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Abstract 

A heterogeneous mixture of amyloid beta (Aβ) variants exists in Alzheimer’s disease 

(AD) brains. So far, little is known how individual Aβ species contribute to development 

and progression of this neurodegenerative disorder.  

Several studies revealed an important role of N-terminally truncated Aβ species in AD 

etiology. Besides other Aβ isoforms, N-truncated Aβ4-42 is highly abundant in AD brains 

and is one of two dominant isoforms in the hippocampus and cortex of sporadic and 

familial AD subjects. In a recent work it was demonstrated that Aβ4-42 exhibits one of the 

highest aggregation propensities to form stable aggregates. Moreover, it demonstrates 

strong toxic effects when studied in primary cortical neurons and is able to induce working 

memory deficits after intracerebroventricular injection into wildtype mouse brains. Despite 

these findings a possible role of Aβ4-42 in AD etiology has not been analyzed in detail so 

far.  

The aim of the present work was to investigate the potential neurotoxic effects of Aβ4-42 

in in vivo and in vitro model systems. Recently, the first transgenic mouse model 

expressing exclusively N-terminal truncated Aβ4-42 (Tg4-42 mouse line) was generated in 

our lab. This mouse model was used to study the effects of Aβ4-42 expression on 

neuropathology such as Aβ accumulation, inflammation and neuron loss. Furthermore, 

hemizygous Tg4-42 mice at three and 12 months of age underwent several behavioral 

tests to assess motor abilities and cognitive function. Acute hippocampal tissue slices of 

Tg4-42 mice at three, 12 and 24 months of age were used to examine the impact of Aβ4-42 

on synaptic function and plasticity. Relative gene expression levels of synaptic markers 

were additionally analyzed in hippocampal tissue of young Tg4-42 mice.  

Using immunohistochemistry, it was shown that Tg4-42 mice develop region-specific 

intraneuronal Aβ accumulation most notably in the hippocampus starting at two to three 

months of age. This is accompanied by a marked astro- and microgliosis in the same 

brain region. DAPI-staining revealed a distinct loss of neuronal cells in hippocampal CA1 

area that deteriorates while aging. Additionally, Tg4-42 mice demonstrated age-

dependent deficits in spatial learning, spatial reference memory and forms of associative 

memory when performing Morris water maze and fear conditioning tasks. 

Neurophysiological analyses in acute hippocampal tissue slices revealed an increased 

basal synaptic transmission at Schaffer collateral/CA1 synapses. In contrast, short-term 

and long-term plasticity were not affected. Commencing analysis of gene expression 

levels demonstrated a down-regulation of synaptoporin and neuroligin 1 levels in 
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hippocampal tissue of three-month-old transgenic mice that might be linked to the 

detected hyperexcitability. These findings indicate a pathological role for N-truncated  

Aβ4-42 in AD etiology as these impairments are comparable to AD typical dysfunctions. 
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1 Introduction 

1.1 Alzheimer’s disease 

1.1.1 Initial description 

In 1906, the German psychiatrist and neuropathologist Dr. Alois Alzheimer gave a 

lecture in which he described for the first time a form of dementia that is meanwhile known 

as Alzheimer’s disease (Maurer et al., 1997). This description of “a characteristic serious 

disease of the cerebral cortex” (Maurer et al., 1997) based on determination of clinical 

symptoms of his patient Auguste D that was later corroborated by histopathological 

findings. The broad range of symptoms “included reduced comprehension and memory, 

as well as aphasia, disorientation, unpredictable behavior, paranoia, auditory 

hallucinations and pronounced psychosocial impairment” (Maurer et al., 1997). When later 

analyzing her brain he described plaques, neurofibrillary tangles and arteriosclerotic 

changes as characteristics of this form of dementia (Maurer et al., 1997).  

1.1.2 Epidemiology  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most 

common type of dementia accounting for an estimated 60 – 80 % of cases (Alzheimer's 

Association, 2014). In 2013, World Health Organization (WHO) and Alzheimer’s Disease 

International estimated that 44.4 million people suffered from dementia worldwide (Bickel, 

2014). Currently, approximately 1.5 million people with dementia are living in Germany of 

which two-thirds suffer from Alzheimer’s disease. It was calculated that this number will 

increase up to 3.0 million affected people by 2050 (Bickel, 2014). Alzheimer’s Association 

reported that an estimated 5.2 million Americans of all ages have AD in 2014 and there 

could be as many as 7 million by 2050 (Alzheimer's Association, 2014). It is assumed that 

the number of affected individuals will grow dramatically due to an increase in global 

population and human lifespan based on “advances in medicine and medical technology 

as well as social and environmental conditions” (Alzheimer's Association, 2014, Platt et 

al., 2013). Thus, AD is becoming an even greater burden in both social and economic 

terms.  

1.1.3 Risk factors 

Except for genetic mutations that cause (familial) AD, several other factors are known 

as risk factors of this disorder. The primary risk factor for AD is aging although advanced 

age alone is not sufficient to cause it. Most people develop AD at the age of 65 or older 

(Alzheimer's Association, 2014). Additionally, environmental factors and inherited alleles 
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of AD associated genes account as risk factors for AD (Platt et al., 2013). The latter 

comprise the apolipoprotein E (APOE) gene that exists in three allele isoforms (ε2, ε3 or 

ε4) and is known to increase the risk to develop AD (see section 1.4). The environmental 

risk factors comprise social and cognitive engagement as well as education. Moreover, 

cardiovascular disease risk factors including smoking, obesity, diabetes, high cholesterol 

and hypertension as well as traumatic brain injury were assumed to elevate the probability 

to develop AD (Alzheimer's Association, 2014).  

1.1.4 Symptoms and disease progression 

In general, dementia is defined as an “acquired syndrome” (Holtzman et al., 2011) 

characterized by a gradual neurodegeneration that first affects the short-term memory and 

later on the long-term memory (Zolezzi et al., 2014) as well as other cognitive abilities 

(Holtzman et al., 2011). Although affecting people differently some 

neuropsychological/neuropsychiatric and neurologic alterations are common symptoms of 

AD. The neuropsychological symptoms include progressive loss in remembering new 

items (anterograde amnesia), deficits in language (aphasia), object use (apraxia), form 

recognition of faces or objects (agnosia) as well as step-by-step planning and solving 

problems (Lalonde et al., 2012, Alzheimer's Association, 2014). Moreover, affected people 

may suffer from apathy, dysphoria, social withdrawal and depression (Lalonde et al., 

2012). Neurologic symptoms comprise e.g. hallucinations, deficient postural control, 

myoclonus as well as epileptic seizures and usually occur late in disease progression 

(Lalonde et al., 2012). As the disease progresses the individual’s cognitive and functional 

abilities decline and often culminate in becoming “bed-bound and reliant on around-the-

clock care” (Alzheimer's Association, 2014).  

By now, it is accepted that AD is a slowly progressive disease that may begin 20 or 

more years before clinical symptoms emerge (Alzheimer's Association, 2014). Three 

stages of disease progression were proposed: preclinical, mild cognitive impairment (MCI) 

and dementia (Hall and Roberson, 2012). At it, the “continuum” of AD describes the time 

between the first neuropathological alterations in the brain and the symptoms of advanced 

AD (Alzheimer's Association, 2014). The first stage, preclinical AD, includes the “spectrum 

of presymptomatic autosomal dominant mutation carriers, asymptomatic biomarker-

positive older individuals at risk for progression to MCI due to AD and AD dementia, as 

well as biomarker-positive individuals who have demonstrated subtle decline from their 

own baseline that exceeds that expected in typical aging, but would not yet meet criteria 

for MCI” (Sperling et al., 2011). Mild cognitive impairment is supposed to be an 

intermediate stage between asymptotic phase and dementia onset. This term often refers 

to the symptomatic predementia phase of AD and is characterized by a “cognitive 
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impairment in elderly persons not of sufficient severity to qualify for a diagnosis of 

dementia” (Lyketsos et al., 2002, Albert et al., 2011). MCI patients demonstrate 

impairments in memory or other cognitive abilities that are not normal for their age and 

education while “their day-to-day functioning is generally preserved” (Lyketsos et al., 

2002). MCI is a chronic condition and might be a precursor to AD albeit it “does not 

always lead to dementia” (Alzheimer's Association, 2014, Lyketsos et al., 2002). Finally, 

the dementia stage is applied when cognitive or behavioral symptoms have progressed to 

the inability “to function at work or in usual daily activities” (McKhann et al., 2011) as 

described above.  

1.1.5 Diagnosis 

In general, diagnosis of AD is complicated as many AD patients demonstrate evidence 

of pathologic changes related to other dementias and ‘pure’ AD is uncommon. 

Neuropathological alterations, like amyloid plaques and neurofibrillary tangles, “coexist 

with other pathologies in 1/3 – 1/2 of patients with clinically diagnosed AD” (Ashe and 

Zahs, 2010). AD is often combined with either vascular dementia, dementia with Lewy 

bodies (DLB) or with both (Ashe and Zahs, 2010, Alzheimer's Association, 2014). 

Additionally, other factors that can cause dementia must be ruled out, e.g. brain tumor, 

subdural hematoma, thyroid disease or chronic infections (Holtzman et al., 2011). 

Nonetheless, it is possible to distinguish AD from other forms of dementia. Based on the 

medical and family history (psychiatric history, cognitive and behavioral changes) and an 

examination of the individual a staging system for dementia severity, i.e. Clinical Dementia 

Rating (CDR) is applied. Thus, the presence or absence of dementia as well as the 

severity is determined (Holtzman et al., 2011, Alzheimer's Association, 2014). In order to 

clinically evaluate an individual’s cognitive abilities several neuropsychological tests are 

applied. These tests include mental status exams like Mini-Mental State Examination 

(MMSE) or Alzheimer’s Disease Assessment Scale (ADAS) as well as memory tests like 

Benton Visual Retention Test (BRVT) (Webster et al., 2014). Using those 

neuropsychological assessments, deficits in “cognitive domains such as episodic memory, 

semantic memory, working memory, and attention, as well as dysfunction in language, 

praxis, and executive functioning” (Webster et al., 2014) can be analyzed. In 2011, 

revised guidelines for AD diagnosis were published that take the aforementioned stages 

of AD progression into account. In the preclinical stage of AD measurable changes of 

several biomarkers in the brain, cerebrospinal fluid and/or blood can indicate first signs of 

AD though the individuals are not cognitively affected yet. However, these proposed 

criteria are not established diagnostic tools so far and further studies are required 

(Sperling et al., 2011). MCI and dementia stage are diagnosed using the aforementioned 
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tools as well as brain imaging (positron emission tomography (PET) or magnetic 

resonance imaging (MRI)). Additionally, efforts are on the way to establish the 

incorporation of various biomarkers for diagnosing these disease stages (Albert et al., 

2011, McKhann et al., 2011). So far, a definite AD diagnosis can solely be made after 

death when performing neuropathological evaluations after brain autopsy. Based on new 

guidelines from 2012, a neuropathologic change is now confirmed when an ‘ABC’ score 

was obtained. This score is ranked on three parameters: “histopathologic assessments of 

beta-amyloid (Aβ-)-containing amyloid plaques (A), Braak staging of neurofibrillary tangles 

(B), and scoring of neuritic amyloid plaques (C)” (Webster et al., 2014). Moreover, the 

novel guidelines take into account that AD neuropathological changes can even occur in 

the absence of cognitive impairments and thus emphasize the ‘continuum’ of AD 

mentioned before.  

1.1.6 Treatment  

To date, AD is still an incurable disorder and none of the available drugs can slow or 

ultimately stop the dysfunction and death of neurons in the brain. The developed drugs 

can merely improve symptoms or temporarily decelerate disease progression. However, 

those drugs were only effective in some patients (Alzheimer's Association, 2014, 

Alzheimer's Society, 2014). The U.S. Food and Drug Administration (FDA) had approved 

five prescription drugs of which only four are currently available: donepezil, rivastigmine, 

galantamine, memantine. Three of them, rivastigmine, galantamine and donepezil are 

cholinesterase inhibitors which prevents the breakdown of acetylcholine by 

acetylcholinesterase. Additionally, galantamine stimulates nicotinic receptors to release 

more acetylcholine. Rivastigmine further prevents the breakdown of butyrylcholine. 

Memantine act as N-methyl D-aspartate (NMDA) receptor antagonist regulating glutamate 

activation (Alzheimer's Society, 2014). Whereas donepezil, rivastigmine and galantamine 

are available for people with mild to moderate AD, memantine is prescribed for the 

treatment of moderate to severe AD (Alzheimer's Society, 2014). Besides pharmacologic 

treatments, non-pharmacologic therapies are applied to maintain cognitive function, 

improve quality of life or reduce behavioral symptoms like depression or apathy. Although 

these therapies are naturally not capable of stopping AD, cognitive training, cognitive 

stimulation and training in daily-living activities were often successful (Alzheimer's 

Association, 2014).  

Since the pharmacologic treatments are limited to treating symptoms, efforts are on the 

way to target the underlying causes of AD. In the course of this, immunotherapy among 

other therapeutic approaches was considered as a promising tool. Several active and 

passive immunotherapies are currently investigated and look promising. However, since 
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several immunotherapies are still in clinical phase testing it remains to be seen if clinical 

efficacy can be achieved (Spencer and Masliah, 2014).  

1.2 Neuropathological hallmarks 

1.2.1 Amyloid deposits 

Extracellular deposits of amyloid beta (Aβ) are characteristic hallmarks of AD. The 

main component of these so-called amyloid plaques is the Aβ peptide, a 38- to 43-amino 

acid peptide that derives from the amyloid precursor protein (APP) (Holtzman et al., 

2011). In general, two different forms of amyloid plaques exist: neuritic and diffuse 

plaques (Bayer et al., 2013). Neuritic plaques (Figure 1A) are “microscopic foci of 

extracellular amyloid deposition and associated axonal and dendritic injury” (Selkoe, 

2001). They are often found in limbic and association cortices and contain Aβ in fibrillar 

forms with a β-sheet conformation (Selkoe, 2001, Holtzman et al., 2011). Within as well as 

around those plaques swollen, degenerating neurites, i.e. dystrophic neurites, appear that 

can contain enlarged lysosomes, mitochondria and paired helical filaments (Holtzman et 

al., 2011, Selkoe, 2001). Furthermore, these plaques are often associated with microglia 

and/or reactive astrocytes that are either within or adjacent to the central core of the 

plaque or surround the plaque, respectively (Selkoe, 2001). Diffuse plaques (Figure 1B) 

are “usually large” (Duyckaerts et al., 2009) and lack the compacted appearance of 

neuritic plaques (Selkoe, 2001). In these plaques the Aβ has a non-β sheet (nonfibrillar) 

conformation (Holtzman et al., 2011). Although, Aβ deposition is highly dependent on the 

disease stage Thal et al. described five phases of Aβ pathology expansion. Deposition of 

Aβ starts in the neocortex and later spreads to i. a. striatum, hippocampus and brainstem 

(Thal et al., 2002). In many AD cases Aβ aggregates are also found in blood vessels. 

These aggregates are then called cerebrovascular plaques or cerebral amyloid 

angiopathy (CAA, Figure 1B) and can contribute to ischemic damage or cause lobar 

hemorrhage and rarely inflammatory vasculitis (Holtzman et al., 2011). However, amyloid 

plaques are not specific to AD as they can also occur in healthy people or in other 

diseases (Bayer et al., 2013).  

1.2.2 Neurofibrillary tangles 

The second prominent feature of AD that was already described by Alois Alzheimer is 

the formation of neurofibrillary tangles (NFTs). NFTs (Figure 1C) are “intracellular 

structures composed predominantly of a hyperphosphorylated, aggregated form of the 

microtubule-binding protein, tau” (Holtzman et al., 2011). Physiological, the 

phosphoprotein tau binds to “microtubules through its microtubule-binding domains” and 
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promotes “microtubule assembly and stability” (Blennow et al., 2006) and is present in all 

neurons (Holtzman et al., 2011). In AD, tau is hyperphosphorylated, dissociates from 

microtubules and aggregates in cell bodies and dystrophic neurites. Impaired axonal 

transport and thus altered neuronal and synaptic function are the consequences (Blennow 

et al., 2006). These aggregates appear as paired helical filaments (PHFs) and have high β 

sheet content (Selkoe, 2001, Duyckaerts et al., 2009). Expansion of tau pathology starts 

in the transentorhinal region and spreads to hippocampus, amygdala and neocortical 

association areas (Blennow et al., 2006). As with the amyloid plaques, NFTs are not 

specific to AD since they are also present in other neurodegenerative diseases (Bayer et 

al., 2013). To date, it is controversially discussed whether NFTs are a cause or a 

consequence of AD (Blennow et al., 2006). However, it was shown that they contribute to 

neuronal dysfunction and correlate with disease progression (Holtzman et al., 2011).  

1.2.3 Brain atrophy and neuron loss  

On the macroscopic level, brain atrophy is an additional characteristic feature of AD 

(Figure 1D). However, as with the aforementioned hallmarks, atrophy of hippocampal and 

cortical regions also appear in other types of dementia, like frontotemporal dementia and 

vascular dementia (Blennow et al., 2006). In AD, the first neurodegenerative changes 

“occur in the medial temporal lobe, including the hippocampus and entorhinal cortex” 

(Blennow et al., 2006) as well as the amygdala (Duyckaerts et al., 2009). Whereas the 

inferior temporal and the superior and middle frontal gyri show distinct atrophy, the inferior 

frontal and the orbitofrontal gyri are not affected (Halliday, 2003). Among others Kril et al. 

found a strong correlation between neuron number and hippocampal volume and brain 

volume. Thus, they were able to proof that atrophy occurs as a result of neuron loss (Kril 

et al., 2004).  

Since neuron loss is difficult to assess it still remained unclear whether or not “neuronal 

death is the essence of Alzheimer pathology” (Duyckaerts et al., 2007). Controversial 

opinions were expressed concerning the course and severity of neuron loss in AD. 

However, neuron loss was confirmed in several brain regions including layer II of 

entorhinal cortex, CA1 region, superior temporal gyrus, supramarginal gyrus, amygdala, 

substantia nigra and parts of the locus coeruleus (Duyckaerts et al., 2009). The cause of 

neuronal loss is still controversially debated. While some groups found a correlation 

between neurofibrillary tangles and neuron loss (e.g. Gómez-Isla et al., 1997) other 

groups suggested that intraneuronal and/or oligomeric Aβ play a key role in causing 

neurotoxicity and neuronal death (e.g. Bayer and Wirths, 2010, Haass and Selkoe, 2007).  
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Figure 1 │ Neuropathological hallmarks of AD. 

(A) High-power photomicrograph of a silver-stained neuritic amyloid plaque (encircled by dashed 

lines) with dystrophic neurites (arrow). (B) Anti-Aβ antibody immunohistochemical staining of an AD 

brain shows diffuse plaques (large arrow), compact plaques (medium-size arrow) and cerebral 

amyloid angiopathy (CAA; small arrow). (C) Anti-phospho-tau antibody immunohistochemical 

staining demonstrates hyperphosphorylated tau accumulation in neuronal cell bodies (arrow). 

Figures (A-C) adapted from (Holtzman et al., 2011). (D) Comparison of a cognitively normal 

individual (left) with a severe AD case (right) reveals distinct brain atrophy in AD. Figure adapted 

from (http://www.nia.nih.gov/sites/default/files/02_healthybrain_lg.jpg, 12.10.2014). (E) Immuno-

histochemical staining of an AD brain revealed microglia (anti-CD68 antibody, green) and 

astrocytes (anti-GFAP antibody, blue) in close proximity to Aβ (anti-Aβ antibody, red). Figure 

adapted from (Venneti et al., 2009).  

1.2.4 Synaptic loss and dysfunction 

Besides neuron loss, synaptic dysfunction, decrease in markers for certain 

neurotransmitter as well as synaptic loss are typical hallmarks of AD (Holtzman et al., 

2011). Decreased numbers of synapses were observed in different brain regions of AD 

patients including cortex (lamina III of Brodmann’s area) and hippocampal CA1 region 

(DeKosky and Scheff, 1990, Scheff et al., 2007). Moreover, levels of presynaptic and 

postsynaptic markers were altered in AD patients, e.g. synaptophysin (Masliah et al., 

1994) and PSD95 (Shinohara et al., 2014). However, Shimohama et al. described that 

http://www.nia.nih.gov/sites/default/files/02_healthybrain_lg.jpg
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only some markers are decreased while others are maintained indicating “differential 

involvement of synaptic components in AD” (Shimohama et al., 1997). Additionally, it was 

observed that neurons with certain neurotransmitter systems are particularly vulnerable. 

This includes glutamatergic, cholinergic and norardrenergic neurons (Holtzman et al., 

2011). Although deficits in other neurotransmitters like GABA or serotonin occur during 

disease progression, early AD symptoms correlate with dysfunction of cholinergic and 

glutamatergic synapses (Selkoe, 2002). These findings have previously led to the design 

of several drugs as described before. It is assumed that “synapses play a major 

physiopathological role in AD” (Duyckaerts et al., 2009) and that synaptic loss and 

dysfunction are among the strongest correlates of cognitive decline (Querfurth and 

LaFerla, 2010, Selkoe, 2002). Several studies indicated that synaptic dysfunction occurs 

prior to “physical deterioration of neuronal structures” (Marcello et al., 2012). Koffie et al. 

postulate that AD starts as a “disease of synaptic dysfunction and synapse loss then 

progresses to include widespread neuronal loss and neuronal network failure” (Koffie et 

al., 2011). It is supposed that intraneuronal Aβ rather than extracellular plaques contribute 

to this synaptic pathology (e.g. Bayer and Wirths, 2010). Recently, studies described that 

soluble assembly states of Aβ (oligomeric Aβ) cause cognitive impairments by affecting 

synaptic structure and plasticity (Haass and Selkoe, 2007, Marcello et al., 2012). A variety 

of targets and mechanisms responsible for Aβ-mediated effects on synapses are currently 

debated. This includes the interaction of Aβ with various receptors, like acetylcholine or 

glutamate receptors, as well as with other synaptic proteins, e.g. EphB2 or PrPC (Marcello 

et al., 2012). 

1.2.5 Inflammation 

Ongoing inflammatory processes as seen by e.g. reactive astrocytes, activated 

microglia, early components of the complement cascade or proinflammatory 

cytonkines/chemokines feature another hallmark of AD (Selkoe, 2001, Duyckaerts et al., 

2009, Akiyama et al., 2000). Activated microglia within neuritic plaques and clustered at 

sites of aggregated Aβ deposition as well as astrocytes surrounding the amyloid core are 

well-known characteristics in AD brains (Figure 1E, Duyckaerts et al., 2007, Akiyama et 

al., 2000). Levels of theses glia cells as well as their expressed biochemical markers are 

elevated in the brains of AD patients (Querfurth and LaFerla, 2010, Duyckaerts et al., 

2009). Several studies showed that exposure to Aβ led to activation of microglia thus 

implying “a crucial step in the initiation of inflammation” (Akiyama et al., 2000). Activated 

microglia produce a variety of proinflammatory mediators and potentially neurotoxic 

substances including complement, cytokines, reactive oxygen intermediates, secreted 

proteases, excitatory amino acids and NO (Akiyama et al., 2000). Likewise, astrocytes are 
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capable of expressing several inflammatory mediators, like complement receptors, 

complement components, cytokines and chemokines (Akiyama et al., 2000). However, 

microglia also demonstrated a neuroprotective role since they participate in removing 

compacted amyloid deposits and are also capable of internalize soluble Aβ from the 

extracellular space (Graeber and Streit, 2010, Mandrekar-Colucci and Landreth, 2010). 

Similarly, it was shown that reactive astrocytes “can take up and degrade extracellular 

deposits of Aβ42” (Sofroniew and Vinters, 2010). It still remained an unanswered question 

“if inflammation is a cause, contributor, or secondary phenomenon in this disorder” (Wyss-

Coray and Rogers, 2012). Inflammatory response is assumed to bring along both 

beneficial as well as detrimental effects (Duyckaerts et al., 2007). It is strongly discussed 

and poorly understood whether inflammatory mechanisms cause damage in AD or 

contribute to the removal of primary pathologic processes (Akiyama et al., 2000, Graeber 

and Streit, 2010). In AD brains damaged neurons and neurites, (insoluble) Aβ deposits 

and NFTs may provide stimuli for inflammation. Since these stimuli are often present from 

early preclinical to terminal stages of AD the up-regulation of inflammation is chronic as 

well. Direct and indirect alterations from inflammatory mechanisms are likely to worsen 

those pathogenic processes that previously initiate them. Hence it is assumed that those 

inflammatory processes contribute to AD pathogenesis (Akiyama et al., 2000).  

1.3 The amyloid precursor protein (APP) 

1.3.1 Isoforms of APP 

As previously mentioned, Aβ peptides originate from the larger amyloid precursor 

protein by several proteolytic cleavage events. The amyloid precursor protein (APP) is a 

type 1 transmembrane glycoprotein (Puzzo et al., 2014) with a large extracellular domain 

and a smaller cytoplasmic part (Bayer et al., 2013). APP is highly conserved in evolution 

and a member of the amyloid precursor-like proteins (APLPs) family that revealed 

substantial homology within the extracellular and cytoplasmic tail but a large divergence 

within the Aβ region (Selkoe, 2001). It is found in the peripheral nervous system as well as 

in skeletal muscle cells and is abundantly expressed in the brain, especially by neurons 

(Panegyres and Atkins, 2011, Puzzo et al., 2014). There are several isoforms of APP that 

arise “from alternative splicing” and a “variety of posttranslational modifications”, like 

“addition of N- and O-linked sugars, sulfation and phosphorylation” (Selkoe, 2001). At 

least four types of mRNA are known that are generated by alternative splicing of exons 7 

and 8. These isoforms of APP are named after the number of amino acids: APP 695, APP 

714, APP 751 and APP 770 (Panegyres and Atkins, 2011). The 751- and 770-amino acid 

isoforms contain a region homologous to the Kunitz-type serine protease inhibitor (KPI) 

motif (encoded by exon 7), are mainly expressed outside the brain and play a role in the 



   Introduction 

10 

coagulation pathway in the plasma (Selkoe, 1998, Holtzman et al., 2011). APP 714 and 

APP 695 lack exon 7 and are mainly expressed in the CNS. Differential splicing of exon 

15 results in other isoforms that are found in lymphocytes, macrophages and microglial 

cells (Panegyres and Atkins, 2011).  

1.3.2 Non-amyloidogenic and amyloidogenic processing of APP 

APP can be processed by two enzymatic pathways: the non-amyloidogenic or the 

amyloidogenic pathway (Figure 2). This proteolytic cleavage is performed by several 

membrane bound and site-specific cleaving enzymes known as secretases (Zolezzi et al., 

2014).  

Within the non-amyloidogenic pathway, α-secretase cleaves the APP within the 

ectodomain liberating two bigger soluble fragments, the extracellular N-terminal domain 

soluble APP-α (sAPPα) and the 83-aa-long C-terminal fragment CTFα (C83) (Carrillo-

Mora et al., 2014). As α-secretase cleaves APP in the middle of the Aβ domain, i.e. 

between residue 16 and 17 of Aβ fragment, generation of Aβ is prevented (Haass, 2004). 

Secondly, the membrane-retained CTFα is further cleaved by γ-secretase releasing the 

smaller 3 kDa fragment p3 (Aβ17-40/42) and the approximately 50-aa-long amyloid 

intracellular domain (AICD) (Carrillo-Mora et al., 2014, Querfurth and LaFerla, 2010).  

 

Figure 2 │ APP processing and generation of β-amyloid. 

The amyloid precursor protein (APP) can be processed by either the non-amyloidogenic or 

amyloidogenic pathway. This processing is mediated by several secretases and generates different 

derivatives including the Aβ peptide. Figure adapted from (Carrillo-Mora et al., 2014). 
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Within the amyloidogenic pathway, APP is proteolyzed by β-secretase liberating the 

soluble N-terminal fragment soluble APPβ (sAPPβ) and the 99-aa-long C-terminal 

fragment CTFβ (C99) (Carrillo-Mora et al., 2014). In a next step, the membrane-retained 

CTFβ is cleaved by γ-secretase generating the 4 kDa Aβ peptide and the AICD domain 

(Carrillo-Mora et al., 2014). Due to the heterogeneous cleavage of γ-secretase Aβ 

peptides and AICD fragments of varying length are produced (Marcello et al., 2012).  

Since APP undergoes a regulated cleavage first of its ectodomain and second of its 

transmembrane domains by specific membrane-anchored secretases, generation of Aβ is 

“one example of a general physiological mechanism […] known as ‘regulated 

intramembrane proteolysis’ (RIP)” (Haass and Selkoe, 2007).α-secretase activity was 

demonstrated by three proteases that belong to the ADAM family (a family of disintegrin 

and metalloproteinases) (Buxbaum et al., 1998, Lammich et al., 1999, Koike et al., 1999). 

The β-secretase is considered to be “the Aβ production rate limiting enzyme” (Zolezzi et 

al., 2014). It was identified as a type 1 transmembrane protein with aspartyl protease 

activity termed β-site APP cleaving enzyme 1 (BACE-1) (Vassar et al., 1999, Haass, 

2004). BACE is a member of the pepsin family of aspartyl proteases, but is assumed to 

define a novel subgroup of membrane-associated hydrolases. It is assumed that APP is 

not the main substrate of BACE-1. Although little is known about the physiological 

substrate so far, some candidates were suggested including APPSwe, P-selectin 

glycoprotein ligand-1, sialyl-transferase ST6Gal I, interleukin-1 type II receptor, APLP1 

and APLP2, neuregulin-1 and neuregulin-3 (Haass, 2004, Kandalepas and Vassar, 2012). 

