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Abstract

In this thesis, we use the tools of relative homological algebra in trian-
gulated categories to define a sensible notion of support for objects in
the bootstrap class B(X) of a Kasparov category of C*-algebras over a
finite topological space X with totally ordered lattice of open subsets.
The category B(X) is equivalent to a bootstrap category of filtrations of
C*-algebras.

As a consequence, we provide a full classification of localizing subcat-
egories of B(X) in terms of a product of lattices of noncrossing partitions
of a regular (n + 1)-gon, where n is the number of points in X.

In addition, we consider the 2-periodic derived category of countable
modules over the ring of upper triangular n × n-matrices. Since the
homological algebra is the same, the lattices of localizing subcategories
in this category and B(X) are isomorphic.
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1. Introduction

A triangulated category is a category with some extra structure that allows to
apply some basic tools of homotopy theory and homological algebra. Examples
of such categories arise also in other areas such as representation theory and
noncommutative geometry. Our main case of interest are the equivariant
bivariant K-theory categories for C*-algebras over certain finite spaces, and
some derived categories that are closely related in the sense that they have the
same relative homological algebra.

A main objective of pure mathematics is classification. Triangulated cate-
gories allow to classify objects up to “homological” equivalence: two objects are
equivalent if they can be transformed into each other with natural operations
performed in a triangulated category. In the latter case, we say that these
objects generate the same thick or localizing subcategory. More precisely, a
full subcategory of a triangulated category is called thick if it is closed under
suspension, formation of triangles and retracts. It is localizing if, in addition, it
is closed under whatever coproducts exist in the ambient category. A general
classification program aims to establish a lattice isomorphism between (thick)
localizing subcategories and a suitable computable lattice.

Although interesting in its own right, such a classification can also be used
to obtain an interesting invariant or different structural information about a
triangulated category.

Results of this nature can be found in various fields of mathematics. The first
work on this classification problem was done by Michael J. Hopkins and Jeffrey
H. Smith [21] in 1998. They classified thick subcategories for the p-local finite
stable homotopy category using certain Morova K-theory functors as homological
invariants. Hopkins-Smith also showed how this classification is equivalent to
the earlier Nilpotence Theorem by Davinatz-Hopkins-Smith [13] and thus can
be used to prove the famous Periodicity Theorem of stable homotopy theory.

As an algebraic parallel, building on the previous work of Hopkins [20],
Amnon Neeman [33] classified all localizing subcategories of the unbounded
derived category Der(R) ofR-modules, whereR is a commutative and noetherian
ring. He proved that there is an inclusion-preserving isomorphism between
localizing subcategories of Der(R) and the set of all subsets of the space SpecR.
This isomorphism also involves some aspects of the topology on SpecR, as it
restricts to a bijection between sets closed under specialization on one side,
and those localizing subcategories for which localization commutes with direct
sums on the other side. This result by Hopkins-Neeman is rather remarkable,
as it recovers the very insightful object SpecR out of something seemingly so
abstract and algebraic like Der(R).

In representation theory, Benson, Iyengar and Krause [6] classify the lo-

1



1. Introduction

calizing subcategories of the stable module category of the group algebra kG,
where the group G is finite and the characteristic of the field k divides the
order of G. This classification is in terms of subsets of the projective scheme
Proj(H∗(G; k)).

In favorable cases, like when we have a monoidal structure, the common
theme of recovering a space out of a triangulated category was formalized by
Paul Balmer [3]. The classification methods can also be generalized for certain
compactly generated triangulated categories as explained below.

Support theory

The classification of localizing subcategories always proceeds by defining a notion
of support for objects in a triangulated category. This is usually a canonical
process of assigning a subset of a certain space to every object. Generally
speaking, the support introduces a geometric approach for studying an algebraic
structure.

Once we have a good definition of support, the classification result should
say, first, that any subcategory is determined uniquely by the supports of
its objects; secondly, it should describe the sets that appear as supports of
localizing subcategories.

If one works with a compactly generated triangulated category with small
coproducts and with an action of a commutative noetherian ring R, Benson-
Iyengar-Krause [5] define supports based on a construction of local cohomology
functors with respect to the ring R. Then SpecR naturally serves as a locus
for supports. This method is rather powerful, and classifications like [33], [6]
and a few others fall under this theory. However, the triangulated categories we
are interested in are not compactly generated in the usual sense because they
do not have arbitrary small coproducts. This obstruction is not trivial, since a
very crucial fact used by Benson-Iyengar-Krause, namely the classical Brown
representability, does not hold. In addition, in our case, any ring R that acts
on a category and is large enough to accommodate a sensible notion of support
is noncommutative, and therefore there is no good candidate for SpecR.

Below we describe our approach.

Setup and results

We will be dealing with two kinds of triangulated categories: the Kasparov
category of C*-algebras with an action of a topological space and the 2-periodic
derived category of the ring of upper triangular matrices. We briefly explain
both setups and the main results in both cases.

The bootstrap category B(X)

A C*-algebra over a topological space X, shortly an X-C*-algebra, is a pair
(A,ψ), where A is a C*-algebra and ψ : Prim(A)→ X a continuous map. KK(X)
is defined to be the Kasparov category of C*-algebras over X: its objects are

2



separable C*-algebras over X, its morphism set from A to B is KK0(X;A,B):
an X-equivariant version of Kasparov’s bivariant K-group in degree zero [30].
The composition is given by the corresponding Kasparov product.

As demonstrated by Meyer-Nest [30], KK(X) is a triangulated category.
From now on, unless stated otherwise, assume X to be finite, T0, with totally

ordered lattice of open subsets. Let n = |X|. Then a C*-algebra over X is
equivalent to a C*-algebra with an increasing chain of ideals

{0} = I0 / I1 / I2 / · · · / In = A.

The bootstrap category B(X) is defined as the smallest localizing subcategory
of KK(X) which contains all the possible ways C can be made into a C*-algebra
over X [30]. Another description of the bootstrap subcategory was also derived
by Meyer-Nest [32]: a C*-algebra over X belongs to B(X) if and only if it
satisfies an appropriate Universal Coefficient Theorem. This will be recalled in
Section 3.

Classification for the bootstrap class. If the space X is just a single
point, we recover the original definitions of Kasparov’s KK category and a
bootstrap class B, characterized by the classical Universal Coefficient Theorem
by Rosenberg and Schochet [36]. Brown representabiliy already fails here,
but we still have the action of a commutative noetherian endomorphism ring
Z ∼= EndB(C) of the tensor unit object C ∈ B.

Ivo Dell’Ambrogio [12] classified localizing subcategories of the bootstrap
class B in terms of subsets of the spectrum of this ring of integers. As in [33]
and [5], to define supports for objects in B Dell’Ambrogio uses the collection of
functors CB = {K∗(−;Fp) | p ∈ SpecZ}, where K∗(−;Fp) is the K-theory with
coefficients in the residue field Fp; that is Fp = Z/p for p 6= 0 and Fp = Q for
p = 0. More precisely, the support of the object A ∈ B is the subset of SpecZ
for which the corresponding functors in CB do not vanish on A.

We are going to generalize this classification result to B(X), where there is
no action of a large enough commutative ring.

Main results for B(X). Let Y ⊆ X be a locally closed subset ; that is, a

subset that is a difference of two open sets in X. There are exactly m = n(n+1)
2

locally closed subsets in X, namely, the intervals [a, b] for 1 ≤ a ≤ b ≤ n. For

each such Y , there is a homological functor FKY : B(X) → AbZ/2 into the
category of Z/2-graded abelian groups, which computes a certain K-theory
corresponding to Y . We choose our collection to be

CB(X) = {FKY (−;Fp) | p ∈ SpecZ, Y is locally closed},

and define
suppA := {(p, Y ) | FKY (A;Fp) 6= 0}.

The support of a localizing subcategory is defined to be the union of the supports
of its objects.

3



1. Introduction

This way, the supports of objects in B(X) live in an m-fold cartesian product
of power sets of SpecZ. However, unlike in the commutative case, not all ele-
ments of this product appear as supports of some localizing subcategory. There
is a dependence between functors in CB(X): for any fixed p ∈ SpecZ there are

exactly 1
n+2

(
2n+2
n+1

)
((n+ 1)th Catalan number) different localizing subcategories

with p as a first coordinate in every support point. These subcategories form a
lattice isomorphic to the lattice of noncrossing partitions – those partitions of a
regular (n+ 1)-gon which do not cross in their planar representation. Summing
up, this leads to our main result:

Theorem 6.4. The lattice of all localizing subcategories of B(X) is isomorphic
to the product of lattices of noncrossing partitions of the regular (n + 1)-gon
over the indexing set SpecZ.

