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1 Introduction 

1.1 Axonal degeneration 

Axonal degeneration is a prominent pathological feature in many neurological diseases 

including neurodegenerative diseases, chronic inflammatory diseases and traumatic injuries 

of nerves, spinal cord or brain (Coleman, 2005). It often occurs already in the early disease 

course and precedes the death of the cell body (Coleman, 2005). Axonal degeneration often 

results in irreversible defects in neuronal connectivity, leading to persistent functional 

deficits with high clinical relevance (Jawhar et al., 2012; Oakley et al., 2006). It is an active 

biological process independent of cell death and controlled by distinct molecular 

mechanisms (Adalbert et al., 2006; Johnson, 1994). As axonal damage correlates with 

permanent clinical deficits and axons have the potential to regenerate, therapeutic 

approaches at this time point should focus more on the axonal compartment instead of 

following purely anti-apoptotic strategies aimed at the neuronal soma. Therefore, a better 

understanding of the mechanisms of axonal degeneration is mandatory to develop effective 

treatments for neurological diseases. 

Different forms of axonal degeneration have been described: physiological axonal 

degeneration during development, different stages of axonal degeneration following a 

traumatic nerve injury and chronic axonal degeneration in neurodegenerative and 

neuroinflammatory diseases. 

1.1.1 Developmental axonal degeneration 

Axonal degeneration occurs physiologically in the development of the nervous system (Luo 

and O’Leary, 2005). During early development, an exuberant number of axons are formed. 

Based on successful synapse formation, functionality and yet unknown molecular signals, 

persisting axonal connections are selected, while all unnecessary connections are pruned by 

axonal degeneration in later development (Luo and O’Leary, 2005). This process is best 

studied in the retinotectal system. In the developing chick, for example, all retinotectal axons, 
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that do not grow directly to their appropriate terminal zone are eliminated later through 

axonal degeneration (Nakamura and O’Leary, 1989). In the developing neocortex of mice, 

pruning of exuberant long branches of thalamocortical axons also occurs by actively driven 

axonal degeneration (Luo and O’Leary, 2005).  

Developmental axonal degeneration often occurs within a short period leading to 

large-scale elimination of axonal segments (Luo and O’Leary, 2005; Nakamura and O’Leary, 

1989). Morphologically it is similar to the rapid fragmentation of distal axons during axonal 

degeneration after axonal injury in the adult animal (Waller, 1850). The morphological 

similarities suggest that they may share some common mechanisms. Indeed, both the 

ubiquitin-proteasome system and the glial cell surface receptor Draper are required for 

axonal degeneration during development and after injury (Hoopfer et al., 2006). However, at 

the same developmental age of flies or mice, overexpression of the Wlds protein inhibits 

injury-induced axonal degeneration while it does not affect developmental axonal 

degeneration of the same axons (Hoopfer et al., 2006). Thus, these two types of axonal 

degeneration differ in the early stage while they have similar late stage execution of axon 

degeneration (Hoopfer et al., 2006). Further studies are needed to investigate which 

molecular signals govern developmental axonal degeneration and how diverse 

factor-triggered axonal degeneration leads to a common execution pathway. 

1.1.2 Traumatic axonal degeneration 

A lesion of axons, e.g. in the spinal cord or optic nerve, leads to traumatic axonal 

degeneration (Figure 1.1), which can result in a permanent dysfunction of the affected nerve 

tract. During traumatic axonal degeneration, the axons undergo two morphologically 

different phases of degeneration, separated by a lag phase. Within several hours after lesion, 

axons in both proximal and distal parts undergo a rapid fragmentation, which is termed 

‘acute axonal degeneration’ (AAD) (Kerschensteiner et al., 2005; Knöferle et al., 2010) (see 

1.1.3 Acute axonal degeneration). After AAD, the distal axon stays morphologically stable for 

a short period. After 24 to 72 hours after lesion, Wallerian degeneration (WD) occurs, in 

which the distal part of the lesioned axon is fragmented (Conforti et al., 2014; Waller, 1850) 
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(see 1.1.4 Wallerian degeneration) 

Traumatic axonal degeneration has been studied extensively. This is not only due to its 

clinical relevance but also to its reproducibility and convenient experimental accessibility 

(Raff et al., 2002; Wang et al., 2012). Moreover, traumatic axonal degeneration and axonal 

pathology in chronic neurological diseases share some common morphological features 

including axonal swellings, cytoskeleton disassembly, and axonal fragmentation (Cavanagh, 

1964; Kerschensteiner et al., 2005). They also share convergent molecular mechanisms. For 

example, mitochondrial transport is impaired in both axotomy-induced WD and chronic 

axonal degeneration in ALS models (Avery et al., 2012; De vos et al., 2007). Moreover, a 

recent study showed that overexpression of alpha-synuclein, a protein involved in chronic PD 

pathogenesis, accelerates the time course of AAD in the optic nerve (Koch et al., 2015). Thus, 

studying the mechanisms of traumatic axonal degeneration could help to understand also 

the axonal pathology in chronic neurological diseases (Coleman, 2005; Wang et al., 2012).  
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Figure 1.1 Traumatic axonal degeneration in the central nervous system.  

After a traumatic injury of an axon in the central nervous system, acute axonal degeneration occurs within 

the first 6 h after injury. Axons undergo rapid fragmentation in the region 400 µm proximal and distal to 

the lesion site. Afterwards, the axons stay morphologically stable for a short period. At 24 h to 72 h after 

lesion, Wallerian degeneration occurs, in which the distal part of the axon undergoes fragmentation. 

1.1.3 Acute axonal degeneration 

AAD occurs within several hours after a traumatic lesion of CNS axons and was first 

described after spinal cord injury (Kerschensteiner et al., 2005) and further studied after 

optic nerve crush (ONC) (Knöferle et al., 2010). In both spinal cord and optic nerve models, 

the process of AAD was visualized by in vivo live imaging techniques. Morphologically, AAD is 

characterized by a rapid axonal disintegration in a time dependent manner on both proximal 
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and distal sides of the lesion comprising the adjacent 400 µm. Bulb-like swellings are 

observed in the axons within the first hour after lesion, followed by axonal fragmentation. 

Both proximal and distal sides of the lesion have a similar kinetics of degeneration.  

At the ultrastructural level, condensation and misalignment of neurofilaments were 

observed within 30 min after ONC and followed by the fragmentation of microtubules 

(Knöferle et al., 2010). Axonal swellings were already detected at 30 min after ONC. These 

swellings were characterized by accumulated organelles, mostly mitochondria and vacuoles, 

although different phenotypes of axonal bulbs have been described. The local accumulation 

of organelles suggests an impairment of axonal transport, which is, however, not 

experimentally proven so far. Accumulated mitochondria displayed signs of degradation such 

as swellings, suggesting a local mitochondrial dysfunction. A large portion of vacuoles 

morphologically resembled autophagosomes. Indeed, this type of vacuoles was labeled by 

the autophagy induction marker microtubule-associated protein 1 light chain 3 (LC3) using 

immunogold staining (Knöferle et al., 2010).  

On the molecular level, an intra-axonal calcium increase is the initial crucial event during 

AAD (Knöferle et al., 2010). By using a calcium-sensitive dye, a calcium increase in the axons 

was observed within 40 s after ONC. The calcium levels returned to basic levels in the next 

minute. Local application of a mixture of calcium channel inhibitors completely inhibited the 

increase of axonal calcium. This suggests that extracellular calcium enters the axons through 

calcium channels and thereby leads to increased levels of intra-axonal calcium. Furthermore, 

application of calcium inhibitors prevented the process of AAD while calcium ionophore 

aggravated degeneration, demonstrating the important role of calcium influx.  

During AAD of the spinal cord it was shown that the calcium dependent protease calpain is 

activated 400 µm proximal and distal to the lesion site at 30 min after spinal cord transection 

(Kerschensteiner et al., 2005). Treatment with calpain inhibitors completely blocked axonal 

fragmentation within 1 h after spinal cord injury. However, the detailed kinetics of calpain 

activation, its relevant molecular targets and the long-term effects of calpain inhibition 

during AAD were not studied so far. 

Another feature of AAD on the molecular level is the induction of autophagy following the 
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initial calcium increase (Knöferle et al., 2010). The number of autophagosomes started to 

increase at 30 min after ONC and was doubled at 6 h after ONC compared to the native optic 

nerve. Pharmacological inhibition of autophagy reduced the number of autophagosomes 

induced by ONC and attenuated axonal disintegration. However, the protective effect of 

autophagy inhibition during AAD was not as pronounced as the one achieved by calcium 

inhibition. Interestingly, application of the calcium inhibitor mix reduced the number of 

autophagosomes during AAD, suggesting that the production of autophagosomes is 

triggered by the initial increase of axonal calcium and that autophagy induction is a 

downstream target of calcium influx. 

1.1.4 Wallerian degeneration 

At 24 to 72 hours after a traumatic axonal lesion, the distal part of the axon that is not 

affected by AAD undergoes a rapid fragmentation, which finally leads to the complete 

removal of the distal axon (Waller, 1850). This degenerative process is termed WD and was 

first described after lesion of glossopharyngeal and hypoglossal nerves in the frog (Waller, 

1850). WD proceeds in a speed range from 0.4 mm/h to 24 mm/h (Lingor et al., 2012), which 

depends on axonal diameter, length of distal stumps and species (Beirowski et al., 2005; 

Rotshenker, 2011). 

For decades, the slow Wallerian degeneration (Wlds) mutant mouse has been used as a 

tool to investigate the mechanisms of WD. In the Wlds mutant mouse, the process of WD is 

robustly delayed. For example, the axonal cytoskeleton in the sectioned peripheral nerve in 

Wlds mutant mice was still intact 5 days after injury while that from wild-type mice 

disintegrated 3 days after injury (Lunn et al., 1989). This mutant expresses the Wlds protein, 

which is responsible for slowing down the process of WD. Wlds protein consists of full-length 

nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1) and the N-terminal fragment 

of ubiquitination factor E4B (UBE4B) (Mack et al., 2001). Overexpression of NMNAT1 alone is 

sufficient to prevent axonal degeneration in dorsal root ganglion (DRG) cells in vitro and in 

mice in vivo (Araki et al., 2004; Sasaki et al., 2009). This suggests that NMNAT1 is the most 

important functional component of the Wlds protein.  
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Recently, a study using small interfering RNA (siRNA) has shown that knockdown of 

endogenous NMNAT1 does not induce WD in uninjured axons. However, knockdown of its 

homologue NMNAT2 is sufficient to induce WD of uninjured axons (Gilley and Coleman, 

2010). Furthermore, endogenous NMNAT2 is rapidly degraded in injured distal axons of 

cultured neurons shortly before WD is initiated (Conforti et al., 2014; Gilley and Coleman, 

2010). Besides, overexpression of exogenous NMNAT2 protects transfected axons against WD 

(Gilley and Coleman, 2010). All these results demonstrate that NMNAT2 is the most 

important molecule, preventing WD when constantly supplied and inducing WD when 

depleted in the healthy wildtype mammalian axon (Gilley and Coleman, 2010). Moreover, 

the pro-degenerative molecules SARM1 and PHR1 were described to play important roles in 

the molecular cascade of WD (Conforti et al., 2014).  

Downstream of both NMNAT1 and NMNAT2 in WD is a local increase of intraaxonal 

calcium (Adalbert et al., 2012; Yang et al., 2013). Increased intraaxonal calcium results in the 

subsequent activation of the calcium dependent protease calpain (Ma et al., 2013). Besides, 

mitochondrial changes have been described in the pathology of WD (Avery et al., 2012). 

AAD is clearly different from WD in terms of when and where it occurs after a traumatic 

lesion. AAD occurs within several hours after a traumatic lesion while WD proceeds at 

24-72 h after lesion. AAD affects both proximal and distal parts equally while WD only affects 

the distal part. The final goal of therapeutic approaches to axonal degeneration is to promote 

regeneration of the proximal axon stump. Thus interference with AAD has a considerable 

clinical relevance as it could stabilize the remaining proximal axon. WD, on the other hand, is 

probably a necessary prerequisite for later axonal regeneration, as the axonal tracts within 

the myelin sheaths need to be cleared to let the new axon grow through. 

However, AAD and WD also share some common features. The speed of fragmentation, 

size of fragments, and the spacing between fragments is similar in WD and AAD 

(Kerschensteiner et al., 2005). The expression of the Wlds protein, which delays WD, also 

largely protected axons from AAD (Kerschensteiner et al., 2005). Furthermore, both the 

increase of intraaxonal calcium and calcium dependent events play an important role in WD 

and AAD (George et al., 1995; Kerschensteiner et al., 2005; Knöferle et al., 2010).  
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1.1.5 Chronic axonal degeneration 

 

Figure 1.2 Dying back axonal degeneration in neurodegenerative diseases.  

Dying back degeneration starts at the synaptic terminals or the distal axons and then progresses gradually 

towards the cell body (modified from Coleman, 2005). 

Chronic axonal degeneration refers to the degenerative process of axons in chronic 

neurological diseases. All neurodegenerative diseases, such as PD (Orimo et al., 2008), 

Alzheimer’s disease (AD) (Selkoe, 2002) and amyotrophic lateral sclerosis (ALS) (Nihei et al., 

1993), show axonal pathology in the form of ‘dying back’ (Cavanagh, 1964). Dying back 

degeneration starts at the synaptic terminals or the distal axons, and then progresses 

gradually towards the cell body (Figure 1.2). Consistent with this, axonal terminals of the 

nigrostriatal pathway are affected much earlier than cell bodies in PD (Burke, 2014). Lewy 
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bodies as the histological hallmark of PD are initially found in the distal axons and only later 

in the cell bodies and proximal neurites (Orimo et al., 2008). The morphological features of 

dying back degeneration include axonal swellings, microtubule disassembly, and the final 

axonal fragmentation (Arduíno et al., 2013; Ö ztürk et al., 2013; Tagliaferro et al., 2015). 

Regarding the underlying mechanisms, mitochondrial dysfunction (Shi et al., 2010), synaptic 

pathology (Morales et al., 2015) as well as disruption of axonal transport (Bilsland et al., 

2010; Morfini et al., 2007) have been described in dying back degeneration. For instance, 

anterograde transport of mitochondria was reduced in the motor neurons isolated from ALS 

mice (De vos et al., 2007). Axonal transport impairment might explain the formation of 

axonal swelling during dying back axonal degeneration. Besides, a recent study showed that 

dying back degeneration in dopaminergic neurons was mediated by increased 

macroautophagic activity (Cheng et al., 2011).  

1.1.6 Focal axonal degeneration 

Recently, another form of axonal degeneration termed ‘focal axonal degeneration’ (FAD) 

was visualized in multiple sclerosis (MS) (Figure 1.3) (Craner and Fugger, 2011; Nikid et al., 

2011). In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, axonal 

degeneration was observed as an important feature and even began within the silent period 

of the disease (Wang et al., 2005). During FAD, a focal swelling containing accumulated 

organelles and mitochondria was observed at the beginning, which finally led to multifocal 

and bidirectional fragmentation of the axon (Nikid et al., 2011). Notably, the focal intraaxonal 

mitochondrial pathology was the earliest ultrastructural change and preceded the axonal and 

later glial pathology although demyelination is the hallmark of MS (Nikid et al., 2011). The 

mitochondrial pathology was induced by the increase of reactive oxygen and nitrogen 

species (ROS and RNS), which were derived from macrophages or activated microglia after 

acute EAE lesion (Nikid et al., 2011). Interestingly, during FAD, a proportion of axons 

spontaneously recovered in the early stages of FAD, which might explain some spontaneous 

remissions of symptoms in MS (Nikid et al., 2011). The thinner axons showed a higher 

vulnerability to FAD (Craner and Fugger, 2011). Similar ultrastructural axonal changes 
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consistent to FAD were observed in human tissue from patients with MS (Nikid et al., 2011).  

 

Figure 1.3 Focal axonal degeneration in neuroinflammatory diseases.  

In the acute experimental autoimmune encephalomyelitis (EAE) mouse model, activated macrophages or 

microglia release reactive oxygen and nitrogen species (ROS and RNS), which induce mitochondrial 

pathology. At the early stage of focal axonal degeneration (FAD), the axons show focal swellings containing 

accumulated abnormal mitochondria. A proportion of such axons can spontaneously recover. However, 

due to continuous exposure to ROS and RNS, other axons proceed to irreversible degeneration 

characterized by multifocal and bidirectional fragmentation (modified from Craner and Fugger, 2011). 
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1.2 Axonal degeneration of the optic nerve 

Axonal degeneration of the optic nerve is a critical event in several pathological conditions 

including glaucoma, optic neuritis, hereditary optic nerve atrophy and traumatic injury 

(Ghaffarieh and Levin, 2012; You et al., 2013). The degeneration of retinal ganglion cell (RGC) 

axons is often followed by the death of the neuronal soma, leading to visual dysfunction or 

even complete vision loss. Besides, the optic nerve has been used extensively as a model 

system to study the degeneration of CNS axons.  

1.2.1 Axonal degeneration in diseases affecting the optic nerve 

Axonal degeneration plays an important role in glaucoma, traumatic eye diseases and 

inherited optic nerve diseases like dominant optic atrophy (DOA).  

Glaucoma is the leading cause of blindness worldwide (Resnikoff et al., 2008). It is 

associated with an elevated intraocular pressure (IOP). Besides, there is increasing evidence 

that the development of glaucoma involves the inherent degeneration of RGC axons 

(Ghaffarieh and Levin, 2012). In agreement with this, both mean axonal density and total 

axon number were decreased in optic nerve sections from human patients and in an 

experimental glaucoma model (Mabuchi et al., 2004). In a chronic glaucoma mouse model 

(DBA/2J), an accumulation of organelles in RGC axons was observed as the first sign of 

axonal damage in glaucoma (Howell et al., 2007). Further studies showed that the axonal 

degeneration in glaucoma occurs in the forms of dying back and Wallerian axonal 

degeneration (Howell et al., 2007), sharing similar molecular mechanisms with 

neurodegenerative diseases and WD (McKinnon, 2012). For example, an impairment of 

axonal transport has been described as an early event during glaucoma, WD and 

neurodegenerative diseases (Diekmann and Fischer, 2013). 

The genetic disease DOA affects one in every 12,000 people (Alavi et al., 2007). The 

patients often suffer from moderate vision loss, which is mainly caused by axonal 

degeneration of the optic nerve (Alavi et al., 2007; Lenaers et al., 2012). Axonal loss was 

already detected at early disease stages (Milea et al., 2010). In an animal model of DOA, 
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axonal swellings as well as a reduced number of axons were also observed (Alavi et al., 

2007).  

Traumatic optic diseases involve a degeneration of RGC axons in the form of traumatic 

axonal degeneration (see 1.1.2 Traumatic axonal degeneration). The degeneration of RGC 

axons leads to the later death of RGC. In adult rats, RGC started to die at 5 days after 

intraorbital optic nerve transection, and about 50% cells died at 1 week after the lesion. By 2 

weeks after the lesion, only less than 10% RGC cells had survived. Both axonal degeneration 

and the death of RGCs lead to visual impairment or loss (Bähr, 2000). Thus, understanding 

the mechanisms on traumatic axonal degeneration of the optic nerve is necessary for 

developing effective therapeutic strategies.  

Besides, axonal degeneration is associated with optic inflammatory diseases such as optic 

neuritis (Petzold et al., 2004; Trip, 2005). 

1.2.2 The optic nerve as a model system for axonal degeneration in the CNS 

The optic nerve has been used extensively as a model system to study axonal 

degeneration in the CNS. The optic nerve belongs to the CNS and axonal pathologies in optic 

neuropathies share similar mechanisms with other neurodegenerative diseases of the CNS. 

Importantly, the optic nerve has a convenient surgical accessibility and well-defined anatomy. 

Moreover, it offers the possibility to manipulate RGC axons by intravitreal injection of viral 

vectors or pharmacological substances. 

Different injury models have been used to study the molecular mechanisms of axonal 

degeneration in the optic nerve. The complete injury or axotomy model involves the 

transection of the optic nerve. The exposed optic nerve is usually transected about 2 mm 

from the posterior eye pole with a knife or scissor (Lingor et al., 2005, 2008). However, after 

a complete transection, the lesioned optic nerve is separated into two parts and the 

anatomical structure of the nerve, including myelin and meninges, is completely destroyed. 

This model is thus suited to study degeneration and RGC death but not appropriate for 

axonal regeneration studies as regenerating axons usually need some lead structures. 

Recently, a partial optic nerve transection model was established using a new instrument 
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called optic nerve quantitative amputator (Wang et al., 2012). Using this instrument, the 

semi-transection of the optic nerve is controlled quantitatively. This is achieved by a fixation 

of the exposed optic nerve in a stable position and removal of the upper half of the optic 

nerve along a cutting groove. This partial transection model maintains the meninges, and is 

suitable for studying oriented growth and regeneration of optic nerve axons. There are also 

incomplete injury models of the optic nerve such as crush and stretch. Stretch injury of the 

optic nerve is performed by rapid elongation of the nerve and is a suitable model to study 

diffuse axonal injury in the CNS (Gennarelli et al., 1989; Saatman et al., 2003). The crush 

lesion of the optic nerve is achieved by different techniques such as clips, forceps or sutures 

(Cai et al., 2012; Cho et al., 2005). In our group, a surgical suture is used to perform ONC, 

which leads to the complete transection of axons while leaving the anatomical structure of 

the optic nerve intact (Knöferle et al., 2010; Koch et al., 2013; Lingor et al., 2007). This model 

is suitable for studying axonal degeneration and regeneration after axotomy (Knöferle et al., 

2010). 

Besides these injury models, several optic disease models have been used to study axonal 

degeneration in the optic nerve. For example, DBA/2J mice and IOP-based animal models 

have been used to study glaucoma (Levkovitch-Verbin, 2004). The EAE animal model has 

been used to study axonal degeneration in optic neuritis and MS (Levkovitch-Verbin, 2004). 

In another mouse model, mitochondrial complex I was inhibited by intravitreal injection of 

the natural pesticide rotenone (Zhang et al., 2002). This model was used to study hereditary 

optic neuropathy and the neurodegenerative diseases linked to mitochondrial dysfunction 

(Levkovitch-Verbin, 2004). 

The optic nerve is also well-suited to study axonal degeneration by in vivo live imaging. 

The kinetics of degenerative events such as changes of axonal morphology, axonal transport 

disruption and intraaxonal calcium homeostasis can be investigated over time using the in 

vivo live imaging technique. These events can only be examined in a very limited way in fixed 

tissues and fixation procedure might produce relevant artifacts. Kanamori et al imaged 

individual RGC axonal bundles in the retina in living animals over time (Kanamori et al., 2010). 

