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Abstract

A major problem of localization algorithms for Wireless Sensor Networks (WSNs)

is the dependence on anchor information. In mobile networks, single node or even

whole parts of the network might be temporarily isolated from all anchors, which

will render further localization impossible. Consequently, the localization error in-

creases drastically in these situations. In addition to that, network operators have

a strong interest in reducing the number of costly anchor nodes to reduce deploy-

ment and operation costs, which further amplifies the problem of missing anchor

information.

This thesis first discusses the advantages and disadvantages of two large groups

of localization algorithms, range-based and range-free localization, and provides a

study of an often used ranging technique based on Received Signal Strength Indica-
tor (RSSI) distance estimation. After that, two new variants of a well-known range-

free localization approach called Monte Carlo Localization (MCL) are introduced to

account for the problem of missing or temporarily unavailable seed nodes. In Sensor-
Assisted Monte Carlo Localization (SA-MCL) a dead reckoning technique using addi-

tional information provided by magnetometer and accelerometer sensors is proposed

to update the location estimation based on the last known position. Path-Oriented
Monte Carlo Localization (PO-MCL) is designed to exploit path-based mobility behav-

ior as it exists for several applications in WSNs to improve the localization process.

Both approaches are evaluated using excessive network simulation. Furthermore,

SA-MCL is implemented on real hardware and evaluated in a mobile WSN testbed

formed by radio controlled cars. It is shown that in low seed density situations the

localization error for SA-MCL and PO-MCL can be reduced by about 60% and 50%,

respectively.





Zusammenfassung

Das Hauptproblem von Lokalisierungsalgorithmen für WSNs basierend auf Anker-

knoten ist die Abhängigkeit von diesen. Mobilität im Netzwerk kann zu Topologien

führen, in denen einzelne Knoten oder ganze Teile des Netzwerks temporär von

allen Ankerknoten isoliert werden. In diesen Fällen ist keine weitere Lokalisierung

möglich. Dies wirkt sich primär auf den Lokalisierungsfehler aus, der in diesen

Fällen stark ansteigt. Des weiteren haben Betreiber von Sensornetzwerken Interesse

daran, die Anzahl der kosten- und wartungsintensiveren Ankerknoten auf ein Mi-

nimum zu reduzieren. Dies verstärkt zusätzlich das Problem von nicht verfügbaren

Ankerknoten während des Netzwerkbetriebs.

In dieser Arbeit werden zunächst die Vor- und Nachteile der beiden großen Haupt-

kategorien von Lokalisierungsalgorithmen (range-based und range-free Verfahren)

diskutiert und eine Studie eines oft für range-based Lokalisierung genutzten Dis-

tanzbestimmungsverfahren mit Hilfe des RSSI vorgestellt. Danach werden zwei

neue Varianten für ein bekanntes range-free Lokalisierungsverfahren mit Namen

MCL eingeführt. Beide haben zum Ziel das Problem der temporär nicht verfüg-

baren Ankerknoten zu lösen, bedienen sich dabei aber unterschiedlicher Mittel.

SA-MCL nutzt ein dead reckoning Verfahren, um die Positionsschätzung vom let-

zten bekannten Standort weiter zu führen. Dies geschieht mit Hilfe von zusätzlichen

Sensorinformationen, die von einem elektronischen Kompass und einem Beschleu-

nigungsmesser zur Verfügung gestellt werden. PO-MCL hingegen nutzt das Mo-

bilitätsverhalten von einigen Anwendungen in Sensornetzwerken aus, bei denen

sich alle Knoten primär auf einer festen Anzahl von Pfaden bewegen, um den

Lokalisierungsprozess zu verbessern. Beide Methoden werden durch detaillierte

Netzwerksimulationen evaluiert. Im Fall von SA-MCL wird außerdem eine Im-

plementierung auf echter Hardware vorgestellt und eine Feldstudie in einem mo-

bilen Sensornetzwerk durchgeführt. Aus den Ergebnissen ist zu sehen, dass der

Lokalisierungsfehler in Situationen mit niedriger Ankerknotendichte im Fall von

SA-MCL um bis zu 60% reduziert werden kann, beziehungsweise um bis zu 50%

im Fall von PO-MCL.
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Chapter 1
Introduction

A Wireless Sensor Network (WSN) is a network formed by small-scale com-

puting devices equipped with a set of hardware sensors. Facing various

restrictions in computational power and energy resources [1, 2, 3], develop-

ers of WSNs have to put special attention to the efficiency of all algorithms

in the network including data collection, routing and data aggregation.

WSNs are used to collect data in a variety of applications and to transfer

that data to a central instance, where it is further analyzed, processed and

archived [4]. Without a direct association of the collected data to the spatial

information (i.e., where the data has been collected) most of the information

is rendered useless. For example, in an agricultural sensor network collect-

ing information about soil humidity on a field it makes no sense to collect

just the plain values of the humidity sensors. Instead, the information has to

be linked to each sensor’s position to infer the condition of the soil. In other

applications the sensor network might be rapidly deployed or be of mobile

nature. This entails the final position of the sensors cannot be determined

a priori. Examples of these networks are sensors thrown out of an airplane

to monitor and analyze forest fires [5] and volcano activity [6] or sensors set

adrift on the sea to analyze water pollution or ocean currents [7]. Further-

more, other algorithms in WSNs often rely on geographic information, e.g.,

geographic routing [8, 9, 10] or data aggregation from certain regions of the

network [11, 12, 13].



2 CHAPTER 1. INTRODUCTION

In summary, data collected in a WSN usually needs to be linked to the

geographic position of the sensor node and the position information is often

used for other algorithms. The action of a node to determine its own location

is called the localization process. A trivial possibility to achieve this goal,

which is also suitable for mobile nodes, is using the Global Positioning System
(GPS). However, there exist various issues with this approach including

high energy consumption, large antenna size and high deployment costs,

which render it unsuitable for the extensive usage in WSNs [14, 15]. As a

consequence, alternative approaches have to be investigated. Over the last

two decades of research in sensor networks, the concept of anchor nodes

and location announcements emerged [16, 17, 18, 19, 20, 21]. Anchor nodes

are always aware of their position, either by having a fixed location or by

being equipped with GPS [22]. They send out location announcements to

assist simple nodes in estimating their position. Simple nodes collect these

location announcements and calculate an estimate for their own position

using a localization algorithm. The aim in localization is to keep the number

of necessary anchor nodes as low as possible, while also maintaining a low

localization error.

While the localization process is less complicated for static networks, in

which the nodes are not supposed to move after the deployment phase, con-

siderable expenditure is required for mobile sensor networks. Mobile WSNs

often have applications in the biology sector. For instance, wildlife monitor-

ing is a prominent interdisciplinary field of research, which can be enhanced

in many ways using sensor network technology including tracking single or

groups of animals. Prominent examples of deployed wildlife WSNs aim to

monitor the position of migratory birds or penguin colonies [23, 24] using

localization algorithms to gather insights about the natural behavior of these

animals. Advances in the manufacturing size of sensor modules nowadays

even allow much smaller creatures to be equipped with sensors [25, 26]. In

other applications, sensor networks might be planted in oceans [27] or lakes

to determine pollution levels or to explore ocean currents.

All of the mentioned examples share the fact that the sensor nodes are mo-

bile. Mobile WSNs have to face several additional challenges, e.g., changing

network topologies, network splits, and isolated nodes. Consequently, posi-

tioning information must be constantly updated for each node.
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Localization algorithms can be roughly divided into range-free and range-

based solutions [28, 17]. While the former rely on receiving location an-

nouncements only, the latter additionally employ active sensing to gather

further information like distances to other nodes or the angle of the in-

coming signal. Past and ongoing research mainly focuses on range-based

approaches. One reason for this trend are the manifold possibilities of pro-

cessing data collected by ranging techniques, which emerges in a broad spec-

trum of localization algorithms as shown in [29, 30, 31, 32]. However, almost

all ranging techniques are subject to several problems including additional

costs, inaccuracy or increased computational overhead [33, 34, 35]. As a con-

sequence this thesis advocates the facilitation of range-free algorithms for

localization.

1.1 Problem Statement

A popular representative of range-free localization is Monte Carlo Localiza-
tion (MCL) [36]. MCL uses a set of samples to estimate a node’s location

where each sample represents a possible location of the node. Using anchor

information, impossible locations are filtered. Due to its simplicity and ro-

bustness, MCL is an attractive solution for the localization process in sensor

networks. However, just like any other algorithm based on anchor node in-

formation, a node will be unable to update its position estimation if it loses

contact to all anchor nodes. Consequently, if the node is moving, the local-

ization error will heavily increase in these situations. The central research

question of this thesis is how temporary scenarios in which no anchor in-

formation is available can be bypassed, while maintaining a reasonable low

localization error. Furthermore, network operators have a strong interest in

using as less as possible anchor nodes, since they are more expensive and

of high-maintenance nature. Therefore, this thesis also explores possibilities

to reduce the number of anchor nodes in the network to maintain a certain

localization error.
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1.2 Thesis Main Contributions

In this thesis an initial study of the most common technique used in range-

based localization is performed. In theory, the Received Signal Strength Indi-
cator (RSSI) allows estimating distances based on the power of the received

signal. However, one key finding of this study is that relying on distance

estimation based on signal strength leads to very unsteady results and is

not suitable for the application in rapidly deployed or mobile sensor net-

works. The conducted study motivates the focus on range-free solutions in

the following parts of the thesis.

After that, two solutions to solve the problem of missing anchor informa-

tion for the MCL algorithm are proposed. In SA-MCL additional sensor

information from common sensors like magnetometer and accelerometer is

used to determine the path a node travels relative to its last known posi-

tion. The approach is initially evaluated using network simulation. After

the simulations, a field test study in a mobile WSN testbed is performed.

The testbed uses radio controlled cars to introduce mobility in the network.

Studies on real hardware are very rare, especially evaluations performed in

mobile WSNs [37]. SA-MCL can reduce the localization error by up to 60%

when compared to MCL.

The second approach additionally focuses on reducing the number of extra

sensors required in SA-MCL for applications with a certain mobility behav-

ior. Often, nodes in a WSN will move on a finite set of paths. PO-MCL

tries to exploit this behavior by mapping the paths to a grid structure held

in memory. In situations without anchor information the grid acts as a ref-

erence to predict the movement of the node. PO-MCL is evaluated using

professional network simulation software. The results indicate that the lo-

calization error can be reduced by up to 50% when compared to MCL.

In short, the contributions of this thesis can be summarized in the following

way:

• Review of well-known ranging techniques and state of the art range-

free localization algorithms for WSNs.

• Analysis of the suitability of RSSI as a distance estimator for the usage

in range-based localization algorithms in WSNs.
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• Design and implementation of two new variants of the well-known

MCL localization method named SA-MCL and PO-MCL to reduce the

localization error and save expenses for costly anchor nodes.

• Analysis of both approaches using network simulation tools.

• Design and deployment of a mobile WSN testbed based on radio con-

trolled cars to evaluate SA-MCL in a real environment.

1.3 Thesis Impact

This section gives a full list of all publications as well as supervised theses

and projects.

First author publications:

• Sensor-Assisted Monte Carlo Localization for Wireless Sensor Net-

works. Salke Hartung, Somayeh Taheri, and Dieter Hogrefe. In 6th

IEEE International Conference on Cyber Technology (CYBER), Hong

Kong, HK, June 2014.

• Sensor-Assisted Monte Carlo Localization for Wireless Sensor Net-

works. Salke Hartung, Ansgar Kellner, Arne Bochem, and Dieter

Hogrefe. In 6th IFIP International Conference on New Technologies,

Mobility and Security (NTMS) - Poster + Demo Session, Dubai, UAE,

April 2014.

• Practical RSSI Long Distance Measurement Evaluation in Wire-

less Sensor Networks. Salke Hartung, Henrik Brosenne, and Dieter

Hogrefe. In The 2013 IEEE Conference on Wireless Sensors (ICWiSe

2013), Kuching, Malaysia, December 2013.

Co-author publications:

• Anonymous Group-Based Routing in MANETs. Somayeh Taheri,

Salke Hartung, and Dieter Hogrefe. In Journal of Information Security

and Applications. Elsevier, 2014.

• Anonymity and Privacy in Multicast Mobile Ad Hoc Networks. So-

mayeh Taheri, Salke Hartung, and Dieter Hogrefe. In The 6th ACM

International Conference on Security of Information and Networks

(ACM/SIGSAC SIN 2013), Aksaray, Turkey, November 2013.
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• RDIS: Destination Location Privacy in MANETs. Somayeh Taheri,

Salke Hartung, and Dieter Hogrefe. International Journal of Informa-

tion Privacy, Security and Integrity (IJIPSI), Vol. 1, Nos. 2/3, 2012.

• Achieving receiver location privacy in Mobile Ad Hoc Networks.

Somayeh Taheri, Salke Hartung, and Dieter Hogrefe. In Proceedings

of the IEEE International Conference on Information Privacy, Security,

Risk and Trust (PASSAT2010), Minneapolis, USA, August 2010.

Supervised Theses and Projects:

• Efficient Localization for Mobile Wireless Sensor Networks, Master

Thesis, Arne Bochem, 2015

• An ESRI-Shapefile-based Mobility Model Implementation for the

Qualnet Network Simulator, Bachelor Thesis, Andreas Zdziarstek,

2014

• Analyse der Sendereichweitebestimmung des Netzwerksimulators

Qualnet, Student project, Andreas Zdziarstek, 2014

• Entfernungsmessung in Sensornetzwerken., "FoLL - Forschungsori-

entiertes Lehren und Lernen1 im Sommersemester 2013", University of

Goettingen, 2013

1.4 Thesis Organization

This thesis is divided into the following chapters as shown in Figure 1.1.

Chapter 1 is this introduction

Chapter 2 describes the theoretical background of this thesis. It contains nec-

essary explanations, examples and definitions regarding WSNs in general

with particular attention paid to the localization process. Further, the nota-

tion used in this thesis is presented. Readers with a technical background of

WSNs and localization might want to skip this chapter and directly proceed

to Chapter 3.

1FoLL is an interdisciplinary project established by the University of Goettingen to inte-
grate undergraduate students in research work



1.4. THESIS ORGANIZATION 7

Chapter 1

Introduction

Chapter 2

Fundamentals

Chapter 4

RSSI Study

Chapter 5

SA-MCL

Chapter 6

PO-MCL

Chapter 7

Conclusion

Chapter 3

Related Work

Figure 1.1: Thesis organization.

Chapter 3 summarizes well-known range-free localization approaches and

puts special focus on the MCL algorithm, which is the fundamental core this

thesis is built on top on.

Chapter 4 presents a study considering RSSI as a possible distance estimator

for the usage in range-based localization algorithms. The suitability of RSSI

is examined in various practical experiments, and sources of impact on RSSI

measurements are listed. The findings of the study motivate the use of

range-free localization in the remainder of this thesis. Readers familiar with

the disadvantages of range-based localization, especially using RSSI, may

want to skip this chapter and directly proceed to Chapter 5.

Chapter 5 introduces and evaluates Sensor-Assisted Monte Carlo Localiza-
tion (SA-MCL). After an extensive simulation study, a mobile WSN testbed

consisting of radio controlled cars is presented, which is used to evaluate

the feasibility of the proposed solution in a real scenario.

Chapter 6 introduces and evaluates Path-Oriented Monte Carlo Localization
(PO-MCL). Extensive network simulation is performed to evaluate different

application scenarios.

Chapter 7 summarizes the conducted research, lists the limitations of this

work and gives an outlook on possible future work.





Chapter 2
Prerequisites

In this chapter basic principles of WSNs are revised and fundamentals of lo-

calization are explained. Readers with a technical background in WSNs and

localization might want to skip this chapter. However, to be able to follow

subsequent chapters and to get an understanding of the notation used in this

thesis, it is advisable to skim through the terms and definitions introduced

in Section 2.2.

Contents
2.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . 10

2.2 Localization in Wireless Sensor Networks . . . . . . . . . 25

2.3 Conception of New Localization Algorithms . . . . . . . 37
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2.1 Wireless Sensor Networks

A WSN is a multihop network formed by very small computer devices,

which are highly restricted in their technical capabilities. The main purpose

of a WSN is to collect environment data of all kinds. The data is forwarded

to a central base station called sink, which usually operates as a gateway to

a more sophisticated network responsible for processing the collected data.

Details on the limitations and the network architecture of WSNs are given

in Section 2.1.2 and Section 2.1.6, respectively. The process of collecting

data about an object in the context of a WSN is called sensing. Sensing

may include data like temperature values, air pressure, oxygen and other

gas levels, soil humidity, positioning data, health related data like blood

pressure or cardiac frequency or in short all data, which can be recognized

using a hardware sensor. Possible applications and examples of deployed

sensor networks are given in Section 2.1.3.

In contrast to wired networks or wireless networks built on the 802.11 stan-

dard family [38], WSNs are formed in an ad hoc manner. Instead of directly

communicating with a central base station, all participating nodes in the

network have to act as forwarding relays. This leads to several constraints

and additional challenges demanding highly optimized algorithms fitting

the needs of WSNs.

The following paragraphs give detailed information about the historical de-

velopment of WSNs, list restrictions and limitations of WSNs and provide

an overview of popular hardware platforms for sensor nodes. Furthermore,

possible applications and example projects are shown.

2.1.1 History of WSNs

Similar to other developments in computer networks, WSNs have their ori-

gin in military research. Pretty much as the invention of the Internet, the

Defense Advanced Research Projects Agency (DARPA) was heavily involved in

conceiving the concept of hardware platforms responsible for collecting en-

vironment data. After organizing the Distributed Sensor Nets Workshop in

1978 (DAR 1978) DARPA also founded the Distributed Sensor Networks (DSN)
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project during the early 1980s [1, 39]. While DARPA mainly focused on (mil-

itary) applications, later research targeted the design of a unified hardware

platform, which was not designed for one application in particular, but could

act as a universal sensing platform. As a main contributor to this develop-

ment, the University of Berkely came up with the Smart Dust project [40]

which focused on the design of very small hardware platforms they named

motes. Up to today the Berkeley mote is considered to be the conceptual

pioneer and technical prototype of all following generations of sensor motes

developed by other manufacturers. For a long time WSNs were considered

to be an entirely own field of research. With the upcoming development of

the Internet of Things (IoT), WSNs are considered to be a possible application

of the IoT.

2.1.2 Constraints in WSNs

Due to its architecture and design principles a WSN faces several restrictions

and constraints [1]:

• Energy

A fundamental constraint in WSNs is energy. Usually all nodes in

a WSN are battery powered or at least battery backed up if another

power source is available, for instance, by using solar cells. As a direct

consequence, the WSN node and software architecture completely fo-

cuses on efficient power management. This includes the design of the

used hardware, the operating system and all algorithms running the

network.

• Computational Resources

Nodes in WSNs have very limited computational capabilities, since

they are driven by very low-clocked processors in the range of a few

MHz. In addition, the application memory used to store programs

and currently processed data is very small and the size of only a few

kilobytes.

• Transmission Range

One of the most energy wasting operations in a WSN is network com-

munication, in particular the transmission of packets. As a result and
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to keep the power consumption as low as possible, nodes in a WSN

have a very limited transmission range. Although the theoretical trans-

mission range often exceeds hundreds of meters, the effective transmis-

sion range is remarkably lower.

• Wireless Operation Mode

As WSNs only operate in wireless mode, they are prone to the same

challenges as in 802.11 networks (like signal attenuation, reflection,

fractioning, etc.) with additional constraints resulting from the limited

hardware capabilities.

• Autonomous Operation Mode

A WSN is designed to operate completely on its own. Depending on

the application scenario a WSN must be able to bootstrap completely

unattended after deployment and must be able to reconfigure in case

of topology changes, broken links, physical damage of single nodes,

etc.

2.1.3 Application Areas of WSNs

Application areas of WSNs are manifold. The following is a list of some

examples, but raises no claim to completeness.

• Environment Monitoring

A classic application for WSNs is the monitoring of all kinds of data

related to the environment [41, 42, 43]. This can include very obvi-

ous things like weather parameters (temperature, air pressure, wind

speed), but is also used for surveillance of volcanos, flood and earth-

quake regions or pollution levels close to factories and power plants.

In agriculture scenarios farmers can monitor the status of their fields,

identify areas which need more watering or fertilization or check the

filling levels of feeding troughs and waterholes.

• Exploration of Rivers and Oceans

Robust and waterproof sensor motes can be thrown into rivers and

oceans to monitor the water quality or to explore streams [44, 45, 46].

These networks are considered to be mobile as the flow of water will
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change the position of the nodes over time. There are also scenarios

for underwater applications to monitor methane sources, geologic ac-

tivities or to study the behavior of schools of fish.

• Smart Cities

Smart Cities is the summarizing term for city management aspects in

which sensor data is used to react fast and efficiently to certain needs.

A typical example is street light management. Nowadays solutions

usually switch on all lights at programmed points in time or are con-

trolled by a single light sensor. In Smart Cities street lights can be

turned off and on depending on the ambient light levels. Another ex-

ample is waste management. Intelligent litter boxes can record their

fill level and provide this information to garbage collection companies.

Using fill level information optimal garbage collection routes can be

planned and hotspots of littering can be identified. Building Smart

Cities is a central aspect of future city planning strategies and gets lots

of attention in research [47, 48, 49, 50].

• Disaster Management

In the event of natural or other disasters a quickly deployed WSN

might be the only option to get an overview of the disaster area. Ex-

isting infrastructure might be damaged or destroyed or simply not

available in the disaster area [51, 52, 53].

• Wildlife Tracking/Monitoring

To gather information about the behavior of animals, WSNs can be

used to record health parameters, dynamic behavior of herds or trav-

eling routes of migrating birds [54, 55]. For wildlife tracking animals

have to carry a sensor mote fitted to the special challenges in this sce-

nario. The hardware has to be very robust against weather influences

and physical damage while not interfering with the animals behavior.

A very prominent example of a deployed WSN for wildlife monitoring

is the CraneTracker project (see Section 2.1.4).

• Home Automation

More recently WSNs gathered lots of attention in the sector of home

automation [56, 57, 58, 59]. This mainly focuses on monitoring parame-

ters of the own residence like heating, lights, motion detectors, surveil-
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lance cameras, etc. However, in home automation additional function-

ality is required. Users like to interact with their infrastructure and

change parameters of things which are connected to the network (e.g.,

change temperature of heating, switch on/off lights). Nevertheless the

home automation is an important example of deployed micro WSNs

and of course also a prominent example of the Internet of Things.

• Military Applications

Although manifold applications in the military sector can be thought

of [60, 61, 62], this part is only mentioned for the sake of completeness

and will not be further discussed in this thesis.

2.1.4 Examples of Deployed WSNs

To give an impression how sensor networks find their way into research and

industry applications the following lists a few examples of deployed and in

use WSNs.

• CraneTracker Project

The CraneTracker project [23, 24] aims to develop an automated

method for following and tracking migrating birds such as the endan-

gered whooping crane. In CraneTracker a sensor mote is constructed

specially designed for capturing movement data and positions which

is important for analyzing bird behavior. The system is equipped with

Groupe Spécial Mobile (GSM) for long distance data transmission, GPS

for capturing location information, accelerometer and digital compass

to record movement and resting phases, and a solar panel to recharge

batteries. All data is sent to a processing backend which gives a visual

presentation of all information.

• Siega System

The Siega System is a specialized commercial platform by Libelium

[63] used for monitoring agriculture factors in wine yards or green-

houses. It is a complete system of minor scale (10-50 sensor nodes)

including a backend for processing and presenting data. Deployed

sensors collect weather information and soil condition as well as hu-
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midity and leaf wetness. The collected data can then be used to create

optimal conditions for the raised plants.

• EU-China Dialogue on Smart Cities

Formally started in 2013 the EU-China Dialogue on Smart Cities [64]

project explored the suitability of several smart city aspects in deployed

WSNs. Including some of the biggest cities in Europe and China

(e.g., Barcelona, Copenhagen, Frankfurt, ..., Beijing, Shanghai, ...) and

funded by the EU and Chinese government the EU-China Dialogue on

Smart Cities is one of the largest WSN projects ever conducted.

• WINSOC project

The Wireless Sensor Networks with Self-Organization Capabilities for

Critical and Emergency Applications (WINSOC) [65, 66] project is

funded by the EU commission and a cooperation between research

facilities in Europe and India. The main goal is to build fail-safe and

self-healing networks which can operate even in the event of natural

disasters. Special focus lies on the early detection of land slides which

are likely to appear in the deployment area around Munnar, Idukki

District, state of Kerala, South India. The system sent out a warning in

2009 of a possible impending land slide and proved its functionality.

• Off-The-Shelve Products

With the help of commercial enterprises focusing on manufacturing

off the shelf (ots) components, tiny-scaled WSNs find their way into

sectors like farming, agriculture and home automation. Companies

like Libelium or Advanticsys provide several case studies in which

their products are shown to be a helpful addition for monitoring the

status of cattle and greenhouses. The systems often feature complete

solutions from modular sensor components, which can be combined

in an easy way, through to web front ends and applications to present

the collected data to the user.

2.1.5 Hardware Components in WSNs

As already mentioned in Section 2.1.1, a single entity in a WSN is referred to

as sensor mote or short only mote. In another terminology with higher regard
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to networking a sensor mote might also be called a single node of the WSN.

In this thesis the terms mote, sensor mote and node are used equivalently.

The typical architecture of a WSN node can be divided in 3 subsystems [1],

which are connected via communication buses, respectively a standardized

interface such as the Serial Peripherical Interface (SPI), the general purpose

input/output (GPIO) or the inter-integrated circuit (I2C).