The γ-secretase is an intramembranous complex that consists of four proteins: nicastrin 

(Nct), presenilin enhancer 2 (PEN-2), anterior pharynx-defective 1 (Aph-1), presenilin 1 or 

2 (PS1/PS2). Thereby, the presenilins represent the catalytic core even though they are 

not sufficient for γ-secretase activity alone (Carrillo-Mora et al., 2014, Blennow et al., 

2006, Haass, 2004). A variety of presenilin substrates were identified including APP, 

Notch, “APP homologs APLP-1/-2, ErbB-4, E-cadherin, N-cadherin, LRP, Nectin-1-α, the 

Notch ligands Delta and Jagged, and CD44” (Haass, 2004).  

Although APP and the mentioned secretases are all integral transmembrane proteins 

and share similar trafficking routes, the amyloidogenic and non-amyloidogenic pathways 

may occur at different places within the cell (cf. Thinakaran and Koo, 2008). After 

maturation processes, APP and the secretases can traffic to the cell surface. However, 

BACE-1 and γ-secretase can also be transported directly to the sorting endosomes where 

BACE-1 is recycled to the trans-Golgi network and γ-secretase is sorted to late 

endosomes/lysosomes (De Strooper and Annaert, 2010). α-secretase activity is mainly 

localized in the secretory route (trans-Golgi network) or at the plasma-membrane 
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(Lammich et al., 1999, De Strooper and Annaert, 2010). APP molecules that were not 

cleaved by α-secretase at the surface membrane can be internalized into endocytic 

compartments and are cleaved by β- and γ-secretase to generate Aβ (Marcello et al., 

2012). Similar, after its synthesis β-secretase is targeted to the plasma membrane where 

it is enriched in lipid rafts but can be also reinternalized to early endosomes. Thus, BACE-

1 and APP have “similar trafficking routes and meet within endosomes” (Haass, 2004). 

Although, BACE-1 can cleave APP at the cell surface or in early endosomes, the 

preferential site of β-secretase activity is mainly restricted to the endoplasmic reticulum 

and the endosomal/lysosomal system due to its acidic pH optimum (Kinoshita et al., 2003, 

Haass, 2004, De Strooper and Annaert, 2010). It was suggested that γ-secretase activity 

is widely distributed between trans-Golgi network, surface and endosomes. However, 

several studies underlined that it takes place in endosomal sorting compartments, i.e. late 

endosomes, multivesicular bodies and lysosomes (De Strooper and Annaert, 2010). 

Moreover it was found that intracellular organelles generate Aβ peptides of different 

lengths. Aβ1-40/Aβx-40 is exclusively produced in the trans-Golgi network (TGN) and packed 

into post-TGN secretory vesicles. Insoluble Aβx-42 is generated and maintained within the 

endoplasmic reticulum. Additionally, Aβ1-42 and Aβx-42 are made in the TGN and packed 

into secretory vesicles. Peptides produced in the TGN consist of soluble and insoluble 

populations (Greenfield et al., 1999). 

It was shown that 90 % of APP processing occurred within the non-amyloidogenic 

pathway and 10 % within the amyloidogenic pathway under normal conditions. The cause 

for the shift to an increased APP processing by the amyloidogenic pathway remained 

unclear. It might be due to an increase in cholesterol levels resulting in lipid raft formation, 

increased β-secretase levels, mutations in AD-related proteins or a decrease in Aβ 

clearance resulting in gradual accumulation (Platt et al., 2013). 

A complex machinery in the brain contributes to clearance of Aβ from the brain as well 

as to degradation of Aβ peptides and accumulations. This includes physiological 

parameters such as blood and CSF as well as a variety of clearance receptors like LRP1 

and VLDLR. Moreover, a broad range of Aβ degrading proteases like neprilysin and 

neprilysin-2 (NEP, NEP2), angiotensin converting enzyme (ACE), endothelin converting 

enzyme (ECE1, -2), matrix metalloproteinases, plasmin, insulin-degrading enzyme (IDE) 

and cathepsin B/D are involved (De Strooper, 2010, Marr and Hafez, 2014, Leissring, 

2014).  
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1.3.3 Physiological functions of APP and its derivatives 

Although its actual functions remained unclear so far, a variety of physiological 

functions were attributed to full-length APP, several domains of APP or its fragments. This 

also includes a receptor or growth factor function (Marcello et al., 2012). It was suggested 

that a domain of APP stimulates neurite outgrowth and promotes synaptogenesis 

(Rossjohn et al., 1999). Full-length APP “may play important roles in maintaining nerve 

cell structure and signal transduction” and “may have a range of physiological functions 

associated with developing and adult neurons” (Marcello et al., 2012). The APP-derived 

sAPPα was shown to promote neuronal survival (Li et al., 1997), stimulates proliferation of 

neural stem cells (Caillé et al., 2004) and can facilitate LTP and spatial memory (Taylor et 

al., 2008). Similarly, a physiological role was attributed to Aβ since this peptide is also 

produced during normal metabolism (Haass et al., 1992). Kamenetz et al. showed that 

activity-dependent Aβ production participates in a negative feedback that regulates 

neuronal hyperactivity indicating a role of Aβ in homeostatic plasticity (Kamenetz et al., 

2003). It was also demonstrated that Aβ can act as a positive regulator at presynaptic 

level (Abramov et al., 2009) and increase synaptic transmission (Puzzo et al., 2008). 

Different Aβ species may act via various receptors and thus produce several synaptic 

effects (Ondrejcak et al., 2010). Furthermore, dose-dependent neuroprotective, trophic as 

well as antioxidative physiologic effects were described for Aβ (Thinakaran and Koo, 

2008, Carrillo-Mora et al., 2014). 

1.4 Genetic background of AD 

AD is a heterogeneous disorder (Blennow et al., 2006) which can be divided into 

subcategories due to two criteria: heritability, i.e. familial and sporadic cases (FAD and 

SAD, respectively) as well as the age of onset, i.e. early-onset AD (EOAD) and late-onset 

AD (LOAD). Familial AD is inherited in an autosomal dominant fashion with an early onset 

before the age of 65 years. In contrast, sporadic AD is not inherited and usually starts 

when patients are 65 years or older, i.e. late-onset AD (Holtzman et al., 2011). Both forms 

are phenotypically very similar and often indistinguishable (Selkoe, 2001). While the 

familial form of AD is very rare (prevalence below 1 %) the sporadic form accounts for the 

vast majority of all cases (up to 99 %, Holtzman et al., 2011). In familial forms of AD, 

mutations are assumed to cause an increase of Aβ production or aggregation whereas in 

sporadic AD failure of clearance mechanisms might play a role (cf. Marcello et al., 2012, 

Blennow et al., 2006). 

Within the familial form of AD (FAD), mutations are known in the APP gene on 

chromosome 21q21, the PS1 gene on chromosome 14q24.3 as well as in the PS2 gene 
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on chromosome 1q31-q42 (Blennow et al., 2006, Karch et al., 2014). Approximately 180 

mutations in PS1, 20 mutations in PS2 and 36 mutations in APP have been reported 

leading to an increase in total Aβ levels, Aβ42/Aβ40 ratio or the aggregation (Marr and 

Hafez, 2014). Missense mutations in APP (Figure 3) are located at or near the APP 

cleavage sites of β- and γ-secretases. Mutations near the C-terminus of the Aβ region 

elevate the Aβ42 level increasing the Aβ42/Aβ40 ratio. Mutations that occur near the β-

secretase cleavage site result in an overproduction of all Aβ species (Holtzman et al., 

2011). Moreover, a multiplication of the entire chromosome 21, as seen in trisomy 21 

(Down’s syndrome) leads to an overproduction of Aβ peptides and can predispose to an 

early onset of AD (Selkoe, 2001). Mutations in PS1 and PS2 are “distributed throughout 

the protein, with some clustering occurring in the transmembrane domains” (Karch et al., 

2014). PS1 mutations are the most common cause of FAD (Holtzman et al., 2011). AD 

patients with PS1 mutations revealed “the earliest and most aggressive form of AD” with a 

clinical onset in their 40s and 50s, but sometimes also in their 30s (Selkoe, 2001). As with 

the APP mutations total levels of Aβ42 or the Aβ42/Aβ40 ratio are increased in patients 

with PS mutations (Holtzman et al., 2011).  

 
Figure 3 │ Mutations in the amyloid precursor protein. 

Generation of Aβ from amyloid precursor protein (APP) and sites of β- and γ-secretase cleavage 

are shown in the upper part of this figure. Additionally, selected mutations in Aβ region of APP are 

demonstrated below. Mutations lead to increase of total Aβ production (blue), alter Aβ biophysical 

properties (black) or affect the Aβ spectrum in quantitative and qualitative ways (green). Figure 

adapted from (Benilova et al., 2012).  

Within the sporadic form of AD (SAD) “the most significant effectors of risk occur in 

genes strongly linked to Aβ” (Marr and Hafez, 2014). The strongest risk factor known so 

far is the apolipoprotein E (APOE) (Blennow et al., 2006) which can affect aggregation, 

clearance and catabolism of Aβ (Marr and Hafez, 2014). APOE is a glycoprotein that 

plays a role “in mobilization and redistribution of cholesterol”, neuronal growth, nerve 
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generation, immune response and activation of lipolytic enzymes (Karch et al., 2014). The 

APOE gene is located on chromosome 19q13.2 and exists in three allele isoforms: ε2, ε3 

or ε4. The ε3 form is the most common isoform but does not alter the risk of AD. The ε2 

and ε4 form are less common but are known to modify one’s risk of developing AD 

(Alzheimer's Association, 2014, Selkoe, 2001, Raber et al., 2004). Whereas ε2 is believed 

to decrease the probability (Corder et al., 1994), the ε4 form increases the risk to develop 

AD even at a younger age. This risk is even more pronounced when inheriting two copies 

of the ε4 form (Corder et al., 1993). Several studies like genome-wide association studies, 

whole-exome and whole-genome sequencing showed that also other genes predispose to 

AD. These novel genetic risk factors include clusterin (CLU), complement receptor 1 

(CR1), ephrin receptor A1 (EPHA1), ATP-binding cassette transporter (ABCA7), triggering 

receptor expressed on myeloid cells 2 protein (TREM2), phospholipase D3 (PLD3), etc. 

(Karch et al., 2014). In general, these new candidate genes shed light on pathways 

implicated in AD including lipid (cholesterol) metabolism, endocytosis and inflammatory 

response (Karch et al., 2014, Medway and Morgan, 2014).  

1.5 The Amyloid cascade hypothesis 

1.5.1 The “classical” amyloid cascade hypothesis 

The “classical” amyloid cascade hypothesis has been the central paradigm of AD 

research for many years. According to this hypothesis, accumulation of Aβ is the primary 

cause driving AD pathology. It states that altered APP metabolism leads to amyloid 

deposition and subsequently to neuritic plaques, neurofibrillary tangles and neuropil 

threads and finally causes neuronal damage and dementia (Hardy and Allsop, 1991). 

Several arguments support this hypothesis. Duplication and different mutations in the APP 

and PS1/PS2 genes were identified that directly caused Aβ deposition and led to early-

onset forms of AD (Rovelet-Lecrux et al., 2006, Hardy and Selkoe, 2002). Transgenic 

mice expressing different FAD-related mutations demonstrated pathological features of 

AD including amyloid plaques and cognitive impairments (cf. Webster et al., 2014). 

Moreover, mutations in the gene encoding the tau protein led to deposition of tau in NFTs, 

but not to deposition of amyloid. Overexpression of mutant human APP and tau in 

transgenic mice led to increased formation of tangles while amyloid plaques are unaltered. 

Both findings indicate that changes in Aβ metabolism and plaque formation occur prior to 

tau pathology. Furthermore, APP transgenic mice were crossed with APOE-deficient 

mice. Their offspring revealed decreased cerebral Aβ deposition pointing to an 

involvement of APOE in Aβ metabolism (Hardy and Selkoe, 2002). Patients suffering from 

trisomy 21 (Down’s syndrome) possess a multiplication of chromosome 21 on which APP 
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is located. They develop AD pathology in terms of senile plaques, NFTs and neuron loss 

already at young ages (cf. Mann, 1988).  

In contrast, various arguments challenge this amyloid hypothesis. An important 

observation was that in humans the number of amyloid plaques does not correlate well 

with the degree of cognitive deficits (Hardy and Selkoe, 2002, Giannakopoulos et al., 

2003). Although having abundant NFTs and senile plaques some humans stayed 

cognitively normal during their whole life (Snowdon, 1997). Similarly, transgenic mice 

showed impairments in behavioral tests prior to plaque deposition (e.g. Hsia et al., 1999). 

Moreover, AD patients were immunized with the anti-Aβ42 active vaccine AN1792. 

Subsequent analysis revealed a clearance of amyloid plaques but did not stop 

progressive neurodegeneration (Holmes et al., 2008). Additionally, several studies 

showed that synaptic loss is “the major structural correlate to cognitive dysfunction” 

instead of NFTs, senile plaques or neuron loss as these pathological features showed a 

poorer statistical correlation with dementia (Marcello et al., 2012). Based on these findings 

‘revised’ amyloid hypotheses were proposed.  

1.5.2 The soluble amyloid hypothesis 

The “classical” amyloid cascade hypothesis focusses solely on insoluble amyloid 

aggregates. However, the idea of soluble Aβ oligomers as the toxic and disease-causing 

agent is gaining more and more support (e.g. Klein, 2002, Haass and Selkoe, 2007, 

Pimplikar, 2009, Benilova et al., 2012). The detection of buffer-soluble bioactive oligomers 

(e.g. dimers, trimers, tetramers, dodecamers, and higher oligomers) led to the concept 

that soluble Aβ plays a key role in AD pathology (Mucke and Selkoe, 2012). Such 

oligomers were isolated from culture medium, brains of AD patients and AD mouse 

models (Walsh et al., 2005, Shankar et al., 2008, Lesné et al., 2006). Several studies 

proved that soluble (synthetic or natural) oligomers are neurotoxic and capable of causing 

synaptic dysfunction as well as cognitive changes (e.g. Walsh et al., 2002, Cleary et al., 

2004, Shankar et al., 2007, Shankar et al., 2008, Selkoe, 2008, Tomiyama et al., 2010). 

Furthermore, it was described that some oligomeric Aβ species “are small and soluble 

enough to diffuse […] through the brain parenchyma” and into synaptic clefts impairing 

synaptic structure and function and finally neuron survival (Haass and Selkoe, 2007). In 

the course of this, it was also suggested that insoluble amyloid aggregates might be 

relatively inactive but can serve as reservoirs of these smaller, soluble assemblies (Haass 

and Selkoe, 2007, Mucke and Selkoe, 2012). However, an exact definition of the term 

‘toxic Aβ oligomer’ is still lacking (Benilova et al., 2012). A variety of oligomeric Aβ 

assemblies including protofibrils, annular assemblies, Aβ-derived diffusible ligands 

(ADDLs), Aβ*56 as well as dimers and trimers was described (Hardy and Selkoe, 2002, 
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Haass and Selkoe, 2007). It was proposed that soluble oligomers comprise “Aβ 

assemblies that are not pelleted from physiological fluids by high-speed centrifugation” 

(Haass and Selkoe, 2007) but not all aforementioned forms fulfil this definition. Ultimately, 

the difficulty to ascribe the mentioned neurotoxic effects principally to one certain Aβ 

species still persists (Hardy and Selkoe, 2002, Haass and Selkoe, 2007). 

 

Figure 4 │ Potential pathways of Aβ aggregation in vivo. 

Since only little is known about how Aβ aggregates/oligomerizes two possibilities were suggested. 

(A) In a linear oligomerization pathway Aβ monomers initially form low molecular weight soluble 

aggregates (1). In a second step, these oligomers further aggregate into insoluble protofibrils, fibrils 

and plaques (2). Both soluble oligomers and insoluble fibrils are considered to be pathogenic. (B) 

Another possibility claims that there are two distinct pathways: (1) a pathogenic pathway that forms 

soluble oligomers (dimers/Aβ*56/ADDLs) which cause the disease and (2) a non-pathogenic 

pathway that leads to the formation of insoluble aggregates and plaques. The insoluble aggregates 

are thought to be benign. Moreover, it was suggested that the insoluble aggregates may slowly 

leach forming the pathogenic soluble oligomers (3). Figure adapted from (Pimplikar, 2009).   
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So far, it remained poorly understood by which molecular pathways Aβ forms soluble 

oligomers, insoluble fibrils and plaques (Figure 4, Pimplikar, 2009). It was suggested that 

monomeric Aβ self-aggregates forming dimers, trimers, oligomers and protofibrils which 

further aggregate to fibrils and finally plaques (Pimplikar, 2009, Glabe, 2008, Duyckaerts 

et al., 2007). Kumar et al. described two kinetic phases of Aβ aggregation. During the ‘lag 

phase’ monomeric Aβ slowly accumulates and forms oligomers. In the ‘elongation phase’ 

those oligomers promote the formation of protofibrils which ultimately aggregate to mature 

fibrils (Kumar et al., 2011). Whether or not insoluble amyloid aggregates are pathogenic or 

benign is still controversially discussed. Benilova et al. suggested a “dynamic equilibrium 

between toxic oligomers and inert fibrils” that “might exist around the plaques, resulting in 

local ‘spillover’ of neurotoxic species in surrounding tissue” (Benilova et al., 2012). 

However, a consensus seems to exist that Aβ oligomers are pathogenic and strongly 

contribute to AD pathology (Figure 4).  

1.5.3 The intraneuronal amyloid hypothesis 

Two early findings point to the fact that amyloid-β might not only be an extracellular 

phenomenon. Masters et al. described that amyloid is first deposited in the neuron and 

afterwards in the extracellular space (Masters et al., 1985b). Despite neurofibrillary 

tangles, amyloid protein was also detected intracellularly (Grundke-Iqbal et al., 1989). On 

the one hand, cell biological studies revealed that Aβ peptides can be generated at 

different subcellular sites including the endoplasmic reticulum, the trans-Golgi network 

and the endosomal-lysosomal system (see section 1.3.2, Selkoe, 1998, Greenfield et al., 

1999, Perez et al., 1999). On the other hand, cellular uptake of Aβ from the environment 

might also contribute to intracellular accumulation (e.g. Bahr et al., 1998). In 2000, Gouras 

et al. claimed that “intracellular Aβ42 accumulation is an early event in neuronal 

dysfunction” as they found Aβ42 within neurons of areas that are known to develop AD 

pathology very early, like hippocampus and entorhinal cortex (Gouras et al., 2000). In 

contrast, this intraneuronal Aβ42 staining was less evident in brain regions that are less 

affected by AD, e.g. primary sensory and motor cortices. Additionally, they found that 

intraneuronal Aβ42 immunoreactivity attenuates with increasing cognitive dysfunction and 

Aβ plaque deposition (Gouras et al., 2000). Another study demonstrated that in brains of 

AD patients intraneuronal Aβ deposition occurs prior to the appearance of PHF-

immunoreactive structures (Fernández-Vizarra et al., 2004). Moreover, studies using 

transgenic AD mouse models revealed synaptic dysfunction and/or behavioral changes 

prior to plaque deposition as well as presence of intraneuronal Aβ that precedes tangle 

formation (Hsia et al., 1999, Moechars et al., 1999, Oddo et al., 2003). Similarly, two other 

models showed an intracellular Aβ immunoreactivity which decreased with aging but 
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preceded the occurrence of amyloid plaques (Wirths et al., 2001, Wirths et al., 2002). 

Moreover, one of these mouse models, APP/PS-1 double-transgenic mice, developed an 

age-related neuron loss that did not correlate with extracellular amyloid plaques (Schmitz 

et al., 2004). Several studies described that mutations in AD-related genes also increase 

intracellular Aβ levels (e.g. Qi et al., 2003). Based on these and other findings (Wirths et 

al., 2004, Giménez-Llort et al., 2007) a modified amyloid cascade hypothesis was 

proposed (Figure 5). It states that intraneuronal levels of Aβ42 increase due to ageing, 

Down’s syndrome and AD-related mutations. Intraneuronal Aβ accumulates and further 

cause synaptic and neuronal dysfunction, subsequently neurodegeneration and ultimately 

dementia. Simultaneously, amyloid plaques are produced. Intraneuronal Aβ levels 

increase as Aβ can be internalized from these plaques again (Wirths et al., 2004).  

 

Figure 5 │ The modified amyloid cascade hypothesis. 

Based on recent findings the “classical” amyloid cascade hypothesis was revised and now 

incorporates the emerging role of intraneuronal Aβ in AD pathology. Figure adapted from (Wirths et 

al., 2004).  

This hypothesis was further supported by the detection of intraneuronal Aβ in other 

transgenic mouse models, like 5XFAD (Oakley et al., 2006), TBA2.1 (Alexandru et al., 

2011), Tg2576 (Takahashi et al., 2013) and APPSLPS1KI (Casas et al., 2004). More 

strikingly, intraneuronal accumulation in these and other mouse models was correlated 

with AD-typical alterations including neuron loss, synaptic deficits, motor and/or cognitive 
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impairment (e.g. Abramowski et al., 2012, Billings et al., 2005, Breyhan et al., 2009, 

Christensen et al., 2008a, Alexandru et al., 2011, Jawhar et al., 2010). Additionally, it was 

suggested that intracellular Aβ can also promote hyperphosphorylation of tau (Giménez-

Llort et al., 2007).  

1.6 Amyloid-β variants 

Early studies revealed that Aβ peptides are present in culture medium (Haass et al., 

1992), in human CSF (Seubert et al., 1992) and in the amyloid deposits of AD patients 

(Prelli et al., 1988, Miller et al., 1993, Iwatsubo et al., 1994, Näslund et al., 1994, Saido et 

al., 1995). These peptides showed both N- as well as C-terminal heterogeneity (Selkoe, 

1998) displaying different solubility, stability and biological as well as toxic properties 

(Benilova et al., 2012). Aβ numbering is based on the numbers of amino acids that 

comprise the peptide beginning with aspartyl as first amino acid residue of Aβ sequence 

(Figure 3). The APP-processing enzyme γ-secretase cleaves at different position and thus 

generates C-terminal heterogeneity itself. Various C-terminally modified Aβ variants like 

Aβ43, Aβ42, Aβ40, Aβ38 and Aβ37 were found in cell culture and body fluids as 

described above (Benilova et al., 2012). Aβ42 and Aβ40 turned out to be the major 

soluble Aβ peptides. Presenilin mutations increase the ratio of Aβ42 to Aβ40 species 

(‘Aβ42/Aβ40 ratio’) (De Strooper, 2010). However, it was also found that level of Aβ43 

was increased in some FAD patients while Aβ37 and Aβ38 were decreased indicating an 

impact of additional Aβ variants. Both normal and AD brains “continuously and 

abundantly” (Benilova et al., 2012) generate Aβ40. In contrast, other Aβ variants are 

produced at lower levels (Benilova et al., 2012). Immunohistochemical studies showed 

that the first Aβ species deposited in AD brains end at residue 42 indicating that the 

diffuse plaques are almost exclusively composed of Aβ42 (Selkoe, 1998). Since the Aβ42 

peptide has two additional hydrophobic residues, it aggregates much faster than Aβ40 

(Selkoe, 1998). Thus, both quantitative changes as well as the biophysical and 

pathobiological attributes of Aβ have to be considered (Benilova et al., 2012).  

Heterogeneity of Aβ variants is also generated by different “enzymatic processes 

mediated by aminopeptidases, glutaminylcyclase or isomerases” (Benilova et al., 2012) 

and by phosphorylation of Aβ (Kumar et al., 2011). Moreover, Aβ species can be 

additionally modified by post-translational modifications including oxidation, nitration, 

glycosylation and racemization (Kummer and Heneka, 2014). The resulting Aβ peptides 

take part in different Aβ functions in the healthy brain as well as in e.g. 

oligomerization/fibrillization in the AD brain (Benilova et al., 2012, Kumar et al., 2011).  
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1.6.1 N-terminally truncated amyloid-β variants 

Although their significance for pathogenesis has long been unclear, mounting 

evidences suggest a role of N-terminally truncated Aβ variants in AD etiology. Besides Aβ 

variants starting with an Asp at position 1, other diverse N-truncated Aβ peptides were 

identified “starting with amino residue Ala-2, pyroglutamylated Glu-3, Phe-4, Arg-5, His-6, 

Asp-7, Ser-8, Gly-9 Tyr-10 and pyroglutamylated Glu-11” (Bayer and Wirths, 2014). 

Several groups detected a variety of N-truncated Aβ species in brain or CSF samples of 

AD patients (e.g. Miller et al., 1993, Roher et al., 1993, Saido et al., 1995, Wiltfang et al., 

2001, Sergeant et al., 2003, Miravalle et al., 2005, Portelius et al., 2010, Abraham et al., 

2013, Guzmán et al., 2014). Gouras et al. claimed that plaque-associated as well as 

intraneuronal Aβ “appears to be N-terminally truncated” (Gouras et al., 2000). However, 

Thal et al. described that N-truncated Aβ “is found either in full-length Aβ-containing 

plaques or in deposits consisting exclusively of N-terminal-truncated Aβ” (Thal et al., 

2000). Several mouse models harboring N-truncated Aβ variants have been generated in 

the last years. Particularly, the N-terminally modified Aβ species pyroglutamate-amyloid-β 

(pE3-Aβ) has been extensively analyzed in the TBA2, TBA2.1/TBA2.2, APPSLPS1KI, 

5XFAD, TBA42 and FAD42 mouse models (Wirths et al., 2009, Alexandru et al., 2011, 

Casas et al., 2004, Jawhar et al., 2011b, Jawhar et al., 2011a, Wittnam et al., 2012). 

However, little is known about other N-truncated Aβ variants and their effects in vivo. 

So far, the specific enzymes which mediate the generation of N-truncated Aβ are 

largely unknown or at least not understood in detail. Nevertheless, several candidates 

were proposed (Bayer and Wirths, 2014). Besides being responsible for cutting APP 

before position 1 of the Aβ fragment, BACE-1 is also capable of cleaving between Tyr-10 

and Glue-11 releasing Aβ11-x (Vassar et al., 1999). Bien et al. reported that the 

metalloproteinase meprin β showed a similar activity like BACE-1 as it cleaved at the 

aspartate at position 1. Strikingly, they additionally described that this protease could also 

cleave at the alanine at position 2 releasing an Aβ2-x peptide (Bien et al., 2012). Takeda et 

al. suggested that α-secretase-like proteases are involved in generation of Aβ5-40/42 and 

found that cleavage between Phe-4 and Arg-5 was independent of BACE-1 cleavage 

(Takeda et al., 2004). Moreover, it was proposed that aminopeptidase A (Sevalle et al., 

2009), neprilysin (NEP, Howell et al., 1995, Leissring et al., 2003), insulin-degrading 

enzyme (Kummer and Heneka, 2014), plasmin (van Nostrand and Porter, 1999), 

angiotensin-converting enzyme (ACE, Hu et al., 2001) as well as myelin basic protein 

(MBP, Liao et al., 2009) are involved in N-terminally truncation of Aβ. 

Whether or not the occurrence of these N-truncated species accompanies with 

changes in their assembly characteristics and biophysical properties was studied by 
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various groups. Using sedimentation analyses, electron microscopy, circular dichroism 

and cell culture Pike et al. showed that “N-terminal deletions enhance aggregation of Aβ 

into neurotoxic, β-sheet fibrils” (Pike et al., 1995b). Further, the authors suggested that 

those amino-terminal deletions initiate or at least contribute to Aβ deposition (Pike et al., 

1995b). An Aβ isoform with a pyroglutamate at position 3 (AβN3(pE)-40/42) induced an 

increased cell loss in comparison to full-length Aβ species, aggregated extensively and 

showed a more pronounced resistance to astrocyte-induced degradation. Hence, Russo 

et al. suggested that N-terminal deletion and cyclization contributes to toxicity of this Aβ 

species (Russo et al., 2002). Another group found that N-terminal pyroglutamate led to a 

higher aggregation propensity that was independent of the C terminus (Schilling et al., 

2006), increased the hydrophobicity and changed the pH-dependent solubility profile 

(Schlenzig et al., 2009). Moreover, Aβ3(pE)-42 co-oligomerizes with Aβ1-42 to form cytotoxic, 

metastable low-n oligomers that show a prion-like behavior. A correlation between 

pyroglutamate Aβ and tau-dependent cytotoxicity was also reported (Nussbaum et al., 

2012). Youssef et al. described “impaired spatial working memory and delayed memory 

acquisition in Y-maze and Morris water maze” after intracerebroventricular injection of 

soluble oligomeric Aβ3(pE)-42 in wildtype mice (Youssef et al., 2008). Jang et al. 

demonstrated that N-truncated Aβ variants including AβpE3-42, Aβ17-42 and Aβ9-42 are 

capable of forming ion channels in the lipid bilayers. These ion channels are toxic as they 

“allow uncontrolled leakage of ions into/out of the cell, destabilizing cellular ionic 

homeostasis” (Jang et al., 2014). A transgenic AD mouse models that expresses 

exclusively one N-truncated Aβ species, i.e. AβpE3-42 demonstrated microglial activation 

and astrocytosis, developed neuron loss and behavioral alternations and revealed 

impaired synaptic plasticity (Alexandru et al., 2011).  

Very recently, investigation of different N-truncated Aβ species attributed them a strong 

propensity to form stable aggregates. Among five Aβ variants the following order of 

aggregation propensity was obvious: AβpE3-42, Aβ4-42, Aβ1-42/Aβ4-40 and Aβ4-38. Treatment of 

primary neurons with a variety of Aβ peptides at different concentrations revealed a 

comparable toxicity of N-truncated Aβ variants and full-length Aβ (Figure 6A). 