These axonal bundles were labeled with the dye chloromethyl derivative of fluorescein 
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diacetate. They were imaged using confocal scanning laser ophthalmoscopy (CSLO), which is 

ideal for visualizing retinal nerve fiber layer (RNFL) (Kawaguchi et al., 2006). However, this 

method does not distinguish individual axons and focused on the retina instead of the optic 

nerve. Shortly after this, Leung et al developed an imaging model using transgenic mice 

expressing YFP fluorescent protein under control of a Thy1 promotor (Thy1-YFP16Jrs) (Leung 

et al., 2011). This method is suitable to differentiate single axons in the retina and optic 

nerve since less than 1% of RGCs are labeled in these transgenic mice. Our group established 

another imaging setup in the living rat in vivo (Koch et al., 2011). In this setup, single RGC 

axons of the optic nerve are visualized by intravitreal injection of viral vectors expressing 

fluorophores. The axonal changes can be imaged for up to 8 h after lesion and can also be 

re-imaged at later time points after recovery of the rat. Compared to the other methods 

described above, this imaging setup is best suited to image single RGC axons in the optic 

nerve. Furthermore, the choice of AAV constructs allows the use of different fluorophores 

and the co-expression of a fluorophore and a protein or shRNA of interest. For example, a 

viral vector expressing the fluorophore dsRed was used to image the time course of AAD in 

the optic nerve (Knöferle et al., 2010) while a viral vector co-expressing the fluorophore 

dsRed and an shRNA against the protein kinase ROCK was used to evaluate the role of ROCK 

knockdown on axonal degeneration (Koch et al., 2014). Thus, this imaging setup is a good 

choice to study the mechanisms of axonal degeneration in the optic nerve. 

1.3 Microfluidic chamber system  

It is necessary to understand the mechanisms of axonal degeneration in order to design 

therapeutic treatments for neurological diseases (see 1.1 Axonal degeneration). In traditional 

cell cultures, however, a main difficulty is to specifically identify axons. Recently, the 

microfluidic chamber system has been increasingly applied in neuroscience research. The 

chamber system provides a controlled microenvironment for cell culture, separating axonal 

and soma compartment. It thereby overcomes this limitation of traditional cell culture. 

Furthermore, this system has a lot of other features and thus can be used to study many 
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aspects of axonal degeneration during different pathological conditions. The features of this 

chamber system as well as its applications are discussed below. 

1.3.1 Features 

The microfluidic chambers are fabricated with polydimethylsiloxane (PDMS). PDMS as a 

material is suitable for cell culture since it is not toxic and has the features of high gas 

permeation, low water permeability, thermal stability as well as bio-compatibility (Lee et al., 

2004; Merkel et al., 2000; Millet and Gillette, 2012). PDMS is also good for microscopy as it is 

optically transparent (Millet and Gillette, 2012; Taylor et al., 2003). After PDMS is poured on 

top of a master and cured by heating, the formed PDMS piece is cut out of the master. The 

chamber is assembled by placing the PDMS piece on a coverslip. Typically, the chambers are 

composed of two compartments: one compartment consisting of two holes for loading cells 

(‘soma compartment’) and one where the axons will specifically grow into (‘axonal 

compartment’) (Taylor et al., 2003). Both compartments are connected by 110 embedded 

microgrooves which are big enough for neurites to grow through but prevent neuronal cell 

bodies from passing from one compartment to the other (Taylor et al., 2003) (Figure 1.4). 

 

Figure 1.4 Schematic drawing of the microfluidic chamber system.  

The microfluidic chamber is composed of two compartments: one compartment consisting of two holes 

for loading cells (‘soma compartment’) and one where the axons will specifically grow into (‘axonal 
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compartment’). Both compartments are connected by embedded microgrooves. 

Several kinds of neurons have been successfully cultured in the chambers including 

embryonic day 18 (E18) cortical neurons, E18 hippocampal neurons, embryonic dorsal root 

ganglion (DRG) neurons, postnatal day 1 (P1) DRG neurons, P6 DRG neurons, P0 hippocampal 

neurons and cholinergic neurons (Park et al., 2006). For cultured E18 cortical neurons in the 

chambers, the axons can be observed in the microgrooves by day in vitro (DIV) 5 (Taylor et al., 

2005). By DIV7, the axons have usually crossed the microgrooves and extended into the 

axonal compartment (Taylor et al., 2005). The isolated axons in the microgrooves stay intact 

until DIV14 (Taylor et al., 2005). 

One main advantage of the chamber system is that axons can be isolated from soma and 

dendrites (Taylor et al., 2003, 2005). This is based on the fact that axons grow significantly 

faster and longer than dendrites (Dotti et al., 1988). When the microgrooves are longer than 

450 µm, no dendrites extend to the axonal compartment in cultured cortical neurons until 

DIV14 (Taylor et al., 2005). This has been confirmed by the use of MAP2 as a dendrite marker 

(Taylor et al., 2005). When culturing other neuronal cultures, the length of microgrooves can 

be modulated according to their growth features. 

 Another main advantage is that soluble insults can be localized specifically to the soma or 

axonal compartment (Taylor et al., 2003, 2005). The isolated microenvironment can be 

achieved by applying a volume difference between soma and axonal side. The volume 

difference produces a small hydrostatic pressure difference. It then leads to a flow only from 

the higher volume compartment to the lower volume compartment, which acts against the 

diffusion from the reverse direction. Due to high fluidic resistance of the microgrooves, the 

fluid flows very slowly. Thus, the soluble insults can be isolated in the smaller volume 

compartment for up to 20 h after changing medium.  

1.3.2 Applications 

First, the chamber system can be used to model axonal injury. To model mechanical injury 
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of axons, axons are lesioned by vacuum aspiration through the axonal compartment for 

5-10 s (Park et al., 2006). The cell side is not affected by the gentle suction due to the high 

fluidic resistance of the microgrooves (Taylor et al., 2005). To model a chemical lesion, 

excitotoxins can be applied (Hosie et al., 2012). For example, this excitotoxicity was induced 

by treatment with the excitatory neurotransmitter glutamate. The chamber allowed to 

localize glutamate treatment only to the soma or axonal compartment, and to monitor the 

degenerative changes specifically in the axons.  

Second, the chamber system can be used to isolate molecules such as messenger RNA 

(mRNA) or proteins specifically in the axonal compartment (Taylor et al., 2009). It was shown 

that some mRNAs were only observed in the axonal but not soma compartment. It was 

further demonstrated that the mRNAome depends on multifunctional effects. For example, 

in response to injury, there was a decrease of the mRNAs involved in axonal transport, 

mitochondria and cytoskeleton. The chamber system thus seems to be suitable for 

measuring mRNA changes during axonal degeneration. 

Third, the chamber system can be used for studying axonal transport of cellular cargos. By 

using the chamber system, the transport of cargos can be identified specifically in the axons. 

Anterograde or retrograde transport can also be differentiated easily. In addition, the 

chamber system is suitable for evaluating the effects of localized treatments on axonal 

transport. Recently, the chamber system was used to image the transport of quantum 

dot-labeled nerve growth factor (QD-NGF) in living rat DRG neurons in real time (Cui et al., 

2007; Mudrakola et al., 2009). By live imaging, the transport of NGF from the axonal terminal 

to the cell body could be characterized.  

Besides, the chamber system can also be used to screen therapeutic compounds for 

axonal degeneration or regeneration (Taylor et al., 2005). The CNS axons can be co-cultured 

with other cells such as oligodendrocytes (Taylor et al., 2005).  

1.4 Aims of this study 

A better understanding of axonal degeneration is crucial for developing neuroprotective 



Introduction 
 

18 
 

 

and pro-regenerative treatments for neurological diseases. However, the underlying 

molecular mechanisms are only incompletely understood. Several studies demonstrated a 

transient increase of intraneuronal calcium as the initial crucial event during AAD. However, 

since calcium influx occurs only transiently within one minute after the lesion, calcium 

inhibition does not seem to be a promising strategy to treat patients, as a therapeutic 

treatment will not be available within such a short time after a trauma. In this study, we 

therefore investigate the molecular mechanisms of AAD following calcium influx and identify 

promising intervention targets to interfere with AAD.  

The first part of the study was to investigate the role of calpain in AAD in the rat optic 

nerve in vivo. Western blot analysis of optic nerve lysates was performed to investigate 

whether calpain is activated during AAD. Immunohistochemistry was then carried out to 

confirm the activation and subcellular localization of activated calpain. Afterwards, in vivo 

live imaging of the rat optic nerve was used to examine whether pharmacological calpain 

inhibition interferes with AAD. Finally, several candidate calpain substrates were screened to 

identify relevant downstream targets of calpain activation. Here, the protein collapsin 

response mediator protein 2 (CRMP2) was found to be regulated most prominently. 

The second part of the study was to evaluate the role of the now-identified calpain target 

CRMP2 on AAD in vivo and in vitro. An in vitro model for AAD was established in the 

microfluidic chamber system and the role of CRMP2 overexpression on axonal degeneration 

was examined in vitro. After that, in vivo live imaging of the rat optic nerve was performed to 

confirm the neuroprotective effects of CRMP2 overexpression in AAD. Finally, axonal 

transport of mitochondria was imaged after axotomy in the chamber system in order to 

investigate the mechanisms on the role of CRMP2 in AAD. 

The final part of the study was to characterize CRMP2 interactors as well as further 

molecular targets, which contribute to AAD. In this work, a proteomics analysis of rat optic 

nerve lysates was performed to check which proteins are regulated during AAD of the optic 

nerve. A search tool for the retrieval of interacting genes/proteins (STRING) was used to 

identify which of the regulated proteins are CRMP2 interactors. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and their providers 

Applichem (Darmstadt, Germany): absolute ethanol, dimethyl sulfoxide (DMSO), 

dithiothreitol (DTT), isopropanol, luminol, methanol, NaCl, non-fat dried milk, 

paraformaldehyde (PFA), phosphate-buffered saline (PBS), SDS, sucrose, transferrin, tris, 

triton X-100  

Biochrom (Berlin, Germany): fetal calf serum (FCS), trypsin 

Biesterfeld (Hamburg, Germany): dow corning 184 A&B (1.1kg kit) 

Braun (Melsungen, Germany): Ringer’s solution 

Calbiochem (Darmstadt, Germany): calpeptin 

Gibco (Darmstadt, Germany): B27 supplement, 10x Hank's balanced salt solution (HBSS), 

hydrogen peroxide (H2O2), 1x neurobasal medium, 7.5% sodium bicarbonate solution 

Invitrogen (Darmstadt, Germany): MitoTracker Green FM, 1x NuPAGE LDS Sample Buffer, 

4-12% NuPAGE Novex Bis-Tris Minigels 

Jackson ImmunoResearch Laboratory Inc (Hamburg, Germany): bovine serum albumin 

(BSA)  

Lonza (Cologne, Germany): Amaxa rat neuron nucleofector kit 

PAA cell cuture company (Freiburg, Germany): penicillin/streptomycin solution  

Qiagen (Hilden, Germany): GAPDH primer Rn_Gapd_1_SG (NM_017008), QuantiTect 

reverse transcription kit, QuantiTect SYBR green PCR kit 

Roth (Roth, Germany): 30% acrylamid, ammonium persulfate (APS), 

tetramethylethylenediamine (TEMED) 
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Sigma (Darmstadt, Germany): (p)-coumaric acid, Dulbecco's Modified Eagle Medium 

(DMEM), 4', 6-diamidino-2-phenylindole (DAPI), ethidium bromide, 45% D-(+)-glucose 

solution, laminin, Igepal, mowiol-488, poly-D-lysine (PDL) xylazine, poly-L-ornithine (PLO), 

trypsine 

Tocris (Wiesbaden-Nordenstadt, Germany): ketamine, tianeptine 

2.1.2 Buffers and solutions 

10% APS: 1 g APS in 10 mL H2O was aliquoted and stored at -20°C. 

5% BSA: 0.5 g BSA was diluted in 10 mL 1x Tris Buffered Saline with Tween 20 (TBST). 

CMF: 450 mL sterilized H2O, 50 mL 10x HBSS, 700-800 µL 7.5% sodium bicarbonate solution. 

25x complete protease inhibitor: 1 tablet was dissolved in 200 µL deionized H2O. Aliquots 

were kept at -20°C for maximum 12 weeks. 

Cortex medium: 48.125 mL neurobasal medium (4 °C), 0.25 mL 1mg/mL transferrin (-20 °C), 

0.5 mL PSN (-20 °C), 0.125 mL L-glutamine (-20 °C), 1 mL B27. 

90 mM coumaric acid: 0.15 g p-coumaric acid was diluted in 10 mL DMSO. Aliquots were 

stored in dark at -20 °C. 

2.5 µg/mL DAPI: The stock solution was diluted in the filtered PBS and the final dilution 

contained 0.45% methanol. 

1 M DTT: 0.154 g DTT dissolved in 1 mL H2O was aliquoted and stored at -20 °C. 

Enhanced chemiluminescence (ECL) Reagent 1: 100 µL 250 mM luminol (-20 °C), 44 µL 

90 mM p-coumaric acid (-20 °C), 1 mL 1M PH 8.5 Tris, 8.85 mL H2O. 

ECL Reagent 2: 6 µL 30% H2O2 (4 °C), 1 mL 1M PH 8.5 Tris, 9 mL H2O. 

10x electrophoresis buffer: 250 mM Tris (30.24 g), 1.9 M glycine (142.5 g) and 1% SDS (10 g) 

were dissolved in 1 L H2O. 
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Hek293 cells medium: 500 mL DMEM, 45 mL FCS, and 5.5 mL penicillin/streptomycin 

solution. 

HKµE buffer: 10 mM Hepes (1.19 g) adjusted to pH 7.2, 142 mM KCl (5.3 g), 5 mM 

MgCl2.6H2O (0.51 g) and 1 mM EGTA (0.19 g) were dissolved in 1 L H2O. 

5x Laemmli buffer: 0.756 g tris in 5 mL H2O adjusted to pH 6.8, 2 g SDS, 10 mL 

glycerin, 0.001 g bromophenol blue, 308 mg DTT. 

250 mM luminol: 0.44 g luminol (3-aminophthalydrazide) was diluted in 10 mL DMSO. 

Aliquots were stored in dark at -20°C. 

Lysis buffer: 1 mL HKµE buffer, 10 µL Igepal, 40 µL complete protease inhibitor (25x), 50 µL 

phosSTOP-phosphatase inhibitor (20x), 1 µL 1 M DTT. 

Mowiol: 5 g mowiol were mixed in 20 mL PBS for 1 h at 40 °C, and then mixed with 10 mL 

glycerol for 1 h to overnight under constant stirring. After centrifugation at 5000 rpm for 

15 min, the collected supernatant was regulated to pH 8.0. After adding 0.3 mL 2% sodium 

azide and about 9 mg n-propyl gallate, the solution was centrifuged at 4000 rpm for 20 min 

to remove the bubbles. Aliquots were kept at -20 °C. 

PBS: 9.55 g PBS powder were diluted in 1000 mL H2O and then filtered. 

0.1 mg/mL PDL: 5 mg PDL were dissolved in 50 mL sterilized H2O and then filtered. Aliquots 

were kept at -20 °C. 

4% PFA: 20 g PFA were dissolved in 300 mL PBS at 55°C. After adding one pellet of NaOH, the 

solution was filtered, cooled to 4 °C and adjusted to pH 7.4 at 4 °C. More PBS was filled up to 

500 mL of solution in total, and the prepared solution was kept at 4 °C. 

20x phosSTOP-phosphatase inhibitor: 2 tablets were diluted in 1 mL deionized H2O. Aliquots 

were kept at -20°C for maximum 6 months. 

1 mg/ml PLO: 50 mg PLO were diluted in 50 ml borate buffer, sterilized by filtration, and 

kept at 4 °C. 
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10% separating gel: 3.545 mL H2O, 2.125 mL 4 x tris pH 8.8, 2.83 mL 30% acrylamide, 42.5 μL 

10% APS, 4.25 μL TEMED. 

Stacking gel: 3.05 mL H2O, 1.25 mL 4 x tris pH 6.8, 0.65 mL 30% acrylamide, 25 μL 10% APS, 

5 μL TEMED. 

1x TBST: 10x TBST was diluted 10 times in H2O. pH adjustment was not needed. 

10x TBST : 24.2 g tris, 80 g NaCl, and 10 mL tween20 were dissolved in H2O up to 1 L solution, 

and adjusted to pH7.6. 

1x transfer buffer: 2.7 g tris, 12.96 g glycine, 180 mL methanol, 720 mL H2O. 

10% triton X-100: 900 µL 0.05M Tris/1.5% NaCl, 100 µL triton X-100. 

0.05M tris/1.5% NaCl: 6.06 g tris, 15 g NaCl, 1000 mL H2O. 

25000 units/mL trypsin: 25000 units trypsin were diluted in 1 mL CMF, adjusted to pH 7.6, 

and sterilized by filtration. Aliquots were kept at -20 °C.  

2.1.3 Plasmids  

p.Bluescript (Stratagene, La Jolla, USA) 

p.CMV-CRMP2-flag (generous gift from Mahnaz Moradi-Améli, Université Lyon 1, France)  

p.CMV-EGFP (generous gift from Uwe Michel, University of Göttingen, Germany)  

p.AAV.hSyn-CRMP2-hSyn-mcherry (generous gift from Uwe Michel, University of Göttingen, 

Germany)  

p.AAV.hSyn-mcherry-hSyn (generous gift from Uwe Michel, University of Göttingen, 

Germany) 

p.AAV.hSyn-EGFP (generous gift from Jan C. Koch, University of Göttingen, Germany)  

p.AAV.hSyn-mito-RFP (generous gift from Zara d’Hedouville, University of Göttingen, 

Germany)  

p.TurboRFP-mito (Evrogen, Heidelberg , Germany) 

p.EGFP-N2 (Clontech, Heidelberg, Germany) 
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2.1.4 Animals 

Adult female Wistar rats (Charles River, Sulzfeld, Germany) 

Embryonic day 18 Wistar rats (Central animal facility of University Medicine Göttingen, 

Germany) 

2.1.5 Equipment 

Analytical reversed phase-C18 column (Dr. Maisch, Ammerbuch-Entringen, Germany) 

Autoclave (Systec, Linden, Germany) 

Axioplan 2 microscope equipped with AxioCam HRm camera (Carl Zeiss Microimaging, 

Göttingen, Germany) 

Axiovert 200 M inverted microscope (Carl Zeiss Microimaging, Göttingen, Germany) 

Balance (Sartorius, Göttingen, Germany) 

C1000 Touch thermal cycler (Bio-Rad, München, Germany) 

Cell culture hood (Heraeus, Hanau, Germany) 

Centrifuge 5810R (Eppendorf, Wesseling-Berzdorf, Germany) 

Centrifuge 5418R (Eppendorf, Wesseling-Berzdorf, Germany) 

Cover slides 24 x 60mm (Menzel, Braunschweig, Germany) 

Cryomatrix (Thermo Scientific, Bremen, Germany) 

Cryostat, CM 3050S (Leica, Mannheim, Germany) 

CTI-Controller 3700 (Carl Zeiss Microimaging, Göttingen, Germany) 

Curix 60 Developer (Agfa, Koln, Germany) 

Driller (Proxxon, Föhre, Germany) 

Drying Oven (Thermo Scientific, Bremen, Germany) 

Electrophoresis chamber (BioRad, München, Germany) 

Electrophoresis power supply (BioRad, München, Germany) 

Forceps (Fine Science Tools, Heidelberg, Germany) 

Hamilton syringe (Hamilton, Planegg, Germany) 

Heracell 150i CO2 incubator (Thermo Scientific, Bremen, Germany) 

Ice machine (Scotman, Pogliano Milanese, Italy) 
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Mass spectrometer (AB SCIEX, Darmstadt, Germany) 

MR 3000 Shaker (Heidolph, Schwabach, Germany) 

Nanodrop spectrophotometer (Thermo Scientific, Bremen, Germany) 

Nitrocellulose transfer membrane (Applichem, Darmstadt, Germany) 

Nucleofector Device (Lonza, Cologne, Germany) 

Petri dish (Sarstedt, Nümbrecht, Germany) 

pH Meter (Sartorius, Göttingen, Germany) 

Pipettes (Eppendorf, Wesseling-Berzdorf, Germany) 

10-0 polyamide suture (needle 3/8 circle) (Ethicon, Norderstedt, Germany) 

Protein ladder (BioRad, München, Germany) 

Pseudo-confocal ApoTome device (Carl Zeiss Microimaging, Göttingen, Germany) 

Pulsoximeter (Nonin Braunfels, Germany) 

Scalpel, size 10 (Bard-Parker, Singen, Germany) 

Scissors (Fine Science Tools, Heidelberg, Germany)  

Self-packed reversed phase-C18 precolumn (Dr. Maisch, Dr. Maisch, Ammerbuch-Entringen, 

Germany) 

Spacer plates (Biorad, München, Germany) 

Tempcontrol 37-2 (Carl Zeiss Microimaging, Göttingen, Germany) 

Thermocoagulator (Fine Science Tools, Heidelberg, Germany) 

Thermomixter (Eppendorf, Wesseling-Berzdorf, Germany) 

40x Water immersion objective (Carl Zeiss Microimaging, Göttingen, Germany) 

6-well culture plate (Sarstedt, Numbrecht, Germany) 

12-well culture plate (Sarstedt, Numbrecht, Germany) 

24-well culture plate (Sarstedt, Numbrecht, Germany) 

48-well culture plate (Costar, Wiesbaden, Germany) 

Warming pad for rats (Kent Scientific, Connecticut, USA) 

Western blot Electrophoresis chambers (BioRad, München, Germany) 

Whatman gel blotting paper (GE Healthcare, Chalfont St. Gilles, UK) 



Materials and Methods 
 

25 
 

 

2.1.6 Antibodies 

2.1.6.1 Primary antibodies 

Mouse anti-Dynein IC (monoclonal, MMS-400P, Covance, München, Germany) 

Mouse anti-Flag M2 antibody (monoclonal, F1804, Sigma, Darmstadt, Germany)  

Mouse anti-GAPDH (monoclonal, G9545, Biotrend, Köln, Germany)  

Mouse anti-Map-2 (monoclonal, MAB3418, Millipore, Darmstadt, Germany) 

Mouse anti-Smi31 (monoclonal, SMI-31R, Covance, München, Germany)  

Mouse anti-spectrin (monoclonal, BML-FG6090, Enzo, Ansbach, Germany), 

Mouse anti-Tau (monoclonal, T9450, Sigma, Darmstadt, Germany) 

Rabbit anti-Atg5 (polyclonal, AP1812b, Abgent, Hamburg, Germany)  

Rabbit anti-Beclin-1 (polyclonal, #3738, Cell signaling, Cambridge, UK), 

Rabbit anti-CRMP2 (polyclonal, #9393, Cell signaling, Cambridge, UK),  

Rabbit anti-cleaved spectrin (a generous gift from Dr Robert Siman, University of 

Pennsylvania, USA) 

2.1.6.2 Secondary antibodies 

Donkey anti-mouse cy2 secondary antibody (polyclonal, 715-226-150, Dianova, Hamburg, 

Germany) 

Donkey anti-rabbit cy3 secondary antibody (monoclonal, 711-165-152, Dianova, Hamburg, 

Germany) 

Goat anti-mouse cy3 secondary antibody (polyclonal, 115-165-146, Dianova, Hamburg, 

Germany) 

Goat anti-mouse horseradish peroxidase (HRP) (7076P2, Cell signaling, Cambridge, UK) 

Goat anti-rabbit HRP (7074P2, Cell signaling, Cambridge, UK)  

2.1.7 Software  

SPSS 16.0 (IBM, USA) 

Image J 1.49a (NIH, USA)  
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AxioVision 4.8 (Zeiss Carl Zeiss Microimaging, Göttingen, Germany) 

ProteinPilot 5.0 software rev4769 (AB SCIEX, Germany).  