2.1.5.1 Sensing Subsystem

The sensing subsystem includes all hardware sensors and necessary circuits

for analog/digital (a/d) converters. It provides an interface for communi-

cation with the processing subsystem, which can request sensor data in a

polling manner. New data is sent by the sensing system to the processing

subsystem whenever it is requested. Most sensors provide analogue data,

i.e., different voltage levels corresponding to the measured values. An a/d

converter is required to provide quantized values for further processing of

the data. A sensor combined with an a/d converter supporting a ready to

use interface is called a sensor unit.

2.1.5.2 Processing Subsystem

The processing subsystem includes the main processor and the memory of

the device. All programs including the operating system are stored in a non-

volatile flash memory. Runtime data such as program variables and recently

collected sensor data is stored in the program memory. In addition, a node

might provide a special data memory which is used to store sensor data for

longer periods of time. Often, this data memory is multiple times larger

compared to the program memory. It is worth to note that the processing

subsystem is not following the design of the von-Neumann architecture, but

the Harvard architecture [67], since it is using separated memory for pro-

gram instructions and data.
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Figure 2.1: Sensormote schema.

2.1.5.3 Communication Subsystem

Sending and Receiving packets is controlled by the communication subsys-

tem. This includes the antenna and the radio transceiver (transmitter/re-

ceiver) chip as well as an interface to the processing subsystem. A special

processing unit for modulation/demodulation tasks might be present if this

is not handled by the radio chip itself.

A graphical overview of the components of a sensor mote platform is shown

in Figure 2.1. Although this schematic layout looks very modular, all of the

3 subsystems are usually placed on a single board.

2.1.5.4 Popular Sensor Mote Platforms

The following provides a short overview of popular sensor platforms used

in research and industrial applications. To a greater or lesser extent all plat-

forms have the same hardware capabilities of a few MHz processing power

and about 4-8 KB of RAM. However, depending on the exact components

important differences can occur. Therefore, at the beginning of a research

project it is important to chose suitable components.

• WASP Mote by Libelium

The WASP Mote [68] is a ready-to-use product targeting deployable

applications. It is built for robust outdoor tasks and to survive even

under extreme weather conditions. The WASP mote is built as a modu-

lar hardware system which means it can be easily adapted to meet the

application’s requirements by equipping it with different radio mod-

ules (e.g., GSM, ZigBee, RFID) and different sensor boards. The main
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(a) WASP Mote (b) MicaZ Mote (c) IRIS Mote (d) CM3000 Mote

Figure 2.2: Examples of sensor mote platforms.

board is currently driven by a 14 MHz ATmega1281 processor and

8 KB of RAM. Besides the pure hardware components Libelium of-

fers a complete backend solution with cloud support and automated

database storage of sensor data.

• MicaZ Mote by Crossbow Technologies

Equipped with an ATmega128L processor the MicaZ mote [69] features

8 MHz processor power and 4 KB of RAM. The communication unit of

the MicaZ mote (MPR2400) follows the 802.15.4 standard and supports

a transmission rate of 250 kbps and AES encrypted transmission. To

log data, the mote is equipped with a dedicated 512 KB log memory.

Crossbow Technologies designed this sensor platform as a universal

device which can be connected to any kind of sensor. Therefore, it

provides interfaces for several bus communication standards including

analog inputs, digital i/o, I2C, SPI and UART interfaces. Crossbow ad-

ditionally provides preconfigured sensor boards which are connected

via the 51-pin expansion connector.

• IRIS Mote by Crossbow Technologies

The IRIS motes [70] are almost identical compared to MicaZ motes

except for the double sized RAM of 8 KB and a different transceiver

module (RF230 Atmel).

• CM3000 Mote by Advanticsys

The CM3000 sensor mote [71] by Advanticsys are adapting the original

Berkeley mote and are based on the open source TelosB mote [72].

In contrast to the above models, the Advanticsys motes are powered

by an 8 MHz Texas Instruments processor (TI MSP430F1611 [73]) and
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(a) Fractus BlueTooth Transceiver (b) Coin sized Mote

Figure 2.3: Small scale WSN components.

transceiver module (TI CC2420 [74]). Another difference is the lack of

a fixed antenna. Instead, arbitrary external antennas can be connected,

which allows to utilize antennas with higher gain or even directional

antennas.

All mentioned sensor platforms are shown in Figure 2.2. The listed items

are built for general purpose research usage. Components designed for spe-

cialized applications can be built much smaller and will offer interesting fu-

ture applications. Figure 2.3 shows two examples of very small components

which can be used in a WSN. The left image shows a chip antenna com-

bining Bluetooth, ZigBee and WLAN built by Fractus [75] which is smaller

than a rice corn and therefore can be used to build extremely small devices.

The right image shows the prototype of a very compact sensing platform

developed by the Japanese company NMEMS Technology Research Organi-

zation. The whole sensing module fits on a 7mm× 7mm square platform

and reaches only coin size when equipped with the smallest antenna and

powered by a coin cell [76].

2.1.6 Network Architecture of WSNs

WSNs are designed as multi-hop networks which means that in contrast to a

Wireless Local Area Network (WLAN) as defined by the 802.11 standard family

packets are not directly transmitted to the intended receiver in a single-hop

manner (see Figure 2.4), but forwarded hop by hop. In addition, there is
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Figure 2.4: Single-Hop architecture in traditional WLANs.

no central entity, e.g., a router, which is responsible for organizing the com-

munication, i.e., set up routes, control data flow in the network, exclude

over-excessive nodes, etc. As a consequence, the complete networking man-

agement process is organized in a decentralized manner in WSNs. Every

node is responsible for finding a route to its intended communication part-

ner and for forwarding packets if it is part of another route.

The major part of the communication can be assigned to forwarding the

data collected by the sensors. As mentioned above, all data in a WSN is

typically propagated towards a central network entity called the sink. The

sink acts as a gateway to a higher level network or is equipped with a data

storage system to save the collected data for a longer period of time until it is

collected by a network maintainer. Routing in WSNs is done on the fly, i.e.,

there are no predefined gateways or routes during deployment. The design

of routing protocols for WSNs is an enormous part of research conducted

in WSNs and lots of protocols have been proposed with regard to different

aspects and routing metrics important for WSNs such as energy levels, hop

count or Expected Transmission Time (ETT).

The multi-hop design of a WSN is illustrated in Figure 2.5. The figure shows

the sink as the central entity and a bunch of nodes with communication ra-

dius r. If a node has no direct neighbor as a communication partner it is

excluded from the network communication and considered as isolated from

the network as shown in the upper right corner. It is also possible that the

network is temporarily split into two or more parts. Furthermore, it can be

seen that a possible route to the sink may not necessarily be the shortest one

(with regard to hop count), as the routing algorithm might consider things

like energy levels or number of neighbors and chose forwarding nodes ac-

cordingly.
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Figure 2.5: Multi-hop architecture in WSNs.

2.1.7 Node Mobility

WSNs can differ in their way of mobile behavior. Depending on the applica-

tion nodes can be static, semi-mobile if only parts of the network are able to

move, or fully mobile if all nodes are able to move in the deployment area.

2.1.7.1 Static WSNs

The most obvious type of a WSN with regard to mobility is no mobility at

all, i.e., all nodes are static and will never move during runtime on their

own. Static WSNs are usually only configured once during deployment

time. Changes in the network topology, communication routes and node

neighborhood are only expected if a node in the network completely fails.

A typical example for a static WSN is monitoring agriculture where nodes

could be deployed in a grid topology on a cornfield.

2.1.7.2 Rapid Deployment

Rapid deployed WSNs emerge when sensor motes are quickly placed in

their field of operation without prior choosing their exact final destination.
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Examples are motes thrown out of an airplane to gather information on

forest fires or polluted areas. In rapid deployment situations the network has

to deal with the emerging random network topology and some nodes might

even get lost completely, because they are isolated from communication.

Often, motes are not expected to be collected after their mission, since they

are considered to be damaged (e.g., due to heat, water, etc.) or the risk of

retrieving them is too high. Rapid deployed sensor networks must be able to

completely bootstrap and configure on their own without external control.

2.1.7.3 Mobile WSNs

In mobile WSNs all nodes are assumed to be moving in the deployment area.

The type of movement might differ depending on the application type the

most general assumption is to allow all nodes to move arbitrary. Complete

mobility leads to several new challenges for the operation of the network.

Established communication routes might fail due to broken links and must

be reestablished. Single nodes might completely lose contact to the network.

In this time they will not be able to forward their collected data and have to

buffer it until a connection to the network is reestablished. Depending on

the size of the data buffer, some data might have to be dropped.

2.1.7.4 Semi-Mobile WSNs

In a semi-mobile WSN some nodes are able to move or all nodes are able to

move at certain times. A possible application might be robots traveling on a

deployment site which are acting as relays to forward data from otherwise

isolated nodes.

2.1.8 Mobility Models

The mobility model in a network describes how a participating node behaves

in terms of location, speed and acceleration over time [77]. It is difficult to

classify the movement behavior in WSNs, as there are manifold possibili-

ties. However, a few models established due to their general approach of
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modeling mobility. Mobility models are exceptional important in network

simulation software as it has great impact on the quality of the simulations.

2.1.8.1 Random Waypoint Model

The most general case is defined by arbitrary movement. In the random

waypoint model [77, 78] a node choses an arbitrary destination in the de-

ployment area and moves to it with a certain velocity. After reaching the

waypoint the node will pause for a short random period. The process is re-

peated until the end of the simulation. Most implementations of the random

waypoint model allow defining an interval for the minimum and maximum

velocity, [vmin,vmax]. For each segment the node will chose a random ve-

locity v with vmin ≤ v ≤ vmax. More detailed implementations also provide

simulation of acceleration and deceleration. Since it is very easy to imple-

ment and adequately describes arbitrary movement without restrictions, the

random waypoint model is one of the most commonly used models for node

mobility in scientific work.

2.1.8.2 Random Walk Model

The random walk model [77, 78] is similar to the random waypoint model,

but it uses no pause times and defines a random direction to move in rather

than a fixed waypoint to move to. When hitting the deployment area bound-
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Figure 2.6: Illustrations of different mobility models.
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(a) Manhattan model. (b) Pathway model

Figure 2.7: Illustrations of graph-based mobility models.

aries the direction is changed depending on the incoming angle. The ran-

dom walk model was introduced to overcome the clustering problem of the

random waypoint model where nodes are often mainly concentrated in the

middle of the simulation area instead of using the full extent. Both models

are illustrated in Figure 2.6, which is taken from [78].

2.1.8.3 Graph-based Models

Graph-based models are used to model geographic restrictions. This is use-

ful to model areas which cannot be accessed by nodes or to model movement

which is only allowed on a set of given paths. A popular representative of

a graph-based mobility model is the Manhattan model [77, 78, 79] in which

mobility is only allowed on a grid with right-angle intersections. Graph-

based models also allow introducing of probabilities for certain segments

of the graph and therefore allow modeling of more frequently and less fre-

quently used paths.

A mapping of the random waypoint model to a graph has been proposed

by Tian et al. [80]. Instead of randomly choosing a new waypoint, in the

pathway model a node is only allowed to chose a random edge of the graph

when reaching a vertex. All other parameters are similar to the random

waypoint model.
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2.2 Localization in Wireless Sensor Networks

As mentioned earlier, collected data in WSNs will only make sense if it

is associated with spatial data, i.e., a position φ in space. As long as all

sensor motes are static, a mapping of a unique sensor ID to its position

can be generated offline and does not have to be defined necessarily during

deployment time. However, if motes are exchanged or moved to different

positions, the mapping would have to be updated every time. Therefore,

it is desirable to acquire positioning data (i.e., φ) during operation time of

the network, especially if some or even all nodes are mobile and can move

arbitrarily in the network deployment area.

φ can be represented as a vector ~p in a local or global coordinate system. In

general, for global coordinates well-known sytems from geographical car-

tography are used. These systems always relate to a given ellipsoid, which

is a mathematical abstraction of planet Earth. The most prominent example

is the Gauss/Krueger coordinate system [81] based on the WGS84 [82] el-

lipsoid. In a local coordinate system ~p can be simply given by ~p = (x,y,z).
Using local coordinate systems can be of advantage to simplify position cal-

culations in the network. A mapping to a global coordinate system can easily

be done by every node after determining φ in the local coordinate system.

Definition 2.1 (Localization in WSNs) The term localization refers to the pro-
cess of determining an arbitrary sensor mote’s position φ in space.

Definition 2.2 (Self-Localization in WSNs) The term self-localization refers to
the process of a sensor mote determining its own position φown in space.

Both terms are often used equivalent. For the rest of this thesis, if not

stated otherwise, the term localization refers to the more precise term self-

localization.

Localization must not be confused with the term tracking, which refers to

monitoring φ of a node over a period of time. Precisely, localization can be

used as a tool for tracking applications, but does not have the same meaning.



26 CHAPTER 2. PREREQUISITES

2.2.1 Usage of Global Navigation Satellite Systems

The easiest way to determine the position φ of a mote is to make use of a

Global Navigation Satellite Systems (GNSS) like GPS. GPS [83] is a nowadays

standard and used mainly for navigation systems in cars or mobile phones.

GPS was designed by the US military and provides a lower precision ser-

vice for civil applications. More recently, other systems evolved, mainly the

Galileo [84, 14] system by the European Union (EU) in cooperation with the

European Space Agency (ESA), the Russian GLONASS [14, 15] system and the

Chinese BeiDou Navigation Satellite System (BDS). Although these systems

are already in the deployment phase and potentially provide a better spa-

tial resolution, all of them experienced several setbacks including destroyed

or malfunctioning satellites [85, 86]. As a consequence it can be assumed

that GPS will stay the de facto standard positioning system during the next

years. For this reason, the rest of the thesis will refer to the term GPS as a

representative for all GNSS systems.

A GPS device directly provides the position vector ~p given as a tuple of co-

ordinates. Additional information includes the current time and level above

sea. All information usually is encoded by the National Marine Electronics
Association (NMEA) [87], which is a plain text format. As a consequence,

even if no higher level Application Programming Interface (API) is available,

the information of the GPS device can be easily parsed.

Although a GPS device provides a very simple solution for determining the

own position, it is not suitable for the usage in WSNs due to several reasons.

• Additional energy consumption

Considering the restrictions given in Section 2.1.5, a mote is supposed

to save as much energy as possible. However, GPS is known for its

comparable high energy consumption and will be a tremendous factor

in the energy footprint of a mote.

• Additional space for chipset and antenna

GPS is usually implemented as complete hardware modules which

require additional space and an own antenna. Considering some of

the application scenarios as described in Section 2.1.3, the mote size is

required to be as small as possible.
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• Additional costs

In some applications for WSNs like disaster management it is very

likely a mote is only used once and will not be recovered after its

mission is completed. Especially in these scenarios the costs per mote

need to be kept as low as possible. GPS however is a comparable

expensive technique.

• Application scope

Many applications in WSNs are either completely designed for indoor

operation or target environments where clear line of sight to the sky

(i.e., to GPS satellites) might be restricted. GPS requires a clear signal

of at least 3 satellites. Considering the fact that GPS signals are often

blocked by city skyscrapers or are affected by strong attenuation in

forests, GPS is not a feasible localization option.

Because of the given reasons, equipping all motes in a WSN with GPS is

not a feasible option. Alternative approaches are necessary to fulfill a sensor

mote’s requirement of determining its position. The next paragraphs first

introduce required terms. After that, the concept of using anchor nodes and

localization algorithms is presented.

2.2.2 Basic Terms

Localization in WSNs works with the help of reference points. These can

be optical landmarks, which can be recognized by the motes (e.g., using

optical recognition systems), but usually some of the participating nodes of

the network are operating as reference points themselves. Therefore, they are

the only ones equipped with mechanism to determine their position without

external help, e.g., by using GPS. In WSNs nodes which act as reference

points are called seed nodes. The aim is to keep the amount of costly seed

nodes as low as possible.

Definition 2.3 (Seed Nodes in WSNs) A seed node of a WSN is a node which is
always aware of its own location during operation time of the network. Seed nodes
act as a set of reference points Ω for others to determine their position.

Equivalently used terms are anchors and references.
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Definition 2.4 (Simple nodes in WSNs) Nodes which do not have seed node
functionality are called simple, ordinary or normal nodes.

Simple nodes do not have any possibility to determine their position di-

rectly. However, they might have additional equipment, which combined

with the help of seed nodes, makes it possible to give a position estimation.

Seed nodes communicate with simple nodes in an unidirectional nature by

sending out location announcements on a regular basis.

Definition 2.5 (Location announcements) Location announcements are broad-
cast packets sent by all seed nodes in a regular interval δt. These announcements at
least include the position of the seed node and some sort of unique id.

Definition 2.6 (Observations) All location announcements received by simple
nodes between two localization approaches are treated as new observations, i.e., new
information, which helps estimating the own position.

2.2.3 Localization Algorithms

To avoid the problems of GPS as stated above, with the evolution of WSNs

several localization solutions have been developed. Instead of equipping

all motes with a dedicated device telling them their positions as GPS does,

the task of localization is transferred to the mote itself. With the help of

reference points a mote can run a localization algorithm to determine φ.

Definition 2.7 (Localization algorithm in WSNs) A localization algorithm is
a procedure executed by every mote in a WSN to estimate its current position φ

with the help of additional information provided by a set of reference points Ω.
The result is subject to a precision error εloc. To clarify the difference between the
estimated and the real position of a node the symbols φest and φreal are used.
Input: A set of reference points Ω

Output: φest with error εloc
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Every localization algorithm is subject to a precision error called the local-

ization error.

Definition 2.8 (Localization error) The localization error εloc of a localization al-
gorithm can be calculated as

εloc = |φest − φreal| (2.2.1)

To account for εloc the result of a localization algorithm often is referred to as

location estimation, instead of an exactly calculated position. In this thesis

the terms location, location estimation, position, position estimation and φest

are used equivalently.

2.2.4 Classification of Localization Algorithms

Different approaches exist to classify localization algorithms. Depending

on the focus of research this can be classification by mobility constraints

of the network, centralized and decentralized approaches, computational

constraints, strategy or active/passive operation [16, 17, 28, 88, 89].

A classic approach is to distinguish between range-based and range-free algo-

rithms [17, 28].

2.2.4.1 Range-based Localization Algorithms

Range-based localization algorithms require possibilities to actively generate

some sort of input data from which the position estimation is calculated.

This is called the ranging technique and can include distance estimations,

signal strength calculations, incoming angle determinations or any other

form of calculating references relatively to seed nodes.

A very common and trivial example of a range-based algorithm is trilatera-

tion [90]. Assume a simple node N1 wants to find its position φest and 3 seed

nodes S1,S2,S3 are available which send location announcements containing
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Figure 2.8: Trilateration example.

their position to N1. Further assume some ranging technique can be used by

N1 to determine the distances d1,d2,d3 to the seed. The emerging circles can

be intersected by N1 to find φest as sketched in Figure 2.8.

Range-based algorithms offer good precision in the optimal case, however, a

lot depends on the quality of the ranging technique.

2.2.4.2 Range-free Localization Algorithms

In contrast to range-based approaches, range-free algorithms in general are

mainly based on connectivity. They are usually designed to require only

minimal computational power and therefore save important resources with

regard to processor time, memory and energy. As a consequence, the preci-

sion of range-free algorithms cannot compete with the theoretical precision

of range-based algorithms. However, the following sections will argue why

the performance of range-based algorithms is unsteady and list several other

drawbacks of ranging methods.

Table 2.1 summarizes pros and cons of both algorithm classes.

2.2.5 Ranging Techniques

This section gives an overview of popular ranging techniques, discusses ad-

vantages and disadvantages of them and lists some applications where rang-

ing is used for localization.
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2.2.5.1 Received Signal Strength Indicator (RSSI)

The Received Signal Strength Indicator (RSSI) is an integer value which is cal-

culated based on the current signal strength. It is possible to estimate the

distance to the communication partner based on the RSSI value, given a suit-

able path loss model. The path loss model is a mathematical formula used to

describe the signal loss, given factors like the distance between sender and

receiver, antenna capabilities, transmission power, humidity or walls built

of different materials. They are all following the physical fact that signal

propagation follows the inverse square law (see Equation (2.2.2)) [91], which

means with given transmission power Pt the power of the received signal Pr

is not decreasing linearly with distance d. Instead, doubling the distance

between two nodes results in a 4-times lower signal strength at the receiver.

Pr ∝
Pt

d2 (2.2.2)

An often used model is the Friis free space propagation model [92, 91] given

in Equation (2.2.3). Since receiving power (Pr), transmitting power (Pt), an-

tenna gains at sender and receiver (Gr, Gt) and the wavelength of the sig-

nal (λ) are known, it is possible to calculate the distance d between trans-

mitter and receiver by rearranging the equation. The factor L is supposed to

account for other losses of all kinds and is often simply set to 1.

Pr(d) = Pt
GrGtλ

2

(4πd)2L
(2.2.3)

Propagation models like Friis free space propagation model, ground reflec-

Range-based localization Range-free localization

+ higher accuracy in optimal case + no ranging required

- eventually complex ranging + small overhead

- accuracy depends on quality of ranging + often easy to implement

- higher algorithm complexity - lower accuracy

Table 2.1: Pros and cons of range-based and range-free localization.
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Figure 2.9: ToA distance estimation.

tion 2-way model or log normal shadowing model [91] have not been de-

signed for application in WSNs and are mostly used for calculations in net-

works with large distances between sender and receiver as they can be found

in cellular networks used for mobile telecommunications. For WSNs more

specialized path loss models as in [93] and [94] have been developed. How-

ever, they all suffer from the common problem that obstacles like houses,

trees, rocks, etc. have heavy impact on signal propagation. Nevertheless,

RSSI is a very popular ranging technique used in ad hoc networks. Lots of

research works using RSSI assume a constant behavior as defined by the path

loss model without regard to influences which affect signal propagation. An

evaluation study of RSSI as a distance estimator is given in Chapter 4.

2.2.5.2 Time of Arrival (ToA) and Round-Trip Time (RTT)

Time of Arrival (ToA) is a method of determining distances based on time

stamps. Since radio signals are propagating with the speed of light [91], it

is possible to calculate the distance a packet traveled if it is known when

the packet has been sent and received. ToA is based on the assumption

that radio signals are propagated by the speed of light in a vacuum. This

approach requires precisely synchronized clocks at the sender and receiver

side. To avoid expensive timing devices at at least one communication end,

instead of measuring the one-way ToA, the Round-Trip Time (RTT) is usu-

ally preferred, i.e., the time from sending a packet until receiving a reply is

measured. Both methods are illustrated in Figures 2.9 and 2.10.

ToA is used in the GPS system (see Section 2.2.1) where all GPS satellites are

equipped with an atomic clock to avoid a desynchronized system. The GPS

consumer clients are usually equipped with simple clocks.
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Figure 2.10: RTT distance estimation.
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Figure 2.11: TDoA measurement.

2.2.5.3 Time Difference of Arrival (TDoA)

The Time Difference of Arrival (TDoA) approach makes use of two different

signals propagated with different speed, e.g., combining radio and audio

waves. If sent at the same time, the distance between two nodes i and j
can be calculated by taking the different arrival times of both signals into

consideration. The process is illustrated in Figure 2.11.

Both ToA and TDoA are used in cellular networks, for instance, for the

localization of mobile phones. Although a mobile phone only interacts with

one base station for user communication, it is always connected to multiple

base stations for planning handovers. Therefore, especially in urban areas

where the density of base stations is notably higher, both techniques can be

applied.

2.2.5.4 Angle of Arrival (AoA)

It is possible to measure the angle of an incoming signal to determine the di-

rection where the signal must have been propagated. Angle of Arrival (AoA)

determination can be done for audio waves as well as for radio waves. For

audio waves highly sensitive microphones are required which are able to

observe minor changes in volume levels depending on the microphone po-

sition. AoA with audio waves does not have significant impact in real appli-
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Figure 2.12: Distance estimation using hopcounting.

cations because of natural noise which would interfere with measurements.

For radio waves angle determination can be accomplished using special an-

tennas which are divided in sectors or arrays of antennas. With three an-

gle estimations the triangulation algorithm [90] can be run. However, AoA

measurements either require lots of efforts or expensive hardware and are

therefore rarely used in real applications. Even more recent approaches [95]

using commercial ots Software Defined Radio (SDF) still have a comparatively

high price.

2.2.5.5 Hopcounting-based Techniques

Since the maximum transmission range r is usually a known parameter in

the network, hop counting can give a rough estimation of the distance be-

tween a sending and a receiving node in a WSN. However, as shown in

Figure 2.12, this can lead to large errors depending on the network constel-

lation. In the left example of the figure the hop count is 2, i.e., the estimated

distance will be set to 2× r, which is roughly correct, because all nodes are

almost arranged linear. In the right example the hop count is 3, i.e., the esti-

mated distance will be set to 3× r, although sender and receiver are actually

much closer to each other.
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2.2.6 Metrics for Evaluating a Localization Algorithm

2.2.6.1 Absolute Localization Error

The most important metric by far for all localization algorithms is precision.

Precision in terms of absolute localization error εloc can be defined as the

difference in distances from the estimated position φest to the real position

φreal , as already stated in Definition 2.8 for the localization error εloc. Local-

ization is typically done in R2 or R3 so the distance between φreal and φest is

given by the Euclidean Distance as defined for the two dimensional case in

formula 2.2.7.

Definition 2.9 (Localization error calculation) The localization error εloc of a
localization algorithm is determined using the Euclidean Distance

εloc =
√
(|φreal .x− φest.x|)2 + (|φreal .y− φest.y|)2 (2.2.7)

In evaluations of range-free localization algorithms the localization error is

often given as the quotient of the absolute error and the radio range r as

shown in Equation (2.2.8). The quotient is also denoted as εloc(r).