Furthermore, different Aβ variants were intraventricular injected in wildtype mouse brains. 

Subsequently performed Y-maze unveiled impairment in working memory in mice treated 

with N-truncated as well as full-length Aβ (Figure 6B, Bouter et al., 2013).  
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Figure 6 │ N-truncated Aβ variants are toxic in vivo and in vitro. 

(A) In vitro toxicity of Aβ species was investigated by treating primary cortical neurons with Aβ 

peptides at different concentrations and a following calcein-AM assay. Aβ1-42, Aβ4-42, Aβ4-40 and 

AβpE3-42 revealed comparable toxicity profiles whereas Aβ4-38, a vehicle control and reverse Aβ42-1 

showed no toxic effects. (B) In vivo toxicity was assessed by intracerebroventricular injection of Aβ 

peptides into wildtype mouse brains. Afterwards, Y-maze was performed to evaluate working 

memory represented by alternation rate. Mice injected with Aβ4-42, Aβ1-42, Aβ4-40 and AβpE3-42 

performed at chance level and demonstrated a robust deficit in working memory. In contrast, mice 

treated with vehicle control, Aβ4-38 or Aβ42-1 showed no impairments. Abbreviation: Ctrl – control. 

One-way ANOVA followed by Bonferroni multiple comparisons. ***p ≤ 0.001. Figure adapted from 

(Bouter et al., 2013).  

1.6.2 Amyloid-β4-42 

First published in 1985, Masters et al. found that amyloid plaque cores of AD 

individuals “are composed of a single major protein component of about 4-5 kDa” that 

contained truncated NH2 termini (Masters et al., 1985a). Interestingly, 64 % of the 

peptides isolated from amyloid plaques of AD cases started with a Phe-4 residue (Masters 

et al., 1985a). Näslund and colleagues analyzed amyloid from brains of individuals with 

either SAD or FAD as well as samples from non-demented controls. They found  
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“Aβ-(4-42) and Aβ-(8-42) variants […] to be the most prevalent minor Aβ variants in AD 

samples” (Näslund et al., 1994). More recently, Lewis and coworkers used SELDI-TOF 

mass spectrometry to analyze extracted peptides of AD brain samples. They detected a 

peak representing Aβ4-42 which was “the most dominant peak within all the samples” 

tested (Lewis et al., 2006). Moreover, an additional study used immunoprecipitation in 

combination with mass spectrometric analysis to determine the Aβ isoform composition in 

three brain regions of FAD and SAD subjects as well as non-demented controls. Aβ4-42 

was found to be one of two dominant isoforms in the hippocampus and cortex in AD 

brains (Portelius et al., 2010). So far, the enzyme that can mediate the cleavage to 

generate Aβ4-42 is not known. However, it was proposed that neprilysin is capable of 

cleaving between Glu-3 and Phe-4 releasing Aβ4-x (Howell et al., 1995, Bayer and Wirths, 

2014). Aβ4-42 showed one of the highest aggregation propensities, displayed oligomers (in 

contrast to other Aβ species) and revealed a strong toxic effect when studied in primary 

neurons. Additionally, this amino-terminal truncated species was able to induce working 

memory deficits after intraventricular injection into wildtype mouse brains (Figure 6, Bouter 

et al., 2013). Moreover, Antonios et al. claimed that Aβ4-x is the earliest N-truncated Aβ 

species in the 5XFAD mouse model as it precedes intraneuronal accumulation of AβpE3-x 

(Antonios et al., 2013).  

1.7 Mouse models of Alzheimer’s disease 

Besides using invertebrate models such as Drosophila melanogaster or Caenorhabditis 

elegans to recapitulate, at least partially, the deficits seen in human AD patients, research 

has largely focus on working with rodents and in particular with mouse models. Working 

with these animals bring along some important advantages as they are relatively easy to 

rear, have a shorter life-span than e.g. primates and are evolutionary closer to mammalian 

species than flies or nematodes. However, rodents do not spontaneously develop AD 

during aging. Thus, there are two possibilities for the investigation of AD in these models: 

either to use transgenic or non-transgenic mice. 

Most transgenic mouse models are attributed to the discovery of FAD-linked mutations 

either in the APP and/or in the PS genes. These mutations were found to increase total 

Aβ production, enhance Aβ aggregation and/or increase the Aβ42/Aβ40 ratio. Assuming 

that FAD and SAD have a high degree of phenotypic similarity, it was reasonable to 

investigate mouse models that overexpress mutant human APP, PS1, PS2 and/or 

microtubule-associated protein tau (MAPT) (Puzzo et al., 2014). These transgenic mouse 

models are either single transgenic or multi-transgenic mice. The single transgenic mice 

possess a single mutation in the APP gene like the Swedish mutation in the Tg2576 or 
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APP23 models or the Indiana mutation in the PDAPP line 109 and H6 (Hsiao et al., 1996, 

Sturchler-Pierrat et al., 1997, Games et al., 1995). Moreover, there are mouse models 

which harbor multiple APP mutations like the PDAPP line J20 or the TgCRND8 model 

which possess both the Swedish and Indiana mutation (Mucke et al., 2000, Chishti et al., 

2001). Besides models with a single mutation in the APP gene, mice with a single 

mutation in tau (e.g. JNPL3, MAPT mice) or presenilin 1 (e.g. PS1 (M146WL) mice) were 

generated and investigated (Puzzo et al., 2014). Furthermore, there are mouse models 

which contain multiple mutations in various genes. For example, the APPSLPS1KI model 

(Casas et al., 2004) and the 5XFAD model (Oakley et al., 2006) harbor mutations in both 

the APP and the PS1 genes. The 3xTg-AD model possesses mutations in APP, PS1 and 

tau genes (Oddo et al., 2003). These mouse models differ not only in the number or 

location of their mutations but also in the used promoter (e.g. Thy-1 or PDGF promoter) 

and background strain (e.g. C57BL/6, DBA/2, 129/Sv). Additionally, transgenic mice were 

generated that overexpress several Aβ isoforms in the absence of mutant APP. This 

includes the TBA2 (Wirths et al., 2009), TBA2.1/2.2 (Alexandru et al., 2011), TBA42 

(Wittnam et al., 2012), G2 (LaFerla et al., 1995), APP48 (Abramowski et al., 2012) and 

BRI-Aβ42 (McGowan et al., 2005) mice.  

In order to avoid unrelated effects of the used APP or PS transgenes, non-transgenic 

mice are used in addition. These mouse models were generated by direct infusion of 

various forms of Aβ or tau into the brain (cf. Puzzo et al., 2014, Philipson et al., 2010). 

Furthermore, another non-transgenic mouse model was generated by 

intracerebroventricular (icv) administration of the diabetic compound streptozotocin (STZ). 

It is claimed that this icv-STZ mouse model represents sporadic AD as these mice 

showed similar deficits like 3xTg-AD mice (Chen et al., 2013, Wang et al., 2014). 

Alternatively, normally aged animals are investigated to better understand the differences 

between AD-dependent alterations and aging (cf. Puzzo et al., 2014, Philipson et al., 

2010).  

Transgenic and non-transgenic mouse models have been very helpful tools for a better 

understanding of AD pathophysiology and for testing mechanistic hypotheses, thereby 

enabling progress in novel therapeutic strategies as they model different aspects of the 

disease. So far, none of these mouse models recapitulate the entirety of AD seen in 

humans in terms of signs, symptoms and anatomicopathological hallmarks. However, at 

least partially, they develop amyloid plaques, extra- and/or intracellular Aβ deposits and/or 

neurofibrillary tangles. This neuropathology is frequently accompanied by other AD-

related alterations like inflammation, cognitive and non-cognitive impairments, neuron loss 
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and neurodegeneration and synaptic dysfunction (cf. Puzzo et al., 2014, Webster et al., 

2014).  

1.7.1 Tg4-42 transgenic mice 

In order to assess the effects of long-term exposure of Aβ4-42 in mouse brain the  

Tg4-42 mouse line was developed. Generation of this mouse line has been initially done 

in our lab (Division of Molecular Psychiatry, University Medical Center Göttingen) and has 

been described previously (Wittnam, 2012, Bouter et al., 2013). Briefly, for the 

development of this novel transgenic mouse line a modified form of the TBA42 transgenic 

vector was used (Wittnam, 2012, Cynis et al., 2006, Wirths et al., 2009). The new 

transgene contains a murine Thy-1 promoter and the cDNA coding for Aβ4-42. Transgenic 

mice were generated by male pronuclear microinjection of fertilized C57BL/6J oocytes. 

PCR analysis was used to characterize the resulting offspring for transgene integration. 

The identified founder animals were bred to C57BL/6J wildtype mice to establish various 

independent lines. Subsequently, qRT-PCR was performed to assess transgene 

expression in each new line. The mouse line with the highest transgene mRNA level was 

selected for further breeding and thereafter named Tg4-42 (Bouter et al., 2013). 

  
Figure 7 │ Tg4-42 transgene.  

N-truncated Aβ4-42 is fused to the murine pre-pro TRH (thyrotropin-releasing hormone) signal 

peptide. The murine Thy-1 promoter drives the neuronal expression of these fused peptides. After 

liberation of the pro-TRH-Aβ4-42-peptide from the endoplasmic reticulum the peptide is cleaved by 

prohormone convertases in the trans-Golgi (t-Golgi) and secretory granules. Finally, Aβ4-42 is 

secreted from the cell. Figure modified from (Alexandru et al., 2011, Wittnam, 2012). 
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Tg4-42 mice neuronally express human Aβ4-42 fused to the murine thyrotropin-releasing 

hormone (TRH) signal peptide under the control of the Thy-1 promoter. This construct was 

designed to route Aβ4-42 through the secretory pathway to finally allow its extracellular 

release (Figure 7, Bouter et al., 2013). 

1.8 The hippocampal formation in learning and memory 

Research of the past years revealed a variety of neural systems involved in different 

forms of learning and memory. It was demonstrated that the hippocampus is essential for 

the formation of episodic memory as well as spatial memory and is assumed to play a key 

role in their long-term storage and emotional processing (Neves et al., 2008, Deng et al., 

2010, Maruszak and Thuret, 2014). Furthermore, the hippocampus harbors the 

subgranular zone of the dentate gyrus, where adult neurogenesis occurs (Maruszak and 

Thuret, 2014). A plethora of studies revealed that the hippocampal formation is affected 

early and severely in AD pathogenesis (e.g. Hyman et al., 1984, Maruszak and Thuret, 

2014).  

1.8.1 Anatomy of hippocampal formation 

The hippocampal formation consists of four cortical regions including the dentate gyrus 

(DG), the hippocampus proper with three subfields (fields of the Cornu Ammonis 3, 2, 1 

(CA3, CA2, CA1, respectively)), the subicular complex with three subdivisions (subiculum, 

presubiculum, parasubiculum) and the entorhinal cortex (EC). Particularly in rodents the 

EC is subdivided into medial and lateral divisions (Amaral and Witter, 1989).These 

regions possess distinctive histological characteristics and specialized functions 

(Maruszak and Thuret, 2014). The principle cells of dentate gyrus and the hippocampus 

proper are granular cells and pyramidal cells, respectively. Both regions are organized 

depth-wise in several layers. Within the hippocampus proper this includes the stratum 

oriens, stratum pyramidale, stratum lucidum, stratum radiatum as well as stratum 

lacunosum-moleculare (Szilágyi et al., 2011). The dentate gyrus comprises the 

polymorphic layer, stratum granulosum as well as stratum moleculare (Amaral et al., 

2007, David and Pierre, 2006).  

Each of the four fields of the hippocampal formation is connected by unidirectional 

excitatory projections indicating a unique feature of this brain region (Amaral and Witter, 

1989). Within the hippocampus the information successively passes three distinct regions: 

the entorhinal cortex, the dentate gyrus as well as the subfields CA3 to CA1 (Figure 8, 

Deng et al., 2010). This circuitry is known as the excitatory trisynaptic pathway. The 

dendrites of the granule cells in the dentate gyrus receive projections from axons of layer 
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II neurons in the entorhinal cortex via the perforant pathway (PP). This perforant pathway 

includes the lateral perforant pathway (LPP) and medial perforant pathway (MPP) and 

their axons innervate the outer and middle third of the dendritic tree (Deng et al., 2010, 

Neves et al., 2008). The granule cells of the EC project to mossy cells in the hilus and 

hilar interneurons that send excitatory and inhibitory projections back (Deng et al., 2010). 

The axons of the granule cells, also known as mossy fibers, project to the proximal apical 

dendrites of the CA3 pyramidal cells and also to cells within the polymorphic layer of the 

dentate gyrus (Deng et al., 2010, Neves et al., 2008, Lavenex and Amaral, 2000). In 

addition, CA3 is also connected with layer II of EC through the PP (Deng et al., 2010). 

Pyramidal neurons of CA3 send projections to ipsilateral CA1 pyramidal cells through 

Schaffer collaterals and to contralateral CA3 and CA1 cells through commissural 

connections (Deng et al., 2010, Neves et al., 2008). Moreover, CA1 pyramidal neurons 

also get direct input from layer III of EC through the temporoammonic pathway (TA) (Deng 

et al., 2010). Ultimately, CA1 neurons send projections to the subiculum and to the deep 

layers of the EC (Deng et al., 2010, Lavenex and Amaral, 2000).  

 

Figure 8 │ The neuronal circuitry in the rodent hippocampus. 

The excitatory trisynaptic pathway comprises three main pathways including the ‘perforant 

pathway’ (PP) projection to the dentate gyrus, the subsequent ‘mossy fiber’ (MF) path to field CA3 

and finally the ‘Schaffer collaterals’ (SC) path to field CA1. Abbreviations: EC – entorhinal cortex; 

LPP – lateral perforant pathway; MPP – medial perforant pathway; CA – Cornu Ammonis; TA – 

temporoammonic pathway. Figure adapted from (Deng et al., 2010). 
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Different forms of synaptic modification are involved in storage of memories in the brain 

(Rosenzweig and Barnes, 2003). The “ability to undergo activity-dependent changes in 

synaptic strength” is defined as synaptic plasticity which is a “ubiquitous property of all 

synapses” (Kauer and Malenka, 2007). The hippocampus is an established key player in 

short-term and long-term memory. Due to the unique cellular structure and circuits, the 

hippocampus became a favorable area for several electrophysiological studies on short-

term and long-term modifications of synaptic plasticity.  

1.8.2 Short-term modifications of synaptic plasticity 

Short-term modifications of synaptic plasticity include forms of synaptic enhancement 

like facilitation, augmentation and post-tetanic potentiation (PTP). These short-term 

effects usually only last for a few minutes and are due to changes in transmitter release 

probability, i.e. a residual elevation in presynaptic [Ca2+]i (intracellular Ca2+) that act on 

one or more molecular targets. These targets seem to be distinct from secretory triggers 

causing fast exocytosis and phasic release of neurotransmitter to evoke action potentials 

(Zucker and Regehr, 2002, Nicoll and Malenka, 1999). During facilitation the synaptic 

response is enhanced “on the hundreds of milliseconds time scale” (Zucker and Regehr, 

2002). Paired-pulse facilitation (ppf) is of presynaptic origin (Kuhnt and Voronin, 1994) 

and a widely used electrophysiological paradigm. When applying a pair of stimuli 

separated by a certain time interval, synaptic currents are evoked in which the second 

response is larger than the first. If the interstimulus interval is increased, the magnitude of 

facilitation decreases (Zucker and Regehr, 2002). This reflects the assumption that an 

individual action potential has a greater chance to evoke the release of neurotransmitter 

when arriving within milliseconds after the first action potential due to added Ca2+ levels 

(Bliss and Collingridge, 2013). Besides ppf, two other short-term processes are 

noteworthy when applying an increased number of high-frequency stimuli in one train and 

afterwards returning to low-frequency stimulation: ‘augmentation’ that grows and decays 

within 5 to 10 s and ‘PTP’ that lasts between 30 s and several minutes. Both 

augmentation and PTP are of presynaptic origin as well (Zucker and Regehr, 2002). PTP 

is the first out of three phases when applying brief high-frequency trains of stimuli to the 

Schaffer collaterals. Presynaptic accumulation of [Ca2+]i causes PTP that rapidly declines 

after [Ca2+]I clearance. During application of tetanus in the CA1 subfield PTP is NMDA (N-

methyl-D-aspartate) receptor-independent. In contrast, the following two phases that are 

induced by high-frequency stimulation are NMDA receptor dependent forms of long-term 

potentiation (Volianskis et al., 2013).  
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1.8.3 Long-term modifications of synaptic plasticity 

Long-term potentiation (LTP) and long-term depression (LTD) are frequently studied 

forms of synaptic plasticity. They are considered as electrophysiological correlates of 

memory formation or in other words as cellular model of learning and memory. LTP is 

defined as an alteration of the “strength of synaptic transmission by increasing the 

postsynaptic response to the release of a quantum of neurotransmitter” (Volianskis et al., 

2013) and was first described at CA3-CA1 synapses in 1993 (Bliss and Collingridge, 

1993). While LTP is a strengthening of synaptic transmission, LTD is defined as an 

activity-dependent weakening of synaptic transmission. Both LTP as well as LTD are 

displayed by excitatory and inhibitory synapses (Kauer and Malenka, 2007). Although 

additional forms of LTP and LTD are present in other brain regions which might share 

some properties and mechanisms (e.g. amygdala, visual cortex/somatosensory/prefrontal 

cortex), NMDA receptor (NMDAR)-dependent LTP and LTD in the CA1 region of the 

hippocampus are the most extensively studied forms (Malenka and Bear, 2004, Lynch, 

2004). Likewise, the focus of the present study lies on NMDAR-dependent LTP at CA3-

CA1 synapses.  

Basic properties of LTP include its input-specificity, associativity and cooperativity. 

When generating LTP at a set of synapses by applying a tetanic stimulus, the increase in 

synaptic strength does not normally occur in other synapses on the same cell. This input-

specificity indicates an advantage as it increases the storage capacity of individual 

neurons. A strong activation of a set of synapses within a certain temporal period can 

facilitate LTP at an independent set of neighboring synapses on the same cell arguing for 

an associative property. Cooperativity means that there is an intensity threshold for 

induction as ‘weak’ tetanic stimuli can only activate a few afferent fibres and do not trigger 

LTP (Bliss and Collingridge, 1993, Malenka and Nicoll, 1999).  

Generation of NMDAR-dependent LTP literally requires synaptic activation of 

postsynaptic glutamatergic NMDARs (Malenka and Nicoll, 1999). NMDARs are activated 

when the postsynaptic membrane is significantly depolarized (Kauer and Malenka, 2007) 

which is experimentally accomplished by repetitive tetanic stimulation of synapses or “by 

directly depolarizing the cell while continuing low-frequency synaptic activation” (Malenka 

and Nicoll, 1999). The neurotransmitter glutamate binds to two distinct receptor subtypes 

during low-frequency synaptic transmission (Figure 9A). One of these receptors is the α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Its channel is 

permeable to monovalent cations (Na+ and K+) and it is responsible for “the majority of 

inward current for generating synaptic responses when the cell is close to its resting 

membrane potential” (Malenka and Nicoll, 1999). The second of these receptors is the 
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NMDAR. It possesses a profound voltage dependence as its channel is blocked by 

extracellular Mg2+ avoiding the influx of Na+ and Ca2+ during low-frequency synaptic 

transmission. During induction of LTP (Figure 9B) the postsynaptic cell is depolarized 

through the AMPAR. This causes the dissociation of Mg2+ from its binding site within the 

NMDAR channel upon binding of abundant glutamate. Subsequently, Ca2+ and Na+ enter 

the dendritic spine (Malenka and Nicoll, 1999, Rosenzweig and Barnes, 2003). While LTD 

requires the activation of NR2B containing NMDAR, LTP is dependent on the activation of 

NR2A containing NMDAR as they have different calcium influx kinetics and influence 

different postsynaptic pathways (Koffie et al., 2011). In addition to NMDAR-mediated Ca2+ 

entry, activation of dendritic voltage-dependent Ca2+ channels (VGCC) can increase Ca2+ 

levels within the spines as well. This results in generation of LTP, STP or LTD (Malenka 

and Nicoll, 1999). Besides the aforementioned ionotropic receptors (NMDAR, AMPAR), 

metabotropic glutamate receptors (mGluR) also modulate and contribute to the induction 

and expression of LTP (Lynch, 2004, Collingridge et al., 2004). 

The increase in postsynaptic Ca2+ concentration is the critical trigger for LTP and leads 

to activation of several intracellular signaling cascades including various protein kinases 

like α-calcium/calmodulin-dependent protein kinase II (CaMKII, Kauer and Malenka, 

2007). In addition, other signaling pathways were suggested that enable LTP to be 

sustained. It was shown that they occur presynaptically and postsynaptically (Lynch, 

2004). This includes protein kinase C (PKC), cyclic adenosine 3’,5’-monophosphate 

(cAMP), cAMP-dependent protein kinase (PKA), tyrosine kinase Src, mitogen-activated 

protein kinase (MAPK/ERK), phosphatidylinositol 3-kinase (PI 3-kinase) and cAMP 

response element-binding protein (CREB) (Malenka and Nicoll, 1999, Lynch, 2004). 

CaMKII changes synaptic transmission through modifications of glutamate receptors. It 

either phosphorylates existing channels to alter their conductance state or facilitates the 

insertion of new receptors into the membrane (Cooke and Bliss, 2006). Interestingly, this 

was described for AMPAR as LTP causes both the addition of AMPAR to the postsynaptic 

membrane as well as phosphorylation of AMPAR and increases their single-channel 

conductance. Increase of available postsynaptic AMPAR elicits a larger depolarization 

after presynaptic release of glutamate (Rosenzweig and Barnes, 2003, Collingridge et al., 

2004). cAMP initiates signaling to the nucleus via various transcription factors resulting in 

expression of proteins that contribute to long-lasting changes and ultimately mediate 

persistent LTP (Cooke and Bliss, 2006). Moreover, maintenance of LTP is accompanied 

by enlargements of dendritic spines and associated postsynaptic densities (Kauer and 

Malenka, 2007). Whereas the early phase of LTP (E-LTP) is independent of protein 

synthesis and only lasts for a short period, long-lasting LTP (L-LTP) is more persistent, 
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lasts some hours in vitro and weeks in vivo, and is dependent on de novo synthesis of 

proteins (Lynch, 2004). 

 

 

Figure 9 │ Induction of long-term potentiation 

(A) During normal synaptic transmission, the neurotransmitter glutamate is released from the 

presynapse and can act on AMPA receptors (AMPAR) and NMDA receptors (NMDAR). Since the 

NMDAR channel is blocked by Mg
2+

, Na
+
 flows only through AMPAR. (B) Depolarization of the 

postsynaptic cell relieves the Mg
2+

 block allowing Na
+
 and Ca

2+
 to flow through NMDAR channels 

into the dendritic spine. The resulting increase in Ca
2+

 levels activates several intracellular signaling 

cascades leading to various LTP expression mechanisms. Figure adapted from (Siegelbaum and 

Kandel, 2012) 
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As already mentioned before, high-frequency stimulation evokes three distinct phases 

of potentiation including PTP and two phases of LTP. At CA3–CA1 synapses LTP 

consists of a stimulation-labile phase of short-term potentiation (STP) that converts into 

stable long-term potentiation (LTP) (Volianskis et al., 2013). Both phenomena are (very 

likely) of postsynaptic origin (Bliss and Collingridge, 2013) and NMDA receptor dependent 

(Volianskis et al., 2013). STP is considered as an “unstable phase, which declines over a 

period of about half an hour and leads to a sustained level of up-regulated 

neurotransmission” (Volianskis et al., 2013). However, the differentiation between STP 

and LTP is actively debated in the literature. It was argued that STP and LTP are 

mechanistically different parts of the potentiation process and have different 

consequences for the transfer of synaptic information during high-frequency stimulation 

(Volianskis et al., 2013, Park et al., 2014). It was described that STP and LTP can be 

“either co-expressed or expressed independently” (Volianskis et al., 2013). Park et al. 

suggested that different NMDAR subtypes might mediate the induction of either STP or 

LTP. On the basis of pharmacological and kinetic criteria they distinguished two 

components of STP some of which could be induced by the same NMDAR subtypes like 

LTP and others not. Moreover, they verified the existence of two mechanistically distinct 

forms of LTP that occur in addition to STP: a protein synthesis-resistant form (early LTP) 

and a sensitive component (late LTP). In summary, they suggested three forms of 

NMDAR-dependent LTP that differ in their expression: STP (also termed LTPa), early LTP 

(LTPb) and late LTP (LTPc) (Park et al., 2014).  
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1.9 Project objectives 

N-terminally truncated Aβ4-42 is highly abundant in AD brains (Portelius et al., 2010). It 

was demonstrated that Aβ4-42 exhibited one of the highest aggregation propensities to 

form stable aggregates. Moreover, Aβ4-42 revealed a strong toxic effect when studied in 

primary cortical neurons and was able to induce working memory deficits after 

intraventricular injection into wildtype mouse brains (Bouter et al., 2013). These results 

indicate that Aβ4-42 might play a dominant role in triggering AD pathology. However, little is 

currently known about its effects in vivo. 

The majority of mouse models rely on the overexpression of mutated forms of the APP 

and PS1 genes. However, only a minority of AD patients suffers from the hereditable form 

of AD. Additionally, no multiplication of mutations was observed in AD patients. Therefore, 

the development of a mouse model without mutations representing a situation more akin 

to human AD was attempted and the Tg4-42 mouse model was generated. The Tg4-42 

mouse model overexpresses human Aβ4-42 in the absence of mutant APP. Moreover, it is 

the first mouse model which expresses exclusively one N-terminally truncated Aβ species. 

The aim of the present study was to characterize the novel transgenic mouse model 

Tg4-42 and thus to investigate the potential neurotoxic effects of the N-terminally 

truncated Aβ species Aβ4-42 in vivo and in vitro. The following objectives were set: 

 Investigate the neuropathology resulting from Aβ4-42 expression in terms of 

assessing the Aβ4-42 accumulation and gliosis as well as loss of neuronal cells 

in hemizygous Tg4-42 mice. 

 Determine if age-dependent behavioral changes occur by assessing motor 

function, anxiety, working memory, spatial reference as well as associative 

memory in three- and 12-month-old Tg4-42 mice. 

 Establish a new Morris water maze protocol in the laboratory to assess spatial 

learning and spatial reference memory. 

 Examine the effect of Aβ4-42 on synaptic function and plasticity in acute 

hippocampal tissue slices of Tg4-42 males at 3, 12 and 24 months of age. 

 Analyze relative gene expression levels of several synaptic markers in 

hippocampal tissue of young Tg4-42 mice.  
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2 Material & Methods 

2.1 Animals 

2.1.1 Animal care and general conditions 

All mouse lines were maintained at the central animal facility of the University Medical 

Center, Göttingen. Female and male mice were used for the present studies. Female mice 

were group-housed with three to five animals per cage. Male mice were individually 

housed to reduce stress levels and to avoid injuries due to hierarchic encounters. All mice 

were kept in a controlled environment on a 12 h/12 h inverted light cycle (lights off: 8 a.m. 

– 8 p.m.) and an average temperature of 21 °C. Food and water were provided ad libitum. 

Tissue paper was offered for nest-building. Cages were changed once a week. Cleaning 

the cages as well as behavioral testing was performed during dark phase. All studies were 

conducted according to German guidelines for animal care and approved by the local 

legal authorities. All feasible efforts were made to reduce animal numbers to a reasonable 

minimum on the one hand and to avoid the exposure to stress and suffering on the other 

hand. 

2.1.2 Tg4-42 transgenic mice 

In order to assess the effects of long-term exposure of Aβ4-42 in mouse brain the  

Tg4-42 mouse line was developed. Generation of this mouse line has been initially done 

in our lab (Division of Molecular Psychiatry, University Medical Center Göttingen) and was 

described before (see section 1.7.1).  

Tg4-42 mice neuronally express human Aβ4-42 fused to the murine thyrotropin-releasing 

hormone (TRH) signal peptide under the control of the Thy-1 promoter. This construct was 

designed to route Aβ4-42 through the secretory pathway to finally allow its extracellular 

release. All Tg4-42 mice were bred to C57BL/6J (Charles River Laboratories, Wilmington, 

MA, USA) mice to ensure an equal genetic background. Wildtype C57BL/6J mice used for 

the control groups were purchased from Charles River, Germany. Only hemizygous  

Tg4-42 mice were used for the current studies. Age, sex and numbers of all animals 

tested are described in the appropriate results sections (see chapter 3).  

2.1.3 Collection of CNS tissue for immunohistochemistry 

Drop-fixation - All mice were deeply anesthetized with carbon dioxide and killed via 

cervical dislocation. Right after decapitation the brain was rapidly extracted and dissected 

on ice. Skin and tissue surrounding the skull were removed and three incisions were 
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made. The first incision was set over the dorsal midline of the skull. The second and third 

incisions were made laterally. Skull bones were carefully fractured and removed. 

Following extraction from the skull the brain was separated at the sagittal midline. The 

right and/ or left hemisphere were placed into embedding cassettes (Simport, Beloeil, 

Canada). Hemisphere samples were fixed in 4 % phosphate-buffered formaldehyde 

solution (Roti®-Histofix 4 %, Roth, Karlsruhe, Germany) for at least one week. Finally, 

those samples were embedded in paraffin (see section 2.5.1). 

