden zu haben, da L. leucopus Protein- 

gegenüber nicht-Protein-Aufnahme über Jahreszeiten und Reproduktionsstadien hinweg 

priorisierte. Da Veränderungen hinsichtlich Aktivitätsmuster und sozialer Interaktionen 

nicht im Zusammenhang mit Nahrungsknappheit standen, scheinen Bottom-Up-Prozesse 

weniger wichtig als Top-Down-Prozesse  für die Formgebung des sozialen Systems von 
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L. leucopus zu sein. Die Ergebnisse unterstützen außerdem die Idee, dass quantitative 

Nahrungsknappheit während der Trockenzeit eine untergeordnet Rolle gegenüber 

Blattqualität als Selektionsdruck für blattfressende Primatenpopulationen spielt.  
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GENERAL INTRODUCTION 
 

Nutrition is the basis for all life processes as it delivers energy for maintenance, growth 

and reproduction. As diet is related to almost all aspects of behavior, morphology, and 

physiology, it is a central component of a species’ biology. Moreover, a species’ feeding 

ecology relates to its life history, population dynamics, habitat requirements, and patterns 

of sociality (Robbins and Hohmann 2006). Furthermore, studies of the chemical basis of 

food choice further our understanding of foraging strategies and dietary decisions 

(Whiten et al. 1991), of the ecological basis of variation in social organization (Byrne et 

al. 1993), and of the determinants of animal abundance (Chapman et al. 2002).  

  In general, the rate at which an individual can acquire energy and nutrients 

depends on the quantity and quality of the available food resources, and foraging behavior 

can be considered successful only if the diet obtained provides sufficient amounts of 

energy and nutrients to fulfill the energetic and nutritional requirements of the forager 

(Oftedal et al. 1991). The rate of energy gain and nutrition of an individual is influenced 

by several factors such as a.) species-specific diet, b.) seasonal variation in the quantity, 

quality and distribution of food resources, c.) sex-specific differences in energetic needs 

due to differing costs of reproduction and d.) the presence of other individuals that 

compete for the same food resources.  

In this general introduction, I will provide more details on each of these factors. 

Subsequently, I will outline why the white-footed sportive lemur (Lepilemur leucopus) 

constitutes a suitable study species. Finally, I will highlight which aspects of the 

behavioral and feeding ecology of L. leucopus I explored in each chapter of this thesis 

and which approaches I used to do so. 
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Species-specific diet 

Primates are able to exploit a wide range of food sources such as fruits, leaves, flowers, 

seeds, insects or gums. Therefore, individual species are often referred to as 

predominantly frugivorous, insectivorous, gummivorous or folivorous according to the 

dominant type of food, and dietary adaptations can be related to the structural and 

biochemical features of their food sources (Lambert 1998). Although large animals have 

higher absolute metabolic requirements than small animals, they actually require less 

energy intake per unit of body weight. Therefore, large animals are able to subsist on 

abundant low-quality foods, whereas small animals tend to concentrate on relatively rare 

foods of high quality (Gaulin 1979). The major food type of small primates tends to be 

invertebrates, whereas fruits, seeds or gum are usually the principal foods of medium-

sized species. In contrast, larger species rely on leaves as the major food source (Hladik 

1979).  

The diet of insectivorous primates is high in protein, energy and is easy to digest 

(Schmidt-Nielsen 1997). However, insects are often scarce food items as they are small in 

size, very seasonal and less abundant than leaves and fruits. Whereas fruits are a source of 

readily available energy as they contain ample sugar, frugivorous primates supplement 

their diet with insects and young leaves to acquire protein (Janson and Chapman 1999). 

Folivorous primates subsist on a diet that can be considered to be of low quality as leaves 

are a poor source of readily available energy. They are generally high in difficult to digest 

structural carbohydrates. In order to extract energy from a highly fibrous diet, 

fermentation of ingested plant food has to take place (Milton 1993). 

As an adaptation to their diet, folivorous species have a complex stomach (in 

primates only found in colobines) and/or an enlarged cecum and colon (in some species 

of strepsirrhines, New World monkeys, cercopithecines, and hominoids) in order to 
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increase the total amount of food that can be consumed in one session, and to allow for 

enough time for bacteria to break down secondary compounds and cellulose (Lambert 

1998). For folivorous species it is advantageous to have a large body size as larger gastro-

intestinal surface area and longer digestion time allow maximum nutrient absorption 

(Chivers and Hladik 1980). However, folivory is also observed in some small-bodied (i.e. 

< 1kg) primate species such as woolly lemurs (Avahi spp.) and sportive lemurs 

(Lepilemur spp.). Whereas the relative energy requirements increase with decreasing 

body size, little is known about whether or how these can meet their energy requirements 

through diet selection. 

 

Seasonality 

Seasonal climate variability affects the life of animals indirectly through its effect on the 

phenology of the plant community, thus resulting in seasonal changes in the abundance, 

nature and distribution of potential food items (van Schaik and Brockman 2005). Reduced 

food quality/quantity during the dry season can be expected to influence behavior and 

feeding strategy of primates. The effects of seasonality have been rarely studied in 

folivorous primates, as leaves were often thought of as a resource in constant supply. 

However, it has been shown that primates prefer young over mature leaves (Chapman et 

al. 2004), and that the amplitude of leafing seasonality can be greater than that of fruiting 

(Hemingway 1998). Furthermore, folivorous primates are more tightly linked to primary 

production and thus are regulated more by bottom-up processes than other species that 

forage at higher trophic levels (e.g. insects; Ganzhorn et al. 2003).    

There is a controversy about which seasons and what factors can be considered as 

limiting for primate populations (Ganzhorn 2003). However, an understanding of these 

factors will further our understanding of how ecological factors influence primate 
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distribution, community structure and social systems (Ganzhorn 2002). While the 

abundance of fallback foods (e.g. figs) during periods of food scarcity may limit 

populations of frugivorous primates (Marshall and Leighton 2006; Potts 2009), the 

abundance of preferred foods (i.e. leaves of high protein to fiber concentration) during 

periods of food abundance seems to limit populations of folivorous primates (Ganzhorn 

1992, 2002; Chapman et al. 2002). In any case, primates should have evolved adaptive 

strategies such as dietary, ranging and/or physiological adaptations to overcome periods 

of food scarcity in seasonal environments (Hemingway and Bynum 2005).  

Dietary adaptation in response to food scarcity can occur in the form of switching 

between food categories (e.g. leaves, fruits etc.), switching to a different item within a 

food category (e.g. different fruit species) and concentrating feeding efforts on a smaller 

number of critical food resources (Hemingway and Bynum 2005). Most studies of 

primate diets determine the relative contribution of different food types rather than 

analyzing the nutrient composition of specific food items. However, animals require a 

wide range of nutrients (carbohydrates, fats, proteins, vitamins and minerals) for body 

maintenance (National Research Council 2003), and no single food type can be expected 

to provide a species with a fully balanced diet. The Geometric Framework for nutrition 

allows assessing the influence of seasonal changes in food availability and quality on 

nutritional intake patterns (Simpson and Raubenheimer 1993).  

 

Reproductive investment 

Many factors may affect sex differences in feeding ecology and activity budgets in 

primates and can be attributed mainly to sexual dimorphism, to avoidance of competition 

between the sexes and to variation in costs of reproduction. Whereas differences in body 

size affect the amount of food that an individual requires (Kamilar and Pokempner 2008), 
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dietary differences can lead to competition avoidance between sexes and therefore, can be 

considered adaptive for males and females (Selander 1972). Furthermore, whereas 

females bear the energetic costs of gestation and lactation (Gittleman and Thompson 

1988), males bear the cost of male-male competition (Lane et al. 2010; Schubert et al. 

2009b). Individuals can be expected to compensate for increased energetic demands by 

eating higher quality or more food or by other behavioral means.  

In monomorphic species energetic costs of body maintenance should be similar 

for males and females. Therefore, the overall energetic costs are likely to be greater for 

females who bear the costs of pregnancy and lactation in addition to the costs of body 

maintenance (Key and Ross 1999). Lemurs (Lemuriformes) provide a special opportunity 

to test hypotheses concerning sex differences due to their body size monomorphism 

(Kappeler 1991). Sex-specific differences in activity patterns (Schmid 1999), diet (Grassi 

2002; Vasey 2002), ranging behavior (Kappeler 1997) and habitat-use (Vasey 2002) have 

been shown for several lemur species. However, few studies have directly linked these 

differences to sex-specific reproductive costs or energy expenditures (see e.g., Rothman 

et al. 2008; Gould et al. 2011). 

Seasonal breeding is a typical lemur trait (Rasmussen 1985; Petter-Rousseaux 

1980) and can be seen as an adaptation of species residing in habitats with pronounced 

seasonal fluctuations of food resources (Janson and Verdolin 2005), as females can 

enhance their overall fitness by coordinating costly times of reproduction with times of 

increased energy availability in order to compensate for peaks in energy expenditure 

(Sadleir 1969). Females experience an increase in energetic costs by up to 25 and 50% 

during gestation and lactation, respectively (Portman 1970). To meet increasing demands, 

lactating females must supplement their own nutritional intake. Lactating females may 

spend more time feeding (Koenig et al. 1997), and may consume a higher proportion of 
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protein-rich foods (Sauther 1998) than males, non-reproductive females, or pregnant 

females (Sauther and Nash 1987).  

As sexes differ in the quantity and composition of resources they require to 

maximize reproductive output, each sex should have different optimal nutritional intake 

targets, which can be evaluated by using the Geometric Framework for nutrition 

(Raubenheimer and Simpson 1997). Resource demands of offspring should alter the 

nutritional intake targets of reproductive females relative to males and non-reproductive 

females and these biases should become increasingly apparent as gestation and lactation 

progress (Morehouse et al. 2010). Although previous studies have demonstrated that 

males and females differ in their diets, they have rarely connected the compositional 

difference of ingested foods to sex-specific nutritional optima. 

 

Feeding competition 

Competition arises when individuals sharing the same environment depend on resources 

that are available only in limited amounts. Competition for food has fitness consequences, 

including increased mortality and lowered female reproductive success (Altmann et al. 

1988; Dittus 1979; Martin and Martin 2001; Schülke 2003; Whitten 1983; Wittig and 

Boesch 2003). Competition for food can occur within or between social units and, 

depending on food abundance, quality and distribution (Isbell 1991), two modes of 

feeding competition can be distinguished (Nicholson 1954). When resources are 

dispersed, of low quality, or very large, scramble competition occurs as each individual in 

the population will indirectly reduce the net energy gain of all others in the population. 

When resources are medium-sized, of high quality or clumped in patches and can thus be 

monopolized, contest competition occurs as dominant individuals can constrain the net 

energy gain of subordinate individuals (Koenig 2002).  
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The various forms of food competition can be linked to the nature of social 

relationships within a social unit (van Schaik 1989; Sterck et al. 1997). Contest 

competition for food leads to despotic relationships between individuals of a group with 

higher-ranking individuals having priority of access to food. Behavioral consequences are 

direct contest over food and may take the form of aggression, displacement or avoidance. 

Subordinate individuals try to compensate this effect by feeding away from others on 

resources of similar quality or they may accept the losses and try to avoid aggression by 

feeding on resources of lower quality (Janson and van Schaik 1988). If scramble 

competition predominates, dominance relationships between individuals will be more 

egalitarian. Competition increases in intensity with group size and smaller groups are 

favored. Adjustments of ranging behavior to group size, including home-range size and 

daily travel distance, are thought to reflect scramble competition (Isbell 1991).  

The socioecological model (Terborgh and Janson 1986) links ecological factors 

with characteristics of social systems and allows predictions about the relationship 

between resource distribution, type of competition and consequences for social 

organization (van Schaik 1989). Solitary individuals typically forage alone, but that does 

not mean that they do not maintain social relationships (Bearder 1987). Although 

nocturnal primates are often found alone, overlapping home ranges or territories ensure 

that conspecifics meet on a regular basis when a variety of social interactions occur 

(Bearder 1999). Previous studies of lemurs revealed that food competition does not only 

occur in group-living primates but also among solitary gummivorous and omnivorous 

foragers (Schülke 2003, Dammhahn and Kappeler 2009). The types and consequences of 

competition in solitarily foraging folivorous primates have not been studied in detail yet.  
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Why study sportive lemurs? 

Primates present a promising taxon to conduct comparative studies on behavioral, feeding 

and nutritional ecology. On the on hand, they exhibit varying social systems and degrees 

of social cohesiveness (Kappeler and van Schaik 2002). On the other hand, their habitats 

differ in terms of resource abundance, climatic seasonality and predation risk (Wolfheim 

1983). Such pronounced variability allows exploring ecological determinants of social 

relationships as well as nutrient requirements. 

I chose Lepilemur leucopus (white-footed sportive lemur) as my study species for 

several reasons. It is one of the smallest folivorous primates and, therefore, should have 

evolved adaptive mechanisms to deal with a low quality diet. The highly seasonal, 

climatic unpredictable, arid southern domain of Madagascar with a short wet season 

provides an ideal background to study mechanisms with which primates adjust their 

behavior to varying ecological conditions such as seasonal resource bottlenecks. The 

pronounced seasonality also likely exacerbates the energetic costs of reproduction and 

thus promotes more pronounced sex differences (Sauther 1993). Like most lemurs 

(Kappeler 1991), L. leucopus lacks sexual size dimorphism, which allows the study of 

sex-specific costs and compensation strategies that are not complicated by sex-dependent 

variances in energetic requirements and behaviors due to differences in body size (e.g. 

Rodman 1977; Gautier-Hion 1980). In addition, like most lemurs, sportive lemurs breeds 

annually and seasonally (Randrianambinina et al. 2007; Hilgartner et al. 2008), so that 

each individual in a given study population undergoes the same seasonal or reproductive 

stages in tandem (Vasey 2005). 

As sportive lemurs are characterized by a folivorous diet and small home ranges 

(approximately 0.3-1.2 ha; Thalmann and Ganzhorn 2003), a more precise measurement 

of food characteristics than for other species with larger home ranges and broader diets is 



 

13 

 
General Introduction 

 

  

facilitated (Ganzhorn 2003). This species also allows testing the types and consequences 

of competition in solitarily foraging folivorous primates. Direct behavioral observations 

are often limited by poor visibility conditions in arboreal primates (Nash 1998; Thalmann 

2001). Lepilemur leucopus occurs in the spiny forests of southern Madagascar, a habitat 

that permits to observe the animals clearly and continuously, despite their nocturnal 

activity (Hladik and Charles-Dominique 1974).  

Currently, 24 species of the genus Lepilemur are recognized (Ramaromilanto et al. 

2009). Only two species, L. ruficaudatus (red-tailed sportive lemur) and L. edwardsi 

(Milne-Edwards' sportive lemur), have been studied in greater detail (e.g. Hilgartner et al. 

2008; Ganzhorn et al. 2004; Mendez-Cardenas and Zimmermann 2009; 

Randrianambinina et al. 2007). The remaining species received only little scientific 

attention so that their diversity, distribution, and biology remain poorly known 

(Mittermeier et al. 2003; Mittermeier et al. 2010). Similarly, the only studies previously 

conducted on L. leucopus date back to the 1970’s and were of relatively short duration (2 

and 4 months, respectively; Charles-Dominique and Hladik 1971; Hladik and Charles-

Dominique 1974; Russell 1977). A more recent study on the behavioral ecology of the 

sportive lemurs of Southern Madagascar was conducted at Beza Mahafaly Special 

Reserve in a gallery forest habitat (Nash 1998). Formerly believed to belong to L. 

leucopus, this population at Beza Mahafaly is now considered to represent a separate 

species (L. petteri; Hoffmann 2008). As a collateral benefit to primatologists, this thesis 

contributes to our limited knowledge of the natural history of Lepilemur in general and L. 

leucopus in particular.  
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Background information on sportive lemurs 

Sportive lemurs have evolved a number of adaptations to deal with constraints imposed 

by their comparatively low-quality folivorous diet. Amongst them are the elongated 

cecum (Tattersall 1982), one of the lowest basal metabolic rates among folivorous 

mammals (Schmid and Ganzhorn 1996) as well as extended nightly resting periods 

(Ganzhorn and Kappeler 1996). While some researchers have argued that this 

exceptionally small folivore couples hindgut fermentation with the reingestion of feces 

(i.e. cecotrophy; Hladik 1978), others have found no evidence of such behavior (Russell 

1977). Together, these adaptations indicate that sportive lemurs are subjected to 

ecological constraints, however, it remains unclear how these affect their foraging 

strategies.  

Only a few studies have addressed possible seasonal effects on Lepilemur 

behavior. Lepilemur petteri exhibits a unique pattern of not shifting its feeding time while 

trading off moving and resting time (Nash 1998). Therefore, it was hypothesized that 

Lepilemur eats as much as it can at all seasons, so that the only way it might conserve 

energy is to rest more, since it is constrained in its ability to acquire more energy. 

However, in order to test this hypothesis information on relative seasonal changes in food 

quality and quantity are needed. Furthermore, Lepilemur ruficaudatus was shown to 

adjust its home range to the presence of high quality leaves during the abundant wet 

season and, therefore, conditions during the wet season seem to be more important than 

during the dry season (Ganzhorn 2002). In contrast, Nash (1998) suggested that the 

coldest part of the year poses the greatest energetic stress for Lepilemur. It therefore 

remains unclear which season can be considered as energetic bottleneck.   

 Ganzhorn et al. (2004) could not find profound sex-specific differences in food 

selection in L. ruficaudatus during the wet season (corresponding to the time of lactation 
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and weaning). However, their analyses were restricted to the average chemical 

composition of foods ingested and neither the amount of food ingested or the relative 

contribution of various food items was considered. Field metabolic rates measured in L. 

ruficaudatus did not differ between males and females (Drack et al. 1999). However, the 

study was restricted temporarily to the months of July/August (corresponding to the time 

of early gestation) and no information on the reproductive state of the females was 

provided. It therefore remains unclear how differing energetic cost of reproduction 

translate into sex-specific differences in food selection and energy expenditure.  

 Individuals of Lepilemur exhibit territoriality (Charles-Dominique and Hladik 

1971, Zinner et al. 2003) and defend a space that includes potential food resources that 

provide nutrition throughout the year. The use of latrines has been noted in Lepilemur 

(Charles-Dominique and Hladik 1971; Russell 1977) and may be linked to resource 

defense (Irwin et al. 2004). Feeding competition has not been studied in Lepilemur so far 

and it is unclear how it influences the social organization of this solitary forager.      

While dispersed pair-living has been described for L. ruficaudatus (Zinner et al. 

2003) and L. edwardsi (Méndez-Cárdenas and Zimmermann 2009), two short field 

studies conducted on the same population of L. leucopus at Berenty Reserve in the 1970s 

reported conflicting patterns of social organization. While Charles-Dominique and Hladik 

(1971) proposed a “dispersed harem”, Russell (1977) reported coincidence and exclusive 

use of a range usually by two individuals.  

 

Aims and approaches 

The socio-ecological model describes the distribution of resources and risks in the 

environment as the main ecological factors shaping individual behavioral interactions 

(Jarman 1974; Terborgh and Janson 1986; van Schaik 1989) and identifying the relative 
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importance of these bottom-up and top-down processes for the evolution and maintenance 

of social systems is a primary objective of behavioral ecology (Dammhahn and Kappeler 

2010). Although leaves have traditionally been considered a rather invariant and abundant 

resource, more recently it has been shown that at least some folivorous primates 

experience behavioral and physiological effects of food limitation (Harris et al. 2009). 

This thesis was designed to add new insights into the mechanisms by which folivorous 

primates adjust to seasonally varying ecological conditions by studying a primate species 

in which diet-related constraints are likely exacerbated by small body size and 

pronounced climatic seasonality. Social and organizational features largely derive from 

food choices and dietary energetics (Hohmann et al. 2006) and by integrating research on 

behavioral and feeding ecology, I aimed to contribute to our knowledge of how bottom-

up factors shape social systems of solitary foragers. 

In Chapter 1 I describe the social organization and the social structure of L. 

leucopus based on behavioral and ranging data I collected during a year-long field study 

in Southern Madagascar. By empirically identifying natural social units, quantifying the 

degree of cohesiveness within social units and reporting on patterns of social interactions 

within and between social units, I am laying the foundation for the subsequent chapter.  

In Chapter 2 I investigate the competitive regime of folivorous L. leucopus by 

describing the types of feeding competition between and within social units across a 

whole year encompassing an abundant wet and a lean dry season. In addition, I explore 

whether feeding competition may promote spatial avoidance and solitary foraging in 

folivorous solitary foragers and compare my findings with respect to other studies on 

gummivorous and omnivorous solitary foragers. 

In Chapter 3 I examine the function of latrine use, a special form of scent 

marking, in L. leucopus by investigating latrine distribution, seasonality of latrine use, as 
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well as age and sex of users. Whereas it has been suggested previously that latrine use in 

sportive lemurs may be linked to resources defense such as of important food patches, I 

test this and other hypotheses empirically by detailing latrine density and distribution, 

seasonality and behavioral contexts of latrine use.  

In Chapter 4, I analyze daily macronutrient and energy intake in male and female 

individuals of L. leucopus during different periods of the year in order to explore 

consequences of ecological and reproductive seasonality on nutritional intake targets. In 

addition, I explore how this small-bodied folivore can overcome energetic constraints 

imposed by a diet that constitutes a poor source of readily available energy. 
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Defining the low end of primate social complexity: the social organization of the 

nocturnal white-footed sportive lemur (Lepilemur leucopus) 

 

With Peter M. Kappeler 
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Abstract  

While other species of sportive lemurs (genus Lepilemur) have been described as living in 

dispersed pairs, which are characterized by spatial overlap but a lack of affinity or 

affiliation between one adult male and female, existing reports on the social organization 

of the white-footed sportive lemur (Lepilemur leucopus) are conflicting, describing them 

as either living in dispersed one-male multi-female systems or pairs. We conducted this 

study in the spiny forest of Berenty Reserve, southern Madagascar, to clarify the social 

organization and to characterize the level of social complexity of this species. We 

combined 1530 h of radio-telemetry and behavioral observations over a period of one 

year to describe the spatiotemporal stability, size and inter-individual overlap of 

individual home ranges as well as inter-individual cohesiveness. Results revealed low 

intra- and high intersexual home range overlap. While most of the social units identified 

consisted of dispersed pairs (N=5), males were associated with two adult females in two 

cases. Furthermore, members of a social unit were never observed to groom each other or 

to share a day-time sleeping site, and Hutchinson’s and Doncaster’s dynamic interaction 

tests indicated active avoidance between pair partners. Low cohesiveness together with 

extremely low rates of social interactions therefore arguably places Lepilemur leucopus at 

the low end of primate social complexity.  
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Introduction 

The majority of primate field studies have been concerned with descriptions and analyses 

of their social systems (Crook and Gartlan 1966; Smuts et al. 1987; Mitani et al. 2012). 

There is an emerging consensus that the diversity of primate social systems can be 

analyzed at the level of their social organization, mating system and social structure 

(Kappeler and van Schaik 2002; Cords 2007; Kappeler et al. 2013). Interspecific variation 

in social systems has also been analyzed more recently as a function of social complexity 

(e.g., de Waal and Tyack 2003; McComb and Semple 2005; Bergman 2010; Lehmann 

and Ross 2011). In this context, complex social systems have been defined as those in 

which individuals frequently interact in many different contexts with many different 

individuals, and often repeatedly interact with many of the same individuals in networks 

over time (Freeberg et al. 2012). Social complexity is therefore an integrative measure 

that is positively correlated with group size because, according to the social intelligence 

hypothesis (Dunbar 1998), animals living in larger groups should have enhanced 

cognitive abilities to facilitate the management of multiple social relationships, compared 

to those living in smaller groups or in other types of social organization (Byrne and 

Whiten 1988; Bond et al. 2003; Dunbar and Shultz 2007). However, social complexity 

has not been explicitly studied in primates that do not live in groups, so that it is currently 

difficult to define a baseline for comparative studies of social complexity. 

The absence of group-living among primates is strongly correlated with nocturnal 

activity (van Schaik 1983). Even though about a quarter of all primates are nocturnal, 

their social systems have remained comparatively poorly studied (Bearder 1999). 

Nocturnal primates have initially been collectively characterized as “solitary foragers” 

(Petter et al. 1977; Bearder 1987), but methodological advances in telemetry and 

molecular genetics have since disclosed more details of the diversity and complexity of 
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their social systems (summarized in Nekaris and Bearder 2011; Kappeler 2012). In 

particular, some species of dwarf (Cheirogaleus spp.) and sportive lemurs (Lepilemur 

spp.) were found to be organized into pairs, even though individuals forage solitarily 

(Fietz 1999; Müller 1999; Rasoloharijaona et al. 2003; Zinner et al. 2003). Since pairs are 

the smallest social units, and pair-living requires active coordination between pair-

partners (Schülke and Kappeler 2003; Barelli et al. 2008), and because its evolutionary 

emergence was associated with a significant increase in brain size (Shultz and Dunbar 

2007), pairs represent an interesting level of analysis for comparative studies of social 

complexity. Species that combine aspects of the likely evolutionary transition between a 

solitary social organization and pair-living might be particularly interesting in this context 

because they may represent the earliest and most primitive form of sociality. 

Our study focused on a species of sportive lemur for which conflicting 

information about the social organization of the same population had been reported. 

White-footed sportive lemurs (Lepilemur leucopus) are confined to the region between 

the Menarandra and Mandrare rivers in southern Madagascar (Hoffmann 2008). They 

have evolved adaptations to a folivorous diet despite small body size (< 1kg), including 

prolonged resting bouts, small night ranges, a prolonged cecum and cecotrophy (Hladik 

and Charles-Dominique 1974). Two short field studies were conducted on the same 

population of white-footed sportive lemurs at Berenty Reserve in the 1970s and reported 

conflicting patterns of social organization (Charles-Dominique and Hladik 1971; Russell 

1977). Charles-Dominique and Hladik (1971) described exclusive range use by both 

sexes, but range overlap between the sexes, and found that the largest male was 

associated with five females. Russell (1977) reported that no individual had an exclusive 

range and described range-sharing by females. He also observed males and females 

sleeping together during the day. Based on these observations, the social organization of 



 

24 

 
Chapter 1: Social Organization 

 

  

L. leucopus has been classified as a “dispersed harem” (Müller and Thalmann 2000). 

Neither study used radio-tracking or detailed patterns of social interactions. 

The present study aimed at resolving these conflicting reports by characterizing 

the social organization of L. leucopus during a year-long study of radio-collared 

individuals. In particular, we empirically identified natural social units and investigated 

their stability across the year in this seasonal breeder. In addition, we quantified the 

degree of cohesiveness within social units using three different computational approaches 

and report on patterns of social interactions within and between social units. Together, 

these data also contribute to our second aim, namely the characterization of the level of 

social complexity in this small nocturnal lemur. 

 

Methods 

Study site and subjects We conducted this study at Berenty (S 25.00°, E 46.30°), an 

approximately 200 km
2
 private ecotourism reserve located in southern Madagascar. In 

order to ensure continuing focal observations of single individuals throughout the night, 

we equipped animals with radio-tracking transmitters. We captured the animals by blow-

darting in a spiny forest fragment of about 5 ha (HAH Reserve Forestière parcel 1), which 

is connected to gallery forest on one side via a transitional forest and a further 40 ha spiny 

forest fragment on the other side (Norscia and Palagi 2008).  

We used a blowpipe and 1 ml air pressured narcotic syringe projectiles (Telinject, 

Germany) to anesthetize animals with 0.4 ml Ketanest (100 mg/l) in the mornings in their 

daytime resting sites. We captured anesthetized animals with a blanket when they fell out 

of the tree. Alternatively, if the anesthetized animals did not fall and it was possible to 

reach them by climbing the tree, we retrieved them from their resting sites by hand or 

with an animal capture pole (Tomahawk 7’ to 12’ extension restraint pole). We fitted the 
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animals with radio-collars (TW-3 button-cell tags, Biotrack, UK) while anesthetized. We 

kept the animals in an animal transport box (Traveller Box Capri Mini, Trixie 

Heimtierbedarf, 40*22*30 cm) until they were fully recovered and released them again at 

their capture site in the evening. The same individuals later reused sleeping trees where 

they were captured. 

