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“There is something fascinating about science. One gets such wholesale returns of

conjecture out of such a trifling investment of fact.”

Mark Twain, Life on the Mississippi, 1883
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Motivation

Turbulence is a physical state of a fluid far from equilibrium. In turbulent flows, a
huge number of degrees of freedom is excited and a wide range of interacting scales
determines the flow characteristics. Turbulent flows are nonlinear and non-local.
They exhibit chaotic spatial and temporal dynamics and extreme events are likely
to occur. The air we breath is turbulent, the tea we drink is turbulent and the wind
we feel is turbulent. Turbulent flows play an important role for earth’s magnetic
field (Batchelor 1950), for the climate (Bodenschatz et al. 2010) as well as for
the formation of stars (Krummholz & McKee 2005). Knowledge of turbulence is
needed to build bridges that do not collapse (Lin & Ariaratnam 1980) and to build
planes that fly (Kuchemann 1965).

Scientific research on turbulence started many centuries ago, with Leonardo da
Vinci drawing detailed pictures of the characteristics of a turbulent flow (see, e.g.,
Argyris et al. (2010, p. 618)). The equations of motion still used today to describe
turbulent flows were derived by Navier (1827) and Stokes (1845). Over the centuries,
many renowned and excellent physicists and mathematicians investigated turbulence

in great detail. However, up to today, there is no unified theory of turbulence, very



Motivation

few exact predictions from the governing equations are available and the precise
predictability of the behavior of turbulent flows is limited.

For example, we can not precisely predict how long it takes for a turbulent flow in
a stirred coffee cup to come to rest once the stirring has stopped. We know that the
turbulent kinetic energy in this decaying flow gets eventually dissipated into heat.
Yet, we do not know the exact statistics of key flow parameters like the velocity
field during the decay process. We also do not precisely know the statistics of the
physical process dissipating turbulent kinetic energy into heat. Additionally, we do
not know exactly, how these quantities depend on the turbulent flow’s vigorousness
that is given by the so-called Reynolds number.

Chapter 1 introduces the equations of motion of turbulent flows, as well as
the fundamental theoretical frameworks to describe the statistical properties of
turbulence. In chapter 2, the experimental setup and measurement techniques are
explained. The large-scale based decay of turbulence and its dependence on the
Reynolds number is investigated in chapter 3. In chapter 4, the scaling properties
of turbulence at the intermediate scales are discussed. Chapter 5 addresses the
small-scale statistics of turbulence. The results are summarized in chapter 6, in
which an outlook to future research possibilities on questions beyond the scope of
this thesis is given as well.

Parts of this thesis have been published in Review of Scientific Instruments
(Bodenschatz, Bewley, Nobach, Sinhuber & Xu 2014) and Physical Review Letters
(Sinhuber, Bodenschatz & Bewley 2015).



1 Introduction and Theory

In this chapter, I present the theoretical background of turbulence research based
upon the detailed descriptions in the widely known textbooks by Argyris et al.
(2010), Davidson (2004), Frisch (1995), Monin & Yaglom (2007) and Pope (2000),
as well as from the original publications wherever appropriate. The aim of this
chapter is to focus on the concepts and frameworks that predict the behavior of
statistical quantities at different length-scales of a turbulent flow. Section 1.1
introduces the governing equations of a turbulently moving fluid, whereas section
1.2 presents a statistical approach to turbulence, including the famous theory of
Kolmogorov (1941b) and its rich predictions. Section 1.3 explains the concepts of
self-similarity and briefly derives the properties of velocity increment statistics. In

section 1.4, the most prominent predictions on the decay of turbulence are reviewed.

1.1 The Equations of Motion

Let us consider an everyday fluid of finite volume in a cylindrical container: a glass

of water. The classical approach to this physical problem in the spirit of Newton
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would be to describe the motion of the fluid by writing and solving the equations
of motion of the individual water molecules, obtaining complete knowledge about
the dynamics of the system. Assuming that a typical glass contains 300 ml of
water, this translates into the trajectories of O (1025) water molecules along with
their respective initial conditions and interactions. One can easily see that even by
completely neglecting ions, additives and interactions with the atmosphere, solving
this problem is not feasible. However, as the smallest scales produced by stirring
the water would be of the order of 10~% m (Wang et al. 2014) and the interaction
distance between the water molecules themselves are several orders of magnitude
smaller, in the nanometer range (Mortimer 2001), one can treat the fluid space as
continuous and the discrete interactions between the individual molecules do not
matter. This is the so-called continuum approximation, which allows for a field
description of fluid motion. The same holds true for gases, as long as the mean free
path of the molecules is much shorter than the smallest scales of the flow geometry.

This is true for virtually all gases under standard conditions.

