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Abstract

PROPPINs (β-propellers that bind polyphosphoinositides) are conserved eukaryotic proteins that play an

important role in autophagy. Yeast contains three PROPPINs: Atg18, Atg21and Hsv2 (homologous with

swollen vacuole phenotype 2), which specifically bind PI3P and PI(3,5)P2. Based on the crystal structure of

Kluyveromyces lactisHsv2, which was determined earlier in our group, I performed docking studies to charac-

terize PI3P and PI(3,5)P2 binding in the two binding sites present in PROPPINs. Based on these docking studies

I proposed a model where PROPPINs bind perpendicular to the membrane through their two phosphoinositide

binding sites. In addition to the two phosphoinositide binding sites loop 6CD is alsorequired for membrane

targeting of PROPPINs. Using coarse-grained and atomistic molecular dynamics simulations I showed that

loop 6CD inserts into the lipid bilayer and acts as an anchor for membrane binding of PROPPINs.

I also determined the 1.8 Å resolution crystal structure ofPichia angustaAtg18, which represents the

first high resolution PROPPIN structure. As Hsv2 it forms a seven bladedβ-propeller with a non-velcro like

propeller closure topology. In order to experimentally validate my proposedPROPPIN-membrane binding

model I designed mutants based on theP. angustaAtg18 crystal structure and set-up a fluorescence based assay

to measure their distances to the membrane. Initial measurements confirm this model.

Through extensive through isothermal titration calorimetry measurements I quantified PI3P and PI(3,5)P2
binding ofP. angustaAtg18,K. lactisAtg21 andS. cerevisiaeHsv2. These PROPPINs bind phosphoinositides

with nanomolar and low-micromolar affinities and both Atg18 and Hsv2 bind tighterto PI(3,5)P2. Analysis

of single binding site mutants further showed that the affinities of these mutants are 15- to 30-fold lower com-

pared to the wild-type protein which explains that PROPPINs need two phosphinositide binding sites in order to

achieve high affinity binding to membranes. Taken together by combining computational studies, X-ray crystal-

lography and other biophysical methods I gained new insights how PROPPINs interact with phosphoinositides

on a molecular level.
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1 Introduction

1.1 Definition of autophagy

Autophagy was originally discovered as the cellular process of a cell breaking down its own components

under stress conditions such as starvation. It was observed in the 50s by Christian de Duve in electron mi-

croscopy pictures. At the time, De Duve was studying the lysosome, for which he got the Nobel prize in 1974.

He coined the term ‘autophagy’, using the Greek words for ’self-eating’.

Since its first physiological description, autophagy was shown to be involved in intracellular clearance of

damaged organelles, differentiation, development, programmed cell death,antigen presentation, and elimina-

tion of invading pathogens (reviewed in Ref. [3]). Dysfunction in autophagy pathway leads to diseases such as

cancer (reviewed in Ref. [4]) and neurodegeneration (reviewed in Ref. [5]).

There are three types of autophagy known: micro- and macroautophagyas well as chaperone-mediated

autophagy [6], [3] (schematically represented in Figure 1.1). In macroautophagy, isolation membranes appear

in the cytoplasm and enlarge to enclose a portion of the cytoplasm, leading to theformation of a double mem-

brane structure known as an autophagosome. The autophagosome fuses with the lysosome (or vacuole in yeast),

where the inner membrane and its components are degraded by enzymes. Inthe case of microautophagy, the

lysosomal membrane (or vacuolar membrane in yeast) invaginates creating a sac containing cytosolic compo-

nents. This sac encloses and scission occurs such that the vesicle containing the cytosolic components reaches

the degradation enzymes in the lysosome (vacuole in yeast). Finally, for chaperone-mediated autophagy [7],

targeted cytosolic components are selectively translocated into the lysosome using specific chaperones located

on both sides of the lysosomal membrane.

Both macroautophagy and microautophagy can be non-selective and selective. In the case of selective

autophagy, special receptors are involved for each of the possible selective autophagy types [6]: mitophagy,

xenophagy, piecemeal autophagy, ribophagy, pexophagy etc.

1.2 Molecular players in autophagy

The initial microscopy images taken by de Duve gave only hints about the process; for the next 30 years, the

understanding of autophagy was slow and based alone on physiologicalmammalian data. However, in 1992,

Yoshinori Ohsumi has shown that the yeast autophagy happens similarly tothe process in higher eukaryotes

[8]. Considering the fact that yeast is easy to genetically manipulate, this finding allowed the genetic screens

that led to the identification of the first molecular components involved in autophagy in the laboratories of

6
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Figure 1.1: Schematic overview of autophagy and its subtypes.
There are three types of autophagy known: micro- and macroautophagy as well as chaperone-mediated autophagy. In macroautophagy,
isolation membranes appear in the cytoplasm and enlarge to enclose a portion of the cytoplasm, leading to the formation of a double
membrane structure known as an autophagosome. The autophagosome fuses with the lysosome (or vacuole in yeast), where the
inner membrane and its components are degraded by enzymes. In the case of microautophagy, the lysosomal membrane (or vacuolar
membrane in yeast) invaginates creating a sac containing cytosolic components. This sac encloses and scission occurs such that the
vesicle containing the cytosolic components reaches the degradation enzymes in the lysosome (vacuole in yeast). For chaperone-
mediated autophagy, targeted cytosolic components are selectively translocated into the lysosome using special chaperones located on
both sides of the lysosomal membrane.

Klionsky [9], Ohsumi [10] and Thumm [11], as well as in other groups [12, 13, 14, 15]. Initial identification

and characterization of autophagy proteins was done in eitherSaccharomyces cerevisiaeor Pichia pastoris.

The steps involved in autophagy are mediated by a number of unique proteinscalled Atg (autophagy-

related proteins). There are 37 known Atg proteins [6, 16], among whicheighteen Atg proteins are essential

for the autophagosome formation step [17, 18]. The eighteen genes encoding for these proteins are mostly

conserved among higher eukaryotes such as mammals and plants, suggestingthat the molecular mechanism

of autophagosome formation is also conserved. These Atg proteins are categorized into five functional groups

[18]:

• Atg1 protein kinase and its regulators (Atg13, Atg17, Atg29, and Atg31)

• the autophagy-specific phosphatidylinositol 3-kinase complex (Vps30/Atg6, Atg14, Vps15, and Vps34)

• integral membrane protein Atg9 and the Atg2-Atg18 complex

• the Atg8 conjugation system (Atg5, Atg4, Atg7, and Atg8)
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• the Atg12 conjugation system (Atg5, Atg7, Atg10, Atg12, and Atg16)

In the last 20 years since the isolation of the first yeast autophagy-deficient mutants, all 37 Atg proteins were

characterized by cell biological and biochemical methods. However, since ‘If you want to understand function,

study structure’ - as Francis Crick said - the last years have seen an explosion in the structural knowledge of

Atg proteins, as reviewed in Ref. [19, 20].

In order to better understand the details of the molecular mechanism behind autophagosomal formation,

one has to look deeper behind the molecular players involved in each of the above mentioned complexes.

Autophagosome formation is triggered under starvation conditions which inactivates TORC1 (Tor complex1).

In nutrient rich conditions, TORC1 hyperphosphorylates Atg13. Dephosphorylated Atg13 associates with

Ser/Thr kinase Atg1 and activates it. The ternary complex formed by Atg17,Atg28 and Atg31 binds to Atg1-

Atg13 complex [21]. This complex activates downstream steps and the cycling of Atg9 between the source

for membranes and the PAS (pre-autophagosomalstructure) [22]. The basic knowledge about the function of

Atg1 kinase and its regulators was obtained through cell biological methods.However, structural biology has

recently offered deeper insights. The structure of the At17-Atg28-Atg31 ternary complex has shown that this

complex dimerizes in order to fulfill its role [23, 24, 25]. It is hypothesized that this dimerization ensures the

vesicle tethering that contributes to the PAS growing into an autophagosome. Next, the structural details of

Atg1 interaction with Atg13 and Atg17 have shown that the dephosphorylationof Atg13 leads to its interaction

to both Atg1 and Atg17 [26]. Moreover, these structural studies offered the basis for the deeper understanding

of the Atg1-Atg13-Atg17-Atg29-Atg31 complex as a dimer of pentamers [27].

The Atg1 and its regulators activate phosphatidylinositol 3-kinase complex.In S. cerevisiae, Vps34 is

the only phosphatidylinositol 3-kinase. Vps34 is a member of two distinct complexes that have distinct func-

tions in autophagy (complex I) and in the vacuolar protein sorting (complex II). Complex I is composed of

Vps34, Vps15, Vps30/Atg6 and Atg14, whereas Vps38 replaces Atg14in complex II. Atg14 or Vps38 have

an important role in the correct localization of the respective complex whereit is needed for the production

of phosphatidyl-3 phosphate (PI3P). The structural study of this complex was initiated both in the mammalian

Beclin1 (Vps30/Atg6 homolog) [28] and yeast Vps30/Atg6 [29]. The determined structures revealed a novel

domain, BARA (β-α repeated autophagy-specific), which is used in PAS recognition. Moreover, the struc-

tural study of Beclin1 has revealed information about its interaction with Atg14L and UVRAG (Vps38 human

homolog).

Once the PI3P is produced at the PAS, the Atg2-Atg18 is recruited there. Atg18 can bind to both PI3P and

PI(3,5)P2 (phosphatidylinositol-3,5 biphosphate), depending whether it is performing its function at the PAS or

at the vacuolar membrane. It is still not understood what the exact function of this complex is, but it is known

to be essential for the autophagosome formation. Atg2 is known to interact withAtg9. Atg9 cycles between

the PAS and unknown cytosolic membranes. This complex is the least structurally studied out of all autophagic

core complexes. Structural information about Atg18 function can be implied from the structure of its paralog,

Hsv2 and complementary mutagenesis studies [1, 30, 2].

The best studied complexes in autophagy are by far the ubuiquitin conjugation complexes involving Atg8

and Atg12∼Atg5. For each conjugation complex, there is a ubiquitin-like protein: Atg8 andAtg12 [31]. They

are conjugated to phosphatidyl ethanolamine and and Atg5, respectively with the help of the Atg3, Atg7 and

Atg10 enzymes. Atg4 is an enzyme needed for the recycling of Atg8, i.e., its deconjugation, while Atg16



1.3 Phosphoinositide binding domains 9

is important component of the Atg12∼Atg5 complex needed for its function. Furthermore, Atg16 is also

important for the lipidation of Atg8 [17].

In S. cerevisiae, Atg8 is essential for autophagosome formation having roles in membrane expansion and

autophagosome-lysosome fusion [17]. InH. sapiens, Atg8 has six homologs: MAP1LC3A (microtubule-

associatedprotein-1 light chain 3A), MAP1LC3B, MAP1LC3C, GABARAP (GABAA receptor-associated

protein), GABARAPL1 (GABARAP -like protein1) and GABARAPL2 [32]. Atg8 homologs were proposed

to be important in vesicle fusion which contributes to the growth of autophagosomal membranes [33, 34]. How-

ever, this hemifusion ability is not enoughin vivo and SNAREs are required for the autophagosome formation

[35]. Furthermore, Atg8 and its human homologs are hubs of interaction [36] since they have a central role in

binding the receptors for the cargo selection during all types of selectiveautophagy.

Atg12 is conjugated to Atg5 similarly to Atg8 lipidation. Once conjugated, Atg12∼Atg5 interacts with

Atg16 forming a complex of∼350 kDa in yeast due to the oligomerization property of Atg16. One of the

functions of Atg16 is to correctly localize the complex to the correct membrane.This complex is involved in

Atg8 lipidation.

The structural characterization of the proteins and complexes involved in autophagy started with the con-

jugation systems [19] for which the mechanistical details were structurally elucidated in the last five years

[37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. All these structural studies gave insights into how several compo-

nents of the conjugation systems interact with each other and how the reactions occur. However, the conjugation

reaction is not the only question about Atg8 and its homologs worth investigating. Since Atg8 and especially

is human homologs are easy to purify [48], a large attention was given to its role in selective autophagy [36],

[49], [50], [51].

1.3 Phosphoinositide binding domains

Cellular membranes are characterized by their lipid composition. Phosphoinositides (PIs), phosphorylated

derivatives of phosphatidylinositol, have a particular role in cellular signaling and in correct localization of

proteins at the cellular locations where they will perform their function. There are seven natural PIs defined by

the combination of phsophorylations at positions 3, 4 or 5 on the inositol ring.They are specifically recognized

by several domains such as FYVE (Fab1,YOTB, Vac1 andEEA1) [52], [53], PH (pleckstrinhomology) [54],

PX (Phox homology) [55], [56], C2 (conserved region-2 of protein kinase C) [57], PTB (phosphotyrosine

binding) [58], GOLPH3 (Golgi phosphoprotein3) [59], ANTH (AP180N-terminalhomology) [60], ENTH

(epsinN-terminalhomology) [61], FERM (4.1, ezrin, radixin, moiesin) [62], PDZ (postsynapticdensity 95,

disk large,zonula occludens) [63], Tubby [64] and PROPPIN (β-propellers that bindphosphoinositides) [1, 30,

2]. Each domain has its specificity, e.g., FYVE binds only PI3P or promiscuity,e.g., PH domains are known to

bind all the PIs except phosphatidyl-5-phosphate. Each known domain was structurally characterized in at least

one model protein. Figure 1.2 gives an overview of the PI binding domains,their structures and PI specificity.

The PI binding domains have binding pockets lined with basic amino acids: arginine, lysine and/or histidine

in order to bind the negatively charged PIs. When histidine is present, a histidine switch might be involved for

the regulation of the binding. Making use of the ease of histidines to get protonated and deprotonated, according

to the environmental pH, the binding affinity can increase in acidic conditions.This regulation mechanism is

used by the PH domain of GRP1 protein [65] and by the FYVE domain of EEA1 [66]. Usually, the PI affinity
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Figure 1.2: Phosphoinositide binding domains: structure and specificity.
There are seven natural phosphoinositides that give the characteristics of different cellular membranes. Each phospoinositide is recog-
nized by specific phosphoinositide binding domains. Selected representatives of each of the known phosphoinositide binding domain:
FYVE, PH, PX, C2, PTB, GOLPH3, ANTH, ENTH, FERM, PDZ, Tubby and PROPPINs are represented. Their ligand specificity is
also shown.

of these domains is low. This is why, in order to have a tighter membrane binding,some domains are known to

have another basic binding pocket for phosphatidylserine as in the caseof C2 domain [67] or for phosphatidic

acid as in the case of the PH domain [68] and PX domain [69]. Furthermore, itmight be possible that two

PI molecules bind to the same C2 domain [70]. Another mechanism to specifically increase affinity of one PI

domain to a cellular membrane is domain oligomerization, e.g., the PH domain of dynamin [71] and the FYVE

domain of EEA1 [52] or by combining the PI recruitment with the binding to another membrane attached

protein, e.g., FAPPs bind both phosphatidylinositol-4 phosphate and ARF [72].

Beside the specific membrane attachment regulated through binding pockets that recognize PIs or other

lipids or by physical interaction to membrane attached proteins, there are unspecific mechanisms for PI bind-

ing domains to be recruited to a cellular compartment. Electrostatic interactions arelong range interactions.

Through theoretical studies, it was shown that the electrical field createdby the charges of a membrane, can

orient PH domains in the right direction and bring them close to the membrane. Then, the PH domains bind the

PI molecule [73]. Similarly, for the C2A domain of synaptotagmin 1 and 7, electrostatic docking was shown

to be the recruitment mechanism. After electrostatical recruitment, synaptotagmin7 C2A domain, inserts a

surface loop into the bilayer using its hydrophobic properties [74]. A similarinterplay between electrostatic
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and hydrophobic interactions for loop insertion was previously reportedfor the PX domain of yeast Vam7p

[75] and the FYVE domain of EEA1 [76]. Once a loop penetrates a membrane, the curvature of the membrane

modifies due to increase in the surface of the outside leaflet [77]. This increase depends on the nature of the

loop and depth of penetration. The coincidence detection of the membrane curvature and the PI is a recruitment

mechanism for proteins such as sorting nexin-1 [78].

1.4 Phosphoinositides in autophagy

Phosphoinositide PI3P is a marker of the autophagosomal membranes [79].The first proof that kinases

and phosphatases are involved in the regulation of autophagy and that thelipid phosphorylation plays a cru-

cial rule in autophagy signaling was offered by Per Seglen and Paul Gordon [80]. They have showed that

3-methyladenine inhibits autophagy. Later, it was shown that wortmannin alsoinhibits autophagy. Both 3-

methyladenine and wortmannin are inhibiting phosphatidyl 3-kinase (PI3K) [81]. However, rapamycin was

shown to stimulate autophagy [82], which seemed contradicting the 3-methyladenine and wortmannin exper-

iments, since all of them are blocking cellular signaling upstream of, or at, theTOR complex. However,

in a Codogno-Meijer collaboration, it was shown that there are two different classes of phosphoinositides:

phosphatidylinositol-(3,4,5) triphosphate (PIP(3,4,5)P3) inhibits autophagy, while autophagy depends on PI3P

[83]. Ohsumi’s group has shown autophagy stimulation in yeast by rapamycin, suggesting that a similar sig-

naling mechanism was conserved across species [84]. Later, after theidentification of the autophagy molecular

players, it was understood that the Vps34 complex I regulates PI3P signaling at the PAS with the help of Atg14.

In autophagy, there are several PI binding proteins:

• the PROPPIN family

• Atg20 contains a PX domain [85], [31]

• Atg24 contains a PX domain [85], [31]

• Atg26 contains a GRAM domain [86], [87]

• Atg27 [88]

• ALFY (autophagylinkedFYVE protein) contains a FYVE domain [89]

• FYCO1 (FYVE andcoiled-coil domain containing protein) contains a FYVE domain [90]

• the transmembrane protein DFCP1 (doubleFYVE-containingprotein1) containing a FYVE domain [91]

• TECPR1 (Tectoninβ-propellerrepeat-containing protein) contains a PH domain [92]

1.5 PROPPINs and their function

PROPPINs are a PI binding family. In yeast autophagy, there are three PROPPIN paralogs: Atg18, Atg21

and Hsv2. The autophagy PROPPINS specifically bind PI3P and PI(3,5)P2 using a conserved FRRG motif
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[93, 94]. All three yeast PROPPINs seem to localize to a perivacuolar punctate structure and to the endosomes

[95].

There are four human homologs of PROPPINs, the WIPI proteins (WD-40 repeat containing protein that

interacts withPIs) [96]. It is hypothesized that WIPI1 and WIPI2 are the human homologsof Atg18, while

WIPI3 and WIPI4 are the homologs of Hsv2. There are no human homologsfor Atg21. The WIPI proteins

are involved in a number of diseases [97] such as cancer, phospholipidosis and NBIA (neurodegeneration with

brain iron accumulation). Some of the point mutations leading to illness are known[98, 99]. InC. elegans, a

WIPI4 homolog, EPG-6, was reported to physically interact with Atg2. [100]. Furthermore,A. thalianawas

reported to have eight PROPPIN homologs [101].

In S. cerevisiae, Atg18 is a 55 kDa PROPPIN important in autophagy and in maintaining vacuolarmor-

phology [102], [103], [104]. Atg18 is localized under both growing and starvation conditions in the cytosol,

at the PAS and on the vacuolar membrane. Atg18 is needed for autophagosome formation, function which is

done with the help with Atg2 and Atg9 [31], in the regulation of PI(3,5)P2 synthesis at the vacuole [105] and

in vesicular transport from the vacuoles to the Golgi [104]. Atg18 is required in macroautophagy, being one

of the core eighteen protein, but also in the Cvt (cytoplasm tovacuoletargeting) pathway for the maturation

of Ape1 (amino peptidase 1), pexophagy inP. pastoris[103], [106] and PMN (piecemealnucleophagy), mi-

croautophagy pathways in which parts of the nuclear membrane together withthe nucleoplasm are engulfed

by the vacuole [95]. For its autophagy related functions, Atg18 binds PI3P, while for the vacuolar morphology

function, it binds PI(3,5)P2.

Atg21 is a yeast PROPPIN involved in the Cvt pathway [107], [94] and PMN [95]. Furthermore, it was

shown to be involved in pexophagy inP. pastoris[108] andP. angusta[109]. In the Cvt pathway, Atg21 was

shown to function in the correct localization of Atg8 to the PAS [93], [110].

Figure 1.3: Structural details of KlHsv2, the first PROPPIN paralog structurally characterized.
Top (A) and side (B) view of theβ-propeller of KlHsv2 (pdb accession number 4AV9 [1]). The cartoonrepresentation is colored in
rainbow colors with the N-terminal represented in blue and the C-terminal inred. The FRRG motif (C) is essential for phosphoinositide
binding. Its two arginines point towards two distinct binding pockets definedby crystallographic sulfates.

Hsv2 (homologous of theswollen vacuole protein2), is the protein product of YGR233c gene [111]. It is

important in the PMN pathway [95]. During the time course of this thesis, the structure of Hsv2 was determined

in our laboratory [1] and in other groups [30], [2] inK. lactis (hereafter referred as KlHsv2) andK. marxianus.

The Hsv2 structure (Figure 1.3 A, B) presents a seven bladedbeta-propeller. Each blade is formed by four anti-
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parallelβ-strands connected by loop regions. These loops are not conservedamong PROPPIN parologs from

different species and have a variety of lengths. KlHsv2 has shorter loops when compared to itsS. cerevisiae

homolog (herafter referred as ScHsv2). It is hypothesized that theseloops give the differences in binding

partners and functions among the different paralogs, Atg18, Atg21 andHsv2. In the 3 Å structure of KlHsv2,

there was not enough electronic density for the modeling of the loop connecting strand C and D of blade 6 (loop

6CD). However, this loop was visible in a 3.35 Å structure. This loop is shownto be important for membrane

binding [30]. Interestingly, inP. pastoristhe phosphorylation of specific sites in the loop 6CD leads to Atg18

membrane binding, while phosphatates regulate its membrane detachment [106].

The structure allowed the characterization of the PI binding through the canonical FRRG motif (Figure

1.3, C). Intriguingly, the two arginines in this motif (R219 and R220) pointed towards two different pockets in

which sulfates from the crystallization condition bound in the crystal structure. Sulfates are known to suggest

the binding mode of phosphate functional groups in PIs [69] , [112]. Mutagenesis of conserved residues in the

region around these two sulfates revealed in bothin vivo and in vitro experiments that there are two binding

pockets for PI3P and PI(3,5)P2 [1], [30].

1.6 β-propellers are hubs of interaction

PROPPINs areβ-propellers or WD40 repeat domains. The WD40 repeat domain is one the most abundant

interaction domains in eukaryotes. Being an old evolutionary domain, it can also be found in bacteria [113].

WD40 containing proteins function in signal transduction, cell division, cytoskeleton assembly, chemotaxis and

RNA processing since they are stableβ-propeller structures to which other proteins, nucleic acids or lipids can

bind stably or reversibly.

The first structure of aβ-propeller was determined for the G protein heterotrimer [114], [115]. The β-

propeller structure is defined by the presence of several copies of WD40 repeats. In general, each repeat

contains 44-60 residue units with a glycine - histidine (GH) dipeptide about 11-24 residues from its N-terminus

and terminates with a tryptophan-aspartate (WD) doublet residues at the C-terminus [116]. Each of the repeat

folds into a four-stranded anti-parallelbeta-sheet. There can be in between four and nine of theseβ-sheets per

WD40 domain protein. In general, the overall topology of thebeta-propellers is such that the first twoβ-strands

at the N-terminal form a blade with the last two C-terminalβ-strands. This is called a velcro closure. However,

non-velcro topologies are known for Aip1p [117] and Hsv2 [1], [30], [2]. Moreover, in the case of Sec13, the

structure shows an open propeller with six blades to which a seventh blade iscontributed by the interaction

partner, Sec16 or Sec31 [118].

In terms of interactions, WD40 proteins are platforms for multiple modes of interactions making them

central to many cellular processes that need several molecular players tocome together [119]. Autophagy is one

of these processes in which eighteen core proteins work together to maturethe PAS into an autophagosome. In

yeast autophagy, PROPPINs are the onlyβ-propellers involved. In mammalian autophagy, beside PROPPINs,

there are Atg16 [120], ALFY [89], TECPR1 [92] and Ambra1 [121].
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1.7 Interaction partners of PROPPINs

Atg18 needs protein interaction partners that act synergistically with the PI binding to increase its membrane

affinity. It has two main functions and according to these functions, it has different interactions partners. In

autophagy, Atg18 interacts with Atg2, while for its function in vacuolar morphology it interacts with Vac7 [79].

Other important Atg18 interaction partners are:

• Atg1 [122]

• Atg9 [123, 31]

• Fab1, 1-phosphatidylinositol-3-phosphate 5-kinase, vacuolar membrane kinase that generates PI(3,5)P2

[111]

• UBI4, ubiquitin [124]

• Vac14, involved in synthesis of PI(3,5)P2 [125, 126]

• Vac17, phosphoprotein involved in vacuole inheritance [111, 125, 105]

• Pex13, peroxisomal importomer complex component; integral peroxisomal membrane protein required

for docking and translocation of peroxisomal matrix proteins [127]

• Pho85, cyclin-dependent kinase involved in regulating the cellular response to nutrient levels and envi-

ronmental conditions and progression through the cell cycle [122]

Furthermore, Atg21 physically interacts with Atg1 [122], Pho85 [122], TVP15, an integral membrane

protein; localized to late Golgi vesicles along with the v-SNARE Tlg2p [128] and UBI4 [129]. Similar yeast

high throughput screens that identified the interaction partners of Atg21,showed that Hsv2 directly interacts

with Vps21, a Rab protein [130], Vam7, a SNARE protein [131], TVP15 [132] and UBI4 [129].

It can be observes that all PROPPINs bind ubiquitin UBI4. This is interesting to note sinceβ-propellers are

known to bind ubiquitin folds [124] and there are two ubiquitin-like proteins in autophagy, Atg12 and Atg8,

which were not yet shown to directly interact with PROPPINs.

In the human autophagy network, WIPI2 was shown to interact with DnaJ chaperones and not interact with

the Atg2 homologs, which are the interaction partners of WIPI4 [32]. Recently, Atg16L1 was shown to be an

interaction partner of WIPI2b [133].

1.7.1 The Atg2-Atg18 complex

In S. cerevisiae, Atg2 (product of YNL242w gene [134]) is a hydrophilic protein of 1,592 amino acids with

a molecular mass of 178 kDa. It has no known domain. In addition, Atg2 has no posttranslational modifications

[135].

The first report of the YNL242w gene deletion mutant, identified Atg2 as important in the process of

sporulation. Later, Atg2 was characterized as a peripheral membrane protein involved in the completion of the

autophagosome [136, 135, 137]. Yeast cells that have a deletion of Atg2lose their viability both in nutrient rich



1.7 Interaction partners of PROPPINs 15

conditions and under starvation [135, 137]. Beside sporulation, Atg2 was shown to be important in autophagy

[137], CVT pathway [136, 137, 135] and pexophagy [137].

The two most important interaction partners of Atg2 are Atg9 and Atg18. Atg2 co-immunoprecipitates with

Atg9 which is the only transmembrane protein involved in autophagy [137], [135]. Atg9 is suggested to supply

the PAS with lipids during its shuttling, helping in the expansion of PAS towards a mature autophagosome.

Another interaction partner of Atg2 is Atg18. The exact function of the Atg2-Atg18 complex is unknown.

It was suggested to control the cycling of Atg9 between the PAS and a peripheral compartment that might be

the ER. This would lead to the elongation of the PAS. One way to look into the function, would be to study the

localization both in nutrient rich conditions and upon autophagy induction. Microscopy has shown that under

both normal nutrient conditions and starvation, Atg2 is localized at the PAS and in the cytosol [137]. However,

upon autophagy induction, more Atg2 is recruited to the PAS. Unfortunately,yeast is too small to map the exact

localization of Atg2 by conventional microscopy techniques. However, using fluorescence microscopy in yeast

cells having an enlarged selective cargo of autophagosomes,it was observed that the Atg2-Atg18 complex is

localized at the edge of the isolation membranes in close proximity to the ER exit sites[138]. This observation

is strengthened by the fact that in mammalian cells, the Atg18 homolog, WIPI2 is required at the omegasomes,

ER-localized P3P-containing structures, for their progression into autophagosomes [96]. This is also true for

C. eleganswhere the WIPI4 homolog, EPG-6 is required for omegasome maturation [100]. EPG-6 interacts

with Atg2.

Figure 1.4: There are two working hypotheses for the recruitment of Atg2-Atg18 complex to the autophagic membranes.
During autophagosome formation, the recruitment of Atg2-Atg18 is essential. (A) The Ohsumi laboratory [79] proposes a model in
which the Atg2-Atg18 complex is formed in the cytosol and then recruited to the autophagic membranes. (B) The Reggiori laboratory
[139] argues that Atg2 binds first to the pre-autophagosomal structure and subsequently, Atg18 binds to both PI3P and Atg2 forming a
tight complex.

Dissecting the recruitment of the Atg2-Atg18 complex at the PAS, two hypotheses can be discussed. The

molecular details of these hypotheses are schematically represented in Figure 1.4. Ohsumi’s laboratory has

shown that in Atg18 deficient cells, Atg2 fails to localize at the PAS [79]. Thisobservation led to further

characterization of the Atg2 and Atg18 interaction. They found that Atg2 and Atg18 constitutively form a

cytosolic complex that is recruited to PAS by PI3P through the direct interaction of Atg18 with PI3P [79, 140].

Alternatively, in the laboratory of Reggiori, it was shown that Atg2 binds first at the PAS where it recruits Atg18
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[139]. This observation is based on the same experiment of Atg2 localizationin Atg18 deficient cells done in

Ohsumi lab. Contrary to the first results, in the case of the Reggiori laboratory, Atg2 can localize at the PAS in

the absence of Atg18. However, a third laboratory [141] has shown thesame results as the Ohsumi laboratory.

Moreover, in this report [139], bimolecular fluorescence complementation(BiFC) was used to show that Atg2

and Atg18 interact only at the PAS.

However, Atg2-Atg18 complex localization to the PAS is not dependent aloneto its ability to bind PI3P.

Atg2 cannot localize to the PAS in Atg9 deficient cells, while Atg9 localizes to the PAS independent of the

presence of Atg2 [137]. This means that Atg9 helps in recruiting Atg2-Atg18 complex to the PAS. Structural

information on the interactions involved in this complex would settle the debate on therecruitment and function

of the Atg2-Atg18 complex.

One powerful method to study domains important for conserved interactionsis to check protein sequence

conservation. Atg2 is little conserved among species and has no known domain. However, the N- and C- termini

have some degree of conservation among species. From the studies of theAtg2 homolog inP. pastoris, Gsa11,

it is known that C-terminal domain is needed for the localization to the PAS [137]. Moreover, the N-terminal

was shown to be enough for PAS localization, but not enough for the autophagosome formation function [141].

Furthermore, glycine 83 was shown to be important for the localization of Atg2to the PAS [135]. These

facts indicate that the N-terminal domain is the interaction domain with Atg18, while theC-terminal domain is

needed for recycling Atg9. The Atg2 interaction sites on Atg18 were recently characterized [2, 139] as being

located on the opposite site of the propeller as the PI binding sites. Positions P72, R73 and loops 54-58, 90-94

and 121-123 in Atg18 were shown to be important for binding Atg2.

The information available up to now suggests that the Atg18-Atg2 complex may function in generating the

high curvature at the growing sites on the PAS. The complex is not transported to the vacuole [137]. Indeed,

the yeast phosphatase Ymr1 dephosphorylates PI3P before the autophagosome fuses with the vacuole, freeing

the Atg2-Atg18 complex [142].

In the mammalian cells, there are two Atg2 paralogs, Atg2A and Atg2B. Human Atg2A was studied in

yeast [141] where its N-terminal domain could localize at the PAS but would not function properly. Also, the

human Atg2A would not interact with the yeast Atg9, while doing so with Atg18. Interestingly, in the human

system, Atg2A/B are not shown to interact with Atg9 [32]. Both Atg2A and Atg2B are shown to function both

in autophagosome formation and regulation of lipid droplet morphology and dispersion [143], [144]. In the

human autophagy network [32], Atg2A is shown to interact with WIPI1, WIPI4, Atg2B, Atg8 family members

and DnaJ chaperones, while Atg2B is shown to interact with WIPI4.

