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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is a mostly lethal disease which represents 

the fourth common cause of all deaths related to cancer. The nucleoside analogue 

gemcitabine constitutes a currently widely used treatment standard both in a palliative 

and adjuvant setting. However, variability in response to gemcitabine is high with a 

substantial impact of genetic variations assumed. Two previously identified single 

nucleotide polymorphisms (SNPs) associated with the overall survival of gemcitabine 

treated patients suffering from PDAC were characterized in this thesis concerning the 

underlying molecular mechanisms: Rs11644322 pertinent to the tumor suppressor gene 

WWOX, and rs1130609 pertinent to the ribonucleotide reductase RRM2. 

A panel of 89 lymphoblastoid cell lines (LCLs) with publicly available genotype 

information was used as model system to study genomic causes of variable gemcitabine 

sensitivity. Cytotoxicity of gemcitabine was assessed by flow cytometry-based 

measurement of proliferation inhibition, and gene expression was determined by 

quantitative real-time PCR. For extended experiments the pancreatic cancer cell lines 

AsPC1, MiaPaca-II, PaTu8988t, PancI, and L3.6 were used. Modification of gemcitabine 

response upon WWOX knock-down by siRNA and shRNA (verified by Western Blotting) 

or upon WWOX overexpression was ascertained. As the transcription factor SP1 bound 

to the WWOX rs11644322, overexpression of this factor was conducted and the 

consequences on WWOX transcription with and without gemcitabine, 5-fluorouracil and 

irinotecan were studied. Whole transcriptome analysis was determined for gemcitabine 

effects in AsPC1 and MiaPaca-II cells, in PaTu8988t upon shRNA-mediated WWOX knock 

down, and in pooled LCLs defined by homozygous wild type and variant allele at the 

WWOX index SNP site, respectively.  

Regarding the molecular mechanisms behind the RRM2 polymorphism, electrophoretic 

mobility shift assays (EMSA) were performed to discern allele-specific transcription 

factor binding at rs1130609. An in vitro coupled Transcription/Translation system was 

utilized to study allele-specific differences regarding protein translation.  

In LCLs, cytotoxicity of gemcitabine was reduced in dependence of the number of A 

alleles at WWOX rs11644322, consistent with the worse prognosis of patients with this 

allele. No transcripts were detected in close vicinity to rs11644322. However, 

homozygosity for the AA allele at rs11644322 was accompanied by lower WWOX 
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expression of both, the core coding region and of the last exon, separated by 730 kb. A 

specific gemcitabine-related correlation was identified in LCLs between transcription of 

WWOX and the growth arrest and DNA damage-inducible gene GADD45A, which was 

correlated with increased gemcitabine cytotoxicity.  

Whole transcriptome analysis in AsPC1 and MiaPaca-II cells revealed that RRM2 

expression increased more strongly than any other protein-coding transcript upon 

gemcitabine exposure. Quantitative relations of the two RRM2 transcripts differing in 

the noncoding 5' sequence length revealed the major one amounting to 96 to 99 % of the 

entire transcript numbers, depending on the cell type. This major RRM2 transcript 

isoform was also increased upon gemcitabine exposure in LCLs and in peripheral blood 

of patients subjected to gemcitabine-containing chemotherapy. In EMSA experiments 

stronger protein binding at the RRM2 rs1130609 G allele (the same allele which was 

associated with worse prognosis) was identified. However, no impact of this SNP on the 

transcription of the major RRM2 isoform was seen. In contrast, increased expression of 

the minor isoform with an extended 5'-region was observed in presence of the T variant 

allele at rs1130609, intensified upon gemcitabine treatment. Preliminary results for 

cloned RRM2 suggested less translation efficacy for the T compared to the G allele.  

Based on previous data and those of my thesis, mechanistic hypotheses for WWOX and 

RRM2 are suggested: The variant A allele at the WWOX index SNP might bind SP1 to a 

lesser extent, resulting in decreased expression probably mediated via interaction with 

the promoter region by looping. By that, epithelial-mesenchymal transition may be 

increased resulting in reduced cell proliferation and enhanced resistance to gemcitabine, 

finally providing a mechanistic basis for worse clinical outcome. Regarding RRM2, 

phosphorylated gemcitabine can block physiological DNA synthesis resulting in RRM2 

transcription induction, primarily of the major variant isoform. In case of the T variant 

allele at the RRM2 index SNP site, RRM2 protein synthesis is presumed to be impaired, 

what might stimulate transcription of the minor isoform. 

The obtained data provide new insights in functional mechanisms. By corroborating the 

clinical associations, these data further supported the two predictive SNPs in WWOX and 

RRM2 as valid biomarkers for gemcitabine-based chemotherapy in PDAC. 
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1 Introduction 

1.1 Pancreatic cancer: Incidence and prognosis 

Pancreatic cancer is one of the most aggressive and lethal diseases with a dismal 

prognosis. The current lifetime risk in the Western countries amounts to 1.49 % (1 in 

67) with no marked gender preference (HOWLADER et al. 2013, BECKER et al. 2014). In 

Germany there are up to 16,000 new cases per year and the average age to be affected is 

75 years for women, and 71 for men (ROBERT-KOCH INSTITUT 2012). With regard to all 

malignancies, the incidence of pancreatic ductal adenocarcinoma (PDAC) amounts to 

3.5 % and it represents the fourth most common cause of cancer-related deaths, for men 

ranked behind lung, prostate and colorectal cancer and for women behind lung, breast, 

and colorectal cancer, respectively (SIEGEL et al. 2013). 

No early detection methods are available so far and at the time of diagnosis the disease 

state is often advanced, because at the early stages most patients have no or no specific 

symptoms indicating the disease (WOLFGANG et al. 2013). The overall five-year survival is 

less than 5 % and even patients after surgery, performed in curative intention, show an 

overall five-year survival which does not exceed 20 - 25 % with a median survival of 17 

to 23 months (VINCENT et al. 2011). Patients presenting metastatic disease (50 - 60 %) 

have the shortest survival time of three to six months (SHRIKHANDE et al. 2007, CHUE 

2009). Among all malignant tumors of the pancreas, PDAC, arising from the exocrine 

pancreas, account for more than 90 % (DELPERO et al. 2015). Approximately 65 % of the 

pancreatic tumors are located in the head, 15 % in the body and the tail and the 

remaining ones diffusely occur inside the gland (Figure 1, GREENLEE et al. 2000, ARTINYAN 

et al. 2008).  
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Figure 1: Anatomy of pancreatic ductal adenocarcinoma (PDAC) 
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1.2 Molecular features of pancreatic cancer 

Treatment response to cytostatics is highly variable and a substantial contribution of 

tumor and host genome variability is presumed. DNA sequencing technologies have 

shown that pancreatic carcinomas carry on average about 63 acquired somatic 

mutations, which are predominantly point mutations (JONES et al. 2008).  

Ninety five percent of pancreatic cancers harbor activating mutations in the proto-

oncogene KRAS, which is known to drive pancreatic neoplasia (SMIT et al. 1988, DI 

MAGLIANO AND LOGSDON 2013, ESER et al. 2014). KRAS mutations correlate with a 

shortened median survival of 17 vs. 30 months for KRAS wild type (RACHAKONDA et al. 

2013). Somatic mutations in SMAD4, which mediated the TGFβ signaling pathway 

suppressing epithelial cell growth, have been reported in approximately 50 % of human 

pancreatic tumors (HAHN et al. 1996, MIYAKI AND KUROKI 2003). Also, the known tumor 

suppressor gene TP53 belongs to the frequently mutated genes in pancreatic cancer. 

TP53 is involved in diverse biological effects concerning cell-cycle arrest, DNA 

replication and repair, apoptosis, angiogenesis inhibition, proliferation and response to 

cellular stresses. This is due to transcriptional activation of several target genes, e.g. IGF-

BP3 (negative regulator of cell proliferation), PCNA (involved in DNA replication and 

nucleotide excision repair in vitro), BAX (linked to regulation of apoptosis) and GADD45 

(encodes a protein that binds to PCNA) (CHAN et al. 1999, HAINAUT AND HOLLSTEIN 2000, 

TOKINO AND NAKAMURA 2000). Further genes often mutated in PDAC are CDKN2A (CALDAS 

et al. 1994), APC (HORII et al. 1992), BRAF and FBXW7 (CALHOUN et al. 2003). Targeted 

therapies according to the somatic mutation pattern extend treatment options for 

distinct pancreatic adenocarcinoma subsets. 

Some genes like TP53, SMAD4, CDKN2A, and ATM are not only affected by somatic 

mutations but also carry germline genetic polymorphisms some of them possibly 

predisposing to PDAC. For another group of genes, germline polymorphisms rather than 

somatic mutations are reported as relevant in PDAC carcinogenesis (e.g. in BRCA1, 

BRCA2 or the DNA mismatch-associated genes MLH1 and MSH2) (STOFFEL 2015). 

Notably, pancreatic cancer cells have inherited the genetic make-up of the host germ-

line variability. Regarding the complex biological reactions upon drug exposure it is thus 

likely that germline variability contributes substantially to treatment response.  
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1.3 Therapy options 

PDAC is described to have a high tendency for local invasion, distant metastases and 

limited response to chemotherapeutic agents (MARECHAL et al. 2012). 

The only potentially curative approach for PDAC is the complete resection of the tumor. 

Regrettably, less than 20 % of the patients exhibit a resectable disease at time of 

diagnosis (BRENNAN et al. 1996). To enhance the chance of curative resection, patients 

not suitable for surgery or patients with borderline resectable tumors may undergo 

neoadjuvant treatment (NANDA et al. 2015). Either a combination of chemo- and 

radiotherapy or a monotherapy of either is commonly used as neoadjuvant treatment 

(GILLEN et al. 2010). After surgery, adjuvant chemotherapy is commonly used due to the 

high risk of local tumor recurrence (STALEY et al. 1996, SPERTI et al. 1997). Because most 

patients suffer from advanced, non resectable disease the optimization of palliative 

systemic therapy is still ongoing. Monotherapy or combination chemotherapy may 

enhance the survival time for patients having no chance for cure (VAN LAETHEM et al. 

2012). 

As standard first-line therapy for PDAC, the nucleoside analogue gemcitabine has been 

approved for over a decade (VACCARO et al. 2015). With regard to the overall survival 

(OS) after palliative and adjuvant therapy, the benefit of gemcitabine is very moderate, 

compared to the former traditionally used chemotherapeutic agent 5-FU (5-

Fluorouracil) with an OS of 5.7 vs. 4.4 months after palliative, and 23.6 vs. 23 months (5-

FU plus folinic acid) after adjuvant therapy, respectively. However, gemcitabine 

improved disease-related symptoms and caused less side effects (BURRIS et al. 1997, 

NEOPTOLEMOS et al. 2010). The combination of capecitabine (a prodrug of 5-FU) and 

gemcitabine, used against locally advanced and metastatic pancreatic cancer, had a 

positive effect on the response rate (19.1 % vs. 12.4 %) as well as on progression-free 

(Hazard ratio [HR], 0.78; 95 % CI (confidence interval), 0.66 to 0.93; p = 0.004) and the 

overall survival (HR, 0.86, 95 % CI, 0.72 to 1.02; p = 0.08), compared to single 

gemcitabine treatment with tolerable side-effects (CUNNINGHAM et al. 2009). Also nab-

paclitaxel (albumin-bound paclitaxel) plus gemcitabine, compared to gemcitabine 

monotherapy, significantly enhanced the overall (8.5 vs. 6.7 months respectively) and 

progression-free survival (5.5 vs. 3.7 months, respectively) in patients with metastatic 

disease (VON HOFF et al. 2013). Combinations of gemcitabine with platin compounds in 
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most studies did not show an improvement regarding survival time and may just be 

useful for patients with a good performance status (SAIF AND KIM 2007). A combined 

treatment of gemcitabine plus the epidermal growth factor receptor (EGFR) tryosine 

kinase showed an enhanced progression-free (3.8 vs. 2.4 months) and overall survival 

(7.2 vs. 4.4 months), compared to single gemcitabine administration. Survival time was 

longer for patients with an EGFR mutation (WANG et al. 2015).  

As an alternative treatment to gemcitabine FOLFIRINOX, a combined chemotherapy 

regimen, including folinic acid (leucovorin, FOL), 5-FU (F), irinotecan (IRIN) and 

oxaliplatin (OX), approved in 2010, showed a prolonged overall (11 vs. 6.8 months) and 

progression-free survival (6.4 vs. 3.3 months), but was accompanied by higher toxicity. 

Therefore, this treatment is an option for patients with metastatic pancreatic cancer 

showing a good physical condition (CONROY et al. 2011, CONROY et al. 2013). In summary, 

more aggressive regimens in advanced pancreatic cancer are restricted to patients with 

a good performance state, otherwise the single-agent gemcitabine is still regarded as 

gold standard (HEINEMANN et al. 2007). 

1.4 The nucleoside analogue gemcitabine 

Gemcitabine (2',2'-difluorodeoxycytidine, dFdC, marketed as Gemzar® from Eli Lilly and 

Company) is a nucleoside analogue of deoxycytidine with two additional fluorine atoms 

in the deoxyribofuranosyl ring (Figure 2). 

 
Figure 2: Skeletal formula of desoxycytidine (A) and gemcitabine (B) 
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1.4.1  Clinical indications, administration and toxicity 

Gemcitabine represents a cytostatic drug which is approved for the systemic therapy of 

advanced (nonresectable Stage ΙΙ or Stage ΙΙΙ) or metastatic (Stage ΙV) pancreatic cancer 

since 1995 (PLUNKETT et al. 1995, CONROY AND MITRY 2011, ELLI LILY AND COMPANY DRUG 

INFORMATION SHEET GEMZAR 2014, updated version), as single agent or in combination as 

outlined above (see chapter 1.3). In combination regimens, gemcitabine is also used for 

non-small-lung and bladder cancer (with cisplatin), ovarian cancer (with carboplatin), 

and breast cancer (with paclitaxel), respectively (MINI et al. 2006).  

The recommended dose of gemcitabine is 1000 - 1250 mg/m2 administered as a 30- 

minutes infusion once a week for the first seven weeks, followed by one week of rest. 

After week 8 a weekly dosing on day 1, 8 and 15 of a 28-day cycle is advised (ELLI LILY 

AND COMPANY DRUG INFORMATION SHEET GEMZAR 2014). Following a standard 30 minute 

infusion of the recommended gemcitabine dose, plasma concentration of 20 - 60 µM 

could be achieved at the end of infusion. Though, after intravenous administration, 

plasma level of gemcitabine decrease rapidly due to rapid deamination to dFdU 

(difluorodeoxyuridine) which is mostly occuring before the active drug can enter the 

tumor cell (ABBRUZZESE et al. 1991, GRUNEWALD et al. 1991). The half-life of gemcitabine 

varies from 42 to 94 minutes and appears to be affected by gender and age. Gemcitabine 

(< 10 %) and the inactivated dFdU (difluorodeoxyuridine) metabolite represent 99 % of 

the excreted dose measured in the urine of patients, who received a radiolabeled drug 

infusion (ELLI LILY AND COMPANY DRUG INFORMATION SHEET GEMZAR 2014). 

Though, it shows several side-effects, of which myelosuppression, with 

thrombocytopenia and anemia, represents the dose-limiting toxicity (ABBRUZZESE et al. 

1991, CONROY et al. 2011). 

1.4.2 Route of gemcitabine 

The transport of gemcitabine into the cell is essential for its efficacy. Gemcitabine is 

highly hydrophilic resulting in a limited intracellular diffusion potential and therefore 

needs nucleoside transporter (NTs) to enter the cell (PAPROSKI et al. 2013). The 

equilibrative nucleoside transporter ENT1 (also called SLC29A1) is known as the 

primary transport protein for gemcitabine and other nucleoside analogues. Also 

concentrative nucleoside transporter (CNTs), like CNT1 and CNT3 are involved, but to a 
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less extent.  

As a prodrug, gemcitabine has to be activated inside the cell through phosphorylation by 

kinases to its derivates dFdCDP (2', 2'-difluorodeoxycytidine-diphosphate) and dFdCTP 

(2', 2'-difluorodeoxycytidine-triphosphate), which are responsible for the cytotoxic 

effects. The biotransformation of nucleoside analogues to their mononucleotides by 

phosphorylation is catalyzed by deoxycytidine kinase (DCK) representing the rate-

limiting enzyme (FARRELL et al. 2009). Further essential phosphorylation steps of 

dFdCMP (2', 2'-difluorodeoxycytidine-monophosphate) to di- and triphosphate are 

mediated by the kinases CMPK1 (cytidine monophosphate kinase) and NDPK 

(nucleoside diphosphate kinase), respectively (Figure 3) (MINI et al. 2006, KOCABAS et al. 

2008). 

 

Figure 3: Pathways of gemcitabine (dFdC) transport, metabolism of action and self-potentiation. Black arrows 
denote uptake and metabolic processes with the involved proteins indicated: Transport proteins ENT1 (equilibrative 
nucleoside transporter 1), CNT1 (concentrative nucleoside transporter 1) and CNT3 (concentrative nucleoside 
transporter 3) and the enzymes DCK (deoxycytidine kinase), NT5C3 (cytosolic 5'-nucleotidase 3), NT5C (cytosolic 5'-
nucleotidase), CMPK1 (cytidine monophosphate kinase 1) and NDPKs (nucleoside diphosphate kinases). The "P" 
symbols represent phosphates attached to gemcitabine. Competing physiological cytidine metabolites are denoted as 
CDP (cytidine diphosphate), dCDP (deoxycytidine diphosphate) and dCTP (deoxycytidine triphosphate). The 
degradation products are dFdU (difluorodeoxyuridine) and dFdUMP (difluorodeoxyuridine-monophosphate). Details 
are described in the text. Modified according to MINI et al. 2006, WONG et al. 2009. 
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Gemcitabine underlies a self-potentiation mechanism. The metabolite dFdCDP is known 

to inhibit ribonucleotide reductases (RR) and its regulatory and catalytic subunits 

(RRM1, RRM2), which are essential for the de novo synthesis of deoxynucleotides. A 

decreased deoxyribonucleotide pool potentiates the cytotoxic effect of dFdCTP, which 

competes with physiological dCTPs (deoxycytidine triphosphate) for incorporation into 

the DNA (MINI et al. 2006). Furthermore, dCTP is a potent feedback inhibitor of DCK, so 

that low dCTP level cause an increased phosphorylation of gemcitabine (WONG et al. 

2009).  

When incorporated into DNA as false nucleotide by DNA polymerase alpha, dFdCTP 

inhibits further DNA synthesis through masked chain termination, initiated by 

incorporation of only one additional deoxynucleotide preventing DNA repair 

mechanisms and fostering cytotoxic effects (HUANG et al. 1991, RUIZ VAN HAPEREN et al. 

1993). The described enrichment of dFdCTP as well as the reduction of the dCTP pool 

lead to an inhibition of the dFdCMP inactivation step mediated by DCTD 

(deoxycytidylate deaminase), which needs sufficient concentrations of dCTP to be active 

(HEINEMANN et al. 1992).  

Gemcitabine has a short plasma half-life (see chapter 1.4.1) due to its rapid degradation 

(90 %) to dFdU (2', 2'-difluorodeoxyuridine) catalyzed by cytidine deaminase (CDA), an 

enzyme which is expressed in the liver and blood and to a less extent inside tumor cells 

(HEINEMANN et al. 1992). Cytosolic 5'-Nucleotidases (5'-NT) are responsible for further 

gemcitabine inactivation and convert nucleoside monophosphates back to nucleosides, 

acting as antagonists of DCK (BERGMAN et al. 2002). Another degradation pathway of 

gemcitabine is the deamination of gemcitabine monophosphate (dFdCMP, 2', 2'-

difluorodeoxycytidine-monophosphate) to dFdUMP (2', 2'-difluorodeoxyuridine-

monophosphate) by DCTD (HEINEMANN et al. 1992). 

1.5 Outcome predictors in gemcitabine-treated pancreatic cancer 

1.5.1 Candidate genes affecting gemcitabine efficacy 

Candidate genes involved in gemcitabine activity are depicted in Figure 3 (section 1.4.2). 

The determination of a score comprising tumor expression of ENT1, DCK, RRM1 and 

RRM2 was suggested as a putative biomarker for gemcitabine therapy (NAKANO et al. 

2007, FUJITA et al. 2010).  
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The relevance of the ENT1 transporter in PDAC has been repeatedly confirmed in 

several studies as a predictive biomarker for gemcitabine efficacy. Strong ENT1 protein 

expression detected by immunostaining in the tumor cells was related to longer survival 

of patients (SPRATLIN et al. 2004, MARECHAL et al. 2009, GREENHALF et al. 2014). Similar 

relations were noticed for tumoral ENT1 mRNA expression (GIOVANNETTI et al. 2006).  

A significantly prolonged median survival upon gemcitabine treatment was observed in 

case of low RRM2 mRNA expression (ITOI et al. 2007). On protein level, higher tumoral 

expression of RRM2 was correlated with a shorter time to disease recurrence and a 

reduced OS after resection in patients who underwent gemcitabine adjuvant regimen 

(FISHER et al. 2013). Consistent with the clinical findings, RRM2 overexpression conveys 

chemoresistance in pancreatic adenocarcinoma and siRNA-mediated knock-down of 

RRM2 leads to an increased chemosensitivity towards gemcitabine, both in vivo and in 

vitro. Specifically, the IC50 value of gemcitabine was four times higher upon recombinant 

RRM2 transfection compared to the empty vector (DUXBURY et al. 2004). In a multi-modal 

approach with simultaneous overexpression of DCK and uridine monophosphatase 

(UMP) and gene silencing of RRM2 and TS (thymidylate synthetase) gemcitabine 

sensitivity of resistant pancreatic cancer cells could be restored (REJIBA et al. 2009). In 

the gemcitabine resistant pancreatic cancer cell line PancΙ RRM2 expression gets sharply 

induced when exposed to gemcitabine via an E2F1-dependent transcriptional activation. 

CG-5, a glucose transporter inhibitor, was hypothesized to re-establish the sensitivity of 

gemcitabine-resistant PancΙ cells by induction of microRNA-520f (LAI et al. 2014).  

Regarding RRM1, low RRM1 mRNA expression levels were related to increased 

gemcitabine sensitivity in pancreatic cancer cell lines and in PDAC (NAKAHIRA et al. 

2007). However, in other studies a correlation between RRM1 expression and treatment 

outcome could not be confirmed (KIM et al. 2011, FISHER et al. 2013). Subsequent studies 

also could not identify RRM1 as a clear predictive or prognostic parameter in resected 

PDAC patients exposed to gemcitabine (VALSECCHI et al. 2012).  

To ease future clinical use it might be beneficial if variability in gene expression could be 

referred to genetic markers which can be determined in a more easy and robust fashion 

compared to tumor-specific expression of mRNA and proteins. For candidate genes of 

gemcitabine effects, inherited single nucleotide polymorphisms (SNPs) may 

substantially contribute to treatment outcome. Several SNPs have been associated with 

the efficacy and toxicity of gemcitabine, e.g. polymorphisms in CDA and DCTD 
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(gemcitabine inactivation enzymes), ENT1 or RRM1 (OKAZAKI et al. 2010, FUKUNAGA et al. 

2004, UENO et al. 2007, TANAKA et al. 2010). 

An in-house conducted retrospective analysis highlighted a SNP in RRM2 associated with 

OS (Figure 4, ZIMMER 2013). However, this RRM2 SNP was not analyzed functionally so 

far. 
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RRM2 rs1130609

 

Figure 4: Impact of the inherited 
RRM2 polymorphism rs1130609 on 
overall survival. Data is from a set of 
308 patients for whom R0 or R1 
resections could be achieved. Patients 
were recruited at three different study 
sites (Göttingen, Heidelberg, Hamburg) 
and patient numbers were specified in 
12 month intervals. The p-value refers 
to unadjusted log-rank test (data from 
ZIMMER 2013). 

 

1.5.2 Genome-wide association studies (GWAS) 

Genome-wide association studies (GWAS) represent an approach to identify clinically or 

functionally relevant SNPs in a broad scale (in a so-called hypothesis free approach not 

restricting the analysis to genes for which specific hypotheses exist). Typically, arrays 

covering a panel of several hundred thousand SNPs more or less uniformly distributed 

over the entire genome were applied. More recently, GWAS with complete coverage of 

genomic varibility have become feasible with emerging of deep sequencing technologies. 

In 2012, a comprehensive array-based GWAS was undertaken to screen for markers 

associating with clinical outcome in gemcitabine-treated PDAC. In that study, 351 

patients were recruited and ~ 550,000 markers were assayed in germline DNA samples 

isolated of peripheral blood cells. Thereby, the SNP IL17F rs763780 showed the 

strongest association with OS (INNOCENTI et al. 2012). The variant allele of this SNP was 
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hypothesized to mitigate the function of the anti-angiogenic IL17F, thus possibly 

promoting tumor growth and hampering therapy responsiveness (ARISAWA et al. 2007, 

ARISAWA et al. 2008). Other SNPs in or near the genes PRB2, DCP1B, WWOX and BTRC 

were also associated with overall survival.  However, considering multiple testing their 

role was statistically not significant (INNOCENTI et al. 2012). To assess the clinical 

relevance of those findings from INNOCENTI et al. an independent validation appeared to 

be mandatory. In a cooperation between the University Medical Centers in Göttingen, 

Hamburg, and Heidelberg a statistically significant association of the WWOX SNP, found 

among the top hits of the mentioned GWAS, could be demonstrated for the first time 

(Figure 5). However, the role of the SNP IL17F rs763780 could not be confirmed in these 

german samples. Pilot functional assessment identified members of the specificity 

protein (SP) family as transcription factors with allele-specific affinity to this WWOX 

index SNP site. According to those analyses it is unlikely that any other polymorphism as 

rs11644322 in high linkage disequilibrium (LD) with the latter is causatively functional 

(ROPPEL 2013). Detailed functional elucidations linking this SNP to WWOX gene 

expresssion, gemcitabine sensitivity and the clinical finding are not yet performed and 

might be worthy for potential use as biomarker. Moreover, the pathways in which 

WWOX acts are still poorly understood. 

 
A

GG 205 114 60 39 22 12

GA 144 74 26 12 8 4

AA 26 10 3 0 0 0

Patients under investigation  

Figure 5: Impact of WWOX rs11644322 on 
overall survival. Data is from a set of 381 
patients for whom R0 or R1 resections could be 
achieved. Patients were recruited at three 
different study sites (Göttingen, Heidelberg, 
Hamburg) and patient numbers were specified 
in 12 month intervals. The p-value refers to 
unadjusted log-rank test (data from ROPPEL 
2013). 
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1.6 Aims of this thesis 

The aim of my doctoral thesis was the detailed molecular characterization of genetic 

polymorphisms in WWOX and RRM2, previously identified, to determine gemcitabine 

response in pancreatic cancer. Knowledge of funtional relationship might contribute to 

overcome treatment resistance. In the next subchapters, a detailed description of single 

steps to achieve the aims is provided. 

1.6.1 WWOX 

Based on the clinical association found with the WWOX SNP rs11644322, SNP-specific 

(items 1-3) and general functions of WWOX (items 4-6) in relation to gemcitabine 

sensitivity should be addressed: 

1. The variant A allele at rs11644322 conferred worse outcome in the clinical setting. It 

should be delineated whether this variant alters cellular sensitivity to cytostatic 

drugs in general or specifically to gemcitabine.  

2. Is rs11644322 related to gene expression? This genetic polymorphism is located in 

an extraordinarily huge intron far away from any known coding region. First, the 

expression levels of the WWOX coding regions upstream and downstream of this 

index SNP should be quantified in detail. It should be elucidated whether 

rs11644322 affects global transcriptome in general and specifically the WWOX 

expression. Furthermore, possible gemcitabine-induced alterations of WWOX 

expresson should be evaluated in dependence on rs11644322.  

3. Since WWOX rs11644322 was identified as a site at which SP proteins bind in an 

allele-specific fashion, effects of this SNP are presumed to be linked to SP binding. As 

the expression of SP may be rate-limiting in this issue, the functional consequences 

of SP1 overexpression in pancreatic cancer cell lines should be explored in 

conjunction with cytostatic drug exposure. 

4. A pro-apoptotic role of WWOX has been suggested. The relationship between WWOX 

expression level and cytotoxicity of gemcitabine should be analyzed. In addition, 

potential relationships with known apoptotic genes should be evaluated. 

5. The relevance of WWOX in cancer has recently emerged. The role of enhanced or 

suppressed WWOX expression in pancreatic cancer cell lines should be investigated 
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in terms of cell proliferation with a specific focus on interactions with gemcitabine. 

6. Knock-down of WWOX might be accompanied by expression alterations affecting 

cellular proliferation. By means of whole transcriptome analysis consequences of 

transient and stable RNAi targeting WWOX on gene expression patterns should be 

delineated.  

1.6.2 RRM2 

A previous study conducted in the institute of Clinical Pharmacology in Göttingen found 

a SNP pertinent to the RRM2 gene associated with the outcome of patients suffering 

from PDAC and treated with gemcitabine. An ambiguous relation to RRM2 protein 

expression in pancreatic cancer tissue has also been reported (ZIMMER 2013). To the best 

of my knowledge, no functional assessments for this SNP have been conducted so far. 

The following questions and hypotheses should be elucidated: 

1. There are two transcript isoforms of RRM2. The index SNP differs in the relative 

position to these isoforms. The proportions of the two known transcript isoforms 

should be illustrated in detail in different cell types. 

2. RRM2 counteracts gemcitabine effects and and its up-regulation might be a feature of 

drug resistance. Upon exposure to gemcitabine the extent of RRM2 induction should 

be evaluated in comparison with the global transcriptome. Thus differential 

expression of RRM2 transcript variants upon gemcitabine exposure should be 

delineated and stratified according to the RRM2 index SNP genotypes.  

3. The hypothesis of RRM2 induction upon gemcitabine should be verified in patients 

during chemotherapy in a prospective fashion. 

4. The RRM2 index SNP is located in the so-called Kozak sequence at position -6 relative 

to the start codon of the major transcript variant. The Kozak sequence has been 

reported as a major region for transcription factor binding (FITZGERALD et al. 2004). 

Thus, it should be analyzed whether nuclear protein extracts bind in an allele-

specific manner as a possible mechanism for the observed clinical association.  

