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1.1 Memory deterioration with aging and Alzheimer’s  disease 
 Aging is a complex biological mechanism, which can be defined as the accumulation 

of processes that decline many physiological functions and simultaneously increase chance of 

mortality in animals as well as humans. Along with many other functions of the body, aging 

massively declines the ability to learn and remember. Neurodegeneration is the process of 

neuronal  cell  damage,  which  accelerate  dramatically  with  aging  and  could  lead  to  Alzheimer’s  

disease (AD). Loss of neurons and disease manifestation are rather late events in the 

progression of AD when therapeutic interventions are no longer effective. 

Diagnosis of AD in its asymptomatic phases provides the possibility of adequate therapeutic 

interventions. Hence, the needs for finding new and non-invasive methods for diagnosis of the 

pathology of AD are urgent. The following sections summarize the current knowledge about 

the molecular changes that occur in the brain and in biofluids during aging, with a focus on 

identifying novel and non-invasive diagnostic and therapeutic candidates. 

 
1.1.1 Brain and memory organization 

Learning and memory are two unique functions of the brain enabling the organism to 

acquire and retrieve an imagination of itself and its world. Learning can be described as 

encoding of the data while memory is the process of recalling the data. According to the time 

span that it can be stored, memory is subdivided into two major subtypes: short-term and 

long-term. 1) Short-term memory is the kind of memory that stores information temporarily, 

which can be recalled shortly thereafter. 2) Long-term memory requires retrieval of 

information from the past. This information could be from a few minutes ago or along time 

ago. Long-term memory itself can be divided into implicit and explicit memory. Explicit 

memory is dependent on consciousness for storage of information such as memory of an 

event or specific names. In contrast, implicit memory does not need consciousness and is 

present in non-mammalian vertebrates and even invertebrates. Implicit memory is also called 

non-declarative memory and refers to remembering skills such as walking or swimming. 

Explicit or declarative memory itself is divided into episodic and semantic memory (Tulvig, 

1983). Episodic memory is about events, such as of places and time while semantic memory 

refers to the stored information about the world (Squire et al., 1993). 
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1.1.2 Memory storage regions in the brain  

The hippocampus is a neuroanatomical structure that is part of the limbic system and 

is present in all mammals. It is perhaps the most studied part of the brain and it has been 

widley established that the hippocampus is responsible for memory, learning and spatial 

navigation functions. A large body of our knowledge about hippocampus and its significant 

role in short-term and long-term  memory  comes  from  Brenda  Milner’s  pioneering  studies  on  

the patient Henry Molaison (known as HM, died at 2008) that suffered from severe epilepsy 

so that his medial temporal lobe was removed via surgery. Following surgery HM’s brain was 

unable to convert short-term memory to new long-term memory, while he could remember 

older events that had occurred before the surgery very well. Milner has studied this patient for 

almost thirty years and thanks to her reports now we have a comprehensive knowledge about 

different types of memories and the role of hippocampus in memory (Scoville and Milner, 

1957).  

Hippocampus or hippocampal formation has subregions called dentate gyrus (DG) and cornu 

ammonis (CA). CA itself is divided into three subdivisions CA1, CA2, CA3. Among these 

subdivisions CA1 and CA3 have distinct functions. There are three important connectional 

pathways in the hippocampus namely the Schaffer-collateral pathway, the perforant pathway 

and the mossy fiber pathway. The Schaffer-collateral pathway refers to the path between CA1 

and CA3. Axons of the perforant path convey sensory information from neurons in entorhinal 

cortex to the DG. Mossy fiber pathway refers to the DG unmyelinated axons that project to 

CA3. These pathways create hippocampal trisynaptic loop (Amarel et al., 2006). 

The anterior cingulate cortex (ACC) is part of the limbic system and in humans is involved in 

attention that regulates emotion and cognition (Bush et al., 2000). One example for this 

function is error detection, which was first, described by the American psychologist John 

Ridley Stroop and subsequently is called Stroop effect (Stroop, 1935). The stroop effect is 

referred to a conflict-urging stimulus by reading color names, which are denoted in 

corresponding versus not corresponding colors. However it has been shown that ACC along 

with posterior cingulate cortex go under profound laminar loss in AD (Scheff and Price, 

2001). 

In rodents ACC plays an important role in long-term memory formation (Weible et al., 2012). 
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1.1.3 Biological and molecular basis of memory 

Pioneering studies performed by Eric Kandel and his colleagues on Aplysia paved the 

way to have a clear understanding of memory formation and consolidation at the molecular 

level. These studies showed that short-term memory is formed upon the increase in the 

concentration of cyclic adenosine monophosphate (cAMP) in the sensory neurons, which 

initiates by a stimulus and neurotransmitter secretion. All these processes finally lead to 

increased concentration of glutamate receptor in the synaptic cleft (Brunelli et al., 1976). Also 

from vast amount of studies on long-term memory consolidation it came out that the 

formation of long-term memory requires new protein synthesis and subsequently new gene 

expression. An important protein expression, which is expressed and activated during long-

term memory consolidation, is cAMP response element-binding protein (CREB). CREB 

activation occurs after persistent elevation in the amount of cAMP and mitogen activated 

protein kinase (MAPK) levels (Bacskai et al., 1993). 

 

1.1.4 Genetic basis of memory formation 

As mentioned above, long-term memory formation needs de novo protein synthesis: 

hence, immediate early genes (IEG) come into play. These genes get activated in response to 

the stimuli with cellular basis and start the transcription process for new protein synthesis. 

The majority of IEGs are transcription factors like c-Fos, c-Myc, c-Jun, Egr1 and zinc-finger 

protein Zif268 (Guzowski et al., 2002) Zif268 has a crucial role in consolidation and 

reconsolidation of different forms of explicit memories (Veyrac et al., 2014). There are also 

non-transcription factor genes like Arc and a tissue plasminogen activator (tPA) that get 

activated during long-term memory formation (Qian et al., 1993). 

 

1.1.5 Impact of aging on brain gene expression 

Aging is the process of getting older over time. Different biological changes are 

happening in an organism during aging, e.g. reduced ability to regenerate the damages or 

coping with stress, and consequently increased risk of diseases. The risk for cognitive 

diseases also drastically increases because brain tissue goes under the process of aging as 

well. Since the hippocampus has a significant role in memory consolidation, it is one of the 

first regions that will suffer in memory-associated diseases such as AD. However the major 
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changes happening in the hippocampus are not on the morphological level but at the gene 

expression level leading to some functional modifications, like changes in the synaptic 

properties of hippocampal cells (Burger, 2010).  

 

1.1.6 Epigenetic  mechanisms  in  Alzheimer’s  disease   

The term ‘epigenetic’ was introduced to biology by Conrad Waddington. Nowadays 

epigenetic is defined as mitotically and meiotically heritable changes in gene expression 

without a change in the DNA sequence. DNA methylation, histone acetylation and RNA-

mediated gene silencing are considered as major epigenetic modulations in eukaryotic cells. 

They play important roles in development and gene regulation. These mechanisms can also 

underlie cancer and neurodegeneration mechanisms (Klose and Bird, 2006; Jones and Baylin, 

2002; Baylin and Ohm, 2006; Qureshi and Mehler, 2013).  

Neurodegeneration in AD is associated with two abnormal protein aggregations: 

neurofibrillary tangles and the amyloid-beta (A-bet) plaques. Neurofibrillary tangles or 

insoluble aggregates of tau protein are one of the crucial hallmarks of AD and other 

neurodegenerative diseases grouped as taupathies, diseases like Niemann Pick disease (Auer 

et al., 1995), Frontotemporal Lobar Dementia linked to chromosome 17 (FTLD-17) 

(Mackenzie and Rademakers, 2007) and Tangle-only Dementia (TOD) (Yamada, 2003). 

These amyloid plaques are the result of the  β  and  γ  secretases  enzymatic  action on amyloid 

precursor proteins (APP).  

 Besides aging, a combination of genetic and environmental factors have been considered as 

risk factors for sporadic form of AD. From genetic point of view, the disease can be caused 

by autosomal dominant mutations in the amyloid precursor protein (APP) or presenilin gene 

(PSEN). However these familiar forms account for only approximately 5% of the disease and 

the majority of AD patients suffer from the sporadic form with Apolipoprotein E (ApoE4) 

genotype. As previously mentioned another crucial risk factor for this disease etiology is the 

environment. Epigenetic mechanisms in combination with environmental factors regulate 

gene expression at the systems level. Epigenetic modifications are manifested at different 

levels of the gene expression machinery: modifications of histone proteins and DNA 

methylation exert a direct effect at gene-transcription levels while miRNAs influence 

posttranscriptional mechanisms. Aside from that, non-coding RNAs (ncRNA) play important 
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roles in hereditary changes of DNA-methylation in response to environmental factors. These 

molecules might contribute to the increased risk of sporadic AD that is reported among first 

grade relatives of AD patients (Malecova and Morris, 2010). 

 

1.1.7 Non-coding RNAs 

Non-coding RNAs are functional RNAs that are transcribed from DNA and as their 

name suggests do not encode proteins. Instead they have regulatory roles in gene expression. 

Non-coding RNAs include long and small non-coding RNAs. Long non-coding RNAs have 

over 200 nucleotides while small non-coding RNAs have usually less than 200 nucleotides. 

Long non-coding RNAs (long-ncRNA) have epigenetic regulatory roles in transcription, 

splicing and imprinting (Mercer et al. 2009). One well-known small non-coding RNAs is 

transfer RNA (tRNA), which is involved in protein synthesis by mediating amino acid 

transfer (Phizicky and Hopper 2010). Another small non-coding RNA is ribosomal RNA 

(rRNA) found in the ribosome and is involved in protein translation (Stults et al., 2008). 

Another small non-coding RNAs are small nucleolar RNA (snoRNA) which acts in the 

processing and modifications of other non-coding RNAs like rRNA (Holley and Topkara, 

2011), small nuclear RNA (snRNA) which is involved in splicing, (Valadkhan, 2005), small 

interfering RNAs (siRNA) has a significant role in RNA interfering pathway and can splice 

mRNA in site-specific manner (Kawaji and Hayashizaki, 2008), Piwi-interacting RNA 

(piwiRNA) is so named because of its interaction with Piwi proteins and have post-

transcriptional roles specially in germ line cells (Lin, 2007), and microRNAs (miRNA) which 

are very well known because of their important role in posttranscriptional gene expression 

modification in different organism life time, like development, growth and even diseases 

(Bartel 2004). In the present study the main concentration was on the miRNA profiling and 

expression, so the next parts deal with miRNA properties and biosynthesis. 
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1.1.8 MicroRNA 
 

MicroRNA (miRNA) constitutes a class of endogenous non-coding small RNAs, 

which is single-stranded in its mature form and consists of 18-25 nucleotides and regulates 

gene expression. MiRNAs are found abundantly in plant and animal cells and hence they are 

well conserved through the evolution, it can be claimed that miRNAs are crucial components 

of the gene regulation system (Chen and Rajewsky, 2007). The function of miRNAs as gene 

expression regulators was described in early 2000 (Reinhart et al., 2000; Lagos-Quintana, 

2001) although they were discovered few years earlier in C. elegans (Lee et al., 1993). Up to 

now, over 1800 different miRNAs have been identified in humans. The largest and most 

distinct number of all presently identified miRNAs is expressed in the brain, where they have 

been implicated in neuronal differentiation, development and synaptic function (Bartel, 2004, 

Motti et al., 2012). Interestingly one miRNA can regulate several different downstream 

targets, in line with that dysregulation of the neuronal miRNAs could have a deleterious effect 

on neuronal function and survival. Also many studies have shown that some miRNAs in AD 

brain are deregulated including miRNAs that target the expression of APP or APP processing 

secretases (Satoh, 2010, Cogswell et al., 2008; Herbert et al. 2008; Schonrock et al., 2010; 

Shioya et al., 2010; Smith et al., 2011). 