The human Atg2 proteins are not known to be involved in any disease, however, their paralogs, VPS13

family is involved in chorea acanthocytosis and Cohen syndrome [145]. Inplants, the Atg2-Atg18 is shown to

be important in powder mildew infection [146].

1.7.2 Arabidopsis thaliana Atg18a-WRKY33 complex

Autophagy is also conserved in plants where the vacuole uptakes cytosoliccomponents. This was proven

by morphological studies followed by identification of the molecular players based on sequence homology. In

plants, autophagy occurs both under nutrient starvation and as a basalprocess during developmental stages,

storage of proteins in the vacuole, senescence etc.
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Figure 1.5: Importance of Atg18a-WRKY33 complex in the plant resistance to necrotrophic pathogens.
Upon infection with necrotrophic pathogens such asB. cinereaandA. brassicicola, Atg18a and transcription factor WRKY33 form a
complex that is recruited to the nucleus. This complex is essential in the plantdefense mechanism against necrotrohic pathogens.

Arabidopsis thalianaATG18-like genes were identified upon comparison of the sequence of theS. cere-

visiae ATG18 with theA. thaliana genome sequence. There are eightA. thaliana Atg18 proteins named

AtAtg18a-AtAtg18h [101]. Phylogenetic analysis predicted that the AtAtg18s form three major clusters:

• AtATG18a, c, d, and e cluster with the yeast protein Hsv2

• AtAtg18b is most similar to yeast Atg18

• AtATG18f, g, and h form a separate clade

Similarly with human WIPI proteins, none of the eight plant Atg18 homologs clusters with the yeast Atg21.

Looking closer to AtAtg18a, under sucrose and starvation conditions, its transcription increases [101]. In

addition, it is the only plant Atg18 upregulated in senescence and it may function in the response of plants to

starvation. It is not required in normal nutrient-rich conditions, since AtATG18a RNAi plants are comparable

to the wild type ones. Similarly, the plants lacking AtAtg18a are sensitive to oxidative stress, drought or

salt [147, 148]. Furthermore, AtAtg2-AtAtg18a complex is important in the defense response to the powdery

mildew fungus,G. cichoracearum, a biotrophic pathogen [146].

AtAtg18a was recently shown to interact with WRKY33 (AtWRKY33), a transcription factor required for

resistance to necrotrophic pathogens [149]. Necrotrophic pathogenskill host cells before colonizing them. The

host defends itself against these type of pathogens by using a system ofmultiple genes involved in jasmonate

and ethylene signaling and synthesis of the phytoalexin camalexin [149]. However, there are indications that

other pathways are also involved. These pathways might be interrelated withthe WRKY33 pathway.

WRKY transcription factors [150] are DNA binding proteins that are regulating plant innate immunity,

microbe- or pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. The

defining feature of the WRKY proteins are the DNA binding motif defined by theamino acid sequence WRKY
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found at the N-terminal. WRKY proteins are mostly unstructured, nevertheless, the WRKY domain alone was

structurally characterized as being a novel zinc-finger. It consists ofa four-strandedβ-sheet, Cys/His residues

coordinating the zinc defining the zinc-binding pocket [151], [152].

When it comes to necrotrophic infections, both mutants in either AtAtg18a or AtWRKY33 show decreased

resistance toB. cinereaandA. brassicicola. The interaction of these proteins was shown through yeast two-

hybrid screens and confirmed through co-immunoprecipitation. Moreover, AtAtg18a and AtWRKY33 interact

in the nucleus through the C-terminal domain of AtWRKY33 [149]. The nuclear interaction was visualized

through bimolecular fluorescence complementation.

This interaction opens interesting questions since this is the first instance of an autophagy protein present

in the nucleus. How is it translocated? Does it bind any PI inside the nucleus?Interestingly, it was shown that

PI3P is present in the plant nucleus [153]. How does it regulate WRKY33? For answering this question, the

structural details of the AtAtg18a-AtWRKY33 interaction would be necessary.

1.8 Aims

The PROPPINs Atg18, Atg21 and Hsv2 are important in autophagy, Atg18 isone of the 18 core autophagic

proteins. Their structures are predicted to be similar, however they have different functions in autophagic path-

ways. The details of how they perform their functions and what makes themdifferent from each other are not

known. Moreover, since they have different interaction partners, my goal was to get further knowledge on how

PROPPINs interact with membranes by combining X-ray crystallography andbiophysical and computational

methods

The KlHsv2 structure was earlier determined in our group. Neither our northe other published Hsv2

structures [30, 2] contained bound PI molecules. In order to get further insights into PI binding of PROPPINs

on a molecular level, I performed docking studies. Another goal was to characterize the non-specific membrane

binding of loop 6CD through coarse-grained and atomistic molecular dynamicssimulations as described in

Chapter 3 of this thesis.

In Chapter 4 of the thesis, I quantitatively characterized PI binding of the three PROPPIN paralogs from dif-

ferent yeast. The purified proteins were characterized using isothermal titration calorimetry (ITC), thermofluor

and circular dichroism (CD) measurements.

Chapter 5 contains the structural characterization ofP. angustaAtg18 (PaAtg18), as one of the last undeter-

mined structures of the core autophagic complex. Atg18 complexes are of great interest. The chosen interaction

partners targets are Atg2 and AtWRKY33, which were cloned and expressed in this study.
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2.1 Materials

2.1.1 Chemicals

Reagent grade chemicals were purchased from the following companies:Fluka (Buchs, Switzerland),

Merck (Darmstadt, Germany), Sigma-Aldrich (Steinheim/Seelze, Germany), Roth (Karlsruhe, Germany), Serva

(Heidelberg, Germany), Roche (Basel, Switzerland). Chemicals used were of analytical purity and chemicals

for crystallization were ultrapure quality. For crystallization, solutions fromEmerald BioSystems, Hampton

Research and Qiagen were used. Further chemicals are listed in table 2.1.

Table 2.1: Chemicals

Chemical Company

HEPES GERBU Biotechnik

complete EDTA-free, Protease inhibitor tablet Roche

Ni-NTA Sepharose GE Healthcare

Gluthatione Sepharose 4B GE Healthcare

Strep-Tactin Sepharose IBA

SYPRO Orange Sigma

Nycodenz Progen

Na-cholate Sigma

Sephadex G-50 Sigma

IANBD Amide Invitrogen

2.1.2 Enzymes

Enzymes were ordered from the companies stated in table 2.2 and used as recommended by the manufac-

turer.
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Table 2.2: Enzymes

Enzyme Company

Restriction enzymes NEB

T4 DNA Ligase NEB

Cre Recombinase NEB

Thrombin MP Biomedical

DNaseI Applichem

Lysozyme Roth

Proteinase K Hampton Research

Trypsin Hampton Research

Subtilisin Hampton Research

Thrombin was prepared in Tris/EDTA buffer (10 mM Tris pH 7.4, 1 mM EDTA) and mixed with an equal

amount of glycerol.

2.1.3 Lipids

Lipids were ordered from the companies stated in table 2.3. They were shipped as powder and were dis-

solved in chloroform to the needed concentration and stored at -20 ◦C.

Table 2.3: Lipids

Lipid Concentration Order No. Company

PC: L-α-phosphatidylcholine from egg, chicken 10/25 mg/ml 840051C/P Avanti Polar Lipids, Inc.

PE: L-α-phosphatidylethanolamine from brain, porcine 25 mg/ml 840022P Avanti Polar Lipids, Inc.

18:1 PI3P: 18:1 PtdIns3P: 1,2-dioleoyl-sn-glycero-3-

phospho-(1’-myoinositol-3’-phosphate)

1 mg/ml 850150P Avanti Polar Lipids, Inc.

18:1 PI(3,5)P2: 1,2-dioleoyl-sn-glycero-3-phospho-(1’-

myo-inositol-3’,5’-bisphosphate) ammonium salt

1 mg/ml 850154P Avanti Polar Lipids, Inc.

TR-PE: 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine, triethylammonium salt

1 mg/ml T-1395MP Invitrogen

18:1 (∆9-Cis) DOPE: 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine

850725C Avanti Polar Lipids, Inc.

18:1 (∆9-Cis) DOPC: 1,2-dioleoyl-sn-glycero-3-

phosphocholine

850375C Avanti Polar Lipids, Inc.

2.1.4 Kits

All kits used in this study are summarized in table 2.4. They were used as recommended by the manufac-

turer.
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Table 2.4: Kits used in this study

Kit Company

Phusion High-Fidelity PCR Kit NEB

NucleoSpin Plasmid kit Macherey & Nagel

NucleoSpin Extract II kit Macherey & Nagel

QIAquick PCR Purification kit Qiagen

QIAquick Gel Extraction kit Qiagen

NucleoBond PC100 Macherey & Nagel

NucleoBond Xtra Macherey & Nagel

Chaperone Plasmid Set Takara Clontech

QuickChange Ligthning Site-Directed Muta-

genesis kit

Agilent Technologies (Stratagene)

Western LighteningPlus-ECL Perkin Elmer

ADDit - Additive Screen Emerald BioSystems

pHat Buffer Block Emerald BioSystems

2.1.5 Columns for chromatography

All columns listed below in table 2.5 where used, as recommended by the manufacturer, in combination

with an Äkta Purifier FPLC system (RT) or with the Äkta Prime FPLC (4 ◦C). For desalting the NBD-labeled

proteins, PD-10 Desalting Columns (GE Healthcare) were used.

Table 2.5: Chromatography columns

Column Company

1 ml/5 ml His-Trap FF column GE Healthcare

5 mL Protino Ni-NTA column Macherey & Nagel

5 ml Strep-Trap column GE Healthcare

5 ml GSTrap column GE Healthcare

5 mL Protino GST/4B Column Macherey & Nagel

HiLoad 16/60 Superdex 75 prep grade GE Healthcare

2.1.6 Antibodies

All antibodies used in this study are listed in table 2.6.
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Table 2.6: Antibodies

Antibody Company

Ms mAb to GST Abcam

Hsv2 (CGEPTRWELVRESWREL) gift from Prof. M. Thumm

Hexa-Histidine tag (DIA900) Dianova

murine Strep-tag II IBA GmbH

Penta His HRP conjugate Qiagen GmbH

rabbit polyclonal anti-HA Sigma

goat polyclonal mouse IgG (HRP labeled) BioRad Laboratories GmbH

goat polyclonal rabbit IgG (HRP labeled) BioRad Laboratories GmbH

2.1.7 Buffers and media

All buffers used in this study are listed in table 2.7, while media are summarized in table 2.8.

Table 2.7: Buffers

Buffer Content

PBS 150 mM NaCl, 20 mM Na2PO4 pH 7.4

PBS-T PBS buffer + 0.05% (v/v) Tween 20

SDS-PAGE Running buffer 10x 30.3 g/L Tris, 144.6 g/L Glycine, 10 g/L SDS, pH 8.4

Transfer buffer 2.9 g/L (w/v) Glycine, 5.8 g/L (w/v) Tris, 0.37 g/L (w/v) SDS, 20 % (v/v) Methanol

TAE 50x 242 g/L Tris, 57, 1 ml/L glacial acetic acid, 100 ml/L of a0.5M EDTA stock

Lysis buffer 50 mM HEPES pH 7.5, 500 mM NaCl, 20 mM imidazole, 1 mM MgCl2, tablet of Roche protease inhibitors,

spatula of DNase I, spatula of lysozyme

HisTrap buffer A 50 mM HEPES, 500 mM NaCl, 20 mM imidazole, pH 7.5

HisTrap buffer B 50 mM HEPES, 500 mM NaCl, 500 mM imidazole, pH 7.5

StrepTrap/GSTrap buffer A 50 mM HEPES, 500 mM NaCl, pH 7.0

StrepTrap buffer B 50 mM HEPES, 500 mM NaCl, 2.5 mM desthiobiotin, pH 7.0

GSTrap buffer B 50 mM HEPES, 500 mM NaCl, 20 mM gluthatione, pH 7.0

Gel filtration buffer 30 mM HEPES, 300 mM NaCl, 1 mM DTT, pH 7.0

Resolving gel buffer 1.5 M Tris, 0.4% SDS, pH 8.8

Stacking gel buffer 0.5 M Tris, 0.4% SDS, pH 6.6

SDS-PAGE buffer 9 g SDS, 30 g glycerol, 0.02 g bromphenol blue,18.75 mL of 1 M Tris pH 6.8, 90 mL H2O; for use mix: 9

parts of premix and 1 part beta-mercaptoethanol (end concentration 3.3 %)

CD buffer 30 mM NaH2PO4/Na2HPO4 pH 7.4, 150 mM NaF

HP150 20 mM HEPES pH 7.4, 150 mM KCl

B88 buffer 20 mM HEPES pH 6.8, 250 mM sorbitol, 150 mM KOAc, 5 mM Mg(OAc)2

Table 2.8: Media

Media Content

Luria Bertani medium

(LB)

10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl

18 g/L of agar was added for plates
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Table 2.8: Media

Media Content

Terrific broth medium

(TB)

12 g/L tryptone, 24 g/L yeast extract, 0.4 % glycerol, 2.31 g/L KH2PO4,

12.54 g/L K2HPO4

ZYM5052 ZY up to 1 L 10 g/L N-Z-Amine AS (Sigma) and 5 g/L yeast extract-B (QBIOgene)

20 mL 50x5052 250 g/L(w/v) glycerol, 25 g/L (w/v) glucose, 100g/L (w/v) a-lactose mono-

hydrate

20 mL 50xM 222.5 g/L (w/v) Na2HPO4 x 2 H2O, 170 g/L (w/v) KH2PO4, 134 g/L (w/v),

NH4Cl, 35.5 g/L Na2SO4

200µL 1000x trace metals mixture 50 mM Fe, 20 mM Ca, 10 mM Mn, 10 mM Zn, 2mM Co,2 mM Cu, 2 mM

Ni, 2 mM Mo, 2 mM Se, 2 mM B

2 mL 1 M MgSO4

ZYM505 ZY up to 1 L 10 g/L N-Z-Amine AS (Sigma) and 5 g/L yeast extract-B (QBIOgene)

10 mL 100x505 500 g/L(w/v) glycerol, 55 g/L (w/v) glucose

20 mL 50xM 222.5 g/L (w/v) Na2HPO4 x 2 H2O, 170 g/L (w/v) KH2PO4, 134 g/L (w/v),

NH4Cl, 35.5 g/L Na2SO4

200µL 1000x trace metals mixture 50 mM Fe, 20 mM Ca, 10 mM Mn, 10 mM Zn, 2mM Co,2 mM Cu, 2 mM

Ni, 2 mM Mo, 2 mM Se, 2 mM B

2 mL 1 M MgSO4

MD5052 50 mL aspartate

20 mL 50x5052 250 g/L(w/v) glycerol, 25 g/L (w/v) glucose, 100g/L (w/v) α-lactose mono-

hydrate

20 mL 50xM 222.5 g/L (w/v) Na2HPO4 x 2 H2O, 170 g/L (w/v) KH2PO4, 134 g/L (w/v),

NH4Cl, 35.5 g/L Na2SO4

200µL 1000x trace metals mixture 50 mM Fe, 20 mM Ca, 10 mM Mn, 10 mM Zn, 2mM Co,2 mM Cu, 2 mM

Ni, 2 mM Mo, 2 mM Se, 2 mM B

2 mL 1 M MgSO4

Autoclaved dH2O up to 1 L

SD-ura 3.5 g S-ura powder 25.1 g yeast nitrogen base without amino acids and without ammonium sul-

fate, 75.4 g Ammonium sulfate, 450 mg Isoleucine, 2.25 g Valine,300 mg

Adenine, 300 mg Arginine, 300 mg Histidine, 450 mg Leucine, 450 mgLy-

sine, 300 mg Methionine, 750 mg Phenylalanine, 300 mg Tryptophan, 450

mg Tyrosine

10 g glucose

up to 500 mL dH2O

3XYP + 6% galactose 30 g yeast extract, 60 g peptone; fill up to 700 mL dH2O

60 g galactose in 300 mL dH2O; autoclave

after autoclaving, mix the two solutions

YP + 3% glycerol + 2%

ethanol + 2% galactose

10 g yeast extract, 20 g peptone, 30 mL glycerol; up to 880 mL dH2O;

autoclave

20 g galactose in 100 mL dH20; autoclave

mix after autclaving and add 20 mL ethanol

SOC 2 % tryptone, 0.5 % yeast extract, 10 mM NaCl, 2.5 mM KCl

after autoclaving add 10 mM MgCl2, 10 mM Mg2SO4; 20 mM glucose

Minimal media with selenomethionine

1 l culture consists of:

200 ml 5x M9 stock solution (15 g/l (w/v) KH2PO4, 5 g/l (w/v) NH4Cl, 2.5 g/l (w/v) NaCl)

800 ml autoclaved water

1 ml of 1 M MgSO4 (autoclaved)

20 ml 20 % glucose (w/v) (sterile filtered)

100µl of 0.5 % (w/v) thiamine vitamin (sterile filtered)
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1 ml of 4.2 g/l (w/v) FeIISO4 (sterile filtered)

For inoculation an over night culture was harvested and spun down at lowspeed and washed with in M9 media

to remove all full media components. The culture in minimal media was grown until anOD of 0.3 at 600 nm.

At this point solid amino acids were added:

100 mg/l (w/v) L-Lysine

100 mg/l (w/v) L-Phenylalanine

100 mg/l (w/v) L-Threonine

50 mg/l (w/v) L-Isoleucine

50 mg/l (w/v) L-Leucine

50 mg/l (w/v) L-Valine

50 mg/l (w/v) L-Selenomethionine

About 15 min after amino acid addition the expression was started with 1 mM IPTG.

2.1.8 Antibiotics

The following antibiotics were prepared as 1000x stock solutions. Ampicillin, gentamycin and kanamycin

were prepared in deionized water, chloramphenicol powder was resuspended in 70 %. All solutions were filter

sterilized and stored at -20 ◦C.

Ampicillin (100 µg/ml (w/v))

Kanamycin (30µg/ml (w/v))

Gentamycin (20µg/ml (w/v))

Chloramphenicol (35µg/ml (w/v))

2.1.9 Yeast and bacterial strains

E. coli BW23474 - cloning strain for plasmids with R6Kγ origin

E. coli DH5α - standard cloning strain

E. coli XL1-blue - standard cloning strain

E. coli BL21(DE3) - expression strain

E. coli Rosetta2(DE3)pLysS - expression strain

E. coli ArcticExpress(DE3) - expression strain

S. cerevisiaeY258 - expression strain

2.1.10 DNA constructs

In the following table 2.9 all used plasmids are stated.
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Table 2.9: DNA constructs generated and used in this study

Vector Gene Affinity Cleavage Cloning Resistance Source

tag sites sites

pET-28(a)+ 6xHis thrombin Kan Novagen

pETM-20 6xHis TEV Amp EMBL

pETM-41 6xHis TEV Kan EMBL

pETM-60 6xHis TEV Kan EMBL

pBADM-41(+) 6xHis TEV Amp EMBL

pBADM-60(+) 6xHis TEV Amp EMBL

pGex-4T-1 GST thrombin Amp

pAce1 Amp I. Berger

pAce1-N-His 6xHis thrombin Amp A. Scacioc

pAce1-N-StrepII StrepII thrombin Amp A. Scacioc

pDk Kan I. Berger

pDk-StrepII StrepII thrombin Kan A. Scacioc

pGex-6P-1 ScAtg18 GST Prescission Amp M. Thumm

pGex-4T-1 ScAtg21 GST thrombin Amp M. Thumm

pET-28a(+) PaAtg18 6xHis thrombin NdeI/XhoI Kan R. Busse

pET-28a(+) KlAtg21 6xHis thrombin NdeI/XhoI Kan R. Busse

pAce1-N-His CtAtg18 6xHis thrombin NdeI/XhoI Amp O. Yagensky

pETM-20 CtAtg18 6xHis TEV NotI/NcoI Amp O. Yagensky

pETM-41 CtAtg18 6xHis TEV NotI/NcoI Kan O. Yagensky

pETM-60 CtAtg18 6xHis TEV NotI/NcoI Kan O. Yagensky

pBADM-41(+) CtAtg18 6xHis TEV NcoI/XhoI Amp O. Yagensky

pBADM-60(+) CtAtg18 6xHis TEV NcoI/XhoI Amp O. Yagensky

pGex-4T-1 CtAtg18 GST thrombin BamHI/XhoI Amp O. Yagensky

pGex-4T-1 ScHsv2 GST thrombin BamHI/XhoI Amp M. Thumm

pGex-4T-1 ScHsv2(R264A) GST thrombin BamHI/XhoI Amp R. Busse

pGex-4T-1 ScHsv2(H294A) GST thrombin BamHI/XhoI Amp R. Busse

pET-28a(+) PaAtg18(no cys, S51C) 6xHis thrombin NdeI/XhoI Kan A. Scacioc

pET-28a(+) PaAtg18(no cys, S81C) 6xHis thrombin NdeI/XhoI Kan A. Scacioc

pET-28a(+) PaAtg18(no cys, C113) 6xHis thrombin NdeI/XhoI Kan A. Scacioc

pET-28a(+) PaAtg18(no cys, S157C) 6xHis thrombin NdeI/XhoI Kan A. Scacioc

pET-28a(+) PaAtg18(no cys, S448C) 6xHis thrombin NdeI/XhoI Kan A. Scacioc

pET-28a(+) PaAtg18(no cys, S459C) 6xHis thrombin NdeI/XhoI Kan A. Scacioc

BG1805 ScAtg2 6xHis 3C Amp Thermo Scientific

Open Biosystems

pET-28a(+) ScAtg2(1-307) 6xHis thrombin NdeI/XhoI Kan S. David

pET-28a(+) ScAtg2(1-327) 6xHis thrombin NdeI/XhoI Kan S. David

pET-28a(+) ScAtg2(1-354) 6xHis thrombin NdeI/XhoI Kan S. David

pET-28a(+) ScAtg2(1-157) 6xHis thrombin NdeI/XhoI Kan S. David

pET-28a(+) ScAtg2(1-229) 6xHis thrombin NdeI/XhoI Kan S. David

pET-28a(+) ScAtg2(1-289) 6xHis thrombin NdeI/XhoI Kan S. David

pET-28a(+) ScAtg2(1-189) 6xHis thrombin NdeI/XhoI Kan S. David

pAce1-N-His CtAtg2(1-168) 6xHis thrombin NdeI/XhoI Amp O. Yagensky

pDk-StrepII CtAtg2(1-168) StrepII thrombin NdeI/XhoI Kan O. Yagensky

pBADM-41(+) CtAtg2(1-161) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-168) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-279) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-183) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-206) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-218) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-266) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-270) 6xHis TEV NcoI/XhoI Amp S. David

pBADM-41(+) CtAtg2(1-244) 6xHis TEV NcoI/XhoI Amp S. David

pAce1-N-His AtAtg18a 6xHis thrombin NdeI/XhoI Amp A. Scacioc

pAce1-N-StrepII AtWRKY33 StrepII thrombin NdeI/XhoI Amp A. Scacioc

2.1.11 Oligonucleotides

Oligonucleotides were ordered from Sigma-Genosys and purchased through Sigma Aldrich Chemie GmbH

(Steinheim, Germany) or Eurofins Genomics (Ebersberg, Germany). TheTm of the PCR primers was calcu-

lated using http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/Default.aspx. All oligonucleotides used

in this study are listed in table 2.10.
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Table 2.10:Oligonucleotides ordered especially for this study

Name Sequence 5’-3’ Tm (oC) matching

(full) sequence

ctAtg18_NcoI_f AGTCGTCCATGGCCGCGACTTTAAACTATGTCAC 59.3 (65.1)

ctAtg18_BamHI_f CCAGTAGGATCCATGGCCGCGACTTTAAACTATGTCAC 59.3 (65.5)

ctAtg18_XhoI_r AGTCGTCTCGAGTTATTACACTCCATAAGCAC 55.1 (60.4)

ctAtg18_NotI_r AGTCGTGCGGCCGCCTCGAGTTATTACACTCCATAAGC 52.9 (68.6)

CtAtg2_1_168_NdeI_f TCTATACATATGGCGTCCTTTTTCCAGTC 55.5 (58)

CtAtg2_1_168_XhoI_r ATCACTCTCGAGTTATTATATACTCGCCCCTAAATCTTG 51.5 (60.7)

Ct Atg2 1_168_NdeI_f TCTATACATATGGCGTCCTTTTTCCAGTC 55.5 (58)

Ct Atg2 1_218_XhoI_r ATCACTCTCGAGTTAAGGGACCTCAACATCGCCCTG 61.6 (66.4)

Ct Atg2 1_244_XhoI_r ATCACTCTCGAGTTACGTCACACCCTCAACATTAATAC 53.6 (62.4)

Ct Atg2 1_279_XhoI_r ATCACTCTCGAGTTAGCAGCGCGGATATTGTTCAG 56.8 (64.5)

Sc Atg18_Nco_f TCTATACCATGGAGATGAGCGATAGCAGCCCAACC 61.3 (65.4)

Sc Atg18_XhoI_r ATCACTCTCGAGTTAGTCCATCAAAATCGAATATTGAG 49.9 (60.2)

Sc Atg18_NdeI_f TCTATACATATGAGCGATAGCAGCCCAACC 59.9 (60.9)

Sc Atg18_NotI_r ATCACTGCGGCCGCTTAGTCCATCAAAATCGAATATTGAG 49.9 (63.3)

Sc Atg2 1_NdeI_f TCTATACATATGGCATTTTGGTTACCTC 50.4 (54.8)

Sc Atg2 1_137_XhoI_r ATCACTCTCGAGTTAAGAGCTAATGTCATCTTCTTTG 55.6 (60.2)

Sc Atg2 1_354_XhoI_r ATCACTCTCGAGTTAGCTTTCATTGGCATCCAAATGTG 53.5 (63.5)

Sc Atg2 1_189_XhoI_r ATCACTCTCGAGTTACACTATGAAACGTATGGTAACGTC 53.5 (62.1)

Sc Atg2 1_209_XhoI_r ATCACTCTCGAGTTAAATAAGTTGTATGCTTTCTAG 45.4 (57.9)

Sc Atg2 1_229_XhoI_r ATCACTCTCGAGTTATTGTATTGAGGAAATGGTG 47.3 (59.4)

Sc Atg2 1_269_XhoI_r ATCACTCTCGAGTTATGATTGCTCTTCCATGGCGTC 60.1 (65.4)

Sc Atg2 1_289_XhoI_r ATCACTCTCGAGTTACTTGCACTTATCATTCTCTTG 49.1 (60.4)

Sc Atg2 1_307_XhoI_r ATCACTCTCGAGTTACGATGATAAACCCTTAAAAGC 49.4 (60.6)

Sc Atg2 1_320_XhoI_r ATCACTCTCGAGTTAAATATCAATAACAATATTAGACATTC 45.9 (60.6)

Sc Atg2 1_327_XhoI_r ATCACTCTCGAGTTATATCGCTAAATGAACATCC 46.9 (59.1)

Sc Atg2 1_349_XhoI_r ATCACTCTCGAGTTACAAATGTGTAACAATGATATC 44.9 (58.2)

PaAtg18_C45A_fwd AACCAGGACTTCTCCGCTGTGTCAGTGGGTTATAG 77.6

PaAtg18_C59A_fwd GGTATAAAATCTATAATGCTGAGCCGTTCGGCCAG 75.2

PaAtg18_C113A_fwd CGTCAAACCACCATCGCTGAACTGACCTTTCC 75.9

PaAtg18_C515A_fwd GAACGTGGCGGTGACGCTGTCCTGCTGCAC 79.7

paAtg18_C45A_rev CTATAACCCACTGACACAGCGGAGAAGTCCTGG 74.9

paAtg18_C59A_rev CTGGCCGAACGGCTCAGCATTATAGATTTTATACC 75.2

paAtg18_C65A_rev GCTTTTCGAATAAGCCTGGCCGAACGGCTC 75.6

paAtg18_C113A_rev GGAAAGGTCAGTTCAGCGATGGTGGTTTGACG 75.9

paAtg18_C515A_rev GTGCAGCAGGACAGCGTCACCGCCACGTTC 79.7

paAtg18_C65_fwd2 TGAGCCGTTCGGCCAGGCTTATTCGAAAAGC 75.8

paAtg18_S51C_fwd GTGTCAGTGGGTTATTGCAATGGGTATAAAATC 74.2

paAtg18_S51C_rev GATTTTATACCCATTGCAATAACCCACTGACAC 74.2

paAtg18_S81C_fwd GTGGAAATGCTGTTCTGCTCATCTCTGCTGGC 79.1

paAtg18_S81C_rev GCCAGCAGAGATGAGCAGAACAGCATTTCCAC 79.1

paAtg18_S157C_fwd CGATTGAAACCCCGTGCAATCCGAATGGTC 77.5

paAtg18_S157C_rev GACCATTCGGATTGCACGGGGTTTCAATCG 77.5

paAtg18_S459C_fwd GTGGTGGGTGTTGGTTGTAAAATCTGGGACG 77.7

paAtg18_S459C_rev CGTCCCAGATTTTACAACCAACACCCACCAC 77.7

paAtg18_S448C_fwd CTGAAAGTTCCTGCTTGCAAAGAAACCAAAACC 75.4

paAtg18_S448C_rev GGTTTTGGTTTCTTTGCAAGCAGGAACTTTCAG 75.4

pAce1_XhoI_Fwd CGTCTCGAGAGATCCGGCT 58.7

pAce1_NcoI_Rev TGCCCATGGGTATATCTCCTTCTTAAAG 41.2 (57.9)

pDK_XhoI_Fwd CGTCTCGAGACTAGTTCCGTT 56

MIE_NdeI_Fwd ATACATATGAGGCCTCGG 50.8

MIE_XhoI_Rev TCTCTCGAGACGCGTTCG 56.8

pBAD_Rev CTTCTGCGTTCTGATTTAATCTG 51.9

pBADM-20(+)_Fwd CATCATCATCATCATTCTTCTGG 51.4

pBADM-30(+)_Fwd ATAGCATGGCCTTTGCAGG 55.8

pBADM-41(+)_Fwd TCGTCAGACTGTCGATGAAGCC 58.8

pBAD-52(+)_Fwd CATCACCATCACCATCAC 50.5

pGex_rev GAGCTGCATGTGTCAGAGG 55.8

T7_ctrl_Fwd TCACTATAGGGGAATTGTGAGCGG 58.3

T7_ctrl_Rev CTAGTTATTGCTCAGCGGTGGC 58.1

Lac_ctrl_Fwd GTATGTTGTGTGGAATTGTGAGCG 56.6

Lac_ctrl_Rev TACGAAGTTATCTGCCAGGCAC 56.9
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2.2 Experimental methods

2.2.1 Molecular cloning

Standard methods were used for molecular cloning.PCR’s were done with the Phusion High-Fidelity PCR

kit. The reaction mixture for one elongation reaction is given in Table 2.11. The reaction mixture was split in

three PCR tubes. The PCR program is given in Table 2.12 Elongation time was adjusted to template length.

Furthermore the annealing temperature was chosen according to the melting temperature of the primers (see

table 2.10).

Table 2.11:PCR reaction mixture

Component Volume (µL) in 75 µL reaction

Template DNA 5 ng / 1 kb of the template

5x Phusion HF 15µL

Forward primer (5µM) 6 µL

Reverse primer (5µM) 6 µL

dNTP-mix (10mM) 1.5µL

Phusion polymerase (2 U/µL) 0.75µL

Deionized water Up to 75µL of the final volume

Table 2.12:PCR program

Step Time Temperature

Initial denaturation 30 sec 98oC

Denaturation 5 sec 98oC

Annealing 15 sec higher Tm of the matching sequence

for the pair of primers + 5oC; touch

down -0.7o/cycle

Elongation 15 sec/kb 72oC

Repeat 14 times

Denaturation 5 sec 98oC

Annealing 15 sec lower Tm of the full length sequence

for the pair of primers

Elongation 15 sec/kb 72oC

Repeat 6 times

Final extension 3 min 72oC

Storage 8oC
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The PCR products were analyzed by DNA electrophoresis in 0.8% agarose gel run in TAE buffer under 90

V voltage for 1 hour. Next, PCR products were digested with DpnI (0.3 U/µL, overnight, 37oC) to remove the

methylated template vector. The restriction was stopped by 20 min incubation at 80oC. The PCR products were

purified using QIAquick PCR Purification Kit (Qiagen). The resulting product together with the destination

vectors were digested overnight or 4 hours at 37oC with the chosen pair of restriction enzymes (NEB). Optimal

digestion conditions were selected according to the recommendations of the manufacturer. Digested inserts

were then purified using QIAquick PCR Purification Kit. Digested vectors were run on 0.8% agarose gel and

subsequently extracted using the QIAquick Gel Extraction Kit (Qiagen).