1.1.1 The Navier-Stokes Equations

The equations of motion for a fluid can be derived from the basic conservation laws,
the conservation of mass and the conservation of momentum. Consider a continuous
fluid with a density distribution p (x,t) and pressure p(x,t). Here, x denotes a
position in space and 7 the time. The motion is described by the velocity field u (x,z).
Conservation of mass can be expressed in terms of the continuity equation (Argyris

et al. 2010, p. 463),



1.1 The Equations of Motion

dp
— 4V =0. 1.1
5 TV (pu) (1.1)
At low velocities, u, compared to the speed of sound, ¢, and thus low Mach
numbers, u/c, most liquids and gases can be considered to be incompressible and
of constant density in space and time. This holds true as long as the dimensions of

the flow are small enough for gravitational density variations to be neglected. With

this, equation (1.1) simplifies to the incompressibility condition

V.u=0. (1.2)

Unless stated otherwise, a constant density p (x,t) = p is assumed throughout
this thesis and all fluids are assumed to satisfy equation (1.2). Obeying Newton’s
Second Law, the total momentum of an element of an incompressible fluid can only

change due to surface forces and volume forces acting on it, such that

P (% +u(x,t) -V) u(x,t) =pf(x,t)+V-o(x1). (1.3)

Here, f(x,r) denote the volume force acting on the fluid element due to, e.g.,
gravity. The stress tensor o (x,¢) contains all information about the surface forces on

the given fluid element due to pressure and molecular friction. For an incompressible
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fluid with constant dynamic viscosity U, the stress tensor is given by

V.o (x,t) =—=Vp(x,t)+ pAu(x,t). (1.4)

Inserting equation (1.4) into equation (1.3), using the incompressibility condition

in equation (1.2) and dividing by p yields the Navier-Stokes equations,

(% +u(x,t)- V) u(xt) = —%Vp (x,t) + vAu (x,1) +f(x,t), (1.5)

where v = 1 /p is the kinematic viscosity. For convenience, it is useful to intro-
duce dimensionless quantities based upon the characteristic scales of the turbulent
motion. With the characteristic length L, characteristic time 7 and velocity U = L/T,
one can rescale equation (1.5) by replacing u, 7, X, p, f and the differential operators
by their dimensionless counterparts to obtain the Navier-Stokes equations in their

well-known dimensionless form (Navier 1827, Stokes 1845):

d 1
(E +u(x,t) -V) u(x,t)=-Vp(xt)+ R—eAu (x,0) +f(x,2). (1.6)

The dimensionless Reynolds number Re = % (Reynolds 1883) is a measure of

the ratio of inertial to viscous forces and gives information about how vigorous the

turbulence is.



1.2 A Statistical Approach to Turbulence

Together with a full set of initial and boundary conditions, the Navier-Stokes
equations are a set of nonlinear partial differential equations that describe the motion
of a fluid. Furthermore, the equations are non-local due to the pressure gradient, a
quantity that couples to the velocity field over an infinitely extended space. This
can be seen by computing the divergence of the Navier-Stokes equations, yielding a
Poisson equation for the pressure, which can be solved in terms of Green’s functions

(Argyris et al. 2010, p. 624):

du; (X' ) du; (x't) .,
p(xt) /47t|x DV T (-7

Obtaining the pressure at a single point in space demands the knowledge of the
velocity field at every point in space, resulting in the non-locality of the Navier-

Stokes equations.

1.2 A Statistical Approach to Turbulence

The combination of nonlinearity and non-locality makes the Navier-Stokes equations
notoriously difficult to tackle and very few exact results and predictions are available.
The equations are purely deterministic, yet, due to the nonlinearity and the involved
degrees of freedom, they exhibit a strong dependence on minute variations in the
initial conditions, thus leading to deterministic chaos. As a matter of fact, as of today
there is not even a strict mathematical proof for the existence of smooth solutions

for the Navier-Stokes equation given arbitrary initial and boundary conditions of
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sufficient regularity. This problem is deemed to be so important that it is on the
list of Millennium Problems of the Clay Mathematics Institute'. Despite the open
mathematical question as to whether the Navier-Stokes equations are meaningful
descriptions of nature, there is no hint that they are not an adequate tool to precisely
describe the motion of a real fluid within the limitations given above. As mentioned,
small variations in initial conditions have drastic effects on the outcome of an
individual realization of an experiment due to the deterministic, chaotic behavior
of turbulent flows. However, statistical quantities as, e.g., averages or probability
density functions are remarkably reproducible in turbulent flows and have been
proven to be useful tools in understanding the underlying processes (Argyris et al.
2010, p. 654). Treating a turbulent flow similar to a random field, one can introduce
statistical ensemble averaging to obtain meaningful averages. Let x,, be a random
variable that can be measured in an experiment. The ensemble average (x) can the

be calculated by independent repetitions of the experiment as

lim — 1.8

(x) NEEO E:Xn (1.3)
Since independent repetitions of a single experiment are usually not realistically

feasible, the averaging process in equation (1.8) is often replaced with a time average

over the measurement time 7 for the measurement variable x (¢) via

"http://www.claymath.org/millenium-problems/
navier-stokes—-equation (as of 23.1.2015, 15:20)


http://www.claymath.org/millenium-problems/navier-stokes-equation
http://www.claymath.org/millenium-problems/navier-stokes-equation

1.2 A Statistical Approach to Turbulence

(x(t)) = lim 1 Tx(t+t’) dr’. (1.9)

T—oT Jo
Obviously, measurement times are not infinite, so for equation (1.9) to be valid,
the limit must converge even for finite 7. If this is the case, then the turbulent flow

in question is stationary.