5. The Kozak sequence is known to be essential for translation initiation. Thus, it 

should be addressed if the mutation causes by the index SNP affects translation 

efficiency.  
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Detailed functional characterizations of the two considered genetic polymorphism in 

RRM2 and WWOX should provide further evidence for the medical relevance with the 

perspective to tailor future treatment. 
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2 Materials  

2.1 Reagents and kits  

Reagents, kits Manufacturer 

[α-32P]-dCTP (for EMSA) Hartmann Analytic GmbH, Braunschweig 

 
1 kb standard ladder (for agarose gel) 
 

ABgene, Fermentas, St. Leon-Rot  
 

100 bp standard ladder (for agarose gel) 
 

ABgene, Fermentas, St. Leon-Rot  
 

40 % (w/v) Acrylamide:Bisacrylamide 
(Mix 37.5:1) 
 

Biomol, Hamburg 
 

5-FU (Fluorouracil) Central Pharmacy, Clinic Hospital 
Göttingen  
 

ABI PRISM® SNaPshotTM Multiplex Kit Applies Biosystems, Darmstadt 
 

Agar (for bacteriology)  
 

AppliChem, Darmstadt  
 

Agarose Ultra Pure (gel electrophoresis) 
 

Invitrogen, Karlsruhe 
 

All oligonucleotides (for PCR or EMSA)  
 

Eurofins MWG synthesis GmbH, 
Ebersberg  
 

Ammoniumpersulfate (APS) AppliChem, Darmstadt 
 

Ampicillin 99 % 
 

AppliChem, Darmstadt  
 

AMPure® XP beads Agencourt Bioscience Corporation, 
Beverly, Massachusetts 
 

Anti-Protease Roche, Mannheim 
 

Anti-Phosphatase Roche, Mannheim 
 

Aquasafe 500 Plus, Safty Scintillator  
 

Zinsser Analytic, Berkshire, UK  
 

Attractene Transfection Reagent Qiagen, Hilden 
 

BigDye® v1.1 Sequencing Kit  
(Fluorescence based Sanger sequencing)  
 

Applied Biosystems, Darmstadt  
 

Bovine serum albumin (BSA)  
 

Sigma-Aldrich, Deisenhofen  
 

Bromphenolblue Na-Salt (Electrophoresis) 
 

Roth, Karlsruhe  
 

CFSE Proliferation Dye  eBioscience, Frankfurt  
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Chloroform ≥ 99.8 % 
 

J.T. Baker, Phillipsburg, USA  
 

CompactPrep kit (for midi-prep)  
 

Qiagen, Hilden  
 

CountBright
TM 

Absolute Counting Beads  
 

Invitrogen, Karlsruhe  
 

Dimethyl sulfoxide (DMSO)  
 

AppliChem, Darmstadt 

Disodium hydrogen phosphate ≥  99.9 %  
 

Merck, Darmstadt  
 

DNaseI solution 
 

USB, Staufen 
 

DNeasy Blood & Tissue Kit  
(DNA extraction) 
 

Qiagen, Hilden  
 

dNTP Set  
 

ABgene, Hamburg  
 

Dual-Luciferase® Reporter Assay System Promega, Mannheim  
 

EDTA 0.5 M in water solution Sigma-Aldrich, Deisenhofen  
 

EDTA pure  
 

Merck, Darmstadt  
 

Ethanol 96 %  
 

Merck, Darmstadt  
 

Ethanol denatured 99 % 
 

Chemie-Vertrieb Hannover  
 

Ethidiumbromide 1 % in H2O  
 

Merck, Darmstadt  
 

EZ1 DNA Blood Card (No. 9015585) Qiagen, Hilden 
 

EZ1 DNA Blood Kit  
 

Qiagen, Hilden  
 

Expand Long Template PCR System  
 

Roche Diagnostics, Mannheim  
 

FACS Safe Clean  
 

Beckton Dickinson, Franklin Lakes, USA 
 

FACS Flow  
 

Beckton Dickinson, Franklin Lakes, USA 
 

FACS Rinse  
 

Beckton Dickinson, Franklin Lakes, USA 
 

FAST-AP (1U/µl) Life Technologies Corporation, 
Darmstadt  
 

FuGene 6 (Transfection reagent)  
 

Roche, Mannheim  
 

Gemcitabine (dFdC)  
 

Central Pharmacy, University Medical 
Center, Göttingen 
 

GeneScanLIZ120 (For SNaPshotTM)  Applied Biosystems, Darmstadt  
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Glycerol 85 %  
 

Central pharmacy, University Medical 
Center, Göttingen 
 

GoScriptTM Reverse Transcriptase Promega, Mannheim 
 

Helipur® H plus N (Desinfection reagent) 
 

Braun, Melsungen  
 

Hi-DiTM Formamid (for SNapshotTM) Applied Biosystems, Darmstadt  
 

HotStarTaq Master Mix Kit (250 units)  
 

Qiagen, Hilden  
 

Hydrogen chloride  
 

Merck, Darmstadt  
 

Hygromycin B (50 mg/ml) Invitrogen, Karlsruhe 
 

Irinotecan Sigma-Aldrich, Deisenhofen  
 

Isoamylalcohol 98 %  
 

Schuchardt, Hohenbrunn  
 

Isopropanol  ≥  99.9 %  
 

Merck, Darmstadt  
 

Kanamycin  ≥  750U/mg  
 

AppliChem, Darmstadt  
 

Klenow-Fragment (for EMSA)  
 

Fermentas, St. Leon-Roth 
 

KOD HotStart DNA Polymerase  
 

Novagen Merck, Darmstadt  
 

Ligate-IT
TM 

Rapid Ligation Kit 
 

USB, Staufen  
 

Lipofectamine
TM 

2000  
 

Invitrogen, Karlsruhe  
 

Lipofectamine® RNAiMAX  
(Transfection Reagent)  
 

Invitrogen, Karlsruhe  
 

LuminataTM Forte Western HRP Substrate  MerckMillipore, Darmstadt 
 

Magic MarkTM standard Life Technologies Corporation, 
Darmstadt  
 

Magnesium chloride  ≥  99 %  
 

Riedel-De Haën AG, Seelze  
 

Magnesium sulfate  ≥ 99.5 % Merck, Darmstadt  
 

Methanol for analysis  
 

Merck, Darmstadt 
 

Milk powder, blotting grade Roth, Karlsruhe 

Mini Quick Spin Oligo Columns  
 

Roche, Mannheim  
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Multiplex PCR Kit  
 

Qiagen, Hilden  
 

Neodisher® A 8 (Cleaning powder)  
 

Chem. Fabrik Dr. Weigert, Mühlenhagen 
 

Nonidet P-40 (NP-40) AppliChem, Darmstadt 
 

NuPage LDS sample buffer (4x) Invitrogen, Karlsruhe 
 

PAXgene Blood miRNA Kit Qiagen, Hilden 
 

PBS Invitrogen, Karlsruhe 
 

PBS Powder (Dulbeccos 10-fold)  
 

AppliChem, Darmstadt  
 

Penicillin/Streptomycin-Solution 
 

Invitrogen, Karlsruhe  
 

PierceTM BCA Protein Assay Kit 
 

Life Technologies Corporation, 
Darmstadt  
 

Plasmid Midi Kit Qiagen, Hilden  
 

Poly(deoxyinosinic-deoxycytidylic)  
 

Sigma-Aldrich, Deisenhofen  
 

Poly-d-lysine hydrobromide  
 

Sigma-Aldrich, Deisenhofen  
 

Polymer POP6 und POP7 for sequencing Applied Biosystems, Darmstadt  
 

Prestained Marker (for Western Blotting) BioFroxx, Einhausen 
 

PrestoBlue® Cell Viability Reagent Invitrogen, Karlsruhe 
 

QIAquick Gel Extraction Kit  
 

Qiagen, Hilden 
 

5x HOT FIREPol® EvaGreen® qPCR Mix 
Plus 
 

Solis BioDyne, Estonia 
 

QuantiFluorTM Dye System Promega, Mannheim 
 

Quickszint Flow 302, Liquid Scintillator  
 

Zinsser Analytic, Berkshire, United 
Kingdom  
 

Random hexanucleotide primers dN6  
 

Roche, Mannheim  
 

RLT Plus Buffer Qiagen, Hilden 
 

RNAse A ~ 70 %  
 

AppliChem, Darmstadt  
 

RNAse Inhib P/N 71571 (40 un/μl)  
 

USB, Staufen  
 

RNase ZAP Sigma-Aldrich, Deisenhofen  
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RNeasy Plus Mini Kit  
 

Qiagen, Hilden  
 

Rotiphorese® Gel 30 solution Roth, Karlsruhe 
 

SephadexTM G-50 Superfine  
 

Amersham Bioscience, Freiburg  
 

SnapShot
TM 

Multiplex Kit  Applied Biosystems, Darmstadt 
 

Sodium acetate  
 

Merck, Darmstadt  
 

Sodium chloride  Merck, Darmstadt  
 

Sodium dodecyl sulfate  
 

BioRad, Hercules, USA  
 

Sodium Dodecyl Sulfate (SDS) Solution 
10 % 
 

AppliChem, Darmstadt 
 

Sodium hydroxide pellets pure  
 

Merck, Darmstadt  
 

Sure Silencing shRNA Plasmid Kit 
 

Qiagen, Hilden 
 

SYTOX® Blue Dead Cell Stain, for flow 
cytometry  
 

Life Technologies Corporation, 
Darmstadt  
 

T4 DNA Ligase  
 

Fermentas, St. Leon-Roth 
 

Taq DNA polymerase  
 

Qiagen, Hilden  
 

TEMED ≥ 99 %  
(N,N,N’,N’- Tetramethylethylenediamine)  
 

Sigma-Aldrich, Deisenhofen  
 

TNT® T7 Quick Coupled 
Transcription/Translation System  
 

Promega, Mannheim  
 

TopTaq Polymerase  
 

Qiagen, Hilden  
 

Tris 100 %  
 
(Tris hydroxymethyl aminomethane)  
 

Roth, Karlsruhe  
 

Tris ultrapure AppliChem, Darmstadt 
 

Triton X-100  
 

Roth, Karlsruhe  
 

Trypan blue solution (0.4 %)  
 

Sigma-Aldrich, Deisenhofen  
 

TrypLE™ Express  
 

Gibco/Invitrogen, Karlsruhe  
 

Tryptone  
 

AppliChem, Darmstadt 
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Tween20 Sigma, Steinheim 
 

Vybrant® DyeCycle™ Ruby stain  
 

Life Technologies Corporation, 
Darmstadt  
 

X-ray film developer G150  
 

AGFA, Leverkusen 
 

X-ray film fixer G354  
 

AGFA, Leverkusen  
 

X-tremeGENE HP DNA Transfection 
Reagent 
 

Roche, Mannheim 
 

Xylene cyanol FF (for molecular biology) AppliChem, Darmstadt  
 

Yeast extract  
 

AppliChem, Darmstadt  
 

2.2 Used materials  

Used materials Manufacturer 

5 ml Polysterene Round-Botton Tube 

(FACS Tube) 

 

BD Falcon, Durham, USA  

 

6-Well plate, NunclonTM Delta Surface Thermo Scientific, Schwerte  
 

12-Well plate (for Cell culturing) 
 

Greiner, Frickenhausen  
 

24-Well plate (for Cell culturing)  
 

Greiner, Frickenhausen  
 

96 Millipore MAHV N45 plate  
 

Millipore, Bedford, USA 
 

96-Well PCR-Plate  
 

ABgene, Epsom 

96-Well Cell Culture Microplate 
(PS, F-Bottom, chimey well, black) 
 

Greiner, Frickenhausen 

Absolute QPCR Seal  
(Optical Foil for Taqman) 
 

Thermo Scientific, Schwerte  
 

Blotting filter paper Whatman, Kent, United Kingdom 
 

Culture flask 25 cm² and 75 cm²  
 

Sarstedt, Nümbrecht 

Cuvette (UVette®) 50 - 1000 μl  
 

Eppendorf, Hamburg  
 

Cuvette 10 x 4 x 45 mm  
 

Sarstedt, Hamburg  
 

Dialysis filter VSWP01300  Millipore, Schwalbach  
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Electroporation cuvette 2 mm  
 

PEQLAB Biotechnologie GmbH, Erlangen  
 

Flat 12-cap strips  
 

ABgene, Epsom, United Kingdom  
 

Flat 8-cap strips  
 

ABgene, Epsom, United Kingdom  
 

FrameStar® 384  
 

4titude, Wotton, United Kingdom 
 

Freezing container, Nalgene®, Mr. Frosty  
 

Sigma-Aldrich, Deisenhofen 

Gel System PerfectBlueTM  
(for electrophoresis) 
 

PEQLAB Biotechnologie GmbH, Erlangen 
 

Gel electrophoresis chamber  
(SDS-minigel) 
 

Biometra, Göttingen 
 

Glass Pasteur pipette 230 mm  
 

WU, Mainz  
 

Nanodrop cuvette  
 

Implen, München 
 

Neubauer-Cell chamber  
 

Schütt, Göttingen  
 

NunclonTM Multidishes 6 and 12 wells  
 

Nunc, Wiesbaden  
 

Parafilm®  
 

Brand, Wertheim  
 

PAXgeneTM Blood RNA tube (2.5 ml) PreanalytiX GmbH, Hombrechtikon, CH 
 

Petri Dish  
 

Sarstedt, Hamburg  
 

Petri Dish for Cell culture, Falcon 353003 
 

Schütt, Göttingen  
 

Pipette Tip (10 μl, 100 μl, 1000 μl)  
 

Sarstedt, Hamburg  
 

PVDF membrane Hybond-P Amersham Biosciences, Freiburg 
 

Quali-Filterpipette tip sterile  
 

Kisker, Steinfurt  
 

Reactions vessel 0.2 ml (RNase-free)  
 

Biozym, Hessisch Oldendorf  
 

Reactions vessel (1.5 ml and 2 ml) 
 

Sarstedt, Hamburg  
 

Sterile pipettes (5 ml, 10 ml, 25 ml)  
 

Sarstedt, Hamburg  
 

Sterile Polypropylen-tube (15 ml)  
 

Greiner, Frickenhausen  
 

Sterile Polypropylen-tube (50 ml)  
 

Sarstedt, Hamburg  
 

Thermo-Fast 384-well plate  
 

ABgene Epsom, United Kingdom  
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Thermo-Fast 96-well plate ABgene Epsom, United Kingdom  
 

Quanti FluorTM Dye System Promega, Mannheim 

2.3 Equipment 

Equipment Manufacturer 

Accu-jet® Brand, Wertheim 

 
2100 Bioanalyzer Agilent Technologies, Santa Clara, USA 

 
3130xl Genetic Analyser  
 

Applied Biosystems, Darmstadt  
 

Bacteria Incubator-Incudrive  
 

Schütt, Göttingen  
 

Biofuge 15 R Heraeus, Hanau 
 

Biofuge fresco  
 

Heraeus, Hanau 
 

Biofuge pico  
 

Heraeus, Hanau  
 

BioPhotometer  
 

Eppendorf, Hamburg  
 

BioRobot®
 
EZ1  

 
Qiagen, Hilden 
 

Bunsen Burner Phoenix ǀǀ 
 

Schütt, Göttingen  
 

cBot for Cluster generation (RNAseq) Illumina, San Diego, CA, USA 
 

Centrifuge 5810 R  
 

Eppendorf, Hamburg  
 

Centrifuge JA-20 Rotor  
 

Beckman, München  
 

CO2-Incubator BB 16 Function Line 
 

Heraeus, Hanau 
 

CO2-Incubator New BrunswickTM Galaxy 
170S 
 

Eppendorf, Hamburg 
 

ComPhor L Mini Gel-chamber  
 

Biozym, Hessisch Oldendorf  
 

Concentrator 5301  
 

Eppendorf; Hamburg  
 

Cryo Storage Tank ARPEGE 140 
 

German-cryo, Jüchen 
 

Electroporator Gene Pulser II  
 

BioRad, Hercules, USA  
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Eppendorf Research and Reference® 
Pipettes, 0,1 - 10 µl, 10 - 100 µl,  
100 - 1000 µl 
 

Eppendorf, Hamburg 

Eppendorf Research® 8 channel Pipettes, 
10 µl, 100 µl  
 

Eppendorf, Hamburg 

Fine weight machine  
 

Sartorius, Göttingen  
 

Flow cytometer BD LSRII, special order 
system  
 

Becton Dickinson, Franklin Lakes, USA  
 

Fluor-STM MultiImager  
 

BioRad, Hercules, USA  
 

Gel-drying-system (DrygelSr)  
 

Hoffer scientific instruments, San 
Francisco, USA  
 

Gel electrophoresis power supply,  

(Standard Power Pack P 25)  

 

Biometra, Göttingen 

Gel tray, 40-0708-UVT (UV-transmissible) PEQLAB Biotechnologie GmbH, Erlangen 
 

Gene Pulser capacitance extender II BioRad, Hercules, USA  
 

Gene Pulser controller II BioRad, Hercules, USA  
 

GloMax® Fluorometer Promega, Mannheim 
 

HiSeq2000 Illumina, San Diego, CA, USA 
 

Image QuantTM LAS 4000 Mini 
 

GE Healthcare Bio-Sciences AB, Uppsala, 
Sweden 
 

Laboklav for sterile materials SHP Steriltechnik AG, Detzel 
Schloss/Satuelle 
 

Labor centrifuge 400R 
 

Heraeus, Hanau  
 

Laminar Flow Clean Air type DFL/REC4 
KL2A 
 

Mahl, Trendelburg  
 

Magnetic stirrer 
 

Ika, Staufen  
 

Mastercycler gradient (for 384-well plate), 
PCR-Gradient Cycler 
 

Eppendorf, Hamburg  
 

Membrane-Vacuum pump 
 

Vacuubrand, Wertheim  
 

Microscope TELAVAL 31  Zeiss, Jena  
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Microwave MWS 2820 Bauknecht, Schorndorf 
 

MS 2 Mini shaker-Vortexer  
 

IKA, Staufen  
 

Multipette® plus Eppendorf, Hamburg  
 

pH meter, PB-11 Sartorius, Göttingen 
 

Phosphor Imager  
 

Raytest, Sprockhövel  
 

PTC-200 Peltier Thermal Gradient Cycler 
(for 96-well plate) 
 

MJ Research/BioRad, Hercules, USA  
 

QiaCube Qiagen, Hilden  
 

Qualitron® Microcentrifuges  Fairport, USA 
 

Scintillation instrument LS1801  
 

Beckman, München 
 

Semidry Electroblotter (PerfectBlueTM) PEQLAB Biotechnologie GmbH, Erlangen  
 

Shaker for Bacteria K2 260 basic  
 

IKA, Staufen  
 

SpeedVac® Plus SC 110A Concentrator 
 

Schütt, Göttingen  
 

Standard Power Pack P25 Biometra, Göttingen 
 

TaqMan 7900HT  
 

Applied Biosystems, Darmstadt 

Tecan Ultra Plate Reader  
(Fluorescence reader) 
 

Tecan Deutschland GmbH, Crailsheim 
 

Thermomixer 5436  
 

Eppendorf, Hamburg  
 

Transilluminator TI 2  
 

Biometra, Göttingen 
 

Vertical-Autoclave KSG 40/60  
 

KSG, Olching  
 

Vertical-Autoclave: FV for sterile materials 
 

Tecnorama, Fernwald  
 

Victor X4 Light Multilabel Reader PerkinElmer, Wiesbaden, Germany 
 

Warming cupboard FP Binder, Tuttlingen 
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2.4 Software 

Software  Manufacturer 

3100 Data Collection Software  

 

Applied Biosystems , Darmstadt  

Advanced Image Data Analyzer (AIDA) 
V.4.15 025  
 

Raytest Isotopenmeßgeräte GmbH, 
Sprockhövel  
 

BASReader (FujiFilm BAS1800-II)  
 

Raytest, Sprockhövel  
 

BD-FACSDIVATM SOFTWARE Becton Dickinson, Franklin Lakes, USA  
 

Clone Manager Suite v6.0  
 

Sci-Ed Software, Cary NC, USA  
 

CorelDRAW X3  
 

Corel corporation, Ontario, Canada  
 

CurveExpert Professional 2.0 
 

www.curveexpert.net 

Cyflogic 1.2.1  
 

www.cyflogic.com 

DNA Sequencing Analysis v5.2 
 

Applied Biosystems, Darmstadt 
 

DNASTAR® v11.2  
 

DNASTAR, Madison WI, USA  
 

EndNote X7 
 

Thomson Reuters, Philadelphia PA, USA  
 

Gene mapper v3.7 software®  
 

Applied Biosystems , Darmstadt  
 

HaploView® v4.2  
 

Broad institute, Cambridge MA, USA  
 

Image QuantTM LAS 4000 mini Control 
Software, v1.2 

GE Healthcare Bio-Sciences AB, Uppsala, 
Sweden 
 

MS Office  
 

Microsoft, USA 
 

Oligo® v6.58  
 

Molecular Biology Insights, Cascade CO, 
USA  
 

Quantity One® S v4.3.1 
 

BioRad, München  
 

SDS v2.1  
 

Applied Biosystems, Darmstadt  
 

SigmaPlot v12.0 Systat Software, Technology Drive, San 
Jose, CA 
 

SPSS v12 
 

SPSS Inc., Chicago, USA  
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Staden Package  
 

Medical research council laboratory of 
molecular Biology, Cambridge, United 
Kingdom 
 

XFluor4 Software  Tecan, Crailsheim  
 

2.5 Databases  

Databases URL 

1000 Genomes, Catalog of Human genetic 
Variation 

http://www.1000genomes.org/ 

International HapMap Project http://hapmap.ncbi.nlm.nih.gov/  

National Center for Biotechnology Information  NCBI, Bethesda, USA  
http://www.ncbi.nlm.nih.gov/  

TRANSFAC-Database  

 

BIOBASE, Göttingen  
(http://www.biobase-
international.com/product/explain)  

UCSC Genome Browser  http://genome.ucsc.edu/ 

2.6 Enzymes 

Restriction Enzymes Manufacturer 

BsaI-HF®  New England Biolabs, Beverly, USA  

DpnI New England Biolabs, Beverly, USA  

ExoI Fermentas, St. Leon-Roth 

EcoRI Fermentas, St. Leon-Roth  

Fast-AP Life Technologies Corporation, Darmstadt  

HindIII Fermentas, St. Leon-Roth  

NotI New England Biolabs, Beverly, USA 

PstI Fermentas, St. Leon-Roth  

PvuII Fermentas, St. Leon-Roth  

SacI Fermentas, St. Leon-Roth  

SalI Fermentas, St. Leon-Roth  

XhoI Fermentas, St. Leon-Roth  
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2.7 Strains of bacteria 

Strain of bacteria Origin Application for 
transfection 

Manufacturer 

TOP10 
(One shot TOP10 

Electro-comp. E.coli) 

Escherichia coli Electro-competent Invitrogen, Karlsruhe 

2.8 Plasmid vectors 

Clone-No. Resistance Manufacturer 

pcDNA3.1 Ampicillin Invitrogen, Karlsruhe 

pcDNA5:FRT Ampicillin Invitrogen, Karlsruhe 

pcDNA5/FRT/TO GFP 
(Plasmid 19444) 

Ampicillin Addgene, Cambridge, United 

Kingdom 

pOTB7:RRM2 
(IRAUp969F0415D) 

Chloramphenicol ImaGenes GmbH, Berlin  
(now Source Bioscience, 

Nottingham, United Kingdom) 
pOTB7:SP1 

(IRAU97D03 

Image ID: 5928633) 

Chloramphenicol SourceBioscience, Nottingham, 
United Kingdom 

2.9 Commercial culture media 

Medium Manufacturer 

Dulbecco´s Modified Eagle Medium  

(DMEM, 1x), 4,5 g/L D-Glucose, L-Glutamine 

Gibco/Invitrogen, Karlsruhe 

Roswell Park Memorial Institute (RPMI) 1640 

Medium TM + GlutaMax – I 

Gibco/Invitrogen, Karlsruhe 

OPTI-MEM® ǀ Reduced Serum Medium Gibco/Invitrogen, Karlsruhe 
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2.10  Cell lines 

Cell line Origin Characteristics Manufacturer 

HEK-293  
 

Human  
 

Embryonic kidney cell 
line immortalized by 
human adenovirus type 5 
DNA  

DMSZ, Braunschweig  
 

AsPC1 Human Pancreatic cancer cell line ATCC, Wesel  
 

CFPac  
 

Human Pancreatic cancer cell line ATCC, Wesel  
 

L3.6 Human 
 

Pancreatic cancer cell line ATCC, Wesel 

MiaPacaII  
 

Human Pancreatic cancer cell line ATCC, Wesel  
 

PancI  
 

Human Pancreatic cancer cell line ATCC, Wesel  
 

PaTu8988t Human Pancreatic cancer cell line ATCC, Wesel 
 

Lymphoblastoid cell lines 
(LCLs  HapMap and 1000 
Genome Project) 

Human Peripheral B lymphocytes 
that are immortalized by 
Epstein-Barr (EB) virus 

Coriell Cell Repositorie, 
Camden, New Jersey 
USA  
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3 Methods 

3.1 Patient cohorts 

3.1.1 Retrospective patient cohort 

According to the inclusion criteria, i.e. histopathologically confirmed PDAC (without 

ampullary carcinoma) with adjuvant or palliative gemcitabine-containing 

chemotherapy, 381 Caucasian patients were recruited for a retrospective study 

performed in our department in collaboration with the relevant clinical centers, for 

detecting putative clinical marker in gemcitabine-treated pancreatic cancer. The entire 

cohort includes patients from three german medical center in Göttingen (n = 142), 

Hamburg (n = 159), and Heidelberg (n = 80) hospitalized between 2003 and 2010. For 

genotyping (see section 3.4) isolated DNA of peripheral blood leukocytes (see section 

3.2.2) was used and the primary outcome was overall survival. Staging and grading was 

performed according to current standard classification procedure (published by AJCC 

(American Joint Commitee on Cancer) and UICC (Union internationale contre le cancer)). 

3.1.2  Prospective patient cohort 

To evaluate gene expression patterns during gemcitabine-based chemotherapy, a pilot 

cohort comprising 32 patients suffering from PDAC was followed prospectively. At three 

time points RNA expression was assessed: Prior to the first gemcitabine application, four 

weeks and ten weeks thereafter. Therefore, 2.5 ml of peripheral blood was immediately 

filled in PAX tubes containing a RNA-stabilizing reagent, which then was stored at -20 °C. 

RNA was isolated using the PAXgene Blood miRNA Kit (Qiagen, Hilden). For reverse 

transcripton 1 µg of total RNA per sample was used (see chapter 3.6.3 for reverse 

transcription).  

3.2 Standard DNA workflow 

3.2.1 DNA isolation from eukaryotic cells 

Genomic DNA from eukaryotic cells was isolated with the DNeasy Blood & Tissue Kit 

(Qiagen, Hilden), using the QiaCube robot (Qiagen, Hilden) according to the 

maufacturer’s recommendation. Therefor, approximately 5 x 106 cells were harvested 
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and dissolved in 100 µl of PBS buffer before. The quantification of isolated DNA was 

performed photometrically (see chapter 3.2.3).  

3.2.2 DNA isolation from peripheral leukocytes 

Genomic DNA from peripheral leukocytes was isolated with the EZ1 DNA Blood Kit 

(Qiagen, Hilden). For this the BioRobot EZ1 (Qiagen, Hilden) was used and all steps were 

performed according to the maufacturer’s recommendation with an elution volume of 

200 µl.  

3.2.3 Quantification of DNA  

The amount of DNA was determined with a BioPhotometer (Eppendorf, Hamburg), 

measuring the absorbance at 260 nm. An extinction of 1 at 260 nm (E260) equates to 50 

µg DNA per µl. The absorbance ratio 260/280 nm characterizes the sample purity. A 

value near 2 is defined as "high purity" and allows sample usage for further experiments. 

For DNA quantification 3 µl of the DNA sample was pipetted on a nanodrop cuvette 

(Implen, München). This quantification method is based on the following Beer-Lambert 

law (Equation 1):  

Equation 1: Beer-Lambert law 

A = ε * c * l 
 

Α = Absorbance 
ε = Molar attenuation coefficient [L * mol-1 * cm-1] 
c = Solute concentration [mol * L-1] 
l = Path length of the light through the material [cm] 
 

3.2.4 Polymerase chain reaction (PCR) 

The polymerase chain reaction is an in vitro method to amplify DNA. For cloning 

experiments the KOD Hot Start polymerase was used, which has a proofreading function 

to make the reaction more efficient. First, double-stranded DNA is denatured to single 

strands at 95 °C. Next, oligonucleotide primer anneal to the single DNA strand in a 

selective way. The annealing step takes place at temperatures between 50 and 70 °C. 

Thereafter, the temperature rises for the elongation step (65 - 75 °C), where the DNA 

polymerase synthesizes a copied DNA strand which is complementary to the template 

DNA, by adding dNTPs in 5' to 3' direction. Using the right conditions, the amount of 
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DNA is duplicated per cycle what leads to an exponential increase of the DNA region of 

interest. These steps were repeated 35 times to achieve an adequate amount of DNA. A 

final elongation step is advised, depending on the length of the DNA fragment. The PCR 

reactions (see Table 1) were performed in gradient thermal cyclers under conditions 

listed in Table 2. 

Table 1: Standard KOD HotStart PCR reaction 

Reagent Volume for one sample [µl] 

10x buffer 2.2 

dNTPs (2 mM) 2.2 

MgSO4 (25 mM) 0.9 

Q-Solution (optional) 4.4 

Primer forward (10 µM) 0.5 

Primer reverse (10 µM) 0.5 

DNA (300 µg/ml) 2  

KOD HotStart polymerase (1.0 U/µl) 0.5 

ddH2O 8.8 

In total 20 

Table 2: Standard KOD PCR conditions 

Phase  Duration Temperature     

Initial Denaturation 3 min 95 °C     

Denaturation 30 sec 95 °C     

Annealing 30 sec 50 - 70 °C                 35 x 

Elongation 1 min 72 °C     

Terminal Elongation 10 min 72 °C     

Cooling down for ever 8 °C     

3.2.5 Gradient PCR 

To determine the optimal annealing temperature for new primers, a gradient PCR was 

performed. Therefor five identical PCR reactions were undertaken simultaneously to 

test different annealing conditions (60 - 72 °C). For each temperature two reaction 

mixtures were prepared, one with and one without Q-Solution (included in the Taq 
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polymerase or Multiplex PCR Kit from Qiagen, Hilden). Q-Solution is used to enhance the 

DNA amplification for templates comprising a high GC content. To identify the optimal 

annealing temperature subsequent to the gradient PCR, samples were run on a 0.8 to 

3 % agarose gel, where the amount of the PCR product and the fragment size could be 

assessed. 

3.2.6 Site-directed mutagenesis 

Site-directed mutagenesis is a method which is used to introduce mutations (one to four 

bases) into a DNA sequence by mutagenesis primers. In this work the 5' single 

nucleotide polymorphism RRM2 rs1130609 in the full length cDNA clone (for construct 

generation see section 3.5.3) of RRM2 (pcDNA5:RRM2) was mutated at the rs1130609 

SNP site from G > T with primers listed in Table 3 to obtain the variant allele in addition 

to the wild type allele.  

Table 3: Oligonucleotide primers for the Site-directed mutagenesis (RRM2 rs1130609)    

Name of primer Sequence (5' → 3') 

Mut_rs1130609for GTTTAAACTTAAGCTTCGCCTCCACTATGCTCTCC 

Mut_rs1130609rev GGAGAGCATAGTGGAGGCGAAGCTTAAGTTTAAAC 

The mutated base is bolded and underlined 

For the performance of the mutagenesis PCR it is important that used plasmids were 

isolated from bacteria and show bacteria specific methylation patterns. The new 

products synthesized by this PCR did not have these methylations and thus could not be 

degraded by Dpn1 endonuclease (methylation dependend restriction enzyme), in 

contrast to the not mutated original constructs. For site-directed mutagenesis the KOD 

HotStart polymerase (Novagen Merck, Darmstadt) was used. To identify the optimal 

annealing temperature for the mutagenesis primers a gradient PCR (see chapter 3.2.5) 

was conducted, previous to the described mutagenesis PCR (see Table 4 for reaction 

mixture and Table 5 for PCR conditions). 