Ligation of inserts with the digested vectors was performed using T4 ligase. Concentration of vector was

set to approximately 20 ng and vector to insert molar ratio was 1:4. 0.5µL of T4 ligase (400 U/µL, NEB) and

1.0µL of 10x T4 buffer (NEB) were added to a total volume of 10µL. Ligation was performed for 1 hour at

room temperature.

The resulting construct (4µL) was transformed inEscherichia coliXL1-Blue or DH5α chemocompetent

bacteria. Bacteria were incubated with DNA for 30 min incubation on ice. Next,the bacteria DNA mixture

underwent a heat shock: 45 sec 42oC in a water bath, 2 min 4oC. Subsequently, bacteria were mixed with 900

µL pre-warmed SOC medium and incubated for 1 h at 37oC with shaking. Transformed bacteria were plated

on LB-agar plates with supplemented antibiotic.

The cloning of the correct insert was checked by colony PCR. Eight colonies from each plate were trans-

ferred to a new LB-agar plate with antibiotics with a sterile tip that subsequently was washed in 10µL of PCR

mix. Taq polymerase (Qiagen) and vector specific primers (Table 2.10) were used for the colony PCR. Recipe

of the mix for 10 reactions is given in Table 2.13 and the program used in Table 2.14. The resulting DNA was

checked for expected size using a 0.8% agarose gel.

Table 2.13:PCR reaction mixture for colony PCR

Component Volume (µL)

Deionized water 71

Forward primer 8

Reverse primer 8

dNTP (10 mM) 2

10x Taq buffer (Qiagen) 10

Taq polymerase (Qiagen) 1
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Table 2.14:PCR program for colony PCR

Step Time Temperature (oC)

Initial denaturation 2 min 94

Denaturation 15 sec 94

Annealing 30 sec Tm -5

Elongation 15 sec/kb 72

Repeat 30 time

Storage 8

In order to isolate plasmids, two colonies that showed the correct insert length, were inoculated into 6 mL

of ZYM505 medium with an appropriate antibiotic and incubated overnight at 37oC with shaking. Plasmids

were isolated using NucleoSpin Plasmid kit (Macherey-Nagel). Purified plasmids were checked by sequencing

(Eurofins, MWG Operon).

For the recombination of a pAce1-N-His vector with pDk-N-StrepII vectorto generate a pACEMBL plas-

mid, Cre recombinase was used. pDk and pAce1-N-His plasmids in amount of1 µg each were mixed together

with 2 µL of Cre recombinase and 2µL of 10x Cre buffer in a 20µL reaction mixture. The reaction was

incubated for 1 h at 37oC. XL1-Blue bacteria were transformed with recombined vector and were plated on

the LB-agar medium supplemented with kanamycin and ampicillin. Next day, fourof the resulting colonies

were inoculated in 6 mL ZYM505 medium with kanamycin for overnight growth. Plasmids were isolated and

checked for correct restriction digest pattern.

Mutagenesis of PaAtg18 was done using the QuickChange Ligthning site-directed mutagenesis kit. The

PCR mix contained 5µl 10x reaction buffer, 20 ng DNA template, 1µl dNTP mix, up to 50µl H2O and 1µl

PfuUltra HF DNA polymerase (2.5 U/µl). The reaction volume was split in two and the PCR primer solution

volume corresponding to 125 ng oligonucleotide of fwd primer was added in the first one and similarly, 125 ng

oligonucleotide primer was added in the second one. The PCR reaction was run with the program given in Table

2.15. Afterwards, template DNA was digested by DpnI-treatment. Finally, the PCR product was transformed

with E. coli XL1-blueGOLD supercompetent cells.

Table 2.15:PCR program for mutagenesis

Step Time Temperature (oC)

Initial denaturation 30 sec 98

Denaturation 15 sec 98

Annealing 30 sec 55

Extension 35 sec / 1 kb plasmid size 72

repeat 5 times

mix the two reactions

repeat the above program 13 times
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Step Time Temperature (oC)

Final extension 3 min 72

Storage 8

2.2.2 Protein expression and purification

2.2.2.1 Protein expression test

Proteins of interest were expressed inE. coli strains in which the expression plasmid with the gene of

interest was transformed. Pre-culture was prepared by inoculation of asingle BL21(DE3) colony into 100 mL

of ZYM505 medium followed by overnight growth at 37oC with shaking. Pre-culture (0.5 mL) was inoculated

into 200 mL of medium with antibiotic. LB, TB, ZYM5052 and MD5052 media were used to test expression

at different temperatures conditions. All cultures were grown at 37oC until induction time, i.e., their OD600
reached a value close to 0.6. Next, incubation temperature was changed accordingly. LB and TB cultures were

induced with 1 mM or 0.1 mM IPTG in the case ofT7promoter or 0.01 mg/mL arabinose in the case ofaraBAD

promoter. 50 mL of cultures were harvested at different time points.

Harvested culture was centrifuged 4’000 rpm, 20 min, 4oC. Pellets were resuspended in 5 mL of the lysis

buffer. Resuspended cells were lysed by sonication (3 cycles of 30 sec impulse and 30 sec rest on ice). Bac-

terial lysate (3 mL) were collected and centrifuged 13’000 rpm, 30 min, 4oC. After centrifugation, 2 mL of

supernatant were incubated with equilibrated Ni2+- or GST-sepharose beads for 2 hours or overnight at 4oC.

Whole cell lysate (50µL), supernatant after centrifugation (50µL) and beads sample were collected for the

SDS-PAGE analysis.

2.2.2.2 Protein expression and purification

Expression strains, media, temperatures and durations are summarized in Table 2.16 for all proteins used in

this study.

Table 2.16:Expression conditions for proteins used in this study

Protein Media Temperature (oC) Duration

ScAtg18 TB 18 over night

ScAtg21 TB 18 over night

CtAtg18 MD5052 18 over night

PaAtg18 (and mutants) ZYM5052 25 over night

KlAtg21 ZYM5052 22 over night

ScHsv2 (and mutants) ZYM5052 25 over night

MBP-CtAtg2(1-270) TB 25 over night

MBP-CtAtg2(1-279) TB 25 over night

AtAtg18a MD5052 18 5 h
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Protein Media Temperature (oC) Duration

AtWRKY33 MD5052 18 5 h

Pre-culture ofE. coliBL21(DE3) was prepared in 100 mL ZYM505 medium by inoculating a single colony.

After overnight incubation, 10 mL of pre-culture were inoculated into six 5 L-flasks, in 1 L of medium each.

Expression was done, as optimized during the expression test, as summarized in Table tab:expressionconditions.

After incubation, cultures were harvested and centrifuged (4’000 rpm,20 min, 4oC). Pellets were resus-

pended by shaking in 10 mL of lysis buffer without lysozyme. Cells were opened using microfluidizer M-110L

(Microfluidics Corporation) by pumping them through the system three times. Cell lysates were spun down at

14’000 rpm, 45 min, 4oC. The supernatant, containaing the soluble protein fraction, was filtered through 0.4

µm filter.

Filtered supernatant was loaded on the specific affinity column as follows: ScHsv2 (and its mutants),

ScAtg18 and ScAtg21 were purified using GSTrap, AtWRKY33 using a StrepTrap, while the rest of the pro-

teins were purified using a HisTrap. Purifications were done using Äkta Prime system. The HisTrap purification

was a gradient elution. Its program is summarized in Table 2.17. The proteinsloaded on the StrepTrap and

GSTrap columns were eluted in a step elution as shown in Table 2.18.

Table 2.17:Purification program for HisTrap. X* - injected volume.

Step Breakpoint (mL) % Buffer B Flow rate

(mL/min)

Fraction size

(mL)

Position

Equilibration 0 0 5 0 Load

Sample inject 50 0 1 7 Inject

Wash 50 + X* 0 1.5 7 Load

1st gradient 150 + X 0 1 2 Load

2nd gradient 200 + X 20 1 2 Load

Elution 250 + X 100 1 2 Load

End 300 + X 100 1 2 Load

Table 2.18:Purification program for GSTrap and StrepTrap

Step Breakpoint (mL) % Buffer B Flow rate

(mL/min)

Fraction size

(mL)

Position

Equilibration 0 0 5 0 Load

Sample inject 50 0 1 7 Inject

Wash 50 + X* 0 1.5 7 Load

Step 150 + X 0 1 2 Load
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Step Breakpoint (mL) % Buffer B Flow rate

(mL/min)

Fraction size

(mL)

Position

Elution 150.1 + X 100 1 2 Load

End 200 + X 100 1 2 Load

After the affinity chromatography, the collected samples were checked by SDS-PAGE. Fractions containing

the protein of interest were pooled together and concentrated to the volume of 5 mL. Before loading the protein

sample on the gel filtration column, it was filtered through a 0.2µm filter. Gel filtration was performed in order

to improve protein purity and remove aggregates. The gel filtration was performed as desribed in Table 2.19.

Elution fractions were analyzed by SDS-PAGE. The fractions containing the protein of interest were pooled

and concentrated to 10-40 mg/mL.

Table 2.19:Purification program for gel filtration

Step Breakpoint (mL) % Buffer B Flow rate

(mL/min)

Fraction size

(mL)

Position

Inject 0 0 1 0 Inject

Void volume 7 0 1 0 Load

Elution 40 0 1 2 Load

End 127 0 1 2 Load

2.2.3 Biochemical methods

2.2.3.1 SDS-PAGE and Western Blotting

SDS-PAGE was done in two-phase polyacrylamide gels consisting of a stacking (25% stacking gel buffer,

61.4% water, 12.5% acrylamide, 1% APS, TEMED) and a resolving gel (25%resolving gel buffer, 34% water,

40% acrylamide, 1% APS, TEMED). Before gel analysis, protein samples were diluted in 3x SDS loading

buffer (2:1) and incubated for 5 min at 95oC with shaking. Electrophoretic separation was done in the running

buffer under voltage 120 V. Voltage was switched to 150 V when the dye linehad reached the stacking gel.

Gels were resolved until the running front reached the very bottom of thegel.

After the gel was run, SDS-PAGE gels were stained using a Coomassie Bluereagent (500 mg Coomassie

R, 500 mL H2O, 400 ml ethanol, 100 ml acetic acid), heated in microwave for 1 min. Gels weredestained in

10% acetic acid in dH20.

For Western Blotting analysis, resolved gels were blotted to nitrocellulose membranes. The semidry transfer

was assembled from the anode side to the cathode side as follows: 2 pieces of Whatman filter paper - gel -

nitrocellulose membrane - 2 pieces of Whatman filter paper. All assembled partswere pre-incubated in transfer
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buffer. Blotting was performed for 90 min at a constant voltage of 25 V. Next, membranes was blocked with 5%

skim milk powder solution in PBS-T for 2 h at 4oC. Membrane was washed in PBS-T buffer 5 times for 5 min

and incubated with primary antibody overnight at 4oC. Membrane washing was repeated after incubation and

the membrane was left to incubate with secondary antibody for 2 h at 4oC. Incubation was followed by another

washing step. Excess of PBS-T was removed and membrane was washed in1 mL of ECL HRP substrate

solution. Chemiluminiscence signal was determined with Imageready LAS-1000CCD camera (Fujifilm).

2.2.3.2 Protein stability assay

Protein stability in different conditions was tested by a thermofluor assay [154]. Protein samples (16µL

of at a concentration of 5µM) were pipetted into a 96-well plate (Biozym Scientific GmbH). Water and

buffer controls were set in the last column. Each control was replicated four times. Conditions from pHat

or ADDit screens (Emerald Biosystems) were added into corresponding wells (2µL). The protein buffer was

added into wells A12:H12 in amount of 2µL. Sypro Orange dye was added into each well (2µL of 1:50

dilution of 10000x stock). 96-well plate was incubated into the CFX96 Real-Time System (C1000 Thermal

Cycler, BioRad). The plate was heated from 25oC to 95oC to monitor protein folding by changes in the

fluorescence intensity. The results were analyzed using the DSF Excel macro, version 2.5 (available from:

ftp://ftp.sgc.ox.ac.uk/pub/biophysics).

2.2.3.3 Circular dichroism spectroscopy

Measurements were done with a Chirascan Circular Dichroism spectrometer(Applied Photophysics) using

a Hellma quartz cuvette with a path length of 0.1 cm. Samples were in a 30 mM sodium phosphate buffer pH

7 containing 150 mM NaF. Far UV CD spectra of 10µM protein were recorded between 200 and 260 nm with

a step size of 1 nm, a bandwidth of 0.5 nm and an averaging time of 3 sec at room temperature. Thermal melts

were carried out from 300C to 800C at 216 nm with a heating rate of 0.20C/min with a temperature step of

0.50C. Bandwidth was 0.5 nm and the averaging time was 3 s.

Data were analyzed with the manufacturer’s ProView Software. Melting curves were fitted to a sigmoid

shape and melting temperatures were determined as the inflection point, x0 of thefitting function:

f(x) = Ab +
(At −Ab)

(1 + e(x0−x)/w)
(2.1)

wherew is the width of the sigmoidal slope.At, the maximum ellipticity, corresponds to the unfolded

protein, whileAb, minimum ellipticity, corresponds to the fully folded protein.

2.2.3.4 Protein-lipid co-flotation assay and liposome preparation

Flotation assays with small unilamellar vesicles (SUV) were used to check that the PI binding affinity in the

PaAtg18 mutants was maintained. For preparation of liposomes, a 1-mg containing lipid mix composed of 73%

(w/w) L-phosphatidylcholine isolated from chicken egg (840051C; Avanti Polar Lipids); 2% Texas Red-1,2-

dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE), triethylammonium salt (T1395MP; Invitrogen);

24% L- phosphatidylethanolamine (brain, porcine; 840022P; Avanti Polar Lipids); and 1% phosphatidylinositol-

(3,5)-biphosphate (1,2-dioleoyl-sn-glycero-3-phospho-[1’-myo-inositol-3’,5’-biphosphate]), ammonium salt (850154P;
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Avanti Polar Lipids) was pipetted together and dried. Dried lipids were resuspended in with 150µL of HP150

buffer containing 3% cholate. Cholate was removed by size exclusion chromatography using a self-packed col-

umn filled with 0.5 g of Sephadex G50 (Sigma) resuspended in HP150 buffer. Liposome-containing fractions

were pooled and stored at 4oC.

Protein-lipid co-flotation assays were performed using 5µl of 2 µM protein incubated with 45µl of lipo-

somes for 15-30 min on ice in 7 x 20 mm PC tubes (Beckman). Next, the protein liposome sample was gently

mixed with 50µl of 80 % Nycodenz (w/v in HP150 buffer) and overlayed with 50µl of 30 % Nycodenz. The

gradient was covered with 30µl HP150 buffer. Samples were spun at 55000 rpm (275000 g) for 1.5 hours at

4 ◦C in a Sorvall Discovery M150 SE analytical ultracentrifuge (Thermo Scientific) using a S55-S swinging

bucket rotor (Thermo Scientific). Afterwards, six 30µl aliquots were colected from top to bottom and analyzed

through western blot detected with a Penta His HRP conjugated antibody.

2.2.3.5 Fluorescence determination of PaAtg18 membrane orientation

PaAtg18 single cysteine mutants at a concentration of 1 mg/mL in HP150 buffer were incubated with

IANBD (Invitrogen) dissolved in DMSO to a concentration of 10 mM. For the protein, 2 mL were used and

mixed with 30µL of NBD stock solution followed by a 2 h rotation at room temperature. The excess NBD

was removed using a PD10 desalting column. Protein fractions of 500µL were collected and their 280 nm

absorbance was measured using the Nanodrop.

Large unilammelar vesicles (LUVs) were generated by mixing chloroform solutions of the different lipids

as follows: a 1-mg containing lipid mix composed of 72% (w/w) DOPC, 26% (w/w) DOPE and 2% (w/w)

PI(3,5)P2. Lipids were dried from the organic solvent under a stream of oxygen-free nitrogen, and then the last

traces of organic solvent were removed under vacuum for at least 4 h. Dried phospholipids were resuspended

in the corresponding buffers by vigorous vortexing and then large unilamellar phospholipid vesicles of approx-

imatively 50 nm diameter were prepared by extruding (21 times) rehydrated phospholipid suspensions through

a 0.1 and 0.05 ţm polycarbonate membranes (Millipore Inc., Bedford, MA, USA) after 5 freeze-thaw cycles,

NBD fluorescence emission (515-620 nm) experiments were performed ona Fluoromax-2 spectrophotome-

ter with a 5-nm slit width and 478-nm excitation at 37oC using 0.3µM PaAtg18 and 0.1 mM LUVs.

2.2.3.6 Isothermal titration calorimetry

ITC measurements was used to measure PROPPIN binding to liposomes using theprotocol previously op-

timized in our laboratory [155]. For preparation of liposomes, a 1-mg containing lipid mix composed of 72%

(w/w) L-phosphatidylcholine isolated from chicken egg (840051C; Avanti Polar Lipids); 2% Texas Red-1,2-

dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE), triethylammonium salt (T1395MP; Invitrogen);

24% L- phosphatidylethanolamine (brain, porcine; 840022P; Avanti Polar Lipids); and 2% phosphatidylinositol-

3-phosphate (1,2-dioleoyl-sn-glycero-3-phospho-[1’-myo-inositol-3’-phosphate]), ammonium salt (850150P;

Avanti Polar Lipids) was pipetted together and dried. Dried lipids were resuspended in with 150µL of HP150

(150 mM KCl, 20 mM HEPES, pH 7.4) buffer containing 3% cholate. Cholate wasremoved by size exclusion

chromatography using a self-packed column filled with 0.5 g of Sephadex G50 (Sigma) resuspended in HP150

buffer. Liposome-containing fractions were pooled and stored at 4oC.
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I determined the phosphate content of the prepared liposomes using the phosphomolybdate method [156]

to calculate the phosphoinositide concentration. For the calculations, I assumed that all phospholipids were

equally well incorporated into the liposomes and that 60% of the total phosphoinositides are accessible on the

surface of the liposomes [155].

For isothermal titration calorimetry (ITC) measurements, proteins were dialyzed into HP150 buffer. ITC

measurements were done with a VP ITC MicroCalorimeter (MicroCal) at 25oC. Protein was titrated into lipo-

somes. Titrations were usually carried out with 9-fold 4µL injections, followed by a 17-fold 15µL injections.

The first injection was 2µL and was always discarded for the data analysis. Protein concentrations were de-

termined using UV absorbance at 280 nm. The protein concentration rangeused for measurements was 35-80

µM for the wild type proteins, while for the ScHsv2 mutants a range of 85-130µM. The calculated accessible

phosphoinositide concentrations were in the range of 4.5-10µM. Data were fitted with a single-site binding

model using the MicroCal Origin 7.0 software. The final values given forthe thermodynamic parameters are

given as averages of several measurements± the standard error of measurement (SE).

2.2.4 Crystallization and structure determination

2.2.4.1 Crystallization screen setup

Initial crystallization screening experiments were set up in 96-well sitting drop plates (MRC, Hampton

Research). In each well, two drops of different protein concentrations were pipetted using the Cartesian Mi-

crosys (Cartesian Dispensing Systems) robot. The robot dispensed 100 nL drops of protein per well and then

added 100 nL screening buffer (reservoir solution). After the robotfinished setting drops, the plate was covered

with a transparent sealing tape, in order to avoid that the drops dry out. Crystal plates were stored at20 ◦C in

an automated Formulatrix crystallization imager which imaged the plate on a pre-setschedule. Images were

checked with the Rockmaker main Application software (Formulatrix). The following crystallization screens

were used: SaltRx (Hampton Research), AmSO4, Anions, Cations, Classics I+II, Compas, JCSG+, PACT,

PEGI+II, pHclearI+II, ProComplex (Qiagen) and Wiz1+2, Wiz3+4 screens (Emerald Biosystems).

In the case of additives or silver bullet screens used for the 96-well format, 100 nL protein and the 100 nL

reservoir is followed by 50 nL of the additive/silver bullet screen (100:100:50 nL program).

After the initial crystallization screens led to crystals, the crystallization condition was further optimized

in 24-well Linbro hanging drop pre-greased plates (Jena Bioscience). For initial trials, screening buffers were

self made, and if the crystals could not be reproduced, commercial solutions were purchased. For each well

1 mL of reservoir solution was prepared. 2µL protein and 2µL reservoir buffer were pipetted together on a

siliconized cover slip (22 mm diameter). Afterwards the slide was flipped upside down onto the greased well

to seal it air tight. When additives were used, 1.5µL protein and 1.5µL reservoir buffer were pipetted together

on a siliconized cover slip and 0.3µL additive was added.

Streak seeding of crystals was used for crystal optimization in 24-well format. For this, a crystal was

crushed with an acupuncture needle or glass rod. Next, the needle was streaked through a newly set up drop.

One optimization strategy involved (random) microseeding. Microseeds are prepared by adding 2µL reser-

voir solution on top of a crystal condition on a 24-well plate and using a glassrod for finely crushing the

crystals. This is washed off the glass cover with 45µL mother liquor followed by another 45µL mother liquor.

The resulting solution is moved to a 1.5 mL microreaction tube and a teflon bead is added. This is vortexed
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three times for 30 sec separated by 2 min ice cooling. The resulting microseedsare used as seeds in both 96-

well format and 24-well format at different dilutions. For random microseeding, the commercial screens are

used with an addition of microseeding solution. The 100:100:50 nL program isused for this purpose.

Another optimization method are 96-well plate refinement grid or random screens. The screens were planed

using the RockMaker software while the Tecan robot was used to pipette thescreens from stock solutions into

2 ml 96-well master blocks. From these 96-well MRC plates for crystallizationwere pipetted.

Finally, the PaAtg18 crystals were obtained throughin situ proteolysis. This method is based on small

amounts of protease cleaving flexible protein regions to improve crystal packing contacts. Forin situproteolysis

crystallization, PaAtg18 was mixed with Proteinase K, subtilisin or trypsin in a 1:2000 molar ratio and kept on

ice until setting of the crystallization plates.

2.2.4.2 Flash cooling of crystals

In order to prevent ice formation on the crystal, cryoprectants were used for flash cooling. Cryoprotac-

tants such as ethylene glycol, glycerol, xylitol, sucrose, PEG 400, PEG 8000 were prepared, unless specified

otherwise, with the same solution as the reservoir solution (mother liquor) in which the crystals grew. After

crystals were fished, they were put in fresh mother liquor, then transferred into a mixture of 1:1 mother liquor

and cryoprotectant and, finally to cryoprotectant. In the case of PFPE,crystals were directly moved through the

PFPE drop. Finally, crystals were flash frozen in liquid nitrogen.

2.2.4.3 Computational methods for structure determination

X-ray diffraction data were collected at 100 K at beamline X10SA (Swiss Light Source, Paul Scherrer Institute,

Villigen, Switzerland). Data were processed and scaled with the XDS software package [157], which contains

three programs: XDS, XSCALE and XDSCONV. XDS performs eight subroutines:

• XYCORR, INIT and COLSPOT determine and correct the spots versus thebackground of the dataset

• IDXREF indexes the spots

• INTEGRATE integrates the spots

• CORRECT refines unit cell dimensions and determined the space group

For XDS, the collection data parameters have to be offered as an input. Subsequently, XSCALE is used

for scaling and merging of data, while XDSCONV converts the output to a format needed for the next step.

Processed data was converted to .mtz file format. For PaAtg18, it was not possible to perform molecular

replacement with KlHsv2, hence, phasing needed to be performed by single anomalous diffraction (SAD).

Selenium incorporated in the protein as selenomethionine was used as an anomalous scatterer. The AutoSol

Phenix [158] program was used for phasing. After determination of the Se positions, PHASER, another Phenix

program, was used for refining and density modification of the initial map. Successive manual model building

was done with Coot [159] while refinement was performed with Phenix. Structure validation was done with

the tools available in Coot and Phenix [158].
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2.3 Theoretical methods

2.3.1 Introduction to molecular dynamics

Molecular dynamics (MD) is the most popular method of simulating macromolecules inmotion. MD tries

to describe time evolution of molecular systems based on Newton’s equations ofmotion such as equation 2.2.

However, in doing so, it ignores the forces acting on electrons and considers each atom as represented only by

the position of the nucleus. This method is a good approximation of systems with many atoms and the result

is obtained in a small computer time. However, force field methods cannot calculate properties that depend on

the electronic distribution of the molecule. For this level of calculations, one would need quantum mechanical

molecular mechanics calculations.

At each time step, the acceleration,~ai of the particle i is calculated using the Newton law shown in equation

2.2.

~Fi = mi~ai (2.2)

In equation 2.2,~Fi is the force acting on particle i andmi is the mass of the particle. The positions,~xi of

the particle are obtained through numerical integration from equation 2.3.

~ai =
d2~xi

dt2
(2.3)

The force ~Fi acting on particle i is computed, using equation 2.4, at each time step using the potential

energy,V .

~Fi = −∇V (2.4)

The potential energy,V is calculated as a sum of terms describing interactions between atoms such as

covalent bond lengths, angles, torsion angles (proper dihedrals), improper dihedrals (to maintain tetrahedral or

planar geometries such as stereochemistry or benzene rings), and a number of non-bonded terms. The bonded

interactions are graphically depicted in Figure 2.1. In general, the non-bonded terms include a Lennard-Jones

term and an electrostatic (Coulomb) contribution, and in some cases an explicithydrogen-bonding term. The

calculation of the potentialV due to bonded interactions is given in equation 2.5.

V (~r) =

Nb
∑

n=1

V (b)(bn, k
(b)
n , b0n) +

Nθ
∑

n=1

V (θ)(θn, k
(θ)
n , θ0n) +

NΦ
∑

n=1

V (Φ)(Φn, k
(Φ)
n ,Φ0

n) +

NΨ
∑

n=1

V (Ψ)(Ψn, k
(Ψ)
n ,Ψ0

n)

(2.5)

The bond stretching potential energy is given by the sum of functionsV (b) over allN (b) bonds in the system.

V (b) is the function describing the potential energy associated with the stretching of a single bond. In general,

this function is a harmonic potential but can be also represented through more complex functions. Bond length

bn describes the nth bond. The quantitiesk(b)n andb0n are force-field parameters, force constant and reference

bond length, respectively, characteristic for specific bond n.
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Figure 2.1: Introduction to MD simulations.
MD is based on a simple model of interactions between atoms described by bond stretching, bond angles, torsion angles (dihedrals)
and improper dihedrals (to maintain tetrahedral or planar geometries).

Similarly, the bond-angle bending interactions potential energy is given by the sum of functionsV (θ) over

all N (θ) covalent bond-angles present in the system.V (θ) is the function describing the potential energy asso-

ciated with the bending of a single bond-angle. In general, this function is a harmonic potential. Bond angleθn
describes the nth bond angle. The quantitiesk(θ)n andθ0n are force-field parameters, force constant and reference

angle, respectively, characteristic for specific bond angle n.

In a similar manner, the proper dihedral-angle torsion contribution to the potential energy is given by the

sum of functionsV (Φ) over allN (Φ) proper dihedrals present in the system.V (Φ) is the function describing the

potential energy associated with the torsion of a single proper dihedral-angle. Dihedral angleΦn describes the

nth proper dihedral-angle. The quantitiesk(Φ)
n andΦ0

n are force-field parameters, force constant and reference

dihedral, respectively, characteristic for specific dihedral angle n.

The improper dihedral-angle bending energy term is given by the sum of functionsV (Ψ) over allN (Ψ)

improper dihedral-angles present in the system.V (Ψ) is the function describing the potential energy associated

with the bending of a single improper dihedral-angle. Improper dihedral-angleΨn describes the nth improper

dihedral-angle. The quantitiesk(Ψ)
n andΨ0

n are force-field parameters, force constant and reference dihedral-

angle, respectively, characteristic for specific improper dihedral-angle n.

GROMACS (GROningen MAchine for Chemical Simulations) [160, 161] is a molecular dynamics simula-

tion package considered to be the fastest program for molecular simulationsto date. The GROMACS project

was originally started to construct a dedicated parallel computer system formolecular simulations, based on a

ring architecture. However, from its start, GROMACS was continuously improved and developed.
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2.3.2 Trajectory analysis

2.3.2.1 Root mean square deviation from a reference structure

The root mean square deviation (RMSD) is defined as the deformation of themacromolecular structure

with respect to a reference structure. The average value of these deviations is calculated at each time frame

of the MD trajectory using equation 2.6. RMSD is calculated over all the atoms in the structure taking into

consideration thei mass,mi, their configuration at timet, ri(t) and their reference configuration,rrefi . The

RMSD is normalized to the total mass of the system,M .

RMSD(t) =

√

1

M

∑

i

mi[ri(t)− r
ref
i ]2 (2.6)

In general, in a MD simulation, in the first 5 ns it will be observed an increasein the RMSD value, after

which an equilibration with small fluctuations around an average values will occur. As a rule of thumb, a struc-

ture can reach equilibrium and is considered stable under 2-3 Å . RMSD values above 3-4 Å show distortion

such as unfolding or conformational changes. However, this is not always true, since a small rotation, for ex-

ample the rotation of one subunit of a protein relative to another or a hinge motion, can lead to large change in

RMSD, yet very little overall change in the structure. In order to distinguishbetween these possibilities, other

analysis methods should be done in parallel.

2.3.2.2 Root mean square fluctuations from a reference structure

The root mean square fluctuation (RMSF) of each residue,i is defined as a measure of the dynamics of

each atom or residue in the protein structure. It is calculated using equation2.7. It is an average over all the

considered frames,Nframes, and takes into consideration the position of the respective residue,i with respect

to its average position,< ri > within the simulation time.

RMSF (i) =

√

1

Nframes

∑

i

[ri(t)− < ri >]2 (2.7)

As a general feature of the Cα RMSF profile, there is a correspondence between the larger fluctuationsand

the loop regions of the structure. This is explained by the fact thatα-helices andβ-sheets show a much lower

fluctuation due to the internal hydrogen bonds.

2.3.3 MD simulations for the ligand docking and ligand docking studies with KlHsv2

The GROMACS 4.5.4 simulation package [160, 161] was used for all simulations, with a united atom

GROMOS96 43a2 [162] force field and the SPC [163] water model. Periodic boundary conditions were applied

to the systems. Long-range electrostatics were calculated using the PME method [164, 165] with a real-space

cutoff of 1 nm. For the van der Waals interactions, a cutoff of 1 nm was used. The simulations were performed at

300 K, using the V-rescale, modified Berendsen thermostat [166] with a coupling constant of 0.1 ps. A constant

pressure of 1 bar was maintained using a Parrinello-Rahman bariostat [167] in an isotropic coupling type with a

coupling constant of 2 ps and a compressibility of 4.5X105 bar−1. The integrator for the simulations was leap-
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Figure 2.2: MD simulation methodology schematic work flow.

frog integrator with a step of 2 fs. The LINCS method [168] was used to constrain bond lengths. Coordinates

were saved every 2 ps for analysis. Analysis of all simulations was performed using the GROMACS package.

The 3.35 Å resolution KlHsv2 crystal structure (pdb accession number 4AV9 [1]) was used. This structure

contains residues 270-274, part of the loop connecting strands C and Dof blade 6. Side chains, which are

disordered in the crystal structure, were added to the model with conformations that do not cause steric clashes

with Coot [159].

A schematic work flow for the MD simulation procedure is represented in Figure 2.2. For the MD sim-

ulation of the apo-protein, energy minimization was done in vacuo, first usingsteepest descent followed by

a conjugate gradient energy minimization. This was done in order to obtain the starting structure. In all the

simulations, the protein/ligand or apo-protein were solvated and charge neutralized. The system was then

energy-minimized and then two position restrained simulations of 100 ps each were performed for tempera-

ture (canonical ensemble) and pressure (isothermic-isobaric ensemble)equilibration. Finally, the systems were

simulated for 30 ns.