We fitted sixteen adult (eight males and eight females) and four subadult 

individuals (three males and one female) with radio-collars. We differentiated adult 

individuals from subadults by the degree of tooth wear and body mass. At the beginning 

of the study, all subadult individuals still ranged within their parental territories. Once 

they dispersed from their natal range, we classified them as adults. We did not radio-

collar smaller juvenile animals because radio-collars exceeded 4% of their body mass. 

Some members of social units were not equipped with radio-collars. However, we noted 

their presence during animal capture, focal animal observations and a population census 

at the end of the study. We removed all radio-collars after the end of the study. The 

research followed standard protocols for animal handling, capture and radio-tracking and 

was approved by the Commission Tripartite CAFF (Madagascar). 

 

Behavioral observations We collected behavioral and locational data between October 

2011 and October 2012 for a total of 1530 hours on 20 radio-collared individuals. We 

divided the study period into four biologically relevant seasons: birth and offspring-care 

with lactation (early wet season from November to January), offspring-care without 

lactation (late wet season from February to April), mating and early gestation (early dry 

season from May to July) and late gestation (late wet season from August to October).We 

followed each radio-collared animal for up to two full nights during each season, with a 

TR-4 receiver and a RA-14K antenna (Telonics, U.S.A.).The number of focal animal 
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follows per season decreased throughout the year owing to the disappearance of 

individuals, so that the total number of focal animal follows per individual ranged 

between 5 and 8 nights (mean ± SD: 7.7±0.8 nights per individual). We restricted our 

analyses of static and dynamic spatial interactions to adult individuals belonging to seven 

different social units (Table 1). 

Table 1 Summary of continuous focal animal observations conducted 
throughout the year.  

Social 
Unit 

Male ID hours N location 
points 

Female ID hours N location 
points 

1 m10 57 642 f1B 87 990 
2 m9 79 863 f2 88 996 
3 m3 88 946 f3 88 964 
4 m4 90 1008 f4 86 991 
5 m5 88 971 f5 88 994 
6 m6 87 948 f6 90 1010 
7 m7 89 1012 f7 87 988 

 

The trees of the spiny forest have small and exposed canopies (Grubb 2003), 

permitting to observe the animals clearly and continuously, despite their nocturnal 

activity (Hladik and Charles-Dominique 1974). Continuous focal animal observations 

(Altmann 1974) started when an animal left its sleeping site at dusk and were continued 

until it returned to its daytime resting tree at dawn. On average the study animals were out 

of sight for 7.1±1.8% (mean ± SD) of total observation time. We identified animals 

ranging in the same area before the onset of data collection during preliminary 

observations on sleeping site choice and ranging behavior of radio-collared individuals. 

Henceforth, a second trained observer followed the range-mate of a focal animal 

simultaneously. We tagged spatial locations of animals during continuous focal 

observations with biodegradable tape. After each full-night follow, we determined the 

exact position of the tagged trees with reference to a 10x10m study grid system. Each 

morning after a full-night follow we located the sleeping trees of all radio-collared 

animals by radio-tracking to determine the composition of sleeping associations.  
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We defined social interactions as agonistic, affiliative or neutral. We defined all 

interactions that were either aggressive (chase, charge, bite and grab) or submissive (flee, 

be displaced or jump away) as agonistic (sensu Pereira and Kappeler 1997). We noted 

interactions during which animals sat within 1m of each other and/or groomed each other 

as affiliative. We termed interactions during which animals came within a distance of 5m 

of each other without exhibiting agonistic or affiliative behavior as neutral. We based 

calculations of the frequency of social interactions on the time the focal animals were 

actually in sight.  

 

Data analyses To evaluate static spatial interactions between animals, we calculated 

individual annual home ranges with the Animal Movement extension of ArcView. We 

sub-sampled locational data at 5-min intervals for home range analyses. We calculated 

home range size from 95% fixed kernel home range utilization distributions (Worton 

1989) using ad hoc smoothing (Silverman 1986). We did not correct for spatial 

autocorrelation, as kernel densities do not require serial independence of observations 

when estimating home ranges size, and the accuracy and precision of home range 

estimates improve with the number of observations (De Solla et al. 1999). We calculated 

home range overlap in R (R Core Team 2012) using the package ‘adehabitatHR’ 

(Calenge 2006). To determine whether social units were maintained throughout the year, 

we calculated overlap of night ranges of simultaneously followed males and females as 

percent overlap (Kernohan et al. 2001). We calculated overlap of annual home ranges for 

both, pair partners and same-sexed neighbors. We calculated seasonal influence on night 

range overlap for pair partners that were followed simultaneously, using one-way 

repeated-measures ANOVA. We excluded one pair (m10fB1) from the analyses because 

simultaneous follows on the pair partners were conducted only during the wet season. We 
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averaged values for each season and pair. The data were normally distributed for each 

level of the within-subject factor season. We conducted the analyses in R using the 

function ezANOVA in the package ‘ez’ (Lawrence 2012). 

We examined dynamic spatial interaction to quantify the degree of sociality 

between pair partners, i.e. whether they associated, avoided each other or moved 

randomly in relation to each other. We used three different models: the random gas model 

(Waser 1976), Hutchinson’s model (Hutchinson and Waser 2007) and Doncaster’s model 

(Doncaster 1990). We calculated expected rates of encounters between pair partners with 

the random gas model as     
           

 
       , where   is the density of a species,   

the velocity of an animal,   the group spread and   the distance criterion. We calculated 

expected rates of associations between pair partners with Hutchinson’s model as      

          , where   is the number of instantaneous observations,   is the density of a 

species, and   the distance criterion. For both models, we compared observed rates with 

expected rates, using Wilcoxon signed-ranks test across all pairs. Using Doncaster’s 

model, we compared   observed inter-individual distances with expected ones calculated 

from all    distances possible within a given set of spatial points. We compared observed 

with expected values for each pair within a       contingency table containing counts 

below and above   using a chi-squared test. The significance test depends on successive 

data points being independent, giving each animal the opportunity to travel to any other 

part of its range between successive instantaneous observations (Doncaster 1990). We 

considered data points to be independent as the interval permits an individual to traverse 

its home range at maximum travel speed (Rooney et al. 1998). Here, we calculated   as 

the inverse of a pair’s union home range in square meters and   as the average distance 

the male and female covered during the observation period in meters. We set   to zero 

and   to 15m as this distance was close enough to allow visual contact between animals. 
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We used the software R for statistical analyses. We considered alpha levels of P ≤ 0.05 as 

statistically significant.  

 

Results 

Static and dynamic spatial interactions Average annual home ranges were significantly 

larger for males (mean ± SD: 0.33±0.08 ha, N = 7) than females (0.18±0.08 ha, N = 7; 

Wilcoxon rank sum test: W = 47, N = 14, P = 0.005; Fig. 1). Male annual home ranges 

overlapped on average with those of neighboring males by only 1.65±1.99% and those of 

females with those of neighboring females by merely 0.4±0.64% (mean ± SD) based on 9 

dyads of possible neighbor pairings. However, annual home ranges of particular males 

and females overlapped considerably. Average overlap between the annual home ranges 

of the seven pairs identified was 81±20% for females and 43±16% (mean ± SD) for 

males. Differences between male and female’s perspective are due to the smaller home 

ranges of females.  

Average overlap of night ranges was 73±28% for females and 45±24% (mean ± 

SD) for males based on 6 identified pairs. In general, overlap between pair partners was 

high throughout all seasons. The maximum observed night range overlap was 100% from 

the female’s perspective and 93% from the male’s perspective. Only during 2 out of 48 

simultaneous follows did night ranges of pair partners not overlap. Otherwise, minimum 

observed night range overlap was 26% from the female’s perspective and 12% from the 

male’s perspective. Furthermore, season did not have a significant effect on night range 

overlap from the female’s perspective (one-way repeated-measures ANOVA: F3,5 = 1.25, 

P = 0.33). However, season had an influence on night range overlap from the male’s 

perspective (one-way repeated-measures ANOVA: F3,5 = 3.26, P = 0.05). Night range 

overlap of males with their corresponding female pair partners was significantly higher 
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during the early dry season (corresponding to mating and early gestation) compared to the 

late dry season (corresponding to late gestation; Tukey’s post hoc test: Z = -3.30, P = 

0.005). 

 

 

Fig. 1 95% kernel annual home ranges for individual adult males (m) and 
females (f) of Lepilemur leucopus at Berenty between October 2011 and 
October 2012. 

 

Static spatial interactions between adult individuals changed during the course of 

the study due to confirmed deaths and dispersal events (Fig. 2). Demographic changes 

took place within social unit 1, 2 and 7. The home range of male m3 overlapped with 

those of two females from the beginning of the study, whereas male m10 ranged with two 

females from March 2012 onwards.  
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Based on the random gas model, observed encounter rates between pair partners 

were significantly higher than expected (Wilcoxon signed rank test: V = 28, N = 7, P = 

0.02). In contrast, using Hutchinson’s model, the number of observed associations was 

significantly lower than expected (Wilcoxon signed rank test: V = 0, N = 7, P = 0.02). 

Similarly, observed values were significantly smaller than expected for 5 out of 7 pairs 

(Chi-squared test: χ
2 

≥ 3.87, df = 1, P ≤ 0.049) and non-significant for the remaining two 

pairs (χ
2
 ≤ 0.7, df = 1, P ≥ 0.28) using Doncaster’s model. 

 

 
Fig. 2 Demographic changes in the study population between September 2011 and 
October 2012. Only adult animals are presented. Males are represented by squares; 
females by circles. Confirmed deaths are illustrated with a cross. No ranging data are 
available for individuals labeled with a question mark as they were not equipped with 
radio-collars or died before they could be followed. 

 

Sleeping Associations The study animals spent the day mainly in the confluence of 

branches of trees of the genus Alluaudia, or more rarely inside liana tangles or tree holes. 

A single adult used 5 to 11 different sleeping sites (Table 2). Although adult individuals 

shared some of their sleeping trees with their pair partner, they never used them 

simultaneously (37-69 observation days per dyad). In contrast, adult females and their 

offspring shared sleeping trees during 79% of 42 observation days, based on six adult 

females that gave birth in November 2011. However, we never saw adult males sharing a 
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sleeping tree simultaneously with any other member of their social unit. Sleeping trees 

were never shared with neighbors, neither simultaneously nor consecutively.  

 

Table 2 Number of sleeping trees used exclusively, shared with 
pair partner and days of simultaneous use. 

Pair Observation 
days 

Exclusive 
use m/f 

Shared 
use 

Days 
simultaneous 

use 

m10f1B 37 3/3 3 0 
m9f2 61 8/4 1 0 
m3f3 69 9/3 2 0 
m4f4 69 8/4 2 0 
m5f5 69 5/4 1 0 
m6f6 69 1/2 3 0 
m7f7 69 7/2 3 0 

 

Social interactions In total, we observed 72 social interactions during 516 hours of 

simultaneous focal observations on range mates. The frequency of observed social 

interactions was therefore low, with only 0.14 interactions/hour across all pairs (Table 3). 

Most social interactions were of the neutral type (78%), i.e. individuals sitting 1-5m of 

each other. Agonistic interactions were less common than neutral interactions (21%), 

whereas affiliative interactions were essentially absent (1%). We never observed 

allogrooming between adult males and females or social interactions between neighboring 

males. We only observed a single affiliative social interaction between neighboring adult 

females (f1B and f2). We did not observe any social interactions between the females of 

the two social units (1 and 3) with two adult females. However, we observed agonistic 

interactions between resident and floating males. We did not witness any matings. 
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Table 3 Frequency and types of social interactions between pair 
partners. Total number of observation hours: 516. 
Pair Neutral Agonistic Affiliative Total 

m10f1B 0.12 0.02 0.00 0.15 

m9f2 0.24 0.03 0.01 0.28 

m3f3 0.09 0.04 0.00 0.13 

m4f4 0.07 0.02 0.00 0.10 

m5f5 0.05 0.00 0.00 0.05 

m6f6 0.12 0.05 0.00 0.17 

m7f7 0.07 0.05 0.00 0.12 

Mean 0.11±0.06 0.03±0.02 0.00±0.01 0.14±0.07 

 

 

Discussion 

Static spatial interactions Adult white-footed sportive lemurs had almost exclusive home 

ranges, as range overlap among neighboring adult males (1.7%) as well as among 

neighboring adult females (0.4%) was minimal. However, the ranges of certain adult 

males and females overlapped considerably. Direct social interactions were essentially 

limited to individuals that shared home ranges. Therefore, spatial boundaries coincided 

with social boundaries (sensu Schülke and Kappeler 2003), and pairs of adult males and 

females can be regarded as the prevailing social unit of L. leucopus. 

Currently 24 species of the genus Lepilemur are recognized (Ramaromilanto et al. 

2009) but only a few have been studied in any detail so far. Two of them, L. ruficaudatus 

and L. edwardsi, have been described as pair-living based on spatiotemporal overlap of 

individual home ranges (Zinner et al. 2003; Méndez-Cárdenas and Zimmermann 2009). 

Mean overlap of 95% KHRs between pair partners was 61% from the male’s and 89% 

from the female’s perspective, whereas mean overlap between neighboring males was 

2.3% and 1.8% between neighboring females in L. ruficaudatus (Hilgartner et al. 2012). 

In L. edwardsi, mean overlap of minimum convex polygons (MCPs) between pair 

partners was 72% from the male’s and 87% from the female’s perspective (Méndez-
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Cárdenas and Zimmermann 2009), whereas median overlap between neighboring males 

was up to 4.9% and up to 6.6% between neighboring females (Rasoloharijaona et al. 

2006). Thus, all three Lepilemur species studied in detail so far exhibit a pair-living social 

organization. 

Other nocturnal primates vary greatly in patterns of male and female spatial 

distribution. Home ranges of males show mutual overlap and also overlap with the ranges 

of several females, whereas female home ranges never do so in the aye-aye (Daubentonia 

madagascariensis; Sterling and Richard 1995). In contrast, home ranges overlap within 

and between the sexes in mouse lemurs (Microcebus spp.; Radespiel 2000; Eberle and 

Kappeler 2002; Dammhahn and Kappeler 2009), hairy-eared dwarf lemurs (Allocebus 

trichotis; Biebouw 2009), giant mouse lemurs (Mirza coquereli; Kappeler 1997), greater 

galagos (Otolemur garnettii; Nash and Harcourt 1986) and slender lorises (Loris 

lydekkerianus; Nekaris 2003). In addition, pair-living has been described for several other 

nocturnal primate taxa, including fork-marked lemurs (Phaner pallescens; Schülke and 

Kappeler 2003), dwarf lemurs (Cheirogaleus medius; Fietz 1999), dwarf galagos 

(Galagoides zanzibaricus; Nash and Harcourt 1986), pottos (Perodicticus potto; Pimley 

et al. 2005), slow lorises (Nycticebus coucang; Wiens and Zitzmann 2003), some tarsiers 

(Tarsius spp.; Driller et al. 2009; Gursky-Doyen 2010), woolly lemurs (Avahi spp.; 

Harcourt 1991; Norscia and Borgognini-Tarli 2008) and owl monkeys (Aotus spp.; 

Fernandez-Duque 2007). Thus, in terms of ranging patterns, L. leucopus do not differ 

fundamentally from other nocturnal primates. 

 

Sex-specific ranging behavior The fact that males ranged over substantially larger areas 

than females (95% Kernel: 0.33 ha vs. 0.18 ha) suggests polygynous tendencies of males. 

According to Schubert et al. (2009a), large home ranges allow males to assess the 
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reproductive status of neighboring females and to monitor the presence of neighboring 

males. Therefore, male L. leucopus may follow a mixed reproductive strategy of 

maintaining a pair bond while seeking extra-pair copulations, but paternity tests will be 

required to test this hypothesis because we did not observe any matings. Male home 

ranges are also larger than female home ranges in Phaner pallescens and Tupaia tana, 

which have high rates of extra-pair paternity (Schülke et al. 2004; Munshi-South 2007). 

Extra-pair copulations were also detected in L. ruficaudatus, where males also have 

significantly larger ranges (95% Kernel: 0.99ha vs. 0.66 ha; Hilgartner et al. 2012). Home 

range size did not differ between the sexes in L. edwardsi (MCP: 2.13 ha for males and 

2.07 ha for females; Méndez-Cárdenas and Zimmermann 2009). However, estimates of 

home range size based on MCPs encompass areas that animals may have never used and 

therefore may not accurately reflect patterns of range use (Schülke and Kappeler 2003).  

 While the majority (70%) of social units consisted of pairs, some male L. leucopus 

were associated with two adult females. Similarly, 2 out of 6 males of L. ruficaudatus 

occupied home ranges that overlapped extensively with those of two females (Zinner et 

al. 2003). However, in L. ruficaudatus these two females associated within a shared home 

range, making it likely that they represented mother-daughter dyads. In contrast, in L. 

leucopus the two females had exclusive ranges as they were regularly seen within the 

range of the associated adult male but never within the range of the other adult female. 

Furthermore, all these females were adults because all of them were seen with dependent 

offspring. In Hladik and Charles-Dominique’s (1974) study of the same population, the 

largest of four males was associated with five females, while the other males were 

associated with either one or two females. Based on morphometric data obtained during 

our capture (unpublished data), the two males that were associated with two females each 

were not the largest males. However, their home ranges were 40% and 52% larger than 
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the mean home range of the other males, indicating that energetic constraints on territory 

defense are not a proximate cause for pair-living from the male perspective (van Schaik 

and Dunbar 1990). 

 

Ecology and ranging behavior Although we studied individuals of L. leucopus in a small 

spiny forest fragment, a crowding effect on ranging patterns seems unlikely. On the one 

hand, an inverse relationship between density and patch size is frequently observed due to 

crowding effects of fragmentation (Bowers and Matter 1997). However, estimates of 

population density of L. leucopus at Berenty are much higher for the larger gallery forest 

(810 individuals per km²) than for the spiny forest (200-350 individuals per km²; Charles-

Dominique and Hladik 1971; Hladik and Charles-Dominique 1974). On the other hand, as 

population densities increase due to crowding effects, average home range size can be 

expected to become smaller (Cristóbal-Azkarate and Arroyo-Rodríguez 2007) and/or 

home range overlap between neighboring social units tends to increase (Arroyo-

Rodriguez and Mandujano 2006). Although no quantitative data on ranging behavior are 

available for the gallery forest population, higher population densities in the gallery forest 

may imply that home ranges of L. leucopus are smaller in the gallery than in the spiny 

forest. In addition, observed home range overlap between neighboring individuals in the 

spiny forest population was minimal.  

 

Dynamic spatial interactions Using the random gas model, pair partners of L. leucopus 

approached each other more often to within 15m than expected by chance. Schülke and 

Kappeler (2003) and Hilgartner et al. (2012) also used the random gas model to calculate 

expected encounter rates in P. pallescens and L. ruficaudatus, respectively, assuming that 

it defines the far end of inter-individual spacing within pairs. The results indicated that 
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pair-partners of P. pallescens approached each other more often than expected by chance 

and that encounter rates in L. ruficaudatus did not deviate from expected values, which 

was interpreted as a sign of avoidance. According to the random gas model, spectral 

tarsiers (Tarsius spectrum) living in small family groups were found to spend more time 

in proximity to other group members than predicted by chance (Gursky 2005).  

Hutchinson and Waser (2007) pointed out that the number of expected 

associations is not given correctly by the random gas model if locational data were 

collected instantaneously. They proposed a corrected model that is also not affected by 

variable speed or non-uniform distribution of directions. Using the corrected model, pair 

partners of L. leucopus approached each other less often to within 15m than expected by 

chance, indicating active avoidance.  

Similar results were obtained using Doncaster’s model (Doncaster 1990), which 

allows testing for differences between pairs. Using this model, 5 out of 7 pair partners of 

L. leucopus approached each other less often than expected. The individuals of the two 

remaining pairs moved randomly in relation to each other. These two pairs had the 

smallest joint home range areas. Thus, the restricted area available to them may not have 

allowed them to avoid each other to the same extent as the partners of the other pairs.  

The results obtained using the three different models for testing cohesiveness 

between pair partners varied considerably. To make a more direct comparison of 

cohesiveness among nocturnal, pair-living primates, we compared the actual percentage 

of time pair partners spend within 10 m and 20 m of one another during their active 

period (Table 4). While Aotus spp. are among the most cohesive nocturnal pair-living 

primates, association rates are comparatively low for Phaner spp. and Lepilemur spp.  
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Table 4 Overview of percentage of time males and females of pair living nocturnal 
primates spent in proximity to each other during their activity period.    
Species ≤10m ≤20m Reference 

Aotus spp. 100% 100% Wright 1994 

Tarsius spectrum 28% 40% Gursky 2005 

Periodictus potto ? 30% Pimley et al. 2005 

Avahi meridionalis ? 27% Norscia and Borgognini-Tarli 2008 

Phaner pallescens 9%(≤15m) 23%(≤25m) Schülke and Kappeler 2003 

Lepilemur ruficaudatus 9% 20% Hilgartner et al. 2012 

Lepilemur leucopus 7% 23% This study 

 

Sleeping associations Pair-partners of L. leucopus never used the same sleeping tree 

simultaneously, although they shared some of their sleeping trees on consecutive days. In 

addition, we observed females actively displacing males from their chosen sleeping tree 

early in the morning at the end of their active period. Lepilemur edwardsi shared sleeping 

trees on average every second day (Rasoloharijaona et al. 2003). Similarly, L. 

ruficaudatus shared sleeping trees every third to fourth day (Zinner et al. 2003), but they 

always occupied different tree holes within the same tree (pers. comm. R. Hilgartner). 

Our study does not support the observation that males and females of L. leucopus sleep 

together during the day (Russell 1977). However, we observed females sharing their 

sleeping tree frequently with their offspring.  

Other nocturnal primates also exhibit much variation in the composition and 

stability of sleeping associations. Mouse lemurs (Microcebus spp.; Radespiel et al. 2003; 

Weidt et al. 2004; Génin 2010), hairy-eared dwarf lemurs (Allocebus trichotis; Biebouw 

2009) and slender lorises (Loris lydekkerianus; Nekaris 2003) sleep in groups of variable 

size and composition during the day, whereas in aye-ayes (Daubentonia 

madagascariensis; Sterling and Richard 1995) and giant mouse lemurs (Mirza coquereli; 

Kappeler 1997) adults sleep alone. Among pair-living nocturnal primates fork-marked 

lemurs (Phaner pallescens; Schülke and Kappeler 2003), dwarf lemurs (Cheirogaleus 
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medius; Fietz 1999), dwarf galagos (Galagoides zanzibaricus; Nash and Harcourt 1986), 

tarsiers (Tarsius spp.; Driller et al. 2009; Gursky-Doyen 2010), woolly lemurs (Avahi 

spp.; Harcourt 1991,) and owl monkeys (Aotus spp.; Fernandez-Duque 2007) regularly 

sleep together, whereas pottos (Perodicticus potto; Pimley et al. 2005) and slow lorises 

(Nycticebus coucang; Wiens and Zitzmann 2003) rarely do so. In conclusion, 

considerable variation exists within nocturnal primates with regard to cohesiveness, as 

measured by the frequency of sleeping associations, and L. leucopus appears to be among 

the least cohesive species. 

 

Social interactions Although males and females were found to associate in pairs, their 

rate of social interactions was very low (0.14 interactions/h) and most of their interactions 

consisted of “sitting within 1-5m”. Similar low interaction rates were described for L. 

ruficaudatus (0.27 per hour; Hilgartner et al. 2012) and N. coucang, where social 

interactions made up only 3% of the activity period (Wiens and Zietzmann 2003). 

However, rates of agonistic interactions were more than 10 times lower in L. leucopus 

than in P. pallescens with 0.03 compared to 0.48 interactions per hour, perhaps reflecting 

the fact that they compete over qualitatively different nutritional resources, i.e. leaves vs. 

tree exudates (Schülke and Kappeler 2003). Further, while affiliative interactions were 

exchanged with a rate of 0.22 interactions/h in P. pallescens, they were virtually absent in 

L. leucopus. Similarly, affiliative interactions between pair partners were also only very 

rarely observed in L. ruficaudatus (Hilgartner et al. 2012). In contrast, P. potto pair-

partners engaged in affiliative behavior during 30% of observations and they exhibited no 

agonistic interactions (Pimley et al. 2005). Rates of aggression were also much lower 

than the rates of affiliation in cohesive pair-living A. occidentalis (Ramanankirahina et al. 

2011). 
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Rates of direct social interactions are also low in solitary nocturnal primates. For 

example, in M. coquereli, affiliative interactions were generally rare and in particular 

between the sexes, whereas agonistic interactions occurred disproportionately often 

between the sexes (Kappeler 1997). In M. murinus, of the 0.12 social interactions/h more 

agonistic interactions occurred between non-sleeping group members and more affiliative 

ones between sleeping group members (Dammhahn and Kappeler 2009). Thus, solitary 

nocturnal primates and those living in dispersed pairs exhibit similarly low rates of social 

interactions, with L. leucopus being at the low end of observed values. 

Low rates of social interactions do not necessarily indicate a lack of interaction 

between individuals. Instead, individuals may regulate their relationships mainly through 

vocal and olfactory signals (Charles-Dominique 1977). In this context, nocturnal primates 

use loud calls for sexual advertisement (Zimmermann and Lerch 1993) as well as for 

group aggregation and coordination (Braune et al. 2005). Lepilemur edwardsi also uses 

duets to regulate space use and cohesiveness (Rasoloharijaona et al. 2006), whereas adult 

L. ruficaudatus rarely coordinate vocal interactions and loud calling basically serves to 

signal an animal’s presence in its territory and to regulate spacing among conspecifics 

(Fichtel and Hilgartner 2012). Lepilemur leucopus produced 5 types of loud calls, whose 

functions need to be studied with future playback-experiments. Olfactory sensitivity and 

acuity is higher for species living in dispersed pairs, compared to those living in cohesive 

pairs or groups (Barton 2006). Scent-marking behavior is less well developed in 

Lepilemur than in other lemurs because they do not have scent glands with the exception 

of paired glands behind the scrotum in males (Petter et al. 1977; Schilling 1979). L. 

mustelinus uses non-nutritive tree gouging as a marking behavior in order to display 

ownership of sleeping sites while the same behavior is absent in L. edwardsi 

(Rasoloharijaona et al. 2010). Marking behavior in L. leucopus is inconspicuous, 
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however, we occasionally observed males placing scent-marks by rubbing their 

anogenital region against tree trunks, and only males performed branch-bashing displays. 

Thus, also in terms of communicative complexity, L. leucopus ranges near the low end of 

among primates (McComb and Semple 2005). 

 

Possible causes of pair-living Given the virtual absence of direct male-female association 

and interaction, it is intriguing to speculate about the possible causes of pair-living in this 

and other species living in dispersed pairs (Schülke 2005). Sportive lemurs are seasonal 

breeders with a short mating season around May/June (Randrianambinina et al. 2007; 

Hilgartner et al. 2008). The short annual mating season and female spatial distribution 

seem to limit the potential of males to monopolize more than one female in L. 

ruficaudatus (Hilgartner et al. 2012), and in mammals more generally (Lukas and 

Clutton-Brock 2013). Thus, mate guarding and female defense may be important 

components of male reproductive strategies. This is reflected by increased night range 

overlap between pair partners during the mating season (see also Hilgartner et al. 2008). 

The small female ranges may facilitate monopolization of the ranges of two females for 

some males. However, L. leucopus males and females occupied mutually overlapping 

home ranges also outside the short annual mating season. Searching for a new mate every 

year may be more costly than defending the joint territory year-round because of the 

energetic costs of roaming, increased predation risk during roaming, and the risk of 

injuries from intrasexual competition (Ralls et al. 2007). Females may potentially profit 

from year-round associations with a male by territorial defense, and hence reduced food 

competition (Wrangham 1979), by protection against infanticide (van Schaik and 

Kappeler 1997) and by paternal care (van Schaik and van Hooff 1983). However, 

competition for food is low, even during the lean season, indicating that a possible 



 

42 

 
Chapter 1: Social Organization 

 

  

resource defense strategy by males may play only a minor role in this species 

(unpublished data). While paternal care is absent in sportive lemurs (Hilgartner et al. 