1.2.1 The Kolmogorov 1941 Framework

Since exact predictions from the Navier-Stokes equations are rare, turbulence re-
search must rely on thoughtful hypotheses and careful modeling. One of the most
prominent concepts for the structure of turbulence dates back to Richardson (1922).
Analyzing atmospheric data using Fourier methods, he envisioned turbulence con-
sisting of a multitude of overlapping eddies, flow structures with characteristic
length scales carrying a certain amount of kinetic energy. In his description, energy
that is injected at a large scale L of a three-dimensional system produces eddies of
that size which carry the kinetic energy. These high Reynolds number structures
will turn unstable, break up and create more eddies of smaller size, which will then
carry the kinetic energy. These eddies will become unstable as well, producing
even smaller eddies. This process continues with an energy transfer rate € until the
size of the eddies becomes so small that viscous dissipation becomes important and
dissipates the kinetic energy into heat at a length scale 1. This concept is known as

the energy cascade. 1t is the basis of the famous turbulence theory by Kolmogorov
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(1941b) and is still widely accepted in its core predictions. Kolmogorov (1941b) re-
fined Richardson’s cascade model based upon three hypotheses. His first hypothesis
is based upon the observation that during the cascade process, turbulent structures
seem to lose information about their genesis and obtain special symmetries. This is
formulated in Kolmogorov’s hypothesis of local isotropy, which can be restated in

the following way (Pope 2000, see p. 184):

Given sufficiently high Reynolds numbers, the motion of the small

scales in turbulence is statistically homogeneous and isotropic.

This must be understood as follows. Let A (x,7) be an arbitrary quantity and x
and x’ be positions in space. This quantity is called homogeneous if its ensemble
average does not depend on x and thus fulfills: (A (x,t)) = (A (x',t)). A two-point
quantity B (x,x’,r) is called isotropic if its ensemble average does not depend on the
direction of the vector x — x’ and therefore follows: (B (x —x',7)) = (C(|x —x/| ,¢))

The second and third hypotheses of Kolmogorov’s theory concern the universality
of turbulent flows and the flow parameters that characterize them. His first similarity
hypothesis formulates the disconnection between the turbulent flow at small scales

and the large scales L (following Pope (2000, p. 185)):

In a turbulent flow of large Reynolds numbers, the statistics of the
small scales r << L have a universal form only dependent on the

kinematic viscosity v and the energy dissipation rate .

With this hypothesis and the use of dimensional analysis, one is able to define

length, time, and velocity scales of the small structures of the turbulent motion, the

10
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so-called Kolmogorov microscales. These scales are the size (1), the characteristic
velocity (uy) and the turn-over time (7y) of the smallest eddies in the turbulent flow

(Pope 2000, p. 128),

n=(/e)'", (1.10)
un = (ev)'/4, (1.11)
T = (v/e)'/?. (1.12)

With these quantities one is able to construct the Reynolds number defined over
the smallest scales Rey = @ = 1. Empirically, one finds that the separation of
the small and the large scales increases with Reynolds number as L/1 ~ Re3/4,
For very large Reynolds numbers, this led Kolmogorov to the hypothesis that there
exists a range of scales which is neither affected by the large nor by the small scales,
the so-called inertial range. It is formulated in Kolmogorov’s second similarity

hypothesis (following Pope (2000, p. 186)):

At very high Reynolds numbers, there exists a range of scale n <<
r << L at which the statistics of the turbulent motion have a uni-

versal form which does uniquely depend on € and not on v.

In this framework by Kolmogorov (K41), high-Reynolds number turbulence is
pictured as the energy cascade which is fed by energy injection at large scales L.
The cascade transfers energy with an energy dissipation rate € towards smaller

scales. At the intermediate scales, the statistics of the K41 turbulence are solely

11
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determined by €, whereas at the small scales dissipation starts to affect the statistics

(see figure 1.1).

[. Inertial Range T

A e

1 1 )

: LBy ¥
eSO RN
AP

: ~ - ©o

: 2k Yoo
/k@” > @

: : Energy

/ I g Y)&issipation
Energy Flux v

Energy Injection

Figure 1.1: A sketch of the energy cascade in the K41 picture following Frisch
(1995).