2.3.4 Ligand docking studies in KlHsv2

A schematic work flow for the docking methodology is presented in Figure 2.3.In short, Autodock 4.2

[169] was used for the docking studies. The ligands were allowed torsional flexibility while the macromolecule
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was kept rigid. In order to sample the flexibility of the macromolecule, the ligandswere docked in 7 snapshots

taken each 5 ns from a 30 ns MD simulation of KlHsv2. Grid boxes were centered in the two binding sites

(Figure 2.3). The default grid spacing of 0.375 was used. Lamarckian Genetic Algorithm [170] with 2500000

evaluations and 100 runs was used for docking. The schematic diagrams of protein-ligand interactions were

visualized with LIGPLOT v.4.5.3 [171].

Figure 2.3: Ligand docking methodology schematic work flow.

2.3.5 PI3P and PI(3,5)P2 structures

The topology of PI3P and PI(3,5)P2 for GROMACS and docking studies was obtained using PRODRG

server [172], yielding to a total charge of -3 and -5, respectively. The atomic partial charges for PI3P were

determined by partitioning the molecule in known charge groups for which values are found in literature [162,

173, 174] (Figure 2.4). Using this charge parametrization scheme, the partial charges for all the other six forms

of phosphoinositides (PI(3,5)P2, PI(3,4,5)P3, PI(3,4)P2, PI4P, PI(4,5)P2, PI5P) can be obtained by exchanging

a hydroxyl charge group (CH-OH) by a phosphate charge group (CH-O-PO2−
3 ).

2.3.6 Protein preparation for coarse-grained molecular dynamics simulations of KlHsv2

The 3.35 Å resolution KlHsv2 crystal structure (pdb accession number 4AV9 [1]) was used. For the coarse-

grained MD simulations, the Martini-Elastic protein model [175] was used. In this representation, every four

atoms are grouped in a bead. For proteins this implies that each amino acid is represented by one backbone bead

and side chain particle(s) depending on the residue type. The structure of the extended strands was stabilized
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Figure 2.4: Atomic partial charge parametrization of PI3P for GROMOS96 force field.
GROMOS96 building block definitions include charge groups (indicated by dashed boxes) and partial charges (indicated by real
numbers). Using this charge parametrization scheme, the partial charges for all the other six forms of phosphoinositides (PI(3,5)P2,
PI(3,4,5)P3, PI(3,4)P2, PI4P, PI(4,5)P2, PI5P) can be obtained by exchanging a hydroxyl charge group, CH-OH (blue) by a phosphate
charge group, CH-O-PO2−3 (red).

by elastic bonds defined by a force constant of 1000 kJ mol−1 nm−2 between all backbone particles that were

within 0.7 nm of each other. The backbones root mean square deviation ofthe proteins from the initial structure

did not exceed 5 Å in any of the simulations performed. This was comparable toan atomistic simulation of the

protein in a water box.

2.3.7 Coarse-grained MD simulations of KlHsv2

For all coarse-grained MDs the Martini 2.1 force field [175] was used.The time step was 20 fs and the

coordinates were saved every 20 ps for subsequent analysis. Periodic boundary conditions were employed.

The temperature and pressure were kept constant at the values of 323K and 1 bar using the Berendsen ([176])

temperature and pressure coupling algorithms with a time constant of 1 ps for the temperature coupling, while

the pressure coupling time constant was 5 ps. Semiisotropic pressure coupling was used with the same com-

pressibility (4.5X105 bar−1) in all directions. Lennard-Jones interactions were shifted to zero between 9 and 12

Å and electrostatics were shifted to zero between 0 to 12 Å , with a relative dielectric constant of 20. Central

of mass motion removal was done for linear translational movements of each ofthe three groups containing the

protein, DPPC (dipalmitoyl phosphatidyl choline), and solvent grouped tothe ions used for the system charge

neutralization.

2.3.8 DPPC bilayer formation around loop 6CD of KlHsv2

The GROMACS 4.5.4 simulation package [160, 161] was used for the coarse-grained membrane self-

assembly around the loop 6CD of KlHsv2. In this protocol [177, 178], theprotein is positioned in the center

of a box and lipid molecules are randomly positioned in a cubic box, after whicha steepest descent energy

minimization is performed. In the present study, the starting dimensions of the box were 10 X 10 X 10 nm and

256 dipalmitoylphosphatidylcholine (DPPC) lipid molecules were used. Water and chloride ions were added

to fill the box (3263 molecules and 2 chloride ions) and another steepest descent energy minimization was

performed prior to the 100 ns simulation.
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2.3.9 Coarse-grained MD simulation of the membrane-KlHsv2 system

The GROMACS 4.6.5 simulation package [160, 161] was used for a 1µs long MD simulation of the

assembled bilayer-protein system in a triclinic box of dimensions 9.0556 X 9.0556 X 12 nm with all angles

of 90◦. The final configuration of the DPPC bilayer formation around loop 6CD ofKlHsv2 was stripped of

water and energy minimizedin vacuousing steepest descent algorithm. Water and chloride ions were added

to fill the box and charge neutralize the system. This was followed by a steepest descent energy minimization.

Three position-restrained equilibration simulations were performed. The first one was to reach the temperature

of 323 K (canonical ensemble). The length was 100 ps, with a time step of 1 fsand position restraints on the

protein. Next the pressure of 1 bar was reached through a isothermic isobaric ensemble equilibration of 500 ps,

with a time step of 1 fs and position restraints on the protein. Next, the position restraints on the side chains on

the protein were removed, and a 1 ns isobaric ensemble equilibration was performed with a time step of 20 fs.

Next, a production run was done for 1µs.

2.3.10 Atomistic MD simulations of the KlHsv2-membrane system

The last frame of the coarse-grained MD simulation of the membrane-protein system was used in order to

produce an atomistic level coordinate file of the membrane-protein system using the Sugar-Pie server [179].

Starting from these set of coordinates, the MD simulations were performed using GROMACS 4.6.5 simu-

lation package [160, 161] together with GROMOS96 53A6 force field [180] modified for Berger lipids [181]

and SPC water [163]. The histidines of the binding sites, H178 and H249 were protonated after which the

system was charge neutralized using five chloride ions. The system was then energy-minimized, and two

position-restrained simulations of 100 ps each were performed for temperature (canonical ensemble) and pres-

sure (isothermic isobaric ensemble) equilibration. A production run was done for 100 ns.

Periodic boundary conditions were applied to the system. Electrostatics werecalculated using the particle

mesh Ewald (PME) method [164, 165] with a real-space cutoff of 12 Å . Forthe van der Waals interactions, a

cutoff of 12 Å was used. The simulation was performed at 323 K using the Nose-Hoover thermostat [182] with

a coupling constant of 0.5 ps. A constant pressure of 1 bar was maintained using a Parrinello-Rahman bariostat

[167] in a semiisotropic coupling type with a coupling constant of 2 ps and a compressibility of 4.5X105 bar−1.

For the protein system, an isotropic pressure coupling was used. The integrator for the simulation was leap-frog

integrator with a step of 2 fs. The LINCS method [168] was used to constrainbond lengths. Central of mass

motion removal was done for linear translational movements of each of the three groups containing the protein,

DPPC, and solvent grouped to the ions used for the system charge neutralization. For the visualization of the

systems, VMD [183] and PyMOL [184] were used.

2.3.11 Homology modeling

The steps in the homology modeling protocol are schematically summarized in Figure 2.5. The protein

sequences of KlAtg21 and ScHsv2 were each aligned with the sequence of KlHsv2 using T-Coffee server

[185]. Behind loop 6CD region, the alignment was manually adjusted. The pdb 4av9 structure of KlHsv2

was used [1] as template. Modeller v9.9 [186, 187] was used to generate 20 initial models. The models were

compared using the DOPE score function of Modeller or PROCHECK [188]. The loops in the best model were
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Figure 2.5: Homology modeling methodology schematic work flow.

refined in successive cycles. After each cycle DOPE and PROCHECK evaluations were performed. Finally,

the PIs were docked in the active sites of the resulting structures by structural alignment in Pymol [184] with

the ligand docked structures of KlHsv2.



3 Computational studies of PROPPINs

membrane binding

3.1 Specific membrane binding of Hsv2

PROPPINs specifically bind PI3P and PI(3,5)P2. The FRRG motif is highly conserved among PROPPINS

of different species and it is essential for phosphoinositide recognition[94]. In this chapter, the details of the

recognition by PROPPINs of PI3P and PI(3,5)P2 will be studied using computational methods such as ligand

docking and homology modeling. Special attention will be given toK. lactisHsv2 (KlHsv2) because its crystal

structure was determined in our lab [1].

In our KlHsv2 crystal structure [1], the two arginines of the FRRG motif point towards opposite directions.

In the vicinity of these arginines, there are two bound sulfates. These sulfates form salt bridges to highly

conserved residues in KlHsv2 (Figure 3.1).

Figure 3.1: Sulfate binding site 1 (A) and binding site 2 (B) in the KlHsv2structure.

Since sulfates and phosphates bound in crystal structures of PI bindingproteins often reveal the positions of

phosphates of PI headgroups, we hypothesized that these two sulfatescould define either one or two PI binding

sites. In the two binding sites hypothesis, the residues around these sulfates defining potential binding site 1

are H178, S198 and R205, while potential binding site 2 is defined by R220,K245, T247 and H249. In that

case R219, which is essential for PI binding would need to contribute to sulfate binding site 2. This would

make sulfate binding site 2 the single PI binding site. Due to crystal packing contacts, R219 side chain might

be trapped in site 1 because of W277 (Figure 3.2). For this hypothesis to beverifiable, R219 must be able to

45
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swing towards site 2. This conformation change must be accompanied by the release of W277 from the crystal

packing contacts that hinders the move of R219. Movement of W277 might allow R219 to point towards sulfate

site 2. In order to test this hypothesis, I performed a 30 ns MD simulation with thesolvated KlHsv2 structure

containing the complete loop 6CD. When overlaying the initial crystal structurewith the coordinates of the last

time point of the simulation, one observes that W277 is released from its restraints by crystal packing contacts,

freeing binding site 2. However, R219 remains oriented opposite to R220 (Figure 3.2). These findings support

the two PI binding sites hypothesis. Mutagenesis studies confirmed the presence of two PI binding sites [1].

Figure 3.2: W277 release from crystal packing contacts by MD simulation.
KlHsv2 was solvated and simulated for 30 ns. Final structure (pink) is shown overlaid to the initial crystal structure (gray). Binding
site 1 is shown in yellow sticks, while binding site 2 is represented by cyan sticks. Final positions of W277 and R219 are depicted in
green sticks and labeled with *.

3.1.1 In silico analysis of phosphoinositides binding of KlHsv2

3.1.1.1 Computational docking of PI3P and PI(3,5)P2 in the two binding sites of KlHsv2

PI3P and PI(3,5)P2 were docked using AutoDock 4.2 [169] in both sulfate binding pockets (Figure 3.1).

PI3P was successfully docked in both binding sites (Figure 3.3). In the optimal docked conformation, H178,

S198, D200, T202, R205 and R219 are the essential residues for binding of PI3P in binding site 1. Salt-bridges

form between phosphates P1 and P3 and R205 and R219, respectively. Similarly, the essential residues in

binding site 2 for PI3P binding are R220, K245, H249 and K283. The saltbridges formed between the ligand

and the protein are H249 and R220 with phosphate P1, while phosphate P3 interacts with K245 and K283. The

details of all docking experiments performed are summarized in Appendix table8.1 for binding site 1, while

Appendix table 8.3 summarizes the details for binding site 2.

Using the same procedure, the binding mode of PI(3,5)P2 with the two binding sites was determined (Figure

3.4). Interestingly, H178 and H249 needed to be protonated for successful docking of PI(3,5)P2. PI(3,5)P2 is

recognized by residues in the two binding sites in the same way as PI3P with additional salt bridges between

phosphate P5 and H178 for binding site 1 and K283 for binding site 2. The details of all docking experiments

performed are summarized in Appendix table 8.2 for binding site 1, while Appendix table 8.4 summarizes the

details for binding site 2.
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Figure 3.3: PI3P docking in binding sites 1 and 2.
(A) Spatial representation of PI3P in binding site 1 and (B) site 2. The docking was done using AutoDock 4.2 ([169]). PI3P is
represented in green sticks. The essential residues in binding site 1 are shown in yellow sticks while the ones in binding site 2 are
shown in cyan sticks. Salt bridges and hydrogen bonds are depicted in red dashed lines. (C) Schematic diagram of KlHsv2-PI3P
interaction in binding site 1 and (D) site 2. KlHsv2 residues involved in the ligandinteraction are colored black, while PI3P is colored
red. Salt bridges and hydrogen bonds are depicted with blue dashed lines. Hydrophobic interactions were neglected for reasons of
simplicity.
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Figure 3.4: PI(3,5)P2 docking in binding sites 1 and 2.
(A) Spatial representation of PI(3,5)P2P in binding site 1 and (B) site 2. The docking was done using AutoDock 4.2 ([169]). PI(3,5)P2
is represented in green sticks. The essential residues in binding site 1 areshown in yellow sticks while the ones in binding site 2 are
shown in cyan sticks. Salt bridges and hydrogen bonds are represented in red dashed lines. (C) Schematic diagram of KlHsv2-PI(3,5)P2

interaction in binding site 1 and (D) site 2. KlHsv2 residues involved in the ligandinteraction are colored black, while PI(3,5)P2 is
colored red. Salt bridges and hydrogen bonds are depicted with blue dashed lines. Hydrophobic interactions were neglected for reasons
of simplicity.
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A summary of all the contacts reveled by all the docking experiments is shown inTable 3.1. This table was

obtained by counting how many times a certain contact appears in all the docking experiments.

Table 3.1: Summary of all the contacts, salt-bridges or hydrogen bonds, revealed during the docking experiments as shown in Appendix
tables 8.1-8.4. In parentheses the count of docking conformations inwhich these contacts are made is given.

P1 P3 P5 OH2 OH4 OH6
or OH5

PI3P binding R219(8) R205(21) D200(7) T202(8)
site 1 A179(12) S198(6) R219(6)

T202(6)
binding R220(4) K283(13) D244(14) D244(12)
site 2 T225(6) T247(4)

PI(3,5)P2 binding R219(8) R205(15) H178(6) D200(4)
site 1 N180(15)

S198(5)
binding T247(3) K283(11) K245(11) D244(5) D244(6)
site 2 R220(2)

H249(3)

3.1.1.2 Dynamics of the binding sites in the bound and unbound form

Next, I investigated the strength of the salt bridges formed between the ligands and KlHsv2. In order to

do so, three 30 ns MD simulations were performed for each ligand in each binding site and either two PI3Ps

or two PI(3,5)P2 occupying both binding sites. The time evolution of the distance between the closest protein

contacts to the phosphates, P1, P3 and P5 of the ligands was analyzed (Figure 3.5).

A salt-bridge is maintained when the distance between the phosphorous of thestudied phosphate and the

central atom of the respective side chain is under the threshold of 6 Å

In the case of binding site 1, for PI3P,it was observed that R219 makes a strong salt bridge with the P1.

This salt bridge is stable over the time of the simulation. In the case of P3, salt bridges are formed with both

H178 and R205, the latter being the weaker one. Interestingly, for PI(3,5)P2, H178 switches from P3 to P5,

with whom it makes a stable bond. Similarly, R205 makes a weak salt bridge with P5, and an even weaker salt

bridge with P3. For PI(3,5)P2, P1 makes a weak salt bridge with R205, but this gets broken.

When analyzing the situation for binding site 2, for PI3P, P1 makes stable saltbridges with H249 and R220,

while P3 is stabilized by K245 and K283. For PI(3,5)P2, the P1 salt bridge with H249 is disrupted, while a

stable salt bridge with K283 is formed. In the case of P3, the salt bridge with K245 is maintained, while K283

shifts in between P3 and P5. Interestingly, P5 gets stabilized by K285.

Overall, analyzing the trajectory in the case of PI(3,5)P2, the initial salt bridges with phosphates P1, namely,

R219 and, R220 and H249, respectively, are broken first, allowing theligands to drift with this phosphate

towards the charged residues forming salt-bridges with the other phosphates later leading to the disruption of

these electrostatic contacts as well.

Ligand binding usually leads to conformational stabilization of the protein. In order to study whether

this is the case in the ligand simulations at hand, the root-mean-square fluctuations (RMSFs) as a function of
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Figure 3.5: Dynamics of the KlHsv2 binding sites in the bound and unbound form.
Residue-phosphate distances over time for the simulations with two PI3P or PI(3,5)P2 in both binding sites of KlHsv2. Distances are
measured between the phosphorus atom and the CZ (for arginines), ND1/NE1 (for histidines) or NZ (for lysines) atoms of interacting
basic residues. The interaction limit set to 6 Å is shown as a dashed grey line. (A) Distances are shown for P1 and P3 of PI3P in binding
site one. (B) Distances are shown for P1 and P3 of PI3P in binding site two.(C) Distances are shown for P1, P3 and of PI(3,5)P2 in
binding site one. (D) Distances are shown for P1, P3 and P5 of PI(3,5)P2 in binding site two.
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residue number of both the apo-protein simulations and the ligand simulations were analyzed (Figure 3.6). The

fluctuations are comparable in most of the parts of the protein, except the loop 6CD which is stabilized upon

ligand binding. Moreover, during the apo-protein simulation, this loop adoptsdifferent folds:α-helix,π-helix,

310-helix and coil.

Figure 3.6: Root-mean-square fluctuations (RMSFs) of the Cα atoms as a function of residue number.
RMSFs were calculated from the last 22 ns of the 30 ns molecular dynamicssimulations of Apo-KlHsv2, PI3P and PI(3,5)P2 in both
binding sites of KlHsv2. The rectangular boxes represent the seven blades of theβ-propeller, while the dashed vertical lines show the
loop 6CD.

3.1.2 Phosphoinositides membrane binding of ScHsv2 and KlAtg21

The previous sections analyzed the PI binding sites for KlHsv2. In orderto gain deeper insights in the PI

recognition by PROPPINs, especially by the PROPPINs used in this thesis, Iused homology modeling based

on the experimentally determined structure of KlHsv2 [1].

The first step in homology modeling is a sequence alignment of the target sequence to the sequence of

the template structure. Figure 3.7 shows the multiple sequence alignment of textitK.lactis Hsv2 (KlHsv2),S.

cerevisiaeHsv2 (ScHsv2),S. cerevisiaeAtg18 ScAtg18,P. angustaAtg18 (PaAtg18),C. thermophilumAtg18

(CtAtg18),S. cerevisiaeAtg21 (ScAtg21) andK. lactis Atg21 (KlAtg21). One observes that, due to the fact

that loop 6CD is not conserved neither in sequence, not in length, the alignment is not easily made by automatic

servers. For example, K283 in KlHsv2, even though aligns with H345 in itsS. cerevisiaehomolog, does not

align with the well conserved similar patch - as defined by K416 in ScAtg18 andT447 in ScAtg21 - in the

other PROPPINs. This has to be done manually. The essential residues for PI binding in these PROPPINs are

summarized in Table 3.2.

ScHsv2 and KlAtg21 were chosen for homology modeling. The resulting models are presented in Figure

3.8. Particular attention is given to the two PI binding sites. In the case of ScHsv2, the essential residues

in binding site 1 are H223, R250 and R264, while for the binding site 2, R265,K290, H294 and H345 are

important. Interestingly, ScHsv2 has an extra histidine in its binding site 2. In thecase of KlHsv2 this residue,
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Figure 3.7: Multiple sequence alignment of PROPPINs.
K. lactisHsv2 (KlHsv2),S. cerevisiaeHsv2 (ScHsv2),S. cerevisiaeAtg18 ScAtg18,P. angustaAtg18 (PaAtg18),C. thermophilumAtg18 (CtAtg18),S. cerevisiaeAtg21 (ScAtg21) and
K. lactisAtg21 (KlAtg21) were aligned using T-Coffee [185] server. Secondary structure elements are shown based on the determined structure of KlHsv2 [1].
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Table 3.2: Comparison of important residues for PROPPINs forming salt bridgeswith phospoinosites across paralogs of several yeast
species.

Binding site 1 Binding site 2

PROPPIN Species P5 P3 P1 P1 P5 P1 P3
Hsv2 K. lactis H178 R205 R219 R220 K245 H249 K283

S. cerevisiae H223 R250 R264 R265 K290 H294 H345
Atg18 S. cerevisiae H244 R271 R285 R286 S311 H315 K416

P. angusta H221 R248 R262 R263 T288 H292 K444
Atg21 S. cerevisiae H295 R322 R343 R344 T369 H373 T447

K. lactis H201 R228 R247 R248 S273 H277 K342

Figure 3.8: Essential residues in PI binding for ScHsv2 and KlAtg21 as revealed by homology modeling.
(A) Spatial representation of PI(3,5)P2P in binding site 1 and (B) site 2 for the homology model of ScHsv2, and (C)binding site 1 and
(D) site 2 for the homology model of KlAtg21. The homology models are represented in gray cartoons while the KlHsv2 structure,
used as template for modeling is represented in orange. The KlHsv2 residues important for PI binding are represented in orange sticks.
PI(3,5)P2 is represented in green sticks. For the homology models, the essential residues in binding site 1 are shown in yellow sticks
while the ones in binding site 2 are shown in cyan sticks.
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making a salt bridge to phosphate 3 of the inositol ring, is a lysine. In the KlAtg21 case, binding site 1 is also

well conserved, with H201, R228 and R247 being important, while in the binding site 2, the essential residues

are R248, S273, H277, K342. While binding site 1 is well conserved across species, as shown in Table 3.2,

binding site 2 shows less conservation. While for ScHsv2, the differencewas one basic amino acid (lysine)

being changed to another basic amino acid (histidine), in the case of Atg18s and Atg21s, a lysine in KlHsv2 is

exchanged to a serine or threonine - polar residues.

3.2 Unspecific membrane binding of KlHsv2

Once the specific membrane binding by PROPPINs through PI3P and PI(3,5)P2 recognition was computa-

tionally studied, the next question was whether PROPPINs do not have other structural features that would help

in the stabilization of the binding or recruitment to the membrane, as observed in other PI binding domains.

3.2.1 Preliminary model of KlHsv2 membrane binding

Having the KlHsv2-PI3P bound conformation for both biding sites from Figure 3.3, I proposed a model

for KlHsv2 membrane recognition (Figure 3.9). By defining the membrane as formed by the horizontal plane

cutting through the two P1 phosphates of the PI3Ps bound to the two binding sites, there can be observed two

loops, 6CD and 7CD which insert in the bilayer. Moreover, the PROPPIN sits perpendicular on the membrane,

with its toroidal axis parallel to the membrane.

Figure 3.9: Preliminary model for membrane recognition by KlHsv2
The two PI3Ps are shown in blue sticks. The positions of the phosphates ofthe membrane phospholipids are shown through orange
circles, while the blue circles represent the polar groups of these phospholipids. The shaded violet bar depicts the fatty acid tails of
the phospholipids from the cytosolic leaflet of the bilayer. The dashed blueline represents the center of the bilayer. The model was
approximately drawn to scale. Loops 6CD and 7CD insert inside the membrane according to this model.

3.2.2 Membrane insertion of loop 6CD based on molecular dynamics simulations

The preliminary model described in the previous section is based on empiricalmethodology. More ad-

vanced methodology was used to study whether there is membrane loop insertion. This is why, I have in-

vestigated the propensity of the independent insertion of loop 6CD into a membrane using a protocol [178]
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developed for monotopic membrane proteins. In short, a coarse grained molecular dynamics (CG-MD) sim-

ulation is performed to form a membrane around the exposed hydrophobic parts of the protein. For CG-MD

simulations, four atoms are approximated to a bead. This protocol has the advantage that will give an unbiased

orientation of the protein with respect to the membrane. However, due to the approximations of the coarse

grained model used, phosphoinositides cannot be modeled accurately.

The first steps in performing an CG-MD with a protein is to check which representation is better suited

for the system. There are three possible protocols for obtaining a coarsed-grained protein: Martini [189],

Martini combined with elastic network [189] and ElNeDyn [190]. Besides theprotein representation, the time

step should also be optimized. Two time steps were chosen, 20 ps and 40 ps. The three models were probed

and compared with an atomistic simulation for 100 ns in similar conditions. The two analyzed properties

used for this comparison were the RMSD - for deviations from the original structure - and the RMSF - for

fluctuations of Cα atoms. The ElNeDyn protocol failed for the case of KlHsv2, but the resultsfor Martini

and Martini combined with elastic network are shown in Figure 3.10. On one hand, simple Martini protocol

led to high deviations from the original structure for both time steps chosen, as the RMSD values were above

15 Å ,while the RMSFs of the Cα atoms were also large compared to the atomistic simulation. On the other

hand, when combined with an elastic network, Martini was suitable to represent the protein in a coarse-grained

model. A smaller time step performed more similar to the atomistic simulation in terms of RMSDs,while the

RMSFs looked similar to the atomistic simulation independent of the time step chosen. This is why the Martini

combined with an elastic network together with a 20 ps time step were chosen for the CG-MD simulations.

Once the protocol for the coarse-grain representation of KlHsv2 was chosen, the aggregation of DPPC

molecules in a bilayer around the protein was performed. Figure 3.11 showsthe time evolution of one of the

fifteen CG-MDs performed. Initially, Dipalmitoylphosphatidylcholine (DPPC) molecules are randomly posi-

tioned in a water box having the protein in the center. During the first 10 ns, the bilayer forms around the loop

6CD. In contrast to the model containing the phosphoinositides, the protein does not position perpendicularly

with respect to the membrane, but stays tilted. Moreover, the loop does not penetrate the membrane more than

the hydrophilic layer, even though the previous model has shown a deeper penetration. The level of the pen-

etration does not change throughout the remaining 90 ns of the simulation in which the protein mainly freely

rotates around the loop.

Out of the fifteen CG-MD simulations performed, the membrane bilayer formationwas observed only six

times. This is likely due to the high water to lipid molecules ratio. This high ratio betweenthe water and lipid

molecules was necessary because of the considerable size of the proteinand necessary size of the simulation

box that would fit such a protein. Moreover, out of these six membrane bilayer formations, only in two cases

protein inserted in the membrane. This can be explained by the fact that in the other cases, the bilayer formed

on the opposite side of the protein and not in the proximity of loop 6CD. Moreover, in some cases in which the

protein stayed in solution, the hydrophobic tails of one DPPC molecule stuck to the loop.

In order to facilitate the bilayer formation and not increase the water to lipid ratio, the size of the system

was kept low. In fact, the system size did not respect the minimum-image convention and this might be a reason

why the protein appeared tilted. The minimum-image convention is needed for the simulated molecules not to

be overcrowded, i.e., interact with its own image in the neighboring simulation box. In order to investigate this

possibility, the protein-membrane system were placed in a higher box (12 nm on the z-axis) and a 1µs CG-MD

was performed (Figure 3.12). During the first 50 ns, the protein rotates decreasing the tilt angle. Figure 3.14,
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Figure 3.10: Optimization of the coarse-grained representation for KlHsv2.
Comparison of 100 ns CG-MD simulations using simple Martini protocol with an atomistic simulation in terms of RMSD (A) and
RMSF of the Cα atoms (B) for time steps of 20 ps and 40 ps. Comparison of 100 ns CG-MDsimulations using a Martini protocol
combined with an elastic network with an atomistic simulation in terms of RMSD (C) and RMSF of the Cα atoms (D) for time steps
of 20 ps and 40 ps.
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Figure 3.11: Time course of a coarse-grained molecular dynamics simulation of DPPC (Dipalmitoylphosphatidylcholine) bi-
layer formation around loop 6CD of K. lactis Hsv2.
The choline groups of the DPPC are represented in blue, while the phosphates are represented in red and the glycerols in yellow. For
the sake of simplicity, the water molecules and the hydrophobic chains of thelipids are not shown.

A shows the time evolution of the tilt angle defined by the protein axis drawn through the backbone of residues

T91 and V251 and the z-axis of the system. The average tilt angle is around30o.

Due to the limitations of the CG-MD simulations, namely the constraints on the secondary structure of the

protein and the underestimation of the polarity effects in between water and membrane ([191]), the degree of

membrane penetration of loop 6CD could be underestimated. Moreover, the conformation of loop 6CD might

be different in solution and in the membrane environment. However, this cannot be accounted for in a CG-MD

simulation in which the conformation of a loop is locked since the beginning of the CG-MD. This is why, I

performed a 100 ns atomistic MD simulation for both the protein-membrane system and the protein in solution.

The time evolution of this MD simulation is shown in Figure 3.13.

During the course of the atomistic simulation, the loop 6CD penetrates the membranedeeper, while the

protein tumbles around this loop, side-to-side, bringing the arginines of the binding sites closer to the mem-

brane. Moreover, blades 4, 5 and 7 get alternatively in contact with the membrane bilayer as seen in Figure

3.14, B and C. The number of contacts made by each protein residue with the hydrophobic core of the mem-

brane are calculated per ps as shown in Figure 3.14, B. Loop CD is the part that is the most in contact with

the hydrophobic parts of the membrane, while residues around the binding site 1, defined by R219, also make

contacts with the membrane. Moreover, the protein freely tumbles around loop6CD such that blades 4 and 7

also get in contact with the membrane. Interestingly, binding site 2, as defined by R220, is never in contact

with the membrane. This might suggest that the first binding site that binds a phosphoinositide is binding site

1, which is the more conserved of the two binding sites.

When the angle made by the protein axis as defined by the C atoms of residues T91 and V251 with the

z-axis of the system is observed across the simulation (Figure 3.14, A), due to the deeper insertion of the loop
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Figure 3.12: Time course of a 1µs coarse-grained molecular dynamics simulation of KlHsv2 in a DPPC (Dipalmitoylphos-
phatidylcholine) membrane.
The choline groups of the DPPC are represented in blue, while the phosphates are represented in red and the glycerols in yellow. For
the sake of simplicity, the water molecules and the hydrophobic chains of thelipids are not shown.

Figure 3.13: Time course of a 100 ns atomistic molecular dynamics simulation of KlHsv2 in a DPPC (Dipalmitoylphosphatidyl-
choline) membrane.
The oxygen atoms of the DPPC are represented in red, while the nitrogensare dark blue, phosphorous are brown and the carbons light
blue. The two arginines defining the binding sites, R219 and R220 are represented in magenta sticks. For the sake of simplicity, the
water molecules and the hydrophobic chains of the lipids are not shown.
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Figure 3.14: Analysis of the molecular dynamics simulations of KlHsv2 ina DPPC (Dipalmitoylphosphatidylcholine) mem-
brane.
(A) The angle between the z-axis of the system and the protein axis definedby the backbone beads (coarse-grained MD simulation) or
the Cα atoms (atomistic MD simulation) of T91 and V251 over time. Both the coarse-grained and the atomistic simulation following
are shown on the same timeline. (B) Number of contacts each protein residue makes with the carbon tails of the membrane per ps
averaged over the 100 ns atomistic MD simulation. A contact is defined as made when the distance between the heavy atoms of the
protein and the heavy atoms of the carbon atoms of the hydrophobic tails ofthe membrane less than 4 Å . The rectangular boxes repre-
sent the seven blades of theβ-propeller. (C) Regions of the KlHsv2 that are in contact with the hydrophobic membrane carbon chains.
Red represents the regions that make in between 0.5 and 1 contacts per ps over the 100 ns atomistic MD simulation, while in white are
represented those regions that make less than 0.5, but more than 0.1 contacts per ps. Light blue represents the regions that seldom insert
towards the hydrophobic core of the membrane, while the regions that never touch the hydrophobic parts of the membrane are shown in
blue. A contact is defined as made when the distance between the heavy atoms of the protein and the heavy atoms of the hydrophobic
membrane carbon tails is less than 4 Å . (D) Root-mean-square fluctuations (RMSFs) of the Cα atoms as a function of residue number
of membrane system vs apo-protein 100 ns simulations. The rectangularboxes represent the seven blades of theβ-propeller.
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6CD, it also changes, making the protein tilted with the opposite side of the propeller from the binding sites

getting closer to the surface of the membrane. Moreover, due to the membraneenvironment, the root-square

fluctuations in the loop 6CD decrease compared with the protein in solution system Figure 3.14, D).