2008), infanticide was observed in L. edwardsi (Rasoloharijaona et al. 2000) and we 

observed one case of male infanticide, indicating that infanticide risk may play a role in 

the evolution and maintenance of dispersed pairs (Opie et al. 2013). Furthermore, females 

may preferentially mate with males they are familiar with (Fisher et al. 2003), and the 

stability of pair-bonds may have an effect on long-term reproductive success. In owl 

monkeys (A. azari) stable pairs reproduced once a year, whereas only about 20% of 

newly formed pairs produced offspring within the first year of pair-formation (Fernandez-

Duque and Huck 2013). 

 

Social complexity Using all currently recognized dimensions of social complexity 

(Freeberg et al. 2012), white-footed sportive lemurs lie at or near the low end of all 

respective measures. Their modal group size is at the theoretical minimum and they rarely 

interact with neighbors, i.e. they do not interact frequently with many different 

individuals. Moreover, observed social interactions with physical contact were limited to 

bouts of agonism, and neither a single bout of grooming nor mating were observed in > 

1500h of observations. In fact, most pair partners actively avoided each other, and most 

interactions were only recorded because we defined sitting in proximity as a social 

interaction. Thus, social interactions did also not occur in many different contexts and 

they occurred with negligible frequencies. Finally, this lack of social complexity was not 

compensated by high levels of communicative complexity because both the size of their 

vocal and olfactory repertoire were among the smallest ones reported for primates so far. 

Thus, we propose that this species of sportive lemur can be used to define a baseline of 

primate social complexity against which comparable data from other species can be 
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scaled, so that the adjective “highly social” that is increasingly being used to characterize 

species (e.g. Hoelzl et al. 2007, Bateman et al. 2012) can actually be used in a meaningful 

way. 

 

Conclusions 

White-footed sportive lemurs were found to live in dispersed pairs, resolving questions 

about their social organization based on earlier studies at the same site. Males and 

females sharing a home range were characterized by low spatial cohesiveness, including 

signs of active avoidance, as well as very low rates of direct social interactions. This 

social system may ultimately be the result of male reproductive strategies, but the 

determination of the possible causes of pair-living in this species requires further study. In 

any event, L. leucopus is the most asocial of all primates living in pairs studied to date, 

placing it at or near the primate baseline of social complexity. 
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Abstract 

Group-living folivorous primates can experience competition for food, and feeding 

competition has also been documented for solitarily foraging gummivorous and 

omnivorous primates. However, little is known about the types and consequences of 

feeding competition in solitary folivorous foragers. We conducted this study in the spiny 

forest of Berenty Reserve, southern Madagascar, to characterize the competitive regime 

of the nocturnal solitarily foraging white-footed sportive lemur (Lepilemur leucopus), a 

species that lives in dispersed pairs. We analyzed 1213 h of behavioral observations 

recorded simultaneously for the male and female of each of 7 social units and recorded 

seasonal changes in food availability over a complete annual cycle. Lepilemur leucopus 

exhibited low selectivity in its dietary choice and mainly included the most abundant 

plant species in its diet. Contrary to our predictions, we did not find evidence for 

increased rates of contest (i.e. displacement from food trees) or scramble competition (i.e. 

shared use of food patches) during the lean season, neither within nor between social 

units. Instead, conflict rates were low throughout the year, and, during these observations, 

any feeding stress may have been more related to food quality than quantity. The resource 

defense hypotheses may not explain pair-living in this species as there was no indication 

that males defend food resources for their female pair-partners. The observed lack of 

feeding competition may indicate that a cryptic anti-predator strategy is a better predictor 

of spatial avoidance of pair-partners than conflict over food. While anti-predator benefits 

of crypsis may explain, at least partly, female-female avoidance, studies on the 

relationship between territory size/quality and reproductive success are required to 

understand whether feeding competition reduces the potential for female association in L. 

leucopus.  
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Introduction 

 Folivorous primates have traditionally been assumed to experience little to no feeding 

competition as leaves are apparently an abundant and evenly dispersed food resource 

(Isbell 1991). However, recent studies indicated that at least some folivores experience 

food limitation (Borries et al. 2008; Harris et al. 2010; Koenig et al. 1998). By exploiting 

high-quality, patchily distributed, temporally variable food resources, they may 

experience within-group scramble competition (Snaith and Chapman 2005) as well as 

within- and between-group contest competition (Koenig 2002). Studies that take place 

when preferred foods are abundant may not find evidence for food limitation and feeding 

competition, whereas longitudinal studies on effects of reductions in main food resources 

may provide valuable insights into the selective pressures that diet places on folivorous 

primates (Harris et al. 2010). 

Previous studies of Malagasy primates (Lemuriformes) revealed that feeding 

competition does not occur only in group-living species, but also among solitary foragers. 

For example, within-group scramble and contest competition as well as female feeding 

dominance were demonstrated for gummivorous Phaner pallescens (Schülke 2003). 

Similarly, resource distribution and resulting competitive regimes have been shown to 

determine distribution and association patterns of solitary omnivorous Microcebus 

berthae and M. murinus (Dammhahn and Kappeler 2009). Competition for food in 

solitarily foraging folivorous primates has not been studied in detail yet, however. 

Sportive lemurs (genus Lepilemur) are strictly folivorous and nocturnal. As with 

other congeners, white-footed sportive lemurs (Lepilemur leucopus) have evolved 

adaptations to a folivorous diet despite small body size (< 1kg), including prolonged 

resting bouts, small night ranges, an enlarged cecum and cecotrophy (Hladik and Charles-

Dominique, 1974). Known predators of sportive lemurs are fossas (Cryptoprocta ferox), 
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long-eared owls (Asio madagascariensis), Madagascar boas (Acrantophis sp.) and Harrier 

hawks (Polyboroides radiatus; Goodman et al. 1993; Rasoloarison et al. 1995; Sussman 

1999; Schülke and Ostner 2001; Fichtel 2007). Sportive lemurs live in dispersed pairs, 

which are characterized by spatial overlap between one adult male and female but low 

cohesion between pair partners (Schülke and Kappeler 2003; Zinner et al. 2003; Méndez-

Cárdenas and Zimmermann 2009; Hilgartner et al. 2012; Dröscher and Kappeler 2013). 

In L. leucopus, pair-partners show signs of active avoidance, and home range overlap 

among neighboring females is minimal (Dröscher and Kappeler 2013). 

If males defend resources that are important to females, instead of defending 

females directly, resource defense can explain the evolution of pair-living (Emlen and 

Oring 1977; van Schaik and Dunbar 1990; Wrangham 1979). Under this scenario, female 

reproductive success is limited by male resource holding potential (Parker 1974), whereas 

male reproductive success is limited by female choice of mates with variable resource 

access (Balmford et al. 1992). Pairs evolve under this scenario whenever males are unable 

to defend territories that can support more than one female (Hilgartner et al. 2012; Lukas 

and Clutton-Brock 2013). However, to evaluate this hypothesis, quantitative data on 

resource use and competition are required. 

Competition for food may explain female-female avoidance (Lukas and Clutton-

Brock 2013) as well as avoidance of pair-partners. For example, pair partners in P. 

pallescens reduce feeding competition by avoiding competitors in time instead of space, 

as they rely on relatively rare gum trees (Schülke 2003). However, solitary foraging 

seems to characterize almost all nocturnal primates irrespective of their diet, suggesting 

that factors other than feeding competition may promote this type of social organization 

(Schülke 2003). More studies on ranging behavior, resource use and competitive regimes 
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are therefore indicated to further our understanding of the factors that promote intra- and 

intersexual avoidance in solitary foragers. 

The main aims of the present study were to investigate the types and consequences 

of feeding competition between and within social units of white-footed sportive lemurs. 

In particular, we predicted contest competition (i.e. displacement from food trees) as well 

as scramble competition (i.e. food patches shared by individuals) to increase in intensity 

during the pronounced lean season characterizing southern Madagascar. Alternatively, 

based on the fact that L. leucopus is folivorous and leaves can be expected to be relatively 

abundant, feeding stress could be more related to food quality than quantity. In this case 

we predicted scramble as well as contest competition to be rare. In addition, we explored 

whether female-female avoidance as well as avoidance between pair partners is a 

consequence of feeding competition. Our second aim was to evaluate the importance of 

resource defense as a male mating strategy. In this case we predicted that males of 

neighboring social units would engage in conflict over resources. In the absence of more 

precise measures of territory quality, we assume that differences in territory quality are 

related to territory size. 

 

Methods 

Study site We conducted our study at Berenty (S 25.00°, E 46.30°), an approximately 200 

km
2
 private ecotourism reserve. Hot and wet summers characterize Berenty’s semi-arid 

climate (November to April), which alternate with cold dry and winters (May to October; 

Jolly et al. 2006). We observed animals in a spiny forest fragment of about 5 ha (HAH 

Reserve Forestière parcel 1), which is connected to gallery forest on one side via a 

transitional forest and a further 40 ha spiny forest fragment on the other side (Norscia and 

Palagi 2008). We recorded minimum and maximum temperatures on a daily basis as well 
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as the amount of precipitation after each rainfall. Seasonality in temperature and rainfall 

was pronounced during our study. High daytime temperatures with monthly averages of 

up to 35°C characterized the wet season, while monthly average nighttime temperatures 

fell to 15°C during the dry season. While precipitation amounted to 480 mm during the 

wet season, we recorded only 64 mm (or 12% of the annual rainfall) during the dry 

season. Between 1984 and 2000 annual rainfall at Berenty ranged between 265 and 894 

mm, with an average annual rainfall of about 545 mm (Jolly et al. 2002), which 

corresponds to the 544 mm recorded during our study.   

 

Animal capture To allow continuous focal observations on known individuals, we 

captured 20 individuals of L. leucopus and equipped them with radio-tracking 

transmitters. We anesthetized animals with 0.4 ml Ketanest (100 mg/ml) in their day-time 

resting sites, using a blow pipe and 1 ml air-pressured narcotic syringe projectiles 

(Telinject, Germany). While anesthetized, we fitted the animals with radio transmitters 

(TW-3 button-cell tags, Biotrack, UK). The assembled transmitter packs weighed 20g and 

were fastened around the neck of the animals using a coated brass loop that also 

functioned as antenna. We kept the animals in animal transport boxes until they were 

fully recovered and released them at their capture site in the evening. The same 

individuals later reused sleeping trees where they were captured. We fitted adult as well 

as subadult individuals with radio-collars. We differentiated adult individuals from 

subadults by their larger degree of tooth wear and body mass. We did not radio-collar 

juvenile animals (< 1 year old) because radio-collars exceeded 4% of their body mass. 

We removed all radio-collars after the end of the study. The research adhered to the 

American Society of Primatologists (ASP) principles for the ethical treatment of non-

human primates and was approved by the Commission Tripartite CAFF (Madagascar). 
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Behavioral observations Five out of seven social units consisted of pairs, whereas in the 

remaining cases an adult male was associated with two adult females each (social unit 1 

and 3; Appendix A). However, these females had exclusive ranges as they were regularly 

seen within the range of the associated adult male, but never within the range of the other 

adult female. No behavioral observations could be conducted on these females because 

they were not equipped with radio-collars. For more detailed information on the 

identification of the social units within the study population see Dröscher and Kappeler 

(2013). For the present study, we considered only focal individuals that were adult and 

belonged to social units for which both the male and the female were radio-collared (N = 

16 individuals). We collected behavioral and locational data between October 2011 and 

October 2012 for a total of 1530 hours.  

We divided the study period into four seasons: early wet (November to January), 

late wet (February to April), early dry (May to July) and late dry season (August to 

October). We followed each radio-collared animal for up to two full nights during each 

season with the help of a TR-4 receiver and a RA-14K antenna (Telonics, USA). We 

started continuous focal animal observations when an animal left its sleeping site at dusk 

and continued them until it returned to its daytime resting tree at dawn. During 

continuous focal observations, we tagged all trees the focal animal visited with 

biodegradable tape in a continuous manner to mark the spatial locations of the animal 

within its home range. After each full-night follow, we determined the position of the 

tagged tree with reference to a 10x10m study grid system. We used this method instead of 

GPS tracking to achieve more precise measurements of spatial locations. 

During each feeding bout of a focal animal, we recorded species and types of food 

eaten along with duration of feeding on that particular food item. A feeding bout started 

when an individual started to introduce food items into its mouth and ended when an 
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animal stopped inserting food items for more than 15 seconds. To measure contest 

competition, we recorded agonistic interactions over food resources. We defined all 

interactions that were either aggressive (chase, charge, bite, and grab) or submissive (flee, 

be displaced, or jump away) as agonistic (sensu Pereira and Kappeler 1997). We defined 

agonistic interactions as displacements from food patches when the displacing animal 

foraged in the food patch from which it displaced another individual. To measure 

scramble competition, we investigated the number of food patches that were used by 

different individuals, either simultaneously or consecutively. 

 

Food availability We collected phenology data between November 2011 and October 

2012. We included as many plant species as possible in the phenology transects, as we 

did not know at the beginning of the study which species would be consumed by the 

sportive lemurs. Initially, we tagged 430 individual trees, shrubs and lianas belonging to 

105 species along three line transects of 250 m each crossing home ranges of all study 

animals. We tagged between one and 13 individual plants per species according to their 

abundance in the forest. We monitored trees twice a month, whereas we monitored shrubs 

and lianas on a monthly basis. For all plants, we recorded the abundance of young, mature 

and old leaves as well as fruits and flowers by estimating their crown coverage visually, 

based on what a full tree would look like, using the following scale: 0 (0%), 1 (1-25%), 2 

(26–50%), 3 (51–75%), 4 (76–100%).  

We collected information on the local tree community using the point-quarter 

method (Ganzhorn 2003). We selected points (N = 127) every 20 m with reference to the 

study grid system covering the entire study area. In each quarter, we measured the 

distance from the point to the nearest tree with a DBH of > 10 cm and recorded the 

species identity along with the DBH of the respective tree. To infer species abundance of 
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lianas we used the plot method. We counted all trees with a DBH of > 10 cm carrying 

lianas, whereby a single tree could carry several liana species. We recorded species 

identity and abundance of lianas within 10 randomly selected plots of 10x10m.  

 

Data Analyses We calculated tree density (individuals/ha) as 10,000 / (mean point-to-tree 

distance)
2
. We calculated the relative density of a tree species (%) as (number of 

individuals of a species / total number of individuals) * 100. Finally, we calculated the 

density of a tree species as (relative density of a tree species / 100) * tree density. To 

characterize seasonal changes in food availability, we multiplied the density of each food 

species with its average DBH and the corresponding average abundance of food items 

recorded during bimonthly phenology surveys, yielding our food availability scores.  

We restricted our analyses to behavioral observations where pair-partners (i.e. 

adult male and female individuals that shared a common range) were followed 

simultaneously during full night observations by ID and a second trained observer (N = 

52 simultaneous observation nights; Appendix A). We subsampled locational data at 5-

min intervals for analyses of ranging behavior. We computed nightly average distance 

between individuals of a pair to examine seasonal changes in inter-individual 

cohesiveness. We used nearest-neighbor analysis as implemented in the Animal 

Movement extension for ArcView (Hooge and Eichenlaub 1997) to test for spatial 

randomness of identified food patches within the territories of the seven social units. We 

defined food patches as single feeding trees in which animals were observed eating. 

While R values (obtained by nearest-neighbor analyses) of 1 indicate a random 

distribution, R values of <1 and >1 indicate a tendency towards a clumped or a uniform 

distribution, respectively. Significant deviations from the null-hypothesis of complete 
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spatial randomness were tested using Z scores based on Randomization Null Hypothesis 

computation.  

We calculated the sizes of home ranges and core areas from fixed kernel range 

utilization distributions (Worton 1989) using ad hoc smoothing (Silverman 1986). We 

delineated core areas using a time-maximizing function derived from kernel analyses 

(Vander Wal and Rodgers 2012). To quantify space-use sharing by pairs, we calculated 

the utilization distribution overlap index (UDOI; Fieberg and Kochanny 2005) of nightly 

core areas of simultaneously followed individuals. The UDOI takes on values of 0 for two 

ranges that do not overlap and equals 1 if both utility distributions are uniformly 

distributed and overlap 100% (Fieberg and Kochanny 2005). We delineated core areas 

and calculated the utilization distribution overlap indices in R (R Core Development 

Team 2012) using the code provide by Vander Wal and Rodgers (2012) and the package 

‘adehabitatHR’ (Calenge 2006), respectively. We did not correct for spatial 

autocorrelation, as kernel densities do not require serial independence of observations (De 

Solla et al. 1999). However, we based our home range estimates on a time interval (i.e. 5 

min) that is biologically meaningful, as it allows individuals to traverse their home range 

at maximum speed (Rooney et al. 1998). 

We calculated seasonal influence on scramble competition (i.e. food resource 

sharing), sociality (i.e. average distance between pair partners and rates of agonistic 

interactions) and space-use sharing (i.e. as calculated by the UDOI of core areas) for 

seven pairs, using multilevel modeling (MLM) for a one-way repeated measures design 

(Field et al. 2012). The advantage of this method over traditional ANOVA is its 

robustness against violations of sphericity. We averaged nightly values for each season 

and dyad (N = 28 based on four seasons and seven dyads). Similarly, we analyzed 

seasonal influences on the activity budgets for the same 14 individuals (N = 56 based on 
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four seasons and 14 individuals). We based estimates of activity budgets (resting, feeding, 

traveling, other) on the time the animals were in sight.  

We analyzed the data using the function ‘lme’ of the R package ‘nlme’ (Pinheiro 

et al., 2013). For each variable of interest (food resource sharing, average distance 

between pair partners, rates of agonistic interactions, space-use sharing, time spent 

resting, time spent feeding and time spent traveling), we specified a separate model. We 

used season as predictor variable and the respective variable of interest as outcome 

variable. We set social unit or individual, respectively, as a random factor within the 

variable season. We fitted the models using maximum likelihood. Based on visual 

inspection of histograms and q-q plots, residuals did not deviate from a normal 

distribution. To test whether season had an overall effect on our variables of interest, we 

compared the full model to a model in which the predictor was absent, using a likelihood 

ratio test. To investigate the influence of seasonality on overall rates of agonistic 

interactions, we used non-parametric statistics (i.e. Friedman’s ANOVA), as the data 

were not normally distributed. We carried out statistical analyses using the software R. 

We considered an alpha level of P ≤ 0.05 as statistically significant.  

  

Results 

Availability and distribution of food resources We could reliably identify food species 

and food item consumed during a total of 337 h of feeding observations (total feeding 

time 349 h) of focal animals (1213 total observation hours). The animals ate mainly 

leaves (mean = 90.1 ± SD 3.01 %, N = 16); however, they also included flowers (mean = 

4.4 ± 3.1 SD %), fruits (mean = 0.6 ± 1.0 SD %) and shoots of non-leafy lianas (mean = 

2.5 ± 3.3 SD %) in their diet. In total, we identified food items belonging to 32 species of 

trees and 16 species of lianas. We recorded a total of 69 tree and liana species at the study 
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site and the animals concentrated their feeding effort on the most abundant species, as 

usage intensity was highest for the most common tree (i.e. Alluaudia procera) and liana 

species (i.e. Metaporana parvifolia; Table 1). A total of 63 % of feeding was spent 

feeding on the top 5 tree and top 5 liana species based on their abundance. Nearest-

neighbor analyses of individual food patches of Alluaudia procera and Metaporana 

parvifolia, the two main food species of L. leucopus, produced R values ranging between 

0.58 and 1.91 (N = 14). Although a tendency to clumping occurred in four cases (R ≤ 

0.84, P ≤ 0.05), the main food resources of L. leucopus generally exhibited a random or 

even spatial distribution.  

 

Table 1 Tree and liana species at the study site ranked according to their density 
(individuals/ha) and their usage intensity (% feeding time pooled across all observations 
and individuals). Food tree and liana abundance were evaluated using different methods 
and are here considered separately. The top ten contributors to the diet of L. leucopus 
are highlighted in bold (T = tree, L = liana). 
Scientific  
name 

Vernacular  
name 

Growth 
form 

Density 
 

% 
 

Alluaudia procera Fantsiolotra T 369 29.76 
Commiphora humbertii Daro siky T 147 2.00 
Alantsilodendron alluaudianum Avoha T 85 7.26 
Gyrocarpus americanus Sirosiro T 79 0.23 
Commiphora sp. 2 Daro tandroka T 60 0.65 
Commiphora aprevalii Daro be T 55 3.28 
Salvadora angustifolia Sasavy T 36 4.00 
Alluaudia ascendens Sogno T 28 0.28 
Euphorbia laro Famata T 28 0.00 
Commiphora orbicularis Daro mena T 21 1.53 
Margaritaria sp. Malamamay T 21 1.31 
Euphorbia sp. 1 Famantamboay T 21 0.00 
Grewia sp. 1  T 15 1.81 
Maerua filiformis Solety T 13 1.59 
Grewia grevei Tabinala T 11 3.20 
Rhigozum madagascariensis Hazontaha T 9 0.06 
Fernandoa madagscariensis Somontsoy T 9 0.01 
Albizia sp.  T 6 0.94 
Tarenna sp.  T 6 0.01 
Strychnos decussata Relefo T 6 0.00 
Bauhinia grandidieri Marovambaka T 4 2.73 
Boscia longifolia Somangipaky T 4 0.90 
Maerua nuda Solety T 4 0.90 
Stereospermum nematocarpum Hiligne T 4 0.39 
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Scientific  
name 

Vernacular  
name 

Growth 
form 

Density 
 

% 
 

Androya decaryi Hazombolala T 4 0.34 
Grewia sp. 2 Tabarike T 4 0.16 
Cedrelopsis grevei  Katrafay T 4 0.00 
Chadsia sp. Remote T 4 0.00 
Tetrapterocarpon sp. Vaovy T 2 0.70 
Commiphora sp. 1 Daro fengoka T 2 0.06 
Alluaudia humbertii Sognombarika T 2 0.03 
Humbertiella decaryi Hazombatango T 2 0.01 
Adansonia za Za T 2 0.00 
Alluaudia demosa  T 2 0.00 
Ehretia sp.   T 2 0.00 
Euphorbia sp. 2 Famata mainty T 2 0.00 
Mundulea sp.  T 2 0.00 
Unidentified species 1  T 2 0.00 
Canthium sp.  T <2 0.84 
Commiphora simplicifolia Daro sengatse T <2 0.49 
Olax sp.  T <2 0.31 
Rothmania sp. Tainoro T <2 0.10 
Albizia tulearensis  T <2 0.01 
Metaporana parvifolia  L 680 17.14 
Leptadenia sp.  L 470 2.83 
Cynanchum sp. Try L 470 0.99 
Seyrigia gracilis  L 320 0.01 
Hippocratea angustipetalata Vahipindy L 150 2.02 
Asparagus sp.  L 120 0.00 
Kalanchoe beauverdii  L 80 0.00 
Hildebrandtia valo  L 70 0.10 
Plectaneia  hildebrantii  L 60 1.19 
Combretum sp.  L 60 0.00 
Paederia  sp.  Tamboro L 40 8.28 
Diascorea fandra  L 40 0.00 
Menabea venenata Fiofio L 30 0.06 
Folotsia grandiflorum  L 20 0.14 
Ipomoea longituba  L 20 0.12 
Craterospermum sp.  L 20 0.00 
Diascorea nako  L 20 0.00 
Unidentified species 2  L 20 0.00 
Unidentified species 3  L 20 0.00 
Xerosicyos sp  L 10 0.90 
Polygala humbertii  L 10 0.08 
Cissampelos pareira  L 10 0.06 
Adenia elegans  L 10 0.00 
Ipomea sp  L 10 0.00 
Unidentified species 4  L <10 0.18 
Clerodendrum sp.  L <10 0.01 
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We covered most (25 of 32) of the food tree species via the point-quarter method 

and calculated food availability scores for these 25 species. Food availability varied 

seasonally (Fig. 1). While leaves contributed most to available food, flowers and fruits 

played only a minor role. During the early wet season, young leaves dominated, while 

mature leaves were most abundant during the late wet and early dry season and reached a 

low during the late dry season. The animals did not switch to a different diet during the 

lean season. Instead, during each of the four seasons the animals fed predominantly on the 

leaves of A. procera, followed by M. parvifolia during the late wet and early dry season 

or Alantsilodendron alluaudianum during the late dry and early wet season, respectively 

(Table 2). Metaporana parvifolia contributed importantly during all four seasons, 

whereas A. alluaudianum was not among the top 5 contributors during the late wet 

season. 

 

Fig. 1 Seasonal food availability based on 25 identified tree species that were 
used as a food sources by L. leucopus (ML = mature leaves, YL = young leaves, OL 
= old leaves, Fl = flowers, Fr = fruits). 
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Table 2 Top five contributors to L. leucopus diet according to usage intensity (% 
feeding time) considered separately for each of the four seasons (L = leaves, Fl = 
Flowers). 
Scientific name Item early  

wet 
late 
wet 

early 
dry 

late  
dry 

Alluaudia procera L 27.9 23.8 34.7 36.3 
Metaporana parvifolia L 7.5 14.4 18.5 6.6 
Alantsilodendron alluaudianum  L 12.0  4.2 10.2 
Alluaudia procera Fl    6.9 
Paederia sp. L  8.5 15.7 5.9 
Grewia grevei L  5.0 3.1  
Commiphora humbertii L  4.7   
Salvadora angustifolia L 7.3    
Commiphora orbicularis L 4.3    

 

Competitive regime We observed displacement from food patches of an adult individual 

by another adult individual belonging to the same social unit only 3 times during 524.2 h 

of observation where the focal animal was in sight, resulting in an average rate of 0.006 

displacements / h. In all 3 cases, it was a female who displaced a male from the food 

patch. Furthermore, displacements from food trees were never observed between 

individuals belonging to different social units. Across all seasons, a pair used on average 

37 ± 9 food patches (N = 52 simultaneous observation nights). Of these food patches, an 

average of only 3 ± 2 (or 8 ± 5 %) were used by both members of a pair during the same 

night. On only 4 occasions did we see adult individuals foraging simultaneously in the 

same food patch. We never saw individuals belonging to different social units feeding 

simultaneously in the same food patch. We identified on average 189 ± 21 (N = 7) food 

patches within a single territory across all four seasons. Only 32 ± 8 (or 17 ± 5 %) of 

these were used by both adults of a social unit. Of the total of 1320 food patches only 5 

were used by individuals from different social units, in each case neighboring females.  

 

 



 

61 

 
Chapter 2: Feeding Competition 

 

  

Seasonal influences Season neither had a significant effect on the amount of food patches 

that were used by both pair-partners (MLM: χ²(3) = 1.36, P = 0.71), nor on their average 

cohesion (MLM: χ²(3) = 0.49, P = 0.92), nor on space-use sharing (i.e. UDOI) of core 

areas (MLM: χ²(3) = 0.67, P = 0.88), nor on their average rates of agonism (Friedman’s 

ANOVA: χ²(3) = 5.49 , P = 0.14; Table 3). However, season had a significant effect on 

the amount of time animals spent resting (MLM: χ²(3) = 16.24, P = 0.001), eating (χ²(3) = 

12.72, P = 0.01) and travelling (χ²(3) = 20.25, P < 0.01; Fig. 2). Time spent resting was 

significantly higher during the early dry, compared to the late wet season (Tukey’s post 

hoc test: Z = 2.967, P = 0.02). In addition, the animals spent significantly less time resting 

during the late dry compared to the early dry season (Z = -4.283, P < 0.01). The animals 

spent significantly more time eating during the late dry, compared to the early wet (Z = 

2.767, P = 0.03) and early dry season (Z = 3.387, P < 0.01). The animals travelled 

significantly less during the early dry compared to the early wet (Z = -5.066, P < 0.01) 

and late wet season (Z = -2.906, P = 0.02) as well as significantly less during the late dry 

compared to the early wet season (Z = -2.746, P = 0.03). 

 

Table 3 Seasonal values (average ± SD) for the amount of food patches used by both 
pair-partners, for cohesion measured as average distance between pair-partners, for 
space-use sharing of core areas by pair-partners based on UDOI, and for the rate of 
agonistic interactions between pair partners (N = 7). 