The K41 framework, despite its simplicity, is a powerful tool in predicting
statistical behavior of turbulent flows. For example, one can get the shape of the
energy spectrum E (k) in the inertial range with simple dimensional arguments. Let
r be a length scale and k = 27t/r its corresponding wavenumber. The kinetic energy

E,;, between two wavenumbers k, and &, is then defined as

12



1.2 A Statistical Approach to Turbulence

kp
Exp = E (k) dk. (1.13)
From Kolmogorov’s second hypothesis, it follows that in the inertial range, E (k)
is solely a function of the energy dissipation rate € and the wavenumber £ itself. As
the energy spectrum has the dimensions m?/s2, [¢] = m?/s® and [k] = 1/m, there is
only one functional form for E (k) which follows Kolmogorov’s second similarity

hypothesis:

E (k) ~ €313, (1.14)

Following K41, the energy spectrum should have a clear power-law behavior in

the inertial range.

1.2.2 The Integral Length Scale

Thus far, the scale L was assumed to be the scale at which energy is injected
into the system. In a stirred glass of water, e.g., the energy injection scale would
be equivalent to the scale of the stirring. As this scale is neither well defined
nor measurable (e.g. in atmospheric turbulence) the definition of an equivalent
but computable quantity is needed. This is possible from the statistics of the

turbulent flows itself. The size of the largest eddies in a turbulent flow, the largest

13
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distances over which velocity fluctuations are spatially correlated, are connected to
the energy injection scale. In a homogeneous, isotropic turbulent flow, one can use
the one-component, longitudinal autocorrelation function C (r) = (u(X+rt) u(x,t))
to define the largest scales. Here u is the velocity component along the separation
vector r. C (r) is a measure for the correlation between the velocity component at

the positions x and x+r. As the turbulent flow is assumed to be isotropic, C(r)

can only depend on the scalar separation r = |r|, which leads to C (r) = R (r) C(0).
The large scale in the turbulent flow, the integral length scale, is then defined by
means of the integral over the correlation function. Empirically, one finds that the

correlation decays exponentially, making it possible to define the integral length

scale as (Argyris et al. 2010, p. 660)

_ [C0)
L—/O o (1.15)

One can easily see that it is not possible to measure infinite separations, but as
the autocorrelation function decays quickly, it is possible to estimate the influence

of large separations and the above definition remains useful.

1.2.3 The Taylor Length Scale

As dissipation already affects turbulent flows at scales somewhat larger than the
Kolmogorov scale 1, it is useful to define a length scale at which dissipation effects

vanish. In an effort to systematically define such a length scale, Taylor (1935)

14
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constructed a length scale from the velocity autocorrelation function intended to
give an estimate for the extent of the influence of dissipative effects. He defined
the Taylor length scale A as the intersection between a parabolic fit to the peak of
the autocorrelation function and 0. Though this artificial quantity has no precise
physical meaning, it serves as a useful tool for estimating the lower bound of the
inertial range due to dissipative effects. One can show that the Taylor length scale
can be computed from velocity derivatives of one velocity component u along one

direction x as (Frisch 1995, p. 61)

n” P 2
S=((Z%) ), (1.16)
A dx
with u’ being the root mean square of this velocity component. The most common

use of the Taylor length scale is to define a Reynolds number that only depends on

flow characteristics, the Taylor Reynolds number, given by

R, = —. (1.17)

For isotropic, homogeneous turbulence, this Reynolds number is unambiguously
determined by the physics of the flow itself. Compared to the Reynolds number

based on the larges scales Rey, the Taylor Reynolds number scales as

R, =< vRe. (1.18)

15
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1.2.4 Taylor’s Frozen Flow Hypothesis

Many of the predictions for turbulent flows concern the statistical behavior of

velocity increments du, defined as

ou(x,rt)=u(x+rt)—u(xt), (1.19)

for a spatial separation vector r. However, many experimental setups are only

able to measure velocity increments in time, defined as

ou(x,t,7) =u(xt+7)—u(xr). (1.20)

A measurement of the above quantity can for example be realized by one station-
ary measurement probe measuring at a single position for long times. A priori, it is
unclear whether these two quantities share any statistical similarities. According to
Taylor (1938), it is possible to translate spatial and temporal measurements given
some specific flow conditions. For a flow with a velocity field u (x,¢) which consists
of a strong mean flow U = (u(x,7)) and small velocity fluctuations u’ (x,t), such
that u (x,r) = U+’ (x,t), then, one can translate spatial separations r into temporal

separations Af via

16



1.2 A Statistical Approach to Turbulence

r=UnA, for |U2>>(ju]?), (1.21)

The basic consideration here is (see figure 1.2) that if a patch of turbulence is
swept over a measurement device, as long as the mean speed of this sweeping is
much larger than the turbulent velocities, by the time the patch has fully passed
the measurement device, its internal flow structure has not changed at all. A
measurement in time can thus be translated into a spatial measurement (Monin &

Yaglom 2007, p. 363).