4 Biochemical characterization of the

phosphoinositides binding specificities of

PROPPIN family members

4.1 Expression and purification of PROPPINs

In order to biochemically study PROPPINs, their expression and purificationprotocols had to be developed.

In this chapter, results on theS. cerevisiaeAtg18 (ScAtg18) and Atg21 (ScAtg21) expression and purification

trials will be reported. Next, based on the doctoral thesis of Dr. Ricarda Busse [192], theP. angustaAtg18

(PaAtg18) andK. lactisAtg21 (KlAtg21) expression and purification protocols were optimized. Furthermore,

the expression ofC. thermophilumAtg18 was also tried inE. coli.

4.1.1 Expression and purification ofS. cerevisiae Atg18

ScAtg18 is one of the central molecular players in yeast autophagy. Numerous scientific reports [136, 103,

104, 94, 95, 79] characterize the function of Atg18 usingin vivo experiments. However, studying a proteinin

vitro, has the advantage of isolating its function from the effect of other cellularfactors as done in previous

studies [104, 93, 94]. In all these cases, ScAtg18 was purified either using a GST or a MBP tag. However, none

of the biochemical experiments described needed mg-scale amounts of the proteins.

This is why I have tried to further optimize the expression of ScAt18 using the plasmid kindly provided

by the Thumm laboratory [94]. This plasmid expresses ScAtg18 as a fusionwith a N-terminal GST tag. The

tag can be cut using Prescission protease. The gene sequence encoded was amplified fromS. cerevisiae, hence

it contained the wild type gene sequence with the codon usage specific for the budding yeast. The promoter

used for transcription is thetac promoter, which can be induced by both IPTG or lactose as in the case of

auto-inducing media [193]. This promoter can be expressed only in cells containing a T7 RNA polymerase

gene such asE. coli BL21(DE3) which are lysogenic forλ-DE3.

In the first step, I have tried to compare the classical expression conditions in LB media with 1 mM IPTG

induction at 37oC for a few hours - in my experiments, I used 4 hours - with expression in minimal auto-inducing

media (MD5052 [193], overnight at 18oC. Figure 4.1, A shows a western blot of the comparison of the samples

collected from these two conditions. For each condition, samples for the whole cell lysate, soluble fraction and

soluble fraction enriched on Glutathione Sepharose 4B beads were investigated. The antibody used recognizes

the GST tag, hence all the N-terminal degradation fragments of the GST-ScAtg18 fusion protein are recognized.

61
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Figure 4.1: Expression optimization for ScAtg18 inE. coli.
Western blots representing the optimization steps for the expression of GST-ScAtg18. Detection is done with an anti-GST tag mon-
oclonal antibody. Uninduced sample is represented as 0 hours. Red arrows indicate the where the GST-ScAtg18 full length protein
would be expected. ON - overnight. (A) Expression of GST-ScAtg18 inE. coli BL21(DE3) cells in LB induced with 1 mM IPTG at
37oC for 4 hours compared to minimal auto-inducing media (MD5052) in an overnight expression at 18oC. W - whole cell lysate; S -
soluble fraction; B - soluble fraction enriched on Glutathione Sepharose 4B beads; MD - MD5052 (B) Coexpression of GST-ScAtg18
in BL21(DE3) with DnaJ, DnaK and GrpE chaperones. The effect of different concentrations of arabinose used for induction is inves-
tigated. For the 6 hours time point, cells are treated with 200 mM Chloroamphenicol at 4 h after induction, in order to stop translation
and allow 2 hours of folding of the translated peptides. Samples investigatedare soluble fractions enriched on Glutathione Sepharose
4B beads. (C) Comparison of expression inE. coli BL21(DE3) cell and inE. coli Rosetta2(DE3)pLysS cells optimized for expression
of proteins with rare codons. Protein expression at 18oC and 37oC is compared. Samples investigated are soluble fractions enriched on
Glutathione Sepharose 4B beads. (D) Expression of GST-ScAtg18 inE. coli ArcticExpress(DE3) cells. LB and TB expression media
are compared over a 48 hours time course. Samples investigated are soluble fractions enriched on Glutathione Sepharose 4B beads.

The expected full length size of the protein is approximately 80 kDa. For the uninduced sample, in the case of

the LB media, a sample is harvested before the addition of the IPTG, while for the MD5052 media a sample

is harvested when the OD600 reaches a value of approximatively 0.5. It can be seen that in the case ofall the

samples a considerable amount of degradation products are obtained andthere is little or no difference between

the two conditions initially investigated. Overall, very little soluble full length GST-ScAtg18 is observed in the

conditions tested in this step.

For the next optimization step, the influence of co-expression with protein chaperones was studied. Bacte-

rial proteins have an average size of approximatively 30 kDa, while the human protein have an average size of

50 kDa [194]. Comparative studies show that the probability of soluble bacterial expression decreases with an

increase in molecular weight. This increase in size is due to evolution towards multidomain proteins. In addi-

tion, the expression ofβ-strands rich proteins is especially difficult since, in bacteria the entire peptide must be

synthesized before folding is initiated, while in eukaryotes, translation and folding happen simultaneously. This

difference makes it difficult to produce longβ-sheets containing peptides since the high potential for forming
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intermolecular hydrogen bonds would make these peptides prone to aggregation. This is why, protein chaper-

ones are needed, i.e., to prevent peptides from aggregating before translation is terminated. Moreover, in the

case of human WIPI2, it was reported that its peptides were found interacting with human DnaJ family proteins

[32]. Considering that degradation products, such as the ones shownin Figure 4.1, A appear in the case of

not correctly folded proteins, I hypothesized that chaperones might help in the recovery of higher amounts of

full-length soluble ScAtg18.

Figure 4.2: Purification of ScAtg18 from E. coli Rosetta2(DE3)pLysS.
Chromatogram of ScAtg18 purified by (A) affinity chromatography using a GSTrap 4B column followed by overnight GST-tag removal
using Prescission protease followed by another (B) affinity chromatography using a GSTrap 4B column. Next a gel filtration with
HiLoad 16/60 Superdex S75 column was applied (C). The sample protein content can be followed on SDS-PAGE gels (D) for the
affinity purifications, while the gel filtration samples are analyzed in (E). E -elution after the first affinity purification; AD - sample
after dialysis and overnight thrombin cleavage; FT2 - flow through in the second affinity purification; E2 - elution after the second
affinity purification; 1-20 - gel filtration elution fractions. The red arrow indicates PaAtg18.

In the case of the co-expression with chaperones optimization step, I havetried the pKJE7 plasmid (Takara,

Clontech Laboratories, Inc.), containing the genes for DnaJ, DnaK andGrpE and pGro7 (Takara, Clontech

Laboratories, Inc.), expressing GroES and GroEL. For both plasmids,the expression of chaperones is induced

through arabinose. Moreover, the concentration of arabinose used for inducing the expression of the chaperons

can control the amounts of chaperones produced. This is why three arabinose concentrations were investigated:
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0 mM - for the control of expression in the presence of no chaperones ,0.5 mM and 4 mM arabonose. Expres-

sion was done in LB media at 37oC, while the induction of the GST-ScAtg18 expression was done with 1 mM

IPTG. Samples were taken before IPTG induction and at 2 and 4 hours after. For the 6 hours sample, at 4 hours

after induction, 200 mM Chloramphenicol were added to stop translation and allow 2 hours of folding of the

translated peptides with shaking at 37oC. In the case of the pKJE7 plasmid, the soluble samples enriched on

Glutathione 4B sepharose beads are shown in Figure 4.1, B as detected bythe anti-GST tag antibody through

Western blotting. It can be observed that an increasing amount of GST-ScAtg18 is obtained with an increase in

chaperones induction as compared with the expression free of chaperones. However, more free GST (molecular

weight of 28.1 kDa) is also produced. A similar result was obtained for the pGro7 plasmid.

In the next step, the usage of the codons in the wild type gene of ScAtg18 was analyzed and it was ob-

served that six problematic CTA (Leu) codons are present.E. coli has low usage of this codon, while the

t-RNA for this codon is not abundant. This is why, special bacterial strains were engineered such that they

contain plasmids to help in the expression of proteins from genes containing rare codons. One of these strains

is E. coli Rosetta2(DE3)pLysS. A comparison in the expression of GST-ScAtg18 isdone for BL21(DE3) and

Rosetta2(DE3)pLysS strains as shown in Figure 4.1, C. The Western blotanalysis shows soluble samples en-

riched on Glutathione 4B sepharose beads. The expression condition used was LB media with 1 mM IPTG

induction at 18oC and 37oC. It appears that at low temperatures, more protein is produced and thatthe use of

theE. coli Rosetta2(DE3)pLysS strain decreases the smear appearance given by the numerous GST-ScAtg18

degradation products. As a consequence, beside the full-length proteinand the free GST protein, only two

prominent degradation products can be observed, at approximatively 45 and 60 kDa.

The experiments performed until now show that low temperatures and chaperones improve folding. These

two conditions exclude each other since common bacterial chaperones areactive above 30oC. This is why the

E. coli ArcticExpress(DE3) bacterial strain was engineered to express Cpn10 and Cpn60 chaperonins fromO.

antarctica. These chaperonins are homologs of theE. coli GroEL and GroES chaperones, respectively. Cpn10

and Cpn60 show high protein refolding activities at temperatures of 4-12oC. The expression of GST-ScAtg8

was probed inE. coli ArcticExpress(DE3) cells at 10oC for 48 hours, with samples taken every 12 hours.

Soluble samples enriched on Glutathione 4B sepharose beads were compared in LB and TB media expression

after the induction with 1 mM IPTG as seen in Figure 4.1, D. There was not a significant difference between

expression in TB when compared to the LB media. Even though the expression was low, it yielded cleaner

sample, i.e., most of the protein produced was full length protein or free GSTwith a ratio between these two

being more favorable to the full-length peptide as compared to all the other conditions tested before.

The purification of ScAtg18 was attempted inE. coli Rosetta2(DE3)pLysS cells grown in TB media with

1 mM overnight IPTG induction at 18oC. The expression scale was 6.6 L. Cells were harvested and opened,

then, the cell lysate loaded on a 5 mL GSTrap 4B column. The GST-fused protein was eluted with 20 mM

glutathione. The purification chromatogram for this step can be observed inFigure 4.2, A. The eluted protein

was dialyzed overnight for glutathione and GST-tag removal using 0.02 U/µL Prescission protease. This was

followed by another affinity chromatography using a GSTrap 4B column as shown in Figure 4.2, B. Next, the

flow through sample was concentrated and loaded to a gel filtration HiLoad 16/60 Superdex S75 column. The

chromatogram of this step can be seen in Figure 4.2, C. The sample protein content can be followed on SDS-

PAGE gels presented in Figure 4.2, D and E. For the affinity purifications, itcan be observed that a lot more

free GST than full-length fusion protein is obtained. Moreover, a high amount of other peptide fragments than
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the full-length GST-ScAtg18 protein are also recovered. After the second affinity purification, most of the free

GST protein is removed. The gel filtration shows that most of the sample proteincontent elutes in the void

volume, The SDS-PAGE analysis of the elution fractions identify fractions 4 to6 as containing ScAtg18. The

total protein yield is 1.2 mg or 0.18 mg/L expression culture.

Figure 4.3: Stability analysis of ScAtg18 in several buffers.
Thermofluor experiments for ScAtg18 using the pHat buffer screen.Sypro Orange fluorescence was monitored and dequenching
indicates unfolding of the proteins. Temperature was shifted from 25oC to 95oC. In the conditions presented, an increase in protein
stability was observed in comparison to the protein purification buffer. 30 mM HEPES, pH 7.0, represented in yellow. PB - 100 mM
phosphate buffer.

The elution fraction 6 from the gel filtration was used for a thermofluor experiment [154]. This is a high-

throughput stability assay in a 96-well format. Sypro Orange is a dye that increases its fluorescence by binding

to the hydrophobic exposed protein patches. When the temperature of the sample is increased and the protein

starts slowly unfolding, the Sypro orange fluoresce increases, while in later steps when peptides aggregate

together, the dye detaches from the hydrophobic patches leading to a decrease in fluorescence. The point of

inflection during the increase in fluorescence gives the melting temperature.A more stable condition can be

easily observed from having a slope that intersects the x-axis more to the right side of the graph. Once purified,

a buffer stability assay was performed on ScAtg18 using the pHat screen.

The stability assay on ScAtg18 (Figure 4.3) has revealed that only phosphate buffers of any pH can increase

the buffer stability of ScAtg18 over the HEPES, pH 7.0 buffer in which the initial purification was done.

4.1.2 Expression ofS. cerevisiae Atg21

I used the previously reported expression vector construct from the Thumm lab [94]. As in the case of

ScAtg18, the plasmid expresses a ScAtg21 a fusion with a N-terminal GST tag.The tag can be cut using

thrombin protease. The gene sequence encoded was amplified fromS. cerevisiae, hence it contained the wild

type gene sequence. The promoter used for transcription is thetac promoter. The optimization steps are the

same as done for ScAtg18.
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Figure 4.4: Expression optimization for ScAtg21 inE. coli.
Western blots representing the optimization steps for the expression of GST-ScAtg21. Detection is done with an anti-GST tag mon-
oclonal antibody. Uninduced sample is taken as 0 hours. Red arrows indicate where the GST-ScAtg21 full length protein would be
expected. ON - overnight. (A) Expression of GST-ScAtg21 inE. coli BL21(DE3) cells in LB induced with 1 mM IPTG at 37oC for
4 hours compared to minimal auto-inducing media (MD5052) in an overnight expression at 18oC. W - whole cell lysate; S - soluble
fraction; B - soluble fraction enriched on Glutathione Sepharose 4B beads; MD - MD5052. (B) Coexpression of GST-ScAtg21 in
BL21(DE3) with DnaJ, DnaK and GrpE chaperones. The effect of different concentrations of arabinose used for induction is investi-
gated. For the 6 hours time point, cells are treated with 200 mM Chloroamphenicol at 4 h after induction, in order to stop translation
and allow 2 hours of folding of the translated peptides. Samples investigatedare soluble fractions enriched on Glutathione Sepharose
4B beads. (C) Comparison of expression inE. coli BL21(DE3) cell and inE. coli Rosetta2(DE3)pLysS cells optimized for expression
of proteins with rare codons. Protein expression at 18oC and 37oC is compared. Samples investigated are soluble fractions enriched on
Glutathione Sepharose 4B beads. (D) Expression of GST-ScAtg21 inE. coli ArcticExpress(DE3) cells. LB and TB expression media
are compared over a 48 hours time course. Samples investigated are soluble fractions enriched on Glutathione Sepharose 4B beads.
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In the first step, I have tried to compare the classical expression conditions in LB media with 1 mM IPTG

induction at 37oC for a few hours - in my experiments, I used 4 hours - with expression in minimal auto-

inducing media (MD5052 [193], overnight at 18oC. Figure 4.4, A shows a western blot of the comparison of

the samples collected from these two conditions. The expected full length sizeof the protein is approximately

80 kDa. Similar degradation products as in the case of ScAtg18 can be observed.

Next, I studied the influence of co-expression with protein chaperones.As before, pKJE7 and pGro7

plasmids were used for protein chaperones co-expression and the influence of arabinose concentration for

induction was investigated. The expression conditions and sampling was done as before. In the case of the

pKJE7 plasmid, the soluble samples enriched on Glutathione 4B sepharose beads are shown in Figure 4.4,

B. It can be observed that an increasing amount of full lenght GST-ScAtg21 is obtained with an increase in

chaperones induction as compared with the no chaperones expression where mainly small degradation products

are detected. The translation block with Chloramphenicol induced overall protein degradation. The pGro7

plasmid yielded similar results.

When the usage of the codons in the wild type gene of ScAtg21 was analyzed, it was noticed that six

problematic CTA (Leu) codons are present. This is why, next a comparison in the expression of GST-ScAtg21

is done forE. coli BL21(DE3) andE. coli Rosetta2(DE3)pLysS strains as shown in Figure 4.4, C. The Western

blot shows soluble samples enriched on Glutathione 4B sepharose beads.The expression condition used was

TB media with 1 mM IPTG induction at 18oC and 37oC. It appears that at low temperatures, more full-lenght

protein is produced.E. coli Rosetta2(DE3)pLysS cells express more full-length protein, however there are

also more small degradation products observed. Beside the full-length andfree GST protein, a band for a

degradation product of approximatively 50 kDa can be clearly distinguished from the other smaller fragments.

In a last optimization step,E. coli ArcticExpress(DE3) bacterial strain was probed as a potential expression

host. The same expression conditions were used as in the case of GST-ScAtg18. Soluble samples enriched on

Glutathione 4B sepharose beads were investigated as shown in Figure 4.4,D. The results were similar to the

ScAtg18 ones, namely a low, but cleaner full-length expression productwith higher fusion protein to free GST

ratio.

As done for ScAtg18, the purification of ScAtg21 was attempted. Similarly,E. coli Rosetta2(DE3)pLysS

was used together with TB media with 1 mM overnight IPTG induction at 18oC. However, in the case of

ScAtg21, ever a lower protein quantity was obtained. The yield was much lower than 1 mg and could not be

used for a thermofluor buffer stability experiment.

4.1.3 Expression and purification ofP. angusta Atg18

Since the expression and purification ofS. cerevisiaeAtg18 was not successful, I have followed on the work

of Dr. Ricarda Busse [192] and I have further optimized the purification protocol for PaAtg18. Initially, the

previously established protocol was tried for the high-amounts productionof PaAtg18. In short, this protocol

involved an affinity chromatography step using a HisTrap FF column followedby a dialysis from HEPES, pH

7.0 to Na-lactate buffer, pH 4.0. Finally, a gel filtration step with HiLoad 16/60 Superdex S75 column was

performed. However, during the dialysis and concentration steps before the gel filtration purification, a lot of

protein precipitated. This is why, after the gel filtration only a small amount of PaAtg18 could be obtained, as



68 Biochemical characterization of PROPPINs

Figure 4.5: Buffer optimization for the purification of PaAtg18 and its stability analysis.
(A) Comparison between the chromatograms of gel filtration with HiLoad 16/60 Superdex S75 column step for the purification of
PaAtg18 in Na-lactate buffer, pH 4.0 and HEPES buffer, pH 7.0. Blackarrow shows the PaAtg18 elution peak. (B) Thermofluor
stability assay for PaAtg18 in Na-lactate (pH 4.0), HEPES (pH 7.0) and phosphate buffer (pH 5.8). Sypro Orange fluorescence was
monitored and dequenching indicates unfolding of the proteins. Temperature was shifted from 25oC to 95oC. (C) CD spectrum of
PaAtg18 from 260 nm to 200 nm. (D) Melting curve for PaAtg18 was taken at 216 nm from 30oC to 80oC.
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shown by the low height of the elution peak for PaAtg18 on the left panel in Figure 4.5, A. In contract, when

using HEPES, pH 7.0 buffer, a high amount of PaAtg18 could be observed.

In order to investigate the protein stability in different buffers, a thermofluor experiment was performed

(Figure 4.5, B). It can be observed that the Na-lactate, pH 4.0 buffer isa less stable condition than the HEPES,

pH 7.0 buffer. Moreover, as in the case for ScAtg18, phosphate buffer stabilizes the protein the most.

Once the protein was purified, its folding was checked by measuring a CD spectrum from 260 nm down to

200 nm (Figure 4.5, C). Interestingly, a minimum in the spectrum was observed below 210 nm, even though

for a protein rich inβ-strands would be expected a minimum at 216 nm. This is why a melting curve from

30oC to 80oC was recorded at 216 nm Figure 4.5, D). An unfolding curve, with a meltingtemperature of

(53.41±0.06)oC was observed, showing that the initial protein sample had a folding state thatchanged.

Using HEPES, pH 7.0 buffer. PaAtg18 was purified in high amount for bothcrystallization and biochemical

investigations. The yield per purification varied in a range of 10-20 mg/L expression culture. Using the same

protocol, single cysteine mutants were purified for experiments for investigating the orientation of PaAtg18

towards the membrane it binds to. Figure 4.6 shows

4.1.4 Expression and purification ofK. lactis Atg21

The expression and purification ofS. cerevisiaeAtg21 was not successful. This is why, I have further opti-

mized the protocol developed by Dr. Ricarda Busse [192] for the expression and purification of KlAtg21. The

initial protocol recommended the use of MES buffer, pH 5.8. Having difficulties with the stability of the protein

in this buffer, based on the experience with PaAtg18, I have switched to HEPES buffer, pH 7.0. Thanks to its

N-terminal His-tag, KlAtg21 can be easily purified in a two step purification: affinity chromatography using

a HisTrap FF column followed by a gel filtration step with HiLoad 16/60 SuperdexS75 column. The protein

content after each purification step can be followed on SDS-PAGE (Figure 4.7). Panel A shows the results after

the first change in the original protocol was implemented, namely using HEPESbuffer, pH 7.0 during the gel

filtration step. On an SDS-PAGE gel, KlAtg21 is expected to run approximatively around 45 kDa. The full

length KlAtg21 can be observed in small amounts, while most of the expressionand purification product is a

degradation product of approximatively 35 kDa. This is why, next, I have tested the expression under milder

inducing conditions by switching the expression media from ZYM5052 to MD5052. The purification results

are shown in Figure 4.7, B. As a result of the MD5052 expression, the full length protein to degradation product

ratio increased.

Once KlAtg21 was purified, before using it in biochemical experiments, its folding and stability were tested.

A CD spectrum from 260 nm to 200 nm was measured, while a melting curve wastaken at 216 nm from 30oC

to 80oC, as shown in Figure 4.7, C and D. As expected for aβ-sheet-rich protein, KlAtg21 has a spectrum

minimum at 216 nm showing a well folded protein. Its melting curve revealed thatthe melting temperature of

KlAtg21 is (56.5±0.3)oC

4.1.5 Expression and purification ofS.cerevisiae Hsv2

In order to perform the biochemical analysis of ScHsv2 and its mutants, the protein had to be expressed

and purified. The protocol established by Dr. Ricarda Busse [192] was used without any modifications. In

short, the purification consists of an affinity step, followed by overnight dialysis with GST-tag removal by
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Figure 4.6: Purification of PaAtg18 no cysteines, S81C mutant from E. coli BL21(DE3)
Chromatograms of PaAtg18 no cysteines, S81C mutant purified by (A) affinity chromatography using a HisTrap FF column followed
by (B) gel filtration with HiLoad 16/60 Superdex S75 column. Fractions 8-12 containing PaAtg18 are marked. (C) The protein content
during is purification step can be followed on an SDS-PAGE. P - pellet/insoluble fraction; S - soluble fraction; E - affinity purification
elution; 2-20 - gel filtration elution fractions. Red arrow indicated PaAtg18.
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Figure 4.7: Purification of KlAtg21 from E. coli
Purification of KlAtg21 expressed in ZYM5052 (A) compared to MD5052 (B) autoinducing media. An affinity purification step was
followed by a gel filtration purification. P - pellet/insoluble fraction; S - solublefraction; FT - flow through; E - affinity column elution
fractions. The red arrow indicates full length KlAtg21, while the black arrow indicates a degradation product. (C) CD spectrum of
KlAtg21 from 260 nm to 200 nm. (D) Melting curve for KlAtg21 was taken at 216 nm from 30oC to 80oC.
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thrombin. Next, another affinity purification step was performed. Finally, theflow through of the previous

step was loaded on a gel filtration column. The protein sample was analyzed after each step on SDS-PAGE.

Figure 4.8 shows the resulting SDS-PAGE gels after the wild type ScHsv2 purification. One observes that even

after the gel filtration, it is difficult to completely remove the GST-fusion proteinand free GST from ScHsv2.

ScHsv2(R264A) and ScHsv2(H294A) single binding site mutants were purified using the same methodology

and yielded similar results.

Figure 4.8: Purification of ScHsv2 fromE. coli
An affinity purification step was followed by overnight dialysis with GST-tag removal by thrombin. Another affinity purification step
and a gel filtration purification were further performed. P - pellet/insolublefraction; S - soluble fraction; FT - flow through; E - first
affinity purification elution purification; AD - sample after dialysis/GST-tag cleavage; FT2 - flow through after the second affinity
purification; E2 - elution fraction after the second affinity purification; input - input for the gel filtration purification step; 2-16 - gel
filtration elution fractions. The red arrow indicates full length ScHsv2.

Table 4.1: Melting temperatures of ScHsv2 wild type and mutants as measured throughCD.

Tm (oC) Fitting error ( oC)

wild type 54.58 0.05
R264A 53.63 0.05
H294A 54.20 0.05

Once the wild type ScHsv2 and its mutants were purified, their folding and stabilitywere tested. CD spectra

from 260 nm to 200 nm and melting curves taken at 216 nm from 30oC to 80oC were measured, as shown

in Figure 4.9. ScHsv2 and its mutants have a spectrum minimum around 210 nm, but their melting curves

revealed that there is a three-dimensional structure that slowly unfolds. The melting temperatures determined

are summarized in Table 4.1. The ScHsv2 mutants have similar melting temperatures tothe wild type protein.

4.1.6 Expression and purification ofC. thermophilum Atg18

Since attempts to express and purify ScAtg18 were not successful,Chaetomium thermophilumAtg18

(CtAtg18) was tested instead.C. thermophilumis a thermophilic fungus that was used successfully for crystal-

lization due it its likely more stable proteins [195]. CtAtg18 has 32.8% identity with ScAtg18.

The CtAtg18 synthetic gene was ordered after codon optimization for bacterial and insect cell expression

was done. Next, taking into account previous difficulties for the expression of ScAtg18 in bacteria, together
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Figure 4.9: Stability of wild type ScHsv2 and mutants as measured through CD.
CD spectra from 260 nm to 200 nm and melting curves taken at 216 nm from30oC to 80oC for wild type ScHsv2 (A), (B);
ScHsv2(R264A) (C), (D) and ScHsv2(H294A) (E), (F)
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Figure 4.10: Expression tests for CtAtg18 in different expression vectors.
CtAtg18 gene was cloned in several vectors and its expression was testedin E. coli Bl21(DE3). Samples were taken after 3 hours
of induction and after overnight expression in TB media induced with 0.1 mM IPTG for tac or T7 promoters or 1 mg/mL arabinose
at 22oC. The protein product is marked in a red rectangle for the beads enriched samples. ON - samples harvested after overnight
expression. W - whole cell lysate; S - soluble fraction; B - soluble fractionenriched on affinity beads; ON - overnight.
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with my Master student, Oleksandr Yagensky, I decided to clone CtAtg18 into several expression vectors with

different properties (Table 4.2). Different promoters:T7, tac andaraBAD, and different affinity and fusion

tags: His, GST (glutathioneS-transferase), MBP (maltosebinding protein), TrxA (thioredoxin-1), NusA (N

utilization substanceA). The promoters were chosen such that either a maximum protein yield is obtained,

as it is generally the case for theT7 promoter or, in case the protein is toxic for the cells, a minimum basal

expression is ensured, as in the case of thearaBADpromoter [194]. These particular fusion tags were chosen

because MBP, TrxA and NusA were reported to improve protein folding [196].

Table 4.2: Summary of the expression vectors tested for the expression of CtAtg18. The properties of these vectors such as promoter
and its inducer, affinity and fusion tags and cloning sites are listed together with the expected protein product size and the cloning sites
used for cloning the CtAtg18 gene. MW - molecular weight.

Vector Promoter Inducer Affinity; fusion tag Resistance Cloning sites MW (kDa)

pAce1-N-His T7 IPTG 6xHis AmpR NdeI, XhoI 50.1
pETM-20 T7 IPTG 6xHis; TrxA AmpR NotI, NcoI 62.3
pETM-41 T7 IPTG 6xHis; MBP KanR NotI, NcoI 91
pETM-60 T7 IPTG 6xHis; NusA KanR NotI, NcoI 105

pBADM-41(+) ARA Arabinose 6xHis; MBP AmpR XhoI, NcoI 91
pBADM-60(+) ARA Arabinose 6xHis; NusA AmpR XhoI, NcoI 105

pGex-4T-1 tac IPTG GST AmpR XhoI, BamHI 74.2

Protein expression was tested in all the constructs summarized in Table 4.2 in TBmedia in an overnight

expression induced with 0.1 mM IPTG or 1 mg/L arabinose at 22oC. The results are shown in Figure 4.10.

CtAtg18 was expressed in a soluble form in all conditions except when using the pGex-4T-1-ctAtg18 vector.

pAce1-N-His-CtAtg18 construct was chosen for further optimization because of the possibility to recom-

bine, using Cre recombinase, with the pDk vector. The pAce1-N-His and pDk vectors are part of the ACEMBL

expression system developed for protein complex production [197]. Ata later stage (6.1.2), the donor plasmid,

pDk was used for cloning aC. thermophilumAtg2 domain. This would allow the expression and purification

of the Atg2-Atg18 complex. Another expression test was performed to determine the optimum expression

conditions for CtAtg18 inE. coli BL21(DE3). This time both auto-inducing media (MD5052 and ZYM5052)

and media inducible by the addition of IPTG (LB and TB) were tested at 18oC and 37oC. Samples were taken

before induction with IPTG, for LB and TB, or in the case of auto-inducingmedia, when OD600 was approx-

imatively 0.5. Further samples were taken at 3 hours after induction and after overnight expression. Whole

cell extract, soluble fractions and Ni2+-sepharose enriched soluble fractions were analyzed on SDS-PAGE gels

(Figure 4.11). A weak enrichment of a protein with a size of approximatively60 kDa was observed for MD5052

media. The expected size for CtAtg18 is 50 kDa.

Based on the SDS-PAGE analysis, we decided to express CtAtg18 for a large scale purification overnight in

MD5052 at 18oC. Unfortunately, after the purification, when the purification product was sent for confirmation

to mass spectrometry, it was confirmed that it is not the target protein, but a bacterial contaminant.
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Figure 4.11: Expression tests CtAtg18 in pAce1-N-His expressionvector in E. coli Bl21(DE3)
The expression of CtAtg18 from pAce1-N-His was tested in different conditions. Media tested was either LB or TB with 1 mM
IPTG induction or auto-inducing media, MD5052 (MD) or ZYM5052 (ZYM). Two temperatures were tested, 18oC (L) and 37oC (H).
Samples were taken before induction and after 3 hours of induction and after overnight expression. The protein product is marked with
a red arrow for the overnight, MD5052 expression media, Ni2+-sepharose enriched samples (bottom panel). ON - samples harvested
after overnight expression. W - whole cell lysate; S - soluble fraction; B- soluble fraction enriched on Ni2+-sepharose beads; ON -
overnight.
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4.2 ITC measurements of PROPPINs with PI3P and PI(3,5)P2 containing li-

posomes

Having optimized protocols for the expression and purification of PaAtg18 and KlAtg21, together with the

protocol previously established for the purification of ScHsv2 and its mutants [1, 192], I could undertake the

biochemical characterization of the yeast PROPPIN paralogs. This section reports on the biochemical findings

using isothermal titration calorimetry (ITC) to measure PROPPIN phosphoinositide binding.

All PROPPIN paralogs specifically bind PI3P and PI(3,5)P2, as shown through flotation assays with SUVs

(small unilamellarvesicles) [192]. Using a protocol established in our lab [155], I used ITC to titrate PROPPINs

into SUVs containing 2% of either PI3P or PI(3,5)P2. A summary of the thermodynamic parameters found is

given in Table 4.3.