In order to better illustrate what this classification says, consider the example
where X has only two points. The category of C*-algebras over X is equivalent
to the KK-category of extensions of C*-algebras. Then the theorem classifies all
localizing subcategories of the bootstrap class in the KK-category of extensions of
C*-algebras in terms of those triples of subsets of SpecZ which have the property
that each one is inside the union of the other two. This is not unexpected,
since an earlier result by Alexander Bonkat [8] establishes that isomorphism
classes of objects in the bootstrap class of C*-algebra extensions correspond to
isomorphism classes of 6-periodic exact chain complexes of countable abelian
groups.

This example already reveals how our classification is different from the
commutative case. Unfortunately, we cannot hope to recover a space from the
lattice of localizing subcategories:

Theorem 5.12. The lattice of localizing subcategories of the bootstrap category
B(X) is not isomorphic to a sublattice of a subset lattice P(S) for any set S.

This already fails for the lattice of noncrossing partitions of the triangle.

The derived category Der(ZAn;Z/2)c

Let ZAn denote the ring of upper triangular n × n-matrices with entries in
abelian groups. This ring is isomorphic to the path ring of the finite quiver An,
hence the notation.

Let Ch(ZAn;Z/2)c be the abelian category of 2-periodic chain complexes
of countable modules over the ring ZAn. The 2-periodic derived category
Der(ZAn;Z/2)c of countable modules over ZAn is defined as the category we
get after formally inverting all quasi-isomorphisms in Ch(ZAn;Z/2)c; that is,
those maps of chain complexes that induce isomorphisms on all homology
groups.

The category Der(ZAn;Z/2)c is triangulated [18].
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Main results for Der(ZAn;Z/2)c. The methods developed for B(X) also
apply to Der(ZAn;Z/2)c. We show that the support theories of Der(ZAn;Z/2)c
and B(X) coincide, by arguing that the collections of functors defining it have
similar homological properties. More precisely, we consider the collection of
functors

CDer(ZAn;Z/2)c = {FH[a,b](−;Fp) | p ∈ SpecZ, 1 ≤ a ≤ b ≤ n},

where each one of them computes a certain homology with coefficients in the
residue field Fp, and we show that they define the same support theory as the
corresponding functors on B(X).

Hence the lattices of localizing subcategories in these two categories are
isomorphic, and we have:

Theorem 7.13. The lattice of all localizing subcategories of Der(ZAn;Z/2)c
is isomorphic to the product of lattices of noncrossing partitions of the regular
(n+ 1)-gon over the indexing set SpecZ.

Of course, the negative result of Theorem 5.12 also carries over, telling us
that there is no space to be recovered from the ring ZAn. This is not unexpected,
since ZAn is a noncommutative ring, and there are some nontrivial obstructions
to the existence of a good space-like candidate for its spectrum [35].

It must be noted that similar result to Theorem 7.13 in more general context
for the bounded derived category of a finite-dimensional hereditary algebra of
finite or tame representation type was obtain with different methods by Claudia
Köhler in her dissertation [24]. However, we do not see the straightforward way
to carry over her results to the category Der(ZAn;Z/2)c.

Outline

This thesis is organized as follows.
The three preliminary sections in Chapter 2 are written up in a minimalistic

manner. We recall the notions directly necessary for our purposes and only
prove the facts which cannot be found elsewhere. The first two sections in this
chapter are devoted to fixing notation, refreshing the reader’s memory about
constructions in triangulated categories or providing relevant references. In the
third section, we recall the examples of triangulated categories, a concrete case
of which will be investigated in the next, contributing chapter.

In Section 4, we prove some general results about localizing subcategories of
B(X), for an arbitrary space X. Namely, we show that localizing subcategories
are closed under tensoring with C*-algebras, and that they are generated by
localization of C*-algebras over X at prime numbers and zero. These results are
used in Section 5 to prove the preliminary classification theorem, which classifies
localizing subcategories of B(X) for finite X with totally ordered lattice of open
subsets, in terms of certain elements of the m-fold cartesian product of power
sets of SpecZ. We also discuss the special case of extensions of C*-algebras
here, and prove Theorem 5.12.

5



1. Introduction

In Section 6, we recall the classical definition of the lattice of noncrossing
partitions. Then, using the mentioned preliminary theorem, we proceed to
prove Theorem 6.4.

In Section 7, we consider the category Der(ZAn;Z/2)c. We collect all
necessary facts to conclude that its relative homological algebra is identical to
that of B(X), thus proving Theorem 7.13.

Appendices follow the style of the preliminary sections by only recalling
the necessary constructions and providing references. Appendix A.1 recalls the
notion of localization for a category, and Appendix A.2 recalls the aspects of
quiver representation theory.

6



2. Preliminaries

1 Triangulated categories

The concept of a triangulated category was developed by Jean-Louis Verdier in
1963 (published later in [38]) to axiomatize the structure present in the derived
category of an abelian category. Albrecht Dold and Dieter Puppe introduced
the same type of axioms when working with the stable homotopy category in
the 1961 paper [14]. However, they did not impose the octahedral axiom.

In this section, we recall the definition of a triangulated category and some
basic results. It is only supposed to serve as reference for the rest of the thesis;
thus the vast majority of the theory is not presented. The relevant examples of
triangulated categories will be discussed in Section 2. A good, comprehensive
text on the topic is [34].

1.1 Definition of a triangulated category

Since we will mainly be dealing with triangulated categories of noncommutative
spaces, we will follow the opposite convention on the direction of arrows than
usually encountered in the literature. Both approaches are actually equivalent,
since a category is triangulated if and only if its opposite is.

Definition 1.1. A stable additive category C is an additive category together
with an additive autoequivalence functor Σ : C→ C, called suspension.

Definition 1.2. Let C be a stable additive category. A triangle in C is a
diagram of the form

ΣB
w−−→ C

v−→ A
u−−→ B

such that the compositions v ◦ w, u ◦ v and w ◦ Σu are the zero morphisms.

A morphism of triangles is a commutative diagram

ΣB
w−−−−→ C

v−−−−→ A
u−−−−→ B

Σf

y h

y g

y f

y
ΣB′

w′−−−−→ C ′
v′−−−−→ A′

u′−−−−→ B′

where each row is a triangle.

Definition 1.3. A triangulated category is a stable additive category T together
with a class of triangles called exact triangles, for which the following conditions
are satisfied:

7



2. Preliminaries

TR0: The triangle

ΣA −→ 0 −→ A
idA−−→ A

is exact and any triangle isomorphic to an exact triangle is exact.
TR1: For any f ∈ T(A,B), there is an object Cf ∈ T and an exact triangle

ΣB −→ Cf −→ A
f−−→ B.

(It follows from the other axioms that such a triangle is unique up to non-
canonical isomorphism.)

TR2: Consider two triangles

ΣB
w−−−→ Cu

v−−→ A
u−−→ B

and
ΣA

−Σu−−−−→ ΣB
−w−−−→ Cu

−v−−−→ A.

If one is exact, then so is the other.
TR3: For any commutative diagram

ΣB
w−−−−→ Cu

v−−−−→ A
u−−−−→ B

f

y g

y
ΣB′

w′−−−−→ Cu′
v′−−−−→ A′

u′−−−−→ B′

where the rows are exact triangles, there exists a morphism h : Cu → Cu′ , not
necessarily unique, which makes the diagram

ΣB
w−−−−→ Cu

v−−−−→ A
u−−−−→ B

Σg

y ∃h
y f

y g

y
ΣB′

w′−−−−→ Cu′
v′−−−−→ A′

u′−−−−→ B′

commutative.
TR4 (Octahedral): For any pair of morphisms f : A→ B and g : B → D,

we have a commutative diagram

Σ2D //

��

ΣCg
Σw //

��

ΣB
Σg
//

��

ΣD

��

0 //

��

Cf

��

Cf //

��

0

��

ΣD // Cgf
v //

u

��

A
gf
//

f

��

D

ΣD // Cg
w // B

g
// D

8



1. Triangulated categories

where all rows and columns are exact triangles. Moreover, the triangle

ΣB
δ−→ Cgf

(uv)−−→ Cg ⊕A
(−w f)−−−−→ B

is also exact, with the map δ given by the equal composites

ΣB → ΣD → Cgf

ΣB → Cf → Cgf .

Definition 1.4. A stable functor F : C → C′ between two stable additive
categories (C,ΣC) and (C′,ΣC′) is an additive functor together with natural
isomorphism F ◦ ΣC

∼= ΣC′ ◦ F .

Definition 1.5. A stable additive functor between two triangulated categories
F : T→ U is called exact if it maps exact triangles to exact triangles.