Following to the DNA amplification, 2 µl of the Dpn1 enzyme was added to the PCR 

product for 1 hour at 37 °C to get the newly mutated constructs. Then, the PCR product 

was dialyzed for 30 minutes, transformed into E. coli TOP10 strain by electroporation 

and plated on agar plates containing ampicillin as selction marker. Based on the grown 
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clones on agar plates, plasmid DNA was isolated by mini-preparation (see 3.7.5.1). To 

verify successful mutagenesis, the open reading frame of RRM2 was sequenced with 

sequencing primers listed in Table 6.  

Table 4: PCR-reaction mixture for the site-directed mutagenesis 

Reagent Volume [µl] 

10x buffer 5 

dNTP (2 mM each) 5 

MgSO4  (25 mM) 2 

Q-Solution (optional) 10 

Primer forward (10 nM) 1.3 

Primer reverse (10 nM) 1.3 

KOD HotStart polymerase 1 

Plasmid DNA (50 ng) 1 

ddH2O Add to 50 

Table 5: PCR consitions used for site-directed mutagenesis 

Phase  Duration Temperature     

Initial Denaturation 3 min 95 °C     

Denaturation 30 sec 95 °C     

Annealing 30 sec 60 °C                 19 x 

Elongation 3 min 30 sec 72 °C     

Cooling down for ever 8 °C     

Table 6: Sequencing primers for the construct pcDNA5-RRM2-eGFP 

Name of primer Sequence (5' → 3') 

RRM2-Seq-F1 CACGGAGCCGAAAACTAAAGC 

RRM2-Seq-F2 TCTGCCTTCTTATACATCTGCCA 

RRM2-Seq-F3 ACATTGAGTTTGTGGCAGACAGAC 

RRM2-Seq-F4 GCCTACTCTCTTCTCAAAGAAGTTAGTC 

RRM2-Seq-F5_eGFP AAGGACGACGGCAACTACAAG 

RRM2-Seq-F6_eGFP GCGGATCTTGAAGTTCACCTTG 

RRM2-Seq-F7_eGFP AACAGATGGCTGGCAACTAGAAG 
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3.2.7 Agarose gel electrophoresis 

Agarose gel electrophoresis is used to determine the size and presence of DNA 

fragments. Nucleic acids are negatively charged and migrate through an agarose matrix 

by an electric field towards the anode. Because of lower molecular weight, shorter 

fragments move faster in comparison to longer ones. Dependent on the expected DNA 

fragment size agarose concentrations between 0.8 and 3 % were used. For the gel 

preparation the aquired amount of agarose (Agarose Ultrapure, Invitrogen, Karlsruhe) 

was dissolved in boiling TBE buffer. The solution was cooled down to ~ 60 °C, then 0.5 

µg/ml of ethidium bromide (EtBr) was added and stirred with a magnetic mixer. Then, 

the liquid gel was transferred into a gel tray and gel combs were put into the gel tray to 

form gel pockets. After 30 minutes the solid gel was placed in a Gel System for 

electrophoresis, covered with TBE buffer (supplemented with 0.5 µg/ml of EtBr, see 

Table 8). Before loading the gel, the DNA samples were mixed with 5x loading dye (see 

Table 7) in a sample-dye ratio of 5:1. To identify the DNA fragment sizes, DNA ladders 

with 100 bp or 1 kb (ABgene, Fermentas, St. Leon-Rot) were used. The electrophoresis 

was conducted with 140 V for approximately 30 - 40 minutes in a PerfectBlue Gel System 

(PEQLAB, Erlangen). To visualize the DNA bands the Fluor-STM MultiImager (BioRad, 

Hercules, USA) and its corresponding QuantityOne® S version 4.3.1 (BioRad) software 

were employed.  

Table 7: 5x Loading Dye 

Reagent  Concentration 

Glycerol 30 % (v/v) 

EDTA 50 mM 

Bromphenol blue 0.25 % (v/v) 

Xylene cyanol 0.25 % (v/v) 

Table 8: TBE buffer 

Reagent (pH = 8.3, RT) Concentration [mM] 

Tris 100  

Boric acid 100  

EDTA 3  
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3.2.8 DNA purification from agarose gel 

To extract DNA from an agarose gel after electrophoresis, the desired band was cut 

under UV light, using the transilluminator TI2 (Biometra, Göttingen). The cut slices 

should not exceed an amount of 400 mg of a 2 % agarose gel. The DNA purification was 

performed with the QiaCube robot (Qiagen, Hilden), using the QiaQuick Gel Extraction Kit 

(Qiagen, Hilden) and following the manufacturer’s instructions. 

3.2.9 Restriction digestion 

Restriction digestion is used to split double stranded DNA at a specific nucleotide 

sequence of 4 to 8 bases, which are often palindromic. For this, restriction enzymes, 

which are endonucleases, are used. The separation of the resultant fragments was 

performed by agarose gel electrophoresis (see section 3.2.7). This method is used during 

cloning procedures, either for an analytical or preparative purpose.  

3.2.9.1 Analytical digestion 

Analytical digestion was used to verify plasmid DNA isolated by mini-preparation (see 

chapter 3.7.5.1). Independent digestion mixtures with at least two digestion enzymes 

were prepared. For each enzyme a specific fragmentation pattern should be detected. 

The number of fragments depends on the number of restriction sites for the enzyme. 

The analytical digestion mixtures (Table 9) were incubated for 1 hour at 37 °C before 

loading them on an agarose gel. For fast digestion enzymes the icubation time was 

reduced to 15 minutes.  

Table 9: Reaction mixture for analytical digestion 

Reagent Volume [µl] 

10x Restriction buffer 1 

BSA (optional) 0.1 

DNA (~ 1 µg) 1 

Enzyme 1 

ddH2O Add to 10  
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3.2.9.2 Preparative digestion 

Preparative digestion was used to generate restriction fragments for cloning, allowing 

ligation of the digested vector and the digested insert fragment in the next step because 

of matching DNA ends. The reaction mixture (Table 10) was incubated for two hours or 

overnight. After this, 1 µl of the enzyme was added for one more hour before loading the 

digestion mixture on an agarose gel. A double digestion is also possible by proceeding in 

the same way, using the tango universal buffer or a buffer which is compatible with both 

enzymes. If different buffers are needed, DNA was digested with one enzyme first, 

followed by agarose gel electrophoresis (see chapter 3.2.7) and agarose gel purification 

(see chapter 3.2.8). Afterwards, digestion was performed with the second restriction 

enzyme. 

Table 10: Reaction mixture for preparative digestion 

Reagent Volume [µl] 

10x Restriction buffer 5 

BSA (optional) 0.5 

DNA max. 10 µg 

Enzyme (dependent on star activity) 5 

ddH2O Add to 50 

3.2.10  Ligation  

The ligation process is used to integrate DNA fragments into a plasmid vector. For that 

purpose, DNA ends (cut by restriction enzymes) which are complementary to each other 

and which can be ligated using a DNA ligating enzyme (Ligate-ITTM rapid Ligation Kit, 

USB Staufen, Germany) are needed. Prior to the ligation performance the DNA was 

concentrated with a vacuum centrifuge (SpeedVac Plus SC110A) for 5 - 10 minutes. The 

concentrated DNA, which was attached to the wall of the reaction tube, was dissolved 

from there by wishing the wall with a drop of the remaining sample. The ligation 

mixture was prepared as follows (Table 11) with an insert versus vector ratio of 13:2 

(v/v). 
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Table 11: Ligation reaction mixture 

Reagent Volume [µl] 

5x Ligase buffer 4 

Plasmid vector 2 

Insert (DNA fragment) 13 

Ligase  1 

In total 20 

This mixture was incubated for 10 minutes at room temperature, followed by 10 

minutes of incubation on ice. To verify that the used vector does not ligate with itself an 

extra ligation mixture was prepared where the insert was replaced by ddH2O as negative 

control.  

3.2.11 Dialysis 

Prior to the transformation of ligated DNA into bacteria cells (see section 3.7.2) a 

dialysis step is required to remove salts. Therefor, the whole ligation mixture was 

pipetted on top of a semipermeable membrane (Dialysis filter, VSWP01300, Millipore, 

Schwalbach), which was placed with the shiny site up on a petri dish filled with ddH2O. 

After 30 minutes the desalted DNA was transferred into a new reaction tube.  

3.3 DNA Sequencing analysis  

The DNA sequencing process was used to ascertain the nucleotides within DNA strands. 

Primarily, this concept was developed by Sanger and Coulson in 1975 (SANGER AND 

COULSON 1975). The chain-termination principle uses dideoxy nucleotide triphosphates 

(ddNTPs) additional to the desoxy-nucleotide triphosphates (dNTPs). The ddNTPs are 

fluorescently labeled with different dyes. During the chain extension in the sequencing 

PCR the DNA polymerase either adds a corresponding dNTP or ddNTP. In case of 

incorporated ddNTPs this leads to the termination of the DNA chain due to the absence 

of the hydroxyl group (OH) at the 3’ carbon. Thus, the Sanger dideoxy sequencing results 

in the extension of products with a various length, terminated with a ddNTP at the end. 

Afterwards, using the capillary-gel electrophoresis, the newly synthesized extension 

products were separated by size at a resolution of one base. The number of DNA 

fragments which can be sequenced in one run is about 500 base pairs. 
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In detail, the sequencing PCR was performed in a 384 well plate (FrameStar®, 4titude, 

Wotton, UK), using the BigDye® terminator v1.1 Sequencing Kit (Applied Biosystems, 

Darmstadt). The sequencing PCR was conducted as follows (Table 12 and Table 13):  

Table 12: Reaction mix for sequencing PCR 

Reagent Volume [µl] per sample 

DMSO 0.25 

Primer (10 µM) 0.5 

BigDye® 1 

ddH2O 2.25 

DNA from mini preparation (~ 300 µg/ml) 1 

In total 5 

Table 13: Sequencing PCR conditions 

Phase  Duration Temperature     

Initial Denaturation 2 min 94 °C     

Denaturation 15 sec 96 °C     

Annealing 15 sec 56.5 °C                 25 x 

Elongation 4 min 60 °C     

Terminal Elongation 7 min 72 °C     

Cooling down for ever 8 °C     

Before sequencing, the PCR product was purified to eliminate unincorporated ddNTPs. 

For this, 35 mg of Sephadex G50 superfine (Amersham Bioscience, Freiburg) was 

distributed per well of a 96-well filter plate (MAHV-N45, Millipore). Each well of the 

sephadex plate was filled up with 300 µl of ddH2O and was incubated for 3 hours at 

room temperature for swelling. Then, the excess water was removed by centrifugation 

at 700 rpm for 5 minutes at RT (Centrifuge 5810 R, Eppendorf), followed by addition of 

150 µl of ddH2O for another incubation time of half an hour. Again, the excess water was 

removed by centrifugation, using the same conditions. The prepared sephadex plate was 

placed on top of a sequencing plate. The sequencing-PCR-mixtures were filled up with 

ddH2O to a total volume of 40 µl and were pipetted into the wells of the sephadex plate, 

which was then centrifuged at 700 rpm for 5 minutes at RT. Finally, the purified samples 

(collected in the sequencing plate) were sequenced with the 3130xl Genetic Analyser 
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(Applied Biosystems, Darmstadt). The data was analyzed with the SequencingAnalysis 

version 5.2 software® (Applied Biosystems, Darmstadt) first. For the detailed sequence 

analysis the software Staden Package version 4.0 (Cambridge, UK) or DNASTAR® version 

11.2 (Madison WI, USA) and CloneManager (SECentral) were used.  

3.4 Genotyping by Single Base Primer Extension Method (SNaPshotTM) 

For the determination of single nucleotide polymorphisms (SNPs) in genomic DNA the 

Single Base Primer Extension method SNaPshotTM was used, based on multiplex PCR 

amplification (Multiplex PCR Kit, Qiagen, Hilden) of fragments with the SNP of interest. 

Primers, sized between 18 and 55 bp were designed. These bind in 5' → 3' direction to 

the multiplex PCR amplification with the 3'-terminus adjacent to the targeted SNP. 

For the single nucleotide extension fluorescently labeled dideoxyribonucleotide 

triphosphates (ddNTPs) are used in a SNaPshot PCR reaction (SNaPshot reaction 

mixture, ABI PRISM® SNaPshotTM Multiplex Kit, Applied Biosystems). Due to the missing 

(-OH) group of ddNTPs at the 3'-terminus further DNA amplification is not possible. This 

leads to the single nucleotide base extension generated by the fluorescently tagged 

ddNTPs detected by a special laser detector after fragment separation via capillary 

electrophoresis. A DNA size standard (GeneScanTM 120LIZTM Size standard, Applied 

Biosystems) was used to determine the fragment size. The resulting electropherogram 

shows differently coloured peaks for each of the four ddNTPs, representing the genotype 

of the analyzed SNP: Adenine - green, (FS (fluorescent stain) = dR6G), Cytosine - black 

(FS = dTAMRATM), Guanine - blue (FS = dR110) and Thymine - red (FS = dROXTM). 

First, DNA was amplified by Multiplex PCR (Multiplex PCR Kit, see Table 14, Table 15 and 

Table 16). 
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Table 14: Reaction mixture for Multiplex PCR 

Reagent Volume [µl] per sample 

2x Qiagen Multiplex PCR Master Mix 

(Comprising Taq Polymerase, dNTP mix and MgCl2) 

6 

10x Primer Mix (see Table 15) 1.2 

Q-Solution 1.2 

RNAse-free water 1.6 

Genomic DNA  2 

In total 12 

Table 15: 10x primer mix for Multiplex-PCR 

Gene Forward Primer sequence 

(5′ → 3′) 

Reverse Primer sequence 

(5′ → 3′) 

IL17F GCACTGGGTAAGGAGTGGCATTTCTAC TTGGAGAAGGTGCTGGTGACTGTTG 

BTRC GGGGCATTTGGGTGTGTGTCAG GCCCTGCACTAAGGGTCAAACAGGTAC 

RRM2 CGGGAGATTTAAAGGCTGCTGGAG GACACGGAGGGAGAGCATAGTGG 

PRB2 CAGCTTCACAGATGGTGGCTGATGAG CCTGCTCATGATGCCCAGAATCAAG 

DCP1B AAGGAAAGCAAATTAATTAGGCTTGTGCTA GAATGGAGAGTGGGGAGTTATCTTCTAATG 

WWOX CTAGGTGGCTTCAGTCAGCAGAACTG TGCCTTCTGTTCTCATGCAACTTCAC 

Table 16: Multiplex PCR conditions 

Phase  Duration Temperature     

Initial Denaturation 15 min 95 °C     

Denaturation 30 sec 94 °C     

Annealing 1:30 min 64.8 °C                 39 x 

Elongation 1:30 min 72 °C     

Terminal elongation 10 min 72 °C     

Cooling down for ever 8 °C     

Afterwards, the PCR product was purified with Fast-AP (Thermosensitive alkaline 

phosphatase, Life Technologies, Darmstadt, Table 17) and Exonuclease Ι (ExoΙ, 

Fermentas, St. Leon-Roth) to eliminate unincorporated PCR primers and dNTPs. The 

purification procedure was performed for 3 hours at 37 °C, then the enzymatic reaction 

was inactivated for 15 minutes at 80 °C.  
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Table 17: Reaction mixture for the first purification step 

Reagent Volume [µl] per sample 

Fast-AP buffer (10x) 0.95 

Fast-AP (1U/µl) 1.695 

ExoΙ (20U/µl) 0.35 

PCR product  3 

In total 6 

The SNaPshot PCR (Table 18) was run in a 384-well plate (FrameStar®, 4titude, Wotton, 

UK), under conditions listed in Table 19. The PCR mixture was prepared on ice. Used 

SNaPshot primers are displayed in Table 20. 

Table 18: SNaPshot PCR mixture  

Reagent Volume [µl] per sample 

SNaPshotTM-Master Mix 0.35 

Primer Mix (2 - 12 µM) 0.5 

ddH2O 2.15 

Purified PCR product 2 

In total  5 

Table 19: PCR conditions for SNaPshot PCR 

Phase  Duration Temperature     

Initial Denaturation 2 min 94 °C     

Denaturation 10 sec 96 °C     

Annealing 5 sec 50 °C                 26 x 

Elongation 30 sec 60 °C     

Cooling down for ever 8 °C     
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Table 20: SNaPshot Primers  

Gene Sequence (5' → 3') 

IL17F (rs763780) GCACCTCTTACTGCACA 

BTRC (rs10883617) CTTTGGCCTGAAAAGGTACA 

RRM2 (rs1130609) GACACGGAGGGAGAGCATAGTGG 

PRB2 (rs2900174) (CTGA)2CTCCTTACAAGACTCACAAGTGTTCT 

DCP1B (rs11062040) (TGAC)4AATTAATTAGGCTTGTGCTA 

WWOX (rs11644322) (GACT)6GATGTGATTACAGTGAATTAGGGTGG 

A second purification step was conducted (Table 21) for 30 minutes at 37 °C to remove 

unincorporated fluorescently labeled ddNTPs which would affect the data analysis, 

followed by an incubation time of 15 minutes at 80 °C for enzyme deactivation. 

Table 21: Reaction mixture for the second purification step 

Reagent  Volume [µl] per sample 

Fast-AP (1U/µl) 0.5 

Fast-AP buffer (10x) 0.5 

SNaPshot PCR product  5 

In total 6 

Next, 1 µl of the purified product was added to a 96-well sequencing plate, containing 10 

µl of the sequencing mixture (Table 22), which was then incubated for 5 minutes at 

95 °C and was placed on ice directly afterwards. Finally, the samples were analyzed with 

the 3130xl Genetic Analyser (Applied Biosystems, Darmstadt) and data analysis was 

performed by using the Gene mapper v3.7 software® (Applied Biosystems, Darmstadt). 

Table 22: Sequencing mixture for SNaPshotTM 

Reagent Volume [µl] per sample 

Formamid 

(Hi-DiTM Formamid, Applied Biosystems) 

10 

GeneScanTM 120LIZTM (Size standard) 0.05 

Purified sample 1 

In total 11.05 
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3.5 Generation of DNA constructs 

3.5.1 Cloning of WWOX cDNA 

For overexpression of WWOX in pancreatic cancer cell lines a genetic construct was 

generated, based on the pcDNA3 vector (Invitrogen, Karlsruhe). First, WWOX cDNA was 

engineered from total RNA of the LCL sample with the number 238. Using the GoScriptTM 

Reverse Transcription system (Promega, Mannheim) with (T)20VN (Eurofins MWG, 

Ebersberg) as anchored primer, total mRNA was reversely transcribed. Afterwards, a 

specific PCR-based amplification of WWOX cDNA (using KOD-Polymerase and Q-

Solution, see section 3.2.4, annealing temperature 63.4 °C), containing the exons 1 – 9, 

was carried out with the following primer pair (Table 23): 

Table 23: Primers for WWOX cDNA amplification 

Name of primer Sequence (5' → 3') 

WWOXcomp_EcoRΙ-forward CTGACTGAATTCCCAGGTGCCTCCACAGTCA 

WWOXcomp_XhoΙ-reverse CTGACTCTCGAGCATCCGCTCTGAGCTCCACTTAG 

Restriction sites are underlined and italic. 

A restriction site for EcoRΙ was added to the forward, and for XhoΙ to the reverse primer. 

After WWOX amplification, both, the pcDNA3 plasmid DNA and the generated WWOX 

cDNA were cut with the named restriction enzymes in double digestion fashion (see 

chapter 3.2.9.2), followed by gel electrophoresis (see chapter 3.2.7) and agarose gel 

purification (see chapter 3.2.8). Next, the WWOX fragment was inserted between the 

restriction sites of EcoRI and XhoΙ of the pcDNA3 vector (see 3.2.10 and 3.2.11 and 

Figure 6), which then was transformed into E. coli (see chapter 3.2.11 and 3.7.2).  
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Generated WWOX cDNA containing
exon 1-9 (WWOX isoform 1, NCBI)

Amplification of WWOX
fragment via PCR

primer:
WWOXcomplete-EcoRΙ-forward
WWOXcomplete-XhoΙ-reverse

Preparative digestion 
with EcoRΙ and XhoΙ

Ligation

 

Figure 6: Cloning procedure: Generation of a pcDNA3:WWOX construct 

Finally, the mini- and midi-preparation (see sections 3.7.5.1 and 3.7.5.2) of single clone 

cultures were performed to obtain purified plasmid DNA. To verify cloning of the whole 

WWOX coding region into the pcDNA3 vector Sanger-based direct sequencing (see 3.3) 

was conducted with the sequencing primers listed below (Table 24). 

Table 24: Sequencing primers to verify the pcDNA3-WWOX construct 

Name of primer Sequence (5' → 3') 

WWOX-Seq-F1 CTCTGGCTAACTAGAGAACCCACTGCTTAC 

WWOX-Seq-F2 CCAACCACCCGGCAAAGATA 

WWOX-Seq-F3 AATGCTGCACGCTACGGAG 

WWOX-Seq-F4 ATGTACTCCAACATTCATCGCAG 

WWOX-Seq-F5 GTCTCTTCGCTCTGAGCTTCT 

WWOX-Seq-F6 CGAAACCGCCAAGTCT 

WWOX-Seq-F7 AGAGTCCCATCGATTTACAG 

WWOX-Seq-F8 ATGGCTGGCAACTAGAAG 
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This construct served as reference for absolute quantification of the expression ratios 

between WWOX mRNA of exon 4-6 (core region) and of exon 8-9 (last exon), obtained 

from LCLs.  

3.5.2 Cloning of SP1 into the pcDNA3  vector 

To analyse the effect of the transcription factor SP1 (specifity protein 1) on pancreatic 

cancer cells, a SP1 construct was generated. Therefore, a pOTB7:SP1 construct was 

purchased from SourceBioscience (IRAU97D03, Nottingham, UK). The aim was to 

introduce SP1 into the pcDNA3 vector. For that reason, the pOTB7:SP1 and pcDNA3 

plasmids were digested with EcoRΙ and XhoΙ in a double digestion fashion (3.2.9.2). 

Afterwards gel electrophoresis (see section 3.2.7) and gel purification (3.2.8) were 

performed, followed by the insertion of the SP1 fragment into the pcDNA3 vector (see 

sections 3.2.10 and 3.2.11, Figure 7). 

Preparative digestion 
with EcoRΙ and XhoΙ

Ligation

 

Figure 7: Cloning procedure: Generation of a pcDNA3:SP1 construct 
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Finally, the newly generated construct was transformed into E. coli (see chapter 3.7.2) 

and mini- and midi-preparation were performed using single clone cultures (3.7.5.1, 

3.7.5.2). Complete and error-free cloning of the entire SP1 coding region was controlled 

by DNA sequencing analysis (see 3.3) with the next listed primers (Table 25).  

Table 25: Sequencing primers for the construct pcDNA3:SP1 

Name of primer Sequence (5' → 3') 

SP1-Seq-F1 CTCTGGCTAACTAGAGAACCCACTGCTTAC 

SP1-Seq-F2 GTTTGGCATAGCAGCAATGATGTTG 

SP1-Seq-F3 TTGATGGGCAACAGCTGCAGT 

SP1-Seq-F4 CATTGGGGCTAAGGTGATTGTTTG 

SP1-Seq-F5 TGGACAGGTCAGTTGGCAGACTCTAC 

SP1-Seq-F6 GGTGAGAGGTCTTGCCATACACTTTC 

SP1-Seq-F7 CCTGCCCCTACTGTAAAGACAGTGAAG 

SP1-Seq-F8 GGCCTCCATGGCTACCATATTG 

SP1-Seq-F9 GGACAGTGGGGCAGGTTCAG 

SP1-Seq-F10 GAATCCATCATGGAAGAGCTGAGAA 

SP1-Seq-F11 CCATGAGCGACCAAGATCA 

SP1-Seq-F12 GGGTGTGAGAGTGGTGTTG 

SP1-Seq-F13 CTGGTGGTGATGGAATACATGA 

SP1-Seq-F14 GCACCCTGTGAAAGTTGTGT 

3.5.3 Cloning of eGFP-tagged RRM2 into the pcDNA5 vector 

For cloning of the RRM2 (Ribonucleotide reductase subunit M2) coding region into the 

pcDNA5 vector, the full length cDNA clone pOTB7:RRM2 (Clone3528619, 

IRAUp969F0415D) was purchased from SourceBioscience (Nottingham, UK). The RRM2 

fragment was amplified out of the primary pOTB7:RRM2 vector by using following 

primers, comprising restriction sites for HindΙΙΙ and NotΙ (Table 26), under conditions 

described in section 3.2.4 (with Q-Solution, annealing temperature 63.4 °C). 
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Table 26: Primers to amplify RRM2 out of the pOTB7:RRM2 construct 

Name of primer Sequence (5' → 3') 

RRM2-HindΙΙΙ-forward CTGACTAAGCTTCGCCGCCACTATGCTCTC 

RRM2-NotΙ-reverse CTGACTGCGGCCGCGAAGTCAGCATCCAAGGTAAAAGAATTCTC 

Restriction sites are underlined and italic. 

After gel electrophoresis (see 3.2.7) and the agarose gel clean up process (3.2.8), 

preparative digestion (see 3.2.9.2) of the resulting RRM2 fragment and of the pcDNA5 

vector were conducted, first with HindΙΙΙ, thereafter with NotΙ. Again, gel electrophoresis 

and the agarose gel purification were carried out, before integrating the RRM2 DNA 

fragment between the restriction sites of the mentioned enymes of the pcDNA5 vector 

(see 3.2.10, 3.2.11, Figure 8).  

Amplification of the RRM2
fragment via PCR

primer:
RRM2-HindΙΙ-forward

RRM2-NotΙ-reverse

Preparative digestion 
with HindΙΙΙ and NotΙ

Ligation

 

Figure 8: Cloning procedure: Generation of a pcDNA5:RRM2 construct 
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For RRM2 detection on translational level (see 3.8.4) RRM2 was tagged with an eGFP 

(enhanced green fluorescent protein, see Figure 9). Therefore, a pcDNA5/FRT/TO GFP 

construct was bought from Addgene (Plasmid 19444, Cambridge, UK). Similar to the 

RRM2 amplification procedure before, specific primers with artificial inserted restriction 

sites (Table 27) were ordered to amplify the eGFP out of the purchased construct (PCR 

as described in 3.2.4, with Q-Solution, annealing temperature 63.4 °C). 

Table 27: Primers to amplify eGFP out of the pcDNA5/FRT/TO GFP construct 

Name of primer Sequence (5' → 3') 

eGFP-NotΙ-forward CTGACTGCGGCCGCTATGGTGAGCAAGGGCGAGGAGC 

eGFP-XhoΙ-reverse CTGACTCTCGAGTTACTTGTACAGCTCGTCCATGCCGAGAGT 

Restriction sites are underlined and italic. 

After gel electrophoresis and agarose gel purification, preparative digestion of the eGFP 

fragment and of the pcDNA5-RRM2 construct was conducted, first with NotΙ then with 

XhoΙ. Then, eGFP was ligated into the pcDNA5-RRM2 construct (see Figure 9), which 

then was transformed into E. coli TOP10. Single clones were cultivated (see 3.7.4) and 

the mini-preparation (see 3.7.5.1) was undertaken. Finally, a mutation at the position of 

a 5' single nucleotide polymorphism (SNP) rs1130609 of RRM2 (located in the Kozak 

sequence) from G > T was inserted by mutagenesis PCR with specific mutagenesis 

primers (see section 3.2.6, annealing temperature 65.2 °C with Q-Solution) to have an 

additional construct carrying the variant allele for further analysis.  
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Amplification of the eGFP
fragment via PCR

primer:
eGFP-NotΙ-forward
eGFP-XhoΙ-reverse

Preparative digestion 
with NotΙ and XhoΙ

Ligation

Mutation at position 
of 5' SNP rs1130609 of RRM2 

(Kozak sequence)

 

Figure 9: Cloning procedure: Generation of a pcDNA5:RRM2:eGFP construct 

3.6 RNA workflow  

When working with RNA, the existence of a ribonuclease-free environment should be 

ensured. For that reason, RNA work was performed under a fume hood, using materials, 

which were protected with an anti-RNase spray (RNaseZap, Sigma-Aldrich, 

Deisenhofen). Moreover, RNase-free filter tips were used.  

3.6.1 RNA isolation 

For RNA isolation 1 x 106 cells were harvested and transferred into a 50 ml falcon tube. 

The cell suspension was centrifuged at 500 g for 5 minutes at RT. The supernatant was 

removed and a washing step with 3 - 4 ml of PBS buffer was performed. Afterwards, the 

centrifugation step was repeated and the supernatant was discarded completely. Then, 
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the pellet was dissolved in 350 µl of RLT Plus buffer (Qiagen, Hilden). The solution was 

pipetted into a 2 ml reaction tube for the further RNA isolation process in the QiaCube 

robot (Qiagen, Hilden), using the RNeasy Plus Mini Kit (protocol with miRNA, Qiagen, 

Hilden) according to the manufacturer’s instructions. After this procedure, the samples 

were put on ice directly and the RNA concentration was measured photometrically (see 

3.6.2). Finally, the samples were stored at -80 °C. 

3.6.2 Quantification of RNA 

RNA quantification was performed photometrically, analog to DNA quantification (see 

section 3.2.3). For RNA an extinction of 1 at 260 nm (E260) equates to 40 µg RNA per µl.  

3.6.3 Reverse Transcription  

For the analysis of gene expression (performed by quantitative RT-PCR, see section 

3.6.4) isolated RNA had to be converted into cDNA (copy or complementary DNA) by 

reverse transcription (RT), performed by the Super Script II reverse transcriptase 

(Invitrogen, Karlsruhe). This polymerase uses dN6 random hexamer oligonucleotide 

primers (six randomly combined nucleotides, Roche, Mannheim) to generate cDNA. In 

comparison to the usual eukaryotic DNA the newly synthesized cDNA had no introns, 

due to the fact that the mRNA template is already spliced. For primer annealing 1 µg of 

RNA was incubated with 2 µl of the dN6-primers diluted in ddH2O in a total volume of 

18.5 µl for 5 minutes at 70 °C. Then, the samples were put on ice directly and were 

cooled down for 10 minutes. During that time the reverse transcription master mix was 

pipetted as shown in Table 28, from which 11.5 µl were added to each RNA-primer-

mixture. The reverse transcription was run under 42 °C for 1 hour, followed by an 

inactivation step at 70 °C for 15 minutes. 
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Table 28: Reaction mixture for the reverse transcription 

Reagent Volume [µl] per sample 

5x Superscript RT buffer 6 

DTT (0.1 M) 3.5 

dNTPs (10 mM) 1.5 

RNase Inhibitor P/N (40 U/µl) 0.5 

Super ScriptTM II (200 U/µl) 0.25 

In total 11.75 

Finally, the cDNA was diluted with 0.1 mM TE-buffer to a concentration of 2 ng/µl, 

except for cDNA pools (used for qRT-PCR standard curve), which were adjusted to 10 

ng/µl. 