Perfusion - Perfusion was done in our lab (Division of Molecular Psychiatry, University 

Medical Center Göttingen) as described previously (Wittnam, 2012). In brief, mice were 

deeply anesthetized with an intraperitoneal injection of 200 – 300 µl of an anesthesia 

mixture [0.2 ml ketamine (ketamine 10 %, Medistar Arzneimittelvertrieb, Ascheberg, 

Germany), 0.1 ml xylazine (Xylariem®, 20 mg, Riemser Pharma, Greifswald, Germany), 

0.7 ml ddH2O (B Braun, Melsungen, Germany)]. Perfusion was accomplished using a 

peristaltic pump ((Ismatec®) IDEX Health & Science SA, Glattbrugg, Switzerland) and two 

ice-cold perfusion solutions: 0.01 M PBS (Biochrom, Berlin, Germany) and 4 % 

paraformaldehyde (PFA, Roth, Karlsruhe, Germany) in 0.01 M PBS. Anesthetic condition 

of each mouse was validated using a pinching test. If the mouse did not show any 

response to pain stimuli it was pinned by its paws onto a foam perfusion stage. Following 

exposure of the beating heart an incision was made in the right atrium of the heart to allow 

for blood to drain from the circulatory system and a sterile needle was inserted into the left 

ventricle. The mouse was perfused with about 40 ml ice-cold 0.01 M PBS until the color of 

the mouse’s liver changed from red to grayish-white. Subsequently, the mouse was 

perfused with 40 ml ice-cold 4 % PFA-solution. Following perfusion the mouse was 

decapitated and the brain was removed as described before (see section 2.1.3, drop-

fixation). The right and/or left hemisphere were placed into embedding cassettes (Simport, 

Beloeil, Canada). Hemisphere samples were fixed in 4 % phosphate-buffered 

formaldehyde solution (Roti®-Histofix 4 %, Roth, Karlsruhe, Germany) for at least one 

week. Finally, those samples were embedded in paraffin (see section 2.5.1). 

2.1.4 Collection of hippocampal tissue for biochemistry 

Mice were sacrificed and brain tissue was collected as described in section 2.1.3. 

Following extraction from the skull the brain was separated at the sagittal midline. 

Cerebellum, brainstem and about one sixth of the frontal cortex were excised from the 

intact hemispheres and discarded. After lifting up the cortex from its caudal side the 

hippocampus was carefully removed from the surrounding tissue and immediately frozen 

on dry ice. Hippocampal samples were stored at -80 °C until further use. 
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2.1.5 Slice preparation for electrophysiological recordings 

Preparation of slices was conducted as described previously (Fischer et al., 2009). All 

mice were deeply anesthetized with ether and killed via decapitation. The brain was 

removed from the skull (see section 2.1.3) and transferred to ice-cold chilled artificial 

cerebrospinal fluid (ACSF) for 1 – 2 min. Thereafter, using a vibroslicer (752 M Vibroslice, 

Campden Instruments, Loughborough, Leicester, UK) the brain was cut in 400 µm thick 

coronal slices. Tissue slices including the hippocampus were selected and separated 

sagittally. Hippocampal slices were placed in a submersion-style storage chamber 

containing oxygenated ACSF und remained there for 90 min at room temperature to 

recover after preparation.  

The ACSF contained (in mM): 130 NaCl, 3.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 1.2 

CaCl2, 1.2 MgSO4, and 10 dextrose, constantly aerated with 95 % O2 – 5 % CO2 to adjust 

pH to 7.4 (all chemicals were obtained from Sigma-Aldrich, St. Louis, MO, USA or Merck, 

Darmstadt, Germany). 

2.2 Behavioral analysis of mice 

2.2.1 General considerations and testing protocol 

Transgenic and wildtype control mice underwent a onetime three-week series of 

behavioral analysis to assess their motor abilities, memory performance and anxiety level. 

All female and male mice were tested either at three or 12 months of age. Behavioral tests 

were performed in the following chronological order: Morris water maze, balance beam, 

string suspension, cross maze, inverted grip hang, elevated plus maze and finally fear 

conditioning. To keep stress levels to a minimum the fear conditioning task was only 

performed on 12-month-old mice that were sacrificed after the tone trial.  

Although it is inevitable to use a distinct number of mice to ensure the final statements 

all efforts were done to reduce the numbers of mice tested to a reasonable minimum. For 

that reason the wildtype group was filled up with already existing data of four to five mice 

that were previously tested in our research group. On the same account and due to 

technical limitations the Morris water maze was established and accomplished in equal 

shares by Yvonne Bouter and Katharina Dietrich.  

2.2.2 Balance Beam 

The balance beam task was used to assess balance and general motor functions and 

was described previously (Jawhar et al., 2010, Arendash et al., 2001). The beam 

consisted of a 1 cm wide and 50 cm long dowel that was attached to two columns 44 cm 
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above a padded surface. A 9 x 15 cm escape platform was attached at both ends of the 

beam. The aim of this test was for the mouse to stay on the beam and reach one of the 

two safe platforms within a given timeframe. Each mouse received three 60 s trials to 

perform the test and a minimum of 10 min between the trials for recovery. Prior to this, a 

test trial was given to familiarize the mouse with the beam. For each trial the mouse was 

placed in the center of the beam facing one of the platforms and then released. The 

latency to fall from the beam was recorded. If the mouse escaped to one of the platforms 

or stayed on the beam for the entire trial, the maximum time of 60 s was given. The 

average time of all three trials was taken as the final score for each mouse. The beam 

was cleaned with 70 % ethanol to reduce odor cues between the trials.  

2.2.3 String suspension 

The string suspension task was used to evaluate grip strength and general motor 

coordination and was described previously (Jawhar et al., 2010). The string suspension 

apparatus consists of a 50 cm cotton string (2 mm in diameter) tied between two wooden 

beams at a height of 35 cm above a padded surface. The aim of this test was for the 

mouse to climb across the string and reach one of the wooden beams. Each mouse 

received three 60 s trials to perform the test and a minimum of 10 min between the trials 

for recovery. For each trial the mouse was permitted to grasp the string by its forepaws 

and then released. The ability to climb across the string was assessed with a 0 to 5 rating 

score in the following way: 0 = unable to remain on the string; 1= stationary hanging only 

by fore- or hind paws; 2 = stationary hanging by fore- or hind paws with unsuccessful 

attempts to hold string by all four paws; 3 = hanging onto string by all four paws but no 

lateral movement (but being able to hold balance); 4 = hanging onto string using all four 

paws and tail and moving laterally; 5 = escaping to the edge of string and contacting 

wooden beam. The maximum score obtained during one trial was recorded. If the mouse 

felt off the string at any point during the trial it earned a score of 0. Each trial was stopped 

if a score of 5 was achieved. The average score of all three trials was taken as the final 

score for each mouse. The string was cleaned with 70 % ethanol to reduce odor cues 

between the trials. 

2.2.4 Inverted grip hang 

The inverted grip hang task was used to evaluate vestibular function as well as grip 

and muscle strength as described previously (Wittnam, 2012). The apparatus consisted of 

a wire grid (45 x 30 cm, grid spacing of 1 cm2) that was attached to two foam supports 40 

cm above a padded surface. The aim of this test was for the mouse to hang on the grid for 

a given time. Each mouse received a single 60 s trial. The mouse was placed onto the 
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center of the grid and the grid was carefully inverted. If the mouse hung on the grid for the 

entire 60 s or escaped over the edge of the grid, the maximum time of 60 s was given. If 

the mouse felt off the grid during the trial the latency to fall was recorded. The grid was 

cleaned with 70 % ethanol to reduce odor cues between the trials. 

2.2.5 Elevated Plus Maze 

The elevated plus maze was used to evaluate exploratory behavior and intensity of 

anxiety as described previously (Jawhar et al., 2010, Wittnam, 2012). The maze consisted 

of four arms (15 x 5 cm) arranged in an angle of 90° extending from a square center (5 x 5 

cm). Two of those arms were closed on three sides by a 15 cm high wall of clear plastic. 

The other two arms were open to the surroundings on all four sides. Both the closed and 

the open arms alternated in their arrangement. The plus maze was elevated 75 cm above 

a padded surface. Each mouse received a single 5 min trial. Prior to this trial, the maze 

was cleaned with 70 % ethanol to reduce odor cues. The mouse was placed in the center 

of the maze facing one of the open arms and allowed to freely explore the different arms. 

A digital camera (computar®/CBC (America) Corp., Commack, NY, USA) connected to 

ANY-Maze video tracking software (Stoelting Co., Wood Dale, IL, USA) was used to 

record total distance traveled as well as the time spent in each arm. Subsequently, the 

percentage of time in open arms and the ratio of total open arm entries to total arm entries 

were calculated. 

2.2.6 Cross maze 

The Cross maze was used to assess spontaneous alternation rates as an indication for 

spatial working memory as described previously (Jawhar et al., 2010). The maze was 

made of black plastic material and had four arms (30 x 8 x 15 cm) arranged in an angle of 

90° extending from a square center (8 x 8 cm). Each mouse received one single 10 min 

trial. Prior to this trial, the maze was cleaned with 70 % ethanol to reduce odor cues. 

Subsequently, the mouse was placed at the end of one arm facing the wall and allowed to 

freely explore the maze. In contrast to the manual analysis described in (Jawhar et al., 

2010) a digital camera (computar®/ CBC (America) Corp., Commack, NY, USA) 

connected to ANY-Maze video tracking software (Stoelting Co., Wood Dale, IL, USA) was 

used in the present study to record number of arm entries and total distance traveled. A 

successful arm entry was reached when all four paws of the mouse crossed the entrance 

of one arm. Alternation was defined as consecutive entries into all four arms of the maze 

in overlapping quadruplet sets. The maximum number of alternations possible was 

calculated as the total number of arm entries minus three. Alternation percentage was 
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then determined as follows: (Number of alternations made/number of alternations 

possible) x 100 (Jawhar et al., 2010). 

2.2.7 Morris water maze 

Morris water maze was used to assess spatial reference memory (Morris, 1984). The 

aim of this test was for the mouse to learn to use spatial cues to locate a hidden, circular 

platform (10 cm) in a circular pool (110 cm diameter) filled with tap water. The water was 

made opaque by adding non-toxic white paint and maintained at 20 °C for the test 

duration. The pool was divided into four virtual quadrants that were defined based on their 

spatial relationship to the platform: left, right, opposite and target quadrant, which contains 

the goal platform. Non-transparent curtains were attached to three sides of the pool to 

reduce distracting effects. A digital camera (computar®/CBC (America) Corp., Commack, 

NY, USA) connected to ANY-Maze video tracking software (Stoelting Co., Wood Dale, IL, 

USA) was used to record escape latency, swimming speed and quadrant preference. 

Each mouse underwent a nine-day long protocol including several trials for cued and 

acquisition training phase as well as one for the probe trial. Mice that were unable to swim 

due to severe motor disabilities, an impaired vision or even blindness were immediately 

excluded from testing and the following analyses (termination criteria). 

Testing began with three days of cued training. For these trials the platform was 

marked with a triangular flag. Mice were introduced into the water at the edge of the pool 

facing the wall. They were then given 60 s to find the submerged platform. Mice that failed 

to find the platform in 60 s were gently guided to it. All mice were allowed to sit on the 

platform for 10 s before being removed from the pool. To prevent hypothermia, all mice 

were kept in front of a heat lamp for 3 min before being returned to their home cage. Each 

mouse received four training trials per day with an average inter-trial interval of 15 min for 

recovery. Both the location of the platform and the position at which mice were introduced 

into the pool changed between trials.  

Twenty-four hours after the last day of cued training, mice performed five days of 

acquisition training. For this part of testing, the flag was removed from the platform. In 

addition to the distal cues existing in the room (furniture e.g.) proximal visual cues were 

attached to the outside of the pool and the inside of the curtains. The platform location 

remained stationary for each mouse throughout training. At the start of each trial, mice 

were introduced into the pool from one of four predefined entry points. The order in which 

these entry points were used varied between training days (Vorhees and Williams, 2006). 

To avoid quadrant bias, the experimental cohorts were randomly split and trained to find 
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one of two different platform locations. Trials were conducted as during the cued training 

phase.  

Twenty-four hours after the last acquisition trial, a probe test was performed to assess 

spatial reference memory. The platform was removed from the pool, and mice were 

introduced into the water from a novel entry point. Mice were then allowed to swim freely 

for 1 min while their swimming path was recorded. 

2.2.8 Fear conditioning 

Fear conditioning was used to assess intensity of anxiety as well as conditional 

learning and memory and was performed as described previously (Bouter et al., 2014). A 

soundproof isolation cubicle contained a standard conditioning chamber (17 x 17 x 26 cm) 

with a stainless steel grid floor. The walls of the conditioning chamber were covered with 

black and white checkered paper and the steel grid was connected to a shock generator 

(Sound and Shocker Generator, Ugo Basile, Gemonio, VA, Italy). An additional light was 

attached to the ceiling of the cubicle. A Fire-i™ digital camera (Unibrain, San Ramon, CA, 

USA) was connected to ANY-Maze video tracking software (Stoelting Co., Wood Dale, IL, 

USA) to record freezing behavior of animals. Each mouse received a 3-day lasting fear 

conditioning protocol to apply contextual fear conditioning and tone fear conditioning.  

On the first day, each mouse was placed in the conditioning chamber and was allowed 

to freely explore the box for 150 s while baseline freezing was recorded. Subsequently, a 

tone (2000 Hz, 80 dB, conditioned stimulus) was presented for 30s. This tone was 

overlapped by a foot-shock (0.7 mA, unconditioned stimulus) within the last 2 s of the 

tone. The mouse stayed in the conditioning chamber for additional 30 s and was then 

returned to its home cage.  

On the second day, each mouse was placed in the same conditioning chamber again 

to assess contextual memory. Neither tones nor foot-shocks were presented. Freezing 

behavior was recorded for 210 s and the mouse was finally returned to its cage. 

On the last day of testing, each mouse was placed back in the conditioning chamber to 

assess tone memory. At that point the chamber was altered by means of white walls 

(instead of checkered ones), a covered floor and an acetic acid scent. After a 150 s 

habituation period a tone similar to the one used on the first day was presented for 

additional 30 s. Freezing behavior was recorded before and during the tone.  
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2.3 Molecular Biology 

2.3.1 DNA isolation for genotyping of transgenic mice 

Genomic DNA isolated from tail biopsies was used to genotype all transgenic mice. Tail 

biopsies of each mouse were collected in the central animal facility of the University 

Medical Center, Göttingen at about six to eight weeks of age. Lysis buffer [100 mM 

Tris/HCl (pH 8.5, Roth, Karlsruhe, Germany), 5 mM EDTA (AppliChem, Darmstadt, 

Germany), 0.2 % SDS (Biomol, Hamburg, Germany), 200 mM NaCl (Roth, Karlsruhe, 

Germany) ad 200 ml ddH2O and 10 µl/ml peqGOLD Proteinase K (PEQLAB 

Biotechnologie, Erlangen, Germany)] was added to each tail biopsy sample at a volume of 

500 µl. Samples were incubated at 400 rpm for 20 h at 56 °C in a Thermomixer Compact 

(Eppendorf, Hamburg, Germany). The next day, samples were centrifuged at 17 000 rpm 

for 20 min at 4 °C (Heraeus™Biofuge™Stratos™Centrifuge, Thermo Fisher Scientific Inc., 

Waltham, MA, USA). Subsequently, the supernatant of each sample was transferred to a 

new microcentrifuge tube with 500 µl of ice-cold isopropanol (Roth, Karlsruhe, Germany) 

and gently mixed. Samples were again centrifuged at 13 000 rpm for 10 min at RT 

(Heraeus™Pico™Centrifuge, Thermo Fisher Scientific Inc., Waltham, MA, USA). 

Afterwards, supernatants were discarded and each pellet was washed with 500 µl 70 % 

ice-cold EtOH (absolute ethanol, Merck, Darmstadt, Germany). Samples were again 

centrifuged at 13 000 rpm for 10 min at RT. Supernatants were discarded and pellets 

were dried at 55 °C (Thermomixer Compact, Eppendorf, Hamburg, Germany) for about  

2 h. Subsequently, each pellet was dissolved in 30 µl molecular-grade water (B Braun, 

Melsungen, Germany). Samples remained at 55 °C (Thermomixer Compact, Eppendorf, 

Hamburg, Germany) over night and were then stored at 4 °C. Prior to genotyping PCR all 

DNA samples were diluted to a concentration of 20 ng/µl in a total volume of 30 µl 

molecular-grade water.  

2.3.2 RNA isolation for qRT-PCR 

RNA was isolated from hippocampal tissue of male Tg4-42 mice as described 

previously (Bouter et al., 2014) and subsequently used for qRT-PCR. After weighing the 

frozen hippocampal tissue 1 ml peqGOLD TriFast™/Trizol (PEQLAB Biotechnologie, 

Erlangen, Germany) per 100 mg tissue was added. Samples were homogenized at  

800 rpm with about 10 strokes at RT using a Precision Overhead Stirrer (CAT Scientific, 

Paso Robles, CA, USA). After adding 0.2 ml Chloroform (Merck, Darmstadt, Germany) 

per 1 ml TriFast™/Trizol to each homogenate samples were shaken by hand for 15 s and 

then incubated for 10 min at RT. For separation of RNA samples were centrifuged at  

12 000 g for 15 min at 4 °C (Heraeus™Biofuge™Stratos™Centrifuge, Thermo Fisher 
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Scientific Inc., Waltham, MA, USA). The upper clear phase contained the RNA and was 

transferred to a new microcentrifuge tube. To precipitate the RNA 0.5 ml isopropanol 

(Roth, Karlsruhe, Germany) per 1 ml TriFast™/Trizol were added. Samples were gently 

mixed and incubated for 15 min on ice. After centrifugation at 12 000 g for 10 min at 4 °C 

the supernatants were discarded. Each RNA pellet was washed twice by adding 0.5 ml  

75 % EtOH (absolute ethanol, Merck, Darmstadt, Germany) and centrifuged at 12 000 g 

for 10 min at 4 °C. After washing the ethanol supernatants were removed and pellets were 

air-dried for 30 min at RT. Finally, RNA was dissolved in 30 µl RNase free water (B Braun, 

Melsungen, Germany), mixed well and stored at 4 °C over night.  

2.3.3 Preparation of DNA-free RNA (DNase digestion) 

RNA samples (see section 2.3.2) were subjected to digestion by desoxyribonucleases 

(DNases) using the following mixture: 3 µl 10X reaction buffer with MgCl2 for DNase I 

(Thermo Fisher Scientific Inc., Waltham, MA, USA), 2 µl DNase I (1 U/µl; Thermo Fisher 

Scientific Inc., Waltham, MA, USA ), 1 µl Recombinant RNasin® Ribonuclease Inhibitor 

(Promega, Madison, WI, USA). Six µl of this digestion mix were added to 24 µl of each 

previously prepared RNA sample, gently mixed and incubated at 37 °C for 1.5 h 

(Thermomixer Compact, Eppendorf, Hamburg, Germany). After incubation 70 µl of RNase 

free water (B Braun, Melsungen, Germany) and 0.4 ml TriFast™/Trizol (PEQLAB 

Biotechnologie, Erlangen, Germany) were added to each sample, again carefully mixed 

and incubated for 5 min at RT. Afterwards, 60 µl chloroform (Merck, Darmstadt, Germany) 

per sample were added. Samples were shaken by hand for 15 s and incubated for 3 min 

at RT. For separation of RNA samples were centrifuged at 12 000 g for 15 min at 4 °C 

(Heraeus™Biofuge™Stratos™Centrifuge, Thermo Fisher Scientific Inc., Waltham, MA, 

USA). The upper aqueous phase contained the RNA and was transferred to new a 

microcentrifuge tube. To precipitate the RNA 0.2 ml isopropanol (Roth, Karlsruhe, 

Germany) per sample were added. Samples were gently mixed and incubated for 15 min 

on ice. After centrifugation at 12 000 g for 10 min at 4 °C the supernatant was discarded. 

Each RNA pellet was washed twice by adding 0.5 ml 75 % EtOH (absolute ethanol, 

Merck, Darmstadt, Germany) and centrifuged at 12 000 g for 10 min at 4 °C. After 

washing the ethanol supernatants were removed and pellets were air-dried for 30 min at 

RT. Finally, RNA was dissolved in 30 µl RNase free water, mixed well and stored at  

-80 °C until further use. Prior to cDNA synthesis all RNA samples were diluted to a 

concentration of 1 µg/µl in a total volume of 20 µl RNase free water.  
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2.3.4 Determination of nucleic acid concentration 

Purity and concentration of DNA and RNA were measured using a Biophotometer 

(Eppendorf, Hamburg, Germany) and Eppendorf UVette® cuvettes (Eppendorf, Hamburg, 

Germany). Prior to determination of nucleic acid concentration molecular grade water (B 

Braun, Melsungen, Germany) was used as a blank for photometry readings. 

Concentration ratios were considered accurate if the 260/280 and 260/230 absorbance 

ratios were between 1.6 and 2.2.  

2.3.5 Reverse transcription 

Total RNA isolated from hippocampal tissue (see sections 2.3.2, 2.3.3) was subjected 

to reverse transcription to synthesize cDNA using the RevertAid First Strand cDNA 

Synthesis Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA). Reaction mixtures were 

prepared as described in Table 1 and incubated for 5 min at 25 °C, 1 h at 37 °C and 5 min 

at 70 °C in a labcycler (SensoQuest, Göttingen, Germany). Generated cDNA was diluted 

1:10 in RNase free water (B Braun, Melsungen, Germany) and used as the sample 

template for qRT-PCR. Obtained cDNA samples and dilutions were stored at -20 °C until 

further use. 

Table 1 │ Reaction mixture for reverse transcription. 

Reagent Volume 

Random Hexamer Primer (100 µM) 1.0 µl 

5X Reaction Buffer 4.0 µl 

RiboLock RNase Inhibitor (20 U/µl) 1.0 µl 

dNTP Mix (10 mM) 2.0 µl 

RevertAid Reverse Transcriptase (200 U/µl) 1.0 µl 

DNase digested RNA template (1 µg/µl) 11.0 µl 

Total volume per sample 20.0 µl 
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2.3.6 Primers 

All primers (Table 2) were used at a final concentration of 10 pmol/µl (100 pmol/µl 

primer stock was diluted 1:10 ddH2O) and were purchased from Eurofins (Eurofins MWG 

Operon, Ebersberg, Germany)  

Table 2 │ List of primers used for qRT-PCR and mouse genotyping. 

Name Sequence (5’ → 3’) Usage 

Synpr for CAA ATG CAA ACA TTG CAA AAA qRT-PCR 

Synpr rev GAC AGA GTA CGG GAG AGC CA qRT-PCR 

Nlgn1 for AGA ACC CAA TGT TCT CGC TG qRT-PCR 

Nlgn1 rev TCA ACT ATC GGC TTG GGG TA qRT-PCR 

Actb for ATG GAG GGG AAT ACA GCC C qRT-PCR 

Actb rev TTC TTT GCA GCT CCT TCG TT qRT-PCR 

Dlgh4 for TGT CTT CAT CTT GGT AGC GG qRT-PCR 

Dlgh4 rev CTC CAA TGA AGT CAG AGC CC qRT-PCR 

SNAP25 pan (for) CAG CTG GCT GAT GAG TCC CTG GAA 
A 

qRT-PCR 

SNAP25a rev TTG GTT GAT ATG GTT CAT GCC TTC 
TTC GAC ACG ATC 

qRT-PCR 

SNAP25b rev CAC ACA AAG CCC GCA GAA TTT TCC 
TAG GTC CGT C 

qRT-PCR 

Aβ3-42v4 for GTGACTCCTGACCTTCCAG mouse genotyping 

Aβ3-42v4 rev GTTACGCTATGACAACACC mouse genotyping 

 

2.3.7 Quantitative real-time polymerase chain reaction (qRT-PCR) 

All qRT-PCR experiments were conducted in collaboration with the Department of 

Neuropathology (University Medical Center, Göttingen). Gene expression levels of 

synaptic coding genes were analyzed using the DyNAmo Flash SYBR green qPCR Kit 

(Thermo Fisher Scientific Inc., Waltham, MA, USA) containing ROX as an internal passive 

reference dye. Prepared cDNA (see section 2.3.5) was used as the sample template for 

qRT-PCR. Quantitative RT-PCR reaction mixture was prepared on ice as described in 

Table 3. Forward and reverse primers are listed in Table 2. First, dilutions of cDNA were 

pipetted in 96-Well Multiply® PCR Plates (Sarstedt, Nürnbrecht, Germany) followed by the 

qRT-PCR reaction mix and finally sealed up a with transparent adhesive tape for PCR and 

sample storage (Sarstedt, Nürnbrecht, Germany). Plates were briefly centrifuged to avoid 

air bubbles in the reaction mix. The mouse β-Actin gene served as internal reference for 

normalizing transgene CT values. All reactions were performed with cycling parameters 
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described in Table 4 using the iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad 

Laboratories, Hercules, CA, USA).  

Table 3 │ Reaction mixture for qRT-PCR.  

Reagent Company Volume 

2X qPCR master mix Thermo Fisher Scientific Inc., 
Waltham, MA, USA 

12.5 µl 

ROX dye Thermo Fisher Scientific Inc., 
Waltham, MA, USA 

0.3 µl 

Forward Primer Eurofins MWG Operon, Ebersberg, 
Germany 

1.5 µl 

Reverse Primer Eurofins MWG Operon, Ebersberg, 
Germany 

1.5 µl 

ddH2O B Braun, Melsungen, Germany 4,2 µl 

cDNA (1:10 dilution) - 5.0 µl 

Total volume per sample  25.0 µl 

 

Table 4 │ Cycling Parameters for qRT-PCR. 

Step Temperature Time 

1 95 °C 10 min 

2 95 °C 15 s 

3 59 °C/ 62 °C 30 s 

4 repeat steps 2-3 for 40 cycles 

5 95 °C 1 min 

6 55 °C 30 s 

7 95 °C 30 s 

 

2.3.8 Polymerase chain reaction (PCR) 

Polymerase chain reaction for mouse genotyping was performed using reagents 

described in Table 5 as well as prepared dilutions of DNA samples (see section 2.3.1). 

PCR reaction mixtures were set up on ice as described in Table 5. Forward and reverse 

primers are listed in Table 2. First, DNA was pipetted in PCR tubes (Biozym Scientific, 

Hessisch Oldendorf, Germany) followed by PCR reaction mixture. Tubes were shortly 

mixed to avoid air bubbles. PCR reactions were performed with cycling parameters 

described in Table 6 using a labcycler (SensoQuest, Göttingen, Germany). 
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Table 5 │ Reaction mixture for genotyping PCR. 

Reagent Company Volume 

Forward primer Eurofins MWG Operon, Ebersberg, 
Germany 

1.0 µl 

Reverse primer Eurofins MWG Operon, Ebersberg, 
Germany 

1.0 µl 

dNTP Mix (100 mM) PEQLAB Biotechnologie, Erlangen, 
Germany 

2.0 µl 

MgCl2 (25 mM) Axon Laboratories, Kaiserslautern, 
Germany 

1.6 µl 

10X Reaction Buffer B Axon Laboratories, Kaiserslautern, 
Germany 

2.0 µl 

ddH2O B Braun, Melsungen, Germany 10.2 µl 

Taq DNA Polymerase (5 U/µl) Axon Laboratories, Kaiserslautern, 
Germany 

0.2 µl 

DNA (20 ng/µl) - 2.0 µl 

Total volume per sample  20.0 µl 

 

Table 6 │ Cycling Parameters for genotyping PCR. 

Step Temperature Time 

1 94 °C 3 min 

2 94 °C 45 s 

3 58 °C 1 min 

4 72 °C 1 min 

5 repeat steps 2 - 4 for 35 cycles 

6 72 °C 5 min 

7 4 °C ∞ 

 

2.3.9 DNA electrophoresis 

Products of PCR (see section 2.3.8) were analyzed using agarose gel electrophoresis. 

To get a 2 % gel 4 g agarose (SeaKem®LE Agarose, Lonza, Basel, Switzerland) were 

added to 200 ml previously prepared 1x TBE buffer [5x TBE buffer: 54 g Tris (base) (Roth, 

Karlsruhe, Germany), 26.5 g boric acid (Roth, Karlsruhe, Germany), 20 ml EDTA 

(AppliChem, Darmstadt, Germany) ad 1000 ml ddH2O]. This solution was boiled in a 

microwave at 560 W until the agarose was completely dissolved. After a brief cooling 

down 6 µl ethidium bromide (Roth, Karlsruhe, Germany) were added and the total solution 

was poured in a casting tray. A 20-pocket sample comb was plugged in, air bubbles were 

carefully removed and solution was allowed to solidify. Subsequently, the comb was 
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removed and the gel was placed in an electrophoresis chamber containing 1x TBE buffer. 

One µl of 10x agarose gel sample buffer were mixed with 10 µl PCR product and 

immediately pipetted into a well. Five µl DNA ladder (100 bp DNA ladder (no stain)  

0.2 mg/ml; Bioron, Ludwigshafen, Germany) were used and pipetted into a separate well. 

Electrophoresis was done using a Power Pack P25 power supply (Biometra, Göttingen, 

Germany) at 120 V for about 45 min to resolve the DNA. Afterwards, gels were analyzed 

under UV light with the help of the Gel Doc 2000 system (Bio-Rad, Hercules, CA, USA) 

and Quantity One software version 4.3.0 (Bio-Rad, Hercules, CA, USA).  

2.4 Electrophysiological recordings 

Hippocampal slices (see section 2.1.5) of Tg4-42 males and same-sex wildtype 

(C57BL/6J) littermate controls were tested at three, 12 and 24 months of age. Up to two 

slices from each brain were used. To make sure that these observations are independent 

each experimental series was performed on at least six to eight different animals of each 

genotype and age.  