 
Season Food patch 

sharing (%) 

Cohesion (m) UDOI of core 

area 

Agonistic 

interactions/h 

early wet 8.98 ± 2.28 33.92 ± 10.00 0.12 ± 0.08 0.08 ± 0.08 

late wet 7.32 ± 4.42 33.39 ± 5.81 0.10 ± 0.05 0.05 ± 0.05 

early dry 8.29 ± 3.97 33.77 ± 4.54 0.12 ± 0.07 0.01 ± 0.02 

late dry 7.00 ± 4.17 34.99 ± 8.31 0.10 ± 0.06 0.01 ± 0.02  
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Fig. 2 Boxplots showing medians and quartiles of the proportions 

of total observation time Lepilemur leucopus spent eating (A), 

resting (B) and travelling (C) across four seasons (N = 14; multilevel 

modeling (MLM) for repeated measures, *P<0.05, **P<0.01, 

***P<0.001). 
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Predation pressure Between October 2011 and August 2013, we recorded the death or 

disappearance of 9 of 21 individually known animals. In two cases we found the dead 

body without signs of external injury. In four cases we could assign the death of the 

individual to predation. On several occasions we observed introduced African wild cats 

(Felis silvestris) to approach or attack L. leucopus. We found the remains (guts, head and 

tail) of one victim, and characteristic tooth marks on the radio-collars of 3 disappeared 

individuals. In three additional cases animals disappeared and were never re-sighted. 

Therefore, during a period of about two years the disappearance of at least 19% and 

perhaps up to 33% of the study animals could be attributed to predation.   

 

Discussion 

Competitive regime Contest feeding competition between neighboring social units of L. 

leucopus is presumably very weak, as we did not observe any displacements from food 

patches. Similarly, within social units, we observed displacement from food patches only 

at a negligible rate. When they occurred, it was the female that displaced the male, which 

may indicate female dominance, which is widespread among other lemurs (Kappeler 

1993). Scramble competition between social units of L. leucopus was also not 

pronounced, as a negligible number of food patches was used by individuals of 

neighboring social units, perhaps because adjacent home ranges overlap only little 

(Dröscher and Kappeler 2013). Finally, the number of shared food patches within pairs 

was also low, despite extensive mutual home range overlap.  

Solitary foraging per se cannot explain the absence of feeding competition in L. 

leucopus as other species of solitary foragers were found to experience feeding 

competition. The competitive regime of M. berthae, for example, is characterized by 

within-group scramble competition, whereas the competitive regime of M. murinus is 
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additionally characterized by between-group contest (Dammhahn and Kappeler 2009). 

Microcebus berthae mainly feeds on the secretion of homopteran larvae, which occur in 

small dispersed patches that can be depleted by a single individual, whereas M. murinus 

spends a substantial amount of time foraging on gum and fruit trees, which are large, 

high-quality resources that can be monopolized.  In M. berthae, females that overlap with 

many other females have larger home ranges and range further than females that overlap 

with fewer other females. In M. murinus displacement from high-quality resource patches 

occurs, but aggression is mainly targeted at individuals that are not part of female 

sleeping associations.  

The competitive regime of P. pallescens is characterized by strong within-group 

scramble and contest competition (Schülke 2003). The most important food species is a 

relatively rare gum-producing tree, and the majority of the trees are used by both pair-

partners. Direct contest for food is reflected by a high rate of agonistic inter-sexual 

interactions. Females displace males from food trees, and avoidance of direct competition 

is achieved by differential timing of resource use. Physical condition of females is 

negatively correlated with family size, indicating strong within-group scramble 

competition. In contrast, L. leucopus relied on common tree and liana species, similar to 

L. edwardsi (Thalmann 2001).  

Theory suggests that high selectivity for uncommon food items distributed in 

clumped patches creates the potential for food competition (Grueter et al. 2009), while 

competition can be expected to be low when the diet is based on abundant and evenly 

distributed food resources (Terborgh and Janson 1986). Based on these principles, the 

absence of competition in L. leucopus might be explained by their low selectivity in 

dietary choice, as they primarily used the most abundant plant species.  
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Seasonality Despite seasonal variation in food availability, with a minimum of food 

availability during the late dry season, season affected neither the intensity of competition 

nor the nature of social interactions in L. leucopus. This pattern contrasts with that seen in 

spectral tarsiers (Tarsius spectrum), in which a seasonal decrease in food abundance leads 

to decreased cohesion between family members and increased territorial disputes (Gursky 

2000). This finding, together with the overall low rates of competition regardless of 

season, suggests that feeding competition cannot be regarded as a dominant ecological 

pressure in L. leucopus, at least at this site in years with average, or better, rainfall.  

A steep decline in food availability can lead to physiological and behavioral costs 

in folivorous primates (Harris et al. 2010), and one may expect adaptive strategies such as 

dietary specialization, ranging and/or physiological adaptations to overcome periods of 

food scarcity (Hemingway and Bynum 2005). Lepilemur leucopus did not switch to a 

different diet during the late dry season; instead, it fed predominantly on leaves of A. 

procera regardless of season. Similarly, food choice and dietary diversity were similar 

during the wet to the dry season in Lepilemur petteri (Nash 1998). Lepilemur leucopus 

minimized its energy expenditure during the early dry season by resting more and 

travelling less. This time corresponded to a period when temperatures reached a 

minimum, but leaves were still abundant. During the late dry season, when temperatures 

increased again but food availability reached a low, activity returned to pre-dry season 

levels, indicating that L. leucopus might be seasonally more affected by cold stress than 

by food limitation. Likewise, L. petteri conserved energy during the cool dry season by 

resting more and travelling less (Nash 1998), and L. ruficaudatus did not experience 

energetic constraints due to restricted food supply during the dry season as indicated by 

their body condition (Ganzhorn 2003). Thus, L. leucopus may be more constrained by 

food quality than abundance. In addition, sportive lemurs are characterized by low resting 
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metabolic rates (Schmid and Ganzhorn 1996). Further studies investigating C-peptide 

levels, an indicator of energy balance, across different seasons might provide more 

insights into possible physiological costs of reduced food availability (Harris et al. 2010).  

 

Resource defense as a male strategy While resource-defense is a common mating strategy 

among birds (Emlen and Oring 1977), males defend resources to attract females in only a 

few mammalian species (Greenwood 1980). However, males play an important role in 

resource defense in several primate species (spider monkeys: Aureli et al. 2006; 

capuchins: Crofoot 2007; guerezas: Fashing 2001; bamboo lemurs: Nievergelt et al. 1998; 

tamarins: Peres 1989; sakis: Thompson et al. 2012; chimpanzees: Williams et al. 2004). 

For example, in frugivorous chimpanzees (Pan troglodytes), males defend a feeding 

territory for themselves and the resident females (Williams et al. 2004). In folivorous 

guerezas (Colobus guereza), intensity of intergroup aggression between adult males is 

related to the frequency of food patch use at intergroup encounter sites (Fashing 2001). In 

contrast, males of L. leucopus did not engage in intergroup aggression related to food 

resources.  

Males are expected to adopt the resource defense strategy when food is limiting 

and distributed in defensible patches, when females are reproductively monopolizable, 

and when females choose to mate with males that defend resources (Fashing 2001). 

Although Lepilemur females are reproductively monopolizable, as mate-guarding is 

intense during the short mating season (Hilgartner et al. 2012), food is not distributed in 

defensible patches, as indicated by the preferential use of the most abundant plant species 

with random spatial distribution. Moreover, females of L. ruficaudatus were never 

observed to terminate a pair-bond or to try to repel a new immigrant male (Hilgartner et 

al. 2012). Likewise, none of our study females was observed to transfer to another social 
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unit. Although long-term data are required to obtain better information on the role of 

female choice in this species, it seems that Lepilemur males cannot achieve greater 

reproductive success by defending resources for females.  

Furthermore, the resource defense hypothesis predicts that an expansion in 

territory size should lead to an increase in female reproductive rates due to an increase in 

food availability (Williams at el. 2004). In contrast, the mate defense hypothesis predicts 

that an expansion in territory size should lead instead to an increase in the number of 

adult females (Wrangham 1979). The two males in our population that defended the 

largest territories were associated with two females each (Dröscher and Kappeler 2013). 

These females had the smallest and the third-smallest home range, respectively, 

indicating that females do not necessarily benefit from male range expansion in terms of 

increased food availability. However, we assume that differences in territory quality are 

related to territory size in this species and further studies incorporating more precise 

measures of territory quality are required to advance our understanding of the importance 

of male resource defense as a mating strategy in L. leucopus. 

 

Intersexual spatial avoidance Sportive lemurs are characterized by low spatial 

cohesiveness, including active avoidance of pair partners (Dröscher and Kappeler 2013; 

Hilgartner et al. 2012). The observed intersexual avoidance cannot be explained by 

avoidance of competition over food resources, as conflicts over food resources were 

rarely observed, and inter-individual avoidance did not increase when food availability 

was low. 

Diurnal primates benefit from living in cohesive groups as it provides enhanced 

protection against predation (Dehn 1990), and groups are larger and more cohesive where 

individuals are exposed to a high predation risk (Clutton-Brock and Janson 2012). While 
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diurnal social primates rely on early detection and warning of approaching predators, 

solitariness and crypsis is a viable alternative anti-predator strategy for solitary foragers 

(Terborgh and Janson 1986). The fossa is a specialist predator of lemurs (Dollar et al. 

2007; Karpanty and Wright 2007), and half its prey items are lemurs with a high 

prevalence of medium-sized nocturnal species (Hawkins and Racey 2008). While fossas 

are no longer present at the study site, we could confirm the presence of African wild 

cats, which have been observed to prey upon much larger Verreaux's sifaka (Propithecus 

verreauxi; Brockman et al. 2008).  

Predation poses an important ecological pressure for L. leucopus as mortality rates 

due to predation were high. Similarly, predation rate on L. ruficaudatus was 36% during a 

four-year study (Hilgartner et al. 2008). Sportive lemurs produce alarm calls only when 

predators directly attack them (Fichtel 2007). The lack of an early warning system against 

predators seems to be a reason why sportive lemurs do not spend more time together 

(Fichtel et al. 2011). Thus, anti-predator benefits of crypsis may explain intersexual 

spatial avoidance of pair partners as this strategy decreases conspicuousness. However, L. 

leucopus produces loud calls to communicate with pair-partners and/or neighbors. As L. 

leucopus are highly territorial, a trade-off between the need to signal their presence in 

their territory (Rasoloharijaona et al. 2006; Fichtel and Hilgartner 2013) and the need to 

avoid detection by predators seems to exist. Further studies should investigate if and how 

individuals adjust their loud-calling behavior during times of potentially heightened 

predation risk such as during the dry season when crown coverage is reduced, or during 

full moon when ambient light levels are increased. 

 

Intrasexual spatial avoidance The spatio-temporal distribution of females is one of the 

main aspects underlying variation among mating and social systems (Arnold and Duvall 
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1994), and spatial dispersion of females appears to be the best predictor of pair-living in 

mammals (Komers and Brotherton 1997; Lukas and Clutton-Brock 2013). High levels of 

female intrasexual avoidance are indicated by a virtual absence of home range overlap in 

L. leucopus (Dröscher and Kappeler 2013).  According to Koenig et al. (2013), possible 

determinants of female spatial dispersion are anti-predator benefits of crypsis (Clutton-

Brock and Janson 2012), the dependence on non-divisible resources (Schülke and 

Kappeler 2003) or a low abundance of large resources (Delgado and van Schaik 2000). 

While an anti-predator strategy based on crypsis may explain at least partly female 

spatial avoidance in L. leucopus, other factors may be important as well. Female 

reproductive success is generally limited by access to resources (Emlen and Oring 1977). 

When food is spatially clumped, females are expected to be more aggregated and less 

territorial, as food resources are not economically defendable. In contrast, when food is 

spatially dispersed, it can be expected that interactions among females are decreased and 

the costs of home range defense are reduced, and that females are more territorial (Maher 

and Lott 2000; Schubert et al. 2009a). As we included only food patches that were 

actually visited in our nearest-neighbor analyses, the results presented above are biased 

against finding random patterns. Nevertheless, in most cases the main food resources 

showed a random or even distribution. To examine in more detail whether scramble 

competition for food reduces the potential for female association, future studies on the 

effects of territory size and quality on female reproductive success of females would be 

required (Koenig 2002).  

 

Conclusions 

Competitive costs of feeding competition were negligible within and between social units 

of L. leucopus, presumably due to low dietary selectivity and reliance on the most 
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common food species. As seasonal food scarcity was not reflected by feeding 

competition, L. leucopus is ecologically more constrained by food quality than quantity. 

Pair-living in this species is probably not the result of male resource defense. Intersexual 

avoidance between pair-partners is best explained by anti-predator benefits related to 

crypsis. The factors favoring female-female avoidances may include crypsis-related anti-

predator benefits and feeding competition, but they could not be conclusively identified 

by the present study. 
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Abstract 

Latrine use (i.e. the repeated use of specific defecation/urination sites) has been described 

for several mammals, including carnivores, ungulates and primates. However, the 

functional significance of latrine use in primates has not been studied systematically yet. 

We therefore followed 14 radio-collared individuals of the pair-living white-footed 

sportive lemur (Lepilemur leucopus) for 1097 hours of continuous focal observations to 

investigate latrine distribution, seasonality of latrine use as well as age and sex of users to 

test various hypotheses related to possible functions of latrine use, including territory 

demarcation, resource defense, signaling of reproductive state, social bonding and mate 

defense. All individuals of a social unit exhibited communal use of latrines located in the 

core area of their territory, supporting the social boding hypothesis. Latrine use seems to 

facilitate familiarity and social bonding within social units via olfactory communication 

in this primate that lives in family units but exhibits low levels of spatial cohesion and 

direct social interactions. In addition, frequency of latrine visitation was higher during 

nights of perceived intruder pressure, supporting the mate defense hypothesis. However, 

animals did not react to experimentally introduced feces from neighboring or strange 

social units, indicating that urine may be the more important component of latrines than 

feces in this arboreal species. Based on a survey of latrine use and function in other 

mammals, we conclude that latrines facilitate communication particularly in nocturnal 

species with limited habitat visibility and in species where individuals are not 

permanently cohesive because they constitute predictable areas for information exchange.  
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Introduction 

Chemical signals can transmit a variety of information in vertebrates, such as species 

identity (Caspers et al. 2009), sexual identity (Ferkin and Johnston 1995), reproductive 

state (Ziegler 2013) and individual identity (Linklater et al. 2013). Many chemical signals 

derive from various excretory products, such as feces, urine and gland secretions 

(Eisenberg and Kleiman 1972), and scent-marking is defined as the application of these 

products to features in the environment (Macdonald 1980). The repeated use of specific 

locations for defecation/urination can result in an accumulation of feces and other 

excretory products at so-called latrine sites and this behavior can be considered a special 

form of scent marking in cases where it serves a communicatory function (Wronksi 

2013). Latrines have been described for several ungulates (e.g. Ourebia: Brashares and 

Arcese 1999; Tragelaphus: Apio et al. 2006; Mazama: Black-Decima and Santana 2011; 

Gazella: Wronski et al. 2013), carnivores (e.g. Suricata: Jordan et al. 2007; Vulpes: 

Darden et al. 2008; Meles: Kilshaw et al. 2009; Hyaena: Hulsman et al. 2010), primates 

(e.g. Lepilemur: Charles-Dominique and Hladik 1971; Cheirogaleus: Schilling 1980a; 

Hapalemur: Irwin et al. 2004) and a few other  mammalian taxa (e.g. Arvicola: 

Woodroffe and Lawton 1990; Oryctolagus: Sneddon 1991). Feces are either deposited 

alone (e.g. Bassariscus astutus: Barja and List 2006; Ourebia ourebi: Brashares and 

Arcese 1999) or together with urine and/or secretions of specialized glands at latrine sites 

(e.g. Meles meles: Roper et al. 1986; Mazama gouazoubira: Black-Decima and Santana 

2011). In several species (e.g. Vulpes velox: Darden et al. 2008; Hyaena spp.: Gorman 

and Mills 1984; Meles meles: Stewart et al. 2002) urination is the most common mark 

used in this context, and feces per se may not be the most important information 

component of a latrine (Darden et al. 2008). Similarly, for arboreal species one could 

reasonably expect that any potential communicatory function may be rather related to 
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olfactory signals obtainable from arboreally deposited urine than from terrestrial 

accumulation of feces, which may rather be a byproduct of localized urine marking. 

Among primates, the lemurs of Madagascar (Lemuriformes) represent a radiation 

whose members rely heavily on chemical signals for their social communication (Mertl 

1976; Schilling 1979, 1980b; Perret 1992; Kappeler 1998; Heymann 2006b; Charpentier 

et al. 2008; Boulet et al. 2009; Crawford et al. 2009; Boulet et al. 2010; Charpentier et al 

2010; Morelli et al. 2013), irrespective of their social organization (Kappeler and van 

Schaik 2002). The more than 20 species of sportive lemurs (genus Lepilemur) are all 

medium-sized nocturnal folivores. Like many other nocturnal lemurs, they exhibit urine 

marking (Schilling 1979, 1980b; Epple 1986). In addition, Lepilemur males posses 

anogenital scent-glands, while females have no scent-glands (Petter et al. 1977; Schilling 

1979). Sportive lemurs are strictly arboreal, and patterns of defecation/urination produce 

terrestrial accumulations of feces (Charles-Dominique and Hladik 1971; Russell 1977; 

Irwin et al. 2004). Some species live in dispersed pairs, which are characterized by spatial 

overlap between one adult male and one adult female, but low cohesion between pair 

partners (Schülke and Kappeler 2003; Zinner et al. 2003; Méndez-Cárdenas and 

Zimmermann 2009; Hilgartner et al. 2012; Dröscher and Kappeler 2013). Pair-partners 

living in dispersed pairs may never share sleeping sites or allogroom each other, and they 

may even show signs of active spatial avoidance (Dröscher and Kappeler 2013). In 

addition, sportive lemurs are highly territorial, as indicated by minimal home range 

overlap between individuals of neighboring social units (Zinner et al. 2003; 

Rasoloharijaona et al. 2006; Méndez-Cárdenas and Zimmermann 2009; Dröscher and 

Kappeler 2013). This combination of traits makes sportive lemurs an interesting taxon to 

study various potential functions of latrines. 
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Irwin et al. (2004) reviewed latrine behavior in primates and discussed several 

hypotheses for the function of latrine use. In particular, they suggested that latrine use in 

lemurs is mainly linked to the defense of resources, such as specific food patches, mates 

or sleeping sites. While male sportive lemurs exhibit mate guarding and defend their 

territories against neighboring males (Hilgartner et al. 2012), they do not defend food 

resources for their pair mates, and competition for food is low within as well as between 

social units (Dröscher and Kappeler 2014). However, systematic tests of this potential 

function of latrines have not been conducted yet.  

While latrines may be merely a by-product of a bimodal defecation rhythm that 

results in the concentration of defecations being deposited under repeatedly used sleeping 

sites (Julliot 1996; González-Zamora et al. 2012), the use of localized defecation sites can 

also be explained by several additional, non-exclusive functional hypotheses. Many 

hypotheses that are commonly formulated for the function of scent marking (e.g. Ralls 

1971; Kappeler 1998; Brady and Armitage 1999; Lazaro-Perea et al. 1999; Rostain et al. 

2004; Heymann 2006a; Lewis 2006) are also applicable to the function of latrine use, as 

latrine behavior is a special form of olfactory communication.  

In the following, we present hypotheses that are applicable to the social system of 

our study species (see below) and provide key references for each one of them. First, 

latrines may be used to demarcate territories, since many mammals are known to use 

urine, feces or other scent-marks to delineate home range boundaries (Mertl-Milhollen 

1979; Brashares and Arcese 1999; Stewart et al. 2001; “territory demarcation 

hypothesis”). Second, latrines may be used to communicate reproductive state, since male 

mammals seem to be able to detect chemical cues in female urine and/or feces related to 

reproductive state (Balestrieri et al. 2011; Archunan and Rajagopala 2013; “reproductive 

signaling hypothesis”). Third, latrines may serve to advertise the willingness to defend 
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important resources such as food (Kruuk 1992; Miller et al. 2003; Remonti et al. 2011) or 

resting sites (Goszczynski 1990; Branch 1993; Brady and Armitage 1999; “resource 

defense hypothesis”). Fourth, latrines may function as information exchange centers for 

individuals that rarely associate or interact directly to facilitate the exchange of olfactory 

individual-specific information within social units to maintain social bonds (Kingdon 

1982; Greene and Drea 2014; “social bonding hypothesis”). Finally, latrines may play a 

role in mate defense by advertising the commitment of resident males to defend resident 

females (Roper et al. 1986; Jordan et al. 2007; “mate defense hypothesis”).  

By detailing latrine density and distribution, seasonality and behavioral contexts 

of latrine use as well as age and sex of users, we aimed to test predictions of the above 

hypotheses. Specifically, (1) if latrines were used to demarcate territories, we expected 

that they would be located at territorial boundaries or in zones of home range overlap 

between neighboring social units rather than in core home range areas. (2) If latrines were 

used to communicate reproductive state, we predicted that frequency of latrine use would 

increase during the pronounced annual mating season. (3) If latrines were used to 

contribute to resource defense, we anticipated that latrines would be located in proximity 

to regular sleeping trees, that feeding effort would be higher within than outside the 

latrine area, and/or that animals would mark specific food trees by defecation/urination. 

(4) If latrines were used as information exchange centers for intra-group communication 

in a species in which individuals of a given social unit visit latrines independently, we 

expected all individuals of a social unit to visit the same latrines to facilitate information 

transfer. In addition, we predicted that latrines would be visited exclusively by individuals 

of a social unit, but not by individuals of neighboring units. (5) If latrines play a role in 

mate defense, we expected that the frequency of male latrine use would increase with 

perceived intruder pressure. In addition, we expected that males would place glandular 



 

78 

 
Chapter 3: Latrine Use 

 

  

scent-marks preferentially in latrines. Finally, (6) since aggression in L. leucopus is 

directed towards roaming individuals rather than neighbors (Dröscher and Kappeler 

2013), we expected individuals to react more strongly to experimentally introduced feces 

of strange individuals than to those of familiar ones (Ydenberg et al. 1988; Müller and 

Manser 2007).  

 

Methods 

Study site and animal capture We studied a population of white-footed sportive lemurs 

(Lepilemur leucopus) at Berenty (S 25.00°, E 46.30°), an approximately 200 km
2
 private 

ecotourism reserve in southern Madagascar. We observed animals in a spiny forest 

fragment of about 5 ha (HAH Reserve Forestière parcel 1), which is connected to gallery 

forest on one side via a transitional forest and a further 40 ha spiny forest fragment on the 

other side (Norscia and Palagi 2008). To ensure continuing focal observations of single 

individuals, we equipped animals with radio-tracking transmitters. We used a blowpipe 

and 1 ml air pressured narcotic syringe projectiles (Telinject, Germany) to anesthetize 

animals with 0.4 ml Ketanest (100 mg/ml) in the mornings in their daytime sleeping sites. 

We fitted the animals with radio-collars (TW-3 button-cell tags, Biotrack, UK) while 

anesthetized. We kept the animals in an animal transport box until they were fully 

recovered and released them again at their capture site in the evening. We fitted 16 adult 

(eight males and eight females) and four subadult individuals (three males and one 

female) with radio-collars. We differentiated adult individuals from subadults by the 

degree of tooth wear and body mass. We did not radio-collar animals when radio-collars 

exceeded 4% of their body mass. We removed all radio-collars after the end of the study. 

The research followed standard protocols for animal handling, capture and radio-tracking 
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and was approved by the Commission Tripartite CAFF of the Ministry for Water and 

Forests (Madagascar). 

 

Behavioral observations We collected behavioral and locational data between October 

2011 and October 2012 for a total of 1530 hours on 20 radio-collared individuals. For the 

present study, we only considered focal individuals that were adult and belonged to social 

units in which both pair mates were radio-collared (N = 14 individuals, observation time 

in sight = 1097 hours). Five out of seven social units consisted of pairs, whereas in the 

remaining cases an adult male was associated with two adult females each (social unit 1 

and 3). However, these females had exclusive ranges since they were regularly seen 

within the range of the associated adult male, but never within the range of the other adult 

female. No behavioral observations could be conducted on these females because they 

were not equipped with radio-collars. For a detailed description on the identification of 

the social units within the study population see Dröscher and Kappeler (2013).  

We divided the study period into four biologically relevant seasons: birth and 

offspring-care with lactation (early wet season from November to January), offspring-

care without lactation (late wet season from February to April), mating and early 

gestation (early dry season from May to July) and late gestation (late dry season from 

August to October). Each individual was watched for two full nights during each season, 

once by the first author and once by a Malagasy research assistant, using a TR-4 receiver 

and a RA-14K antenna (Telonics, U.S.A.; Appendix A) to locate animals. However, we 

included data only for 7 observation nights for male m9 since he joined female f2 only 

after he displaced the previous resident male. Similarly, we include data only for 4 

observation nights for male m10 since he only joined female f1B at the beginning of the 

mating season.  
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The trees of the spiny forest have small and exposed canopies (Grubb 2003), 

permitting nocturnal observation of the subjects clearly and continuously (Hladik and 

Charles-Dominique 1974). We started continuous focal animal observations (Altmann 

1974) when an animal left its sleeping site at dusk until it returned to its daytime sleeping 

site at dawn. Usually, when the first author watched an adult male, the Malagasy research 

assistant watched the corresponding adult female during the same night simultaneously 

and vice versa. An overview of the focal animal observations is given in Appendix A. We 

tagged spatial locations of animals during continuous focal observations with 

biodegradable tape while recording the beginning and end of each behavior (i.e. resting, 

travelling, grooming, feeding, displaying, social interactions). We determined the exact 

position of the tagged trees with reference to a 10x10m study grid system. In addition, we 

recorded all occurrences of defecation, urination, scent marking (i.e. rubbing of the 

anogenital region on a substrate) and olfactory inspection (i.e. sniffing and licking of 

substrate) of the focal animals along with their spatial location. We distinguished between 

single-use and multiple-use defecation sites by investigating the degree of ground 

coverage by feces (a few scattered droppings that could have been produced by a single 

defecation event vs. concentrated accumulation of feces indicative of multiple use). In 

addition, ID recorded the same data every time she could observe an un-collared animal 

defecating/urinating. Each morning after a full-night follow, we located the sleeping trees 

of all radio-collared animals. 

 

Experimental translocation of feces To establish whether animals discriminate between 

feces of their own, neighboring and strange social units, we conducted latrine 

translocation experiments in June 2013 with males and females of 5 social units. We 

gathered feces from latrines from known neighboring social units (i.e. “neighbor 
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treatment”) and from latrines we located in a neighboring forest parcel, to ensure that the 

feces originated from social units that were not familiar to the focal animals (i.e. “stranger 

treatment”). Similarly, we gathered feces from latrines of the focal social unit (i.e. 

“control treatment”). For the experiments, we spread the gathered feces on plastic sheets 

of approximately 1m² (i.e. “experimental latrine”). We handled the feces using disposable 

plastic gloves. To ensure that the focal animals would encounter the experimental latrines, 

we determined through preliminary observations which latrine tree each of the focal 

animals would visit first after leaving the day-time resting tree. For the experiments, we 

introduced the feces in proximity to the identified latrine tree before sunset. For each 

experiment we used an approximately equal amount of feces. We started to record 

behavioral responses (i.e. loud calling, displaying, glandular scent-marking and sniffing) 

from the moment the focal individual entered the experimental latrine tree and continued 

behavioral observations for 30 min. In addition, we recorded the amount of time the 

animal spent in the latrine tree. We randomized the order in which we presented the three 

experimental treatments to the focal individuals. We only conducted one experimental 

treatment on one social unit during a single night. We removed the plastic sheets with the 

experimental feces immediately after each experiment. 

 

Data analyses To determine whether animals discriminate between feces of their own, 

neighboring and strange social units, we used Friedman’s ANOVA to test for differences 

between experimental treatments. We used rates of loud calling, sniffing, displaying and 

glandular scent-marking as measures of response intensity in males, but only rates of loud 

calling and sniffing in females. A new bout started when an individual interrupted the 

behavior for more than 5 seconds. In addition, we used the amount of time the animals 
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spent in the experimental latrine tree as a response variable in both sexes. We based all 

calculations on the time the animals were in sight. 

