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SUMMARY / ABSTRACT 
     In recent years, advancements in single-molecule imaging techniques have enabled scientists 

to study in great detail the cells and relevant physiological processes, including neurons and the 

communication between them. Nevertheless, with proper experimental design, much can still be 

learned from conventional fluorescence spectroscopy. In this work I use primarily the 

fluorescence lifetime as an indicator of FRET (Förster resonance energy transfer), which gives 

information on the interaction between liposomes. 

     The dissertation consists of two connected projects, and in each a new chemical tool is 

developed. In the first part, control of membrane gaps by synaptotagmin-Ca2+ measured with a 

novel membrane distance ruler, a set of liposomes bridged by double-stranded DNAs of various 

lengths serves as the molecular ruler to measure the changes in membrane distances induced by 

binding of Ca2+ to synaptotagmin-1 (syt-1). I showed that the distance maintained by syt-1 alone 

was reduced by one-third from ~7-8 nm to ~5 nm, which may explain how syt-1 functions as 

the fast and efficient Ca2+ trigger in promoting the zippering of SNARE proteins, which leads 

subsequently to membrane fusion and neurotransmitter release. The major part of this project 

has been published in Nat. Commun. 2014, 5, 5859 (doi: 10.1038/ncomms6859). 

     In the second part, asymmetrically labeled liposomes as a new tool to study membrane fusion, 

one type of liposomes is labeled differently on the inner and outer leaflets, and the two 

fluorescent labels are distinguished by their differently lifetimes. Theses liposomes were used to 

monitor SNARE-mediated membrane fusion in microfluidic channels, and it turned out that 

there was no apparent delay between the merging of the two leaflets. 

     As a final remark, further characterization and improvements of the two new tools should 

allow for their future applications in studying other cellular mechanisms of interest. 

http://www.nature.com/ncomms/2014/141215/ncomms6859/full/ncomms6859.html
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Introduction   1 

1 INTRODUCTION 

1.1 Fluorescence and energy transfer 

1.1.1 The principle of fluorescence 
     For a conjugated organic molecule, which contains a number of alternating single and double 

bonds or multiple aromatic rings, the energy difference between the highest of many closely 

spaced π-bonding or non-bonding orbitals (highest occupied molecular orbital, HOMO) and the 

lowest π*-antibonding orbital (lowest unoccupied molecular orbital, LUMO) very often 

matches the energy of a photon in the visible range. Absorption of a photon by the molecule 

promotes an electron to an unoccupied orbital such that the molecule is in an electronic excited 

state (Sn, n ≥ 1). Following excitation, a molecule in solution undergoes ultrafast relaxation 

(typically <10 ps) with near unity efficiency to the lowest-lying excited state (S1) with minimum 

vibrational energy (v = 0). The relaxation processes include (i) redistributing the energy to 

vibrational modes with lower frequencies (intramolecular vibrational redistribution, IVR), (ii) 

dissipating excess vibrational energy via collision with solvent molecules (vibrational relaxation, 

VR) and (iii) crossing to the potential energy surface (PES) of a lower electronic state (internal 

conversion, IC). All of which are driven by the tendency to populate as many states as possible 

at any defined energy interval. 

     After reaching S1 (v = 0), the ensuing deactivation processes are usually two to three orders 

of magnitude slower (>1 ns), a condition which is sometimes referred to as the “Kasha’s rule”.1 

The molecule will return to the electronic ground state S0 (illustrated in Figure 1.1) via (i) 

emitting a photon, i.e., fluorescence, at a rate of kf or (ii) deactivating through non-radiative 

pathways (knr). Non-radiative pathways grouped together here may be internal conversion from 

S1 to S0 or transitions through lower-lying triplet excited states (Tm, m ≥ 1), in which, as 
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opposed to singlet states Sn, the unpaired electrons may assume the same spin. Internal 

conversion from S1 to S0 is significantly slower than that from higher excited states to S1, due to 

the fact that excited states are much more closely spaced in energy compared to the large energy 

gap between S1 to S0. For organic molecules, triplet excited states normally do not produce 

observable emission and are thus regarded as dark states. 

     The return of a molecule from S1 to S0 follows 1st order kinetics: 

𝑑[S1(𝑡)]
𝑑𝑡

= −(𝑘f + 𝑘nr)[S1(𝑡)]    (1.1) 

[S1(𝑡)] = [S1(0)]𝑒−(𝑘f+𝑘nr)𝑡 = [S1(0)]𝑒−𝑡/𝜏obs   (1.2) 

where [S1(0)] stands for the initial concentration of molecules in the S1 state generated by 

excitation. The fluorescence intensity is proportional to the number of molecules remaining in 

S1 and therefore decays at the same overall rate, whose inverse is commonly expressed as the 

“observed lifetime (τobs)”. Fluorescence allows for highly sensitive detection, a textbook 

analogy being having a few candles lit in an otherwise dark stadium. Consequently, fluorescent 

artificial molecules or protein segments are powerful tools in the study of complex biological 

structures or dynamics. 

 

 

Figure 1.1. Relaxation mechanism following the absorption of light. (a) Plotted on 

potential energy surfaces of S1 and S0. The y-axis is energy and the x-axis is a 

representative vibrational mode. (b) A simplified Jablonski diagram showing excitation to 

the S2 state. 
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     In Figure 1.1a, it can also be seen that the energy of an emitted fluorescence photon is lower 

than that of the originally absorbed one, so that the emission spectrum is red-shifted (i.e., Stokes 

shift) from the absorption.2 This arises from the relatively slow nuclear motions with respect to 

the almost instantaneous electronic transitions (< 1 fs). Accordingly, the electronic transitions 

are always drawn vertically, during which the nuclear positions remain fixed. At electronic 

excited states, because of the occupation of an antibonding orbital, the equilibrated bond lengths 

are usually longer, resulting in displacement of the potential energy surfaces along certain 

vibrational coordinates. Since fluorescence originates from S1 (v = 0), the downward vertical 

transition becomes less energetic. As a matter of fact, fluorescence from higher singlet excited 

states to S0 can also occur, but is often not competitive with internal conversion to S1 and is only 

observable at very early delay times in femtosecond spectroscopy (for example, in reference 3). 

1.1.2 Förster resonance energy transfer (FRET) 
     When the emission spectrum of a molecule overlaps with the absorption of another, energy 

transfer from the former (donor) to the latter (acceptor) may occur without first emitting a 

photon, which is named Förster resonance energy transfer (FRET).4 The energy transfer rate, kET, 

is given by: 

𝑘ET = 𝑄𝐷𝜅2

𝜏𝐷0𝑟6
∙ 9000(ln 10)
128𝜋5𝑁𝐴𝑛4

∙ ∫ 𝐹𝐷(𝜆)𝜀𝐴
∞
0 (λ)𝜆4𝑑𝜆   (1.3) 

where QD and τD0 are the fluorescence quantum yield (kf/(kf+knr)) and observed lifetime of the 

donor in the absence of acceptor, respectively. NA is the Avogadro’s number, and n is the 

refractive index. FD(λ) implies the donor fluorescence intensity at each wavelength, with the 

total area under the curve normalized to unity; εA(λ) denotes the acceptor absorption extinction 

coefficient (in units of M-1cm-1). Finally, r is the distance between the donor and acceptor, and 

κ2 describes the relative orientation of the donor and acceptor transition dipoles in space (arrows 

in Figure 1.2a): 

𝜅2 = (𝑐𝑐𝑐𝜃𝑇 − 3𝑐𝑐𝑐𝜃𝐷𝑐𝑐𝑐𝜃𝐴)2    (1.4)  

     The 1/r6 dependence stems from the oscillating dipole-like nature of the electronic transitions. 

The potential between two dipoles gives an 1/r3 dependence, and Fermi’s golden rule states that 

the transition rate is proportional to the square of the interaction, hence yielding 1/r6. For 

convenience, Equation 1.3 is regularly expressed as: 

𝑘ET(𝑟) = 1
𝜏𝐷0

∙ �𝑅0
𝑟
�
6
     (1.5) 

with the Förster distance R0 specifying the distance (when r = R0) at which kET equals the 

intrinsic decay rate of the donor (τD0
-1): 
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𝑅0 = 0.0211�𝜅2𝑛−4𝑄𝐷 ∫ 𝐹𝐷(𝜆)𝜀𝐴
∞
0 (λ)𝜆4𝑑𝜆�

1
6  (in nm) (1.6) 

if wavelength in the integral is expressed in nm. 

 

 

Figure 1.2. The mechanism of FRET. (a) The donor emission dipole and acceptor 

absorption dipole, with a distance of r and three angles to describe their relative 

orientation in space. (b) Jablonski diagram including FRET. 

 

     FRET adds an addition deactivation pathway to the donor S1 state, now relabeled as D* 

(Figure 1.2b), so its concentration time-dependence becomes: 

[𝐷∗(𝑡)] = [𝐷∗(0)]𝑒−(𝑘f,D+𝑘nr,D+𝑘ET)𝑡 = [𝐷∗(0)]𝑒−𝑡/𝜏D   (1.7) 

and the observed lifetime τD is shorter than the intrinsic lifetime τD0. On the other hand, 

population of the acceptor excited state (A*) via FRET follows a precursor-successor 

relationship: 

𝑑[𝐴∗(𝑡)]
𝑑𝑡

= �𝑘f,D + 𝑘nr,D + 𝑘ET�[𝐷∗(𝑡)] − �𝑘f,A + 𝑘nr,A�[𝐴∗(𝑡)] = 𝑘1[𝐷∗(𝑡)] − 𝑘2[𝐴∗(𝑡)] (1.8) 

[𝐴∗(𝑡)] = [𝐷∗(0)]𝑘1
𝑘1−𝑘2

�−𝑒−𝑘1𝑡 + 𝑒−𝑘2𝑡� = [𝐷∗(0)]𝑘1
𝑘1−𝑘2

�−𝑒−𝑡/𝜏D + 𝑒−𝑡/𝜏A0�  (1.9) 

assuming that direct excitation of the acceptor is negligible. In typical experimental designs, the 

distance r between the donor and acceptor is sufficiently short such that k1 > k2, and then τD 

becomes a rise time constant, whereas the decay time constant of the acceptor (τA) remains the 

same as that when it is directly excited (τA0). 
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1.2 Neuronal exocytosis and its regulation by Ca2+ 

1.2.1 Membrane fusion machinery 
     Synapses are where nerve cells (neurons) are connected, with a gap (synaptic cleft) of a few 

tens of nanometers in between. Messages are delivered from the presynaptic neuron to the 

postsynaptic neuron via release of neurotransmitters (e.g., glutamate) from the former into the 

cleft (exocytosis, Figure 1.3),5 to be captured by receptors residing on the latter. The 

neurotransmitters are originally packaged in synaptic vesicles ~40 nm in diameter. To release 

them, the vesicles have to be fused with the presynaptic plasma membrane. Both the vesicle and 

presynaptic membranes are bilayers consist primarily of phospholipids, each featuring a 

hydrophilic head group and two hydrophobic tails. Fusion requires first local deformation of the 

bilayers (Figure 1.4)6,7 and is subject to high lipid composition-dependent energy barriers (~80 

kBT).8 

 

 

Figure 1.3. Vesicle trafficking cycle at a presynaptic terminal. This study focuses on 

the docking, priming and fusion processes in the highlighted active zone. Adapted by 

permission from Macmillan Publishers Ltd: Nature (ref. 5), copyright (2012). 
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     In vivo, the energy barrier is overcome by a set of protein membrane fusion machinery, 

soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE, Figure 1.4b). 

SNARE proteins are essential for the fusion of trafficking vesicles with target membranes, 

conserved from yeast to humans.9 The SNARE machinery studied in this work comes from rat 

neurons (Rattus norvegicus) and comprises three members: synaptobrevin-2 (also often referred 

to as vesicle-associated membrane protein 2, VAMP-2), which is the most abundant protein 

located on synaptic vesicles (therefore called vesicle SNARE, or v-SNARE),10 (ii) syntaxin-1A 

and (iii) SNAP-25A, both at the presynaptic membrane (target SNAREs, or t-SNAREs). 

Synaprobrevin-2 and syntaxin-1A each possesses a C-terminal transmembrane domain (TMD), 

and SNAP-25A is anchored to the membrane through palmitoylation (fatty acid 

CH3(CH2)14COOH) to any of its four cysteine residues (Figure 1.5a). 

 

 

Figure 1.4. Proposed mechanism of membrane fusion. With the aid of advanced 

molecular dynamics simulations. (a) Sketches showing possible transition states and 

the scrambling of lipids. (b) Fusion mediated by the SNARE proteins. Adapted by 

permissions from Elsevier & Macmillan Publishers Ltd: Cell (ref. 6) and Nat. Rev. Mol. Cell 

Biol. (ref. 11), respectively, copyrights (2003 & 2006). 

 

     SNAREs facilitate membrane fusion by forming a coil coiled four-helix bundle with their 

evolutionarily conserved SNARE motifs consisting of ~60-70 amino acids (Figure 1.5b), 

starting from the membrane distal N-terminals. Synaprobrevin-2 and syntaxin-1A each provides 

one helix, while SNAP-25A provides two. The “zippering” progresses towards the C-terminal 
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ends after the initial contact and eventually exert forces onto and in turn deforms the membranes. 

At the very well conserved central ionic layer of the bundle, synatobrevin-2 contributes an 

arginine residue (arg, R), so it is re-classified structurally as an R-SNARE more recently. On the 

other hand, syntaxin-1A and SNAP-25A contribute glutamines (gln, Q), and are re-classified as 

Q-SNAREs.9 Full zippering of a trans-SNARE complex (spanning two membranes) releases 

~35 kBT,12 so several complexes working in synergy suffices to overcome the energy barrier for 

fusion. 

 

 

Figure 1.5. Structural features of the SNAREs. (a) Schematic depiction of domain 

structures. (b) A model of the trans-SNARE complex, with the four-helix bundle 

structurally characterized by crystallography. Adapted by permissions from Macmillan 

Publishers Ltd: Nature (refs. 13 and 14), copyrights (2009 & 1998). 

 

     Understanding of the SNAREs has been facilitated by isolation and reconstitution of the 

proteins into artificial liposomes,15 using FRET to detect the resulting membrane fusion. The v- 

and t-SNAREs may be reconstituted into liposomes labeled with FRET donors and acceptors, 

respectively, so that fusion corresponds to the increase of FRET.16 Alternatively, donors and 

acceptors can be incorporated in the same type of liposomes, and fusion with unlabeled 

liposomes leads to a decrease of FRET.17 

     Besides the abovementioned bulk liposome fusion assays, single-molecule fluorescence 

techniques18 have been applied to study fusion of liposomes to surface-tethered liposomes,19-21 

to giant unilamellar liposomes >100 µm in diameter22 or to supported planar bilayers.23,24 

However, despite the extensive research, still under debate are the questions of how many 

SNARE complexes are needed exactly for a single fusion event,25,26 and whether the hemifusion 

state (Figure 1.4) where only the outer leaflets of the bilayers are merged constitutes a unstable 

transition state, a stable intermediate or a dead-end product.19 
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1.2.2 The Ca2+ trigger 
     Already highlighted in Figure 1.3, synaptic vesicles are first docked and primed to the 

presynaptic plasma membrane, and a millisecond Ca2+ influx through voltage-gated Ca2+ 

channels triggers SNARE-mediated membrane fusion.27,28 The Ca2+ channels are sensitive to 

decreases of net intracellular negative charges (depolarization of membrane potential), which 

are initiated, for instance, by photo-induced isomerization and dissociation in the formation of 

vision29 or pressure-induced mechanical bending in hearing.30 

     The Ca2+ influx, in turn, is sensed by the synaptic vesicle protein, synaptotagmin-1 (syt-

1).31,32 Syt-1 bears two Ca2+-binding C2 domains (C2A and C2B, Figure 1.6) which, after 

coordinating to multiple Ca2+ ions, bind to membranes containing negatively charged 

phospholipids, completing the Ca2+-coordination sites.33-35 Moreover, a patch of four lysine 

residues (KKKK, 324-327) located on the side of C2B interacts specifically with the poly-

anionic phosphatidylinositol-4,5-bisphosphate (PIP2) in a Ca2+-independent manner.36 However, 

in spite of extensive research using either full-length syt-1 (including the transmembrane 

domain, TMD) or the truncated soluble C2AB fragment,37-39 how syt-1 functions at the 

molecular level as a Ca2+-trigger and how it interacts with the SNAREs remained unsettled. 