If coproducts of some cardinality exists in the triangulated categories T
and U, we also ask an exact functor to preserve this structure. In all examples
that are relevant to us, at least countable coproducts exist. Therefore, from now
on, we assume the existence of such coproducts in our triangulated categories.

1.2 Homotopy limits

In favorable cases, one can construct a good homological substitute for the
limit of a diagram in a triangulated category. For example, the object Cf with
the corresponding map can be considered as a homotopy kernel of a morphism
f ∈ T(A,B) in the following sense: By TR0 and TR3, for any map X → A

such that X → A
f−→ B is zero, there exists a (not necessarily unique) map

X → Cf such that

X

∃
��   

Cf // A
f
// B

is commutative. Similarly, the object Σ−1Cf together with the map B → Σ−1Cf
can be considered as a homotopy cokernel of f ∈ T(A,B).

Using this analogy, we can construct homotopy pullbacks and pushouts.

Definition 1.6. In a triagulated category T, a commutative square

A
f
//

g

��

B

g′

��

A′
f ′
// B′

is homotopy cartesian if there is the following exact triangle:

9



2. Preliminaries

ΣB′ −→ A
(gf)−−→ A′ ⊕B (−f ′ g′)−−−−−→ B′.

In this situation, the triple (A, f, g) is called the homotopy pullback of (B′, f ′, g′),
and the latter triple is called the homotopy pushout of the former.

Note that the definition is equivalent to saying that (A,
(
g
f

)
) is a homotopy

kernel of (−f ′ g′), which justifies the terminology.
Next, we define the homotopy version of countable direct limits.

Definition 1.7. Given a countable inductive system (An, f
n
m) in a triangulated

category T, with fnm : Am → An for m ≤ n, a homotopy direct limit ho-lim−→Am
is the unique object in T up to isomorphism that fits in an exact triangle

Σ ho-lim−→Am −→
⊕

Am
id−shiftf−−−−−−→

⊕
Am −→ ho-lim−→Am,

where shiftf is the map that maps the summand Am to Am+1 via fm+1
m .

1.3 Localization of a triangulated category

Localization theory of triangulated categories is a large subject. Our exposition
only recalls the facts that are used later for new results. Here we present Verdier
localization. The following facts are proven in [34].

Definition 1.8. Let T be a triangulated category. A full additive subcategory S
in T is called a triangulated subcategory if every object isomorphic to an object
of S is in S, if ΣS = S, and if for any exact triangle

ΣB −→ C −→ A −→ B

such that the objects A and B are in S, the object C is also in S.

Remark 1.9. Let S be a triangulated subcategory in T and let

ΣB −→ C −→ A −→ B

be an exact triangle in T. If any two of the objects A,B or C are in S, then so
is the third. This is true because we can rotate exact triangles by TR2.

Definition 1.10. A triangulated subcategory S ⊆ T is localizing if it is closed
under formation of whatever coproducts exist in T.

For any family of objects {Aα | α ∈ I} in T, the smallest localizing subcate-
gory that contains all Aα is denoted by 〈Aα | α ∈ I〉.
Remark 1.11. In the literature, localizing subcategories are defined as triangu-
lated subcategories which, together with being closed under coproducts, are
also closed under formation of retracts (are thick). However, since all our
triangulated categories have at least countable coproducts, closure under taking
retracts follows from the other properties.

10



1. Triangulated categories

For an exact functor F : T→ U between triangulated categories, denote by
kero F the full subcategory of T whose objects map to objects of U isomorphic
to 0 (we used the subscript “o” for “objects”, in order to distinguish kero F
from the kernel on morphisms used in the following chapters). Then it is easy
to see that kero F is a triangulated subcategory of T ([34, Lemma 2.1.4]), and it
is localizing because, by convention, exact functors commute with coproducts.

The following theorem by Verdier [38] describes the role of triangulated
subcategories:

Theorem 1.12. For any triangulated subcategory S ⊂ T, there exists a trian-
gulated category T/S and an exact functor Q : T→ T/S, so that S ⊆ keroQ,
and any exact functor F : T→ T′ whose kernel contains S factors uniquely as

T
Q−→ T/S→ T′.

It follows form the axioms of triangulated categories that a morphism

Q(A)
Q(f)−−−→ Q(B) is an isomorphism if and only if Q(Cf ) ∼= 0, that is, its

homotopy kernel vanishes. Hence T/S is a localization of T with respect to
morphisms whose homotopy kernels vanish under Q (for the definition of the
localization of a general category and the calculus of fractions, see Appendix A.1).
In particular, all morphisms f : A→ B with Cf ∈ S are inverted. Denote this
class of morphisms by MorS.

Proposition 1.13. For any triangulated subcategory S ⊆ T in a triangulated
category, MorS admits a calculus of fractions.

If S is closed under coproducts then S ∼= keroQ. So when one wishes to
study all possible localizations of a triangulated category with coproducts, one
only needs to consider localizing subcategories.

1.4 Homological functors

Now we define homology theories for triangulated categories. Homological
invariants are crucial in our approach.

Definition 1.14. An additive functor H : T → A from a triangulated cat-
egory T to an abelian category A is called homological if, for every exact
triangle

ΣB
w−−→ C

v−→ A
u−−→ B,

the sequence

H(C)
H(v)−−−→ H(A)

H(u)−−−→ H(B)

is exact in A.

Since we can rotate triangles by TR2, the exact sequence above can be
continued indefinitely in both directions. In other words, we have a long exact
sequence

· · · → H(ΣB)
H(w)−−−→ H(C)

H(v)−−−→ H(A)
H(u)−−−→ H(B)

H(Σ−1w)−−−−−−→ H(Σ−1C)→ · · ·

11
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Lemma 1.15. Let T be a triangulated category, let D be an object in T. Then
the representable functor T(D,−) is homological.

2 Homological algebra in triangulated categories

In this section we briefly discuss the relevant aspects of the theory of homological
algebra in a triangulated category.

If the category in question is not abelian, homological algebra is always
relative, that is, additional data is necessary to get started. In the case
of triangulated categories, the theory turns out to be remarkably rich, as
demonstrated when the subject was first explored in the works of J. Daniel
Christensen [9] and Apostolos Beligiannis [4].

The relative homological algebra in the context of triangulated categories of
our interest was developed by Ralf Meyer and Ryszard Nest in [31, 28]. All the
definitions and proofs of the facts stated here can be found in [31].

2.1 Ideals

For additional structure needed for homological algebra we use the notion of
ideals.

Definition 2.1. An ideal I in a triangulated category T is a collection of
subgroups I(A,B) ⊆ T(A,B) for all pairs of objects A,B ∈ T, such that

T(C,D) ◦ I(B,C) ◦ T(A,B) ⊆ I(A,D)

for all A,B,C,D ∈ T.

For example, any homological functor F : T→ A into an abelian category A
defines the kernel ideal kerF by

kerF (A,B) := {f ∈ T(A,B) | F (f) = 0}.

Definition 2.2. An ideal I in a triangulated category T is called homological
if it is the kernel of a stable homological functor.

Different functors can give rise to the same homological ideal. However, the
resulting homological algebra only depends on the ideal itself.

The morphisms in I should be thought of as being zero “up to” I in T. This
intuition justifies the following terminology

Definition 2.3. Given an exact triangle

ΣB
w−−→ C

v−→ A
u−−→ B

in T, we say that it is I-exact if w ∈ I(ΣB,C). Moreover, in this situation, we
say that u is I-epic, v is I-monic and w is I-phantom.

We will only be dealing with homological ideals.

12
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Definition 2.4. For a homological ideal I = kerF , a chain complex C• =
(Cn, dn) over T is I-exact in degree n if

F (Cn+1)
F (dn+1)−−−−−→ F (Cn)

F (dn)−−−−→ F (Cn−1)

is exact at F (Cn).

We call C• I-exact if it is I-exact in degree n for all n ∈ Z.

2.2 Relative projective objects and exactness

Definition 2.5. A homological functor F : T→ A into some abelian category A
is I-exact if F (f) = 0 for all A,B ∈ T and f ∈ I(A,B), that is, I ⊆ kerF .

Definition 2.6. An object A ∈ T is I-projective if the functor T(A,−) is
I-exact.

Denote the full subcategory of I-projective objects by PI. Clearly, PI is
closed under forming retracts (taking direct summands), (de)suspensions and
whatever coproducts exist in T.

Definition 2.7. Let I be a homological ideal in T and A ∈ T. We say that
π : P → A is a one-step I-projective resolution if π is I-epic and P ∈ PI. An
I-projective resolution of A is an I-exact chain complex

· · · → Pn → Pn−1 → · · · → P0 → A

with Pn ∈ PI for all n ∈ N.

We say that there are enough I-projective objects in T if every object A ∈ T
has a one-step projective resolution.