Scaffold software version 4.4.1.1 (Proteome Software Inc., Portland) 

Bio-Rad CFX manager 3.0 software (Bio-Rad, Germany) 

CorelDRAW X3 software (Corel Corporation, Canada)   

2.2 Methods 

2.2.1 Plasmids 

The following plasmids were used to check the role of CRMP2 overexpression on axonal 

degeneration in vitro: p.CMV-CRMP2-flag (Rogemond et al., 2008), p.CMV-EGFP (Genbank ID: 

KT343252). The plasmids used for adeno-associated virus (AAV) production are: 

p.AAV.hSyn-CRMP2-hSyn-mcherry (Genbank ID: KT345944), p.AAV.hSyn-mcherry-hSyn 

(Genbank ID: KT345943), p.AAV.hSyn-mito-RFP (Genebank ID: KT358727). Both 

p.AAV.hSyn-CRMP2-hSyn-mcherry and p.AAV.hSyn-mcherry-hSyn contain two human 

synapsin promoters. 

p.AAV.hSyn-mito-RFP was cloned with the following procedures: The insert containing the 

red fluorescent protein (RFP) and a mitochondrial targeting sequence (MTS) was cut from 

p.TurboRFP-mito. The resulting insert was then subcloned into pBS-Shuttle at the NheI and 

NotI restriction sites. The insert containing RFP and MTS cut from the shuttle vector with a 

NheI and SalI digestion was then ligated into p.EGFP-N2. Afterwards, the insert containing 

MTS and RFP was cut from pEGFP-N2 with NheI and Acc65I digestion, and it was subcloned 

to p.AAV.hSyn-EGFP (Koch et al., 2011). After a digestion with BstAPI, the backbone was 

re-ligated. Finally, the resulting plasmid p.AAV-hSyn-TurboRFP-mito was sequenced and used 

for AAV production. 

For cloning of p.AAV.hSyn-CRMP2-hSyn-mcherry, the CRMP2 fragment from 

p.CMV-CRMP2-flag was cut with EcoRV and HindIII. It was then ligated into a HincII- and 

HindIII- cut pBluescript to get the resulting plasmid pBSKII-CRMP2. After pBSKII-CRMP2 was 

cut with XmaI and SacI, the resulting insert was ligated into an AgeI- and SacI- cut pAAV 
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vector in 5  ́ of a bGH polyA tail and 3  ́ of an hSyn promoter. The resulting plasmid 

pAAV-CRMP2-hSyn-mcherry was sequenced and used for AAV production. 

2.2.2 Adeno-associated virus 

To check the role of calpain inhibitor calpeptin on AAD using in vivo live imaging, 

AAV.hSyn-EGFP virus was produced to visualize RGC axons as previously described (Koch et 

al., 2011). To image the kinetics of mitochondrial transport after axotomy in vitro, 

AAV.hSyn-RFP-mito virus was produced to label mitochondria. To check the role of CRMP2 on 

mitochondrial transport in vitro and on AAD in vivo, AAV.hSyn-CRMP2-hSyn-mcherry virus 

was produced to visualize the axons overexpressing CRMP2. AAV.hSyn-mcherry-hSyn virus 

was produced as control. All these viral vectors were provided by Uwe Michel and Jan C. 

Koch (University of Göttingen, Germany).  

For all experiments, AAV of the pseudotype 1/2 were used. To generate this pseudotype of 

AAV, AAV2 inverted terminal repeats (ITR) were packed into AAV1/AAV2 hybrid capsids in a 

molar ratio of 1:1. To produce both AAV.hSyn-CRMP2-hSyn-mcherry virus and 

AAV.hSyn-mcherry-hSyn virus, the pACG-2 helper-plasmid (kind gift of Arun Srivastava, 

University of Florida, USA) was used, which results in the hybrid serotype AAV1/mutAAV2 

(Zhong et al., 2008). Viral vectors were produced as described before (Koch et al., 2011). 

Briefly, HEK293 cells were transfected with calcium phosphate and a plasmid mixture. This 

plasmid mixture consisted of the respective pHELPER, pAAV-expression vector, pH21 and 

pAAV-RC (molar ratio 1:1:0.5:0.5). Both plasmids pAAV-RC and pHELPER were from 

Stratagene. The plasmid pH21 (pAAV1) expressing AAV serotype 1 capsids, was a kind gift of 

Helen Fitzsimons (Neurologix, Inc. OSU Comprehensive Cancer Center, Columbus, USA) and 

Matthew During (Molecular Virology, Immunology, and Medical Genetics, Columbus, USA). 

At 48 h after transfection, the cells were harvested. Viral vectors were purified by dialysis and 

virus gradient centrifugation in iodixanol. To obtain high titer viral stocks, fast protein liquid 

chromatography was performed. To determine viral titers, the qPCR analysis with 

appropriate plasmid standards was performed. Toxicity and transduction rates of all the viral 

vectors were tested in the primary cortical neurons in vitro and after intravitreal injections in 
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vivo. 

2.2.3 Surgical procedures 

All animal experiments were performed with regards to the regulations of the local animal 

research council and legislation of the State of Lower Saxony (Germany). In all the 

experiments, adult female Wistar rats (250–350 g) were used. For anesthesia, rats were 

injected intraperitoneally with 10% ketamine (95 mg/kg body weight) and 2% xylazine (7 

mg/kg body weight). 

2.2.3.1 Intravitreal injections 

For calpain inhibition, 10 mM calpeptin in 7% DMSO or 7% DMSO in deionized H2O as 

control was intravitreally injected 2.5 h before ONC. A total volume of 3 µL was injected per 

eye. For imaging the time course of AAD after calpain inhibition, 1.7 x 108 transforming units 

(TU) AAV.hSyn-EGFP per eye were intravitreally injected 2 weeks before imaging. To confirm 

CRMP2 overexpression by AAV.hSyn-CRMP2-hSyn-mcherry in vivo, 2.8 x 108 TU 

AAV.hSyn-mcherry-hSyn or 2.1 x 108 TU AAV.hSyn-CRMP2-hSyn-mcherry per eye were 

intravitreally injected 4 weeks before dissecting optic nerves and retinas. For imaging the 

time course of AAD after CRMP2 overexpression in vivo, 2.8 x 108 TU AAV.hSyn-mcherry-hSyn 

or 2.1 x 108 TU AAV.hSyn-CRMP2-hSyn-mcherry per eye were injected 4 weeks before 

imaging. The total volume of injected viral vectors was 5 µL per eye. The titers of AAV were 

previously optimized according to equal transduction rates of the retina with no obvious 

toxicity.  

The procedures of intravitreal injections with a Hamilton syringe were performed as 

described previously (Koch et al., 2011). The anesthetized rat was placed on the surgery table 

under a Carl Zeiss operating stereomicroscope. While the eye bulb was fixed with the thumb 

and index finger of the left hand, the syringe was inserted behind the inferior temporal 

limbus and towards the upper nasal side with the right hand. The needle was pushed 

carefully until its tip was above the upper nasal quadrant of the retina. The substances were 
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then slowly injected over 1 min. After waiting for another 1 min, the needle was pulled out 

of the eye slowly. Eye ointment (Bepanthen®) was applied on both eyes. After AAV injection, 

the rat was placed on a warming pad until it woke up. After DMSO or calpeptin injection, the 

rat was placed on a warming pad for further surgery. 

2.2.3.2 Optic nerve crush 

 

Figure 2.1 Optic nerve surgery setup.  

During the surgery of optic nerve, the rat was fixed in the rat positioning setup (1). The body of the rat 

was placed on a warming pad (2a), which was controlled by a thermocontrol system (2b). A pulsoximeter 

(3) was used to monitor heart rate and blood oxygen saturation of the rat (modified from Koch et al., 

2011). 

Surgery of the optic nerve was performed as described before (Koch et al., 2011). The 

anesthetized rat was placed on a warming pad under a Carl Zeiss surgical microscope. A 

pulsoximeter was used to monitor heart rate and blood oxygen saturation of the rat. After 
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clipping the fur on its head, the rat was fixed in the rat positioning setup and tilted at an 

angle of ~30° to its right side (Figure 2.1). The skin in the operating area was disinfected with 

70% ethanol, and a median incision was performed using a scalpel. Afterwards, the 

operating field was opened with custom-made hooks. A thermocoagulator was used to 

transect the connective tissue along the orbital rim. After cutting layer by layer, the 

intraorbital gland became visible. While the gland was covered by small gauze swabs, the 

protruding bony parts of the orbital rim were removed carefully by a small driller. After 

washing away the bone chips with warm Ringer’s solution, the supraorbital nerve and vein 

on top of the gland were transected by the thermocoagulator. After the gland was moved to 

the front, the eye was rotated by pulling the underlying superior rectus muscle carefully to 

the lateral side of the rat. Another hook was used to fix the eye in this position. The fat and 

connecting tissue on top of the optic nerve were removed, and this was followed by a 

longitudinal incision of the dura surrounding the optic nerve. Care was taken not to damage 

the blood vessels. The optic nerve was finally exposed by retracting the dura to both sides of 

the incision. For optic nerve crush, a 10-0 polyamide suture was tied tightly around the optic 

nerve for 30 s. 

2.2.4 Primary cortical neuron culture 

2.2.4.1 Fabrication of microfluidic chambers 

Microfluidic chambers were produced as described elsewhere (Park et al., 2006; Rhee et 

al., 2005). The chambers contain four wells and two main channels. The two channels are 

connected with 110 embedded microgrooves (7 µm wide, 3 µm high and 450 µm long). To 

produce the chambers, the master molds were prepared by Sarah Köster (University of 

Göttingen, Germany). The PDMS prepolymer and the catalyst were weighted out in a ratio of 

10:1. About 6 g of the mixture were used for each chamber. The two components were 

mixed thoroughly in a disposable cup until the bubbles distributed homogenously. The mix 

was then poured over the master mold in a petri dish. Afterwards, the petri dish was placed 

in a leveled laboratory oven at 60 °C for 90 min until the PDMS mixture was solidified and 

became transparent. The cured PDMS piece was carefully separated from the master mold 
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using a sharp blade. The reservoirs were punched, and the PDMS piece was trimmed. When 

handling it, care was taken not to touch the imprinted side. To reuse the chambers, they 

were first rinsed with deionized H2O for at least 10 times. They were then placed in a clean 

beaker with deionized H2O at 37 °C overnight. After further washing with deionized H2O, 

they were left for drying. Each chamber can be reused for 10 times. Finally, they were stored 

in the clean petri dishes sealed with parafilm. The imprinted side of chambers was placed 

upside. 

2.2.4.2 Coating of culture plates and coverslips 

12-well and 24-well culture plates were coated with PLO and laminin. PLO was diluted 10 

times with sterilized H2O. 12-well or 24-well plates were incubated with 1 mL or 0.5 mL 

diluted PLO per well at room temperature (RT) for at least 4 h. The plate with PLO was then 

rinsed with sterilized H2O for 2 times. Next, laminin was diluted with sterilized H2O in a ratio 

of 1:1000. The 12-well or 24-well plate was incubated with 1 mL or 0.5 mL diluted laminin 

per well in the incubator overnight, and then rinsed with neurobasal medium 2 times. Finally, 

the coated plate was filled with 1 mL cortex medium, and kept in the incubator until seeding 

of the cells. 

For the scratch assay and microfluidic chamber experiments, cortical neurons were 

cultured onto the coverslips in 48-well culture plates and/or in microfluidic chambers. To 

clean the coverslips, they were first sonicated in deionized H2O at 60 °C for 30 min. Coverslips 

were further cleaned by shaking in acetone for 5 min and in 100% ethanol for 5 min. Finally, 

they were rinsed with deionized H2O and left to dry completely. They were kept in a clean 

culture dish and sealed with parafilm for later use. For sterilization, they were placed in 100% 

ethanol for a few seconds and then flamed. All the following procedures were performed in a 

cell culture hood. For coating, the sterilized coverslips were covered with 0.1 mg/mL PDL at 

37 °C for 30 min. After washing with sterilized H2O for 2 times, they were left to dry 

completely in the hood. After adding cortex medium, the plates or chambers with coverslips 

were kept in the incubator before seeding.  
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2.2.4.3 Assembling of microfluidic chambers 

Any remaining structures or dirt on the surface of the chambers were removed by a 

scotch tape. All the following procedures were performed in a cell culture hood. For 

sterilization, the chambers were immersed in 70% ethanol in petri dishes. After shaking the 

chambers by hand for 5 min, the ethanol was removed by pump suction. The chambers were 

then left to dry in the culture hood for at least 3 h. Afterwards, the sterilized chambers were 

placed on coated glass coverslips with the imprinted side downward. After gently pressing 

the chambers, they were sealed to the coverslips. 200 µl pre-warmed cortex medium were 

immediately added in one well of each chamber. The medium was distributed to the other 

well through the main channel. The side with cortex medium was marked as soma side, 

while the other side was the axonal side accordingly. After the medium had gone across the 

microgrooves, warm medium was added to the axonal side of the chambers. Finally, the 

assembled chambers were kept in the incubator until the cortical neurons were prepared. 

2.2.4.4 Primary cortical neuron culture  

The preparation of primary rat cortical neurons was performed as described previously 

(Ivins et al., 1998). E18 rats were sacrificed with CO2 insufflation and fixed on a preparation 

table. After disinfecting the front side of the rat with 70% ethanol, the embryos were taken 

out and put in ice-cold calcium magnesium-free (CMF) buffer. The heads of the embryos 

were separated and put in another dish with CMF. The cortices were dissected in the lid of a 

petri dish under the microscope, and collected in a 10 mL conical tube ewith ice cold CMF. 

After centrifugation at 800 rpm for 4 min at 4 °C, the supernatant was replaced with 1 mL 

ice-cold trypsin (25000 units/mL). After incubation in a 37 °C water bath for 10 min, 50 μL 

ice-cold DNAse (5 mg/mL) was added to dissolve DNA-aggregates released from damaged 

cells. After spinning the tube at 800 rpm for 1 min, the trypsin was immediately removed and 

the pellet was covered with 1 mL FCS. The tissues were triturated by gently pipetting up and 

down with a 1000 µL pipette tip for 3 times. After spinning it down, the supernatant with the 

suspended cells was collected into another 10 mL conical tube. The pellet was further 

triturated in 1 mL fresh cortex medium with a fire-polished Pasteur pipette for 3 times gently. 
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The supernatant was again collected. After the collected supernatant with re-suspended cells 

was centrifuged for 4 min, the supernatant was removed and the cells were re-suspended in 

warm cortex medium. For counting the cells, the coverslip was adhered to the 

hemocytometer via suction. The diluted cells with PBS were mixed with trypan blue. 10 µL of 

the mixture was pipetted to each side of a hemocytometer. Afterwards, the cells were 

seeded in the culture plates or microfluidic chambers. For transduced cells, 3 x 105 and 1.5 x 

105 cells were loaded in each well of 24-well and 48-well plates respectively. 1.5 x 105 cells 

were seeded per chamber. For transfected cells, 1 x 106 and 3 x 105 transfected cells were 

seeded in each well of 12-well culture plates and each microfluidic chamber respectively. The 

cells were then cultured in the incubator at 37 °C with 5% CO2 and 95% humidity. Half of the 

culture medium was changed in the culture plates every 3 days.  

2.2.4.5 Nucleofection  

To overexpress CRMP2 by p.CMV-CRMP2-flag, cortical neurons were transfected with 4 µg 

p.CMV-EGFP alone or co-transfected with both 2.5 µg p.CMV-CRMP2-flag and 1.5 µg 

p.CMV-EGFP. To confirm CRMP2 overexperssion by p.AAV.hSyn-CRMP2-hSyn-mcherry, 

cortical neurons were transfected with 4 µg pAAV.hSyn-CRMP2-hSyn-mcherry or pAAV.hSyn- 

mcherry-hSyn. The transfection was carried out using the Amaxa rat neuron nucleofector kit 

according to the manufacturer’s instructions. For each sample, 4 µg plasmid DNA was diluted 

with H2O up to 10 µL. 2 x 106 cells per sample were centrifuged at 1 x 103 rpm for 1.5 min at 

RT. The nucleofector solution was prepared and pre-warmed at RT. After removing the 

supernatant carefully, the cell pellet was re-suspended in the mixture of 90 µL nucleofector 

solution and 10 µL diluted plasmid. The cell/DNA suspension was transferred to the cuvette. 

Program O-05 was applied for the inserted cuvette in the nucleofector device. As soon as the 

program was finished, the sample was transferred to the pre-warmed mixture of 350 µL 

cortex medium and 50 µL FCS. The cells were seeded immediately after finishing the 

procedures for all samples. 1 x 106 transfected cells per well were seeded in 12-well culture 

plates. At 3 h after seeding, the medium was changed completely.  
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2.2.4.6 Viral transduction  

Viral transduction was performed 2-3 hours after seeding. The titers of the viral vectors 

were previously optimized resulting in equal transduction rates (90% of all cells) and only 

minor toxicity. In the microfluidic chambers, 100 µL medium mixed with the viral vector was 

added in both wells of the soma side per chamber. In each chamber, 1.5 x 105 cells were 

transduced with 1 x 107 transforming units (TU) AAV.mito-RFP, 5 x 106 TU AAV.hSyn- 

CRMP2-hSyn-mcherry or 1 x 106 TU AAV.hSyn-mcherry-hSyn. 24 h after seeding, half of the 

medium was exchanged. In the following days, half of the medium was changed every two 

days. In the 24-well plates, the medium per well was reduced to 300 µL just before adding 

viral vectors. Afterwards, 50 µL medium mixed with viral vector were added per well. In each 

well, 3 x 105 cells were transduced with 1 x 107 TU AAV.hSyn-CRMP2-hSyn-mcherry or 2 

x 106 TU AAV.hSyn-mcherry-hSyn. 24 h after transduction, 150 µL fresh medium were added 

back to each well. Afterwards, half of the medium was changed every 2 days.  

2.2.4.7 Cell seeding and culturing in microfluidic chambers 

The medium in the previously prepared microfluidic chambers was exchanged against 

fresh medium completely. As soon as the cortical neurons were prepared, the medium on 

the soma side was aspirated. The cells were gently pipetted at the entrance of the main 

channel on the soma side, and this channel was named ‘soma compartment’. The other main 

channel was called ‘axonal compartment’. For nucleofection experiments, 3 x 105 previously 

transfected cells were seeded per chamber in 75 µL medium. At 3 h after seeding, the 

medium in the chambers was completely substituted by fresh medium. For viral transduction 

experiments, 1.5 x 105 cells in 75 µL medium were seeded in each chamber. At 2 to 3 hours 

after seeding, 100 µL medium mixed with the viral vector were added in the wells of the 

soma side in each chamber. In both cases, half of the medium was changed 24 h after 

seeding. In the following days, half of the medium was changed every 2 days. On DIV8, axons 

extended across the microgrooves and into the axonal compartment. 
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2.2.4.8 Axotomy in microfluidic chamber 

On DIV8, an axotomy was performed by a glass Pasteur pipette connected to vacuum. 

When the pipette was placed close to the entrance of the axonal compartment for 3-5 s, the 

medium was emptied from the wells of the axonal side. The axons were lesioned by the 

passing of a resulting bubble through the axonal compartment. Immediately, new medium 

was added to one empty well. The medium flowed into the other empty well re-filling the 

axonal compartment. Cells on the soma side were not damaged by the gentle suction due to 

the high fluidic resistance of the microgrooves. To confirm the axotomy, the chamber was 

checked under the microscope. In the case that the axons were not sufficiently lesioned, the 

above procedures needed to be repeated once.  

2.2.4.9 Scratch assay 

Before seeding, the medium was exchanged against 175 µL fresh medium per well in a 

48-well culture plate. 1.5 x 105 cortical neurons in 75 µL medium were seeded in each well. 

On DIV8, a scratch lesion (Tönges et al., 2011) was performed in a crossing pattern with a 

200 µL pipette tip in the 48-well plate. Afterwards, the plate was placed back into the 

incubator. At 6 h after scratch, cell lysates were prepared. 

2.2.4.10 Treatment with calpeptin and tianeptine 

To confirm the relation between CRMP2 and calpain in vitro, 0.1% DMSO or 50 µM 

calpeptin in 0.1% DMSO was added to the culture medium at 1 h before scratch on DIV8. To 

investigate whether tianeptine could increase the levels of CRMP2, treatment with 

tianeptine alone or co-treatment with both tianeptine and calpeptin was applied to the 

cortical neurons. After treatment with 100 µM, 500 µM or 1000 µM tianeptine, the cells 

were cultured in the incubator for 24 h. For co-treatment, 50 µM calpeptin in 0.1% DMSO 

was applied at 30 min before adding tianeptine. 
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2.2.5 HEK293 cells  

2.2.5.1 HEK293 cells culturing 

HEK293 cells were maintained in the incubator at 37 °C with 5% CO2 and 95% humidity. 

The culture medium was DMEM medium supplemented with FCS and penicillin/streptomycin. 

The medium was renewed every 2 days, and the cells were passaged when they reached 

confluence. To change medium, the cells were washed carefully with warm PBS, and then 

fresh medium was added. To passage cells, 1 mL trypsin was added directly on the cells in 

each flask after washing them with warm PBS. The flask was placed back into the incubator 

until the cells were detached from the flask. Fresh medium was added to stop trypsinization. 

The suspended cells were collected into a conical tube, and then centrifuged at 1000 rpm for 

1 min. After aspirating the supernatant, the pellet was suspended in 20 mL fresh medium. 

The cell clumps were dispersed by pipetting up and down. 4 mL suspended cells were seeded 

into a new flask with 16 mL medium. For transfection, 500 µL suspended cells and 2 mL 

medium were added to each well of a 6-well plate coated with PDL. The flask and plate were 

placed into the incubator for culturing.  

2.2.5.2 Calcium phosphate transfection 

After HEK293 cells in 6-well plate reached 70-80% confluence, calcium phosphate 

transfection was performed. 6 µg p.AAV-hSyn-CRMP2-hSyn-mcherry or 

p.AAV-hSyn-mcherry-hSyn were diluted to 108 µL with H2O in 15 mL conical tube. For each 

sample, 12 µL 2.5 M CaCl2 were added dropwise to the tube on the vortex. The time interval 

between drops was 3 s. After adding the last drop of CaCl2, the tube was swirled on the 

vortex for 30 s. 120 µL 2 x BBS were added to the tube by the same way as adding CaCl2. 