Table 4.3: Summary of thermodynamic parameters as determined through ITC measurements for PROPPIN PI3P or PI(3,5)P2 binding.
n - number of measurements; N - binding stoichiometry. Errors reported are standard errors of the mean.

n N Kd ∆H T∆S ∆G
(µM) (kJ/mol) (kJ/mol) (kJ/mol)

PaAtg18 PI3P 4 0.03±0.01 0.29±0.09 -101±23 -63±24 -37.8±1.1
PI(3,5)P2 8 0.50±0.02 0.11±0.01 -147±6 -107±6 -39.9±0.3

KlAtg21 PI3P 3 0.44±0.19 0.86±0.18 -84±22 -50±22 -34.8±0.6
PI(3,5)P2 4 0.30±0.03 1.14±0.29 -171±26 -137±27 -34.2±0.7

ScHsv2 PI3P 5 0.58±0.09 0.40±0.05 -89±8 -53±9 -35.7±1.0
PI(3,5)P2 5 0.73±0.05 0.03±0.01 -62±4 -18±5 -44.1±1.0

The ITC titration curves for PaAtg18 binding to both PI3P and PI(3,5)P2 are given in Figure 4.12, A

and B. For PI3P, it can be observed that the heat released is weak under these conditions; weaker than the

0.1µcal/s threshold limit for a reliable measurement. This must be taken into consideration when looking at

thermodynamical parameters obtained from fitting this curve. The titration curves were fitted (Figure 4.12, C)

and values for binding affinity and stoichiometry, entrophy and enthalphy were determined (Table 4.3). For a

better comparison between the binding parameters for the two phosphoinositides investigated, histograms were

drawn in Figure 4.12, D for the enthalphic term (∆H), entropic term -T∆S and Gibbs free energy (∆G). It can

be observed that the enthalpic and entropic contributions are slightly largerfor PI(3,5)P2 binding compared

to PI3P binding. Moreover, the entropy is unfavorable to binding, while thebinding is enthalpically driven.

Moreover, the PaAtg18 PI(3,5)P2 binding is stronger than the PI3P binding since the latter has a binding affinity

of 0.29µM, while the former has a binding affinity three times higher, 0.11µM. The binding stoichiometry

could not be determined for PI3P binding, but for PI(3,5)P2 2 ligand molecules bind per PaAtg18 protein.

The ITC titration curves KlAtg21 binding to both PI3P and PI(3,5)P2 are given in Figure 4.13, A and B. For

both phosphoinositides, For both ligands, it can be observed that the heat released is weak under the measured

conditions; the values are very close to the 0.1µcal/s threshold limit for a reliable measurement. As before, the

titration curves were fitted (Figure 4.13, C) and thermodynamic parameters determined (Table 4.3, Figure 4.13,

D). Similar to PaAtg18, it can be observed that the enthalpic and entropic contributions are larger for PI(3,5)P2
binding compared to PI3P binding. The entropy is unfavorable to binding, while the binding is enthalpically

driven. Furthermore, the KlAtg21 binding to the two phosphoinositides investigated is approximatively equal
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Figure 4.12: ITC measurements for PaAtg18 with SUVs containing PI3P or PI(3,5)P2.
ITC curves are shown from titrations of PaAtg18 into SUVs containing 2% PI3P (A) or PI(3,5)P2. Liposomes were composed of
PC:PE:Texas-Red-PE:PI (72:24:2:2, weight ratio). Data was fitted with a OneSet of Sites fitting model (C). The entalphic, entropic
and energy terms are represented through histograms for both PI3P and PI(3,5)P2 (D). Error bars represent standard errors of the mean
(SEM).
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Figure 4.13: ITC measurements for KlAtg21 with liposomes containing PI3P or PI(3,5)P2.
ITC curves are shown from titrations of KlAtg21 into SUVs containing 2% PI3P (A) or PI(3,5)P2. Liposomes were composed of
PC:PE:Texas-Red-PE:PI (72:24:2:2, weight ratio). Data was fitted with a OneSet of Sites fitting model (C). The entalphic, entropic
and energy terms are represented through histograms for both PI3P and PI(3,5)P2 (D). Error bars represent standard errors of the mean
(SEM).
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in strength. The KlAtg21 binding affinity to PI3P is 0.86µM, while to PI(3,5)P2 is 1.14µM. According to

the binding stoichiometries measured, 2.3 PI3P molecules bind to each KlAtg21, while 3.3 PI(3,5)P2 ligand

molecules bind per protein molecule.

Figure 4.14: ITC measurements for ScHsv2 with SUVs containing PI3P or PI(3,5)P2.
ITC curves are shown from titrations of ScHSv2 into SUVs containing 2% PI3P (A) or PI(3,5)P2. Liposomes were composed of
PC:PE:Texas-Red-PE:PI (72:24:2:2, weight ratio). Data was fitted with a OneSet of Sites fitting model (C). The entalphic, entropic
and energy terms are represented through histograms for both PI3P and PI(3,5)P2 (D). Error bars represent standard errors of the mean
(SEM).

Similar ITC measurements and analysis as for PaAtg18 and KlAtg21 was performed for ScHsv2 binding

to PI3P and PI(3,5)P2 (Figure 4.14). Interestingly, in this case, it can be observed that the enthalpic and

entropic contributions are smaller for PI(3,5)P2 binding compared to PI3P binding. However, the entropy is

still unfavorable to binding, while the binding is enthalpically driven. ScHsv2binding to PI(3.5)P2 is more than

ten times stronger (0.03µM) than to PI3P (0.40µM). According to the binding stoichiometries determined, 1.7

PI3P molecules bind to each ScHsv2, while 1.4 PI(3,5)P2 ligand molecules bind per protein molecule.

4.3 ITC measurements of wild type versus single binding site mutants of S.

cerevisiae Hsv2 with PI3P containing liposomes

Single binding site mutants of ScHsv2 were titrated in PI3P containing SUVs. Theresulting ITC titration

curves are shown in Figure 4.15, A and B. For ScHsv2(H294A), it canbe observed that the heat released is

weak under these conditions; weaker than the 0.1µcal/s threshold limit for a reliable measurement. Low heat
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is also released in the case of ScHsv2(R264A) mutant, but the values are above the measurement threshold.

This must be taken into consideration when discussing the resulting binding affinities determined from fitting

these titration curves (Figure 4.15, C). The binding affinities determined aresummarized in Table 4.4. Both

mutants have much lower affinities for PI3P than wild type ScHsv2. ScHsv2(R264A) bound almost 30 times

weaker than the wild type (Kd=10.9µM) while the ScHsv2H294A had a 15-fold decreased binding (Kd=5.9

µM) when compared to the wild type protein.

Figure 4.15: ITC measurements of single binding site ScHsv2 mutants with liposomes containing PI3P
ITC curves are shown from titrations of ScHsv2 mutants, ScHsv2(R264A) (A) and ScHsv2(H294A) into SUVs containing 2% PI3P.
Liposomes were composed of PC:PE:Texas-Red-PE:PI (72:24:2:2, weight ratio). Data was fitted with a One Set of Sites fitting model
(C). Role of R264 and H294 in PI binding as shown in the homology model of ScHsv2 (D).

Table 4.4: ITC determined binding affinities for wild type ScHsv2 and its single sites mutants when titrated in PI3P containing SUVs.
n - number of measurements.

ScHsv2 n Kd (µM)

wild type 5 0.4±0.1
R264A 4 10.9±1.2
H294A 4 5.9±1.6
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Atg18

5.1 Crystallization of P. angusta Atg18

5.1.1 Full lengthP. angusta Atg18 crystallization

Commercial crystallization screens in 96-wells were set with a pipetting robot. Asingle hit was obtained as

summarized in Table 5.1. Crystals form in a protein concentration dependentmanner: the more concentrated

the protein, the ticker and longer the needles are (Figure 5.1). The crystals were then reproduced in a 24-well

format, however they were too small for diffraction measurements. Grid screen were set up for optimization.

The Na-acetate buffer pH was varied between 4.2 and 5.2, while the ammoniumcitrate dibasic precipitant

concentration was varied between 0.4 and 1.9 M. In addition, as an alternative buffer, MES was tried with

a varying pH between 5.2 and 7.1. Small needles were obtained in a range ofconditions. These were used

for streak seeding and microseeding. While small improvement could be observed, crystals did not grow

sufficiently.

Figure 5.1: Initial crystallization hit for full length PaAtg18. Cryst als were grown in sitting drops in a 96-wells plate format.
The mother liquor composition is summarized in Table 5.1.

82
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Table 5.1: Sample crystallization conditions for full length PaAtg18

Condition Mother liquor composition

Ammonium citrate dibasic 1 M
Figure 5.1 0.1 M Na-acetate trihydrate pH 4.6

Figure 5.2 Ammonium citrate dibasic 1.5 M
0.1 M Na-acetate trihydrate pH 5.0

1,6-diaminohexane 15% (w/v)
streak seeding

Next, additives were screened and improvements in the size of the crystal needles were observed. The best

diffracting crystal was obtained in the presence of 15% w/v 1,6-diaminohexane and diffracted to 7.7 Å (Figure

5.2).

Figure 5.2: Full length PaAtg18 crystal diffracting to 7.7 Å . Crystal was grown in a hanging drop in a 24-wells plate format.
The crystallization condition is summarized in Table 5.1.

Since the ammonium citrate dibasic/Na-acetate condition could not be further improved, alternative strate-

gies were tried, as schematically summarized in Figure 5.3 together with the numberof successful crystal hits.

The conditions for the crystal hits are summarized in Appendix table 8.8.

An N-terminal peptide fromP. angustaAtg2 was tested for co-crystallization. However, precipitate formed.

I have tested the same peptide for correct folding in the expectedα-helix by measuring a CD spectrum. How-

ever, the peptide presented the spectrum of a random coil. Random microseeding [198] was tried using the

crystal needles previously obtained. However, the resulting crystals were also short and thin needles that could

not be further optimized.

5.1.2 In situ proteolysis for crystallization ofP. angusta Atg18

As a next crystallization strategy,in situproteolysis [199] was tested. Dr. Ricarda Busse tested the PaAtg18

cleavage pattern as a result of protease treatment [192]. Based on these experiments, trypsin, subtilisin and

Proteinase K were chosen forin situ proteolysis. Crystals were obtained with subtilisin and Proteinase K.

Initial hits are shown in Figure 5.4 and crystallization conditions are summarizedin Table 5.2. Successful

conditions are summarized in Appendix table 8.8. Interestingly, all conditions contained phosphate. The buffer
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Figure 5.3: Crystallization strategies tried for PaAtg18 .

pH did not play a major role. All crystals grew as clusters of multiple plates originated from spherulites that

appeared a few days before the first crystals. These clusters were they diffracted between 2 Å and 3 Å .

The most promising condition was 20% PEG 8000, 0.2 M NaCl, 0.1 M phosphate-citrate buffer, pH 4.2.

Crystals only grew in the commercially available crystallization mixture. The commercial mixture made it

possible to reproduce the crystals in 24-well format. However, the commercial solution mixture (Emerald)

allowed no optimization by varying the buffer pH or precipitant concentration. This is why additives and silver

bullets were tested. Selenomethionine labeled PaAtg18 was purified and crystallized in the same conditions. A

selection of selenomethionine labeled PaAtg18 crystals is shown in Figure 5.5.

5.2 Structure determination of P. angusta Atg18

5.2.1 Data collection and processing

Crystals were fished, cryo-protected and flash cooled. Several cryoprotectants were tested for native

PaAtg18 crystals: 20% and 30% glycerol, 20% and 30% ethylene glycol, PEG400, PEG8000, PFPE (perfluoro-

polyether oil) and 10% xylitol/10% sucrose (w/w). However, there were nosignificant differences in the quality

of the diffraction data. Since single crystals were difficult to fish becausethey grew as clusters, the less vis-

cous cryoprotectant was chosen, 30% ethylene glycol. Single crystals were removed from clusters with an

acupuncture needle.

X-ray diffraction data were collected at 100 K at beamline X10SA (Swiss Light Source, Paul Scherrer

Institute, Villigen, Switzerland). Data for structure determination were collected from both selenomethionine

and native PaAtg18 crystals. After mounting of a single crystal for data collection, four test shots were taken
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Figure 5.4: Selection of crystallization hits for PaAtg18in situ proteolysis.
Crystals were grown in 96-wells plate in sitting drops. Crystallization conditionsare summarized in Table 5.2.

Table 5.2: Selection of successful conditions forin situproteolysis of PaAtg18. The resulting crystals are shown in Figure 5.4

.

Condition Mother liquor composition

PEG 8000 20% (w/v)
Figure 5.4, A NaCl 0.2 M

0.1 M citrate phosphate buffer pH 4.2
di-sodium hydrogen phosphate 0.1 M

proteinase K 1:2000
0.1 M Na-acetate trihydrate pH 4.6

Figure 5.4, B ammonium phosphate monobasic 1.8 M
proteinase K 1:2000

Na phosphate monobasic monohydrate 0.8 M
Figure 5.4, C potassium phosphate monobasic 0.8 M

0.1 M HEPES sodium pH 7.5
subtilisin 1:2000
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Figure 5.5: Selection of crystallization hits for selenomethionine labeled PaAtg18in situ proteolysis.
Crystals were grown in Linbro 24-wells plates in hanging drops. The crystallization condition was 20% PEG 8000, 0.2 M NaCl, 0.1 M
phosphate-citrate buffer, pH 4.2. The additive used for each condition is given in the respective panel.
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for indexing and determining an optimum collection strategy. The local go.com software written by Dr. M.

Wang (SLS) was used for data processing at the beamline.

Since the crystals were thin, they diffracted anisotropically. Initially, data was collected with with an

oscillation angle of 0.2o over a 360o rotation. However, during processing, these data sets did not have optimum

statistics as the I/σ was below 10 and the completeness below 95%. Next, the collection protocol was optimized

such that the oscillation angle was 0.5o and the crystal was rotated over a total range of 500o. This allowed

collection of data sets with improved statistics for both native and selenomethionine labelled PaAtg18 crystals.

For selenomethionine a fluorescence spectrum scan around the Se K absorption edge was taken to determine

the optimum energy for data collection (Figure 5.6). For this, a protein crystal of the same purification batch as

the ones used for collecting data sets was used. The Inflection, Peak, and remote 1 and remote 2 energies were

determined with AUTOCHOOCH [200]. For the inflection, the determined value was 12662.4 eV (f’=-10.690;

f”=3.190), while for the peak it was 12665.6 eV (f’=-8.220; f”=6.780).

Figure 5.6: Fluorescence spectrum and a scan of Selenomethioninelabeled PaAtg18 crystal.Counts (ROI) are represented in blue.
Fitted f’ (red) and fitted f” (green) are shown.

A SAD dataset of 500o was collected at the Se peak wavelength. The data collection parameters aresum-

marized in Table 5.3). A diffraction pattern is given in Figure 5.7. Data were processed with XDS [157]. In

order to index the weak diffraction spots, the pixel size was set to 3.

Table 5.3: Data collection parameters for the 1.8 Å selenomethionine PaAtg18 crystal

Detector distance (mm) 325
∆ φ (o) 0.5

Exposure time (s) 0.15
Beam intensity/attenuators 0.0993

λ (Å ) 0.98
No of frames 1000
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Figure 5.7: Diffraction image of PaAtg18 crystals.

The space group was determined as P1. Dimensions of the unit cell, data andrefinement statistics are

summarized in Table 5.4.

5.2.2 SAD phasing with selenomethionine labeledP. angusta Atg18 crystals

Scaled data was converted to unmerged CCP4F format using XDSCONV. Withthis file, I tried to phase the

data using SHELX programs [201]. However, in order to offer a proper result, SHELX needs a good approxi-

mation for the molecular weight of the crystallized protein. Sincein situproteolysis was used, it was unknown

which regions were cleaved by the proteases, hence an estimation of the molecular weight was difficult to get

an estimation of the water content of the crystals. In order to have an indication of the molecular weigth of the

molecule in the unit cell, I harvested crystals and probed them on an SDS-PAGE gel. A smeary pattern was

obtained, due to the high PEG 8000 content and no protein band was distinguishable.

Next, AutoSol package from Phenix was used [158]. The same data setfrom the selenomethionine labeled

crystal was processed as native. I used the built structure as a search model to determine the high resolution

structure at 1.8 Å . A sample of the electron density map is shown in Figure 5.8. The cutoff of the anomalous

signal was determined at 3.5 while the high resolution limit was determined to be 2.7 Å

Phenix found eleven Se sites, eight of them with occupancies above 0.8 (Table 5.5). The obtained experi-

mental electron density map phasing model had an overall model-map correlation of 0.847. The initial model

contained two molecules per asymmetric unit.

5.2.3 Refinement and structure validation

Phenix was used for refinement [158] and Coot [159] was used for model building. Several cycles of

refinement with Phenix resulted in a final structure refined to R-work/R-free of 20/23%. Water molecules were

added manually and using the tools in Coot. Disordered side chains were modelled as alanines. For each of

the two molecules present in an asymetric unit, a phosphate and a potassium ionwere added. Validation of

the structure was done using the Molprobity plugin in Phenix and the tools available in Coot. The refinement

statistics were compared to structures in the PDB with a similar resolution cutoff (Figure 5.9, A). All parameters

lie in the range. However, the average B factor is high for a 1.8 Å resolutionstructure. Geometry of the refined
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Table 5.4: Diffraction data and refinement statistics of the 1.8 Å selenomethionine PaAtg18 crystal

Space group P 1
Cell dimensions (Å ) a=57.8, b=57.9, c=61.8

α=84.5o, β=81.6o, γ=87.1o

Resolution range (Å ) 45.0 - 1.8 (1.87 - 1.8)
Total reflections 347538 (53750)

Unique reflections 71072 (6925)
Multiplicity 4.9

Completeness (%) 97.4 (94.3)
Mean I/σ 15.5 (2.9)

Wilson B-factor (Å2) 24
R-sym (%) 4.8 (38.4)

Refinement
R-work 0.20 (0.27)
R-free 0.23 (0.31)

molecules per a.u. 2
Protein segments present 33-179; 201-297; 441-467; 485-524

No of atoms present
macromolecules 4678

ligands 38
water 417
RMS
bonds 0.009
angles 1.14

B-factors (Å 2)
overall 30.9

macromolecules 30.2
ligands 47.1
solvent 37.2

Structure validation
Ramachandran favored (%) 98
Ramachandran outliers (%) 0

Clashscore 2.65

Table 5.5: Fractional coordinates and occupancies for Se atoms

SE -0.389 -0.388 -0.095 1.73
SE -0.544 -0.144 -0.047 1.54
SE -0.424 -0.768 -0.962 1.68
SE 0.002 -0.005 0.011 1.28
SE -0.248 -0.847 -0.037 1.29
SE -0.629 -0.96 -0.123 1.17
SE -0.792 -0.343 -0.036 0.96
SE -0.049 -0.596 -0.051 0.82
SE -0.046 -0.622 -0.025 0.72
SE -0.766 -0.342 -0.062 0.5
SE -0.008 -0.584 -0.08 0.27
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Figure 5.8: Experimental 2mFo-DFc electron density map contoured at 1.0σ with overlaid PaAtg18 structure at 1.8 Å

structure was analyzed in the Ramachandran plot (Figure 5.9, B). 98% ofthe residues are in the Ramachandran

favored region with no outliers.

5.2.4 P. angusta Atg18 structure analysis

PaAtg18 is aβ-propeller with seven blades (Figure 5.10, A). It has a non-velcro closure, namely, the N- and

C-termini are parts of distinctive blades, unlike most of the other knownβ-propellers. Each of the seven blades

is formed by four anti-parallelβ-strands. Three loops are absent in the crystal structure: 180-200,298-440 and

468-484. The first loop is loop 4AB. The longest loop with almost 150 amino acids missing, is loop 6CD. Loop

7AB is also missing, which is more exposed than the rest of the loops as strands 7A and 7B are longer than

the rest and protrude towards the outside of theβ-propeller. Moreover, the first 32 N-terminal amino acids are

disordered.

There are two PaAtg18 molecules per asymmetric unit. They are very similar andoverlay with an RMSD

of 0.24 Å

The two arginines in the essential FRRG motif are pointing in opposite sides (Figure 5.12, A). In the

structure, a phosphate was bound to PI binding site 2, while a larger densitywas found in binding pocket

1. Out of the compounds present in the crystallization condition and cryo-protectant, the potential crystal

bound ligands were citrate or ethylene glycol. To distinguish,PaAtg18 crystals were fished and soaked in cryo-

protectant solution that contain high amount of phosphate. Cryo-protection mixtures tested are summarized in

Table 5.6.
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Figure 5.9: Refinement statistics for PaAtg18 structure.(A) Polygon plot by Phenix Selected statistics across PDB entries of similar
resolution are compared with the determined structure. The expected range for the values are indicated in red numbers. The distribution
of the structures over this range is shown in a heat map. (B) Ramachandran plot of all non Pro/Gly residues of PaAtg18.

Table 5.6: Summary of cryoprotectants tested in order to identify the compound in binding site 1

cryo 1 cryo 2 cryo 3 cryo 4 cryo 5

PEG 8000 35% 20% 20% 20% 20%
NaCl 200 mM 200 mM 200 mM 200 mM 200 mM

phosphate 260 mM 400 mM 100 mM - 260 mM
pH 5 5 5 4.2 5

citrate/phosphate buffer - - - 100 mM -
xylitol/sucrose - 10%/10% (w/w) 10%/10% (w/w) 10%/10% (w/w) -

PEG 400 - - - - 30%
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Figure 5.10: PaAtg18 structure analysis.(A) Overall structure, (B) surface conservation and (C) electrostaticsurface potential of
PaAtg18. The conservation of PaAtg18 is based on a sequence alignment of the Atg18 homologues fromP. angusta, Pichia pastoris,
S. cerevisiae, Thielavia terrestris, Trichoderma virens, Meyerozyma guilliermondii, Candida albicans, Dekkera bruxellensis, Wicker-
hamomyces ciferrii, Scheffersomyces stipites, Debaryomyces hansenii, Candida maltosa, Spathaspora passalidarumandClavispora
lusitaniae. For the electrostatic potential, side chains, which are disordered in the crystal structure were included. Figures are prepared
with PyMol [184].
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One data set was collected at resolution 2.3 Å using cryoprotectant labeledas cryo 2 in Table 5.6. The data

collection conditions are summarized in Table 5.7. For this crystal, 10% xylitol/10%sucrose (w/w), 20% PEG

8000, 200 mM NaCl, 400 mM phosphate pH 5 was used as cryoprotectant solution. The data and refinement

statistics are summarized in Table 5.8. In this structure, phosphates bound to both PI binding sites. This

finding allowed me to exclude ethylene glycol as a binding partner, and I refined citrate as ligand bound at high

resolution structure (Figure 5.11).

Table 5.7: Data collection parameters for the 2.3 Å selenomethionine PaAtg18 crystal

Detector distance (mm) 325
∆ φ (o) 0.5

Exposure time (s) 0.15
Beam intensity/attenuators 0.094

λ (Å ) 0.98
No of frames 1500

Figure 5.11: Crystal bound ligands for the determined PaAtg18 structures at 1.8 Å resolution (A) and 2.3 Å resolution (B).
Important residues in binding pocket 1 are represented in yellow sticks and those in binding pocket 2 in blue sticks.

Crystal bound ligands are found in this pockets, i.e., citrate for binding site 1and phosphate for binding

site 2. All essential residues in the binding pockets have a nicely defined electron density with the exception of

K444. When overlaid with the PI bound model of KlHsv2 (Figure 5.12, B), itcan be observed that the essential

residues in binding pocket 1 are conserved, while in binding pocket 2, instead of the basic residue (K245)

binding the P5 of PIs, one can observe a polar one (T288). A model forthe PI(3,5)P2 binding by PaAtg18 was

done based on the ligand docking performed for KlHsv2. In binding pocket 1, H221 makes a salt bridge with

P5, R248 with P3 and R262 binds P1. Similarly, in binding pocket 2, salt bridges are made in between P1 and

R263 and H292, while P3 binds to K444.

An alignment of the closest PaAtg18 yeast homologs of PaAtg18 was done (Figure 5.13) in order to analyze

its surface conservation. There are four surface regions that showhigher conservation (Figure 5.10, B). The first

two are two pockets on the bottom of the propeller. These pockets are separated by blade 5, the one containing
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Table 5.8: Diffraction data and refinement statistics for the phosphate bound 2.3Å selenomethionine labeled PaAtg18 structure.

Space group P 1
Cell dimensions(Å ) a=58.3, b=58.3, c=62.3

α=83.7o, β=80.9o, γ=86.8o

Resolution range (Å ) 45.55 - 2.3 (2.382 - 2.3)
Total reflections 255465 (35132)

Unique reflections 35132 (3439)
Multiplicity 7.3

Completeness (%) 98.4 (96.8)
Mean I/σ 9.9 (2.0)

Wilson B-factor (Å2) 35.5
Refinement

R-work 0.25 (0.35)
R-free 0.29 (0.38)

No of atoms present
macromolecules 4660

ligands 20
water 60
RMS
bonds 0.004
angles 0.74

B-factors (Å 2)
overall 42.8

macromolecules 42.8
ligands (phosphate, phosphate) 50.6

solvent 36.8
Structure validation

Ramachandran favored (%) 97
Ramachandran outliers (%) 0

Clashscore 1.92
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Figure 5.12: PaAtg18 phosphoinositides binding pockets.(A) Close-up of the two phosphoinositide binding sites with the overlaid
1.8 Å resolution 2mFo-DFc electron density map contoured at 1.0σ. (B) Close-up of the phosphoinositide binding sites of the overlaid
PaAtg18 and KlHsv2 structures. PaAtg18 is shown in gray with binding site 1 inyellow sticks and binding site 2 in cyan sticks, while
KlHsv2 is shown in orange. (C) Model for PaAtg18 PI(3,5)P2 binding based on the computational docking performed for KlHsv2.
PI(3,5)P2 is represented in green sticks. For simplicity, only panel (B) is labeled while(A) and (C) are in the same conformation.
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the FRRG motif. Another conserved surface is present on the rim of the propeller in the vicinity of blades 1

and 2. Another conserved region is localized on the side of the propeller,in blade 4.

In terms of electrostatic properties of the surface, the two conserved pockets in the vicinity of the FRRG

motif are basic (Figure 5.10, C). The conserved surface on the rim of blades 1 and 2, as well as the region

conserved in blade 4, are hydrophobic.

5.3 Analysis ofP. angusta Atg18 membrane binding orientation using fluores-

cence measurements

5.3.1 Selection of reporter positions for fluorescence labeling

In section 3.2, I proposed a model for PROPPIN membrane binding based on docking studies of PIs into

KlHsv2 and MD simulations of the KlHsv2 membrane system. In order to experimentally test this model, we

have chosen to use a fluorescence based method [202]. In short, selected sites are mutated to cysteines and

labeled with NBD. The protein should contain no other cysteines. NBD increases its emission fluorescence

in a hydrophobic environment. Using this property, one can observe the emission spectra of the NBD labeled

protein in solution and upon addition of LUVs. If the labelled site inserts in the membrane or is in proximity

of the membrane, then the emission intensity at 531 nm will increase.

By aligning PaAtg18 with the KlHsv2 in the PROPPIN model for membrane binding,I have obtained the

model in Figure 5.14, A. PaAtg18 is oriented with its propeller axis parallel to themembrane surface, while the

binding pockets defined by the FRRG motif are in the proximity of the membrane. Someβ-strands are found

very close to the membrane, namely 6C, 6D, 7A and 7B. Based on this model, I have chosen five positions to

act as fluorescence reporter. The residues were picked such that two are close to the PI binding pockets (S448

and S459), one is found on the opposite side of theβ-propeller compared to the binding pockets (the wild type

C113 was used for this purpose) and two are found in between these two sites (S51 and S157). Moreover, I took

care that the chosen residues are surface exposed in order to easily label them with NBD. Before generating

these cysteine mutants, I needed a PaAtg18 mutant where all intrinsic cysteined are mutated to serines to allow

specific labelling.

5.3.2 Membrane binding and folding control of theP. angusta Atg18 mutants

First, the five natural cysteines in PaAtg18 were mutated to serines and then the selected cysteines were

then introduced. The mutants were expressed and purified as optimized in section 4.1.3. Next, their PI(3,5)P2
binding ability was tested in flotation assays using SUVs containing 1% PI(3,5)P2. When proteins bind to

liposomes they are found in the light top fractions. Figure 5.15, A shows thatall mutants were bound to

the liposomes indicating that their binding pockets were intact and they could stillbind to the membrane. In

addition, folding was tested for all mutants through CD measurements and compared to wild type PaAtg18.

The CD spectra shows the 205 nm PaAtg18 minima for all the mutants (Figure 5.15, B and Appendix figure

8.3). The stability of the PaAtg18 mutants was tested through a CD melting curve taken at 216 nm from 30oC

to 80oC (Figure 5.15, C and Appendix figure 8.3). The determined melting temperatures are summarized in

Table 5.9. The mutants are approximativelly 8oC less stable than wild type PaAtg18.
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Figure 5.13: Multiple sequence alignment of yeast Atg18 homologs.
PaAtg18 is aligned to its close homologs fromPichia pastoris, S. cerevisiae, Thielavia terrestris, Trichoderma virens, Meyerozyma
guilliermondii, Candida albicans, Dekkera bruxellensis, Wickerhamomyces ciferrii, Scheffersomyces stipites, Debaryomyces hansenii,
Candida maltosa, Spathaspora passalidarumandClavispora lusitaniaeusing the T-Coffee [185] server. Secondary structure elements
are shown based on the structure of PaAtg18.
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Figure 5.14: Computational model for PaAtg18 membrane binding.(A) A computational model for PaAtg18 membrane binding
was done based on the docking studies of PIs into KlHsv2. The two PI3Ps are shown in green sticks. The positions of the phosphates of
the membrane phospholipids are shown through orange circles, while theblue circles represent the polar groups of these phospholipids.
The shaded violet bar depicts the fatty acid tails of the phospholipids from thecytosolic leaflet of the bilayer. The dashed blue line
represents the center of the bilayer. (B) Selection of reporter positions for fluorescence labeling. For reasons of simplicity, the lipid
bilayer is shown through a gray dashed line.
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Figure 5.15: Binding and folding control of single cysteine PaAtg18 mutants. (A) Liposome flotation assays of PaAtg18 single
cysteine mutants with SUVs consisting of PC:PE:Texas-Red-PE:PI(3,5)P2 (74:23:2:1, weight ratio). (B) CD spectrum of PaAtg18 no
cysteine mutant from 260 nm to 200 nm. (C) Melting curve for PaAtg18 no cysteine mutant was taken at 216 nm from 30oC to 80oC.

Table 5.9: Summary of the melting temperatures of the wild type PaAtg18 compared to thesingle cysteine binding mutants

Tm (oC) Fitting error ( oC)

wild type 53.41 0.06
no cys PaAtg18) 45.15 0.05
PaAtg18(S51C) 44.95 0.10
PaAtg18(C113) 44.07 0.04

PaAtg18(S157C) 45.17 0.09
PaAtg18(S448C) 45.36 0.08
PaAtg18(S459C) 44.95 0.04
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5.3.3 P. angusta Atg18 membrane binding orientation

The purified PaAtg18 single cysteine mutants were labeled with NBD. For preliminary measurement,

PaAtg18(S448C) and PaAtg18(C113) were used. Their fluorescence spectra was measured upon excitation

at 478 nm in the absence and presence of LUVs containing 1% PI(3,5)P2 (Figure 5.16 A and B). The increase

in emission at 531 nm upon LUVs addition was quantified (Figure 5.16 C). Thedifference in emission at 531

nm is higher for PaAtg18(S448C) than for PaAtg18(C113), indicating that S448 is closer to the membrane than

C113 is, which is consistent with the proposed model.

Figure 5.16: Analysis of PaAtg18 membrane binding orientation through fluorescence measurements.. Emission spectra of NBD
labeled PaAtg18(S448C) (A) and PaAtg18(C113) (B) free in solution (blue curve) and upon LUVs addition (red curve). LUVs consisted
of PC:PE:PI(3,5)P2 (74:24:2:, weight ratio). (C) Quantification of emission increase upon LUVs addition at 531 nm. Experiments were
performed in collaboration with Dr. Ángel Lara Perez.
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binding partners

6.1 The Atg2-Atg18 complex

6.1.1 TheS. cerevisiae Atg2

In macroautophagy, the most important interaction partner of Atg18 is Atg2 [79]. Together they form Atg2-

Atg18 complex, which is essential for autophagosomal membrane growth andautophagosome formation. Most

of thein vivostudies on Atg2 were done inS. cerevisiae[136, 135, 137, 79, 140, 2]. Only in the recent years the

human Atg2 [144, 143, 141] started being investigated. However, it is notwell characterized which of the WIPI

proteins - human Atg18 homologs - are the Atg2 interaction partner. Interestingly, the human Atg2A interacts

with WIPI4 [32], which is the human homolog of Hsv2 [96]. Taking into consideration that the functionality

and interaction of the yeast Atg2-Atg18 complex is well characterized and that I determined the structure of an

yeast Atg18, the next crystallization target was theS. cerevisiaeAtg2-Atg18 complex. This section summarizes

experiments done towards the optimization ofS. cerevisiaeAtg2 expression inS. cerevisiaeas full lenght and

in E. coli as N-terminal subdomains.