The following proposition shows that relative projective objects have prop-
erties similar to projective objects in an abelian category.

Proposition 2.8 (Meyer-Nest [31, Proposition 3.26]). Every object in T has
an I-projective resolution if and only if T has enough I-projective objects.

Any map between objects of T can be lifted to a chain map between I-projec-
tive resolutions of these objects, and this lifting is unique up to chain homotopy.
Two I-projective resolutions of the same object are chain homotopy equivalent.

2.3 The universal I-exact functor

For any triangulated cateogry T, there exists a universal stable homological
functor U : T→ A(T) into a certain stable abelian category A(T) such that any
other stable homological functor from T into a stable abelian category A factors

as T→ A(T)
∃!−→ A for a stable exact functor A(T)→ A which is unique up to

canonical isomorphism. This is a classical construction by Peter Freyd [16].
As it turns out, we can construct a relative version of these statements:

13
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Definition 2.9. Let I be a homological ideal in a triangulated category T.
Then an I-exact stable homological functor F is universal, if any other I-exact
stable homological functor G : T→ A′ factors as G = Ḡ ◦ F for a stable exact
functor Ḡ : A→ A′ that is unique up to natural isomorphism.

Theorem 2.10 (Beligiannis [4, Section 3]). For every homological ideal I in a
triangulated category T, there exists an abelian category AI(T) and a universal
I-exact stable homological functor F : T→ AI(T).

Here the category AI(T) is obtained by localizing the Freyd category A(T)
at an appropriate Serre subcategory, where we quotient out all morphisms
coming from the ideal I. There may be some set theory issues here with sets
and classes. A(T) and AI(T) may become “large” categories.

Roughly speaking, having a universal I-exact stable homological functor
means that homological algebra in the target abelian category is the same as in
the domain triangulated category with respect to the ideal I.

Theorem 2.11 (Beligiannis [4, Proposition 4.19]). Let I be a homological ideal
in a triangulated category T and let F : T → A be a universal I-exact stable
homological functor into a stable abelian category A. Suppose that idempotent
morphisms in T split and that there are enough I-projective objects in T. Then
there are enough projective objects in A and F induces an equivalence between
the full subcategories of I-projective objects in T and of projective objects in A.

It is also possible to define derived functors relative to a homological ideal I.
There is a spectral sequence that relates a homological functor to its derived
functors. We are not going to discuss this general construction. We are only
going to recall the favorable case of a Universal Coefficient Theorem, where
this spectral sequence degenerates to a short exact sequence and we are able to
compute the derived functors using the universal I-exact functor.

Theorem 2.12 (Meyer-Nest [31, Theorem 4.4]). Let I be a homological ideal
in a triangulated category T and let F : T → A be a universal I-exact stable
homological functor into a stable abelian category A with enough projective
objects. For A ∈ T, let F (A) have a projective resolution of length 1. Suppose
also that A ∈ 〈PI〉. Then for any B ∈ T there is a natural short exact sequence

Ext1
A

(
F (ΣA), F (B)

)
↪→ T(A,B) � HomA

(
F (A), F (B)

)
,

where Ext1
A and HomA denote extension and morphism groups in A and Σ is a

suspension on T.

3 Relevant examples

In this section, we will take a look at three examples of triangulated categories:
the derived category of an abelian category, Kasparov’s KK-category for C*-
algebras and Kasparov’s KK-category for C*-algebras with the action of a
topological space. We will not try to extensively motivate the study of these
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categories because there are plenty of very good references that do so. For
Kasparov categories, see, for example, [29, 19] and [30]; for the derived category,
see [38] or [23]. The notions and facts recalled here will be used later in
Chapter 3.

3.1 The derived category of an abelian category

As already mentioned, it was the study of the derived category that led Jean-
Louis Verdier to the notion of a triangulated category.

The derived category of an abelian category A is the natural home for doing
any kind of homological algebra on A. Notions like projective resolutions and
derived functors naturally manifest themselves on the derived category.

All the definitions and proofs of the facts recalled here, unless stated other-
wise, can be found in classical sources like [18] or [39].

Definition 3.1. Let A be an abelian category and m ∈ N. Let Ch(A;Z/m) be
the category of unbounded m-periodic chain complexes over A. More precisely,
objects (A•, d•A) ∈ Ch(A;Z/m) satisfy An = An+m and dn = (−1)mdn+m for
all n ∈ Z, and chain maps are m-periodic.

For m = 0 we recover the usual non-periodic category of unbounded chain
complexes. By convention, we write Z/0 := Z.

Ch(A;Z/m) is also an abelian category.

Definition 3.2. A homotopy in Ch(A;Z/m) is a chain homotopy between chain
maps which is m-periodic, that is, hn+m = (−1)mhn.

Definition 3.3. Let Ho(A;Z/m) be the homotopy category of Ch(A;Z/m). It
has same the objects, and the group of morphisms A→ A′ in Ho(A;Z/m) is
the group [A,A′] of homotopy classes of chain maps from A to A′.

The category Ho(A;Z/m) is already triangulated. However, the convention
on the direction of arrows is opposite to the one we used to axiomatize this
structure. As mentioned earlier, this makes no difference, so we ignore the issue.

Definition 3.4. Let f : A→ B be a map of chain complexes in Ho(A;Z/m).
Define the cone of f to be the chain complex cone(f) = A[1]⊕B with differential

dcone(f) =

(
dA[1] 0
f [1] dB

)
,

where A[1] denotes the chain complex with A[1]n = An+1, dnA[1] = −dn+1
A , and

f [1]n = fn+1.

For every morphism f : A→ B in Ho(A;Z/m), the obvious projection maps
give the mapping cone triangle

A→ B → cone(f)→ A[1].

15
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Call a triangle in Ho(A;Z/m) exact if it is isomorphic to a mapping cone triangle.
The additive category Ho(A;Z/m) together with the automorphism [1] and the
class of exact triangles is a triangulated category.

Of course, the homology of an m-periodic chain complex in Ho(A;Z/m) is
also m-periodic. So we get a homology functor

H∗ : Ho(A;Z/m)→ AZ/m,

where AZ/m is the category of Z/m-graded objects of A. This functor is clearly
stable with respect to a shift automorphism on both categories.

Definition 3.5. Let N(A;Z/m) ⊂ Ho(A;Z/m) be the full subcategory of those
chain complexes A ∈ Ho(A;Z/m) whose homology vanishes in every degree,
H∗(A) ∼= 0; or equivalently N(A;Z/m) := kero H∗.

As an object kernel of a stable homological functor, N(A;Z/m) is easily
seen to be a localizing subcategory of Ho(A;Z/m). The objects in N(A;Z/m)
are called acyclic.

Definition 3.6. The m-periodic derived category Der(A;Z/m) of an abelian
category A is the localization of Ho(A;Z/m) at the localizing subcategory
N(A;Z/m). That is,

Der(A;Z/m) = Ho(A;Z/m)/N(A;Z/m).

In other words, we arrive at Der(A;Z/m) by inverting all arrows f : A→ B
in Ho(A;Z/m) such that their cone is acyclic, H∗

(
cone(f)

) ∼= 0. Since H∗ is
homological, such morphisms are exactly the ones that induce isomorphism on
homology.

Definition 3.7. A quasi-isomorphism is a morphism in Ho(A;Z/m) that
induces an isomorphism on homology.

Hence by Proposition 1.13 quasi-isomorphisms have a calculus of fractions.
As recalled in Appendix A.1, then every morphism f : A→ B in Der(A;Z/m)

is of the form A
s←− X g−→ B for a quasi-isomorphism s, a morphism g, and an

object X, all in Ho(A;Z/m).
In the case m = 0, for the construction of the category Der(A) := Der(A,Z),

we could have only considered the chain complexes that are bounded, that is,
the chain complexes with only finitely many nonzero terms. This gives the
derived category Derb(A) ⊂ Der(A) of bounded chain complexes over A.

The derived category of a ring

Let the abelian category in question be the category of modules Mod(R) over a
ring R. Then for simplicity we denote Der(R;Z/m) := Der(Mod(R);Z/m) for
m ∈ N.

We recall some classical results for the derived category of a ring. For
i ∈ Z/m, denote by R[i] the chain complex with the module R in the place i
and zeros elsewhere.
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Proposition 3.8. The homology functors are representable. More precisely,
the Yoneda natural transformation corresponding to the unit 1R ∈ R[i] is an
isomorphism of functors

Der(R;Z/m)(R[i],−) ∼= Hi(−)

for all i ∈ Z/m.

The total homology functor H∗ is represented by the direct sum
⊕

i∈Z/mR[i].