 
1.1.9 Biogenesis of the miRNA 
 

The canonical process of miRNA biogenesis is pictured in Fig. 1.1.1. However, there 

are also many miRNAs that are generated via alternative mechanisms (Miyoshi et al., 2010). 
 MiRNAs are either derived from intronic sequences, intergenic regions or encoded by 

clusters like a polycistronic transcript (Lagos-Quintana, 2001). MiRNA genes are transcribed 

by either RNA polymerase II or RNA polymerase III into primary miRNA transcripts (Lee et 

al., 2004; Cai et al., 2004; Borchert et al., 2006) primary miRNA (pri-miRNA), which is a 

hairpin structure, goes under nuclear processing. Nuclear processing depends on the function 

of the nuclear protein known as DiGeorge Syndrome Critical Region 8 (DGCR8). DGCR8 

associates with the enzyme Drosha, a protein that cuts RNA to form the "Microprocessor" 

complex. In this complex, DGCR8 orients the catalytic RNase III domain of Drosha to 

liberate hairpins from pri-miRNAs by cleaving RNA about eleven nucleotides from the 

hairpin base (two helical RNA turns into the stem). The resulting product has a 3' hydroxyl 

and 5' phosphate with a two-nucleotide   overhang   at   its   3’   end and is often termed as a 

precursor-miRNA (pre-miRNA). Pre-miRNAs, which still have the hairpin structure, are 

exported from the nucleus in a process involving the nucleocytoplasmic shuttler Exportin-5. 
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This protein recognizes a two-nucleotide overhang left by the RNase III enzyme Drosha at the 

3' end of the pre-miRNA hairpin. Exportin-5-mediated transport to the cytoplasm is an 

energy-dependent process; therefore, it is associated with Guanosine-5'-triphosphate (GTP) 

and RAs-related Nuclear protein (Ran). In the cytoplasm, the pre-miRNA hairpin is cleaved 

to its mature size by Dicer (an RNase III enzyme). Dicer acts in association with the double-

stranded RNA-binding protein (TRBP). The functional mature miRNA is then loaded along 

with Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC) and then it 

guides RISC to silence target mRNAs by mRNA cleavage, deadenylation and translational 

inhibiton. 

 

Fig. 1.1.1 Canonical pathway of biogenesis of microRNA. (adapted from: Winter et al., 2009: 229). 
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1.1.10 MiRNAs in the central nervous system 

MiRNAs are key regulators of the posttranscriptional control of the gene. Since 

discovery of the miRNAs the role of the miRNAs in the central nervous system has been 

studied massively. Interestingly, the enrichment of miRNAs in different parts of adult brain 

shows distinct expression patterns, e.g. miR127, miR128, miR9 and let-7 members are highly 

expressed in the brain (Bak et al., 2008). It has also been revealed that different miRNAs are 

expressed in different neuronal stages like development, proliferation, differentiation and 

synaptogenesis. The role of miRNAs in neuronal development has been shown by Dicer 

ablation (Andersson et al., 2010). As Dicer is a key enzyme in the miRNA maturation 

process, targeting this enzyme can reveal the role of miRNAs at different stages of the 

neuronal development (Kawase-Koga et al., 2009). Besides neuronal development, neuronal 

proliferation and differentiation of the neural stem cells to adult neurons is regulated by 

miRNAs. The miRNAs studied so far include MiR9, miR124, miR134, miR137 and miR184 

are examples of some studied miRNAs in this area (Zhao et al., 2009; Lagos-Quintana et al., 

2002; Szulwach et al., 2010; Liu et al., 2010). Of note, miR137 and miR184 expression is 

controlled by epigenetic regulation linked to DNA methylation.  

Synaptogenesis and neurite outgrowth are two critical processes that are crucial to memory 

formation and consolidation. The epigenetic role of two non-coding RNAs including miRNA 

124 and piRNA-F has been already reported in the long-term memory consolidation (Landry 

et al., 2013). It has also been revealed that miR132 and miR212 play an important role in 

dendrite outgrowth and neurogenesis in the granule cells of DG in the adult hippocampus 

(Magill et al., 2010). 

MiRNAs have also significant roles in dysfunction of the neuronal cells and 

neurodegeneration. MiRNAs mostly exert their role in neurodegenerative diseases by dys-

regulating the disease-related proteins. MiR9 is downregulated in AD and targets three 

important proteins namely Fibroblast growth factor receptor 1 (FGFR1), nuclear factor kappa-

light-chain-enhancer of activated B cells (NFkB) and Sirtunin1 (SIRT1) (Femminella et al., 

2015). Down regulation of miR107 and miR29a/b leads to the increase at BACE1 level in AD 

patients (Wang et al., 2008; Hebert et al., 2008). MiR298 and miR328 show their effect by 

repressing BACE1 expression and A-beta accumulation (Boissonneault et al., 2009). MiR101 

regulated repression of APP expression, which itself leads to A-beta accumulation (Vilardo et 

al., 2010). It has been shown that miR34c is expressed at high level in the hippocampus of the 

AD patients and AD mouse models (Zovoilis et al., 2011) the upregulation of miR34c in AD 
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is associated with SIRT1. Besides Amyloid beta expression regulations, miRNAs role in tau-

associated mechanisms in AD has been studied. MiR146a is an example for this case 

upregulation of miR-146a has been reported in AD patients (Lukiw et al., 2008). MiRNAs are 

also involved in other neurodegenerative diseases like Frontotemporal Dementia (FD) and 

Parkinson’s  disease  (PD) (Arrant and Roberson, 2014; Doxakis 2010).  

 

1.1.11 MiRNA potential as biomarker 

Biomarkers (abbreviation for biological markers) are usually defined as a measurable 

indicator of the pathophysiological or healthy state of an organism or pharmacological 

response to a treatment. Biomarkers or surrogate markers have been used to diagnose or 

prognose a disease, blood pressure, high temperature, antibodies, electrolyte levels and blood 

cell counts are known examples of biomarkers. These biomarkers are used to monitor and 

predict health states in individuals so that appropriate therapeutic intervention can be planned. 

Moreover a cell or a molecule can serve as a biomarker. In this study a biomolecule, 

hippocampal and peripheral blood mononuclear cells (PBMC) miRNA, is used, to explore 

biomarker for aging and consequently AD simply because aging is one of the highly 

important risk factors for sporadic form of AD. Referring to studies, miRNA deregulations, 

deficiencies or excesses have been associated with a variety of diseases including cancer, AD, 

metabolic diseases, and many others (Wiemer, 2007; Nelson and Keller, 2007; Krutzfeldt and 

Stoffel, 2006; Calin et al., 2002). 

In different mechanisms such as mRNA degradation or protein synthesis inhibition miRNA 

molecules   target   mostly   the   3’UTR   (Barbato   et   al.,   2009).   The   interesting   fact   is   that   the  

polymorphisms  in  the  3’UTR  of  the  binding  sites  of  the  miRNAs  can  change  the  affinity of 

these molecules to the target (Wang et al., 2008). So downregulation of the genes occurs upon 

the upregulation of the miRNAs. There is an inverse correlation between miRNA and mRNA 

and protein. MiRNA abnormal expression has been shown in the pathways involved in the 

mechanisms of neurodegenerative diseases. On the other hand the complementarity between 

the miRNA and its target site on the mRNA is imperfect, so it is possible for each miRNA to 

regulate hundreds of potential targets (De Felice, 2014). 

In line with this a reliable biomarker should have some criteria; miRNAs are to a high extent 

specific to each organ and diseased organ, so they have an optimal pathological sensitivity. 

Furthermore miRNA detection is rapid, robust, accurate and inexpensive. They are also 
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present in body fluids and that makes them a non-invasive or minimally invasive biomarker 

for pathological situations (Etheridge et al., 2011). Although the majority of miRNAs are 

found intracellular, remarkable number of miRNAs has been isolated from a variety of human 

body fluids, including plasma, urine, cerebrospinal fluid and blood serum (Weber et al., 2010; 

Turchinovich et al., 2011). There are ribonuclases in extracellular space and body fluids, 

which can degrade freely circulating RNAs, amazingly there are remarkable amount of RNAs 

in plasma, cerebrospinal fluid (CSF) and other extracellular space fluids so it seems that 

miRNAs are protected against RNase digestion. Interestingly, a certain subset of total 

circulating miRNAs was found to be exclusively transported within nanovesicles like 

exosomes while a distinct proportion of miRNAs was only present in the not-encapsulated 

Ago2-bound form (Arroyo et al., 2011). Aside from Ago2, existence of other RNA binding 

protein has been also confirmed (Wang et al., 2010). Another study also showed the existence 

of miRNA protein chaperones that could selectively protect miRNAs in the extracellular 

environment (Kosaka et al., 2010). In the present study the main focus was on isolation of 

small RNAs from solid tissue (brain) and PBMC (peripheral blood mononuclear cell), so the 

concerns about ribonuclases are not the case.  

 
1.1.12 MiRNA detection and profiling approaches 
 

Since miRNA discovery and revealing its role in gene expression regulation, 

techniques and methods, for miRNA detection and profiling, are progressing. Choosing the 

method for miRNA profiling depends highly on the aim of the project and also cost affords 

limitations. One of the major methods to detect miRNAs is quantitative real time polymerase 

chain reaction (qRT-PCR), which is an established method and has an acceptable sensitivity; 

miRNA microarray method is also a highly applied miRNA detection method with relatively 

lower costs in comparison to qRT-PCR but its specificity is not as good as qRT-PCR. Both 

methods have the disadvantage that they cannot identify novel miRNAs. Novel RNA 

sequencing methods like high-throughput next-generation sequencing (NGS) function highly 

sensitive and specific and these methods can detect novel miRNAs (Pitchard et al., 2012). 

This special advantage of NGS makes it a reliable method for biomarker discovery. However 

NGS needs bioinformatics experts to analyze the raw data from sequencer. Beside all the 

benefits, which NGS provides for miRNA profiling studies it has also some shortcomings for 

example it cannot be used for absolute quantification and its dependency on computational 

data analysis makes it very costly. 
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1.2 MiRNAs as therapeutic targets in Alzheimer’s  disease 
 

Altered expression of certain miRNAs is reported in development of the 

neurodegenerative diseases. It has been shown that differentially expressed miRNAs like 

miR-29a/29b-1 and miR-9 target BACE1 mRNA in AD (Hebert et al., 2008 and Shioya et al., 

2010). MiRNA 34c has been shown to be upregulated in the hippocampus of AD patients. In 

the corresponding mouse models (Zovoilis et al., 2011) this miRNA reduces Sirtuin1 protein 

level. Depletion of upregulated miRNA, which underlies the disease or pathological 

processes, could be a proper way to influence the disease progression. One important obstacle 

in targeting miRNAs is delivery of the therapeutics to the target cells. A pioneering study 

confirmed that exosomes contain different types of small RNAs (Valadi et al., 2007). Based 

on this study, experiments that focused to load the exosomes with siRNAs were initiated by 

Alvarez-Erviti et al. (2011). In this study to circumvent the immunogenicity, exosomes were 

purified from dendritic cells of the same animal and to target neural cells specifically rabid 

virus glycoproteins (RVG) were sorted in the exosomes. In the present study a system, which 

is based on sorting the measles virus glycoprotein (MVG) in the exosomes, was applied in 

order to pseudotype exosomes for neuronal cells. The following sections deal with the 

exosome biology and its properties for siRNA delivery. 

 

1.2.1 Exosomes 

Intercellular communication is a crucial hallmark of the eukaryotic cells. This 

communication can be either direct cell-cell communication or mediated by extracellular 

vesicles (EV). According to their biogenesis and function these vesicles can be divided into 

different groups, e.g. ectosomes, shedding vesicles, microparticles and microvesicles (Hess et 

al., 1999; Holme et al., 1994; György et al., 2011; Cocucci et al., 2009).  

The term exosome also refers to a group of extracellular nanovesicles in eukaryotic cells. Pan 

and Johnstone described Exosomes for the first time as a means to dispose of unwanted 

material during reticulocyte maturation (Pan and Johnstone, 1983). Electron microscopic 

images of these nanovesicles show a distinct saucer-shape with the size of 30 to 100nm (van 

Niel et al., 2006). However this saucer-shape like appearance was later reported to be a 

consequence of sample preparation for electron microscopy (Raposo et al., 1996). Exosomes 

in reality have a completely rounded shape, which can be demonstrated by cryo-electron 

microscopy analysis, because preparation process for this kind of microscopy does not deform 

the original shape of the exosome (Conde-Vancells, 2008). 
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1.2.2 Biogenesis of the exosomes 

Numerous studies have confirmed that exosomes originate from multivesicular bodies 

(MVBs). Exosomes get released into the extracellular milieu as a consequence of fusion of 

the MVB limiting membrane with the cell membrane (Fig.1.2.1). This distinguishes exosomes 

from ectosomes, which are produced by direct budding of the cell membrane (Valssov et al., 

2012). Based on its protein composition an MVB can have two fates: it can either end up in 

the lysosome for degradation or merge with the cell membrane to release exosomes (Thery et 

al., 2006). The synthesis of the exosomes and sorting of cargo requires the function of 

endosomal sorting complex required for transport (ESCRT); this machinery is also needed for 

lysosome synthesis. The ESCRT is composed of four main protein complexes: ESCRT0, 

ESCRT1, ESCRT2, and ESCRT3 (Williams and Urbe, 2007; Hurley, 2008). ESCRT0, 

ESCRT1, ESCRT2 have important function in recognition and sorting the ubiquitinylated 

proteins for secretion via exosomes, while ESCRT3 is important in invagination of the cell 

membrane (Raiborg and Stenmark, 2009). 