Definition 2.10 (Localization error in terms of r)

error-quotient = εloc(r) =
εloc

r
(2.2.8)

2.2.6.2 Computational and Traffic Overhead

The computational overhead describes how expensive it is to determine the

position of a node in terms of processor and memory usage. This can be

done by counting instruction cycles necessary for running the localization

algorithm or by assigning weights to instruction classes. For instance a com-

parison is executed much faster compared to a multiplication operation in

a processor [96]. Traditional complexity analysis can be done to classify an
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algorithm based on its input size. However, although many localization al-

gorithms can be found in the same complexity class (e.g., O(n)), it is worth

having a closer look at performance differences between them. In resource-

limited environments like WSNs it is important to eliminate computational

overhead wherever possible.

Traffic overhead describes the number of packets necessary to exchange be-

tween nodes in order to gather necessary information for the localization

algorithm. For instance all seed nodes send location announcements and

simple nodes may send packets for ranging purposes. A commonly used

metric to describe the traffic overhead of a protocol is the ratio of number

of control packets Ncontrol and number of data packets Ndata as shown in

Equation (2.2.9) [97].

Definition 2.11 (Traffic overhead)

overhead =
Ncontrol

Ndata
(2.2.9)

However, this metric can only be applied if assumptions about the network

traffic can be made or if real network traces are available. Therefore, it is

usually not used in evaluations of localization algorithms.

2.2.6.3 Power Consumption

One of the most limiting resources in a WSN is energy in terms of battery

power. A very important goal of all algorithms in a WSN is to save energy

whenever possible. The energy overhead describes how much additional

power is required to run an algorithm. Energy overhead is very difficult to

capture, since it would require to monitor the processor time and to derive

the consumed energy from that. A more convenient way is to directly mea-

sure the power consumption of the node and to monitor the battery level

over a certain period of time. A common approach is to measure the current

draw of a node when running specific algorithms using a multimeter.
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2.3 Conception of New Localization Algorithms

2.3.1 Network Simulation

A major problem of designing new algorithms for distributed systems is

testing and validation. Deploying new algorithms is a complicated and time

consuming process and often not an option at all if a running system would

have to be interrupted. A much more convenient solution is network simu-

lation. Depending on the capabilities of the simulation machine, thousands

of nodes can be simulated to evaluate scalability and performance of al-

gorithms [98, 99]. A network simulation environment usually consists of a

hardware and a software layer. Depending on the sophistication of the simu-

lation the hardware layer can be provided by a single personal computer or a

cluster system specialized on multi-threaded tasks. Either way, the software

layer on top defines a virtual environment for the network. As a simula-

tion cannot represent the real environment in every detail, all parameters

which have impact on an algorithm have to be approximated by a mathe-

matical model [100, 101]. Examples are the path loss models discussed in

Section 2.2.5.1 to introduce fading effects or the mobility models discussed

in Section 2.1.8 to define a certain mobility behavior of the nodes.

2.3.2 Used Software

Network simulation software is a well-established tool in nowadays com-

puter science research. There are a variety of different simulators avail-

able which can be categorized by open-source/free or commercial products,

commandline or Graphical User Interface (GUI) interface, wired ore wireless

networking simulation, etc.

2.3.2.1 MCL Java Simulator

This simulator was originally developed as part of the evaluation of the

Monte Carlo Localization algorithm for WSNs [36]. The software was built

for only one task and therefore does not provide any other algorithms ex-
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Figure 2.13: Screenshot of custom Java simulator executing a MCL scenario.

cept APIT [102] and Centroid [103], which were implemented for compar-

ison against MCL. Therefore it does not feature an implementation of the

ISO/OSI protocol stack [104] and assumes packets can be exchanged in some

way if two nodes are in communication range. Although simulations of this

kind lack realism, they can be a first indicator for the goodness of an al-

gorithm. In this thesis the simulator is used to validate the quality of the

algorithm proposed in Chapter 5. For demonstration purposes a rudimen-

tary GUI was implemented to visualize node behavior and the goodness of

the location estimation at any time. A screenshot of the simulator GUI while

executing a MCL simulation is shown in Figure 2.13.

2.3.2.2 QualNet

The second simulator used in this thesis is QualNet [105]. QualNet is a

commercial product by Scalable Network Technologies and provides a com-

plete suite for building complex network simulations including WLAN,

WSNs, GSM/Universal Mobile Telecommunications System (UMTS), satellite

links, Local Area Networks (LANs) and Wide Area Networks (WANs). It
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Figure 2.14: Screenshot of Qualnet executing a demonstration scenario.

features a complete replication of the ISO/OSI protocol stack2 with all well-

known protocols on all layers. QualNet is especially known for its precise

implementations of the physical and medium access control layer of the

protocol stack. The GUI allows to create simulation scenarios by dragging

different components conveniently into the simulation area. When execut-

ing the simulation important events like broadcasts, unicast direction, packet

drops, weather or node mobility are visualized to give a graphical feedback

to the user. QualNet provides an API and interfaces for the user to inte-

grate own protocols into the simulation. This is not restricted to the protocol

stack itself, it is also possible to define new models for weather parame-

ters or node mobility behavior. A screenshot of QualNet while executing a

demonstration scenario is visualized in Figure 2.14.

Like other network simulation tools (e.g., ns2 [106], OMNeT++ [107]) Qual-

Net separates the GUI from the simulation core. While the simulator itself is

a command line application and only works on configuration files describing

the network scenario, the GUI of QualNet is used to provide a convenient

2Precisely, it is an implementation of the 5-layer stack also known as TCP/IP Internet
Protocol Stack
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way to configure scenarios and visualize the simulation process and simula-

tion results. The simulation core and the GUI run in separate processes and

communicate via a data pipe. Unfortunately, the GUI itself is acting sluggish

and running complex scenarios will waste much time on the visualization

process. Therefore, it is recommended to execute the simulation directly on

the command line.

As mentioned earlier QualNet separates functionality and models the net-

work according to the ISO/OSI model. While a strict implementation of this

model would only allow a layer to communicate with its predecessor and

successor, in QualNet it is allowed to communicate between all layers. This

allows developing and testing whole new protocol stacks and impressively

demonstrates the power of QualNet.

QualNet is an event-based simulation tool. This means every action in the

network simulation can be traced back to a single and unique event. For

this reason, QualNet maintains a virtual clock and each event is assigned

to exactly one discrete point in time. Typical examples of events are expir-

ing timers, reception of a packet, node movement etc. QualNet maintains an

event queue and processes all events in a first-in-first-out manner by redirect-

ing them to their corresponding model. A model in QualNet is everything

responsible for handling a certain type of event. For example, if in a WLAN

scenario a packet needs to be passed from the physical to the medium access

control layer of a node there will be an event generated and QualNet redi-

rects this event to the 802.113 protocol model. Each model in QualNet has to

provide functions for initialization, finalization and event handling. In the

initialization phase the model allocates memory, assigns model parameters

from the configuration files to variables and sets the model to operational

mode. The event handling is responsible to handle all messages for the

model. In a routing protocol model this would mainly affect handling route

requests, handling data packet forwarding, etc. The finalization phase is

used to free all allocated memory and write the model statistics to disk for

later analysis. The QualNet GUI can then be used to analyze the statistics

and compare calculated metrics between nodes.

3There is a different model for each of the 802.11 standards including 802.11a/b/g/p/ac
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2.3.3 Network Testbeds

Although simulation is a big advantage when developing and testing new

ideas, it cannot replace field tests on real hardware as the used models might

not represent the entire environment in every detail. Therefore, after a suc-

cessful evaluation in simulation has been conducted, it is desirable to per-

form further tests in physical testbeds. However, without industrial partners

and authorization of property owners a large scale field test consisting of

thousands of nodes is impossible. Therefore, in academic research test bed

sizes of only 10 to 100 nodes are common [37].

The logistic expenses escalate if a mobile WSN field test has to be conducted.

It is hard to think of simple solutions to provide mobility in a testbed. Al-

though moving humans carrying a sensor mote are an option, it is very

inconvenient for experimental subjects to constantly walk or even run in the

testbed area to provide a constant node velocity. A solution to overcome

this inconvenience is using radio controlled cars. Sensor motes attached to

these RC cars certainly reach higher velocities than an average human could

constantly provide and therefore can be used for mobile scenarios with lots

of changes in the network topology.





Chapter 3
Related Work

This chapter reviews previous work on range-free localization and puts

strong focus on the MCL algorithm, since this method provides the theo-

retical base of this thesis.
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3.1 Common Range-free Localization Approaches

3.1.1 Centroid Localization

Centroid is a simple range-free localization scheme introduced by Bulusu

et al [103]. Centroid uses a regular mesh of nodes which are aware of

their positions and serve as reference points. These nodes send out location

announcements called beacons in regular intervals. A simple connectivity

metric based on packet counting is used to rate the connectivity between

an ordinary node and its available reference points. In Equation 3.1.1 Nrecv

and Nsend denote the amount of beacons received from and sent by the ith
reference point in a period of t.

CMi =
Nrecv(i, t)
Nsend(i, t)

× 100 (3.1.1)

Only reference points with a CM > CMthresh are considered for localization.

The authors propose to set Cthresh = 90, i.e., only reference points with high

delivery ratios are assumed to be connected to the node. The set of k chosen

reference points is used to estimate the location of the node as given in

Equation 3.1.2.

(Xest,Yest) =

(
Xi,1 + ... + Xi,k

k
,
Yi,1 + ... + Yi,k

k

)
(3.1.2)

The proposed centroid calculation approach is implemented on Radiometrix

radio packet controllers, which allow sending arbitrary data over 418 MHz

channels with a radio range of about 9m. The approach is evaluated in

a static outdoor scenario with 100 nodes organized in a grid structure of

10m× 10m with 4 reference points residing on the four corners of the grid.

The setup is shown in Figure 3.1.

Figure 3.2 shows the absolute localization error of the Centroid evaluation.

The figure illustrates a general problem of Centroid: Close to the corners

where the reference point coverage is low due to the restricted connectivity

the localization error is very high. Areas with good reference point coverage
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achieve reasonable localization errors. The evaluation of Centroid is done

only for static scenarios. Mobile sensor networks are not considered.

3.1.2 DV-Hop Localization and Amorphous

A technique called DV-Hop localization using trilateration without the need

for active ranging is presented by Niculescu and Bath [108]. The key idea

of DV-Hop is adapted from classic distance vector routing protocols. Lo-

cation announcements originating from reference nodes (anchor nodes) are

flooded through the network using broadcast transmission. In every packet

a hop counter is maintained and increased at every hop. Every intermediate

node stores the minimum value of the hop counter for each unique location

announcement. Multiple received location announcements with equal or

higher hop count are discarded. Using this mechanism eventually all nodes

will have the shortest distance in terms of hop count to every reference point.

The task of converting the hop count to physical distance is also performed

by the anchor nodes. Following Equation 3.1.3 the average hop distance of

the ith anchor is calculated by dividing the sum of distances to all other

anchors (1 to j) by the sum of hop counts.

HopSizei =
∑
√
(xi − xj)2 + (yi − yj)2

∑ hj
(3.1.3)
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The calculated average hop distance HopSizei for anchor i is then propa-

gated in the network again. An ordinary node is able to localize itself using

trilateration (see Section 2.2.4.1) upon it has received the average hop dis-

tance of 3 different anchor nodes.

DV-Hop can only give a very rough estimation of the position φ of a node,

because the distances between nodes can highly vary and averaging the dis-

tances to other anchor nodes is not necessarily representative for the network

topology.

Amorphous [109] is a localization algorithm which uses a similar hop count-

ing technique like DV-Hop to provide every ordinary node with the number

of hops to the anchor nodes in the network. However, the hop count from an

ordinary node to an anchor node is calculated as the average of the neigh-

boring hop counts, instead of relying only on the own calculated hop count.

The single hop distance is calculated offline using Equation 3.1.4. Amor-

phous assumes the average connectivity of the network nlocal is known a

priori and does not change during operation time.

HopSize = r
(

1 + enlocal −
∫ 1

−1
e−

nlocal
π (arccos t−t

√
1−t2)dt

)
(3.1.4)

Using the calculated hop distance an ordinary node can estimate the distance

to all anchor nodes. Three or more anchor nodes are required to perform

the least squares method to calculate the location estimation of the node.

Both DV-Hop and Amorphous have not been evaluated in mobile sensor

networks. Especially Amorphous is not designed for changing network den-

sities, as it requires to calculate the parameter nlocal offline.

There exist numerous extensions of the presented algorithms above which

often focus on more precise distance estimation between ordinary and an-

chor nodes. A common problem of all algorithms is their lack of mobility

support and the requirement of at least three available anchor nodes.
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3.1.3 APIT Localization

APIT [102] is a localization algorithm which uses combinations of received

anchor information to form different triangles. For each triangle a node M
performs a Point-in-Triangle (PIT) test to check if it resides inside or outside

of this triangle. A geometrically exact test can only be performed if the

position of M is known. However, this is not the case, since the location

of M is unknown of course. The adapted Adapted Point-in-Triangle (APIT)

test therefore uses neighboring information based on signal strength from

both anchors forming the triangle and ordinary nodes to determine if there

is a neighbor of M which is closer to all three anchors. If not, M is assumed

to reside inside the triangle, otherwise it is considered to be outside of the

triangle. The technique is illustrated in Figure 3.3(a). It is important to

note that APIT uses the signal strength only to order distances relatively

and no absolute distance estimations are performed. Otherwise it would be

categorized as a range-based algorithm.

APIT exploits the high node density which can be expected in sensor net-

works. However, evaluation studies show that even with 6 neighbors there

is still a false positive error of 16%, i.e., the node is assumed to be inside the

triangle, although it is not. For lower node degrees no information about the

error is given.

The APIT test is performed for all possible triangle combinations of the re-

ceived anchor information. Only positive triangles, i.e., the triangles node

M is assumed to reside in, are further considered. To narrow down the

(a) APIT test as shown in [102]. (b) APIT SCAN algorithm as shown
in [102].

Figure 3.3: APIT techniques.
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region where M resides, APIT uses a SCAN algorithm which divides the

deployment area into a grid of cells with dimensions 0.1 × r where r de-

notes the radio range. Initially, all cells are assigned with the value 0. The

cells overlapping with triangles formed by anchors are incremented by 1 for

each positive triangle and decremented by 1 for every negative triangle. The

group of cells with the highest cell values is representing the intersection

region of all positive triangles. The SCAN algorithm is illustrated in Fig-

ure 3.3(b). Following this, APIT calculates the Center of Gravity (COT) of the

formed cell group, which is the final location estimation of node M.

APIT is evaluated via simulation and compared to the approaches intro-

duced above. APIT outperforms Centroid, DV-Hop and Amorphous if the

number of heard anchor nodes is at least 10. Furthermore, the evaluation

shows a decreasing localization error for high connectivity values of at least

6 ordinary node neighbors.

3.2 Monte Carlo Localization

This section describes the algorithm this thesis is based on. Monte Carlo

Localization is an approach which was originally proposed for the usage in

robotics [110] in 1999. It was adapted for Wireless Sensor Networks by Hu

and Evans in 2007 [36]. MCL introduced a novel concept for localization

in WSNs and aimed to compensate for the comparatively high localization

error of other range-free solutions while keeping reasonable algorithmic sim-

plicity. Furthermore, MCL is designed to account for mobility of both seed

and ordinary nodes. Other approaches like Centroid [103] or APIT [102] are

designed for static networks which are not deployed in an ad hoc manner.

Monte Carlo methods make use of random sampling to approximate numer-

ical results [111]. In MCL the position estimation of a node is represented

by a set of weighted samples where each sample represents a possible loca-

tion of the node. Impossible locations are filtered out using a particle filter

which is updated based on seed node information. To account for growing

uncertainty about the position of a node due to mobility, particles are moved

arbitrary from their previous location. The mathematical background of this

algorithm is to approximate the probability density function of the position
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by a set of weighted particles (samples) and use importance sampling to

eliminate less probable particles. To filter samples, a Bayesian filter is used

which are often applied in situations in which new observations impact the

state of the system.

The following sections explain MCL in detail and discuss existing ap-

proaches to improve the performance of MCL in both precision and compu-

tational overhead.

3.2.1 System Model and Known Parameters

In MCL all nodes are assumed to be mobile and able to move arbitrary in the

deployment area. Seed nodes are equipped with GPS and can send location

announcements to other nodes using broadcast messages. Nodes receiving

these announcements handle them as new observations they made between

two localization approaches. Furthermore, all nodes have a maximum ve-

locity and a maximum communication range.

• vmax

The maximum velocity a node in the network can have

• r
The communication range of all nodes in the network. Heterogeneity

in the radio range is modeled using a variable which accounts for path

fading effects, obstacles or other impacts which might affect the signal

quality.

3.2.2 Design

In MCL a node’s estimated location φest is represented by a set of weighted

samples, L, where each sample lt represents a possible location of the node

at time t. The initial set, L0, is selected by choosing random locations of

the whole deployment area. A node will always maintain a fixed number

of samples, N, to guarantee enough variability while still limiting the com-

putational overhead. The MCL algorithm shown in Figure 3.4 computes the

sample set Lt using the information of sample set Lt−1 and observations
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1: procedure MCL
2: Lt = {}
3: while size(Lt) < N do
4: R = {li

t|li
t from p(lt|li

t−1), li
t−1 ∈ Lt−1}

5: ∀ i,1≤ i ≤ N
6:
7: Rfiltered = {li

t|li
t where li

t ∈ R ∧ p(ot|li
t) > 0}

8: Lt = choose(Lt ∪ Rfiltered, N)
9: end while

10: end procedure

Figure 3.4: MCL algorithm in pseudo code.

of seed nodes, ot, available at time t. To account for uncertainty about the

node movement behavior, the algorithm includes a prediction step (line 4) in

which a new sample is drawn from a circular sampling area with radius

rs-area = vmax × tcheck around its current position given by a transition equa-

tion p(lt|lt−1). In MCL vmax is the maximum velocity of a node and tcheck is

the time between two localization attempts of a node. The probability of the

current location based on the previous location estimation is given by a uni-

form distribution [36], where d(..) denotes the Euclidean distance between

two samples as shown in Equation (3.2.1).

p(lt|lt−1) =


1

π×rs-area 2 , if d(lt, lt−1) ≤ rs-area

0, if d(lt, lt−1) > rs-area

(3.2.1)

The MCL prediction step is illustrated in Figure 3.5. Figure 3.5(a) illustrates

a node with its current sample set and a single sample with its sampling

area. For each sample a new sample is drawn in the circular area with

radius ss-area will be drawn. The resulting sample set is shown in 3.5(b).

After the prediction step the generated set is put into the filtering step (line 7)

which uses the observations ot (i.e., location announcements from seed

nodes) to filter impossible node locations from the sample set. Each node

keeps track of its first-hop neighbor seeds S and of its second-hop neighbor

seeds T. The filtering condition for a sample l is given in Equation (3.2.2).

filter(l) = ∀s ∈ S,d(l, s) ≤ r ∧ ∀s ∈ T,r < d(l, s) ≤ 2r (3.2.2)
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Figure 3.6: MCL filtering step.

Samples passing the filter are assigned a weight of 1, all others a weight

of 0. Samples with a weight of 0 are ignored in further re-sampling steps. If

more than N samples have been generated, N random samples are chosen

from the current set (line 8). The process is repeated until |Lt|>= N (line 3).

The final step is to compute the position estimation φest by calculating the

weighted average of the sample set, i.e., the average of all samples with a

weight of 1.

The process is illustrated slightly simplified4 in Figure 3.6. In 3.6(a) the green

samples are passing the filter condition, because they are located in the area

4Only first-hop neighbor seeds are considered
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between the seed nodes and the ordinary node. The red samples will not

be considered for the new location estimation which is calculated from the

remaining particles as shown in 3.6(b).

3.3 Existing Improvements of MCL

Existing work on improvements of MCL mainly focuses on enhancing the

filtering step either by introducing a more sophisticated sample weighting

or by defining more precise filter conditions. In MCL the sampling area is

defined by a circle around each sample and not affected by heard seed nodes.

Baggio and Langendoen propose Monte Carlo localization boxed (MCB) [112]

in which they are constructing an anchor box of all received seed nodes.

New samples can only be drawn from this area. As a consequence, the

probability of drawing good samples, i.e., samples that are matching the

filter condition, is much higher compared to MCL. Although the evaluation

shows that MCB is indeed benefiting from the anchor box, the approach

assumes that at least two seed nodes are always present. Otherwise the

anchor box cannot be constructed at all. Consequently, their evaluation does

not present the behavior of MCB if the number of seed nodes is reduced.

Yi et al. propose Multihop-Based MCL (MMCL) [113], a combination of

MCL, the DV-Hop localization method [108] and MCB [112] as described

above. The advantage of MMCL is that location announcements are flooded

through the whole network, so each node always has seed information avail-

able (as long as it is not completely isolated from the network). Each node

keeps track of the hop distance to seed nodes and estimates the distance to

anchors using formulas based on the hop count ci and two parameters α and

β which are very sensitive to changes and therefore mainly determine the

quality of the distance estimation. Consequently, the parameter r of MCL is

no longer required to be known and replaced by the new distance estimation

method. Like in MCB, MMCL constructs a bounding box from where new

samples are drawn.

Rudafshani and Datta [114] take neighboring information into consideration

for calculating sample weights. This means not only seed nodes contribute

to the localization process of a node, but all neighbors of a node do. The au-
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thors present two versions of their algorithm: MSL* calculates weights for all

of a neighbor’s samples, while MSL tries to reduce the therefore emerging

computational and communication overhead by calculating a single weight

for every neighbor. Hence, in this work a closeness value is introduced

which describes the quality of a location estimate. The closeness value is

used to identify neighbors which seem to have a good estimation of their

own position and therefore provide more valuable information to the node

which tries to localize. The evaluation shows that using neighborhood in-

formation gives better results especially in situations where the seed degree

is low.

Zhang et al. propose Weighted MCL (WMCL) [115], which provides further

improvements for the MCL algorithm family. A bounding box is constructed

to reduce the area from which new candidate samples are drawn. Accord-

ing to the authors this results in less overhead when the new sample set

is computed. In addition to that, WMCL makes use of neighborhood po-

sition estimations to increase the localization efficiency. The authors state

that their algorithm works better in static scenarios than previous solutions

without tuning special parameters as done in MSL/MSL*. A real implemen-

tation on MICAz motes [69] is provided in a small testbed to evaluate a static

scenario.

Teng et al. [116] show how a single mobile seed node can be used to localize

all nodes in a static sensor network in their approach called Mobility-Assisted
Monte Carlo Localization (MA-MCL). Applications for these scenarios might

be rare and can only be expected if sensor nodes are deployed in a rush, i.e.,

there is no time to calibrate the position. The sensors are not expected to

move after deployment. The seed node is the only node equipped with GPS

and will move randomly in the whole deployment area. Since the unknown

nodes do not move, they generate new samples based on their current po-

sition only in a static square area with side length β which is a tunable

parameter of the algorithm and is standardly set to β = 0.1r where r is the

communication range of a simple node. The authors compare their work

to the solution given in [114] and show that in these special scenarios their

algorithm outperforms MSL and MSL*. However, they created a single point

of failure situation: if the mobile seed fails for any reasons the whole net-

work will not be able to localize. A similar work using a single mobile seed
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node is presented by Huang and Záruba [117]. However, a fundamental

difference is that the location of the nodes is calculated on the mobile node

instead of the ordinary nodes. Furthermore, if available, ranging informa-

tion like angles and distances measured using RSSI is included to achieve

a better sample prediction. Putting the localization approach on the mobile

nodes relaxes the computational overhead on the ordinary nodes, but creates

an even more drastic single point of failure.







Chapter 4
RSSI as a Distance Estimator

In this chapter a study of a commonly used distance estimator is pre-

sented. Given a suitable path fading model the Received Signal Strength In-
dicator (RSSI) can be used to calculate the distance between a sending and

a receiving node. Range-based localization approaches often rely on RSSI

distance estimation, since this method does not require additional hardware

and is an already present feature in wireless networks. However, the quality

of the distance estimation primarily decides on the localization error. The

presented study evaluates if relying on the RSSI as a distance estimator is a

feasible method for the usage in localization techniques.
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4.1 Motivation

The disadvantages of range-based localization algorithms as presented in

Section 2.2.4 are mainly ascribed to costly or imprecise ranging methods.

While this can easily be reasoned for AoA and ToA/TDoA methods, for

ranging based on signal strength (RSSI) it is more difficult to point out prob-

lems.

The RSSI is an often used tool for estimating distances in WSNs, which is

essential for range-based localization algorithms. Therefore, RSSI became

one of the most commonly used distance estimators in scientific work [118,

119, 120]. While plentiful of algorithms make use of RSSI, only a few testbed

studies on the quality of this estimator exist. Many of the conducted studies

using network simulation or performed in controlled environments came

to the conclusion that RSSI is a suitable distance estimator. However, stud-

ies in arbitrary environments and outdoor scenarios are rare. Multipath

effects like scattering or reflection are often underestimated [121, 122]. To

determine if RSSI might be a suitable distance estimator for the usage in

localization algorithms, an extensive measurement study is conducted for

this thesis. Before the experimental setup and measurement results are dis-

cussed, an overview of existing studies regarding RSSI distance estimation

is given and several drawbacks and possible sources of impact, which might

lead to varying measurements, are presented.

4.2 Previously Conducted Studies

While plentiful of localization algorithms exist which are based on distance

measurement only a few studies on the quality of these estimations are avail-

able.

Adewumi et al. examine RSSI as a distance estimator in indoor and out-

door scenarios [33], but only with a maximum distance of 10m. The authors

do both simulations and a practical evaluation and emphasize differences

between the optimal results of the simulation and their implementation on

IRIS sensor motes [70]. They monitor RSSI readings over time, which shows
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heavy variations. Unfortunately, the results are left uncommented. In the

end, the authors use their collected data to calibrate the log normal shad-

owing model to have a perfect match for their measuring environment. Al-

though their results look promising for short distances up to 5m, the average

estimation error is growing tremendously for larger distances.