All electrical recordings were conducted in collaboration with the Institute of Neuro- and 

Sensory Physiology (University Medical Center, Göttingen) and were performed as 

described previously (Fischer et al., 2009, Janc and Müller, 2014). An Oslo-style interface 

recording chamber that was kept at a temperature of 31 – 33 °C, continuously aerated 

with 95 % O2 – 5 % CO2 and perfused with oxygenated ACSF (3 - 4 ml/min; see section 

2.1.5 for chemical composition) was used for recording evoked field potentials. To prevent 

hippocampal slices from draining during the electrical recordings the slice chamber was 

covered by a lid with a small vent for positioning of the electrodes. Field excitatory 

postsynaptic potentials (fEPSPs) were evoked by 0.1 ms unipolar stimuli (S88 stimulator 

with PSIU6 stimulus isolation units, Grass Instruments, Warwick, RI, USA) and delivered 

via steel micro wire electrodes (50 µm in diameter, A-M Systems, Carlsborg, WA, USA) 

that were placed at the CA3/CA1 junction in acute hippocampal tissue slices. Stimulation 

of Schaffer collaterals elicited orthodromic responses that were recorded in stratum 

radiatum of the CA1 region using a glass electrode and a locally constructed extracellular 

DC potential amplifier. Recording electrodes were pulled from thin-walled borosilicate 

glass (GC150TF-10, Harvard Apparatus, Holliston, MA, USA) using a horizontal electrode 

puller (Model P-97, Sutter Instrument, Novato, CA, USA). Those electrodes were filled 

with ACSF solution and their tips were carefully trimmed to a resistance of about 5 MΏ. All 

electrophysiological data were sampled using an Axon Instruments Digitizer 1322A and 

pClamp 9.2 software (Molecular Devices, Sunnyvale, CA, USA). Sampling rate was  

20 kHz. 
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In the present study input-output curves, paired-pulse facilitation and post-tetanic 

potentiation (PTP), short-term potentiation (STP) as well as long-term potentiation (LTP) 

were recorded to assess neuronal excitability and synaptic plasticity. Applied stimulation 

protocols for those recordings are described in the appropriate results sections (see 

section 3.5).  

2.5 Immunohistochemistry 

2.5.1 Paraffin-embedding of mouse brains 

Hemisphere samples were prepared as described earlier (see section 2.1.3). After 

fixation in a 4 % phosphate-buffered formaldehyde solution (Roti®-Histofix 4 %, Roth, 

Karlsruhe, Germany) for at least one week samples were placed in an automatic tissue 

processor (TP 1020, Leica Biosystems, Nussloch, Germany) to dehydrate the tissue and 

immerse it in paraffin (Roth, Karlsruhe, Germany). In detail the following protocol was 

used: 4 % PBS-buffered formalin for 5 min, ddH2O for 30 min, 50%, 60%, 70%, 80% and 

90% EtOH (Chemie-Vertrieb, Hannover, Germany) for 1 h respectively, 2 x 1 h in 100% 

EtOH, Xylene (Roth, Karlsruhe, Germany) for 1 h, 2 x 1 h in melted Paraffin. Using a 

heated paraffin embedding module (Leica Biosystems, Nussloch, Germany) and 

embedding cassettes (Simport, Beloeil, Canada) hemisphere samples were embedded in 

solid paraffin blocks.  

2.5.2 Slice preparation of paraffin-embedded hemispheres 

Paraffin-embedded tissue blocks (see section 2.5.1) were cut in 4 µm thick sagittal 

sections using a microtome (microm cool-cut HM 335 E; Thermo Fisher Scientific Inc., 

Waltham, MA, USA). Slices were then mounted on microscope Superfrost®Plus slides 

(Menzel-Gläser, Braunschweig, Germany) in a 55 °C ddH2O bath (paraffin tissue floating 

bath, Medax Nagel, Kiel, Germany), dried on a 55 °C hot plate for about 20 min and 

incubated at 37 °C over night (Thermo Fisher Scientific Inc., Waltham, MA, USA).  
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2.5.3 Antibodies 

All antibodies used for immunohistochemistry are listed in Table 7 and Table 8. 

Table 7 │ Primary antibodies used for DAB immunohistochemistry. 

Name Host Immunogen Isotype Company Working 
dilution 

24311 rabbit pan-Aβ polyclonal Synaptic Systems, 
Göttingen, Germany 

1:500 

Aβ42 rabbit C-terminus of 
Aβ42 

polyclonal Synaptic Systems, 
Göttingen, Germany 

1:500 

GFAP rabbit GFAP polyclonal Dako Denmark A/S, 
Glostrup, Denmark 

1:1000 

Iba-1 rabbit Iba-1 polyclonal Synaptic Systems, 
Göttingen, Germany 

1:500 

 

Table 8 │ Secondary antibodies used for DAB immunohistochemistry. 

Name Company Working 
dilution 

Polyclonal swine anti-rabbit 
immunoglobulins, biotinylated 

Dako Denmark A/S, Glostrup, 
Denmark 

1:200 

 

2.5.4 3,3’-Diaminobenzidine (DAB) immunohistochemistry 

DAB immunohistochemistry was performed on 4 µm sagittal paraffin sections (see 

section 2.5.2) from either perfused (for stainings with antibodies against GFAP and Iba-1) 

or non-perfused (for stainings with antibodies against Aβ) wild-type and transgenic mice. 

First, sections were deparaffinized and rehydrated using various incubations as follows: 2 

x 5 min xylene (Roth, Karlsruhe, Germany), 10 min 100 % EtOH (Chemie-Vertrieb, 

Hannover, Germany), 5 min 95 % EtOH, 5 min 70 % EtOH, 1 min ddH2O. Blocking of 

endogenous peroxidase was done by incubating sections in 30 % H2O2 (Roth, Karlsruhe, 

Germany) in 0.01 M PBS (Biochrom, Berlin, Germany) for 30 min. After washing in ddH2O 

for 1 min antigen retrieval was performed. For this purpose sections were boiled in 0.01 M 

citrate buffer (pH 6.0; Roth, Karlsruhe, Germany) for 10 min using a microwave (at 800 W 

until boiling, then at 80 W). Sections were allowed to cool down for 15 min. 

Permeabilisation of membranes was achieved by washing the sections with ddH2O for  

1 min, incubate them in 0.1 % Triton X 100 (Roth, Karlsruhe, Germany) in 0.01 M PBS for 

15 min and finally wash them with 0.01 M PBS for 1 min. Sections were additionally 

incubated in 88 % formic acid (Roth, Karlsruhe, Germany) for 3 min and washed with  

0.01 M PBS for 6 min to reveal intracellular Aβ. Unspecific protein binding sites were 
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blocked for 1 h at RT using 90 µl of milk blocking solution [4 % powdered milk (Roth, 

Karlsruhe, Germany) in 0.01 M PBS and 10 % FCS (Biochrom, Berlin, Germany)]. Prior to 

this, sections were circled with a lipid pen (Pap pen, Kisker Biotech, Steinfurt, Germany) 

to divide slides into discrete areas. Next to blocking incubation with primary antibodies 

(see Table 7) diluted to the desired concentration in 10 % FCS in 0.01 M PBS (90 µl per 

section) was done overnight at RT. 

On the second day sections were washed 3 times for 5 min with 0.1 % Triton X 100 in 

0.01 M PBS and once with 0.01 PBS for 1 min. Subsequently, sections were incubated for 

1 h at 37 °C with a biotinylated secondary antibody (see Table 8) diluted to the 

appropriate concentration in 10 % FCS in 0.01 M PBS (90 µl per section). After an 

additional washing step with 0.01 M PBS slices were subjected to avidin-biotin complex 

(ABC) incubation [VECTASTAIN® Elite® ABC Kit (Vector Laboratories, Burlingame, CA, 

USA): components A and B in 10 % FCS in 0.01 M PBS at a dilution of 1:100 each] for  

1.5 h at 37 °C. Following a further washing step (0.01 M PBS) staining was visualized 

using DAB as a chromagen [DAB solution: 5 ml 0.05 M Tris/HCl (pH 7.5, Roth, Karlsruhe, 

Germany), 0.1 ml DAB stock solution (25 mg/ml, Roth, Karlsruhe, Germany), 0.0025 ml 

30 % H2O2]. Incubation time with DAB varied depending on the type of antibody used. 

Remaining DAB solution was washed off using 0.01 M PBS. Filtered hematoxylin (Roth, 

Karlsruhe, Germany) was used for counterstaining and was applied for 40 s. After a last 

washing step with tap water to remove the remaining hematoxylin sections were 

dehydrated as follows: 1 min 70 % EtOH, 5 min 95 % EtOH, 10 min 100 % EtOH, 2 x 5 

min Xylene. Sections were embedded using Roti®-Histokitt (Roth, Karlsruhe, Germany) 

and microscope cover slips (Menzel-Gläser, Braunschweig, Germany). 

2.5.5 4‘,6-Diamidino-2-phenylindol (DAPI) staining 

DAPI staining was performed on 4 µm sagittal paraffin sections (see section 2.5.2) from 

perfused wild-type and transgenic mice (see section 2.1.3). First, sections were 

deparaffinized and rehydrated using various incubations as follows: 2 x 5 min xylene 

(Roth, Karlsruhe, Germany), 10 min 100 % EtOH (Chemie-Vertrieb, Hannover, Germany), 

5 min 95 % EtOH, 1 min 70 % EtOH, 1 min ddH2O. Subsequently, sections were 

incubated in 4‘,6-Diamidino-2-phenylindol [DAPI (Roth, Karlsruhe, Germany), 15 mg/l] and 

washed with 0.01 M PBS (Biochrom, Berlin, Germany) for 1 min, respectively. Sections 

were embedded using Fluorescence Mounting Medium (Dako North America Inc., 

Carpinteria, CA, USA) and microscope cover slips (Menzel-Gläser, Braunschweig, 

Germany). 
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2.5.6 Image acquisition 

Images of DAB-stained sections were acquired using an Olympus BX51 microscope 

(Olympus, Shinjuku-ku, Tokyo, Japan), a Moticam Pro 282 B camera and MoticImages 

Plus 2.0 software (Motic, Hong Kong). Arrangement of images was done with GIMP 

software (GNU Image Manipulation Program, version 2.8.10 for windows).  

2.6 Data analysis 

2.6.1 Analysis of behavioral data 

Collection of data for each behavioral test was performed as described in section 2.2. 

Except for the Morris water maze and fear conditioning, differences between groups were 

tested using a two-way analysis of variance (ANOVA) followed by a t-test for independent 

samples (unpaired t-test).  

For the Morris water maze as well as the fear conditioning, differences between groups 

were tested using repeated measure analysis of variance (RM-ANOVA) and t-test for 

dependent samples (paired t-test) considering different parameters as indicated. First, a 

RM-ANOVA was performed on each data set to test for higher order interactions. If RM-

ANOVA revealed a main effect for one of the parameters tested, analysis was completed 

by t-tests for dependent samples.  

Statistical analyses were calculated using STATISTICA for windows version 10.0 

(StatSoft, Inc., Tulsa, OK, USA). All data are given as mean ± standard error of the mean 

(SEM). Significance levels are indicated as follows: ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05.  

2.6.2 Analysis of electrophysiological data 

Collection of data was performed as described in section 2.4 and section 3.5. In 

general, data sets were excluded from analyses if the position of the electrode shifted 

during measurement, the shape of a single curve was excessively unstable (due to 

hypoxia, e.g.) and did not show a clear potentiation after high-frequency stimulation or the 

absolute value for the baseline measurement was greater than -0.5.  

Differences between groups were tested using repeated measures analysis of variance 

(RM-ANOVA) and t-test for independent samples considering different parameters as 

indicated. First, a RM-ANOVA was performed on each data set to test for higher order 

interactions. If RM-ANOVA revealed a main effect for one of the parameters tested, 

analysis was completed by t-tests for independent samples. Statistical analyses were 

calculated using STATISTICA for windows version 10.0 (StatSoft, Inc., Tulsa, OK, USA). 
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All data are given as mean ± standard deviation (SD). Significance levels are indicated 

as follows: **p ≤ 0.01; *p ≤ 0.05. 

2.6.3 Analysis of qRT-PCR data 

Data of qRT-PCR was collected as described earlier (see section 2.3.7). Data sets 

were excluded if the melting curve profile showed additional peaks. Expression levels 

were measured in duplicates for each gene and mouse genotype. The obtained CT values 

were averaged and statistical analyses were calculated using the Relative Expression 

Software Tool V2.0.13 (REST 2009, Qiagen, Hilden, Germany) (Pfaffl et al., 2002). The 

expression ratio results of the studied transcripts were tested for significance by Pair Wise 

Fixed Reallocation Randomization Test. All data are given as mean ± 95 % CI. 

Significance levels are indicated as follows: *p ≤ 0.05. 
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3 Results 

The aim of the present study was to characterize the recently generated Tg4-42 mouse 

model. The Tg4-42 line is the first mouse model expressing exclusively N-terminally 

truncated Aβ4-42. In a first step, the neuropathology resulting from Aβ4-42 expression was 

investigated. Afterwards, the potential neurotoxic effects of Aβ4-42 in vivo and in vitro were 

analyzed regarding the behavioral phenotype, effects on synaptic function and plasticity 

as well as possible alternations in the expression levels of selected genes. All of the 

following analyses were performed with hemizygous Tg4-42 male and female mice at 

three (young) and 12 (old) months of age unless indicated otherwise. Age- and sex-

matched wildtype (WT) C57BL/6J mice were used as a control group. 

3.1 Aβ4-42 expression in Tg4-42 mice 

DAB immunohistochemistry was applied to assess Aβ expression in Tg4-42 mice. 

Using the pan-Aβ antibody 24311 an abundant intraneuronal Aβ immunoreactivity was 

found in the CA1 pyramidal cell layer of the hippocampus in three-month-old Tg4-42 mice 

(Figure 10A). This immunoreactivity was even more pronounced when using an Aβ42-

specific antiserum (Figure 10B). The expression of Aβ in the CA1 region declined during 

aging as seen in 12-month-old Tg4-42 mice (Figure 10C). As in the hippocampus, 

intraneuronal Aβ aggregation was also initially detected in the striatum (Figure 10D), 

piriform cortex (Figure 10E) and inferior colliculus (Figure 10F) at three months of age. No 

extracellular plaque deposition was detected in either young or aged mice. 

3.2 Gliosis in Tg4-42 mice 

DAB immunohistochemistry was also used to assess astrogliosis and microgliosis in 

Tg4-42 mice. Reactive microglial cells and astrocytes were detected in areas showing 

aggregation of Aβ, i.e. the hippocampus, as early as three months of age (Figure 11). 

Microgliosis was even more pronounced in three-month-old Tg4-42 mice (Figure 11B) 

compared to age-matched WT mice (Figure 11A). Likewise, an increased amount of 

astroglia was found in three-month-old Tg4-42 mice (Figure 11D) compared to same-aged 

control mice (Figure 11C). 
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Figure 10 │ Aβ expression in Tg4-42 mice. 

DAB immunohistochemistry was performed on the brains of 3- and 12-month-old Tg4-42 mice. (A-

B) Abundant intraneuronal Aβ immunoreactivity was found in the CA1 region of the hippocampus in 

3-month-old Tg4-42 mice using the polyclonal antiserum 24311 (A) and the polyclonal Aβ42 

antibody (B). (C) An age-dependent reduction in positive cells was obvious in 12-month-old Tg4-42 

mice (Aβ42 antibody). (D-F) Additionally, Aβ accumulations were detected in striatum (D), piriform 

cortex (E) and inferior colliculus (F) using the Aβ42 antibody. Scale bar: 50 µm.  

 

 

Figure 11 │ Increased microgliosis and astrogliosis in Tg4-42 mice. 

DAB immunohistochemistry was performed on the brains of 3-month-old Tg4-42 mice. (A-B) 

Increased microgliosis with Iba-1 staining was found in 3-month-old Tg4-42 (B) mice compared to 

age-matched wildtype mice (A). (C-D) Increased astrogliosis was observed in 3-month-old Tg4-42 

(D) mice compared to same-aged control mice (C) using a GFAP antibody. Scale bar: 50 µm.  
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3.3 Neuron loss in Tg4-42 mice 

The fluorescent DNA stain 4‘,6-Diamidino-2-phenylindol (DAPI) was used to analyze 

loss of neuronal cells in the hippocampal CA1 region in young and aged Tg4-42 mice. 

Number of neurons was not altered comparing three-month-old Tg4-42 mice (Figure 12B) 

with WT mice (Figure 12A). In contrast, number of neuronal cells was affected in Tg4-42 

mice (Figure 12D) at 12 months of age as seen by a thinner CA1 pyramidal cell layer of 

the hippocampus compared to WT mice (Figure 12C). 

  

Figure 12 │ Age-dependent loss of neuronal cells in CA1 region in Tg4-42 mice. 

Fluorescent immunohistochemistry was performed on the brains of 3- and 12-month-old Tg4-42 

and WT mice using DAPI staining. (A-B) No change in number of neuronal cells was found 

between WT (A) and Tg4-42 (B) mice at 3 months of age. (C-D) In contrast, 12-month-old Tg4-42 

(D) mice revealed a loss in neuron number in the hippocampal CA1 region as seen by a thinner cell 

layer in comparison to age-matched WT (C) mice. Scale bar: 50 µm.  

Taken together, Tg4-42 mice develop intraneuronal Aβ accumulations, a pronounced 

inflammatory response as well as a reduction of neuronal cells in hippocampal CA1 

region. In order to determine if the present Aβ pathology was sufficient to cause 

behavioral impairments, groups of young and old Tg4-42 mice performed a battery of 

behavioral tests.  
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3.4 Behavioral characterization of Tg4-42 mice 

The standard battery of behavioral tests included balance beam, string suspension and 

inverted grip hang tasks to assess motor function. Furthermore, elevated plus maze and 

cross maze were performed to analyze anxiety and exploratory behavior as well as 

working memory, respectively. Spatial reference memory and associative memory were 

evaluated using the Morris water maze and the fear conditioning paradigm. In general, 

differences between groups were tested using two-way analysis of variance (two-way 

ANOVA). If the ANOVA revealed a significant difference, a t-test for independent samples 

(unpaired t-test) was performed.  

3.4.1 Motor function of Tg4-42 mice 

In the present study, motor capabilities were analyzed using the balance beam, string 

suspension and inverted grip hang task (Figure 13).  

Balance beam was used to assess balance and general motor abilities. The aim of this 

test was for the mouse to stay on the beam and reach one of two safe platforms within a 

given timeframe. This test revealed no significant differences between the genotypes at all 

ages tested (Figure 13A, two-way ANOVA, main effect of genotype: p = 0.3403). 

However, the age affected the performance on the balance beam (Figure 13A, two-way 

ANOVA, main effect of age: p = 0.0003). Both groups of three-month-old Tg4-42 and WT 

mice stayed significantly longer on the beam than the 12-month-old mice, respectively 

(Figure 13A, unpaired t-test (3 vs. 12 mo.): p = 0.0248 (WT), p = 0.0074 (Tg4-42)).  

Grip strength and motor coordination was analyzed with the string suspension task. 

The aim of this test was for the mouse to climb on the string and reach one of the wooden 

beams. Three- and 12-month-old Tg4-42 mice exhibited no impairments compared to the 

control animals (Figure 13B, two-way ANOVA, main effect of genotype: p = 0.4596). As 

with the balance beam, the performance on the string suspension was affected by age 

(Figure 13B, two-way ANOVA, main effect of age: p = 0.0266). In this test, transgenic 

animals performed worse at 12 months of age in comparison to three-month-old animals 

of the same group (Figure 13B, unpaired t-test (3 vs. 12 mo.): p = 0.3960 (WT),  

p = 0.0315 (Tg4-42)).  

The inverted grip hang task is a test of vestibular function and muscle strength. The 

aim of this test was for the mouse to hang on the inverted grid for a given time. No 

differences were found between wildtype and transgenic mice at both ages tested (Figure 

13C, two-way ANOVA, main effect of genotype and age: p = 0.1726). 
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In summary, behavioral testing demonstrated that motor functions are unaffected in 

young and aged Tg4-42 mice.  

 

Figure 13 │ Intact motor functions were demonstrated in Tg4-42 mice. 

Balance beam, string suspension as well as inverted grip hang task were performed to analyze 

general motor functions, balance and grip strength. Tg4-42 and wildtype mice were tested at 3 and 

12 months of age. (A) Balance beam, (B) string suspension and (C) inverted grip hang revealed no 

significant differences between WT and transgenic mice at both ages tested. n = 10 – 15 mice per 

group (groups: sex- and age-matched). Mean ± SEM. Two-way ANOVA and unpaired t-test. 

Significance levels: **p ≤ 0.01, *p ≤ 0.05. 
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3.4.2 Anxiety and exploratory behavior of Tg4-42 mice 

Basal anxiety and exploratory behavior were assessed using the elevated plus maze 

task. This maze consists of two closed and two open arms that alternates around a center 

and is elevated above the surface. Mice have to choose between their tendency to 

explore a new environment and their tendency to avoid a bright and open setting. The 

time spent in the open arms was unaltered between control and transgenic mice at all age 

tested (Figure 14A, Two-way ANOVA, main effect of genotype: p = 0.0593). However, the 

age affected the performance on the elevated plus maze (Figure 14A, two-way ANOVA, 

main effect of age: p = 0.0000). WT as well as transgenic mice spent significant less time 

in the open arms at 12 months of age compared to the earlier time point (Figure 14A, 

unpaired t-test (3 vs. 12 mo.): p = 0.0000 (WT), p = 0.0173 (Tg4-42)). Additionally, the 

total distance traveled was affected in transgenic mice at three months of age (Figure 

14B, unpaired t-test, WT vs. Tg4-42, 3 mo.: p = 0.038). Moreover, both WT as well as 

transgenic mice exhibited reduced distance traveled at 12 months of age compared to 

three months of age, respectively (Figure 14B, unpaired t-test (3 vs. 12 mo.): p = 0.0000 

(WT), p =0.0000 (Tg4-42)).  

The elevated plus maze task revealed that basal anxiety and exploratory behavior are 

not affected in Tg4-42 mice at both ages tested.  

3.4.3 Working memory of Tg4-42 mice 

The cross-maze alternation task was used to assess spatial working memory. 

Alternation rates in the cross-maze were equivalent between control and transgenic mice 

at both ages examined (Figure 15A, two-way ANOVA, main effect of genotype: p = 0.464; 

main effect of age: p = 0.4848). Analyzing the total distance traveled, no significant 

differences between WT and Tg4-42 mice were found at three or 12 months of age 

(Figure 15B, two-way ANOVA, main effect of genotype: p = 0.3728). However, transgenic 

and wildtype mice showed a reduction in total distance traveled at 12 months of age in 

comparison to the 3-month time point (Figure 15B, two-way ANOVA, main effect of age:  

p = 0.0000, unpaired t-test (3 vs. 12 mo.): p = 0.0002 (WT), p = 0.0006 (Tg4-42)).  

The cross-maze task demonstrated that working memory is not impaired in young and 

aged Tg4-42 mice. 
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Figure 14 │ Basal anxiety was unaffected in Tg4-42 mice. 

Time spent in the open arms as well as distance traveled was assessed. Tg4-42 and wildtype mice 

were tested at 3 and 12 months of age. (A) Mice of both genotypes spent a similar percentage of 

time in the open arms at 3 and 12 months of age. (B) However, 3-month-old transgenic mice 

covered a greater distance compared to the age-matched control group. Distance traveled was not 

different between the 12-month-old groups. n = 10 – 15 mice per group (groups: sex- and age-

matched). Mean ± SEM. Two-way ANOVA and unpaired t-test. Significance levels: ***p ≤ 0.001,  

*p ≤ 0.05.  

 

 

Figure 15 │ No deficits in working memory were found in Tg4-42 mice. 

Spontaneous alternation rates were analyzed as an indication for spatial working memory. Tg4-42 

and wildtype mice were tested at 3 and 12 months of age. (A) Alternation rates were equivalent 

between WT and Tg4-42 mice at both 3 and 12 months of age. (B) Further, distance traveled 

revealed no significant differences between control and transgenic mice at both ages tested. n = 10 

– 15 mice per group (groups: sex- and age-matched). Mean ± SEM. Two-way ANOVA and 

unpaired t-test. Significance levels: ***p ≤ 0.001. 
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3.4.4 Spatial reference memory of Tg4-42 mice 

Spatial reference memory was assessed using the Morris water maze (MWM). The aim 

of this test was for the mouse to learn to use spatial cues to find a direct path to a hidden 

platform in a circular pool (Figure 16A). Each mouse was subjected to a nine-day long 

protocol including cued and acquisition training as well as one probe trial on the last day 

(Figure 16B).  

For the Morris water maze, differences between groups were tested using repeated 

measure analysis of variance (RM-ANOVA) and t-test for dependent samples (paired t-

test) considering different parameters as indicated. First, a RM-ANOVA was performed on 

each data set to test for higher order interactions. If RM-ANOVA revealed a main effect for 

one of the parameters tested, analysis was completed by t-tests for dependent samples. 

  

Figure 16 │ Schematic setup and diagram of trial sequences of Morris water maze. 

(A) Morris water maze procedure was used to analyze spatial reference memory in Tg4-42 mice. 

The setup was composed of a hidden circular platform in a circular pool filled with tap water. The 

pool was divided into 4 virtual quadrants that were defined based on their relationship to the 

platform: left (L), right (R), opposite (O) and target (T) quadrant which contains the goal platform. 

Proximal cues were attached to the outside of the pool. (B) Each mouse underwent a nine-day long 

protocol including 3 days of cued training, 5 days of acquisition training and 1 day for the probe 

trial. 
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Testing began with three days of cued training with a marked platform to familiarize the 

mice with the pool and to exclude effects from possible sensory and/or motor deficits. 

Wildtype and Tg4-42 mice showed successively decreased escape latencies over the 

three days of training at both ages tested (Figure 17A+C, RM-ANOVA, main effect of 

days: p = 0.0000; paired t-test (1. vs. 3. day): p = 0.0000 (WT, 3 mo.), p = 0.0002 (Tg4-42, 

3 mo.), p = 0.0033 (WT, 3 mo.), p = 0.0348 (Tg4-42, 12 mo.)). Additionally, escape 

latencies were similar for WT and transgenic mice in response to training at both three 

and 12 months of age (Figure 17A+C, RM-ANOVA, main effect of genotype: p = 0.0801). 

Moreover, a significant main effect of age was found for all groups at both ages tested 

(Figure 17A+C, RM-ANOVA, main effect of age: p = 0.0017). In detail, we found a 

significant difference between three-month-old Tg4-42 and 12-month-old Tg4-42 mice 

(Figure 17A+C, RM-ANOVA, main effect of age: p =0.0057). Swimming speed did neither 

differ between transgenic and wildtype mice (Figure 17B+D, RM-ANOVA, main effect of 

genotype: p = 0.1553) nor within one genotype over the three days of training (Figure 

17B+D, RM-ANOVA, main effect of days: p = 0.3104). Thus, cued training confirmed that 

all mice had intact vision and the appropriate motor abilities to swim. 

Twenty-four hours after the last cued training trial, mice started to perform acquisition 

training. The marked platform was replaced by a submerged platform and proximal cues 

were attached to the outside of the pool and the inside of the curtains. Mice were tested 

for their learning abilities to find the location of the platform by using those proximal and 

additional distal cues. Progressively decreased escape latencies over the five days of 

training were found for wildtype and Tg4-42 mice at three months of age as well as for 12-

month-old Tg4-42 mice (Figure 18A+C, RM-ANOVA, main effect of days: p = 0.0000; 

paired t-test (1. vs. 5. day): p = 0.0123 (WT, 3 mo.), p = 0.0052 (Tg4-42, 3 mo.),  

p = 0.0484 (Tg4-42, 12 mo.)). Since 12-month-old WT mice already reached the goal 

platform in less than 17 s on the first day of testing they were not able to show a decrease 

in escape latencies (Figure 18C, paired t-test (1. vs. 5. day): p = 0.0924). Escape 

latencies were similar between wildtype and Tg4-42 mice in response to training at three 

months of age (Figure 18A, RM-ANOVA, main effect of genotype: p = 0.0748). In contrast, 

escape latencies were significantly different between WT and transgenic mice in response 

to training at 12 months of age (Figure 18C, RM-ANOVA, main effect of genotype:  

p = 0.0379). Thus, aged Tg4-42 mice showed a slightly impaired spatial learning 

compared to same-aged wildtype animals. Although, swimming speed did not differ 

between transgenic and wildtype mice at both ages tested (Figure 18B+D, RM-ANOVA, 

main effect of genotype: p = 0.0853) a significant main effect of days was detectable 

within the 12-month-old Tg4-42 group (Figure 18D, paired t-test (1. vs. 5. day):  

p = 0.0483).  
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Figure 17 │ Intact vision and motor abilities were found in Tg4-42 mice.  

Cued training was performed to familiarize the mice with the pool and to rule out effects from 

potential motor and/ or sensory deficits. Tg4-42 and wildtype mice were tested at 3 and 12 months 

of age. (A+C) All mice showed successively decreased escape latencies over 3 days of training. 

Escape latencies were similar for wildtype and transgenic mice in response to training. (B+D) 

Swimming speed did not differ between wildtype and transgenic mice and was not affected at both 

ages tested. n = 10 – 15 mice per group (groups: sex- and age-matched). Mean ± SEM. RM-

ANOVA and paired t-test.  
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Figure 18 │ Subtle effects on spatial learning were demonstrated in aged Tg4-42 mice. 