X=X0 X=X0

Figure 1.2: A sketch of Taylor’s Frozen Flow Hypothesis. A patch of turbulence
is swept over a measurement device (depicted in blue) at position xo with a
mean speed U. If the mean speed U is much larger than the fluctuating velocity
u’, then the patch does not change significantly while being swept over the
measurement device.

17
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1.3 Scaling and Intermittency

Among the few exact results derived from the Navier-Stokes equations, one concerns

the behavior of the longitudinal structure functions (Frisch 1995, p. 139):

Sy (r) = (Su") == < ((u (x+14) —u(x1)) - |Tr|>> . (1.22)

These are the moments of the velocity increment component along the longitu-
dinal direction. For homogeneous, isotropic turbulence, S, (r) can only depend on
the absolute value of the separation vector r = |r|. One can relate the longitudinal
structure function to the probability density function of the longitudinal velocity

increments f (Su,r) with

S, (r) = / S - f(Su,r)dSu. (1.23)

The probability density function contains all information about the statistics of the
velocity increments, whereas the structure functions are connected to the statistics
of increments within a certain band of magnitudes, while the statistics of increasing

order n are increasingly biased towards the extreme events.

1.3.1 Kolmogorov’s Four-Fifths Law

Kolmogorov (1941a) reformulated an exact equation derived by de Karmén &

18



1.3 Scaling and Intermittency

Howarth (1938) from the energy balance of the Navier-Stokes equations (1.5) in
terms of the longitudinal structure functions under the assumptions of stationary,

homogeneous, isotropic turbulence,

S5 (r) —6V%S2 (1) = — S tehr g (r). (124)

Here, ¢ (r) is a source term containing the information about the energy injection
at scale r. Within the limit of negligible viscosity, v — 0, the second term on
the left hand side of the equation vanishes as long as the derivative remains finite.
Additionally, in the inertial range, there is no energy injection into the system,
therefore ¢ (r) is zero as well. One thereby obtains Kolmogorov’s famous four-fifths

law for the behavior of the third-order structure function in the inertial range,

S3(r)=—=(&)r. (1.25)

This result predicts a remarkably simple form of the third-order structure function
considering the deterministically chaotic nature of turbulent flows. Referring back
to the introduction of section 1.2, although the instantaneous velocity field eludes
any concrete prediction, statistical measures like the third-order structure function

are surprisingly robust quantities that follow relatively simple laws.

19
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1.3.2 Self-Similarity in Turbulence

One early observation in the study of turbulent flows was their apparent self-
similarity. Figuratively speaking, a turbulent flow observed at a certain scale shows
the same features as the same flow observed at a much larger or much smaller
scale. This can for example by seen in high-resolution pictures of large atmospheric
clouds, the shapes observed at the very small scales resemble the ones at the larger
scales. Using the not-so-far-fetched assumption that turbulent flows are indeed
self-similar, one can generalize Kolmogorov’s four-fifths law (1.25) for arbitrary
orders n. Following the elegant description in Argyris et al. (2010), one needs to

define self-similarity in a mathematically correct way (Argyris et al. 2010, p. 678):

Definition 1 (Self-Similarity) Ler du(r) be a field and f(Su,r) its probability
density function. Additionally, 8ii(r) = AS8u(Ar) is a rescaled field with its
probability density function f(8u,r) = ASf <7L§5u,lr>. ou(r) is self-similar if
there exist an exponent { so that for all A > 0 the probability density functions f

and f are identical. So f has to fulfill f (Su,r) = ASf (lg&t,lr).

Assume that f (Su,r) is the probability density function of velocity increments of
a fully self-similar turbulent velocity field. Then, without loss of generality, one can

write f in terms of an unknown function g as

£ (Suyr) = 1§g<(6v ) (1.26)

20



1.3 Scaling and Intermittency

The probability density function defined this way obeys the demands of self-

similarity in definition 1 by construction, as one can easily check:

ESv
ASF (ASsunr) = a5 A _ F(Sur). 127
f (#out) (sxr)€g<(g/1r)‘5> fowr). 02D

Inserting equation (1.27) into the relation given in equation (1.23), the behavior

of the n™-order structure function can be expressed as:

" P Ay — 1 i ov ;
Sn(r)—/&t F(Su,r)ds (Sr)c/é g((er)c)d5 L 1.28)

Using the substitution w = v/ (Sr)c, this can be further simplified to

) ddu = (er)" /W"‘g(w) dw=C,(er)".  (1.29)

(ei)g /5u”-g (

In the last step, the integration constant was denoted with C, and is not of

ov
(er)®

interest at this point. The still unknown scaling exponent { can be determined
using Kolmogorov’s four-fifths law in equation (1.25). As the third-order structure
function S3 () scales as r! in the inertial range, the only possible choice for the

order-independent factor { is 1/3, resulting in

21



1 INTRODUCTION AND THEORY

Su (r) = C, (er)"3. (1.30)

This expression is one of the central predictions of the K41 framework, as it fully
describes the statistics of velocity increments in the inertial range. In principle, the
complete probability density function of velocity increments can be calculated using

equation (1.30) and equation (1.23) as long as the coefficients C,, are known as well.