 

 

Figure 1.6. Schematic sketch of the synaptotagmin-1 domain structure. Red dots 

signify Ca2+ binding sites, whereas the dark blue dot denotes the poly-lysine patch (KKKK) 

of the C2B domain.  Plus and minus signs indicate clusters of positive and negative charges 

on the linker. The vesicle is not drawn to scale. Courtesy of Prof. Dr. Peter Jomo Walla. 
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     Models describing the molecular activation of the fusion reaction by synaptotagmin fall into 

two groups (summarized in Figure 1.7).5 In the first scenario, the SNARE complexes are 

arrested at a partially zippered state during the priming process (Priming I). Syt-1 may either 

serve as a fusion clamp that is released on Ca2+ triggering,40 or alternatively, it may displace the 

inhibitory protein complexin from the SNARE complexes41 (Triggering I). In the second 

scenario, the SNAREs do not assemble before arrival of Ca2+ signals, although syt-1 may 

already be in contact with the plasma membrane via the KKKK-PIP2 electrostatic interaction 

(Priming II).36  Following Ca2+ triggering, the SNAREs rapidly progress through zippering and 

fusion (Triggering II).42 

 

Figure 1.7. The two priming/triggering models. Also shown are Munc18, which binds 

to syntaxin-1A, and Munc13, which is thought to promote the formation of t-SNARE 

acceptor complexes (syntaxin-1A together with SNAP-25A). Adapted by permission from 

Macmillan Publishers Ltd: Nature (ref. 5), copyright (2012). 

 

     In line with the latter scenario, recently, it has been proposed that syt-1 triggering is based on 

Ca2+-dependent regulation of the gap between the vesicle and presynaptic membranes.43 In the 

absence of Ca2+, syt-1 connects membranes via (i) its own transmembrane domain and (ii) 

binding to PIP2 via the KKKK polybasic stretch. Assuming that the 61-residue linker between 

C2A and the transmembrane domain44 is unstructured and stretched, a maximal distance of ~28 

nm is feasible. On the basis of non-quantitative FRET assays and molecular dynamics 

simulations, it was suggested that addition of Ca2+ might reduce the distance to a range of ~2-

7.5 nm. Such distance shortening might operate upstream of the SNARE complex formation, 

which requires a membrane distance below ~8 nm.12 However, experimental support for this 

model was elusive, primarily because of the lack of experimental evidence for distance 

variations at the appropriate length scale. 
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2 MATERIAL AND METHODS 

2.1 Fluorescence spectroscopy 
     The measurements in this work, except for steady-state emission and excitation spectra or 

bulk liposome fusion assays, were all performed on a fluorescence microscope based on an 

Olympus IX71 inverted microscope body, an UPlanSApo 60×/1.20 W water immersion 

objective (Olympus) and two avalanche photodiodes (SPCM-CD 2969, PerkinElmer). The 

layout of the setup is depicted in Figure 2.1. 

 

 

Figure 2.1. Schematic layout of the experimental setup. APD; avalanche photodiode; 

PD: fast photodiode; DC: dichroic mirror; f: focal length. 

 

     A femtosecond Ti:sapphire laser (Chameleon, Coherent) operating at 90 MHz and centered 

around 800 nm served as the two-photon excitation source in Chapter 3.1. With photons 
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concentrated temporally into pulses ~150 fs in width (full-width half-maximum, FWHM) and 

spatially by the tight-focusing of the objective, simultaneous absorption of two photons may 

occur if the total energy of the two photons exceeds the energy gap between the S0 and S1 states. 

Nevertheless, the initially populated states may be different for two-photon excitation and one-

photon excitation at half the wavelength (doubling of photon energy), especially for 

centrosymmetric molecules.45 An advantage of two-photon excitation lies in that the excitation 

probability away from the focus decreases sharply in both axial and lateral directions, owing to 

the quadratic dependence on laser intensity. 

     Whenever two-photon excitation was used, a dichroic mirror 725DCSPXR (AHF) was 

placed at the position of DC1, in combination with a short pass filter E700SP, to separate 

excitation (─) and emission (─). The emission was then directed to the left side port of the 

microscope and split by DC2 (590DCXR, AHF), with longer wavelengths (─) transmitted onto 

APD1 before passing through a band pass filter D680/30m (Chroma) and shorter wavelengths 

(─) reflected onto APD2 through the band pass filter D525/20m (Chroma). A variable reflective 

neutral density filter (not shown) was used to attenuate the excitation power to 25 mW. 

     To expand the capabilities of the setup, a 0.5 mm thick type I BBO crystal (β-barium borate, 

β-BaB2O4) with θ = 29° (Castech) can be flipped into the excitation beam path, at focus, for 

second-harmonic generation (SHG). The crystal converts a portion of the photons, two-to-one, 

into photons with doubled energy (half the wavelength). Owing to tunability of the Ti:sapphire 

laser (720-950 nm), SHG affords one-photon excitation from 360 to 475 nm (--). The laser 

fundamental and second harmonics were separated with DC3 (545DCXRU, AHF). 

     In Chapter 3.2, the measurements were performed primarily with a picosecond (pulse widths 

~40 ps) diode laser (LDH-P-C-375, PicoQuant), which was controlled by the laser driver PDL 

800-B (PicoQuant) at a lower repetition frequency of 40 MHz (─) and excitation power of 7.5 

µW. In this case, as well as when using SHG for excitation, the dichroic mirror 500DCXR 

(AHF) was inserted as DC1, in combination with a long pass filter AT435lp (Chroma). Signals 

on APD1 and APD2 were selected by band pass filters D620/20m and D565/20m instead, 

respectively. All excitation beams were collimated and expanded with a pair of achromatic 

focusing lenses (focal lengths 3 and 25 cm) and set to 10 mm with an iris diaphragm, in order to 

overfill the back aperture of the objective (7.2 mm). The dashed DC3 and 25-cm focusing lens 

were in place exclusively when SHG was used. 

     All data were acquired with a PRT 400 router-coupled TCSPC card (TimeHarp200, 

PicoQuant) and analyzed with the SymPhoTime software (version 5.3, PicoQuant), except for 

the fitting of FCS curves (elaborated in Section 2.1.2), which was performed with QuickFit 

3.0.46 
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2.1.1 Time-correlated single photon counting (TCSPC) 
     Most of the results and discussions presented in this work are based on measured time-

dependent fluorescence intensity decays following the almost instantaneous excitation (with 

durations of ~150 fs or ~40 ps, depending on the laser used). The decays are proportional to the 

overall excited-state population, or equivalently the probability of one molecule remaining at 

the excited state, of either the FRET donor or acceptor (Equations 1.7 or 1.9), and were recorded 

by time-correlated single photon counting (TCSPC). The principle of TCSPC is classically 

illustrated in Figure 2.2. 

 

 

Figure 2.2. Principle of TCSPC. (a) Theoretical effect of the laser pulse trains. (b) 

Construction of a histogram from single photon events. Adapted from reference 47.      

 

     During the time intervals between excitation pulses (11 ns with 90 MHz and 25 ns with 40 

MHz repetition frequencies, respectively), the probability of finding a photon decays with time 
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in the same way according to Equations 1.7 or 1.9 (Figure 2.2a). In TCSPC, the signal level is 

generally kept below one-hundredth of the repetition frequency (for example by lowering the 

laser power or sample concentration) so that no more than one photon is detected per excitation 

pulse (mostly none). The arrival time of each detected photon with respect to the next incoming 

laser pulse is registered (reversed mode), and the histogram acquired after the accumulation of 

many photons reconstructs the probability decay (Figure 2.2b). 

     The electric output signal from an APD, due to the detection of a photon, starts the charging 

of a capacitor with a linear voltage ramp (constant charging current), which is stopped by the 

next synchronization signal from the laser. The stoppage voltage can then be converted to the 

time difference between the start/stop signals, hence called a time-to-amplitude converter (TAC). 

With the PRT 400 router, photons arriving at APD1 and APD2 can be counted independently by 

the TimeHarp200 TCSPC card and binned to time channels 38 ps in width. The synchronization 

signal when using the Ti:sapphire laser for excitation, either with its fundamental or second-

harmonic wavelength, is delivered from a fast photodiode home-built by Prof. Dr. Dirk 

Schwarzer (Research Group Reaction Dynamics, Max Planck Institute for Biophysical 

Chemistry), which is illuminated by a split portion of the fundamental (Figure 2.1). As for the 

diode laser, the electric synchronization output from the laser driver is directly connected to 

TimeHarp200. 

     Another important component of a TCSPC module is the constant fraction discriminator 

(CFD). In contrast to the stable synchronization signal, electric pulses delivered by an APD vary 

in amplitude (Figure 2.2a, third panel), which will give rise to timing inaccuracies if the pulses 

are timed with a fixed threshold at the leading edge. A CFD creates a delayed and reverted 

duplicate of the incoming pulse and adds it to the original one (Figure 2.3). The zero cross point 

of the sum is independent of incoming pulse amplitudes and used for timing. 

 

 

Figure 2.3. The operating principle of CFD. Adapted from reference 47. 
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     Finally, the reconstructed fluorescence decay curves are fitted with model exponential 

functions: 

𝐹(𝑡) = ∑ 𝐴i𝑒−𝑡/𝜏ii      (2.1) 

Time constants τi and amplitudes Ai acquired from the best fits shall then give information on 

the interactions of a fluorescent molecule with another (e.g., a FRET donor/acceptor pair) or 

with the surrounding environment (e.g., the solvent). 

     As exemplified in Figure 2.2b, the observed decay curve begins not abruptly but with a finite 

slope, which is the outcome of a finite instrument response function (IRF). With either fs 

Ti:sapphire or ps diode laser as the excitation source, the width of IRF is dominated by the 

transit time spread (TTS) of the APD detector. The transit time refers to the time between the 

arrival of a photon and the output electric pulse, which varies with the penetration depth of the 

photon into the photodiode. The IRF can be imagined as a series of infinitely short pulses 

generating the same fluorescence decay, the sum of which yields the observed waveform 

(Figure 2.4). Mathematically, the observed fluorescence intensity at each time t can be 

expressed as a convolution integral: 

𝐹𝑜𝑜𝑜(𝑡) = ∫ 𝐹(𝑡′)𝐼𝑅𝐹(𝑡 − 𝑡′)𝑑𝑡′𝑡
0     (2.2) 

 

 

Figure 2.4. Convolution of the fluorescence decay with IRF. Adapted from reference 47. 

 

A proper “synthetic” IRF may be calculated with the SymPhoTime software by taking the 

derivative of the signal rising edge, given that there is no fast dynamics affecting the 

fluorescence. For instance, IRF can be acquired first from free Oregon Green 488 dyes in buffer 

and applied to fit the curves involving more complex dynamics. 
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2.1.2 Fluorescence correlation spectroscopy (FCS) 
     In addition to the fluorescence lifetime, recorded photon time traces (e.g., Figure 2.2a, third 

panel) can also be analyzed with fluorescence correlation spectroscopy (FCS), which provides 

information on the diffusion behavior and concentration of the fluorescent labels. The 

autocorrelation function for photons impinging onto either one of the APDs is defined as: 

𝐺′(τ) = 1
𝑇𝑡𝑡𝑡𝑡𝑡

∑𝑁p(0)𝑁p(τ)     (2.3) 

Ttotal is the total measurement time, and Np the number of photons. In this context, τ implies that 

the whole time trace is shifted by τ and then compared to itself (with τ = 0), as depicted in 

Figure 2.5. With TCSPC, Np(0) and Np(τ) are either 0 or 1. 

 

 

Figure 2.5. Calculation of autocorrelation function G’(τ). T denotes the width of a time 

channel (38 ps). Adapted from reference 47. 

 

The number of coincidences between the original and shifted time traces are registered at 

stepwise increased τ to give the function G’(τ). 

     A more commonly used expression is the normalized autocorrelation function of 

fluorescence fluctuations: 

𝐺(τ) = 〈δ𝐹(0)δ𝐹(τ)〉
〈𝐹〉2

= 𝐺′(τ)
〈𝐹〉2

− 1     (2.4) 

with 

𝛿𝐹 = 〈𝐹〉 − 𝐹      (2.5) 

The brackets refer to averaging with respect to Ttotal, and thus <F> stands for the average 

fluorescence intensity. 

     Fluorescence fluctuations in this study arise from 3D diffusion of fluorescently labeled 

liposomes in and out of the effective focal volume of: 
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𝑉eff,TPE = �𝜋
2
�
3
2 𝑟02𝑧0     (2.6) 

using two-photon excitation (TPE).48,49 The lateral (r0) and axial (z0) dimensions were derived 

from a 3D Gaussian approximation of the laser intensity profile at position r: 

𝐼(𝑟) = 𝐼0𝑒−2(𝑥2+𝑦2)/𝑟02𝑒−2𝑧2/𝑧02      (2.7) 

r0 and z0 specify the distances at which the intensity decreases to 1/e2 of its maximum I0. With 

two-photon excitation, the overall detection profile is then given by: 

𝑝(𝑟) ≡ 𝐼(𝑟)2 = 𝐼02𝑒−4(𝑥2+𝑦2)/𝑟02𝑒−4𝑧2/𝑧02    (2.8) 

and accordingly Veff maps out the boundaries where the detected intensity p(r) decreases to 1/e2 

from the maximal value I0
2. 

     For 3D diffusion, the autocorrelation function G(τ) can be fitted with the model function: 

𝐺(τ) = 1
〈𝑁〉

1
1+τ/τD

1
�1+(𝑟0/𝑧0)2(τ/τD)

    (2.9) 

where <N> is the average number of diffusing particles in Veff and τD is the characteristic 

diffusion time of the particle (e.g., a liposome or a single fluorescent molecule). With two-

photon excitation, τD is related to both r0 and the size of the particle by: 

τD = 𝑟02

8𝐷
      (2.10) 

𝐷 = 𝑘B𝑇
6𝜋𝜋𝑅

      (2.11) 

where T is the temperature, η the solvent viscosity and R the hydrodynamic radius of the 

particle, assuming a globular shape. D, the diffusion coefficient, is a molecular property and can 

be utilized to acquire the instrumental parameter r0. 