A study of RSSI in an optimal indoor environment is provided by

Parameswaran et al. [34]. They observe that RSSI measurement is related to

the direction of measurement. For instance, measurements northwards will

show different results compared to measurements eastwards. However, this

might be related to antenna irregularities and is not further commented in

the paper. Unfortunately, their study also only considers distances up to 10

ft. or approx. 3m.

A detailed report on the existence of nonlinearities in well-known radio

transceivers is given by Dieng et al. [35]. The paper derives the RSSI

response curves experimentally by measuring in an indoor scenario with

multiple devices and proposes a calibration method to get rid of the found

nonlinearities. The authors conclude that application designers must keep

in mind that RSSI response curves usually include nonlinearities and need

to provide countermeasures.

Several works focus on studying the usage of RSSI for indoor localization.

Chen and Terzis use a testbed composed of Tmote sky nodes to evaluate

RSSI in a gird scenario with maximum distances up to 6m [123]. They

conclude that node orientation, i.e., antenna orientation, has heavy influence

on the obtained results.

A similar study is provided by Benkic et al. with measurement distances up

to 25m [124]. Different transceiver modules are used and compared. The

authors conclude that RSSI measurement is depending on the transceiver

chip and the level of precision required by the application determines if

RSSI can be used for distance estimation.

An opposite view, but with regard to link quality estimation, is provided by

Srinivasan and Levis [125]. The authors revise RSSI measurements for link

quality estimation and argue that newer chipsets as the CC2420 [74] provide

a lower hardware calibration error. They examine the packet reception rate
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and compare it to the average RSSI received and find a strong correlation

up to the edge of sensitivity threshold. One could infer from these results

that RSSI will also show a good performance when used for distances esti-

mations.

A similar study is given by Wu et al. [126]. The characteristics of the RSSI

in wireless local area networks are evaluated in different locations and show

high variations. In a static indoor scenario RSSI is observed over time and

shows high variations, too. The authors conclude that RSSI is subject to the

common multipath effects (e.g., scattering, diffraction and reflection) and

different locations will affect the RSSI quality drastically.

4.3 Limiting Factors of RSSI Quality

This section describes several sources of channel interference and limiting

factors for the goodness of the RSSI readings.

4.3.1 Discrete RSSI values

Especially simulation studies of RSSI based distance estimation usually do

not consider the fact that RSSI readings are discrete values in nowadays

available transceiver modules. For upper layers of the protocol stack the

RSSI is only available as a single register value with a value range of 1 Byte,

i.e., 255 possible values at maximum. In practice the real value range de-

pends on the manufacturer’s specification and is often limited to a fraction

of all possible values. All register readings must be converted to a value

given in dBm following a formula given by the manufacturer. Often this

is done by adding an offset value, which is different for every radio type.

Table 4.1 shows an overview of some commonly used radio modules and

their number of possible RSSI values. This means some radios can be used

for more precise distance estimations compared to others. For instance, the

SX1211 can be used to produce ≈ 4.5 times more accurate results compared

to the AT86RF230. High resolution chips provide values with a granularity

of up to 0.5dBm, a more common value is 3dBm. While value range and

granularity can be reasonable looking numbers in data sheets, the most im-

portant variable for the quality of distance estimation is accuracy. Not all



4.3. LIMITING FACTORS OF RSSI QUALITY 61

Radio Type Number of possible values

Texas Instruments

CC2420 [74] CC2430 [127] CC2520 [128] ≈ 100

ATMEL AT86RF230 [129] 27

Infineon TDA5250 [130] ≈ 64

Telegesis ETRX2 [131] 40

Semtech SX1211 [132] ≈ 140

Table 4.1: RSSI value ranges of commonly used radios.

vendors publish information about the accuracy of the RSSI value readings.

A common value is +-6dBm, which means that RSSI values measured at a

fixed distance fluctuate up to 12dBm.

4.3.2 Path Loss Models

An important factor for the quality of the distance estimation using RSSI

measurements is the path loss model, which puts the measured power lev-

els in relation to the distance between sender and receiver and possible other

factors like antenna gain or environment parameters. Often, inappropriate

path loss models are used, which have not been designed for the usage in

WSNs or require additional factors, which need to be found empirically

for every application scenario. For instance, the log normal shadowing

model [91] as shown in Equation (4.3.1) requires a propagation exponent

n, which is depending on the environment and the reference RSSI between

sender and receiver at distance 1m. The chosen parameters are only valid

at the time of calibration and might lead to decreasing accuracy at a later

point in time if the environment conditions change. Furthermore, log nor-

mal shadowing and Friis free space propagation model [92] as shown in

Equation (4.3.2) have both been designed for large distances of hundreds of

meters as occurring in mobile telecommunications and therefore do not ap-

ply to the short range communication used in WSNs. The problem has been

recognized by researchers and more suitable path loss models have been

developed [93, 94]. However, until now, they are rarely used in scientific

work.
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Pr = A − 10 × n log d (4.3.1)

Pr =
Pt

4πd2 Gt ×
λ2

4π
Gr (4.3.2)

4.3.3 Weather Effects

Another effect, which is usually not considered in RSSI evaluation studies, is

weather influence [133, 134, 135, 136]. The most important aspect of weather

for radio propagation is moisture, i.e., phenomena like fog, rain and snow

fall. While rain and snow add scattering and reflection depending on the

intensity, air moisture itself leads to additional signal attenuation. Existing

evaluations usually lack testing under different air moisture conditions and

scattering influence added by heavy snow or rain is not considered at all.

4.3.4 Hardware Limitations

Physical limitations of the hardware components have strong impact on sig-

nal propagation. For instance, in simulation studies researchers tend to as-

sume antennas allow perfect isotropic signal emission and radio transceiver

modules provide exactly linear RSSI readings, which both holds not true in

real-world scenarios [137]. In WSNs motes are often designed for one-way

applications. Therefore, cost restrictions for cheap and lightweight sensor

nodes do not allow the usage of high quality components. In mobile sce-

narios RSSI measurements are also affected depending on the velocity of the

sensor mote.

4.3.5 Obstacles

Almost every path loss model assumes clear line of sight (los) communication

between sender and receiver. However, in practice this is almost never the

case. Wireless communication is always subject to signal propagation effects

as reflection, scattering and diffraction. In addition, obstacles like trees,

rocks or cars add attenuation to the signal, which results in drastic changes
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of measured power levels at the receiving end [138]. As a consequence, the

RSSI measured at the receiver is heavily distorted and does not represent

the distance between the communicating nodes any longer.

4.4 Implementation and Evaluation System Setup

The evaluation is based on TinyOS 2.x [139, 140] running on CM3000 [71]

sensor motes built by advanticsys [141]. As described in Section 2.1.5.4, these

motes are equipped with TI CC2420 [74] radio transmitters and external

5dBi antennas to enable long range distance measurements. Initial tests

with these antennas resulted in transmission ranges of up to 350m given

clear los. The CM3000 sensor mote is chosen, because it is equipped with the

most commonly used radio, which provides a large resolution of the RSSI

register as shown in Table 4.1. Since the value range of the RSSI depends on

the radio transceiver chipset as described in section 4.3, it is desirable to use

sensor motes which are capable of providing a sufficient resolution.

4.4.1 RSSI Measurement Implementation

TinyOS applications are programmed using network embedded systems C
(nesC) [140], a programming language similar to C, but with special prop-

erties matching the requirements of limited platforms like sensor motes.

nesC is event-driven, i.e., the program is only reacting to incoming events

and remains in sleep mode otherwise. Typical events are the reception of a

packet, a triggered timer or new sensor data ready ready to be processed.

Listing 4.1 shows the code for initiating a new measurement series. In

Measure.start(void) a timer is initialized to regularly trigger a new event

which is caught by the procedure Timer.fired(void). A random delay is

used to avoid congestion if multiple sources are initialized at the same time.

Timer.fired(void) will set up dummy data packets only containing the mea-

surement series ID and packet number as the payload. The packets are sent

to the receiving node which will measure the RSSI and forward the results

to the base station. The timer is stopped, if the maximum number of packets

to send is reached.
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command error_t Measure.start(void) {

uint32_t o;

if (! radio_started || running) {

return FAIL;

}

running = TRUE;

o = call Random.rand16 ();

call Timer.startPeriodicAt(call Timer.getNow () + o, config.

interval);

return SUCCESS;

}

event void Timer.fired(void) {

nx_struct measure_msg *msg;

if (radio_busy) {

return;

}

msg = call Send.getPayload (&pkt , sizeof *msg);

msg ->measure = config.measure;

msg ->counter = counter;

/* send an empty packet */

if (call Send.send(config.partner , &pkt , sizeof *msg) ==

SUCCESS) {

radio_busy = TRUE;

}

/* stop measuring if limit reached */

if (config.count && ++ counter >= config.count) {

post stop();

}

}

Listing 4.1: Measurement series control code.

Listing 4.2 shows how the final RSSI value of a packet is retrieved at the

receiving node. Depending on the chipset of the transceiver a certain

RSSI_OFFSET has to be added to bias the retrieved value. In case of the

TI CC2420 the value for RSSI_OFFSET is -45 [74].
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event message_t *Receive.receive(message_t *msg , void *payload ,

uint8_t len) {

int8_t rssi;

nx_struct measure_msg *p = payload;

/* get sender node ID */

am_addr_t source = call AMPacket.source(msg);

/* is the message OK (a packet from our communication partner

)? */

if (len == sizeof *p && source == config.partner) {

rssi = call RssiPacket.getRssi(msg) + RSSI_OFFSET;

signal Measure.received(p->measure , p->counter , rssi);

}

return msg;

}

Listing 4.2: RSSI extraction from received packet.

4.4.2 General Measurement Setup

For all measurements the same two communicating motes are used to avoid

measurement variations due to different hardware characteristics. All re-

sults are sent to a central base station, which is connected to a laptop to

record the output and also operates as the control station to start and stop

new measurement series. Figure 4.1 illustrates the general setup. Initial tests

resulted in a maximum communication range of about 350m in outdoor sce-

narios with clear line of sight. To keep a sufficient level of packet reception,

only measurements up to 300m are conducted. In all experiments the motes

are static, i.e., no experiments under the effect of mobility are studied. Dur-

ing measurement the motes are placed approximately 1m above ground. A

student moves the mote to the next measurement point. At every measure-

ment point both motes exchange 1000 packets to calculate the average RSSI.

The same two communicating motes with the same antennas are used in

every experiment to avoid variations envoked by different physical prop-

erties. Consequently, if not stated otherwise, RSSI measurements are only

evaluated unidirectional.
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Measurements

Measurements

Results

Figure 4.1: General RSSI measurement setup.

4.4.3 Evaluation Scenario Test Setup

The least interference-prone scenario to achieve the most reliable results is

most likely the clear line of sight scenario, as signal attenuation introduced

by obstacles and multipath effects is reduced to a minimum. The experiment

is illustrated in Figure 4.2. The test track of 300m is divided into intervals

of 25m. Clear line of sight is guaranteed during the experiment for the

whole distance. For each measurement one of the motes is moved to the

next measurement point, while the other one remains static at the beginning

of the test track. The experiment is repeated on different days and different

times to examine the effect of changed weather conditions.

A different test setup is used to analyze the effect of obstacles. Figure 4.3 il-

lustrates how a building is used to introduce heavy signal attenuation. Due

to the local conditions, in this experiment a maximum test track distance

of only 75m is available. It is obvious that the antenna signal has to run

through the building or arrive via multipath effects at the receiving node.

Indoor scenarios are tested in two long hallways with clear line of sight.

These hallways differ in height and width and are filled with different fur-

nishings. Again, a test track with a maximum distance of 75m between two

sensor motes is available.

25 m

300 m

Figure 4.2: Experimental setup for measurements with clear line of sight.
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75 m

Figure 4.3: Experimental setup for measurements with obstacles.

4.5 Evaluation Results

4.5.1 Long Distance Measurement with clear los

Figure 4.4 shows the RSSI values measured in four different series. These

measurements are done on multiple days under different weather conditions

including snow and light rain. It is obvious that there is a general trend for

all measurement series showing a loss of signal strength for larger distances.

However, the curves are not monotonically decreasing, although they repre-

sent the average of 1000 collected RSSI values for each measurement point.

This can be explained due to multipath effects: some measurement spots are

benefiting from more advantageous reflections even if they are further afar.

The second observation is that values at the same measurement point, but

for different measurement series, differ up to 10dBm. In the context of

distance estimation for range-based localization this means that at different
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Figure 4.4: RSSI readings for long distance clear line of sight measurement.
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Figure 4.5: RSSI readings with mean deviation.

points of time the distance estimation can also vary by the factor 10. Most

likely this can be explained due to different weather situations and changed

objects like differently parked cars in the environment which results in dis-

tinct multipath effects for each measurement series. In summary, no reliable

information suitable for distance estimation can be obtained using RSSI mea-

surements in this scenario.

4.5.2 Standard Deviation in Long Distance Measurement

Figure 4.5 shows measurement series 1 and 3 plotted with error bars illus-

trating the standard deviation for each measurement point. Even for 1000

collected samples the measurements vary up to 6dBm. The measurements

confirm the information given in the product manual of the CC2420 [74],

which states that RSSI readings may vary by about ±6dBm. This fact carries

a great weight for the usage of RSSI in distance estimation, as it indicates

that single measurements can barely provide reliable information. However,

almost all localization algorithms based on active ranging rely on beacon

nodes, which send single beacon packets in fixed intervals or retrieve the

RSSI from data packets of the common network traffic.
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Figure 4.6: RSSI readings affected by physical hardware properties.

4.5.3 Effect of Hardware Characteristics

As stated earlier, hardware differences introduced in the manufacturing pro-

cess or during deployment of the sensor motes can cause variations in RSSI

readings. Figure 4.6 illustrates this by visualizing the graphs for both com-

munication directions for measurement series 1 and 4. The hardware com-

ponents used in this evaluation are officially of identical construction, i.e.,

the same antennas, chipsets and minor electronic components were assem-

bled to built the sensor mote.

In Figure 4.6 it is easy to observe that the signal strength is following the

same profile in both directions, however, there is always a discrepancy of

about 4dBm. The experiment is repeated with other hardware to verify

this behavior. All tested motes show similar curves, but the difference in

RSSI readings varies from 1dBm to 4dBm. Consequently, to rely on RSSI

readings, one has to ensure that all used hardware components have the

same characteristics and give the same RSSI readings for equal distances,

i.e., calibration is required.

4.5.4 Effect of Obstacles

Figure 4.7 illustrates the signal behavior of two measurement series under

the effect of signal attenuation due to buildings or natural barriers like rocks

or trees. The averaged results of the previously presented clear los mea-
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Figure 4.7: RSSI readings for measurements with obstacles.

surement series is given as a reference. Obviously, there is a big difference

between measurements with and without obstacles. The signal is attenu-

ated by up to 22dBm, which means the power levels of the incoming signal

are 100 times lower compared to measurements without obstacles. There-

fore, distance estimations based on these readings would be subject to a very

high error. In addition to that, the effect of changed multipath characteristics

can be observed in this experiment, too. The readings of series 1 differ up to

10dBm from series 2, i.e., no steady information can be obtained.

4.5.5 Effect of Indoor Scenarios

An often mentioned advantage of GPS-free range-based localization solu-

tions is their ability to work in indoor scenarios, too. However, most of the

time the proposed solutions do not account for the changed signal propaga-

tion characteristics of indoor environments. Figure 4.8 illustrates two indoor

measurement series compared to the average of all outdoor series. Obvi-

ously, in indoor environments the signal strength is clearly lower, although

clear los is provided at all times. In addition to that, different measurement

series also differ depending on the multipath characteristics of the environ-

ment. Different furnishings and building materials can lead to big gaps

between RSSI readings. Again, the RSSI does not provide a reliable source

of information for distance estimations in WSNs.
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Figure 4.8: RSSI readings for inside measurements.

4.6 Summary

In this initial study of the thesis the quality of RSSI as a distance estimator

was examined. Several measurement scenarios were designed and evalu-

ated based on Advanticsys CM3000 motes with the TI CC2420 transceiver

chipset. The outcomes of the evaluation confirm the initial concerns and

show the insufficient performance of RSSI as a distance estimator for range-

based localization. Although a general trend showing the coherence between

distance and RSSI can be noticed, the readings are too unsteady to rely on

them for distance estimations with a reasonable low error. Since localiza-

tion algorithms may not introduce significant communication overhead in

the network, distance estimation based on RSSI is usually done using the

ordinary network traffic or only for location announcement packets. How-

ever, the results show that even with 1000 averaged RSSI packets no reliable

estimation can be generated. As a consequence, further conducted research

in this thesis concentrates on range-free localization solutions.





Chapter 5
Sensor-Assisted MCL

This chapter presents Sensor-Assisted Monte Carlo Localization (SA-MCL), a

new variant of the MCL algorithm, which accounts for situations where no

location announcements have been received by a node. In SA-MCL addi-

tional sensor information is used to bypass the problem of missing seed

information occurring in these situations, while keeping the localization er-

ror low. This is achieved by determining heading and velocity of a node and

updating its position based on this information. The approach is evaluated

in extensive simulations and in a real-world field test. The results show that

SA-MCL can successfully reduce the localization error by up to 60%.
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(a) t=5 (b) t=10

(c) t=15 (d) t=20

Figure 5.1: Sample set degeneration of MCL.

5.1 Motivation

The Monte Carlo Localization algorithm as introduced in Section 3.2 is a ro-

bust and easy to implement localization solution. However, as any other al-

gorithm based on anchor information, the precision of the algorithm mainly

depends on the number of available seed nodes. Mobility in the network can

generate situations and topologies where single simple nodes are isolated or

only have intermittent contact to seed nodes. In this case, the sample set

of MCL will degenerate due to MCL’s prediction step, which will spread

the samples gradually over the whole deployment area. As a consequence,

the location estimate, φest, is getting increasingly imprecise the longer a sim-

ple node has no contact to seed nodes. Figure 5.1 shows screenshots of the

GUI representation, which has been developed for the Java simulator used

to evaluate MCL by Hu and Evans [36]. The green lines indicate the distance

from the node to its spread samples. While shortly after losing contact to
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Figure 5.2: Localization error for different seed node densities.

all seed nodes (red circles) the sample set of the node (blue circle) is still

compact, it quickly degenerates which results in a worse φest as indicated by

the black dot. Eventually, in longer periods of seed information absence the

samples will spread over the whole deployment area. Consequently, a node

will be localized in the center of the deployment area in this case.

Figure 5.2 illustrates the problem from another point of view. Here, the local-

ization error of MCL is plotted for different seed densities, i.e., the number

of seed nodes available for localization for each node. It is obvious that for

lower seed densities the localization error is much higher, as situations with-

out seed information occur more often. The localization error is subject to

exponential growth if the seed density is further decreased. Nevertheless,

network operators have a strong interest in using as few as possible seed

nodes to save deployment costs and to reduce the maintenance overhead of

the network. SA-MCL addresses both problems by implementing a dead

reckoning approach in situations where seed information is not available.

5.2 Design

To overcome the issues mentioned above, in Sensor-Assisted Monte Carlo
Localization (SA-MCL) additional sensor information is used to update

the MCL sample set, in particular, by adding the distance traveled by a

node from the last location estimation to all samples, instead of executing
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t0 t1 t2 t3

Figure 5.3: Relative particle movement to last estimated position.

MCL’s prediction step. In this case, the state of the sample set is frozen,

i.e., the samples do not spread, until the node is receiving new location an-

nouncements (i.e. moving in the communication range of seed nodes) again.

Consequently, φest will be further updated even if no new observations are

available. The additional data required to determine the distance and direc-

tion from the last known location is the node’s velocity and its heading, i.e.,

its current orientation, respectively. Both values can be determined using

common ots sensors:

• A magnetometer is a simple compass module able to measure the

strength of the magnetic field of the Earth. Consequently, it can be

used to determine the heading of an object in degrees where magnetic

North is fixed at 0◦.

• An accelerometer is a device able to measure proper acceleration,

i.e., the acceleration relative to free fall. Accelerometers usually pro-

vide 3-axis-measurement and therefore are suitable for usage in three-

dimensional space navigation. By integrating the accelerometer mea-

surements the velocity of a moving object can be determined [142, 143].

The key idea of SA-MCL is illustrated in Figure 5.3. In this example the last

position estimation occurred at time t0. After that, the node loses contact

to all seeds. The node is moving further and records sensor information

at t1, t2 and t3. At t3 it is also supposed to determine its location again.

From its recorded sensor information the node can calculate the distance and

direction of movement relative from the last location estimation. Therefore,

it is able to move the whole sample set according to the calculated velocity

and heading. The technique of calculating a new location relative to a given

one is called dead reckoning.



5.2. DESIGN 77

1: procedure SA-MCL
2: Lt← {}
3: if |ot| < 1 ∧ sensorsActive then
4: ∆x← getMovementXfromSensors()
5: ∆y← getMovementYfromSensors()
6: ∀ lt ∈ Lt do
7: lt.x← lt.x + ∆x
8: lt.y← lt.y + ∆y
9: else

10: while size(Lt) < N do
11: R = {li

t|li
t from p(lt|li

t−1), li
t−1 ∈ Lt−1}

12: ∀ i,where1≤ i ≤ N
13:
14: Rfiltered = {li

t|li
t where li

t ∈ R ∧ p(ot|li
t) > 0}

15: Lt = choose(Lt ∪ Rfiltered, N)
16: end while
17: if |ot| < 2 then
18: sensorsActive← true
19: else
20: sensorsActive← f alse
21: end if
22: end if
23: end procedure

Figure 5.4: SA-MCL algorithm in pseudo code.

In theory, dead reckoning allows to keep track of the own location given an

initial position. However, over time sensor errors accumulate, which results

in increasingly imprecise location estimations. Furthermore, it is desirable

to turn off the additional sensor used in SA-MCL to save energy. SA-MCL

is assuming that a node can easily keep track of direction changes and its

velocity and therefore determine the traveled distance between two location

estimates. A variety of practice-approved sensors exist, which provide the

required data for SA-MCL [144, 145, 146].

5.2.1 Formal Description

The pseudo code of SA-MCL is shown in Figure 5.4. The main difference to

the pseudo code of MCL as presented in Chapter 3 is that SA-MCL keeps

track of the number of observations, |ot|, i.e., the number of location an-

nouncements the node received. If no new observations are obtained, the
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sensor information will be used to calculate ∆x and ∆y. MCL’s prediction

step to retrieve the intermediate sample set, Lt, is replaced by the SA-MCL

method. Therefore, to obtain Lt these values are added to all samples in

the old sample set, Lt−1. Otherwise, the default MCL algorithm is executed.

Since using additional sensors cost energy, magnetometer and accelerometer

are only activated if necessary. This is the case if the number of observations

tends to reach 0. Once the node receives new location announcements, the

sensors can be turned off again.

5.3 Implementation

SA-MCL is implemented in the simulation environment provided in [36] as

described in detail in Section 2.3.2. The original Java code has been pro-

vided by Hu and Evans and can be retrieved from the website [147] of the

University of Virginia.

Figure 5.5 shows how SA-MCL can be wrapped around an existing MCL im-

plementation easily. As described above, only in the absence of seed nodes

SA-MCL is executed. Activation and deactivation of the sensors is not im-

plemented, since the network simulator does neither provide any emulation

of real sensor mote components nor does it feature any energy consumption

analysis. The implementation simply assumes the additional sensor data is

present.

|Observations|
< 2MCL

|Observations|
< 1

Get Sensor 
Data

Move
MCL Sample Set

no
Deactivate

Sensors
no

Activate
Sensors

yes

yes

Start

Figure 5.5: Flow diagram of SA-MCL
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5.3.1 Scenario Execution

The simulation engine is step-based, i.e., the simulation process is divided in

discrete steps which are separately executed. As shown in Listing 5.1 vary-

ing parameters can be simulated in a batch-like mode by looping over them.

In the given example, the maximum velocity of the nodes maxv is evaluated.

The outer for-loop increases the parameter maxv by 10 units per run. The

number of iterations in the next for-loop determines how often a single ex-

periment is repeated. The number of steps determines how long a single

execution of a scenario lasts. When executing the scenario the first task is to

update the locations of all nodes. After that, the code for MCL/SA-MCL is

executed separately for every simple node and the current position error is

calculated. All nodes are organized in a single array, the variable start deter-

mines the index of the first simple node. Since MCL and SA-MCL share the

same node objects they also share the same sample set. Therefore they have

to be executed separately since both algorithms would affect the sample set

if run concurrently. Maintaining separated sample sets for each algorithm is

a possible solution to avoid this problem. However, to avoid additional code

modifications the sample set is shared and both algorithms are executed

isolated from each other.

public void doAlgorithm () {

double [] errorSum = new double [51];

/* loop through all parameter settings */

for(int l=0; l<radiorange.length; l++) {

for(nodenum = 200; nodenum <= maxNodeNum; nodenum += 100) {

for (maxv = 20; maxv <= maxMaxV; maxv += 10) {

for (seednum = 100; seednum >= minSeedNum; seednum -= 10) {

final_MCL = 0;

final_SAMCL = 0;

...

for (int curIt = 0; curIt <iteration_num; curIt ++) {

in.setParameter("max_v", Integer.toString(maxv));

in.setParameter("node_num", Integer.toString(nodenum));

in.setParameter("seed_num", Integer.toString(seednum));

in.setParameter("node_r", Integer.toString(radiorange[l]));

in.setParameter("node_s", Integer.toString(radiorange[l]));

//only used in SA-MCL

in.setParameter("max_sensorError", Double.toString(
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maxSensorError));

//only used in PO-MCL

in.setParameter("mag_freq", Integer.toString(

magnetometerFreq));

net = new Network(in);

...

start = net.seed_num;

end = net.node_num;

for (int step = 0; step < step_num; step ++) {

net.updateLocation ();

MCL_error = 0;

SAMCL_error = 0;

...

for (int i = start; i < end; i++) {

/* execute algorithms as desired */

net.node[i]. MCLocalization(net.relations[i], net.

seed_positions , net.group_ref);

MCL_error += net.statistics (1, i, step) / (end - start);

//net.node[i]. SAMCLocalization(net.relations[i], net.

seed_positions , net.group_ref);

// SAMCL_error += net.statistics (1, i, step) / (end -

start);

}

...

for (int i = 0; i < Network.node_num; i++) {

net.node[i]. random_waypoint ();

}

if (step >= stable_step) {

net.avg_MCL_error += MCL_error / (step_num - stable_step);

net.avg_SAMCL_error += SAMCL_error / (step_num -

stable_step);

}

}

...

final_MCL += net.avg_MCL_error / iteration_num;

final_SAMCL += net.avg_SAMCL_error / iteration_num;

...