 
 

Fig. 1.2.1 Formation of MVE and release of exosomes in extracellular milieu (adapted from: Raposo 

and Stoorvogel, 2013: 375). 
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1.2.3 Composition of the exosomes 

Beside the unique shape of the exosomes, their protein and lipid composition can also 

be regarded as exclusive properties. Proteins with MVB origins like Alix and Flotillin, heat 

shock proteins like hsc70 and hsc90, as well as integrins and tetraspanins e.g. CD63, CD9, 

CD81 and CD82 have been found in exosomes. Since exosomes have an endosomal origin 

another group of proteins that can be detected in them are fusion and membrane transport 

proteins e.g. Annexin and Flotillin. (Simons and Raposo, 2009). 

The lipid compartment of the exosomes is similar to the plasma membrane of cells of their 

origin (Subra et al., 2007). A large proportion of the exosomal lipids are raft-lipids like 

ceramide, sphingolipids and glycerophospholipids (Subra et al., 2007; Trajkovic et al., 2008). 

The involvement of ceramide in biogenesis of exosomes has been confirmed since an 

ESCRT-independent pathway requires it (Trajkovic et al., 2008). 

 
1.2.4 Function of the exosomes 
 

Early studies, which led to the discovery of exosomes, described these vesicles as a 

carrier to dispose the superfluous cellular material from reticulocytes (Pan and Johnstone, 

1983). Other roles have been proposed for exosomes in further studies e.g., Raposo et al. 

(1996) surveyed the role of exosomes in antigen presentation in pioneering studies. In this 

study they proved that exosomes work as MHCII presenters to T cells. In the nervous system 

as well, some functions for exosomes have been revealed, Bakhti et al. (2011) reported 

exosomal function in myelin formation. In this project the role of exosomes in material 

transportation between the cells was of paramount interest, hence the next sections deal with 

the function of exosomes in delivering the desired cargo. 

 
1.2.5 Exosomes as delivery vehicles 
  

Another feature of exosomes, which is highly compelling, is their role in intracellular 

communication. This intracellular transmission can include the transfer of pathogenic nervous 

system proteins like amyloid beta peptide (Rajendran et al., 2006) and alpha-synuclein 

(Emmanouilidou et al., 2010). These bioactive nanovesicles also transfer mRNA and miRNA 

between cells (Valadi et al., 2007). This special property of exosomes in mediating the cell 

contents has great benefits for biomarker research. Exosome-derived miRNAs and proteins 

has been studied as diagnostic biomarkers for prostate cancer, lung cancer and kidney injuries 

(Duijvesz et al., 2013; Yamashita et al., 2013; Zhou et al., 2006). 
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This function of exosomes is particularly useful because it can be exploited to deliver 

desirable cargoes to target cells. One interesting cargo could be a therapeutic agent. Many 

studies put their efforts to load exosomes with their desired cargo. Table 1.1 shows a list of 

these studies, which loaded various kinds of cargo into the exosomes, and specifies the 

method used for loading. The main trials have been done with electroporation and transfection 

methods. In electroporation an external electric field is applied to make the biological 

membrane permeable then a desired cargo, which could be a drug or a genetic piece like DNA 

or siRNA can be loaded to the cell. Transfection as word is a combination of trans and 

infection. Different genetic material can be entered to the cell with this method; siRNA 

constructs are among these different materials. It should be taken into account that in animal 

cells most of the time transfection involves transient pores in the cell membrane in order to 

uptake of the transfection material. Different methods are used for transfection: cell 

squeezing, calcium phosphate, electroporation, or most recently by mixing a cationic lipid 

with the material to produce liposomes, which fuse with the cell membrane and deliver their 

cargo inside. 

 

Table 1.1 Recently published studies, which used exosomes as delivery vehicles. 

Study  Cargo Method  

Alvarez-Erviti et al. (2011) siRNA  Electroporation 

 Shtam et al. (2013) siRNA Electroporation 

Wahlgren et al. (2012) siRNA Electroporation 

Pan et al. (2012) shRNA Transfection of exosome producing cells 

Chen et al. (2014)  miRNA Transfection of exosome producing cells 

Bryniarski et al. (2013 miRNA Incubation of exosome with cargo 

Zhang et al. (2010)  miRNA Transfection of exosome producing cells 

Katakowski et al. (2010)  miRNA Transfection of exosome producing cells 

Kosaka et al. (2012) miRNA Transfection of exosome producing cells 

Pan et al. (2012) miRNA Transfection of exosome producing cells 

Xin et al. (2012) miRNA Cell activation  

Ohno et al. (2012)  miRNA Transfection of exosome producing cells 

Munoz et al. (2013) miRNA Transfection of exosome producing cells 

 

  

http://en.wikipedia.org/wiki/Electroporation
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In all the studies listed in the above table, interfering RNAs are adopted as a therapeutic 

agent. Some other studies have applied exosomes for other therapeutic cargoes, e.g. 

doxorubicin as chemotherapeutic in cancer treatment research (Tian et al., 2013; Jang et al., 

2013) and curcumin as an anti-inflammatory mediator (Zhuang et al., 2011; Sun et al., 2010).  

In the present study in order to use exosomes as reliable drug delivery vehicle for neuronal 

cells, the main concentration is to develop a method to produce exosomes, which can target 

neurons specifically. Pseudotyping of exosomes with rabid virus glycoproteins (RVG) was 

performed before by Alvarez-Erviti et al. (2011) to target glia and neurons. Anliker et al. 

(2010) introduced a method, which apply pseudotyped lentiviral vectors for specific gene 

transfer to different cell types, including neurons. This method is based on single chain 

antibodies, which recognize cell surface antigens. The process of pseudotyping is 

accomplished by using measles virus glycoproteins (MVG). This virus provides a promising 

strategy for specific cell entry by retargetable envelope MVG namely hemagglutinin protein 

(H), which is responsible for receptor recognition, and fusion protein (F) (Funke et al., 2008). 

Interestingly variants of the hemagglutinin protein (H) and the measles virus fusion protein 

(F) truncated at their cytoplasmic tails have shown efficient incorporation into lentiviral 

particles (Funke et al., 2009). In this project MVG H and F are used for exosome 

pseudotyping. 
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1.3 Project objectives 

AD is the most frequent cause of dementia in elderly people. Due to increased life 

expectancies the number of people afflicted with this disease is believed to double in the near 

furture. Despite intensive research there is no effective therapy for AD. Clinical trials targeted 

towards amyloid pathology have all failed. It is believed that this is at least in part due to the 

fact that diagnosis is made too late, when causative treatments are ineffective. Hence, there is 

great need to identify biomarker for early diagnostic methods and therapeutic intervention. A 

central hypothesis of this thesis is that microRNAs provide a novel avenue to develop 

biomarker and therapeutic approaches for AD. Thus, this thesis had two central aims: 

 

1. Detection of the circulating miRNAs as implications for age-related cognitive 

impairments and AD in body fluids like blood from aged versus young mice as a non-

invasive method to search for miRNA signatures of aging and AD. 

2. Since miRNAs can interfere at posttranscriptional level we sought to establish a 

therapeutic method which is based on RNA interfering. To conquer the blood brain barrier 

the exosomes were planned as delivery vehicles. To end up with a high efficiency method, 

in this project experiments were concentrated on neuronal targeting of the exosomes.  



 

 

 
 
 
 
 
 

                                   Materials and Methods 
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2.1 Materials 

2.1.1 Animals 

Four-month-old adult and eighteen-month-old adult male C57BL/6 wild-type mice 

were purchased from Janvier Rodent research models and associated service. All animals 

were housed in the animal facility of the European Neuroscience Institute, Göttingen with 

standard temperature and humidity and dark/light condition. They were fed and watered ad 

libitum with a standard laboratory mouse diet and cages were changed every ten days. All 

animal care and testing protocols were approved by the Veterinary Institute of the Lower 

Saxony State Office for Consumer Protection and Food Safety. 

 

2.1.2 Antibodies 
Primary antibodies, which were used, are listed in Table 2.1. Secondary horseradish 

peroxidase (HRP)-conjugated antibodies were purchased from Dianova (1: 2,000; Hamburg, 

Germany) and for western blot analysis, which were performed in Paul Ehrlich Institute, 

Langen the secondary antibodies conjugated with horseradish peroxidase were obtained from 

DakoCytomation (1:2,000; Hamburg, Germany). 

 
Table 2.1 Primary antibodies used for western blot 

Target Host species Application Reference 
Flotillin-2  Mouse WB (1:1000) BD Biosciences, Heidelberg, Germany 
F (F431) 
 

Rabbit 
 

WB (1:1000) 
 

Buchholz CJ, Laboratory, Paul Ehrlich 
Institute, Langen, Germany 

H (606) Rabbit WB (1:2000) Buchholz CJ, Laboratory, Paul Ehrlich 
Institute, Langen, Germany 

 

2.1.3 Plasmids 

Table 2.2 Plasmids donated from other laboratories 
Plasmid Reference 
pCG_Hwt Buchholz CJ, Paul Ehrlich Institute, Langen, Germany 
pCG _Fwt Buchholz CJ, Paul Ehrlich Institute, Langen, Germany 
pCG _Hcd18 Buchholz CJ, Paul Ehrlich Institute, Langen, Germany 
pCG _Fcd30 Buchholz CJ, Paul Ehrlich Institute, Langen, Germany 
pCG _Hcd14 Buchholz CJ, Paul Ehrlich Institute, Langen, Germany 
pCG _Fcd24 Buchholz CJ, Paul Ehrlich Institute, Langen, Germany 

 
 The plasmid cards are attached in appendice1-4. 
  



2. Materials and Methods 

20 

2.1.4 Buffers and solutions 

Table 2.3 Phosphate buffered saline (PBS) (for preparation of 1 Liter of 10x 
PBS). 

Ingredient Percent/concentration 
NaCl 80.0g 
KCl 2.0 g 
Na2HPO4 (or 18.05 g Na2HPO4 _ 2H2O) 14.4g 
KH2PO4 2.4g 

 

Table 2.4 CHAPS lysis buffer (The pH was adjusted to 8) (For preparation of 1 
Liter 1x Lysis buffer). 

Ingredient Percent/concentration 
3-[(3-cholamidopropyl) dimethylammonio]-1-
propanesulfonate (CHAPS), (^= 1%) 

10 g 

Tris (hydroxymethyl) aminomethane (Tris), (^=50 
mM) 

6.1 g  

Ethylenediaminetetraacetic acid (EDTA) 
(^= 5 mM) 

1.5 g  

 

Table 2.5 Components of 400µl Electroporation buffer (The pH was adjusted to 
7.2). 

Ingredient Percent/concentration 
Potassium phosphate 1,15 mM  
Potassium chloride 1, 25 mM 
Optiprep 21% 

 
Table 2.6 Protein loading buffer (The pH was adjusted to 6.8) Loading buffer 4x 

Ingredient Percent/concentration 
Glycerol 10 % 
Tris-HCl 50 mM 
EDTA 2 mM 
SDS 2 % 
𝛽mercaptoethanol 144 mM 
Bromophenol blue 0.05% 
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2.1.5 Media and Sera  
 

Table 2.7 Commercially available media, sera and additives. 

Medium name Reference 

Dulbecco's Modified Eagle Medium (DMEM) PAA Laboratories, Pasching, Austria 

Fetal Calf Serum (FCS)  PAA Laboratories, Pasching, Austria 

GlutaMAX™-I supplement Invitrogen, Darmstadt, Germany 

LB medium + LB agar plate AppliChem (Darmstadt, Germany) 

Opti-MEM + GlutaMAX™-I Invitrogen, Darmstadt, Germany 

Phosphate Buffered Saline (PBS) PAA Laboratories, Pasching, Austria 

Penicillin/Streptomycin (Pen/Strep) 100x Invitrogen, Darmstadt, Germany 

Geneticin (G418) Sigma-Aldrich, Taufkirchen, Germany 

Optiprep (Density Gradient Medium) Axis-schield, Oslo, Norway 

 

2.1.6 Commercial kits 

Table 2.8 Commercial kits used in this study. 
Kit Application Origin 
Bardford protein assay Exosome protein concentration 

measurement  
BioRad 

Xtra Midi Kit  DNA extraction Machery-Nagel, Dueren, 
Germany 

Luc-Screen® System 

 

Luciferase activity measurement Applied Biosystems, 
Bedford, MA, USA 

RNeasy Protect animal Blood kit  RNA extraction from mice blood Qiagen, Germany 
TruSeq small RNA sample 
preparation kit  

Small RNA library preparation  Illumina, San Diego, CA, 
USA 

 

 

 

 

 

 

 



2. Materials and Methods 

22 

2.2 Methods 

2.2.1 RNA Isolation 
Mice were anesthetized with ketamine/xylazin diluted in PBS (per mouse 18µl 

Ketamin, 8,6 µl Xylazin diluted in 173,4 µl PBS). 500µl Blood was taken from heart using an 

Insulin syringe 1ml/ 40 I.U. and 12 gauge x 40 mm needle (BBraun, Meslungen, Germany) 

quickly and transferred to blood collection tubes from kit to avoid coagulation. RNA isolation 

from blood was performed with RNeasy Protect Animal kit (see table 2.8) according to the 

manufacturer protocol. For RNA isolation from brain regions first the brain was dissected. 