After leaving the tube at RT for 15 min, the medium in the 6-well plate was exchanged 

against 2 mL DMEM medium per well. After shortly swirling the mix with HBS, CaCl2 and 

plasmid, the mix was added to the cells. 2 h after transfection, the cells were washed with 

DMEM medium. Afterwards, the cells were cultured with complete growing medium in the 

incubator. 24 h after transfection, a 50% transfection rate was achieved. 
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2.2.6 Live imaging  

2.2.6.1 Live imaging of acute axonal degeneration in vivo 

In vivo live imaging of AAD in the optic nerve was performed as reported before (Koch et 

al., 2011). After surgical exposure of the optic nerve, the operating field was washed with 

warm Ringer’s solution. The rat in the positioning setup was transferred and fixed on the 

stage of a Zeiss Examiner microscope. The 40x water immersion objective was positioned 

above the optic nerve. The cavity above the optic nerve was filled with Ringer’s solution until 

the tip of the objective was surrounded by the solution. After verifying the integrity of the 

labeled axons, a crush lesion was performed. One to four areas 400 µm proximal and distal 

to the crush site were selected for imaging. Z-stack images were taken of the chosen areas at 

5, 30, 60, 120, 180, 240, 300, 360 min after crush. To avoid bleaching, the fluorescence 

excitation was kept as weak and short as possible. During the whole period of imaging, the 

anesthesia of the rat was maintained by repeating anesthetic injections every 60 min based 

on close monitoring signs of awakening. To process the images, AxioVision 4.8 and CorelDraw 

X3 software were used. To quantify the time course of AAD, the axonal integrity ratio (AIR) 

was quantified for each axon. AIR represents a ratio of the sum lengths of the remaining axon 

divided by the total length of the initial axon. 

2.2.6.2 Live imaging of axonal degeneration in microfluidic chambers in vitro 

Live imaging of cortical neurons was performed in the microfluidic chamber system on 

DIV8. The cells were transfected with p.CMV-EGFP alone or co-transfected with p.CMV-EGFP 

and p.CMV-CRMP2. For imaging, the chambers were transferred to a microscope incubation 

system (37 °C, 5% CO2) attached to a Zeiss Axiovert inverted microscope. To monitor axonal 

changes after axotomy over time, 4 areas with EGFP fluorescent axons were chosen for 

imaging. Images were taken of the selected areas at 40x magnification. Imaging was 

performed before axotomy and up to 8 h after axotomy. For evaluation, the number of 

axonal bulbs 400 µm proximal to the lesion site was quantified. Only the lesioned axons were 

included in these analyses. 
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2.2.6.3 Live imaging of mitochondrial movement in microfluidic chambers in vitro 

The mitochondrial transport was imaged in the microfluidic chamber system on DIV8. To 

check the kinetics of mitochondrial transport after axotomy, mitochondria were visualized by 

transduction with AAV.mito-RFP. To check the role of CRMP2 on mitochondrial transport 

after axotomy, 100 nmol MitoTracker Green FM was added to each chamber on DIV7. The 

mitotracker was diluted in warm cortex medium. After removing the medium in the chamber, 

200 µL and 100 µL diluted mitotracker were added to the soma and axonal sides of the 

chamber respectively. After placing the chamber in the incubator for 30 min, the medium 

mixed with mitotracker was removed. The incubation time in the mitotracker was according 

to the datasheet of the mitotracker. 200 µL and 100 µL fresh medium were added to the 

soma and axonal sides of the chamber respectively. The volume difference between soma 

and axonal side resulted in a slow but continuous flow across the microgrooves. After 

washing overnight, the chamber was refilled with cortex medium. 

On DIV8, mitochondria labeled with mitotracker or viral vector were imaged in the 

microscope incubation system (37 °C, 5% CO2) attached to a Zeiss inverted microscope. To 

monitor mitochondrial movement, a time-lapse movie was taken at 40x magnification per 

area. Each movie was taken for 37 s with 500 ms exposure time. In each chamber, 4 areas 

were selected for imaging before axotomy and at different time points after axotomy. For 

evaluation, the mitochondrial movement in single axons 100 µm proximal to the lesion site 

was quantified using the ImageJ plugin MultipleKymograph. Mitochondria with a speed of at 

least 0.07 µm/s were defined as motile mitochondria. Both percentage and speed of motile 

mitochondria were quantified. Only the lesioned axons were included for evaluation.  

2.2.7 Western blot analysis 

2.2.7.1 Preparation of lysates 

1 mm optic nerve segments proximal or distal to the crush site were dissected at the given 

time points before and after crush. Retinas were excised 4 weeks after intravitreal injections 

of viral vectors. Both retinas and optic nerves were dissected in PBS on ice immediately after 

the rats were sacrificed by CO2 insufflation. For Western blots of spectrin and CRMP2 in 
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cortical neurons, cell lysates were collected at 6 h after scratch. To confirm CRMP2 

overexpression mediated by p.CMV-CRMP2-flag, lysates of cortical neurons were collected 3 

days after nucleofection. To check the effect of tianeptine on the levels of CRMP2, lysates of 

cortical neurons were prepared 24 h after treatment with tianeptine. To confirm CRMP2 

overexpression mediated by p.AAV-hSyn-CRMP2-hSyn-mcherry, HEK293 cell lysates were 

prepared 24 h after calcium phosphate transfection.  

To prepare lysates, tissues were immediately frozen in liquid nitrogen after dissection and 

then homogenized in ice-cold lysis buffer. For whole cell lysates, cells were washed with 5% 

glucose followed by ice-cold lysis buffer. Lysates were collected after scraping the cells off 

each well. The cell lysates were frozen and thawed for 2 times. Protein lysates of both 

tissues and cells were sonicated for 20 s at 4 °C. After 10 s, sonification was repeated for 

another time. After centrifugation at 1.32 x 104 rpm for 30 min at 4 °C, the supernatant was 

carefully transferred to a fresh tube. 

2.2.7.2 Western blot 

To prepare a SDS-PAGE gel, 10% separating gel solution was first added in the rack. 

Isopropanol was added to remove the bubbles. After about 40 min, the separating gel was 

solidified. The 4% stacking gel solution was added on top of the separating gel and a comb 

was inserted. The stacking gel was solidified after 40 min, and kept at 4 °C before use. To 

prepare each sample, equal amount (10-20 µg) of proteins were diluted in 16 µL lysis buffer. 

Each diluted sample was mixed with 4 µL Laemmli buffer (5x), and then boiled at 95 °C for 5 

min. For gel electrophoresis, the gel was placed in the chamber with electrophoresis buffer 

and the comb was removed carefully. A protein ladder (5 µL) was loaded in the first lane and 

the samples were loaded in the other lanes. The remaining empty lanes were loaded with a 

mixture of loading buffer with lysis buffer. The gel was first run at 30-50 V for about 40 min 

until the dye front entered the separating gel and then at 120 V until the dye front nearly ran 

off the bottom of the gel. For transferring membranes, a polyvinylidene difluoride (PVDF) or 

nitrocellulose (NC) membrane was cut in the size of 6 cm x 9 cm. PVDF membrane needed to 

be activated in methanol for 30 s before use. A transfer “sandwich” was assembled with 
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sponge, filter paper, membrane and gel after wetting them in the transfer buffer. By rotating 

a tube on top of the “sandwich”, air bubbles were removed. By performing the transfer at 

100 V at 4 °C for 1 to 2 h, proteins were blotted to the membrane. The blotted membrane 

was blocked with 5% BSA or 5% milk in TBST for 1 h at RT. After washing in TBST for 3 x 10 

min, the membrane was incubated with primary antibodies: anti-spectrin (1:500), 

anti-CRMP2 (1:1000), anti-Atg5 (1:300), anti-Beclin-1 (1:1000), anti-Map-2 (1:1000), anti-Tau 

(1:1000), anti-Dynein IC (1:500), anti-Flag M2 antibody (1:1000), and anti-GAPDH (1:2500) at 

4 °C overnight. The membrane was then washed with TBST for 3 x 10 min, and was 

incubated with HRP-coupled secondary antibodies at RT for 1 h. After rinsing in TBST for 3 x 

10 min, enhanced chemiluminescence (ECL) mixture was prepared by mixing ECL reagent 1 

and 2 in a ratio of 1:1. The membrane was incubated with the ECL-mix for 1 min and 

transferred to the dark room. In the dark room, a film was placed on top of the membrane in 

the cassette. After applying different exposure times from seconds to minutes, the film was 

developed with a Curix 60 Developer. The band intensity of target proteins was quantified by 

ImageJ 1.49a software (NIH).  

2.2.8 Immunofluorescence analysis 

2.2.8.1 Immunohistochemistry 

Optic nerves were dissected on ice before or 1 h after ONC. The dissected optic nerves 

were fixed in 4% PFA at 4 °C overnight, and then transferred to 30% sucrose in PBS at 4 °C 

for 48 h. The tissues were frozen at -20 °C until 16 μm thick longitudinal sections were cut 

using a cryostat. The sections were mounted onto glass slides. After removing the air 

bubbles, slides with sections were dried at 37 °C for 20 min and stored at -20 °C until further 

use.  

For staining, 0.05 M Tris/1.5% NaCl (pH 7.6) was used as washing buffer. All the washing 

steps were performed with gently shaking at RT. Slides were first thawed at 37 °C for 20 min, 

and then rehydrated in washing buffer at RT for 45 min. For antigen retrieval, the sections 

were incubated in 0.05 M Tris/1.5% NaCl (pH 9) in the water bath at 60 °C for 4 h. After 

washing for 5 min, the slides were permeabilized in methanol at -20 °C for 10 min. The slides 
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were then washed for 3 x 10 min. After incubation in 10% Triton X-100 for 15 min at RT, the 

slides were washed for another 5 min. The non-specific staining was blocked with Dako 

antibody diluent at RT for 30 min. Primary antibodies including anti-Smi31 (1:1000) and 

anti-cleaved spectrin (1:5000) were diluted in Dako antibody diluent and applied to the 

sections at 4 °C overnight. After washing for 5 x 10 min, sections were incubated with 

secondary antibodies at RT for 1 h. DAPI was applied at RT for 10 min after another 2 times 

of washing. After washing for 2 more times, the sections were embedded with Mowiol. To 

have an overview of the stained optic nerve, 20x magnification images were taken with a 

Zeiss AxioPlan microscope. The images were put together with Coreldraw software. For 

evaluation, the line plot profile tool of ImageJ 1.49a was used to measure the intensity of 

cleaved spectrin along the optic nerves. To evaluate the intensity of axonal cleaved spectrin, 

images were taken with the pseudo-confocal Zeiss ApoTome device at 63x magnification. 8 

images were taken in the area proximal or distal 300 µm to the crush in each nerve. 3 optic 

nerves were included per group and 5 sections per optic nerve were evaluated in the 

analysis. 

2.2.8.2 Immunocytochemistry 

Immunocytochemistry of cortical neurons in microfluidic chambers after co-transfection 

with p.CMV-EGFP and p.CMV-CRMP2-flag was performed on DIV8. The cells were washed for 

5 min in PBS at RT and then fixed in 4% PFA at RT for 10 min. After washing for 3 times, the 

cells were permeabilized in 0.25% triton-100 at RT for 10 min and then blocked with 5% goat 

serum at RT for 30 min. Primary antibody against Flag-M2 (1:500) was applied at 4 °C 

overnight. After washing for 3 times, the cells were incubated with goat anti-mouse cy3 

secondary antibody at RT for 1 h. The cells were washed for 3 more times and incubated with 

DAPI at RT for 10 min. After another washing in PBS and deionized H2O, the chamber was 

detached from the coverslip, and the cells on the coverslip were mounted with Mowiol. 

Images were taken with a Zeiss AxioPlan microscope at 40x magnification. 
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2.2.9 RNA isolation and analysis 

2.2.9.1 RNA isolation 

To confirm CRMP2 overexpression by the plasmid p.AAV-hSyn-CRMP2-hSyn, total RNA 

was isolated on DIV8 after transfection of cortical neurons. To confirm CRMP2 

overexpression by the viral vector AAV-hSyn-CRMP2-hSyn in vitro, total RNA was isolated on 

DIV8 after transduction of cortical neurons. To confirm CRMP2 overexpression by 

AAV-hSyn-CRMP2-hSyn in vivo, total RNA of optic nerves was isolated 4 weeks after 

intravitreal injection of the viral vector. 

For homogenization of cortical neurons, cells were washed with ice cold PBS once. After 

removing the PBS, Trizol reagent was added to each well. After 5 min, the cells were 

pipetted up and down for 3 times. The cells from 5 wells per sample were collected to 2 mL 

tube. For homogenization of tissues, the dissected optic nerve was immediately frozen in 

liquid nitrogen. As soon as it was taken out of liquid nitrogen, each sample was homogenized 

in 500 µL Trizol completely. After 3 min, another 500 µL Trizol was added to each sample. 

Further homogenization was performed by pipetting up and down for 10 times. 

After homogenization of both optic nerves and cortical neurons, 100 µL 

1-Bromo-3-chlor-propane were added per 1 mL Trizol. The sample was inverted at RT for 15 

times. After 3 min, the sample was centrifuged at 12000 rcf at 4 °C for 15 min. The upper 

aqueous layer was collected to another tube. 500 µL isopropanol and 1 µL glycolblue were 

added to the aqueous layer and mixed by inverting the tube for 15 times. The sample was 

kept at -20 °C overnight followed by centrifugation at 12000 rcf at 4 °C for 20 min. After 

discarding the supernatant, the RNA pellet was washed with ice cold 75% ethanol. DEPC H2O 

was added to the air-dried pellet and heated at 55 °C for 2 min. Finally, the concentration of 

dissolved RNA was measured using a Nanodrop spectrophotometer.  

2.2.9.2 Reverse transcription 

QuantiTect reverse transcription kit was used to perform reverse transcription according 

to its datasheet. 2 samples were prepared per condition. In each sample, 2 µL gDNA wipeout 

buffer and 250 ng template RNA were prepared. DEPC H2O was added to reach the total 
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volume 14 µL. After incubation at 42 °C for 2 min, they were kept on ice. After genomic DNA 

elimination, each sample was mixed with 1 µL Transcriptase, 4 µL Quantiscript RT buffer and 

1 µL RT primer mix. The samples were then incubated at 42 °C for 15 min and at 95 °C for 

3 min. Finally, they were kept at -20 °C or on ice for further steps. 

2.2.9.3 Real-Time quantitative PCR 

The primer of GAPDH was Rn_Gapd_1_SG (NM_017008) from Qiagen. The human specific 

CRMP2 primers were designed by basic local alignment search tool (blast) and their 

sequences were: CRMP2 forward primer: 5’-CGTGAATCGTGCCATCACCA-3’; CRMP2 reverse 

primer: 5’-AGTAATGGGAGCCGTCCGTT-3’. QuantiTect SYBR green PCR kit was used to 

perform Real-Time quantitative PCR. Each reaction with CRMP2 primer was prepared with 

10 µL quantiTect SYBR Green PCR Master Mix, 1.25 µL template DNA after reverse 

transcription, 0.5 µM CRMP2 forward primer and 0.5 µM CRMP2 reverse primer. For each 

reaction with GAPDH primer, 0.5 µM GAPDH primer was added instead of CRMP2 primers. 

RNase free H2O was added to reach the final volume 20 µL for each reaction. Each condition 

included 3 repeats. No template control was included for the reaction of CRMP2 or GAPDH 

primer. After pipetting template cDNA into a PCR plate, the mixture of quantiTect SYBR 

Green PCR Master Mix, primers and RNase free H2O was added. The PCR plate was placed in 

a thermal cycler, and the program was started. Bio-Rad CFX manager software was used to 

quantify the expression of CRMP2 mRNA relative to the mRNA expression of GAPDH 

according to the Bio-Rad CFX manager software. 3 independent cultures or optic nerves 

were included in each group. 

2.2.10 Proteomics analysis  

Proteomics analysis was performed in unlesioned optic nerves and lesioned optic nerves 

at 6 h after crush lesion. Experimental groups included unlesioned optic nerves, proximal 

and distal part of optic nerves at 6 h after crush. To prepare protein lysates, 1 mm optic 

nerve segments proximal or distal to the crush site were dissected on ice. To minimize 
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intra-animal variability, 4 independent 1 mm optic nerve segments were pooled into one 

sample in each group. Further preparation procedures for protein lysates were performed as 

with Western blot analysis. After the protein concentration was measured by BCA assay, 

45 µg proteins were diluted in loading buffer to a final volume of 38 µL in each sample. After 

heating samples at 95 °C for 5 min, they were transferred on ice to the proteomics service 

facility of the University Medicine Göttingen for further analysis.  

After reconstituting the samples in 1x NuPAGE LDS Sample Buffer, they were separated on 

4-12% NuPAGE Novex Bis-Tris Minigels. For visualization purposes, the gels were stained 

with Coomassie Blue. Regardless of staining, each lane was sliced into 23 equidistant parts. 

After washing, gel slices were reduced with DTT, and alkylated with 2-iodoacetamide. After 

digesting the gel slices with trypsin overnight, the resulting peptide mixtures were extracted, 

dried in a SpeedVac, and reconstituted in 2% acetonitrile/0.1% formic acid (v:v). Afterwards, 

they were prepared for nanoLC-MS/MS as described before (Atanassov and Urlaub, 2013). 

For mass spectrometric analysis, samples were enriched on a self-packed reversed 

phase-C18 precolumn (0.15 mm ID x 20 mm, Reprosil-Pur120 C18-AQ, 5 µm). They were 

then separated on an analytical reversed phase-C18 column (0.075 mm ID x 250 mm, 

Reprosil-Pur 120 C18-AQ, 3 µm). A 30 min linear gradient of 5-35% acetonitrile/0.1% formic 

acid at 300 nL/min) was used during the enrichment and separation of the samples. By using 

a data-dependent acquisition method, the eluent was analyzed on a TripleTOF 5600 + hybrid 

quadrupole/time-of-flight (QqTOF) mass spectrometer equipped with a nanoSpray III ion 

source and operated under Analyst TF1.6 software build 6211. Each experimental cycle was 

of the following form: To select up to the 15 most abundant peptide precursors of charge 

states 2 to 4 above a 250 cps intensity threshold, one full MS scan across the 350-1250 m/z 

range was acquired at a resolution of 30,000 FWHM and an accumulation time of 250 ms. 

Precursors were then isolated at 0.7 FWHM isolation width and fragmented with nitrogen at 

default rolling collision energy settings. The resulting product ion spectra recorded across 

the 180-1600 m/z range at a resolution of 17,500 FWHM and an accumulation time of 

100 ms. For the following 9 s, selected precursor m/z values were excluded. Two technical 

replicates were performed per sample. 
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For data analysis, ProteinPilot 5.0 software rev4769 was used for protein identification. 

Proteins were identified against the UniProtKB rat reference proteome v2015.02 (58766 

protein entries) and a set of 51 contaminants commonly identified in Christof Lenz’s lab. The 

research was performed at “thorough” search settings, with trypsin as enzyme and 

iodoacetamide as cysteine blocking agent. For further processing, results were exported into 

mzIdentML 1.1.0 format. To validate MS/MS based peptide and protein identifications, 

scaffold software version 4.4.1.1 was used. Peptide identifications were accepted if they 

could be established at greater than 95.0% probability by the Paragon algorithm (Shilov et al., 

2007). Protein identifications were accepted if they could be established at greater than 31.0% 

probability to achieve an FDR less than 1.0% and contained at least 2 identified peptides. The 

Protein Prophet algorithm was used to assign protein probabilities (Nesvizhskii et al., 2003). 

Proteins that contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. Proteins sharing 

significant peptide evidence were grouped into clusters. Proteins annotation was performed 

with GO terms from NCBI downloaded Feb 23, 2015 (Ashburner et al., 2000). To allow for 

the calculation of low abundance protein ratios, a minimum value of 3 spectral counts was 

introduced where necessary to avoid division by zero issues. Relative quantification of 

proteins in the samples was achieved by Analysis of Variance (ANOVA) of normalized Spectral 

Counts. A Benjamini-Hochberg-corrected p value of 0.05 was used to judge significance. For 

the significantly regulated proteins, a STRING (v10 for rat) database search was performed by 

Caroline C. Friedel (Institute for Informatics, Ludwig-Maximilians-University Munich) to 

identify the proteins linked with CRMP2. Fold changes of the protein levels in proximal or 

distal part at 6 h after ONC were calculated relative to control group. The protein levels were 

considered changed when they had a fold change ≥ 1.3 or ≤ -1.3 at 6 h after ONC. 

2.2.11 Statistical analysis 

Statistical analysis was performed using SPSS software. For two-group experiments, the 

statistical difference was compared using independent samples t-test. For the experiments 

with more than two groups, statistical comparison was performed using one-way ANOVA 
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followed by Dunnett’s post-hoc test. All data are presented as mean ± standard error of the 

mean (SEM). Differences are considered different as indicated with *P < 0.05, **P < 0.01, 

***P < 0.001. The performed statistical test and repeats of each experiment are shown in the 

figure legends. 
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3 Results 

3.1 The role of calpain in acute axonal degeneration of the optic nerve 

3.1.1 Time course and localization of calpain activation during acute axonal degeneration 

in the optic nerve 

To investigate the involvement of calpain during AAD, we analyzed the expression levels 

of the 145 kDa breakdown product (BDP) of spectrin, which is specifically derived from 

calpain cleavage (Wang, 2000). Western blot of spectrin in the optic nerve was performed 

before crush and at different time points after crush. For protein lysates preparation, two 

regions 1 mm proximal and distal to the crush site were dissected from the lesioned optic 

nerves. As control, the corresponding areas of native optic nerves were dissected. 

Expression levels of the 145 kDa spectrin-BDP as a marker for calpain activation showed a 

significant time-dependent increase on both proximal and distal sides of the crush (Figure 

3.1A-B).  

 

Figure 3.1 Immunoblot analysis of calpain-mediated spectrin proteolysis during acute axonal degeneration 

after optic nerve crush in vivo.  

(A, B) Representative immunoblots of spectrin proximal (A) and distal (B) to the crush site in the upper 
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panels. The protein lysates were prepared from native optic nerves (0 min after crush) and in the optic 

nerves at indicated time points after crush. BDP = breakdown product. The 145 kDa spectrin-BDP is 

specifically produced by calpain cleavage. Below, the graphs show the quantification of 145 kDa 

spectrin-BDP band intensity proximal (A) and distal (B) to the crush site. GAPDH was used as the loading 

control. 3-6 optic nerves are included in each time point. Error bars represent the standard error of the 

mean (SEM). Statistical significance is compared to 0 min after crush: *p < 0.05, **p < 0.01, ***p < 0.001 

by one-way ANOVA and Dunnett’s test. 