6.1.1.1 S. cerevisiae Atg2 expression optimization inS. cerevisiae

As a first step towards the structural characterization of theS. cerevisiaeAtg2-Atg18, the expression and

purification ofS. cerevisiaeAtg2 (ScAtg2) alone was tried. In 2005, a moveable ORF library of 5854 yeast

expression plasmids was constructed

Keeping in mind that the expression might be low, I have tested two expressionmedia forS. cerivisiae: 2%

galactose, 2% raffinose, the standard condition for moderate induction; and 2% galactose + 3% glycerol + 2%

ethanol, for a strong transcription induction (Figure 6.1). Samples were collected over a 29 hours time course,

cells were opened using glass beads and both the whole cell lysate and the soluble fractions were analyzed

on Western blots. Proteins were detected using an anti-HA polyclonal antibody. As schematically represented

in Figure 6.2, the fusion protein product of the expression will have a C-terminal HA-tag. Hence, only the

C-terminal degradation fragments and the full-length protein will be detected inWestern blot analysis. For

both expression media used, it can be observed that longer expressiontimes lead to more degradation products.

The protein bands that can be clearly distinguished have an approximate size of: 60 kDa, 80 kDa, 100 kDa and

above 170 kDa - most probably, the full length fusion construct, expected at 197 kDa. In the case of the 2%

101
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Figure 6.1: Expression optimization for ScAtg2 inS. cerevisiae.
Western blots representing the optimization steps for the expression of ScAtg2. Detection is done with an anti-HA polyclonal antibody.
Uninduced sample is taken as 0 hours. Red arrows indicate where the ScAtg2 full length protein would be expected. An expression
time course is observed for two expression media: 2% galactose + 2% raffinose (A) and 2%galactose + 3% galactose + 2% ethanol (B).
S - soluble fraction; W - whole cell lysate; ON - overnight.

galactose, 2% raffinose media, after 6 hours after induction, the level ofthe full length soluble protein stays the

same, while in the strong inducing media, the level of full length protein product increases in time.

Next, I have tried to purify ScAtg2 inS. cerevisiaeusing the 2% galactose + 3% glycerol + 2% ethanol

media. Since in Figure 6.1, B, it can be observed that after 6 hours of expression, the amount of degradation

products is low, I have chosen this condition. After the expression, cells were harvested, opened and the soluble

fraction was loaded to a 1 mL HisTrap affinity column. After loading and wash of the unbound protein, a

gradient of imidazole from 20 mM to 500 mM was used for ScAtg2 elution. The purification fractions were

analyzed both by SDS-PAGE (Figure 6.2, A) and Western blot analysis Figure 6.2, B. Full length protein, but

also degradation fragments appear in all fractions.

In order to remove the degradation fragments and obtain a pure sample, I have tried imidazole gradient

optimization for the affinity purification step, separation of fragments in a subsequent ion exchange - both

anion and cation exchange were tried with the appropriate buffer- and ammonium sulfate precipitation. None

of these led to a pure ScAtg2 sample. The smaller protein bands from the SDS-PAGE gels were confirmed to

be ScAtg2 through mass spectrometry peptide analysis.

6.1.1.2 S. cerevisiae Atg2 domains expression optimization inE. coli

Since the expression inS. cerevisiaehas proven problematic, we decided to try expression inE. coli. The

molecular weight of full length ScAtg2 is 178 kDa, which is too large for bacterial expression. This is why,
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Figure 6.2: Affinity purification of ScAtg2 from S. cerevisiae
ScAtg2 was expressed inS. cerevisiaeusing a media having galactose, glycerol and ethanol as carbon source. Cells were harvested 6
hours after induction, opened and the soluble fraction was loaded on a 1 mL HisTrap. The bound protein was eluted with an imidazole
gradient and fractions were analyzed using SDS-PAGE (A) and Western blot (B).

together with Sebastian David, a Master student, I tried to express N-terminalfragments of ScAtg2 as this part

of the protein is known to interact with Atg18 [141].

The expression vector chosen was pET-28a(+). The gene transcription in this vector is under the control

of theT7 promoter and the protein will be expressed as a fusion construct having aHis-tag at the N-terminal.

The Jpred server [203] was used to choose constructs such that the secondary features of ScAtg2 are not

disrupted. Eight N-terminal fragments of the ScAtg2 gene were successfully cloned. The expected protein

products are ScAtg2(1-161), ScAtg2(1-157), ScAtg2(1-189), ScAtg2(1-229), ScAtg2(1-289), ScAtg2(1-307),

ScAtg2(1-327) and ScAtg2(1-354). The expression of the constructs was tested in TB media with 0.1 mM

IPTG induction at 25oC. Samples were collected before induction, at 3 h post induction and fromovernight

expression. Whole cell extract, soluble fractions, Ni2+-sepharose enriched soluble fractions were analyzed on

SDS-PAGE gels (Figure 6.3). None of the constructs yielded soluble protein. In the affinity beads enriched

samples, three bands can be observed for all constructs: 30 kDa, 40 kDa and 70 kDa. Nevertheless, the

purification of these constructs was tried, and as expected, no soluble ScAtg2 domain was obtain.
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Figure 6.3: Expression optimization for ScAtg2 N-terminal fragments in E. coli.
SDS-PAGE gels showing the protein content of the expression samples harvested at different time points for different constructs.
Expression media used was TB induced with 0.1 mM IPTG at 25oC. Uninduced sample is represented as 0 hours. Samples were also
harvested at 3 hours after induction and after overnight expression.W - whole cell lysate; S - soluble fraction; B - soluble fraction
enriched on Ni2+-NTA beads; ON - overnight.

6.1.2 C. thermophilum Atg2 domains expression optimization inE. coli

Since the expression of ScAtg2 both inS. cerevisiae, as full length and inE. colias N-terminal domains was

proven problematic, I moved up to evolutionary ladder and chose as crystallization target theC. thermophilum

Atg2. C. thermophilumis a filamentous fungus having an optimal growth temperature of approximatively

60oC. Its thermophilic character suggests that its proteins might be more stable therefore easier to crystallize.

C. thermophilumgenome was recently sequenced [195].C. thermophilumAtg2 (CtAtg2) has a 14.4% identity

to ScAtg2.

The molecular weight of full length length ctAtg2 is 226.8 kDa which exceeds the capacity of protein

expression in bacterial systems. This is why, together with my Master student,Oleksandr Yagensky, I have

tried to express the most conserved part of ctAtg2 - its N-terminal 1-168 fragment. InS. cerevisiae, the N-

terminal part of Atg2 was shown to interact with Atg18 [141]. However, there is no proof on this interaction in

C. thermophilumor any other organism.

When the N-terminal fragment was chosen, the secondary structure prediction with the help of Jpred server

[203] was taken into consideration and no secondary structure element isinterrupted, while the C-terminal

of CtAtg2(1-168) is found within a loop. The DNA sequence of this N-terminal domain was PCR amplified

for the CtAtg2 synthetic gene. This synthetic gene was codon optimized for both bacterial and insect cells
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Figure 6.4: Expression optimization for CtAtg2(1-168) inE. coli.
SDS-PAGE gels showing the protein content of the expression samples harvested at different time points for different constructs.
Expression media tested were TB and LB induced with 1 mM IPTG and autoinducing media ZYM5052 (ZYM) and MD5052 (MD).
Expression was analyzed for both 18oC and 37oC. The expression vector used was pAce1-N-His. Samples were harvested at 3 hours
after induction and after overnight expression. W - whole cell lysate; S -soluble fraction; B - soluble fraction enriched on Ni2+-NTA
beads; ON - overnight.
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expression. The CtAtg2(1-168) PCR product was cloned in the pAce1-N-His expression vector. An expression

test was performed to determine the optimum expression condition for CtAtg2(1-168) inE. coli BL21(DE3).

Several expression media and temperatures were tested: auto-inducing media (MD5052 and ZYM5052) and

media inducible by the addition of IPTG (LB and TB) at 18oC and 37oC. Samples were taken at 3 hours after

induction and after overnight expression. Whole cell extract, soluble fractions and Ni2+-sepharose enriched

soluble fractions were analyzed on SDS-PAGE gels (Figure 6.4). The expected size of CtAtg2(1-168) is 20.6

kDa.On the SDS-PAGE gels, an enrichment of a 20.6 kDa protein cannot beobserved for samples treated with

Ni2+-sepharose beads. However, a strong protein band with an apparentsize of 25 kDa can be seen in the

whole cell lysate sample but not in the soluble fraction. This might be our protein. In spite of an unsuccessful

expression optimization, the purification of ScAtg2(1-168) was tried from cells induced with 1 mM IPTG in

TB media overnight at low temperature. However, even though a protein was obtained after purification, an

mass spectrometry analysis proved it not to be CtAtg2(1-168) but a bacterial contaminant.

Figure 6.5: Expression optimization for CtAtg2(1-168)-CtAtg18in E. coli.
Expression media tested were TB induced with 1 mM IPTG and autoinducing media ZYM5052 (ZYM). Expression was analyzed for
both 18oC and 37oC. The expression vector used was pAce1-N-His for CtAtg18 which recombined with pDk-N-StrepII containing
the gene for CtAtg2(1-168). Samples were harvested at 3 hours afterinduction and after overnight expression. W - whole cell lysate;
S - soluble fraction; H - soluble fraction enriched on Ni2+-NTA beads; St - soluble fraction enriched on Strep-Tactin beads; ON -
overnight. Samples collected during the optimization step were analyzed through SDS-PAGE (A), or Western blot with a monoclonal
anti-His tag antibody (B) or a monoclonal anti-StepII tag antibody (C).

Some proteins are stabilized by their interaction partner(s). This is used in thestable co-expression of

the complex. This is why, next, we have tried to co-express the CtAtg2(1-168)-CtAtg18 complex inE. coli

BL21(DE3). CtAtg2(1-168) was cloned in the donor vector of the ACEMBL system, pDk-N-StrepII. This

allowed recombination with the previously constructed pAce1-N-His-CtAtg18(4.1.6). The resulting plasmid
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was used for the complex co-expression optimization inE. coli BL21(DE3). Auto-inducing media, ZYM5052

and TB inducible by the addition of 1 mM IPTG at 18oC and 37oC were tested. Samples were taken at 3 hours

after induction and after overnight expression. Whole cell extract, soluble fractions, Ni2+-sepharose and Strep-

Tactin enriched soluble fractions were analyzed on SDS-PAGE gels (Figure 6.4, A) and Western blots with the

detection of the His-tag (Figure 6.4, A) and StrepII-tag (Figure 6.4, C). Neither in the SDS-PAGE analysis,

nor in Western blot detection, the expected 20.6 kDa, for CtAtg2(1-168) or 50 kDa, for CtAtg18 protein bands

were observed.

Next, longer N-terminal domains of CtAtg2 were constructed and cloned in thepBADM-41(+) expression

vector. The gene transcription in this vector is under the control of thearaBAD promoter, which is a tighter

promoter that the previously usedT7 promoter from the ACEMBL expression vectors [194]. Moreover, from

this vector, the protein will be expressed as a fusion construct having MBP at the N-terminal. MBP was

reported in helping protein expression by promoting folding [196]. This was done together with Sebastian

David, a laboratory rotation Master student.

The Jpred server [203] was used to choose constructs such that the secondary features of CtAtg2 are not dis-

rupted. Nine N-terminal fragments of CtAtg2 gene were successfully cloned. The expected protein products are

MBP-CtAtg2(1-161), MBP-CtAtg2(1-168), MBP-CtAtg2(1-183), MBP-CtAtg2(1-206), MBP-CtAtg2(1-218),

MBP-CtAtg2(1-244), MBP-CtAtg2(1-266), MBP-CtAtg2(1-270) and MBP-CtAtg2(1-279). The expression of

the constructs was tested in TB media with 1 mg/L arabinose induction at 25oC. Samples were collected before

induction, at 3 h post induction and from overnight expression. Whole cell extract, soluble fractions, Ni2+-

sepharose enriched soluble fractions were analyzed on SDS-PAGE gels (Figure 6.6). It can be observed that all

constructs are highly expressed in a soluble form.

Since the expression test yielded promising results, the purification of MBP-CtAtg2(1-279) was tried. Ex-

pression was done inE. coli BL21(DE3) cells grown in TB media with 1 mg/L arabinose overnight induction

at 25oC. The expression scale was 6.6 L. Cells were harvested and opened, then, the cell lysate loaded on a 5

mL HisTrap column. The MBP-fused protein was eluted with a two step imidazole gradient from 20 mM to

500 mM. The purification chromatogram and the SDS-PAGE sample analysis for this step can be observed in

Figure 6.7, A and B. The eluted protein was dialyzed overnight for imidazoleand MBP-tag removal using TEV

(tobaccoetch virus) protease, purified by us in our laboratory. The dialysis was followed by another affinity

chromatography using a HisTrap column as shown in Figure 6.7, C.

The SDS-PAGE analysis of the samples show that the protease did not cleave the tag 6.7, D. This is why, our

TEV was compared to commercial TEV (Promega) and as a negative control,thrombin. None of the proteases

tested were able to cleave the tag. This is an indication of the fact that our target protein might have been not

properly folded and MBP helped in its passenger solubilization. Also the MBP-CtAtg2(1-270) was tried in a

purification experiment with the same results.

6.2 TheA. thaliana Atg18a-WRKY33 complex

In A. thaliana, there are eight PROPPIN homologs [101]. One of these homologs,A. thalianaAtg18a

(AtAtg18a), was recently found to interact with the transcription factorA. thalianaWRKY33 (AtWRKY33) in

the nucleus [137]. This is the first time a PROPPIN was reported to have a function in the nucleus of a cell. This

is why, we found this complex interesting to structurally characterize. This section presents the optimization
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Figure 6.6: Expression optimization for CtAtg2 N-terminal fragments in E. coli.
SDS-PAGE gels showing the protein content of the expression samples harvested at different time points for different constructs.
Expression media used was TB induced with 1 mg/L arabinose at 25oC. The expression vector used was pBADM-41(+). Uninduced
sample is represented as 0 hours. Samples were also harvested at 3 hours after induction and after overnight expression. W - whole cell
lysate; S - soluble fraction; B - soluble fraction enriched on Ni2+-NTA beads; ON - overnight.

trials for the expression of AtAtg18a and AtWRKY33 inE. coli using the ACEMBL expression vector system

[197].

The codon optimized for bacterial expression synthetic gene of AtAtg18a was cloned in the pAce1-N-His

expression vector. This vector was chosen because of the possibility to recombine, using Cre recombinase, with

the pDk vector, which can be used for cloning AtWRKy33. This would easethe expression and purification of

the complex. An expression test was performed to determine the optimum expression condition for AtAtg18a

in E. coli BL21(DE3). Several expression media and temperatures were tested: auto-inducing media (MD5052

and ZYM5052) and LB inducible by the addition of IPTG at 18oC and 37oC. Samples were taken before

induction with IPTG, for LB, or in the case of auto-inducing media, when OD600 was approximatively 0.5.

Further samples were taken at 3 and 5 hours after induction and after overnight expression.

Whole cell extract, soluble fractions and Ni2+-sepharose enriched soluble fractions were analyzed on SDS-

PAGE gels. In Figure 6.8, A, only the samples for MD5052 are shown. Theexpected size of AtAtg18a is 49

kDa. On the SDS-PAGE gel, an enrichment of a 49 kDa protein cannot be observed in the samples treated with

Ni2+-sepharose beads. This is why, I have performed a Western blot detection of the Ni2+-sepharose enriched

samples (Figure 6.8, B). A monoclonal anti-His tag antibody was used for detection. The protein presents as a

double band, most probably due to the degradation of a part of the C-terminal. However, for a short induction

time at both 18oC and 37oC in MD5052 media proves to be the condition leading to a degradation product
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Figure 6.7: Purification of MBP-CtAtg2(1-279) from E. coli.
Chromatogram of MBP-CtAtg2(1-279) purified by (A) affinity chromatography using a HisTrap column followed by overnight MBP-
tag removal using TEV protease followed by another (C) affinity chromatography using a HisTrap column. The sample protein content
can be followed on SDS-PAGE gels (C) for the first purification step and (D) for the second purification step. The elution fractions
are shown in an increasing imidazole concentration. (E) Analysis of sample cleavage with TEV purified in our lab (TEV), commercial
TEV (TEV P.) and thrombin. P - pellet; S - soluble fraction; FT - flow through ; BD - before dialysis/protease treatment; AD - after
dialysis/protease treatment; th. - thrombin treatment.
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Figure 6.8: Expression optimization for AtAtg18a in E. coli.
Expression media tested were LB induced with 1 mM IPTG and autoinducing media ZYM5052 (ZYM) and MD5052 (MD). Expression
was analyzed for both 18oC and 37oC. The expression vector used was pAce1-N-His. Uninduced samplesare labeled as 0 h. Samples
were harvested at 3 and 5 hours after induction and after overnight expression. W - whole cell lysate; S - soluble fraction; B - soluble
fraction enriched on Ni2+-sepharose beads; ON - overnight. Target protein is indicated by a redarrow. Samples collected during the
optimization step were analyzed through SDS-PAGE, only for the MD5052 media (A), and Western blot detection with a monoclonal
anti-His tag monoclonal antibody (B).

free sample. This is why, this expression condition was used for a purification experiment that yielded an

unmeasurable amount of protein.

The synthetic gene used for AtWRKY33 was codon optimized for bacterial expression. The gene was

cloned in the pAce1-N-StrepII expression vector. The same expression conditions as tested for AtAtg18a

were as well used for AtWRKY33l. Whole cell extract, soluble fractions and Strep-Tactin enriched soluble

fractions were analyzed on SDS-PAGE gels. In Figure 6.9, A, only the samples for MD5052 are shown. The

expected size of AtWRKY33 is 59.5 kDa. However, on the SDS-PAGE gel, inthe affinity enriched samples, an

enrichment of a protein of 59.5 kDa cannot be observed. Similarly to AtAtg18a, I have performed a Western

blot detection of the Strep-Tactin enriched samples using a monoclonal anti-Strep II tag antibody for detection

(Figure 6.9, B). Two bads were detected through the Western blot, one which have an apparent size of 59.5 kDa

and a smaller one with an apparent molecular weight of 40 kDa. This is a possible degradation product of the

full length protein. As in the case of AtAtg18a, the optimum expression condition seems to be a short induction

time at 18oC in MD5052 media since the ration between the full-length protein and the degradation product is

higher in this condition. This expression condition was used in a purification experiment that was unsuccessful.
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Figure 6.9: Expression optimization for AtWRKY33 in E. coli.
Expression media tested were LB induced with 1 mM IPTG and autoinducing media ZYM5052 (ZYM) and MD5052 (MD). Expression
was analyzed for both 18oC and 37oC. The expression vector used was pAce1-N-StrepII. Uninduced samples are labeled as 0 h.
Samples were harvested at 3 and 5 hours after induction and after overnight expression. W - whole cell lysate; S - soluble fraction;
B - soluble fraction enriched on Strep-Tactin beads; ON - overnight. Target protein is indicated by a red arrow. Samples collected
during the optimization step were analyzed through SDS-PAGE, only for theMD5052 media (A), and Western blot detection with a
monoclonal anti-StrepII tag monoclonal antibody (B).
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7.1 Computational studies of PROPPIN membrane binding

The KlHsv2 structure was determined in the absence of PIs. Attempts to soak with PI-head groups were

unsuccessful. In order to analyze whether crystal packing contacts might affect the accessibility for PI, MD

binding simulations were performed. I showed that W277 does not shield binding site 2 and this was just a

crystal packing induced conformation. Similarly, the structure ofK. marxianusHsv2 (KmHsv2) shows a similar

flipped-away from binding site 2 conformation for W288 [2] (Figure 7.1).However, in both my MD simulations

and in the crystal structure of KmHsv2, the first arginine in the FRRG motif remained in a conformation

pointing away from the second arginine in the canonical PROPPIN binding motif.

Figure 7.1: Comparison of conformation structures of the W277 and W288 in the determined structures of KlHsv2 (pdb
accession code 4AV9, [1]) and KmHsv2 (pdb accession code 3VUA [2].
The two determined Hsv2 crystal structures are overlaid in a ribbon representation. KlHsv2 is represented in gray while KmHsv2 in
black. KlHsv2 movement was simulated for 30 ns and the final conformation is depicted in pink ribbon. Final positions after the
MD simulation of W277 and R219 are depicted in green sticks, while those determined from the crystal structure are depicted in gray
(KlHsv2) and black (KmHsv2). KmHsv2 -K. marxianusHsv2.

The preliminary MD simulations showed that, the two FRRG arginines will point towards opposite pockets.

In addition, the sulfates defining the two binding pockets are 16.2 Å apart. However, the distance between P1

and P3 in PI3P is 6.5 Å . These two facts put together, exclude the one binding site hypothesis. The fact that

ScHsv2 has two binding sites was confirmed by ITC measurements with PI3P containing SUVs [1]. My ITC

measurements further show that mutation in either binding site decreases PI3Paffinity 15 to 30-fold explaining

112
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the necessity of two binding sites for membrane binding of PROPPINs. The twobinding sites necessity is

encountered by other PI binding domains which dimerize in order to solve this issue. This is the case for the

PH domain of dynamin [71] and the FYVE domain of EEA1 [52].

The essential protein residues involved in ligand recognition are: H178, S198, D200, T202, R205 and

R219 for binding site 1 and R220, K245, H249 and K283 for site 2. The docking for binding site 2 might not

be as precise as for site 1 since the essential residue, K245 was disordered in the crystal structure. However,

the findings of the computational experiments are in line with thein vitro binding experiments andin vivo

localization studies [1]. In this study, the corresponding residues of site 1S198, T202, R205, R219 and site

2, R220, K245, H249 in ScHsv2 were shown to be important for membrane binding. However, H178 was not

shown as essential in neither the biochemical experiments nor in the localizationstudies. Moreover, K283 was

not tested in our lab, but was later proven essential by Baskaran et al. [30].

In my docked structures, the orientation of the inositol ring is similar to the ones of PI3P in the experimen-

tally determined structure of FYVE domain [53]. In the structure mentioned, thering is orientation such that

P3 is towards the exterior of the binding pocket, while the hydroxyl on carbon C5 on the ring is towards the

inside of the binding site. This orientation, which is found over several PI3P binding proteins, might not be

coincidental; the inositol ring orientation with respect to the surface of the lipidmembrane adopts restricted

range of conformations [204]. Hence, it might be the case that nature has evolved proteins to recognize this

constrained ring conformation.

Furthermore, PI(3,5)P2 docking was successful only when H178 and H249 were protonated. One can

speculate that the recognition of PI(3,5)P2 is done at low pH through a histidine switch as observed for the PH

domain of GRP1 protein [65] and by the FYVE domain of EEA1 [66]. If indeed a histidine switch is involved

in PROPPIN membrane binding, its effect should be stronger in the case of ScHsv2 which has a total of three

histidines involved in PI binding. In ScHsv2 binding pocket 2, H345 binds P3, while in KlHsv2, this is done by

K283. In order to experimentally probe this hypothesis, Dr. Ricarda Busse has performed ITC experiments by

titrating KlHsv2 and ScHsv2 into PI containing SUVs at different pH [192].However, the experiments were

unsuccessful most probably due to the fact that SUVs and the proteins are not stable over a large range of pH

values.

The mutagenesis experiments mentioned above, suggested that some KlHsv2 residues bind tighter to PIs

than others. In order to study this hypothesis on an atomistic level, I have performed MD simulations with

both PI3P and PI(3,5)P2 in both binding sites. MD simulations have shown that the weakest protein-ligand

interactions are the salt-bridges with P1. The same behavior was previouslyobserved in similar MD simulations

of the PH domain of PLCδ1 and the FYVE domain of EEA1 [205, 206].

Interestingly, in the PI(3,5)P2 simulations, the ligands drifted away from the initial configuration, equivalent

with the phosphoinositides being pulled out of the eventual lipid bilayer. This might be an artifact due to the

fact that we simulated free PIs in solution rather than membrane constrained phosphoinositides. As previously

shown in similar studies [205, 206], in simulations with membrane bound PIs, the protein-ligand interactions

are stronger.

The MD simulations and docking studies have helped in proposing a model for membrane recognition by

KlHsv2 (Figure 3.9). In this model, there are two PI binding sites and two hydrophobic loops penetrating into

the membrane that together contribute synergistically to strong membrane docking of KlHvs2. This mode of
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membrane binding was observed for other PI binding domains, e.g., the PX domain of yeast Vam7p [75] and

the FYVE domain of EEA1 [76].

In order to deeper look into the model mentioned above, CG-MD simulations were performed. They showed

that KlHsv2 loop 6CD can be found either in solution or in membrane as a lipid bilayer formed around this

loop six out of fifteen times. Moreover, in the case of the atomistic MD simulations,loop 6CD goes through

several cycles of folding and unfolding. These findings can be explained by the fact that a loop that is inserted

in the membrane has to have to ability readily change conformation and refold while being stabilized by the

hydrophobic contacts.

In vivo, PROPPINs are found both free in the cytosol and recruited to PAS uponautophagy induction.

This is why, it makes sense that loop 6CD should have this dual character.Moreover, inP. pastoristhe phos-

phorylation of loop 6CD leads leads to the regulation of Atg18 membrane binding[106]. Moreover, in our

lab, mutagenesis experiments involving shortening the loop and replacing it bya GS linker proved this loop

essential in membrane binding (Figure 8.1, D).

Sequence alignment of Hsv2 homologs across species revealed that loop6CD is not conserved in sequence,

nor in length [192]. However, there is a conservation in the chemical properties of the residues involved.

Aromatic residues W267, Y272 and F273 together with a basic patch found inthe middle of KlHsv2 loop 6CD

(K260, R261 and H262) were shown to be important for membrane binding using liposome co-flotation assay

(Figure 8.1, D). The aromatic residues were previously studied, but a triple mutant was investigated and the

contribution of each residue was not assessed [30].

In order to dissect which residues in loop 6CD are important for membrane binding, atomistic MD simu-

lations were performed for the protein-membrane system. It was concludedthat once bound to the membrane,

KlHsv2 oscillates around the loop making more membrane contacts with residues inthe vicinity of binding site

1. Residues R262 and H262 make cloe to 1 membrane contact/ps, while W267 and Y272 make close to 0.7

contacts/ps. The K260 and F273 are in little contact with the membrane. This electrostatics-hydrophobic inter-

play involved in the membrane binding of a PI domain can be also found in the C2Adomain of synaptotagmin

1 and 7, [74]. in the PX domain of yeast Vam7p [75] and the FYVE domain of EEA1 [76].

Non-specific charge interactions seem to be important in PI domain membrane recruitment.Theoretical

studies showed how the electrical field created by the charges of a membrane, can orient PH domains in the

right direction and bring them close to the membrane [73]. In order to experimentally validate, this hypothesis

for KlHsv2 membrane binding, a FRET based assay using dansyl-labeled LUVs was performed with PI3P and

PS containing liposomes (Figure 8.1, A-C). It was shown that while PI3P binding is tighter, KlHsv2 binds

faster to PS vesicles (Figure 8.1, E). Hence, first the electostatic based interactions recruit PROPPINs to the

membrane where they further bing PIs.

All in all, the computational study, together with experimental evidence allowed us to propose a model for

membrane recruitment and binding (Figure 7.2). The negatively charged membrane orients the approaching

PROPPIN in such a way that loop 6CD is in the proximity of the membrane. The positive patch in the middle

of loop 6CD helps the PROPPIN reach further towards the membrane and attach to it. Once loop 6CD inserts,

the PROPPIN diffuses along the membrane, oscillating around loop 6CD, with apreference towards the basic

binding sites, especially binding site 1. The diffusion and oscillation are stopped when the PROPPIN encounters

PIs and specifically binds to them, stabilizing its membrane interaction.
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Figure 7.2: Proposed model for PROPPIN membrane recruitment and binding. The negatively charged membrane creates an
electrical field that orients the approaching PROPPIN in such a way that loop 6CD is in the proximity of the membrane. The positive
patch in the middle of loop 6CD helps the PROPPIN reach further towards themembrane and attach to it. This attachment is weak
and the PROPPIN detaches until loop 6CD inserts using its aromatic residues. Once loop 6CD inserts, the PROPPIN diffuses along the
membrane, oscillating around loop 6CD, with a preference towards the basic binding sites, especially binding site 1. The diffusion and
oscillation are stopped when the PROPPIN encounters PIs and specificallybinds to them, stabilizing its membrane interaction.
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The proposed PROPPIN binding mode requires further validation to provethat indeed this is the correct

orientation with respect to the membrane. Other questions opened by this studyare the ones related to the

differences observed for binding site 2 across paralogs; while Hsv2 have a basic residue binding P5, Atg18s

and Atg21s have a polar one. Moreover, it would be interesting to study each binding site independently, to

investigate whether there is a reason binding site 1 is more conserved and which binding site binds first a PI.

Furthermore, the possibility of a pH switch is worth exploring further.

In order to experimentally address any of these questions, PROPPINs must be expressed and purified, as

done in the next section.

7.2 Biochemical characterization of phosphoinositides binding specificities of

different PROPPIN family members

In this part, I expressed and purified the different PROPPIN family members, ScAtg18, ScAtg21 and

CtAtg18. Their bacterial expression was unsuccessful despite trying different expression conditions such as

expression strains, growth media and incubation temperatures.

Since none of these PROPPINs were successfully expressed, I turned to the already established protocols

from Dr. Ricarda Busse for the expression and purification of PaAtg18, KlAtg21 and ScHsv2. In the case of

PaAtg18 and KlAtg21, the expression and purification was slightly modified towards improved yields. The

purified proteins were folded, as tested by CD spectra and melting curves.

Next, the thermodynamical binding parameters of PROPPINs to SUVs containing either PI3P or PI(3,5)P2
were measured. With the exception of KlAtg21 binding to PI(3,5)P2, all PROPPIN PI3P or PI(3,5)P2 interac-

tions had submicromolar binding affinities. In general, the binding to PI(3,5)P2 is stronger than to PI3P, with

the exception of KlAtg21 which binds both PIs similarly tight. When compared to theother reported literature

values (Table 7.1), one generally observes agreement.

Table 7.1: Summary of reported PROPPIN binding affinities.

PROPPIN Ligand Kd (µM) experimental setup reference

ScAtg18 PI(3,5)P2 0.5 surface plasmon resonance [104]
ScAtg21 PI(3,5)P2 0.5 surface plasmon resonance [104]
ScHsv2 PI(3,5)P2 0.5 surface plasmon resonance [104]
ScHsv2 PI3P 0.67 ITC [1]

GST-ScHsv2 PI3P 1.3 reflectometric interference spectroscopy [1]
KlHsv2 PI3P submicromolar FRET based assay with LUVs [30]
KlHsv2 PI3P 9.61 FRET based assay with LUVs our group
KlHsv2 PI3P 0.5 ITC with SUVs [192]
KlHsv2 PI(3,5)P2 0.18 ITC with SUVs [192]

The small differences in binding affinities determined could be due to experimental setup differences, di-

rectly measured parameters, membrane content and protein sample quality. Interms of membrane content

differences, in the case of GST-ScHsv2 binding to PI3P measured through reflectometric interference spec-

troscopy, membranes containing 3% PI3P were used [1]. Similarly, in the Baskaran et al. study, 5%PI was

used in addition to 55-60% PS. In our laboratory, it was shown that negatively charged SUVs non-specifically



7.2 Biochemical characterization of phosphoinositides binding specificities of different PROPPIN family members117

bound ScHsv2 [155]. Moreover, in the reflectometric interference spectroscopy experiments [1], the curvature

of the membrane surface is much larger than in my case. Finally, using a GST-fusion construct, leads to an

apparent higher binding affinity due to its dimerization properties. This was previously shown in the case of

ScAtg18 which had a three times higher binding affinity in the fusion version when compared to wild type

protein [104]. In terms of protein sample quality importance, when comparing the binding affinity of ScHsv2

to PI3P detemined by myself and the one our group previously reported [1], I got 0.40µM, while the reported

value was 0.67µM. As shown in Figure 4.8, I had difficulties removing the fusion protein and the free GST

from the final ScHsv2 protein sample, which was not a problem for Dr. Ricarda Busse, who developed the

original protocol [192].