     When two diffusive species are present,50 the model autocorrelation function is given by: 

𝐺(τ) = 𝑁1𝐵12𝐷1(τ)+𝑁2𝐵22𝐷2(τ)
(𝑁1𝐵1+𝑁2𝐵2)2     (2.12) 

where Ni and Bi stand for average particle numbers and the brightness of each species, while 

Di(τ) summarizes the diffusion terms: 

𝐷𝑖(τ) = 1
1+τ/τDi

1
�1+(𝑟0/𝑧0)2(τ/τDi)

   (2.13) 
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2.2 Preparation of sample liposomes 
     The standard lipids used in this study were purchased from Avanti Polar Lipids (Figure 2.6), 

among which DOPC, DOPE, DOPS and DPPTE were synthetic (purity >99%); PIP2 was 

extracted from porcine brain, with the structure shown being the predominant species (~37%) in 

a mixture of different hydrophobic chains, and cholesterol was extracted from wool (purity 

>98%). 

 

 

Figure 2.6. Chemical structures of the standard lipids. 

 

The fluorescently labeled lipids were purchased from Molecular Probes (Figure 2.7). Oregon 

Green and Texas Red are xanthene-based dyes, whereas Marina Blue is a coumarin derivative. 

     Sample small unilamellar liposomes (≤ 50 nm) with sizes similar to synaptic vesicles 

(diameter ~40 nm) were prepared as follows: 
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Figure 2.7. Chemical structures of fluorescently labeled lipids. 

 

(1) The lipids were dissolved in CHCl3/MeOH (volume 2/1) and mixed at the desired 

compositions. The total number of lipids in a single preparation was 0.55 µmol. 

(2) Purge with a N2 stream to evaporate CHCl3/MeOH. 

(3) Re-dissolve the lipid mixture in 50 µL HP150 buffer (KCl 150 mM, HEPES 20 mM, pH 7.4) 

containing 5% detergent sodium cholate (by weight). 

(4) Add protein or DNA-lipid conjugate solutions to achieve a protein/DNA-to-lipid molar ratio 

of 1:1000 (Chapter 3.1) or 1:500 (Chapter 3.2). 

(5) Load the solution onto a Sephadex G-50 Superfine (Sigma-Aldrich) size-exclusion column 

and collect the fluorescent fraction of the eluate (tracked with a handheld UV lamp, UVGL-

25, UVP). Typical concentrations of the eluted liposomes were ~0.4 µM. 

     Initially, binary detergent-lipid and ternary detergent-lipid-protein micelles (monolayered) 

coexisted in equilibrium with detergent monomers. While moving down the column, the 

detergent monomers trailed behind, and the detergents in mixed micelles were gradually 

depleted to maintain the equilibrium. Subsequently, micelles began to merge, in order to 

decrease the high curvature unfavorable to the longer-tailed lipids. Finally a phase transition 

was made to form bilayered liposomes (Figure 2.8). 
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Figure 2.8. Mechanism of liposome formation using size-exclusion chromatography 

and cholate as the detergent. (•−) Detergents, (○−) lipids and (▼) proteins. OD (optical 

density) increases with the concentration of liposomes. Rsat denotes the saturating 

detergent-to-lipid ratio in liposomes, above which mixed micelles and liposomes begin to 

coexist; whereas Rsol is the ratio when lipids become completely solubilized into mixed 

micelles. Adapted from reference 51, copyright (1995), with permission from Elsevier. 

 

     The HP150 buffer was used throughout Chapter 3.2. As for Chapter 3.1, 1 mM EGTA was 

included to buffer Ca2+ (HP150-EGTA). For Ca2+-activation of syt-1, syt-1 proteoliposomes 

were first incubated with target liposomes in HP150-EGTA for 30 min. Afterwards, 150 µL 

HP150-EGTA with 1.467 mM CaCl2 was added to the mixture and the final volume was 

adjusted to 200 µL with extra HP150-EGTA. The total Ca2+ concentration was then 1.1 mM, 

with 100 µΜ being free (checked with Fluo-5N,52 Molecular Probes). Another 30 min of 

incubation allowed for the Ca2+-binding effects to reach equilibrium. 

2.2.1 Protein constructs 
     Full-length syt-1 (amino acids 1-421) wild-type and mutants were purified by Dr. Angel 

Pérez-Lara, and the SNARE proteins by Ursel Reis (Department of Neurobiology, Max Planck 

Institute for Biophysical Chemistry). Three previously characterized syt-1 Ca2+-binding mutants 

were used: a*B (D178A, D230A and D232A), Ab* (D309A, D363A and D365A) and a*b* 

(D178A, D230A, D232A, D309A, D363A and D365A), in which Ca2+ binding to C2A, C2B or 

to both C2 domains was disrupted (Figure 1.6) by turning negatively charged aspartate into 

neutral alanines.37 
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     In Chapter 3.2, full-length synaptobrevin-2 (1-116, Figure 1.5a) was reconstituted into one 

type of liposomes. The other type of liposomes included the ∆N acceptor complex, which 

consisted of a truncated syntaxin-1A (183-288), a SNAP-25A (1-206, C84S, C85S, C90S and 

C92S) with all cysteines mutated to serines, and a soluble C-terminal portion of the 

synaptobrevin-2 SNARE motif (syb49-96). The syb49-96 peptide was first introduced in reference 

42, which greatly accelerated the slow reconstituted fusion (compared to that in vivo) by 

preventing the formation of an inhibitory syntaxin-1A/SNAP-25A 2:1 complex. It was 

subsequently displaced by full-length synaptobrevin-2 during full-zippering. Yet this 

displacement step may still be rate-limiting in the observed fusion reaction. 

2.2.2 Synthesis and characterization of lipid-anchored DNA 
oligonucleotides 
     The six lipid-anchored DNA oligonucleotides (Table 2.1) used in Chapter 3.1 were designed 

and synthesized by Prof. Dr. Claudia Höbartner and Jan Seikowski (Research Group Nucleic 

Acid Chemistry, Max Planck Institute for Biophysical Chemistry). 

 

Table 2.1. Sequences and MS analysis of the titled oligonucleotides. 

 5’-Sequence-3’ 

X=1,2-O-dioctadecyl-(rac)-glycerol 

Mol. Wt. 
calculated 
[g/mol] 

Mol. Wt. 
found 
[g/mol] 

10a XGACCTCGCAG 3671.8 3671.5 

10b XCTGCGAGGTC 3702.8 3703.3 

15a XGACCTCGCATCGTGT 5202.9 5203.3 

15b XATACGATGCGAGGTC 5275.8 5276.2 

25a XTCGACACGGAAATGTTGAATACTAC53 8333.0 8333.4 

25b XGTAGTATTCAACATTTCCGTGTCGA 8306.0 8306.8 

 

     The oligonucleotides were synthesized under standard solid-phase DNA synthesis 

conditions,54 except for using 1,2-O-dioctadecyl-(rac)-glycerol 3-(2-cyanoethyl) N,N-

diisopropylphosphoramidite as the last base. The lipid-phosphoramidite was prepared using 1,2-

O-dioctadecyl-(rac)-glycerol (Chem-Impex) and 2-cyanoethyl N,N-diisopropylchloro-

phosphoramidite in the presence of N,N-diisopropylethylamine (Hünig's base) in CH2Cl2 

(structures shown in Figure 2.9).55 All phosphoramidites were dissolved in anhydrous CH2Cl2 
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(100 mM) and the coupling time was 2 min, except for the lipid-phosphoramidite (12 min). The 

final DNA oligonucleotides were deprotected and cleaved from the solid support with 

NH4OH/EtOH (3:1, 55°C, 20 h), and purified by RP-HPLC on a Resource 15RPC column (1 

mL), using a linear gradient of CH3CN in triethyl ammonium acetate buffer (0-100% in 20 

column volumes). Purity and identity of the products were confirmed by HPLC and ESI-MS 

(Table 2.1). 

 

 

Figure 2.9. Synthesis of the lipid-phosphoramidite. 

 

     Hybridization of the DNA-liposomes was achieved by incubation for 5 min at 35 °C for 10 

bp and 55 °C for 15 and 25 bp, followed by slow cooling back to room temperature. The 

procedure was analogous to typical annealing protocols for oligonucleotides. Namely, the 

selected temperatures were close to the melting temperatures (Tm) of the strands (calculated with 

OligoAnalyzer 3.1, http://www.idtdna.com/calc/analyzer, Integrated DNA Technologies), 

which are 34.8, 52.9 and 59.6 °C for 10, 15 and 25 bp, respectively. 

2.2.3 Asymmetrically labeled liposomes 
     As mentioned briefly in Section 1.2.1, the “dequenching” assay, in which the FRET donor 

and acceptor labels are first included in the same type of liposomes, are frequently used to 

monitor lipid mixing resulting from membrane fusion. A common combination of dyes is with 

NBD being the donor and rhodamine B as the acceptor (e.g., in references 15 and 17). 

Remarkably, NBD on the outer leaflet can be reacted with dithionite ions (S2O4
2-) to become 

non-fluorescent, so the increase of NBD fluorescence corresponds to the extent of fusion of the 

inner leaflet alone. Since membrane fusion starts with the outer leaflet (Figure 1.4), the kinetics 

of inner leaflet fusion is considered to be slower than, if not the same as, the overall fusion rate 

when both leaflets are labeled. Such a comparison must be drawn with two separate experiments 

(with and without S2O4
2- treatment) and proper normalization.56 If, however, the two leaflets are 

labeled differently and distinguishably, fusion of the outer and inner leaflets can be recorded 

and compared simultaneously. 

http://www.idtdna.com/calc/analyzer
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     The asymmetrically labeled liposomes in Chapter 3.2 were prepared with the following steps, 

starting with liposomes containing 2% NBD DPPE and 0.5% thiol-functionalized DPPTE: 

(1) Add the eluted liposomes to an excess of Oregon Green 488 maleimide in powder form (54 

nmol, Molecular Probes), and react for 2 hours at room temperature. 

(2) Mix with an equal volume of freshly prepared Na2S2O4 200 mM (reference 57) in HP150 

buffer. React for 5 minutes at room temperature. 

(3) Load the solution onto Sephadex G-50 Superfine columns (with no more than 200 µL per 

column) and collect the first fluorescent fraction (the second slowly traveling band would be 

the excess dyes). This step shall remove both the excess dyes and Na2S2O4. 

The first chemical reaction (Figure 2.10a) is essentially the same as labeling cysteine residues of 

proteins,58 while the second reaction reduces the nitro-substituent of NBD to an amine (Figure 

2.10b). Since the lowest-lying transition (centering around 460 nm) of the NBD molecule 

involves charge transfer from the amine lone pair electrons (non-bonding orbital) to the nitro-

group π*-antibonding orbital, reduction of the nitro-group eliminates this transition and the 

green fluorescence disappears.59 The order of reactions cannot be reversed, as excess Na2S2O4 

would compete with DPPTE to reduce the maleimide C=C bond.60 For fusion experiments, full-

length synaptobrevin-2 was reconstituted into the precursor NBD/DPPTE liposomes. 

Synaptobrevin-2 bears merely one cysteine (C102) buried in the transmembrane domain, which 

should not interfere with the reactions. 

 

 

Figure 2.10. The one-pot, two-step reaction to produce asymmetrically labeled 

liposomes. 

 

     The two labels, NBD and Oregon Green 488, were differentiated by their different 

fluorescence lifetimes (Section 3.2.1).  
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2.3 Fabrication of microfluidic channels 
     The microfluidic channels (Figure 2.11) used in Chapter 3.2 were designed and fabricated by 

Hsin-Fang Hsu (Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max 

Planck Institute for Dynamics and Self-Organization). The channel was composed of a glass 

coverslip (24 × 60 mm, 0.13-0.16 mm thickness, Menzel-Gläser) and a polydimethylsiloxane 

block (PDMS, Sylgard 184, Dow Corning). The indented channel structure was produced with a 

reusable silicon wafer template (Si-Mat) bearing the complementary pattern on top, which was 

made with standard soft lithography61 using the SU-8 3025 photoresist (MicroChem). The 

pattern was drawn with the LibreCAD software (http://librecad.org) and printed to a 

photoemulsion/film photomask (resolution 50,800 dpi, Selba S.A.). Before assembling the 

PDMS block and the glass coverslip, they were both treated with air plasma for 30 seconds 

(plasma cleaner PDC-002, Harrick Plasma), which rendered the surfaces hydrophilic. To 

prevent adhesion of liposomes onto channel surfaces, the channels were stored for at least two 

days before use for them to become hydrophobic. For each liposome preparation, a new channel 

was fabricated. 

 

 

Figure 2.11. The design of the microfluidic channel. The middle segments were 

truncated (\\) for better visualization of the fine structures. A and B are the inlets 

connected to syringes, whereas C is connected to waste. Courtesy of Hsin-Fang Hsu. 

 

     The channel was on average 95 µm in height (90-100 µm) and 100 µm in width, except for 

the 2550 µm long mixing segment, which was narrowed to 50 µm. Pillars 16 µm in diameter 

were randomly placed within the mixing segment to induce turbulences that facilitated faster 

mixing. There were a total of 74 300 µm long horizontal segments in the lower part, marked 

with numbers which could be read under the microscope (not shown). An F-View II CCD 

(charge-coupled device) camera mounted on top of the binocular port of the microscope, along 

with the analySIS getIT software (Olympus), was used to place the laser focus at the center of 

these segments or their upper counterparts. Blue donor (Marina Blue) and green acceptor 

http://librecad.org/
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(Oregon Green 488 and NBD) liposomes were loaded separately into Hamilton gastight glass 

syringes (500 µL, inner diameter 3.26 mm) and injected into the channel through inlets A and B, 

respectively. The flow was controlled by a two-rack syringe pump (PHD 2000, Harvard 

Apparatus) and set to 20 µL/hr. Accordingly, the time of travel between two adjacent numbered 

segments was 5.4 seconds, the same as the time required to pass through the narrowed neck. In 

other words, the samples in the succeeding downstream segment are mixed (reacted) for 5.4 

more seconds. In the ensuing Results and Discussion, the lower horizontal segment 1 is defined 

as time zero (0 s) when the donor and acceptor liposomes become thoroughly mixed. 
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3 RESULTS AND DISCUSSION 

3.1 Control of membrane gaps by synaptotagmin-Ca2+ 
measured with a novel membrane distance ruler 
     This part of work (except for Section 3.1.4) has been published in Nat. Commun. 2014, 5, 

5859 (doi: 10.1038/ncomms6859),62 under a Creative Commons Attribution 4.0 International 

License (CC BY). Herein, modifications were made to the texts and figure captions.  

     The aim was to verify whether synaptotagmin-1 (syt-1) reduced the distance between two 

membranes upon Ca2+-activation as proposed in reference 43 (Section 1.2.2), and to do so by 

measuring the membrane distances accurately at a nm scale. The membrane distances were 

probed with multiple inter-membrane FRET interactions between small unilammelar liposomes 

labeled with 0.5% Oregon Green 488 DPPE or 1% Texas Red DPPE (molar ratios) as the donor 

or acceptor liposomes, respectively. The fluorescence lifetime of the donor dye Oregon Green 

was chosen as a robust indicator of FRET (Equation 1.7), as it is insensitive to variations in the 

concentration of liposomes within the focal volume of ~1 fL (Equation 2.5) or to variations in 

alignment conditions of the experimental setup. 

     In contrast to FRET-based distance measurements within or between proteins,63,64 distances 

between two membranes cannot be easily extracted. In proteins, single donor and acceptor dyes 

are attached to defined sites and a single donor-acceptor pair is distant from the other 

fluorophores. In these cases, the average distance between the pair can be easily derived, 

providing that the Förster distance R0 for the selected donor and acceptor is known. On 

liposomes, contrarily, the fluorophores are distributed across the surfaces of both the inner and 

outer leaflets. Hence, in a single tethered cluster, each donor molecule may transfer the 

excitation energy to multiple acceptors, and the probability of each donor undergoing FRET is 

different and depends on its position relative to the acceptor liposomes, which in turn leads to 

http://www.nature.com/ncomms/2014/141215/ncomms6859/full/ncomms6859.html
http://creativecommons.org/licenses/by/4.0/
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different lifetimes (Figure 3.1a). Therefore, it is crucial to measure first a calibration curve using 

tethered liposomes with predefined spacings so that the donor fluorescence lifetimes can be 

correlated properly with membrane distances between donor and acceptor liposomes. 