To establish the number and to investigate the distribution of latrines within the 

territories of the 7 social units, we calculated the size of individual annual home ranges 

with the Animal Movement extension of ArcView and plotted all recorded 

defecation/urination events. Since kernel densities do not require serial independence of 

observations, we did not correct for spatial autocorrelation (De Solla et al. 1999). 

However, we based our home range estimates on a constant time interval (i.e., 5 min) that 

is biologically meaningful, since it allows individuals to traverse their home range at 

maximum speed (Rooney et al., 1998). We calculated home range size from 95% fixed 

kernel home range utilization distributions (Worton 1989) using ad hoc smoothing 

(Silverman 1986). To establish whether defecation/urination occurred anywhere in an 

animal’s home range (i.e. random distribution of events) or were restricted to certain 

areas (i.e. clumped distribution of events) we used nearest neighbor analysis as 

implemented in the Animal Movement extension for ArcView (Hooge and Eichenlaub 

1997). While R values of 1 indicate a random distribution, values of <1 and >1 indicate a 

tendency towards a clumped or a uniform distribution, respectively. Before running the 

analyses, we applied a small amount of random noise to the spatial location points of 

observed defecation/urination events to break ties between repeated observations at the 

same localities using the function ‘jitter’ of the R software (R Core Team 2011).  

After ascertaining the spatial distribution of defecation/urination events via nearest 

neighbor analysis as being clumped, we established the number of latrines per territory by 

visual inspection of the spatial features in ArcView. Specifically, we considered a latrine 

as a cluster of defecation/urination events that were at a distance of up to 6 m of each 

other. We choose 6 m as a distance criterion, because this was the minimum distance at 
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which a cluster of defecation/urination events would not disintegrate in a larger number 

of smaller, non-continuous latrines in close proximity to each other. When testing the 

various functional hypotheses of latrine use, we only considered defecation/urination 

events that were clearly associated with latrine visitations by removing all random 

defecation/urination events (i.e. single-use defecation sites that were not in proximity to a 

latrine; N = 32 or 5% of all defecation/urination events recorded).  

To test the territory demarcation hypothesis, we established the number of 

defecation/urination events within the core vs. the boundary area as well as in the zones 

of home range overlap. We delineated core areas using a time maximizing function 

derived from kernel analyses (Vander Wal and Rodgers 2012).  

To test the resource defense hypothesis with regard to defense of food, we 

investigated whether animals spent less time feeding within than outside the latrine area. 

We defined food patches as single feeding trees in which animals were observed feeding. 

Each food patch that was located within 6 m of a latrine tree was assigned as being part of 

the general latrine area. We calculated the relative proportion of feeding time within and 

outside the latrine area for each focal individual. In addition, we calculated the relative 

proportion of the number of food patches located within and without the latrine area. We 

calculated an index of feeding effort that allows accounting for the fact that the latrine 

area is smaller than the remaining home range area and, hence, innately can only contain 

a smaller number of potential food patches. We divided the proportion of foraging time 

within the latrine area by the relative proportion of the number of food patches located 

within the latrine area to calculate an index of feeding effort inside the latrine area. 

Likewise, we divided the proportion of foraging time outside the latrine area by the 

relative proportion of the number of food patches located outside the latrine area to 

calculate an index of feeding effort outside the latrine area. We compared feeding effort 
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within and outside the latrine area using Wilcoxon signed-ranks test for each focal 

individual.  

To test the resource defense hypothesis with regard to defense of sleeping sites, 

we investigated spatial dependence between defecation/urination sites and regular 

sleeping sites (i.e. sleeping trees that were used more than once by the focal animals). We 

conducted the analyses using the R package ‘spatstat’ (Baddeley and Turner 2005). We 

defined the union home range of all study individuals as the sampling window. We used 

the L-cross function to describe the dependence in bivariate point patterns using the 

independence approach (Dixon 2002). We used the inhomogeneous L-cross function to 

adjust for spatially varying intensity. For formal hypothesis testing, we computed 

simulation envelopes by pointwise Monte Carlo test. We used 99 simulations of CSR 

(complete spatial randomness) to compute envelopes. The theory of the Monte Carlo test 

requires the distance (r) to be fixed in advance for hypothesis testing (Baddeley and 

Turner 2005). We used a value of 6 m as a critical distance. Spatial dependence between 

points of two types occurs when events of each type are either closer (clustering) or 

farther away (inhibition) than expected under the assumption that the two processes are 

independent. Likewise, to test the mate defense hypothesis we investigated spatial 

dependence between defecation/urination sites and male glandular scent-marking sites. 

To test the reproductive signaling hypothesis, we used linear mixed models 

(LMM) to estimate the effect of season on latrine use frequency (model 1). Since season 

may have a different effect on latrine use frequency in the two sexes, we included season, 

sex and their interaction in the model. We included individual identity nested within 

social unit as a random effect to control for pseudo-replication. In addition, to test the 

mate defense hypothesis, we used LMM to estimate the effect of intruder pressure on 

latrine use frequency in males (model 2). We considered observation nights in which 
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focal males engaged in display behavior (i.e. branch bashing displays accompanied by 

loud calling) and/or placed glandular scent marks as nights with perceived intruder 

pressure. For each full-night observation we calculated the frequency of latrine use by 

dividing the number of latrine visits by the amount of time the focal animal was in sight. 

We included individual identity as a random effect to control for repeated observations. 

We controlled for the effect of the number of latrines within an individual’s home range 

as well as for the effect of the type of social organization the individual lived in (i.e. pairs 

vs. one-male, two-female units). We transformed response variables using the function 

‘boxcox’ of the package ‘MASS’ (Venables and Ripley 2002) and z-transformed the 

covariate (i.e. number of latrines; Schielzeth 2010).  

We checked the distribution of the model residuals, plotted residuals against 

predicted values, conducted the Levène’s test and correlated absolute residuals with fitted 

values to check model validity. We visually inspected qq-plots and plots of residuals vs. 

fitted values. None of the diagnostics indicated deviations from the assumptions of 

normality and homogeneity of residuals (Quinn and Keough 2002; Field et al. 2012). We 

calculated Variance Inflation Factors (VIFs) using the R function ‘vif’ of the package 

‘car’ (Fox and Weisberg 2011) running a standard linear model with the random effect 

excluded from the predictors. VIFs indicated collinearity not to be an issue (largest VIF 

for model 1 = 2.03 and for model 2 = 1.35, respectively; Field et al. 2012). For influence 

diagnostics (Cook’s distance, dfbetas) we used the R package ‘influence.ME’ for mixed 

effect models (Nieuwenhuis et al. 2012). The largest Cook’s distance was only 0.14 for 

model 1. However, Cook’s distances indicated some problems with model stability for 

model 2 (largest Cook’s distance = 1.55). Similarly, unstandardized DFBeta values 

reached 1.15 for model 2, whereas values did not indicate any problems for model 1 

(largest DFBeta = 0.68; Quinn and Keough 2002; Field et al. 2012). Running the second 
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model without the influential case (male 4) did not lead to a different overall result, and 

hence, we report the results obtained for the complete dataset.      

To test whether season or intruder pressure, respectively, had an overall effect on 

latrine use frequency we compared the full model to a model in which only these 

predictors were removed (i.e. season and its interaction with sex or perceived intruder 

pressure, respectively), using a likelihood ratio test. We fitted the models in R using the 

function ‘lmer’ in the package ‘lme4’ (Bates et al. 2012) using Maximum Likelihood 

rather than Restricted Maximum Likelihood to achieve more reliable P-values (Bolker et 

al. 2008). We derived P-values for the individual effects based on Satterthwaite 

approximation for denominator degrees of freedom by using the function ‘summary’ of 

the R package ‘lmerTest’ (Kuznetsova et al. 2014). We considered P ≤ 0.05 as 

statistically significant.  

 

Results 

General latrine behavior Animals remained on average 5.8 ± 9.4 min (mean ± SD; N = 

678) in trees in which they defecated/urinated. Similarly, they spent in total only 6% of 

the total observation time they were in sight in trees in which they defecated/urinated. 

They lifted their tail to defecate and urinate while clinging to tree trunks. While the feces 

dropped to the ground, the urine dripped down the main trunk of the tree and left visible 

stains even once the urine was dried. While Lepilemur feces were not very odorous, at 

least to the human nose, urine was characterized by a distinct species-specific odor. We 

could observe the focal animals on two occasions to lick and on 26 occasions to sniff the 

bark of a tree. On 15 of these occasions this behavior occurred in the general latrine area 

and on six occasions in an identified latrine tree. Outside the observation period, we could 

observe a male to sniff a wet urine stain that was deposited 8 min earlier by a female in 
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the latrine. In addition, we could observe the animals on four occasions to lower 

themselves to less than 1 m above the ground in a latrine tree to inspect the ground.  

 

Experimental translocation of feces The time spent in the experimental latrine ranged 

between 11 and 80% (mean ± SD: 29 ± 23) of the observation time in females and 

between 11 and 39% (20 ± 7) in males. Rates of loud calling ranged between 0 and 2 

bouts/h in females (0.14 ± 0.55) and males (0.27 ± 70). While we could not observe 

females to engage in sniffing, rates of sniffing ranged between 0 and 8 bouts/h in males 

(1.21 ± 2.49). We could not observe males to engage in display behavior during the 

experiment, but rates of scent-marking ranged between 0 and 2 bouts/h (0.54 ± 0.92). 

Response intensity did not differ significantly among the three experimental treatments in 

either males or females. More precisely, the amount of time spent in the latrine tree 

(females: χ
2 

= 1.3, df = 2, P = 0.522; males: χ
2 

= 5.7, df = 2, P = 0.058), rates of loud 

calling (females: χ
2 

= 0.3, df = 2, P = 0.861; males: χ
2 

= 0.3, df = 2, P = 0.861), sniffing 

(females: χ
2 

= 0.0, df = 2, P = 1; males: χ
2 

= 1.2, df = 2, P = 0.549), displaying (males: χ
2 

= 0.0, df = 2, P = 1) and scent-marking (males: χ
2 

= 1.2, df = 2, P = 0.549) did not differ 

significantly among treatments. 

 

Spatial distribution of defecation/urination events Union home range size (95 % Kernel 

estimates) for the seven social units ranged between 0.28 and 0.47 ha (mean ± SD: 0.38 ± 

0.07 ha, N = 7). Nearest neighbor analyses of the locations of defecation/urination events 

computed R-values ranging between 0.15 and 0.48 for the union home ranges. Within all 

seven union home ranges the spatial distribution of the defecation/urination events 

differed significantly from a random spatial distribution (P < 0.001, N = 7), with a 
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tendency towards clumping as opposed to towards an even distribution (Table 1). We 

identified 3 to 4 latrines in each union home range (Fig. 1).  

 

 

Fig. 1 95% kernel annual home ranges for individual adult males (m) and females 
(f) of Lepilemur leucopus at Berenty between October 2011 and October 2012 as 
well as the spatial arrangement of the latrines within the home ranges. Dots 
represent individual latrines trees whereas the shaded areas represent a 
contagious buffer of 3 m around individual latrine trees to distinguish discrete 
latrines. Home ranges of pair partners overlap (Sex: m = male, f = female).  
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Table 1 Spatial distribution of observed defecation/urination 
events within the union home ranges of seven social units of 
Lepilemur leucopus based on nearest neighbor analysis. 

Social 
Unit 

# defecation 
events 

Z-value R-value P-Value 

1 100 -13.59 0.22 <0.001 
2 135 -16.73 0.17 <0.001 
3 112 -12.75 0.23 <0.001 
4 72 -8.09 0.48 <0.001 
5 86 -11.34 0.35 <0.001 
6 115 -17.20 0.15 <0.001 
7 90 -13.91 0.22 <0.001 

 

Territory demarcation hypothesis We recorded a total of 678 defecation/urination events. 

Using the time maximization function, core areas of individual ranges were delineated by 

65 % isopleths. Union core areas (65 % Kernel estimates) represented 26 ± 6 % (range: 

20 - 37 %, N = 7) of the union home ranges (95 % Kernel estimates) of the social units. 

However, the majority of defecation/urination events (mean ± SD: 82 ± 7 %, range: 72 - 

94 %, N = 7) were located within the small union core areas of the social units, so that the 

density of defecation/urination events was significantly higher in the core area (mean ± 

SD: 875 ± 391 events/ha) compared to the remaining home range are (72 ± 54 events /ha; 

Wilcoxon signed-rank test: V = 28, P = 0.016, N = 7). The overlap zones comprised only 

1.35% of the union of all individual home ranges. None of the defecation/urination events 

were located within overlap zones of neighboring territories. 

 

Resource defense hypothesis The relative proportion of foraging time within the latrine 

area ranged between 22 and 43% (mean ± SD: 31 ± 7 %, N = 14). The relative proportion 

of the number of patches located within the latrine area ranged between 23 and 46% (34 ± 

7 %). The index of feeding effort inside the latrine area ranged between 0.7 and 1.1 (0.9 ± 

0.1) and between 0.8 and 1.1 (0.9 ± 0.1) for the feeding effort outside the latrine area. 

Feeding effort within the latrine area did not differ significantly from the feeding effort 
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outside the latrine area (Wilcoxon signed-ranks test: V = 56, N = 14, P = 0.851). The 

animals spent only between 2 and 14 % (mean ± SD: 7 ± 4 %, N = 14) of the total feeding 

time eating in identified latrine trees. While we could record a total number of 1584 food 

patches throughout the study, animals were only seen to defecate/urinate in 79 of them. In 

addition, animals were observed to forage in only 41% ± 11% (range: 24 to 55%, N = 14) 

of the identified latrines trees.  

 

 

Fig. 2 Estimated inhomogeneous L-cross function and envelopes for the 
bivariate point pattern consisting of defecation/urination sites and sleeping 
trees. The solid line indicates the empirical L-cross function, the dotted line 
the theoretical value for complete spatial randomness (CSR) and the grey 
band the envelope from 99 simulations and r is the distance argument. 
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The number of repeatedly used sleeping trees ranged between 5 and 10 (mean ± 

SD: 7 ± 2) for the 7 social units. None of the latrine trees served as a sleeping tree. The 

computed empirical homogenous L-cross function fell within the simulation envelop at 

the critical distance of 6 m, indicating spatial independence between defecation/urination 

and sleeping sites (Fig. 2). 

 

Social bonding hypothesis Regarding the social units consisting of one adult male and 

two adult females (unit 1 and 3), all latrines located within the common range of the focal 

male and focal female were shared by both adult individuals. All latrines within the home 

ranges of social units consisting of one male and one female were shared by both pair-

partners, with the exception of social unit 2 where only 2 of 3 latrines were shared. We 

only once saw a focal individual (m6) to visit a neighbor’s latrine (unit 7). In addition, we 

recorded 47 defecation/urination events by un-collared individuals. 46 of these 

defecation/urination events were associated with an identified latrine. In 41 of these cases, 

it was the offspring, which ranged within the parental territory. In 6 cases it was the 

second adult un-collared female of unit 1 and 3, respectively. In total, we could observe 

co-use by un-collared individuals in 18 out of 25 identified latrines.  

 

Reproductive signaling hypothesis Latrine use frequency (number of latrine visitations/h) 

equaled 0.58 ± 0.25 (mean ± SD; N = 25) during the early wet, 0.48 ± 0.21 (N = 26) 

during the late wet, 0.48 ± 0.19 (N = 28) during the early dry and 0.55 ± 0.19 (N = 28) 

during the late dry season. The result of the LMM to estimate the effect of season on 

latrine use frequency (model 1) indicated that the full model containing the effects of 

season and its interaction with sex was not significantly better in explaining the data than 

the null model (likelihood ratio test: χ
2
 = 8.639, df = 7, P = 0.279).  
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Mate defense hypothesis During 25 observations nights, we observed focal males to place 

anogenital scent marks and during 21 nights they engaged in branch bashing and vocal 

displays. One or both of these behaviors were recorded during 37 out of 51 observation 

nights on adult males. The result of the LMM to estimate the effect of perceived intruder 

pressure (as indicated by display and scent marking behavior) on latrine use frequency in 

males (model 2) showed that the full model was significantly better in explaining the data 

than the null model (likelihood ratio test: χ
2
 = 6.3327, df = 1, P = 0.012). Latrine use 

frequency was significantly increased in males during nights of perceived intruder 

pressure (mean frequency of latrine visitation ± SD:  nights with intruder pressure = 0.60 

± 0.27 latrine visitations/h, nights without intruder pressure = 0.46 ± 0.18; P = 0.011; 

Table 2). In total, we recorded 50 scent-marking events by the 7 focal males. 32 of these 

scent marks were placed in an identified latrine tree. At the critical distance of 6 m the 

computed empirical inhomogeneous L-cross function fell above the simulation envelop, 

indicating spatial dependence (attraction) between latrines and scent-marking locations 

(Fig. 3).  

 

 

Table 2 Effects of perceived intruder pressure, number of latrines and social 
organization on latrine use frequency in male Lepilemur leucopus (LMM). 

Fixed Factor β SE df t P 

Intercept 1.019 0.002 9.55 473.012 NA 
Intruder pressure perceived (yes) -0.005 0.002 44.44 -2.658 0.011 
Number of latrines 0.003 0.002 6.69 1.474 0.186 
Social organization (1 ♂ & 2 ♀) -0.007 0.004 7.49 -1.672 0.136 
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Fig. 3 Estimated inhomogeneous L-cross function and envelopes for the 

bivariate point pattern consisting of defecation/urination and scent 

marking sites. The solid line indicates the empirical L-cross function, the 

dotted line the theoretical value for complete spatial randomness (CSR) 

and the grey band the envelope from 99 simulations and r is the distance 

argument. 

 

Discussion 

Our study revealed that defecation/urination events were highly clustered in space, 

resulting in 3 - 4 latrines with terrestrial accumulations of feces in each territory. The 

study animals spent only a notably short time in trees they visited for defecation/urination 

and, therefore, the formation of latrines is not a mere by-product of animals remaining for 

a considerable time in a few preferred resting trees (Charles-Dominique and Hladik 1971; 

Schilling 1979). The number and locations of latrines were stable throughout the study 
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period. We tested whether terrestrial accumulations of feces in an arboreal species can be 

considered to have an olfactory signaling function. We found no support for this notion 

and conclude that urine, which is more accessible to the animals for olfactory 

investigation, is the more important latrine component in this species. Additionally, we 

found empirical support for the hypotheses that latrines function in social bonding and 

mate defense, but a potential function in territory demarcation, resource defense and 

signaling of reproductive state could not be shown. Below, we discuss these findings in 

relation to the social system of L. leucopus and in light of available data for other latrine-

using mammals.   

 

Experimental translocation of feces Most species that exhibit latrine use are terrestrial, 

and feces are therefore assumed to be salient sources of olfactory signals. However, L. 

leucopus did not react differently to experimentally introduced feces from neighboring or 

strange social units, compared to feces from familiar animals. In contrast, river otters 

(Lontra canadensis) investigate foreign scat more than local one when added to latrines 

(Oldham 2009). Brown brocket deer (Mazama gouazoubira) investigate introduced dung 

from unknown individuals of the same sex significantly more than their own dung, and 

males counter-mark introduced dung with a greater frequency than females (Black-

Decima and Santana 2011). Badgers (Meles meles) respond more intensely towards 

foreign feces, and the response is greatest during the breeding season (Palphramand and 

White 2007). Among primates, only Cheirogaleus spp. produce arboreal latrines by 

smearing feces on branches during repeated walking defecation, resulting in a fecal 

accumulation adhering to the branch (Petter 1962). In arboreal species, such as L. 

leucopus, terrestrial latrines may serve as an optical signal (Irwin et al. 2004).  Moreover, 

urination above ground facilitates dispersal of the odor by wind, and increases the 
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evaporating surface as the urine drips downward (Sillero-Zubiri and Macdonald 1998). 

Because urine marking is an ancestral behavior in strepsirrhine primates (Delbarco-Trillo 

et al. 2011), more experimental studies of urine communication in solitary and nocturnal 

species are called for.   

 

Social bonding Scent-marks may function as self-advertisement and simply signal an 

individual’s presence and identity to mates, family members, neighbors, and/or intruders 

(Eisenberg and Kleiman 1972; Peter and Mech 1975; Wolff et al. 2002), and latrines may 

serve as information exchange centers of individual-specific information (Darden et al. 

2008; Black-Decima and Santana 2011). Latrines are maintained by all individuals of a 

social unit in L. leucopus.  In contrast, in European badgers (Meles meles), a species in 

which latrines function mainly in territorial defense and demarcation, sexually immature 

juveniles rarely defecate/urinate at latrines (Brown et al. 2009). Latrines have been 

suggested to help maintaining social bonds in some ungulates such as steenbok 

(Raphicerus campestris), oribi (Ourebia ourebi) and dikdik (Madoqua kirkii; Kingdon 

1982; Apio et al. 2006). Behaviors that facilitate familiarity and, hence, intra-group 

recognition may be especially important in solitary foragers with minimal direct social 

contact between individuals (Dröscher and Kappeler 2013). These observations are in 

contrast to observations on swift foxes (Vulpes velox), where mated pairs exhibit high 

levels of den sharing that allows the exchange of information within the pair and to 

maintain the pair bond. Thus, latrines are not considered important for intra-pair 

communication and maintenance of social cohesion in V. velox (Darden et al. 2008). 

Latrine locations within the core areas of L. leucopus also support the idea that they 

function in social bonding since this form of placement should be particularly suited for 

information exchange between group members (Wronski et al. 2013).  
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In Coquerel’s sifakas (Propithecus coquereli) the quality of the pair bond of 

breeding pairs is reflected in their olfactory signals by chemical convergence, possibly 

due to similar volatile production by shared microbial communities obtained through the 

exchange of odorant-producing microbes for example via overmarking (Greene and Drea 

2014). Similarly, anal gland secretions that coat or saturate badger feces seem to have a 

group-specific chemical composition (Davies et al. 1988). Analogously, convergence in 

vocal signals facilitates group and pair cohesion in some primate and avian species 

(Geissmann and Orgeldinger 2000; Tyack 2008; Sewall 2009; Candiotti et al. 2012). 

Sportive lemurs not only exchange chemical but also acoustic signals. While pairs of the 

Milne Edwards’ sportive lemur (L. edwardsi) coordinate loud calls in duets, perhaps to 

strengthen pair bonds (Méndez-Cárdenas and Zimmermann 2009), neither red-tailed 

sportive lemurs (L. ruficaudatus; Fichtel and Hilgartner 2013) nor L. leucopus exchange 

vocalizations in coordinated duets. In addition, males and females of L. leucopus produce 

sex-specific loud calls and thus are not available for vocal convergence. It therefore 

remains to be determined what exactly social bonding entails in different species and 

which aspects of it can be communicated in different modalities. 

 

Mate defense Latrines may play a role in mate defense by advertising the commitment of 

resident males to defend co-resident females (Roper et al. 1986; Jordan et al. 2007). We 

found that male latrine use frequency increased during nights of perceived intruder 

pressure. Likewise, latrine use frequency increases in meerkats (Suricata suricatta) when 

prospecting males are present (Jordan et al. 2007). In European badgers (Meles meles) 

males visit boundary latrines more often than females (Roper et al. 1993; Stewart et al. 

2001), presumably to signal their commitment to guarding females of their own social 

group (Roper et al. 1986). Similarly, male brown brocket deer defecate/urinate more often 
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after detecting dung from unknown individuals near one of their latrines. By re-marking 

their latrine, residents are thought to affirm their dominant or resident status (Black-

Decima and Santana 2011).  

We do not have systematic data on the behavior of intruders. However, outside the 

focal observation period we could observe a resident and a roaming male to repeatedly 

visit the same latrine tree to defecate, urinate and place glandular scent marks. Male 

scent-marking is linked to intra-sexual competition in several species (e.g. Microtus spp.: 

Jannett 1986; Myocastor coypus: Gosling and Wright 1994; Lemur catta: Kappeler 1998) 

and by strategically placing anogenital scent marks in latrines, which are composite 

olfactory signals of all members of a group, males of L. leucopus may also signal their 

competitive ability and willingness to defend their social unit to intruders (Rich and Hurst 

1998).  

 

Signaling of reproductive state Males are often able to detect chemical cues in female 

urine and/or feces related to reproductive state (Rasmussen et al. 1982; Ghosal et al. 

2012; Archunan and Rajagopala 2013). Contrary to our predictions, frequency of latrine 

use in L. leucopus did not increase during the mating season. In contrast, genets (Genetta 

genetta) exhibit increased scat deposition at latrine sites during the mating period 

(Barrientos 2006). Similarly, latrine visitation peaks during the mating season in M. meles 

(Pigozzi 1989; Roper et al. 1993). While females may scent-mark to advertise their 

reproductive state to attract males (Converse et al. 1995; Heymann 1998; Kappeler 1998), 

males may mask female scent to hide their estrous condition from competing males or to 

advertise their presence to other males (Trumler 1958; Klingel 1974; Rich and Hurst 

1998; Lewis 2005; Jordan et al. 2007). Although we cannot exclude the possibility that 

reproductive status may be communicated at latrine sites in L. leucopus, the function of 
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latrine use does not appear to be specifically related to male attraction or to over-marking 

signals of estrous females, since neither females nor males increased latrine use frequency 

during the mating season. However, estrus in sportive lemurs is seasonal and short 

(Randrianambinina et al. 2007; Hilgartner et al. 2008) and any effect may have been 

concealed by our method of data collection, because we did not follow pairs when 

females were apparently in estrus.  

 

Territory demarcation Urine and feces are common, readily available materials and many 

mammals use them to demarcate their territories or home ranges (e.g. Meles meles; 

Pigozzi 1989; Panthera tigris: Smith et al. 1989; Ourebia ourebi: Brashares and Arcese 

1999). We found that the majority of defecation/urination events were localized within 

the core areas of the territories, even though L. leucopus is highly territorial (Dröscher 

and Kappeler 2013). However, where latrines cannot be economically maintained because 

territory borders are too long, they should be placed in the center of the territory (Jordan 

et al. 2007). For example, brown hyenas (Hyaena brunnea) exhibit boundary marking 

when they live in small territories but display center marking if they inhabit large 

territories (Mills and Gorman 1987). Since territory size in L. leucopus is only 0.3 ha and 

individuals can easily traverse their territories in no more than 5 minutes, it is unlikely 

that territory size in this species would preclude a border marking strategy. In M. meles 

latrine use is primarily concentrated along territory boundaries and these are shared by 

members of the same and neighboring groups (Kilshaw et al. 2009) and are visited mainly 

by males (Roper et al. 1993). Besides boundary latrines, badgers also use hinterland 

latrines, which are visited by both sexes (Roper et al. 1993). In L. leucopus all latrines 

were visited by both pair-partners. Furthermore, we could observe only once a focal 

animal to visit a neighboring latrine, indicating that latrines in L. leucopus are not used 
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for inter-group information transfer to monitor occupancy of surrounding territories 

(Jordan et al. 2007). Instead of latrines, sportive lemurs seem to use vocalizations to 

signal occupancy and to regulate spacing within and between social units 

(Rasoloharijaona et al. 2006; Fichtel and Hilgartner 2013).   

 

Resource defense Resources such as resting sites (Goszczynski 1990; Branch 1993; Brady 

and Armitage 1999) and food trees may be marked to identify ownership and to deter 

conspecifics (Kruuk 1992; Miller et al. 2003). Contrary to our prediction, spatial locations 

of latrine trees and sleeping trees were spatially independent from each other, 

notwithstanding the fact that sportive lemurs only use a few selected sleeping sites and 

appropriate sleeping sites are limited, potentially leading to competition within or 

between social units (Rasoloharijaona et al. 2003, 2008). Establishing ownership of 

sleeping sites, therefore, may be beneficial to individuals by ensuring protection from 

predators or adverse climatic conditions (Franklin et al. 2007). For example, weasel 

sportive lemurs (L. mustelinus) gouge trees after leaving sleeping sites and before moving 

around, suggesting that they use non-nutritive tree gouging to display ownership of 

sleeping sites (Rasoloharijaona et al. 2010). Tree gouging behavior is absent in L. 

leucopus and if latrines were to function instead for sleeping site defense one would 

expect latrine trees to be in proximity to sleeping trees. Conversely, scent-marks can 

potentially be exploited by predators to localize prey (Cushing 1984; Viitala et al. 1995), 

and an intentional placement of latrine trees in proximity to sleeping trees would seem to 

be disadvantageous in terms of predator attraction. In addition, animals may mark food 

trees as a means of asserting ownership of food resources.  