The only large deviation from the submmicromolar binding affinity, was the FRETbased stopped-flow

measurements performed in our group on KlHsv2. This experiment led to a dissociation constant for KlHsv2-

PI3P system of 9.61µM. One explanation could be the fact that in my experiments, I have used SUVs, while in

the FRET experiments, LUVs were used. Baskaran et al. also used LUVsin a similar experiment and obtained

submicromolar dissociation constant, however, their binding strength was increased due to highly negatively

charged LUVs used in the experiments. When discussing membrane curvature, it was previously showed in

our laboratory, through liposomes co-flotation assays that KlHsv2 membrane binding is dependent on vesicle

curvature, i.e., KlHsv2 bound weaker to PI containing LUVs than to SUVs [155]. The importance of membrane

curvature in binding PI containing membranes is a recruitment mechanism for other PI binding domains such

as sorting nexin-1 [78, 77]. The importance of membrane curvature for PROPPIN membrane interaction would

be interestingly to investigate since, in cells, Atg2-Atg18 complex is localized at the edge of the isolation

membranes in close proximity to the ER exit sites [138]. This implies that Atg2-Atg18complex prefers the

localization to high curvatures areas of the PAS. Moreover, once the autophagosome is grown and enclosed,

i.e., when the membrane curvature increased, the complex detaches from theautophagosomal membrane [142].

In terms of binding stoichiometries, I determined values in between 1.4 and 3.3 PImolecules binding per

protein molecule. However, the binding stoichiometry of PI3P to PaAtg18 couldnot be determined because I

could not do a proper fitting on the titration curves obtained. This was due to the fact that the measured signal

was weak.

The differences from the expected value of two might be explained by the fact that, as shown in the purifi-

cation analysis on SDS-PAGE gels in Figures 4.6, 4.7 and 4.8, the protein samples used are not homogeneous.

Contaminants contribute to the protein concentration determination, a value essential for proper titration curve

fitting. Furthermore, the exact determination of the PI concentration is crucial. The PI concentration is de-

termined from total phosphate concentration. Considering that several phosphate containing lipids are mixed,

the errors cannot be neglected. Moreover, as I have shown the loop 6CD membrane insertion has an important

role in PROPPIN membrane binding. This insertion would contribute to the heat released from the PROPPIN

membrane binding measured by ITC. However, the model used for fitting is a one site model in which only one

type of binding, with single or multiple similar pockets. is assumed. However, this isnot the case in my system,

since the two PROPPIN binding pockets are not identical and the loop 6CD insertion cannot be overlooked.

Furthermore, in the cases of ScHsv2 and PaAtg18 PI(3,5)P2 titration curves, the two binding sites fitting model

was more appropriate. In spite of this, the one binding site fitting model was chosen due to a lack of consistency

from one experiment to another in the determined thermodynamical parametersfor the two sites binding fitting

model.
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It was not possible to determine the stoichiometries for the single site binding mutants of ScHsv2. This

results is in line with what was previously reported for the same single binding sites mutants using reflectometric

interference spectroscopy [1].

Overall, for all PROPPINs, the binding is enthalpically driven. Enthalpic binding is a result of specific

contacts, i.e., salt bridges and hydrogen bonds, while entropic driven binding is due to nonspecific hydrophobic

interactions.

For PaAtg18 and KlAtg21, the entropic an enthalpic contributions to the bindingare larger in the case of

PI(3,5)P2 than in the case of PI3P. However, for ScHsv2, the reverse is true. This pattern was also observed for

KlHsv2 (Figure 8.2), as measured by Dr. Ricarda Busse [192]. This observation is interesting, since the Hsv2s

have in their binding pocket a lysine or histidine residue binding P5, while the Atg18s and Atg21s have a polar

residue in the same position.

Taken together, PI was measured for each PROPPIN and the thermodynamic binding parameters were

determined. The PROPPIN PI binding is enthalpically driven and in general,PI(3,5)P2 binds stronger. A

difference was noticed for the contribution of entropy and enthalpy to the binding energy for PI3P vs. PI(3,5)P2
for Hsv2 compared to Atg18s and Atg21s. However, during this investigation, some questions appeared. It

would be interesting to study the importance of membrane curvature for the PROPPIN binding to membranes.

Moreover, it would seem important to be able to dissect the loop 6CD membraneinsertion from the process of

PI recognition and binding. Finally, the origin of differences in thermodynamic contributions in the binding of

PI3P vs. PI(3,5)P2 among different PROPPINs could be further investigated.

In order to answer some of these questions the structures of Atg18 and Atg21 would be needed. This is

why, I determine the structure of PaAtg18.

7.3 Structural and biochemical characterization ofP. angusta Atg18

Figure 7.3: Comparison between PROPPIN structures.The structure of PaAtg18 (gray) is overlaid with both KlHsv2 (orange) -
pdb accession code 4AV9, andKluyveromyces marxianusHsv2 (black) - pdb accession code 3VUA [2]
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I determined the PaAtg18 PROPPIN structure at 1.8 Å resolution. Like the previously determined KlHsv2

and KmHsv2 structures [1, 30, 2], PaAtg18 is a seven bladedβ-propeller with a non-velcro closure topologies.

Overlay of PaAtg18 with the other two determined PROPPIN structures (Figure 7.3) shows that their structures

are very similar, except for strands 7A and 7B, which are longer in PaAtg18. These two strands protrude outside

theβ-propeller. The RMSD value for the PaAtg18 overlay with KlHsv2 is 1.56 Å and 1.52 Å for KmHsv2.

Notably, PaAtg18 (525 residues) is much longer than KlHsv2 (325 residues) and KmHsv2 (355 residues).

Since the strands of the propellers have similar lengths, the almost 200 a.a. difference is due to the variations

in length of the loops connecting these strands. Longer loops (4AB, 6CD and 7AB) did not have an electron

density in the PaAtg18 structure. Loop 6CD was disordered in the case of KlHsv2. This loop is important in

unspecific membrane binding. In PaAtg18 loop 6CD is approximatively 150 a.a. in length. This loop con-

tributed to membrane binding as shown for KlHsv2 andP. pastorisAtg18 [106]. Moreover, the computational

membrane binding model I proposed for PaAtg18 shows that loop 7AB wouldpossibly insert in the membrane,

as it is the case for KlHsv2.

Likely due to the longer loops in PaAtg18, I was unable to obtain well diffracting crystals. In situ pro-

teolysis was essential for the determination of a good resolution structure. Unfortunately, due to high PEG

8000 concentration in the crystallization condition. I wanted to analyze the crystallized fragment by in situ

proteolysis by SDS-PAGE. I was unable to obtain clear bands on an SDS-PAGE gel of the dissolved crystal.

However, while analyzing the digestion pattern of several proteases, Dr. Ricarda Busse [192] concluded that

Proteinase K would digest PaAtg18 in proteins of apparent approximativesizes of 20 kDa, 15 kDa, 12 kDa and

smaller than 10 kDa. The four fragments present in the crystal structure,namely 33-179, 201-297, 441-467

and 485-524 would have the molecular weights of approximatively 20 kDa, 12 kDa, 3 kDa and 6 kDa. This

is in good agreement with the observations done by Dr. Ricarda Busse. Hence, the missing loops might be

the result of the proteolytic digest by Proteinase K, rather than flexibility in thecrystal. Moreover, Dove et al.

have performed proteolytic digestion analysis on ScHsv2 with trypsin resulting in two fragments, 1-377 and

378-500 [104]. Based on the multiple sequence alignment I have done forthe close yeast homologs of PaAtg18

(Figure 5.13), residue 377 in ScAtg18 corresponds to the start of loop 6CD. Therefore, loop 6CD is susceptible

to protease cleavage due to surface exposure in more than one species.

In terms of surface conservation, the two PI binding pockets defined by the FRRG motif are highly con-

served in both PaAtg18 and KlHsv2. PaAtg18 has two additional conserved surface patches on the rims of

blades 1 and 2 and blade 4. Mutagenesis studies have shown that residues in blades 1 and 2, shown in Figure

7.4, are important in Atg2-Atg18 complex formation [139, 2]. For the conserved region in blade 4 there is no

functional information available. Moreover, loop 4AB conserves highly conserved regions and is not conserved

among yeast Atg18 homologs. Since it was digested by Proteinase K, one can speculate that this loop is surface

exposed and highly flexible. It might be the case that it has functional importance, a hypothesis strengthened

by its proximity to a conserved surface region. The presence of these twoconserved regions stresses the fact

that as a WD40 domain, PaAtg18 is a hub of protein-protein interaction. Thus, the structure of PaAtg18 sets

the basis for further studies involving Atg18 and its interaction partners.

However, when discussing the surface conservation, one has to consider that I have done this analysis

based on close homologs to PaAtg18. If one would like to investigate highly conserved interactions, such as

the Atg2-Atg18 might be, they have to perform more in depth bioinformatics analysis with considerable more

sequences.
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Figure 7.4: Atg2 binding sites on PaAtg18.In the PaAtg18 membrane binding model it is revealed that Atg2 binding sites, shown in
green sticks [2, 139] are on the opposite site of the PI binding sites. The membrane is depicted through a gray line for simplicity.

In terms of PI binding, the two arginines of the FRRG motif in PaAtg18 point towards opposite directions

as it it is the case for the structure of KlHsv2. In fact, when overlaying PaAtg18 and KlHsv2 structures, the two

arginines perfectly overlap (Figure 5.12). This overlap is found for allthe essential residues in PI binding site

1, and most of the important residues of PI binding site 2, with the exception ofT288 which is correspondent

to K283.

I have determined two PaAtg18 structures with different crystal bound ligands found in the vicinity of the

FRRG motif. In the 2.3 Å crystal structure, phosphates were found boundto the same positions as the sulfates

in KlHsv2. Sulfates and phosphates bound to the PI binding sites in PI bindingdomains indicate the position

of PI phosphates. As I showed through computational docking studies, inthe case of the KlHsv2 and PaAtg18,

sulfate/phosphate 1 corresponds to P5, while sulfate/phosphate 2 represents the position of P1. Thermofluor

analysis showed that phosphate buffer stabilizes PaAtg18. Interestingly, this is the case also for ScAtg18. In

the 1.8 Å crystal structure, a phosphate was bound in the same position as before in pocket 2, but in PI binding

site 1 a citrate originating from the crystallization buffer was bound to this structure. It appears that citrate is

stabilizes PaAtg18 as it was also found in the condition for the crystallization ofthe full length protein which

contained ammonium citrate dibasic.
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Finally, in order to experimentally test the PROPPIN membrane binding model, together with Dr. Ángel

Perez Lara, I have setup a fluorescence based reporter system in which the membrane proximity of different

sites on theβ-propeller is probed. The necessary PaAtg18 mutants were purified andneed to be measured.

In this part I determined the structure of PaAtg18 which raised questions related to its binding partners,

Atg2 in the surface conserved region in blades 1 and 2, and unknown binding partner(s) for blade 4. The

structural studies of the protein complexes involving Atg18 is the next natural step. This is why, next I have

tried to express and purify ScAtg2 and CtAtg2 and the AtAtg18a-AtWRKY33 complex.

7.4 Expression and purification of PROPPIN binding partners

In the study of the Atg2-Atg18 complex there is a standstill when it comes to the way the complex is

recruited to the membrane. On one hand, Ohsumi proposes that the complex forms in the cytosol and are

together recruited to the PAS. On the other hand, Reggiori proposes thatAtg2 first binds to the PAS and then

recruits Atg18 (Figure 1.4).

Structural studies of the Atg2-Atg18 complex would help to understand how this complex is recruited.

The expression and purification of Atg2 is essential for structural studies. However, up to now, no soluble

Atg2 domain or full length protein were obtained from yeast or bacterial expression. Beside the full length

expression in yeast, Atg2 N-terminal domains from bothS. cerevisiaeandC. thermophilumwere tested with

no success. Since it was shown that human Atg2A interacts with DnaJ chaperonesin vivo, one could try the

co-expression of Atg2 in insect cells with chaperones or its natural interaction partner, Atg18.

Another target complex for this study was theA. thalianaAtg18a-WRKY33 complex. The fact that an

autophagy protein interacts with a transcription regulator is intriguing. Considering that both PI3P and PI5P

are present in the plant nucleus [153] and that PROPPINs can bind PI5P [30, 207], makes this PROPPIN very

interesting. Moreover, there is no PI5P bound structure available. This iswhy, the structure of the plant Atg18a-

WRKY33 complex might give insights not only in the biological process of plant immune response, but also

into the biochemistry of the PROPPIN PI binding and PI5P binding in general.

Unfortunately, none of these questions could be answered since the expression conditions tested were un-

favorable for both proteins. In the future, one could try co-expression in insect cells.

7.5 Outlook

In this study I determined the structure of PaAtg18. A next step would be to structurally study its interaction

partners. I tried to express Atg2 domains and full length protein in budding yeast and bacteria, but I was

unsuccessful. One strategy would be the Atg2-Atg18 complex expressionin the presence of chaperones in

insect cells. This could also be the answer for the failed expression of AtAtg18a-AtWRKY33 complex.

Moreover, a PROPPIN binding orientation is proposed based on computational methods. This model has

to be experimentally tested. In our laboratory, we have established a fluorescence based method to do so and

the PaAtg18 mutants were expressed and purified. Further experiments need to be done for a complete view on

the PROPPIN membrane orientation.

ITC measurements have revealed differences in thermodynamic contributions in the binding of PI3P vs.

PI(3,5)P2 among different PROPPINs. This fact might be intertwined with the observation that there are dif-
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ferences in the residues involved in PI binding site 2 across paralogs, i.e.,while Hsv2 have a basic residue

binding P5, Atg18s and Atg21s have a polar one. This can be studied by mutating the basic residue into a polar

one in Hsv2 and the polar one into a basic residue in Atg18 and Atg21 and measuring thermodynamic binding

parameters using ITC.

Moreover, it would seem interesting to be able to dissect the loop 6CD membrane insertion from PI bind-

ing. Preliminary experiments using FRET based kinetic stopped flow have showed that two regions can be

distinguished in the fitting of binding kinetics. This might allow the measurement of the contribution of each

binding component to PROPPIN membrane binding.

Further questions raised by this research are the importance of membrane curvature for PROPPIN mem-

brane binding and whether the PI binding.
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Figure 8.1: Electrostatic and hydrophobic contributions to KlHsv2 membrane binding. Averaged time courses of dansyl emis-
sion at different vesicle concentrations. LUVs containing (A) DOPC:DOPE:PtdIns3P:dansyl-DOPE (73:20:2:5, molar ratio) and (B)
DOPC:DOPE:DOPS:dansyl-DOPE (35:40:20:5, molar ratio) were rapidly mixed with an equal volume of solutions containing KlHsv2
(2 µM). Solid lines show mono-exponential fits. (C) Dependency of kobs onvesicle concentration in the presence of vesicles con-
taining DOPC:DOPE:PI3P:dansyl-DOPE (squares) and DOPC:DOPE:DOPS:dansyl-DOPE (circles). Error bars indicate the SEM (n
= 3-4). (D) Liposome flotation assays with KlHsv2 loop 6CD mutants. SUVs consisted of PC:PE:Texas-Red-PE:PI (74:23:2:1, weight
ratio).(E) Summary of determined rate constants from kinetic experiments. Numbers are given taking a vesicle as a ligand unit. The
experiments reported in (A)-(C) and (E) were performed by Dr. Ángel Perez Lara, while the experiments presented in (D) were per-
formed by Dr. Karin Kühnel and Dr. Ricarda Busse.

Figure 8.2: ITC measurements of KlHsv2 with liposomes containing PI3P or PI(3,5)P2. The entalphic, entropic and energy
terms are represented through histograms for both PI3P and PI(3,5)P2. Error bars represent standard errors of the mean (SEM). These
experiments were performed by Dr. Ricarda Busse [192].
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Table 8.1: All contacts, salt-bridges or hydrogen bonds, revealed during the docking experiment for PI3P in binding site 1 of KlHsv2.
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Table 8.2: All contacts, salt-bridges or hydrogen bonds, revealed during the docking experiment for PI(3,5)P2 in binding site 1 of KlHsv2.
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Table 8.3: All contacts, salt-bridges or hydrogen bonds, revealed during the docking experiment for PI3P in binding site 2 of KlHsv2.
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Table 8.4: All contacts, salt-bridges or hydrogen bonds, revealed during the docking experiment for PI(3,5)P2 in binding site 2 of KlHsv2.
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Table 8.5: All 96-well screening conditions that led to crystals of PaAtg18.
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Table 8.6: All 96-well screening conditions that led to crystals of PaAtg18. Continuation from Table 8.8.
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Table 8.7: All 96-well screening conditions that led to crystals of PaAtg18. Continuation from Table 8.8.
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Table 8.8: All 96-well screening conditions that led to crystals of PaAtg18. Continuation from Table 8.8.
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Figure 8.3: Folding controls for PaAtg18 single cysteine mutants.Both the CD spectra from 260 nm to 200 nm and melting curves
were taken at 216 nm from 30oC to 80oC. The following protein mutants were investigated: (A) PaAtg18(S51C), (A) PaAtg18(C113),
(C) PaAtg18(S157C), (D) PaAtg18(S448C) (D) and PaAtg18(S459C) (E).
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8.1 DNA sequences of synthetic genes

8.1.0.1 C. thermophilum Atg18

CATATGGCCGCGACTTTAAACTATGTCACCTTCAACCAAGACCATTCATGCTTGGCGGTGGCGAC

TTCTAAGGGATTTCGGATTTTTCATACGGAGCCTTTCGCTAAGGTATTCAACTCAGAAGACGGTC

ATGTTTCTATCATAGAAATGCTCTTTAGCACATCACTGGTCGCACTCGTTTTAAGTCCACGTCAC

TTAGTCATACAGAACACAAAACGGGGATCAGTTATTTGTGAGTTGACCTTTCCATCTGCGGTATT

AGCTGTTCGCCTTAACCGAAAAAGGCTGGCAGTGGTGTTAGAGGAAGAGATCTATCTGTATGAC

ATCTCAAACATGGCTCTCGTGAGTACCATTGCTACCTCACCAAACCCGAATGCAATCTTCGCTCT

TAGTCCGAGCAGCGAGCGCTGCTACATTGCATACCCGTTACCAAAAGCGCGAGAAGACAACGGC

GAAAGAAGACCAGCGCACGCACCACCACTTTCGACCTACGTTCCGCCAACGAGTGGAGAAGTCC

TTATCTTTGACGCGCTGACTCTTAAAGCAGTGACTGTGATCGAGGCGCATAAGTCTCCCCTGTGC

TGCGTCGCACTTAATTCAGACGGCAACCTTCTGGCGACCGCCAGTGAAACCGGGACGATAATTA

GAGTTTTTGCTGTACCATCCGGCCAGAAGTTATATCAGTTTCGTCGTGGTACGTACCCGTCAACC

ATATACTCGATGTCTTTTAATCTGAGTAGTACACTGCTGTGCGTAAGTAGTGCCAGCGAGACAGT

GCACATTTTTAGATTAGTTACGCCACAGACCGCTTCCAGCGCAGCGTCCAGAGATGCTGATATAC

CGTCAAGTCCTAGAGCAAATCGATGGAGTCGCAGTCTGTCCGTAGACTCTACCGATTACCCAGG

CTCGTCCGTGGGGGAGGTGGGCGAGCCGTCCCCAAACAATAATGGTACATCCTCTAAACGTTCG

TCAGGATCATTCGGATCTTTACTGCGACGTTCCTCACAGCTGGTTGGGCGATCTGTTGCTGGGGC

CGTGGGTTCTTATCTGCCACAGTCGGTAACGGAGATGTTCGACCCTCAAAGAGACTTCGCTTCAT

TCAAAATACCTCGTCCACATCAAAATGGCGGACGCTCTGGCGCACTGATGGGAGGTTCCTCGGC

TCCTCTGCGTTCTGTTGTTGCGATGAGCAGCTCTAGTCCGCAGGTCATGGTAGTGACATCGGATG

GCCATTTTTATGTTTACAATATAGATATGCAAAGAGGCGGGGAATGCCCGTTGGTGAAGTTTGTA

AGTGTGCTTGATCCGGAAGAAAAACTGGATGCTAGTGCTTATGGAGTGTAATAACTCGAG

8.1.0.2 C. thermophilum Atg2

CTTAAGATGGCGTCCTTTTTCCAGTCCTTTCGTAGCTCAGTAATGCCGAAGCGCTTATTGCGATA

CGCGCTCTCCCGCCTCGATTTTTTGGATACCGATGCTCTGGATCTGGAAAATCTCGATTTCGCTCT

CGGCAGGAACACTGTTTTGGAATTTCGTGATGTAGGTCTGGTACTTGCGAAACTTGAACGGCTGT

TGGGCCTGCCACCGGCGTTCTCACTGCAGAAGGCGAAAGTGCTCATTCTTCGAGTTACCATTCCG

ATGGATTTTTACACATCCCCTATTGTTGCGGAGGTTGATGGAGTCGATATCCGTGTGAAAGTTTC

CCACAATAAAGCTGAGACGGATGATATTCAGAAAGGCAAAGGCAGCACGGTCGGTGAGGATAT

TGTCCCAACGGCTGCAGATCTTGCACAGAGCTTTTTAGAGACCCAACCTCCTGCTGAGAAAAAA

CAGCTCGAAGAGGCCATTGCGGCTGAAACTCAAGATTTAGGGGCGAGTATATTATCTGAGTCGG

AAAGCAGCGATGATGATTCGACAACCGGGACTGGCCAACCTCTGAGCCTCCCAGTGTTTCTTAC

GGACTTCCTCCAAGGCATCGTAGATAGAATGCAGGTGAGAATCGGGACAGTGACCTTTCAGGGC

GATGTTGAGGTCCCTGTCGATCCGGATGTAGCTGCGCCGGAGACAGTTACTTTTCAGCTTTCCCT

GGAGAGTATTAATGTTGAGGGTGTGACGACCTTACCCGATACTGCAGATGGGAACTCGTGCACT

CATGCTGTTGTGCATAAAGATGGGAAACGGCATATACTGCTGAACAATATCCGCGCTGCCCTCA

TCTCCGAAGCTAATGTTTTTGCATCATTGGGCCCGTCCCCGAGTATGCATTCAAGCCTTGCATCC
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AAAAGTCCAGTGGCATCTGAGGAACCGCGAGCTCCGAATTTGGCAGAGTCCGTCAGTCGTCGTA

GTGGCTATGGATCGTTAGCGGGATCAGCTGCACAGTTGCAACCGTTAAGTAGCTCACGACAGTC

TAGTGTGCGGGATTCAGAAGAAGCTCTGGGCATTCCGTATGATTTTGGGGAAGACGAAACGGAT

GAACAGGAAGAACAGGGCGGTCCTGCATCTAGCTTATCTACGCCGCGTGCGAGTTTTCATCAGG

ATCTCCTGTGCGAGCGCCCGACAGCTCTGTCCAGAGATCCGGCTAAAAGTACCGTCGTGGAACG

CTTCAGGGGCGAATGGTCAACGTATGAACGTGAAGCGCGTTCGGAACCAGATCTGCGCCCCCCG

GAAGGCTTCAGTTTATCAACTACCCAGTCGCCCCAGGAATCCATACATTCTTCAGGCTCCGCTTC

AGCTCAGAGCAGCCGTCGCGCCAGTATCGAAGACCTGACGCAGAGTCAGCTGTATAGCCACGAG

GACGCTGAGAGCATGTACATGTCTGCGTTCTCAGAAGTTGGTTCTAGCAAAATGCGTACGGCCA

TGCCCGGTGCATGGGAGGATTCGGAGGATTCCCAGCAACAGGACGAGCCGCCAAAAGATGAGG

AGTTTGGGACCCGATCTGCCGCGGCCAGCACACCCCCCCTGGAAGGTCCTCCACAGGCACGGGA

ACGCGTTGAGTCAGAACCGGCAGAGGAGGGAGAACCCCCGCAGGAGCTGCTTCAGCAGGAAAT

CGAACAATTGCCGGAGCTGTCTGCCCAAGAACCAGAACCTGCCCCTCAAGATGACGTTCCGACA

CCTCGTGGTCCAACGCGTTTAGCTAAAGAAATTATGCTCTTGGATTCCATCTCTGTCTACCTCCC

GACGGCCCACAAACACCTCCAGGTGACAACCCCGGACTTGGCCCGTAGTGTCTCTCCGAATGTG

CCTGGCGCGTTTTCGGTTCACTCGGCAGCCGGAAAATCGCAGATTTTACCTATGACGCCGGCCCG

GGCAGAACACTCCTCGACCGATGGAGCCATTGAGGTAATCATGAAACCGTTAGATATTCGCTTT

GACGCCTCAACTGGATTCCTGCTTGCCAAGGTGATTTCCTCACTGCTGGAAGCCTTACAGCAGTC

GAGCGAACCAACCCGGCCGGCGCATTCCTCGAACGATAAGTCGGATGCGACCCCGTCTACCACG

TCGCCATTACCTGATCTTCGGATTACCTTAGAGGGTCTGTCTATCCAGTTCCTTGAAAAACTGGC

AGGGGTCGCTGATACCCCATCCAGGATCTTTAGTCGTCAC

Because of cost efficiencyC. thermophilumAtg2 was ordered in three parts. This is the N-terminal part

used as template in the PCR amplification reactions.

8.1.0.3 A. thaliana Atg18a

CCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATAT

GGCAACTGTAAGCAGCTCCTCCTGGCCCAACCCTAACCCTAATCCAGATTCGACAAGCGCTTCC

GATAGTGATAGCACGTTTCCGAGTCATCGTGACCGGGTTGACGAACCGGACTCTTTAGACAGCT

TTTCCAGTATGTCATTAAATAGTGATGAACCGAATCAGACTTCAAATCAGTCCCCTCTCTCACCG

CCTACTCCGAACTTACCAGTTATGCCACCCCCGAGTGTACTGCATTTATCCTTCAACCAGGACCA

TGCGTGCTTTGCCGTTGGAACAGACCGTGGTTTTCGAATTTTAAACTGCGACCCGTTTCGCGAAA

TCTTTCGGCGCGATTTTGATAGGGGTGGGGGCGTTGCTGTTGTTGAGATGCTTTTTCGATGCAAC

ATACTGGCCCTGGTCGGTGGGGGTCCAGATCCCCAGTATCCGCCTAACAAAGTGATGATATGGG

ATGATCATCAGGGTCGTTGCATCGGTGAATTAAGTTTTCGTTCGGATGTGCGGAGTGTACGGCTT

CGAAGGGATCGGATTATCGTGGTGCTGGAGCAGAAAATATTTGTGTACAATTTTAGCGACTTAA

AACTGATGCATCAAATCGAAACGATCGCGAATCCAAAAGGGTTATGCGCGGTTAGTCAGGGCGT

GGGATCAATGGTACTGGTTTGCCCAGGGCTGCAGAAAGGCCAAGTTAGGATAGAGCATTATGCA

AGCAAGCGCACCAAGTTCGTTATGGCACATGATTCGCGGATAGCCTGCTTTGCTTTAACGCAGG

ATGGTCATCTTCTGGCCACTGCATCCTCAAAAGGCACTTTGGTTCGCATATTCAACACTGTTGAC

GGTACTCTTAGACAGGAAGTGAGAAGGGGGGCTGACCGTGCCGAAATCTATTCTCTTGCCTTTTC
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TTCAAATGCTCAATGGCTGGCAGTCAGCAGTGACAAAGGGACCGTGCATGTTTTTGGTTTGAAA

GTTAACTCTGGATCTCAGGTCAAAGATTCCAGCCGGATCGCGCCGGATGCAACACCGTCTTCCCC

CTCATCATCTCTGAGTCTCTTTAAAGGCGTTCTGCCACGGTATTTCTCCTCAGAATGGAGTGTGG

CACAATTCCGGCTGGTGGAAGGCACACAATACATCGCGGCATTTGGACACCAGAAAAACACTGT

GGTGATTCTAGGTATGGATGGGTCCTTCTACCGCTGTCAGTTTGATCCGGTCAACGGCGGCGAAA

TGTCTCAGCTGGAATATCACAATTGCTTGAAACCACCTTCTGTGTTTTAATAACTCGAG

8.1.0.4 A. thaliana WRKY33

CCATGGGCAGCGCATGGAGTCATCCTCAATTCGAAAAATCCGGACTGGTGCCGCGCGGCAGCCA

TATGGCAGCTTCGTTTCTTACAATGGATAATTCTCGAACCCGCCAGAATATGAATGGATCTGCCA

ATTGGTCACAGCAGAGTGGACGTACCAGTACTTCATCACTTGAAGATCTGGAAATACCTAAATT

TCGTTCCTTCGCACCGTCGTCAATTTCAATCTCGCCCTCGCTGGTGTCTCCGAGCACGTGTTTTAG

CCCCTCCCTCTTCCTGGATAGCCCCGCGTTTGTAAGTAGCAGCGCTAACGTGTTAGCCTCCCCCA

CCACTGGTGCCCTGATCACGAATGTGACGAATCAAAAGGGAATTAATGAGGGCGATAAATCCAA

TAACAACAATTTTAACCTGTTTGACTTCAGCTTTCACACTCAGTCGTCCGGCGTTAGTGCCCCGA

CAACGACCACAACCACCACCACTACTACCACAACTACCAATTCGAGTATTTTTCAGTCACAGGA

ACAGCAGAAAAAGAATCAATCTGAGCAGTGGAGTCAAACTGAGACAAGACCTAATAACCAGGC

TGTATCATATAACGGTCGCGAACAGCGTAAAGGGGAGGATGGATACAACTGGCGGAAATATGG

CCAAAAACAAGTGAAGGGCAGCGAGAATCCTCGTTCGTATTATAAATGTACGTTTCCAAACTGT

CCTACAAAGAAAAAAGTGGAACGAAGTCTTGAGGGTCAAATAACCGAAATC GTATATAAAGGC

AGTCACAATCATCCGAAACCACAGTCCACCCGCAGATCAAGTAGTTCAAGTAGTACGTTTCATA

GTGCTGTGTATAACGCTTCACTGGATCATAATCGCCAAGCATCGTCTGACCAACCCAACTCTAAT

AATTCTTTCCATCAGTCAGATAGCTTCGGGATGCAGCAGGAAGATAACACTACCTCGGACAGCG

TAGGTGATGATGAATTTGAACAGGGGTCATCCATAGTATCTAGGGATGAGGAAGATTGTGGTTC

AGAACCGGAGGCGAAACGCTGGAAAGGAGATAATGAAACAAACGGCGGTAATGGTGGCGGCA

GTAAAACGGTTCGGGAACCACGGATTGTCGTTCAAACCACGTCTGACATTGACATTCTGGATGA

TGGTTACAGATGGCGTAAATACGGACAGAAAGTCGTAAAAGGGAACCCGAATCCGCGCAGCTA

TTATAAGTGTACAACCATTGGATGTCCCGTACGAAAGCACGTGGAGCGTGCGTCTCACGATATG

CGCGCCGTAATTACAACATACGAAGGGAAACATAACCATGACGTACCGGCGGCGAGAGGCAGT

GGCTATGCCACAAACCGCGCCCCACAGGATTCTAGTAGTGTTCCGATTCGGCCCGCAGCCATTG

CAGGCCACTCCAATTATACTACCAGCTCTCAGGCCCCATACACACTGCAAATGCTCCATAACAA

TAATACCAACACAGGACCCTTTGGATACGCAATGAACAACAACAATAACAA TAGCAATCTGCAA

ACTCAGCAGAACTTTGTTGGTGGTGGATTTAGCAGAGCCAAGGAGGAACCTAATGAGGAGACTT

CATTTTTTGATTCATTTATGCCGTAATAACTCGAG
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