3.1.1 The membrane distance ruler 
     The calibration of such a membrane distance ruler was done via using membrane-anchored 

double-stranded DNA (dsDNA) of various well-defined lengths as discrete spacers (Figure 

3.1).53 In general, dsDNA shorter than its persistence length of 50 nm, or 150 base pairs (bp), is 

known to have high bending rigidity.65 Herein three different lengths well below the persistence 

length were synthesized (Section 2.2.2 and Table 2.1), 3.3 nm (10 bp), 5.0 nm (15 bp) and 8.3 

nm (25 bp). The complementary strands were then individually reconstituted into donor and 

acceptor liposomes, respectively, with a 1:1000 DNA-to-lipid molar ratio. 10% anionic lipids 

DOPS were included in both types of DNA liposomes, with remaining lipids adjusted with 

DOPC to yield 100%. The net negative charges on the liposome surfaces and the negatively 

charged DNA backbones helped to stabilize the DNA in a perpendicular orientation, which was 

already observed when there were no repulsive charges on the membranes.66 

 

 

Figure 3.1. FRET from green donor liposomes to the surrounding red acceptor 

liposomes. The upper panels (a-c) show the experimental design of the membrane 

distance ruler for small unilamellar liposomes, with the spacings specified. FRET 

decreases as the distance increases, as reflected in the longer amplitude-weighted lifetime 

(τamp). In (d) the DNA sequences are listed again in a complementary manner. 
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     Figure 3.1 also illustrates that, in the experimental design, an excess of acceptor liposomes 

was used to drive the equilibrium so that each donor liposome is surrounded by an equal 

number of acceptor liposomes, in order to eliminate the contribution of differences in the degree 

of tethering.67 Otherwise, an observed reduction in the donor lifetime might be caused by an 

increased number of bound acceptor liposomes, instead of a decrease in distance. To determine 

the required ratio, the acceptor liposome concentration was increased gradually while the donor 

liposomes were kept at one liposome in the focal volume (~1.5 nM). The donor fluorescence 

decay curves converged after the ratio exceeded 1:10 (Figure 3.2). As a result, a ratio of 20 

acceptor liposomes to 1 donor liposome was selected for ensuing analysis and discussions. 

 

 

Figure 3.2. Convergence of the fluorescence decay curves at higher excess ratios. 

Shown for (a) Syt-1 samples in 1 mM EGTA and (b) in 100 µM Ca2+. The numbers indicate 

the ratio of acceptor liposomes relative to the donor liposomes. 

 

     The fluorescence decay curves of the three DNA-tethered liposome mixtures were measured 

with TCSPC (Section 2.1.1) and the results are summarized in Figure 3.3a. The emission 

wavelength was chosen at the blue edge of donor fluorescence spectrum (525±10 nm) to (i) 

minimize the crosstalk between donor and acceptor channels (Figure 3.4) and (ii) to selectively 

amplify the contributions of donor molecules facing the acceptor liposomes (elaborated in 

Section 3.1.4). The three curves were clearly distinguishable and decayed faster than the control 

sample without DNA. They were fitted with two exponential components: 

𝐹(𝑡) = 𝐴1𝑒−𝑡/𝜏1 + 𝐴2𝑒−𝑡/𝜏2     (3.1) 

and the amplitude-weighted lifetime (τamp), was then calculated: 

𝜏amp = 𝐴1
𝐴1+𝐴2

𝜏1 + 𝐴2
𝐴1+𝐴2

𝜏2     (3.2) 
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Figure 3.3. The measured fluorescence decay curves and the membrane distance 

ruler for converting fitted τamp into closest distances between small unilamellar 

liposomes. Decay curves for (a) DNA-tethered liposomes with specified number of base 

pairs and (b) syt-1 wild-type (WT) reconstituted into donor liposomes in the absence and 

presence of 100 µM Ca2+. No PIP2 indicates the sample in which 2% PIP2 was substituted 

with 7% PS. (c) Measurements without Ca2+ for syt-1 WT reconstituted into donor 

liposomes with various molar ratios of PS. (d–f) Decay curves for Ab*, a*B and a*b* 

mutants. Control stands for the experiments in which there was no protein or DNA on 

either type of liposomes. The symbols represent experimental data, whereas the lines are 

reconvolution fits using two exponentials. (g) The plot of τamp versus distance. A linear 

regression line can be constructed with the DNA-tethered liposomes and applied to 

determine the distance between syt-1 tethered liposomes. (h) τamp and the calculated 
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distance information for the mutants. The error bars represent s.d. values obtained from 

three independent repeats. Asterisks (*) designate when the τamp values are statistically 

different (P<0.05, two-tailed unpaired t-test). 

 

 

Figure 3.4. Spectra of the fluorophores and band pass filters. Spectra of the FRET 

donor, Oregon Green 488, are shown in green and those of the acceptor, Texas Red, in red. 

The dashed lines are the absorption and solid lines the fluorescence emission. The gray 

solid lines indicate the transmittance of band pass filters D525/20m and D680/30m. 

 

     By measuring three independent replicates, τamp for liposomes with membrane distances of 

8.3, 5.0 and 3.3nm was determined to be 3.44±0.05, 3.06±0.13 and 2.82±0.18 ns, respectively 

(average±s.d.). A plot of τamp versus the membrane distance could be very well fitted by a linear 

approximation (Figure 3.3g), which later served as the calibration curve for membrane distance 

determination. As control, hybridization of complementary DNA strands on the liposomes was 

inhibited by adding a free single strand (without the lipid anchor, Figure 3.5). Under these 

conditions, the lifetime was restored to the control level observed with a sample containing 

donor and excess acceptor liposomes, but neither with DNA. 

     An advantage of the calibration procedure is that any nonspecific effects, such as nonspecific 

liposome clustering, are intrinsically corrected for. To quantify the extent of such effects, a 

sample containing only pure donor liposomes was compared with the donor-acceptor control 

(Figure 3.5). This comparison provides evidence that nonspecific effects contributed merely to a 

minor extent to the overall fluorescence decay. 

 



Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

30 Results and Discussion 

 

Figure 3.5. Inhibition of DNA-liposomes hybridization via the addition of a free 

single strand. Shown for the 10 b.p. samples. The additional blue curve represents the 

sample in which the negative charges on both types of liposomes were omitted and the 

gray dashed dotted curve was measured with pure donor liposomes. 

 

3.1.2 Synaptotagmin-1 controls the gap between two membranes 
     Next, full-length syt-1 was reconstituted with a 1:1000 protein-to-lipid molar ratio into donor 

liposomes containing 10% DOPS (20% DOPE, 10% cholesterol and adjusted with DOPC to 

100%), and the fluorescence decay was measured when they were bound to acceptor liposomes 

bearing 15% DOPS plus 2% PIP2 (also with 20% DOPE, 10% cholesterol and DOPC). In the 

absence of Ca2+ (1 mM EGTA), τamp was close to that of the 8.3 nm DNA-tethered liposomes 

(3.33±0.03 ns) and the membrane distance was estimated to be 7.4 nm (Figure 3.3b,g). To 

verify that the decrease in fluorescence lifetime compared with the control sample was caused 

by the specific interaction of the poly-lysine patch (KKKK) with PIP2, the poly-anionic PIP2 

(2%) in the acceptor liposomes was replaced by increasing the concentration of mono-anionic 

PS by 7 to 22% PS, which maintained the net negative charge of the acceptor liposomes.68 

Without PIP2, the fluorescence lifetime returned to the control level, showing that tethering to 

the syt-1 proteoliposomes was abolished. The incubation was repeated using PIP2-containing 

liposomes in the absence of Ca2+ (1mM EGTA) to allow for the KKKK-PIP2 binding and 

appropriate Ca2+ buffer was added afterwards to achieve a final free Ca2+ concentration of 100 

µM (Section 2.2). The resulting fluorescence decay was faster and corresponded to that 

measured with liposomes tethered by the DNA-ruler at a distance of 5.0 nm (τamp = 3.05±0.10). 

It is concluded accordingly that the gap between syt-1 proteoliposomes and the surrounding 

acceptor liposomes decreases to ~5 nm after the addition of Ca2+. 
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     The distance of 7.4 nm in the absence of Ca2+ is relatively short, suggesting that the linker 

between the transmembrane domain and the C2A domain is not completely stretched (Figure 

1.6). Intriguingly, the linker contains a membrane-adjacent stretch of positive charges, which 

may interact with the more C-terminally localized stretch of negative charges69 and/or with 

anionic lipids in the resident membrane of the protein (a cis interaction).70 To further examine 

the electrostatic interactions with negative charges on the liposome membranes,67,71 a set of 

experiments was performed in which the PS content on the donor proteoliposomes was varied 

(Figure 3.3c). When the donor proteoliposomes were neutral, namely, 0% PS, and only the 

acceptor liposomes contained anionic lipids, the measured lifetime was surprisingly short 

(2.82±0.09 ns) even in the absence of Ca2+ and was similar to that of the shortest set of DNA-

tethered liposomes (3.3 nm). This short distance can be explained by the nonphysiological 

elimination of electrostatic repulsion between the two membranes, which exists in vivo between 

the negatively charged synaptic vesicle and presynaptic membranes.10,72 In addition, the 

membranes may be pulled into close proximity if the positively charged lysine residues on the 

linker adhered in trans to the surfaces of acceptor liposomes. Figure 3.3c also indicates that at 

an intermediate level of PS (5%), there is an equilibrium between the 7.4- and 3.3-nm 

configurations. 

     To verify that that the numbers of membrane tethering sites between donor and acceptor 

liposomes are comparable in the protein and DNA samples, FCS data from the acceptor channel 

were utilized (Figure 3.6a). The autocorrelation functions of the acceptor fluorescence 

fluctuations were fitted with 3D diffusion of two species (Equations 2.12 and 2.13). The τD1 

values were determined by measuring the diffusion of free acceptor liposomes and were 

typically around 1 ms. From the best fits the fractions of the respective species, ρ1 and ρ2, were 

obtained, and the ratio of the fractions can be expressed as: 

𝜌1
𝜌2

= 𝑁1𝐵12

𝑁2𝐵22
     (3.3) 

When the average number of donor liposomes in the focal volume is 1 and that of the acceptor 

liposomes is N (e.g. 20), the formula can be rearranged to: 

𝑁1
𝑁2

= 𝜌1
𝜌2
∙ 𝛼2 = 𝑁 − 𝛼     (3.4) 

with α = B2/B1 representing also the number of acceptor liposomes bound to a central donor 

liposome under N times excess. Solving Equation 3.4 yields: 

𝛼 = −1+�1+4𝑁𝜌1/𝜌2
2𝜌1/𝜌2

     (3.5) 

The analysis shows that the average number of acceptor liposome tethering sites per donor 

liposome did not vary by >15% throughout the samples (Table 3.1). 
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Figure 3.6. Autocorrelation curves of the acceptor signals and the 2-component 

fitting. (a) Normalized autocorrelation of syt-1 wild-type (WT) and DNA-tethered 

liposomes at the 1:20 excess ratio. (b) Representative 2-component fitting of the syt-1 

sample without Ca2+. (∘) The experimental data. Two diffusive components with diffusion 

times of 1 ms (─) and 3 ms (─) were input as the initial values and (─) is the final 2-

component fit. 

 

Table 3.1. The number of acceptor liposomes bound to each donor liposome 

determined from 2-component fitting of the autocorrelation curves. Averages and 

standard deviations were taken from three independent repeats. 

Syt-1 (EGTA) Syt-1 (Ca2+) DNA 10 b.p. DNA 15 b.p. DNA 25 b.p. 

2.9 ± 0.23 3.0 ± 0.19 3.3 ± 0.10 2.6 ± 0.12 2.8 ± 0.18 

 

3.1.3 Ca2+-binding mutants 
     To gain more insight into the Ca2+ effects, the experiments were repeated using the a*B, Ab* 

and a*b* Ca2+-binding mutants described in Section 2.2.1. In the mutant with a disrupted C2B 

domain (Ab*), the inter-membrane distances in the absence and presence of Ca2+ were very 

similar to those of the wild-type protein (Figure 3.3d,g,h). On the contrary, in mutants with a 

disrupted C2A domain (a*B and a*b*), there was little or no distance shortening on addition of 

Ca2+, respectively (Figure 3.3e,f,h). These data support a model according to which the C2A 

domain is predominantly responsible for distance shortening due to Ca2+-mediated cis binding 

to its own membrane.43 In contrast, the C2B domain, at least under our experimental conditions, 

does not appear to be capable of simultaneous cis-trans binding as previously suggested.35,73 

The fact that a*B still exhibits a minor decrease of distance on Ca2+ addition may rather be 
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rationalized by the Ca2+-induced binding of C2B to the acceptor membrane and the insertion of 

its hydrophobic residues.36,74 

     Figure 3.7 presents a model deduced from the current experimental findings. Initially before 

the Ca2+ signal arrives, the poly-lysine patch located on the C2B domain is targeted to PIP2 

clusters on the presynaptic plasma membrane (Figure 3.7a,b).75,76 At this stage, full-length syt-1 

maintains the two membrane bilayers at a distance of ~7-8 nm (Figure 3.7b), possibly with the 

positively charged portion of the linker adhered to the host membrane.70 The ~7-8 nm distance 

corresponds to that when the SNARE motifs start to assemble and form the coiled coil four-

helix bundle,12 implicating that syt-1 holds the two membranes at this distance so that the fusion 

machinery is ready for fast initiation. Recently, such a pre-triggered state has also been captured 

in cryo-EM images which revealed that a large number of small liposomes incorporating syt-1 

and synaptobrevin-2 remained docked to giant liposomes with the t-SNAREs at distances on the 

order of ~10 nm, even after extended incubation.77 The fact that removing synaptobrevin-2 or 

adding its soluble counterpart to inhibit the full-length SNARE assembly did not alter the 

overall tethering suggests the major role of syt-1 in establishing a first contact to the target 

membrane, upstream of SNARE nucleation.43,78 

 

 

Figure 3.7. Model of full-length syt-1 binding across the synaptic vesicle and the 

presynaptic plasma membrane. (a) Syt-1 targets PIP2 clusters via the poly-lysine patch 

(blue). (b) The distance between two membranes is maintained at ~7-8 nm, as the linker 

is not fully stretched. (c) On Ca2+ influx, the C2A domain binds cis, reducing the distance to 

5 nm and potentially promoting the electrostatic zippering of the linker. Both membranes 

contain PS. The vesicles are not drawn to scale. 