Communal use of latrines in L. leucopus rejects the idea that they are used to 

signal resource use among members of a social unit. In contrast, otters (Lutra lutra) 
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deposit spraints (i.e. token feces) to signal the use of feeding areas exploited by each 

individual (Kruuk 1992). Alternatively, members of a social unit of L. leucopus may use 

latrines to signal to other social units their willingness to defend their food resources. 

However, L. leucopus did not preferentially defecate/urinate in food trees since animals 

were observed to defecate/urinate in only 5% of all identified food patches and to feed in 

less than 50% of the identified latrine trees. In addition, the fact that individual feeding 

effort was equally distributed within and outside the latrine area indicates that latrines are 

not used to mark important feeding areas. These results are in line with the observation 

that L. leucopus exhibits low dietary selectivity, rely on the most common food species 

and rarely engage in conflict over food neither within nor between social units (Dröscher 

and Kappeler 2014). 

 

Conclusions 

Latrines are found in solitary, pair- and group-living mammals (Table 3). Latrine use 

appears to be common among species that are nocturnal, exhibit a dispersed social system 

and are territorial. Since many species do not just defecate, but often also urinate and 

deposit glandular secrets at latrine sites, these signals may function to convey more than 

one message. Especially in arboreal species with terrestrial accumulations of feces, urine 

may be of greater importance for chemical signaling than feces. Despite comparative data 

being sparse, a general pattern emerges that latrines are used in intra-specific olfactory 

communication in many cases. Although not restricted to nocturnal species, latrine use 

may facilitate communication in species with limited habitat visibility. Furthermore, 

latrines can be considered to be economical in species with low inter-individual cohesion, 

since individuals can benefit from predictable areas for information exchange. 

Notwithstanding the fact of being more common among territorial species, latrine use 
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does not appear to necessarily function in territory demarcation. Clearly, more 

experimental studies are required to investigate the relative importance and functions of 

different modes of olfactory signaling at latrine sites. 
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Table 3 Overview of mammalian latrine users and species-specific attributes such as habitat use (T = terrestrial, A = arboreal, AQ = aquatic), 
period of activity (D = diurnal, N = nocturnal, C = crepuscular), social organization (S = solitary, P = pair, G = group) and cohesiveness during 
foraging (G = gregarious, D = dispersed) as well as suggested function of latrine use  (1 = territory demarcation, 2 = resource defense, 3 = 
centers of information exchange, 4 = reproductive signaling, 5= mate defense/intrasexual competition, 6 = signaling of social status). 

Order Species Common name Habitat  Activity  Social 

organization 

Cohesion Territoriality Function Reference 

Artiodactyla Alcelaphus buselaphus Hartebeest  T D G G yes  Gosling 1974 

 Cervus eldi Eld's deer  T N/C G G no  Wemmer and Montali 1988 

 Damaliscus korrigum Topi T N/D G G yes 1 Gosling 1987 

 Gazella dorcas Dorcas gazelle T N/D/C P/G G yes  Essghaier and Johnson 1981 

 Gazella gazella Mountain gazelle T D G G yes  Wronski and Plat 2010 

 Gazella granti Grant’s  gazelle T N/D G G yes 1 Estes 1991 

 Gazella thomsoni Thomson’s gazelle  T N/D G G yes  Walther 1978 

 Hydropotes inermis Water deer  T C S D yes  Sun et al. 1994 

 Lama guanicoe Guanaco T D G G yes  Henriquez 2004 

 Madoqua guentheri Guenther's dik-dik T N/D P G yes 1 Ono et al. 1988 

 Madoqua kirkii  Kirk's dik-dik T N/D P G yes 3 Hendrichs and Hendrichs 1971  

 Mazama americana  Red brocket deer  T N/D S/P D yes  Rivero et al. 2004 

 Mazama gouazoubira Brown brocket deer T N S D yes 3,5 Black-Decima and Santana 2011 

 Moschus chrysogaster  Alpine musk deer  T N G D yes  Qureshi et al. 2004 

 Moschus moschiferus Siberian musk deer  T N G D yes  Green 1987 

 Muntiacus muntjak  Indian muntjac T N/D S D yes 1 Dubost 1971 

 Muntiacus reevesi Chinese muntjac T N/D S D yes 1 Dubost 1970 

 Oreotragus oreotragus Klipspringer T D P G yes 1 Roberts and Lowen 1997 

 Ourebia ourebi Oribi T D S/P/G G yes 1,3 Brashares and  Arcese 1999 

 Pudu puda Southern pudu  T N/D S D yes  MacNamara and Eldridge 1987 

 Raphicerus campestris Steinbuck T D P D yes 3 Kingdon 1982 

 Tragelaphus scriptus Bushbuck T N/C G D yes 3,4 Wronski et al. 2006 

 Vicugna pacos Alpaca T D G G yes  McGregor and Brown 2010 

Perissodactyla Ceratotherium simum White rhinoceros T N/D S/G G yes  Owen-Smith 1975  

 Diceros bicornis Black rhinoceros T N/D S D yes  Linklater et al. 2013 

 Rhinocerus unicornis Indian rhinoceros T N/D S D yes  Dinerstein and Wemmer 1988 

 Tapirus terrestris South American tapir T N/C S D yes  Fragoso et al. 2003 

Carnivora Bassariscus astutus Ring-tailed cat T N/C S D yes  Barja and List 2006 

 Canis aureus Golden jackal T N/D G D yes  Macdonald 1980    

 Canis latrans  Coyote T N/D S/P/G D,G yes  Ralls and Smith 2004 

 Canis simensis Ethopian wolf T D G D yes  Sillero-Zubiri and Macdonald 1998  



 
 

 
 
 

Order Species Common name Habitat  Activity  Social 

organization 

Cohesion Territoriality Function Reference 

 Civettictis civetta  African civet T N S D yes  Bearder and Randall 1978 

 Crocuta crocuta Spotted hyena T N G G yes  Gorman and Mill 1984 

 Genetta genetta Common genet T, A N S/P D yes 4,5 Barrientos 2006 

 Hyaena brunnea Brown hyena T N G G yes 1 Mills et al. 1980 

 Hyaena hyaena Striped hyena T N G D yes  Macdonald 1980    

 Lontra canadensis River otter T, AQ N/C G G yes 6 Rostain et al. 2004 

 Martes martes Pine marten T,A N S D yes  Barja et al. 2011 

 Meles meles European badger T N/C G D yes 1,2,4,5 Roper et al. 1993; Balestrieri et al. 2011 

 Nyctereutes procyonoides Raccoon dog T N P D no 3 Ikeda 1984 

 Procyon lotor Northern raccoon T N G D variable  Brown and Macdonald 1985 

 Proteles cristatus  Aardwolf  T N P D yes  Nel and Bothma 2002 

 Pteronura brasiliensis Giant otters T, AQ D G G yes  Leuchtenberger and Mourão 2009 

 Suricata suricatta Meerkats T D G G yes 1,5 Jordan et al. 2007 

 Urocyon cinereoargenteus  Gray fox T N/C P D yes  Trapp 1978  

 Vulpes macrotis  Kit fox T N P D yes  Ralls and Smith 2004 

 Vulpes velox Swift fox T N P D yes 1 Darden et al. 2008 

Dasyuromorphia Dasyurus geoffroii Western quoll T N/C S D yes  Serena and Soderquist 1989  

 Dasyurus hallucatus  Northern quoll T N S D no  Oakwood 2002  

 Dasyurus maculatus  Tiger quoll T N S D yes  Ruibal et al. 2010 

 Myrmecobius fasciatus Numbat T D S D yes 1 Hogan et al. 2013 

 Sarcophilus harrisii Tasmanian devil T N S D no  Pemberton 1990  

Diprotodontia Petropseudes dahli Rock-haunting possum  T N P G yes  Runcie 2004 

Hyracoidea  Dendrohyrax arboreus Southern tree hyrax A N/D S/P D yes  Milner and Harris 1999 

 Dendrohyrax validus Eastern tree hyrax A N ? D yes  Topp-Jørgensen et al. 2008  

 Heterohyrax brucei Yellow-spotted rock hyrax T D G G yes  Barry and Shoshani 2000 

 Procavia capensis Rock hyrax T D G G yes  Meadows et al. 2010 

Lagomorpha Oryctolagus cuniculus European rabbit T N G G yes  Sneddon 1991 

Primates Alouatta caraya Black howler monkey A D G G yes  Bravo and Zunino 2000 

 Alouatta seniculus Red howler monkey A D G G yes  Julliot 1996 

 Ateles geoffroyi Geoffroy's spider monkey A D G G yes  González-Zamora et al. 2012 

 Cheirogaleus major Greater dwarf lemur A N P D yes  Petter 1962 

 Cheirogaleus medius Fat-tailed dwarf lemur A N P D yes  Petter 1962 

 Hapalemur griseus Lesser bamboo lemur A D G G yes 2,4,5 Irwin et al. 2004 

 Hapalemur meridionalis Southern lesser bamboo lemur A D G G yes 1,2 Eppley and Donati 2010 

 Lagothrix lagotricha Woolly monkey A D G G yes  Yumoto et al. 1999 

 Lepilemur leucopus White-footed sportive lemur A N P D yes 3,5 this study 

 Lepilemur wrightae Wright's sportive lemur A N P D yes 2,4,5 Irwin et al. 2004 

Rodentia Arvicola terrestris Water vole T, AQ N S D yes 4 Woodroffe et al. 1990 
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Abstract 

Small-bodied folivores are rare because processing leaves often requires extensive gut 

adaptations and lengthy retention times for fiber fermentation. However, in the spiny 

forests of Southern Madagascar, the < 1 kg nocturnal white-footed sportive lemurs 

(Lepilemur leucopus) persist on a diet of solely vegetation. We investigated how extrinsic 

(i.e. seasonality in temperature and food availability) and intrinsic factors (i.e. 

reproductive state) influence nutrient intake and explored how nutrient and energy needs 

are met in this small-bodied folivorous primate. We conducted full night focal follows 

across seasons and analyzed nutrients in foods eaten by males and females. We estimated 

digestible protein content, as this is a biologically more meaningful measure than crude 

protein. Protein intake was constant across seasons, while non-protein energy intake 

increased with decreasing ambient temperatures. Males and females did not differ in their 

nutrient or energy intake irrespective of female reproductive state. We conclude that 

animals prioritize protein over non-protein intake as dietary protein is in limited supply 

and that thermoregulation poses higher energetic costs than reproduction in this species. 

While lactating females did not increase their protein intake, the relative protein content 

of the diet was highest during the lactation period, indicating that the balance of non-

protein to protein energy intake may be more important than absolute intakes. Dry matter 

intake was high compared to other folivorous primates, indicating that L. leucopus 

follows an intake opposed to an efficiency strategy to meet its energy requirements. 
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Introduction 

Folivores subsist on a diet that is considered to be of low quality as leaves are generally 

high in structural carbohydrates that are difficult to digest (Milton 1979; Cork et al. 

1983). Only few vertebrates use leaves as food, and for most of those leaves constitutes 

only a minor dietary compenent (McNab 1978). Folivory, as a dietary specialization, has 

evolved independently in some ungulate (Janis 2008), sloth (Montgomery and Sunquist 

1978), marsupial (Kanowski et al. 2003), rodent (Muul and Liat 1978) and primate 

species (Clutton-Brock 1977). Based on Kay’s threshold hypothesis, body size imposes 

an upper limit on insectivory and a lower limit on folivory, while frugivorous species tend 

to be at intermediate body size (Kay 1984). Large body size is the primary morphological 

adaption to folivory as larger gastro-intestinal surface area and longer digestion time 

allow maximum nutrient absorption (Chivers and Hladik 1980). On the physiological 

level, hypometabolism (Kleiber 1961) can be seen as an energy-conserving adaptation to 

a diet that is deviant for a given body size (Kurland and Pearson 1986). Similarly, 

cecotrophy is a digestive adaptation to metabolic constraints imposed by small body size 

(Hörnicke and Björnhag 1980). Most arboreal folivores are large, usually 1 to 5 kg, to 

handle large quantities of food of low caloric and nutritional density (McNab 1978). 

Folivory is rarely observed in small-bodied primate species (< 1 kg) and little is known 

about whether or how these can meet their energy requirements through diet selection. 

 Energy needs and nutrient requirements are influenced by intrinsic factors, such as 

reproductive state, as well as by extrinsic factors such as seasonality in temperature and 

food availability due to climate variability. Energetic costs in sexually monomorphic 

mammals are likely to be greater for females who bear the costs of gestation and lactation 

in addition to the costs of body maintenance (Gittleman and Thompson 1988; Key and 

Ross 1999). Lactation is the most energetically expensive reproductive state (McCabe and 
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Fedigan 2007) and if sexes differ in the quantity and/or composition of resources they 

require, difference should become increasingly apparent as gestation and lactation 

progress (Morehouse et al. 2010). Although previous studies have demonstrated that 

males and females may differ in their diets (Grassi 2002; Vasey 2002; Doran-Sheehy et 

al. 2009; Hartwell et al. 2014), information on sex-specific nutritional intake is scarce 

(see e.g., Rothman et al. 2008; Gould et al. 2011).  

Climate can have a direct influence on the physiology and behavior of organisms 

through changes in ambient temperatures (Dearing et al. 2008; Terrien et al. 2011). While 

diurnal species may be seasonally affected by heat-stress (Hill 2006), nocturnal species 

may be seasonally affected by cold-stress (Müller 1979; Nash 1998). Moreover, the 

relatively low basal metabolic rate of many strepsirrhine primates makes it difficult for 

them to deal with cool environments (Müller 1979). While thermal stress can be a 

significant constraint on primate activity patterns (Nash 1998; Fernandez-Duque 2003; 

Erkert and Kappeler 2004; Vasey 2005), the influence of thermoregulatory demands on 

nutrient requirements is not well understood.  

Climate can have an indirect effect on the life of animals through its influence on 

the phenology of the plant community and, hence, the quantity and quality of available 

food items (van Schaik & Brockman 2005). Leaves have traditionally been considered as 

a rather invariant and abundant resource in constant supply. However, it has been shown 

that primates prefer young over mature leaves (Chapman et al. 2004), and that the 

amplitude of leafing seasonality can be greater than that of fruiting (Hemingway 1998). 

Thus, seasonal shifts in leaf production could have a profound effect on folivores that rely 

on young leaves.  

We choose the white-footed sportive lemur (Lepilemur leucopus) as a study 

species to investigate the impact of seasonal temperature variability, seasonal food 
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characteristics and reproductive state on energy and nutrient intake. Their geographic 

range is confined to southern Madagascar, where hot wet summers alternate with cold dry 

winters (Jolly et al. 2006). They are seasonal breeders that time breeding so that offspring 

are born and weaned during periods of food abundance (Randrianambinina et al. 2007; 

Hilgartner et al. 2008). They lack sexual size dimorphism (Kappeler 1991; Ganzhorn et 

al. 2004) and they have evolved a number of adaptations to deal with constraints imposed 

by their folivorous diet despite small body size (< 1 kg). Amongst them are an enlarged 

cecum (Tattersall 1982), one of the lowest basal metabolic rates among folivorous 

mammals (Schmid and Ganzhorn 1996), extended nightly resting periods (Ganzhorn and 

Kappeler 1996) as well as the reingestion of feces (i.e. caecotrophy; Hladik 1978; but see 

Russell 1977). Although the diets of sportive lemurs have been described previously 

based on dietary composition and/or the nutritional value of different foods (Charles-

Dominique and Hladik 1971; Nash 1998; Thalmann 2001; Ganzhorn et al. 2004; 

Dröscher and Kappeler 2014), the present study quantifies daily energy and nutrient 

intake to determine the primary nutritional goal (Felton et al. 2009a). 

We aimed to explore how this small-bodied folivore living under seasonal 

constraints can overcome energetic constraints imposed by a diet that constitutes a poor 

source of readily available energy. In particular, we predicted that individuals compensate 

for increased energy expenditures due to thermoregulatory demands during the cold dry 

season by increased energy intake. In addition, we predicted that energy intake during 

times of gestation and lactation is higher in females than males. Moreover, we predicted 

that digestible protein intake in lactating females is elevated in comparison to males. 

Together, the answers to these questions will allow to determine which factors during 

which parts of the year place the greatest energetic constraints on Lepilemur leucopus.  
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Methods 

Study site and species We studied a population of white-footed sportive lemurs at Berenty 

(S 25.00°, E 46.30°), an approximately 200 km
2
 private ecotourism reserve in southern 

Madagascar. We observed animals in a spiny forest fragment of about 5 ha (HAH 

Reserve Forestière parcel 1), which is connected to gallery forest on one side via a 

transitional forest and a further 40 ha spiny forest fragment on the other side (Norscia and 

Palagi 2008). Sportive lemurs are medium-sized nocturnal folivores that forage solitarily, 

even when they live in pairs (Méndez-Cárdenas and Zimmermann 2009; Hilgartner et al. 

2012; Dröscher and Kappeler 2013). To ensure continuing focal observations of single 

individuals, we equipped 20 animals with radio-tracking transmitters. For more 

information on animal capture see Dröscher and Kappeler (2013, 2014). 

We divided the study period into four biologically relevant seasons: birth and 

offspring-care with lactation (early wet season from November to January), offspring-

care without lactation (late wet season from February to April), mating and early 

gestation (early dry season from May to July) and late gestation (late dry season from 

August to October). We recorded minimum and maximum temperatures on a daily basis 

as well as the amount of precipitation after each rainfall. Seasonality in temperature and 

rainfall was pronounced during our study. High daytime temperatures with monthly 

averages of up to 35°C characterized the wet season, while monthly average nighttime 

temperatures fell to 15°C during the dry season. While precipitation amounted to 480mm 

during the wet season, we recorded only 64mm (or 12% of the annual rainfall) during the 

dry season (Fig. 1).  

We characterized seasonal changes in food availability based on the density of 

food species and bimonthly phenology surveys conducted between October 2011 and 

October 2012 (see Dröscher & Kappeler 2013). Food availability varied seasonally. 
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Leaves contributed most to available food, while flowers and fruits played only a minor 

role. The early wet season was characterized by a dominance of young leaves. During the 

late wet and early dry season mature leaves dominated, while during the late dry season 

food availability was at its lowest. 

 

 

Fig. 1 Monthly average maximum and minimum temperatures (°C) as well as 
monthly bulk precipitation (mm) at Berenty, Madagascar, between 
November 2011 and October 2012. 

 

Behavioral observations We collected behavioral data between October 2011 and 

October 2012 (Dröscher and Kappeler 2013, 2014). We started continuous all-night focal 

animal observations (Altmann 1974) when the animal left its sleeping site at dusk until it 

returned to its daytime sleeping site at dawn. We recorded the beginning and end of each 

defined behavioral state (i.e. resting, travelling, feeding and other). During each feeding 

bout of a focal animal, we recorded species and types of food eaten (i.e. leave, flower, 
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fruit, shoot) along with duration of feeding on that particular food item. We distinguished 

between young (i.e. pale green leaves lacking a heavy cuticle), mature (i.e. deep green, 

structurally developed leaves) and old leaves (i.e. yellowish leaves with signs of 

senescence). A feeding bout started when an individual started to introduce food items 

into its mouth and ended when an animal stopped inserting food items for more than 15 

sec. We recorded feeding rates (number of units ingested/minute) for specific food items, 

whenever observations conditions were favorable, to establish weight-based intake rates 

(g of DM/minute; Kurland and Gaulin 1987; Schülke et al. 2006; Nakagawa 2009; 

Rothman et al. 2012). In most cases a bite corresponded to discrete unit of food such as a 

leaf, a leaflet or cluster of flowers or leaves. In a few instances the quantity per bite could 

not be measured easily such as when eating on shoots. As mouth width and length 

measure approximately 2 cm, we assumed that one bite equals a piece of shoot of 2 cm 

length. We recorded feeding rates on 352 occasions for 35 species and 70 food items (i.e. 

species and food type combinations).  

  

Food sample collection As nutrient regulation appears to occur over one day (de Castro 

2000; Johnson et al. 2013) and as what an individual consumes earlier the day influences 

what it consumes later the day (Booth and Thibault 2000), the analyses of underlying 

nutritional goals requires detailed analysis of nutrient intake per individual per day and 

relevant nutritional analyses of all food items consumed (Felton et al. 2009a). In addition, 

nutrient content of plants even within a single species can vary over different spatial and 

temporal scales (Chapman et al. 2003; Worman and Chapman 2005). Hence, we collected 

food samples from all food patches the focal animals were observed to feed from during 

full night observations. During each of the four seasons we collected foods consumed by 

6 males and 6 reproductive females, with the exception of the early wet season were we 
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could collect foods eaten by 5 lactating females, resulting in a total of 47 full night 

follows for which food samples were collected. We collected the food samples on the day 

after the full-night observation from the exact same food patches so that the samples are 

representative of the nutrients in the food item ingested at that time (Rothman et al. 

2012). In total we collected and analyzed 1006 food samples from 45 species comprising 

98 different food items for their nutritional content. We dried samples in an oven 

(temperatures maintained between 45–50 °C), and later transported samples to the 

University of Hamburg for nutritional analyses.  

 

 Analyses of macronutrient content Samples were analyzed either via standard methods 

(Ortmann et al. 2006) or near infrared spectroscopy (Foley et al. 1998). Samples were 

ground in a Retsch-mill to a homogenous powder, analyzed in duplicates and nutrient 

concentrations estimated on a dry matter basis. A representative subset of samples was 

selected and analyzed chemically for the calibration of the spectroscope and the accuracy 

of the developed NIRS-models was tested using cross- and test-set-validation (Stolter et 

al. 2006). Neutral detergent fiber (NDF) was analyzed using an ANKOM fiber analyzer 

(Van Soest et al. 1991), while total nitrogen (Association of Official Analytical Chemists 

1990) and ash (Rothman et al. 2012) were measured via combustion. Nitrogen 

digestibility was estimated in vitro using pepsin and cellulase (DeGabriel et al. 2008) to 

obtain a biologically more meaningful measure of protein than crude protein (Wallis et al. 

2012), and fat content was determined using ether extract (Rothman et al. 2012).  

 

Nutrient intake calculations When nutritional information for a certain food was 

unavailable, we substituted it with average annual or, if available, seasonal values of that 

particular species and food type (N = 36). Likewise, due to the arboreal nocturnal habit 
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and the diverse diet of the study species, we were not able to record feeding rates for all 

food items. However, we could record feeding rates for all food species that were 

important in the overall diet. When feeding rates for certain food items were not 

available, we substituted data from other food items that most closely represented the 

food items in consideration in terms of shape, size and texture (N = 32). Sex and season 

did not affect feeding rates (GLMM: χ2 = 2.788, df = 4, P = 0.594; see below) and we 

averaged all recorded feeding rates for the particular food item. We multiplied feeding 

rates (number of units consumed/min) with the average unit dry-weight of food items (g 

of DM) to calculate intake rates (g of DM/minute). 

We used the following formula to calculate the observed energy intake of the 

focal individuals during their nightly activity: 

           

 

   

 

where I = energy intake (kJ/total observation time), n = number of foods consumed, D = 

duration of feeding on particular food (min), R = intake rate (g of DM/min) and E = 

metabolizable energy content of food (kJ/g). We estimated the metabolizable energy 

content of foods by summing the energetic contributions from fat, NDF (neutral detergent 

fiber), TNC (total non-structural carbohydrates) and digestible protein (Rothman et al. 

2012). We used energetic values of 37.7 kJ/g fat, 16.7 kJ/g digestible protein and 16.7 

kJ/g TNC (National Research Council, 2003). We estimated TNC by subtracting the 

percentages of NDF, digestible protein, fat, and ash from 100%. We subtracted one from 

the percentage of ether extract to account for non-nutritive substances (Rothman et al. 

2012). Information on fiber digestibility is not available for this species, so we substituted 

values for rabbits on the basis that like our study animals, they are small-bodied hindgut 

fermenters that exhibit cecotrophy and rely on an herbivorous diet. The apparent 
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digestibility of NDF in rabbits (Oryctolagus cuniculus with an average body mass of 

1575g) was determined as 20.8 % (Sakaguchi et al. 1987). Since anaerobic microbes keep 

some of the energy from fiber for themselves, only up to 3 kcal/g of fiber are available to 

the host (Conklin-Brittain et al. 2006). Thus the physiological fuel value is 3*0.208 = 

0.624 kcal/g or 2.6 kJ/g of fiber in rabbits. 

We could not determine the activity of the animals at all times, nor could we 

identify the food consumed on all occasions due to the animals’ nocturnal activity. The 

animals were in sight on average 92 ± 6% of the total observation time (N = 47). The 

feeding time for which we could reliably identify the food consumed was on average 95 ± 

8% of the total observed feeding time (N = 47). As for the purpose of the study we were 

interested in total daily energy intake and not in energy intake per observation time in 

sight, we extrapolated our data to the total activity time of the animals (i.e. from when an 

animal left its sleeping tree until it returned to its sleeping tree). First, we calculated the 

hourly energy intake (kJ/h) by dividing the observed energy intake with the total feeding 

time for which we could reliably identify the food consumed (h). Second, we calculated 

the relative feeding time (%) by multiplying the total observation time the animals was in 

sight (h) with 100 and a subsequent division with the total amount of time the animal was 

observed feeding (h). Third, we extrapolated the total daily feeding time (h) by 

multiplying the relative feeding time (%) with the total activity time and subsequently 

dividing it by 100. Finally, we calculated daily energy intake (kJ/day) by multiplying the 

hourly energy intake (kJ/h) with the total daily feeding time (h).      

We used the geometric framework of nutrition to assess nutritional priorities and 

to relate observed patterns of nutrient intake with extrinsic and intrinsic factors (Simpson 

and Raubenheimer 1993). We consider the daily contribution of non-protein vs. protein to 

total daily energy intake to determine patterns of nutrient prioritization (Simpson and 
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Raubenheimer 1993; Raubenheimer and Simpson 1997). For the purpose of our analysis, 

we combined energy from fat, NDF and TNC as non-protein energy for comparison with 

digestible protein to investigate their relative contributions to total daily energy intake.  

 

Data analyses We used a generalized linear mixed model (GLMM) with Poisson 

distribution to estimate the effect of season and sex on recorded feeding rates on leaves. 

We included individual identity as a random effect to control for repeated observations. In 

addition, we controlled for food species and food part (i.e. young, mature or old leaves). 

We included observation number as a random effect to account for overdispersion (Lee 

2000). We calculated VIFs, dfbetas, Cook’s distance and leverage running a standard 

generalized linear model using the function ‘glm’ with the random effect excluded from 

the predictors (Hosmer and Lemeshow 2000). Influence diagnostics indicated some 

problems with model stability (Quinn and Keough 2002; Field et al. 2012). However, 

running the model without the influential cases did not lead to a different overall result, 

and hence, we report the results obtained for the complete dataset.  

We used linear mixed models (LMM) to estimate the effect of season and sex or 

temperature, respectively, on daily energy (kJ/day), digestible protein (kJ/day), non-

protein (kJ/day) and food intake (g of DM/day). We included individual identity as a 

random effect to control for repeated observations. In addition, we controlled for the 

effect of individual body mass. We transformed response variables using the function 

‘boxcox’ of the package ‘MASS’ (Venables and Ripley 2002) and z-transformed the 

covariate (Schielzeth 2010). For our linear mixed models, we checked the distribution of 

the model residuals, plotted residuals against predicted values, conducted the Levène’s 

test and correlated absolute residuals with fitted values to check model validity. We 

visually inspected qq-plots and plots of residuals vs. fitted values. None of the diagnostics 
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indicated obvious deviations from the assumptions of normality and homogeneity of 

residuals (Quinn and Keough 2002; Field et al. 2012). We calculated Variance Inflation 

Factors (VIFs) using the R function ‘vif’ of the package ‘car’ (Fox and Weisberg 2011) 

running a standard linear model with the random effect excluded from the predictors. 