1.3.3 Limitations of K41

In the K41 framework, turbulence is considered to be a self-similar process, with
velocity increment probability density functions being preserved over scales. In real
turbulence, however, the statistics of the flow depend greatly on the scale. While
for large separations, the probability density function of the velocity increments
resembles a Gaussian distribution, it develops increasingly heavier tails for smaller
separations. In other words, extreme events in turbulence are much more likely
to emerge for small separations than for large separations, an effect known as
intermittency.

Furthermore, in the derivation of the scaling of structure functions, the energy
dissipation rate € was assumed to be a global constant. The first to note that the
energy dissipation rate is indeed a locally strongly fluctuating quantity were Landau
& Lifschitz (1959). These findings contradict the assumptions in subsection 1.3.2

and led to a refined theory of scaling in turbulence (K62) by Kolmogorov (1962). By
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replacing the constant energy dissipation rate with a log-normal-distributed quantity,
one gets an improved prediction for the scaling exponents, now denoted with {,,

given by the nonlinear function

_n_ K
=5 —1en(n=3). (1.31)

The constant parameter U in this equation is the so-called intermittency parameter.
It is a measure for the deviation from perfect self-similarity. For a review of the

current state of theoretical research on intermittency, see section 4.1.

1.4 The Decay of Turbulence

Thus far, stationary turbulence has been considered that is stationary in the sense
that there is a balance between the amount of energy injected into the system and
the amount of energy dissipated at small scales. This balance leads to a statistical
stationarity of ensemble and time averages (see section 1.2). Statistical quantities,
such as the aforementioned structure functions or energy spectra, are pure quantities
of space with no time dependence. However, the situation in many real flows is
quite different. Consider again the glass of stirred water as in section 1.1. In the
picture of K41, as long as the stirring continues, an energy cascade exists. The
large-scale eddies arising from the stirring will break down into smaller and smaller
eddies and will ultimately dissipate into heat. Now consider stopping the stirring.

With this, there is no additional energy input in the system anymore, yet the cascade
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process still continues. At some point, the fluid will come to rest, but the statistics of
the flow until then are strongly time dependent. The most basic question of interest
here is how fast the kinetic energy decays. The first prediction on the rate of decay
dates back to de Karman & Howarth (1938) who derived a power-law dependence
of the turbulent kinetic energy on time, yet weren’t able to calculate the exponent of

this power-law.

1.4.1 Kolmogorov’s Theory of Decay

Unlike the statistics predicted by the K41 framework, which only depend on the
small and intermediate scales of turbulent motion, the decay of turbulence is gov-
erned by the large scales. In the classical description, Kolmogorov (1941¢) com-
puted the relation of the energy E, dissipation rate € and fluctuating velocity u to be

independent of Reynolds number:

dE  3du? u

Here, C¢ is a Reynolds-number independent constant and L the integral length scale.
The isotropic energy spectrum is related to the velocity correlations (u-u’) (r) with

a separation r = x — x’ by
E(k) =~ / (w(x,0) -u(x+ (r0))krsin (kr)dr (1.33)
0
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For a sufficiently quickly decaying correlation function, this expression can be
expanded into a Taylor series for small k£ and one obtains for the low wavenumber

part of the energy spectrum (Davidson 2004, p. 346)

k K
E(k):m/<u«u’>dr—m/r2<u«u'>dr—|—-~. (1.34)

The two integrals appearing in this equation are known as the Loitsyanskii integral

7 = [r*{u-u’')dr and the Saffman integral £ = [(u-u’)dr.

Relying on the finding by Loitsyanskii (1939) that the integral Z is an invariant
constant for an isotropic turbulent flow, Kolmogorov (1941c¢) calculated a relation-

ship between the fluctuating velocity and the integral length scale given by

u?L’ = const. (1.35)

This expression allows for the integration of equation (1.32), resulting in the
decay exponent for the turbulent kinetic energy and the integral length scale given

by

u? o< t 1017 (1.36)

Lo< 27, (1.37)
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Note that the constancy of the Loitsyanskii integral Z implies a quickly decaying
correlation function such that £ = 0. As a direct consequence, turbulence of
Kolmogorov’s type posses a low-wavenumber spectrum of the shape E (k) o< k*,
This type of spectrum is generally referred to as the Batchelor spectrum due to
the important contributions on the decay of turbulence by Batchelor & Townsend

(1948a,b)