The dissection of ACC, DG, CA1 and CA3 regions was performed under a stereomicroscope 

(Motic) as described before (Hagihara et al., 2009). The RNA isolation from each region was 

done using TRI Reagent (Sigma-Aldrich Chemie GmbH, Munich, Germany). For RNA 

isolation the tissue was thoroughly homogenized in TRI Reagent. After that chloroform 

(AppliChem, Darmstadt, Germany) was added to the samples and was shaken vigorously and 

left at room temperature (RT) for 15 min. Then the samples were centrifuged at 12000xg, at 

4qC for 15 min to acquire the three phases, the aqueous phase which is containing RNA was 

collected into a new 1.5 ml tube, mixed with Isopropanol (AppliChem, Darmstadt, Germany) 

and kept at -20qC for at least 14h. Afterwards the aqueous phase Isopropanol mixture was 

centrifuged for 30 min at 4C at 12000xg thereafter the supernatant was discarded and washed 

with 75% ethanol twice (12000xg for 5 minutes each wash step). Finally the pellet was 

dissolved in 15µl RNase free water. The exact amount of TRI reagent, chlorophorm, 

Isopropanol and ethanol per each tissue is listed in the table below: 

 
Table 2.9 The exact volume of each solution for RNA isolation per brain tissue. 

Brain tissues TRI reagent  Chlorophorm Isopropanol Ethanol 
ACC 400µl 80µl 200µl 500µl 
DG 400µl 80µl 200µl 500µl 
CA1 800µl 160µl 400µl 500µl 
CA3 800µl 160µl 400µl 500µl 

 

 
2.2.2 RNA quantity and quality  
 

RNA from blood and brain tissue was quantified using a NanoDrop spectrophotometer 

(Thermoscientific, Peqlab). The exact quantity and quality measurement of the blood and 

brain RNA was performed with a 2100 Agilent Bioanalyzer microfluidics platform according 

to  the  manufacturer’s  instructions. 
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2.2.3 Library preparation  
Small RNA libraries were prepared from total RNA using the TruSeq small RNA 

sample preparation kit (see table 2.8)  according  to  the  manufacturer’s  instructions. In all cases 

blood, ACC and hippocampal subregions 100 ng of total RNA was used as starting material.  

 
2.2.4 Bioinformatics and statistical analysis 

 

Small RNA detection was performed using Oasis (Capece et al., 2015) web tool for 

analysis of small RNAseq libraries. The following steps were performed by the Oasis 

pipeline. The raw Illumina reads were preprocessed to filter out reads of length smaller than 

15 nucleotides and greater than 32 nucleotides. The filtered reads were mapped to the 

reference genome using STAR (Dobin et al., 2013) in non splice-junction-aware mode. The 

counts of the samples were summarized by MiRBase release v20 for miRNAs, piRNAbank 

V.2 for piwiRNAs and Ensembl for snRNAs, snoRNAs and rRNAs. It then predicts the novel 

miRNAs using miRDeep2 (Friedländer et al., 2012). All NGS data are publicly available in 

GEO database.  

 
2.2.5 Statistical analysis of next-generation sequencing data 
 

In order to perform the subsequent bioinformatics and statistical data analysis, Python 

(version 2.7.6) and R (version 2.7.6) environment were used. We normalized the read counts 

using standard quantile normalization method. We filtered out samples with library size < 

100,000 reads. A threshold of minimum of 100 reads was used to filter out low abundant 

reads and outliers were also filtered out that were obtained from pairwise correlation (Pearson 

correlation coefficients) matrix. We then used customized python scripts for description, 

summarization and visualization of the data. Differential expression analysis was performed 

using DESeq2 (Love et al., 2014) package. Heatmaps and venn diagrams were generated 

using   python’s   plotting   library   matplotlib   (v1.4.3). Clustering of the pairwise correlation 

matrix and the differentially expressed miRNAs was performed using hierarchical clustering 

(SciPY version 0.15.1). The Ingenuity Pathway Analysis ((IPA, Qiagen) was used to analyze 

the list selected miRNA targets. We selected only experimentally verified genes and removed 

duplicates in Ingenuity Pathway Analysis (IPA).  
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2.2.6 Cell culture and exosomes  

All cell culture work was performed according to security level S1 safety rules and 

was done under sterile conditions. Cell culture and exosome isolation work were performed in 

the laboratory of Prof. Anja Schneider, at the Max Planck Institute for Experimental 

Medicine, Göttingen. Murine Neuroblastoma cell line (N2a) was used for cell culture and 

exosome isolation and Human fibrosarcoma cell line with luciferase activity (HT1080Luc) was 

used as the reporter cell line. Freezing, thawing, growth and maintenance of N2a cell line are 

explained below:  

 
2.2.7 Freezing of cells  

 

For long-term storage of cell lines, N2a cells were frozen at -160qC liquid Nitrogen. 

For freezing, as the first step the cells were detached or trypsinised with 2 ml of 0.05% 

trypsin-EDTA  (Gibco).  The  trypsinization  reaction  was  then  stopped  with  10  ml  of  Dubelco’s 

Modified   Eagle’s   Medium   (DMEM) (see table 2.7) and cell suspension was centrifuged 

subsequently after centrifugation of the cell suspension for 5 min at 900xg the pellet was 

resuspended in 0.5 mL DMEM, 0.5 mL of 2x freezing medium (40 % FCS, 20 % DMSO in 

DMEM) was added, the suspension was mixed gently and transferred into a Nalgene® Sterile 

Cryogenic Vial (Thermo Fisher Scientific, Roskilde, Denmark). Cell vials were transferred to 

a Nalgene® Cryo freezing container (Thermo Fisher Scientific, Roskilde, Denmark), which 

was filled with Isopropanol and allowed slow freezing at a temperature-dropping rate of -

1C/min in an -80qC freezer. For permanent storage, cells were stored at -160qC liquid 

nitrogen. 

 

2.2.8 Thawing of cells  
 

To thaw the cells, a cryogenic vial was removed from liquid nitrogen and immediately 

incubated in a 37qC water bath. Rapidly after the cell suspension became liquid, 10 mL of 

pre-warmed fresh growth medium was added and the suspension was centrifuged for 5 min at 

900xg. The cell pellet was resuspended in fresh pre-warmed growth medium and plated on a 

10 cm petri dish or a 75 cm cell culture flask.  

 
2.2.9 Growth and maintenance of cells  
 

Cells were grown at 37qC and 5% CO2 in humidified incubators. Cells were grown in 



2. Materials and Methods 

25 

general growth medium. General growth medium is composed of: 1mL 

Penicillin/Streptomycin, 5000 U/5000µg, 1mL GlutaMAX™-I supplement, 200 mM (see 

table 2.7) 10 mL Fetal Calf Serum (FCS, see table 2.7) in Dulbecco's Modified Eagle Medium 

(see table 2.7) with 4.5 g/L glucose. HT1080Luc cell line was kindly donated from Paul 

Ehrlich Institute, Langen and was used as luciferase reporter cell line. The medium which was 

used for this cell line was the same as N2a cells but instead of Penicillin/Streptomycin 

antibiotic 1mg/mL Gentecin (G418) (see table 2.7) antibiotic was added to the DMEM. G418 

is commonly used in laboratory research to select genetically engineered cells. In this case it 

was used to select the marker gene, which is responsible for luciferase activity in HT1080Luc 

cells, which express luciferase activity. PBS was used for washing the cells; PBS was either 

purchased from PAA (see table 2.7) or prepared manually. 

To obtain 1x PBS, 10xPBS was diluted 10 times with bi-distilled H2O. The pH value was 

adjusted to 7.2-7.4 (see table 2.3) 

 

2.2.10 Transformation of E. coli 
 

pCGHwt and pCGFwt and their mutant variants plasmids were kindly donated from 

Prof. Christian Buchholz, Paul Ehrlich Institute, Langen, Germany (see table 2.2 and Plasmid 

maps in appendices 1-4) For amplification of plasmid DNA constructs in bacteria, the 

chemocompetent E. coli strand Subcloning Efficiency DH5alpha' (Invitrogen, Carlsbad, CA, 

USA) was used. For transformation, 50 µL of competent cells were thawed on ice for 5 min. 

thereafter, 0,5 µg of the desired plasmid for example pCGHwt and pCGFwt or other variants 

were added to the cells, the suspension was mixed and incubated on ice for 20 min followed 

by heat-shock at 42qC for 42 sec. After recovery on ice for 2 min, 500 µL of LB medium (25 

g LB in 1 L H2O, autoclaved) was added and the cells were incubated for 1 h at 37C under 

shaking. For single transformants selection, the culture was spread on LB plates (LB-Agar 40 

g per 1 L H20, autoclaved) supplemented with the appropriate antibiotics (100 µg/ml 

ampicillin) and incubated at 37C for 14- 20 h. 

 
2.2.11 Plasmid DNA isolation from E. coli  

 

To amplify plasmid DNA from transformed E. coli at a medium-scale, a single colony 

was picked from the LB plate using an autoclaved tip and transferred to 100 mL of antibiotic 

supplemented LB medium. Bacteria were incubated for 10-16 h at 37qC under constant 

shaking. Thereafter, cells were harvested by centrifugation for 10 min at 3,000 rpm and 4qC 

and plasmid DNA was isolated and purified with the NucleoBond Xtra Midi Kit (see table 



2. Materials and Methods 

26 

2.8) according to the manufacturer's instructions. Extracted DNA was dissolved in 350 µl TE 

buffer from the kit. 

 

2.2.12 DNA concentration measurement 
 

DNA concentration was determined by measuring the optical density at 260 nm 

(A260), samples were measured on Nanodrop spectrophptometer (Thermoscientific, Peqlab). 

 

2.2.13 Transfection of plasmids 
 

Two Plasmid DNAs (see Plasmid maps in appendices 1-4) were cotransfected into 

murine N2a cell lines using Mirus Bio TransIT®-LT1 Transfection Reagent (Mirus Bio LLC, 

Madison, WI, USA). Before transfection, the N2a cells were grown to a confluence of 60% in 

a 10cm dish culture. 27µl transfection reagent and 4,5µg of each plasmid DNA were added to 

18µl Opti-MEM (see table 2.7), mixed gently and incubated at room temperature for 25-45 

min. After incubation, the mixture was added to the cells in a drop-wise manner, the cell 

culture dish was shaken gently and the cells were incubated under culture conditions for 16-

24 h. 

 
2.2.14 Exosome collection and preparation 
 

Exosome collection was accomplished by changing from growth medium to collecting 

medium, which is free from FCS. Exosome isolation was performed according to a protocol 

based on Thery et al. (2006), which is considered as the golden standard method to isolate 

exosomes from cell culture medium. 

The cell culture supernatant was subjected to serial centrifugation at 3500xg for 10 minutes, 

4500xg for 10 minutes (two times) and 10,000xg for 30 minutes. Finally the supernatant was 

subjected to ultracentrifugation at 100,000xg to obtain the exosome pellet and the exosome-

free supernatant. Exosome pellet was resuspended in electroporation buffer. To confirm the 

presence of expressed proteins in N2a cells, after cell culture supernatant collection these cells 

were harvested. For protein analysis, corresponding cells of a 10 cm petri dish were scraped 

in 400 µl of CHAPS lysis buffer (see table 2.4) and centrifuged for 10 min at 45,00xg and 

4qC. Protein from cell lysates were resuspended in loading buffer (see table 2.6) and kept at -

80qC to be subjected later to western blotting. 
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2.2.15 Determination of the exosome protein concentration 
 

The protein concentration of exosomes was determined using Bradford Protein Assay 

(BioRad, Germany) according to the manufacturer's instructions. This assay is based on the 

Coomassie blue dye binding to proteins i.e. the higher the protein concentration the darker is 

the color of the test sample. Coomassie absorption is at 595 nm; protein concentration of the 

test samples is determined by comparing to that of a series of protein standards, which in this 

study was Bovine Serum Albumin (BSA). The absorbance of the reaction was measured at 

595 nm using a 96-well plate reader (MRXTc Revelation, Dynex Technologies). 

 

2.2.16 Electroporation 

Two different amounts of exosomes and siRNA were used for the experiment. The 

first step was conducted with 3µg of exosomes (from transfected and not-transfected cells). 