 

     Secondly, the inter-membrane gap is compressed to ~5 nm on Ca2+ influx (Figure 3.7c). As a 

trans-SNARE complex spans two membranes at ≥4 nm,79 distance reduction from ~7-8 nm to 
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~5 nm brings the two membranes to a level at which very likely full assembly of the SNAREs is 

promoted,80 leading subsequently to the initiation of membrane fusion and neurotransmitter 

release. The membrane distance of 5 nm also correlates to cryo-EM (electron microscopy) 

observations for liposomes clustered by soluble C2AB fragments and Ca2+,73,81 in which the 

C2A and C2B domains bind to opposing membranes.82 Such an antiparallel conformation has 

been shown to be of the lowest energy using C2AB from simulated annealing based on EPR-

derived restraints.83-85 Moreover, it corroborates new findings that alteration in the length and 

rigidity of the short (9-residue) linker between the C2 domains has a significant impact on 

evoked neurotransmitter release.86 

     In vivo mutation studies demonstrated that the C2B domain is indispensable for fast 

synchronous neurotransmitter release.87,88 In the experiments herein, initial binding of C2B to 

acceptor membranes is essential for the membrane distance control (Figure 3.3b). The binding 

was permitted to the maximum extent during incubation in EGTA buffer, in order to ensure that 

the differences in fluorescence decays were solely caused by Ca2+-induced distance changes. 

However, in the presynaptic active zone, Ca2+ binding to C2B may help to recruit previously 

undocked vesicles, rendering the Ca2+-dependence of the C2B mutant more severely impaired. 

On the other hand, the functional importance of the C2B Ca2+-binding sites may be attributed to 

the ability of syt-1 to facilitate curvature of the plasma membrane89,90 or interact directly with 

the SNAREs.5,85 The C2A domain, contrarily, plays a more important role in distance regulation. 

An effective decrease of the inter-membrane gap can be accomplished via binding of C2A back 

to the vesicle membrane and an even tighter binding of C2B to the target plasma membrane 

(Figure 3.7c). Notably, recently an ~80% decrease in release has been demonstrated using a 

D229E (aspartate-to-glutamate) mutation in Drosophila at the Ca2+-coordination site of C2A,91 

supporting the important function also of C2A in synchronous synaptic transmission. 

3.1.4 Modeling FRET across liposomes 
     Thus far the newly developed DNA-based membrane distance ruler has been applied to 

measure the distance between liposomes tethered by full-length syt-1. The fact that the 5 nm 

distance obtained in 100 µM Ca2+ matched the average distances observed in cyro-EM images 

using soluble C2AB fragments hints conversely that the ruler was well calibrated. As a 

supplement, an attempt was made (using Python 2.7, http://www.python.org) to model the inter-

membrane FRET interactions and to simulate the donor fluorescence decays. 

     To begin with, donor (Oregon Green 488) and acceptor (Texas Red) molecules were first 

distributed uniformly over the surfaces of corresponding spheres representing small 

unilammelar liposomes 40 nm in diameter (Figure 3.8).92 The number of fluorophores to be 

placed was decided by the product of the labeling percentage (0.5% Oregon Green 488 or 1% 

http://www.python.org/
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Texas Red) and the number of lipids constituting the outer or inner leaflet. The surface area per 

lipid head group was taken to be 0.7 nm2 and the bilayer thickness 4 nm,93 amounting to 7181 

and 4596 total lipids in the outer and inner leaflets, respectively.    

 

 

Figure 3.8. Distribution of donor (green) and acceptor (red) labels in the modeling. 

(☆) are on the outer and (△) on the inner leaflets, respectively. Axes are in nm.  

 

Throughout the modeling, the donor liposome was accompanied by three acceptor liposomes, as 

estimated in Section 3.1.2 with FCS. For simplicity, the transition dipole orientation of each 

molecule was fixed at the surface normal vector, which might have led to enhanced FRET 

because collinear transition dipoles have the highest κ2 value of 4 (Equation 1.4 and Figure 

1.2a). 

     Next, the energy transfer rate kET (Equation 1.3) of a single donor to all acceptors were 

additive94 and summed up to obtain the observed lifetime (τD) of the individual donors. The R0 

value was evaluated to be 6.3 nm, using information from the supplier (Molecular Probes) and 

reference 95. κ2 was assumed to be 0.476, the condition for a range of orientations which did 

not change during the excited state lifetime, restricted by neighboring lipid head groups.4 The 

individual decay functions were then convoluted with a Gaussian IRF (0.24 ns FWHM) and 

summed up again to generate the overall decay. The calculation of an overlap integral (Equation 

2.2) was replaced with a built-in error function representing the convolution of an exponential 

with a Gaussian: 
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where t0 and B denote the center and FWHM of the Gaussian, respectively.96 

     Surprisingly, the simulated decays at the three DNA spacings were much slower than the 

experimental results (Figure 3.9a, gray curves), which is tentatively ascribed to the slow solvent 

relaxation processes on membrane surfaces. In stark contrast to picosecond solvation in aqueous 

solutions,97,98 reorientation of water molecules around the excited donor to stabilize its 

redistribution of charges (Figure 3.9b) is hindered by the reorganization of lipids. In reference 

99, with a combination of quantum mechanical and molecular dynamics simulations, relaxation 

times at the lipid/water interface was determined to be >2 ns (for membrane probes Prodan and 

Laurdan), which was comparable to the fluorescence lifetime and has recently been proven 

experimentally by Ernsting and coworkers (2.45 ns for Laurdan, conference paper).100 Such 

slow solvation kinetics should render observed decays wavelength-dependent,101 which was 

confirmed to be the case for Oregon Green 488 DPPE incorporated into liposomes (Figure 3.10). 

 

 

Figure 3.9. Modeling of FRET from donor to acceptor liposomes. (a) The comparison 

of simulated fluorescence decay curves with experimental data (∘). (─) without and (─) 

with the weighting factor. (b) Schematic of solvent relaxation and the resultant spectral 

red shift. The y-axis is energy and x-axis the solvent orientation coordinate. 

 

     With the resultant spectral red shift (Figure 3.9b) at the nanosecond time scale, donors with 

longer lifetimes (the ones away from acceptor liposomes and thus less likely to undergo FRET) 
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experience the shift and will emit a portion of photons at longer wavelengths outside of the 

blue-edged observation window (525±10 nm, Figure 3.4). Conversely, shorter-lived donors 

(those facing acceptor liposomes) mostly emit within the range and their contributions to the 

overall decay are “amplified”. At current stage, a weighting factor chosen arbitrarily in the form 

of e-τD/τSR (with solvent relaxation times τSR ranging from 1.6 to 2.7 ns) is multiplied to each 

donor decay function before summation, thereby attenuating the contributions of longer-lived 

donors or, equivalently, amplifying those of the shorter-lived ones (Figure 3.9a, red curves). 

 

 

Figure 3.10. Influence of solvent relaxation on the fluorescence decays measured at 

different wavelengths. (a) For Oregon Green 488 DPPE, solvent relaxation at the 

lipid/water interface is a nanosecond process, and the measured decay is wavelength-

dependent. (b) Free Oregon Green 488 molecules in aqueous buffer solutions experience 

picosecond solvation which cannot be detected with TCSPC. 

 

     Finally, it is worthy to note that deformation of the tethering sites might deviate the 

measured decays from the theoretical model. Nonetheless, cryo-EM images have clearly 

revealed that small unilamellar liposomes, owing to the high membrane curvature, still 

preserved the spherical shape when tethered to giant liposomes (by syt-1 and/or the SNAREs).77 

On the contrary, protrusions were seen on the less curved giant liposome surfaces. 
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3.2 Asymmetrically labeled liposomes as a new tool to study 
membrane fusion 
     Previously in Chapter 3.1, FRET across two membrane affected the donor lifetime (τD), 

which in turn governed the donor decay. In this part, instead, the pre-exponential amplitudes Ai 

(Equation 2.1) of the acceptors serve as the indicator of FRET. More FRET interactions give 

rise to more excited acceptors and consequently larger amplitudes. 

     The goal of this project is to develop a bulk fluorescence assay with which fusion of the 

outer and inner leaflets of two membranes can be monitored simultaneously, so that the 

hemifusion intermediate (Figure 1.4) may be pinpointed in a single experiment. Even with the 

advancement of single-molecule methods, the delay between fusion of the two leaflets has 

exclusively been inferred indirectly from transient intermediate FRET states19 or mixing of the 

contents enclosed within the liposomes.20,21 The design principle herein is to label the leaflets 

with two different acceptor dyes which produce distinct FRET signals after fusion with 

homogeneously labeled donor liposomes. 

     As a proof of concept, the fluorescent dyes of choice were NBD and Oregon Green 488 

being the acceptors and Marina Blue as the donor (all spectra displayed in Figure 3.11a). 

Among them, NBD was critical because its green fluorescent charge-transfer band could easily 

be eliminated by reduction with sodium dithionite Na2S2O4 (Section 2.2.3),59 rendering the outer 

leaflet unlabeled. 

 

 

Figure 3.11. Spectra of the one donor-two acceptor system. (─) Marina Blue, (─) NBD 

and (─) Oregon Green 488. (a) Dotted lines with open symbols are the absorption and 

solid lines with closed symbols the fluorescence emission. The red vertical line marks the 

excitation wavelength (375 nm). (b) Spectra of the acceptor emissions together with the 

dichroic mirror 590DCXR (─) and band pass filters D565/20m and D620/20m (─ and ─). 
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Secondly, Marina Blue exhibits decent spectral overlap with NBD and was therefore a good 

candidate as the donor. Oregon Green 488 was chosen lastly as another acceptor to be added 

onto the outer leaflet via the reaction with thiol-functionalized lipids (Figures 2.6 and 2.10). 

Overlap of the NBD and Oregon Green 488 emission spectra implicates that the signals cannot 

be clearly discriminated using steady-state spectroscopy. Rather, the difference in fluorescence 

lifetime was utilized. Intrinsic lifetimes of Oregon Green 488 and NBD are approximately 4 and 

7 ns, respectively (Figure 3.12a,b), which shall not be altered by FRET (Equation 1.9). Lifetime 

measured at acceptor wavelengths for hemifused liposomes are expected to be shorter than that 

of either the fully fused or unfused ones, since FRET excites predominantly Oregon Green 488 

on the outer leaflet. 

 

 

Figure 3.12. Fluorescence decays of liposomes with various labeling percentages, 

measured at two wavelengths. (a) 0.5% Oregon Green 488.  (b) 2% NBD. The symbols 

represent experimental data, whereas the lines are reconvolution fits. Difference in 

intensity ratios between the two channels is visible. (c,d) Experimental decay curves for 

the specified mixtures (towards less NBD) measured at 565 nm (c) and 620 nm (d). The 

contribution of NBD is higher at longer wavelengths. 
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3.2.1 Differentiating two acceptor labels with the fluorescence lifetime 
     To confirm that the 2-3 ns difference in fluorescence lifetime was sufficient for 

differentiating the two acceptor labels, liposomes including various amounts of Oregon Green 

488 DPPE and NBD DPPE were first measured (Figures 3.12c,d and 3.13). With 375 nm 

excitation, a 1:4 Oregon Green 488-to-NBD ratio (0.5 vs. 2%) yielded a decay curve roughly in 

the middle of the two intrinsic decays. Apparently, the decay curves were in order when either 

fluorophore was lessened. Nonetheless, ratiometric measurements at two wavelengths, 565 and 

620 nm, were conducted to ensure that the amplitudes retrieved from 2-component fits 

(Equation 3.7) were unambiguous. 

𝐹(𝑡) = 𝐴OG𝑒−𝑡/𝜏OG + 𝐴NBD𝑒−𝑡/𝜏NBD    (3.7) 

By fitting the four curves in Figure 3.12a,b, six parameters for 2-component fitting could be 

deduced: τOG at 565 nm (4.8 ns) and 620 nm (4.8 ns); τNBD at 565 nm (6.7 ns) and 620 nm (7.0 

ns); amplitude ratios A620/A565 for Oregon Green 488 (0.24) and NBD (0.42). With the six 

parameters fixed, a fitting routine (written with Python 2.7, http://www.python.org) was then 

used to derive the best-fitting pair of functions, akin to global analysis in dealing with time-

resolved spectra.96,102 The resultant amplitudes were compared with those obtained directly from 

the measurement software SymPhoTime (version 5.3, PicoQuant), and the two fitting methods 

returned similar values. Namely, individual best fits at either wavelength represented the best 

global solution and vice versa. Summarized in Table 3.2 are the relative amplitudes (ANBD/AOG 

or AOG/ANBD) at 565 nm, which are consistent with the sample compositions.  

 

 

Figure 3.13. Fluorescence decays of a second set of mixtures towards less Oregon 

Green 488. Measured at 565 nm (a) and 620 nm (b). 

 

 

http://www.python.org/
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Table 3.2. Relative amplitudes at 565 nm from two sets of measurements. Rel 

designates the comparison with respect to the value for NBD 2% and OG 0.5%.

 NBD (%) OG (%) ANBD/AOG Rel AOG/ANBD Rel 

2 0.5 0.76 1 1.55 1 

1.5 0.5 0.58 0.77 - - 

1 0.5 0.41 0.54 - - 

0.5 0.5 0.22 0.29 - - 

2 0.375 - - 1.09 0.70 

2 0.25 - - 0.72 0.46 

2 0.125 - - 0.36 0.23 

 

     Next, 1% of the FRET donor Marina Blue was incorporated into liposomes along with 

0.25% Oregon Green 488 or 0.25% Oregon Green 488 plus 1% NBD, mimicking the effect of 

1-to-1 hemifusion or full fusion between donor liposomes labeled with 2% Marina Blue and 

acceptor liposomes with 0.5% Oregon Green 488 plus 2% NBD. The two types of liposomes 

were then mixed at various ratios to simulate the population evolution from entirely hemifused 

to entirely fully fused. The recorded decay curves again complied with the trend in preparation 

(Figure 3.14). 

 

 

Figure 3.14. Fluorescence decays of liposome mixtures mimicking the progression 

from hemifusion to full fusion. Measured at acceptor wavelengths of 565 nm (a) and 

620 nm (b). The three fractions designate the proportion of liposomes carrying 1% Marina 

Blue, 0.25% Oregon Green 488 and 1% NBD. 
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     Also visible in Figure 3.14 is the rounded shape at the beginning of the decays (compared 

with those in Figures 3.12 and 3.13), which is attributable to the rising component with a 

negative pre-exponential amplitude in the precursor-successor relationship (Equation 1.9). In a 

separate series of experiments, labeling percentages of Marina Blue and either Oregon Green 

488 or NBD were successively diluted, deviating the lifetime curves more from normal decays 

(Figure 3.15). This could be accounted for by the slowing down of FRET rate while the 

fluorophores became sparser. The rise time constants (τrise) and the fractions of their amplitudes 

(Arise) to the sum of all amplitudes (in absolute values, |Ai|)103 from the fits to Figure 3.15 are 

listed in Table 3.3. The fractions are smaller than 0.5 as predicted from Equation 1.9, mainly 

because a portion of the acceptors were excited directly rather than via FRET. 

 

 

Figure 3.15. The deviation of acceptor signals at early times varied with labeling 

percentages. Measured at 565 nm with the acceptor being Oregon Green 488 (a) or NBD 

(b). The curves were shifted vertically and matched to the tails for comparison. 

 

Table 3.3. Rise time constants and associated amplitudes from the fits to Figure 3.15. 

      τrise (ns) Arise/Σ|Ai|  

MB 2.5 % OG 1.5 % 0.64 -0.17 

MB 1.25 % OG 0.75 % 1.24 -0.24 

MB 0.625 % OG 0.375 % 1.56 -0.25 

MB 2.5 % NBD 2 % 0.44 -0.12 

MB 1.25 % NBD 1 % 1.05 -0.17 

MB 0.625 % NBD 0.5 % 1.53 -0.19 
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3.2.2 Two-step labeling 
     After establishing the FRET system comprising of one donor and two acceptors, the two 

chemical reactions, illustrated in Figure 2.10, to prepare asymmetrically labeled acceptor 

liposomes were carried out and conveniently characterized with FCS (Figure 3.16). 