3.6.4 Quantitative real-time PCR (qRT-PCR) 

The quantitative real-time PCR is a technique to assess gene expression, which combines 

the amplification and quantitative detection of cDNA transcripts. The used cDNA was 

synthesized from total RNA during reverse transcription (see section 3.6.3). For 

quantification of the amounts of DNA products at each cycle the fluorescent DNA 

intercalating dye eva green (excitation 500 nm, emission 530 nm), included in the 5x 

HOT FIREPol®EvaGreen®qPCR Mix Plus (Solis BioDyne, Estonia), was used. The measured 

fluorescent signal is proportional to the amount of amplified cDNA. A low cycle number 

implies a higher gene expression, because less cycles are needed to reach a specific 

threshold (Cycle threshold (Ct)) of DNA amount. The Ct value represents the number of 

cycles needed for the fluorescent signal to cross a threshold, which exceeds the 

background level. Additional to the gene of interest, at least three housekeeping genes 

(36b4, HPRT1 and UBC, for primer sequences see Table 31 below) were measured to 

normalize the expression results. For this normalization process the ΔΔCt method was 

used. All samples, which were pipetted in duplicate, were averaged first. Then, the 

values of the intern control (housekeeping genes) were subtracted from the samples 

(ΔCt). And finally, the normalized control samples (treated with PBS) were subtracted 

from the normalized samples (ΔΔCt). To have the fold-change of expression, relative to 

the basal expression, the following equation (Equation 2) was used: 
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Equation 2: Formula to calculate relative gene expression 

Relative expression = 2-[Ct – Ct housekeeping gene) – (Ct control – Ct housekeeping control)] 

= 2-[ΔΔCt] 

The qRT-PCR mixture was prepared (see Table 29) in a 348 well-plate (Thermo Fast 

Plate 384 PCR, ABgene), which was covered with an optical clear film. Furthermore, on 

every qRT-PCR plate a standard curve with six concentrations of a cDNA pool (pooled 

from cDNA of the measured cell lines, 1:5 dilutions) was pipetted to evaluate the 

amplification. For the performance of the quantitative RT-PCR under conditions shown 

in Table 30, the TaqMan 7900HT (Applied Biosystems) machine was used. Data analysis 

was performed with the SDS 1.2 software (Applied Biosystems).  

Table 29: qRT-PCR master mix 

Reagent Volume [µl] per sample 

qRT-PCR master mix 2 

Primer (1:10) 0.2 

ddH2O 4.8 

cDNA 3 

In total 10 

Table 30: qRT-PCR conditions 

Phase  Duration Temperature     

Initial Denaturation 15 min 95 °C     

Denaturation 15 sec 95 °C     

Annealing 20 sec 60 °C                 45 x 

Elongation 40 sec 72 °C     

Dissociation Step 15 sec 95 °C     

 15 sec 60 °C     

 15 sec     95 °C     
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Table 31: Primers for qRT-PCR 

Gene Forward Primer sequence 

                    (5′ → 3′) 

Reverse Primer sequence 

                    (5′ → 3′) 

Reference genes   

36b4 GCAGATCCGCATGTCCCTT TGTTTTCCAGGTGCCCTCG 

B2MG CCAGCAGAGAATGGAAAGTC CATGTCTCGATCCCACTTAAC 

GAPDH CCCTTCATTGACCTCAACTACAT ACGATACCAAAGTTGTCATGGAT 

HPRT1 TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 

UBC CGGTGAACGCCGATGATTAT ATCTGCATTGTCAAGTGACGA 

RRM2 related primer   

RRM2 CACGGAGCCGAAAACTAAAGC TCTGCCTTCTTATACATCTGCCA   

RRM2v1 GGAGATTTAAAGGCTGCTGGAGT CACGGAGGGAGAGCATAGTG 

WWOX related primer   

WWOX exon 4-6 CCAACCACCCGGCAAAGATA AATGCTGCACGCTACGGAG 

WWOX exon 8-9 ATGTACTCCAACATTCATCGCAG GTCTCTTCGCTCTGAGCTTCT 

Other primer   

BCL2 ACATCGCCCTGTGGATGACT GGGCCGTACAGTTCCACAAA 

GADD45A GCTCAGCAAAGCCCTGAGT GTTATCGGGGTCGACGTTGA 

TP53 AGCTTTGAGGTGCGTGTTTG TTGGGCAGTGCTCGCTTAG 

SP1 CAGGCCTCCAGACCATTAAC CAAGCTGAGCTCCATGATCAC 

RNA5-8SP2 ACTGGGCTTCTGTGTGTCGATG TGCAATTGCGTTCGAAGTGTC 

3.6.5 RNA sequencing (RNAseq) 

The RNA sequencing method (whole expressome analysis) is based on next generation 

sequencing and was used to investigate RNA transcripts vicinal to the WWOX index SNP 

(rs11644322). This procedure was performed by the Transcriptome and Genome 

Analysis Laboratory (TAL) of the Göttingen University Medical Center, headed by Dr. rer. 

nat. Gabriela Salinas-Riester. The analyzed samples were two pooled RNA probes from 

LCLs, whereof one sample was obtained from five cell lines carrying the wild type allele 

(Cell identifiers at the Coriell institute: HG00096, HG00109, HG00120, HG00244, and 

HG00258) and the other sample from five cell lines carrying the variant allele (Cell 

identifiers: HG00100, HG00108, HG00122, HG00245, and HG00265), respectively. 

Besides, RNA of the pancreatic cancer cell lines AsPC1 and MiaPaca-ΙΙ, which were SP1-

overexpressed and exposed to PBS or 30 nM of gemcitabine, were examined. 
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Furthermore, RNA (from three different clones) of the pancreatic cancer cell line 

PaTu8988t, stably transfected with shRNA plasmids for WWOX knock-down reason, was 

analysed, compared to control samples transfected with a negative control shRNA 

plasmid.  

For RNA sequencing the Illumina TruSeq technology was used, comprising the following 

workflow steps: Sample preparation, Cluster generation, Sequencing chemistry, and 

data analysis. All working steps were performed according to the TruSeq® Stranded 

Total RNA Sample LS (Low Sample) Preparation Guide (Illumina, San Diego, CA, USA). 

The typical RNAseq workflow implies the generation of cDNA fragments, which are 

flanked by multiple indexing adapters with constant sequences (Figure 10). This pool of 

cDNA fragments is called DNA library and is needed for sequencing with the HiSeq® 

2000 sequencer (Illumina, San Diego, CA, USA) where millions of short sequence reads 

are generated, corresponding to individual cDNA pieces.  

 

Figure 10: Workflow of RNA sequencing 

The first step of sample preparation was the depletion of ribosomal RNA from total RNA. 

Afterwards, the remaining RNA was purified, fragmented and primed (with random 

hexamers) for cDNA synthesis. This cleaved RNA fragments were reversely transcribed 

to first strand cDNA by using reverse transcriptase and random primers, followed by 

second strand cDNA synthesis, where RNA templates were removed and a substitution 

strand was synthesized, incorporating dUTP instead of dTTP to generate dsDNA. To 

obtain blunt-ended cDNA, the dscDNA was separated from the second strand reaction 
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mixture by usage of AMPure XP beads (Agencourt Bioscience Corporation, Beverly, 

Massachusetts). Next, the 3' ends had to be adenylated. This means that a single adenine 

nucleotide was added to the 3' end of the generated blunt fragments to prevent ligation 

with each other during the following adapter (specific constant sequence) ligation. The 

adapter sequence contains a corresponding, complementary overhang of a single 

thymine nucleotide allowing its ligation to the cDNA fragment. The adapter ligation 

process to the end of the cDNA fragments is needed for the further hybridization step 

onto a flow cell, used for simultaneous analysis. Afterwards, DNA fragments carrying 

adapter molecules at both ends were selectively enriched by PCR with a primer cocktail, 

that can anneal to the adapter ends. For providing an optimal cluster density of every 

flow cell, the DNA library templates were quantified, using the QuantiFluorTM Dye System 

(Promega, Mannheim) containing a fluorescent DNA-binding dye, which was measured 

via Glomax® Fluorometer (Promega, Mannheim). Besides, the sample quality (size and 

purity) was determined with the Bioanalyzer 2100. This analyzer provides an automated 

capillary gel electrophoresis system (Agilent, Santa Clara, USA), using a DNA specific 

chip (Chip DNA 1000), allowing DNA fragment separation by size. Prior to sequencing, 

the cluster generation was performed using a cBOT instrument (Illumina, San Diego, CA, 

USA), where the library samples were bound to a flow cell by hybridization to 

oligonucleotides that are complementary to the adapter sequence and that are 

immobilized on the flow cell surface. Following steps are involved in this process: 

Immobilization, 3' extension, bridge amplification, linearization and hybridization.   

In detail, the templates are copied by hybridized primers by 3' extension using a DNA 

polymerase. Only the copied immobilized template remains on the flow cell and was 

amplified via bridge amplification, where the template makes a loop to hybridize to a 

nearby oligonucleotide. The new template was duplicated by polymerase, forming a 

dsDNA bridge, which was denaturated afterwards to form single DNA strands. These 

strands loop over to adjacent oligonucleotides again and the procedure goes on as 

described, so that millions of individual, clonal cluster are created. Finally, each dsDNA 

bridge cluster was denaturated and the reverse strand was eliminated by specific base 

cleavage, so that the forward DNA strand is present. The 3' end of this forward strand 

and flow-cell bound oligonucleotides were blocked, preventing interference with the 

sequencing reaction. Then, the sequencing primer was hybridized to the complementary 

sequence on the illumina adapter on unbound ends of templates in the clusters, 
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whereafter the flow cell contained > 200 million clusters with ~ 1000 molecules per 

cluster and was ready to be sequenced (read lenght 50 bp).  

3.7 Working with bacteria   

To work with bacteria in an aseptic way, all working steps were peformed close to a 

Bunsen burner flame.  

3.7.1 Bacteria growth and storage conditions 

The Escherichia coli bacteria strain One Shot® TOP10 ElectrocompTM E. coli (Invitrogen, 

Karlsruhe) was used, which was grown in Luria-Bertani (LB) medium. The LB medium 

was prepared as follows (Table 32): 

Table 32: LB medium 

Reagent Amount [g] 

Tryptone 10 

Yeast extract 5 

NaCl 5 

ddH2O  Add to 1000 ml 

This solution was autoclaved and stored at 4 °C. For the preparation of solid LB agar 

plates, 14 g of Agar (AppliChem, Darmstadt) was added additionally prior to the 

autoclaving step. Afterwards, the solution was cooled down to ~ 50 °C and the required 

antibiotic (e.g. Ampicillin 100 µg/ml, Chloramphenicol 170 µg/ml, Kanamycin 20 µg/ml) 

was added. Then, the prepared solution was poured into 92 mm petri dishes under the 

fume hood, which were placed there till they became dry. To store generated bacterial 

cultures for a long time, these were mixed at a ratio of 1:1 with a 50 % glycerol solution 

in a 2 ml reaction tube, and were frozen at -80 °C directly after.   

3.7.2 Transformation by electroporation 

This method is used to insert plasmids into bacteria cells. Bacteria can increase the 

amount of plasmids, so that a high amount can be harvested by mini- or midi-

preparation (see 3.7.5.1, 3.7.5.2). An electric shock (~ 2500 volt/cm) increases the 

permeability of the cell membrane, allowing plasmid DNA to get inside the cell. The 
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electroporation mixture contained 30 µl of ddH2O and 10 µl of the electrocompetent E. 

coli, which was transferred into a pre-cooled 2 mm electroporation cuvette. Then, 1 µl of 

dialyzed plasmid DNA (see 3.2.11) was added. For the electroporation process the Gene 

Pulser II (Biorad, Herkules USA) with the conditions of 2.5 kV, 25 µF and 200 Ω for five 

milliseconds was used. Directly afterwards, 800 µl of LB medium (at 37 °C) was added to 

the cuvette, which was then incubated for 1 hour at 37 °C. Finally, 50 and 200 µl of this 

solution were struck on agar plates containing the required antibiotic as selection 

marker, allowing growth only for successfully transformed bacteria.  

3.7.3 Cultivation of bacteria on agar plates 

To get single clones after the transformation process or to prepare a backup plate of a 

liquid bacteria solution prepared for mini-preparation, bacteria were cultivated on agar 

plates with the required antibiotic. The bacteria solution was distributed on agar plates 

with a pre-flamed arcuate Pasteur pipette. Then, the plates were incubated at 37 °C in 

the incubator Incudrive (Schütt, Göttingen) with the upside down overnight. These 

plates could be kept at 4 °C for approximately one month, if sealed with Parafilm® 

(Brand, Wertheim). 

3.7.4 Cultivation of bacteria in solution 

To generate a bacteria suspension for the mini preparation (see 3.7.5.1), in which the 

amount of a single bacteria clone can be highly increased overnight, 5 ml of LB medium 

were supplemented with the needed antibiotic (selection marker) in a 15 ml tube. Then, 

a picked clone from the agar plate was resuspended in this mixture, followed by a 

shaking period at 37 °C on the K2 260 basic shaker for bacteria (Ika, Staufen) at 250 rpm 

overnight. The tubes (lid not closed completely) were placed on a stand in an angular 

way to provide a larger surface for oxygen exchange. For the midi-preparation (see 

3.7.5.2) 30 ml of LB medium (supplemented with the appropriate antibiotic) was filled 

in an autoclaved 500 ml glass bottle. Then, 30 - 80 µl of a pre-shaken 5 ml bacteria 

solution (as described before) was added to the bottle, which then was shaken at 37 °C 

overnight with the lid not attached in a tight way. 
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3.7.5 DNA isolation from bacteria 

Plasmid DNA was isolated in two different ways. For the first analysis of new bacteria 

clones or as starting material for subcloning the mini-preparation method was 

performed. For later transfection experiments into mammalian cells a larger amount of 

plasmid DNA (300 - 3000 ng/µl) with high purity is needed, which can be isolated by 

plasmid midi-preparation extraction.    

3.7.5.1 Isolation of Plasmid DNA by chloroform extraction  

(Plasmid mini-preparation) 

For this procedure, single clones, which were grown on agar plates, were picked and 

mixed  with 5 ml LB-media supplemented with the required antibiotic. This mixture was 

shaken for 12 - 16 hours at 37 °C. For having an inoculum for further experiments, 5 µl 

of this solution were plated on an agar plate with the required antibiotic. The 5 ml 

bacteria solution was centrifuged for 10 minutes at 4000 rpm (Centrifuge 5810 R; 

Eppendorf) at room temperature. The supernatant was discarded, then the pellet was 

resuspended in 250 µl of resuspension buffer (see Table 33) and transferred into a 1.5 

ml reaction tube. Thereafter, the cells were lysed with 250 µl of Alkaline lysis buffer 

(Table 34) and shaken well. For the neutralization process, 350 µl of Neutralization 

buffer (Table 35) was added and the sample was inverted 6 to 8 times. The precipitation 

of proteins was seen as white smear. Then, the sample was centrifuged at 13000 rpm for 

10 minutes (Biofuge pico, Heraeus) at 4 °C. The clear supernatant, containing the 

plasmid DNA, was pipetted into a new 1.5 ml reaction tube and was mixed with 500 µl of 

a chloroform-isoamylalcohol (24:1) solution. The solution was inverted and shaken well, 

so that no phase boundary could be seen before the next centrifugation step at 13000 

rpm for 5 minutes at RT. The upper phase was transferred in a new 1.5 ml reaction tube 

and 650 µl of pre-cooled isopropanol (-20 °C) was added, followed by 15 minutes of 

centrifugation at 13000 rpm at 4 °C. Thereafter, the supernatant was discarded and the 

sample was washed with 800 µl of 70 % ethanol (-20 °C). Again, a centrifugation step 

was conducted at 13000 rpm for 4 minutes at 4 °C and the supernatant was removed, 

followed by a repeated washing and centrifugation step. Next, supernatant removal was 

performed, even discarding the last drop, and the opened reaction tube was put on a 

heating block at 37 °C till the pellet appeared transparent and dry. Then, 50 µl of TE 
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buffer (Table 36) was added and the sample was put on a heating block (37 °C) for 

further 30 minutes, shaking. At the end, DNA was quantified photometrically (see 3.2.3).  

Table 33: Resuspension buffer 

Reagent (pH = 8, at 4 °C) Concentration 

Tris-HCl 50 mM 

EDTA 10 mM 

RNAse A (added after autoclaving process) 100 µg/ml 

Table 34: Alkaline Lysis buffer 

Reagent (pH = 8, at RT) Concentration 

NaOH 200 mM 

SDS 1 % (w/v) 

Table 35: Neutralization buffer 

Reagent (pH = 5.5, at RT) Concentration 

Potassium acetate 3 M 

Table 36: TE buffer 

Reagent Concentration 

Tris 10 mM 

EDTA 0.1 mM 
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3.7.5.2 Isolation of plasmid DNA by solid extraction  

(Plasmid midi-preparation) 

The Plasmd midi-preparation was performed via the Plasmid Plus Midi Kit (Qiagen, 

Hilden) according to the manufacturer’s instructions. This DNA, with a high purity, was 

used for later transfection experiments in mammalian cells. 

3.8 Protein analysis 

3.8.1 Preparation of cell lysates for Western Blots 

To isolate proteins for Western Blot analysis, pancreatic cancer cells, cultivated in a 6-

well plate, were trypsinized with 500 µl of trypsin per well for 2 - 3 minutes at 37 °C. 

Afterwards, the cell suspension was transferred in a 15 ml falcon tube already 

containing the doubled amount of DMEM medium (15 % FCS, 1 % PS) for trypsin 

deactivation and was centrifuged for 5 minutes at 500 g. The supernatant was removed 

and the cell pellet was washed with 3 ml of PBS. The centrifugation step was performed 

again, then 50 - 100 µl of RIPA buffer (supplemented with protease and phosphatase 

inhibitors, Roche, Mannheim) was added. Afterwards, three repetitions of freeze-thaw 

cycles in liquid nitrogen and on a heating block at 37 °C, respectively were performed to 

ensure cell disruption, followed by centrifugation at 13000 rpm for 10 minutes at 4 °C. 

Finally, the supernatant was transferred into a new reaction tube and was stored at 

minus 20 °C.   

Table 37: RIPA buffer  

Reagent Concentration [mM] or percentage 

Tris-HCl 50 

NaCl 150 

EDTA 1 

NP-40 1 % (v/v) 

Na-deoxycholate 0.25 % (v/v) 

SDS 0.1 % 
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3.8.2 Determination of protein content via Bicinchoninic acid assay 

For quantitation of total protein, the PierceTM BCA Protein Assay Kit (Life Technologies, 

Darmstadt) was used. This method is a combination of the reduction of Cu+2 (cupric ion) 

to Cu+1 (cuprous ion) by protein in an alkaline environment (called biuret reaction) and 

a highly sensitive and selective colorimetric detection of the cuprous cation (Cu+1) by 

usage of a special reagent comprising bicinchoninic acid. The chelation of two BCA 

(bicinchoninic acid) molecules with one Cu1+ ion forms a purple,  water-soluble reaction 

product. This complex shows a strong absorbance at 562 nm, which is almost linear with 

increasing protein concentrations over a working range of 20 - 2000 µg/ml. This assay 

was performed as follows: First, a BCA working reagent solution was prepared (50 parts 

of Bicinchoninic acid solution, 1 part of 4 % cupric sulfate solution). Then, 25 µl of a 

standard solution (standard bovine serum albumin (BSA), range of 0 - 1500 µg/ml) or of 

the sample, as well as 200 µl of the BCA working reagent solution was pipetted in each 

well of a 96-well plate, which was shaken for 30 seconds. Afterwards the plate was 

incubated for 30 minutes at 37 °C and the absorbance was measured with a Victor X4 

Light Multilabel Reader (PerkinElmer, Wiesbaden) at 562 nm.  

3.8.3 Western Blot 

The Western Blot technique is used for the identification of specific proteins out of a 

protein mixture, which was extracted from cells. This mixture was applied to gel 

electrophoresis for protein separation by size. Afterwards, the resulting protein bands 

were transferred to a membrane, where the proteins were accessible for specific 

antibody binding for detection. In this thesis siRNA targeted gene knock-down of the 

WWOX tumor supressor gene was conducted (see chapter 3.10.1) in the two pancreatic 

cancer cell lines PaTu8988t and L3.6. To evaluate this knock-down, Western Blotting 

was performed with transfected and control samples. 

3.8.3.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)  

Using SDS-PAGE, proteins can be separated corresponding to their size. For that reason, 

samples were mixed and denaturated at 95 °C for 5 minutes in a 4x Bromphenol Blue 

loading buffer (NuPage LDS Sample Buffer, 3 parts of loading buffer, 1 part of lysate), 

containing SDS (amphipathic surfactant), which charges the proteins proportionally to 
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their mass. This ensures that the separation step during electrophoresis was solely 

dependent on the molecular weight. Following to denaturation, samples were put on ice 

for 5 minutes.  

The polyacrylamide gel consists of two parts, a separating and a stacking gel. First, the 

separating gel was prepared as follows (Table 38): 

Table 38: 10 % Separating Gel, mixture for two mini gels 

Reagent Added Volume 

ddH2O 7.9 ml 

30 % AB (Acrylamide/Bis-acrylamide) 
(Rotiphorese®) 
 

6.7 ml 

Tris (1.5 M, pH = 8.8, separating gel buffer) 5 ml 

10 % SDS Solution 200 µl 

10 % APS Solution 200 µl 

TEMED 20 µl 

In total 20 ml 

The gel was poured into a gel electrophoresis chamber (Biometra, Göttingen) until 1.5 

cm of the chamber top. The rest of the gel chamber was filled up with water. Then, the 

gel was incubated at RT for 30 minutes till the gel was polymerized. During that time the 

stacking gel was prepared as follows (Table 39): 

Table 39: 5 % Stacking Gel 

Reagent Added Volume 

ddH2O 3.4 ml 

30 % AB (Acrylamide/Bis-acrylamide) 

(Rotiphorese®)  

0.83 ml 

Tris (1M, pH = 6.8, stacking gel buffer) 0.63 ml 

10 % SDS Solution 50 µl 

10 % APS Solution 50 µl 

TEMED 5 µl 

In total 5 ml 
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The water on top of the separating gel was removed and the prepared stacking gel was 

poured instead, which was incubated for 30 - 40 minutes at RT to polymerize.  

3.8.3.2 Gel electrophoresis 

The gel was placed into an electrophoresis chamber, which was filled with 1x SDS 

running buffer (dilution of 10x buffer, see Table 40). Then, 1x SDS buffer was put on top 

of the gel, to cover the wells of the gel. 

Table 40: SDS Running Buffer (10x) 

Reagent (pH = 8.3) Concentration [mM] or percentage 

Tris 250 

Glycin 1920 

SDS 1 % 

ddH2O Ad 1000 ml 

The wells of the gel were flushed with a syringe shortly before loading. Thereafter, an 

amount of 20 µg of each denaturated sample was loaded on the gel, which was run for 

3 - 4 hours at 20 mA. Two different molecular weight marker were used, 1 µl of the 

MagicMarkTM XP Western Protein Standard (LifeTechnologies), which is visible upon 

detection and 2 µl of a Prestained Marker (10 - 180 kDa, biofroxx), which is visible on the 

gel and the PVDF membrane.  

3.8.3.3 Blotting 

To transfer the gel on a blotting membrane (PVDF, polyvinylidene difluoride), the 

semidry transfer method was used. The gel and the blotting membrane were arranged 

like a sandwich between filter papers. First, the blotting membrane was activated with 

methanol (100 %) for 10 seconds, washed with water for 3 minutes and then incubated 

in 1x transfer buffer (dilution of 10x buffer, see Table 41) for 15 minutes. The transfer 

buffer is used to facilitate the binding of proteins to the blot. The gel was detached from 

the gel chamber plates, the stacking gel was cut and then the separating gel was 

incubated for 15 minutes in transfer buffer as well.  
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Table 41: Western Blot Transfer Buffer (10x) 

Reagent Concentration [mM] 

Tris 48 

Glycin 39 

10 % SDS solution 0.037 % 

Methanol 20 % 

Diluted in ddH2O  

Six thick Whatman filter papers (for one gel) were also soaked in transfer buffer for 5 to 

10 minutes. Then, the gel sandwich arrangement was performed on a Semi-Dry-

Electroblotter (peqlab). First, three soaked filter papers were put on the Electroblotter, 

then the blotting membrane followed by the gel, was added. Air bubbles under the gel 

were erased by adding some transfer buffer on top of the gel. The bubbles were pushed 

by hand to the border of the gel. Three further filter papers (soaked in transfer buffer) 

were placed on top of the gel. Afterwards, the sandwich-complex was compressed with a 

little roll. The blotting process was performed at 100 mA (for one gel) for 1 hour at RT. 

Following to this, the blotting membrane was cut near the desired kDa number of the 

protein of interest (WWOX, 46 kDa) and of the control protein (Actin, 42 kDa), which can 

be estimated from the Prestained marker. The cut membrane pieces were washed with 

TBS-T (0.1 % Tween20, see Table 42 and Table 43) for 5 minutes at RT. 

Table 42: Tris buffered saline (TBS) Buffer 

Reagent (pH = 7.5) Concentration [mM] 

NaCl 150 

Tris 50 

Table 43: TBS-Tween 

Reagent Concentration 

Tween20, dissolved in TBS buffer 0.1 % 
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3.8.3.4 Blocking 

To avoid unspecific binding of the antibody to the membrane, the membrane pieces with 

the transferred protein bands were blocked by adding 5 % milk dissolved in TBS-T 

(0.1 % Tween20, see Table 44) for 1 hour at RT.  

Table 44: Blocking Buffer for the Western Blot membrane 

Reagent Final concentration 100 ml 

Non-fat blotting grade milk 

powder, dissolved in 0.1 % 

TBS-Tween 

5 % 5 g 

3.8.3.5 Incubation with antibodies 

After the blocking procedure, 4 - 5 ml of the primary antibody (see Table 45), diluted for 

actin in 5 % milk-TBST (1:4000) and for WWOX in 5 % BSA-TBST (1:200), were added 

to the blot overnight at 4 °C. 

Table 45: First Antibody Information 

Membrane Antibody Host Company Protein 
size 

Dilution Buffer 

A WWOX 

(N-19): 

sc-20528 

goat Santa Cruz 46 1:200 5 % 
BSA-
TBST 

B 
(For normalization) 

Actin rabbit Acris 42 1:4000 5 % 
milk-
TBST 

On the next day, the membranes were washed three times for 5 minutes with TBST 

(0.1 % Tween20) and the second antibody (Table 46), diluted in 5 % milk-TBST, was 

added (2 - 3ml) for 2 hours shaking at RT. Afterwards, the blot was washed three times 

with TBST (0.1 % Tween20) again. 
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Table 46: Second Antibody Information 

Membrane Antibody Host Company Dilution Buffer 

A Anti-goat IgG 
 HRP 

(Horseradish 
peroxidase) 

rabbit Acris 1:30000 5 % milk-
TBST 

B 
(For normalization) 

Anti-rabbit IgG 
HRP 

(Horseradish 
peroxidase) 

goat Acris 1:30000 5 % milk-
TBST 

3.8.3.6 Detection with HRP substrate 

The HRP (Horseradish peroxidase), contained in the second antibody, can be detected 

by an enhanced chemiluminescent solution (ECL, LuminataTM Forte Western HRP 

Substrate, MerckMillipore, Darmstadt). The membranes were covered with the ECL 

solution and were placed in a Luminescent Image Analyzer (Image QuantTM LAS 4000 

Mini). The chemiluminescent signals were determined with the corresponding Image 

Quant LAS 4000 Mini Control software v1.2.  

3.8.4 In vitro translation via TNT Assay 

Using the in vitro TNT® Coupled Transcription/Translation System (Promega, Mannheim) 

allows analysis of protein expression without using cells. The delivered master mix 

contains all essential components like RNA polymerase, nucleotides, salts, 

ribonucleotide inhibitor and reticilocyte-solution to generate complex proteins, based 

on plasmid DNA. Used plasmid DNA requires a T7 promoter located upstream of the 

expressed gene. For information about the used pcDNA5:RRM2:eGFP construct see 

section 3.5.3. 

The reaction mixture was pipetted on ice as described in Table 47, followed by an 

incubation time of 90 minutes at 30 °C. Thereafter, the reaction was stopped on ice and 

was diluted (1:2) with ddH20. These mixtures (100 µl) were transferred into a black 96-

well plate with a transparent bottom (Greiner, Frickenhausen) for fluorescence 

measurement (of eGFP) with the Tecan reader (excitation 485 nm, emission 535 nm).  
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Table 47: Reaction mixture for the TNT® Assay 

Reagent  Added volume [µl] 

TNT® T7 Quick Master Mix 40 

Methionin [1mM] 2 

Plasmid-DNA [0.5 µg/µl] 2 

T7 TNT® PCR Enhancer 1 

ddH20 Add to 50 

3.9 Mammalian cell culturing 

All cell culture work was performed under the sterile bench. The used cell lines were 

cultured in an incubator at 37 °C under 5 % CO2 and 95 % humidity. To avoid microbial 

contamination and to check the growth status, all cells were controlled via microscope 

(Microscope TELAVAL 31, Zeiss, Jena) regularly. The culture media was pre-warmed at 

37 °C before use and was supplemented with 1 % Penicillin-Streptomycin (PS) to 

prevent bacterial contamination. Besides, fetal calf serum (FCS) was added, which 

contains proteins that are necessary for cell growth. The subculturing of cells was 

performed twice a week in a cell specific split ratio, which was dependent on the 

proliferation rate and the specific conditions needed for the experiments. The general 

cell number for suspension cells should be between 3 x 105 - 8 x 105 cells per milliliter of 

media. Adherent cells should not exceed a confluence of 80 %. For detaching adherent 

cells from the culture flask bottom, these were washed with PBS buffer (see Table 48) 

and were trypsinized with 5 ml of trypsin (TrypLE™ Express, Gibco/Invitrogen) for a 75 

cm2 flask and 3 ml of trypsin for a 25 cm2 flask, followed by an incubation time of 

approximately 3 minutes at 37 °C. For the deactivation of trypsin, the doubled volume of 

culture media (supplemented with FCS) was added. Afterwards, the cells were 

transferred to a 50 ml falcon tube and centrifuged at 500 g for 5 minutes at room 

temperature. The supernatant was removed and the pellet was resuspended in culture 

media. Then, cell counting was conducted (see section 3.9.3) and the required volume 

was seeded on plates and/or transferred into a new cell culture flask for subculturing.  
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Table 48: PBS Buffer 

Reagent (pH = 7.4) Concentration [mM] 

NaCl 128.5 

KCl 2.8 

Na2HPO4 8.1 

KH2PO4 1.5 

3.9.1 Freezing cultured cells 

For long-time preservation of cells for later studies, cell lines were stored in liquid 

nitrogen. It is advised to cryopreserve cells with a low passage number and when a 

confluence of 80 % is reached. The cells were harvested and transferred into a 50 ml 

falcon tube, followed by centrifugation at 500 g for 5 minutes at RT. The supernatant 

was removed and the pellet was resuspended in 7.5 ml of a pre-cooled freezing solution, 

consisting of 90 % pure FCS and 10 % of sterile DMSO (Dimethylsulfoxide, AppliChem, 

Darmstadt). DMSO is used as antifreezing agent, which prohibits the generation of ice 

crystals, which can lead to cell death. Further steps were performed on ice. Afterwards, 

the cells (1.5 ml) were pipetted in 1.8 ml Cryo tubes (Nunc, Thermo Scientific, Denmark) 

and were stored in a pre-cooled Mr. Frosty freezing box (Sigma-Aldrich, Deisenhofen) at  

-80 °C overnight, allowing cells to cool down with a speed of 1 °C/min. The next day, the 

frozen cells were transferred into a liquid nitrogen storage container at around -170 °C. 