Hence Der(R;Z/m) is generated by the objects {R[i] | i ∈ Z/m}:

Proposition 3.9. The smallest localizing subcategory in Der(R;Z/m) contain-
ing the objects {R[i] | i ∈ Z/m} is the whole Der(R;Z/m). In other words,

〈R[i] | i ∈ Z/m〉 ∼= Der(R;Z/m).

Derived tensor product

We will also use the tensor structure present on the derived category of a ring.
The facts recalled here can be found in [25].

For a commutative ring R, denote Ch(R;Z/m) = Ch(Mod(R);Z/m).

Definition 3.10. For complexes A,B ∈ Ch(R;Z/m), their tensor product
A⊗R B is the chain complex whose component in degree n is given by

(A⊗R B)n =
⊕
i+j=n

Ai ⊗R Bj

and whose differential is

dnA⊗RB(ai ⊗ bj) =
(
dA(ai), bj

)
+ (−1)i

(
ai, dB(bj)

)
for ai ⊗ bj ∈ Ai ⊗R Bj with i+ j = n.

The tensor product of chain complexes descends to a monoidal structure on
the derived category.

Definition 3.11. A chain complex F ∈ Ch(R;Z/m) is called flat if for every
acyclic complex A ∈ Ch(R;Z/m) the tensor product A⊗R F is also acyclic.

Tensoring with a flat complex F descends to an exact functor

Ho(R;Z/m)
−⊗RF−−−−→ Ho(R;Z/m)

that transforms quasi-isomorphisms into quasi-isomorphisms because tensoring
is an exact functor and quasi-isomorphisms in Ho(R;Z/m) are characterized by
having acyclic cones.

Lemma 3.12. For any complex A ∈ Der(R;Z/m) there exists a flat complex
F ∈ Der(R;Z/m) and a quasi-isomorphism F → A called a flat resolution.
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Picking a flat resolution for every complex gives an exact bifunctor

−⊗R − : Der(R;Z/m)×Der(R;Z/m)→ Der(R;Z/m),

because Der(R;Z/m) is the localization of Ho(R;Z/m) at quasi-isomorphisms.
Also, tensoring two quasi-isomorphic flat complexes gives quasi-isomorphic
tensor products, so this functor does not depend on the choice of a flat resolution.

If the ring R is noncommutative, we can still tensor (right) R-modules with
abelian groups and get back R-modules. In other words, the same construction
gives an exact bifunctor

−⊗Z − : Der(Z;Z/m)×Der(R;Z/m)→ Der(R;Z/m).

3.2 Bivariant K-theory

Bivariant K-theory is a joint generalization of topological K-theory and its
dual, K-homology. Seen as a category, it is a universal home for split-exact,
compact-stable and homotopy-invariant functors on the category of C*-algebras.
Therefore, bivariant K-theory plays a fundamental role in noncommutative
topology, noncommutative geometry and index theory.

We assume that the reader is familiar with the definition and the basic
properties of the category of C*-algebras (see, for instance, [11] and [27]). All
facts mentioned in this section can be found in [7].

For future reference, we recall the definition of Kasparov cycles:

Definition 3.13. Let A,B be separable C∗-algebras.

• An even or odd Kasparov cycle between A and B is a a triple (ϕ,HB , F ),
where

– HB is a right Hilbert B-module. In the even case, we assume the
existence of a Z/2-grading on HB ;

– F ∈ B(HB) is an adjointable operator on HB which commutes with
the grading in the even case;

– ϕ : A→ B(HB) is a *-representation commuting with the grading in
the even case;

– ϕ(a)(F−F ∗), ϕ(a)(F 2−1) and the commutator [ϕ(a), F ] are compact
for every a ∈ A;

• Two cycles (ϕ0,H0
B , F

0) and (ϕ1,H1
B , F

1) are unitarily equivalent if there
is a unitary H0

B → H1
B (of degree 0 in the even case) intertwining ϕi

and Fi for i = 0, 1.

• Two cycles (ϕ0,H0
B , F

0) and (ϕ1,H1
B , F

1) between C∗-algebras A and B
are said to be homotopic if there is a cycle (ϕ,HIB , F ) between A and
IB := C([0, 1], B) such that

(
evi ◦ ϕ,HBI ⊗evi B, evi∗(F )

)
is unitarily

equivalent to (ϕi,HiB , F i) for i = 0, 1, where the maps evi are the evalua-
tion homomorphisms from IB to B.
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This gives a Z/2-graded abelian group of homotopy classes of cycles from A
to B with addition given by direct sum of Kasparov cycles. Denote this group
by KK∗(A,B).

The groups KK∗(A,B) define a bifunctor, covariant in the first and con-
travariant in the second variable, from the category of separable C*-algebras to
Z/2-graded abelian groups.

One of the remarkable features of Kasparov theory is the existence of a
natural, associative product

KKi(A,B)×KKj(B,C)→ KKi+j(A,C).

This allows us to define

Definition 3.14. Let KK be the category with objects separable C∗-algebras
and with morphism sets KK0(A,B) for A,B ∈ KK.

The category KK is additive with countable coproducts given by C0-direct
sums of C*-algebras. The tensor product of C*-algebras (either minimal or
maximal) induces a monoidal structure on KK. As a result, since the bifunctor
KK∗(−,−) is homotopy invariant and satisfies Bott periodicity, KK is a stable
category. Here stability is with respect to the suspension functor

Σ : KK→ KK A 7→ C0(R)⊗A,

where there is no ambiguity because C0(R)⊗min A ∼= C0(R)⊗max A.

Triangulated structure of KK

The facts recalled in this section can be found in [29].
We already mentioned that KK is additive. Also, by Bott periodicity, Σ is

an automorphism (up to natural isomorphism).
Let I ↪→ E � Q be an extension of C*-algebras. It is called a split extension

if it splits by a *-homomorphism. It is called semi-split if there is a completely
positive, contractive section Q→ E.

Recall that the cone of a map A
f−→ B between C*-algebras is defined as

cone(f) := {(a, b) ∈ A× C0

(
(0, 1], B) | f(a) = b(1)}.

For every semi-split extension I ↪→ E � Q, where I, E,Q are separable

C*-algebras, there exists a unique map ΣQ → I and an isomorphism I
∼=−→

cone(E � Q), both in KK, such that the following diagram is an isomorphism
of triangles:

ΣQ // I

∼=
��

// E // Q

ΣQ // cone(E � Q) // E // Q

The first triangle in the diagram is called the extension triangle of the
semi-split extension I ↪→ E � Q.
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Declare all triangles in KK isomorphic to the extension triangle of some
semi-split extension as being exact. Then the category KK together with
the suspension automorphism and the specified class of exact triangles is a
triangulated category.

The bootstrap class

Definition 3.15. The bootstrap class B ⊂ KK is the localizing subcategory in
KK generated by the object C ∈ KK, that is, B = 〈C〉.

There is another equivalent characterization of the bootstrap class by
Jonathan Rosenberg and Claude Schochet which underlines its importance.
For this, recall that the K∗-theory functor descends to the category KK and is
naturally isomorphic to the representable functor KK∗(C,−). So the K-theory
functor is a coproduct-preserving, stable, homological functor from KK to the
abelian category AbZ/2c of Z/2-graded countable abelian groups.

Then the Universal Coefficient Theorem for KK reads

Theorem 3.16 (Rosenberg-Schochet [36]). Let A be a separable C∗-algebra.
Then A ∈ B if and only if, for all B ∈ KK, there is a short exact sequence of
Z/2-graded abelian groups

Ext1
(
K∗+1(A),K∗(B)

)
↪→ KK∗(A,B) � Hom

(
K∗(A),K∗(B)

)
,

where the second map is the K-theory functor. This sequence is natural and
splits unnaturally.

Here Hom and Ext denote the graded morphism and extension groups
computed in AbZ/2c .

Theorem 3.16 is very useful. For example, it implies that C*-algebras in
the bootstrap class are completely determined up to KK-equivalence by their
K-theory.

Also as a corollary, a C*-algebra is in the bootstrap class if and only if
it is equivalent to a commutative C*-algebra. In particular, this means that
maximal and minimal tensor products coincide in KK if one of the C*-algebras
is in B. In fact, the K-theory of this tensor product can also be computed using
a short exact sequence:

Theorem 3.17 (Rosenberg-Schochet, Künneth formula [36]). Let A and B
be separable C∗-algebras with A ∈ B. Then there is a short exact sequence of
Z/2-graded abelian groups

K∗(A) ⊗̂K∗(B) ↪→ K∗(A⊗B) � Tor
(
K∗+1(A),K∗(B)

)
,

where the first map is induced by the monoidal structure ⊗. This sequence is
natural and splits unnaturally.
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Again, Tor denotes the graded torsion group computed in AbZ/2c and ⊗̂
denotes the graded tensor product.