Mice performed acquisition training to learn to use proximal and distal cues to navigate a direct 

path to the hidden platform. Tg4-42 and wildtype mice were tested at 3 and 12 months of age. 

(A+C) Mice showed progressively reduced escape latencies over 5 days of training. However, 12-

month-old Tg4-42 mice displayed a slightly impaired spatial learning compared to the age-matched 

wildtype animals as seen by higher escape latencies. (B+D) Swimming speed did not differ 

between the genotypes at 3 and 12 months of age. n = 10 – 15 mice per group (groups: sex- and 

age-matched). Mean ± SEM. RM-ANOVA and paired t-test.  
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Twenty-four hours after the last acquisition training trial, mice performed one probe trial 

to assess their spatial reference memory. The platform was removed from the pool and 

the swimming path was recorded for each mouse (see Figure 16). At three months of age 

Tg4-42 mice as well as wildtype controls showed no impairment in spatial reference 

memory as they spent a significant higher percentage of time in the target quadrant 

(Figure 19A, RM-ANOVA, main effect of quadrants: p = 0.0000; paired t-test: WT:  

p = 0.0123 T vs. L, p =0.0001 T vs. R & O; Tg4-42: p = 0.003 T vs. L, p = 0.0148 T vs. R, 

p =0.0242 T vs. O). Swimming speed was not affected at this age (Figure 19B, unpaired  

t-test: p = 0.2598). A repeated-measures ANOVA revealed a significant main effect of 

quadrants and additionally of the interaction between quadrants and genotype at 12 

months of age (Figure 19C, RM-ANOVA, main effect of quadrants: p = 0.0000, main effect 

of quadrants*genotype: p = 0.0221). This means that 12-month-old wildtype mice still 

displayed a significant preference for the target quadrant (Figure 19C, RM-ANOVA, main 

effect of quadrants: p = 0.0000 paired t-test: p = 0.0001 T vs. L & R, p =0.0002 T vs. O). In 

contrast, Tg4-42 mice demonstrated a significantly reduced learning behavior as they 

showed no preference for the target quadrant (Figure 19C, RM-ANOVA, main effect of 

quadrants: p = 0.1463). Again, swimming speed did not differ between both genotypes at 

12 months of age (Figure 19D, unpaired t-test: p = 0.2398). 

Taken together, the Morris water maze test revealed impairments in spatial learning as 

well as spatial reference memory in aged Tg4-42 mice.  

  



   Results 

66 

 

 

Figure 19 │ Aged Tg4-42 mice displayed an impaired spatial reference memory. 

The probe trial was given at the end of the learning phase (AT) to assess spatial reference 

memory. Tg4-42 and wildtype mice were tested at 3 and 12 months of age. Quadrant preference 

and swimming speed are plotted for the first 30 s of the probe trial. (A) Wildtype and transgenic 

mice showed no impairment in spatial reference memory at 3 months of age. All mice spent a 

significant greater percentage of time in the target quadrant. (C) In contrast, Tg4-42 mice displayed 

distinct spatial reference deficits at 12 months of age as they showed no preference for the target 

quadrant. Wildtype mice still revealed an intact spatial reference memory at the same age. (B+D) 

No differences in swimming speed between wildtype and transgenic mice were detected at any age 

tested. Abbreviations: T – target, L – left, R – right, O – opposite quadrant. n = 10 – 15 mice per 

group (groups: sex- and age-matched). Mean ± SEM. RM-ANOVA and paired t-test (quadrant 

preference), unpaired t-test (swimming speed). Significance levels refer to the corresponding target 

quadrant: ***p ≤ 0.001; **p ≤ 0.01, *p ≤ 0.05. 
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3.4.5 Associative memory of Tg4-42 mice 

Conditional learning and associative memory was assessed using the fear conditioning 

test. Each mouse was subjected to a three-day long protocol including one training trial as 

well as one test for contextual and tone memory respectively (Figure 20). This protocol 

contained the pairing of a conditioned stimulus (CS) with an unconditioned stimulus (US) 

within the initial training session.  

For the fear conditioning task, differences between groups were tested using repeated 

measure analysis of variance (RM-ANOVA) and t-test for dependent samples (paired t-

test) considering different parameters as indicated. First, a RM-ANOVA was performed on 

each data set to test for higher order interactions. If RM-ANOVA revealed a main effect for 

one of the parameters tested, analysis was completed by t-tests for dependent samples. 

  

Figure 20 │ Schematic diagram of fear conditioning procedure. 

The fear conditioning task was used to analyze conditional learning and memory in Tg4-42 mice. 

Mice received one day of training including a time period to familiarize with the conditioning 

chamber followed by the presentation of a tone for 30 s that was overlapped by a foot-shock (red 

lightning) within the last two seconds of the tone. On the second day mice were placed in the same 

chamber to assess contextual memory (without tone or foot-shock). Twenty-four hours later tone 

memory was assessed in an altered conditioning chamber by presenting the tone that was already 

given on the first day. Freezing behavior was recorded on all days as indicated: training, context, 

pre-tone, tone. Abbreviations: CS – conditioned stimulus, US – unconditioned stimulus.  
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Twenty-four hours after the initial training session mice were placed in the same 

conditioning chamber. However, no tone or foot shock was given on this day. Analyzing 

the freezing behavior of all mice revealed that both the test phase as well as the genotype 

are important (Figure 21A, RM-ANOVA, main effect of test phase: p = 0.0041, main effect 

of test phase*genotype: p = 0.0197). This means that WT mice were still able to recognize 

the familiar chamber as they displayed a significantly higher percentage of freezing 

behavior in the context testing (Figure 21A, paired t-test, p = 0.0006 (training vs. context)). 

In contrast, transgenic mice maintained a similar percentage of freezing behavior for 

training and context testing (Figure 21A, paired t-test, p = 0.6718 (training vs. context)) 

and thus showed an impaired context memory.  

Tone testing was performed on day three in an altered conditioning chamber. In 

contrast to the previous context testing a tone similar to the one used on the first day was 

presented. The test also showed an impact on freezing behavior (Figure 21B, RM-

ANOVA, main effect of test phase: p = 0.0000). Both WT and transgenic mice were able 

to recognize the striking tone as they displayed a significantly higher freezing behavior 

during the tone period compared to the pre-tone period (Figure 21B, paired t-test (pre-

tone vs. tone), p = 0.002 (WT), p = 0.0001 (Tg4-42)). As a consequence, this test 

revealed no deficits in tone memory in both groups.  

Taken together, the fear conditioning task demonstrated that associative memory is 

impaired in aged Tg4-42 mice as seen by an altered context memory. However, tone 

memory was unaffected in Tg4-42 mice. 
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Figure 21 │ Impaired contextual, but intact tone memory was found in aged Tg4-42 mice. 

Tg4-42 and wildtype mice were tested at 12 months of age (A) Tg4-42 mice showed an impaired 

contextual memory as they did not display a significant difference in freezing between training and 

context. Same-aged WT mice were still able to remember the conditioning chamber on the second 

day. (B) Both WT and Tg4-42 mice demonstrated an intact tone memory as seen by a significant 

increase in freezing behavior between pre-tone and tone period. n = 12 – 16 mice per group 

(groups: sex-matched). Mean ± SEM. RM-ANOVA and paired t-test. Significance levels:  

***p ≤ 0.001; **p ≤ 0.01. 
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3.5 Electrophysiological recordings in Tg4-42 hippocampal tissue slices 

The behavioral characterization of Tg4-42 mice revealed deficits in spatial learning, 

spatial reference memory and context memory. Hence, it was examined whether Aβ4-42 is 

capable of inducing impairments in synaptic plasticity.  

Synaptic function and plasticity were assessed using electrophysiological recordings in 

acute hippocampal tissue slices. Field EPSPs were evoked by unipolar stimuli that were 

delivered via steel micro wire electrodes. Those electrodes were placed at the CA3/CA1 

junction and elicited orthodromic responses by stimulating the Schaffer collaterals. Field 

EPSPs were recorded in stratum radiatum of the CA1 region using a glass electrode filled 

with ACSF solution (Figure 22A). Acute hippocampal tissue slices of Tg4-42 males and 

same-sex wildtype littermate controls at three, 12 and 24 months of age were subjected to 

three different test paradigms, i.e. input-output curves, paired-pulse facilitation as well as 

recordings for short-term and long-term potentiation (Figure 22B). 

  

Figure 22 │ Schematic illustration of electrode positioning and representative recordings. 

(A) Experiments were performed using acute hippocampal tissue slices of Tg4-42 mice. Field 

EPSPs were evoked by 0.1 ms unipolar stimuli delivered via an electrode that was placed at the 

CA3/ CA1 junction (‘stimulation’). Orthodromic response was recorded in stratum radiatum of CA1 

region using a glass electrode (‘recording’). Figure adapted from (Bliss and Collingridge, 1993) (B) 

Sample traces of fEPSPs are shown before (baseline) and after (PTP, STP, LTP) high frequency 

stimulation for 3-month-old WT and Tg4-42 slices.  

Differences between groups were tested using repeated measures analysis of variance 

(RM-ANOVA) and t-test for independent samples considering different parameters as 

indicated. First, a RM-ANOVA was performed on each data set to test for higher order 

interactions. If RM-ANOVA revealed a main effect for one of the parameters tested, 

analysis was completed by t-tests for independent samples. 
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3.5.1 Neuronal excitability in Tg4-42 mice 

Responses to a single pulse stimulation, also referred to as input–output (IO) curves 

were recorded for stimulation intensities of 10 – 150 µA to assess neuronal excitability and 

basal synaptic function. Recorded fEPSP amplitudes were normalized to their absolute 

minimum. Four consecutive stimulus trains were pooled and averaged for each stimulus 

intensity. 

Recordings revealed a characteristic run of all input-output curves as seen by higher 

normalized fEPSP amplitudes with increasing stimuli (Figure 23A-C, RM-ANOVA, main 

effect of stimuli: p = 0.0000). Furthermore, overall statistical analyses yielded various 

impacts on the behavior of the curve (Figure 23A-C, RM-ANOVA, main effect of 

stimulus*genotype: p = 0.0000, main effect of stimulus*age: p = 0.0001, main effect of 

genotype: p = 0.0081). More precisely, only three-month-old Tg4-42 mice showed a left 

shift of the input-output curve and hence an altered basal excitatory synaptic transmission 

as seen by significantly higher normalized fEPSP amplitudes compared to age-matched 

wildtype mice (Figure 23A, RM-ANOVA, main effect of genotypes p = 0.0031). In contrast, 

this increased neuronal excitability was not obvious in 12- and 24-month-old Tg4-42 mice 

compared to wildtype controls (Figure 23B-C, RM-ANOVA, main effect of genotypes  

p = 0.1273 (12 mo.) and p = 0.9286 (24 mo.)). Additional analysis of half-maximal stimulus 

intensity confirmed this increased neuronal excitability in three-month-old Tg4-42 mice 

compared to the age-matched control group (Figure 23D, unpaired t-test, p = 0.0041). 

An additional analysis was performed comparing the IO curves of wildtype and 

transgenic mice with advancing age, respectively. Normalized fEPSP amplitudes of  

Tg4-42 mice were at similar levels between three and 24 months of age (Figure 23A-C, 

RM-ANOVA, main effect of age p = 0.6260). In contrast, wildtype mice revealed a left shift 

of the IO curves between three and 24 months of age (Figure 23A-C, RM-ANOVA, main 

effect of age p = 0.012).  
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Figure 23 │ Alterations in basal synaptic transmission were evident in young Tg4-42 mice. 

Acute hippocampal tissue slices of Tg4-42 males and same-sex wildtype controls were used to 

assess neuronal excitability and basal synaptic function. Input–output curves were recorded for 

stimulation intensities of 10–150 µA. (A) 3-month-old Tg4-42 mice showed an altered basal 

excitatory synaptic transmission compared to age-matched wildtype mice as seen by a left shift of 

the input-output curve. (B+C) This increased neuronal excitability was not found in 12- and 24-

month-old Tg4-42 mice compared to age-matched wildtype controls. (D) Analyzing the half-

maximal stimulus intensity (dashed lines in A-C) revealed a variation in synaptic transmission only 

in 3-month-old Tg4-42 mice. n = 10 - 22 slices per group. Mean ± SD. Significance level refers to 

the age-matched WT group. RM-ANOVA and unpaired t-test. Significance level: ** p ≤ 0.01. 
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3.5.2 Synaptic short-term plasticity in Tg4-42 mice 

Paired-pulse facilitation (ppf) was quantified as a paradigm for synaptic short-term 

plasticity (Zucker, 1989) using the half maximal stimulus intensity obtained from input-

output recordings. This twin-pulse stimulation was measured at eight different 

interstimulus intervals (25 – 200 ms) in 25 ms increments as the ratio of the second 

fEPSP to the first fEPSP amplitude. Four consecutive stimulus trains were pooled and 

averaged for each interstimulus interval.  

Recordings revealed a characteristic run of ppf curves as the amplitudes decayed 

rapidly with interstimulus interval duration (Figure 24A-C, RM-ANOVA, main effect of 

interval: p = 0.0000). Moreover, shape of the curves were found to be dependent on the 

interactions of interval and genotype as well as interval and age (Figure 24A-C, RM-

ANOVA, main effect of interval*genotype: p = 0.0003, main effect of interval*age:  

p = 0.0078). This means that three-month-old Tg4-42 mice showed a significantly 

decreased short-term plasticity at the shortest interpulse duration of 25 ms (Figure 24A+D, 

unpaired t-test, p=0.0439). However, long-term exposure to N-truncated Aβ4‑42 did not 

affect short-term plasticity in 12- as well as in 24-month-old Tg4-42 compared to wildtype 

mice (Figure 24B+C, RM-ANOVA, main effect of genotypes p=0.1635 (12 mo.) and 

p=0.785 (24 mo.)). 
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Figure 24 │ Subtle effects on short-term plasticity were found in young Tg4-42 mice. 

Paired-pulse facilitation (ppf) was quantified as a paradigm for synaptic short-term plasticity in  

Tg4-42 males and same-sex wildtype controls. This twin-pulse stimulation was measured at 

various interstimulus intervals (25–200 ms) as the ratio of the second fEPSP to the first fEPSP 

amplitude. (A) The overall short-term plasticity was affected in 3-month-old Tg4-42 mice compared 

to wildtype controls. Note that the amplitudes differ significantly between wildtype and Tg4-42 at an 

interpulse interval of 25 ms. (B+C) No difference in ppf was found between Tg4-42 and wildtype 

mice at 12 and 24 months of age. (D) Representative sample traces of ppf (interstimulus interval: 

25 ms) recorded in 3-month old WT and Tg4-42 slices. n = 10 – 21 slices per group. Mean ± SD. 

Significance level refers to age-matched WT group (at 25 ms). RM-ANOVA and unpaired t-test. 

Significance level: *p ≤ 0.05. 
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3.5.3 Short-term and long-term plasticity in Tg4-42 mice 

Effects of N-truncated Aβ4-42 on post-tetanic potentiation (PTP), short-term (STP) as 

well as long-term potentiation (LTP) were examined at the Schaffer collateral CA1 

pathway. Baseline fEPSP was determined using the half-maximal stimulus intensity 

obtained from input-output recordings as well as a low stimulation frequency and was 

recorded for 10 minutes. Potentials were measured every 15 s and 4 traces were 

averaged for one minute. Different forms of potentiation were induced by applying three 

tetanic stimulus trains of 100 Hz for one second every five minutes. After the third tetanic 

stimulus, recordings were continued for additional 65 minutes. Absolute fEPSP amplitudes 

were normalized to the average of pre-tetanus baseline fEPSP amplitudes. Post-tetanic 

potentiation was defined as the maximal response within one minute after the third tetanic 

stimulus. Short-term potentiation (STP) and long-term potentiation (LTP) were defined as 

the period between 12th – 21st min and 65th – 75th min after induction, respectively. 

Induction of potentiation by three high-frequency stimuli caused a clear PTP of fEPSP 

amplitudes in all groups tested (Figure 25A-C). Using a repeated measures ANOVA, 

analysis revealed a main effect of genotype for PTP (Figure 25A-C, D, RM-ANOVA, main 

effect of genotypes: p = 0.0218). However, when comparing each single WT group with 

the age-matched transgenic group this effect was no longer obvious (Figure 25D, 

unpaired t-test, WT vs. Tg4-42, p = 0.3461 (3 mo.), p = 0.2781 (12 mo.), p = 0.0727 (24 

mo.)).  

Following PTP, short-term potentiation was analyzed in these recordings. Short-term 

potentiation remained stable in Tg4-42 and WT slices (Figure 25A-C). Further, STP was 

unaltered in Tg4-42 slices compared to WT slices at three, 12 and 24 months of age 

(Figure 25A-C, E, RM-ANOVA, main effect of genotypes p = 0.2331 (3 mo.), p = 0.1489 

(12 mo.), p = 0,0533 (24 mo.)).  

Besides, slices of wildtype and transgenic mice showed stable LTP after the high-

frequency stimulation at all ages tested (Figure 25A-C). Remarkably, long-term 

potentiation was not affected in three-, 12- and 24-month-old Tg4-42 mice compared to 

wildtype controls (Figure 25A-C, F, RM-ANOVA, main effect of genotypes p = 0.1925). 

Taken together, neurophysiological recordings revealed that basal synaptic 

transmission is altered in young Tg4-42 mice. However, neither short-term nor long-term 

potentiation was affected in Tg4-42 mice at any age tested.  
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Figure 25 │ No deficits in STP and LTP were found in Tg4-42 mice at any age tested. 

Figure is continued and described on the next page. 
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Figure 25 │ No deficits in STP and LTP were found in Tg4-42 mice at any age tested. 

Effects of Aβ4-42 on synaptic plasticity were assessed in hippocampal slices of Tg4-42 males and 

same-sex wildtype controls. PTP was defined as the maximal response within 1 min after the third 

tetanic stimulus. STP and LTP were defined as the period between 12
th
 – 21

st
 min and 65

th
 – 75

th
 

min after induction, respectively. (A-C) Induction of potentiation by three high-frequency stimulus 

trains (filled arrows) caused a clear PTP of fEPSP amplitudes that did not differ among the groups 

at 3, 12 and 24 months of age. Recordings of STP revealed stable amplitudes in hippocampal 

slices of Tg4-42 and WT mice at all ages tested. Moreover, STP was not significantly different 

between the groups tested. Slices of wildtype and transgenic mice showed stable LTP after the 

high-frequency stimulation at all ages tested. Notably, long-term potentiation was not affected in 3-, 

12- and 24-month-old Tg4-42 mice compared to wildtype controls (D-F) Summarized bar graphs for 

effects of Aβ4-42 on PTP (D), STP (E) and LTP (F). No significant differences were found between 

WT and transgenic mice at any age evaluated neither for PTP nor for STP and LTP. Abbreviations: 

PTP – Post-tetanic potentiation, STP – Short-term potentiation, LTP – Long-term potentiation, mo – 

age in months. n = 10 – 12 slices per group. Mean ± SD. RM-ANOVA and unpaired t-test. 
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3.6 Gene expression analysis of synaptic markers 

Neurophysiological recordings revealed an increased neuronal excitability in three-

month-old Tg4-42 mice. Therefore, relative gene expression levels of selected synaptic 

markers were analyzed using qRT-PCR in three-month-old mice. In a pilot study, 

synaptoporin (Synpr) and SNAP25 (SNAP25a, SNAP25b) as well as neuroligin 1 (Nlgn) 

and PSD95 (Dlgh4) were examined as presynaptic and postsynaptic markers, 

respectively.  

Analysis of gene expression levels revealed a significant down-regulation of 

synaptoporin and neuroligin 1 in Tg4-42 mice compared to the control group (Figure 26, 

Pairwise fixed reallocation randomization test, p = 0.037 (Synpr), p = 0.035 (Nlgn)). 

Expression levels of SNAP25 and PSD95 showed no significant changes between 

wildtype and transgenic mice (Figure 26, Pairwise fixed reallocation randomization test,  

p = 0.842 (SNAP25a), p =0.495 (SNAP25b), p = 0.743 (Dlgh4)).  

 

Figure 26 │ Changes in gene expression of synaptic markers were shown in Tg4-42 mice. 

Analysis of expression levels of synaptic markers were performed using hippocampal tissue of 3-

month-old male Tg4-42 and WT mice. Normalization was performed against the housekeeping 

gene β-Actin. Expression levels of Synpr and Nlgn were significantly down-regulated in Tg4-42 

mice compared to control group. No changes in expression levels of 2 isoforms of SNAP25 and 

Dlgh4 were found between wildtype and transgenic mice. n = 7 – 8 mice per group. Mean ± 95 % 

CI. Pairwise Fixed Reallocation Randomization Test. Significance levels refer to Tg4-42 mice 

compared to WT animals (dashed line represents WT standard). Significance level: *p ≤ 0.05. 
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4 Discussion 

4.1 N-truncated Aβ variants in AD etiology 

In addition to the knowledge about various C-terminal modifications (e.g. Prelli et al., 

1988, Miller et al., 1993, Näslund et al., 1994) mounting evidence suggested a role of N-

truncated Aβ species in the etiology of AD since the eighties of the last century. Masters 

and colleagues demonstrated that the amyloid plaque cores of AD individuals are 

composed of a single major protein component of about 4-5 kDa that contained a 

truncated NH2 terminus (Masters et al., 1985a). In the following years, many groups 

discovered various N-truncated Aβ species, Aβ4-42 i.a., in brain samples of AD patients 

(Miller et al., 1993, Roher et al., 1993, Näslund et al., 1994, Saido et al., 1995, Gouras et 

al., 2000, Sergeant et al., 2003, Guzmán et al., 2014). Lewis and coworkers used SELDI-

TOF (surface-enhanced laser desorption/ionization time-of-flight) mass spectrometry to 

analyze extracted peptides of AD samples. They detected a peak representing Aβ4-42 

which was the most dominant peak within all samples tested (Lewis et al., 2006). Beyond 

that, an additional study used immunoprecipitation in combination with mass 

spectrometric analysis to determine the Aβ isoform composition in three brain regions of 

FAD and SAD subjects as well as non-demented controls. Aβ4-42 was found to be one of 

the most dominant isoforms in the hippocampus and cortex in AD brains (Portelius et al., 

2010).  

Based on those findings the question arose if the occurrence of N-truncated species 

has an influence on AD pathology. Using sedimentation analyses, electron microscopy, 

circular dichroism and cell culture, it was shown that “N-terminal deletions enhance 

aggregation of Aβ into neurotoxic, β-sheet fibrils” (Pike et al., 1995b). Furthermore, the 

authors suggested that those amino-terminal deletions initiate or at least contribute to Aβ 

deposition (Pike et al., 1995b). Additional studies analyzing Aβ isoforms with a 

pyroglutamate at position 3 revealed that N-truncated peptides displayed an increased 

toxicity in vitro and had a higher aggregation propensity, an increased hydrophobicity and 

an altered pH-dependent solubility profile (Russo et al., 2002, Schilling et al., 2006, 

Schlenzig et al., 2009). N-truncated Aβ species demonstrated a strong propensity to form 

stable aggregates as well as a high toxicity in vitro and in vivo. Particularly, Aβ4-42 showed 

one of the highest aggregation propensities and displayed the formation of oligomers. The 

Aβ4-42 peptide had a strong toxic effect when studied in primary cortical neurons and 

induced working memory deficits after intraventricular injection into wildtype mouse brains 

(Bouter et al., 2013).  
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In the last few years, the generation of mouse models harboring N-terminal truncated 

Aβ variants has gained more and more attention. Especially the N-terminally modified Aβ 

species pyroglutamate-amyloid-β (pE3-Aβ) has been extensively analyzed in the TBA2, 

TBA2.1/2.2, APPSLPS1KI, 5XFAD, TBA42 and FAD42 mouse models (Wirths et al., 2009, 

Alexandru et al., 2011, Casas et al., 2004, Wittnam et al., 2012). However, other N-

truncated Aβ variants, such as the highly abundant Aβ4-42 form, were neglected and little is 

known about the toxic effects of these Aβ forms in vivo. 

4.2 N-truncated Aβ4-42 in a new mouse model 

The aim of the present study was to analyze the neurotoxic effects of Aβ4-42 in a novel 

mouse model which had been recently generated in our lab (Bouter et al., 2013). The 

Tg4-42 mouse line is the first model expressing exclusively N-truncated Aβ4-42 without 

having any mutations which is in sharp contrast to most mouse models analyzed so far. 

The transgene construct consisting of a Thy-1 promoter and a TRH signal peptide directs 

Aβ4-42 through the secretory pathway and enables its extracellular release (Bouter et al., 

2013). Finally, due to the characteristics of the Thy-1 promoter (Caroni, 1997) human  

Aβ4-42 is expressed in neurons. The effectiveness of using such a Thy-1 – TRH construct 

was shown in other mouse models like TBA2 (Wirths et al., 2009), TBA2.1 and TBA2.2 

(Alexandru et al., 2011), TBA42 (Wittnam et al., 2012) as well as ETNA (Becker et al., 

2013). Unlike other mouse models such as TBA42 and TBA2 the new Tg4-42 line does 

not need the activity of QC to form N-truncated Aβ (Wittnam et al., 2012, Wirths et al., 

2009). In these aforementioned mouse lines at least two different Aβ isoforms are 

produced. Therefore, the Tg4-42 mice represent a more “cleaner” mouse model as they 

initially generate only Aβ4-42. However, the possibility that Aβ4-42 is further cleaved cannot 

be excluded. 

Young Tg4-42 mice revealed a distinct pattern of Aβ deposition. This accumulation was 

demonstrated in a region-specific manner correlating with the expression pattern of the 

Thy-1 promoter (Caroni, 1997). Aside from intracellular Aβ deposits found in striatum, 

piriform cortex and inferior colliculus Tg4-42 mice revealed a strong Aβ pathology in the 

CA1 region of the hippocampus. Accumulation of intraneuronal Aβ declined with 

advancing age in these mice. This is well in line with other mouse models showing a 

decrease in intracellular Aβ deposits while aging (e.g. Wirths et al., 2001, Oddo et al., 

2003, Christensen et al., 2008b, Jawhar et al., 2010). However, it should be mentioned 

that all those aforementioned mouse models displayed an age-dependent plaque 

pathology, while this is not the case in the Tg4-42 mouse model. Even at late age Tg4-42 

mice do not develop plaques. As mentioned before, only minor Aβ deposits were 
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detectable in the hippocampal CA1 region at 12 months of age. It was suggested that the 

reduction in intracellular Aβ reactivity is due to the severe neuron loss shown in these 

mice and that these small deposits are left fragments of disintegrated cells which 

contained Aβ (Bouter et al., 2013). A similar pathology was also seen in the TBA2.1 

mouse model which showed intracellularly high Aβ reactivity in intact cells at young ages 

and a severe neuron loss as well as extracellular deposits at later stages (Alexandru et 

al., 2011). 

4.3 Gliosis in Tg4-42 mice 

Inflammation is known to be a characteristic feature of AD (Akiyama et al., 2000). 

Microglia and astrocytes were investigated in Tg4-42 mice as cellular mediators of 

inflammation. Previously, diverse studies showed that Aβ is capable of stimulating 

microglia resulting in an activation of different inflammatory signaling pathways (Akiyama 

et al., 2000). Likewise, exposure of cultured astrocytes to Aβ increased the production of a 

wide range of inflammation-related factors (Wyss-Coray and Rogers, 2012). Increased 

astrogliosis as well as microgliosis were found in the Tg4-42 line as early as three months 

of age. Iba1 and GFAP positive cells were present in brain regions with Aβ accumulations, 

notably in the CA1 region of the hippocampus.  

Previously, several studies reported that reactive microglia and astrocytes appeared in 

close vicinity to (extracellular) Aβ deposits both in human AD brains (Combs, 2009, 

Sofroniew and Vinters, 2010, respectively) as well as in brains of transgenic mouse 

models (e.g. Games et al., 1995, Frautschy et al., 1998, Stalder et al., 1999, Oakley et al., 

2006). In addition, astrogliosis and/or microgliosis were also observed in mouse models 

showing less extracellular but high intracellular Aβ levels, e.g. APPSLPS1KI (Casas et al., 

2004), TBA2 (Wirths et al., 2009), TBA2.1/TBA2.2 (Alexandru et al., 2011) and TBA42 

(Wittnam et al., 2012). This is in good agreement with our observations in Tg4-42 mice 

since reactive astrocytes as well as microglia were detected in parallel to intraneuronal Aβ 

accumulations. Thus, irrespective of the question about the causal connection, it could be 

stated that there is a direct link between Aβ and inflammation. Moreover, since the Tg4-42 

mouse model expresses exclusively one N-truncated Aβ species the work of Thal and 

colleagues cannot be ignored (Thal et al., 2000). This group found that astrocytes 

containing N-truncated Aβ fragments predominantly appeared in the vicinity of N-

truncated Aβ deposits. In contrast, Aβ-containing astrocytes were rarely detected in close 

proximity of full-length Aβ. The authors concluded that astrocyte-driven removal of 

extracellular Aβ may be possible that is followed by lysosomal processing. However, 

astrocytes may only take up N-truncated Aβ whereas full-length Aβ cannot be processed 
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(Thal et al., 2000). On the contrary, Russo et al. described a significant resistance of 

AβN3(pE)-40/42 peptides to degradation by astrocytes thereby increasing the time period 

where toxic effects can appear (Russo et al., 2002). However, the questions if astrocytes 

are capable of taking up Aβ4-42 or if this N-truncated species develop a similar resistance 

to degradation by the mentioned mediators still remained unclear. Yet, the present data 

suggests that the specific characteristics of Aβ accumulations found in Tg4-42 promote 

the formation of a severe astro- and microgliosis that might exacerbate the ongoing 

neuropathology. Nevertheless, a positive role of inflammation in terms of a contribution to 

Aβ clearance cannot be excluded and further analyses are required.  