Listing 5.1: Scenario execution code.
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5.3.2 SA-MCL Modification

In a simulation environment the exact positions of all nodes are known, since

the implementation of the chosen mobility model is responsible for main-

taining the movement behavior of the nodes, which includes waypoints and

positions at any time during simulation execution. Therefore, it is very easy

to implement the ideas of SA-MCL. Since it is naive to assume that heading

and velocity of a node can be determined exactly, a sensor error is intro-

duced in the implementation. This error is given by a random variable and

accounts for imprecise sensor readings. Listing 5.2 shows the code section

of SA-MCL where the sensor error is applied to the otherwise exactly de-

termined distance to the last position estimation. SA-MCL is only executed

if both iterators (e and e2) do not contain any elements, i.e., the node has

not received any location announcements from seed nodes during the last

interval.

if (!e.hasMoreElements () && !e2.hasMoreElements ()) {

int xNow = this.real_position.x;

int yNow = this.real_position.y;

int xDiff = xNow - this.last_time.real_p.x;

int yDiff = yNow - this.last_time.real_p.y;

// calculate error in range of -maxSensorError to maxSensorError

double error =

(Math.random () * 2 * this.maxSensorError)-this.maxSensorError;

Random r = new Random ();

int sign = (int)(r.nextBoolean () ? 1 : -1);

for (int m = 0; m < last_time.sample_num; m++) {

Point p = last_time.sample_points[m];

// calculate new sample position with respect to maxSensorError

p.x += xDiff + xDiff*this.maxSensorError*sign;

p.y += yDiff + yDiff*this.maxSensorError*sign;

this_time.sample_points[m] = p;

this_time.sample_weight[m] = last_time.sample_weight[m];

this_time.sample_num ++;

}

}

Listing 5.2: SA-MCL Java implementation.
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5.4 Simulation Evaluation Setup and Results

5.4.1 Simulation Parameters and Scenario Setup

The advantage of evaluating SA-MCL in the same simulator as MCL is that

the results can be directly compared without the need to port MCL to an-

other environment. On the other hand, the custom Java simulator lacks

important features of wireless network simulation like path fading effects

and only provides a rudimentary implementation of the random waypoint

model. This both leads to more unrealistic simulations, since the real-world

approximation is getting more abstract. Another issue of this simulator is

its usage of abstract discrete units for time and distance with no association

to commonly used physical units. As a consequence, time is expressed in

simulation steps and estimation errors are given in multiples of the commu-

nication range of a node. The node velocity is also given as a multiple of the

radio range r. A maximum velocity, vmax, of 0.4 means between two local-

ization attempts the node will move 0.4× r units in the simulator. Despite

all disadvantages, the ability to directly compare SA-MCL to the original

implementation of MCL prevails. For the ease of presentation the unit of

distance metering is fixed to be meters in this thesis.

Sticking close to the evaluation of MCL as described in [36] the evaluation is

performed with 300 nodes trying to localize themselves on a simulation area

of Asim = 500m× 500m. The communication range for all nodes including

seed nodes is fixed at 50m. To simulate mobility in the network, a slightly

modified version of the random waypoint model is used as explained in [36].

The only difference to the original model as described in Section 2.1.8.1 is

that the pause time of all nodes is set to 0, i.e., when arriving at a waypoint

the node will directly continue to move on to the next one. The authors of

[36] changed this parameter to avoid longer periods of stationary nodes in

which MCL would perform poorly, because of missing seed information. All

experiments are repeated 50 times to truncate statistical outliers. The results

presented below are the average of all experiments.

Table 5.1 lists the different simulation parameters which have been examined

in order to evaluate SA-MCL. In this evaluation the total number of nodes,
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Simulation parameter Meaning Default value

Nnodes Total number of nodes 300

ρseed Density of seed nodes 1.6

vmax Maximum velocity of nodes 0.4

Nsample Number of maintained samples 25

r Radio range 50

εsensor Error in sensor readings 20%

Table 5.1: Evaluated simulation parameters for SA-MCL.

Nnodes, is 300, which includes all seed nodes. Obviously, the amount of

seed nodes available during the localization process has high impact on the

quality of the position estimation. SA-MCL is designed to handle scenarios

with a reduced number of seed nodes, as explained in Section 5.2. Therefore,

one of the most important parameters to study is the number of seed nodes

available in the network.

It is difficult to determine an expressive metric for the availability of seed

nodes, i.e., the seed density. The absolute number of seed nodes only has

low expressive power, since the seed node availability is influenced by ad-

ditional factors. In particular, the average number of seed nodes available

to a simple node is impacted by the deployment area dimensions, the abso-

lute number of seed nodes in the scenario, and the radio range of the seed

nodes. This thesis proposes a better metric for the seed density, ρseed, given

in Equation (5.4.1) which considers all of these factors.

ρseed =
Nseed × (2r)2

Asim
. (5.4.1)

The basic idea of the formula is to arrange Nseed squares with side length r
side-by-side on the simulation area. Each square represents the covered area

of one seed node. Although the radio propagation is strongly abstracted

in this model, the metric is still much more expressive than only consider-

ing absolute numbers of nodes. Larger radio ranges and higher amounts of

seed nodes in the network will contribute to the complete coverage of the

network and are therefore listed in the numerator. On the other hand, larger

deployment area dimensions will make seed coverage of the network much
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Figure 5.6: Plot of the seed node density function for different radio ranges.

more difficult. Hence, the deployment area is listed in the denominator. Fig-

ure 5.6 shows the behavior of the seed node density equation given constant

deployment area dimensions of Asim = 500m × 500m for different radio

ranges. It is obvious that for higher radio ranges the seed node density is

growing faster, because higher radio ranges result in better coverage of the

deployment area.

The deployment area size and the radio range are kept constant if not stated

otherwise. Therefore, it is sufficient to adjust the absolute number of seed

nodes to achieve different seed node densities. Table 5.2 shows an overview

of the number of seed nodes required to reach different seed node den-

sity values given r = 50, a total number of 300 nodes in the network and

Asim = 500m × 500m.

ρseed 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

% of all nodes 3.3 6.6 10.0 13.3 16.6 20.0 23.3 26.6 30.00 33.3

absolute no.

of seed nodes 10 20 30 40 50 60 70 80 90 100

Table 5.2: Seed node density values for different numbers of seed nodes.
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Figure 5.7: Localization error for different seed densities.

5.4.2 Simulation Results

In the following, the effect of every parameter as introduced above is evalu-

ated in detail. The main metric studied is the absolute localization error εloc

as explained in Section 2.2.6.

5.4.2.1 Localization Error for Different Seed Densities

The key aim of SA-MCL is to account for situations in which the seed node

density is low. Figure 5.7 shows how using the additional sensor information

helps SA-MCL to outperform MCL, especially if ρseed < 1. Here, the number

of seed nodes is constantly reduced to achieve lower seed densities. In lower

seed density cases SA-MCL εloc decreases by about 40% when compared

with traditional MCL. In cases with higher seed densities there are only

few situations left where no seed information is available, i.e., SA-MCL can-

not benefit as much from its additional features as in low-density scenarios,

leading to a marginal improvement over MCL.

The graph can also be read in a second way. If the main goal is to keep a

certain level of localization error, it is possible to reach this level with consid-

erably less seed nodes in SA-MCL compared with MCL. This is an important

fact for applications in which nodes are not expected to be recovered after

their mission, because the deployment costs can be drastically reduced if it

is possible to reduce the number of costly seed nodes.
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5.4.2.2 Localization Error for Different Node Velocities

The localization error for different vmax is presented in Figure 5.8. Up to a

vmax value of 0.4 to 0.6 the performance of both MCL and SA-MCL improves

continuously. The reason for that is that for lower velocities there is not

enough variation in seed node information since the nodes are moving too

slow. Consequently, isolated nodes have to wait longer before reestablishing

contact to seed nodes again.

After reaching the local minimum, the localization error increases slightly

for higher velocities. In these cases, due to more connection losses when

moving faster, the nodes cannot gather enough seed node information.

However, due to its ability of relying on additional sensor information,

SA-MCL outperforms MCL especially if the seed density is low. Even with

a high seed node density of ρseed = 2.0 SA-MCL performs slightly better.

However, the difference is much smaller, since situations without seed node

information are rare.

5.4.2.3 Localization Error for Varying Sensor Precision

One potential problem in SA-MCL are imprecise sensor readings. All elec-

tronic sensors have a limited resolution and might be affected by external im-

pacts. For instance, a magnetometer is always influenced by strong magnetic

fields which even pervade possible countermeasures as magnetic shielding.
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To account for imprecise hardware, a sensor error is introduced in the sim-

ulations ranging from 0 to 40%. The results are shown in Figure 5.9. MCL

does not make use of sensor information, therefore the results do not change

and are only given for reference. Even if increasing the sensor error up to

30% SA-MCL performs better than MCL. Existing hardware components as

used in the field test study presented below in this chapter by far are more

precise than the error values assumed for this simulation5 [144, 145, 146].

5.4.2.4 Effect of Different Sample Set Cardinalities

Several different sample set cardinalities Nsample are examined to find a suit-

able number of samples which need to be maintained for satisfying results.

The outcomes are shown in Figure 5.10. Since the sample set cardinality

heavily affects the computational overhead of the algorithms, the aim of

SA-MCL is to maintain as few samples as possible. For only one maintained

sample the localization error is very high, since a single filtered sample re-

sults in an empty sample set, which makes a location estimation impossible.

As soon as the number of samples is increased the localization error is dras-

tically reduced. In general, for both algorithms it is sufficient to keep a set

cardinality of 25 to 30 samples. In accordance with [36], there is no sig-

nificant improvement after Nsample = 50. The reason is that the additional

samples do not provide any further information about the location of the

5given reasonable calibration
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Figure 5.10: Localization error for different sample set sizes.

node. It is advisable to not further increase the number of samples in the set

to avoid useless computational overhead.

5.4.2.5 Scalability

An important aspect for algorithms used on devices with restricted com-

putational capabilities is scalability. Scalability describes the ability of an

algorithm to handle a growing amount of input while avoiding an increase

of computational power necessary to solve the task [148]. An algorithm is

considered to be well scaling if it can handle large inputs as efficient as small

inputs. In networking algorithms this means that an algorithm working on

tiny-sized networks must perform equivalently well if the number of net-

work participants is increased to hundreds or even thousands of nodes.

Fortunately, the concept of range-free localization in association with the

broadcast nature of wireless communication allows perfect scalability. In

fact, the number of simple nodes a seed node can serve is not limited by

computational means. It is of no difference weather a location announce-

ment is received by 1, 5 or 500 different simple nodes. Since the localization

algorithm is executed on every single node, no increase of computational

resources can be noted. In MCL and its extensions as introduced in this

thesis the computational power required is only affected by the number of

location announcements received and the sample set cardinality. The aim of

any operator of a WSN will be to keep the number of seed nodes as low as
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Figure 5.11: Localization error for different amounts of nodes.

possible. As a consequence, it is not likely to have networks with a huge

amount of seed nodes. Furthermore, as seen in Section 6.4.2.3, there is no

need to increase the sample set cardinality to more than 25-50 samples, as

no further decrease of the localization error can be expected. This means

both parameters affecting the computational overhead on a node are of no

consequence.

To emphasize this Figure 5.11 shows the localization error for different

amounts of simple nodes. Interestingly, the localization error is even slightly

decreasing for both algorithms in the beginning. The reason for that is the

two-hop approach of MCL. Every location announcement of a seed node is

repeated by all receiving nodes. With an increased number of total nodes in

the network more location announcements will be broadcasted again. There-

fore, more nodes which would be isolated otherwise are still receiving loca-

tion announcements. However, the effect of increasing the amount of nodes

in the network is only subtle and reaches a stable level at about 1200 nodes

in this scenario. Further increase of the total number of nodes does not have

any effect on the localization error.

5.4.2.6 Effect of Different Radio Ranges

Following the definition of the seed density given in Section 5.4 by Equa-

tion (5.4.1) the radio range is an important parameter for the seed node cov-

erage in the network. There is a trade-off between the localization error and
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Figure 5.12: Localization error for different radio ranges.

the radio range: the smaller the radio range, the lower the localization error

will be given a suitable number of seed nodes to cover the network. Unfor-

tunately, with smaller radio ranges, many more seed nodes are required to

cover the whole network and reach reasonable seed densities. Figure 5.12

shows the localization error for MCL and SA-MCL for different radio ranges

of both seed nodes and simple nodes. To mainly study the effect of the ra-

dio range, in this experiment 200 simple nodes and 100 seed nodes are used,

which corresponds to a seed density of 4.0. As expected, for both algo-

rithms the localization error will increase if the radio range increases, since

the sample filtering condition is relaxed due to the high radio range.

5.4.2.7 Convergence Time

In Figure 5.13 the convergence time of both algorithms is illustrated. Conver-

gence time denotes the number of simulator iterations until both algorithms

reach a stable state, i.e., the initially spread samples concentrate around the

simple nodes. The convergence time mainly depends on how fast the sim-

ple nodes get contact to seed nodes which in return is mainly dependent

on the seed node density ρseed. As for previously studied parameters, the

convergence time is mainly affected by the seed density of the scenario. In

this experiment the default values of Table 5.1 are used. While the out-

comes confirm the results in [36], SA-MCL shows to behave similar to MCL

and reaches a stable state after about 10 iterations. After that, no further

improvement is achieved.
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Figure 5.13: Convergence time of MCL and SA-MCL.

5.5 Field Test Evaluation and Results

Simulating algorithms for WSNs is an appropriate option to test and eval-

uate new ideas and protocols. Furthermore, simulation is often the only

possibility to measure important metrics like scalability as thousands of net-

work nodes can easily be emulated with modern software. However, since

the real world is only approximated using models for, for instance, anten-

nas, signal propagation, packet loss, and mobility behavior, simulation can-

not completely replace field tests and implementations on real hardware.

Therefore, in the following, the behavior of both MCL and SA-MCL will be

examined on real hardware in a mobile wireless sensor testbed.

Conducting a field test is much more complex, as every node is physically

present and parameters which are easy to change in a network simulator

(e.g., radio range, battery lifetime, node velocity) are much harder to con-

figure. Even more troublesome are field tests in mobile networks, as im-

plementing mobility in a sensor testbed can be challenging. Although in

general it is possible to attach a sensor mote to human beings, it is very in-

convenient to keep walking or even running to maintain a continuous level

of mobility in the network. A more convenient way to implement mobility

is to use radio controlled cars. The mobility behavior in this case is still not

representing a real sensor network application and is strongly affected by

the driving behavior of the person controlling the car. However, as nodes

are moving, topology changes in the network are introduced. In contrast
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to simulation, these topology changes are triggered by physical effects and

depend on antenna capabilities, environment properties or obstacles.

The field test conducted in this thesis focuses on different aspects. First, a

new possibility of developing a mobile WSN testbed using radio controlled

cars in general is explored. In addition to that, the testbed is used to im-

plement and evaluate SA-MCL in comparison to MCL. Finally, physical de-

ployment allows analysis of energy consumption, an often stated, but rarely

evaluated factor in WSNs.

5.5.1 Used hardware

The following sections describe the hardware components used in the field

test. These components include the mobile nodes as well as the added sen-

sors.

5.5.1.1 Radio Controlled Cars

The mobile platform in the field test is a radio controlled car (RC car) named

Reely Detonator at the scale of 1:10. The Detonator model was selected

because of its capability to master rougher terrain including small stones

and wooden sticks while keeping vibrations of the chassis at a low level.

Furthermore, it provides enough room on top for all required superstruc-

tures. Less sophisticated models in the market mostly use the 35/40MHz

frequency band and therefore have problems if several models are operated

at the same time, because the number of radio channels is limited. Conse-

quently, antenna signals of the remote controls may interfere with each other.

The consequences are non-moving cars, single remotes driving multiple cars

and inability for drivers to properly control their cars. This issue is solved

by the RC car, as it uses the 2.4GHz band and employs Frequency Hopping
Spread Spectrum (FHHS) or Direct Sequence Spread Spectrum (DSSS) both of

which avoid colliding antenna signals. Similar to Bluetooth applications a

car is exclusively paired with its corresponding remote.

The Detonator is able to achieve velocities of up to 35km/h. To maintain

reasonable velocities for the field test, i.e., to limit the maximum speed of the
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vehicle, throttling is required. A simple solution would be to attach a heavy-

duty resistor to the circuit in front of the motor. However, these resistors are

comparatively expensive and require modifications to the car itself. A better

option is thus to slightly change the remote in its behavior. An additional

pushbutton replaces the throttle control and the maximum speed can be

changed via a potentiometer. Consequently, the pushbutton only provides

an on/off functionality and pressing it results in direct acceleration to the

maximum velocity defined by the potentiometer. With decreasing battery

the test drivers need to readjust the potentiometer to maintain the same

velocity level.

5.5.1.2 Sensor Motes

Two different sensor platforms are used in the field test. The actual imple-

mentation of SA-MCL is done on IRIS motes as described in Section 2.1.5.4.

The effective radio range of these motes is only about 30m. To forward

live data of the experiment to a base station (i.e., the sink), additional re-

lay nodes are required. These act as static repeaters, which only forward

received packets from the mobile nodes to the base station. This part is han-

dled by Advanticsys CM3000 sensor motes [71]. These motes are equipped

with larger antennas and therefore reach higher transmission ranges.

To avoid empty batteries during the field test, the IRIS motes are directly

powered via the radio controlled car’s batteries. Additional voltage convert-

ers are required to transform the 7.2V provided by the car to the supply

voltage of the sensor motes. The relay nodes (CM3000) are not connected to

any other power consumers and therefore are battery-powered.

5.5.1.3 Additional Sensors

To be able to calculate the localization error, a ground truth reference is re-

quired. Although it is theoretically possible to monitor the whole test field

area with multiple cameras and set up a hawk eye system as used in pro-

fessional sports, these systems are very expensive and require precise cali-

bration. Limited manpower and resources render this approach impractical.
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(a) MTS420 (b) MPU9150

(c) MDA100 (d) Sensor Stack

Figure 5.14: Hardware sensors assembled.

Instead, every node is equipped with GPS and uses the positioning infor-

mation as ground truth. Note that GPS itself introduces its own localization

error of up to 3m [14]. To keep this error at a minimum, the test field has

been chosen to provide ideal GPS reception as described below. Crossbow

Technologies provides a dedicated GPS module called MTS420 for its MicaZ

and IRIS mote product series. Unfortunately the GPS driver provided by the

TinyOS community is outdated and does not work at all for the MTS240 GPS

boards. Therefore, for this thesis the driver was updated and now works

with the provided hardware as shown in Figure 5.14(a). To provide the re-

quired additional sensors, an InvenSense MPU9150 [144] board is mounted

to the RC cars in the field test. It combines an accelerometer, a gyroscope

and a magnetometer on a single chip. Although it is not especially designed

to be tiny-sized, the board itself only covers an area of 2cm× 1.5cm, which

implies it can be added to many of already deployed sensor motes. Ad-

ditionally, a Digital Motion Processor (DMP) is installed, which is supposed

to preprocess the sensor data on hardware level and combines gyroscope

and magnetometer information to provide the most precise orientation. Un-
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Figure 5.15: Completely assembled RC car.

fortunately, it was not possible to communicate to the DMP using the IRIS

sensor motes. Instead, only the raw data of the single sensors can be ac-

cessed and has to be processed by the sensor mote itself. The MPU9150 as

shown in Figure 5.14(b) is connected to the sensor mote via the expansion

board MDA100 (Figure 5.14(c)) manufactured by Crossbow Technologies.

The MDA100 provides a large prototyping area for soldering external sen-

sor components. All sensor modules can be put on top of each other and

together build the final sensor stack as shown in Figure 5.14(d).

5.5.1.4 Final Car Assembly

Figure 5.15 shows one of the completely assembled test cars. The sensor

mote is installed on the flat backside of the car. This ensures the best antenna

emission conditions as there are no further blocking parts at this side of the

car. To be able to easily remove the sensor motes from the car, while ensuring

they are properly secured during the test, the motes are fixed using hook and

loop fasteners. The foreside of the car with its additional superstructures

introduces signal attenuation and therefore has high impact on the signal
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strength. Consequently, the transmission range of the sensor mote is limited

in this direction. Initial tests showed that the signal is attenuated by about

25%. This attenuation is unavoidable and thus has to be dealt with in real

applications.

At the front of the car the GPS antenna is attached with clear los to the sky.

The bottom of the antenna is magnetic. It can be easily fixed to any iron

parts. Unfortunately, the whole cover panel of the car is made of plastic.

Therefore, two common Peripheral Component Interconnect (PCI) slot brackets

are screwed on the plastic cover. The GPS antenna is then put on top of these

brackets.

The most challenging part is to attach the sensors, i.e., the MPU9150, which

SA-MCL requires, to the car. The MPU9150 does not provide any further

shielding. Thus, especially the magnetometer is heavily affected by all metal

parts of the car. To avoid misreadings, the magnetometer has to be isolated

from the rest of the components, while remaining in a fairly horizontal po-

sition to avoid tilting. This is achieved by mounting a plastic spacer on the

back of the car directly in front of the sensor mote and putting the MPU9150

board on top of that spacer.

The voltage converter as well as loose wires and the power switch (not visi-

ble in Figure 5.15) can be held in place using duct tape.

5.5.2 Field Test Limitations and Challenges

5.5.2.1 Hardware Limitations

The original description of SA-MCL as given in 5.2 assumes it is possible

to gain more or less exact velocity estimations by integrating accelerometer

data over time. Initial tests showed that the accelerometer is too sensitive

and even with low pass filtering applied does not provide steady data. Ad-

ditionally, integrating acceleration to determine the velocity holds only true

for uniform acceleration, which is not given by the RC cars. Consequently,

a simplified approach similar to MCL is used: Instead of trying to deter-

mine the exact velocity of a node it is only distinguished between movement
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and no movement and samples are always moved by the maximum possible

distance determined by vmax.

5.5.2.2 Logistic Challenges

Conducting a field test for a mobile sensor network is incomparably more

complicated than in static scenarios. Since every car needs a dedicated

driver, a total number of ten network nodes is already challenging to achieve.

Although a field test with only ten simple nodes has limited expressive

power, it is almost unique in research to conduct such a test in a mobile

environment [37].

In addition to the problem of limited human resources, finding a test field,

which is large enough to provide a reasonable area, is not easy. To be able

to compare the field test results to a simulation with similar parameters, the

test field has to be free of obstacles and must provide a flat surface.

5.5.2.3 Mobility Limitations

Mobility in the network is strongly affected by the driver’s behavior. There-

fore, the resulting network topologies most likely do not directly correspond

to any real mobile sensor network application. In addition, the chosen test

area described below is comparatively small, as the number of nodes and

the radio range of the nodes is also limited. The deployment area of real

sensor networks might be considerably larger.

5.5.3 Software Implementation

The implementation is done on IRIS sensor motes [70], which are based

on TinyOS and programmed in nesC as described in Section 2.1.5.4. To

determine the localization error, distances need to be calculated. In or-

der to simplify these calculations, and to decrease computational overhead

on the motes, all recorded coordinates are internally mapped from Gauss-

Krüger coordinates to the Universal Transverse Mercator (UTM) coordinate
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system [81]. The advantage of UTM coordinates is that they can be repre-

sented by short integers in contrast to float variables which are required for

Gauss-Krüger coordinates. Listing 5.3 shows the transformation of GPS data

given in Gauss-Krüger coordinates to the UTM coordinates.

event void GpsMsg.newMessage(gps_msg_t *msg , error_t err)

{

double e, n;

...

/* Convert and store raw data to proper latitude/longitute. */

gps_lat = (float) msg ->deg[0] + ((( float) msg ->minhi [0] + ((

float) msg ->minlo [0] / 100000.0)) / 60.0);

gps_lon = (float) msg ->deg[1] + ((( float) msg ->minhi [1] + ((

float) msg ->minlo [1] / 100000.0)) / 60.0);

/* Convert to UTM. */

UTM(gps_lat , gps_lon , &e, &n);

/* Center UTM coordinates around experimental field

and convert to cm. */

e -= gps_utm_base_e;

n -= gps_utm_base_n;

/* Log lat/lon and centered UTM. Also flush log. */

call Logger.logGPS(gps_lat , gps_lon , e, n);

call Logger.flush();

...

/* Otherwise convert to top -left based and store. */

gps_utm_e = (uint16_t)(24600 + 328 * e);

gps_utm_n = (uint16_t)(25584 - 328 * n);

}

Listing 5.3: GPS data handling.