In order to further confirm the results and to specify the location of calpain activation, we 

performed an immunohistochemical staining of optic nerve sections with an antibody that 

specifically detects the calpain-generated spectrin-BDP (Roberts-Lewis et al., 1994). A 

Smi31-antibody (staining phosphorylated axonal neurofilaments) was used to label the 

axons. Longitudinal sections were prepared from optic nerves at 1 h after crush and native 

optic nerves (control group). The staining intensity along the longitudinal optic nerve 

sections was quantified by the plot profile tool of ImageJ. Compared to control group, we 

observed a higher staining intensity of the spectrin-BDP already at 1 h after ONC in the 

regions close to the crush site (Figure 3.2A). Interestingly, it was confined to the area 300 µm 

proximal and distal to the crush site, which is the corresponding region affected by AAD 

(Knöferle et al., 2010). Next, we quantified the spectrin-BDP staining intensity specifically in 

the Smi31-labeled axons in this area. We found that the intra-axonal spectrin-BDP staining 

intensity was significantly increased in both proximal and distal parts compared to the 

unlesioned control (Figure 3.2B).  

In summary, these results demonstrate that calpain is activated early during AAD after 

ONC and that the activation localizes specifically intraaxonally within the area that is 

affected by AAD. 
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Figure 3.2 Immunohistochemical analysis of calpain-mediated spectrin proteolysis during acute axonal 

degeneration after optic nerve crush in vivo.  

(A) Representative images (20x) immunostained with an antibody specifically recognizing cleaved spectrin 

in a native optic nerve (control) and an optic nerve at 1 h after crush. The antibody against cleaved 

spectrin selectively detects the spectrin-BDP generated by active calpain. Below, the graph shows the 

quantification of the staining intensity along the longitudinal sections by the plot profile tool of ImageJ. 

(B) Higher magnification images (63x) of the representative areas in a native optic nerve and in an optic 

nerve at 1 h after crush. The images were immunostained against cleaved spectrin and the axonal marker 

Smi31 in the area 300 µm proximal to the crush site. At the bottom, the graph shows the quantification of 

the spectrin-BDP staining intensity in the axons proximal and distal 300 µm to the crush site. 3 optic 

nerves are included in each group. *p < 0.05 by independent samples t-test. 

3.1.2 Live imaging of crush-induced acute axonal degeneration after calpain inhibition in 

vivo 

Since calpain was activated during crush-induced AAD, we determined whether calpain 



Results 
 

50 
 

 

inhibition would interfere with the time course of AAD. For calpain inhibition, the 

pharmacological calpain inhibitor calpeptin was employed (Tsujinaka et al., 1988). The 

intravitreal injection of 10 mM calpeptin in 7% DMSO at 2.5 h before crush was found to 

effectively inhibit calpain activation induced by crush lesion in the optic nerve. This was 

confirmed by Western blot analysis of the calpain-generated 145 kDa spectrin-BDP. The 

protein lysates were prepared from two regions of optic nerves 1 mm proximal and distal to 

the crush site at 6 h after crush. The analysis showed that 10 mM calpeptin in 7% DMSO 

significantly attenuated the increase of the 145 kDa spectrin-BDP at 6 h after ONC compared 

to 7% DMSO treatment (control) (Figure 3.3A-C).  

To assess the time course of AAD, we performed an in vivo live imaging of the rat optic 

nerve, which was previously developed by our group (Koch et al., 2011). To visualize the 

axons in the optic nerve, intravitreal injection of AAV.hSyn-EGFP was performed 2 weeks 

before live imaging (Figure 4A). For calpain inhibition, intravitreal injection of 10 mM 

calpeptin in 7% DMSO or 7% DMSO (control) was performed at 2.5 h after ONC. Single axons 

500 µm proximal and distal to the crush site were imaged before ONC and at various time 

points after ONC. For each labeled axon, the axonal integrity ratio (AIR) was quantified, 

which is defined as the sum lengths of the remaining axonal fragments at a given time-point 

divided by the total initial axon length. A higher AIR represents a more intact axon (Knöferle 

et al., 2010; Koch et al., 2011). In both proximal and distal parts, calpeptin treatment 

significantly attenuated the time course of AAD compared to control group (Figure 3.4A-E). 

This attenuation of AAD by calpeptin treatment started to be significant at 120 min after 

ONC, and continued up to 360 min after ONC. The axon stabilizing effect of calpeptin was 

more pronounced in the proximal part (AIR at 360 min: control: 0.23 ± 0.06; calpeptin: 0.87 ± 

0.07) as compared to the distal part (AIR at 360 min: control: 0.24 ± 0.03; calpeptin: 0.41 ± 

0.06) (Figure 3.4A-E). In summary, these results demonstrate that calpain inhibition 

attenuates AAD after ONC in vivo, especially in the proximal part. 
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Figure 3.3 Effect of the calpain inhibitor calpeptin on calpain-mediated spectrin proteolysis after optic 

nerve crush in vivo. 

(A) The experimental setup and time scale: Intravitreal injection of 10 mM calpeptin in 7% DMSO or 7% 

DMSO (3 µL for each eye) was performed 2.5 h before ONC. Segments of optic nerves were dissected from 

two areas 1 mm proximal and distal parts to the crush site, and protein lysates were prepared at 6 h after 

ONC.  

(B, C) Representative immunoblots of spectrin proximal (B) and distal (C) to the crush site in the upper 

panels. Cal = calpeptin. Experimental groups include native optic nerves (control), optic nerves at 6 h after 

ONC pretreated with 7% DMSO (crush + DMSO), and optic nerves at 6 h after ONC pretreated with 10 mM 

calpeptin in 7% DMSO (crush + cal). At the bottom, the 145 kDa spectrin-BDP band intensity was 

quantified and normalized to GAPDH in both proximal (B) and distal (C) parts. 3 independent optic nerves 

are included in each group. Error bars represent the standard error of the mean (SEM). *p < 0.05, **p < 
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0.01 by one-way ANOVA and Dunnett’s test. 

 

Figure 3.4 Time course of AAD in the optic nerve after calpain inhibition in vivo.  

(A) Experimental setup and time scale: Intravitreal injection of AAV.EGFP was performed to visualize 
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retinal ganglion cell axons. After two weeks, intravitreal injection of 3 µl 7% DMSO or 10 mM calpeptin in 7% 

DMSO was performed 2.5 h before ONC. Single axons in the optic nerve were imaged in the area spanning 

400 µm to both sides from the crush. Z-stack images were taken before ONC and over 6 h after ONC. 

(B, C) Representative images of axonal changes proximal (B) and distal (C) to the lesion site at the given 

time points after ONC. The upper panels represent control group (7% DMSO) and the bottom panels show 

the calpeptin treatment group.  

(D, E) Time course of axonal integrity ratios proximal (D) and distal (E) to the lesion at the indicated time 

points after ONC. The axonal integrity ratio is the sum length of the remaining axonal fragments at a given 

time-point divided by the initial total axon length. Statistical significance is compared between calpeptin 

treatment group and control group at each corresponding time point. 5-6 rats are included in each group. 

Error bars represent the standard error of the mean (SEM). *p < 0.05, ***p < 0.001 by independent 

samples t-test. 

3.1.3 Characterization of downstream targets of calpain during acute axonal degeneration 

To identify biologically relevant downstream targets of activated calpain during AAD, we 

evaluated the expression levels of several proteins in the rat optic nerve at 6h after lesion 

compared to the unlesioned control. We chose proteins that had been described as calpain 

cleavage targets in other model systems before (Atalay et al., 2007; Liu et al., 2011; Russo et 

al., 2011; Yoon et al., 2008; Yousefi et al., 2006; Zhang et al., 2007). Among these, we 

selected the proteins that are known to be involved in central molecular pathways of axonal 

degeneration like autophagy (ATG5, beclin-1), cytoskeleton integrity (tau, MAP-2) and axonal 

transport (dynein, CRMP2) (Coleman, 2005; Knöferle et al., 2010). Optic nerve protein 

lysates were prepared from the two adjacent regions 1 mm proximal and distal to the crush 

site at 6 h after crush. As control, protein lysates were prepared from the corresponding 

regions of the native optic nerve. Expression levels of each protein in both proximal and 

distal parts were compared between lesioned optic nerves at 6 h after ONC and native optic 

nerves. If a protein is cleaved by the protease calpain, its expression levels are expected to 

decrease. 
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The expression levels of the autophagy related proteins ATG5 and beclin-1 did not show 

any significant changes between both groups (Figure 3.5). Similarly, the levels of the protein 

tau were not significantly altered between both groups (Figure 3.6A,B). The levels of the 

microtubule-associated protein MAP-2 showed a significant decrease on the proximal side at 

6 h after crush compared to control group. On the distal side of the crush there was also a 

clear trend towards decreased MAP-2 levels at 6 h after crush, which did, however, not 

reach significance (Figure 3.7). Levels of the axonal transport protein dynein (Vallee et al., 

1989) were not changed (Figure 3.6C,D). 
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Figure 3.5 Immunoblot analyses of ATG5 and beclin-1 during acute axonal degeneration in vivo.  

(A-D) Representative immunoblots of ATG5 and beclin-1 proximal and distal to the crush site in the upper 

panels. The protein lysates were made from native optic nerves (0 h after crush) and optic nerves 6 h after 

crush. The quantification of ATG5 and beclin-1 band intensity relative to GAPDH is shown at the bottom. 4 

optic nerves are included in each group. Error bars represent the standard error of the mean (SEM).  

 

Figure 3.6 Immunoblot analyses of tau and dynein during acute axonal degeneration in vivo.  

(A-D) Representative immunoblots of tau and dynein intermediate chain (dynein IC) proximal and distal to 

the crush site in the upper panels. The protein lysates were made from native optic nerves (0 h after crush) 
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and optic nerves 6 h after crush. The graphs at the bottom represent the quantification of the tau and 

dynein IC band intensity relative to GAPDH. 4 optic nerves are included in each group. Error bars 

represent the standard error of the mean (SEM).  

 

Figure 3.7 Immunoblot analysis of MAP-2 during acute axonal degeneration in vivo.  

(A, B) Representative Western blots of MAP-2 proximal (A) and distal (B) to the crush site in the upper 

panels. The protein lysates were prepared from in the native optic nerves (0 h after crush) and optic 

nerves at 6 h after crush. At the bottom, the graphs show the quantification of MAP-2 band intensity 

relative to GAPDH. 4 optic nerves are included in each group. Error bars represent the standard error of 

the mean (SEM). *p < 0.05 by independent samples t-test. 

CRMP2 is a central protein linking axonal transport to the cytoskeleton (Arimura et al., 

2005; Arimura, Hattori, et al., 2009; Fukata et al., 2002; Kimura et al., 2005). On the Western 

blot, the two isoforms CRMP2A and CRMP2B as well as a 58 kDa calpain-derived cleavage 

product of CRMP2 can be discriminated. Interestingly, expression levels of this cleavage 

product of CRMP2 were significantly increased on both proximal and distal sides of the crush 

at 6 h after ONC (Figure 8A-B). Since the cleavage of CRMP2 was found to be the most 
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prominent effect during AAD, we focused on the role of CRMP2 during AAD in the following 

experiments. 

 

 

 

Figure 3.8 Calpain-mediated cleavage of CRMP2 during acute axonal degeneration in vivo.  

(A, B) Representative CRMP2-immunoblots of optic nerve lysates proximal (A) and distal (B) to the crush 

site. The protein lysates were made from native optic nerves (0 h after crush) and optic nerves at 6 h after 

crush. The band intensity of cleaved CRMP2 was quantified and normalized to GAPDH, as displayed at the 

bottom. 4 optic nerves are included in each group. Error bars represent standard error mean (SEM). **p < 

0.01, *** p < 0.001 by independent samples t-test.  
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(C, D) Representative immunoblots of CRMP2 proximal (A) and distal (B) to the crush site after calpeptin 

treatment in the upper panels. The protein lysates were prepared from native optic nerves, from optic 

nerves at 6 h after ONC pretreated with 7% DMSO, and from optic nerves at 6 h after crush pretreated 

with 10 mM calpeptin in 7% DMSO (control, crush + DMSO & crush + cal). Cal = Calpeptin. Below, the band 

intensity of cleaved CRMP2 was quantified relative to GAPDH. 4 optic nerves are included in each group. 

Error bars represent the standard error of the mean (SEM). Statistical significance is compared to crush + 

DMSO group: **p < 0.01 by one-way ANOVA and Dunnett’s test.  

  To examine whether cleaved CRMP2 is indeed generated by calpain activation, we 

evaluated the effect of calpain inhibiton by calpeptin on the levels of cleaved CRMP2 at 6 h 

after ONC in vivo. Experimental groups included native optic nerves, optic nerves at 6 h after 

ONC pretreated with 7% DMSO, and optic nerves at 6 h after crush pretreated with 10 mM 

calpeptin in 7% DMSO. Calpeptin or DMSO was injected intravitreally 2.5 h before ONC. 

Optic nerve protein lysates were prepared from the two adjacent regions 1 mm proximal 

and distal to the crush site at 6 h after ONC or from the corresponding regions of native optic 

nerves. In both proximal and distal parts, the increase of cleaved CRMP2 at 6 h after ONC 

was attenuated following calpeptin treatment compared to control (mean band intensity of 

the 58 kDa CRMP2 cleavage product relative to GAPDH, proximal to the crush site: ONC + 

DMSO: 100 ± 23.5 %; ONC + calpeptin: 63.4 ± 3.3 %; distal to the crush site: ONC + DMSO: 

100 ± 3.1 %; ONC + calpeptin: 41.7 ± 12.1; without ONC: no cleaved CRMP2 detectable on 

both sides; n = 3 independent experiments) (Figure 3.8C,D).  

The lesion-induced cleavage of CRMP2 by calpain was further confirmed in a scratch 

lesion model in primary cortical neurons in vitro (Tönges et al., 2011). The experimental 

groups included unlesioned cells pretreated with 0.1% DMSO, lesioned cells pretreated with 

0.1% DMSO, and lesioned cells pretreated with 50 µM calpeptin in 0.1% DMSO. On DIV8, 

DMSO or calpeptin was added to the culture medium at 1 h before scratch and cell lysates 

were collected at 6 h after scratch. Western blot analysis of spectrin and CRMP2 were 

performed. Compared to unlesioned cells, the levels of 145 kDa BDP-spectrin and cleaved 

CRMP2 were significantly increased at 6 h after scratch in the lesioned cells. Pretreatment 
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with the calpain-inhibitor calpeptin, however, significantly suppressed the increase of both 

145 kDa BDP-spectrin and cleaved CRMP2 at 6 h after scratch compared to the vehicle group 

(0.1% DMSO) (Figure 3.9A-C).  

Taken together, these results demonstrate that CRMP2 is cleaved by activated calpain 

during AAD in vitro and in vivo. 

 

Figure 3.9 Calpain-mediated cleavage of CRMP2 in cortical neurons after scratch lesion in vitro.  

(A) Experimental setup and time scale: On DIV8, 0.1% DMSO or 50 µM calpeptin in 0.1% DMSO was 

applied to cortical neurons at 1 h before scratch lesion. Cell lysates were made and collected at 6 h after 

scratch.  

(B, C) Representative immunoblots of spectrin (B) and CRMP2 (C) in cortical neurons. The experimental 

conditions include unscratched cells pretreated with 0.1% DMSO, scratched cells pretreated with 0.1% 

DMSO and scratched cells pretreated with calpeptin in 0.1% DMSO (control, scra + DMSO & scra + cal). Cal 

= calpeptin. Scra = scratch. The graphs at the bottom show the quantification for the band intensity of 

145 kDa spectrin-BDP and cleaved CRMP2. GAPDH was used as loading control. 3 independent cultures 

are included per group. Error bars represent the standard error of the mean (SEM). *p < 0.05, ***p < 

0.001 by one-way ANOVA and Dunnett’s test. 
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3.2 The role of CRMP2 in acute axonal degeneration 

3.2.1 Establishment of an in vitro acute axonal degeneration model in the microfluidic 

chamber system 

Given that CRMP2 is cleaved by activated calpain during AAD, we hypothesized that an 

increase of intact CRMP2 protects axons from axonal degeneration. To examine this 

hypothesis, the microfluidic chamber system was used to establish an in vitro AAD model. 

The experimental setup was optimized with regards to the following conditions. Each 

chamber was seeded with 3 x 105 cortical neurons after nucleofection with the plasmid 

CMV-EGFP. On DIV8, axons had grown across the microgrooves and extended into the axonal 

compartment. An axotomy was performed by vacuum aspiration through the axonal 

compartment for 5-10 s. This resulted in a specific lesion of the distal axons while the somata, 

dendrites and proximal axons were left unharmed due to the high fluidic resistance of the 

microgrooves. The axons were then imaged in a defined area spanning up to 400 µm 

proximal from the lesion site. The imaging was performed before axotomy and at different 

time points after axotomy in a conditioned observation chamber.  

Different from AAD in vivo, we did not observe a clear fragmentation of the axons up to 

8 h after axotomy in vitro. The lesioned axons did, however, form axonal bulbs in a 

time-dependent manner (Figure 3.10). Since bulb formation is a well-known sign of axonal 

degeneration (Coleman, 2005), we quantified the number of newly formed bulbs along the 

axons after axotomy as a measure for axonal degeneration. There was a significant increase 

of the number of bulbs already at 5 min after lesion, which was followed by a small but 

significant decrease at 30 min and then again a continuous increase over the next 8 hours.  
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Figure 3.10 Imaging of bulb formation after axotomy of cortical neurons in the microfluidic chamber 

system in vitro.  

The number of newly formed bulbs along the axons was quantified at the given distances to the lesion site. 

Error bars represent the standard error of the mean (SEM). 36, 36, 32, 36, 33, 29 and 21 axons are 

included at 0, 5, 30, 60, 120, 240, 360 and 480 min after axotomy, respectively. Statistically significant 

differences are compared to before axotomy: *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA and 

Dunnett’s test. 

3.2.2 Effects of CRMP2 overexpression on axonal degeneration after axotomy of cortical 

neurons in vitro 

We next evaluated the role of CRMP2 overexpression in the now established in vitro AAD 

model. To increase the levels of CRMP2, we first tested the drug tianeptine, which is a 

tricyclic antidepressant and was reported to rapidly increase the total levels of CRMP2 in 

cortical neurons (Hensley et al., 2011). To check whether tianeptine elicits the same effect in 

our conditions, it was added to the culture medium of cortical neurons in different 

concentrations on DIV8. After 24 h, the cells were lysed for Western blot analysis of CRMP2. 

In the cultures treated with different concentrations of tianeptine, we could, however, not 

detect altered levels of intact CRMP2 compared to untreated cultures. Nevertheless, 
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tianeptine induced increased levels of cleaved CRMP2. In a second approach based on our 

finding that the calpain-inhibitor calpeptin suppresses the cleavage of CRMP2, cortical 

neurons were therefore pretreated with calpeptin at 30 min before treatment with 

tianeptine (Figure 3.11A,B). As expected, calpeptin alone decreased the levels of cleaved 

CRMP2 (Figure 3.11A,B). It also significantly increased the levels of intact CRMP2, which was 

not observed elsewhere in this study. This might be due to the fact that the cells were 

incubated with calpeptin here for longer time than in all other experiments (24 h here versus 

2.5 h in vivo and 6 h in vitro in other experiments). However, co-treatment with both 

calpeptin and tianeptine did not further increase the levels of intact CRMP2 compared to 

treatment with calpeptin alone (Figure 3.11A,B). These results thus did not support the use 

of tianeptine to increase intraneuronal levels of CRMP2.  

 

Figure 3.11 Effect of tianeptine on the levels of CRMP2 in cortical neurons in vitro.  
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(A) A representative Western blot of cortical neuron whole cell protein lysates stained against CRMP2. 

The neurons were treated with tianeptine, calpeptine, or co-treated with both tianeptine and calpeptin. 

Tia = Tianeptine. Cal = Calpeptin. The band intensity of 64 kDa intact CRMP2 was quantified relative to 

GAPDH in (B). Error bars represent the standard error of the mean (SEM). 3 cultures are included, *p < 

0.05, **p < 0.01 by one-way ANOVA and Dunnett’s test. 

Since there are no other published pharmacological methods to increase the 

intraneuronal levels of CRMP2, we used nucleofection of neuronal cultures with the plasmid 

p.CMV-CRMP2-flag to overexpress CRMP2. This plasmid was provided by Mahnaz 

Moradi-Améli (Rogemond et al., 2008). To confirm the overexpression of the flag-tagged 

CRMP2 by this plasmid, Western blot analysis of flag was performed in cortical neurons 

transfected with the plasmid and revealed a flag-positive band with the molecular weight of 

CRMP2 (Figure 3.12A), thus suggesting the correct expression of CRMP2 by the plasmid. 

Since p.CMV-CRMP2-flag does not express fluorescent marker proteins, cortical neurons 

were regularly co-transfected with both p.CMV-EGFP and p.CMV-CRMP2-flag to identify the 

transfected axons. The co-transfection rate of the two plasmids was confirmed by 

immunocytochemistry against flag (Figure 3.12B). As control, cortical neurons were 

transfected with p.CMV-EGFP alone. In an area 400 µm proximal to the lesion site, the 

number of newly formed bulbs was quantified in EGFP labeled axons in both groups. In both 

groups, the number of newly formed bulbs continued to increase over time. However, the 

number of bulbs was significantly decreased in the axons overexpressing CRMP2 at 30 min 

after axotomy compared to control group. This decrease was sustained up to 480 min after 

axotomy (at 30 min after axotomy: control: 5.3 ± 1.0; CRMP2: 1.2 ± 1.0; at 240 min after 

axotomy: control: 10.8 ± 1.1; CRMP2: 5.5 ± 2.1; at 480 min after axotomy: control: 17.7 ± 2.1; 

CRMP2: 10.5 ± 2.5) (Figure 3.12C,D).  

Given that bulb formation is a correlate of axonal degeneration (Coleman, 2005), these 

results demonstrate that CRMP2 overexpression attenuates axonal degeneration after 

axotomy in vitro. 
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Figure 3.12 Effect of CRMP2 overexpression on bulb formation after axotomy of cortical neurons in vitro. 

(A) Representative Western blot of cortical neuron whole cell protein lysates stained with an anti-flag 

antibody. The neurons were transfected with p.CMV-CRMP2-flag or p.CMV-EGFP as control. The blot 

confirms that p.CMV-CRMP2-flag mediates overexpression of CRMP2-flag.  

(B) An anti-flag-immunostaining of cortical neurons co-transfected with p.CMV-CRMP2-flag and 

p.CMV-EGFP, confirming the successful co-transfection.  

(C) The number of newly formed bulbs along the axons was quantified in the area 400 µm proximal to the 

lesion at the given time points after axotomy. The axons were transfected with p.CMV-EGFP alone as 

control or co-transfected with both p.CMV-CRMP2-flag and p.CMV-EGFP. For p.CMV-EGFP alone, 36, 36, 

32, 36, 36, 33, 29 and 21 axons are included at 0, 5, 30, 60, 120, 240, 360 and 480 min after axotomy 

respectively. For cotransfection with both p.CMV-CRMP2-flag and p.CMV-EGFP, 29, 29, 23, 29, 28, 25, 21 

and 19 axons are included at 0, 5, 30, 60, 120, 240, 360 and 480 min after axotomy respectively. Error 

bars represent the standard error of the mean (SEM). *p <0.05, **p < 0.01 by independent samples t-test.  