We can derive the short exact sequences of Theorems 3.16 and 3.17 by the
general machinery of relative homological algebra, since K-theory turns out to
be a universal ker K∗-exact functor.

3.3 C*-Algebras with an action of a topological space

Building on previous work of Fell [15], Tomiyama [37], Dauns-Hofmann [10]
and others, the notion of a C*-algebra over a locally compact Hausdorff space
was introduced by Gennadi Kasparov [22] while proving the Novikov conjecture
for subgroups of Lie groups.

Accepting the philosophy of noncommutative topology and noncommutative
geometry, one may think of a general C*-algebra A as a set of sections of some
bundle over some base space. The intuition is to find a continuous image of a
space Prim(A) over which A will turn out to fiber in a nice way. This idea is
formalized by the notion of a C*-algebras over a topological space.

Definitions and proofs of all facts mentioned in this section can be found
in [30] or [32].

Definition 3.18. Let A be a C∗-algebra. Denote by Prim(A) the primitive
ideal space of A with hull-kernel topology.

Let X be a possibly non-Hausdorff topological space.

Definition 3.19. An action of a topological space X on a C∗-algebra A is a
pair (A,ψ), where ψ : Prim(A)→ X is a continuous map.

In this situation, we say that A is a C∗-algebra over X, or simply an
X-C∗-algebra.

Let O(X) denote the lattice of open subsets in X ordered by inclusion, and
let I(A) denote the lattice of closed *-ideals in A, also ordered by inclusion.
There is a lattice isomorphism

α : O
(

Prim(A)
) ∼=−→ I(A), U 7→

⋂
p∈Prim(A)\U

p.

For an X-C*-algebra (A,ψ), this gives a map

O(X)→ I(A), U 7→ α ◦ ψ−1(U) =: A(U), (3.1)

that commutes with arbitrary suprema and finite infima in the corresponding
lattices.

We can also extend these notions to locally closed subsets of X. Recall that
a subset Y ⊆ X is locally closed if and only if Y = U \ V for open subsets
U, V ∈ O(X) with V ⊆ U . Denote the set of all non-empty locally closed
subsets of X by LC(X).
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Definition 3.20. For Y ∈ LC(X), let Y = U \ V for U, V ∈ O(X) and let A
be a C∗-algebra over X. Then we define

A(Y ) := A(U)/A(V ).

This definition does not depend on the choice of U and V by [30, Lemma 2.15].
Now we define morphisms of C*-algebras over X.

Definition 3.21. Let A and B be C∗-algebras over a topological space X. An
X-equivariant *-homomorphism is a *-homomorphism f : A → B such that
f
(
A(U)

)
⊆ B(U) for all U ∈ O(X).

The category of C*-algebras over a topological space X together with
X-equivariant *-homomorphisms is denoted by C∗alg(X). If X is a single point,
there is no structure to an action and we get the category of C*-algebras and
*-homomorphisms.

External tensor product

For topological spaces X and Y , a continuous map f : X → Y induces a functor

f∗ : C∗alg(X)→ C∗alg(Y ), (A,ψ) 7→ (A, f ◦ ψ).

Let A and B be C*-algebras over X and Y , respectively. Let A⊗B denote
their minimal tensor product. Then there is a canonical continuous map
Prim(A ⊗ B) → Prim(A) × Prim(B). Therefore, A ⊗ B naturally becomes a
C*-algebra over X × Y , and we have a bifunctor

⊗ : C∗alg(X)× C∗alg(Y )→ C∗alg(X × Y ), A×B 7→ A⊗B.

In particular, if Y is a single point, then X × Y ∼= X, giving a bifunctor

⊗ : C∗alg(X)× C∗alg→ C∗alg(X),

where C∗alg denotes the category of C*-algebras and *-homomorphisms.

Sober spaces

Recall that an irreducible closed subset of a space X is a closed subset of X
that is non-empty and not a union of two proper closed subsets of itself.

Definition 3.22. A sober space X is a topological space X such that every
irreducible closed subset of X is the closure of exactly one singleton of X.

An equivalent characterization of a sober space is that it can be recovered
from its lattice of open subsets.

For every topological space X, there exists its sober completion X̂. Since
morphisms in C∗alg(X) only use O(X), we have an equivalence of categories
C∗alg(X) ∼= C∗alg(X̂). So, for our purposes, we always assume the topological
space X to be sober.

22



3. Relevant examples

If X is sober, there is a one-to-one correspondence between continuous maps
Prim(A)→ X and maps O(X)→ I(A) that commute with arbitrary suprema
and finite infima. This correspondence is exactly the one given by (3.1), so we
may use the latter map to define X-C*-algebras.

So, for a sober space X, a C*-algebra over X is a pair (A,ψ∗), where A is a
C*-algebra and

ψ∗ : O(X)→ I(A), U 7→ A(U), (3.2)

is a map that preserves arbitrary suprema and finite infima. In particular, for all
U, V ∈ O(X) with U ⊆ V this gives the monotonicity condition A(U) / A(V ),
and A(∅) = 0 and A(X) = A.

The X-equivariant Kasparov category

We call a C*-algebra (A,ψ) over X separable if A is a separable C*-algebra.

Definition 3.23. Let X be a topological space. Let A and B be separable
C∗-algebras over X. A Kasparov cycle (ϕ,HB , F ) is X-equivariant if

ϕ
(
A(U)

)
· HB ⊆ HB ·B(U)

for every U ∈ O(X). Homotopy of X-equivariant Kasparov cycles is defined as
in Definition 3.13.

Let KK∗(X;A,B) denote the graded abelian group of homotopy classes of
X-equivariant Kasparov cycles from A to B, with addition given by direct sum.

The groups KK∗(X;A,B), as their non-equivariant counterparts, also define
a Hom-like bifunctor from the category of separable X-C*-algebras to Z/2-
graded abelian groups, that is, it is covariant in the first and contravariant in
the second variable and there is a natural associative Kasparov product

KKi(X;A,B)×KKj(X;B,C)→ KKi+j(X;A,C).

Definition 3.24. Let KK(X) be the category with objects separable C∗-
algebras over X and with morphism sets KK0(X;A,B).

If the space X is homeomorphic to a point, we recover the non-equivariant
Kasparov category KK. The external tensor product of C*-algebras over a
space descends to an external tensor product on the corresponding Kasparov
categories. In particular, we have a bifunctor

KK(X)⊗ KK→ KK(X).

X-equivariant Kasparov theory enjoys similar properties as the classical
version; namely, KK(X) is a stable additive category with countable C0-direct
sums as coproducts. The stability is with respect to the suspension

Σ : KK(X)→ KK(X), A 7→ C0(R)⊗A,

which is an automorphism because of Bott periodicity.
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Triangulated structure

A triangulated structure in KK(X) is constructed as for KK.
An extension of C*-algebras over X is a diagram I → E → Q where

I(U) ↪→ E(U) � Q(U) is an extension of C*-algebras for all U ∈ O(X). If
an extension splits by an X-equivariant *-homomorphism, we call it a split
extension; we call it semi-split if there is a completely positive, contractive,
X-equivariant section Q→ E.

Note that an extension of C*-algebras over X also gives corresponding
extensions for all locally closed subsets of X. These extensions are also (semi)
split if the original extension was.

Exactly as for KK, for every semi-split extension I ↪→ E � Q for separable X-
C*-algebras I, E and Q, there exists a unique map ΣQ→ I and an isomorphism

I
∼=−→ cone(E � Q), both in KK(X), such that the following diagram is an

isomorphism of triangles:

ΣQ // I

∼=
��

// E // Q

ΣQ // cone(E � Q) // E // Q

Here the mapping cone in C∗alg(X) is defined in the same way as the classical
version, with *-homomorphisms replaced with X-equivariant ones.

The first triangle in the above diagram is called the extension triangle of a
semi-split extension I ↪→ E � Q.

Declare a triangle in KK(X) exact if it is isomorphic to the extension triangle
of some semi-split extension. Then the category KK(X), together with the
specified class of exact triangles and the suspension automorphism Σ, is a
triangulated category.

Filtrated K-theory

In this section, we give examples of the constructions of Section 2. All the facts
and results recalled here can be found in [32].

We want to restrict attention to KK(X) in case X is finite. As mentioned
earlier, it makes no difference for our purposes if we assume X, in addition, to
be sober. This is not an unreasonable restriction also in general, since a finite
topological space is sober if and only if it is T0.

So, from now on, assume X is finite and T0.

Definition 3.25. For every locally closed set Y ∈ LC(X), define a functor

FKY : KK(X)→ AbZ/2, FKY (A) := K∗(A(Y )).