The sensors provided by the MPU9150 board are connected via the I2C hard-

ware bus and can be read using APIs supplied by InvenSense. The API is

very low level and offers only rudimentary access to the raw data of the sen-

sors. The sensor data is forwarded to the SA-MCL algorithm in two steps.

Low level communication using the API of the MPU9150 is used to read the

raw data of the sensors. For instance, the magnetometer data is provided as

raw float values for each axis. Calculating the yaw angle, i.e. the rotation

around the y-axis in a 3d coordinate system, from raw values mx/my can be

achieved using Equation (5.5.1). On a flat surface the yaw angle represents

the orientation of the node. The corresponding code is shown in Listing 5.4.
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yaw = atan(mx,my). (5.5.1)

//apply calibration data

mx += MAG_BIAS_CORRECTION_X;

my += MAG_BIAS_CORRECTION_Y;

mz += MAG_BIAS_CORRECTION_Z;

// transform raw magnetometer data to orientation in degrees

hdg = 90.0f - atan2(mx, my)*180.0f/M_PI;

Listing 5.4: Calculation of car heading.

Although the magnetometer itself provides very good precision, it is vul-

nerable to tilting and bumps. Both can occur if there are small obstacles,

e.g., stones or wood, on the test field. The SA-MCL implementation uses

additional data from the gyroscope and accelerometer sensors to mitigate

this vulnerability and to stabilize the readings of the magnetometer. This is

done by applying low pass filtering to the sensor data to get rid of noise,

and by hardening it against tilting by exploiting information collected from

the gyroscope.

As described above the accelerometer’s main task is to determine if the car

is moving or not. This is important to prevent the sample set from being

shifted when the car is at rest. Listing 5.5 shows how the shifting vector

for the samples is calculated from the determined heading and the constant

MCL_SPEED, which is corresponding to vmax.

event void Mpu9150.newData(float hdg , uint8_t flags , float dist)

{

/* Log data. */

call Logger.logHdg(hdg , flags , dist);

...

if (( flags & 1) && hdg <= 360 && hdg >= 0)

{

mpu_flags |= flags;

mpu_moving |= (flags & 1);

mpu_mag |= !!( flags & 2);

mpu_tilt |= !!( flags & 4);

mpu_freefall |= !!( flags & 8);
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...

}

/* If "average angle during movement" value is available ,

calculate vector. */

if (mpu_count)

{

float hdg_rad = (mpu_last_hdg + 270.) * M_PI / 180.;

mpu_x = (uint16_t)(cos(hdg_rad) * MCL_SPEED);

mpu_y = (uint16_t)(sin(hdg_rad) * MCL_SPEED);

}

}

Listing 5.5: Calculation of sample shift vector.

While MCL and SA-MCL share the same code in most cases, they differ once

a node is unable to obtain seed information. In this case the code shown in

Listing 5.6 is executed. Here, the sample shift vector is added to all samples

of the current MCL sample set.

/* If no seeds are detected , rely on sensor assistance. */

if (!n && (x_off || y_off))

{

for (i = 0; i < MCL_N; i++)

{

int32_t n_x = (int32_t)L[i].x + x_off;

int32_t n_y = (int32_t)L[i].y + y_off;

/* stay within boundaries of deployment area */

if (n_x >= MCL_COORD_MAX)

n_x = MCL_COORD_MAX - 1;

if (n_y >= MCL_COORD_MAX)

n_y = MCL_COORD_MAX - 1;

if (n_x < 0)

n_x = 0;

if (n_y < 0)

n_y = 0;

L[i].x = n_x;

L[i].y = n_y;

}

return;

}

Listing 5.6: Application of sample shift vector.
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5.5.4 Field Test Execution Methodology

The following paragraphs describe technical aspects of the field test and how

it is carried out in detail.

5.5.4.1 Field Test Area

The test field is a 100m× 50m hard pitch for soccer. To record the results of

GPS, MCL and SA-MCL, it would be sufficient to use the mobile nodes only,

as each node has its data flash memory to store this information. For having

a visualization and for the sake of presentation however, it is useful to have

a live overview of the current real and estimated positions with respect to

the used algorithm. Therefore, every node is sending this information to a

central base station as shown in Figure 5.16. The radio range of the mobile

nodes is not big enough to have steady contact to the base station. This is

solved by using a grid of relay nodes, which are placed at fixed positions

in the test field. Their only task is to forward any received packet to the

base station. The base station fills the traditional role of the sink in this

setup and forwards all received packets to a more powerful laptop computer

which will interpret the received positioning information and visualize it by

drawing the positions on a background image of the test field taken from

Google Maps6.

6Google Maps Service, 2015

Figure 5.16: General field test setup.
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5.5.4.2 Sensor Calibration

Prior to the experiment the car’s sensors have to be calibrated. Otherwise

the obtained readings might be inaccurate. The calibration process involves

leaving the car at rest to allow the gyroscope to settle and thereafter turning

the car constantly to allow the magnetometer reaching stable values. In

contrast to smart phones the hardware setup used in the field test is neither

shielded nor absolutely fixed in its position. Shaking during transportation

to the field test area therefore has strong impact on the sensor values and

makes calibration unavoidable.

5.5.4.3 Field Test Parameters

The parameters for the field test are chosen based on experience from sim-

ulation as well as assumptions about seed node coverage as described in

Section 5.4.1. The field test aims to evaluate scenarios where seed informa-

tion is very rare. Therefore, a low seed density is targeted for the field test

to provoke many situations where contact to seed nodes is lost. Since the

number of nodes and the deployment area dimensions are fixed, the only

remaining parameter is the radio range. Following Equation (5.4.1) a radio

range of 5m, 10 seed nodes and deployment area dimensions of 100m× 50m

results in a seed density of ρseed = 0.2, which is sufficient to achieve high us-

age of SA-MCL. However, the radio range of the IRIS motes is about six

times larger with ≈30m. Lowering the transmission range can usually be

achieved by decreasing the transmission power. Unfortunately, the TinyOS

version installed on the motes ignores the changed settings and will always

send with full transmission power. A workaround is to allow sending with

full transmission power while ignoring packets at the receiving node based

on the corresponding RSSI. Packets falling short of a certain RSSI threshold

are dropped and are not considered for the calculations of (SA-)MCL. It

is obvious that this method is less precise than directly limiting the trans-

mission power level. However, radio ranges in real applications are always

irregular. The introduced error using the RSSI cutoff approach can therefore

be neglected. The radio range of 5m described above is the lower bound

requirement, i.e., the minimum radio range required to achieve the desired
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seed density. The effective radio range however is affected by several pa-

rameters. For instance, antenna radiation is impacted by the superstructures

mounted on the car and drivers walking through the test field can block the

direct los, which immediately affects RSSI readings. Table 5.3 lists a rough

mapping of RSSI readings to meters based on experimental measurements.

However, since a precise mapping of RSSI to real distances is impossible in

real world applications (see Chapter 4), Table 5.3 is only presented as an

orientation for the reader. The corresponding threshold value for the IRIS

motes to achieve a radio range of about 5m is 29.

The maximum velocity, vmax for the test is set to about 6km/h. This ensures

safe driving without crashes and enables drivers to keep control of their car.

5.5.4.4 Driving Instructions

Sticking close to the simulation setup all test drivers have to follow a se-

quence of driving instructions, which imitates the random waypoint model.

1. Accelerate the car and drive a straight line

2. Let car roll out and come to a full stop

3. Rest for a short period

4. Change direction and start over

Of course the specific behavior between drivers is different and during the

test it cannot be guaranteed every driver is precisely following the driving

instructions. For instance, the allure of keeping the car constantly in motion

often results in ignored pause times or driving undesired sharped corners.

Furthermore, unforeseen events like crashing or tired fingers at the remotes

most certainly introduce differences in the mobility behavior compared with

arranged simulations. Nevertheless, all these additional impacts are consid-

ered to be part of a real world scenario an implementation has to account

for.

RSSI 50 33 26 12 9 6

Distance 1m 4m 8m 16m 22m 26m

Table 5.3: Mapping of RSSI values to meters.



104 CHAPTER 5. SENSOR-ASSISTED MCL

Figure 5.17: Absolute localization errors of MCL and SA-MCL for all test
cars.

5.5.5 Experimental Results

After the experiment all logs are collected from the nodes’ flash memory.

Different error metrics are calculated to evaluate the field performance of

both MCL and SA-MCL.

5.5.5.1 Absolute Localization Error

As mentioned in Chapter 2, the key performance indicator of a localization

algorithm is the localization error. As stated in Section 2.2.6 the absolute

localization error εloc is calculated as the Euclidean distance of two points,

namely positions provided via GPS and the estimated locations provided by

MCL and SA-MCL. The results for every test car are shown in Figure 5.17.

Here, the localization error for SA-MCL is much smaller than the error of

MCL. The averages over all cars for both algorithms are drawn as constant

lines. Overall, SA-MCL provides a localization error improvement of about

58%. Complementary, Table 5.4 lists the exact results for every car. The

superior performance of SA-MCL can be explained due to its ability to ac-

count for the missing seed information using its dead reckoning approach.

Contact to seed nodes is only occasional, i.e. most of the time SA-MCL has

to rely on its collected data information. MCL is lacking this advantage and

therefore can update its location estimation only in the rare moments of seed

node contact. Due to the continuous mobility, longer periods of seed contact

MCL could benefit from are extremely limited.
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Car 1 2 3 4 5

εloc MCL 20.39m 19.99m 23.06m 24.10m 32.77m

εloc SA-MCL 8.42m 7.51m 8.82m 13.05m 13.02m

Improvement 58.71% 62.43% 61.75% 45.85% 60.27%

Car 6 7 8 9 10

εloc MCL 33.78m 26.53m 30.35m 32.92m 29.41m

εloc SA-MCL 14.53% 11.83% 13.91% 11.24% 12.96%

Improvement 56.99% 55.41% 54.17% 65.86% 55.93%

Table 5.4: Absolute localization error of MCL and SA-MCL for all test cars.

To reduce the localization error of MCL to the level of SA-MCL, many more

seed nodes are required, as the seed density has to be heavily increased. In

other words, the same localization error as in MCL can be achieved with a

lot less seed nodes in SA-MCL.

5.5.5.2 Grid Localization Error

It is further interesting to see in which regions of the test field in particular

SA-MCL is able to outperform MCL. To evaluate this question, a second

metric called grid error is presented. Here, the whole deployment area is

divided into a grid with a cell size of 3m× 3m. Whenever a node is localized

in one of these cells via GPS, the absolute error of MCL and SA-MCL is

calculated. The averages of the errors are then plotted in a heat map style

for every grid cell.

The grid error is calculated for every car. Averaging all calculated grids

results in the final grid error map presented in Figure 5.18. SA-MCL is able

to achieve a low localization error on the whole test field, while MCL has

problems especially at the outer regions. Cells with an average localization

error of up to 90m can be found, which is even worse than random guessing

the current location. The reasons for the bad performance of MCL in these

regions is missing seed information. Due to discussed issues of the random

waypoint model in Section 2.1.8 and the driving behavior of the test drivers

the probability of meeting seed nodes at the outer regions is significantly

lower. While MCL has no further possibility to react to these conditions,
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Figure 5.18: Grid localization error averaged over all cars.

SA-MCL again benefits from its additional sensor information. Therefore,

the grid error map of SA-MCL looks much more balanced compared with

MCL. Confirming the results of the absolute localization error, in case of

SA-MCL almost all cells have an average error of less than 15m.

The individual grid error plots for all cars are provided in the Appendix in

Section A.2.1.

5.5.5.3 Optical Trace

By using the log information of all gathered positioning information it is

possible to provide an optical comparison of GPS, MCL and SA-MCL. Fig-

ure 5.19 shows a snippet of the complete path trace of one of the test cars and

provides an optical proof of the advantages of SA-MCL. The car is moving

from the top left corner to the bottom of the test field. In this example the

contact to all seed nodes is lost, therefore MCL cannot update its position

and will start to spread its samples. Consequently, the location of the car is

not updated and will jitter around the last known location. Therefore, the

path estimated by MCL is only represented by the green spot at the top left

corner. As soon as a new location announcement is received at the bottom of

the test field, the location is immediately updated, which implies drawing a

straight line to connect the two areas. In contrast to that, SA-MCL accounts

for the changing orientation of the car and closely imitates the ground truth

path provided by the GPS data. Since the discrepancy between the real
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Figure 5.19: Example path trace.

position of the node and the estimation of SA-MCL is much lower, the lo-

calization error is much lower, too. The full traces of every car for MCL and

SA-MCL are provided in the appendix in Section A.2.2.

5.5.5.4 Energy Consumption

Arguing against GPS usage for localization in WSNs is often based on its

high power consumption. In order to confirm this assertion, the current

draw of the cars is measured using a MASTECH M9803R multimeter [149].

All components have an active supply voltage of 3.3V. The results of the

current draw analysis are illustrated in Figure 5.20, which shows that the

general criticism of GPS regarding its power consumption is reasonable. The

MTS420 GPS extension board introduces a current draw of ≈ 60mA which

is the majority of all components. The base consumption of the motes is

measured while writing log data to the flash memory. It can be assumed

that without memory access the current draw is much lower. According to

the datasheet of the Atmega1281 [150] processor of the IRIS motes the pro-

cessor current draw is ≈ 7mA. Current draw introduced by the MPU9150

is comparatively low, i.e., the additional power consumption of SA-MCL is

very low compared with its other advantages. In relation to GPS the addi-

tional ≈ 9mA of additional current draw is negligible low.
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Figure 5.20: Current draw of sensor motes.

5.6 Discussion

5.6.1 Summary

In summary, the presented approach achieves its primary design goal. Us-

ing SA-MCL it is possible to account for situations without seed information

using the presented dead reckoning method. The seed density definition

introduced in this chapter accounts for different deployment area dimen-

sions and radio ranges and therefore has more expressive power than the

unknown method used by Hu and Evans to count the number of nodes

available on average in each localization approach.

By freezing the state of the sample set and moving it along the traveled path

of a node it is possible to reduce the localization error drastically when com-

pared with MCL. However, the precision of SA-MCL mainly depends on

the quality of the sensor readings. The evaluation shows that SA-MCL still

performs better than MCL up to 30% of sensor error. Given the fact that net-

work operators are interested in reducing the number of seed nodes in the

network SA-MCL can maintain a reasonable level of localization error with

a considerably less amount of seed nodes than MCL. The simulations show

that MCL and SA-MCL both scale very well in large-sized networks and can



5.6. DISCUSSION 109

even benefit from an increasing number of nodes in the network, as location

announcements of seed nodes are forwarded by a larger number of simple

nodes. The computational overhead of both algorithms mainly depends on

the number of samples maintained by the algorithms and the number of

seed nodes in the network. While it is in the interest of the network operator

to keep the number of costly seed nodes as low as possible, maintaining a

set of 25 samples is sufficient to achieve low localization errors. Therefore,

the computational overhead of SA-MCL is negligible low.

The conducted field experiments prove that localization algorithms designed

for mobile WSNs can be evaluated on real hardware with reasonable ex-

pense. SA-MCL is confirmed to be a feasible solution to bypass the problem

of missing seed information. Initial concerns about imprecise sensor infor-

mation are cleared up as the sensor data is surprisingly accurate.

5.6.2 SA-MCL Limitations

SA-MCL is not designed to completely replace MCL after an initial localiza-

tion estimation has been conducted. The quality of the location estimation

will decrease over time, since sensor errors of magnetometer and accelerom-

eter accumulate. Instead, SA-MCL can be understood as an supporting ad-

dition to MCL to bypass situations in which MCL is unable to provide a

reasonable location estimate.

The algorithm exploits further sensors to record the movement behavior of a

node. Both accelerometer and magnetometer are comparatively cheap sen-

sors, which do not require a lot of space. Therefore, they can be easily

integrated in existing systems while keeping additional costs at a reason-

able level. However, especially the magnetometer is a sensitive device which

requires shielding against outside influences.

In addition to that, the calibration process currently required for each mote

as explained in Section 5.5.4.2 is a restricting factor for the deployment pro-

cess. Future work is required to automated this process to reduce the efforts

for the calibration process. It can be expected that with a more sophisticated

hardware setup the expenses required for calibration can be drastically re-

duced as it is the case for hardware in modern smart phones.





Chapter 6
Path-Oriented MCL

In this chapter a new variant of MCL for applications with path-oriented

mobility is presented. Path-Oriented Monte Carlo Localization (PO-MCL) is de-

signed for nodes which are mainly traveling on a set of paths. These paths

are unknown to the nodes at deployment time, but dynamically recognized

during operation time. A grid structure representing the deployment area

held in the nodes’ memory in combination with a magnetometer sensor is

used to predict the nodes’ movement. With the help of its grid technique

combined with an improved sample weighting PO-MCL can reduce the lo-

calization error in applications with path-based mobility by about 50%.
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6.1 Motivation

In many sensor network applications the mobility behavior of nodes differs

from the commonly used random waypoint model. Geographical restric-

tions might detain nodes from accessing certain areas or the mobility be-

havior of the nodes can be described by more precise models than random

movement. Especially the latter is an uprising topic with lots of possible

applications in interdisciplinary research [151, 152, 153]. Examples can be

found in biology applications like wildlife monitoring as well as in indus-

trial related applications like automated warehouses. In these applications

the mobility model can be described as a set of paths which can be expressed

as a Graph G = V × E where E represents the set of single paths and V rep-

resents the intersections. In this path-based mobility model all nodes in the

system are only allowed to move on the edges of the graph. Prominent ex-

amples of applications following this model are big cats, the gnu migration,

migratory birds [23, 24], insect flight paths, ant trails, cars moving on streets

or robots moving between shelves in depots. More recently, biologists and

neuroscientists show growing interest in the behavior of flying insects to

study mating behavior and group dynamics [154]. Advances in the manu-

facturing size of modern transceivers as described in Section 2.1.5.4 are go-

ing to introduce completely new possibilities of sensing applications, which

most likely lead to tiny-scaled sensor networks deployed in insect colonies

like hornets or wasps do form.

Given the fact that applications exist in which nodes show the described

mobility behavior, it stands to reason to try to exploit it for the localization

process. Path-Oriented Monte Carlo Localization (PO-MCL) is designed for this

specific type of mobility and uses it to achieve a more precise localization

in situations where location announcements are not available because of lost

contact to seed nodes. Therefore, PO-MCL is also contributing to the prob-

lem of missing seed information, as described in Chapter 5.
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6.2 Design

The following sections describe the design of PO-MCL. After sketching the

main ideas, more detailed information about important aspects of the algo-

rithm is provided.

6.2.1 Main Design Ideas

In PO-MCL all nodes are maintaining a prediction grid which divides the

whole deployment area into grid cells. A node is always located in precisely

one of these cells. A grid cell has exactly eight neighboring cells except for

the cells at the borders of the deployment area. Each of the neighboring cells

can be labeled with its corresponding cardinal direction (N, NE, E, SW, ..., NW).

A value which represents the probability of moving to this cell next is as-

signed to all grid cells. Based on observations from seed nodes the grid is

updated such that the value of the cell the node has moved to is increased

and the values of all other cells are decreased. As long as seed node informa-

tion is available, the original MCL algorithm is executed, except that samples

are assigned the weight of their corresponding grid cell. Therefore samples

located in cells where the node currently is or has been before (i.e. cells

corresponding to the path the node is moving on) will have a higher weight.

In situations without seed information the node relies on the prediction grid

information using an initial orientation determined by a magnetometer. The

node will try to follow the path on the grid by looking for cells with high

values until seed information is available again.

PO-MCL has two additional requirements for each simple node compared

with MCL:

• A hardware magnetometer used to determine the node’s orientation.

In contrast to SA-MCL, the precision of the magnetometer is of second

rank and is only required to provide a rough heading approximation.

• A 2D array held in the node’s memory to represent the grid struc-

ture. The size of the deployment area and the grid cell dimensions

determine the additional memory overhead.
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Figure 6.1: Grid directions in PO-MCL

6.2.2 Adaptive Grid Cell Size

The dimensions of the grid cells are an important parameter as they mainly

decide over the memory overhead of PO-MCL. The size of the grid is

adapted based on the maximum velocity of a node vmax and the localiza-

tion interval tcheck, which defines the period between two localization ap-

proaches. Since the maximum distance a node can travel between two lo-

calization estimations is d = vmax × tcheck, the grid cell dimension is also de-

fined as d as shown in in Figure 6.1. It is obvious that for smaller values of d
the resolution of the grid is growing and the traveled paths can be mapped

to the grid with more precision.

6.2.3 Prediction Grid Construction

In the beginning all grid cells are initialized with the value 0.1, since no in-

formation about paths has been gathered yet. Ideally, at every point during

operation time of the sensor network the values of all eight neighbors of a

cell sum up to 1.0. However, since cells are affecting each other, this is un-

likely to happen. In this respect the term probability is not entirely accurate,

but used for the ease of presentation.

If a node can update its location estimation based on seed information, i.e.,

it can execute the MCL algorithm, it checks if it has moved from its previous

cell ct−1 to a different grid cell ct. If yes, the probability of ct is increased,

while the probability of the other eight cells including ct−1 is decreased.

The amount of probability increase ∆inc and decrease ∆dec is determined
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Figure 6.2: Effect of different values for β.

based on the current grid cell value using Equations (6.2.1) and (6.2.2). The

parameter β can be used to control the amount of cell increase and decrease.

In applications where nodes more likely maintain the same set of paths for

the whole deployment time it is desirable to achieve a faster grid conversion,

i.e., a larger β should be chosen.

∆inc =
β

cellValue
(6.2.1) ∆dec =

∆inc

8
(6.2.2)

Following the definitions of ∆inc and ∆dec, cells with a low probability will

be increased faster than cells with high probabilities. To avoid a single

cell is constantly increased, a cell can have a maximum probability of 0.5.

Furthermore, to provide an upper bound for increasing the cell value ∆inc

is limited to be 0.2 at maximum. Otherwise, for cells with very low val-

ues (i.e., values < β) the cell increase ∆inc will become too large. Figure 6.2

shows the effect of different values for β. As explained above, smaller val-

ues of β will result in less probability increase and therefore slower grid

convergence. An example of updating the grid is given in Figure 6.3. In this

example, the node is moving North to ct, therefore the probability of ct is

increased and the probability of all other cells including of ct−1 is decreased.

Over time, the prediction grid will converge to a representation of the trav-

eled paths of the nodes. Figure 6.4 illustrates an example of the convergence

process. The figure shows the set of paths, which the grid is supposed to

adapt to, and the status of the grid at three different points in time during
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Figure 6.3: Grid update process.

simulation. After 360min, the path structure is already visible. With ongo-

ing simulation time the grid is converging increasingly to the traveled paths

and gives a strongly visible representation after 1440min.

The convergence time of the grid mainly depends on the seed node density

in the scenario. The grid is only updated if contact to a seed node is estab-

lished. Consequently, the grid is converging faster if seed nodes are present

more often. With regard to a long term operation of the network this means

that in the beginning more seed nodes should be active to achieve a faster

grid convergence. After the paths have been adapted by the grid, it is possi-

ble to turn off a fraction of the seeds and to rely on the prediction grid more

often instead. Figure 6.4(d) visualizes how the corridors formed on the grid

are seamed with white cells which imply that the node will not go past these

hems. This is important if the paths are changing during operation time of

the network. In this case, old paths might be crossed by new ones in the

grid representation, but the hems define clear boundaries which cannot be

crossed when using the grid prediction system of PO-MCL as explained in

Section 6.2.4. Figures of the convergence process for other path scenarios are

listed in Appendix A.3.

The resolution of the grid is mainly affected by the parameters vmax and

tcheck. Figure 6.5 visualizes the grid for different tcheck and a constant

vmax of 5m/s after 1440min. If the grid resolution is getting too low, the

grid will not be able to map the paths with high enough precision, i.e. the

abstraction level of the paths is too high. On the other hand, if the grid res-

olution is unnecessary high, memory resources will be wasted. Therefore,

careful configuration of the localization interval is required.
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Figure 6.4: Grid convergence of a random path scenario.
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Figure 6.5: Different grid resolutions depending on tcheck.
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Figure 6.6: Grid movement prediction.

6.2.4 Grid Movement Prediction

In MCL without seed information the sample set L will degenerate gradually

over time, as already explained in the beginning of Chapter 5. In PO-MCL

the prediction grid can account for these situations. However, without fur-

ther information in which direction the node is moving to or from which

direction it just came, the grid cannot assist in choosing the correct cell for

the movement prediction. Therefore, a magnetometer is required to roughly

estimate the orientation of the node. The node will then select the three

cells in the determined direction and choose the cell with the highest value.

All samples of the MCL sample set are then moved by ∆d in direction of

the determined grid cell. ∆d is calculated from the average of the mini-

mum velocity of a node vmin and its maximum velocity vmax as shown in

Equation (6.2.3).

∆d =
vmin + vmax

2
× tcheck (6.2.3)

MCL only assigns sample-weights of 1 and 0, depending on if a sample

passes the filtering step or not. In PO-MCL sample weights are assigned

based on the grid cells where the samples reside in. This attaches more

weight to samples residing in cells corresponding to a mapped path. Conse-

quently, for calculating the position estimation Φest in PO-MCL these sam-

ples have more impact.

The grid prediction process is illustrated in Figure 6.6. In this example it

is assumed that the magnetometer determined a current direction of SW as
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indicated by the black arrow. The node selects the three corresponding cells

from its prediction grid and looks for the highest value. In the left example

the result is consistent with the magnetometer direction (0.32). In the right

example the cell in direction S has the highest probability (0.35). Therefore

the predicted direction of the node indicated by the darker cell is S instead

of SW.