These exosomes were electroporated with 3µg of GL3siRNA (Qiagen, Hilden, Germany). For 

the next step of the experiment 10µg of exosomes (from transfected and not-transfected cells) 

were electroporated with 10µg of GL3siRNA. In both steps for electroporation the 

resuspended exosomes in 100µl electroporation buffer (see table 2.5) were electroporated in a 

4 mm cuvette (Gene Pulser/MicroPulser, BioRad, Germany). The cuvettes were put in the 

shock pod cuvette chamber of Gene Pulser Xcel electroporation device (BioRad, Germany). 

For electroporation the Exponential program was used at 400 mV and 125µF capacitance 

(pulse time 10–15 ms).  

The electroporated exosomes were added drop wise to the HT1080Luc cells, which have been 

before cultivated in 24well plates and were incubated at 37qC for 48h. As the standard control 

for transfection efficiency, the GL3siRNA was mixed with OptiMEM (see table 2.7) and 

oligofectamine, the transfection reagent (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer transfection protocol and added to the cells. As negative control only 

oligofectamine was added to the cells. 

 

2.2.17 Luminometer analysis 

RNA interference (RNAi) responses of luciferase in luciferase-expressing cells were 

measured with Luc-Screen® System kit (see table 2.8) 48h after the HT1080 Luc cells were 
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treated with GL3 siRNA electroprated exosomes. Buffer1 (contains buffered luciferase 

reaction and cell lysis reagents) and buffer2 (contains luciferin substrate) were equilibrated at 

room temperature and then 200µl of buffer1 was added to 400µl medium from each well, 

buffer2 was added in 5 minutes. The luminescence was measured on a luminometer. Data 

analyses for luminescence intensity were performed with Excel and Prism 6 softwares. 

 

2.2.18 Western blot analysis 

In the case that exosomes were intended to be subjected to western blotting the 

exosome pellet was resuspended in 20µl loading buffer (see table 2.6).  

Exosome isolation was performed from non-transfected and transfected cells. For confirming 

the exosome isolation quality the western blot was performed. Flotillin-2 antibody was used 

as positive marker for exosomes. 

 
2.2.19 SDS-PAGE 
 

Sodium dodecyl sulfate ployacrylamide gel electrophoresis (SDS-PAGE) was 

performed using the Bio-Rad Mini-PROTEAN 3 electrophoresis system (Bio-Rad 

Laboratories GmbH, Munich, Germany) for proteins separation based on the molecular 

weight after denaturation. Preparation of two-layered polyacrylamide gels was conducted in 

the Bio-Rad Mini-PROTEAN 3 casting system. Composition for the upper stacking gel (2 ml) 

and the lower resolving gel (5 ml) is listed below: 
 

Table 2.10 Stacking gel used for electrophoresis 
Ingredient Percent/concentration 
Acrylamide/bis-acrylamide (29:1) solution 4% 
Tris-HCl pH 6.8 125 mM 
SDS 0.1% 
Ammonium persulfate (APS) 0.05% 
N'N'N'-tetramethylethylene 
diamine (TEMED) 

0.005% (v/v) 

 

For loading on the gel, exosome and cell lysate samples were prepared as follows: Exosome 

pellets were resuspended in 20 µl of denaturing protein-loading buffer (see table 2.6). Before 

loading on the gel, the samples were boiled at 95qC for 5 min. The gel was run in running tris-

glycine electrophoresis buffer (25 mM tris, 192 mM glycine, 0.1% SDS) for 90 min at 100 V. 
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Loading of the marker PageRuler® Plus Prestained Protein Ladder (Fermentas, St. Leon-Rot, 

Germany) enabled estimation of molecular weights of the analyzed proteins. 

 
Table 2.11 Resolving gel (10 or 12 %) used for electrophoresis 

Ingredient Percent/concentration 
Acrylamide/bis-acrylamide (29:1) solution 10 or 12% 
Tris-HCl pH 6.8 325 mM 
SDS 0.1% 
APS 0.05% 
TEMED 0.005% (v/v) 

 
2.2.20 Western blotting 

 

After electrophoresis separation, proteins were subjected to Western blotting by using 

the Bio-Rad Mini-Protein System according to the manufacturer's instruction. In the 

procedure, proteins were transferred from SDS-polyacrylamide gels onto a Whatman ® 

Protran Nitrocellulose Transfer Membrane (Whatman GmbH, Dassel, Germany) by 

application of 100 V for 55 min at room temperature in transfer buffer (25 mM Tris, 192 mM 

glycine, 20% methanol). 
Following transfer of proteins, the nitrocellulose membrane was incubated in 4% nonfat dried 

milk (Sigma-Aldrich Chemie, Munich, Germany) in PBS for 30 min at room temperature to 

avoid nonspecific binding of immunoglobulins. The membrane was then incubated with 

primary antibody in PBST (0.1% Tween-20 in PBS) (dilutions according to Table 2.1) for at 

least 18 h at 4qC or 1h at room temperature followed by 3 washing steps of 10 min in PBST at 

room temperature. Subsequently, the membrane was incubated with horseradish peroxidase- 

(HRP) conjugated secondary antibody (1:1,000 in PBST) for 1-2 h at room temperature and 

again washed 3x with PBST each washing step 10 min. 

HRP-antibody binding was visualized by chemiluminescence using Pierce ECL Western 

Blotting Substrate (Thermo Fisher Scientifc Inc., Rockford, IL, USA). The emitted light 

signal was captured on X-ray films (CL-XPosure™   Film,   Thermo   Fisher   Scientific,  

Rockford, IL, USA), which were scanned with a conventional scanner. 



 

 

 
 
 
 
 
 

                                                              Results 
 
 
 
 
 
  



3. Results 

31 

3.1 Molecular changes in brain aging 
3.1.1 Small RNAome of memory subregions in adult mouse brain  
 

In order to have an overview of the small RNAome of memory subregions in the adult 

brain, four subregions that are crucial in memory and cognitive function namely anterior 

cingulate cortex (ACC), dentate gyrus (DG), cornu ammonis (CA1) and (CA3) from 4-month-

old mice (n=9) were subjected to small RNA sequencing. As mentioned before ACC is 

responsible for long-term memory consolidation and formation in rodents (Weibele et al., 

2012). Other three hippocampal subregions represent the short-term memory related areas. 

Our analysis revealed that microRNA (miRNA) is the biggest proportion of small RNAs in 

adult mice brain, small nucleolar RNAs (snoRNA) is the second abundant small RNAs and 

piwi-interacted RNA (piwiRNA) is the third most abundant small non-coding RNAs, read 

amounts of other small non-coding RNAs like ribosomal RNA (rRNA) and small nuclear 

RNA (snRNA) are extremely low (Fig. 3.1.1).  

 

 

Fig. 3.1.1 Distribution frequency of mapped small RNA class reads combined for all brain regions. 
The bar graph shows that miRNAs are the most abundant class of small RNAs in memory subregions 
of young mice. SnoRNA population is the second most abundant small RNAs.  
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Further analyses were concentrated on the miRNAs. We detected 205, 214, 200, 214 miRNAs 

in the CA1, CA3, DG and ACC of these mice respectively (Fig. 3. 1. 2A, facing page). 

Interestingly, 172 miRNAs are commonly expressed in all brain regions of young mice (Fig 

3.1.2B facing page). Barplot in Fig 3.1.2C (facing page) displays the most frequent mapped 

miRNAs. MiRNAs with the expression level smaller than around 1.50% are shown as rest. As 

shown in Fig. 3.1.1, miR127-3p is the most frequent miRNA in brain subregions. Other 

highly expressed miRNAs are: 92b, 125a, 22, 92a, 99b, 128, 30d, 434, 191, 30a, 29a and 204 

(Fig. 3.1.2C). In order to understand the association of these commonly expressed miRNAs 

with biological pathways, we used the IPA (ingenuity pathway analysis tool) for functional 

pathways identification taking into account only confirmed target genes. 

Since ingenuity software ranks the cancer-related canonical pathways as the highest expressed 

canonical pathways, the top biological functions were linked to cancer mechanism, cell death 

and survival (Fig. 3.1. 2C). However the analyses revealed a number of highly enriched 

pathways that are linked to cell growth, tumor suppression, development and neurogenesis 

function such as cyclins cell cycle, PTEN (Phosphate and tensin homolog) signaling and Aryl 

hydrocarbon receptor (Fig 3.1.2D).  
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Fig. 3.1.2 Number of expressed miRNAs in different brain subregions of young mice (A) Number of 
unique and overlapping miRNAs in brain subregions (B) Most frequently expressed miRNAs in brain 
subregions of young mice (C) Top 10 canonical pathways regulated by highly expressed miRNAs (D). 
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Aside from biological pathways that are correlated with neuronal function and develepoment, 

pathways that  don’t  have  direct  correlation  with  the  function  of  neurons  like hepatic fibrosis, 

role of osteoblasts and chondrocytes in rheumatoid arthritis, pancreatic adenocarcinoma 

signaling and adipogenesis are also present.  

Albeit the pathway analysis has to be interpreted with care, the data indicates that the four 

investigated brain subregions share a core miRNAome signature that controls key molecular 

pathways linked to brain cell development, homeostasis and plasticity. 

Since our analysis was so far based on the presence or absence of a given miRNA, we decided 

to test if miRNAs present in the four brain subregions differ significantly regarding absolute 

expression level, which may point to distinct function of the investigated brain subregions. 

Hierarchical clustering analysis using Pearson correlation indicated that the four different 

brain subregions showed distinguishable expression profiles, which was particularly obvious 

for the DG (Fig. 3.1.3). Nevertheless, the correlation between all brain regions was still high. 

 
 

Fig. 3.1.3 Correlation (Pearson) matrix of miRNAome expression patterns between different brain 
subregions in young mice. It shows that DG has a most distinguishable expression profile. Samples 
with lower correlation are represented by the shades of yellow and samples with higher correlation are 
represented by the shades of orange to red. 
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3.1.2 MiRNA profile of memory subregions differs in young and old mice 
 

Many studies show role for selected miRNAs in neuronal plasticity, memory function 

and the pathogenesis of cognitive diseases such as AD. To better understand the dynamics of 

the brain miRNAome during cognitive function and diseases, the small non-coding RNAome 

in young and old mice in ACC, DG, CA1 and CA3 (brain subregions) were compared. The 

laboratory of Prof. Fischer has established that 16- month old mice shown impared memory 

function, when compared to young 3-momth old mice (Peleg, 2010). Fig 3.1.4 shows 

unpublished data that was generated in the laboratory by another PhD student (Pooja Rao), 

showing impared learning in the Morris Water Maze test, a commonly used paradigm to 

analyze spatial memory in rodents.  

 

 

 
 

Fig. 3.1.4 Morris water maze experiment. Graphs show the escape latency of young (3-month) and old 
mice (16-month) throughout the water maze training. Old mice show significantly enhanced escape 
latency when compared to young mice, which is indicative of impaired spatial memory formation. 
Error bars indicate SEM. (*P < 0.05; **P < 0.01; ***P < 0.001) (Courtesy Pooja Rao)  
 

 

Analyses on small RNAome in old mice revealed that like young animals the major 

proportion of the small RNAome in the old animals are miRNAs and second most abundant 

small RNAs are snoRNAs (Fig. 3.1.5). In order to have an overview of the miRNA 

population in old animals in chosen brain subregions, we looked at number of expressed 

miRNA numbers in these subregions. The bar graph shows the number of miRNAs in ACC, 

DG, CA1 and CA3 (Fig. 3.1.6A, facing page). 191 miRNAs in ACC and 192 miRNAs in DG 

were detected respectively; while in CA1 and CA3 the number of detected miRNAs are 186 
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and177. In total 155 commonly expressed miRNAs are detected (Fig. 3.1.6B, facing page). 

Bar plot in Fig. 3.1.6C (facing page) shows most abundant miRNAs. Like the young group, 

miR127-3p is the most abundant miRNA in brain subregions with 24.68% abundance out of 

all detected miRNAs in old mice. Other highly expressed miRNAs are: 92b, 125a, 191, 99b, 

22, 434,27b, 128 and 204 (Fig. 3.1.6C, facing page).  

 

 
Fig. 3.1.5 Distribution frequency of mapped small RNA class reads combined for all brain regions. 
The bar graph shows that miRNAs are the most abundant class of small RNAs in memory subregions 
of aged mice. SnoRNA population is the second most abundant small RNAs.  
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` 
Fig.3.1.6 Number of expressed miRNAs in different brain subregions of old mice (A) Number of 
unique and overlapping miRNAs in brain subregions (B) Most frequently expressed miRNAs in brain 
subregions of old mice (C). 
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The data analyses so far were based on screening the miRNAome in young and old animals 

according to their uniquely mapped reads. To understand the difference between miRNAome 

of memory subregions in young and old mice and to trace the influence of aging on the 

miRNA pool of the memory subregions, we performed differential expression analyses (padj 

< 0,05; log2 fold change <> 0,5; basemean >= 100).  