By definition, FKY is a stable homological functor for every Y ∈ LC(X).
Meyer-Nest combine the functors FKY for all Y ∈ LC(X) into a single

filtrated K-theory functor. The latter, however, also includes its target category,
which we recall below.
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First, let NT be the small, Z/2-graded, pre-additive category with object
set LC(X), and arrow space NT ∗(Y,Z) equal to the Z/2-graded abelian group
of natural transformations FKY ⇒ FKZ .

Now let Mod(NT ) be the abelian category of grading-preserving, additive

functors NT → AbZ/2.
We may think ofNT as a Z/2-graded ring, with underlying set the direct sum

of NT ∗(Y,Z) for all Y,Z ∈ LC(X). The product is defined as a composition of
morphisms and as zero when the latter is not possible. Then additive functors
NT → AbZ/2 become actual Z/2-graded modules over this graded ring. So we
will refer to them as NT -modules. This also explains the notation.

Definition 3.26. The filtrated K-theory is the functor

FK = (FKY )Y ∈LC(X) : KK(X)→Mod(NT )c, A 7→
(

K∗(A(Y ))
)
Y ∈LC(X)

,

where Mod(NT )c is the full subcategory of countable modules in Mod(NT ).

We have a representability theorem for the functors in Definition 3.25:

Theorem 3.27 (Meyer-Nest [32, Theorem 2.5]). Let X be a finite topological
space. The covariant functors FKY for Y ∈ LC(X) are representable, that is,
there are objects RY ∈ KK(X) and natural isomorphisms

KK∗(X;RY , A) ∼= FKY (A) = K∗
(
A(Y )

)
for all A ∈ KK(X), Y ∈ LC(X).

We also need to recall the explicit description of the objects RY for Y ∈
LC(X), since we will be dealing with them quite frequently. For this we define
the specialization preorder � on X: for any x, y ∈ X,

x � y ⇐⇒ {x} ⊆ {y}.

Since X is finite and T0, this preorder totally determines the topology; namely,
a subset Y ⊆ X is open if and only if for every y in Y , y � x implies x ∈ Y ,
and it is closed if and only if for every y ∈ Y , x � y implies x ∈ Y . Then a
subset Y ⊆ X is locally closed if and only if x � y � z and x, z ∈ Y implies
y ∈ Y . The topology given by a preorder in this fashion is called Alexandrov
topology.

Let Ch(X) be a simiplicial set with the chains x0 � x1 � · · · � xn as
n-simplices, with face maps deleting an entry of the chain and with degeneracy
maps doubling it. Denote by SX the set of all strict chains in X. For every
strict chain I = (x0 ≺ x1 ≺ · · · ≺ xn), let ∆I be a copy of ∆n, the standard
n-simplex. Also, let ∆o

I := ∆n \ ∂∆n be the open simplex. Then the underlying
set of the geometric realization of Ch(X) (for which we also write Ch(X)) can
be represented as a disjoint union

Ch(X) =
∐
I∈SX

∆o
I .
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Let Xop be X with the Alexandrov topology of the reversed partial order �.
Then, because of the disjoint union decomposition above, one can construct a
continuous map [32, Proposition 2.8]

(m,M) : Ch(X)→ Xop ×X,

where for x ∈ ∆o
I , we define m(x) = min I and M(x) = max I, where min I

and max I are the minimal and the maximal elements of the chain I in SX ,
respectively.

Let R := C
(

Ch(X)
)
, the C*-algebra of continuous functions on Ch(X).

Since
PrimR = Prim C

(
Ch(X)

) ∼= Ch(X),

the map (m,M) turns R into a C*-algebra over Xop ×X.

Definition 3.28. Let RY be the restriction of R to Y op ×X, viewed as an
X-C∗-algebra via the coordinate projection Y op ×X → X, where Y op ⊆ Xop.

In other words,

RY (Z) := R(Y op × Z) = C0

(
m−1(Y ) ∩M−1(Z)

)
.

The objects RY for Y ∈ LC(X) generate an important class of triangles in
KK(X). Let Y ∈ LC(X) and U ∈ O(Y ). Then m−1(Y \ U) is open in m−1(Y ),
and for any Z ∈ LC(X) we have a C*-algebra extension

C0

(
m−1(Y \ U) ∩M−1(Z)

)
↪→ C0

(
m−1(Y ) ∩M−1(Z)

)
� C0

(
m−1(U) ∩M−1(Z)

)
.

Moreover, there exists a completely positive and contractive section C0

(
m−1(U)∩

M−1(Z)
)
→ C0

(
m−1(Y ) ∩M−1(Z)

)
. Therefore, by definition

RY \U ↪→ RY � RU

is a semi-split extension of X-C*-algebras.

Lemma 3.29. Let Y ∈ LC(X) and U ∈ O(Y ). Then the triangle

ΣRU → RY \U → RY → RU

is exact in KK(X).

Now we want to view this construction through the lens of relative homo-
logical algebra in KK(X). The starting point is the homological ideal defined
by the filtrated K-theory functor

I :=
⋂

Y ∈LC(X)

ker FKY .

Once we fix I, the following theorem naturally leads us to consider the ring
of natural transformations NT and the filtrated K-theory functor.
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Theorem 3.30 (Meyer-Nest [32, Theorem 4.4]). The filtrated K-theory FK :
KK(X)→Mod(NT )c is the universal I-exact stable homological functor.

The next step is to define an analogue of a bootstrap subcategory in KK(X).
As it turns out, the localizing subcategory generated by I-projective objects,
that is, 〈PI〉, is a good candidate. However, first we would like to define it
independently of I.

For every point in X, consider the inclusion {x} ↪→ X. This defines a
C*-algebra ix(C) := (C, x) over X, where by x we denote the map Prim(C) ∼=
{x} ↪→ X. In other words,

ix(C)(Y ) =

{
C if x ∈ Y,
0 otherwise

for all Y ∈ LC(X).

Definition 3.31. The bootstrap category B(X) ⊂ KK(X) is the localizing
subcategory of KK(X) generated by the objects ix(C) for x ∈ X.

Proposition 3.32 (Meyer-Nest [32, Proposition 4.3]). The bootstrap category
is the localizing subcategory of KK(X) that is generated by I-projective objects,
that is, B(X) ∼= 〈PI〉.

We could go on now and produce a Universal Coefficient Theorem using
the general machinery of Theorem 2.12 for finite X. However, since we will
mainly deal with a more concrete case, we now restrict our attention to a more
specialized class of spaces.

Filtrations

Say the preordered set corresponding to a finite space X is a totally ordered set
of n elements. For a T0 space (this is always assumed), this is equivalent to X
having a totally ordered lattice of open subsets. In other words, X = {1, . . . , n}
and every open set is of the form

[a, n] := {x ∈ X | a ≤ x ≤ n} for some a ∈ X.

From now on, assume X to be such a space.
By (3.2), a C*-algebra over X is a C*-algebra A together with ideals

Ia := A([a, n]) for every open set in [a, n] ∈ O(X). By the monotonicity
condition, this amounts to a filtration

In / In−1 / · · · / I2 / I1 ∼= A.

An X-equivariant *-homomorphism f : A→ A′ of two C*-algebras over X
by definition maps f(Ia) ⊆ I ′a for every a ∈ X. Therefore, we exactly get
the maps of filtrations. We conclude that the category of C*-algebras over a
finite space X with totally ordered lattice of open subsets is equivalent to the
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category of filtrations of C*-algebras of fixed length. The latter category is of
main interest to us.

Any locally closed subset Y = U \ V , for U, V ∈ O(X), is of the form

Y = [a, b] := {y ∈ X | a ≤ y ≤ b}

for some a, b ∈ X with a ≤ b. Then A(Y ) = A([a, b]) = Ia/Ib+1.
Now we would like to explicitly compute the category NT for KK(X). For

this we need to find all natural transformations of functors FKY ⇒ FKZ for
Y,Z ∈ LC(X). We can actually guess some of them. For Y ∈ LC(X), if
U ∈ O(Y ), the C*-algebra extension A(U) ↪→ A(Y ) � A(Y \U) gives a natural
six-term exact sequence

K0

(
A(U)

)
// K0

(
A(Y )

)
// K0

(
A(Y \ U)

)
��

K1

(
A(Y \ U)

)
OO

K1

(
A(Y )

)
oo K1

(
A(U)

)
.oo

(3.3)

By definition, this leads to natural transformations FKU ⇒ FKY ⇒ FKY \U ⇒
FKU [1], where [1] denotes the degree exchanging functor on AbZ/2. It turns out
that these generate all natural transformations in our case.