 

 

Figure 3.16. Characterization of the two reactions with FCS. (a) Reduction by 

dithionite at the outer leaflet of 2% NBD liposomes decreased the brightness to ~40%. 

Excitation wavelength: 800 nm (two-photon). Emission filter: HQ535/50m. The average 

values and s.d. were obtained from 4 measurements: 0, 1, 2 and 3 hours after the reaction. 
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(b,c) Addition of Oregon Green 488 maleimide to the outer leaflet of liposomes carrying 

1% DPPTE yielded liposomes ~60% as bright as liposomes labeled directly with 1% 

Oregon Green 488 DPPE. Excitation wavelength: 840 nm (two-photon). Emission filter: 

HQ535/50m. The average and marginal values were the outcome of 2 measurements. 

 

The characterization was based on the brightness of liposomes (Bi in Equation 2.12), which is 

equivalent to the fluorescence signal (in Hz) divided by the average number of liposomes in the 

focal volume (<N> in Equation 2.9). Meanwhile, <N> is equal to the inverse of autocorrelation 

function at zero time-shift (τ = 0). 

     First, depletion of NBD on the outer leaflet was tested by incubating equal volumes of 2% 

NBD liposomes with 200 mM Na2S2O4 for 5 minutes at room temperature.57 Half of the reacted 

liposomes were subjected to a second Sephadex G-50 Superfine column to remove excess 

S2O4
2-,104 and in this step the liposomes were diluted by ~5-10 times. The brightness of 

unreacted, reacted as well as reacted and purified liposomes was measured 0, 1, 2 and 3 hours 

after the reaction. Comparison of the three samples (Figure 3.16a) demonstrates that the 

reduction decreased the brightness to ~40%, scaling precisely with the fraction of lipids in the 

inner leaflet. Resemblance of the latter two samples implies that few S2O4
2- ions permeated into 

the liposomes to quench the inner NBD molecules. 

     Second, liposomes bearing 1% thiol-functionalized DPPTE (Figure 2.6) and additionally 

1.25% Marina Blue (thereby permitting on-column tracking with fluorescence) were reacted 

with 54 nmol of Oregon Green 488 maleimide powder for 2 hours at room temperature. 

Following removal of the remaining maleimide, also with a Sephadex G-50 Superfine 

column,58,67 FCS measurements affirmed that Oregon Green 488 fluorophores were successfully 

attached to the liposomes with ~1 ms diffusion time (black curve in Figure 3.16b). The 

brightness of such liposomes was ~60% of that of the liposomes labeled directly with 1% 

Oregon Green 488 DPPE (Figure 3.16c), which coincided with the fraction of lipids in the outer 

leaflet. Under the experimental conditions of two-photon excitation at 840 nm and fluorescence 

collection at 535±25 nm, liposomes carrying 1.25% Marina Blue alone did not afford resolvable 

FCS traces.  

     Subsequently, the two reactions were combined, as detailed in Section 2.2.3, to produce 

liposomes labeled externally with 0.5% Oregon Green 488 and internally with 2% NBD. 

3.2.3 The rapid transition through hemifusion 
     To reconstitute SNARE-mediated membrane fusion, synaptobrevin-2 was incorporated with 

a 1:500 protein-to-lipid molar ratio into acceptor liposomes composed of 2% NBD DPPE, 0.5% 
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DPPTE, 20% DOPE, 10% DOPS, 10% cholesterol and 57.5% DOPC, which then underwent 

the two-step reaction in Section 2.2.3. In the meantime, the ∆N complex (Section 2.2.1) was 

reconstituted also with a 1:500 ratio into donor liposomes consisting of 2% Marina Blue DPPE, 

20% DOPE, 10% DOPS, 10% cholesterol and 58% DOPC. The donor and acceptor liposomes, 

after diluted 25 and 2.5 times, respectively, were injected through separate inlets into the 

microfluidic channel whose design was displayed in Figure 2.11. Fluorescence lifetime of the 

asymmetrically labeled acceptor liposomes was measured at horizontal segments of the channel, 

which signified different time points after the liposomes had been thoroughly mixed. 
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Figure 3.17. SNARE-mediated membrane fusion observed in a microfluidic channel 

showed faster kinetics than in a cuvette. (a) Representative fusion experiment 

monitored in a microfluidic channel via TCSPC at the acceptor wavelength of 565 nm. The 

lifetime curves converged after a reaction time of 54 seconds. (b) There was no change in 

fluorescence lifetime when the ∆N complex was excluded from the reaction, as was the 

case in the absence of synaptobrevin-2 (not shown). (c) Fusion reaction monitored with 

conventional time-course measurements using a fluorometer. The signals reached a 

plateau at 1500 seconds. Excitation wavelength: 375±2.5 nm; emission bandwidths: 10 nm. 

 

The advantages of measuring in a microfluidic channel include (i) minimal sample consumption 

(20 µL/hr), (ii) rapid and thorough mixing in the small confined volume and (iii) enabling of 

prolonged and repetitive measurements at any given time point, as opposed to “single-shot” 

time-course measurements using a fluorometer or the stopped-flow technique (e.g., in references 

36 and 74). 

     Shown in Figure 3.17a is a typical fusion experiment. Initially, the decay was faster and 

approached that of the 0.5% Oregon Green 488 liposomes. The curves were shifted 

subsequently towards longer lifetimes until 54 seconds and remained unchanged afterwards. 

This suggested a transient buildup of hemifused liposomes (in which only the external Oregon 

Green 488 labels were excited by FRET) at early times, which diminished as the reaction 

progressed efficiently to full fusion. The trend of increasing lifetime was found in all 

experiments. Nevertheless, duration of the increase varied from experiment to experiment, 

potentially due to variations in the preparation of asymmetrically labeled liposomes or 

fabrication of the channels.23,24 For instance, with the flow rate being constant, variations in 

channel height affects the timing accuracy. As control, either the ∆N complex or synaptobrevin-

2 was excluded from the reaction, and in neither case was there a substantial change in 

fluorescence lifetime (Figure 3.17b). The signals originated from direct excitation of the 

acceptor liposomes. 

     Lastly, the same reaction mixtures were examined with a fluorometer (FluoroMax-2, Horiba 

Scientific). The acceptor fluorescence intensity at both 565 and 620 nm reached a plateau at 

approximately 1500 seconds after introduction of the donor liposomes using a pipette (Figure 

3.17c). The observed kinetics was roughly 30 times slower than that in the microfluidic channel, 

likely due to slow mixing in the four orders of magnitude larger reaction volume (240 µL in 

total). Omitting the SNARE protein on either type of liposomes again abolished fusion. Owing 

to spectral overlap of the two acceptors (Figure 3.11), formation of the hemifusion intermediate 

could not be inferred from such steady-state measurements. 
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     In conclusion, by integrating microfluidic channels and fluorescence lifetime measurements 

with proof-of-concept asymmetrically labeled liposomes, prepared from commercially available 

reagents, it was demonstrated that the hemifusion state constitutes a short-lived intermediate in 

the course of SNARE-mediated membrane fusion. Furthermore, the observed fusion kinetics 

can be accelerated by scaling down the overall reaction volume, emulating the conditions at 

miniscule presynaptic terminals.105,106 
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4 OUTLOOK 

4.1 Refining the membrane distance ruler 
     In Chapter 3.1, a fluorescence lifetime based inter-membrane distance ruler was developed 

using membrane-anchored DNAs of various lengths as calibration standards. It has been 

successfully employed to elucidate quantitatively for the first time the distance regulation 

function of synaptotagmin-1, the Ca2+ sensor and trigger in synaptic transmission. Aside from 

relevant mechanisms in neuronal exocytosis, the ruler may be applied to investigate distance 

regulatory properties of the key components in processes ranging from intracellular membrane 

trafficking, viral fusion to cell-cell fusion.11,107,108 

     On the other hand, the theoretical model presented in Section 3.1.4 should be refined, so that 

(i) the fluorescence decay of the FRET donor at any defined inter-membrane distance (e.g., set 

by dsDNA) can be predicted and (ii) the actual distance may directly be deduced from the 

measured lifetime. A glitch in the current model is that the transition dipole orientations are 

fixed at the surface normal vectors, while in reality they explore a certain range of angles or 

may be tangent to the liposome surface. Further, the Förster distance R0 is no longer constant in 

time when any spectral shift, which influences the spectral overlap between the donor emission 

and acceptor absorption, is considered. 

     Most importantly, the weighting factor that emphasizes the contributions of short-lived 

donors at the blue edge of the fluorescence spectrum should be experimentally resolved. Using 

broadband fluorescence upconversion spectroscopy to study the dynamic Stokes shift,109,110 

Ernsting and coworkers (Humboldt University, Berlin) have confirmed with liposome-

embedded Laurdan probes the slow (2.45 ns) solvent relaxation at lipid/water interfaces,100 as 
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computed in reference 99. Likewise, the solvation dynamics and time-resolved emission spectra 

of Oregon Green 488 DPPE can be measured for the formulation of a proper weighting function. 

4.2 Optimal design of FRET from one donor to two acceptors 
     In Chapter 3.2, a first example of asymmetrically labeled liposomes was demonstrated, and 

the inner and outer labels could be distinguished by their distinct fluorescence lifetimes. With 

these liposomes, a FRET system from one donor to two acceptors was created to probe the 

transient hemifusion state in the exocytosis of synaptic vesicles. 

     The readily available Oregon Green 488 fluorophore (with the maleimide functional group) 

was chosen in this proof of concept based on its spectral overlap with NBD, the acceptor that 

was essential because of the well-documented reduction reaction with dithionite ions. However, 

the 2-3 ns difference in lifetime between the two acceptors was far from desirable to warrant 

reliable fitting under all experimental conditions. One way to enlarge the difference in lifetime 

so as to improve the fitting is to add to the outer leaflet second- or third-row transition metal 

complexes whose phosphorescence decays at ≥ 100 ns.111-113 

     Alternatively, if the external acceptor emits at longer wavelengths, the two acceptors can be 

differentiated more easily, even via steady-state measurements. Two approaches are envisioned. 

The first is to use fluorophores undergoing excited-state proton transfer, which leads to red-

shifted tautomer emission bands.114,115 Secondly, by using a covalently linked dyad,116,117 (e.g., 

by linking Texas Red to Oregon Green 488), excitation energy deposited to the donor (Marina 

Blue) should be efficiently relayed to the second acceptor (Marina Blue-Oregon Green 488-

Texas Red) upon fusion of the outer leaflet. If the APD detectors are replaced with a 

spectrograph (a CCD camera plus a grating), the NBD and red-shifted acceptor emissions may 

be recorded simultaneously with the donor fluorescence and even the scattered light, which can 

serve as an internal standard to calibrate for intensity fluctuations. 

     If two-color labels are incorporated, the applicability of asymmetrically labeled liposomes is 

no longer limited to in vitro studies of membrane fusion using FRET. They may be injected into 

cells to track the membrane recycling at different organelles118,119 and see whether lipids in the 

inner and outer leaflets have the same fate. Moreover, after fusing with compartmental or 

plasma membranes, the different diffusion behavior of lipid probes in the inner and outer 

leaflets can be monitored with two-color FCS.120,121 

 



Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

50 References 

5 REFERENCES 

 

(1) Kasha, M. Characterization of electronic transitions in complex molecules. Discuss. 

Faraday. Soc. 1950, 9, 14-19. 

(2) Mortimer, R. G. Spectroscopy and Photochemistry. In Physical Chemistry (Second 

Edition); Academic Press: Burlington, 2000; pp 751-815. 

(3) Takeuchi, S.; Tahara, T. The answer to concerted versus step-wise controversy for the 

double proton transfer mechanism of 7-azaindole dimer in solution. Proc. Natl. Acad. 

Sci. USA 2007, 104, 5285-5290. 

(4) Lakowicz, J. R. Energy Transfer. In Principles of Fluorescence Spectroscopy; 3 ed.; 

Springer US, 2006; pp 443-475. 

(5) Jahn, R.; Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. 

Nature 2012, 490, 201-207. 

(6)         Jahn, R.; Lang, T.; Südhof, T. C. Membrane fusion. Cell 2003, 112, 519-533. 

(7) Chernomordik, L. V.; Kozlov, M. M. Protein-lipid interplay in fusion and fission of 

biological membranes. Annu. Rev. Biochem. 2003, 72, 175-207. 

(8) Aeffner, S.; Reusch, T.; Weinhausen, B.; Salditt, T. Energetics of stalk intermediates in 

membrane fusion are controlled by lipid composition. Proc. Natl. Acad. Sci. USA 2012, 

109, E1609-E1618. 

(9) Fasshauer, D.; Sutton, R. B.; Brunger, A. T.; Jahn, R. Conserved structural features of 

the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. 

Natl. Acad. Sci. USA 1998, 95, 15781-15786. 



Development of new methods in fluorescence microscopy  
Chao-Chen Lin- November 2015 

 

References   51 

(10) Takamori, S.; Holt, M.; Stenius, K.; Lemke, E. A.; Gronborg, M.; Riedel, D.; Urlaub, 

H.; Schenck, S.; Brugger, B.; Ringler, P.; Muller, S. A.; Rammner, B.; Grater, F.; Hub, 

J. S.; De Groot, B. L.; Mieskes, G.; Moriyama, Y.; Klingauf, J.; Grubmüller, H.; Heuser, 

J.; Wieland, F.; Jahn, R. Molecular anatomy of a trafficking organelle. Cell 2006, 127, 

831-846. 

(11) Jahn, R.; Scheller, R. H. SNAREs − engines for membrane fusion. Nat. Rev. Mol. Cell 

Biol. 2006, 7, 631-643. 

(12) Li, F.; Pincet, F.; Perez, E.; Eng, W. S.; Melia, T. J.; Rothman, J. E.; Tareste, D. 

Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. 

Biol. 2007, 14, 890-896. 

(13) Stein, A.; Weber, G.; Wahl, M. C.; Jahn, R. Helical extension of the neuronal SNARE 

complex into the membrane. Nature 2009, 460, 525-528. 

(14) Sutton, R. B.; Fasshauer, D.; Jahn, R.; Brunger, A. T. Crystal structure of a SNARE 

complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 1998, 395, 347-353. 

(15) Weber, T.; Zemelman, B. V.; McNew, J. A.; Westermann, B.; Gmachl, M.; Parlati, F.; 

Söllner, T. H.; Rothman, J. E. SNAREpins: minimal machinery for membrane fusion. 

Cell 1998, 92, 759-772. 

(16) Cypionka, A.; Stein, A.; Hernandez, J. M.; Hippchen, H.; Jahn, R.; Walla, P. J. 

Discrimination between docking and fusion of liposomes reconstituted with neuronal 

SNARE-proteins using FCS. Proc. Natl. Acad. Sci. USA 2009, 106, 18575-18580. 

(17) Hernandez, J. M.; Stein, A.; Behrmann, E.; Riedel, D.; Cypionka, A.; Farsi, Z.; Walla, P. 

J.; Raunser, S.; Jahn, R. Membrane fusion intermediates via directional and full 

assembly of the SNARE complex. Science 2012, 336, 1581-1584. 

(18) Brunger, A. T.; Weninger, K.; Bowen, M.; Chu, S. Single-molecule studies of the 

neuronal SNARE fusion machinery. Annu. Rev. Biochem. 2009, 78, 903-928. 

(19) Yoon, T.-Y.; Okumus, B.; Zhang, F.; Shin, Y.-K.; Ha, T. Multiple intermediates in 

SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 2006, 103, 19731-19736. 