In all investigated brain subregions, we found remarkable number of miRNAs that were 

differentially expressed when comparing the young to old brain (Fig. 3.1.7 A-D, facing page) 

some of them with fold change greater than 20, which are almost exceptional for the 

regulation of miRNAs. We found 120 differentially expressed miRNAs (padj < 0,05; log2 

fold change <> 0,5; basemean >= 100) in ACC, 86 miRNAs in CA1, 166 in CA3 and 104 in 

DG (Fig 3.1.8, facing page). This data suggests that while the four investigated brain 

subregions share a substantial miRNAome signature, the aging process affects these brain 

regions in a distinct manner. The number of differentially expressed miRNAs is not the same 

in all subregions. CA1 with 86 has the lowest amount of differentially expressed miRNAs 

while its adjacent subregion CA3 has the largest number of differentially expressed miRNA. 
 

We then looked at miRNAome expression patterns in aged mice by performing a hierarchical 

clustering analysis on the correlation (Pearson) matrix of brain subregions, which showed a 

clear separation of these four subregions (Fig. 3.1.9). ACC and DG display more significant 

changes when comparing to CA1 and CA3.  
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Fig. 3.1.7 (A-B) Heat maps show the Euclidean distances between the differentially expressed 
miRNAs in old over young animals. (A) and (B) show the clustration of the miRNAs in the ACC and 
DG respectively.  
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Fig. 3.1.7 (C-D) Heat maps show the Euclidean distances between the differentially expressed 
miRNAs in old over young animals. (C) and (D) heat maps show the clustration of the miRNAs in the 
CA1and CA3 respectively. As it is pictured in the key color, colors in red region show higher and 
colors in blue region show lower expression. 
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Fig. 3.1.8 Number of the differentially expressed miRNAs in the brain subregions of young and old 

mice. 

 

 

Fig. 3.1.9 Correlation (Pearson) matrix of miRNAome expression patterns between different brain 
subregions in aged mice. Samples with lower correlation are represented by the shades of yellow and 
samples with higher correlation are represented by the shades of orange to red. 
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Differential expression analyses of miRNAs for each subregion gave us a closer look at 

miRNA deregulation along aging. Of note, deregulation pattern of the miRNAs differs from 

region to region, for example one miRNA that is upregulated in ACC might be downregulated 

in CA1 and vice versa. To have a better understanding of the effect of aging on the 

miRNAome of brain memory subregions, we looked at the common upregulated miRNAs in 

brain subregions and also the common downregulated miRNAs along aging in the brain. We 

found four commonly upregulated miRNAs in brain subregions upon aging. These miRNAs 

are: miR-10a-5p, miR-191-5p, miR-411-3p and miR-541-5p (Fig.3.1.10A, facing page). 

Pathway analyses for these commonly upregulated miRNAs revealed that these miRNAs are 

associated with immune system coordination and activation, pathways like communication 

between innate and adaptive immune system, TREM1 (Triggering Receptor Expressed on 

Myeloid cells 1) signaling which is correlated with inflammatory responses in the cell, 

dendritic cell maturation that is crucial in antigen processing and Interleukines production 

pathways (Fig.3.1.10B, facing page).   

Venn diagram in (Fig.3.1.11A) shows that there are six commonly downregulated miRNAs in 

all investigated brain subregions. These miRNAs are: miR-137-3p, miR-298-5p, miR-29c-3p, 

miR-504-5p, miR-543-3p and miR-708-3p. Pathway analyses for these commonly 

downregulated miRNAs showed that few of these pathways are associated with inflammation 

and immune system activity like dendritic cell maturation and cyclin and cell cycle regulation 

(Fig.3.1.11B). In total, upregulated and downregulated miRNAs along aging in these 

subregions are correlated with cell proliferation and immune system activity.  

Apart from the commonly deregulated miRNAs in these brain subregions, we were able to 

find miRNAs, which are specifically deregulated in each memory subregion. Table 3.1 shows 

the list of miRNAs that are downregulated or upregulated specifically in each memory 

subregion. CA1 shows the lowest number of exclusively deregulated miRNAs and CA3 has 

the largest number of excusively upregulated and downregulated miRNAs.  
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Fig. 3.1.10 Venn diagram shows commonly upregulated miRNAs in brain subregions upon aging (A) 
Shows top 10 canonical pathways that are associated with the four commonly upregulated miRNAs in 
brain subregions (B). 
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Fig. 3.1.11 Venn diagram shows the commonly downregulated miRNAs in all brain subregions upon 
aging (A) Top 10 canonical pathways that are associated with the 6 commonly downregulated 
miRNAs in all brain subregions (B). 
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Table 3.1 List of miRNAs that are upregulated and downregulated along aging specifically in each 

memory subregion. 

 Upregulated along aging Downregulated along aging 

A
C

C
 

 

miR-125b-2-3p  

miR-125b-5p 

miR-127-5p 

miR-1298-3p 

miR-132-3p 

miR-140-3p 

miR-149-5p 

miR-181c-3p 

miR-1981-5p 

miR-24-2-5p 
 

miR-3061-3p 

miR-326-3p 

miR-330-5p 

miR-338-3p 

miR-346-5p 

miR-370-3p 

miR-381-3p 

miR-383-5p 

miR-410-3p 

miR-423-3p 
 

miR-431-3p 

miR-434-3p 

miR-434-5p 

miR-540-3p 

miR-582-3p 

miR-652-3p 

miR-666-5p 

miR-676-3p 

miR-7019-3p 

miR-7046-3p 

miR-92a-3p 
 

let-7a-5p 

let-7c-5p 

let-7d-5p 

let-7e-5p 

let-7f-5p 

let-7g-5p 

miR-1224-5p 

miR-128-3p 
 

miR-139-5p 

miR-1839-5p 

miR-1843a-3p 

miR-185-5p 

miR-221-3p 

miR-3068-3p 

miR-320-3p 

miR-322-3p 
 

miR-412-5p 

miR-495-3p 

miR-598-3p 

miR-6540-5p 

miR-673-5p 

miR-6944-3p 

miR-7080-3p 

miR-7224-3p 
 

D
G

 

let-7i-3p 

miR-1247-5p 

miR-128-2-5p 

miR-132-5p 

miR-145a-5p 

miR-148a-5p 

miR-1839-3p 

miR-212-3p 

miR-212-5p 

mmiR-23b-3p 
 

miR-3102-3p 

miR-325-3p 

miR-340-3p 

miR-344d-3-5p 

miR-345-5p 

miR-3535 

miR-361-5p 

miR-369-5p 

miR-376b-5p 

miR-484 
 

miR-486-5p 

miR-543-5p 

miR-664-3p 

miR-6948-3p 

miR-6989-3p 

miR-7044-3p 

miR-7220-5p 

miR-8111 

miR-874-3p 
 

miR-101b-3p 

miR-126a-5p 

miR-1306-5p 

miR-148a-3p 

miR-148b-3p 

miR-1964-3p 

miR-21a-5p 

miR-26b-5p 

miR-296-5p 
 

miR-324-3p 

miR-328-3p 

miR-345-3p 

miR-434-3p 

miR-483-3p 

miR-5099 

miR-92a-3p 

miR-98-3p 

miR-99a-3p 
 

 

C
A

1 

let-7d-5p 

miR-185-5p 

miR-195a-5p 

miR-335-3p 

miR-384-5p 

miR-877-3p 
 

  
miR-125b-5p 

miR-1298-5p 

miR-140-3p 

miR-181a-1-3p 

miR-181c-5p 

 
 

 

miR-221-5p 

miR-341-3p 

miR-377-3p 

miR-381-3p 

miR-409-5p 

miR-758-3p 
 

 

C
A

3 

let-7b-3p 

let-7f-5p 

let-7i-5p 

miR-106b-3p 

miR-10b-5p 

miR-125b-1-3p 

miR-139-3p 

miR-148a-3p 

miR-148b-3p 

miR-152-3p 

miR-184-3p 
 

miR-1843a-5p 

miR-1843b-3p 

miR-1843b-5p 

miR-1981-3p 

miR-3057-5p 

miR-3078-5p 

miR-3099-3p 

miR-323-3p 

miR-3475-3p 

miR-369-3p 

miR-411-5p 
 

miR-488-3p 

miR-598-3p 

miR-664-5p 

miR-667-3p 

miR-671-3p 

miR-673-5p 

miR-7068-3p 

miR-8114 

miR-873a-5p 

miR-877-5p 

miR-92b-3p 
 

miR-129-1-3p 

miR-130b-5p 

miR-132-5p 

miR-138-1-3p 

miR-151-5p 

miR-187-3p 

miR-190a-5p 

miR-212-3p 

miR-219a-5p 

miR-222-3p 

miR-23a-3p 
 

miR-23b-3p 

miR-24-2-5p 

miR-27a-3p 

miR-322-5p 

miR-338-3p 

miR-340-3p 

miR-345-5p 

miR-34b-3p 

miR-374b-5p 

miR-376a-5p 

miR-376b-3p 
 

miR-423-3p 

miR-434-5p 

miR-487b-3p 

miR-582-5p 

miR-708-5p 

miR-744-3p 

miR-770-5p 

miR-7a-1-3p 

miR-7a-2-3p 

miR-874-5p 
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3.1.3 Blood small RNAome changes along aging 

An additional focus of this project so far was to find out the aging-induced changes at 

epigenome level in memory and learning subregions of the brain in mice. Since searching for 

miRNA biomarkers in the biofluids is becoming more important in neurodegenerative 

diseases research field, an interesting approach was to survey aging influence on blood small 

RNAome as a non-invasive method. Furthermore, it was also of paramount importance to 

seek if the aging-induced changes in brain could also be detected in blood. Blood was also 

taken from the same mice that their brain subregions were subjected to RNA isolation and 

NGS. Similar to brain subregions, the biggest population of small RNAome in blood is also 

miRNAs but second most abundant small RNAs are piwiRNAs (Fig. 3.1.12). Other small 

non-coding RNAs like snoRNA, rRNA and sRNA are extremely low. 

The highly abundant miRNAs in blood samples is different from highly abundant miRNAs 

brain samples; miR-451a, miR-92a, and miR-191 are amongst the most expressed miRNAs in 

blood (Fig. 3.1.13). However there are some common miRNAs between blood and brain 

highly expressed miRNAs, these miRNAs are: miR-191, miR-22, miR-30a, miR-30d and 

miR-151. To find out the importance of these differences and similarities more detailed 

analyses were performed. 

 

Fig. 3.1.12 The bar graph shows that miRNA are the most abundant class of small RNAs in blood of 
young and aged mice. PiwiRNAs with 8.82%in young and 7.16% in old animals are the second most 
abundant small RNA.  
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Fig. 3.1.13 Blood miRNA population by frequency of uniquely mapped reads in young (A) and in old 
mice (B).  
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Fig. 3.1.14 Heat map shows the correlation between miRNAs in the brain and blood in both young and 
old group. Clustering pattern shows brain miRNAome is different from blood miRNAome.  

 

Further clustering analysis shows that the blood miRNAome in young and old mice is 

substantially  different   from   the   same  animals’  brain  miRNAome   (Fig  3.1.14). While this is 

expected, an interesting question here is to see if there is an overlap between the aging brain 

and blood miRNAome. To this end we first compared the blood miRNAome in young and old 

mice (Fig 3.1.15).  
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Fig. 3.1.15 Heat map shows the differential miRNA expression changes in blood of old mice. 

 

In order to have a more precise look to blood miRNAome overlapping with memory-

associated miRNAome changes, we looked specifically to commonly upregulated and 

downregulated miRNAs for each brain subregion and blood. The miRNAs that were 

commonly upregulated in ACC and blood shows 15% similarity (Fig. 3.1.16A) miR-143-3p, 

miR-151-5p, miR-351-5p, miR-423-3p, miR-676-3p are the common upregulated miRNAs in 

ACC and blood. The same comparison for DG shows a 15% of similarity (Fig. 3.1.16B) miR-

151-5p and miR-23a-3p are the common upregulated miRNAs in DG and blood. CA1 has 

only one commonly upregulated miRNAs as in blood which is correspondent to 7,6% of 

similarity, miR-23a-3p is the common upregulated miRNA in CA1 and blood (Fig. 3.1.16C). 

Comparison between commonly upregulated miRNAs in CA3 and blood shows that 15% of 

miRNAs have overlapping, miR-143-3p and miR-351-5p are the two commonly upregulated 

miRNAs in blood and CA3 (Fig. 3.1.16D).  
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Fig. 3.1.16 Venn diagrams show the number of unique and overlapping upregulated miRNAs between 
the separate brain regions and blood in the old mice.  
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Fig. 3.1.17 Venn diagrams show the number of unique and overlapping downregulated miRNAs 
between the separate brain regions and blood in the old mice.  