6.2.5 Magnetometer Query Interval

Usage of a magnetometer is required for determining the initial heading of

the node as soon as no more seed information is available. Since the magne-

tometer is consuming additional power it is desirable to use it as little as pos-

sible. Hardware tests have shown that the time from powering on the mag-

netometer sensor to getting a first reading is negligible low (≈10ms) [144].

Consequently, the magnetometer can be put into sleep mode and will be ac-

tivated only if required. As the node might change its direction when reach-

ing an intersection of paths, it is necessary to query the magnetometer from

time to time to get reliable information about the heading. The magnetome-

ter query interval determines how often this is done. The most precise but

also most power consuming solution would be to keep the magnetometer

powered on. However, depending on the application scenario and the maxi-

mum velocity of a node, it is possible to put the magnetometer to sleep for a

couple of localization approaches and fully rely on the prediction grid. How

many approaches can be skipped is mainly affected by the application sce-

nario, the time between two localization approaches tcheck and the maximum

velocity vmax. In an application where lots of changes in direction (i.e., the

path model has lots of intersections) can be expected it is more likely a node

will change its orientation more frequently. The faster a node can move, the

faster it will reach an intersection. Furthermore, a node might reach an in-

tersection between two localization approaches, which most likely results in

a bad grid prediction if the magnetometer is not queried again. Detailed in-

formation on the trade-off between the localization error and magnetometer

usage is given in Section 6.4.2.6.
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1: procedure PO-MCL
2: if |ot| > 0 then
3: MCL()
4: magInterval = 0
5: updatePredictionGrid()
6: else
7: if magInterval % magQuery == 0 then
8: direction = getDirectionFromMagnetometer()
9: else

10: direction = getDirectionFromGrid(posOnGrid)
11: end if
12: moveSamplesByDirection(direction)
13: magInterval++
14: end if
15: posOnGrid = determineGridCell()
16: end procedure

Figure 6.7: PO-MCL algorithm in pseudo code.

6.2.6 Formal Description

The pseudo code listing of PO-MCL is presented in Figure 6.7. Depending

on the fact if the node receives one or more location announcements from

seed nodes either the MCL algorithm described in Section 3.2 will be exe-

cuted or the grid will be used to update the sample set. In the former case

the prediction grid is updated if the node has moved to a neighboring cell

using the grid update procedure as described in Section 6.2.3. As an ad-

ditional improvement MCL has been slightly modified to weight samples

according to the grid cell values. This is done by assigning the value of the

grid cell where a sample is located in to the sample weight, as explained in

Section 6.2.4.

The parameter magQuery determines how often the magnetometer is

checked (e.g., a value of 4 means it es checked every 4th time the node

is supposed to localize). magInterval is a simple counter to keep track of

the number of executed localization attempts in periods where no location

announcements are heard. magInterval is always reset to zero as soon as

MCL can be executed again. After the sample set has been updated in either

way, the new grid cell in which the node is located is determined.
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Figure 6.8: Flow diagram of PO-MCL

6.3 Implementation

PO-MCL has been implemented in QualNet [105], a professional network

simulation software by Scalable Network Technologies. Information about

this simulator is given in Section 2.3.2. To be able to compare PO-MCL with

MCL, the Java implementation of MCL provided in [36] has to be ported to

QualNet, which is based on the C programming language.

6.3.1 General overview

PO-MCL itself can be put around MCL as shown in the flow diagram in Fig-

ure 6.8. At the beginning of the localization procedure it is firstly checked if

the node received location announcements. If yes, the MCL branch includ-

ing the grid update procedure will be executed. If the node is localized in

a new grid cell, PO-MCL will update the grid by calculating the new cell

values as previously described. In the case that no location announcements

are received between two localization intervals the PO-MCL branch is exe-

cuted. After determining the current orientation using the magnetometer,

the grid prediction code is executed to determine the direction the node is

most likely moving to. This is used to move the sample set accordingly.

The localization algorithm is implemented as an application layer protocol
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(Layer 7 of the ISO/OSI protocol stack, or Layer 5 on the Internet protocol

stack, respectively [104]). All application protocols are implemented as a

Client/Server-approach in QualNet. Even if communication is assumed to

be unidirectional only, the simulator design expects the implementation to

be of bidirectional nature. For this reason the function naming convention in

QualNet requires the seed nodes to be the server side and the simple nodes

to be the client side of the protocol.

QualNet uses a predefined lifecycle for protocols in the simulator. Each

model or protocol needs to be registered by including function calls to itself

in the QualNet system header files. At the beginning of the simulation every

protocol is called to initialize itself. In this part of the code the protocol is

supposed to read its configuration parameters, set up necessary variables

and reserve required memory. To be able to react on messages sent to the

protocol, it has to register an event handler function with QualNet. The

protocol code will get called via this function every time a message corre-

sponding to the protocol type is available. In this part of the code the actual

program logic is implemented. Finally, at the end of the simulation, a final-

ization function can be called. It can be used to write out protocol statistic

files, to free eventually allocated memory resources and to cleanly exit the

protocol code. Listing 6.1 shows the function declarations of the functions

registered as QualNet callbacks for PO-MCL.

//PO-MCL Seed Node

void AppMCLServerInit(Node *node , unsigned int transmissionRange ,

Address serverAddr , clocktype interval , clocktype startTime ,

clocktype endTime , unsigned tos);

void AppLayerMCLServer(Node *node , Message *msg);

void AppMCLServerFinalize(Node *node , AppInfo* appInfo);

//PO-MCL Simple Node

void AppPMCLClientInitialize(Node *node , unsigned int trRange ,

short noOfParticles , int magFreq , float minSpeed , float

maxSpeed , clocktype checkInterval , FILTER_TYPE ft, clocktype

startTime , clocktype endTime);

void AppLayerPMCLClient(Node *node , Message *msg);

void AppPMCLClientFinalize(Node *node , AppInfo* appInfo);

Listing 6.1: PO-MCL main functions.
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6.3.2 Path-Based Mobility Model

QualNet only provides the random waypoint model, but offers interfaces for

integrating own mobility models. Consequently, the path-based mobility be-

havior the nodes are supposed to show in the simulations has to be added to

QualNet first. To support arbitrary path models, the added mobility model

features ESRI shapefile input [155]. Shapefiles contain simple vector data for

points, lines and polygons and are commonly used in Geoinformatics, e.g.,

to represent rivers, streets, points of interest or buildings. They are perfectly

suited as input files for the path-based mobility model. After parsing the

shapefile and building a graph structure from it, a random walk over the

graph is computed, which is executed during the simulation. Furthermore,

the implementation offers the same configuration possibilities as the random

waypoint implementation of QualNet, e.g., choosing a random velocity for

path segments from [vmin, vmax].

6.3.3 PO-MCL Seed Nodes

The seed nodes are rather simple to implement, because they only need to

send out a location announcement packet in constant intervals. Listing 6.2

provides the C structure representing a location announcement. A location

announcement contains the position data of a seed node represented as float

values, the unique seed id and a timestamp to discard other instances of

the packet when received at the simple nodes. For future extensions of the

localization protocol a packet type field in the packet structure has been

reserved. Since location announcements are forwarded once by every node,

a hop count field is added to the structure which is incremented by every

forwarding node.

typedef struct {

unsigned char type;

float x, y;

unsigned char id;

char hopCount;

clocktype timestamp;

} PMCLAnnouncementPacket;

Listing 6.2: PO-MCL announcement packet.
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For executing tasks on a regular basis, QualNet provides timers which can be

set during the initialization phase of the protocol. If the timer expires, Qual-

Net will generate an event, which must be handled by the protocol code. To

be able to distinguish between timers, QualNet uses timer types which can be

defined by the user. The event message of the expired timer will be sent by

QualNet to the function AppLayerPMCLServer, which is shown in Listing 6.3.

The code provided is responsible for the assembly and broadcasting of a new

location announcement. After determining the event type and which timer

expired, a new PMCLAnnouncementPacket is assembled. The position data

can be directly acquired by accessing data structures of the simulator mo-

bility model. In QualNet every node is assigned with an unique ID which

can be used as the ID for the announcement packet, too. The timestamp is

provided by the simulation clock. After assembly, the packet is spread via

broadcast to all adjacent nodes in radio range.

void AppLayerPMCLServer(Node *node , Message *msg) {

char buf[MAX_STRING_LENGTH ];

char clockstring [64];

AppDataPMCLServer *serverPtr;

ctoa(getSimTime(node)+getSimStartTime(node), buf);

switch (msg ->eventType) {

case MSG_APP_TimerExpired: {

AppTimer *timer = (AppTimer *) MESSAGE_ReturnInfo(msg);

serverPtr = AppPMCLServerGetPMCLServer(node , timer ->sourcePort

);

switch (timer ->type) {

case APP_TIMER_SEND_PKT: {

char *payload;

PMCLAnnouncementPacket data;

memset (&data , 0, sizeof(data));

data.id = node ->nodeId;

data.type = PMCL_PACKETTYPE_ANNOUNCEMENT;

data.x = (float)node ->mobilityData ->current ->position.

cartesian.x;

data.y = (float)node ->mobilityData ->current ->position.

cartesian.y;

data.hopCount = 0;

data.timestamp = getSimTime(node);

payload = (char *) MEM_malloc(sizeof(data));
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memcpy(payload , &data , sizeof(data));

NodeAddress destAddress =

NetworkIpGetInterfaceBroadcastAddress(node , 0);

TIME_PrintClockInSecond(getSimTime(node), clockstring);

APP_UdpSendNewDataWithPriority(node , APP_PMCL_CLIENT ,

NetworkIpGetInterfaceAddress(node , 0), (short) serverPtr

->sourcePort , destAddress , ANY_INTERFACE ,payload , (int)

sizeof(data), serverPtr ->tos , 0, TRACE_MCL);

serverPtr ->pmclStat.numAnnouncementsSent ++;

AppPMCLServerScheduleNextPkt(node , serverPtr);

MEM_free(payload);

}

...

}

MESSAGE_Free(node , msg);

}

Listing 6.3: PO-MCL seed node code.

6.3.4 PO-MCL Simple Nodes

The simple nodes require more sophisticated code as they implement the

essence of the localization algorithm. The following sections show the code

for the most important aspects of PO-MCL.

6.3.4.1 Grid Structure

The most important data structure of PO-MCL simple nodes is the grid. The

grid is a simple 2D array as shown in Listing 6.4.

double ** dGrid;

Listing 6.4: PO-MCL grid variable.

The grid is initialized in the AppPMCLClientInitialize function, which is

partly shown in Listing 6.5. The variable pmclClient is a pointer to a struc-

ture containing all data related to the protocol including the grid. After

the number of grid cells has been determined, the memory for the grid is

allocated.
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// calculate distance traveled between two localization

approaches

pmclClient ->maxSpeed = (maxSpeed*checkInterval)/SECOND;

...

pmclClient ->maxX = (Int32)dimensions.cartesian.x;

pmclClient ->maxY = (Int32)dimensions.cartesian.y;

pmclClient ->dCellsX =

((pmclClient ->maxX / pmclClient ->maxSpeed) + 0.5);

pmclClient ->dCellsY =

((pmclClient ->maxY / pmclClient ->maxSpeed) + 0.5);

pmclClient ->current_est_gridx =

(pmclClient ->dCellsX / 2.0) + 0.5;

pmclClient ->current_est_gridy =

(pmclClient ->dCellsY / 2.0) + 0.5;

// allocate memory

pmclClient ->dGrid =

(double **) malloc(pmclClient ->dCellsY * sizeof(double *));

for(int i=0; i<pmclClient ->dCellsX; i++)

pmclClient ->dGrid[i] =

(double *) malloc(pmclClient ->dCellsX*sizeof(double));

//set initial value for every cell

for(int i=0; i<pmclClient ->dCellsY; i++) {

for(int j=0; j<pmclClient ->dCellsX; j++)

pmclClient ->dGrid[i][j] = 0.11111;

}

Listing 6.5: PO-MCL grid initialization code.

6.3.4.2 Grid Update

Updating the grid is done by firstly determining the cell indexes of the cell

the node is moving to depending on the current direction of heading. After

some additional checking to ensure the new cell is not out of bounds (i.e.

out of the simulation area), the probability increase and decrease, i.e., ∆inc

and ∆dec are calculated and applied to all cells. The code for the grid update

function is provided in Listing 6.6.

void pmcl_updateprobabilities(double ** grid , int dimX , int dimY ,

int last_est_gridx , int last_est_gridy , enum direction dir) {

int d_x , d_y;
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switch(dir) {

case NW:

d_x = -1;

d_y = -1;

break;

...

}

if(last_est_gridy+d_y > 0 && last_est_gridy+d_y < dimY &&

last_est_gridx+d_x > 0 && last_est_gridx+d_x < dimX) {

double currentProbability =

grid[last_est_gridy+d_y][ last_est_gridx+d_x];

double addedProbability =

calcNewProbability(currentProbability);

grid[last_est_gridy+d_y][ last_est_gridx+d_x] +=

addedProbability;

double d_deltaProb = addedProbability / 8;

if((-1 != d_x || -1 != d_y) &&

(last_est_gridx -1) >= 0 && (last_est_gridy -1) >= 0) {

grid[last_est_gridy -1][ last_est_gridx -1] -= d_deltaProb;

if(grid[last_est_gridy -1][ last_est_gridx -1] < 0)

grid[last_est_gridy -1][ last_est_gridx -1] = 0;

}

...

if((1 != d_x || 1 != d_y) &&

(last_est_gridx +1) < dimX && (last_est_gridy +1) < dimY) {

grid[last_est_gridy +1][ last_est_gridx +1] -= d_deltaProb;

if(grid[last_est_gridy +1][ last_est_gridx +1] < 0)

grid[last_est_gridy +1][ last_est_gridx +1] = 0;

}

}

}

Listing 6.6: PO-MCL grid update code.

6.3.4.3 Location Announcement Forwarding

Announcements from seed nodes are forwarded once by each node in the

network to achieve a better provision of seed information. Upon a mes-

sage from the transport layer is available, QualNet will forward it to the

protocol code and trigger an event for it. The received announcement is

firstly compared to all already received announcements to eliminate dupli-

cates. Messages from already known seeds but with a newer timestamp are
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updated. New announcements are stored in the node’s announcement list

and forwarded after incrementing the hopcount by sending it to the broad-

cast address of the network. The code for forwarding an announcement is

provided in Listing 6.7.

case MSG_APP_FromTransport: {

UdpToAppRecv *info;

PMCLAnnouncementPacket* announcement =

(PMCLAnnouncementPacket *) malloc(sizeof(PMCLAnnouncementPacket));

info = (UdpToAppRecv *) MESSAGE_ReturnInfo(msg);

unsigned char* packetData = (unsigned char*) MESSAGE_ReturnPacket

(msg);

memcpy(announcement ,packetData ,sizeof(PMCLAnnouncementPacket));

free(packetData);

...

bool bAlreadyReceived = false , bUpdated = false;

list <PMCLAnnouncementPacket *>:: iterator announceIter;

for(announceIter = clientPtr ->listHeardAnnouncements ->begin();

announceIter != clientPtr ->listHeardAnnouncements ->end();

announceIter ++) {

PMCLAnnouncementPacket* ap = *announceIter;

if(ap->id == announcement ->id && ap->timestamp == announcement

->timestamp) {

/* duplicate announcement , do nothing */

bAlreadyReceived = true;

bUpdated = false;

break;

}

else if(ap->id == announcement ->id && ap->timestamp <

announcement ->timestamp) {

/* known seed , new timestamp -> updated announcement */

ap->x = announcement ->x;

ap->y = announcement ->y;

ap->timestamp = announcement ->timestamp;

bAlreadyReceived = false;

bUpdated = true;

break;

}

}

if(! bAlreadyReceived || bUpdated) { /* save new announcement */

clientPtr ->initialized = true;

clientPtr ->listHeardAnnouncements ->push_back(announcement);
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clientPtr ->heardUniqueAnnouncements ++;

if(announcement ->hopCount == 0) { /* forward packet */

char *payload;

PMCLAnnouncementPacket data;

memset (&data , 0, sizeof(data));

memcpy(data , announcement , sizeof(PMCLAnnouncementPacket))

data.hopCount = 1; /* update hop count */

payload = (char *) MEM_malloc(sizeof(data));

memcpy(payload , &data , sizeof(data));

NodeAddress destAddress =

NetworkIpGetInterfaceBroadcastAddress(node , 0);

APP_UdpSendNewDataWithPriority(node , APP_PMCL_CLIENT ,

NetworkIpGetInterfaceAddress(node , 0), (short) clientPtr ->

sourcePort , ANY_DEST , ANY_INTERFACE , payload , (int)sizeof(

data), APP_DEFAULT_TOS , 0, TRACE_PMCL);

clientPtr ->pmclClientStat ->announcementsForwarded ++;

MEM_free(payload);

}

}

...

Listing 6.7: PO-MCL location announcement forwarding code.

6.3.4.4 Sample Prediction With Grid Weighing

Listing 6.8 shows the code for the sample prediction function including the

improved sample weighting of PO-MCL. The sample prediction uses the

prediction grid to assign weights to the samples depending on the grid cell

the predicted sample resides in. Samples lying on a path will therefore

have a higher weight and more impact on the location estimation. Samples

are chosen randomly, while making sure the distance between the original

sample and the predicted one is smaller than the maximum distance which

might have been traveled since the last location estimate.

int pmcl_predictParticleGrid(PMCLParticle* p,

AppDataPMCLClient* clientPtr) {

float new_x , new_y;

float ms = clientPtr ->maxSpeed;

...

for(; ;) {
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new_x = p->x-ms+(float)(2*ms*(rand()+1)/( RAND_MAX + 2) +0.5);

new_y = p->y-ms+(float)(2*ms*(rand()+1)/( RAND_MAX + 2) +0.5);

double distance = distanceOf(new_x , new_y , p->x, p->y);

if(distance < ms && new_x > 0 && new_y > 0) {

p->x = new_x;

p->y = new_y;

int xGrid , yGrid;

/* assign weight from grid cell to sample */

pmcl_findcellfromcoords(p->x, p->y, clientPtr ->dCellsX ,

clientPtr ->dCellsY , ms, &xGrid , &yGrid);

float weight = readGridArray(clientPtr ->dGrid , xGrid , yGrid ,

clientPtr ->dCellsX , clientPtr ->dCellsY);

p->weight = weight;

return 0;

}

}

return 0;

}

Listing 6.8: PO-MCL grid predict code.

6.3.4.5 Sample Filtering

The sample filtering step is implemented by applying the filter condition de-

scribed in Section 3.2.2. The function is looping through all received location

announcements and checks if the sample passes the filter with respect to the

current announcement. First-hop and second-hop seed nodes are checked

independently. For samples passing the filter the function returns 1 and 0

otherwise. The corresponding code is provided in Listing 6.9.

int pmcl_filterParticle(PMCLParticle* p,

AppDataPMCLClient* clientPtr) {

bool flag = false;

float tr = clientPtr ->transmissionRange;

list <PMCLAnnouncementPacket *>:: iterator announceIter;

for(announceIter = clientPtr ->listHeardAnnouncements ->begin();

announceIter != clientPtr ->listHeardAnnouncements ->end();

announceIter ++) {

PMCLAnnouncementPacket* ap = *announceIter;

if(ap->hopCount == 0) /* check first hop neighbors */ {

if(distanceOf(p->x, p->y, ap ->x, ap->y) < tr)
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flag = true;

}

else if(ap->hopCount == 1) /* check second hop neighbors */ {

if(tr > distanceOf(p->x, p->y, ap->x, ap->y) &&

distanceOf(p->x, p->y, ap->x, ap->y) < 2*tr)

flag = true;

}

}

if(!flag)

return 0;

else

return 1;

}

Listing 6.9: PO-MCL sample filtering code.

6.3.4.6 Magnetometer Query Interval

Listing 6.10 shows how the the parameter magInterval is used to control

how often PO-MCL will use the magnetometer to determine the direction

of movement, instead of using the grid. A counter magCounter is maintained

and increased for every localization approach. In the case that magCounter
is divisable by magInterval the function to get the direction from the mag-

netometer will be called. Otherwise, the grid is used to predict the node’s

movement direction.

enum direction d;

if(clientPtr ->magCounter % clientPtr ->magInterval == 0) {

float realX = node ->mobilityData ->current ->position.cartesian.x;

float realY = node ->mobilityData ->current ->position.cartesian.y;

float destX = node ->mobilityData ->next ->position.cartesian.x;

float destY = node ->mobilityData ->next ->position.cartesian.y;

d = getDirectionFromMagnetometer(realX , realY , destX , destY);

}

else {

d = getDirectionFromGrid(clientPtr ->lastDir , clientPtr ->dGrid ,

clientPtr ->current_est_gridx , clientPtr ->current_est_gridy ,

clientPtr ->dCellsX , clientPtr ->dCellsY);

}

clientPtr ->lastDir = d;

clientPtr ->magCounter ++;

Listing 6.10: PO-MCL magnetometer frequency code.
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6.3.4.7 Magnetometer Emulation

Listing 6.11 shows how the magnetometer is approximated in PO-MCL. As

there is no physical sensor present in the simulator, the magnetometer has

to be emulated. Using the coordinates provided by the network simulator

for its mobility model implementation, it is possible to calculate the cur-

rent heading of a node. The heading is given in degrees where a value of

0◦ is representing the cardinal direction East. The common cardinal direc-

tions are assigned to their corresponding degree intervals. Consequently,

it is possible to inversely map a degree value to its corresponding cardinal

direction. For instance, the listing shows that values between 22.5◦ and 67.5◦

correspond to the cardinal direction South-East (SE). In case of a calculation

problem, i.e., no matching degree interval could be found, a placeholder

value UNKNOWN is returned.

enum direction pmcl_getDirectionFromMagnetometer(float realX ,

float realY , float destX , float destY) {

//get absolute distance

float dst_length = distanceOf(realX , realY , destX , destY);

// convert to degrees

float dst_direction = acos((destX - realX) / dst_length);

if (destY > realY) {

dst_direction = 2 * PI - dst_direction;

}

dst_direction = 180* dst_direction/PI;

// convert to cardinal direction based on degree value

if(( dst_direction >= 0 && dst_direction <= 22.5)||

(dst_direction >= 0 && dst_direction > 337.5))

return E;

else if(dst_direction > 22.5 && dst_direction <= 67.5)

return SE;

... ... ...

else if(dst_direction > 292.5 && dst_direction <= 337.5)

return NE;

else return UNKNOWN;

}

Listing 6.11: PO-MCL magnetometer query code.
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6.3.4.8 Grid Prediction

The code for predicting the node’s movement based on the prediction grid

and its last known heading is given in Listing 6.12. As previously described,

the node reads the values of the three adjacent cells in direction currentDir
from the prediction grid. Next, the maximum of these values is determined

using the function maxOfThree. Based on the returned value the function will

return the predicted cardinal direction. The corresponding code is shown in

Listing 6.12.

enum direction pmcl_getDirectionFromGrid(enum direction

currentDir , double ** dGrid , int currentX , int currentY , int

xDims , int yDims) {

double d1, d2, d3, max;

switch(currentDir) {

case N:

d1 =

readGridArray(dGrid , currentX -1, currentY -1, xDims , yDims);

d2 =

readGridArray(dGrid , currentX , currentY -1, xDims , yDims);

d3 =

readGridArray(dGrid , currentX+1, currentY -1, xDims , yDims);

max = maxOfThree(d1, d2, d3);

if(max == d1)

return NW;

else if(max == d2)

return N;

else if(max == d3)

return NE;

break;

... ... ...

}

}

Listing 6.12: PO-MCL grid query code.
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6.3.4.9 Sample Shift

To move the samples according to the determined direction, the function

pmcl_moveParticlesByDirection(..) presented in Listing 6.13 is used. The func-

tion is iterating through the node’s sample set and adds or subtracts the

value of distance to or from the x and y coordinates of each sample based

on the parameter dir, which represents the direction the node is moving in.

Additional checking is done to prevent samples from being placed outside

of the simulation area. After the sample has been shifted, the value of the

grid cell it now resides in is assigned to its weight.

void pmcl_moveParticlesByDirection(AppDataPMCLClient* clientPtr ,

enum direction dir , float distance) {

list <PMCLParticle *>:: iterator particleIter;

for(particleIter = clientPtr ->pmclParticles ->begin();

particleIter != clientPtr ->pmclParticles ->end();

particleIter ++) {

int x, y;

PMCLParticle* p = *particleIter;

switch(dir) {

case N:

if(p->y + distance < clientPtr ->maxY)

p->y += distance;

break;

case NE:

if(p->x + distance < clientPtr ->maxX && p->y + distance <

clientPtr ->maxY) {

p->x += distance;

p->y += distance;

}

break;

}

... ... ...

pmcl_findcellfromcoords(p->x, p->y, clientPtr ->dCellsX ,

clientPtr ->dCellsY , clientPtr ->maxSpeed , &x, &y);

p->weight = readGridArray(clientPtr ->dGrid , x, y, clientPtr ->

dCellsX , clientPtr ->dCellsY);

if(p->weight == 0)

p->weight = 0.1;

}

}

Listing 6.13: PO-MCL sample shifting code.