1.4.2 Saffman’s Theory of Decay

The invariance of the Loiststyanskii integral was questioned and shown to be
generally not fulfilled (Proudman & Reid 1954) to the extent that it is generally
divergent (Saffman 1967a). Saffman (1967b) noted that there exists a different
invariant in isotropic turbulence, the Saffman integral £. Following an argument
analogous to that of Kolmogorov, one can show that the turbulent kinetic energy
possesses a different relation between the fluctuating velocity and the integral length

scale, as well as a different law of decay, namely

u?L?® = const, (1.38)
u? o< t79/5, (1.39)
Lo<t?/3, (1.40)

The low wavenumber part of the energy spectrum can be shown to grow as

E (k) o< k*. All these results concern decaying turbulence at high Reynolds numbers,
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1.4 The Decay of Turbulence

hence known as the initial period of decay. For very large times, where the Reynolds
number becomes small, the exponent of the power-law increases. Viscous effects
begin to dominate the dynamics, resulting in a predicted decay rate for the final
period of decay of u® ot~ for Kolmogorov turbulence and u? o< t~!-3 for Saffman

turbulence (Batchelor & Townsend 1948b).

1.4.3 Physical Picture

It is possible to relate the existence of the decay invariants to the internal structure of
turbulence (Landau & Lifschitz 1959, Saffman 1967b, Davidson 2004). In the frame
of Kolmogorov turbulence, Landau considered a patch of turbulence of Volume
V with a net angular momentum H and vanishing linear momentum L. The latter
one can be constructed by limiting the patch of turbulence to a closed domain,
which enforces L = [udV = 0. It can be shown that the angular momentum of the

turbulent patch,

Hz/xxudV, (1.41)
14

can be directly related to Loitsianskii’s integral Z via
—z—/(u-u’>dr:I. (1.42)
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Assuming 7 to be an invariant, Kolmogorov’s theory corresponds to an underlying
structure of turbulent patches carrying significant angular moment but negligible
linear momentum. For Saffman’s theory, one can show that it is possible to rewrite

the Saffman integral by exchanging volume and ensemble averages as

,C:/(u-u')dr:‘l/<[/udVr>. (1.43)

This conserved quantity is a measure of the net linear momentum of the turbulent
patch. Depending on whether the patch carries a significant amount of linear
momentum, the Saffman integral £ becomes non-vanishing. Note that a non-
vanishing Saffman integral automatically enforces a divergence of the Loitsianskii
integral. Turbulence in Saffman’s theory, therefore, consists of patches carrying
nontrivial amounts of linear momentum with vanishing angular momentum (see

figure 1.3).
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e
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Figure 1.3: a) In the picture of Batchelor, turbulence consists of patches carrying a
significant amount of angular momentum Hj, and negligible amount of linear
momentum. b) Saffman’s theory corresponds to turbulence of patches of net
linear momentum Ly, with virtually vanishing angular momentum. (The sketch
is following Davidson (2004).)
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2 Experimental Methods

The results of this thesis are based upon turbulence data obtained in two different
wind tunnels. The data from the Variable Density Turbulence Tunnel (VDTT) at the
Max-Planck-Institute for Dynamics and Self-Organization makes up the major part.
Additional velocity time series were obtained in the scope of the ESWIRP project,
“Investigation of the small-scale statistics of turbulence in SIMA", at the ONERA
wind tunnel in Modane, France. The Gottingen facility is described in section 2.1
and the Modane facility in section 2.2. All turbulence data has been collected by
means of a classical measurement technique called hot-wire anemometry. The
details of this technique and of the Nano-Scale Thermal Anemometry Probes
(NSTAPs) used are given in section 2.3. In section 2.4, the individual datasets
and respective experimental setups are described. Parts of section 2.1 have been
published in the Review of Scientific Instruments in greater detail (Bodenschatz,

Bewley, Nobach, Sinhuber & Xu 2014).
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2 EXPERIMENTAL METHODS

2.1 The Variable Density Turbulence Tunnel

At high Reynolds numbers, turbulence is assumed to exhibit universal features (see
chapter 1), such as predictable scale separation and the development of an inertial
range. To investigate the statistical behavior of turbulent flows at high Reynolds
numbers, one could directly measure natural, atmospheric flows. These flows tend
to possess extremely high Reynolds numbers of R) ~ (104) (Siebert et al. 2006).
However, one would also like to have precisely controlled conditions for the flow,
which is only possible to a very limited extent in natural flows. The question, how the
Reynolds number Re = UL/ v determines the statistical behavior of a turbulent flow
in a given geometry, can not in particular be answered from the in situ observation
of atmospheric flows alone. Wind tunnels provide an important experimental tool
for producing nearly homogeneous, isotropic turbulence, despite being unable to
achieve atmospheric Reynolds numbers. Limits to the mean speed and the length
scales arise from the construction and operational costs of the experiments. To
balance the need for high Reynolds numbers and well-controlled conditions, one
strategy is to build an extremely large wind tunnel like the SIMA in Modane.
This comes at the disadvantage of steep operational costs and inflexibility of the
experimental setup, being limited to the use of air. The second approach is to make
use of pressurized gases in a smaller wind tunnel. Since the dynamic viscosity u
of a gas only weakly depends on pressure, the kinematic viscosity v = i /p can be
adjusted over a wide range by changing the density, i.e. pressure, of the gas. Using

heavy gases at high pressures, one can obtain high Reynolds numbers in a wind
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tunnel of moderate size, the approach chosen with the VDTT.