3.9.2 Defreezing cultured cells 

Cryopreserved cell lines that were stored in liquid nitrogen were thawed quickly and 

transferred into a 50 ml falcon tube for centrifugation (5 minutes, 500 g, RT), which 

already contained 20 ml of cell culture media (1 % PS). It is important to relieve the cells 

from the toxic DMSO. Afterwards, the supernatant was removed, the pellet was 

resuspended in 10 ml of media (1 % PS, 10 - 15 % FCS (depending on the cell line)) and 

the cell suspension was pipetted into a 25 cm2 Tissue Culture Flask. After a cultivation 

time of 1 - 2 days at 37 °C and 5 % CO2, cells were transferred to a 75 cm2 flask (20 ml) 

for increased growth. 
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3.9.3 Counting cells with the Neubauer-Cell Chamber   

The number of cells in a cell suspension was determined via Neubauer-Cell Chamber. To 

distinguish between living and dead cells, the cell suspension was mixed with the vital 

stain Trypan Blue (Sigma-Aldrich, Deisenhofen) in a ratio of 1:1. Afterwards, 15 µl of the 

staining solution were pipetted on the counting chamber, which was covered with a 

cover slip. Living cells do not absorbe Trypan Blue, while dead cells do. Via microscopy 

the living cells appear in a more bright colour, in comparison to the blue background 

media and the dead cells. All living cells in each of four squares were counted. The cell 

concentration per ml was calculated as follows (see Equation 3): 

Equation 3: Calculation of cell concentration per milliliter 

 

Cell concentration/ml = Sum of all living cells in all four squares * 2 * 1000 
4 * 0.1 µl/square 

 
Cell concentration/ml = Sum of all living cells in all four squares * 5000 

 

 

The average of all four squares is calculated at first. The dilution factor of the cell 

suspension, which was 2, has to be considered. The area of each square is 1 mm2 and the 

chamber hight is 0.1 mm. This results in a volume of 0.1 µl/square. To sustain the 

concentration of cells per milliliter, a factor of 1000 has to be included into the equation. 

3.9.4 Lymphoblastoid cell lines 

The lymphoblastoid cell lines (LCLs), which are donated by Britain Caucasian, are non 

adherent cells, which were obtained from the NIGMS Human Genetic Cell Repository at 

the Coriell Institute for Medical Research. These were established by Epstein-Barr Virus 

transformation of peripheral blood mononuclear cells using phytohemagglutinin as a 

mitogen. All cell lines are free of bacterial, fungal or mycoplasma contamination. 

Cultivation of these cells was carried out in 75 cm2 Tissue Culture Flasks. The used 

media was RPMI media (2 mM L-glutamine, 15 % FCS, 1 % PS). The passaging of cells 

was performed twice a week at a ratio of 1:7. For experiments only cells with a passage 

number < 10 were used. All LCLs from Coriell Cell Repositories, I used as an ethnically 

homogenous sample set, are listed in Table 49. 
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Table 49: ID numbers of lymphoblastoid cell lines from Coriell Cell Repositories (http://ccr.coriell.org). 

HG00096 HG00097 HG00099 HG00100 HG00101 HG00102 HG00103 HG00104  HG00106 

HG00108 HG00109 HG00110 HG00111 HG00112 HG00113 HG00114 HG00116 HG00117 

HG00118 HG00119 HG00120 HG00121 HG00122 HG00123 HG00124 HG00125 HG00126 

HG00127 HG00128 HG00129 HG00130 HG00131 HG00133 HG00134 HG00135 HG00136 

HG00137 HG00138 HG00139 HG00140 HG00141 HG00142 HG00143 HG00146 HG00148 

HG00149 HG00150 HG00151 HG00152 HG00154 HG00155 HG00156 HG00158 HG00159 

HG00160 HG00231 HG00232 HG00233 HG00234 HG00235 HG00236 HG00237 HG00238 

HG00239 HG00240 HG00242 HG00243 HG00244 HG00245 HG00246 HG00247 HG00249 

HG00250 HG00251 HG00252 HG00253 HG00254 HG00255 HG00256 HG00257 HG00258 

HG00259 HG00260 HG00261 HG00262 HG00263 HG00264 HG00265 HG01334 

3.9.5 Pancreatic cancer cell lines 

Pancreatic cancer cell lines I used for experiments during my PhD program were 

MiaPaca-II, AsPC1, CFPac, L3.6, PaTu8988t and PancI. These cell lines were purchased 

from the ATCC company (Wesel, www.atcc.org). The cultivation of these cells was 

performed according to their recommendation (http://www.lgcstandards-atcc.org). The 

split ratio was 1:8. 

3.9.6 HEK-293 cells 

HEK-239 cells are human embryonic kidney cells which grow in an adherent manner 

and were cultivated in DMEM media supplemented with 10 % FCS and 1 % PS. The 

passaging was performed at a ratio of 1:10. 

3.9.7 PaTu8988t cells stably transfected with shRNA plasmids against WWOX 

The pancreatic cancer cell line PaTu8988t was stably transfected with SureSilencing 

shRNA plasmids (linearized pGeneClipTM Hygromycin Vector with specific sequences 

targeting WWOX, Qiagen, Hilden, see 3.10.2). The used culture media was DMEM 

supplemented with 10 % FCS, 1 % PS and 100 µg/ml Hygromycin B. The passaging was 

performed at a ratio of 1:8. 

http://ccr.coriell.org/
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3.10 Transfection of mammalian cells 

The transfection process allows the injection of plasmid DNA into cells for 

overexpression or knock-down reason of genes. In this work the liposome transfection 

method was used, where a positively charged lipid reagent surrounds the negatively 

charged plasmid DNA and forms an aggregate, which can permeate the cell membrane. 

Inside the nucleus the inserted DNA is then released and can be expressed. Two 

different transfection ways were conducted. Performing a transient transfection implies 

that the DNA is not inserted into the nuclear genome, and therefore is just temporarily 

expressed. Stably transfected cells exhibit persistence of the inserted gene in the 

genome of the cell and their daughter cells. For transient overexpression of genes, the X-

tremeGene HP DNA Transfection Reagent (Roche, Mannheim) was used. Transient 

transfection of siRNA (small interfering RNA) used for gene silencing was performed by 

usage of RNAiMAX Transfection reagent (Invitrogen, Karlsruhe). For the stable gene 

knock-down via shRNA (short-hairpin RNA) the Attractene Transfection reagent (Qiagen, 

Hilden) was employed.  

3.10.1  Transient WWOX knock-down by siRNA 

The pancreatic cancer cell lines L3.6 and PaTu8988t were used to assess the 

consequences of targeted WWOX knock-down by transient siRNA (20 - 25 bp long, 

doublestranded) transfection. SiRNA can affect the expression of genes, with a 

complementary nucleotide sequence, by cracking the mRNA after transcription, so that 

translation is impaired. The transfection was carried out on six-well plates, three wells 

per condition, in a fast-forward fashion. First, the cells were freshly seeded at a density 

of 250,000 cells/2 ml in DMEM medium (10 % FCS) without Penicillin-Streptomycin. 

The transfection mixture, containing 30 pmol of a predesigned panel of four siRNAs to 

target WWOX (Dharmacon/GE Healthcare Cat-Nº M-003961-03-0005, Lafayette, CO, 

USA), OptimMem® medium and the transfection reagent RNAiMAX (both from 

Invitrogen, Karlsruhe) was prepared as listed in Table 50 and incubated for 20 minutes 

at RT. Thereafter, 500 µl of the mixture was added in a dropwise manner per well. A 

scrambled panel of siRNAs (ON-TARGETplus Non-targeting siRNA #1, Dharmacon Cat-

Nº D-001810-01) was transfected the same way serving as negative control. After 

transfection, the cells were cultured for 24 h at 37 °C before being treated with 

gemcitabine or 5-FU (see chapter 3.10.4). 
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Table 50: siRNA transfection mixture 

Reagent Volume [µl] per well 

OptiMem®  500 

siRNA  1.5 (20 µM stock) 

Lipofectamine® RNAiMAX 5 

3.10.2 Stable WWOX knock-down by shRNA  

Another technique for WWOX gene knock-down is plasmid-based RNA interference, 

where plasmids carrying a shRNA (short-hairpin RNA, artificial RNA that exhibts a tight 

hairpin turn) are stably transfected into cells. For this purpose, I used the SureSilencing 

shRNA Plasmid Kit from Qiagen (Hilden), containing four gene-specific shRNA plasmids 

and one negative control plasmid (21 bp long). The Kit used the pGeneClipTM vector 

(4989 bp, obtained from Promega Corporation, Madison, WI, see Figure 11, for sequence 

see appendix), which expresses a shRNA under control of the U1 promoter and the 

hygromycin resistance gene. The selection of stably transfected cells is allowed due to 

the hygromycin resistance.  
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Figure 11: Scheme of the pGeneClipTM Hygomycin Vector. Modified according to SureSilencing ShRNA 
Plasmid Handbook, Qiagen) 

The specific shRNA sequences (see Table 51) are inserted between position 438 and 439 

of the plasmid sequence.  
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Table 51: SureSilencing shRNA (WWOX) Plasmid details 

Clone ID Insert Sequence 

1 AGTGCATCCTGGAAATATGAT 

2 GAGACCACCTTTCAAGTGAAT 

3 CAGCACCACTGCCATGGAAAT 

4 GTGAAGCAGTGTCACGCATTT 

Negative control GGAATCTCATTCAATGCATAC 

First, the delivered shRNA plasmids were transformed into E. coli via electroporation 

(see section 3.7.2), then the bacteria solution was distributed on agar plates containing 

ampicillin as selection marker. The next day, clones were picked and single clone 

culturing was performed, followed by the isolation of plasmid DNA via mini-preparation 

(see section 3.7.5.1). For qualitiy control, a successful PstΙ restriction enzyme digestion 

was conducted. Thereafter, midi-preparation (see section 3.7.5.2) was performed. 

Next, the appropriate hygromycin B concentration (for selection process) had to be 

identified by testing of seven different concentrations (0, 100, 200, 400, 600, 800 and 

1000 µg/ml). For this, PaTu8988t cells were plated at a density of 5000 cells/ml (24-

well plate), cultured at 37 °C at 5 % CO2 till a confluence of < 10 % was reached, before 

being exposed to hygromycin B. When the "0" concentration point reached confluence, 

the medium containing hygromycin B was changed every two days till confluence was 

seen. Then, cell viability analysis of these cells (in quadruplicates), referred to a drug-

free condition, was conducted via PrestoBlue® staining and fluorescence measurement 

with the Tecan reader (see 3.10.4). For an increased likelihood of integration and a 

shorter time to get stable transfectants, the plasmid was linearized with the enzyme 

BsaI-HF (see 3.2.9.2).  

Then, the shRNA plasmids were transfected into the cells. For this purpose, 59.5 µl of 

OptiMem® medium were dispensed into a 24-well plate. Afterwards, 0.4 µg of the shRNA 

plasmids was added per well and mixed by gently rocking the plate for several times, 

before adding 3 µl of the Attractene Transfection Reagent (Qiagen, Hilden) per well. 

Again, the plate was shaken for some time. Then, the plate was incubated for 15 minutes 

at RT to allow the formation of the transfection complex. During that time, cells were 

prepared by washing twice with PBS, trypsinization with 150 µl of trypsin and cell 

harvesting by centrifugation at 500 g for 5 minutes in a falcon already containing 300 µl 
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of DMEM medium. Afterwards, the pellet was washed once with medium by 

resuspension and recentrifugation. Then, the pellet was resuspended in fresh growth 

medium (10 % FCS, 1 % PS). After cell counting, 125,000 cells/500 µl were added to the 

well containing the Attractene-plasmid-complexes, when 15 minutes of transfection 

complex formation were over. Moreover, untransfected cells were seeded on the same 

plate to have another control. Again, the plate was mixes gently by rocking back and 

forth and was incubated at 37 °C for 48 hours.    

Thereafter, cells were harvested as described before and 2500 cells/500 µl (< 10 % 

confluence) were seeded again on a 24-well plate, 4 wells per condition in DMEM 

medium without hygromycin B. Cell growing without hygromycin B was carried out for 

5 hours, before the effective hygromycin B concentration was added again. The 

hygromycin medium was renewed every 2 - 3 days for a time range of 7 days. 

Afterwards no hygromycin was added anymore till cell growing was seen. Then, 

hygromycin B was supplemented again, but in a reduced concentration of 100 µg/ml. 

The grown single clones were picked with a 10 µl pipette tip by pipetting 5 µl of DMEM 

medium 5 - 6 times on the place of clone growing. The pipetted volume was transferred 

into a 12-well plate, filled with 500 µl of DMEM medium (supplemented with 100 µg/ml 

of hygromycin B). Again, cell cultivation was performed, till clones were seen and 

transferred to a new 24-well plate. When 50 % of confluence was reached, cells were 

trypsinized and pipetted first into a 25 cm2 cell culture flask with 5 ml of DMEM 

medium, containing 100 µg/ml of hygromycin B, followed by a later transfer into a 75 

cm2 culture flask comprising hygromycin medium as well.  

Finally, gemcitabine sensitivity (10 - 1000 nM) was tested for this stably shRNA-

transfected cells, according to the Viability Assay described in section 3.10.4. 

3.10.3 Transient overexpression of genes 

Pancreatic cancer and HEK-293 cells were plated at a density of 2 x 105 - 4 x 105 

cells/2ml (depending on the cell line and the purpose) on a six-well plate (three wells 

per condition) and were cultured at 37 °C and 5 % CO2 till a confluence of 80 % was 

reached. In this work following plasmids were transfected into cells: pcDNA3-SP1 and 

pcDNA3-WWOX.  

The transient transfection was performed as follows: First, 200 µl of DMEM medium 
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(without FCS and PS) were mixed with 3.6 µg of plasmid DNA. Then 10.8 µl (Ratio 1:3, µg 

DNA : µl transfection reagent) of the X-tremeGene Transfection Reagent was added and 

mixed carefully. This mixture was incubated for 15 minutes at RT. During that time the 

culture medium of the wells was renewed (without PS). Finally, 200 µl of the 

transfection mixture was added in a dropwise manner and the plate was shaken slightly 

and incubated for four hours at 37 °C and 5 % CO2. Next, the readout of the transfection 

procedure was performed. Cells, overexpressed with pcDNA3-WWOX were exposed to 

gemcitabine as follows: After the mentioned four hours, cells were harvested and 

transferred into a 50 ml falcon tube, which already contained 12 ml of DMEM medium, 

followed by centrifugation at 500 g for 5 minutes. Then, supernatant removal was 

conducted and the pellet was resuspended in 700 µl of media. After cell counting, cells 

(3000 cells/100µl) were seeded on a black 96-well plate with a transparent bottom 

(Greiner, Frickenhausen) and were cultured for 24 hours (37 °C, 5 % CO2), before being 

treated with gemcitabine in quadruplicates. After further 72 hours, cell viability was 

analyzed via PrestoBlue® staining (see section 3.10.4). 

In case of SP1-transfection, four hours after transfection, transfected wells were pooled 

in the doubled amount of cell culture medium, centrifuged (500 g, 5 minutes) and 

resuspended in 12.5 ml of medium. Afterwards, 1 ml of this suspension was plated per 

well of a 12-well plate. Then, 48 hours after transfection, cells were treated with 

gemcitabine, 5-FU or irinotecan in duplicates. After further 24 hours, RNA samples were 

collected (3.6.1), which were used for future expression analysis (see Methods sections 

3.6.3 and 3.6.4.)  

3.10.4 Viability Assay of cytostatic-treated cells  

To assess gemcitabine and 5-FU sensitivity of cells with RNAi-mediated WWOX knock-

down (see 3.10.1, 3.10.2) or WWOX overexpression (see 3.10.3) cell viability testing was 

performed. Therefore, cells were trypsinized 24 hours after transfection and were 

seeded at a density of 3,000 cells/100 µl on a black 96-well plate with a transparent 

bottom (Greiner, Frickenhausen). Afterwards, gemcitabine or 5-FU was applied on the 

96-well plate at ten concentrations (for each cell line concentration ranges tested in 

concentration tests before, but identical distances on a log10-scale, for gemcitabine from 

10 to 1000 nM for PaTu8988t and from 4 to 400 nM for L3.6; for 5-FU 250 - 50000 nM 

for both cell lines) and referred to a drug-free condition, each in quadruplicates. Upon a 
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further incubation time of 72 h at 37 °C and 5 % CO2 the resazurin-based PrestoBlue® 

Cell Viability reagent (Invitrogen, Karlsruhe) was added and fluorescence signals 

(excitation 485 nm, emission 612 nm) were recorded after 4 hours. Viable cells are able 

to reduce the blue resazurin to the red-fluorescent resorufin. The measured fluorescent 

signal is proportional to the number of metabolically active cells, allowing 

quantification. The read out was conducted with the Tecan Ultra Plate reader (Tecan, 

Crailshaim, excitation 485 nm, emission 612 nm).  

In addition, transfected cells were incubated for further 48 h on a 6-well plate (referred 

to the time point when cells were removed from the six-well plate 24 h after 

transfection) to evaluate WWOX knock-down on protein level (3.8.3). 

3.11 Sensitivity of lymphoblastoid cells toward gemcitabine  

Using a genome-wide approach, comprising 89 fully sequenced lymphoblastoid cell lines 

(LCLs, see section 3.9.4), individual cell line's sensitivity toward gemcitabine was 

assessed. Dose-effect curves for gemcitabine treatment were established and EC50 (half 

maximal effective concentration) values were calculated and correlated in relation to the 

cell vitality. The inhibition of cell proliferation was used as toxicity readout, which was 

ascertained by Carboxyfluorescein succinimidyl ester (CFSE, eBioscience, Frankfurt) 

staining, measured by flow cytometry. Gemcitabine was used at concentrations of 0, 1.9, 

3.8, 6.4, 10.8, 18.1, 30.4, and 76.0 nM. This chosen concentration range was based on a 

test phase, performed by a former student in our lab, Dr. rer. nat. Sebastian Roppel, who 

executed this experiment for a another set of 111 LCLs. 

First of all, the cell lines were cultured in 75 cm2 culture flasks in a volume of 50 ml 

RPMI medium (supplemented with 15 % of FCS, 1 % PS, flask stored in a vertical way) to 

get a sufficient number of cells for the experiment (for cell counting see section 3.11.1). 

Per week, around 8 - 14 cell lines were analyzed in parallel. The cell concentration was 

kept between 3 x 106 and 6 x 106 cells per milliliter, to allow logarithmic growth. 

Besides, 30 % of the cell lines were measured twice, to exclude unreliable results. Prior 

to the gemcitabine treatment, the cells were stained with CFSE (see section 3.11.2), 

which dilutes with each cell division allowing to assess the effect of gemcitabine on the 

inhibition of cell proliferation. After the CFSE staining procedure cells were incubated at 

37 °C and 5 % CO2 for 24 h, prior to plating of 100,000 cells/ml per well, in duplicate for 
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each concentration, on a 24-well plate and the exposure to gemcitabine at the 

concentrations mentioned above. The treated cells were incubated for 72 h at 37 °C and 

5 % CO2, before the analysis via flow cytometry (see 3.11.3, 3.11.4) with excitation at 

485 nm and emission at 517 nm was performed. PBS treated LCL control samples (in 

duplicate) were incubated for 48 hours, before being measured by flow cytometry. 

These control samples were needed to calculate the proliferation index by comparing 

these results of the control samples with those control samples measured after 72 hours. 

In addition, LCLs were seeded on 6 well plates, treated with PBS (Control) and the 

gemcitabine concentrations 3.8 nM and 30.4 nM (three wells per condition, 3 ml per 

well) for DNA and RNA collection. After 24 hours three wells were pooled for each 

concentration, and the suspension was divided up into two 5 ml FACS tubes (BD Falcon), 

which were processed as described in chapter 3.2.1 and 3.6.1 dealing with DNA and RNA 

isolation, respectively. 

The whole procedure was divided up into several parts as described before, which were 

conducted as follows: 

3.11.1 Counting cells via flow cytometer 

For counting cells, 150 µl of the well resuspended cell suspension (out of the 50 ml in 

the flask) were pipetted into 5 ml Falcon tubes. Afterwards, a special staining solution 

containing Sytox Blue and Vybrant®DyeCycleTM Ruby stain (both Life Technologies 

Corporation, Darmstadt) was prepared, which stains living and dead cells. Both dyes 

incorporate into the DNA of cells and can be detected via measurement of fluorescence. 

The Vybrant Ruby stains dead and living cells, whereas Sytox Blue merely represents a 

dead cell stain. This cell dyeing allows the differentiation of living cells from dead cells 

and cell debris by flow cytometry. To provide a consistent cell counting system, the 

number of cells per sample was determined by addition of CountBrightTM Absolute 

Counting Beads (Invitrogen, Karlsruhe). The ratio of bead events (adjusted to 2500 

beads) was compared to the ratio of cell events (adjusted to 100,000 events), which 

leads to the absolute number of cells per sample. The staining mixture per sample was 

composed as follows (Table 52): 
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  Table 52: Mixture for vitality staining 

Reagent Volume per sample [µl] 

RPMI medium (15 % FCS, 1 % PS) 150 

Sytox Blue stain 0.3 (1:1000) 

Vybrant Ruby stain 0.15 (1:2000) 

Counting Beads 10 

Then, 160 µl of the vitality staining solution was added to 150 µl of cell suspension and 

was mixed well, followed by 15 minutes of incubation at 37 °C. Afterwards, cell counting 

was conducted with the Flow Cytometer BD LSRII (Becton Dickinson). The cell number 

determination by counting beads was performed according to manufacturer's 

instruction and the cell concentration was calculated with the following Equation 4: 

Equation 4: Calculation of the cell concentration in a cell suspension containing counting beads. 

 

Counted cells x total number of beads in the solution x dilution factor 
______________________________________________________________________________________ 

 
Counted beads x total volume of sample (cell suspension and volume of beads) 

 

3.11.2 CFSE staining of LCLs for proliferation analysis 

To assess the inhibition of cell proliferation, induced by gemcitabine, LCLs were loaded 

with CFSE (Carboxyfluorescein succinimidyl ester) stain. After cell division of these cells, 

the progeny contains half of the number of CFSE-tagged molecules. Therefore each cell 

division can be determined by measuring the corresponding decrease in cell 

fluorescence via flow cytometry. The diacetylated non-fluorescent CFDA, SE form 

(Carboxyfluorescein diacetate succinimidyl ester) can easily cross intact cell 

membranes. Esterases, which are present inside the cell, cleave the acetates. The 

deacetylated form is fluorescent and covalently binds to intracellular amines, so that 

fluorescent CFSE stays within the cell. 

Prior to CFSE staining, the cells were counted (see chapter 3.11.1) and adjusted to the 

appropriate volume for 15 x 106 LCLs. The cell suspension was centrifuged at 250 g for 7 

minutes at RT. Afterwards, the supernatant was discarded and the pellet was 

resuspended in 500 µl of PBS. Then, 500 µl of the staining solution, consisting of 40 µM 
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CFSE in PBS (550 µl PBS mixed with 2.2 µl of CFSE), was added and vortexed gently at 

1400 rpm for 5 seconds, before this cell suspension was transferred directly to 37 °C for 

2 minutes and 30 seconds. Immediately afterwards, the staining process was stopped 

with 10 ml of ice-cold cell culture medium (RPMI medium supplemented with 15 % FCS, 

1 % PS) in complete darkness for 5 min on ice. Again centrifugation and supernatant 

removal was performed under the same conditions as before, followed by resuspension 

of the pellet in 25 ml of warm cell culture medium. Thereafter, the cell suspension was 

transferred into a new cell culture flask, which was incubated at 37 °C and 5 % CO2 for 

24 h.  

3.11.3 Flow cytometry preparation  

After an incubation time of 72 hours, cells were harvested by mixing the well, pipetting 

in circles. Then, a defined suspension volume (see Table 53) was transferred into 5 ml 

FACS tubes. Due to different cell growth behaviour upon different gemcitabine 

concentrations and the need for similar cell numbers for the following staining 

procedure, an adjustment of the cell number was performed by pipetting different 

volumes.  

Table 53: Volume of gemcitabine treated samples measured by flow cytometry 

Concentration of gemcitabine [nM] Volume of cell suspension [µl] 

Control 200 

1.9 200 

3.8 200 

6.4 300 

10.8 300 

18.1 400 

30.4 600 

76.0 800 
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After cell washing with PBS, centrifugation at 250 g for 5 minutes and supernatant 

removal, 200 µl of the staining solution for vitality analysis (see Table 52 in chapter 

3.11.1) was added. These solutions were mixed at 1400 rpm for 10 seconds and were 

incubated for 15 minutes at 37 °C, 5 % CO2 before being measured with the flow 

cytometer. The data was analyzed by usage of the Cyflogic 1.2.1 free software 

(www.cyflogic.com). 

3.11.4  Flow cytometry and its measurement conditions 

Flow cytometry allows the multiparametric analysis of individual cells in a cell 

suspension, passing a laser with high speed. Depending on the shape, structure and/or 

staining different effects can be seen, giving information about cellular characteristics. In 

this work the method was used to assess the impact of gemcitabine on vitality and 

proliferation of LCLs. To eliminate cell debris seen as small particles the particle size 

was analysed first in the FCS (forward scatter channel), which is dependent on the 

volume of the cell, and the SSC (sideward scatter channel), which is related to the 

granularity of particles. For vitality testing, the fluorescent DNA intercalating dye Sytox 

Blue (excitation 440 nm, emission 480 nm), assessed in the Pacific Blue (based on 6,8-

difluoro-7 hydroxycoumarin fluorophore) channel, and the Vybrant Ruby dye (excitation 

638 nm, emission 686 nm), assessed in the APC (Allophycocyanin, a photosynthetic 

pigment found in blue-green algea) channel, were used. To determine the proliferation 

rate under gemcitabine treatment, CFSE staining (excitation 492 nm, emission 517 nm, 

see chapter 3.11.2) was performed, which was detected in the FITC (fluorescein 

isothiocyanate) channel. For each channel different voltages were used, 170 volts for the 

FCS channel, 210 volts for the SSC channel, 685 volts for the APC channel, 215 volts for 

the FITC channel and 220 volts for the APC channel. 

3.11.5 Data Analysis 

Data analysis was performed by usage of the Cyflogic 1.2.1 free software for academic 

use (www.cyflogic.com). To differentiate between living and dead cells, Dot-Plots were 

drawn, with the APC channel on the x-scale, and the Pacific Blue channel on the y-scale 

(see Figure 12 - Figure 14). This allows gating of living cells, so that their percentage 

compared to dead cells could be calculated. Besides, the geometric mean of the FITC 

channel detection for living cells was determined, which stands for the CFSE dye used 
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for proliferation analysis. These described values were needed for the statistical 

assessment of cellular sensitivity upon gemcitabine treatment and the calculation of 

EC50 values (EC50Vit, EC50Prolif). Two different EC50 values were computed: One for the 

impact of gemcitabine on cell vitality (EC50Vit) by using the four-parametric MMF model 

(Multiple Multiplicative Factor Model), and one for the impact of gemcitabine on 

proliferation inhibition (EC50Prolif) using the three-parametric Gompertz model. The 

choice of an adequate model was performed with the Curve Expert Professional software 

(www.curveexpert.net), which encompasses 80 models. The criteria for the chosen 

model was a r2 value ≥ 0.95 for each cell line. For the determination of  EC50 values for all 

cell lines, the Solver algorithm in EXCEL was used. Below, exemplary data generated via 

flow cytometer is presented, showing the detected living cell population under PBS and 

gemcitabine exposure (two concentrations). 

 
Figure 12: Flow cytometry data of untreated LCL number 240: The determination of living cells (red coloured 
gate) was performed via Vybrant Ruby and Sytox Blue staining.   

 
Figure 13: Flow cytometry data of LCL number 240, treated with 10.8 nM of gemcitabine for 72 h: The 
determination of living cells (red coloured gate) was performed via Vybrant Ruby and Sytox Blue staining.   

Untreated 

10.8 nM of gemcitabine 
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Figure 14: Flow cytometry data of LCL number 240, treated with 76 nM of gemcitabine for 72 h: The 
determination of living cells (red coloured gate) was performed via Vybrant Ruby and Sytox Blue staining.    

3.12 Electrophoretic Mobility Shift Assay  

The Electrophoretic Mobility Shift Assay (EMSA) is used for detecting sequence-specific 

binding of DNA to proteins (e.g. of transcription factors) from nuclear extracts of cells. 

For detecting the protein binding to the probe, the probe, which is a complementary 

oligonucleotide probe with a GATC-nucleotide overhang on the 5’ terminus, was 

radioactively labeled with α-32P-dCTP. 

3.12.1 Isolation of Nuclear Protein Extracts 

For the isolation of nuclear protein extracts from the pancreatic cancer cell lines CFPac,  

PancΙ, PaTu8988t and MiaPaca-ΙΙ the protocol from the CelLyticTM NuCLEARTM Extraction 

Kit (Sigma, Deisenhofen, Germany) was modified. First, cells were lysed by osmotic 

pressure so that the cytosolic components move out of the cells. The cytosolic 

components were separated from membranes and the nuclei by centrifugation steps. To 

prevent nuclear proteins from leaving the nucleus, sodium-ortho-vanadate (AppliChem, 

Darmstadt, Germany), an inhibitor of nuclear transporters, was added. At the end, the 

membrane was destroyed chemically and mechanically so that membrane fragments 

could be separated from the nuclear proteins by centrifugation. The detailed procedure, 

which was conducted on ice for the whole time, is described below. 

A cell number of at least 1 x 107 was required for the isolation of nuclear protein extract. 

The cells were harvested and transferred into cooled 50 ml tubes. The tubes were 

centrifuged at 500 g for 10 minutes at 4 °C. Then, the supernatant was discarded and the 

76 nM of gemcitabine 
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pellet was washed with 10 ml of ice-cold PBS containing sodium-ortho-vanadate to a 

final concentration of 1 mM. The tube was centrifuged at 500 g for 10 minutes at 4 °C. 