 

As it is pictured in Venn diagrams in Fig 3.1.17 ACC and DG have the common 

downregulated miRNAs with blood (Fig. 3.1.17A –B) let-7d-3p is the ACC signature in blood 

while let-7d-3p, miR-126a-5p, miR-26b-5p are DG signatures which can be detected in blood. 

CA1  and  CA3  don’t  show  any  commonly  downregulated  miRNAs  with  blood.   

Rather then assuming that a potential blood miRNAome signature of the aging brain reflects 

only selected brain subregions, it can also be hypothesized that age-associated changes across 

various brain regions are – at least partially - reflected in blood. Thus, we treated all miRNA 

changes observed in the aging brain as one signature. When comparing this signature to the 

blood miRNAome, nearly 83% of the changing miRNAs seen in blood are also observed in 

the brain. Performing a hypergeometric test indicated that this finding is highly relevant (< 

7.712e-05). We detected 29 differentially expressed miRNAs (log2 fold change > 0,3; padj 

0,05 and basemean of 25 counts, excluding two samples as outliers). The below listed 

miRNAs are the 24 differentially expressed miRNAs in the old brain and blood: let-7d-3p, 

miR-106b-3p, miR-10b-5p, miR-126a-5p, miR-127-3p, miR-128-3p, miR-143-3p, miR-151-
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3p, miR-151-5p, miR-1843b-3p, miR-191-5p, miR-222-3p, miR-23a-3p, miR-25-3p, miR-

26b-5p, miR-27a-3p, miR-351-5p, miR-423-3p, miR-425-5p, miR-486-5p, miR-532-5p, miR-

676-3, miR-8114 and miR-99a-5p (Fig. 3.1.18A) 

Among these 24 deregulated miRNAs 9 miRNAs have the same deregulation pattern, which 

is around 31% of the deregulated miRNAs in blood. The 6 common upregulated miRNAs are: 

miR-143-3p, miR-151-5p, miR-23a-3p, miR-351-5p, miR-423-3p, miR-676-3p (Fig. 

3.1.18B). The 3 common downregulated miRNAs are: let-7d-3p, miR-126a-5p, miR-26b-5p 

(Fig. 3.1.18C). Pathway analyses for commonly downregulated and commonly upregulated 

miRNAs in brain and blood shows that these miRNAs are linked to tumor prevention 

pathway, cell apoptosis and cell antiproliferation mechanisms like p53, cell apoptosis 

signaling and TGF-beta respectively (Transforming growth factor beta) signaling (Fig.3.1.19 

A and B). Although the canonical pathways that are regulated by commonly upregulated and 

downregulated miRNAs are different, these pathways show a high level of unity in terms of 

mechanisms that they regulate.  
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Fig. 3.1.18 Venn diagrams show the number of unique and overlapping upregulated and down 
regulated miRNAs between the whole brain subregions and blood in the old mice. 
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Fig. 3.1.19 Top 10 canonical pathways that are linked to commonly downregulated (A) and commonly 
upregulated miRNAs (B) in brain regions and blood. 
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3.1.4 Other small RNAs in brain and blood 

Data analyses show that other small RNAs are also present in the brain and blood as 

well. The population of these non-miRNA small RNAs is different in brain and blood. 

SnoRNA is found as the second most abundant small RNA in young and old brain (1.65% 

and 1.81% respectively (Fig 3.1.1 and Fig. 3.1.5)). Fig (3.1.20 A-D) shows the heat map for 

ACC, DG, CA1 and CA3 for differentially expressed snoRNAs. As it is obvious the 

abundance of snoRNAs is not the same in all four brain subregions. CA1 shows the less 

number of differentially expressed snoRNAs. SnoRNAs that are highly abundant in all brain 

subregion in young and old mice are: Scarna 3a, Snord 85, Snord 99, Snord 104, Snorna 36b, 

Mir 1839, Snord 12, Snord 57 and Scarna 3b. Different nomenclature for snoRNAs arises 

from their found sites in the cells, Scarna (small Cajal-body specific RNAs) is found with 

cajal bodies that are subnuclear complexes in the cells. Mir 1839 has been named as a miRNA 

because of its similarity with miRNAs in terms of function. 

 In blood samples, piwiRNA is the second most abundant smallRNA class in both young and 

old mice with 8.82% and 7.16% respectively (Fig. 3.1.12). DQ695413 is the most abundant 

piwiRNA in young and old group and other piwiRNAs are expressed or detected at a very low 

level (Fig. 3.1.21). According to piwiRNA bank DQ695413 is the accession number for 

mmu-piR-016327, which is present in chromosome Y and 22 base pairs in size. Interestingly 

piwiRNA is the largest class of non-coding RNAs in eukaryotic cells and found mostley in 

germ line cells. Unlike snoRNAs that show some similarities with miRNAs in terms of 

biogenesis and function, piwiRNAs biogenesis and function is distinctive from miRNAs. 
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Fig. 3.1.20 (A-B) Heat map shows the Euclidean distances between the differentially expressed 
snoRNAs in ACC (A), DG (B) from old over young mice. 
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Fig. 3.1.20 (C-D) Heat map shows the Euclidean distances between the differentially expressed 
snoRNAs in CA1 (C) and CA3 (D) from old over young mice. 
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Fig. 3.1.21 PiwiRNA population by frequency of uniquely mapped reads in blood samples from young 
(A) and old mice (B).  
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3.2 MiRNAs as therapeutic  targets  in  Alzheimer’s disease 

Pioneering studies have shown that deregulation of miRNAs plays a significant role in 

pathological mechanisms. Therefore one interesting approach is to suppress the expression of 

disease-related miRNAs. In order to circumvent the obstacles in miRNA delivery process, 

different methods have been used and proposed. In the present study the main focus was to 

use exosomes as delivery vehicles for miRNA inhibitory molecules. To increase the 

efficiency of delivery by exosomes they should be modified specifically for the target cells, 

which in our case are neuronal cells. The following sections show the results of applying 

measles virus glycoprotein (MVG) pseudotyping system in order to producing specific 

exosomes, which target only neurons.  

 

3.2.1 Measles virus glycoproteins can be sorted in the exosomes 

  Exosomes were prepared from the cell culture medium of the N2a cells cotransfected 

with plasmids encoding the wild type and mutant variants of the MVG H and F. As explained 

before the aim of plasmid transfection was to obtain modified exosome with more efficient 

delivery capability for neuronal cells. N2a cell lysates were used for protein extraction, which 

served as a positive control for plasmid transfection. All exosome preparations were positive 

for the exosomal marker protein Flotillin-2 (Fig. 3.2.1). Additionally, the presence of the wild 

and mutant forms of the glycoprotein H and F was shown in all exosome preparations, 

suggesting that these proteins are highly enriched in exosomes (Fig. 3.2.1). All three variants 

of the H protein differing in their size were detected with the same antibody (H 606). For the 

F proteins (wild type and two mutants) F431 antibody was used, according to the western blot 

signals Hdc18 and Fdc30 were chosen for pseudotyping the exosomes (facing page). 
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Fig. 3.2.1 Exemplary picture of the western blot analysis of the protein preparations from the 
exosomes from the cell culture medium and N2a cell lysates. The western blot shows the presence of 
measles virus H and F proteins, strong signals of Flotillin-2 serve as a quality check for the successful 
exosome extraction. 
 
 
3.2.2 Modification of the exosomes with the measles virus glycoproteins did not change 
efficiency of the cargo delivery 

Exosomes prepared from the culture medium of transfected (see section 2.3.1) and not 

transfected cells were first electroporated with Luciferase GL3 specific siRNA and then added 

to HT1080Luc cells. Standard siRNA transfection using oligofectamine reagent was 

performed to check specificity and efficiency of the chosen siRNA. As shown in Fig. 3.2.2 

and 3.2.3, both modified and unmodified exosomes were able to deliver siRNA to cells but 

without any difference. This experiment was performed with two different amounts of 

exosomes and siRNAs (Fig. 3.2.2 and 3.2.3). The knock down effect of 3µg exosomes and 

3µg siRNAs is not significant while knock down effect of 10µg exosomes and 10µg siRNAs 

seems to be significant. Of note, knockdown effect of siRNA from the exosomes is much 

milder than in complex with oligofectamine, although statistically significant compared to 

control (facing page). However this project was not continued since the preliminary results 

were not convincing and for improving the results the available technology was not efficient 

(see part 4.2.2 in discussion) 
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Fig.3.2.2 Results of the luminometer analyses of exosomal delivery of 3 µg GL3 siRNA. 3 µg 
exosomes carrying the measles virus glycoproteins deliver siRNA to the target cells as efficient as 
exosomes without modifications. Error bars show standard deviation.  

 

Fig.3.2.3 Results of the luminometer analyses of exosomal delivery of 10µg GL3 siRNA. 10µg 
exosomes carrying the measles virus glycoproteins deliver siRNA to the target cells as efficient as 
exosomes without modifications. Error bars show standard deviation. 
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4.1 Impact of aging on the brain 

4.1.1 Small RNA expression in memory subregions changes with aging 

Neurodegeneration manifestations are obvious at the late stages of the AD when no 

cure is effective. Considering aging as the major risk factor for AD and exploring the changes 

at molecular level could be a promising approach to figure out the underlying biological 

abnormalities that increase the chance of AD in late elderly. So far the knowledge about 

molecular mechanisms of human AD are based on the post-mortem observations. Studies that 

could trace the changes in the aging brain and simultaneously seek for malignancies along 

aging are not feasible in human. In this study we used young (4-month-old) and old mice with 

18 months of age that corresponds to late middle age in human and performed high 

throughput next generation sequencing (NGS) to detect the changes at small RNA level along 

aging. The results show that aging causes a remarkable change in the small RNA profile of 

the brain subregions that are intimately linked to learning, memory and cognitive functions. 

Previous studies were performed in mice, primates and also post mortem tissues from humans 

to study the influence of aging on the gene expression regulation patterns and pathways in the 

brain (Lee et al., 2000; Jiang et al., 2001; Fraser et al., 2005; Lu et al., 2004). However these 

studies did not put their focus on the regulation of the affected pathways during aging in the 

brain. To include the role of miRNAs as a regulatory molecule of the aging-related pathways 

a similar study to ours elucidated the role of miRNAs in the aging-associated pathways in the 

mouse brain (Inukai et al., 2012). In this study using Solexa technology they could show that 

many miRNAs including several novel miRNAs are differentially expressed upon aging and 

the pathways like insulin signaling pathway that are regulated by novel miRNAs along aging 

have significant roles in the process of aging. 

 However in this study they used the whole brain and the main emphasis was to find out the 

novel miRNAs that are expressed during aging, while in our study we focused mainly on the 

expression pattern of the miRNAs and other non-coding small RNAs in each memory 

associated subregion of the brain along aging.  

 
4.1.2 MiRNAome changes along aging in memory subregions distinctly 
 

Along with other biological changes in the process of aging the miRNA profile and its 

expression pattern also goes under changes. The alteration in miRNAome can be considered 

as an important factor because this biomolecule has significant regulatory role in crucial 
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biological pathways. Furthermore, the regulatory role of miRNAs in the aging network has 

been confirmed before (Chen et al., 2010)  

The results in this study show that the largest proportion of the small RNAs in brain 

subregions is miRNA and snoRNA is the second most abundant small non-coding RNA and 

other small non-coding RNAs like piwiRNA and rRNA are present in a very low range 

(Fig.3.1.1 and Fig.3.1.5). One reasoning behind this could be Truseq small RNA kit that was 

used for preparing the small RNA library. Although Truseq small RNA is designed for high 

throughput sequencing of small RNAs it has an affinity for miRNAs that are generated by 

Dicer processing and it is because of the modified adaptor targeting. However there is no gold 

standard method for miRNA expression profiling and each method has its biases that should 

be taken into consideration. According to our results aging induces remarkable changes in the 

miRNA profile. Since the only difference between the groups of animals was age, therefore it 

can be claimed that aging causes this profile change in the miRNAome of the brain. A 

remarkable point that came out from the results of this study was that the changes in miRNA 

profile and expression was specific to each subregion. Aside from this specific differential 

expression, we could show that miR-127 and miR-128 and members of the let-7 group are 

among the commonly expressed miRNAs in all of young and old brain subregions, the 

presence of these miRNAs in brain tissues was shown before (Bak et al., 2008, Babak et al., 

2004; Barad et al., 2004). Of note the presence of region-specific miRNAs is of paramount 

importance as it can suggest that each region has its own specific regulatory miRNAs, which 

can regulate region-specific functions. MiRNAs regulate protein expression at 

posttranscriptional level and a tremendous number of proteins, which are regulated by 

miRNAs, are key players of the biological pathways. Therefore difference between miRNA 

species of the memory subregions would suggest the presence of different biological 

pathways.  