6.3. IMPLEMENTATION 135

6.3.4.10 Calculation of Position Estimation φest

Calculating the final position estimation is done by averaging the contents

of the final sample set with regard to the specific sample weight as shown in

Listing 6.14. The positions in terms of x and y coordinates are summed up

according to the sample weight. Finally, the sums are divided by the sum of

all sample weights to retrieve φest. The final coordinates of φest are returned

in the variables x and y.

void pmcl_estimatePosition(AppDataPMCLClient* clientPtr , unsigned

int noOfParticles , double *x, double *y) {

double xSum = 0;

double ySum = 0;

double weightSum = 0.0;

unsigned int c = noOfParticles;

list <PMCLParticle *>:: iterator particleIter;

for(particleIter = clientPtr ->pmclParticles ->begin();

particleIter != clientPtr ->pmclParticles ->end();

particleIter ++) {

PMCLParticle* p = *particleIter;

xSum += (unsigned int)p->x*p->weight;

ySum += (unsigned int)p->y*p->weight;

weightSum += p->weight;

}

*x = (xSum / (double)weightSum);

*y = (ySum / (double)weightSum);

}

Listing 6.14: PO-MCL position estimation code.
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Simulation parameter Meaning Default value

vmax Maximum velocity of nodes 2m/s

tcheck Localization interval 2.5s

Nsample Sample set cardinality 25

magQuery Magnetometer query interval 4

rnode Radio range 50m

Table 6.1: Simulation default parameters

6.4 Simulation Evaluation Setup and Results

PO-MCL is completely evaluated using network simulation. Important algo-

rithmic properties like scalability are difficult to validate without simulation

tools, since access to a sensor network consisting of hundreds or even thou-

sands of nodes is usually unavailable. The benefits of network simulation

are discussed in detail in Section 2.3.1. Since PO-MCL is implemented in

QualNet it is possible to get rid of the abstract unit system, which was nec-

essary to use for the evaluation of SA-MCL in Chapter 5. QualNet features

the familiar metric unit system and processes network simulation using a

discrete timing event system which allows setting parameters in commonly

used units.

6.4.1 Simulation Parameters and Scenario Setup

All experiments are conducted in a deployment area of size 1000m× 1000m.

The default parameters unless stated otherwise for all experiments are given

in Table 6.1.

Different path scenarios, node velocities, numbers of seed nodes, magne-

tometer query intervals, radio ranges as well as varying sample set cardinal-

ities are explored. All experiments use 300 simple nodes trying to localize

themselves and 25 to 100 seed nodes depending on the studied parameter.

Using Equation (5.4.1) given in Chapter 5 and assuming a radio range of

50m the seed density would be exactly 1.0. However, the equation does not

fully apply any longer, since the nodes are not allowed to move arbitrary
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(a) Square. (b) RP 1. (c) RP 2. (d) Grid.

Figure 6.9: Input models for different path scenarios.

in the deployment area. Consequently, the probability of a node being at

a certain location in the deployment area is no longer given by a uniform

distribution. Therefore, in the results section the amount of seed nodes is

always given as an absolute value. To provoke a reasonable amount of situa-

tions where no seed information has been acquired and to enforce the usage

of PO-MCL, it is necessary to use a rather low number of seed nodes.

Every experiment lasts 1d (1440min) to provide sufficient time for building

the prediction grid. All experiments are repeated 10 times and averaged

over all 200 simple nodes to get the final results.

εloc =

N
∑

i=1
d(φreal,φest)

N
(6.4.1)

The localization error is given in multiples of r, as the radio range is the

main parameter for determining the absolute localization error (see Sec-

tion 6.4.2.4). The final localization error εloc is determined by averaging

the error of all simple nodes as shown in Equation (6.4.1) where d(..) is the

Euclidean distance between the real position φreal and the estimated position

φest of a node, and N denotes the number of simple nodes.

6.4.2 Simulation Results

In the following, the effect of every parameter as introduced above is evalu-

ated in detail. The main metric studied is the absolute localization error εloc

as explained in Section 2.2.6.
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Figure 6.10: Localization error for different path scenarios.

6.4.2.1 Effect of Different Path Characteristics

The effect of four different path characteristics is studied to evaluate how

well PO-MCL adapts to these scenarios. A square with diagonals serves

as a simple test scenario and provides only four vertices. Therefore, it has

only limited expressive power, but can be used as an initial indicator of

the performance of PO-MCL. More realistic scenarios are the random path

scenarios in which a set of vertices is randomly created and connected using

arbitrary edges. The last scenario is a grid with a cell size of 100m2 to test

the behavior of PO-MCL in situations where a lot of changes in direction

can be expected. An overview of the 4 path scenarios tested is given in

Figure 6.9.

Figure 6.10 illustrates the localization error for each scenario when executing

MCL and PO-MCL. PO-MCL outperforms MCL in all scenarios. Especially

in the grid scenario, PO-MCL benefits from using the magnetometer and

the prediction grid. On average, the localization error is reduced by about

40% and even halved in the square scenario. Additionally the behavior

of PO-MCL is explored using the random waypoint model as the mobility

model. Although PO-MCL cannot efficiently use the prediction grid in this

case, it still benefits little from its magnetometer.
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Figure 6.11: Localization error for different number of seed nodes.

6.4.2.2 Effect of Varying Number of Seed Nodes

The most crucial parameter for the overall precision of a localization algo-

rithm is the number of seed nodes available to a simple node on average.

In Figure 6.11 visualizes how both MCL and PO-MCL behave if the number

of seed nodes in the scenario is constantly reduced. While the localization

error for MCL tremendously increases, PO-MCL can compensate the miss-

ing location announcements by using the magnetometer and grid prediction

techniques. If seed nodes are constantly available, as it is the case for 125

and more seeds, the localization error of MCL and PO-MCL will almost

converge to a single curve, although PO-MCL still benefits little from its

improved particle weighting.

6.4.2.3 Effect of Different Sample Set Cardinalities

Computational time of both MCL and PO-MCL mainly depends on the num-

ber of maintained samples. There is a trade-off between the sample set car-

dinality and the localization error. It is desired to keep the localization error

and the number of samples both as low as possible. Figure 6.12 illustrates

that the localization error is rapidly decreasing when increasing the number

of samples. This is due to the fact that larger sample sets can account for sin-

gle imprecise samples. Using too few samples results in a large localization

error, since most of the time not a single sample fulfills the filter condition,

i.e., the filtered sample set is empty. However, after a sample set cardinality

of 25 is reached, there is no further improvement of the localization error.
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Figure 6.12: Localization error for different sample set cardinalities.

6.4.2.4 Effect of Different Radio Ranges

Since MCL and PO-MCL both are connectivity-based algorithms the abso-

lute localization error is mainly determined by the radio range r of the nodes.

Smaller values of r will result in smaller absolute localization error given

that a sufficient number of seed nodes is available. On the other hand with

smaller r a bigger number of seed nodes is required to ensure the same level

of seed node coverage. Figure 6.13 shows the absolute localization error

when increasing the radio range. Due to less seed coverage, the localiza-

tion is large for small radio ranges of 5m-10m and decreasing rapidly when

increasing the radio range to about 25m-50m. In contrast to the evaluation

study of SA-MCL, in PO-MCL further increase of the radio range leads to an

increased localization error as well. The reason is a growing risk of packet

collisions with increased radio range. Since all seed nodes send their loca-

tion announcements exactly at the same time, the probability of colliding

packets is very high. However, this problem could be fixed easily by apply-

ing a jittering mechanism, i.e., each seed node will wait for a random period

before sending the location announcement.

6.4.2.5 Effect of Different Node Velocities

In Figure 6.14 different node velocities are investigated. The results are

showing the typical behavior of MCL as it is explained in Chapter 5. Both al-
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Figure 6.14: Localization error for different node velocities.

gorithms benefit from an increasing node velocity in the beginning, since pe-

riods without seed information are getting shorter for faster moving nodes.

However, since the radio range is kept the same, for higher node velocities

of >4m/s the localization error is increasing as nodes lose contact to seed

nodes more often. Depending on the radio range the local minimum of the

curve might be found at a different node velocity, but the characteristics of

the curve will be the same for other simulation parameters.



142 CHAPTER 6. PATH-ORIENTED MCL

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 7 8 5  10  15  20  25

L
o
c
a
liz

a
ti
o
n
 e

rr
o
r 

ε lo
c
 (

r)

Magnetometer query interval

PO-MCL 50 seeds grid

PO-MCL 25 seeds grid

PO-MCL 50 seeds random paths

PO-MCL 25 seeds random paths

Figure 6.15: Localization error for different magnetometer query intervals.

6.4.2.6 Effect of Different Magnetometer Query Intervals

A very important parameter for the power consumption of PO-MCL is the

magnetometer query interval, which describes how often PO-MCL will use

the magnetometer to determine its current direction of movement. There

is no general answer to the question how often the magnetometer needs to

be queried to maintain a low localization error, since this mainly depends

on the application scenario. Precisely, in scenarios with lots of intersections

a node most likely is going to change its direction of movement more fre-

quently. Consequently, the magnetometer should be queried more often to

avoid missing changes of orientation. In contrast, in scenarios with long

path segments the magnetometer query interval can be relaxed as not many

changes of direction can be expected.

Figure 6.15 presents the results of different magnetometer query intervals.

Obviously, the best results are achieved when the magnetometer is active all

the time. In this case, the grid is only used for sample weighting and not

for predicting the movement of a node. When increasing the magnetometer

query interval up to values of 3 to 4, only slight increase of the localization

error is noted. Especially for the grid scenario, higher values result in in-

crease of the error, because changes of direction happen more often than de-

tected by the magnetometer. The characteristics of the curve heavily depend

on the other parameters. If tcheck is decreased, whereas keeping the same

vmax PO-MCL will be executed in shorter intervals and therefore the magne-
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Figure 6.16: Comparison of PO-MCL and SA-MCL with random waypoint
mobility.

tometer will be queried more often, while the same distance is traveled by a

node. Consequently, for smaller values of tcheck longer magnetometer query

intervals are possible.

6.4.2.7 Comparison with SA-MCL

PO-MCL is especially designed for applications in which path-based mo-

bility can be assumed, while SA-MCL can always rely on its sensor infor-

mation no matter what kind of mobility model underlies. The advantage of

PO-MCL is that additional sensor information is required less frequent com-

pared with SA-MCL where the magnetometer must constantly supply new

orientation values. In PO-MCL this is compensated by using the grid map-

ping of the paths as a reference for the node’s movement. Which method

is most suitable depends on the specific application. SA-MCL is the more

general approach, which has been proven to be robust against missing seed

information. However, in very energy-critical networks with path-based mo-

bility PO-MCL might be the better option, as it will consume less additional

power, because the magnetometer is allowed to be turned off more often.

In Section 6.4.2.1 it is already shown how PO-MCL is performing when ap-

plied to a random waypoint scenario. Figure 6.16 extends these results by

showing the results when compared with SA-MCL in a random waypoint
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Figure 6.17: Comparison of PO-MCL and SA-MCL with path-based mobility.

scenario for different seed node densities. Both SA-MCL and PO-MCL have

a huge performance gain compared with MCL. However, PO-MCL cannot

make use of its grid prediction method since there are no paths in the sce-

nario the grid could converge to. Consequently, its localization error is still

clearly larger compared with SA-MCL.

Figure 6.17 illustrates how the results will change if a path mobility scenario

is examined. Here, PO-MCL can make use of its grid prediction mechanism

and achieve better results. However, SA-MCL is still performing slightly bet-

ter, since the sensor information is more precise than the grid approximation

of the traveled paths.

6.5 Discussion

6.5.1 Summary

This chapter presented PO-MCL, an approach to exploit node mobility be-

havior to achieve a lower localization error for applications where nodes are

mainly moving on a set of paths unknown to the sensor node in the be-

ginning of the network operation. The grid technique of PO-MCL is able

to create a representation of the traveled paths of a node. Tn combination

with a magnetometer the grid is used as an additional source of information

for predicting the nodes direction of movement in situations where no seed

information is available. Furthermore, the grid allows a more sophisticated
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particle weighting which further reduces the localization error. The magne-

tometer query interval has crucial impact on the performance of PO-MCL

and needs to be chosen adequately depending on the expected number of

changes in direction.

The evaluation of PO-MCL indicates the advantages of the grid technique.

The localization error can be reduced by 40%-50% in all tested path scenar-

ios. Even if the random waypoint model is applied, PO-MCL still benefits

slightly from its initial usage of the magnetometer to determine the initial

node heading. Acknowledging the results of Hu and Evans for MCL [36]

and the observations of Chapter 5 PO-MCL shows the same curve character-

istics when evaluating different node velocities, sample set cardinalities and

seed node amounts.

6.5.2 Limitations

PO-MCL is designed for applications in which nodes tend to move mainly

on a finite set of paths. Although there is a small advantage of PO-MCL in

comparison with MCL when applying both in a random waypoint scenario,

the additional cost bears no relation to the slightly reduced localization er-

ror. Therefore, PO-MCL is only suitable for a certain type of applications in

mobile WSNs, which show the required mobility behavior.

The ability to use the grid as a source for movement prediction is strongly

depending on the grid resolution. In Section 6.2.3 it is described that the

cell dimensions are derived from the maximum velocity of a node and the

localization interval. To achieve a more detailed resolution, the localization

interval needs to be shortened which will result in additional computational

overhead and increased memory consumption. The grid resolution must

match the number of paths in a scenario, i.e., the more paths can be ex-

pected the finer the resolution of the grid needs to be. Otherwise the grid

representation will be too abstract and merge distinct paths together. For

future improvements of the protocol it might be worth considering the ra-

dio range as an additional parameter to determine the grid cell dimensions.

In so far fictional applications like sensor networks in ant colonies the radio

range will be drastically reduced, while the paths of the nodes might require

a very high grid resolution.





Chapter 7
Conclusion

In this last chapter, the thesis and its contributions are summarized.
Beyond that, possible future research items, which extend or refine the
results and methods presented in this thesis, are stated.
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7.1 Summary

Localization is an ongoing topic in sensor networks research. Expanded de-

mands like node mobility and decreasing manufacturing size lead to new

challenges and require improved solutions for efficient localization tech-

niques.

This thesis initially analyzed RSSI, an often used ranging technique, regard-

ing its suitability for the usage in range-based localization algorithms in

Chapter 4. Several possible factors of impact were listed including physical

hardware capabilities, theoretical problems of mapping RSSI readings to dis-

tances, and signal attenuation. Detailed measurements were performed to

analyze the RSSI behavior. Although the basic assumption of a decreasing

RSSI with growing distance holds true, a useful mapping to absolute dis-

tances is not possible due to signal unsteadiness. Reasonable usage of RSSI

is only possible in controlled environments as performed in previous stud-

ies. However, these scenarios require calibration, fixed sensor positions and

clear los. In rapidly deployed or mobile networks neither of these require-

ments can be fulfilled. Therefore, robust localization applications cannot rely

on active ranging based on RSSI. The outcomes of this study led to focusing

on improving range-free localization techniques.

One of the most promising proposals for range-free localization is the Monte

Carlo Localization approach. Compared to solutions like APIT or Centroid,

which require at least three present anchor nodes, in MCL one anchor node

is sufficient to give a first location estimate, although the precision is in-

creased with two or more anchors. Furthermore, MCL is one of the first

approaches, which accounts for full node mobility. The main problem in

mobile sensor networks are isolated nodes, which temporary lose contact to

all anchor nodes. Chapter 5 described the effect of the degenerating sam-

ple set of MCL for isolated nodes and proposed a countermeasure based

on a dead reckoning approach called Sensor-Assisted Monte Carlo Localiza-
tion (SA-MCL). In the event of losing contact to all anchor nodes, a node

will use common ots sensors to determine its velocity and heading. Instead

of executing the prediction step of MCL, which would lead to sample set

degeneration, in SA-MCL the node will move its samples along the path

it travels relative to its last estimated position. Extensive simulation was
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presented to show that SA-MCL is able to account for missing seed infor-

mation. The results indicate that SA-MCL can reduce the localization error

drastically by up to 50% depending on the amount of seed nodes present

in the scenario. Important parameters like radio range, node velocity and

number of nodes were evaluated to study the behavior in terms of scalability

and mobility effects.

After the simulation studies, SA-MCL was implemented on real hardware

and evaluated in a small mobile sensor network testbed. IRIS sensor motes

mounted on radio controlled cars prove to be a feasible solution to ac-

count for mobility in sensor network testbeds. The results of the field test

evaluation showed that SA-MCL indeed has superior performance com-

pared to MCL as the localization error in this scenario could be reduced

by about 60%.

Mobility in sensor networks has often been considered to be a challenge

only, instead of a possibility for new localization solutions. In Chapter 6 it

was shown how specific mobility behavior can be exploited for the usage

in localization. In Path-Oriented Monte Carlo Localization (PO-MCL) it is as-

sumed all nodes in the network only travel on a set of paths. These paths

are unknown to the nodes a priori and are mapped to a grid each node has

to maintain during network operation time. The grid is updated whenever

a node executes MCL to estimate its location. It was shown that over time,

the grid converges to the paths the nodes are traveling on. In the absence

of seed nodes a node can use the grid to predict its next movement direc-

tion and use it for a more accurate location estimate. Furthermore, PO-MCL

introduces a more sophisticated sample weighting based on the prediction

grid to strengthen the impact of samples residing in grid cells corresponding

to the traveled paths. Similar to SA-MCL, a node will move its samples in

direction of the predicted direction, instead of executing the MCL prediction

step. To determine the initial heading of a node, a magnetometer is used.

Detailed simulations showed that it is not necessary to query the magne-

tometer every time the localization algorithm is executed. Depending on the

density of paths and intersections a threshold value for every scenario can

be found, which determines the magnetometer query interval. Compared

to MCL the localization error is drastically reduced in scenarios with path-

based mobility by about 50%, depending on the seed node density and the
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application scenario. In direct comparison to SA-MCL in a path-based mo-

bility scenario PO-MCL shows a slightly worse performance, which means

SA-MCL is the more precise solution. However, PO-MCL requires less addi-

tional sensor information and does not need to query its magnetometer all

the time and therefore is the more energy efficient approach. Depending on

the application scenario both approaches have their raison d’être.

7.2 Outlook

Due to newly raising challenges in sensor networks research, the develop-

ment of new solutions for localization is never completed. Advances in man-

ufacturing size and energy consumption lead to tiny-sized sensor motes,

which will allow completely new areas of application. However, efficient

algorithms in terms of computational efficiency and energy consumption

are required to meet the requirements of these applications. The research

conducted in this thesis mainly focuses to improve the localization error

and to reduce deployment costs by decreasing the number of required seed

nodes. Although these goals are achieved, the absolute localization error is

still quite large compared to GNSS solutions like GPS. Future research is

required to further decrease the error, while maintaining the same resource

overhead.

For SA-MCL it is desirable to perform more field tests with different param-

eters considering different radio ranges and higher node velocities. Further-

more, the built testbed can also be used for other experiments. For instance,

to confirm the simulation results achieved for PO-MCL, a field test similar

to the one conducted for SA-MCL needs to be performed. While some of the

components built for SA-MCL can be reused, others need further investiga-

tion. Especially the prediction grid, which requires a comparatively large

amount of memory, could exceed the currently given hardware capabilities.

Another important factor for the success of every deployed sensor network

is security. In this thesis no malicious nodes, which could interfere with or

even disable the localization process, are considered. For instance, the clas-

sic wormhole attack [156] could be used to replay location announcements

at physically impossible locations. Consequently, without detection a node
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receiving these announcements would localize itself at a different position

than usual. Even more drastically fake announcements sent by bogus nodes

can be used to determine the position where the node will localize. This

can have mission critical consequences and needs to be prevented. Future

research has to develop techniques to detect fake announcements. Several

countermeasures have already been developed for routing in sensor net-

works [157, 158, 159], which is subject to the same problem.
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Appendix A
Supplemental Results

In the appendix additional results from the evaluation of both SA-MCL and

PO-MCL are presented. They do not necessarily provide new findings, but

prove that both protocols have evaluated in detail with lots of different pa-

rameter settings.
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A.1 Additional Simulation Results for SA-MCL

A.1.1 Effect of Radio Range

Figures A.1-A.5 show the effect of an increasing radio range for different

amounts of seed nodes. As explained in 5.4.2, an increasing seed density

results in a smaller localization error in general. In addition to that, it can

be found that increasing the radio range also has a strong effect on the local-

ization error. It is strongly decreased up to radio ranges of 50m. After that,

only little improvement can be noted.
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Figure A.1: Localization error εloc for vmax = 20, Nsample = 25, Nnodes = 300,
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Figure A.2: Localization error εloc for vmax = 20, Nsample = 25, Nnodes = 300,
ρseed = 3.2
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Figure A.3: Localization error εloc for vmax = 20, Nsample = 25, Nnodes = 300,
ρseed = 2.4
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Figure A.4: Localization error εloc for vmax = 20, Nsample = 25, Nnodes = 300,
ρseed = 1.6
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Figure A.5: Localization error εloc for vmax = 20, Nsample = 25, Nnodes = 300,
ρseed = 0.8
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A.1.2 Scalability

Further results of the scalability analysis of SA-MCL can be found in Fig-

ures A.1 to A.5. As previously explained, an increasing number of nodes

leads to small improvements of the localization error due to the more often

forwarded localization announcements. The general characteristics of the

curves in all figures stay the same, only the localization error is higher due

to the continuously decreased seed density.
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A.1.3 Effect of Node Velocity

Further results for varying node velocities are illustrated in Figures A.6

to A.11. In the beginning all curves show the characteristic behavior. In-

creasing velocity is benefiting the localization error until a certain threshold

value. After that, the localization error increases due to more connection

losses.
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Figure A.6: Localization error εloc for r = 50, Nsample = 25, ρseed = 4.0,
Nnodes = 300
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Figure A.7: Localization error εloc for r = 50, Nsample = 25, ρseed = 3.2,
Nnodes = 300
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Figure A.8: Localization error εloc for r = 50, Nsample = 25, ρseed = 1.6,
Nnodes = 300
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Figure A.9: Localization error εloc for r = 100, Nsample = 25, ρseed = 4.0,
Nnodes = 300
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Figure A.10: Localization error εloc for r = 100, Nsample = 25, ρseed = 3.2,
Nnodes = 300
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Figure A.11: Localization error εloc for r = 100, Nsample = 25, ρseed = 1.6,
Nnodes = 300

A.2 Additional Field Test Results for SA-MCL

A.2.1 Grid Error Plots

The grid error plots of all experimental cars are shown in this section. In

general, the performance of SA-MCL is much better compared to MCL.

SA-MCL particularly provides better results at the outer regions of the test

field.
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Figure A.12: Grid error for Car 1.
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Figure A.13: Grid error for Car 2.
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Figure A.14: Grid error for Car 3.
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Figure A.15: Grid error for Car 4.
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Figure A.16: Grid error for Car 5.
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Figure A.17: Grid error for Car 6.
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Figure A.18: Grid error for Car 7.
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Figure A.19: Grid error for Car 8.
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Figure A.20: Grid error for Car 9.

A.2.2 Path Traces

The path traces of all experimental cars are shown in this section. For

SA-MCL blue color indicates the usage of SA-MCL and red color the us-

age of MCL. In general the path approximated by SA-MCL features many

more similarities to the provided GPS ground truth data than MCL does.

Consequently, all SA-MCL plots indicate that SA-MCL has been used more

often than MCL.
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(a) GPS (b) MCL (c) SA-MCL

Figure A.21: Traces of GPS, MCL and SA-MCL for Car 1

(a) GPS (b) MCL (c) SA-MCL

Figure A.22: Traces of GPS, MCL and SA-MCL for Car 2

(a) GPS (b) MCL (c) SA-MCL

Figure A.23: Traces of GPS, MCL and SA-MCL for Car 3

(a) GPS (b) MCL (c) SA-MCL

Figure A.24: Traces of GPS, MCL and SA-MCL for Car 4
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(a) GPS (b) MCL (c) SA-MCL

Figure A.25: Traces of GPS, MCL and SA-MCL for Car 5

(a) GPS (b) MCL (c) SA-MCL

Figure A.26: Traces of GPS, MCL and SA-MCL for Car 6

(a) GPS (b) MCL (c) SA-MCL

Figure A.27: Traces of GPS, MCL and SA-MCL for Car 7

(a) GPS (b) MCL (c) SA-MCL

Figure A.28: Traces of GPS, MCL and SA-MCL for Car 8
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(a) GPS (b) MCL (c) SA-MCL

Figure A.29: Traces of GPS, MCL and SA-MCL for Car 9

A.3 Additional Results for PO-MCL

A.3.1 Path Convergence Graphs

Figures A.30- A.32 show the convergence process for additional path scenar-

ios, which have been used to evaluate PO-MCL. In all scenarios the trav-

eled paths are properly represented by the grid after 1440min of simulation

time. Of course the approximated paths of the square scenario shown in

Figure A.31 are the plainest, as seed nodes and ordinary nodes are traveling

mostly on the same paths and therefore the grid update technique is used

more frequently.

(a) Ground truth
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Figure A.30: Grid convergence for random path scenario.
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(d) After 1440min

Figure A.31: Grid convergence for square scenario
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(a) Ground truth
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Figure A.32: Grid convergence for a grid scenario with 100m2 cell size

A.3.2 Simulation Results

A.3.2.1 Effect of Radio Range

Figures A.6- A.10 show the effect of the radio range for different amounts

of seed nodes. As explained in Section 6.4.2, increasing the number of seed

nodes results in a lower localization error in general. However, for larger

radio ranges the localization error is growing, too. This is due to the imple-

mentation of PO-MCL and the simulation setup, which both do not account

for congestion. In fact, the seed nodes will send their location announce-

ments exactly at the same time which results in many packet collisions. The

effect is amplified by the radio range of the nodes. The problem can be eas-

ily solved by applying a jittering mechanism to the process, i.e. each packet

will be sent after a short random delay to avoid packet collisions.
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Figure A.6: Localization error εloc for Nsample = 25, magQuery = 1.0, Nseeds =
25
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Figure A.7: Localization error εloc for Nsample = 25, magQuery = 1.0, Nseeds =
50
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Figure A.8: Localization error εloc for Nsample = 25, magQuery = 1.0, Nseeds =
75
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Figure A.9: Localization error εloc for Nsample = 25, magQuery = 1.0, Nseeds =
100
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