Again the supernatant was removed and the cells were resuspended with 1.5 ml of ice-

cold PBS (containing sodium-ortho-vanadate to a final concentration of 1 mM) and 

pipetted into a 2 ml reaction tube. The reaction tube was centrifuged at 3000 rpm for 10 

minutes at 4 °C. Supernatant removal was performed and the pellet was slowly 

resuspended in a five-fold packing volume of a buffer based on HEPES/KOH (pH 7.9 at 

4 °C, Nuclear Extraction Buffer A, see Table 54), which was supplemented with DTT, 

PMSF and sodium-ortho-vanadate shortly before use (should not exceed a volume more 

than 500 µl). The formation of foam should be avoided. The mixture was incubated on 

ice for 15 minutes. The damage of cells was controlled with the microscope via cell 

staining with Trypan blue. Afterwards, the cells were destroyed mechanically in an 

oblong glass envelope by usage of a pestle. The mixture was compressed 30 times. Then 

10 µl of a 10 % NP-40-solution (nonyl-phenoxypolyethoxylethanol, Sigma) was added 

per 100 µl of lysed sample and vortexed vigorously for 10 seconds. Thereafter, the 

sample was centrifuged at 10000 g for 30 seconds. The supernatant contains the 

cytoplasmic fraction which was discarded. The pellet was absorbed in 2/3 of packing 

volume (~ 70 µl) of a 20 mM HEPES/KOH buffer (pH 7.9 at 4 °C, Nuclear Extraction 

Buffer B, see Table 55), which was supplemented with DTT, PMSF and sodium-ortho-

vanadate shortly before use. The reaction tube was shaken, fixed on a plate vortexer, at 

1800 rpm for 30 minutes at 4 °C in the cooling room. Finally, the mixture was 

centrifuged at 17,000 g for 5 minutes at 4 °C and the supernatant containing the nuclear 

proteins was transferred into a new reaction tube, which was stored at -80 °C. 
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Table 54: Ingredients of Nuclear Extraction Buffer A 

Reagent (pH = 7.9, at 4 °C) Concentration of stock 
solution [M] 

Concentration [mM] 

Hepes/KOH 0.5 10 

MgCl2 1 1.5 

KCl 1 10 

DTT (added shortly before use) 0.1 0.5 

PMSF (added shortly before use)  1 ml of saturated solution 

Sodium-ortho vanadate  

(added shortly before use) 

0.2 1 

ddH2O  Ad 100 ml 

Table 55: Ingredients of Nuclear Extraction Buffer B 

Reagent (pH = 7.9, at 4 °C) Concentration of stock 
solution [M] 

Concentration [mM] 

Hepes/KOH 0.5 20 

Glycerin 85 %  25 % 

NaCl 5 420 

MgCl2 1 1.5 

EDTA 0.5 0.2 

NP-40 (= modification)  1 % final concentration 

Na-DOC (= modification)  0.5 % final concentration 

DTT 

(added shortly before use) 

0.1 0.5 

PMSF 

(added shortly before use) 

 1 ml of saturated solution 

Sodium-ortho vanadate  

(added shortly before use) 

0.2 1 

ddH2O  Ad 100 ml 
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3.12.2 Labeling of probes 

Before probe labeling with radioactive α-32P-dCTP, they had to be annealed. The two 

complementary strands (complementary besides the GATC-nucleotide overhang) were 

mixed as follows in a 1.5 ml reaction tube (Table 56). 

Table 56: Mixture for oligo-nucleotide annealing 

Reagent Added volume [µl] 

Oligo_forward (100 µM) 1  

Oligo_reverse (100 µM) 1  

NaCl (0.5 M) 1  

ddH2O Ad 50 µl 

This mixture was incubated in one liter of heated water (~ 95 °C), which was stirred 

gently with a magnet stirrer with 100 rpm till the water reached room temperature and 

the oligonucleotides were annealed. Thereafter, the 5' overhang was filled via Klenow- 

enzyme. During this step, in addition to non-radioactive dATP, dGTP and dTTP-

nucleotides, alpha-32P-labeled dCTP was incorporated. The labeling process was 

performed in the radioactive labour where all safety rules and procedures were 

followed. 

Before entering the radioactive area, the double-stranded oligonucleotides were mixed 

with dNTPs (A, G, T), a 10x Klenow-buffer and ddH2O on ice (see Table 57). Afterwards, 

the Klenow-enzyme and α-32P-dCTP were added in the radioactive room and the 

samples were incubated for 1 hour at 37 °C.  
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Table 57: Mixture for probe-labeling with alpha-32P-dCTP 

Reagent Added volume [µl] 

Double-stranded oligonucleotides  

(2 pmol/µl) 

1  

dNTPs (A, G, T each 1 mM) 1  

10x Klenow-buffer 2  

ddH2O 12  

α-32P-dCTP (10 µCi/µl) 2 µl (added in the radioactive area) 

Klenow-enzyme (1 U/µl) 2 µl (added in the radioactive area) 

In total 20 µl 

To separate the labeled oligonucleotides from the not incorporated radioactive and non-

radioactive dNTPs, mini Quick Spin Oligo Colums (Roche) were used. The sephadex 

matrix of the columns was homogenized by shaking and vortexing. Thereafter, the lid 

and the bottom of the column were opened and the column was transferred into a 1.5 ml 

reaction tube for centrifugation at 3200 g for 2 minutes at room temperature (Biofuge 

15 R, Heraeus). Then, the column was placed into a new 1.5 ml reaction tube and the 

radioactive probe (which was centrifuged before to avoid contamination) was pipetted 

into the middle of the column and centrifuged again for 4 minutes. The flow-through 

contained the purified α-32P-dCTP labeled probe. To quantify the radioactivity, 4 ml of 

safety scintillator (Aquasafe 500 Plus, Zinsser Analytic) was mixed with 1 µl of the 

probe. This mixture was measured with the scintillation counter LS1801. The 

radioactivity was detected as counts per minute (cpm). For the EMSA experiment 30,000 

cpm of the probe were needed to perform the binding reaction. The following table 

(Table 58) shows the primers, which I radioactively labeled and used for the EMSA 

experiment. 

Table 58: Olionucleotides for the EMSA experiment (RRM2) 

Name of primer Sequence (5' → 3') 

RRM2_v1_1130609-G (WT)  GATCCTCTGCTTCGCTGCGCCGCCACTATGCTCTCCCTC  

RRM2_v1_1130609-C (WT) GATCGAGGGAGAGCATAGTGGCGGCGCAGCGAAGCAGAG  

RRM2_v1_1130609-T (Var) GATCCTCTGCTTCGCTGCGCCTCCACTATGCTCTCCCTC  

RRM2_v1_1130609-A (Var) GATCGAGGGAGAGCATAGTGGAGGCGCAGCGAAGCAGAG  
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3.12.3 The binding reaction 

An amount of 20 µg of the nuclear extract was mixed and incubated with a 4x binding 

buffer (see Table 59), poly dI-dC (poly deoxyinosinic-deoxycytidylic, unspecific 

competitor to avoid unspecific protein binding) and ddH2O for 10 minutes on ice (see 

Table 60). Afterwards, the respective radioactive probe (30,000 cpm) was added to the 

binding reaction mixture (performed in the radioactive area). 

Table 59: 4x Binding buffer  

Reagent (pH = 7.9, at 4 °C) Concentration [mM] 

Hepes (pH 7.8) 80 

EDTA (pH 8) 4 

DTT 2 

Glycerin 40 % 

KCl 560 

Table 60: Mixture for the binding reaction 

Reagent  Added volume [µl] or amount [µg] 

4x binding buffer 5 

Nuclear protein extract 20 

Poly dI-dC (1µg/µl) 2 

ddH2O Ad 18 µl 

After an incubation time of 15 minutes, 4 µl of a 6x loading dye (see Table 61) was added 

and the samples were loaded on a 5 % native non-denaturating polyacrylamide gel (see 

3.12.4).  

Table 61: 6x loading dye 

Reagent (-20 °C) Concentration [%] 

Glycerol 87 % 30 (v/v) 

Bromphenol blue 0.25 (w/v) 

Xylene Cyanol FF 0.25 (w/v) 
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3.12.4 Non-Denaturating Polyacrylamide Gel Electrophoresis 

The polyacrylamide gel was equilibrated in 0.5 % TBE-buffer (dilution of 5x buffer, see 

Table 63) for 1 hour with 180 V before usage. After sample loading, the gel was run for 

1.5 hours with the same voltage. The polyacrylamide gel was prepared as follows (Table 

62): 

Table 62: 5 % Polyacrylamide Gel 

 Table 63: 5x TBE buffer 

Reagent (pH = 8) Concentration [mM] 

Tris 450 

Boric acid 450 

EDTA 10 

After electrophoresis, the gel was laid on two Whatman paper (Schleicher und Schüll, 

Dassel) and was covered with a wrapping film. The drying process was performed on a 

vacuum-gel-drying-system at 80 °C for one hour. For visualizing the bands the gel was 

placed in a cassette, covered with a Fujifilm BAS1500 plate overnight. The radioactive 

signals were detected in a PhosphorImager (Raytest, Sprockhövel) by using the software 

BASreader and AIDA (Version 4.15.025, Raytest, Sprockhövel). In addition, the gel was 

put in a cassette with an x-rayfilm (Hyperfilm MP (18 × 24 cm), GE Healthcare) for 7 - 10 

days at -80 °C. To develop the x-rayfilm the x-ray-developer G150 und fixer G354 (AGFA, 

Leverkusen) were used in the darkroom. The signals were quantified by using the Fluor-

STM MultiImager (BioRad, Hercules, CA, USA).  

Reagent Added Volume [ml] 

40 % (w/v) Acrylamide/Mix 27:5:1 4.4 

5x TBE 3.5 

ddH2O 27 

APS 10 % (w/v) 0.350 (added in the end  gel forming process) 

TEMED 0.035 (added in the end  gel forming process) 
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3.12.5 Cold Competition Experiment 

To assess the specificity of a protein binding, cold competition experiments were 

conducted. Therefor, non-radioactive labeled samples were added with an excess (5- till 

100-fold) to the mixture for the binding reaction (see chapter 3.12.3, Table 60), after the 

binding reaction was incubated for 10 minutes. Thereafter, this mixture was again 

incubated for 10 minutes before adding the radioactive probe in the radioactive area. 

Specific binding is indicated by loss of factor binding to the radioactively labeled probe.  

The cold competition procedure was performed for investigation of binding specificity 

between the different alleles of the RRM2 SNP rs1130609 located in the 5' region.  

3.13 Statistical analysis 

EC50 values for individual LCL proliferation inhibition by gemcitabine were calculated by 

a three-parameter Gompertz model based on dose-response effects for eight 

gemcitabine concentrations (0, 1.9, 3.8, 6.4, 10.8, 18.1, 30.4, and 76.0 nM). Suitability of 

this model fit was proven by r² values > 0.95 for 88 LCLs and r² = 0.93 for one LCL.  

Descriptive statistics include data characterization by their distribution and 

visualization. Error bars and dot plots were used for parametric, box plots for non-

parametric presentation of cumulative data. Single data point correlations were 

visualized by scatter plots. 

All analytical testing was carried out two-sided. By default, threshold for statistical 

significance was set at p < 0.05 not accounting for multiplicity testing. Correction for 

multiple testing did not apply for the functional effects of the single investigated SNPs, 

for which clear hypotheses were deduced from clinical association data. However, in 

case of mechanistic studies apart from defined SNP effects the numbers of statistical 

tests according to the investigated parameters should be considered when interpreting 

the reported p-values. Applicability of parametric tests was assessed by compatibility of 

data with normal distribution (if p > 0.05 according to Shapiro-Wilk test). In some cases, 

this assumption could be matched by data log-transformation (e.g. EC50 values for 

gemcitabine in LCLs). If no compatibility with normal distribution could be achieved 

non-parametric testing was applied. 

Regarding the presented correlation data, in each case normal distributions of the 
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respective two parameters could be assumed. Thus, correlation coefficients according to 

Pearson are reported. Differences between paired samples (e.g. RNA expression before 

and during chemotherapy) were assessed using the Wilcoxon signed rank test. 

Treatment effects between two groups in pancreatic cancer cell lines were evaluated by 

t-test without assuming equal variances. Genotype effects on functional parameters 

were assessed by Mann-Whitney U testing for two groups, and by Jonckheere-terpstra 

test for three group comparisons. Statistical testing was performed using SPSS, version 

12.0 (IBM, IL, USA).  
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4 Results 

An earlier analysis of our research group identified genetic single nucleotide 

polymorphisms in the WWOX and RRM2 genes by genotyping germline DNA samples 

isolated from peripheral blood cells (ROPPEL 2013, ZIMMER 2013). These SNPs were 

associated with the overall survival of patients treated with gemcitabine. Below, firstly 

all experimental data concerning the WWOX polymorphism are presented, followed by 

the data concerning the RRM2 polymorphisms. 

4.1 The SNP rs11644322 association with the overall survival suggesting 

relevance of WWOX in pancreatic cancer and gemcitabine treatment 

The variant A allele at the WWOX SNP rs11644322 (G > A) site was found associated 

with a worse clinical outcome in patients treated with gemcitabine for PDAC (ROPPEL 

2013). Therefore, I set out for detailed functional assessment of this SNP in my thesis. 

That included a presumed specific functional role of the WWOX rs11644322 SNP site, 

but also experiments aiming at elucidation of the role of WWOX in gemcitabine therapy 

in general.  

4.1.1 Modulation of gemcitabine sensitivity by WWOX rs11644322 

The hypothesis was tested whether the WWOX index SNP affects cellular sensitivity to 

cytostatic drugs. Therefore, dose-response effects were examined in a panel of 89 LCLs 

employing different concentrations of gemcitabine (0, 1.9, 3.8, 6.4, 10.8, 18.1, 30.4, and 

76.0 nM). For each cell line, EC50 values were calculated as described in the Methods 

section (see section 3.11.5). Gemcitabine sensitivity was found to be modulated by 

rs11644322. The A allele was associated with increased resistance toward gemcitabine 

(p = 0.002, see Figure 15). This finding is accordant to the clinical observation in which 

carriers of this A allele experienced shortened overall survival (see section 1.5.2, Figure 

5).  
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Figure 15: Impact of WWOX rs11644322 
on cellular gemcitabine sensitivity of 
lymphoblastoid cell lines. EC50 values 
representing cellular sensitivity towards 
gemcitabine in relation to the three 
genotype configurations at rs11644322. 
Out of 89 LCLs, 47 harbored GG genotype, 
37 GA, and 5 AA. EC50 data were calculated 
by a three-parameter Gompertz model for 
proliferation inhibition determined by flow 
cytometry-recorded CFSE staining based on 
dose-response effects of gemcitabine 
concentrations at 0, 1.9, 3.8, 6.4, 10.8, 18.1, 
30.4, and 76.0 nM. Statistical differences 
were assessed by the non-parametric 
Jonckheere-Terpstra trend test with given 
p-value referring to two-sided testing. This 
figure was generated with Sigma Plot, 
version 12. 

 

4.1.2 WWOX expression in relation to the rs11644322 SNP site 

4.1.2.1 Location of the rs11644322 SNP site 

The SNP WWOX rs11644322 with a minor allele frequency (MAF) of 26.1 % is located in 

the immense intron 8 (776656 bp long) separating exon 8 and 9 (see Figure 16 for full 

length transcript). GeneBank entries (http://www.ncbi.nlm.nih.gov/gene/) suggest 

several alternative transcripts of WWOX terminating within intron 8. 

100 kbp

5'UTR/E1

E2
E3

E4 E5 E6

E7

E8
E9/3'UTRrs11644322

A

 

Figure 16: Genetic architecture at the WWOX locus. Information was taken from NCBI GeneBank (see assembly 
GRCh38.p2). The coding region contains 9 exons, the first and the last one flanked by the 5' and the 3'-untranslated 
region (UTR), respectively. The vertical lines represent the exons. The location of the index SNP rs11644322 in intron 
8 is marked. Proportionality of sizes and distances are retained. The vertical lines denoted with E1 - E9 represent the 
protein coding exons. 

4.1.2.2 WWOX expression of exons flanking the index SNP 

As illustrated in Figure 16, rs11644322 is flanked by the exons 8 and 9 of WWOX. 

Transcription of this region was compared with that of exon 4-6, considered as core 

WWOX region. For absolute quantification of the expression ratios between these two 

WWOX coding regions a cDNA comprising entire WWOX, was cloned as reference (see 
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3.5.1). Expression analysis (see 3.6.4) in 88 LCLs (for one cell line reverse transcription 

failed) identified a mean transcription rate of 67 % for exon 8-9 compared to the core 

coding region (see Figure 17, bar plot), indicating the presence of the last exon in the 

majority of WWOX transcripts. In addition, a substantial intra-cell line correlation 

between the expression of these two WWOX regions was verified, which even increased 

upon gemcitabine exposure (Figure 17). 
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Figure 17: Expression of the last exon in relation to that of the core WWOX coding region. The mRNA expression 
of the terminal exon 9 (captured by an exon 8/exon 9-spanning primer pair) was compared with the major part of the 
coding region (represented by an exon 4/exon 5/exon 6-spanning primer pair). The graphs summarize the data 
obtained with 88 lymphoblastoid cell lines (for one cell line reverse transcription failed) treated either with PBS only 
(baseline) or with 30 nM of gemcitabine at 37 °C for 24 h. The scatter plot illustrates expression correlation between 
regions 4-6 and 8-9. Both axes are displayed in log10-scale, by which normal distributions of the data could be 
assumed. The respective regression lines with the Pearson correlation coefficient r are indicated. All expression data 
were referred to the cell line with the lowest transcript numbers for exon 4-6 under basal conditions (set to “1”). To 
account for inter-sample heterogeneity, expression data were normalized to a weighted mean of five reference genes 
(B2MG, GAPDH, HPRT1, UBC, 36b4). The lower right insert illustrates the quantitative transcript numbers of the last 
WWOX exon in relation to the core coding region of which the mean over the entire LCL cohort was set to “1” (error 
symbols denote one SD). This figure was generated with Sigma Plot version 12. 
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4.1.2.3 Impact of rs11644322 SNP on WWOX regional transcription 

It should be delineated whether the WWOX SNP rs11644322 affects transcription of 

exon 4-6 and 8-9. Presence of the AA genotype at the index SNP site was accompanied by 

lower transcription of both WWOX regions, with and w/o gemcitabine (Figure 18). 

However, no significant change in WWOX gene expression could be detected between GG 

and GA genotypes in the present experimental setting with short-term incubation time 

of 24 h.  
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Figure 18: Impact of rs11644322 SNP on WWOX regional transcription (exon 4-6/8-9). The left side of the 
image refers to the central coding region (exon 4-6), the right to that of exon 8-9, each for baseline conditions and 
upon 30 nM gemcitabine incubation for 24 h at 37 °C. The median value for each group is highlighted by a horizontal 
grey-shaded line. Statistical differences between two groups were assessed by the non-parametric Mann-Whitney U 
test. The lower line of p-values refers to testing between GG and GA genotype, the upper one between combined GG 
and GA versus AA configuration. This figure was generated with Sigma Plot version 12. 

4.1.2.4 Whole transcriptome analysis around the WWOX index SNP 

As located far distant from exon 8 and 9, it was suggested that the rs11644322 site 

might be involved in regulation of non-coding RNA expression. To discover non-coding 

RNAs vicinal to the index SNP, whole transcriptome analysis (RNAseq, see 3.6.5) was 

undertaken. For two pooled RNA probes from LCLs, carrying the GG vs. AA genotype at 

rs11644322, there was no coverage around the index SNP site (see Figure 19).  
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This observation demonstrates that there are no transcripts encoded in the genetic 

vicinity of rs11644322.  

WWOX SNP rs11644322

LCL G allele sample

LCL A allele sample

 
Figure 19: Whole transcriptome analysis around rs11644322. Data were analyzed by RNA sequencing of two 
pooled LCL samples containing the homozygous G (upper panel) or the A (lower panel) allele at rs11644322 with 
each pool consisting of RNA of five LCLs (cell identifiers at the Coriell institute for G allele: HG00096, HG00109, 
HG00120, HG00244, and HG00258; for A allele: HG00100, HG00108, HG00122, HG00245, and HG00265). Genomic 
sequences ± 5000 bp around the index SNP (marked with a dashed line) are shown. 

Likewise, in the pancreatic cancer cell lines PaTu8988t, MiaPaca-II, and AsPC1 no reads 

or only reads at very low amounts, not distinguishable from technical noise 

(< 0.5 reads/kilobase of transcript/per million mapped reads), could be observed within 

a range of ±1 Mbp referred to the index SNP rs11644322.  

4.1.2.5 Global transcriptome stratified for rs11644322 

Five pooled LCLs each with GG or AA genotype at rs11644322, not exposed to 

gemcitabine, were subjected to global transcriptome analysis. Out of all identified and 

annotated transcripts only six showed differential expression of more than 2-fold (see 

Table 64). Compared with GG, transcription in cells with AA genotype was lower for 

TIMP2 and SEMA3C and higher for RNA5-8SP2, IGHA1, AL161626.1, and RNA5-8SP6. The 

most pronounced ratio was observed for RNA5-8SP2 (ribosomal pseudogene). For this 

transcript, which is located on chromosome 16 like WWOX, correlation with EC50 values 

for gemcitabine and with WWOX expression was evaluated in the entire set of 89 LCLs. 

However, expression of RNA5-8SP6 was neither related to EC50 for gemcitabine nor to 

WWOX expression (core region and last exon). 
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Table 64: Expression profile in LCL samples in dependence of WWOX rs11644322. Five non-treated LCLs each 
with homozygous wild-type (Coriell ID HG00096, HG00109, HG00120, HG00244, and HG00258) and homozygous 
variant allele (HG00100, HG00108, HG00122, HG00245, and HG00265) configuration at rs11644322 were pooled. 
This table lists all transcripts differing by a log2-fold change of at least 2.0 between these two groups. Data were 
obtained by sequencing of total RNA. Transcript data refer to RPKM values. RPKM-normalized transcripts for AA at 
rs11644322 were divided by those for GG genotype. 

Transcript notation Rs11644322_GG [RPKM] Rs11644322_AA [RPKM] Ratio AA/GG 

TIMP2 1.50 0.18 0.12 

SEMA3C 1.50 0.25 0.16 

RNA5-8SP2 15.0 1653 110 

IGHA1 28.14 503 17.9 

AL161626.1 1757 10429 5.94 

RNA5-8SP6 373 28728 77.1 

4.1.3 Consequences of SP1 overexpression for cytostatic drug sensitivity 

Previously, weaker SP1 binding for the minor A allele at the WWOX rs11644322 site was 

identified and hypothesized to be linked to poor cytostatic response (ROPPEL 2013). 

Based on this finding, I investigated the functional consequences of SP1 overexpression 

on cytostatic drug sensitivity in the pancreatic cancer cell lines AsPC1, MiaPaca-ΙΙ and 

PancΙ. First, time kinetics analysis in the model cell line HEK-293 were conducted to 

establish proper transfection conditions. Following 48 hours upon transfection (see 

Methods SP1 transfection, chapter 3.10.3), high amounts of SP1 transcripts were 

detected (Figure 20). Thus, this time point was selected for starting drug exposure 

lasting for additional 24 h. 
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Figure 20: Time kinetics of 
SP1 overexpression. Here, 
easily tranfectable HEK-293 
cells were used. SP1 gene 
expression was assayed 1, 3, 8, 
24, 48 and 72 hours upon 
transfection of pcDNA3 vector 
with and without SP1 coding 
sequence. These data were 
normalized to a weighted mean 
of three reference genes (36b4, 
UBC, HPRT1) and referred to the 
first time point (1 h) upon 
vector transfection without SP1. 
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SP1 transfection resulted in different effects on WWOX transcription in various 

pancreatic cancer cell lines (see Figure 21). Expression of WWOX exon 4-6 appeared to 

be reduced by about 40 % and 20 % in AsPC1 and PancI, respectively, and induced by 

70 % in MiaPaca-II. However, none of these observations based on three independent 

experimental series reached statistical significance. Concerning WWOX 8-9 transcripts, 

which were about 30 % in regard to WWOX exon 4-6 in AsPC1, 85 % in MiaPaca-II and 

absent in PancI without SP1 overexpression, were not altered substantially upon SP1 

transfection. 
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Figure 21: Impact of SP1 overexpression on WWOX transcription. In each of the three investigated cell lines 
(AsPC1, left panel), MiaPaca-II (center), and PancI (right) expression of WWOX exon 4-6 and 8-9 region was quantified 
upon transfection of pcDNA3 vector with and w/o SP1 and subsequent incubation at 37°C for 72 h. WWOX expression 
data were normalized to a weighted mean of three reference genes (36b4, UBC, HPRT1) and then referred to exon 4-6 
expression w/o SP1 transfection. Bars represent mean values of three independent experiments and the errors the 
respective standard deviations. Statistical differences between two groups were assessed by t-test without assuming 
equal variances. 

In AsPC1 and MiaPaca-II cells, which exhibited detectable amounts of WWOX exon 8-9 

transcripts, cytostatic drug effects on expression of the two interrogated WWOX regions 

elicited mostly similar (Figure 22, panel A and B). In PancI, in which transcription of the 

exon 8-9 region was below the detection level, conditions with and w/o SP1 

overexpression were compared for expression of the exon 4-6 region (Figure 22, panel 

C). In this cell line WWOX expression was not much affected by the tested cytostatics 

(besides a moderate increase induced by the lower gemcitabine concentration). In 

contrast, irinotecan exhibited a strong WWOX suppression in SP1-overexpressing AsPC1 

and MiaPaca-II cells, regardless of the considered WWOX region. Respective assessment 

in AsPC1 without SP1 transfection revealed similar effects for irinotecan albeit to a 

lesser extent. Intriguingly, gemcitabine elicited cell line-specific effects with differential 

affections of the WWOX region considered. In AsPC1, expression of the WWOX core 

region was substantially suppressed by gemcitabine whereas that of the last exon 
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remained virtually unaltered in relation to a drug-free control. In contrary, respective 

analysis in MiaPaca-II revealed a slight induction of both investigated WWOX regions. 5-

FU, however, did not modify WWOX transcription neither in AsPC1 nor MiaPaca-II. 
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Figure 22: Modulation of WWOX transcription by cytostatics upon SP1 overexpression. Experimental design was accordingly to Figure 21 with additional cytostatic treatments at 
the indicated drug concentrations 48 h following SP1 transfection (i.e. drugs were present in the last 24 h period of the entire 72 h incubation at 37°C since SP1 transfection). Drug effects 
were each referred to treatment with PBS and statistically assessed by t-test without assuming equal variances. Note that for AsPC1 (panel A) and MiaPaca-II (panel B), data for both 
transcript regions upon SP1 overexpression are displayed (data referred to WWOX 4-6 expression upon PBS treatment). In case of PancI (panel C), in which WWOX exon 8-9 expression 
was not detectable, drug effects on WWOX exon 4-6 are illustrated w/o and with SP1 transfection (data referred to pcDNA3 transfect w/o SP1 and PBS treatment). With regard to 
reported p-values, the number of statistical tests according to the investigated parameters might be considered for interpretation.  
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4.1.4 WWOX in the context of apoptosis-related genes 

After successful testing of normal distribution (p > 0.05 according to Shapiro-Wilk test 

for deviation from normal) bivariate correlation analysis of WWOX exon 4-6 transcripts 

with the EC50 values of gemcitabine were conducted in LCLs. A weak correlation was 

identified under basal conditions and appeared intensified after an incubation time of 72 

h with 30 nM of gemcitabine (r = 0.34, p = 0.001, see Figure 23). For WWOX exon 8-9 

correlation tendencies were the same, but less pronounced (r = 0.14, p = 0.2 at baseline 

level, r = 0.30, p = 0.005 at 30 nM of gemcitabine). 
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Figure 23: Correlation of WWOX exon 4-6 transcripts with EC50 values of gemcitabine. Data were based on 88 
LCLs. For cell line number 247 the RNA content upon isolation was low and thus genes at low expression level like 
WWOX could not be determined. Panel A refers to baseline conditions, panel B illustrates the correlation at 30 nM of 
gemcitabine. Transcript numbers were normalized to the weighted mean of 36b4, B2MG, GAPDH, HPRT1 and UBC. P- 
values are according to the Pearson correlation coefficient r. EC50 values and expression data are denoted in a log10-
scale. A linear regression line is delineated. 

Due to the observed link between WWOX expression and cellular gemcitabine sensitivity 

an interaction with apoptosis-related genes was supposed. Therefore, expression 

between WWOX and three genes, related to apoptosis, was correlated in LCLs (see Table 

65). One of those genes, BCL2 (B-cell lymophoma 2), is known to inhibit apoptosis 

(JACOBSON et al. 1993), the second, TP53 (Tumor protein p53), promotes apoptosis 

(FRIDMAN AND LOWE 2003), and the third, GADD45A (Growth Arrest And DNA-Damage-

Inducible, alpha), fosters cell cycle arrest upon genotoxic stress and may be a crucial 

component in orchestrating DNA damage repair (SCHAFER et al. 2010, BARRETO et al. 

2007). 
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Table 65: Expression correlation of WWOX with BCL2, GADD45A, and TP53. Correlation coefficients and p-values 
according to Pearson are listed for WWOX exon 4-6 and WWOX exon 8-9 each for baseline condition and at 30 nM 
gemcitabine. 

Gene WWOX exon 4-6 WWOX exon 8-9 

 Baseline at 30 nM GEM Baseline at 30 nM GEM 

BCL2 r = 0.07, p = 0.5 r = 0.15, p = 0.2 r = 0.09, p = 0.4 r = 0.16, p = 0.1 

GADD45A r = 0.08, p = 0.5 r = 0.36, p = 0.001 r = 0.16, p = 0.2 r = 0.41, p = 6 x 10-5 

TP53 r = 0.20, p = 0.06 r = 0.32, p = 0.002 r = 0.36, p = 0.001 r = 0.16, p = 0.1 

Regarding the BCL2 gene, no correlation was detected, neither with the WWOX core 

region nor with the last exon. Interestingly, GADD45A was substantially correlated with 

WWOX exon 4-6 and to an even stronger extent with WWOX exon 8-9 region upon 

exposure to gemcitabine, but not at baseline condition. Moreover, GADD45A 

transcription upon gemcitabine elicited highly correlated with EC50 of gemcitabine, but 

again no relationship was observed for baseline GADD45A expression (see Figure 24). In 

contrast, a different correlation pattern between the two WWOX transcript regions and 

TP53 was noticed: Upon gemcitabine exposure, the correlation with the WWOX core 

region increased and that with the last exon decreased. 
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Figure 24: Correlation of GADD45A transcripts with EC50 values of gemcitabine. Data was based on 89 LCLs. 
Panel A refers to baseline conditions, panel B shows the correlation at 30 nm of gemcitabine. Transcript numbers 
were normalized to the weighted mean of 36b4, B2MG, GAPDH, HPRT1 and UBC. P-values are according to the Pearson 
correlation coefficient r. EC50 values and expression data are denoted in a log10-scale. A linear regression line is 
delineated. 
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4.1.5 WWOX and cytotoxicity of gemcitabine 

As the SNP rs11644322 was identified as related to cellular gemcitabine sensitivity in 

LCLs (chapter 4.1.1) and to WWOX expression (see chapter 4.1.2.3) it was hypothesized 

that WWOX enhances cytotoxicity of gemcitabine. Therefore, the correlation between 

WWOX expression level and cytotoxicity of gemcitabine was examined.  

WWOX transcript numbers were negatively correlated with the EC50 value of 

gemcitabine in LCLs (see Figure 25). A negative correlation implies that higher WWOX 

expression is accompanied by lower EC50 values for gemcitabine resulting in increased 

sensitivity. Expression changes of WWOX upon gemcitabine exposure further 

strengthened this correlation with EC50.  
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Figure 25: Correlation of WWOX transcripts with 
EC50 values of gemcitabine. Data are based on the 
same 88 LCLs as in Figure 17 (section 4.1.2.2). (For 
cell line number 247 the RNA content upon isolation 
was low and thus genes at low expression level like 
WWOX could not be determined.) Shown 
correlations refer to WWOX transcripts of the E4-6 
region and were very similar for E8-9. Transcript 
numbers were normalized to the weighted mean of 
36b4, B2MG, GAPDH, HPRT1, and UBC. P-values are 
according to the Pearson correlation coefficient r 
which is displayed on the y-axis. Note that a 
negative correlation means higher WWOX 
expression and is accompanied by lower EC50 
values, i.e. increased sensitivity toward cytotoxic 
effects. Gemcitabine was administered at 30 nM for 
24 h at 37 °C prior to RNA harvesting. These drug 
concentrations were chosen about 5-fold higher 
than mean EC50 observed upon 72 h drug exposure 
(see Figure 15, section 4.1.1). This figure was 
generated with Sigma Plot version 12. 