(20) Diao, J.; Ishitsuka, Y.; Lee, H.; Joo, C.; Su, Z.; Syed, S.; Shin, Y.-K.; Yoon, T.-Y.; Ha, 

T. A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory 

proteins. Nat. Protoc. 2012, 7, 921-934. 

(21) Kyoung, M.; Zhang, Y.; Diao, J.; Chu, S.; Brunger, A. T. Studying calcium-triggered 

vesicle fusion in a single vesicle-vesicle content and lipid-mixing system. Nat. Protoc. 

2013, 8, 1-16. 



Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

52 References 

(22) Richmond, D. L.; Schmid, E. M.; Martens, S.; Stachowiak, J. C.; Liska, N.; Fletcher, D. 

A. Forming giant vesicles with controlled membrane composition, asymmetry, and 

contents. Proc. Natl. Acad. Sci. USA 2011, 108, 9431-9436. 

(23) Karatekin, E.; Di Giovanni, J.; Iborra, C.; Coleman, J.; O'Shaughnessy, B.; Seagar, M.; 

Rothman, J. E. A fast, single-vesicle fusion assay mimics physiological SNARE 

requirements. Proc. Natl. Acad. Sci. USA 2010, 107, 3517-3521. 

(24) Karatekin, E.; Rothman, J. E. Fusion of single proteoliposomes with planar, cushioned 

bilayers in microfluidic flow cells. Nat. Protoc. 2012, 7, 903-920. 

(25) van den Bogaart, G.; Holt, M. G.; Bunt, G.; Riedel, D.; Wouters, F. S.; Jahn, R. One 

SNARE complex is sufficient for membrane fusion. Nat. Struct. Mol. Biol. 2010, 17, 

358-364. 

(26) Hernandez, J. M.; Kreutzberger, A. J.; Kiessling, V.; Tamm, L. K.; Jahn, R. Variable 

cooperativity in SNARE-mediated membrane fusion. Proc. Natl. Acad. Sci. USA 2014, 

111, 12037-12042. 

(27) Schneggenburger, R.; Neher, E. Intracellular calcium dependence of transmitter release 

rates at a fast central synapse. Nature 2000, 406, 889-893. 

(28) Schneggenburger, R.; Neher, E. Presynaptic calcium and control of vesicle fusion. Curr. 

Opin. Neurobiol. 2005, 15, 266-274. 

(29) Smith, C. U. M. G-Protein-Coupled Receptors. In Elements of Molecular Neurobiology; 

3 ed.; John Wiley & Sons, Ltd, 2003; pp 167-196. 

(30) Smith, C. U. M. Sensory Transduction. In Elements of Molecular Neurobiology; 3 ed.; 

John Wiley & Sons, Ltd, 2003; pp 286-318. 

(31) Brose, N.; Petrenko, A. G.; Südhof, T. C.; Jahn, R. Synaptotagmin: a calcium sensor on 

the synaptic vesicle surface. Science 1992, 256, 1021-1025. 

(32) Chapman, E. R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. 

Biochem. 2008, 77, 615-641. 

(33) Ubach, J.; Zhang, X.; Shao, X.; Südhof, T. C.; Rizo, J. Ca2+ binding to synaptotagmin: 

how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 1998, 17, 3921-3930. 

(34) Fernandez, I.; Araç, D.; Ubach, J.; Gerber, S. H.; Shin, O.; Gao, Y.; Anderson, R. G.; 

Südhof, T. C.; Rizo, J. Three-dimensional structure of the synaptotagmin 1 C2B-domain: 

synaptotagmin 1 as a phospholipid binding machine. Neuron 2001, 32, 1057-1069. 

(35) Honigmann, A.; van den Bogaart, G.; Iraheta, E.; Risselada, H. J.; Milovanovic, D.; 

Mueller, V.; Müllar, S.; Diederichsen, U.; Fasshauer, D.; Grubmüller, H.; Hell, S. W.; 



Development of new methods in fluorescence microscopy  
Chao-Chen Lin- November 2015 

 

References   53 

Eggeling, C.; Kühnel, K.; Jahn, R. Phosphatidylinositol 4,5-bisphosphate clusters act as 

molecular beacons for vesicle recruitment. Nat. Struct. Mol. Biol. 2013, 20, 679-686. 

(36) Bai, J.; Tucker, W. C.; Chapman, E. R. PIP2 increases the speed of response of 

synaptotagmin and steers its membrane-penetration activity toward the plasma 

membrane. Nat. Struct. Mol. Biol. 2004, 11, 36-44. 

(37) Stein, A.; Radhakrishnan, A.; Riedel, D.; Fasshauer, D.; Jahn, R. Synaptotagmin 

activates membrane fusion through a Ca2+-dependent trans interaction with 

phospholipids. Nat. Struct. Mol. Biol. 2007, 14, 904-911. 

(38) Wang, Z.; Liu, H.; Gu, Y.; Chapman, E. R. Reconstituted synaptotagmin I mediates 

vesicle docking, priming, and fusion. J. Cell Biol. 2011, 195, 1159-1170. 

(39) Lee, H.-K.; Yang, Y.; Su, Z.; Hyeon, C.; Lee, T. S.; Lee, H. W.; Kweon, D.-H.; Shin, 

Y.-K.; Yoon, T.-Y. Dynamic Ca2+-dependent stimulation of vesicle fusion by 

membrane-anchored synaptotagmin 1. Science 2010, 328, 760-763. 

(40) Chicka, M. C.; Hui, E.; Liu, H.; Chapman, E. R. Synaptotagmin arrests the SNARE 

complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat. 

Struct. Mol. Biol. 2008, 15, 827-835. 

(41) Yang, X.; Kaeser-Woo, Y. J.; Pang, Z. P.; Xu, W.; Südhof, T. C. Complexin clamps 

asynchronous release by blocking a secondary Ca2+ sensor via its accessory α helix. 

Neuron 2010, 68, 907-920. 

(42) Pobbati, A. V.; Stein, A.; Fasshauer, D. N- to C-terminal SNARE complex assembly 

promotes rapid membrane fusion. Science 2006, 313, 673-676. 

(43) van den Bogaart, G.; Thutupalli, S.; Risselada, J. H.; Meyenberg, K.; Holt, M.; Riedel, 

D.; Diederichsen, U.; Herminghaus, S.; Grubmüller, H.; Jahn, R. Synaptotagmin-1 may 

be a distance regulator acting upstream of SNARE nucleation. Nat. Struct. Mol. Biol. 

2011, 18, 805-812. 

(44) Perin, M. S.; Brose, N.; Jahn, R.; Südhof, T. C. Domain structure of synaptotagmin 

(p65). J. Biol. Chem. 1991, 266, 623-629. 

(45) Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Two-photon absorption 

and the design of two-photon dyes. Angew. Chem. Int. Ed. 2009, 48, 3244-3266. 

(46) Krieger, J. W.; Langowski, J. QuickFit 3.0 (status: beta, compiled: 10.12.2012, SVN: 

1959): a data evaluation application for biophysics. http://www.dkfz.de/ 

Macromol/quickfit/, 2011. 

(47)      Becker, W. The bh TCSPC Handbook. 5 ed., 2012. 

http://www.dkfz.de/


Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

54 References 

(48) Heinze, K. G.; Koltermann, A.; Schwille, P. Simultaneous two-photon excitation of 

distinct labels for dual-color fluorescence crosscorrelation analysis. Proc. Natl. Acad. 

Sci. USA 2000, 97, 10377-10382. 

(49) Schwille, P.; Haupts, U.; Maiti, S.; Webb, W. W. Molecular dynamics in living cells 

observed by fluorescence correlation spectroscopy with one- and two-photon excitation. 

Biophys. J. 1999, 77, 2251-2265. 

(50) Lakowicz, J. R. Fluorescence Correlation Spectroscopy. In Principles of Fluorescence 

Spectroscopy; 3 ed.; Springer US, 2006; pp 797-840. 

(51) Rigaud, J. L.; Pitard, B.; Levy, D. Reconstitution of membrane proteins into liposomes: 

application to energy-transducing membrane-proteins. Biochim. Biophys. Acta - 

Bioenergetics 1995, 1231, 223-246. 

(52)      Fluo Calcium Indicators. Life Technologies, 2011. 

(53) Chung, M.; Koo, B. J.; Boxer, S. G. Formation and analysis of topographical domains 

between lipid membranes tethered by DNA hybrids of different lengths. Faraday 

Discuss. 2013, 161, 333-345. 

(54) Wachowius, F.; Javadi-Zarnaghi, F.; Höbartner, C. Combinatorial mutation interference 

analysis reveals functional nucleotides required for DNA catalysis. Angew. Chem. Int. 

Ed. 2010, 49, 8504-8508. 

(55) Chan, Y. H.; van Lengerich, B.; Boxer, S. G. Lipid-anchored DNA mediates vesicle 

fusion as observed by lipid and content mixing. Biointerphases 2008, 3, FA17-FA21. 

(56) Lu, X.; Zhang, F.; McNew, J. A.; Shin, Y.-K. Membrane fusion induced by neuronal 

SNAREs transits through hemifusion. J. Biol. Chem. 2005, 280, 30538-30541. 

(57) Stengel, G.; Zahn, R.; Höök, F. DNA-induced programmable fusion of phospholipid 

vesicles. J. Am. Chem. Soc. 2007, 129, 9584-9585. 

(58)      Thiol-Reactive Probe Labeling Protocol. Life Technologies, 2006. 

(59) McIntyre, J. C.; Sleight, R. G. Fluorescence assay for phospholipid membrane 

asymmetry. Biochemistry 1991, 30, 11819-11827. 

(60) Park, K. K.; Han, S. Y.; Lim, H. S. Reduction of N-arylmaleimides with sodium 

dithionite: observation of dimeric products. Bull. Korean Chem. Soc. 1997, 18, 1145-

1146. 

(61) McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H. K.; Schueller, O. J. 

A.; Whitesides, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). 

Electrophoresis 2000, 21, 27-40. 



Development of new methods in fluorescence microscopy  
Chao-Chen Lin- November 2015 

 

References   55 

(62) Lin, C.-C.; Seikowski, J.; Pérez-Lara, A.; Jahn, R.; Höbartner, C.; Walla, P. J. Control 

of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance 

ruler. Nat. Commun. 2014, 5, 5859. 

(63) Vrljic, M.; Strop, P.; Ernst, J. A.; Sutton, R. B.; Chu, S.; Brunger, A. T. Molecular 

mechanism of the synaptotagmin-SNARE interaction in Ca2+-triggered vesicle fusion. 

Nat. Struct. Mol. Biol. 2010, 17, 325-331. 

(64) Choi, U. B.; Strop, P.; Vrljic, M.; Chu, S.; Brunger, A. T.; Weninger, K. R. Single-

molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. 

Struct. Mol. Biol. 2010, 17, 318-324. 

(65) Baumann, C. G.; Smith, S. B.; Bloomfield, V. A.; Bustamante, C. Ionic effects on the 

elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA 1997, 94, 6185-6190. 

(66) Chung, M.; Lowe, R. D.; Chan, Y.-H.; Ganesan, P. V.; Boxer, S. G. DNA-tethered 

membranes formed by giant vesicle rupture. J. Struct. Biol. 2009, 168, 190-199. 

(67) Vennekate, W.; Schröder, S.; Lin, C.-C.; van den Bogaart, G.; Grunwald, M.; Jahn, R.; 

Walla, P. J. Cis- and trans-membrane interactions of synaptotagmin-1. Proc. Natl. Acad. 

Sci. USA 2012, 109, 11037-11042. 

(68) McLaughlin, S.; Wang, J.; Gambhir, A.; Murray, D. PIP2 and proteins: interactions, 

organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 151-

175. 

(69) Lai, Y.; Lou, X.; Jho, Y.; Yoon, T.-Y.; Shin, Y.-K. The synaptotagmin 1 linker may 

function as an electrostatic zipper that opens for docking but closes for fusion pore 

opening. Biochem. J. 2013, 456, 25-33. 

(70) Lu, B.; Kiessling, V.; Tamm, L. K.; Cafiso, D. S. The juxtamembrane linker of full-

length synaptotagmin 1 controls oligomerization and calcium-dependent membrane 

binding. J. Biol. Chem. 2014, 289, 22161-22171. 

(71) Lai, Y.; Shin, Y.-K. The importance of an asymmetric distribution of acidic lipids for 

synaptotagmin 1 function as a Ca2+ sensor. Biochem. J. 2012, 443, 223-229. 

(72) Smith, C. U. M. Biomembranes. In Elements of Molecular Neurobiology; John Wiley & 

Sons, Ltd, 2003; pp 140-166. 

(73) Araç, D.; Chen, X.; Khant, H. A.; Ubach, J.; Ludtke, S. J.; Kikkawa, M.; Johnson, A. E.; 

Chiu, W.; Südhof, T. C.; Rizo, J. Close membrane-membrane proximity induced by 

Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. 

Mol. Biol. 2006, 13, 209-217. 



Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

56 References 

(74) Hui, E.; Bai, J.; Chapman, E. R. Ca2+-triggered simultaneous membrane penetration of 

the tandem C2-domains of synaptotagmin I. Biophys. J. 2006, 91, 1767-1777. 

(75) van den Bogaart, G.; Meyenberg, K.; Risselada, H. J.; Amin, H.; Willig, K. I.; Hubrich, 

B. E.; Dier, M.; Hell, S. W.; Grubmüller, H.; Diederichsen, U.; Jahn, R. Membrane 

protein sequestering by ionic protein-lipid interactions. Nature 2011, 479, 552-555. 

(76) Aoyagi, K.; Sugaya, T.; Umeda, M.; Yamamoto, S.; Terakawa, S.; Takahashi, M. The 

activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate 

microdomains at syntaxin clusters. J. Biol. Chem. 2005, 280, 17346-17352. 

(77) Bharat, T. A. M.; Malsam, J.; Hagen, W. J. H.; Scheutzow, A.; Söllner, T. H.; Briggs, J. 

A. G. SNARE and regulatory proteins induce local membrane protrusions to prime 

docked vesicles for fast calcium-triggered fusion. EMBO Rep. 2014, 15, 308-314. 

(78) Ellena, J. F.; Liang, B.; Wiktor, M.; Stein, A.; Cafiso, D. S.; Jahn, R.; Tamm, L. K. 

Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation 

mechanism for trans-SNARE complex formation. Proc. Natl. Acad. Sci. USA 2009, 106, 

20306-20311. 

(79) Hanson, P. I.; Roth, R.; Morisaki, H.; Jahn, R.; Heuser, J. E. Structure and 

conformational changes in NSF and its membrane receptor complexes visualized by 

quick-freeze/deep-etch electron microscopy. Cell 1997, 90, 523-535. 

(80) Gao, Y.; Zorman, S.; Gundersen, G.; Xi, Z.; Ma, L.; Sirinakis, G.; Rothman, J. E.; 

Zhang, Y. Single reconstituted neuronal SNARE complexes zipper in three distinct 

stages. Science 2012, 337, 1340-1343. 

(81) Seven, A. B.; Brewer, K. D.; Shi, L.; Jiang, Q.-X.; Rizo, J. Prevalent mechanism of 

membrane bridging by synaptotagmin-1. Proc. Natl. Acad. Sci. USA 2013, 110, E3243-

E3252. 

(82) Connell, E.; Giniatullina, A.; Lai-Kee-Him, J.; Tavare, R.; Ferrari, E.; Roseman, A.; 

Cojoc, D.; Brisson, A. R.; Davletov, B. Cross-linking of phospholipid membranes is a 

conserved property of calcium-sensitive synaptotagmins. J. Mol. Biol. 2008, 380, 42-50. 