VIFs indicated collinearity not to be an issue (Field et al 2012). For influence diagnostics 

(Cook’s distance, dfbetas) we used the R package ‘influence.ME’ for mixed effect models 

(Nieuwenhuis et al. 2012). Influence diagnostics did not indicated problems with model 

stability (Quinn and Keough 2002; Field et al. 2012). To test whether sex and season, or 

temperature, respectively, had an overall effect on daily energy, digestible protein, non-

protein or food intake, we compared the full model to a model in which only these 

predictors were removed (i.e. sex and season or temperature, respectively), using a 

likelihood ratio test. We fitted the models in R using the function ‘lmer’ in the package 

‘lme4’ (Bates et al. 2012) using Maximum Likelihood rather than Restricted Maximum 

Likelihood to achieve more reliable P-values (Bolker et al. 2008). We derived P-values 

for the individual effects based on Satterthwaite approximation for denominator degrees 

of freedom by using the function ‘summary’ of the R package ‘lmerTest’ (Kuznetsova et 

al. 2014). In addition, we performed a Mann-Whitney U Test to determine sex differences 

in daily energy, digestible protein, non-protein and food intake as well as the non-protein 

to protein ratio on a season by season basis. 

We used a generalized linear mixed model (GLMM) with binomial error 

distribution to estimate the effect of season and sex or temperature, respectively, on the 

ratio between non-protein and protein energy intake. We handed the response over as a 

matrix with two columns representing the proportions of protein and non-protein energy 

intake. We fitted the models in R using the function ‘glmer’ in the package ‘lme4’ (Bates 

et al. 2012) using a likelihood ratio test (Dobson 2002). We included individual identity 
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as a random effect to control for repeated observations. We z-transformed the covariate 

(Schielzeth 2010). We calculated VIFs, dfbetas, Cook’s distance and leverage running a 

standard generalized linear model using the function ‘glm’ with the random effect 

excluded from the predictors (Hosmer and Lemeshow 2000). Their values indicated that 

there were no problems with collinearity (Field et al 2012) and model stability (Quinn and 

Keough 2002; Field et al. 2012).  

We tested for sex differences in activity budgets on a season by season basis using 

Welch’s unequal variance t-test. We restricted our analyses of activity budgets to 7 males 

and 6 reproductive females which we could follow repeatedly twice per season across all 

four seasons (N = 104 observations nights). For the analyses, we averaged nightly values 

for each season (N = 52 based on four seasons and 13 individuals). We based estimates of 

activity budgets (resting, feeding, and traveling) on the time the animals were in sight. 

We considered alpha levels of P ≤ 0.05 as statistically significant.  

 

Results 

Seasonality in food content Macronutrient concentration and energy density of important 

food items were similar across all four seasons (Table 1). Concentrations of digestible 

protein (ANOVA: F(1, 91) = 1.375, P = 0.247), TNC (F = 1.538, P = 0.218), NDF (F = 

1.23, P = 0.270) and fat (F = 3.689, P = 0.058) did not differ significantly between 

seasons. Similarly, digestible protein (F = 1.495, P = 0.225), non-protein (F = 2.927, P = 

0.091) as well as total energy content (F = 0.853, P = 0.358) showed no significant 

seasonal variation. 
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Table 1 Seasonality in macronutrient concentration (%) and energy density (kJ/g) of 
important food items (i.e. contributing >1% of feeding time) of Lepilemur leucopus in the 
spiny forest at Berenty, Madagascar. Percentage values represent percentage of dry 
matter (cP = crude protein, dP = digestible protein, TNC = total non-structural 
carbohydrates, NDF = neutral detergent fiber, non-P = non-protein, P = protein). 
Nutrient content Early wet season 

(N = 27) 
Late wet season 

(N = 26) 
Early dry season 

(N = 19) 
Late dry season 

(N = 21) 

cP (%) 16.9±6.5 16.3±4.9 15.5±3.4 15.4±4.9 
dP (%) 12.4±6.4 11.6±4.6 10.4±3.6 11.0±5.3 
TNC (%) 41.1±8.5 36.9±8.5 43.0±6.5 42.5±8.2 
NDF (%) 33.8±10.4 38.1±9.8 31.8±7.9 32.3±9.6 
Fat (%) 1.6±0.9 2.2±1.4 2.7±1.6 2.2±1.5 
Non-P (kJ/g) 8.3±1.4 8.0±1.3 9.0±1.4 8.8±1.6 
P (kJ/g) 2.1±1.1 1.9±0.8 1.7±0.6 1.8±0.9 
Total (kJ/g) 10.4±1.5 9.9±1.4 10.8±1.5 10.6±1.7 

 
 

Food nutritional composition Food types differed in their macronutrient compositions 

(Table 2). Leaves were the main contributors to the diet of L. leucopus. Concentrations of 

digestible protein (Kruskal-Wallis test: χ2 = 105.899, df = 2, P < 0.001), fat (χ2 = 

101.534, df = 2, P < 0.001), TNC (χ2 = 58.514, df = 2, P= < 0.001) as well as digestible 

protein energy (χ2=96.967, df = 2, P < 0.001) and non-protein energy content (χ2 = 

75.506, df = 2, P < 0.001) differed significantly across leave maturity stages. However, 

neutral detergent fiber (Kruskal-Wallis test: χ2 = 5.351, df = 2, P = 0.069) and total 

energy content was similar across young, mature and old leaves (χ2 = 3.394, df = 2, P = 

0.183). Digestible protein concentrations were highest in young and lowest in old leaves 

(Wilcoxon rank sum test with Bonferroni correction: P < 0.001). In contrast, TNC 

concentrations as well as non-protein energy were highest in old and lowest in young 

leaves (P ≤ 0.0037).  
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Table 2 Macronutrient concentration (%) and energy density (kJ/g) of foods eaten by 
Lepilemur leucopus in the spiny forest at Berenty, Madagascar. Percentage values 
represent percentage of dry matter (dP = digestible Protein, TNC = total non-structural 
carbohydrates, NDF = neutral detergent fiber, non-P = non-Protein, P = Protein). 

Plant 
part 

N dP (%) TNC (%) NDF (%) Fat (%) 
Non-P 
(kJ/g) 

P (kJ/g) 
Total 
(kJ/g) 

YL 235 13.8±6.7 34.2±11.7 40.6±15.8 1.0±1.3 7.1±1.9 2.3±1.1 9.4±2.4 
ML 483 9.8±4.8 38.3±9.2 38.2±12.1 1.9±1.7 8.1±1.7 1.6±0.8 9.7±1.9 
OL 229 8.1±4.2 40.9±6.2 37.1±8.9 1.8±1.1 8.5±1.0 1.4±0.7 9.8±1.2 
Shoot 33 12.6±7.3 38.1±8.3 33.0±12.1 2.3±1.4 8.1±1.2 2.1±1.2 10.2±1.2 
Flowers 23 9.5±5.7 45.8±8.0 35.9±7.2 2.1±1.3 9.4±1.1 1.6±1.0 11.0±1.2 
Fruits 3 7.8±0.5 38.0±7.4 44.7±5.8 3.2±1.3 8.7±1.1 1.3±0.1 10.0±1.0 

 

Effect of sex and season on daily intakes The average daily dry matter intake of the study 

animals was 63 ± 14 g/day and the average daily energy intake was 602 ± 153 kJ/day (N 

= 47; Fig. 2a). Energy intake was 874 kJ/kg
0.762

 and digestible protein intake was 156 

kJ/kg
0.762

 metabolic body mass per day. Across the study period, the animals maintained 

an average daily intake of 4.8 ± 1.28 kJ non-protein to protein energy balance, with the 

ratio ranging between 2.63 and 7.97. The full model comprising the effects of sex and 

season was significant as compared to the null model with respect to total energy intake 

(LMM; likelihood ratio test: χ2 = 16.543, df = 4, P = 0.002), non-protein energy intake 

(χ2 = 17.984, df = 4, P = 0.001) and food intake (χ2 = 12.666, df = 4, P = 0.013) as well 

as the ratio of non-protein to protein energy intake (GLMM; χ2 = 68.674, df = 4, P < 

0.001). More specifically, season, but not sex, had an overall significant effect on total 

energy, non-protein, and food intake (Table 3) as well as the ratio of non-protein to 

protein energy intake (Table 4; Fig. 2b). However, the full model was not significant 

compared to the null model with respect to total digestible protein intake (χ2 = 1.641, df = 

4, P = 0.801). Also on a season by season basis sexes did not differ significantly in any of 

the explored intake variables (Mann-Whitney U-test: W < 26, P > 0.240; Table 5). 
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Fig. 2 Intake of protein and non- protein energy by Lepilemur leucopus in the spiny forest 
at Berenty, Madagascar. (a) Daily intakes based on 47 full night continuous focal 
observations conducted between November 2011 and October 2012. (b) Plot of mean 
daily intakes (±S.E.) during the early wet (diamond), late wet (square), early dry (triangle) 
and late dry season (circle). Lines radiating from the origin represent nutritional rails and 
indicate the digestible protein and non- protein energy balance in the four seasons. 
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Table 3 Effects of sex (males N = 24, females N = 23), season and body mass on daily 
intakes (LMM). Significant effects are indicated in bold. 
Fixed Factor β SE df t P 

Total Energy (kJ/day) 
Intercept 7.782e-04 3.427e-04 10.35 2.271 0.046 
Sex (male) -9.816e-06 5.082e-05 9.733 -0.193 0.851 
Late wet -9.342e-05 3.379e-05 11.39 -2.765 0.018 
Early dry -1.224e-04 3.390e-05 11.43 -3.609 0.004 
Late dry -1.509e-04 3.431e-05 11.60 -4.397 0.001 
Body mass -4.405e-07 5.391e-07 10.38 -0.817 0.432 

Non-Protein Energy (kJ/day) 
Intercept 3.952e-03 1.533e-03 12.28 2.578 0.024 
Sex (male) -2.418e-05 2.254e-04 10.85 -0.107 0.917 
Late wet -4.777e-04 1.739e-04 25.11 -2.746 0.011 
Early dry -6.913e-04 1.744e-04 25.23 -3.963 0.001 
Late dry -7.991e-04 1.762e-04 25.89 -4.536 0.000 
Body mass -1.840e-06 2.413e-06 12.35 -0.763 0.460 

Food intake (g of DM/day) 
Intercept 1.438e-02 5.920e-03 12.31 2.430 0.031 
Sex (male) -2.363e-04 8.789e-04 11.25 -0.269 0.793 
Late wet -1.002e-03 5.733e-04 29.20 -1.747 0.091 
Early dry -1.432e-03 5.733e-04 29.36 -2.489 0.019 
Late dry -2.219e-03 5.824e-04 30.00 -3.810 0.001 
Body mass -8.719e-06 9.314e-06 12.37 -0.936 0.367 

 

 

Table 4 Effects of sex (males N = 24, females N = 23) and season 
on the ratio of non-protein to protein energy intake (GLMM). 
Significant effects are indicated in bold. 
Fixed Factor β SE z P 

Intercept 1.353 0.050 27.232 <0.001 
Sex (male) -0.039 0.055 -0.708 0.479 
Late wet 0.123 0.046 2.679 0.007 
Early dry 0.347 0.047 7.445 <0.001 
Late dry 0.293 0.047 6.307 <0.001 
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Table 5 The results of the Mann-Whitney U-test for sex-specific differences in 
daily energy and food intake on a season by season basis (1 = early wet season; 
2 = late wet season; 3 = early dry season; 4 = late dry season). Values given for 
males and females are means and standard deviations.   
Variable Season Male Female W P 

Total Energy (kJ/day) 1 527±157 528±99 22 0.247 
 2 604±89 617±156 14 0.575 
 3 667±170 640±149 16 0.818 
 4 674±164 707±135 21 0.699 
Non-Protein (kJ/day) 1 400±132 414±82 21 0.329 
 2 462±43 489±82 16 0.873 
 3 542±158 522±140 17 0.937 
 4 539±140 572±138 21 0.688 
Protein (kJ/day) 1 103±38 114±27 20 0.429 
 2 118±25 106±22 13 0.485 
 3 103±30 96±34 13 0.485 
 4 108±45 110±38 21 0.748 
Non-Protein : Protein 1 4.0±0.7 3.7±0.7 12 0.662 
 2 4.0±0.9 4.6±0.8 26 0.240 
 3 5.2±0.4 5.6±1.1 20 0.818 
 4 5.6±2.1 5.5±1.4 17 0.937 
Food intake (g of DM/day) 1 59±20 56±9         21 0.311 
 2 61±9 60±15 14 0.475 
 3 65±17 62±15 16 0.818 
 4 67±15 72±14 21 0.699 

 

Effect of temperature on daily intakes The full model comprising the effect of 

temperature was significant as compared to the null model with respect to total energy 

(LMM; χ2 = 8.215, df = 1, P = 0.004), non-protein energy (χ2 = 10.925, df = 1, P < 

0.001) and food intake (χ2 = 5.139, df = 1, P = 0.024) as well as the ratio of non-protein 

to protein energy intake (GLMM; χ2 = 7.441, df = 1, P < 0.001). However, the full model 

was not significant compared to the null model with respect to total digestible protein 

intake (χ2 = 1.391, df = 1, P = 0.237). More precisely, total energy (one-tailed Spearman 

rank correlation: N = 47, rs = -0.343, P = 0.009), non-protein energy (rs = -0.413, P = 

0.002) and the ratio of non-protein to protein energy intake (rs = -0.511, P < 0.001) as 

well as food intake (rs = -0.264, P = 0.036) were negatively related to temperature.   
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Sex difference in activity patterns The amount of time spent travelling differed 

significantly between the sexes during the early wet (Welch two-sample t-test: t = -4.078, 

df = 8.741, P = 0.003), but not during the late wet (t = -1.763, df = 8.584, P = 0.113), 

early dry (t = 0.406, df = 10.961, P = 0.693) and late dry season (t = -1.497, df = 9.887, P 

= 0.166). In particular, males (mean ± SD: 8.25 ± 1.86 % of observation time) spent more 

time travelling during the early wet season than females (5.04 ± 0.86 %). In contrast, the 

amount of time spent resting (Welch two-sample t-test: t ≥ -0.693, df ≤ 10.715, P ≥ 0.503) 

or eating (t ≤ 0.8186, df ≤ 10.454, P ≥ 0.431) did not differ between sexes, regardless of 

season.  

 

Discussion 

We tested whether changing reproductive state and varying environmental conditions are 

reflected in corresponding changes in individuals’ nutritional goals. We found that L. 

leucopus balanced their nutrient intake. While they maintained a stable daily digestible 

protein intake across seasons and reproductive stages, they increased daily non-protein 

energy intake with decreasing ambient temperatures through active food selection and an 

increase in food intake. Contrary to our predictions, males and females did not differ in 

their nutrient or energy intake regardless of female reproductive state, nor did lactating 

females increase their digestible protein intake.  

 

Effects of Seasonality on Energy and Protein Intake Behavioral and physiological 

changes often parallel annual changes in environmental conditions such as climate and 

food availability (Morland 1993). While diurnal species seem to be seasonally more 

affected by heat stress as indicated by shifts in activity periods and increased resting time 

(Hill 2006; Ossi and Kamilar 2006; Bourgoin et al. 2008; Campos and Fedigan 2009; 
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Shrestha et al. 2014), nocturnal species may be affected seasonally by cold temperatures 

during their periods of activity (Schmid and Kappeler 2005). Lepilemur spp. increase 

resting time during the cold dry season (Nash 1998; Dröscher and Kappeler 2014), and 

we demonstrated an increase in daily energy intake. The most extreme adaptations to 

cope with seasonal food shortages and low temperatures are daily torpor and hibernation 

(Geiser 1998; Schmid and Speakman 2000). For example, Microcebus griseorufus 

(reddish-grey mouse lemur), which also inhabit the spiny forests of Southern Madagascar, 

engage in torpor and/or hibernation during the cold dry season (Génin 2008; Kobbe and 

Dausmann 2009). While the spiny forests are a highly unpredictable environment 

regarding amount and distribution of annual rainfall (Gould et al. 1999; Jolly et al. 2002; 

Génin 2008), folivorous L. leucopus do not seem to be constrained by food availability 

during the cold dry season, at least during years of average or better rainfall (Dröscher 

and Kappeler 2014), but rather by low temperatures due to thermoregulatory demands, as 

indicated by an increase in daily energy intake with decreasing ambient temperatures. 

Additional studies linking seasonality in daily energy intakes with seasonal energy 

expenditures would further our knowledge about the extent by which heightened energy 

demands for thermoregulation can be met by increased energy intake. 

At low temperatures, food intake can be expected to be higher for heat production 

to counteract hypothermia (Brobeck et al. 1943, Goymann et al. 2006) and L. leucopus 

met its seasonally increased energy demand by a seasonal increase in food intake. 

Lepilemur leucopus increased daily food intake with decreasing nightly minimum 

temperatures during the cold dry season, even though food availability reached a 

minimum during the late dry season. Similarly, Varecia variegata (black-and-white 

ruffed lemurs) increased feeding during the months with lowest temperatures (Morland 

1993); however, no information is available how this effect translates in seasonal 
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differences in energy intake. One possibility is that gut capacity itself may change when 

mammals are faced with increased energy requirements during exposure to cold 

temperatures to accommodate a greater need for food processing (Gross et al. 1985; 

Toloza et al. 1991; Foley and Cork 1992; Ganzhorn et al. 2003). It remains an open 

question, however, which behavioral and physiological mechanisms are available to L. 

leucopus and other lemurs to deal with food shortage during drought years when they 

may not be able to reach the required energy intake imposed by thermoregulatory 

demands. 

Lepilemur leucopus does not seasonally shift its diet, and leaves of the most 

abundant tree species dominate the diet regardless of season (Dröscher and Kappeler 

2014). While folivorous L. leucopus could increase food and, hence, total energy intake 

during the cold dry season, a different pattern characterizes frugivorous-folivorous 

Propithecus diadema (diademed sifaka). During the dry season, P. diadema shifted from 

a fruit dominated diet to a diet based on leaves and flowers. At the same time it 

dramatically reduced daily food and energy intake, probably due to greater postingestive 

processing challenges of the more folivorous diet (Irwin et al. 2014). Relatively 

folivorous species are generally less susceptible than more frugivorous species to forest 

degradation (Irwin and Raharison 2009), hurricane events (Pavelka et al. 2003) and 

climate change ( Wiederholt and Post 2010; reviewed in Schwitzer et al. 2011). Taken 

together, these observations indicate that species that rely more on fruits may be more 

susceptible to unpredictability in climate and food availability than species that subsist on 

a leaf-based diet.  

Ambient temperature can be expected do have an influence not only on total 

food/energy intake but also on food selection. While daily intake of digestible protein did 

not differ across seasons, daily intake of non-protein energy varied seasonally and, more 
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particularly, increased with decreasing temperatures. This pattern resulted in a seasonally 

variable ratio of non-protein to protein energy, which also increased with decreasing 

temperatures. Similarly, experimental studies found that animals increase their 

carbohydrate/fat consumption but not their protein intake with decreasing ambient 

temperatures (Donhoffer and Vonotzky 1947; Aubert et al. 1995). The average 

composition of the most used food items did not vary across seasons in terms of 

macronutrient and energy content (see also Irwin et al. 2014), indicating that L. leucopus 

reached the seasonally increase ratio of non-protein to protein energy through active food 

selection. Our findings suggest that ambient temperature conditions should be given 

greater consideration in future studies on food selection and nutritional ecology, 

especially if the study species lives in a habitat with marked seasonal fluctuations in 

ambient temperatures.    

Nutritional goals may differ across species according to the nutritional quality of 

their foods. Lepilemur leucopus maintained a stable daily digestible protein intake across 

seasons, prioritizing protein in relation to non-protein energy. This matches the findings 

for Ateles chamek (Peruvian spider monkey; Felton et al. 2009b). In contrast, Gorilla 

beringei (eastern gorilla) prioritize non-protein energy and over-ingest protein when 

eating a leaf-based diet, rather than targeting leaves to supplement a protein-limited diet 

(Rothman et al. 2011). Owing to the low protein content of fruit pulp, frugivorous 

primates have diets of relatively low protein content, while most folivorous primates have 

diets high in protein since leaves contain considerable quantities of rubisco, a protein 

involved in photosynthesis (Oftedal et al. 1991; Curtis 2004; Simmen et al. 2007). For 

example, G. beringei eat diets where the ratio of protein to energy is similar to the 

maximum recommended protein intake for humans (Rothman et al. 2011) and Procolobus 

rufomitratus (red colobus monkey) in Uganda eat leaves that contain up to 40% crude 
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protein (Ryan et al. 2013). In general, higher metabolic rates in small animals lead to 

higher rates of protein requirements per unit body mass compared to larger mammals 

(Mattson 1980). With digestible protein concentrations of their natural food at about 11%, 

L. leucopus might have difficulty meeting protein requirements. For example, the 

distribution of Lepilemur ruficaudatus (red-tailed sportive lemur) is closely related to 

protein availability during the wet season (Ganzhorn 2002). Similarly, a number of 

folivorous marsupials are limited by the low protein content of Eucalyptus foliage 

(DeGabriel 1983; Foley and Hume 1987; Kavanagh and Lambert 1990; DeGabriel et al. 

2009). While foregut fermenters can meet parts of their protein requirements by digesting 

microorganisms from the forestomach, microbial protein is not directly available to 

hindgut fermenters (Parra 1978; Foley and Cork 1992). However, in many small 

herbivorous mammal species with hindgut fermentation a higher rate of nitrogen 

utilization is achieved by means of cecotrophy (Hirakawa 2001; Sakaguchi 2003), an 

adaptation that has also been described in L. leucopus (Hladik 1978).  

 

Effects of Reproduction on Energy and Protein Intake Males and females of L. leucopus 

did not differ in any of the nutritional variables measured (i.e. total energy, non-protein 

and digestible protein intake and the ratio of non-protein to protein intake). Similarly, 

while the amount of food ingested or the relative contribution of various items to food 

composition were not considered, males and females of the congener L. ruficaudatus 

were shown to select food of similar chemical composition during the wet season (time of 

lactation and weaning), indicating that females do not compensate the costs of lactation 

by improving food quality (Ganzhorn et al. 2004). While sexes may differ in their 

digestive efficiency to compensate for differing reproductive investment (Ganzhorn et al. 

2004), resting (Schmid and Ganzhorn 1996) and field metabolic rates (Drack et al. 1999) 
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of L. ruficaudatus did not differ between sexes, indicating that males and females may 

simply not differ in their energetic requirements. The measurements were restricted 

temporarily to the time of early gestation (Drack et al. 1999) and to post-weaning/pre-

mating and mid to late gestation, respectively (Schmid and Ganzhorn 1996). Similarly, 

total energy expenditures were shown to not differ between sexes in Lemur catta (ring-

tailed lemur) and Eulemur sp. (brown lemur; Simmen et al. 2010). To examine in more 

detail whether energetic costs of reproduction differ among males and females in L. 

leucopus, measurements on daily energy expenditures during the lactation period would 

be insightful.  

In general, females could compensate their energetic requirements associated with 

birth and lactation by reduced locomotion compared to males (Ganzhorn et al. 2004). 

Males of L. leucopus spent more time travelling during the early wet season than females. 

Similarly, male L. ruficaudatus traveled longer distances per night than females during 

the wet season (Pietsch 1998). Likewise, in monomorphic Tamiasciurus hudsonicus (red 

squirrel) energetic costs of males approximate those of females due to male locomotory 

costs linked to mate searching efforts (Lane et al. 2010). In contrast, L. leucopus lives in 

pairs and, hence, mate searching can be considered a minimal cost. Instead, increased 

male travelling during birth and lactation indicates that energetic costs of male investment 

in reproduction may be instead related to protective behavior to ward off potentially 

infanticidal males (Gubernick 1994; Palombit 1999; Borries et al. 2010). While the 

benefits to males from infanticide in sportive lemurs are not known as they breed strictly 

seasonally, infanticide poses a real thread. Infanticide was observed in L. edwardsi 

(Milne-Edwards’ sportive lemur), where a male newcomer killed the infant of a female 

whose male partner had left (Rasoloharijaona et al. 2000). Similarly, we observed one 

case of infanticide by a male L. leucopus that took over the territory after death of the 
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resident male. Thus, even in species without direct paternal care, reproductive investment 

may be similar in males and females. 

While females are assumed to experience a peak in energetic costs during 

lactation (Portman 1970), average daily energy intake was lowest during the lactation 

period in L. leucopus. This indicates that thermoregulation may be more costly than 

reproduction for L. leucopus. Similarly, energy requirements and food intake are greater 

in both lactating and non-lactating females of Phascolarctos cinereus (koala) in winter 

than summer, presumably due to demands of thermoregulation (Krockenberger 2003). 

Sportive lemurs, like many nocturnal primates, are infant parkers (Rasoloharijaona et al. 

2000; Hilgartner et al. 2008) and infant parking eliminates the need to constantly carry 

offspring, reducing energetic constraints on females (Tecot et al. 2012) as well as 

behavioral costs regarding foraging efficiency and predator avoidance (Schradin and 

Anzenberger 2001). As female L. leucopus are able to travel and forage unhampered, they 

should theoretically be able to obtain a higher average daily energy intake than observed 

and, thus, it appears that requirements were met. In most lemur species offspring is born 

and weaned during periods of food abundance (Rasmussen 1985; Sauther 1998; Vasey 

2002) and seasonality in reproduction is seen as an adaptation of females to compensate 

for peaks in energy expenditure (Sadleir 1969, Janson and Verdolin 2005). In L. leucopus 

breeding seasonality may be rather associated with assuring adequate ambient 

temperatures for the altricial newborn offspring that may be limited in their 

thermoregulatory capacities (Tecot et al. 2012; Hull 1973) as well as sufficient nutritional 

intake for independent offspring (Wright 1999; Tecot et al. 2012). Females of Avahi spp. 

(woolly lemur), a genus that occupies a similar ecological niche as Lepilemur spp., carry 

their infants during the active period (Thalmann 2001), and comparative studies would 

further our understanding of the energetic costs of differing styles of maternal care. 
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Contrary to our predictions, digestible protein intake was not increased in females 

during the lactation period in L. leucopus. In general, high-protein foods are considered 

critical for milk production and young leaves are the most easily digested source of plant 

protein (Vasey 2002). The lactation period of L. leucopus was characterized by a 

dominance of young leaves, which were higher in digestible protein content compared to 

mature and old leaves. Hence, it seems unlikely that females were constrained in their 

ability to acquire higher protein intakes during the early wet season. Instead, it seems that 

higher dietary protein levels were not required, maybe because leaves constitute foods of 

balanced amino acid composition (Oftedal et al. 1991). In addition, the ratio of non-

protein to protein intake was lowest during the early wet season, resulting in a diet with 

higher proportional protein content than during other times of the year. The balance 

between non-protein and protein energy intake may be of greater importance than 

absolute intakes (Johnson et al. 2013).  

 

Energetic constraints imposed by a folivorous diet The average daily energy intake of L. 

leucopus was 602 ± 153 kJ/day. No direct measurements on daily energy expenditures are 

available for L. leucopus, however, resting and field metabolic rates were determined 

previously for the congener L. ruficaudatus (Schmid and Ganzhorn 1996; Drack et al. 

1999). Field metabolic rates in L. ruficaudatus averaged 509 ± 215 kJ/day based on 

measurements of adult individuals (Drack et al. 1999). Sportive lemurs seem to be able to 

meet their energy requirements, despite their subsistence on a lower-than-expected 

quality diet with regard to their body size. Similarly, Alouatta caraya (black howler 

monkeys), commonly assumed to be energy-limited due to their leaf-dominated diet, are 

able to meet their estimated energy requirements (Amato and Garber 2014). Additional 

measurements of field metabolic rates in Lepilemur spp. specifically and folivorous 
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primates in general would provide more insight on seasonal, species- and habitat-specific 

energy requirements. 

The average daily food intake in L. leucopus was 63 ± 14 g of dry matter and 

equaled a dry matter intake of 10 ± 2 % of their body mass. Among primates, a similar 

high dry matter intake (10% of body mass) has been observed in Cercopithecus talapoin 

(Clauss et al. 2008). Lepilemur leucopus is a cecum fermenter (Chivers and Hladik 1980) 

and comparing cecum, colon, non-ruminant and ruminant foregut fermenters among 

mammalian herbivores, high dry matter intakes are commonly found among cecum 

fermenters, with the highest dry matter intake recorded in Microtus ochrogaster (Prairie 

vole, 20%; Clauss et al. 2007). Based on interspecific comparison, higher intakes are 

correlated with shorter mean retention time of ingesta (Clauss et al. 2007), allowing an 

increase in the total amount of food that can be processed (Chapman et al. 2012).  