 

4.1.6 Drug sensitivity upon knock-down or overexpression of WWOX 

4.1.6.1 WWOX knock-down via siRNA 

SiRNA-mediated WWOX knock-down (see chapter 3.10.1) in the two pancreatic cancer 

cell lines PaTu8988t and L3.6 was performed to figure out whether WWOX directly 

affects gemcitabine sensitivity. A successful knock-down of WWOX protein expression 

was demonstrated for both cell lines, as shown by Western blotting (see 3.8.3 and Figure 

26).  
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Figure 26: Western Blotting for siRNA knock-down in adenoductal pancreatic cancer cell lines PaTu8988t (A) 
and L3.6 (B). Actin was used as reference. “MM” = MagicMarkTM XP, “PP” = pre-stained protein marker (see methods 
“Western Blot”). The images show samples from three independent experiments. Note that for L3.6 the marker bands 
were hidden from imaging to get visible bands for WWOX, which is weakly expressed in this cell line. 

For both cell lines, a distinct decrease in basal proliferation was observed after WWOX 

siRNA transfection compared to control siRNA (see Figure 27).  
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Figure 27: WWOX knock-down by 
siRNA. Effects of WWOX knock-down on 
basal proliferation rates of the two 
adenoductal pancreatic cancer cell lines 
PaTu8988t and L3.6. Cells were 
transfected either with a panel of four 
siRNAs intended to target WWOX or with a 
scrambled panel of unspecific siRNAs as 
control. Total incubation time upon siRNA 
transfection was 96 h before PrestoBlue® 
was added and recorded (recorded in 
methods part 3.10.4). Bars represent 
means of three independent experiments 
with the errorbars indicating one standard 
deviation. This figure was generated with 
Sigma Plot version 12. 
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The impact of WWOX knock-down on 5-FU response was moderate in the two 

investigated cell lines. In gemcitabine treated L3.6 cells, WWOX depletion moderately 

decreased the gemcitabine sensitivity, whereas in PaTu8988t cells an intensified 

resistance was recorded under knock-down conditions (see Figure 28). These findings 

hypothesize that the impact of WWOX expression on gemcitabine sensitivity differs 

among different pancreatic cancer cell lines. 
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Figure 28: Consequences of WWOX knock-down on cytostatic drug sensitivity. Panel A displays data for the 
PaTu8988t and panel B for the L3.6 cell line. Drug concentrations are denoted in a log10-scale. Data for gemcitabine 
are shown as triangles (open ones for control siRNA, filled ones for siRNA against WWOX), for 5-FU analogously as 
circles. For each transfection condition and each drug, the proliferation rate for a drug-free control was set to 1.0 to 
which the indicated drug concentrations were each referred to. Data represent means of three independent 
experimental series with one standard deviation, indicated as error symbols. Within each series, each single condition 
was assayed in quadruplicates of which median values were taken for analysis. This figure was generated with Sigma 
Plot version 12. 
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4.1.6.2 WWOX knock-down via shRNA 

The consequences of stable WWOX knock-down were addressed in PaTu8988t cells (see 

section 3.10.2). Three stably transfected clones showed more than 50 % suppression of 

WWOX expression (see Figure 29).  

0

20

40

60

80

100

120

Negative 
Control 

Clone 3A Clone 3B Clone 4

W
W

O
X

ex
o

n
4

-6
 t

ra
n

sc
ri

p
ts

 [
%

]

 
Figure 29: WWOX exon 4-6 expression upon suppression by shRNA. PaTu8988t cells were transfected with 
different shRNA plasmids targeting WWOX or an unspecific shRNA negative control. Clone 3A and 3B represent two 
subclones of a common shRNA transfection. Clone 4 was derived from a different shRNA against WWOX. Four 
different subclones of one negative control transfection were established. Expression data were normalized to the 
weighted mean of three reference genes (36b4, UBC, HPRT1) and were then referred to the unspecific shRNA negative 
control. Bars indicate mean values of three independent measurements and errors the respective standard deviation. 

The knock-down of WWOX protein expression was affirmed by Western Blot 

performance (see Figure 30 and section 3.8.3). A more efficient knock-down was 

identified for Clone 4, which also featured the strongest knock-down on WWOX exon 4-6 

expression level (see Figure 29).  
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Figure 30: Western Blotting 
to demonstrate WWOX 
knock-down by shRNA. 
Actin was used as reference. 
Two clones each for shRNA 
negative control and shRNA 
WWOX-targeting transfection 
are displayed. The numbering 
of WWOX knock-down clones 
refers to Figure 29. 
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WWOX knock-down by shRNA (clone 4 in Figure 29 and Figure 30) surprisingly did not 

alter gemcitabine sensitivity (see Figure 31, panel A). However, additional siRNA-

transfection of this shRNA-transfected clone resulted in profound resistance to 

gemcitabine (see Figure 31, panel B) in a similar extent as observed for siRNA-only 

knock-down of WWOX in PaTu8988t cells (compare with Figure 28, panel A in section 

4.1.6.1).  
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Figure 31: Gemcitabine sensitivity upon WWOX knock-down by shRNA and in combination with siRNA. Drug-
response effects in PaTu8988t cells following shRNA-mediated WWOX knock-down (panel A) or with additional 
siRNA, targeting WWOX (panel B) are shown. Gemcitabine concentrations are denoted in a log10-scale (10 - 1000 nM 
for panel A, 1 - 500 nM for panel B). For each transfection condition, the proliferation rate for a drug-free control was 
set to 1.0, to which the indicated drug concentrations were each referred to. Data in panel A represents means of two 
independent experimental series with one standard deviation. Data in panel B refers to one experimental series. 
Within each series, each single condition was assayed in quadruplicates, of which median values were taken for 
analysis. This figure was generated with Sigma Plot version 12. 

4.1.6.3 Transient overexpression of WWOX 

Following the finding that siRNA knock-down of WWOX resulted in dramatically 

increased resistance toward gemcitabine in PaTu8988t (4.1.6.1), it was hypothesized 

that vice versa WWOX overexpression might increase sensitivity to this drug in this cell 

line. However, there is obviously a surplus of WWOX expression in PaTu8988t as shRNA-

mediated reduction by 90 % (see Figure 29, Figure 30) did not substantially affect 

gemcitabine sensitivity (Figure 31, panel A) unlike virtually complete WWOX 

suppression by siRNA (Figure 28, panel A, Figure 31, panel B). Hence, assessing 

overexpression of WWOX in PaTu8988t did not appear reasonable. Thus, MiaPaca-II 

cells featuring a 6.6-fold less basal WWOX expression (according to whole transcriptome 

analysis, referred to RPKM) were chosen for this investigation. Overexpression of 

WWOX (see methods section 3.10.3) was repeated three times (Figure 32). In a linear 
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regression model, assessing gemcitabine concentration and WWOX transfect as 

independent variables, the latter did not affect cell viability (p = 0.4). 
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Figure 32: Gemcitabine sensitivity upon 
WWOX overexpression. Drug-response 
effects in MiaPaca-II cells following 
transient transfection w/o WWOX 
(pcDNA3 vector) and with WWOX 
(pcDNA3-WWOX) are displayed. Drug 
concentrations are denoted in a log10-
scale. For each transfection condition, the 
proliferation rate for a drug-free control 
was set to 1.0 to which the indicated drug 
concentrations were each referred to. 
Shown data represent means of three 
independent experimental series with one 
standard deviation. Within each series, 
each single condition was assayed in 
quadruplicates, of which median values 
were taken for analysis. This figure was 
generated with Sigma Plot version 12. 
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4.1.6.4 WWOX expression in relation to whole transcriptome 

Whole transcriptome analysis was conducted in PaTu8988t cells stably transfected with 

shRNA against WWOX versus transfection with unspecific shRNA. Three clones each 

were analyzed. None of the transcripts was altered ≥ 2-fold by shRNA (see Figure 33). 

Targeted WWOX by shRNA was the gene showing strongest downregulation in terms of 

mean suppression (42 %, p = 0.008). Fifteen further genes were suppressed by 30 to 

41 % (0.0001 ≤ p ≤ 0.09). Statistically pronounced induction was identified for RAB12 

(p = 6.7 x 10-8), MED24 (p = 8 x 10-7), ANKRD13C (8.3 x 10-5) and DDI2 (p = 2.7 x 10-4). 

However, in each case the effect size in transcription increase was very moderate 

(between 58 and 72 %). 

Clone 
3A

Clone 
3B

Clone
4

Negative 
Control 1

Negative 
Control 2

Negative 
Control 3  

Figure 33: Differential gene expression upon WWOX knock-down by shRNA. The shown heatmap displays 
hierarchy clustering according to inter-clone correlation. Data were analyzed by RNA sequencing. Each row 
represents one gene. PaTu8988t cell clones with three each for specific shRNA against WWOX (left side) and for 
unspecific shRNA (controls, right) were assessed. Transcripts with a log2-fold change of at least 0.5 are displayed. 
Genes up-regulated upon shRNA-guided WWOX knock-down appear yellow, down-regulated ones in blue. 
Normalization was performed with regard to the total amount of sequence fragments per sample. WWOX is marked by 
a blue arrow. 
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4.2 Kozak region SNP in RRM2 

The RRM2 index SNP rs1130609 (base exchange G > T, frequency of the T allele 22.2 %) 

was identified in an in-house retrospective analysis associated with the overall survival 

of patients suffering from PDAC and treated with gemcitabine-containing regimens. The 

variant T allele conferred a significant better overall survival as outlined in the 

introduction (see Figure 4 in chapter 1.5.1, ZIMMER 2013). The following chapters 

describe the functional analyses that I conducted regarding RRM2. 

4.2.1 RRM2 expression 

4.2.1.1 RRM2 expression in relation to whole transcriptome upon 

gemcitabine 

Total transcriptome of AsPC1 and MiaPaca-II cell lines was assayed for treatment with 

and without gemcitabine. In both cell lines, gemcitabine treatment for 24 h at 37 °C 

resulted in an increase of RRM2 (major transcript isoform) by 1.9- and 2.8-fold for 

AsPC1 and MiaPaca-II, respectively. When considering the mean induction observed in 

these two cell lines, there was no other protein-coding transcript found with a higher 

basal transcription rate over the entire transcriptome to be induced stronger by 

gemcitabine than RRM2. There were only seven transcripts (all of them non-coding) 

which feature a stronger induction by gemcitabine at a higher basal expression level 

(see Table 66). Of all coding transcripts with a basal mean RPKM value of ≥ 1.0 in AsPC1 

and MiaPaca-II only 54 out of 5853 showed an equal or stronger induction by 

gemcitabine than RRM2. These data highlight the role of RRM2 in cellular response 

toward gemcitabine. It should be announced that these whole transcriptome data refer 

all to cell lines transfected with a SP1-overexpressing plasmid. Comparison to vector 

transfection without SP1 by qRT-PCR demonstrated no statistically significant alteration 

(p > 0.2 by paired Wilcoxon signed rank test). 
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Table 66: RRM2 induction by gemcitabine in relation to entire transcriptome. Expression data (basal and fold 
induction by gemcitabine) were averaged for AsPC1 and MiaPaca-II. Basal expression data are presented as 
normalized RPKM. The entire list of 57,396 transcripts was first filtered for known transcripts leaving 57,181. Second, 
all items with an RPKM value of zero were sorted out remaining 19,932 transcripts. These latter were sorted 
according to basal expression status. Then, all entries with an equal or higher expression level than RRM2 were 
further sorted in relation to fold induction by gemcitabine of which the top eight are listed. 

Transcript notation RNA type Basal expression 
[RPKM] 

Fold induction by 
gemcitabine 

RNA5-8SP6 rRNA1 240.3 13.9 

RNU5F-1 snRNA2 130.7 6.3 

MT-RNR1 Mt-rRNA3 45.3 4.2 

SNORA80B snoRNA4 106.7 3.7 

RNU5A-8P snRNA 37.6 3.3 

MT-RNR2 Mt_rRNA 255.9 2.9 

SNORA34 snoRNA 57.7 2.6 

RRM2 Protein coding 35.6 2.3 

1rRNA = ribosomal RNA, 2snRNA = small nuclear RNA, 3Mt-rRNA = mitochondrial ribosomal RNA, 
4snoRNA = small nucleolar RNA  

4.2.1.2 RRM2 transcript variant expression 

The location of this SNP differs in relation to the two known transcript variants of RRM2. 

Regarding variant 1 (V1), this SNP site represents an amino acid exchange from alanine 

to serine at position 59, in relation to variant 2 (V2, major transcript) the SNP resides 

inside the Kozak sequence 6 bp prior to the methionine translation start site (see Figure 

34).  

Transcript variant 1 (V1): Ala59Ser
Transcript variant 2 (V2): Position -6 relative to ATG

V1
V2

5' UTR 3' UTR

rs1130609

 

Figure 34: Relation of the index SNP (rs1130609) to the two RRM2 transcript variants, according to NCBI 
GenBank. The corresponding GenBank entries are denoted as  NM_001165931.1 and NP_001159403.1 for V1 mRNA 
and protein and as  NM_001034.3 and NP_001025.1 for V2 mRNA and protein, respectively. The coding region 
contains 9 exons, the first one flanked by the 5' and the last by the 3'-untranslated region (UTR). The black rectangles 
respresent the exons. The location of the index SNP rs1130609 is marked. Relationships of sizes and distances are 
retained. 

In order to determine the quantitative relations of V1 and V2 transcript numbers, 

quantitative RT-PCR (see section 3.6.4) was conducted. As the sequence of V2 is a 

complete substring of V1, specific primers for V2 cannot be designed. Thus, two primer 

pairs specifically covering V1 or both transcripts (V1+V2) were employed. 

http://www.ncbi.nlm.nih.gov/projects/sviewer/sequence.cgi?id=gi%7C260064012&format=fasta&filename=NM_001165931.1.fa&ranges=0-3451
http://www.ncbi.nlm.nih.gov/projects/sviewer/sequence.cgi?id=gi%7C260064013&format=fasta&filename=NP_001159403.1.fa&ranges=0-448
http://www.ncbi.nlm.nih.gov/projects/sviewer/sequence.cgi?id=gi%7C260064011&format=fasta&filename=NM_001034.3.fa&ranges=0-3283
http://www.ncbi.nlm.nih.gov/projects/sviewer/sequence.cgi?id=gi%7C4557845&format=fasta&filename=NP_001025.1.fa&ranges=0-388
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Gene expression analysis was conducted in the pancreatic cancer cell lines AsPC1, PancΙ 

and MiaPaca-ΙΙ as well as in 89 LCLs (see Figure 35). In pancreatic cancer cell lines, the 

fraction of V1 was 3.5 % of total RRM2 transcription, whereas in LCLs V1 represented 

only 1 %.  

V1

V1 + V2

Pancreatic cancer cell lines Lymphoblastoid cell lines (LCLs)

96.5 % 99 %

3.5 % (V1) 1 % (V1)

 

Figure 35: Quantitative proportions of RRM2 transcript variant expression. The fraction of RRM2 transcript 
variant 1 (V1) in relation to total RRM2 (V1 + V2) is displayed for the average of three pancreatic cancer cell lines 
AsPC1, PancΙ and MiaPaca-ΙΙ (left) and for 89 LCLs (right). Data were obtained by qRT-PCR. 

4.2.2 RRM2 variant expression upon gemcitabine 

In LCLs, gemcitabine treatment (30 nM) resulted in a significant induction of total RRM2 

(p = 8 x 10-6) and a reduction of V1 (p = 2 x 10-12) (see Figure 36). Thus, the ratio of 

RRM2v1/RRM2 total decreased (see Figure 37, panel A).  
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Figure 36: Gemcitabine effects on RRM2 transcript variant expression in LCLs. Panel A features the RRM2 total 
and panel B the RRM2v1 transcript expression in 89 LCLs exposed to either PBS (control) or 30 nM of gemcitabine. 
Expression data obtained by qRT-PCR analysis were normalized to the weighted mean of 36b4, B2MG, GAPDH, HPRT1 
and UBC serving as reference genes. The normalized data were then referred to the median of the PBS treatment, each 
for RRM2 and RRM2v1. The p-values indicating statistical differences between PBS and gemcitabine treatment were 
calculated by paired Wilcoxon signed rank test. 
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Concordant to this ratio decrease in LCLs, a reduced ratio could be recorded for the 

pancreatic cancer cell lines AsPC1 (p = 0.001), PancΙ (p = 0.006) and MiaPaca-ΙΙ 

(p = 0.07, see Figure 37, panel B) exposed to 40 µM of gemcitabine. 
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Figure 37: Consequences of gemcitabine on RRM2 transcript variant expression ratio. Panel A displays 
summarized data of 89 LCLs, panel B the three denoted pancreatic cancer cell lines each representing three 
independent measurements. LCLs were exposed either to PBS (control) or to 30 nM of gemcitabine, pancreatic cancer 
cell lines to PBS or 40 µM of gemcitabine due to substantially differing sensitivity of these cell types. RRM2v1/RRM2 
ratios were calculated and then referred to the mean of PBS for each cell type. The bars represent mean values with 
the errors indicating standard deviation. Statistical differences were assessed by paired Wilcoxon signed rank test 
with the respective p-values indicated. 

The differential effects of gemcitabine on RRM2 transcript variant expression in cell lines 

raised the hypothesis whether analogous patterns might be present in patients as well. A 

marked induction of total RRM2 within one month upon chemotherapy start (p = 0.001, 

n = 28) was observed and appeared sustained up to ten weeks in relation to treatment 

start, whereas RRM2v1 expression did not change (see Figure 38). This data indicate that 

the rise in RRM2 was due to the major transcript isoform RRM2. 
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Figure 38: RRM2 transcript variant expression in patients' blood during chemotherapy. RRM2 total (A) and 
RRM2v1 (B) transcript expression in blood before and during chemotherapy (upon 4 and 10 weeks) is shown. The 
data were ascertained by qRT-PCR and normalized to HPRT1. Statistical differences between each of the two sampling 
time points upon gemcitabine start and the reference determined prior to therapy were assessed by paired Wilcoxon 
signed rank test. 

4.2.3 Impact of RRM2 index SNP on RRM2 transcript variant expression  

The basal gene expression of RRM2 in 89 LCLs was not altered by rs1130609, neither for 

total RRM2 (p = 0.9) nor for RRM2v1 (p = 0.2) (see Figure 39). Also upon gemcitabine 

treatment, no statistically significant SNP effect could be observed with regard to total 

RRM2 expression (p = 0.2, compared to control). However, RRM2v1 suppression by 

gemcitabine was weaker in case of the T variant allele (ptrend = 0.008 for number of T 

alleles compared to G allele). This T allele was associated with better clinical outcome. 

Due to limited sample number, assessment of RRM2 expression in dependence on 

rs1130609 was not feasible for pancreatic cancer cell lines and for patients during 

gemcitabine treatment. 
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Figure 39: RRM2 transcript variant expression in dependence on RRM2 rs1130609. RRM2 total (A) and RRM2v1 
(B) transcript expression data in 89 lymphoblastoid cell lines treated with PBS (left half of either panel) and upon 
gemcitabine exposure (30 nM, right half). Allelic effects were evaluated by Jonckheere-Terpstra trend test. Expression 
data are identical to those described in Figure 36, in which gemcitabine treatment effects are displayed independent 
of rs1130609. 

4.2.4 Nuclear protein binding at RRM2 rs1130609 

With respect to the RRM2 transcript variant 2, rs1130609 is located in the Kozak 

sequence, which is known as a transcription factor binding region (FITZGERALD et al. 

2004). To investigate nuclear protein binding at rs1130609 electrophoretic mobility 

shift assays (EMSA, see section 3.12) were conducted using nuclear cell extracts of HEK-

293 cells, LCLs and pancreatic cancer cell lines. 

For nuclear extracts of LCLs, allele-specific protein binding was observed, with stronger 

binding for the wild type G allele (see Figure 40, panel A). To assess allele specificity cold 

competition experiments were undertaken. The radioactive labeled probe containing 

the G allele was competed with excesses (5-, 10- and 20-fold) of non-labeled probes with 

the G and the T allele. These competition experiments using nuclear cell extracts of LCLs 

indicated stronger affinity for the G allele (Figure 40, panel B). In a linear regression 

analysis based on three independent competition experiments higher affinity to the G 

versus the T allele was observed at a p-value of 0.05 adjusted for the three levels of 

probe excess.  
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Figure 40: (A) Electrophoretic Mobility Shift Assay (EMSA) for RRM2 rs1130609 with LCL nuclear cell extract, 
(B) cold competition experiments for 32P labeled rs113609 wild type probe. The radioactive labeled wild type 
probe was competed with non-labeled wild type probe with increased concentrations (line 2 - 4 show 5-, 10- and 20-
fold molar excess of the radioactive labeled probe) and competed with non-labeled variant probe (line 5 - 7, same 
concentrations), respectively. The unspecific probe CRE (cAMP response element) is shown as positive control in 
panel A. The band, indicating nuclear protein binding is marked with a black arrow.  

Using nuclear extracts from HEK-293 cells, stronger binding and higher affinity to the G 

allele at rs1130609 has been confirmed (see Figure 41).  
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Figure 41: (A) Electrophoretic Mobility Shift Assay (EMSA) for RRM2 rs1130609 with HEK-293 nuclear cell 
extract, (B) cold competition experiments for 32P labeled rs113609 wild type probe. The radioactive labeled 
wild type probe was competed with non-labeled wild type probe with increased concentrations (line 2 - 4, 5-, 10- and 
20-fold molar excess of the radioactive labeled probe) and competed with non-labeled variant probe (line 5 - 7, same 
concentrations), respectively. Line 8 illustrates the negative control, without nuclear extract. The unspecific probe 
CRE (cAMP response element) is shown as positive control in line 9. The band, indicating nuclear protein binding is 
marked with a black arrow.  
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Consistently, when extracts of pancreatic cancer cell lines were employed, radio-labelled 

probes with the G allele exhibited stronger protein binding than those with the T allele 

(band 1 corresponding to the interaction noticed for LCLs and HEK, see Figure 42). In 

contrast, an additional and larger DNA-protein complex appeared more pronounced in 

case of the T allele (band 2 in Figure 42). Though this issue was seen for all four tested 

pancreatic cancer cell lines, it was more distinct in PaTu8988t and PancΙ. 

G T G T G T CREG TCRECRECRE

MiaPaca-ΙΙ PancΙ PaTu8988t CFPac

Sample (32P)

band 1

Free unbound DNA

band 2

 

Figure 42: Electrophoretic Mobility 
Shift Assay (EMSA) for RRM2 
rs1130609 with nuclear extracts of 
the pancreatic cancer cell lines 
MiaPaca-ΙΙ, PancΙ, PaTu8988t and 
CFPac. The unspecific probe CRE 
(cAMP response element) is shown as 
positive control for each extract. The 
band, indicating nuclear protein 
binding (supposed to be the same 
compared to Figure 40 and Figure 41 
in LCL and HEK-293 nuclear extracts) 
is denoted as band 1 and an additional 
and larger DNA-protein complex 
appeared, more pronounced in case of 
the T allele denoted as band 2.  

In summary, these data suggest a protein which interacts more strongly with the G 

allele, which was associated with worse clinical outcome (see  section 1.5.1, Figure 4). 

4.2.5 Effects on translation 

To investigate the impact of RRM2 rs1130609 on protein synthesis, GFP-tagged RRM2 

constructs (see 3.5.3) were analysed with an in vitro TNT® Quick 

Transcription/Translation system (see 3.8.4). Preliminary data via fluorescent 

quantification of the GFP signal suggest a 37 % lower signal in presence of the variant T 

allele, compared to the wild type G allele at rs1130609.  
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5 Discussion 

In a genome-wide and a candidate gene approach the two genes WWOX and RRM2 

elicited as particularly promising biomarkers in gemcitabine-treated PDAC. The major 

findings of my thesis with regard to these two genes are discussed in the following 

sections. 

5.1 WWOX 

Based on the clinical finding that WWOX rs11644322 is associated with patients’ OS, I 

could get several lines of evidence for the functional role of WWOX in general and of the 

index SNP in particular with respect to cellular gemcitabine sensitivity. The WWOX gene 

located at chromosome region 16q23.3 - q24.1 encodes for a 46 kDa-sized protein 

described as a "fragile tumor suppressor" (SCHROCK AND HUEBNER 2015). 

5.1.1 WWOX rs11644322 affects cytotoxicity of gemcitabine but not 5-FU 

Testing of gemcitabine sensitivity in LCLs revealed increased resistance in presence of 

the A allele at rs 11644322 (see section 4.1.1, Figure 15) accordant to the clinical finding 

of worse OS for patients treated with gemcitabine harboring this allele (see section 1.5.2, 

Figure 5). In contrary, in a comparative study, using 5-FU in the same set of LCLs, 

cytotoxicity was not altered by rs11644322 (data provided by Mr. Ruben Pflüger, 

personal communication, p = 0.4).  

Concerning this observation, assessment of this SNP for treatment other than 

gemcitabine was not possible in absence of respective patient cohorts. Thus, it is 

debatable if the observed SNP effect is linked to cytostatic exposure in general or 

specifically to gemcitabine. At present, there are no data in literature comparing OS in 

PDAC for different cytostatics in dependence on germline genetic variability. However, 

with regard to hematological toxicity, a SNP in the gemcitabine deactivating CDA was 

reported as associated in patients treated with gemcitabine but not with 5-FU (FARRELL 

et al. 2012). 

Differential intrinsic resistance between pancreatic cancer cell lines was observed upon 

exposure toward gemcitabine or 5-FU (SHI et al. 2002). In general, pancreatic cancer cell 

lines appeared to be much more sensitive toward gemcitabine than 5-FU. This was also 
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seen in the cells I used (see Figure 28). Similar relations in sensitivity difference were 

found in LCLs (Figure 15). In this regard, LCLs appear as a suitable model to evaluate 

drug-specific cytotoxicity in dependence on genetic variability. Unlike pancreatic cancer 

cell lines, much higher numbers of genetically diverse LCLs are available to be tested for 

the impact of genetic polymorphisms. LCLs were used in previous studies as well to test 

for cytotoxicity of gemcitabine and cytosine arabinoside (LI et al. 2008). Whereas LCLs 

with their high sensitivity toward gemcitabine appear suitable to evaluate an impact of 

genetic polymorphisms, I am aware of the limitations of these cell lines with regard to 

pancreatic cancer. Nonetheless, common features in cellular drug response could be 

assumed for different cell types. Different expression levels of genes might modify 

sensitivity to a specific drug. A drug might be particularly efficient in a sub-group of 

patients with specific expression levels of genes related to handling of this drug or 

representing a molecular target for it. In this manner, expression levels of such 

candidate genes for a specific drug have been investigated in relation to clinical 

outcome. For instance, low expression of 5-FU-degrading DPD (dihydropyrimidine 

dehydrogenase) and high expression of the major molecular target TS could be 

favourable when this drug is applied (SHIMODA et al. 2015). Otherwise, genes related to 

gemcitabine transport and metabolism might interfere with this drug's response 

(IWAMOTO et al. 2015). Besides such candidate genes, for which an interaction with a 

specific drug is evident, there are probably numerous other genes of which a substantial 

contribution is present but not yet identified. A possible "new" gene in this regard might 

be WWOX. 

5.1.2 WWOX expression affected by rs11644322 

Regardless whether the core region or the last exon were considered and regardless 

whether LCL samples were subjected to gemcitabine or not, in all conditions 

homozygous AA allele of rs11644322 was accompanied by reduced WWOX expression 

levels (Figure 18). No relevant differences in WWOX transcript amounts could be 

detected between AG and GG genotypes in this cellular model. As the expression of the 

two investigated WWOX regions is highly correlated (Figure 17), similar association 

with a genetic polymorphism is obvious. This correlation appeared even intensified 

upon gemcitabine exposure suggesting a link between induced genotoxic stress and 

transcription of the entire WWOX gene. Regarding mean transcription rate in the entire 



Discussion 
 

118 
 

investigated LCL panel, that of exon 8-9 amounts to 67 % in relation to the core coding 

region (see Figure 17, inserted bar plot). 

5.1.3 Consequences of overexpression of SP1 binding to rs11644322 

Allele-specific binding at rs11644322 was demonstrated previously for SP transcription 

factor family members (ROPPEL 2013). Weaker SP1 protein binding for the minor A allele 

at the WWOX rs11644322 site was hypothesized to be related to less WWOX expression. 

Thus, I analyzed WWOX expression in relation to rs11644322.  

In the panreatic cancer cell lines AsPC1, MiaPaca-II and PancI, I analyzed specifically the 

consequences of SP1 overexpression on WWOX transcription. Though statistical 

significance was not reached by three independent experimental repetitions, cell line-

specific effects could be assumed (Figure 21) with expression induction of the WWOX 

core region only in MiaPaca-II. Genotyping at rs11644322 was carried out for these 

three cell lines. It turned out that PancI is derived from a host with GG allelic 

configuration at rs11644322. AsPC1 seems to stem from an initially heterozyous GA 

carrier with later loss of the A allele during carcinogenesis. In contrast, MiaPaca-II 

clearly showed heterozygosity. Since these are just observations on single cell lines, 

conclusions derived thereof are limited. Nonetheless, one might speculate about any 

relationship between this genotypic configuration and the observed differential 

responsiveness to SP1 overexpression in terms of WWOX transcription. Often, 

transcription factors are regulated on the activity level by phosphorylation (WHITMARSH 

AND DAVIS 2000) implying that expression level mostly is not limiting. However, in case 

of a poor interaction between a transcription factor and its DNA binding motif, it is 

conceivable that the full capacity of transcriptional activation is not reached under usual 

expression levels. Overexpression leads to an increased pool of activatable molecules, 

which might enhance binding according to the law of mass action in case of a less 

favourable binding motif. This hypothesis might argue for the idea that binding at 

rs11644322 is the reason for the differential effects observed upon SP1 overexpression. 

However, several other binding sites for SP transcription factor family members in the 

WWOX genomic region are conceivable, which were not addressed in my thesis. 

Nevertheless, if the hypothesis is assumed that rs11644322 is a relevant SP binding site, 

which regulates WWOX expression, one might ask about the spatial relationships since 

this SNP is located far downstream in an extraordinarily huge intron.  
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In cell lines with overexpressed SP1, surprisingly, different effects of cytostatic drugs on 

WWOX gene expression were observed (Figure 22): Substantial suppression, moderate 

induction and no alteration of the WWOX core region transcription by gemcitabine in 

AsPC1, MiaPaca-II, and PancI cells, respectively, whereas virtually no alterations by 5-

FU. The second interesting observation at this point was the absence of WWOX core 

region suppression by irinotecan in PancI cells. In this cell line, which was identified to 

be gemcitabine resistant in terms of cytostatic activity (REJIBA et al. 2009), transcripts of 

WWOX exon 8-9 were not detected. The lack of exon 8-9 transcripts might be involved in 

cytostatic resistance (e.g. towards gemcitabine or irinotecan) indicating the need of the 

entire WWOX gene transcription for efficacy of these drugs. It is conceivable that the 

index polymorphism rs11644322 is involved in expression of the last exon (see Figure 

18). The co-association of this SNP with WWOX core region expression is plausible due 

to the high correlation of transcripts of the two investigated WWOX regions (displayed 

in Figure 17). From the data in that figure the primary effect of this SNP on WWOX 

regional expression cannot unambiguously be ascertained. In the subsequent chapters 

hypothesis taking into account, also spatial relationships are discussed. 