2.1.1 Historical review of pressurized wind tunnels’

For over a century, pressurized wind tunnels have proven to be important tools
in researching aerodynamic questions because of their ability to independently
adjust flow Reynolds number and Mach number by independently changing the
pressure and mean speed of the working fluid. Without the possibility of running
numerical simulations on computers, conducting wind tunnel experiment was the
only way to test small-scale aerodynamic models before production. Even today, the
limited computational power of even the most modern computers still necessitates
the testing of models in wind tunnels at high Reynolds numbers. The first wind
tunnel in which the working gas could be pressurized to adjust the Reynolds number
was the "Variable Density Wind Tunnel of the National Advisory Committee for
Aeronautics" (VDT) built by Munk (1921) at the Langley Research Center in
Virginia. This tunnel, finished in 1923, was able to pressurize air up to 21 bar,
reaching Reynolds numbers Rey7 = 0.1v/AU /v = 5.4 10° based upon the cross
section of the tunnel A and the mean speed U (Munk & Miller 1926). This wood
recirculating tunnel of the Goéttingen type (Oswatitsch & Wieghardt 1987) was
destroyed in a fire in 1927 and rebuilt in 1930 (Jacobs & Abbot 1933). Because it
produced high turbulence intensities, the limitations of the flow quality in the VDT

were deemed to be too severe. This lead to the design of the 44.5 m long “Langley

IThis subsection follows the longer historical review in Bodenschatz, Bewley, Nobach, Sinhuber &
Xu (2014).
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two-dimensional low-turbulence pressure tunnel” in 1938, which reached Reyr =
6.1-10° using of compressed air at 10 bar (von Doenhoff & Abbott 1947). The
tunnel successfully provided a high quality aerodynamic research tool for decades
(McGhee et al. 1984, Choudhari et al. 2002) until demolition began in 20062. The
first variable density turbulence tunnel built in Europe was the “Compressed Air
Tunnel" at the National Physical Laboratory in Taddington in 1931 (Pankhurst
1972). Using compressed air at 25 bar, the tunnel reached Reyr = 8-10°. In
Germany, the first low pressure variable density tunnel was built at the Deutsche
Forschungsanstalt fiir Luftfahrt in 1956 (Schlichting 1956). The “Variable density
high speed cascade wind tunnel" was able to operate at pressures between 0.1 bar
and 1 bar air to reach Reynolds numbers up to Rey7 = 4- 10°. Despite the numerous
high-quality, variable-density turbulence tunnels built and operated over the span of
40 years, essentially none were used to conduct fundamental turbulence research.
The first reported study on the topics of turbulence produced by a classical grid
was published by Kistler & Vrebalovich (1966). The authors used the immense
“Southern California Co-operative Wind Tunnel" before its closing (Millikan et al.
1948). After the initial results from Kistler and Vrebalovich, several pressurized
wind tunnels were built to focus on fundamental turbulence questions. In Jiilich,
a high-pressure wind tunnel running Helium at 40 bar was used to investigate
the flow behind spheres at Reyr = 3.1- 10° (Achenbach 1972). At the German
Aerospace Center in Gottingen, the “High Pressure Wind Tunnel" operating at

air up to 100 bar was constructed and, e.g., used to investigate the flow around

2See http://crgis.ndc.nasa.gov/historic/Low_Turbulence_Pressure_
Tunnel (As of 06.02.2015, 10:20) for a history of the Low Turbulence Pressure Tunnel.
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cylinders (Forsching ef al. 1981). The most recent variable density tunnels before
the construction of the VDTT were the Princeton/DARDPA-ONR SuperPipe Facility
and the Princeton/ONR High Reynolds Number Testing Facility (Zagarola & Smits
1997). These facilities run with air pressurized to over 200 bar, reaching Reynolds
numbers of up to Reywr = 9.6- 10° in the latter case. In 2009, the Variable Density
Turbulence Tunnel was inaugurated at the Max Planck Institute for Dynamics and
Self-Organization. The key concept in this tunnel was to use pressurized Sulfur-
Hexafluoride as a working gas, reaching Reynolds numbers up to Rey7 = 4.4-10°
in a relatively small tunnel at low mean speeds (Bodenschatz et al. 2014). The
technical details of this tunnel and of the turbulent flow within, from which the
major part of the data of this thesis stems from, will be covered in th