4.4 Neuron loss in Tg4-42 mice 

One of the main objectives in understanding AD-related pathologies is the investigation 

of neuron loss. Several attempts were taken to reproduce this known hallmark in 

transgenic mice. However, especially the first APP transgenic mice were not successful in 

this regard. Neither Tg2576 (Irizarry et al., 1997a) nor PDAPP (line 109) mice (Irizarry et 

al., 1997b) developed neuronal loss even at late ages. In contrast, APP23 mice exhibited 

a loss of neurons in the CA1 region of the hippocampus although this was relatively minor 

(~ 14 %) compared to what is observed in AD patients (Calhoun et al., 1998). Beyond 

that, mice harboring multiple mutations in both the APP gene and the PS1 gene displayed 

a more substantial neuron loss. For example, APPSLPS1KI mice revealed an age-

dependent neuron loss of about 33 – 49 % in hippocampal CA1 area (Casas et al., 2004, 

Breyhan et al., 2009, Brasnjevic et al., 2013). Similar to this, the number of neurons in the 

fifth cortical layer was decreased by 38 % in the multi-transgenic 5XFAD mouse model 

(Jawhar et al., 2010). 

In the present study, Tg4-42 and WT mice demonstrated a comparable number of 

neuronal cells at three months of age using DAPI-staining. However, at 12 months of age 

the CA1 layer was visibly thinner in Tg4-42 mice compared to WT mice. This observation 

was analyzed in more detail in our lab employing unbiased stereology. The neuron 

number was determined in the hippocampal CA1 region of young and aged Tg4-42 mice. 

Three-month-old Tg4-42 mice showed no differences in the number of neurons, whereas 

a severe neuron loss of 49 % was detectable in Tg4-42 at 12 months of age (Bouter et al., 

2013).  

These findings are in good agreement with other mouse models expressing N-

truncated Aβ variants. Wirths et al. detected a loss of calbindin-positive Purkinje cells in 

TBA2 mice (Wirths et al., 2009). A similar mouse model showed a severe loss of 

hippocampal cells (CA1) ranging from 35 % in three-month-old mice to almost 50 % at five 
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months of age (Alexandru et al., 2011). Likewise, 6-month-old homozygous ETNA mice 

demonstrated a striatal cell loss of 45 % (Becker et al., 2013).  

The prominent neuronal loss occurred in a brain region which previously displayed an 

abundant accumulation of intraneuronal Aβ. This was not surprising since various studies 

established a direct causal relationship between intraneuronal Aβ accumulation and 

subsequent neuron loss (e.g. Wirths and Bayer, 2010). For example, in the 

aforementioned APPSLPS1KI the age-dependent neuron loss was directly correlated with 

accumulation of intraneuronal Aβ, Thioflavin-S positive intracellular material and an 

atrophy of the entire hippocampus (Casas et al., 2004, Breyhan et al., 2009). Strikingly, 

this hypothesis was underlined by findings in the 5XFAD mouse model. In these mice 

substantial neuron loss was found in a brain region (fifth cortical layer) with abundant 

intracellular Aβ accumulation. In contrast, the CA1 region revealed neither intraneuronal 

Aβ nor a decrease in the number of neurons (Jawhar et al., 2010). Additionally, all mouse 

models expressing N-truncated Aβ species (TBA2, TBA2.1hom, ETNA) exhibited 

intraneuronal Aβ accumulations prior to a loss of neuronal cells (Wirths et al., 2009, 

Alexandru et al., 2011, Becker et al., 2013). Furthermore, an APP transgenic mouse 

model was described that did not develop any plaques until 24 months of age but 

displayed intraneuronal Aβ accumulations and a severe neuron loss (Tomiyama et al., 

2010). Thus, it can be concluded that the neuron loss in Tg4-42 is a direct consequence 

of the intraneuronal Aβ accumulations.  

Taken together, the Tg4-42 mice develop intraneuronal Aβ accumulations, severe 

inflammation as well as a distinct neuron loss. In a next step we evaluated possible 

behavioral changes in these mice assessing motor function, anxiety levels and cognitive 

functions. 

4.5 Behavioral characterization of Tg4-42 mice 

4.5.1 Motor function of Tg4-42 mice 

Motoric abnormalities are common in AD patients and worsen as the disease 

progresses (Scarmeas et al., 2004, Wang et al., 2006). Since impairments in posture and 

gait appertain to the neurologic symptoms even in early stages of AD (Lalonde et al., 

2012), various mouse models have been used to model motor dysfunctions and difficulties 

in coordinating movements. In sum, these analyses revealed a list of conflicting results. 

On one hand, several APP or APP/PS1 transgenic mice showed motor deficits as they 

were not able to achieve balance and reach a platform, grasp on a string or stay on a 

rotarod for a given time. This was true e.g. in 5XFAD (Jawhar et al., 2010), TBA42 
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(Wittnam et al., 2012), Tg2576 (King and Arendash, 2002), APP23 (van Dam et al., 2003) 

as well as in APPSLPS1KI (Wirths et al., 2006) mice. On the other hand, some studies 

could not detect such motor deficits in transgenic mouse models. Normal performances 

on balance beam, string suspension or rotarod were found in 3xTg-AD (Giménez-Llort et 

al., 2007), APPSwe (line E1-2; Savonenko et al., 2003) and APP23 (Lalonde et al., 

2002a) mice, for example. Likewise, Tg4-42 mice showed no development of motor 

dysfunction as they performed equally to age-matched control animals in all applied motor 

tests. Apart from methodological factors such as different apparatuses, age and genetic 

background of mice, the unequal distribution of intraneuronal Aβ accumulations and Aβ 

plaques in motor-related brain areas may explain these contrasting data. However, an 

intact motor performance in Tg4-42 also facilitates the accomplishment of more 

challenging and complex tests that rely on different forms of memory. 

4.5.2 Anxiety and exploratory behavior of Tg4-42 mice 

Alongside with cognitive decline a vast majority of MCI and AD patients suffer from 

neuropsychiatric symptoms like delusions, hallucinations, agitation/aggression, 

depression, apathy as well as anxiety (Lyketsos et al., 2002). These symptoms are mostly 

summarized as “behavioral and psychological symptoms of dementia (BPSD)” (Giménez-

Llort et al., 2007). It is self-evident that modeling these non-cognitive symptoms in 

transgenic mice is an even more ambitious goal. Apart from human behavior traits like 

delusion and hallucination being impossible to recapitulate in mice other symptoms such 

as agitation or anxiety might be easier to address.  

The present study used the elevated plus maze task to assess anxiety and exploratory 

behavior. This maze consists of two closed and two open arms that alternates around a 

center and is elevated above the surface. Mice have to choose between their tendency to 

explore a new environment and their tendency to avoid a bright and open setting. 

Increased entries and time spent in the open arms indicate a reduced anxious behavior 

(Karl et al., 2003). It is believed that this altered behavior is similar to the disinhibition seen 

in AD patients (cf. Webster et al., 2014). Young and aged Tg4-42 mice showed no 

alterations in their anxiety levels when compared to aged-matched control mice.  

Similar results were obtained in studies with Tg2576 (Arendash et al., 2004), 3xTg-AD 

(Giménez-Llort et al., 2007), PD-APP (line J20, Wright et al., 2013), APP23 (Lalonde et 

al., 2002a), and APPSwe (line C3-3, E1-2, Savonenko et al., 2003) mice. In contrast, it 

was also reported that mice demonstrated a decreased anxiety phenotype such as the 

5XFAD (Jawhar et al., 2010), TBA42 (Wittnam et al., 2012) and APPSLPS1KI (Faure et al., 

2011) models. In light of these results it remains unclear whether or not these differences 
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are due to methodological variations, the various distribution patterns of Aβ accumulations 

or age differences. Moreover, the difficulties in replicating BPSD seem to persist and 

additional tests are required to investigate these AD-related neuropsychiatric symptoms.  

The emphasis in modeling AD pathologies in transgenic mice has widely been set on 

the investigation of memory impairments since cognitive decline is the most prominent 

hallmark of AD. In the present study, various tests were used to assess different cognitive 

domains like working memory, spatial learning, spatial reference memory as well as 

associative (i.e. context and tone) memory.  

4.5.3 Working memory of Tg4-42 mice 

Often used paradigms for working memory in mice are maze type tasks like T-maze, Y-

maze or X-maze that become more challenging with increasing number of arms. Based 

on their natural exploratory behavior, mice are prone to alternate their arm entries when 

walking in a maze (Dudchenko, 2004). The calculated alternation rate is then assumed to 

be an indication for working memory. The present study takes the definition of Dudchenko 

as a basis as he “define[s] working memory as a short term memory for an object, 

stimulus, or location that is used within a testing session, but not typically between 

sessions.” (Dudchenko, 2004). It was shown that spontaneous alternation is sensitive to 

brain lesions including those in hippocampus and different cortical regions (Lalonde, 

2002b). Therefore, it is assumed that spontaneous alternation is an appropriate paradigm 

for investigating AD-related memory deficits.  

As with the motor function and anxiety level, assessment of working memory in AD 

mouse models revealed diverse results. Decreased performances in alternation were 

shown in 5XFAD (Oakley et al., 2006), TBA42 (Wittnam et al., 2012), Tg2576 (Hsiao et 

al., 1996) and APPSLPS1KI (Wirths et al., 2006) mice. In contrast, this kind of short term 

memory was unaffected in PD-APP (line J20, Karl et al., 2012), APP23 (Lalonde et al., 

2002a) and APPSwe (line C3-3, Savonenko et al., 2003) mice.  

Neither young nor aged Tg4-42 mice demonstrated impairments in working memory as 

seen by similar alternation rates of transgenic and control animals in the cross maze. 

Again, methodological differences may explain the observed differences between the 

aforementioned mouse models since they differ in age, transgene promoter and 

expression levels as well as in their background strain. Moreover, working memory was 

assessed using dissimilar types of maze that impose different requirements. However, it 

should be noted that the cross maze used in the present study does not place a very high 

demand on hippocampus-dependent learning. As a consequence, the Morris water maze 
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was additionally used as a more sensitive test to assess hippocampal-dependent memory 

deficits. 

4.5.4 Spatial reference memory of Tg4-42 mice 

The Morris water maze (MWM), a test initially designed for rats, is meanwhile widely 

used to assess place learning or spatial (reference) memory (Morris, 1984). In this test, 

rodents must learn to find a direct path to a hidden platform in a circular pool. Navigation 

is supported by providing spatial cues around and attached to the pool. Lesion studies 

revealed that learning strategies used in the MWM are dependent on the dorsal 

hippocampus (Moser et al., 1995). Moreover, it was shown that other brain regions are 

involved as well, e.g. entorhinal and perirhinal cortices, prefrontal and cingulate cortex, 

neostriatum and potentially cerebellum (Vorhees and Williams, 2006).  

Protocols for MWM exist in a large variety modifying number of test days, order of test 

parts, application and position of platform as well as changing the usage of certain 

analyses or the definition of types of memory. In the present study, the protocol was 

based on the description of Vorhees and Williams (Vorhees and Williams, 2006) and 

contained a cued as well as acquisition training and finally a probe trial. First, cued 

training was performed to familiarize the mice with the pool (pre-training) and to determine 

whether impairments that are unrelated to place learning are present, e.g. sensory and 

motor deficits. Subsequently, spatial learning was assessed across repeated trials within 

the acquisition training where platform location remained stationary and additional cues 

were provided. Finally, the probe trial was used to evaluate spatial reference memory by 

analyzing the preference for the target quadrant in comparison to all other quadrants 

when the platform is absent (Vorhees and Williams, 2006). In order to be able to 

differentiate between short- and long-term memory the probe trial was performed 24 hours 

after the last trial of the acquisition training. Based on such a long interval it is possible to 

determine reference memory independent of the memory of the last session (Vorhees and 

Williams, 2006).  

In the present study, cued training confirmed that no deficits that are unrelated to place 

learning are present. Young and aged Tg4-42 mice revealed decreasing escape latencies 

over three days of training as well as swimming speeds that were both comparable to 

wildtype mice. In this way, they demonstrated intact eyesight, the motoric ability to swim, 

the presence of basic strategies (e.g. learning to swim away from the wall, learning to 

climb on the platform) and the motivation to escape from water. Therefore, there was no 

doubt on their capacity to learn to use distal cues in the following acquisition training. The 
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results of the cued training also corroborated the outcome of the motor tests in view of the 

total absence of motor constraints in Tg4-42 mice.  

The acquisition training was performed to assess spatial learning. Again, swimming 

speed was similar between Tg4-42 and wildtype mice confirming the absence of motor 

impairments. Young Tg4-42 and wildtype mice demonstrated progressively decreased 

escape latencies over five days of acquisition training that were undistinguishable 

between both genotypes. This indicates an intact spatial learning behavior. The same was 

true for 12-month-old wildtype mice. In contrast, escape latencies of aged Tg4-42 were 

significantly different from age-matched wildtype mice as they needed more time to find 

the submerged platform indicating an impaired spatial learning in aged Tg4-42 mice.  

At the end of the learning phase a probe trial was performed to assess spatial 

reference memory. The aim of this test was to determine if mice are able to remember the 

previous platform position. Young and aged wildtype as well as young Tg4-42 mice 

showed an  explicit preference for the target quadrant indicating an intact spatial reference 

memory. However, aged Tg4-42 mice were unable to remember the previous platform 

position and spent an equal percentage of time in each quadrant. Since there were no 

differences in swimming speed between the genotypes it can be concluded that aged 

Tg4-42 mice developed severe impairments in their spatial reference memory.  

Previous experiments showed a hippocampus-specific expression of Aβ4-42 and a 

severe neuron loss in the CA1 region. These pathological features of the Tg4-42 mice 

correlate well with the age-dependent deficits in spatial learning and spatial reference 

memory. Almost all transgenic mouse models for AD have been tested in the MWM. 

Besides the Tg4-42 mice, other mouse models also revealed impairments in spatial 

learning and/or spatial reference memory, e.g. 5XFAD (Bouter et al., 2014), Tg2576 

(Hsiao et al., 1996), APPSLPS1KI (Faure et al., 2011), 3xTg-AD (Billings et al., 2005, Chen 

et al., 2013), PD-APP (line 109, Chen et al., 2000, line J20, Palop et al., 2003) and APP23 

(van Dam et al., 2003). Nevertheless, some reports failed to verify impairments in the 

MWM, e.g. in APPSwe mice (line C3-3, Savonenko et al., 2003). Mouse models 

expressing N-truncated pE3-Aβ have not been investigated in the MWM so far. Thus, it 

remains difficult to draw comparable conclusions from the impact of N-truncated Aβ 

variants on spatial (reference) memory. However, since all aforementioned mouse models 

revealed intraneuronal Aβ accumulations and at least partially N-truncated Aβ species a 

correlation with impairments in spatial (reference) memory cannot be denied. This is 

noteworthy as accumulation of intraneuronal Aβ often precedes memory deficits and 

difficulties occur in directly correlating plaques and cognitive impairments (cf. Cheng et al., 

2007).  
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4.5.5 Associative memory of Tg4-42 mice 

Fear conditioning to a cue or a context is widely used to assess associative memory 

(Curzon et al., 2009, Puzzo et al., 2014). In this experimental setup, an unconditioned 

stimulus (US, e.g. foot shock) is paired with a conditioned stimulus (CS, e.g. tone). The 

aim of this test is for the mice to learn to associate this characteristic context (CS) with the 

aversive foot shock (US) (Fanselow, 2000). The successful association is then expressed 

in an increased freezing response. At this, freezing is defined as “the absence of all 

movement except […] for breathing” (Ohno, 2009). Additionally, mice with an intact 

associative memory do not only learn the tone but also the surrounding area (context).  

It was shown that different brain regions are involved in contextual and cued fear 

conditioning, in particular amygdala, hippocampus, frontal and cingulate cortex (Curzon et 

al., 2009). Studies in rats revealed that an intact hippocampal formation is necessary for 

conditioning to a context while an undamaged amygdala causes an association between 

an auditory cue and a food reward (Sutherland and McDonald, 1990). Another study in 

rats claimed that the amygdala is involved in both the cue and the context memory, 

whereas the hippocampus is only needed for conditioning to a context (Phillips and 

LeDoux, 1992). Moreover, different studies verified an impact of hippocampal NMDA 

receptors on associative memory (Bast et al., 2003, Nakazawa et al., 2004).  

In the present study an experimental design including context as well as cue (tone) fear 

conditioning was chosen. This three-day delay test began with a training session in which 

a tone that was overlapped by a foot shock was presented. Twenty-four hours after this 

training trial aged mice were again placed in the conditioning chamber. At this time neither 

a tone nor a foot shock was given. Wildtype mice were still able to remember the 

conditioning chamber as indicated by a significantly higher percentage of freezing. In 

contrast, aged Tg4-42 mice did not reveal such a behavior as they showed comparable 

levels of freezing behavior during the training and the context trial. Therefore, it is 

assumed that these mice developed impairments in associative memory in terms of 

context learning. Based on previous findings claiming context memory to be hippocampal-

dependent these results are well in line with the region-specific Aβ4-42 expression in the 

CA1 region in Tg4-42.  

On the last day of testing, the tone memory was assessed in an altered conditioning 

chamber. At this time mice of both genotypes were able to remember the characteristic 

tone that had been presented during training session. Wildtype and Tg4-42 mice 

demonstrated an increased freezing behavior in response to the tone indicating an intact 

tone/ cue memory. Since the amygdala was shown to be involved in tone learning it can 
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be concluded that this brain region is not affected in Tg4-42 mice. This is also supported 

by the fact that Aβ accumulation was not evident in this area.  

Several other AD transgenic mouse models have been tested in the fear condition 

paradigm revealing a variety of results. Impaired associative memory was found e.g. in 

5XFAD (Kimura and Ohno, 2009, Bouter et al., 2014), Tg2576 (Jacobsen et al., 2006) and 

3xTg-AD (Billings et al., 2005) mice. In contrast, PD-APP mice presented normal 

contextual memory (line J20, Wright et al., 2013). Despite the occurrence of 

methodological differences these dissimilar results might be due to the distribution pattern 

of Aβ in those mouse models. It is assumed that impairments in memory arise in those 

brain regions that are affected by Aβ accumulations. This was also corroborated by 

findings of España and colleagues that correlated fear conditioning symptoms with 

enhanced intraneuronal Aβ accumulation (España et al., 2010). 

In general, the analysis of motor function, BPSDs or memory performance in AD 

transgenic mouse models often revealed controversial results. These differences might be 

due to the transgene itself, the expression of the transgene, the background strain and/ or 

the distribution pattern of plaques and intraneuronal Aβ accumulations. Moreover, a high 

methodological variation can influence the results of behavioral analyses. Mice are tested 

at different ages and ‘disease’ stages, analyzed brain regions are not coincided and 

protocols for behavioral experiments are often controversial.  

In spite of that, it seems to be reasonable to conclude that Aβ4-42 is capable of inducing 

AD-typical changes. Behavioral characterization of aged Tg4-42 mice revealed deficits in 

spatial learning, spatial reference memory and context memory. These impairments highly 

correlate with the hippocampus-specific expression of Aβ4-42 and the observed neuron 

loss in same region. Based on these results it was assessed whether Aβ4-42 has the ability 

to induce deficits in synaptic plasticity.  

4.6 Neurophysiological alterations in Tg4-42 mice 

Impairments in synaptic transmission and plasticity are well-known hallmarks of AD. 

Synaptic loss is an early event that occurs in the hippocampus and neocortex of AD 

patients and is assumed to be the major structural correlate to cognitive dysfunction 

(Marcello et al., 2012). Based on early versions of the amyloid cascade hypothesis it was 

initially thought that extracellular Aβ accumulations and amyloid plaques induce synaptic 

dysfunction (cf. Wirths et al., 2004, Mucke and Selkoe, 2012).  

However, during the last years the detection of buffer-soluble bioactive oligomers (e.g. 

dimers, trimers, tetramers, dodecamers, higher oligomers) led to the concept that soluble 
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Aβ plays a key role in progressive synaptic injury (Mucke and Selkoe, 2012). This was 

supported by finding accumulations of oligomeric Aβ around neurons in human brains 

already at very early disease stages (Pozueta et al., 2013). A verification of this concept 

was achieved by different studies (using synthetic and natural oligomers) some of which 

shall be mentioned hereafter. Microinjection of cell medium containing natural oligomers 

of human Aβ into the brain of wildtype rats markedly inhibited hippocampal long-term 

potentiation (LTP) in vivo. Thus, Walsh et al. were able to proof that Aβ oligomers can 

interact with neurons and impair synaptic plasticity (Walsh et al., 2002). Another study 

described the inhibition of LTP, enhancement of long-term depression (LTD) and 

reduction of dendritic spine density in normal mouse hippocampus after administration of 

soluble Aβ oligomers that were directly extracted from cortices of AD patients. 

Additionally, Shankar et al. found that Aβ monomers and insoluble amyloid plaque cores 

were not capable of altering synaptic plasticity. They concluded “that dimers are the 

smallest synaptotoxic species” (Shankar et al., 2008). Trimers were also found to be 

potent inhibitors of hippocampal LTP (Townsend et al., 2006). In addition, Schlenzig and 

colleagues showed that N-terminal modifications of Aβ lead to rapid formation of 

oligomers that were able to inhibit hippocampal LTP in murine slices (Schlenzig et al., 

2012). These and a plenty of other studies emphasize that Aβ oligomers can cause 

neuronal damage and that they are able to impair synaptic structure and function although 

it is still under debate which aggregation state represents the most synaptotoxic species 

(Benilova et al., 2012, Haass and Selkoe, 2007,Selkoe, 2008, Klyubin et al., 2012). 

However, it was also described that Aβ peptides can differentially affect synaptic function 

and also act as a positive regulator at the presynaptic level (Abramov et al., 2009). A 

study showed that synaptic plasticity was positively modulated by picomolar levels of Aβ 

(Puzzo et al., 2008). Hence, it was suggested that the pre- and postsynaptic regulation of 

synaptic transmission and plasticity by Aβ highly depends on its concentration (Mucke and 

Selkoe, 2012, Carrillo-Mora et al., 2014). Intermediate levels of Aβ enhance synaptic 

activity on the presynaptic terminal, whereas abnormal high or low levels of Aβ impair 

synaptic activity either on the presynaptic or postsynaptic terminal (Mucke and Selkoe, 

2012).  

Formation of Aβ oligomers was found primarily intracellular in both mouse and human 

brains (Walsh et al., 2000, Takahashi et al., 2004). This is of particular interest for this 

study as Tg4-42 mice developed massive intraneuronal Aβ accumulations. Moreover, it 

was shown that N-truncated Aβ peptides rapidly form stable aggregates, in particular 

monomers, dimers, trimers/tetramers and higher molecular weight oligomers (Bouter et 

al., 2013). Taking the distinct memory impairments in Tg4-42 into account it was 

examined whether the Aβ4-42-induced deficits are also detectable on a synaptic level 



   Discussion 

91 

indicating functional changes. Therefore, input-output curves, paired-pulse facilitation as 

well as short-term and long-term potentiation were recorded. These measurements are 

considered as electrophysiological correlates of neuronal excitability and learning and 

memory formation. Recordings were performed in stratum radiatum of the CA1 subfield in 

acute hippocampal tissue slices of Tg4-42 males.  

4.6.1 Neuronal excitability in Tg4-42 mice 

Input-output curves were recorded to assess the synaptic response to single pulse 

stimulation. Analyses were performed comparing Tg4-42 with respective wildtype mice. 

Basal synaptic transmission was altered in young Tg4-42 mice as seen by a left shift of 

the IO-curve, i.e. higher normalized fEPSP amplitudes. One can conclude that the 

neuronal excitability must be increased in terms of a neuronal hyperexcitability in these 

slices. This was also confirmed by analyzing the half-maximal stimulus intensity that was 

significantly increased in Tg4-42 slices compared to wildtype slices. Tg4-42 slices were 

faster excitable than wildtype slices. However, a comparable alteration was not found in 

12- and 24-month-old Tg4-42 slices when analyzing either the entire IO curves or the half-

maximal stimulus intensities.  

Certain levels of Aβ may alter synaptic activity in young Tg4-42 mice as described 

above. It was suggested that intermediate levels of Aβ enhance synaptic activity 

presynaptically (cf. Mucke and Selkoe, 2012). Unfortunately, a lack of appropriate ELISA 

antibodies has prevented a quantitative assessment of Aβ levels in Tg4-42 so far. Thus, 

further studies are necessary to evaluate Aβ levels in this transgenic line both at one time 

point as well as within the course of time, i.e. during aging. Thereby, it might be possible 

to validate the hypothesis that increased excitability in Tg4-42 mice is due to high Aβ4-42 

levels. Alternatively, this altered excitability might be due to the oligomerization state of 

Aβ. So far, the molecular origin of this increased excitability in Tg4-42 mice remains 

unknown especially since further detailed pharmacological trials were not performed yet. 

Hippocampal hyperactivity was also observed in another mouse model that 

overexpresses both mutated APPswe and mutated PS1G384A in neurons (Busche et al., 

2012). Neuronal activity in the hippocampus was not only altered in plaque-bearing 

transgenic mice at the age of six to seven months but also in predepositing mice at one to 

two months of age. Moreover, application of nanomolar concentrations of Aβ dimers to 

hippocampal CA1 neurons in wildtype mice induced hyperactivity. They concluded that 

soluble Aβ is able to directly evoke neuronal hyperactivity by inducing inward currents in 

hippocampal neurons that lead to increased action potential firing and intracellular Ca2+ 

elevations (Busche et al., 2012). Previously, Kamenetz et al. showed that activity-

dependent Aβ production participates in a negative feedback that regulates neuronal 
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hyperactivity indicating a role of Aβ in homeostatic plasticity (Kamenetz et al., 2003). 

Another study suggested that hyperexcitability within the hippocampus activates 

compensatory inhibitory mechanisms in order to weaken this aberrant activity. 

Furthermore, Palop et al. assumed that this hyperactivity as well as the compensatory 

mechanisms may lead to the observed network dysfunctions (Palop et al., 2007). 

Interestingly, it was also reported that “MCI patients exhibit hyperactivity in the 

hippocampus/parahippocampal region” (Maruszak and Thuret, 2014). Since it is also 

possible that hyperexcitability is caused by acute effects of Aβ at synapses this 

phenomenon needs additional studies.  

An additional data analysis was performed comparing the IO curves of each genotype 

with advancing age. Wildtype mice revealed a left shift of the IO curves between three and 

24 months of age. This implies that the same normalized fEPSP amplitude is evoked by 

decreased stimulation strength. In contrast, normalized fEPSP amplitudes of Tg4-42 

slices were at similar levels at three, 12 and 24 months of age. The reason for these 

differences remains unclear. Several maturation or development processes in wildtype 

mice may alter the neuronal excitability during aging. An interaction of developmental 

programs of gene expression and experience-dependent plasticity, i.e. neural activity, is 

attributed for construction and deconstruction of synapses as well as for the 

characteristics on the presynaptic and postsynaptic level (Bagley and Westbrook, 2012). 

On the postsynaptic level, this can include an increase in receptor density or total receptor 

number (Sanes and Lichtman, 2001) as well as an altered subunit composition of e.g. 

AMPA or NMDA receptors (Bagley and Westbrook, 2012). Likewise, changes on the 

presynaptic level may affect the probability of transmitter release (Bagley and Westbrook, 

2012). These mentioned changes might then contribute to an altered neuronal excitability 

in wildtype mice. Hippocampal hyperexcitability was also found in naturally aged, 

nontransgenic rats. Wilson and colleagues reported increasing firing rates, i.e. 

hyperactivity of CA3 place cells in aged rats while CA1 place cells had similar firing 

characteristics in aged and young animals (Wilson et al., 2005). They assumed that a 

combination of three age-related changes might be responsible for this hyperactivity: 

reduced function of interneurons in stratum radiatum, “decreased cholinergic modulation 

from basal forebrain innervation” (Wilson et al., 2005) as well as a reduced input from 

entorhinal cortex to dentate gyrus. Additionally, they found that CA3 cells were not able to 

rapidly encode changes in their environment indicating a key role of CA3 subregion in 

age-related changes, i.e. deficits in spatial memory (Wilson et al., 2005). However, the 

reason for the discrepancies between the Wilson study and the observations in our 

wildtype cohort remain unclear and further studies are required.  
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4.6.2 Synaptic short-term plasticity in Tg4-42 mice 

Paired-pulse facilitation (ppf) was quantified in hippocampal tissue slices of Tg4-42 and 

wildtype males. Paired-pulse facilitation is known as a type of short-term plasticity and the 

synaptic response is enhanced “on the hundreds of milliseconds time scale” (Zucker and 

Regehr, 2002). Applying a pair of stimuli separated by a certain time interval evokes 

synaptic currents in which the second response is larger than the first. The magnitude of 

this facilitation decreases if the interstimulus interval is increased (Zucker and Regehr, 

2002). It was shown that “paired-pulse facilitation is of presynaptic origin” (Kuhnt and 

Voronin, 1994) and reflects an increase in the probability of transmitter release (Zucker 

and Regehr, 2002). In the present study, interstimulus intervals ranging from 25 to 200 ms 

in 25 ms increments were used. Subsequent comparisons between wildtype and 

transgenic mice revealed a subtle effect on short-term plasticity in three-month-old Tg4-42 

mice as seen by a lower EPSP2/EPSP1 ratio for the shortest interstimulus interval of 25 

ms. Amplitude EPSP2/EPSP1 ratios were not altered for any other interstimulus interval in 

Tg4-42 mice at three months of age. Likewise, facilitation was not affected either at 12 or 

24 months of age. Since only young Tg4-42 mice revealed a deficit and this difference 

between wildtype and transgenic mice appears to be extremely slight it can be concluded 

that short-term potentiation, i.e. facilitation is not primarily affected in this mouse line. 