(D) The bulb formation in representative axons proximal to the lesion site before axotomy and at 480 min 

after axotomy. Arrows point to the site of axotomy. Arrowheads point to the bulbs. 
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3.2.3 Overexpression of CRMP2 mediated by the viral vector AAV.CRMP2  

In order to study the effects of CRMP2 overexpression in the rat optic nerve in vivo, we 

produced a viral vector to induce neuron-specific CRMP2 overexpression. To produce the 

viral vector, we cloned the plasmid p.AAV.hSyn-CRMP2-hSyn-mcherry based on the plasmid 

p.CMV-CRMP2-flag described above. Overexpression of CRMP2 mediated by this plasmid 

was first confirmed in HEK293 cells by Western blot of CRMP2 (Figure 3.13A) and further 

confirmed in cortical neurons by qRT-PCR analysis of human CRMP2 (Figure 3.13B). AAV 

(AAV.hSyn-CRMP2-mcherry) was then produced based on this plasmid and CRMP2 

overexpression by the AAV confirmed in cortical neurons by qRT-PCR analysis (Figure 3.14A). 

Compared to transfection with the plasmid, CRMP2 expression was significantly stronger in 

cortical neurons transduced with AAV.hSyn-CRMP2-mcherry (as indicated by the appearance 

of the PCR product 10 cycles earlier than in the control plasmid transfected cells). In vivo, 

CRMP2 overexpression was confirmed in transduced optic nerves by qRT-PCR analysis 

(Figure 3.14B) and in retina lysates by Western blot analysis of CRMP2 (Figure 3.14C). 
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Figure 3.13 Testing of the CRMP2-expressing plasmid p.AAV.hSyn-CRMP2-hSyn-mcherry. 

(A) A representative immunoblot of CRMP2 in HEK293 cells after transfection with p.AAV.mcherry or 

p.AAV.CRMP2. The right panel shows the quantification of CRMP2 band intensity relative to GAPDH. 

(B) The results of a qRT-PCR analysis of rat cortical neurons using a human CRMP2 primer, which 

specifically detects the human CRMP2 expressed by the plasmid. The cells were transfected with 

p.AAV.mcherry or p.AAV.CRMP2. The left panel shows a representative amplification result (y-axis: SYBR 

green fluorescence intensities; x-axis: number of PCR cycles). The right panel shows the quantification of 

human CRMP2 mRNA expression levels normalized to GAPDH mRNA expression. 3 cultures are included, 

*p < 0.05 by independent samples t-test. 
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Figure 3.14 AAV-mediated overexpression of CRMP2 in vitro and in vivo.  

(A, B) QRT-PCR analysis in cortical neurons and optic nerves using a human CRMP2 primer, which 

specifically detects the human CRMP2 expressed by the AAV. The upper panels show representative 

amplification graphs (y-axis: SYBR green fluorescence intensity; x-axis: number of PCR cycles), the lower 

panels show the relative human CRMP2 mRNA expression levels normalized to GAPDH mRNA expression. 

3 independent cultures are included per group in (A). 3 optic nerves are included per group in (B). Error 

bars represent the standard error of the mean (SEM). ***p < 0.001 by independent samples t-test.  

(C) Representative CRMP2 Western blot of retina lysates 4 weeks after intravitreal injections of 
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AAV.CRMP2 or AAV.mcherry (upper panel). The lower panel shows the quantification of the CRMP2 band 

intensity relative to GAPDH. 3 retinas are included in each group. Error bars represent the standard error 

of the mean (SEM). *p < 0.05 by independent samples t-test. 

3.2.4 Live imaging of crush-induced acute axonal degeneration in the rat optic nerve in vivo 

after AAV-mediated CRMP2 overexpression 

To study the effects of CRMP2 on AAD in vivo, RGC axons were transduced with 

AAV.hSyn-CRMP2-hSyn-mcherry overexpressing human CRMP2 and the fluorophore 

mcherry. As control, RGC axons were transduced with AAV.hSyn-mcherry-hSyn 

overexpressing only mcherry. Both AAV were injected intravitreally 4 weeks before imaging, 

resulting in sufficient fluorescent labeling of axons and good transduction rates. To study the 

time course of AAD, in vivo live imaging of the optic nerve was performed before crush and 

at various time points after crush. The AIR was quantified to evaluate axonal integrity during 

AAD. On the proximal side, CRMP2 overexpression almost completely blocked axonal 

fragmentation during the entire imaging period of 6 h compared to control group although 

some axonal bulbs were observed also in this group (Figure 3.15B,D). On the distal side, we 

did not detect any significant differences of the AIR between both groups but there was a 

trend towards a higher AIR (i.e. less degeneration) in the axons overexpressing CRMP2, 

especially at the later time-points (Figure 3.15C,E).  

These results demonstrate that CRMP2 overexpression attenuates AAD on the proximal 

side after axonal lesion in the rat optic nerve in vivo. 
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Figure 3.15 Time course of AAD in the optic nerve after AAV-mediated overexpression of CRMP2.  

(A) Experimental setup and time-line: AAV.mcherry or AAV.CRMP2 was injected intravitreally to visualize 

the axons of retinal ganglion cells. After 4 weeks, the labeled axons were imaged 400 µm proximal and 

distal to the crush site. Z-stack images were taken before ONC and over 6 h after ONC.  

(B, C) Representative images of axonal changes proximal (B) and distal (C) to the crush site at the indicated 

time points after crush. The upper panels show axons transduced with AAV.mcherry as control, the lower 

panels represent axons transduced with AAV.CRMP2.  
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(D, E) Quantification of axonal integrity ratios proximal (D) and distal (E) to the crush site at the indicated 

time points after crush. 5-7 rats are included per group. Error bars represent the standard error of the 

mean (SEM). Statistical significance is compared between the AAV.mcherry and AAV.CRMP2 groups at 

each time-point: **p < 0.01, ***p < 0.001 by independent samples t-test. 

3.2.5 Effects of CRMP2 overexpression on mitochondrial transport after axotomy 

Axonal bulbs are observed already at an early stage of AAD and are characterized by an 

accumulation of different organelles including mitochondria (Knöferle et al., 2010). A 

possible explanation for the formation of axonal bulbs is an impairment of axonal transport 

during AAD. To examine this hypothesis, we imaged the kinetics of mitochondrial transport 

in cortical neurons after axotomy. The imaging was performed in the microfluidic chambers 

system, which allowed us to image mitochondrial transport specifically in the axons and to 

differentiate between anterograde and retrograde transport. To visualize mitochondria, 

primary cortical neurons were transduced with AAV.hSyn-mito-RFP, expressing red 

fluorescent protein (RFP) specifically targeted to mitochondria. On DIV8, mitochondrial 

transport was imaged in single axons before axotomy and at different time points after 

axotomy. We quantified mitochondrial transport by kymographs in the region 100 µm 

proximal to the lesion site since this was the area most affected by AAD after axotomy (see 

above). The mitochondria with a speed of at least 0.07 µm/s were defined as motile 

mitochondria. Compared to before axotomy (27.3% ± 1.7%), the percentage of motile 

mitochondria was significantly decreased within 60 min after axotomy (5 min: 8.3% ± 1.5%; 

30 min: 8.0% ± 2.5%; 60 min: 14.8% ± 3.1%) (Figure 3.16B,C). However, at 2 h after axotomy 

(24.5% ± 2.8%), the percentage returned to normal levels (Figure 3.16B,C). Among the motile 

mitochondria, we quantified the transport speed in both anterograde and retrograde 

direction. At 5 min after axotomy, the anterograde transport speed of motile mitochondria 

decreased significantly compared to before axotomy but it recovered to normal levels 

already at 30 min after axotomy (before axotomy: 0.32 ± 0.02 µm/s; 5 min after axotomy: 

0.20 ± 0.02 µm/s; 30 min after axotomy: 0.37 ± 0.05 µm/s) (Figure 3.16B,D). The retrograde 

speed of motile mitochondria did not show any significant changes at any of the analyzed 
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time points (Figure 3.16B,D). These results show that axonal transport of mitochondria is 

impaired early but transiently during AAD after axotomy. 

 

Figure 3.16. Live imaging of mitochondrial transport after axotomy of cortical neurons in the microfluidic 

chamber system in vitro.  

(A) Labeled mitochondria along an axon of a cortical neuron transduced with AAV.mito-RFP. Arrows point 

to mitochondria.  

(B) Representative kymographs of mitochondrial transport before axotomy and at the indicated time 

points after axotomy. The kymographs were made along the 100 µm axonal segments proximal to the 

lesion site within 37 s (y-axis).  

(C, D) Quantification of mitochondrial transport along the 100 µm axon segments proximal to the lesion 

site. The percentage of motile mitochondria is displayed in (C). The anterograde and retrograde speed of 

motile mitochondria are represented in (D). 18-20 axons are included for each time point and each group. 

Error bars represent the standard error of the mean (SEM). Statistical significance is compared to before 

axotomy: *p < 0.05, ***p < 0.001 by one-way ANOVA and Dunnett’s test.  
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CRMP2 contributes to the regulation of axonal transport by adapting the motor protein 

kinesin-1 to transport packets (Arimura, Kimura, et al., 2009; Kimura et al., 2005). Based on 

our findings that CRMP2 delays axonal degeneration and bulb formation during AAD, we 

hypothesized that alterations in CRMP2-levels affect mitochondrial transport in AAD. 

Therefore we investigated the effects of CRMP2 overexpression on mitochondrial transport 

in the microfluidic chamber system after axotomy. To overexpress CRMP2, cortical neurons 

were transduced with AAV.hSyn-CRMP2-hSyn-mcherry. As control, AAV.hSyn-mcherry-hSyn 

was employed. As AAV.hSyn-CRMP2-hsyn-mcherry expresses a red fluorescent protein and 

therefore the AAV.mito-RFP could not be used in this experiment, we added mitotracker 

green to label mitochondria. This allowed us to image mitochondrial transport specifically in 

the axons overexpressing CRMP2 (labeled red). Based on our results that mitochondrial 

transport was impaired within the first hour after axotomy, live imaging of mitochondrial 

transport was performed before axotomy and within 1 h after axotomy. In the unlesioned 

axons, neither the percentage of motile mitochondria (AAV.hSyn-mcherry-hSyn: 25.3% ± 

2.0%; AAV.hSyn-CRMP2-hSyn-mcherry: 29.8% ± 2.2%) nor the speed of motile mitochondria 

(anterograde speed: AAV.hSyn-mcherry-hSyn: 0.33 ± 0.04 µm/s; AAV.hSyn-CRMP2-hSyn- 

mcherry: 0.28 ± 0.02 µm/s; retrograde speed: AAV.hSyn-mcherry-hSyn: 0.41 ± 0.03 µm/s; 

AAV.hSyn-CRMP2-hSyn-mcherry: 0.41 ± 0.05 µm/s) showed any significant differences 

between AAV.hSyn-mcherry-hSyn or AAV.hSyn-CRMP2-hSyn-mcherry-treated cultures 

(Figure 3.17). In the lesioned axons, however, the decreased percentage of motile 

mitochondria at 30 min after axotomy was almost completely rescued after overexpression 

of CRMP2 (AAV.hSyn-mcherry-hSyn: 9.4 ± 2.3 % of all mitochondria; AAV.hSyn-CRMP2-hsyn- 

mcherry: 23.2 ± 3.3 % of all mitochondria). However, at 60 min after axotomy, the 

percentage of motile mitochondria was not significantly different anymore between both 

groups. Overexpression of CRMP2 did not affect the speed of motile mitochondria at all 

analyzed time-points after axotomy. Thus, these results show that CRMP2 overexpression 

temporally rescues mitochondrial transport after axotomy in vitro. 
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Figure 3.17 Effect of CRMP2 overexpression on mitochondrial transport after axotomy of cortical neurons 

in the microfluidic chamber system in vitro.  

(A) Representative kymographs of mitochondrial transport within 37 s (y-axis) before axotomy and at the 

indicated time points after axotomy. The kymographs were made along the 100 µm axonal segments 

proximal to the lesion site. The upper panel shows representative kymographs from an axon transduced 

with AAV.mcherry, the lower panel from an axon transduced with AAV.CRMP2. 

(B, C) Quantification of mitochondrial transport along the 100 µm axonal segments proximal to the lesion 

site. The percentage of motile mitochondria is displayed in (B). The anterograde and retrograde speed of 

motile mitochondria are represented in (C). N ≥ 14 axons per group. Error bars represent the standard 

error of the mean (SEM). *p < 0.05 by independent samples t-test. 

3.3 Proteomics analysis of acute axonal degeneration in the optic nerve 

To identify further molecular targets and CRMP2-interacting partners, which contribute to 

AAD, a proteomics analysis of the rat optic nerve during AAD was performed. Optic nerve 

lysates were prepared from two areas comprising 1 mm proximal or distal from the crush site 
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or the corresponding areas of native optic nerves. In order to reduce the variations due to 

inter-animal variability, the protein lysates of four independent optic nerves were pooled 

into one sample per group. In total, 2685 proteins were identified in the optic nerve lysates. 

The expression levels of 135 proteins were differentially expressed between the groups. For 

all these 135 regulated proteins, a STRING database (v10 for rat) search (Szklarczyk et al., 

2014) was performed to check for reported interactions with CRMP2. 12 CRMP2-interacting 

proteins were identified (Figure 3.18 and Table 3.1). The expression levels of these proteins 

in proximal or distal part at 6 h after ONC were compared to control group. When the 

expression ratio was more than 1.3 or less than -1.3, the levels of these CRMP2-interacting 

partners were considered changed at 6 h after ONC relative to control group. Among these 

12 CRMP2-interacting partners, the ones related to the cytoskeleton were increased in 

expression during AAD compared to control group. These proteins included the alpha-II and 

beta-II subunits of spectrin on both proximal and distal sides of the lesion, the actin-binding 

protein alpha-actinin 4 (ACTN4) (Otey CA, 2004) on the proximal side of the lesion, as well as 

the cytoskeleton regulators septin 2 (SEPT2) (Spiliotis, 2010) and cell division control protein 

42 (CDC42) (Etienne-Manneville, 2004) on the distal side of the lesion. The mitochondrial 

enzyme malate dehydrogenase 2 (MDH2) was increased on both proximal and distal sides of 

the lesion. On the other hand, the motor protein kinesin-like protein 1C (KIF1C) (Hirokawa et 

al., 2009), the activator of the ERK/MAPK pathway astrocytic phosphoprotein 15 (PEA-15) 

(Formstecher et al., 2001; Ramos et al., 2000), and the metabolic enzyme omega-amidase 

(NIT2) were decreased on both proximal and distal sides of the lesion. The levels of aspartate 

transaminase (GOT1) and G protein beta subunit 1 (GNB1) were decreased only on the 

proximal side of the lesion. The expression levels of 14-3-3 protein epsilon (YWHAE) were 

decreased on the proximal side but increased on the distal side. 
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Table 3.1 List of proteins linked to CRMP2 with altered expression during acute axonal degeneration in 

the rat optic nerve identified by proteomics analysis. 

uniProtID protein function 

ratio 

(proximal) 

ratio 

(distal) 

P04636 MDH2 mitochondrial protein 2.0  1.8  

P16086  SPTAN1 cytoskeletal protein 2.3  1.4  

G3V6S0 SPTBN1 cytoskeletal protein 3.1  1.9  

Q9QXQ0 ACTN4 regulation of actin cytoskeleton 1.9  -1.1  

Q91Y81 SEPT2 regulation of actin and tubulin -1.1  1.5  

Q8CFN2 CDC42 regulation of actin and tubulin -1.1  2.2  

P62260  YWHAE regulation of intermediate filaments -1.4  1.5  

P54311 GNB1 signal transduction -1.6  1.0  

P13221 GOT1 glutamate metabolism -1.6  -1.1  

Q5U318 PEA-15 activation of the ERK/MAPK pathway -3.3  -2.1  

P54311 GNB1 signal transduction -1.6  1.0  

Q497B0 NIT2 glutamate and asparagine metabolism -1.7  -1.3  

F1M9C8 KIF1C motor protein of axonal transport -3.7  -3.7  

The given proteins are CRMP2-interacting partners identified by a STRING database (v10 for rat) search. 

Their expression levels are significantly regulated at 6 h after ONC in the proximal and/or distal part to the 

lesion compared to control. The fold changes relative to control are shown on the right side of the table. 

Each value represents the mean of two technical replicates for a pooled sample. Each pooled sample 

includes 4 independent optic nerves. Statistical significance is according to ANOVA analysis using a 

Benjamini-Hochberg-corrected p-value of 0.05 to judge significance. The protein levels are considered 

regulated when the fold change is more than 1.3 or less than -1.3.  
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Figure 3.18 CRMP2-interacting partners with altered expression levels during acute axonal degeneration. 

Optic nerve lysates were prepared from two areas comprising 1 mm proximal or distal from the lesion at 

6 h after crush. Out of 2685 identified proteins, the expression levels of 135 proteins were significantly 

regulated between groups (assessed by ANOVA analysis). 12 proteins of these 135 regulated proteins were 
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identified as CRMP2-interacting partners by a STRING (v10 for rat) database search. These proteins are 

shown in this figure. When the fold change relative to control is more than 1.3 or less than -1.3, the 

protein levels are considered increased () or decreased () in proximal and/or distal part during AAD. 

These 12 proteins are classified according to their functions represented in different colors. The edge 

width of the connecting lines and the adjacent numbers represent the combined scores from the STRING 

database. The combined score correlates to the level of evidence of a protein-protein interaction. 

Abbreviations for the 12 regulated CRMP2-interacting partners: ACTN4 = alpha-actinin 4; CDC42 = cell 

division control protein 42; GNB1 = G protein beta subunit 1; GOT1 = aspartate transaminase 1; KIF = 

kinesin-like protein; MDH2 = malate dehydrogenase 2; NIT2 = omega-amidase; PEA-15 = astrocytic 

phosphoprotein 15; SEPT2 = septin 2; SPTAN1 = alpha-II spectrin; SPTBN1 = beta-II spectrin; YWHAE = 

14-3-3 protein epsilon. 
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4 Discussion 

Axonal degeneration plays a central pathophysiological role in many neurodegenerative, 

neuroinflammatory and neurotraumatic diseases. Therefore it is important to better 

understand its underlying molecular mechanisms. Traumatic lesion models are used to study 

the mechanisms of traumatic axonal degeneration, which can, at least partly, be transferred 

to other forms of axonal degeneration (Raff et al., 2002; Wang et al., 2012). AAD is of special 

interest not only because it resembles other relevant forms of axonal degeneration like FAD, 

but also because it affects the proximal part of the axon, which is the basis for later axonal 

regeneration. Prior to the present study, calcium influx was shown to be the crucial initiating 

event in AAD (Knöferle et al., 2010). Moreover, a rapid calpain activation had been 

demonstrated in AAD of the mouse spinal cord and in some in vitro models (Kerschensteiner 

et al., 2005). However, the further molecular mechanisms of AAD following calcium influx 

were still unknown and have thus been studied here.  

In the present work, the crucial role of calpain in AAD was demonstrated in the optic 

nerve and characterized with regards to the time kinetics and localization of its activation. 

CRMP2 was newly identified as the most important downstream target of calpain in AAD. 

Effects of CRMP2 on axonal mitochondria transport were examined in vitro suggesting that 

they are central to CRMP2 function in AAD. Finally, molecular interactors of CRMP2 in AAD 

were identified using proteomics analysis of the optic nerve. 

4.1 The role of calpain in acute axonal degeneration of the optic nerve in vivo 

AAD is initiated by a rapid transient calcium influx into the axon induced by the lesion 

(Knöferle et al., 2010). One of the putative molecular downstream targets is the calcium 

dependent protease calpain (Kampfl et al., 1997). Calpain activation has been previously 

reported to play an important role in many neurodegenerative disease models (Vosler, 

2009). Several studies have shown that calpain is activated early during traumatic axonal 

degeneration using different in vitro and in vivo models (George et al., 1995; Huh et al., 2006; 
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Kilinc et al., 2009; Saatman et al., 2003; Spira et al., 2003). For example, calpain was 

activated at 30 min after spinal cord injury (Kerschensteiner et al., 2005) as well as in all 

cortex layers of 11- and 17-day old rats at 6 h after traumatic brain injury (Huh et al., 2006). 

In cultured chick forebrain neurons in vitro, calpain activation was observed in the first 

minutes after shear stress (Kilinc et al., 2009). The kinetics of calpain activation varies in 

different models. Here, we investigated the role and kinetics of calpain activation during 

AAD of the optic nerve in vivo following ONC. 

4.1.1 Calpain is activated early during acute axonal degeneration 

To investigate the role of calpain in AAD of the optic nerve, we evaluated the expression 

of the 145 kDa spectrin-BDP before and at various time points after ONC. We found that 

calpain activation is detected as early as 5 min after ONC. A continuous increase of calpain 

activity was observed on both sides of the crush over the following 6 h. Calpain activation 

was initially faster on the proximal side as compared to the distal side, but reached similar 

levels at 6 h after ONC.  

In the rat ONC model, structural changes of the cytoskeleton have been observed already 

at 30 min after lesion (Knöferle et al., 2010). Moreover, calpain-mediated neurofilament 

proteolysis has been reported at later time-points after transection of the optic nerve in mice 

(Ma et al., 2013). We demonstrate here a significant cleavage of the cytoskeletal protein 

spectrin already at 5 min after ONC. Thus, early calpain activation plays an important role in 

the rapid and prolonged cytoskeleton breakdown during AAD of the optic nerve.  

We performed immunohistochemical analysis of optic nerve sections to specify the 

location of calpain activation. The employed antibody specifically recognizes the 

calpain-derived spectrin-BDP (Roberts-Lewis et al., 1994). We found that intra-axonal 

spectrin-BDP staining intensity was significantly increased in both proximal and distal parts 

at 1 h after ONC, showing that calpain was activated specifically in the axons of the optic 

nerve. Interestingly, we found that the increased staining signal of spectrin-BDP was limited 

to the area affected by AAD. In line with this finding, a previous study showed that the 

increased levels of the calpain-derived spectrin-BDP were observed in a similar area adjacent 
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to the lesion side at 30 min after spinal cord injury (Kerschensteiner et al., 2005). Another 

recent study from our group showed that the levels of the autophagy proteins ATG5 and 

ULK1 were increased specifically in the same area near the lesion site after spinal cord injury 

(Ribas et al., 2015). Therefore the spread of calpain activation most probably defines the 

spatial boundaries of AAD along the axon and is reflected by the later spatial distribution of 

other downstream molecules in AAD followed by axonal fragmentation. 

4.1.2 Calpain inhibition attenuates crush-induced acute axonal degeneration in vivo  

The neuroprotective effect of calpain inhibition by pharmacological compounds or genetic 

techniques has been shown in several models of neurodegeneration (Araújo et al., 2004; Das 

et al., 2014; Hanlon et al., 2003; Ma et al., 2012; Samantaray et al., 2015; Yang et al., 2013). 