(83) Herrick, D. Z.; Kuo, W.; Huang, H.; Schwieters, C. D.; Ellena, J. F.; Cafiso, D. S. 

Solution and membrane-bound conformations of the tandem C2A and C2B domains of 

synaptotagmin 1: evidence for bilayer bridging. J. Mol. Biol. 2009, 390, 913-923. 

(84) Kuo, W.; Herrick, D. Z.; Cafiso, D. S. Phosphatidylinositol 4,5-bisphosphate alters 

synaptotagmin 1 membrane docking and drives opposing bilayers closer together. 

Biochemistry 2011, 50, 2633-2641. 



Development of new methods in fluorescence microscopy  
Chao-Chen Lin- November 2015 

 

References   57 

(85) Lai, A. L.; Huang, H.; Herrick, D. Z.; Epp, N.; Cafiso, D. S. Synaptotagmin 1 and 

SNAREs form a complex that is structurally heterogeneous. J. Mol. Biol. 2011, 405, 

696-706. 

(86) Liu, H.; Bai, H.; Xue, R.; Takahashi, H.; Edwardson, J. M.; Chapman, E. R. Linker 

mutations reveal the complexity of synaptotagmin 1 action during synaptic transmission. 

Nat. Neurosci. 2014, 17, 670-677. 

(87) Mackler, J. M.; Drummond, J. A.; Loewen, C. A.; Robinson, I. M.; Reist, N. E. The 

C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. 

Nature 2002, 418, 340-344. 

(88) Nishiki, T.; Augustine, G. J. Dual roles of the C2B domain of synaptotagmin I in 

synchronizing Ca2+-dependent neurotransmitter release. J. Neurosci. 2004, 24, 8542-

8550. 

(89) Martens, S.; Kozlov, M. M.; McMahon, H. T. How synaptotagmin promotes membrane 

fusion. Science 2007, 316, 1205-1208. 

(90) Hui, E.; Johnson, C. P.; Yao, J.; Dunning, F. M.; Chapman, E. R. Synaptotagmin-

mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 

2009, 138, 709-721. 

(91) Striegel, A. R.; Biela, L. M.; Evans, C. S.; Wang, Z.; Delehoy, J. B.; Sutton, R. B.; 

Chapman, E. R.; Reist, N. E. Calcium binding by synaptotagmin's C2A domain is an 

essential element of the electrostatic switch that triggers synchronous synaptic 

transmission. J. Neurosci. 2012, 32, 1253-1260. 

(92) Saff, E. B.; Kuijlaars, A. B. J. Distributing many points on a sphere. Math. Intell. 1997, 

19, 5-11. 

(93) Kučerka, N.; Tristram-Nagle, S.; Nagle, J. F. Structure of fully hydrated fluid phase 

lipid bilayers with monounsaturated chains. J. Membr. Biol. 2005, 208, 193-202. 

(94) Walla, P. J.; Yom, J.; Krueger, B. P.; Fleming, G. R. Two-photon excitation spectrum 

of light-harvesting complex II and fluorescence upconversion after one- and two-photon 

excitation of the carotenoids. J. Phys. Chem. B 2000, 104, 4799-4806. 

(95) Mottram, L. F.; Boonyarattanakalin, S.; Kovel, R. E.; Peterson, B. R. The Pennsylvania 

green fluorophore: A hybrid of Oregon Green and Tokyo Green for the construction of 

hydrophobic and pH-insensitive molecular probes. Org. Lett. 2006, 8, 581-584. 



Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

58 References 

(96) van der Veen, R. M.; Cannizzo, A.; van Mourik, F.; Vlček, A.; Chergui, M. Vibrational 

relaxation and intersystem crossing of binuclear metal complexes in solution. J. Am. 

Chem. Soc. 2011, 133, 305-315. 

(97) Jarzȩba, W.; Walker, G. C.; Johnson, A. E.; Kahlow, M. A.; Barbara, P. F. 

Femtosecond microscopic solvation dynamics of aqueous solutions. J. Phys. Chem. 

1988, 92, 7039-7041. 

(98) Jimenez, R.; Fleming, G. R.; Kumar, P. V.; Maroncelli, M. Femtosecond solvation 

dynamics of water. Nature 1994, 369, 471-473. 

(99) Barucha-Kraszewska, J.; Kraszewski, S.; Jurkiewicz, P.; Ramseyer, C.; Hof, M. 

Numerical studies of the membrane fluorescent dyes dynamics in ground and excited 

states. Biochim. Biophys. Acta - Biomembranes 2010, 1798, 1724-1734. 

(100) Gerecke, M.; Pauli, J.; Ernsting, N. P. Dynamic fluorescence Stokes Shift near 

phospholipid bilayers for complete environmental response. In XXV IUPAC Symposium 

on Photochemistry: Bordeaux, France, 2014. 

(101) Chattopadhyay, A.; Mukherjee, S. Fluorophore environments in membrane-bound 

probes: a red edge excitation shift study. Biochemistry 1993, 32, 3804-3811. 

(102) van Stokkum, I. H. M.; Larsen, D. S.; van Grondelle, R. Global and target analysis of 

time-resolved spectra. Biochim. Biophys. Acta - Bioenergetics 2004, 1657, 82-104. 

(103) Hsieh, C.-C.; Chen, K.-Y.; Hsieh, W.-T.; Lai, C.-H.; Shen, J.-Y.; Jiang, C.-M.; Duan, 

H.-S.; Chou, P.-T. Cyano analogues of 7-azaindole: probing excited-state charge-

coupled proton transfer reactions in protic solvents. ChemPhysChem 2008, 9, 2221-

2229. 

(104) Lygina, A. S.; Meyenberg, K.; Jahn, R.; Diederichsen, U. Transmembrane domain 

peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. 

Angew. Chem. Int. Ed. 2011, 50, 8597-8601. 

(105) Wilhelm, B. G.; Mandad, S.; Truckenbrodt, S.; Kröhnert, K.; Schäfer, C.; Rammner, B.; 

Koo, S. J.; Claßen, G. A.; Krauss, M.; Haucke, V.; Urlaub, H.; Rizzoli, S. O. 

Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking 

proteins. Science 2014, 344, 1023-1028. 

(106) Rizzoli, S. O.; Betz, W. J. The structural organization of the readily releasable pool of 

synaptic vesicles. Science 2004, 303, 2037-2039. 

(107) Martens, S.; McMahon, H. T. Mechanisms of membrane fusion: disparate players and 

common principles. Nat. Rev. Mol. Cell Biol. 2008, 9, 543-556. 



Development of new methods in fluorescence microscopy  
Chao-Chen Lin- November 2015 

 

References   59 

(108) Sapir, A.; Avinoam, O.; Podbilewicz, B.; Chernomordik, L. V. Viral and developmental 

cell fusion mechanisms: conservation and divergence. Dev. Cell 2008, 14, 11-21. 

(109) Zhao, L.; Lustres, J. L. P.; Farztdinov, V.; Ernsting, N. P. Femtosecond fluorescence 

spectroscopy by upconversion with tilted gate pulses. Phys. Chem. Chem. Phys. 2005, 7, 

1716-1725. 

(110) Zhang, X. X.; Wurth, C.; Zhao, L.; Resch-Genger, U.; Ernsting, N. P.; Sajadi, M. 

Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and 

photometric correction. Rev. Sci. Instrum. 2011, 82, 063108. 

(111) Chou, P.-T.; Chi, Y.; Chung, M.-W.; Lin, C.-C. Harvesting luminescence via 

harnessing the photophysical properties of transition metal complexes. Coord. Chem. 

Rev. 2011, 255, 2653-2665. 

(112) Rohan, J. G.; Citron, Y. R.; Durrell, A. C.; Cheruzel, L. E.; Gray, H. B.; Grubbs, R. H.; 

Humayun, M.; Engisch, K. L.; Pikov, V.; Chow, R. H. Light-triggered modulation of 

cellular electrical activity by ruthenium diimine nanoswitches. ACS Chem. Neurosci. 

2013, 4, 585-593. 

(113) Zhang, S.; Hosaka, M.; Yoshihara, T.; Negishi, K.; Iida, Y.; Tobita, S.; Takeuchi, T. 

Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for 

tumor imaging in living animals. Cancer Res. 2010, 70, 4490-4498. 

(114) Lin, C.-C.; Chen, C.-L.; Chung, M.-W.; Chen, Y.-J.; Chou, P.-T. Effects of 

multibranching on 3-hydroxyflavone-based chromophores and the excited-state 

intramolecular proton transfer dynamics. J. Phys. Chem. A 2010, 114, 10412-10420. 

(115) Das, R.; Klymchenko, A. S.; Duportail, G.; Mely, Y. Excited state proton transfer and 

solvent relaxation of a 3-hydroxyflavone probe in lipid bilayers. J. Phys. Chem. B 2008, 

112, 11929-11935. 

(116) Yoshihara, T.; Yamaguchi, Y.; Hosaka, M.; Takeuchi, T.; Tobita, S. Ratiometric 

molecular sensor for monitoring oxygen levels in living cells. Angew. Chem. Int. Ed. 

2012, 51, 4148-4151. 

(117) Liao, P.-N.; Pillai, S.; Gust, D.; Moore, T. A.; Moore, A. L.; Walla, P. J. Two-photon 

study on the electronic interactions between the first excited singlet states in carotenoid-

tetrapyrrole dyads. J. Phys. Chem. A 2011, 115, 4082-4091. 

(118) McNew, J. A.; Parlati, F.; Fukuda, R.; Johnston, R. J.; Paz, K.; Paumet, F.; Söllner, T. 

H.; Rothman, J. E. Compartmental specificity of cellular membrane fusion encoded in 

SNARE proteins. Nature 2000, 407, 153-159. 



Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

60 References 

(119) Zwilling, D.; Cypionka, A.; Pohl, W. H.; Fasshauer, D.; Walla, P. J.; Wahl, M. C.; Jahn, 

R. Early endosomal SNAREs form a structurally conserved SNARE complex and fuse 

liposomes with multiple topologies. EMBO J. 2007, 26, 9-18. 

(120) Golebiewska, U.; Nyako, M.; Woturski, W.; Zaitseva, I.; McLaughlin, S. Diffusion 

coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma 

membrane of cells. Mol. Biol. Cell 2008, 19, 1663-1669. 

(121) Mueller, V.; Ringemann, C.; Honigmann, A.; Schwarzmann, G.; Medda, R.; 

Leutenegger, M.; Polyakova, S.; Belov, V. N.; Hell, S. W.; Eggeling, C. STED 

nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid 

interactions in living cells. Biophys. J 2011, 101, 1651-1660. 



Development of new methods in fluorescence microscopy  
Chao-Chen Lin- November 2015 

 

Appendices   61 

6 APPENDICES 



Development of new methods in fluorescence microscopy 
Chao-Chen Lin - November 2015 

 

62 Appendices 

CURRICULUM VITAE 

Education and Work Experiences 
• 10/2011 ~ present : PhD at MPI-BPC. Supervisor: Prof. Dr. Peter Jomo Walla. 

• 01/2011 ~ 07/2011 : Research assistant in the lab of Prof. Dr. Pi-Tai Chou. 

• 09/2008 ~ 07/2010 : M.S., National Taiwan University, Department of Chemistry. 

Supervisor: Prof. Dr. Pi-Tai Chou. Thesis title: Photophysics of transition metal 

complexes and two-photon absorbing chromophores. 

• 09/2004 ~ 06/2008 : B.S., National Taiwan University, Department of Chemistry. 

Fellowships and Awards 
• 04/2014: Selected talk at the GDCh 6th Braunschweiger Jungchemiker Tagung 2015. 

• 10/2014: Travel grant for poster presentation at the 50th Anniversary of the Heinrich 

Wieland Prize Scientific Symposium. 

• 07/2014: Poster Award at the XXVth IUPAC Symposium on Photochemistry, Bordeaux. 

• 07/2013: Participant of the 63rd Lindau Nobel Laureate Meeting Chemistry, nominated 

by MPI-BPC. 

• 06/2012: Stipend of IMPRS for Physics of Biological and Complex Systems (evaluated 

and extended in 06/2014). 

• 04/2012: DAAD Research Grants for Doctoral Candidates and Young Academics and 

Scientists. 

• 12/2010: Annual Meeting of the Chinese Chemical Society Dissertation Award. 



Development of new methods in fluorescence microscopy  
Chao-Chen Lin- November 2015 

 

Appendices   63 

PUBLICATIONS 
i. Lin, C.-C.; Seikowski, J.; Pérez-Lara, A.; Jahn, R.; Höbartner, C.; Walla, P. J.: Control 

of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance 

ruler. Nat. Commun. 2014, 5, 5859 (doi: 10.1038/ncomms6859). 

Author contributions: 

C.-C.L., R.J. and P.J.W. wrote the paper. J.S. and C.H. synthesized the DNA lipids. 

A.P.-L. and R.J. provided the proteins. C.-C.L. designed the study and performed all 

other experiments. All authors discussed the results and commented on the manuscript. 

ii. Vennekate, W.; Schröder, S.; Lin, C.-C.; van den Bogaart, G.; Grunwald, M.; Jahn, R.; 

Walla, P. J.: Cis- and trans-membrane interactions of synaptotagmin-1. Proc. Natl. 

Acad. Sci. USA 2012, 109, 11037-11042. 

Author contributions: 

R.J. and P.J.W. designed research; W.V., S.S., and C.-C.L. performed research; G.v.d.B. 

and M.G. contributed new reagents/analytic tools; W.V., S.S., and C.-C.L. analyzed 

data; and W.V., G.v.d.B., R.J., and P.J.W. wrote the paper. 

iii. Lin, C.-C.; Hsu, H.-F.; Bodenschatz, E.; Jahn, R.; Walla, P. J.: Asymetrically labeled 

liposomes as a new tool to study membrane fusion. Manuscript in preparation. 

 
 


	1 Introduction
	1.1 Fluorescence and energy transfer
	1.1.1 The principle of fluorescence
	1.1.2 Förster resonance energy transfer (FRET)

	1.2 Neuronal exocytosis and its regulation by Ca2+
	1.2.1 Membrane fusion machinery
	1.2.2 The Ca2+ trigger


	2 Material and Methods
	2.1 Fluorescence spectroscopy
	2.1.1 Time-correlated single photon counting (TCSPC)
	2.1.2 Fluorescence correlation spectroscopy (FCS)

	2.2 Preparation of sample liposomes
	2.2.1 Protein constructs
	2.2.2 Synthesis and characterization of lipid-anchored DNA oligonucleotides
	2.2.3 Asymmetrically labeled liposomes

	2.3 Fabrication of microfluidic channels

	3 Results and Discussion
	3.1 Control of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance ruler
	3.1.1 The membrane distance ruler
	3.1.2 Synaptotagmin-1 controls the gap between two membranes
	3.1.3 Ca2+-binding mutants
	3.1.4 Modeling FRET across liposomes

	3.2 Asymmetrically labeled liposomes as a new tool to study membrane fusion
	3.2.1 Differentiating two acceptor labels with the fluorescence lifetime
	3.2.2 Two-step labeling
	3.2.3 The rapid transition through hemifusion


	4 Outlook
	4.1 Refining the membrane distance ruler
	4.2 Optimal design of FRET from one donor to two acceptors

	5 References
	6 Appendices
	Curriculum vitae
	Education and Work Experiences
	Fellowships and Awards

	Publications