4.6.3 Short-term and long-term plasticity in Tg4-42 mice 

Post-tetanic potentiation (PTP), short-term potentiation (STP) and long-term 

potentiation (LTP) were assessed in Tg4-42 and wildtype hippocampal slices. These 

neurophysiological measurements are widely used to investigate the occurrence and 

manifestation of synaptic dysfunction. Like PPF, post-tetanic potentiation is a type of 

enhancement of transmission of presynaptic origin. When applying a train of high-

frequency stimuli, enhancement is gradually increased. After turning back to low-

frequency stimulation this enhancement persists and lasts for 30 s to several minutes. 

However, it has to be considered that PTP is sometimes hard to identify since several 

enhancement processes may interfere, e.g. augmentation and PTP (Zucker and Regehr, 

2002). In the present study, induction of potentiation caused a clear and immediate PTP in 

wildtype and transgenic slices that was undistinguishable between both genotypes at all 

ages tested. Thus, Aβ4-42 has no effect on this type of enhancement.  

Besides PTP, STP and LTP were evaluated. In general, at CA3 – CA1 synapses LTP 

consists of two phases: a stimulation-labile phase of short-term potentiation (STP) that 

converts into stable long-term potentiation (LTP) (Volianskis et al., 2013). Moreover it was 

described that both phenomena are (very likely) of postsynaptic origin (Bliss and 
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Collingridge, 2013). Here, after high-frequency stimulation induction and maintenance of 

stable LTP was detectable in wildtype and transgenic slices at all ages tested. Contrary to 

expectations, neither STP nor LTP were affected in aged Tg4-42 mice indicating that  

Aβ4-42 is not capable of inducing substantial impairments in short-term or long-term 

plasticity in these mice. Further studies are necessary to clarify whether Aβ4-42 is able to 

affect long-term depression as several studies revealed that elevated secretion of Aβ 

contributes to synaptic depression (e.g. Kamenetz et al., 2003, Hsieh et al., 2006, Kessels 

et al., 2013).  

4.6.4 Comparison of neurophysiological alterations in AD mouse models 

In order to assess AD-related changes in synaptic plasticity electrophysiological 

examinations were performed in other AD mouse models as well. Strikingly, these 

analyses revealed contradictory results. Outcomes ranged from reduced to enhanced to 

unaltered LTP, ppf and basal synaptic transmission. An overview of neurophysiological 

alterations in hippocampal slices from various mouse models is given in Table 9. Self-

evidently, this table merely provides a limited selection since other mouse models 

revealed alterations in synaptic function as well, e.g. CRND8 (Jolas et al., 2002), PS2APP 

(Richards et al., 2003), SAMP8 (Lin et al., 2014), PLB1Triple (Koss et al., 2013), etc. To 

avoid going beyond the scope of this discussion, only studies were chosen that used 

similar experimental settings as we employed in the current study, including 

measurements in the hippocampal CA1 region in vitro (Table 9).  

Most studies revealed a reduction of synaptic function in these mouse models. 

Interestingly, this is in sharp contrast to the Tg4-42 mouse model showing an increased 

excitability and no impairments in short-term or long-term plasticity. Several mouse 

models also revealed no impairments in neuronal excitability and/or synaptic plasticity. 

Moreover, various laboratories working with the same mouse models gained opposing 

results, e.g. in Tg2576 or PD-APP line J20 mice. Other studies found alterations that were 

no longer detectable at later time points, e.g. in APP23 mice (Table 9). Nevertheless, 

when comparing the synaptic function of different mouse models, it was often reduced in 

relatively young mice. More importantly this appeared (almost always) prior to 

extracellular Aβ deposition. Thus, it seems to be obvious that soluble, intracellular Aβ is a 

critical key player in inducing AD-related synaptic deficits. This was further affirmed by a 

study of Tomiyama and colleagues (Tomiyama et al., 2010). The characterization of the 

APP E693∆ mouse model revealed an enhanced Aβ oligomerization, an age-dependent 

accumulation of intraneuronal Aβ oligomers and the absence of extracellular Aβ deposits 

even at 24 months of age. In vivo electrophysiological recordings in the granular cell body 

layer of the dentate gyrus revealed a significant reduction of paired-pulse facilitation and 
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LTP, while the basal synaptic transmission was not affected. These impairments were 

detectable at a time point when Aβ oligomers have begun to accumulate and memory 

deficits as well as reduced synaptophysin levels were noticed. Thus, the group verified 

that Aβ oligomers can “cause early synaptic pathology in the absence of amyloid plaques” 

(Tomiyama et al., 2010). A correlation between intracellular Aβ or at least pre-plaque 

conditions and synaptic pathology was also depicted in other transgenic mouse models, 

e.g. PD-APP (Hsia et al., 1999), 3xTg-AD (Oddo et al., 2003), arcAβ (Knobloch et al., 

2007) or APPSLPS1KI (Bayer and Wirths, 2010). Although, it cannot be excluded that 

small amounts of extracellular Aβ are responsible for these synaptic deficits, it seems to 

be unlikely because a plethora of Aβ-specific antibodies could not detect extracellular Aβ 

at the time points used for electrophysiological experiments (cf. Oddo et al., 2003). 

Therefore, these findings highly support the intraneuronal Aβ-hypothesis. 

The discrepancies both between different studies for the same line and between 

different mouse models may arise from several factors. As with the varieties in behavioral 

assessments this includes different transgenes, expression levels of transgenes, 

background strains and ages or rather ‘disease’ stages. Furthermore, the presence of 

intraneuronal Aβ or plaques, the prevalence and assembly forms of different Aβ variants 

as well as the general Aβ levels at the time points tested are apparently crucial factors 

since their impacts can differ. It was shown that the effects of Aβ are highly dependent on 

the applied or present concentration (Abramov et al., 2009) since low levels might also 

facilitate the maintenance of LTP (Puzzo et al., 2008, Pozueta et al., 2013). Furthermore, 

methodological variations might have an influence on the results. Differences appear in 

the precise stimulus protocols, definition of parameters as well as data analysis, e.g. type 

of normalization of fEPSP. In addition, the health of the in vitro preparations and the 

additive application of (stimulating) chemicals (e.g. kynurenate, physiological abnormal 

levels of Ca2+) are not to be underestimated.  
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Table 9 │ Overview of neurophysiological alterations in hippocampal slices from transgenic mouse models.  

This selection only comprises electrophysiological recordings of fEPSPs in CA1 subfield in vitro thus enabling comparisons with the results of the present study. 

Mouse line 
(mutations) 
(promoter) 

Intra-
neuronal Aβ 

Plaques Tangles IO curve ppf PTP STP LTP Reference 

Tg4-42 

(none) 
(Thy-1) 

>2mo: yes none none 
3mo: yes ↑  

>12mo: none 
3mo: yes ↓ 

>12mo: none 
>3mo: 
none 

>3mo: 
none 

>3mo: none (Bouter et al., 2013) 

TBA2.1hom 

(Aβ3E-42 → 
Aβ3Q-42)  

(Thy-1.2) 

>1mo: yes >1mo: yes none 
2mo: none  
5mo: yes ↓ 

n.a. n.a. n.a. 
2mo: none 
5mo: yes ↓ 

(Alexandru et al., 2011) 

Tg2576 

(APP: Swe) 
(PrP) 

>2mo: yes >6mo: yes none 

3mo: none
1
  

2-8mo: none
2
  

15-17mo: none
2
  

12mo: none/yes
3
↓ 

18mo: yes
3
 ↓ 

3mo: none
1
 

<17mo: none
2
 

<18mo: none
3
 

n.a. n.a. 

3mo: none
1
 

2-8mo: none
2
 

15-17mo: yes
2
 ↓ 

<18mo: none
3
 

(Hsiao et al., 1996); 
(Takahashi et al., 

2013); (D'Amelio et al., 
2011)

1
; (Chapman et 

al., 1999)
2
; (Fitzjohn et 

al., 2001)
3
 

PD-APP 
line H6 

(APP: Ind) 
(PDGF-β) 

n.a. 
2-5mo: none 
8-10mo: yes 

none 
1-4mo: yes ↓  
8-10mo: yes ↓ 

1-4mo: n.a. 
8-10mo: none 

n.a. n.a. 
1-4mo: n.a. 

8-10mo: none 
(Games et al., 1995); 

(Hsia et al., 1999) 

PD-APP 
line 109 

(APP: Ind) 
(PDGF-β) 

n.a. 27mo: yes none 
4-5mo: none  

27-29mo: yes ↓ 
4-5mo: yes ↑ 

27-29mo: yes ↓ 
n.a. n.a. 

4-5mo: yes ↓ 
27-29mo: none 

(Games et al., 1995); 
(Larson et al., 1999) 
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 Table 9 │ continued 

Mouse line 
(mutations) 
(promoter) 

Intra-
neuronal Aβ 

Plaques Tangles IO curve ppf PTP STP LTP Reference 

PD-APP 
line J9 

(APP: Ind, 
Swe) 

(PDGF-β) 

n.a. 
2-4mo: none 
8-10mo: yes 

none 2-4mo: yes ↓ n.a. n.a. n.a. n.a. 
(Games et al., 1995); 

(Hsia et al., 1999) 

PD-APP 
line J20 

(APP: Ind, 
Swe) 

(PDGF-β) 

n.a. >2mo: yes none 
3-6mo: yes ↓  
4-7mo: yes ↓ 

3-6mo: none 
4-7mo: none 

n.a. n.a. 
3-6mo: yes ↓ 
4-7mo: none 

(Mucke et al., 2000); 
(Saganich et al., 2006); 

(Palop et al., 2007) 

APP23 

(APP: Swe) 
(Thy-1.2) 

4mo: yes >9mo: yes none 
3-9mo: none  

12-18mo: yes ↓  
24mo: none 

n.a. n.a. n.a. 

3mo: none 
6mo: yes ↓ 

9-12mo: none 
18mo: yes ↑ 
24mo: none 

(Sturchler-Pierrat et al., 
1997); (Kuo et al., 

2001); (Roder et al., 
2003) 

5XFAD 

(APP: Swe, 
Flo, Lon, 

PS1: M146L, 
L286V) 
(Thy-1) 

>1.5mo: yes >2mo: yes none 
4mo: none  

5.5mo: yes ↓ 
<6mo: none n.a. n.a. 

4mo: none 
5.5mo: yes ↓ 

(Oakley et al., 2006); 
(Jawhar et al., 2010); 
(Wittnam et al., 2012); 

(Kimura and Ohno, 
2009); (Crouzin et al., 

2013) 
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 Table 9 │ continued 

Mouse line 
(mutations) 
(promoter) 

Intra-
neuronal Aβ 

Plaques Tangles IO curve ppf PTP STP LTP Reference 

APP
SL

PS1KI 

(APP: Lon, 
Swe, 

PS1: M233T/ 
L235P) (Thy-1 

(APP), PS1 
knock-in) 

>1.5mo: yes >2mo: yes none n.a. 
2-4mo: n.a. 
6mo: yes ↓ 

n.a. n.a. 
2-4mo: none 
6mo: yes ↓ 

(Casas et al., 2004); 
(Christensen et al., 

2008b); (Breyhan et al., 
2009) 

3xTg-AD (APP: 

Swe, tau: 
P301L, PS1: 
M146V) (Thy-
1.2 (APP, tau), 
PS1 knock-in) 

>3mo: yes >6mo: yes >12mo: yes 
1mo: none  
6mo: yes ↓ 

1-6mo: none n.a. 
1-6mo: 
none 

1mo: none 
6mo: yes ↓ 

(Oddo et al., 2003) 

icv-STZ  

(none) 
(none) 

n.a. n.a. yes 6-7mo: none 6-7mo: none n.a. n.a. 6-7mo: yes ↓ 
(Chen et al., 2013); 
(Wang et al., 2014) 

IO curve – input-output curve; ppf – paired-pulse facilitation; PTP – post-tetanic potentiation; STP – short-term potentiation; LTP – long-term potentiation; PS1 - presenilin 1; APP 
mutations: Swe - Swedish, Flo - Florida, Lon - London, Ind – Indiana; mo – age in months; n.a. - not analyzed; ↓ - decreased; ↑ - increased 
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The findings of neurophysiological alterations led to extended studies analyzing how 

Aβ targets neurons and synapses. It was suggested that Aβ directly binds to one or more 

receptors impairing several signaling pathways (Pozueta et al., 2013). This also includes 

interaction of Aβ oligomers with the low-affinity nerve growth factor (NGF) or the Frizzled 

(Fz) receptor ultimately causing cellular dysfunction or cell death. Moreover, Aβ oligomers 

can induce the loss of insulin receptors, impair LTP-associated kinase activity, bind to 

prion protein or interact with cell-surface APP. They are also capable of interacting with 

synaptic proteins or channels impairing calcium currents at glutamatergic and GABA-ergic 

synapses. Furthermore, it was also shown that Aβ can form pores in the membrane 

leading to abnormal flow of Ca2+ into the synapse (Pozueta et al., 2013). Other studies 

reported that Aβ oligomers bind to NMDA receptors leading to abnormal calcium 

homeostasis, oxidative stress and synapse loss (Shankar et al., 2007, Koffie et al., 2011) 

or contribute to synaptic deficits by affecting NMDAR subunit NR2B, PSD95 and α-

CamKII (Dewachter et al., 2009, Rönicke et al., 2011). Renner and coworkers reported 

that Aβ oligomers form clusters at the synaptic plasma membrane. The formation of these 

clusters was dependent on the presence of mGluR5 receptors whose diffusion properties 

were altered afterwards. Additionally, distribution of mGluR5 receptors within the plasma 

membrane was changed leading to increased intracellular calcium followed by loss of 

receptors (Renner et al., 2010). Moreover, several studies showed that Aβ oligomers 

interact (either functionally and/or structurally) with anchored receptors (e.g. α7 nicotinic 

acetylcholine receptors), RAGE and EphB2 (Mucke and Selkoe, 2012). Rowan and 

colleagues proposed a model where Aβ oligomers bind to a target on microglia that 

promotes a stress cascade leading to disruption of NMDAR function and subsequently to 

inhibition of neuronal kinases needed for LTP induction (Rowan et al., 2004). It was also 

suggested that tau is able to mediate Aβ toxicity by modulating tyrosine kinase Fyn which 

then interacts with NMDA receptors (Ittner et al., 2010, Roberson et al., 2011). However, 

the mechanism by which Aβ impairs synaptic plasticity still remains manifold and 

controversial (Small et al., 2001; Benilova et al., 2012). Since the Tg4-42 mouse model 

did not show any alterations in synaptic plasticity and additional mechanistical studies 

were not performed, further statements on Aβ4-42-toxicity in Tg4-42 cannot be made. 

In summary, electrophysiological recordings revealed an Aβ-induced hyperexcitability 

in young Tg4-42 mice that develops prior to phenotypic alterations. This corroborates the 

hypothesis that intraneuronal Aβ is able to alter neuronal excitability. However, effects of 

Aβ4-42 on synaptic short-term or long-term potentiation were not verifiable.  
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4.7 Altered gene expression levels in Tg4-42 mice 

It is known that levels of several synaptic markers are altered in AD patients, e.g. 

synaptophysin (Masliah et al., 1994) and PSD95 (Shinohara et al., 2014). Interestingly, 

Shimohama et al. demonstrated that synaptic components are differently involved in AD 

pathogenesis as the decrease of some synaptic proteins was more pronounced 

(Shimohama et al., 1997). Following the functional analysis of synaptic transmission and 

plasticity, relative gene expression levels of synaptic markers were analyzed using 

quantitative real-time PCR (qRT-PCR).  

An alteration in synaptic function was only evident for basal synaptic transmission in 

three-month-old Tg4-42 mice. Hence, only hippocampal tissue of Tg4-42 mice at three 

months of age was used to analyze expression levels of some selected markers. Two 

presynaptic markers (synaptoporin, SNAP25) and two postsynaptic (neuroligin 1, PSD95) 

markers were examined for the purpose of a pilot study.  

Synaptoporin is a synaptic vesicle membrane protein of 37 kDa. It is a member of the 

synaptophysin/connexin superfamily and closely related to synaptophysin as they share 

58 % amino acid identity (Knaus et al., 1990). Like synaptophysin, synaptoporin has four 

transmembrane domains and the N- and C-terminals are exposed to the cytoplasmic side 

even though these terminals are divergent (Singec et al., 2002). In general, synaptic 

vesicles are “responsible for the uptake, storing, docking and regulating release of 

transmitter” (Dai et al., 2003). It was suggested that synaptophysin and synaptoporin are 

negative regulators of SNARE (soluble N-ethylmaleimide-sensitive fusion protein 

attachment protein receptor) assembly. They are able to interact with 

VAMP/synaptobrevin and can “prevent the v-SNARE from entering into SNARE 

complexes” (Gerst, 2003). Nevertheless, the specific biological function of synaptoporin is 

not fully understood.  

Synaptosome-associated protein of 25 kDa (SNAP25) is a presynaptic plasma 

membrane protein. Two alternatively spliced isoforms of SNAP25 (SNAP25a and 

SNAP25b) were identified which differ by nine amino acids. Those isoforms have different 

quantitative and anatomical expression patterns and might have different functions in 

vesicular fusion events. As one of the t-SNAREs it forms a core complex with syntaxin, 

synaptobrevin and synaptotagmin and is essential for regulating exocytosis of presynaptic 

vesicles (Bark et al., 1995, Südhof, 1995) as well as for maintaining normal synaptic 

activity (Tafoya et al., 2008).  

Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses (Song et 

al., 1999) and belongs to the neuroligin family (Varoqueaux et al., 2006). Neuroligins are 
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type 1 transmembrane proteins and comprise four to five different postsynaptic proteins 

(neuroligin 1 – 4/5). They can either “interact with presynaptic α– and β-neurexins via a 

large extracellular esterase-like domain” or intracellularly “bind to several PDZ domain-

containing scaffolding proteins [e.g. PSD95], which in turn interact with postsynaptic 

transmitter receptors, ion channels, and signaling proteins” (Varoqueaux et al., 2006).  

Postsynaptic density protein 95 (PSD95) is a neuronal PDZ protein and a member of 

the membrane-associated guanylate kinase (MAGUK) family. Besides PSD95, this family 

contains three other proteins, namely SAP97, PSD93 and SAP102. All those proteins 

contain three N-terminal PDZ domains, an SH3 domain and a guanylate kinase-like 

(GUK) domain. They act as scaffolds and bind different signal transduction components to 

the cell membrane (Larsson et al., 2003).  

The present study revealed that two out of four synaptic markers showed altered 

expression levels. The relative expression levels of synaptoporin and neuroligin 1 were 

significantly down-regulated in hippocampal tissue of three-month-old Tg4-42 compared 

to wildtype mice. In contrast, expression levels of PSD95 and both isoforms of SNAP25 

remained unchanged in Tg4-42 compared to the control group.  

Although further detailed investigations are indispensable one can speculate that a 

reduction in synaptoporin and neuroligin expression levels might contribute to the 

observed hyperexcitability in young Tg4-42 mice. Given that synaptoporin negatively 

regulates formation of vesicles (Gerst, 2003), a reduction of synaptoporin levels might 

facilitate SNARE assembly and secretion of vesicles that eventually might lead to 

alterations in synaptic transmission. Previously, it was shown that during development as 

well as in the adult brain neuroligins and their synaptic binding partners play a key role in 

modulating the development of excitatory and inhibitory synapses as well as controlling 

the balance between excitation and inhibition, respectively (Levinson and El-Husseini, 

2005, Craig and Kang, 2007). It was proposed that an increased PSD95/neuroligin ratio 

leads to an “enhancement of excitatory presynaptic terminals and a reduction in the 

number of inhibitory contacts, thus shifting the E/I synaptic ratio [excitatory vs. inhibitory 

synaptic input] toward higher overall excitation” (Levinson and El-Husseini, 2005). Since 

Tg4-42 mice demonstrated unaltered PSD95 level but decreased neuroligin 1 level, the 

PSD95/neuroligin ratio is increased. Potentially, this might contribute to the observed 

alterations in synaptic transmission. However, additional analyses are needed to confirm 

those hypotheses.  

Levels of synaptophysin were most frequently investigated and found to be decreased 

e.g. in 5XFAD (Oakley et al., 2006), icv-STZ (Chen et al., 2013), Tg2576 (Calkins et al., 
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2011), APPSLPS1KI (Brasnjevic et al., 2013), PD-APP (Mucke et al., 2000) and APP 

E693∆ (Tomiyama et al., 2010) mice. Primary neurons from Tg2576 mouse model 

revealed a decrease in several other synaptic markers including PSD95, synapsin 1, 

synapsin 2, synaptobrevin 1, synaptobrevin 2 and GAP43 (Almeida et al., 2005, Calkins et 

al., 2011). The 5XFAD mouse model additionally showed a reduction in PSD95 and 

syntaxin levels (Oakley et al., 2006, Shao et al., 2011). Different from the Tg4-42 mouse 

model, levels of SNAP25 and PSD95 were reduced in APPSLPS1KI (Breyhan et al., 2009). 

These mouse models did not only show altered levels of synaptic markers but also 

changes in synaptic transmission or plasticity as seen by functional analyses mentioned 

before. Moreover, data in the literature indicate that altered levels of synaptic markers are 

often found in the absence of Aβ plaques (cf. Duyckaerts et al., 2007) which is in good 

agreement with the findings in Tg4-42 mice.  

In summary, expression levels of one presynaptic and one postsynaptic marker were 

decreased in Tg4-42 mice. This reduction appeared simultaneously with an increased 

basal synaptic transmission in young transgenic mice.  

4.8 Contradicting results in the Tg4-42 mouse model 

The objective of the present study was to characterize the new transgenic mouse 

model Tg4-42 which exclusively expresses the N-truncated Aβ4-42 form. The analyses 

revealed a severe astro- and microgliosis, distinct neuron loss, deficits in spatial learning, 

spatial reference memory and associative (i.e. context) memory as well as an increased 

basal synaptic transmission and decreased expression levels of specific synaptic markers 

in the mice. In contrast, neither motor function or working memory impairments nor altered 

anxiety levels were evident. Additionally, synaptic plasticity was not affected in Tg4-42 

mice. The intraneuronal accumulation of Aβ in the hippocampus was followed by a distinct 

neuron loss in the same brain region. Moreover, this Aβ immunoreactivity was associated 

with impairments in cognitive functions that are assumed to be hippocampus-dependent. 

Surprisingly, an intact synaptic plasticity was observed in the hippocampus raising the 

question if there is a causal relationship between Aβ accumulations, memory impairments, 

neuron loss and altered synaptic plasticity. 

The Morris water maze is a widely accepted test to assess hippocampal-dependent 

spatial and non-spatial learning in rodents (Morris, 1984, Puzzo et al., 2014, Vorhees and 

Williams, 2006). Various studies confirmed that the hippocampus plays a key role in 

information processing that is associated with spatial and non-spatial memory (e.g. Wood 

et al., 1999). However, it is also known that a network of other brain regions including the 

parietal cortex, cingulate cortex, the medial frontal cortex, the prefrontal cortex, the 
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nucleus basalis magnocellularis, the caudate nucleus and the fimbria-fornix are involved 

in spatial learning and memory (Olsen et al., 1994). Hence, it cannot be excluded that 

those brain regions also contribute to the observed deficits in spatial learning and memory 

in Tg4-42 mice. Accumulation of Aβ in the mentioned brain regions might be undetected 

so far due to the antibodies used in the present study. Nevertheless, a causal relation 

between hippocampal Aβ accumulation and spatial memory deficits seems to be very 

likely. Several lesion studies revealed that spatial memory performance requires 

hippocampal formation (e.g. Moser et al., 1995, Olsen et al., 1994, Broadbent et al., 

2004). The groups of Moser and Broadbent were able to show that neuron loss can be 

compensated up to a certain level until it causes severe memory impairments (Moser et 

al., 1995, Broadbent et al., 2004). This could be corroborated by findings in the Tg4-42 

mouse model. Hemizygous Tg4-42 mice at eight months of age demonstrated a neuron 

loss of 38 % while showing an intact spatial reference memory. In contrast, 12-month-old 

Tg4-42 mice displayed severe deficits in spatial memory performance and a 49 % loss of 

neuronal cells (Bouter et al., 2013). Thus, it seems that spatial memory impairments and 

neuron loss are causally related, although hippocampal damage needs to reach a certain 

degree.  

Performance in MWM was often linked to LTP and the function of certain receptor 

types (e.g. Moser et al., 1998, Morris et al., 1986, Tsien et al., 1996). Even in transgenic 

(e.g. Tomiyama et al., 2010) and non-transgenic (e.g. Ardiles et al., 2012) models of AD 

memory impairments often appeared together with altered synaptic plasticity. The 

question if LTP and LTD are cellular mechanisms that underlie memory was and is still 

controversially discussed (Stevens, 1998, Martin et al., 2000, Lynch, 2004). Martin et al. 

establish a “synaptic plasticity and memory (SPM) hypothesis” which claims that “activity-

dependent synaptic plasticity is induced at appropriate synapses during memory 

formation, and is both necessary and sufficient for the information storage underlying the 

type of memory mediated by the brain area in which that plasticity is observed” (Martin et 

al., 2000). Additionally, they outlined four criteria for assessing this hypothesis: 

detectability, mimicry, anterograde alteration and retrograde alteration. However, they had 

to concede that at least for the hippocampus it remained difficult to apply these criteria to 

verify the SPM hypothesis (Martin et al., 2000). The difficulty of proving a causal 

relationship between memory impairments and altered synaptic plasticity was evident in 

several studies including one of Moser and colleagues. They reported a learning deficit 

due to lesions in the hippocampus while electrophysiological responses stayed normal 

(Moser et al., 1995). This was similar to the Tg4-42 mouse model where synaptic plasticity 

was unaffected albeit a severe neuron loss and memory deficits. Likewise, two other 
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mouse models, Tg2576 and APP23, showed normal synaptic plasticity even in the 

presence of Aβ deposits and/or neuron loss (Fitzjohn et al., 2001, Roder et al., 2003).  

Taken together, it must be stated that causal dependencies between Aβ 

accumulations, memory impairments, neuron loss and altered synaptic plasticity cannot 

be easily made, although these pathologies were all observed or measured in the same 

brain region. Aβ4-42 seems to be able to induce neuron loss and memory deficits, however, 

it does not affect synaptic plasticity suggesting that even in the presence of Aβ4-42 the 

surviving neurons of the hippocampal circuitry are able to compensate and maintain 

normal synaptic functionality.  

 



 

105 

5 Summary & Conclusion 

Research of the past years revealed a large heterogeneity of C- and N-truncated Aβ 

variants. In particular, N-terminally truncated Aβ species displayed specific characteristics 

including a high aggregation propensity and a distinct toxicity. However, a profound 

analysis of specific N-truncated Aβ variants except for AβpE3-42 was lacking.  

In the present study the novel transgenic mouse model Tg4-42 was characterized to 

investigate the potential neurotoxic effects of Aβ4-42 in vivo and in vitro. This mouse model 

expresses exclusively N-truncated Aβ4-42 without an overexpression of mutated APP or 

PS1. Since the vast majority of AD patients do not possess mutations, research on 

sporadic AD is of great importance. Tg4-42 is one of the few mouse models which do not 

reflect familial AD but rather a sporadic-like pathology. In this mouse model 

overexpression of Aβ4-42 led to early, region-specific intraneuronal Aβ accumulations most 

notably in the hippocampus. Simultaneously, Tg4-42 mice revealed a pronounced astro- 

and microgliosis in the same brain region. Additionally, these mice developed an age-

dependent severe neuron loss in the hippocampal CA1 region. The absence of motor 

impairments facilitated the analysis of deficits in learning and memory. Using the Morris 

water maze and fear conditioning tasks, Tg4-42 mice demonstrated age-dependent 

deficits in spatial learning, spatial reference memory and forms of associative memory. 

Functional analyses in acute hippocampal tissue slices revealed an increased basal 

synaptic transmission at Schaffer collateral/CA1 synapses. In contrast, short-term and 

long-term plasticity were not affected. Analysis of gene expression levels demonstrated a 

down-regulation of synaptoporin and neuroligin 1 levels in hippocampal tissue of three-

month-old transgenic mice which might be linked to the detected hyperexcitability.  

Based on the results of the current work the following conclusions can be drawn: Since 

this mouse model did not develop amyloid plaques even at late ages the observed Aβ4-42-

induced pathology further supports the intraneuronal Aβ hypothesis. The abundance and 

intracellular localization of Aβ4-42 prompts early pathological alterations that might trigger 

further upstream and downstream processes. This mouse model is suitable for the 

analysis of physiological and pathological roles of one specific Aβ variant in the absence 

of confounding effects of APP overexpression. Similar to other mouse models, Tg4-42 

does not recapitulate the entirety of AD in humans and thus caution must be applied when 

extrapolating from findings in animal models to complex human diseases. However, the 

observed cognitive deficits as well as the neuron loss may relate to soluble forms of Aβ4-42 

and are comparable to AD-related changes. Thus, a pathological role for Aβ4-42 in AD 

etiology was identified and further studies including evaluation of treatment strategies are 

feasible.  
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