According to our results after miRNA snoRNA is the most abundant small non-coding RNA 

in the brain subregions (Fig. 3.1.1 and Fig.3.1.5). Although the frequency of this class of 

small RNA in young and old mice is under 2%, Euclidean distance analyses could be 

performed for all subregions (Fig. 3.1.20). Presence of snoRNAs in central nervous system 

has been shown before and the role of some specific snoRNAs in learning and memory has 

also been studied (Rogelj et al., 2003). In this study they could show that hippocampal 

snoRNAs regulate higher cognitive functions of the brain. Role of snoRNAs in diseases has 

been first observed in cancer. It has been shown that differentially expressed snoRNAs and 

snoRNAs with mutations are crucial in development of lung cancer and prostate cancer 
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respectively (Liao et al., 2010; Dong et al., 2008). So far Prader-Willi syndrome is the most-

studied neurological disorder that is associated with mutations in snoRNAs (Sahoo et al., 

2008) and there has been no specific role for snoRNAs in AD. However the significant role of 

snoRNA in gene expression flexibility can suggest potentials for this class of small non-

coding RNAs in neuropathological processes.  

 
4.1.3 Aging-associated inflammatory and immune system activation pathways 
 

Diverse molecular pathways and biochemical mechanisms control the process of 

aging. In our study the role of miRNAs in regulating aging-associated pathways were 

analyzed by IPA (Ingenuity software). The results show that miRNAs that are differentially 

expressed upon aging control the immune system activity-related pathways (Fig. 3.1.10 and 

Fig.3.1.11). The deregulated activation of immune system indicates the over expression of 

inflammation mechanisms. 

 However the mechanisms related to aging is not similar in all species since life span in 

different species is not the same, mechanisms like oxidative stress and telomerase shortening 

are species-specific (Kim 2007). Beside specific aging-associated pathways there are also 

common pathways, which are happening in all species in old ages mechanisms like 

inflammation (Franceschi et al., 2000). In line with this it should be taken into account that 

computational analyses that are used for miRNA target prediction provide helpful tool for 

miRNA research but it should be noted that there is no prediction algorithm that can capture 

all of the biological aspects of the miRNAs.  

 
4.1.4 MiRNA as a predictive biomarker 
 

A good and reliable molecular biomarker should be detectable, robust and specific. 

The choice of the biomarker could have different reasoning behind. One decisive factor for 

choosing the biomarker is the nature of the disease. There are some diseases that usually 

begin with no symptom like AD and in this case biomarkers help to identify the individuals 

with high risk for the disease (Craig-Schapiro et al., 2009). In our study we focused on aging 

as a risk factor for AD and sought for the differentially expressed miRNAs in aged animals to 

find any similarities between the miRNA profile of the aged animals and miRNA profile in 

AD. Our results show that miRNA expression in brain tissue is changing massively in aged 

mice (Fig. 3.1.7). Among deregulated miRNAs miR34c is downregulated in hippocampal 

subregions while in AD disease mouse model and patients this miRNA is upregulated 
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(Zovoilis et al., 2011). This observation can suggest that in healthy aged animals in contrast to 

AD mouse model miR34c is not upregulated. According to our results there are also some 

miRNAs that are highly upregulated in one subregion and exactly the same miRNA is 

downregulated in another subregion. Among these differentially deregulated miRNAs miR-

212 was particularly interesting since this miRNA was only upregulated in DG of the old 

mice and downregulated in other memory subregions. This finding is in accordance with 

previous studies on DG that showed this miRNA is highly expressed in granular cells of the 

DG (Magill et al., 2010). One possible explanation for the upregulation of this miRNA in DG 

upon aging could be the compensatory role of this miRNA for producing more newborn 

neurons to replenish the deleterious effect of the aging-associated processes. In total our 

results can lead to this point that miRNA expression profile is an indicator for aging in brain 

memory subregions. 

Anyhow using miRNAs as diagnostic, prognostic or predictive biomarkers or surrogate 

endpoint of a disease is still in its infancy. There is still a long way of research ahead in order 

to overcome the shortcomings of this field of biomarker research.  

 

4.1.5 Choice of biofluid for biomarker studies 

Studies in the area of neurodegenerative diseases favor CSF as the most reliable body 

fluid in terms of biomarker research, simply because it bathes the brain. However there are 

considerable complications with using CSF as the source of biomarker. CSF collection is an 

invasive method and different factors can cause variability in the CSF samples. However 

other body fluids like urine, blood serum or even tears (Weber et al., 2010) have been used as 

biomarker sources for diseases. Kumar et al. (2013) published a list of plasma-based miRNAs 

as AD signature. In this study we used blood as the source of circulating miRNA since among 

above-mentioned body fluids so far blood offers the most non-invasive analysis tool.  

 

4.1.6 Blood indicates changes in the aging brain 

It was previously shown that blood is sensitive to changes in the central nervous 

system and is contributed to gene expression patterns (Scherzer et al., 2007). Our results show 

that small RNAome of young and old animals are distinctive and like brain samples miRNA 

is the largest proportion of the small RNAome in the blood samples of young and old animals 

and piwiRNA is coming up as the second abundant small RNA (Fig. 3.1.12). This shows that 
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small RNAome population in brain and blood are different. A previous study revealed that the 

piwiRNA proportion of blood in comparison to this in plasma is larger than in plasma 

(Spornraft et al., 2015). However we put the main focus on comparison between miRNAs of 

blood and brain. 

Although correlation analyses between brain and blood show that there is a considerable 

discrepancy between miRNAome in blood and brain we could detect a convincing rate of 

similarity between miRNAome of blood and brain subregions that were differentially 

expressed along aging.  

Of note the number of miRNAs in blood is very low in comparison to brain tissues. One 

reason for that could be the amount of blood that is subjected to RNA isolation. The amount 

of blood that is used for the whole RNA isolation and NGS process is on one hand a small 

proportion of the whole blood of the animal and on the other hand it is highly diluted in 

comparison to solid brain tissues. It might be that if the whole blood could be used for NGS 

we could observe a larger amount of miRNAs and consequently more common miRNAs 

between brain and blood. However numerous studies have used blood as biomarker source. 

Blood-based proteins have been studied as reliable biomarkers for AD (Doecke et al., 2012; 

Tan et al., 2012). Another study on AD biomarkers proposed a blood-based 12-miRNA 

signature (Leidinger et al., 2013). A novel aspect of our study in comparison to the similar 

studies was that we compared the miRNAome of blood with four subregion of the brain that 

are closely related to memory and cognition. These comparisons show that miRNA 

deregulation in each region is to a great extent detectable in blood (Fig. 3.1.16 and Fig. 

3.1.17) and when we take all brain subregions as a whole and compare it to blood the number 

of similarly deregulated miRNAs is noticeable. 

In this study we could detect one similar signature miRNA (miR-26b) in blood as it was 

reported in Leidinger et al. (2013) study for AD. Interestingly the regulation pattern of this 

miRNA is downregulated upon aging, which is similar to the regulation pattern of this 

miRNA in AD patients. However how the aging- induced miRNAs in blood can be related to 

AD-induced miRNAs in blood is a matter of debate.  

Aside from all benefits that blood provides for biomarker research it should also be taken into 

consideration that blood is a heterogeneous fluid with different cellular and molecular 

components that can cause contamination in terms of biomarker study.  
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4.2 MiRNA as therapeutic target  
4.2.1 Neuronal targeting of the exosomes  
 

Role of deregulated miRNAs in pathological processes makes this biomolecule as a 

proper target for therapy. In this study we were planning to apply siRNA as inhibitors for 

miRNAs. Since the target miRNA of our study was shown to be upregulated in neuronal cells 

therefore in order to delivering the inhibitory siRNA to the neuronal cells exosomes were 

used as cargo vehicles.  

Using exosome as drug carrier is becoming more popular in neuropathological area since it 

can cross the blood brain barrier. Numerous studies in the field of exosomes have immense 

impact on our understanding of possible applications and potentials of the exosome in this 

regard. In this project we investigated the possibility of pseudotyping of exosomes with 

measles virus glycoproteins (MVG). A similar study to ours used other virus glycoproteins 

namely rabid virus glycoprotein (RVG) to specify the exosomes for the target cells (Alvarez-

Erviti et al., 2011). This specification made the exosomes specific for neural cells while our 

approach was to target only neurons and with this approach we used MVG. Our results show 

that MVG variants can be sorted in the exosomes. As control we used Flotillin to confirm the 

accuracy of exosome preparation. Using virus glycoproteins offers a pragmatic tool for 

adopting exosomes for target cells but on the other hand it can function as the immune system 

suppressor or stimulator and consequentially have some undesired effects on the organism. 

However applying exosomes as drug carriers is an emerging research field in contrast 

liposomes that are synthetic phospholipid vesicles are in use as drug carriers since several 

years. Exosomes offer some benefits in comparison to liposomes and on the other hand 

liposomes have some properties which exosomes are lacking them. One smart strategy could 

be to combine beneficial features of liposomes and exosomes to develop an efficient drug 

delivery system (van der Meel et al., 2014)  

 
4.2.2 Loading the exosomes with desired cargo 
 

Exosomes are endogenous nanovesicles that transfer different kinds of molecules 

between the cells. This natural potentiality of the exosomes as carriers can be utilized in 

pharmaceutical research. There are different methods to load the exosomes with desired 

cargos. In the present study electroporation was used in order to load the exosomes with 

siRNAs. As it is shown in luciferase assay results by using relatively high amount of 

exosomes and siRNAs an adequate delivery effect can be achieved. Anyway there was no 

difference between the delivery efficiency of the native exosomes and neuronal specified 
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exosomes. The electroporated exosomes in both cases (native and neuronal specified) showed 

less luciferase activity suppression in comparison to oligofectamine method. 

 

 This fact and similarity between delivery efficacies of both exosome variants raises these 

questions: 

1) Do the exosomes after electroporation retain their shape?  

2) Does electroporation load the exosomes with siRNA? 

The study that was done by Kooijmans et al. (2013) revealed that electroporation doesn’t  

load the exosomes with siRNAs. Electroporation of siRNAs and exosomes results into 

aggregation of siRNAs. This can be a persuasive explanation for the failure of our 

electroporation trails. Furthermore electroporation can cause the aggregation of the 

exosomes but this may be solved by optimization of the electroporation factors (Hood et 

al., 2013). Other methods that have been used or proposed in this regard have been 

mentioned before in Table 1.1 as it is obvious electroporation is ranked as the most applied 

method to load the exosomes with cargoes, incubation, transfection and cell activation are 

listed as the other methods in this regard. Although none of the above-mentioned tools 

offer an absolutely effective method to load the exosomes this area of research is highly 

promising. Further research and technological advances are required to fulfill the exosome 

application as a reliable and effective drug carrier. 
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5.1 Aging-associated changes in miRNA expression profile 
 
 
 

The first part of this study was performed to identify the changes at molecular level that 

occur in association with aging. The aged-induced expression changes in miRNAome of 

blood was also observed and compared with change pattern in brain to figure out the 

overlapping. Based on the results we can conclude that: 

x MiRNA expression level goes under profound changes along aging. 

x The fold change in miRNA expression levels can be detected precisely in each 

subregion of the memory in the aging mouse brain. 

 

5.2 Exosomal delivery of miRNA inhibitory molecules 
 

The second part of this study was conducted to examine the exosome potential as proper 

delivery vehicle for targeting neurons exclusively. The results from this study can be 

concluded in this way: 

x Non-exosomal glycoproteins can be sorted in the exosomes.  

x Loading exosomes with desired cargoes requires more research and technical 
advances.  
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6. Summary 
 
 

MicroRNAs (miRNA) are small non-coding RNAs that play a critical role in the 

regulation of gene expression programs and thus key mediators of cellular homeostasis. There 

is increasing evidence that deregulation of miRNAs contribute to neurodegenerative diseases 

and provide in turn novel opportunities to define biomarker signatures and develop novel 

therapeutic approaches. To develop effective methods for the delivery of therapeutic miRNA 

to neurons and to define miRNA changes during memory decline is this of utmost 

importance. In this project I addressed these important questions and could show that the use 

of modified exosomes might be a suitable approach to deliver miRNA into the brain. In 

addition I employed next-generation sequencing (NGS) to profile the miRNAome of 4 

different brain regions in young and cognitively impaired old mice. I also examined aging-

induced changes in blood from the same mice. My observation suggests that aging is 

associated with a remarkable deregulation of the brain and blood miRNA profile. Target 

prediction analyses revealed that the age-associated miRNA signature reflects inflammation-

associated mechanisms. The data presents to most comprehensive analysis of the age-

associated brain miRNAome and forms the basis for further mechanistic studies. 
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Appendix 1. pCG-H plasmid map 
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Appendix 2. pCG-F plasmid map  
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Appendix 3. pCG-Hcd18 plasmid map 
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Appendix 4. pCG-Fcd30 plasmid map 
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