For example, it was shown before that a calpain inhibitor was neuroprotective during WD in 

the opossum optic nerve (Araújo et al., 2004). Calpain inhibition was also reported to 

attenuate demyelination and axonal damage in the EAE mouse model (Das et al., 2014). The 

effects of calpain inhibition on AAD in the mammalian optic nerve have, however, not been 

studied before. 

In order to determine whether calpain inhibition interferes with AAD in vivo, we evaluated 

the effects of the cell-penetrating calpain inhibitor calpeptin (Mehdi, 1991) on AAD by in-vivo 

live imaging of the optic nerve. Intravitreal injection of calpeptin at 2.5 h before ONC 

effectively inhibited calpain activation during the first 6 h after ONC. Importantly, calpeptin 

treatment completely inhibited axonal fragmentation up to 6 h after ONC in the proximal 

part of the axon. The protective effect was less pronounced in the distal part of the axon. Our 

results are in line with a previous study of AAD in the spinal cord, which showed that calpain 

inhibition attenuated axonal fragmentation at 1 hour after injury (Kerschensteiner et al., 

2005). We show for the first time that the axon protective effects of calpain inhibition in AAD 

persist over 6 h after lesion. These findings demonstrate that calpain activation is a major 

molecular step in AAD following calcium influx.  
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4.1.3 CRMP2 is an important downstream target of calpain during acute axonal 

degeneration 

Until now it is not known which molecular mechanisms follow downstream of calcium 

influx and calpain activation in AAD. To identify further downstream targets of the protease 

calpain, we checked whether calpain targets that had been previously described in other 

models were also cleaved during AAD in the optic nerve. We focused on proteins that are 

involved in central mechanisms of axonal degeneration including autophagy, cytoskeleton 

integrity and axonal transport (Atalay et al., 2007; Coleman, 2005; Knöferle et al., 2010; Liu et 

al., 2011; Russo et al., 2011; Yoon et al., 2008; Yousefi et al., 2006; Zhang et al., 2007). 

Besides a cleavage of the microtubule-associated protein MAP2 on the proximal side of the 

crush only, we found a strong and specific cleavage of CRMP2 in both proximal and distal 

axon parts during AAD. To investigate whether calpain activation is indeed responsible for the 

cleavage of CRMP2, we evaluated the effect of calpain inhibition on the levels of cleaved 

CRMP2 during AAD of the optic nerve. We could show that the calpain inhibitor calpeptin 

significantly suppresses the cleavage of CRMP2 until 6 h after ONC. This was confirmed in a 

scratch lesion model in primary cortical neurons in vitro. 

The protein CRMP2 is known to regulate axonal outgrowth by linking axonal transport to 

the cytoskeleton (Fukata et al., 2002; Kawano et al., 2005; Kimura et al., 2005). Altered 

expression of CRMP2 has been described in a few other neurodegenerative disease models 

before (Khanna, 2013). In primary cortical neurons, it was shown before that intact CRMP2 

was decreased after neurotoxic injury (Zhang et al., 2007). Another study showed that 

phosphorylated CRMP2 was increased in the regenerating spinal cord in chicks after injury 

(Gögel et al., 2010). Our current data provides the first evidence that calpain-mediated 

cleavage of CRMP2 plays a central role in AAD.  
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4.2 The role of CRMP2 in acute axonal degeneration in vitro and in vivo 

Based on these findings, we speculated that overexpression of intact CRMP2 might 

protect against axonal degeneration. Therefore, we investigated the role of CRMP2 

overexpression in AAD in vitro and in vivo. 

4.2.1 CRMP2 overexpression delays acute axonal degeneration 

To examine the effects of CRMP2 overexpression on AAD in vitro, we imaged axonal 

changes of primary cortical neurons in the microfluidic chamber system after axotomy.  

Interestingly, up to 8 h after axotomy in control neurons, we did not detect any axonal 

fragmentation, which is different from the findings in vivo. However, an increasing number 

of axonal bulbs was formed which could be correlated to axonal degeneration. The 

differences of axonal degeneration in vitro and in vivo can be explained by the different 

developmental stage of the lesioned neurons (embryonal, outgrowing axons in vitro versus 

adult, synaptically connected axons in vivo) and the differences in the cellular environment 

(pure neuronal in vitro versus glial cells and other tissues in vivo). The fact that the 

embryonal axons in vitro are more resistant against lesion is an interesting finding that 

should be followed up in the future with regards to the putatively different molecular 

prerequisites.  

We found that CRMP2 overexpression significantly delays the formation of axonal bulbs 

up to 8 h after axotomy. Since the formation of axonal bulbs is considered an early hallmark 

of axonal degeneration prior to axonal fragmentation (Coleman, 2005; Lingor et al., 2012; 

William et al., 1997), our in-vitro data suggest that CRMP2 overexpression inhibits the 

process of axonal degeneration. It had been shown previously that neurite swellings of 

lesioned mouse superior cervical ganglia cells contain increased levels of cleaved CRMP2 

(Touma et al., 2007). However, this study did not compare levels of intact CRMP2 along the 

axon nor did it perform any functional testing with regards to CRMP2 levels. Our results 

show that increasing the levels of intact CRMP2 is sufficient to inhibit bulb formation and to 

overcome putative local detrimental effects of the CRMP2 cleavage product in vitro. 

We further evaluated the effects of CRMP2 overexpression on AAD by live imaging of the 

optic nerve in vivo. We found that viral vector-mediated CRMP2 overexpression effectively 
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protected the proximal part of the axon against axonal fragmentation during AAD of the optic 

nerve. Also on the distal side, AAD was attenuated by trend in the axons overexpressing 

CRMP2. The degree of the attenuating effect of CRMP2 overexpression on AAD in the optic 

nerve was comparable to the effect of calpain inhibition, which suggests that CRMP2 is a 

central downstream target of calpain during AAD and which further elucidates the molecular 

pathway of AAD. Besides, we show here for the first time that increasing CRMP2 levels 

effectively counteracts axonal degeneration in vivo. 

There are divergent data regarding the biological effects of the calpain derived cleavage 

product of CRMP2. In primary mouse cortical neurons it was shown that cleaved CRMP2 

increased the resistance against excitotoxic insults through modulating the expression of 

NMDA receptors and synaptic plasticity (Bretin et al., 2006). However, another study in 

cortical neurons in vitro and in a traumatic brain injury model in vivo showed that the 

cleavage of CRMP2 contributes to neuronal cell death and inhibits neuronal regeneration 

(Zhang et al., 2007). These divergent results suggest differential effects of the CRMP2 

cleavage product depending on the time-scale of its action. Moreover, it is still not 

understood whether the effects of CRMP2 on neurodegenerative disorders are mediated by 

a loss-of-function of the intact CRMP2 (which is being cleaved) or a gain-of-function of the 

cleavage product. In our study, overexpression of intact CRMP2 markedly interfered with 

axonal degeneration, while no changes in the level of cleaved CRMP2 could be detected. 

These results argue for an important function of the intact CRMP2 for axonal integrity during 

AAD rather than a specific toxic effect of the CRMP2 cleavage product.  

4.2.2 CRMP2 overexpression rescues the impairment of mitochondrial transport during 

acute axonal degeneration 

Our group previously reported that the cytoskeleton is affected early in AAD and that 

axonal bulbs consist of a local accumulation of organelles (Knöferle et al., 2010). These 

results suggest an impairment of axonal transport as one of the earliest and important 

events during AAD. Therefore, we examined the kinetics of mitochondrial transport after 

axotomy in the microfluidic chamber system. We found that the percentage of motile 
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mitochondria was strongly decreased within the first hour after axotomy. Interestingly, all 

analyzed transport parameters recovered to normal levels at 2 h after lesion. These results 

demonstrate for the first time an early but transient impairment of mitochondrial transport 

after axotomy. The time-course correlates with the beginning of bulb formation and 

organelle accumulation as seen in the cortical neurons in vitro and as reported before in vivo 

(Knöferle et al., 2010). Thus, impairment of axonal transport is most probably one of the 

important causal factors for the early morphological changes seen in AAD. This notion is 

further supported by our findings showing that CRMP2 overexpression can rescue both AAD 

and axonal transport, as discussed below. Future experiments are necessary to examine 

whether the kinetics of mitochondrial transport are similar in vivo. Especially the recovery of 

axonal transport at 2 h after lesion might be specific for the in vitro condition where no 

axonal fragmentation occurs and where axons have been shown to successfully regenerate 

within 72 h after lesion, which is not the case in vivo.  

In our current study, we have demonstrated that CRMP2 overexpression delays bulb 

formation after axotomy and attenuates AAD in vivo. However, the underlying mechanisms 

still need to be studied. It has been reported that CRMP2 interacts with the motor proteins 

kinesin and dynein (Arimura, Hattori, et al., 2009; Kimura et al., 2005). Thus, we investigated 

the effect of CRMP2 overexpression on the kinetics of mitochondrial transport after axotomy 

in vitro. We found that overexpression of CRMP2 did not affect the percentage or speed of 

mitochondrial transport in unlesioned axons. However, CRMP2 overexpression completely 

rescued the impaired mitochondrial transport at 30 min after axotomy. Interestingly, the 

most pronounced attenuating effect of CRMP2 overexpression on axonal bulb formation 

coincided at the same time point, 30 min after axotomy. At later time points, continuous bulb 

formation was observed also in the CRMP2 overexpressing axons in vitro. These results 

suggest that overexpression of CRMP2 inhibits bulb formation mainly by counteracting the 

early transient impairment of axonal transport after axotomy. Moreover, there seem to be 

different time-dependent stages of bulb formation in AAD with putatively different molecular 

mechanisms. If this was true, then axonal transport impairment would result in the 

formation of bulbs only at early time-points in AAD. The mechanisms underlying the later 
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bulb formation in AAD still need to be explored. Mechanistically, the impairment of axonal 

transport could be caused by a decreased binding of cleaved CRMP2 to motor proteins, 

which is one of the most important functions of intact CRMP2 (Arimura, Hattori, et al., 2009; 

Kawano et al., 2005; Kimura et al., 2005). 

4.3 Proteomics analysis of acute axonal degeneration in the optic nerve 

Proteomics analysis of axonal degeneration in the CNS has so far only been performed at 

later time points, for example at 24 h and 48 h after ONC, where the expression levels of 27 

actin cytoskeleton associated proteins were significantly altered (Garland et al., 2012). Here, 

we performed proteomics analysis at 6 h after ONC compared to control group to 

characterize further molecular targets that contribute to AAD. Out of the differentially 

expressed proteins during AAD, we identified 12 CRMP2-interacting proteins.  

Notably, the motor protein KIF1C was decreased on both proximal and distal sides of the 

crush. KIF1 is a member of the kinesin-3 family, which regulates axonal transport along 

microtubules (Hirokawa et al., 2009). It was previously reported that, after CRMP2 directly 

binds to KIF and forms a complex to regulate tubulin transport (Kimura et al., 2005). Thus, 

the reduced level of KIF1C might augment the negative effect of CRMP2 cleavage on axonal 

transport.  

Several cytoskeleton associated proteins that interact with CRMP2 were increased during 

AAD, including SPTAN1 and SPTBN1, CDC42, SEPT2 and ACTN4. The proteins SPTAN1 and 

SPTBN1 are different subunits of spectrin that play an important role to maintain membrane 

stability and link motor proteins to filament systems (De Matteis and Morrow, 2000). Cdc42, 

a member of the Rho GTPase family, regulates the growth and stability of microtubules and 

actin structures (Etienne-Manneville, 2004). SEPT2 belongs to a family of GTP-binding 

proteins, and it has been reported to regulate the actin and microtubule cytoskeleton 

(Spiliotis, 2010). ACTN4 has also been reported to regulate the actin cytoskeleton (Otey and 

Carpen, 2004). The accumulation of these cytoskeleton proteins might be induced by the 

impairment of axonal transport during AAD as they are usually transported continuously 
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along the axon. Such a rapid accumulation of synaptic vesicle proteins after blocking axonal 

transport was reported before for synaptophysin and alpha-synuclein in the optic nerve after 

crush (Li and Dahlström, 1997).  

The increased levels of the mitochondrial protein MDH2 on both sides of the crush most 

probably reflect the accumulation of mitochondria during AAD due to impaired 

mitochondrial transport.  

PEA-15 was decreased on both sides of the crush. PEA-15 can activate the ERK/MAPK 

signaling pathway, which regulates neuronal cell survival (Formstecher et al., 2001; Ramos et 

al., 2000). Thus, PEA-15 is a promising molecular target to biologically confirm and to follow 

up on in the future. 

The levels of GOT1, NIT2 and GNB1 were decreased during AAD. These proteins are 

involved in glutamate metabolism and signal transduction (Erecioska and Silver, 1990). How 

PEA-15, GOT1, NIT2 and GNB1 contribute to AAD still needs to be further investigated. 

Taken together, the proteomics analysis further confirmed that CRMP2 is an important 

molecular mediator in AAD, as several interactors of CRMP2 that belong to relevant 

molecular pathways in axonal degeneration were found to be regulated. Moreover, a number 

of molecules was identified that need to be further evaluated in the future and that possibly 

represent key steps in the molecular cascade of axonal degeneration and promising 

therapeutic targets in AAD. 

4.4 Conclusion 

In conclusion, this study provides novel knowledge about the molecular mechanisms 

involved in AAD. A continuous increase in calpain activity is demonstrated following calcium 

influx. Calpain then cleaves CRMP2, which impairs mitochondrial transport. Both calpain 

inhibition and CRMP2 overexpression almost completely inhibit axonal fragmentation 

proximal to the lesion site during AAD. Finally, several CRMP2-interacting partners are 

regulated during AAD and might contribute to AAD. Their relevance needs to be examined in 

further studies. Thus, this study provides new insights into the molecular mechanisms of 
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axonal degeneration, and identifies novel therapeutic targets in traumatic and degenerative 

diseases of the CNS (Figure 4.1). 

 

Figure 4.1 Schematic drawing of the molecular mechanisms of acute axonal degeneration.  

Influx of extracellular calcium activates calpain, which in turn leads to the cleavage of CRMP2. The 

resulting disruption of the binding between CRMP2 and motor proteins is most probably responsible for 

the impairment of axonal transport. Besides, calpain results in the degradation of the cytoskeleton. 

Autophagy is also induced by calcium influx and degrades cellular materials and organelles. 
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5 Summary 

The development of neuroprotective treatments is urgently needed for neurodegenerative 

and neurotraumatic diseases. As axonal degeneration is a key initiating event in these 

diseases, it is pivotal to better understand and counteract axonal degeneration. A traumatic 

lesion of axons in the CNS is followed by AAD within several hours. However, the underlying 

molecular mechanisms of AAD are still incompletely understood. 

  In this study, we investigated the mechanisms of AAD following calcium influx after ONC in 

vivo and after axotomy of cortical neurons in the microfluidic chamber system in vitro. We 

found that calpain, a calcium-dependent protease, was activated within the first minutes 

during AAD of the optic nerve. Calpain activation was localized specifically in the axons, and 

limited to the area affected by AAD. Calpain inhibition almost completely inhibited axonal 

fragmentation on the proximal side over 6 h after crush while its protective effect on the 

distal side was less pronounced. Furthermore, we demonstrated that CRMP2 is the main 

downstream target of calpain activation during AAD. Overexpression of CRMP2 significantly 

delayed formation of axonal bulbs proximal to the lesion site over 8 h after axotomy in vitro, 

which suggests that CRMP2 represents a crucial step in AAD. This was confirmed during AAD 

of the optic nerve in vivo, where AAV-mediated CRMP2-overexpression completely inhibited 

axonal fragmentation in the proximal part. Considering the interactions between CRMP2 and 

motor proteins, we examined the effect of CRMP2 on mitochondrial transport after axotomy. 

The results showed that mitochondrial transport was impaired early after axotomy while 

CRMP2 overexpression rescued this impairment. Finally, the regulation of several 

CRMP2-interacting partners was identified during AAD of the optic nerve by proteomics 

analysis. These proteins included cytoskeletal proteins, mitochondrial proteins, as well as the 

proteins which are involved in axonal transport, ERK/MAPK signaling and glutamate 

metabolism.  

  Taken together, this study adds new knowledge about the mechanisms of AAD. Moreover, 

it identifies new therapeutic targets in traumatic and degenerative diseases of the CNS, of 

which CRMP2 seems to be one of the most promising ones. 



References 
 

89 
 

 

6 References 

Adalbert R, Morreale G, Paizs M, Conforti L, Walker SA, Roderick HL, et al. Intra-axonal 

calcium changes after axotomy in wild-type and slow Wallerian degeneration axons. 

Neuroscience 2012; 225: 44-54. 

Adalbert R, Nógrádi A, Szabó A, Coleman MP. The slow Wallerian degeneration gene in vivo 

protects motor axons but not their cell bodies after avulsion and neonatal axotomy. Eur. J. 

Neurosci. 2006; 24: 2163-2168. 

Alavi MV, Bette S, Schimpf S, Schuettauf F, Schraermeyer U, Wehrl HF, et al. A splice site 

mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. 

Brain 2007; 130: 1029-1042. 

Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation 

prevent axonal degeneration. Science 2004; 305: 1010-1013. 

Araújo Couto L, Narciso MS, Hokoç JN, Martinez AMB. Calpain inhibitor 2 prevents axonal 

degeneration of opossum optic nerve fibers. J. Neurosci. Res. 2004; 77: 410-419. 

Arduíno DM, Esteves AR, Cardoso SM. Mitochondria drive autophagy pathology via 

microtubule disassembly: A new hypothesis for Parkinson disease. Autophagy 2013; 9: 

112-114. 

Arimura N, Hattori A, Kimura T, Nakamuta S, Funahashi Y, Hirotsune S, et al. CRMP-2 directly 

binds to cytoplasmic dynein and interferes with its activity. J. Neurochem. 2009; 111: 

380-390. 

Arimura N, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, et al. Phosphorylation 

by Rho Kinase Regulates CRMP-2 Activity in Growth Cones. Mol. Cell. Biol. 2005; 25: 

9973-9984. 

Arimura N, Kimura T, Nakamuta S, Taya S, Funahashi Y, Hattori A, et al. Anterograde 

Transport of TrkB in Axons Is Mediated by Direct Interaction with Slp1 and Rab27. Dev. Cell. 



References 
 

90 
 

 

2009; 16: 675-686. 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for 

the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000; 25: 25-29. 

Atalay B, Caner H, Can A, Cekinmez M. Attenuation of microtubule associated protein-2 

degradation after mild head injury by mexiletine and calpain-2 inhibitor. Br. J. Neurosurg. 

2007; 21: 281-287. 

Atanassov I, Urlaub H. Increased proteome coverage by combining PAGE and peptide 

isoelectric focusing: Comparative study of gel-based separation approaches. Proteomics 

2013; 13: 2947-2955. 

Avery MA, Rooney TM, Pandya JD, Wishart TM, Gillingwater TH, Geddes JW, et al. WldS 

prevents axon degeneration through increased mitochondrial flux and enhanced 

mitochondrial Ca 2+ buffering. Curr. Biol. 2012; 22: 596-600. 

Bähr M. Live or let die - retinal ganglion cell death and survival during development and in 

the lesioned adult CNS. Trends Neurosci. 2000; 23:483–490. 

Beirowski B, Babetto E, Gilley J, Mazzola F, Conforti L, Janeckova L, et al. Non-nuclear Wld(S) 

determines its neuroprotective efficacy for axons and synapses in vivo. J. Neurosci. 2009; 29: 

653-668. 

Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport 

precede ALS symptoms in vivo. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20523-20528. 

Bretin S, Marin P, Maus M, Torrens Y, Glowinski J, Lyon CB, et al. Calpain product of 

WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J. Neurochem. 

2006; 98(4): 1252-1265. 

Burke RE, O'Malley K. Axon Degeneration in Parkinson’ s Disease. Exp. Neurol. 2013; 246: 

72-83. . 

Cai X, Yuan R, Hu Z, Chen C, Yu J, Zheng Z, et al. Expression of PirB Protein in Intact and 

Injured Optic Nerve and Retina of Mice. Neurochem. Res. 2012; 37: 647-654. 



References 
 

91 
 

 

Cavanagh JB. The significance of the ‘dying back’ process in experimental and human 

neurological disease. Int. Rev. Exp. Pathol. 1964; 3: 219-67. 

Cheng H-C, Kim SR, Oo TF, Kareva T, Yarygina O, Rzhetskaya M, et al. Akt suppresses 

retrograde degeneration of dopaminergic axons by inhibition of macroautophagy. J. 

Neurosci. 2011; 31: 2125-2135. 

Cho K, Yang L, Lu B, Ma HF, Huang X, Pekny M, et al. Re-establishing the regenerative 

potential of central nervous system axons in postnatal mice. J. Cell. Sci. 2005; 118: 863–872. 

Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. 

Neurosci. 2005; 6: 889-898. 

Conforti L, Gilley J, Coleman MP. Wallerian degeneration: an emerging axon death pathway 

linking injury and disease. Nat. Rev. Neurosci. 2014; 15: 394-409 

Craner MJ, Fugger L. Axonal injury in reverse. Nat. Med. 2011; 17: 423-426. 

Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li W-P, et al. One at a time, live tracking of NGF 

axonal transport using quantum dots. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 13666-13671. 

Das A, Guyton MK, Smith A, Iv GW, Mcdowell ML, Matzelle DD, et al. Calpain inhibitor 

attenuated optic nerve damage in acute optic neuritis in rats. J. Neurochem. 2014; 124: 

133-146. 

De vos KJ, Chapman AL, Tennant ME, Manser C, Tudor EL, Lau KF, et al. Familial amyotrophic 

lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal 

mitochondria content. Hum. Mol. Genet. 2007; 16: 2720-2728. 

Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in 

culture. J. Neurosci. 1988; 8(4): 1454-68. 

Erecioska M, Silver IA. Metabolism and role of glutamate in mammalian brain. Prog. 

Neurobiol. 1990; 35: 245-296. 

Etienne-Manneville S. Actin and microtubules in cell motility: Which one is in control? Traffic 



References 
 

92 
 

 

2004; 5: 470-477. 

Formstecher E, Ramos JW, Fauquet M, Calderwood D A, Hsieh JC, Canton B, et al. PEA-15 

Mediates Cytoplasmic Sequestration of ERK MAP Kinase. Dev. Cell 2001; 1: 239-250. 

Freeman MR. Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol 

2014; 27C: 224-231. 

Fukata Y, Itoh TJ, Kimura T, Ménager C, Nishimura T, Shiromizu T, et al. CRMP-2 binds to 

tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol. 2002; 4: 583-591. 

Garland P, Broom LJ, Quraishe S, Dalton PD, Skipp P, Newman TA, et al. Soluble Axoplasm 

Enriched from Injured CNS Axons Reveals the Early Modulation of the Actin Cytoskeleton. 

PLoS One 2012; 7: 1-8. 