The structure of the hindgut of Lepilemur allows for selective retention of solutes 

and finer particles, while larger particles of dietary fiber are more rapidly excreted (Cork 

1994; Nash 1998). The separation of the digesta occurs in the proximal colon, and solutes 

and fine particles and microorganisms are retained in the cecum (Foley and Cork 1992). 

This digestive strategy is also found in Phascolarctos cinereus (koala; Cork and Warner 

1983) and Brachyteles arachnoids (woolly spider monkey; Garber 1987). In general, 

primate digestive strategies occur along a continuum from an “efficiency” (low intake, 

long mean retention time, high fiber digestibility) to an “intake” (high intake, short mean 

retention time, low fiber digestibility) strategy (Clauss et al. 2008). It seems that L. 

leucopus follows an “intake” strategy to meet energy requirements despite a low-quality 

diet and physiological constraints imposed by small body size. Information on differential 

gut transit time of fine soluble and large fibrous particles in Lepilemur would advance our 

knowledge of adaptations to a low-quality diet in small-bodied folivores. 
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GENERAL DISCUSSION 
 

The aim of this concluding chapter is to provide a synopsis of the key findings from the 

earlier chapters, to discuss them in a broader perspective and to outline some approaches 

for future studies that could fill gaps in our current understanding of diet-related 

adaptations and constraints of folivores. 

 

Synopsis of key findings 

To investigate the types and consequences of feeding competition within and between 

social units of the solitarily foraging folivorous Lepilemur leucopus (white-footed 

sportive lemur), I first had to identify the natural social unit of this species and to describe 

patterns of social interactions (Chapter 1). I could show that the basic social unit consists 

of one adult male and female and their associated offspring. At the same time, males and 

females sharing a home range were characterized by low spatial cohesiveness, including 

signs of active avoidance, as well as very low rates of direct social interactions. 

Congruently, pair partners never shared their sleeping trees and never engaged in 

allogrooming.  

Based on the rather unusual social system of L. leucopus, I set out to explore 

whether the active avoidance between pair-partners is a consequence of competition for 

food (Chapter 2). I could not find evidence for feeding competition in L. leucopus, which 

is most likely explained by the low selectivity in dietary choice and the primarily use of 

the most abundant plant species. Predation pressure at the study site was relatively high 

and I concluded that an anti-predator strategy based on solitariness and crypsis may be a 

better predictor of spatial avoidance between pair-partners than competition for food. 
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Although it has been suggested previously that latrine use in sportive lemurs may 

be linked to resources defense such as of important food patches, I tested this hypothesis 

empirically (Chapter 3). Communal use of latrines in L. leucopus rejects the idea that they 

are used to signal resource use among members of a social unit. In addition, L. leucopus 

did not preferentially mark food trees nor was individual feeding effort greater within 

than outside the latrine area, indicating that latrines are not used to signal to other social 

units the willingness to defend ones food resources. These results are in line with the 

observation that L. leucopus rely on the most common food species and rarely engage in 

conflict over food neither within nor between social units (Chapter 2). Instead, my 

observations support the hypothesis that latrine use functions in the maintenance of social 

bonds between members of a social unit. 

As rates of competition were not increased during the lean season, L. leucopus 

seems to be more constrained by food quality than quantity (Chapter 2). I investigated 

how seasonal changes in food quantity, quality and ambient temperature influence 

behavior and nutrient intake in L. leucopus. I found that nocturnal L. leucopus seems to be 

seasonally affected by cold temperatures based on seasonal changes in activity patterns 

(Chapter 2). However, L. leucopus could increase daily food and energy intake during the 

cold dry season to meet thermoregulatory demands (Chapter 4). In contrast, L. leucopus 

maintained a stable daily protein intake across seasons, prioritizing protein in relation to 

non-protein energy, indicating that dietary protein may be in limited supply. 

I studied sex-specific nutrient intake across seasons and reproductive stages 

(Chapter 4). I found that males and females of L. leucopus did not differ in energy or 

protein intake irrespective of female reproductive stage. The energetic costs of males 

approximate those of lactating females due to male locomotor costs. As average daily 

energy intake was lowest during the lactation period, I concluded that thermoregulation 
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may be more costly than reproduction for L. leucopus. Similarly, daily protein intake was 

not elevated during the lactating season. However, the ratio of non-protein to protein 

intake was lowest during the early wet season, resulting in a diet with higher proportional 

protein content than during other times of the year. 

I explored how L. leucopus, can cope with a diet that can be considered deviant 

for the given body size (Chapter 4). By comparing daily energy intake of L. leucopus with 

field metabolic rates previously measured in a congener (L. ruficaudatus), I found that 

animals seem to be able to meet their energy requirements. In addition, individual daily 

dry matter intake was high, indicating that L. leucopus follow an intake strategy opposed 

to an efficiency strategy to meet their energy requirement to overcome dietary constraints 

imposed by their folivorous diet despite small body size. 

 

How does the distribution and abundance of food resources influence feeding 

competition and social relationships in solitary foragers?  

The socio-ecological model describes the distribution of risks and resources in the 

environment as the main ecological factors shaping individual behavioral interactions 

(Jarman 1974; Terborgh and Janson 1986; van Schaik 1989) and identifying the relative 

importance of these bottom-up and top-down processes for the evolution and maintenance 

of social systems is a primary objective of behavioral ecology (Dammhahn and Kappeler 

2010). The observed intersexual avoidance between pair-partners of folivorous L. 

leucopus (Chapter 1) cannot be explained by avoidance of competition over food 

resources, as conflicts over food resources were rarely observed, and inter‐individual 

avoidance did not increase when food availability was low (Chapter 2). In contrast, in 

insectivorous Tarsius spectrum (spectral tarsiers) intragroup encounters decrease in 

frequency during the dry season (Gursky 2000) and in gummivorous Phaner pallescens 
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(pale fork-marked lemurs) low cohesiveness between pair-partners results from avoidance 

of direct feeding competition (Schülke and Kappeler 2003). Likewise, frugivorous Pongo 

pygmaeus (Bornean orangutans) live solitary lifestyles primarily because of poor food 

density (Delgado and van Schaik 2000).  

In general, social living co-evolved with a shift from a nocturnal to a diurnal 

lifestyle, supporting the role of predation in driving social evolution in primates (Shultz et 

al. 2011). Anti-predator strategies available to diurnal social primates may not be 

available to nocturnal animals, making solitariness and crypsis viable alternative 

strategies (Terborgh and Janson 1986). Correspondingly, sportive lemurs do not rely on 

early warning of predators, but direct alarm calls toward the predator (Fichtel 2007). 

These findings indicate that the social relationships in sportive lemurs may be mostly 

shaped by top-down processes. Similarly, diurnal Cynictis penicillata (yellow 

mongooses) remain solitary foragers even though their diet does not place constraints on 

group foraging (Nel and Kok 1999), as crypsis is an important part of the anti-predator 

behavior of C. penicillata (Roux et al. 2009). Hence, the relative contribution of bottom-

up processes in shaping social systems of solitary foragers seems to be determined by 

species-specific diets and resource characteristics such as contestability. 

Although an anti-predator strategy based on crypsis may explain at least partly 

female-female avoidance in sportive lemurs, also resource competition may reduce the 

potential for female association (Dammhahn and Kappeler 2009). Proximate mechanisms 

of feeding competition should be tested in relation to individuals’ energy gain and 

reproductive success to be able to make explicit predictions about female social 

relationships (Janson 1988; Koenig 2002). For example, strong within-group contest and 

scramble competition resulted in a negative family-size effect on female net energy gain 

and fertility in Phaner pallescens (Schülke 2003). To examine whether scramble 
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competition for food reduces the potential for female association in sportive lemurs, 

further studies on the effects of family size, territory size and territory quality on female 

reproductive success are required. 

 

How does seasonal variation in food quantity and quality as well as ambient 

temperature influence activity patterns and food choice?  

Fallback foods are often abundant and widely available but may be challenging to access 

and/or digest (Marshall and Wrangham 2007; Vogel et al. 2009). For example, 

Propithecus diadema (diademed sifakas) exhibit a dramatic decrease in food intake, likely 

due to greater postingestive processing challenges of the more folivorous lean season diet 

rather than due to limited availability of its fallback food (Irwin et al. 2014). In contrast, 

foods chosen, dietary diversity (Chapter 2) and the average nutritional composition of the 

chosen foods (Chapter 4) did not change distinctly from the wet to the dry season in L. 

leucopus. In addition, L. leucopus could increase food intake during the dry season 

despite a decline in food availability (Chapter 4). These findings indicate that L. leucopus 

are not affected by food quantity, possibly due to their folivorous diet and the inclusion of 

the most abundant plant species in their diet. As Avahi spp. (woolly lemurs) are similar to 

sportive lemurs in terms of nocturnality, degree of folivory and body mass, but do not 

base their dietary choice on food abundance (Thalmann 2001; Norscia et al. 2012), 

comparative studies would further our understanding of the adaptations to seasonality in 

folivores. 

Although many primate studies have investigated seasonal variation in diet 

composition (Hemingway and Bynum 2005), less is known about seasonality in 

macronutrient intake (Irwin et al. 2014). Lepilemur leucopus maintained a stable daily 

protein intake across seasons, prioritizing protein in relation to non-protein energy 
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(Chapter 4). Animals require protein for growth, maintenance, reproduction, homeostasis 

and immune function (Lee et al. 2008; Leonard 2000; Sare et al. 2005). Because protein 

requirements per unit of body mass tend to increase with decreasing body mass (Lehman 

2007), small folivores may be more constrained by low protein concentrations in leaves 

than larger primates (Norscia et al. 2012). A fundamental issue in ecology is the 

identification of factors that affect animal density and distribution over space and time 

(Gogarten et al. 2012) and protein availability has been suggested to be a major limiting 

factor for primate abundance (Chapman et al. 2004; Ganzhorn et al. 2009). Estimates of 

population density of L. leucopus at Berenty are much higher for the gallery (810 

individuals/km
2
) than for the spiny forest (200–350 individuals/km

2
; Charles-Dominique 

and Hladik 1971; Hladik and Charles-Dominique 1974). As these two forest habitats do 

not differ in regional climatic conditions, but differ fundamentally in plant community 

composition, a comparative study may provide valuable insight into the effects of food 

quality on the abundance of small-bodied folivores. 

Although the tropical climates in which most primate species live are 

characterized by relative constant rainfall, temperature, and humidity (Richards 1964), 

most lemurs are exposed to more marked seasonal fluctuations in climatic conditions 

(Morland 1993), which has been linked to the evolution of unique lemur traits (Wright 

1999). Temperature was previously identified as a significant ecological constraint in 

primates (Bernstein 1972; Iwamoto and Dunbar 1983; Morland 1993; Nash 1998; Ostner 

2002). When ambient temperatures fall below a critical threshold, homeotherms have to 

use proportionately more energy to maintain body temperature (Kleiber 1961; Schmidt-

Nielson 1997). Several behavioral (e.g. reduced activity), postural (e.g. hunching) and 

social activities (e.g. huddling) serve as thermoregulatory mechanisms in lemurs 

(Morland 1993) and seasonal variation in temperature can be a significant metabolic 
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stressor affecting glucocorticoids excretion in wild primates (Weingrill et al. 2004; 

Beehner and McCann 2008; Gesquiere et al. 2008). Lepilemur leucopus was seasonally 

affected by cold stress as evidenced by an increase in resting time (Chapter 2), but also by 

an increase in metabolizable energy intake at lower ambient temperatures (Chapter 4). 

The importance of temperature and thermoregulation has received little attention in 

primate nutritional ecology calling for more studies on this topic. For example, a 

deficiency in micronutrients may render an individual unable to maintain body 

temperature adequately under cold stress (Topping et al. 1980; Beard et al. 1990; Hall et 

al. 1990) and should have a direct influence on food selection.  

 

Given the relatively high cost of female reproduction in mammals, do food selection 

and behavior differ between sexes in a sexually monomorphic primate? 

A sex-specific asymmetry in reproductive resource allocation exists through internal 

offspring development, lactation and parental care of dependent offspring by females 

(Clutton-Brock 1991). Nevertheless, males and females of L. leucopus did not differ in 

their nutrient or energy intake regardless of female reproductive state (Chapter 4). 

Similarly, females of Lemur catta (ring-tailed lemurs) do not differ from males in feeding 

behavior or nutrient intake (Gould et al. 2011). Gestation length and lactation periods are 

longer in primates compared to non-primate mammals (Dufour and Sauther 2002; 

Derrickson 1992), resulting in a reduction of daily nutrient transfer from mother to infant 

(Gould 2011). Lemur catta produces relatively dilute milk of low protein, fat and energy 

content, minimizing daily energetic costs to females (Tilden and Oftedal 1997). While no 

information on the milk composition of sportive lemurs is available, but can expected to 

be high in nutrient and energy density given the fact that they park their infants and 

suckling occurs infrequently (Tilden and Oftedal 1997), lactation costs may be offset by 



 

142 
 
 

 
General Discussion 

 

  

reduced energy expenditure in physical activity in L. leucopus females during the 

lactation period (Chapter 4). Information on sex-specific energy and nutrient intake, 

especially in monomorphic primates, is still scarce. However, equally high energetic costs 

to males may be a general feature of mammalian reproduction (Lane et al. 2010). 

Female dominance, in which females are agonistically dominant to males in all 

behavioral contexts, is rare among mammals and primates in general, but common in 

lemurs (Kappeler 1993), including sportive lemurs (Rasoloharijaona et al. 2008; 

Hilgartner et al. 2012). Female dominance may have evolved to ensure priority of access 

to food to cope with high reproductive costs in a seasonal environment (Wright 1999; 

Jolly 1984). Sex differences in foraging related to reproduction are expected 

consequences of female dominance theory (Hemmingway 1999). Lack of intersexual 

differences in macronutrient intake across all female reproductive stages (Chapter 4) 

contradicts the idea that female dominance in L. leucopus may be related to a female 

strategy of ensuring adequate access to limited food supply. Similarly, female dominance 

in L. catta is not related to physiological state (Rasamimanana et al. 2006). Detailed 

comparative data on metabolic strategy such as energy storage and mobilization, 

nutritional ecology and reproduction are needed to further our understanding of the 

adaptive significance of female dominance (Pereira et al. 1999). 

As primates tend to choose proteinaceous foods (Conklin-Brittain et al. 1998; 

Oftedal 1991; Hanya and Bernard 2012) and as the average protein-to-fiber ratio of 

mature leaves correlates positively with primate biomass (Chapman et al. 2004; Ganzhorn 

1992; Ganzhorn et al. 2009; Oates et al. 1990), primate reproductive success seems to be 

influenced by protein availability (Vogel et al. 2012). Nevertheless, protein intake was 

not increased in females during the lactation period in L. leucopus (Chapter 4). However, 

the relative contribution of macronutrients may be more important than total intakes 
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(Raubenheimer et al. 2009; Simpson et al. 2010). In addition, adequate nutrition requires 

also sufficient quality of protein, i.e. an appropriate amino acid composition to allow for 

normal biological function (Leonard 2000). The lactation period of L. leucopus was 

characterized by a dominance of young leaves (Chapter 2). Amino acid content and, 

hence, nutritive status of leaves differ with leaf maturation (Journet and Cochrane 1978; 

Roy et al. 2013). Investigations of amino acid profiles of wild primate foods are rare. 

However, Curtis (2004) investigated amino acid intake by Eulemur mongoz (mongoose 

lemurs) and found that immature leaves were richer in essential amino acids than mature 

leaves. Future studies should not only consider protein quantity but also protein quality of 

wild foods by estimating amino acid composition to further our understanding of dietary 

strategies. 

 

How can small-bodied folivorous primates cope with a diet that can be considered 

deviant for the given body size?  

Although most arboreal folivores are relatively large allowing them to handle large 

quantities of food of low caloric and nutritional density (McNab 1978), folivory is also 

observed in some small-bodied primate species of less than 1 kg body mass. Since the 

relative energy requirements increase with decreasing body size (Nagy 1987), small-

bodied folivores can be expected to display special physiological and/or behavioral 

adaptations to deal with/overcome energetic constraints. Nevertheless, sportive lemurs 

combine folivory with a primarily saltatory, and hence energetically expensive, 

locomotion (Warren and Crompton 1997). In addition, sportive lemurs are active at night 

when low ambient temperatures may increase thermoregulatory demands during the cold 

dry season (Willmer et al. 2000; Chapter 4). By comparing daily energy intake of L. 

leucopus with field metabolic rates previously measured in a congener (red-tailed sportive 
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lemur, L. ruficaudatus; Schmid and Ganzhorn 1996), sportive lemurs seem to be able to 

meet their energy requirements (Chapter 4). Sportive lemurs depress their metabolic rate 

even further than the already low rates expected for folivorous mammals in general 

(Ganzhorn 1992; Schmid and Ganzhorn 1996) and reduce costs of locomotion by 

remarkably short nightly travel distances (Warren and Crompton 1997). In addition, L. 

leucopus ingested large amounts of food to satisfy their nutritional requirements (Chapter 

4), probably facilitated by selective retention of solutes and fine particles of digesta in the 

hindgut and more rapid excretion of coarse fibrous material (Foley and Cork 1992, Cork 

1994, Nash 1998). Furthermore, as L. leucopus fed predominantly on the most common 

plant species (Chapter 2), it followed a strategy of energy acquisition at low foraging 

costs (Norscia 2012; Simmen 2014). However, to better understand what seasons are 

energetically limiting (Ganzhorn 2002; Ganzhorn 2004) further studies should estimate 

seasonal energy intake together with energy expenditure (Krockenberger 2003) or 

measure seasonal energy balance (Grueter et al. 2014). 

Not only relative energy but also protein requirements increase with decreasing 

body size (Sakaguchi 2003). However, determining the precise protein requirements of 

wild primates is difficult because it requires experimental studies that include nutritional 

manipulation (Chapman et al. 2012). Requirements for captive primates are calculated 

from individuals fed a high-quality reference protein (Oftedal 1991). However, each 

particular natural food may be deficient in some amino acids and wild primates need 

higher protein levels than those of captive individuals to acquire a balanced set of amino 

acids (Simmen et al. 2007). In addition, the conventional factor of 6.25 to convert 

nitrogen into crude protein likely overestimates dietary protein concentration in tropical 

leaves (Milton and Dintzis 1981; Conklin-Brittain et al. 1999). Lepilemur leucopus 

prioritized protein over non-protein intake, indicating that dietary protein may be in 
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limited supply (Chapter 4). In addition, L. leucopus practices cecotrophy (Hladik 1978), a 

nutritional strategy that enhances protein and amino acid utilization (Hintz 1969; 

Sakaguchi 2003). However, more detailed studies on the cecotrophy behavior of L. 

leucopus are required to understand its relative importance to nutrient gain. Furthermore, 

new non-invasive methods are available to investigate nitrogen imbalance in wild 

primates (Vogel et al. 2012), promising new insights into dietary adaptations of small-

bodied folivores. 

 

Conclusions 

Lepilemur leucopus seems to be able to overcome energetic constraints imposed by a 

low-quality diet despite small body size through various adaptive mechanisms. Although 

some folivorous primates experience behavioral and physiological effects of food 

limitation (Harris et al. 2009), there was no consistent evidence that seasonal decrease in 

food quantity had a major impact on feeding behavior, activity patterns or social 

interactions in L. leucopus. Instead, feeding stress seems to be more related to food 

quality, such as availability of dietary protein, than food quantity. As L. leucopus forages 

solitarily even though its diet does not place constraints on group foraging, top-down 

processes seem to be more important than bottom-up processes in shaping its social 

system. However, further studies are needed to quantify the impact of varying levels of 

predation pressure on the nature of social relationships in L. leucopus. 
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APPENDICES 
 

Appendix A Summary of continuous focal animal observations 

conducted simultaneously on adult male and female range-mates of L. 

leucopus throughout the year (Season: 1 = early wet, 2 = late wet, 3 = 

early dry, 4 = late dry). The calendar date is given as day-month-year. 

Social unit Date Season female hours male hours 

1 05.11.2011 1 f1B 10:13:26   
1 08.01.2012 1 f1B 9:22:17   
1 21.02.2012 2 f1B 9:41:13   
1 05.06.2012 3 f1B 11:31:46 m10 11:00:02 
1 11.07.2012 3 f1B 10:36:17 m10 10:58:23 
1 26.08.2012 4 f1B 9:52:43 m10 10:48:33 
1 04.10.2012 4 f1B 9:57:08 m10 8:52:39 

2 23.10.2011 1 f2 10:23:35   
2 05.12.2011 1 f2 9:35:30 m9 10:05:03 
2 06.02.2012 2 f2 8:43:11 m9 9:59:52 
2 23.03.2012 2 f2 10:51:56 m9 10:01:42 
2 09.05.2012 3 f2 10:15:40 m9 11:09:34 
2 27.06.2012 3 f2 11:12:43 m9 11:30:45 
2 17.08.2012 4 f2 10:52:33 m9 11:08:09 
2 26.09.2012 4 f2 10:39:33 m9 10:32:36 

3 23.12.2011 1 f3 8:55:11 m3 9:27:30 
3 31.03.2012 2 f3 9:40:59 m3 9:35:58 
3 04.05.2012 3 f3 10:54:01 m3 10:12:30 
3 23.06.2012 3 f3 9:58:28 m3 11:24:59 
3 01.08.2012 4 f3 11:04:32 m3 10:57:07 
3 12.09.2012 4 f3 10:08:31 m3 11:03:17 

4 13.12.2011 1 f4 8:59:38 m4 9:19:01 
4 25.01.2012 1 f4 9:57:12 m4 10:23:16 
4 19.03.2012 2 f4 11:07:14 m4 11:53:16 
4 30.04.2012 2 f4 11:43:01 m4 11:57:32 
4 18.06.2012 3 f4 12:07:22 m4 12:35:29 
4 25.07.2012 3 f4 11:00:38 m4 11:47:10 
4 08.09.2012 4 f4 11:03:23 m4 11:19:02 
4 18.10.2012 4 f4 10:24:15 m4 10:35:59 

5 23.11.2011 1 f5 9:57:44 m5 9:56:24 
5 03.01.2012 1 f5 9:35:30 m5 9:38:24 
5 25.02.2012 2 f5 10:29:40 m5 10:37:44 
5 09.04.2012 2 f5 11:26:57 m5 11:12:07 
5 10.06.2012 3 f5 12:15:05 m5 12:35:24 
5 15.07.2012 3 f5 12:08:52 m5 12:00:20 
5 30.08.2012 4 f5 11:27:43 m5 10:52:24 

6 09.12.2011 1 f6 9:44:33 m6 9:38:39 
6 10.02.2012 2 f6 10:22:28 m6 9:34:37 
6 27.03.2012 2 f6 11:21:19 m6 11:22:33 
6 30.05.2012 3 f6 12:26:08 m6 12:17:21 
6 02.07.2012 3 f6 12:21:02 m6 12:07:54 
6 21.08.2012 4 f6 11:32:52 m6 11:19:12 
6 30.09.2012 4 f6 12:00:46 m6 10:53:25 

7 18.11.2011 1 f7 9:29:35 m7 9:57:00 
7 21.01.2012 1 f7 9:36:58 m7 9:50:44 
7 04.03.2012 2 f7 10:20:57 m7 10:40:44 
7 25.04.2012 2 f7 11:46:32 m7 11:47:35 
7 14.06.2012 3 f7 12:27:43 m7 12:41:50 
7 20.07.2012 3 f7 11:53:03 m7 12:24:17 
7 03.09.2012 4 f7 10:43:39 m7 11:21:36 
7 12.10.2012 4 f7 10:42:20 m7 10:39:13 
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Appendix B Summary of continuous focal animal observations (hours = 

time in sight) conducted throughout the year on the focal animals 

belonging to seven social units of Lepilemur leucopus (Season: 1 = 

early wet, 2 = late wet, 3 = early dry, 4 = late dry). 

Social unit Date Season female hours male hours 

1 05.11.2011 1 f1B 10:13:26   

1 08.01.2012 1 f1B 9:22:17   

1 21.02.2012 2 f1B 9:41:13   

1 21.04.2012 2 f1B 11:08:29   

1 05.06.2012 3 f1B 11:31:46 m10 11:00:02 

1 11.07.2012 3 f1B 10:36:17 m10 10:58:23 

1 26.08.2012 4 f1B 9:52:43 m10 10:48:33 

1 04.10.2012 4 f1B 9:57:08 m10 8:52:39 

2 23.10.2011 1 f2 10:23:35   

2 05.12.2011 1 f2 9:35:30 m9 10:05:03 

2 06.02.2012 2 f2 8:43:11 m9 9:59:52 

2 23.03.2012 2 f2 10:51:56 m9 10:01:42 

2 09.05.2012 3 f2 10:15:40 m9 11:09:34 

2 27.06.2012 3 f2 11:12:43 m9 11:30:45 

2 17.08.2012 4 f2 10:52:33 m9 11:08:09 

2 26.09.2012 4 f2 10:39:33 m9 10:32:36 

3 14.11.2011 1   m3 8:34:09 

3 23.12.2011 1 f3 8:55:11 m3 9:27:30 

3 01.11.2011 1 f3 10:22:56   

3 02.02.2012 1   m3 7:34:06 

3 13.03.2012 2 f3 9:55:23   

3 31.03.2012 2 f3 9:40:59 m3 9:35:58 

3 04.05.2012 3 f3 10:54:01 m3 10:12:30 

3 23.06.2012 3 f3 9:58:28 m3 11:24:59 

3 01.08.2012 4 f3 11:04:32 m3 10:57:07 

3 12.09.2012 4 f3 10:08:31 m3 11:03:17 

4 13.12.2011 1 f4 8:53:26 m4 8:23:19 

4 25.01.2012 1 f4 9:20:19 m4 9:19:43 

4 19.03.2012 2 f4 10:39:27 m4 10:02:49 

4 30.04.2012 2 f4 10:19:40 m4 11:24:32 

4 18.06.2012 3 f4 11:38:01 m4 12:00:43 

4 25.07.2012 3 f4 9:55:08 m4 11:27:02 

4 08.09.2012 4 f4 10:41:58 m4 10:43:59 

4 18.10.2012 4 f4 10:11:10 m4 10:26:48 

5 23.11.2011 1 f5 9:19:56 m5 9:22:27 

5 03.01.2012 1 f5 8:43:59 m5 8:34:58 

5 25.02.2012 2 f5 9:25:49 m5 7:11:39 

5 09.04.2012 2 f5 10:16:38 m5 10:41:26 

5 10.06.2012 3 f5 11:26:29 m5 11:43:06 

5 15.07.2012 3 f5 11:28:27 m5 11:19:01 

5 30.08.2012 4 f5 10:49:42 m5 10:38:59 

5 08.10.2012 4 f5 10:38:38 m5 10:22:12 

6 27.10.2011 1 f6 10:30:56   

6 09.12.2011 1 f6 9:34:32 m6 9:21:22 

6 28.12.2011 1   m6 8:24:32 

6 10.02.2012 2 f6 8:54:54 m6 7:57:50 

6 27.03.2012 2 f6 10:36:20 m6 10:41:52 

6 30.05.2012 3 f6 11:29:25 m6 9:56:14 

6 02.07.2012 3 f6 11:13:23 m6 11:19:13 

6 21.08.2012 4 f6 11:08:09 m6 10:46:40 

6 30.09.2012 4 f6 11:46:49 m6 9:59:26 

7 18.11.2011 1 f7 9:12:27 m7 9:28:42 

7 21.01.2012 1 f7 9:12:05 m7 7:59:54 

7 04.03.2012 2 f7 9:54:23 m7 10:23:34 

7 25.04.2012 2 f7 11:06:15 m7 11:05:35 

7 14.06.2012 3 f7 12:01:14 m7 11:57:52 

7 20.07.2012 3 f7 10:49:22 m7 12:12:28 

7 03.09.2012 4 f7 10:34:57 m7 11:01:25 

7 12.10.2012 4 f7 10:28:29 m7 10:20:33 
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