5.1.4 Rs11644322 located in extraordinarily huge intron: Looping hypothesis 

The last WWOX intron, which spans over 730 kb, is one of the longest introns in humans. 

The longest known intron is 1.1 Mb (intron 5 in KCNIP4, 

http://kirschner.med.harvard.edu/files/bionumbers/Human genome and human gene 

statistics.pdf). Large introns render the possibility of intra-molecular looping within the 

DNA. The involvement of genome's three-dimensional topography in transcriptional 

processes has become increasingly accepted within the last years (LI et al. 2012, 

SCHOENFELDER et al. 2010). Folded chromatin loops can bring gene regions into close 

proximity to cognate promoters or distant regulatory elements leading to gene 

activation (e.g. for the CD68 gene spanning over a 2.5 kb distance (O'REILLY AND GREAVES 

2007, MERCER et al. 2013) or the insulin gene looping over a range of 1.4 kb (BABU et al. 

2008)). Further long-range enhancer-promoter communications are reported, e.g. for 

the sonic hedgehog (Shh) limb bud-specific enhancer, which interacts with its target 

promoter one megabase apart (AMANO et al. 2009). Another study found the SNP 

rs6983267 associated with higher risk of colorectal cancer to be located in a “gene 

desert” at the human chromosome 8q24. The rs6983267 containing region acts as an 
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enhancer in reporter gene assays and interacts with the promoter in the MYC oncogene, 

residing 330 kb apart (TUUPANEN et al. 2009, POMERANTZ et al. 2009, SCHOENFELDER et al. 

2010). Remote interaction over a distance of 200 kb between the 3'-UTR region and the 

promoter region of BCL2 was identified to be regulated via SATB1 (AT-rich sequence 

binding protein 1)-mediated chromatin looping (GONG et al. 2011). Also similar non-

cancer related enhancing effects were observed with intronic SNPs (e.g. rs3857080 in 

intron 3 in the NR3C2 gene which was associated with increased potassium excretion 

(DALILA et al. 2015)). 

As in the close vicinity of WWOX rs11644322, no transcripts were discovered (Figure 

19), the region containing rs11644322 might act as enhancer with an upstream 

promoter region in a three-dimensional manner as well. SP transcription factor family 

members might affect such a mechanism. A similar looping mechanism has been 

reported for SP1 in relation to the human heme oxygenase-1 gene in renal cells, where 

SP1 siRNA and a SP1 binding site inhibitor led to loss of looping formation between the 

intronic enhancer and the 6 kb distant HO-1 promoter, identified via chromosome 

conformation capture assay (DESHANE et al. 2010).  

This looping hypothesis is further supported by the data obtained upon exposure to the 

topoisomerase inhibitor irinotecan. As topoisomerases are required for proper DNA-

unwinding it could be assumed that these enzymes are also involved in remote 

interactions between DNA elements. Thereby, it appears plausible that irinotecan 

suppressed expression of WWOX in those cell lines (AsPC1, MiaPaca-II) with relevant 

expression of exons 8 and 9 flanking the index SNP, but not in PancI, in which last exon 

transcription was below the detection level (Figure 22). This effect observed in AsPC1 

and MiaPaca-II was enhanced when cells were transfected with SP1 suggesting crucial 

involvement of an SP1-binding site like rs11644322. 

Binding of the human transcription factor SP1 to 10-bp G+C-rich elements ("GC boxes") 

residing at -100 and +1700 bp relative to the RNA start site was studied. A synergism of 

the distantly located site with the promoter-proximal site was seen resulting in strongly 

activated transcription in vivo. This synergism is regarded as direct consequence of 

interactions between remote and local SP1, whereof the remote SP1 was translocated to 

the promoter via DNA looping (MASTRANGELO et al. 1991).  

The previously identified allele-specific binding of the transcription factor specificity 
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protein SP1 or SP3 at the rs11644322 (ROPPEL 2013) might represent such an enhancer 

element with mitigated function in case of the A allele.  

5.1.5 Model linking functional and clinical findings for rs11644322 

A model linking the above-mentioned functional data in conjunction with the clinical 

findings is presented (Figure 43). The presence of the G allele at the index SNP site 

results in stronger SP1 binding, which might lead to a stronger looping formation to the 

promoter region, resulting in induced WWOX transcription. This hypothesis would 

match to the finding of higher WWOX expression in LCLs (core region and last exon), 

lower EC50 values of gemcitabine (as WWOX enhances cytotoxicity of gemcitabine) 

resulting in better OS of patients. Gemcitabine treatment seems to be an important 

element in this cascade, but the mechanisms behind are still unknown. 
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Figure 43: Hypothesis linking functional and clinical findings for rs11644322. Schematic illustration how 
differential SP1 binding at the rs11644322 site might affect WWOX expression via looping resulting in altered cellular 
sensitivity towards gemcitabine affecting clinical outcome (Kaplan-Meier curve, survival data according to ROPPEL 
2013). Specifically, presence of the G allele at rs11644322 accompanied by stronger SP1 binding and thus by 
enhanced WWOX expression might sensitize cells to the cytotoxic effects of gemcitabine, which in turn might reason 
the longer survival of patients carrying this allele. 
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5.1.6 WWOX knock-down slows cell proliferation and hampers gemcitabine 

cytotoxicity 

The finding of substantially decreased basal proliferation in PaTu8988t and L3.6 cells 

induced by siRNA-mediated WWOX knock-down (see Figure 27) is in line with 

decreased gemcitabine sensitivity in case of WWOX abrogation. However, as 

proliferation was reduced in a similar extent, the effects of WWOX knock-down differed 

substantially between these two cell lines. This raises the hypothesis about cell line 

specific interactions between gemcitabine and WWOX, possibly due to the respective 

genetic make-up. On the contrary, responsiveness of 5-FU was moderately and similarly 

affected in both cell lines (see Figure 28), what again suggests specific actions for 

gemcitabine. Consistently, the sensitivity of LCLs toward gemcitabine but not 5-FU (5-FU 

data in LCLs from Ruben Pflüger, personal communication) was affected by the WWOX 

SNP rs11644322 as outlined above (Figure 15).  

Surprisingly, stable WWOX knock-down via shRNA transfection in PaTu8988t cells could 

not verify this effect observed for siRNA. First, the above-mentioned dramatic 

suppression of basal cell proliferation by siRNA-mediated WWOX knock-down (w/o any 

cytostatic drug applied) could not be detected upon shRNA transfection targeting 

WWOX. Second, gemcitabine sensitivity was not affected upon WWOX suppression by 

shRNA (Figure 31, panel A). However, when additional siRNA against WWOX was 

transfected, gemcitabine resistance was markedly increased in a similar manner (Figure 

31, panel B) as seen before for the knock-down by siRNA only (Figure 28, left panel). 

These data indicate that shRNA-guided WWOX suppression by about 90 % is not 

sufficient, neither to slow down cell proliferation nor to alter substantially the cytotoxic 

effects of gemcitabine. In other words, there seems to be a surplus of WWOX expression 

in regard to the analyzed phenotypes. A relative low number of WWOX molecules might 

be sufficient to drive cell proliferation as well as gemcitabine-mediated cytotoxic 

reactions.  

Contemporary literature addressing interactions between gemcitabine and WWOX is 

still scarce. However, some current reports indicate a relationship of WWOX in regard to 

the regulation of epithelial to mesenchymal transition (EMT). EMT is characterized by 

downregulation of E-cadherin expression leading to disruption of cell-cell junctions and 

distribution of cells from the primary tumor (THIERY et al. 2009). Thus, EMT and/or 
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backward (MET, reattachment of floating cells) are supposed to be crucial processes in 

tumor metastasis. EMT and an associated cancer stem cell phenotype are regarded as a 

major cause for therapy resistance in pancreatic cancer, e.g. shown for gemcitabine 

resistance in a panel of pancreatic cancer cell lines (MEIDHOF et al. 2015, ARUMUGAM et al. 

2009, WANG et al. 2014). In endometrial cancer, WWOX was found to be related to the 

expression of markers for EMT/cell motility (PLUCIENNIK et al. 2015). In ovarian cancer 

stem cells, WWOX was identified to invert the EMT process resulting in reduced tumor 

invasion (YAN AND SUN 2014). This reversion to a MET phenotype may imply reinforced 

E-cadherin expression promoted by intracellular WWOX (BENDINELLI et al. 2015).  

Both, decreased basal proliferation rate and enhanced resistance toward gemcitabine 

might represent a feature of induced EMT caused by lower WWOX expression in 

presence of the variant allele at rs11644322 (possibly due to weaker SP1 binding, see 

chapter 5.1.3). An increased EMT phenotype constitutes a plausible explanation for 

worse clinical outcome in case of an allele connected with low WWOX expression (see 

Figure 44). 
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Figure 44: EMT as a putative mechanism for the effects of WWOX rs11644322. The chart shows hypothesized 
consequences for the rs11644322 wild type (left side) and variant allele (right). 
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5.1.7 WWOX in the context of genomic stability and carcinogenesis 

In view of the fact that genomic instability is a feature of human cancers, it is noteworthy 

that WWOX spans the second most common fragile site in the human genome, termed 

FRA16D (BEDNAREK et al. 2000, RIED et al. 2000, BEDNAREK et al. 2001). Instability at the 

FRA16D site was associated with poor prognosis in human cancers. Mechanistically, this 

was linked to induction of aberrant WWOX expression with, in most cases, a lack of C-

terminal sequences needed for WWOX acting as an oxidoreductase. As cancer cells are 

known to possess altered metabolism (Warburg effect), it was hypothesized that 

aberrant WWOX contributes to changes in metabolism in cancer (RICHARDS et al. 2015).  

Moreover, WWOX is described to play a direct role in DNA damage response (DDR), a 

crucial antagonist of genomic instability. In case of WWOX deficiency, reduced activation 

of the ataxia telangiectasia-mutated (ATM) checkpoint kinase and hampered DNA repair 

was reported, what might explain the loss of WWOX during cancerogenesis (ABU-ODEH et 

al. 2014).  

The WWOX SNP rs11644322 is more than 300 kb apart from the downstream end of the 

FRA16D region. Thus, an interaction is unlikely. Moreover, no genetic marker in high LD 

with rs11644322 was identified to touch the FRA16D region.  

5.1.8 WWOX in the context of apoptosis induction and DNA damage repair 

WWOX mRNA expression and cellular gemcitabine sensitivity in LCLs were identified to 

be correlated (see Figure 23). As WWOX is known to be involved in stress and apoptotic 

responses (CHANG et al. 2003), a connection between transcripts of WWOX and those of 

apoptosis-related genes was presumed. In vitro studies identified an interaction of the 

WWOX protein with various binding partners to regulate proliferation, cellular 

apoptosis and/or cell maturation (SCHROCK AND HUEBNER 2015). 

Overexpression of WWOX fosters apoptosis and inhibits proliferation of cancer cells (HU 

et al. 2012, CHIANG et al. 2013). In addition, WWOX was found to block the Wnt/beta-

catenin pathway (BOUTEILLE et al. 2009). Mechanistically, this effect is exerted through 

inhibition of transcriptional activity of a beta-catenin coactivator by WWOX (EL-HAGE et 

al. 2015). Suppression of WWOX was reported to promote Wnt/beta-catenin 

transcription (HUA et al. 2015). Recently, gemcitabine effected stronger in terms of 
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proliferation inhibition and apoptosis induction when Wnt/beta-catenin signalling was 

disrupted (JUNG et al. 2015). Vice versa, activation of this pathway was shown to enhance 

resistance toward gemcitabine in pancreatic cancer cell lines (NAGANO et al. 2013). Based 

on these cited reports and the data I gained it can be hypothesized that WWOX mitigates 

Wnt/beta-catenin signalling thereby enhancing gemcitabine efficacy. Alternatives for 

WWOX actions in the context of gemcitabine sensitivity are also conceivable. 

WWOX was shown to interact with p53 and its homologue p73 by WW-containing 

domains thus enhancing stress response-induced cell death when translocated into the 

nucleus (ABU-ODEH et al. 2014, AQEILAN et al. 2004, CHANG et al. 2003). Furthermore, 

WWOX is able to enhance cytotoxic signalling (e.g. induced by tumor necrosis factor) by 

downregulating BCL2, but upregulating p53 thereby acting as a pro-apoptotic 

mitochondrial protein (CHANG et al. 2001). GADD45A constitutes an important 

component linking p53 downstream to DNA base excision repair (SMITH et al. 2000, JUNG 

et al. 2013). Intriguing, distinctions were observed for correlation of WWOX exon-

specific transcripts and mRNA expression of BCL2, GADD45A, and TP53 (Table 65). 

WWOX protein phosphorylation at tyrosine-33 was reported necessary for p53-

mediated cell death in a fibroblast cell line (CHANG et al. 2005). Protein interaction 

between p53 and WWOX was strengthened when MDM2, a nuclear localized E3 

ubiquitin ligase, antagonizing p53, was blocked. Interestingly, in glioblastoma cell lines 

with mutant but not with wild type p53, ectopic WWOX overexpression induced 

apoptosis, by a mechanism independent of the intrinsic apoptotic pathway (CHIANG et al. 

2012). This observation suggests alternative routes of WWOX-induced apoptosis when 

p53 is not functional. Eventually, WWOX restores chemosensitivity toward gemcitabine, 

which was shown to be lost in pancreatic adenocarcinoma with mutant p53 (FIORINI et 

al. 2015). With an alteration frequency of 40 - 75 % p53 is one of the most mutated 

genes in PDAC (LI et al. 2004). PDAC metastasis was reported to be driven by mutant 

p53 (MORTON et al. 2010, WEISSMUELLER et al. 2014). Perhaps, WWOX is involved in these 

processes. In LCLs, mRNA transcripts (TP53) coding for p53 protein did not correlate 

with gemcitabine sensitivity. However, there was a positive correlation between 

transcripts of TP53 and the WWOX core region particularly upon gemcitabine exposure. 

In contrast, the relationship with the last WWOX exon transcripts was stronger under 

basal conditions. Thus, one might speculate whether WWOX-p53 interactions are 

modulated by regional WWOX transcription. Possibly, genotoxic stress induced by 
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gemcitabine triggers cellular signals inducing parallel transcriptional induction of TP53 

and the WWOX core region. Expression of the last exon, however, might rely on distinct 

mechanisms. As a limitation, it should be noted that data I obtained at this point only 

refer to transcription and do not address protein levels. 

In the above-mentioned panel of 89 LCLs, GADD45A was correlated with WWOX 

expression when exposed to gemcitabine, but not at baseline conditions (Table 65). 

Furthermore, GADD45A transcript numbers at gemcitabine exposure, but again not at 

baseline, exhibited a strongly inverse correlation with EC50 for gemcitabine in LCLs 

(Figure 24). This relationship was not impacted by variations in LCL proliferation in a 

relevant manner. These data argue for stress-induced responses involving GADD45A 

upon a variety of genotoxic stimuli (FORNACE et al. 1992).  

GADD45A is involved in a variety of biological processes like cell cycle, senescence, 

apoptosis and nucleotide excision repair and its disruption results in genomic instabilty 

(HOLLANDER AND FORNACE 2002). In hematopoietic stem cells, apoptosis was damped in 

absence of GADD45A (CHEN et al. 2014). Enhanced levels of GADD45A mRNA and protein 

were reported for splenic lymphocytes from mice exposed to ionizing radiation or other 

agents inducing DNA damage and growth arrest (HOLLANDER et al. 2001). Thus, the 

correlation between GADD45A expression and sensitivity toward gemcitabine observed 

in LCLs appears plausible.  

Among the GADD45 family members, GADD45A is the only one responsive to p53 

(HOLLANDER et al. 1993). By that, GADD45A interacts with apoptosis-related genes and is 

involved in DNA repair (HILDESHEIM AND FORNACE 2002). Pro-apoptotic effects of 

GADD45A are often mediated by p38 and JNK (c-Jun N-terminal kinase), which in turn 

represent upstream activators of GADD45A constituting a positive feedback loop 

(reviewed in SALVADOR et al. 2013). GADD45A was established as a component 

connecting p53-dependent cell cycle checkpoint and DNA repair by interacting with the 

proliferating cell nuclear antigen (SMITH et al. 1994). It counteracts mitosis by inhibiting 

specifically the Cdc2-cyclin B1 kinase complex (ZHAN et al. 1999). Beyond that, the acidic 

GADD45A was identified to bind to chromatin structures around damaged DNA sites 

thus making them more accessible for DNA repair machinery components like 

topoisomerases (CARRIER et al. 1999).  

Whereas gemcitabine induces GADD45A transcription (in median by 3-fold in LCLs), this 
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drug was identified to specifically inhibit GADD45A-mediated DNA demethylation 

(SCHAFER et al. 2010). For GADD45A mutant mice, genomic instability and tumorgenesis 

was observed representing common features of human cancers, which were linked to 

changes in DNA methylation patterns (BARRETO et al. 2007, BIRD 2002, HOLLANDER AND 

FORNACE 2002). Reduced GADD45A expression was hypothesized to induce 

hypermethylation and thus inactivate tumor suppressor genes as MLH1 (mutL 

homolog1) (BARRETO et al. 2007). At this point, the net effect of gemcitabine on 

GADD45A functions (increased transcription versus mitigated demethylation activity) 

remains to be elucidated. 

Direct or indirect interactions between GADD45A and WWOX are likely, however, so far 

not addressed in literature. Exact mechanisms for the proposed interactions between 

WWOX and GADD45A remain to be elucidated. Transcriptional regulation of GADD45A 

by WWOX, at least, is unlikely as I could not detect any alterations in GADD45A 

expression upon siRNA-mediated WWOX knock-down. An interaction with the 

Wnt/beta-catenin pathway, as outlined above for WWOX, is conceivable as GADD45A 

favors distribution of beta-catenin to the cell membrane and its cytoplasmic and nuclear 

degradation (JI et al. 2007).  

5.2 RRM2 

RRM2 is part of physiological nucleotide synthesis and counteracts cytotoxic effects of 

gemcitabine on DNA synthesis. In the subsequent chapters, findings obtained during my 

thesis for RRM2 in general, and the SNP rs1130609 in particular are discussed in 

relation to the contemporary literature. 

5.2.1  RRM2 expression increases upon gemcitabine 

With regard to entire transcriptome analysis in AsPC1 and MiaPaca-II cells, RRM2 

expression increased upon gemcitabine exposure (Table 66). Intriguingly, this RRM2 

induction was highlighted as it was stronger than that of any other protein-coding 

transcript in this setting. Consistent with this finding, expression of the RRM2 major 

isoform, which accounts for the vast majority of transcripts, was enhanced upon 

gemcitabine in LCLs (Figure 36, panel A) and in patients within one month after 

gemcitabine-based chemotherapy start (Figure 38, panel A).  
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Overexpression of RRM2 is described as a hallmark of gemcitabine resistance in 

pancreatic cancer cell lines (WANG et al. 2015, NAKANO et al. 2007). This induction of 

RRM2 by gemcitabine was reported to be mediated via E2F1 transcriptional activation. 

RRM2 upregulation is regarded as part of DNA damage response leading to enhanced 

cellular DNA repair. According to this, targeting gemcitabine-dependent RRM2 

expression is hypothesized as promising strategy to overcome gemcitabine resistance 

(LAI et al. 2014).  

In patients suffering from PDAC, pre-therapeutic tumoral RRM2 mRNA expression was 

reported as a prediction marker for sensitivity to gemcitabine-based adjuvant 

chemotherapy. Lower RRM2 expression was accompanied by a better patient survival 

(FUJITA et al. 2010, ITOI et al. 2007). In this manner, the observed induction of RRM2 

during chemotherapy courses with gemcitabine might add the peripheral blood stream 

as a system to monitor occurrence of secondary resistance toward this drug. 

Alternatively, as gemcitabine di- and triphosphate metabolites counteract RRM2 activity, 

it is also possible that transcriptional induction of RRM2 may reflect stronger 

gemcitabine activation and efficacy. Thus, interpretation of these observed expression 

changes should be done with caution since survival data of the respective patients have 

not been analyzed yet. 

5.2.2 RRM2 variant expression is differentially affected by gemcitabine 

Two human RRM2 transcript isoforms are known (Figure 34). The RRM2 transcript 

isoform with the shorter 5'-tail represents the vast majority of RRM2 transcripts. This 

implies that the data discussed in chapter 5.2.1 virtually reflect this isoform. The second 

variant, which features an extended 5'-region, exhibited markedly different response to 

gemcitabine. This resulted in a shift of the isoform ratio favoring the major one upon 

gemcitabine exposure in LCLs (Figure 36, Figure 37 panel A), pancreatic cancer cell lines 

(Figure 37, panel B) as well as in patients blood during chemotherapy (Figure 38). This 

finding suggests alternative promoters or interacting enhancer elements to drive 

versatile gene expression (AYOUBI AND VAN DE VEN 1996). To the best of my knowledge, 

no transcript isoform-specific investigations have been undertaken so far in literature. 
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5.2.3 Index SNP affects RRM2 transcript variant-specific expression 

No statistically significant impact of RRM2 index SNP on transcription of the RRM2 major 

isoform could be identified (Figure 39, panel A). However, an increased expression of 

the extended 5'-region variant was observed with increasing numbers of the T variant 

allele at the index SNP rs1130609. This association appeared intensified upon 

gemcitabine exposure (Figure 39, panel B).  

The SNP rs1130609 is located in the Kozak sequence regarding the major transcript 

isoform and at codon 59 with respect to the isoform with 5'-extension. As only the latter 

was affected by this SNP a classical modulation of promoter activity is not assumed. 

Alternative hypotheses include an enhancer element for transcription of the extended 

isoform modulated by this SNP or an indirect consequence of a primary impact of this 

SNP on major transcript isoform expression (see below, section 5.2.4).  

Isoform-specific gene transcription mediated by polymorphisms was also reported for 

the progesterone receptor (PR) gene associated with endometrial cancer risk (DE VIVO et 

al. 2002).  

5.2.4 Allele-specific binding at the index SNP site 

Using nuclear extracts from different cell lines, allele-specific protein binding was 

observed at rs1130609 with stronger binding in presence of the G allele (see Figure 40 

and Figure 41). This allele was the one associated with poor clinical prognosis. This SNP 

is located in the Kozak sequence, 6 bp prior to the translation start site, which was 

described as a typical binding site for transcription factors as SP1, NF-Y, ETS and NRF-1 

(FITZGERALD et al. 2004). The identity of the binding protein could not be identified. At 

least, SP1 was excluded. However, it is unlikely that allele-specific transcription factor 

binding constitutes a relevant mechanism in this issue since no impact on the expression 

of the respective (major) isoform could be noticed (Figure 39, panel A). That raises the 

assumption that translation to protein rather than gene transcription might be impacted 

by this SNP modifying the Kozak sequence.  
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5.2.5  Unifying model how the RRM2 SNP might act 

Presumed mechanisms linking the RRM2 rs1130609 SNP effect to RRM2 transcript 

expression and RRM2 protein translation are illustrated in an unifying model (see 

Figure 45): Di-and tri-phosphorylated gemcitabine metabolites inhibit the physiological 

function of RRM2 by competing with ADP, CDP, GDP, and UDP. Thus decreased levels of 

dADP, dCDP, dGDP, and dUDP stimulate RRM2 transcription, most probably that of the 

major variant. In presence of the G wild type allele, translational mechanisms are 

supposed to work proper leading to unimpaired RRM2 protein synthesis. In this case, 

there is no need for enhanced transcription of the alternative 5'-extended isoform V1. 

Vice verca in presence of the T variant allele, the translational machinery is assumed to 

act less efficient, what impairs protein translation. As a consequence, expression of 

isoform V1 is stimulated. 
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Figure 45: Hypothesized impact of RRM2 rs1130609 on RRM2 transcript expression and protein translation. 

The major transcript isoform is denoted as V2, the 5'-extended one as V1. 
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5.3 Limitations 

Regarding to the results of my thesis some limitations have to be considered. Sensitivity 

testing toward gemcitabine was performed in a set of LCLs instead in pancreatic cancer 

cell lines. The reason for this was the limited number of genetically divers pancreatic 

cancer cell lines. A clear link of SP1 overexpression with the WWOX index SNP is 

debatable since there are several other sites containing the consensus sequence for SP1 

binding. Genome-wide consequences on transcriptome were assessed upon shRNA 

against WWOX, what subsequently turned out to be insufficient. Instead, transcriptome 

analysis upon siRNA-mediated WWOX knock-down should have been performed.  

Though full integrity of the generated RRM2 vector constructs was proven, translational 

effects of the two RRM2 index SNP alleles, as assessed by an in vitro 

Transcription/Translation system, were not clearly distinguishable. In view of an overall 

low signal intensity the difference of 37 % between the two alleles is debatable. Further 

elaboration is required to decipher if there is any allelic distinction in translation 

efficacy. Regarding the prospective patient cohort, clinical outcome data were lacking 

and thus the medical relevance of the observed RRM2 induction is not clear. 



Discussion 
 

132 
 

5.4 Outlook 

Based on the results of my thesis, further investigations are necessary to establish 

WWOX in general and the rs11644322 SNP in particular as biomarker in gemcitabine-

treated pancreatic cancer. In clinical regard, prospective and randomized trials should 

address this SNP. In functional regard, deeper mechanistic understanding how WWOX 

interferes with cytotoxic effects provoked by gemcitabine might contribute to improve 

treatment efficacy. A hypothesized model for the putative role of WWOX (modulated by 

the SNP rs11644322) in dependence on the p53 mutation status is proposed in Figure 

46: The principal assumption is that WWOX might substitute, at least in part, for p53 

function, which becomes particularly relevant if the latter is inactivated by mutation 

what frequently occurs in cancer. In presence of the G allele at rs11644322 (see Figure 

46, panel A) higher WWOX expression may foster cytotoxicity of gemcitabine by 

inhibiting both wnt/β-catenin signaling and EMT. In contrast, in case of the A allele 

(Figure 46, panel B) this disinhibiting effect of WWOX is assumed to be mitigated 

resulting in less gemcitabine cytotoxicity. These presumed interactions and analyses of 

components involved in the genotoxic response like the p53-inducible GADD45A should 

be elucidated in detail. Moreover, following this suggested model the effect of WWOX 

might be particularly relevant in case of inactivated p53, what appears promising to 

study in PDAC tissues with respect to clinical outcome. 
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Figure 46: Hypothesized interactions of WWOX with p53, EMT and the Wnt/β-catenin pathway. Panel A 
demonstrates the model in case of the wild type G allele at the WWOX SNP rs11644322, panel B in case of the variant 
A allele, respectively. See text for details.  
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6 Conclusion 

Regarding WWOX, by several lines of evidence I could delineate specific functional 

relations with gemcitabine supporting the clinical association. The data I gained may 

assist to circumvent failure of gemcitabine-based chemotherapy in PDAC. Though 

several mechanisms have been studied in this thesis and elicited striking results. The full 

interactions of WWOX in general and of the index SNP in particular with the DNA 

damage repair and the apoptotic machinery remains to be clarified. In view of the 

recently strongly increasing number of literature reports, highlighting the role of WWOX 

in the context of carcinogenesis, functional data addressing drug-specific interactions 

valuably expand the mechanistic understanding of this factor. 

With respect to RRM2, a mechanism of action for a Kozak sequence polymorphism is 

proposed. Pending an unequivocal functional read-out for assessing an allele-specific 

impact on translation the data I obtained could contribute to the understanding of RRM2 

in relation to gemcitabine resistance. Future strategies to overcome such resistance may 

consider this RRM2 SNP. The clinical relevance of RRM2 transcriptional induction during 

chemotherapy along with a possible modulation by this SNP remains to be further 

elaborated. 
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9 Appendix 

Sequence of the pGeneClipTM Hygromycin vector used for sh-RNA (WWOX)-Transfection in section 3.10.2 

3'GGGCGAATTGGGCCCGATATCTCTAGAGTCGACGAATTCGGATCCCTAAGGACCAGCTTCTTTGGGAGAGAACAGACGCAGGGGCGGGAGGGAAAAA
GGGAGAGGCAGACGTCACTTCCCCTTGGCGGCTCTGGCAGCAGATTGGTCGGTTGAGTGGCAGAAAGGCAGACGGGGACTGGGCAAGGCACTGTCGGT
GACATCACGGACAGGGCGACTTCTATGTAGATGAGGCAGCGCAGAGGCTGCTGCTTCGCCACTTGCTGCTTCACCACGAAGGAGTTCCCGTGCCCTGGGA
GCGGGTTCAGGACCGCTGATCGGAAGTGAGAATCCCAGCTGTGTGTCAGGGCTGGAAAGGGCTCGGGAGTGCGCGGGGCAAGTGACCGTGTGTGTAAA
GAGTGAGGCGTATGAGGCTGTGTCGGGGCAGAGGCCCAAGATCTCGCAGTCTGGAGTTTCAAAAGTAGACTGGGCGGCCGCATCGATGTTAACCTCGAG
GAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTAT
CCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACT
GCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTGAT
CTGCGCAGCACCATGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTAGGTACCTTCTGAGGCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGG
TGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAG
GCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCC
GCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAG
GCTTTTGCAAAAAGCTTGATTCTTCTGACGCTAGCGATCGCCCGGGCCACCATGAAAAAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGA
AAAGTTCGACAGCGTGTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATATGTCCTGCGGGTA
AATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCGGCACTTTGCATCGGCCGCGCTCCCGATTCCGGAAGTGCTTGACATTGGGGAATTCAGC
GAGAGCCTGACCTATTGCATCTCCCGCCGTGCACAGGGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGTCGCGGAGG
CCATGGATGCGATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGGAATCGGTCAATACACTACATGGCGTGATTTCAT
ATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACTGTGATGGACGACACCGTCAGTGCGTCCGTCGCGCAGGCTCTCGATGAGCTGATGCTTTGGG
CCGAGGACTGCCCCGAAGTCCGGCACCTCGTGCACGCGGATTTCGGCTCCAACAATGTCCTGACGGACAATGGCCGCATAACAGCGGTCATTGACTGGAG
CGAGGCGATGTTCGGGGATTCCCAATACGAGGTCGCCAACATCTTCTTCTGGAGGCCGTGGTTGGCTTGTATGGAGCAGCAGACGCGCTACTTCGAGCGG
AGGCATCCGGAGCTTGCAGGATCGCCGCGGCTCCGGGCGTATATGCTCCGCATTGGTCTTGACCAACTCTATCAGAGCTTGGTTGACGGCAATTTCGATGA
TGCAGCTTGGGCGCAGGGTCGATGCGACGCAATCGTCCGATCCGGAGCCGGGACTGTCGGGCGTACACAAATCGCCCGCAGAAGCGCGGCCGTCTGGAC
CGATGGCTGTGTAGAAGTACTCGCCGATAGTGGAAACCGACGCCCCAGCACTCGTCCGAGGGCAAAGGAATAGCTCGAGTTTAAACTCTAGAACCGGTCA
TGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGTTCGAACTAGAAGCTTGCTTCCTCGCTCACTGACTCGCTGCGCTCGGT
CGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGG
CCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAG
AGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCT
GTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCA
CGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTG
GTAACGGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTG
CGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGC
AGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTC
ATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACC
AATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCT
TACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAG
AAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGC
CATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTG
CAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTAC
TGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTC
AATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGA
GATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCG
CAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGAT
ACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGT
AAGGAGAAAATACCGCATCAGGAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAA
ATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAA
CGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATC
GGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAG
GGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCA
ACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGT
TTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATA 5' 
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