Gennarelli TA, Thibault LE, Tipperman R, Tomei G, Sergot R, Brown M, et al. Axonal injury in 

the optic nerve: a model simulating diffuse axonal injury in the brain. J. Neurosurg. 1989; 71: 

244-253. 

George EB, Glass JD, Griffin JW. Axotomy-induced axonal degeneration is mediated by 

calcium influx through ion-specific channels. J. Neurosci. 1995; 15: 6445-6452. 

Ghaffarieh A, Levin LA. Optic Nerve Disease and Axon Pathophysiology. Int. Rev. Neurobiol. 

2012; 105: 1-17.  

Gilley J, Coleman MP. Endogenous Nmnat2 Is an Essential Survival Factor for Maintenance of 

Healthy Axons. PLoS. Biol. 2010; 8(1):e1000300 

Gögel S, Lange S, Leung KY, Greene NDE, Ferretti P. Post-translational regulation of Crmp in 

developing and regenerating chick spinal cord. Dev. Neurobiol. 2010; 70: 456-471. 

Hanlon GMO, Humphreys PD, Goldman RS, Halstead SK, Bullens RWM, Plomp JJ, et al. 

Calpain inhibitors protect against axonal degeneration in a model of anti-ganglioside 

antibody-mediated motor nerve terminal injury. Brain 2003; 126(Pt 11): 2497-509. 

Hensley K, Venkova K, Christov A, Gunning W, Park J. Collapsin response mediator protein-2: 



References 
 

93 
 

 

An emerging pathologic feature and therapeutic target for neurodisease indications. Mol. 

Neurobiol. 2011; 43: 180-191. 

Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular 

transport. Nat. Rev. Mol. Cell Biol. 2009; 10: 682-696. 

Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DDM, Luo L. Wlds Protection 

Distinguishes Axon Degeneration following Injury from Naturally Occurring Developmental 

Pruning. Neuron 2006; 50: 883-895. 

Hosie KA, King AE, Blizzard CA, Vickers JC, Dickson TC. Chronic excitotoxin-induced axon 

degeneration in a compartmented neuronal culture model. ASN. Neuro. 2012; 4: 47-57. 

Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, et al. Axons of retinal 

ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol. 2007; 179: 

1523-1537. 

Huh JW, Franklin MA, Widing AG, Raghupathi R. Regionally distinct patterns of calpain 

activation and traumatic axonal injury following contusive brain injury in immature rats. Dev. 

Neurosci. 2006; 28: 466-476. 

Ivins KJ, Bui ET, Cotman CW. Beta-amyloid induces local neurite degeneration in cultured 

hippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis. 1998; 5: 365-378 

Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O. Motor deficits, neuron loss, and 

reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in 

the 5XFAD mouse model of Alzheimer’s disease *Internet+. Neurobiol. Aging 2012; 33: 

196.e29-196.e40. 

Johnson GV, Litersky JM, Jope RS. Degradation of microtubule-associated protein 2 and brain 

spectrin by calpain: a comparative study. J. Neurochem. 1991; 56: 1630-1638. 

Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL. Mechanisms of 

calpain proteolysis following traumatic brain injury: implications for pathology and therapy: 

implications for pathology and therapy: a review and update. J. Neurotrauma 1997; 14: 



References 
 

94 
 

 

121-134. 

Kanamori A, Catrinescu MM, Belisle JM, Costantino S, Levin LA. Retrograde and Wallerian 

axonal degeneration occur synchronously after retinal ganglion cell axotomy. Am. J. Pathol. 

2012; 181: 62-73. 

Kawaguchi I, Higashide T, Ohkubo S, Takeda H, Sugiyama K. In Vivo Imaging and Quantitative 

Evaluation of the Rat Retinal Nerve Fiber Layer Using Scanning Laser Ophthalmoscopy. 

Investig. Opthalmology Vis. Sci. 2006; 47: 2911. 

Kawano Y, Yoshimura T, Tsuboi D, Kaneko-kawano T, Shirataki H, Kawabata S et al. CRMP-2 Is 

Involved in Kinesin-1-Dependent Transport of the Sra-1 / WAVE1 Complex and Axon 

Formation CRMP-2 Is Involved in Kinesin-1-Dependent Transport of the Sra-1 / WAVE1 

Complex and Axon Formation . Mol. Cell. Biol. 2005; 25(22):9920-35. 

Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T. In vivo imaging of axonal 

degeneration and regeneration in the injured spinal cord. Nat. Med. 2005; 11: 572-577. 

Khanna R. Opening Pandora’s jar: a primer on the putative roles of CRMP2 in a panoply of 

neurodegenerative, sensory and motor neuron, and central disorders. Future. Neurol. 2013; 

7: 749-771. 

Kilinc D, Gallo G, Barbee KA. Mechanical membrane injury induces axonal beading through 

localized activation of calpain. Exp. Neurol. 2009; 219: 553-561. 

Kimura T, Arimura N, Fukata Y, Watanabe H, Iwamatsu A, Kaibuchi K. Tubulin and CRMP-2 

complex is transported via Kinesin-1. J. Neurochem. 2005; 93: 1371-1382. 

Knöferle J, Koch JC, Ostendorf T, Michel U, Planchamp V, Vutova P, et al. Mechanisms of 

acute axonal degeneration in the optic nerve in vivo. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 

6064-6069. 

Koch JC, Barski E, Lingor P, Bähr M, Michel U. Plasmids containing NRSE/RE1 sites enhance 

neurite outgrowth of retinal ganglion cells via sequestration of REST independent of NRSE 

dsRNA expression. FEBS J. 2011; 278: 3472-3483. 



References 
 

95 
 

 

Koch JC, Bitow F, Haack J, d’Hedouville Z, Zhang J-N, Tönges L, et al. Alpha-Synuclein affects 

neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. 

Cell Death Dis. 2015; 6: e1811. 

Koch JC, Knöferle J, Tönges L, Michel U, Bähr M, Lingor P. Imaging of rat optic nerve axons in 

vivo. Nat. Protoc. 2011; 6: 1887-96. 

Koch JC, Solis GP, Bodrikov V, Michel U, Haralampieva D, Shypitsyna A, et al. Upregulation of 

reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite 

growth in vitro. Neurobiol. Dis. 2013; 51: 168-176. 

Koch JC, Tönges L, Barski E, Michel U, Bähr M, Lingor P. ROCK2 is a major regulator of axonal 

degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis. 2014; 5: 

e1225. 

Lee JN, Jiang X, Ryan D, Whitesides GM. Compatibility of mammalian cells on surfaces of 

poly(dimethylsiloxane). Langmuir 2004; 20: 11684-11691. 

Lenaers G, Hamel CP, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, et al. Dominant 

optic atrophy. Orphanet J. Rare Dis. 2012; 7: 46. 

Leung CKS, Weinreb RN, Li ZW, Liu S, Lindsey JD, Choi N, et al. Long-term in vivo imaging and 

measurement of dendritic shrinkage of retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 

2011; 52: 1539-1547 

Levkovitch-Verbin H. Animal models of optic nerve diseases. Eye 2004; 18: 1066-1074 

Li JY, Dahlström A. Axonal transport of synaptic vesicle proteins in the rat optic nerve. J. 

Neurobiol. 1997; 32: 237-250. 

Lingor P, Koch JC, Tönges L, Bähr M. Axonal degeneration as a therapeutic target in the CNS. 

Cell Tissue Res. 2012; 349: 289-311 

Lingor P, Koeberle P, Kügler S, Bähr M. Down-regulation of apoptosis mediators by RNAi 

inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 2005; 128: 550-558. 



References 
 

96 
 

 

Lingor P, Teusch N, Schwarz K, Mueller R, Mack H, Bähr M, et al. Inhibition of Rho kinase 

(ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal 

regeneration in the adult optic nerve in vivo. J. Neurochem. 2007; 103: 181-189. 

Lingor P, Tönges L, Pieper N, Bermel C, Barski E, Planchamp V, et al. ROCK inhibition and CNTF 

interact on intrinsic signalling pathways and differentially regulate survival and regeneration 

in retinal ganglion cells. Brain 2008; 131: 250-263. 

Liu MC, Kobeissy F, Zheng W, Zhang Z, Hayes RL, Wang KKW. Dual vulnerability of tau to 

calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions. ASN. 

Neuro. 2011; 3: e00051. 

Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S. Absence of Wallerian Degeneration does 

not Hinder Regeneration in Peripheral Nerve. Eur. J. Neurosci. 1989; 1: 27-33. 

Luo L, O’Leary DDM. Axon retraction and degeneration in development and disease. Annu. 

Rev. Neurosci. 2005; 28: 127-156. 

Ma M, Ferguson TA, Schoch KM, Li J, Qian Y, Shofer FS, et al. Calpains mediate axonal 

cytoskeleton disintegration during Wallerian degeneration. Neurobiol. Dis. 2013; 56: 34-46. 

Ma M, Shofer FS, Neumar RW. Model of Traumatic Axonal Injury. J. Neurotrauma. 2012; 

2563: 120829074359000. 

Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN. Regional optic nerve damage in 

experimental mouse glaucoma. Invest. Ophthalmol. Vis. Sci. 2004; 45: 4352-4358. 

Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, et al. Wallerian 

degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. 

Nat. Neurosci. 2001; 4: 1199-1206. 

De Matteis MA, Morrow JS. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 

2000; 113 (Pt13): 2331-2343. 

McKinnon SJ. The cell and molecular biology of glaucoma: Common neurodegenerative 

pathways and relevance to glaucoma. Investig. Ophthalmol. Vis. Sci. 2012; 53: 2485-2487. 



References 
 

97 
 

 

Mehdi S. Cell-penetrating inhibitors of calpain. Trends Biochem. Sci. 1991; 16: 150-153. 

Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I. Gas sorption, diffusion, and 

permeation in poly (dimethylsiloxane). J. Polym. Sci. Part B Polym. Phys. 2000; 38: 415-434. 

Milea D, Sander B, Wegener M, Jensen H, Kjer B, Jørgensen TM, et al. Axonal loss occurs 

early in dominant optic atrophy. Acta Ophthalmol. 2010; 88: 342-346. 

Millet LJ, Gillette MU. New perspectives on neuronal development via microfluidic 

environments. Trends. Neurosci. 2012; 35: 752-761. 

Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M. The degeneration of dopaminergic 

synapses in Parkinson’s disease: A selective animal model. Behav. Brain. Res. 2015; 289: 

19-28. 

Morfini G, Pigino G, Opalach K, Serulle Y, Moreira JE, Sugimori M, et al. 

1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and 

protein kinase C. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 2442-2447. 

Mudrakola H V., Zhang K, Cui B. Optically Resolving Individual Microtubules in Live Axons: 

Structure 2009; 17: 1433-1441. 

Nakamura H, O’Leary DD. Inaccuracies in initial growth and arborization of chick retinotectal 

axons followed by course corrections and axon remodeling to develop topographic order. J. 

Neurosci. 1989; 9: 3776-3795. 

Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by 

tandem mass spectrometry. Anal. Chem. 2003; 75: 4646-4658. 

Nikid I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, et al. A reversible 

form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. 

Nat. Med. 2011; 17: 495-499. 

Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid 

aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial 

Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 



References 
 

98 
 

 

2006; 26: 10129-10140. 

Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, et al. 

Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic 

nerve in Parkinson’s disease. Brain 2008; 131: 642–650. 

Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old question. Cell. Motil. 

Cytoskeleton 2004; 58(2): 104-11.  

Öztürk G, Cengiz N, Erdoǧan E, Him a., Oǧuz EK, Yenidünya E, et al. Two distinct types of 

dying back axonal degeneration in vitro. Neuropathol. Appl. Neurobiol. 2013; 39: 362-376. 

Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL. Microfluidic culture platform for 

neuroscience research. Nat. Protoc. 2006; 1: 2128-2136. 

Petzold a, Rejdak K, Plant GT. Axonal degeneration and inflammation in acute optic neuritis. 

J. Neurol. Neurosurg. Psychiatry. 2004; 75: 1178-1180. 

Raff MC, Whitmore AV, Finn JT. Axonal Self-Destruction and Neurodegeneration. Science 

2002; 296(5569): 868-71. 

Ramos JW, Hughes PE, Renshaw MW, Schwartz MA, Formstecher E, Chneiweiss H, et al. 

Death effector domain protein PEA-15 potentiates Ras activation of extracellular signal 

receptor-activated kinase by an adhesion-independent mechanism. Mol. Biol. Cell 2000; 11: 

2863-2872. 

Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP. Global magnitude of visual impairment 

caused by uncorrected refractive errors in 2004. Bull. World Health Organ. 2008; 86: 63-70. 

Rhee SW, Taylor AM, Tu CH, Cribbs DH, Cotman CW, Jeon NL. Patterned cell culture inside 

microfluidic devices. Lab Chip 2005; 5: 102-107. 

Ribas VT, Schnepf B, Challagundla M, Koch JC, Bähr M, Lingor P. Early and Sustained 

Activation of Autophagy in Degenerating Axons after Spinal Cord Injury [Internet]. Brain. 

Pathol. 2015; 25: 157-170. 



References 
 

99 
 

 

Roberts-Lewis JM, Savage MJ, Marcy VR, Pinsker LR, Siman R. Immunolocalization of calpain 

I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J. 

Neurosci. 1994; 14: 3934-3944. 

Rogemond V, Auger C, Giraudon P, Becchi M, Auvergnon N, Belin MF, et al. Processing and 

nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition. 

J. Biol. Chem. 2008; 283: 14751-14761. 

Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve 

injury. J. Neuroinflammation 2011; 8: 109.  

Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, et al. Calpain-mediated 

cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell 

Death Dis. 2011; 2: e144. 

Saatman KE, Abai B, Grosvenor A, Vorwerk CK, Smith DH, Meaney DF. Traumatic axonal 

injury results in biphasic calpain activation and retrograde transport impairment in mice. J. 

Cereb. Blood Flow Metab. 2003; 23: 34-42. 

Samantaray S, Knaryan VH, Patel KS, Mulholland PJ, Becker HC, Banik NL. Chronic 

intermittent ethanol induced axon and myelin degeneration is attenuated by calpain 

inhibition. Brain Res. 2015; 1622: 7-21. 

Sasaki Y, Vohra BPS, Lund FE, Milbrandt J. Nicotinamide mononucleotide adenylyl 

transferase-mediated axonal protection requires enzymatic activity but not increased levels 

of neuronal nicotinamide adenine dinucleotide. J. Neurosci. 2009; 29: 5525-5535. 

Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298: 789-791. 

Shi P, Gal J, Kwinter DM, Liu X, Zhu H. Mitochondrial dysfunction in amyotrophic lateral 

sclerosis. Biochim. Biophys. Acta. 2010; 1802: 45-51 

Shilov I V, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, et al. The Paragon 

Algorithm, a next generation search engine that uses sequence temperature values and 

feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics 



References 
 

100 
 

 

2007; 6: 1638-1655. 

Spiliotis ET. Regulation of microtubule organization and functions by septin GTPases. 

Cytoskeleton 2010; 67: 339-345. 

Spira ME, Oren R, Dormann A, Gitler D. Critical calpain-dependent ultrastructural alterations 

underlie the transformation of an axonal segment into a growth cone after axotomy of 

cultured Aplysia neurons. J. Comp. Neurol. 2003; 457: 293-312. 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: 

protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2014; 

43: D447-D452. 

Tagliaferro P, Kareva T, Oo TF, Yarygina O, Kholodilov N, Burke RE. An early axonopathy in a 

hLRRK2 (R1441G) transgenic model of Parkinson disease. Neurobiol. Dis. 2015; 82: 359–371. 

Taylor AM, Berchtold NC, Perreau VM, Tu CH, Li Jeon N, Cotman CW. Axonal mRNA in 

uninjured and regenerating cortical mammalian axons. J. Neurosci. 2009; 29: 4697-4707. 

Taylor AM, Blurton-jones M, Rhee SW, Cribbs DH, Carl W. A microfluidic culture platform for 

CNS axonal injury, regeneration and transport. Nat. Methods 2005; 2(8): 599-605. 

Taylor AM, Rhee SW, Tu CH, Cribbs DH, Cotman CW, Jeon NL. Microfluidic 

multicompartment device for neuroscience research. Langmuir 2003; 19: 1551-1556. 

Tönges L, Planchamp V, Koch JC, Herdegen T, Bähr M, Lingor P. JNK isoforms differentially 

regulate neurite growth and regeneration in dopaminergic neurons in vitro. J. Mol. Neurosci. 

2011; 45: 284-293. 

Touma E, Kato S, Fukui K, Koike T. Calpain-mediated cleavage of collapsin response mediator 

protein(CRMP)-2 during neurite degeneration in mice. Eur. J. Neurosci. 2007; 26: 3368-3381. 

Trip. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann. Neurol. 

2005; 58: 383-391. 

Tsujinaka T, Kajiwara Y, Kambayashi J, Sakon M, Higuchi N, Tanaka T, et al. Synthesis of a 



References 
 

101 
 

 

new cell penetrating calpain inhibitor (calpeptin). Biochem. Biophys. Res. Commun. 1988; 

153: 1201-1208. 

Vallee RB, Shpetner HS, Paschal BM. The role of dynein in retrograde axonal transport. 

Trends Neurosci. 1989; 12: 66-70. 

Vosler PS. Calpain-Mediated Signaling Mechanisms in Neuronal Injury and 

Neurodegeneration. 2009; 38: 78–100. 

Waller A. Experiments on the Section of the Glossopharyngeal and Hypoglossal Nerves of the 

Frog, and Observations of the Alterations Produced Thereby in the Structure of Their 

Primitive Fibres. Philos. Trans. R. Soc. 1850; 140: 423-429. 

Wang D, Ayers MM, Catmull DV, Hazelwood LJ, Bernard CC, Orian JM. Astrocyte-associated 

axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 

2005; 51: 235-240. 

Wang JT, Medress ZA, Barres BA. Axon degeneration: Molecular mechanisms of a 

self-destruction pathway. J. Cell Biol. 2012; 196: 7-18. 

Wang KKW. Calpain and caspase: Can you tell the difference? Trends Neurosci. 2000; 23: 

20-26. 

Wang X, Li Y, He Y, Liang HS, Liu EZ. A Novel Animal Model of Partial Optic Nerve Transection 

Established Using an Optic Nerve Quantitative Amputator. PLoS One 2012; 7(9): e44360. 

William L, Povlishock JT, Graham DL, Al MET. A mechanistic analysis of nondisruptive axonal 

injury. J. Neurotrauma. 1997; 14(7): 419-40. 

Yang J, Weimer RM, Kallop D, Olsen O, Wu Z, Renier N, et al. Regulation of axon 

degeneration after injury and in development by the endogenous calpain inhibitor 

calpastatin. Neuron 2013a; 80: 1175-1189. 

Yoon SY, Choi JE, Choi JM, Kim DH. Dynein cleavage and microtubule accumulation in 

okadaic acid-treated neurons. Neurosci. Lett. 2008; 437: 111-115. 



References 
 

102 
 

 

You Y, Gupta VK, Li JC, Klistorner A, Graham SL. Optic neuropathies: Characteristic features 

and mechanisms of retinal ganglion cell loss. Rev. Neurosci. 2013; 24: 301-321. 

Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, et al. Calpain-mediated 

cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 2006; 8: 1124-1132. 

Zhang X, Jones D, Gonzalez-Lima F. Mouse model of optic neuropathy caused by 

mitochondrial complex I dysfunction. Neurosci. Lett. 2002; 326: 97–100. 

Zhang Z, Ottens AK, Sadasivan S, Kobeissy FH, Fang T, Hayes RL, et al. Calpain-mediated 

collapsin response mediator protein -1, -2, and -4 proteolysis after neurotoxic and traumatic 

brain injury. J. Neurotrauma 2007; 24: 460-472. 

Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, et al. Next 

generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to 

high-efficiency transduction at lower doses. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 

7827-7832.  

 

 

 

 

 

 

 



Abbreviations 
 

103 
 

 

Abbreviations 

AAD: acute axonal degeneration 

AAV: adeno-associated virus 

ACTN4: alpha-actinin 4  

AD: Alzheimer's disease 

AIR: axonal integrity ratio 

ALS: amyotrophic lateral sclerosis  

APS: ammonium persulfate 

BDP: breakdown product 

Blast: basic local alignment search tool 

BSA: bovine serum albumin  

CDC42: cell division control protein 42 

CMF: calcium magnesium-free 

CNS: central nervous system  

CO2: carbon dioxide 

CRMP2: collapsin response mediator protein-2  

DAPI: 4', 6-diamidino-2-phenylindole  

DMEM: Dulbecco's Modified Eagle Medium 

DMSO: dimethyl sulfoxide 

DIV: days in vitro 

DRG: dorsal root ganglion  

DTT: dithiothreitol 

Dynein IC: dynein intermediate chain  

E18: embryonic day 18  

EAE: experimental autoimmune encephalomyelitis 

ECL: enhanced chemiluminescence 

EGFP: enhanced green fluorescent protein 

FAD: focal axonal degeneration 
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FCS: fetal calf serum   

GNB1: G protein beta subunit 1  

GOT1: aspartate transaminase 1 

HBSS: Hank's balanced salt solution  

H2O2: hydrogen peroxide  

HRP: horseradish peroxidase 

hSyn: human synapsin 

IOP: intraocular pressure 

LC3: microtubule-associated protein 1 light chain 3  

KIF: kinesin like protein  

MDH2: malate dehydrogenase 2 

MgCl2.6H2O: magnesium chloride hexahydrate   

mPTP: mitochondrial permeability transition pore  

mRNA: messenger RNA 

MS: multiple sclerosis  

MTS: mitochondrial targeting sequence  

NaCl: sodium chloride 

NC: nitrocellulose  

NGF: nerve growth factor  

NIT2: omega-amidase 

NMNAT: nicotinamide mononucleotide adenylyltransferase 

ONC: optic nerve crush  

P1: postnatal day 1  

PBS: phosphate-buffered saline 

PD: Parkinson’s disease  

PDL: poly-D-lysine  

PDMS: polydimethylsiloxane  

PEA-15: astrocytic phosphoprotein-15  

PFA: paraformaldehyde 
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PLO: poly-L-ornithine  

PVDF: polyvinylidene difluoride  

QD: quantum dot 

QqTOF: quadrupole/time-of-flight 

RGC: retinal ganglion cell 

RFP: red fluorescent protein  

RNFL: retinal nerve fiber layer  

RNS: reactive nitrogen species 

ROS: reactive oxygen species  

Rpm: rounds per minute 

SDS: sodium dodecyl sulfate  

SEM: standard error of the mean  

SEPT2: septin 2  

SPTAN1: alpha-II spectrin  

SPTBN1: beta-II spectrin  

STRING: search tool for the retrieval of interacting genes/proteins 

TEMED: tetramethylethylenediamine  

TBS-T: TBS-Tween20 

Tris: 2-Amino-2-hydroxymethyl-propane-1, 3-diol 

TU: transforming units  

UBE4b: E4-type ubiquitin ligase UBE4b  

WD: Wallerian degeneration  

Wlds: Wallerian degeneration slow  

YWHAE: 14-3-3 protein epsilon 
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