Theorem 3.27 together with the Yoneda Lemma gives

NT ∗(Y, Z) ∼= KK∗(X;RZ ,RY ) ∼= FKZ(RY ) = K∗
(
RY (Z)

)
= K∗

(
R(Y op × Z)

)
= K∗

(
m−1(Y ) ∩M−1(Z)

)
.

In our case, Ch(X) is an (n− 1)-dimensional closed simplex. Let ∆[a,b] denote
the (b− a)-dimensional face of Ch(X) corresponding to [a, b] ∈ LC(X). Then
for the map

(m,M) : Ch(X)→ Xop ×X,

we have m(x) = a and M(x) = b for x ∈ ∆o
[a,b].

Therefore, computing NT ∗(Y, Z) comes down to computing the topological
K-theory of some simplicial complexes. For Y = [a, b] and Z = [c, d], one gets
[32, Section 3.1]:

NT ∗(Y, Z) ∼= K∗
(
R[a,b]([c, d])

) ∼=

Z[0] if c ≤ a ≤ d ≤ b,
Z[1] if a < c and b < d and c− 1 ≤ b,
0 otherwise,

(3.4)

where Z[0] denotes the Z/2-graded abelian group (Z, 0) ∈ AbZ/2 and Z[1] is the
shorthand for (Z[0])[1]. These are exactly the expected conditions from (3.3).

The conditions (3.4) give a handy way to diagrammatically depict the
category NT (see Figure 2.1). In the diagram, every arrow Y → Z for
Y,Z ∈ LC(X) represents a generator of the category NT ∗(Y, Z); general
elements in NT ∗(Y, Z) are paths in Figure 2.1. The squares commute and the
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... [1, 1] [1, n] [n, n] ...

... [1, 2] [2, n] [1, n−1] [n−1, n] ...

... ... [3, n] [2, n−1] [1, n−2] [n−2, n] ...

... [1, n−3] ... ... ... ... ... ...

... [1, n−2] [n−2, n] [n−3, n−1] [n−4, n−2] ... [1, 3] [3, n] ...

... [1, n−1] [n−1, n] [n−2, n−1] [n−3, n−2] ... [2, 3] [1, 2] [2, n] ...

[1, n] [n, n] [n−1, n−1] [n−2, n−2] ... [3, 3] [2, 2] [1, 1] [1, n]

Figure 2.1: The invariant triangle is marked with dotted lines.
Dashed arrows are odd. The dashed square represents the set BY
for Y = [n− 3, n− 1].

diagram is assumed to be filled with zeros outside the drawn “strip”. A product
of generators is 0 if and only if it factors through one of the zeros outside the
strip, and this gives all relations among the generators. Dashed arrows represent
degree one maps. Figure 2.1 really shows how NT is generated by the maps
from the six-term exact sequences (3.3), and how it is represented by what we
will call an invariant triangle diagram. This triangle diagram, marked with
dotted lines, maps to the flipped version of itself infinitely via degree shifting
maps.

By the classical Universal Coefficient Theorem, the K-theory functor is a
complete invariant for the classical bootstrap class B ∼= 〈C〉 of C*-algebras. So
since K∗(C) ∼= Z[0] and K∗(ΣC) = K∗(C0(R)) ∼= Z[1], equation (3.4) gives

R[a,b]([c, d]) ∼=


C if c ≤ a ≤ d ≤ b,
C0(R) if a < c and b < d and c− 1 ≤ b,
0 otherwise.

(3.5)

In the bootstrap class, the objects RY for Y ∈ LC(X) are completely
determined by the conditions (3.4). Since K∗

(
RY (Z)

) ∼= NT ∗(Y,Z), the X-
C∗-algebra RY is represented in this diagram by a “maximal box” starting at
Y : a subdiagram of all Z ∈ LC(X) to which the group of morphisms from Y
in NT is non-zero. We denote the set of all such Z by BY (see Figure 2.1); so

BY := {Z ∈ LC(X) | K∗(RY (Z)) � 0}.

We will also frequently use the localized version of these representative
elements. Let p ∈ SpecZ; recall that Fp = Z/p for p 6= 0, and Fp = Q for p = 0.

When we say that an object in the Kasparov category or the bootstrap class
is unique, we of course mean the uniqueness up to KK-equivalence.

Definition 3.33. For p ∈ SpecZ, let κ(p) be the unique C∗-algebra in B with
K∗(κ(p)) ∼= Fp[0].

29



2. Preliminaries

Definition 3.34. For p ∈ SpecZ and Y ∈ LC(X), let

RpY := RY ⊗ κ(p).

Remark 3.35. Since K∗(RY ) is torsion-free, the Künneth formula gives

K∗(RpY ) = K∗(RY ⊗ κ(p)) ∼= K∗(RY )⊗Z K∗(κ(p)).

So we get the same conditions as (3.4) and (3.5) for Rp[a,b]([c, d]), but with Z[i]

replaced by Fp[i] and C[i] by κ(p)[i] for i = 0, 1.

For classification purposes, it is important to characterize NT -modules in
the image of the filtrated K-theory functor. We see that these modules should
have certain exactness properties coming from (3.3). Following this, we define

Definition 3.36. An NT -module M is exact if the chain complexes

· · · −→M(U) −→M(Y ) −→M(Y \ U) −→M(U) −→ · · ·

are exact for all Y ∈ LC(X), U ∈ O(Y ) with maps coming from the generators
in (3.4).

Meyer-Nest show that exact modules also behave nice homologically:

Theorem 3.37 (Meyer-Nest [32, Theorem 4.9]). Let M ∈Mod(NT )c. Then
M = FK(A) for some A ∈ KK(X) if and only if M is exact and if and only if
M has a projective resolution of length 1 as an NT -module.

As for the Universal Coefficient Theorem, putting together Theorem 3.37
and Theorem 2.12 gives

Theorem 3.38 (Meyer-Nest [32, Theorem 4.10]). For any A ∈ B(X) and
B ∈ KK(X), there are natural short exact sequences

Ext1
NT
(
FK(A)[j+1],FK(B)

)
↪→ KKj(X;A,B) � HomNT

(
FK(A)[j],FK(B)

)
for j ∈ Z/2, where [j] and [j + 1] denote degree shifts.

In the classical case, as a corollary to the Universal Coefficient Theorem,
K-theory is a complete invariant for C*-algebras in B. This also uses the
property that the category of abelian groups is hereditary, that is, all abelian
groups have one-step projective resolutions. This corollary is one of the main
appeals of a Universal Coefficient Theorem, since it allows to classify certain
C*-algebras by their K-theory. As a parallel in our setting, we get

Corollary 3.39 (Meyer-Nest [32, Theorem 4.8]). Let M ∈ Mod(NT )c have
a projective resolution of length 1. Then there is A ∈ B(X) with FK(A) ∼= M ,
and this object is unique up to isomorphism in B(X).
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Direct sum decomposition

We are also interested in which exact modules are the K-theories of representable
objects RY for Y ∈ LC(X).

Definition 3.40. The free NT -module on Y , for Y ∈ LC(X), is defined by

QY (Z) := NT ∗(Y, Z) for every Z ∈ LC(X).

An NT -module is free if it is isomorphic to a direct sum of degree-shifted free
modules QY [j], j ∈ Z/2.

Theorem 3.41 (Meyer-Nest [32, Theorem 3.12]). Let M ∈Mod(NT )c. Then
M is a free NT -module if and only if M(Y ) is a free abelian group for all
Y ∈ LC(X) and M is exact.

This theorem is a consequence of the fact that in case M(Y ) is free for all
Y ∈ LC(X), a 1-step projective resolution of M degenerates to a length zero
resolution, making M itself projective and as a consequence free.

For our classification, we will use the localized version of Theorem 3.41. For
p ∈ SpecZ, let

NT p := NT ⊗Z Fp[0].

Definition 3.42. The free NT p-module on Y , for Y ∈ LC(X) and p ∈ SpecZ,
is defined by

QpY (Z) := NT p∗(Y, Z) = NT ∗(Y,Z)⊗Z Fp[0] for every Z ∈ LC(X).

An NT p-module is free if it is isomorphic to a direct sum of degree-shifted free
modules QpY [j], j ∈ Z/2.

Even though the following theorem is not proved in the article by Meyer-
Nest, we still give it here without a proof; the reason is that the proof is word
by word the same as for Theorem 3.41, one just needs to replace the ring NT
with NT p.

Theorem 3.43. Let M ∈ Mod(NT )c and p ∈ SpecZ. Then M is a free
NT p-module if and only if M(Y ) is an Fp-vector space for all Y ∈ LC(X) and
M is exact.

Recall that a multiset is a collection of objects in which the elements are
allowed to repeat.

As an easy corollary of Theorem 3.43 we get:

Corollary 3.44. Let M ∈ Mod(NT )c, p ∈ SpecZ and j = 0, 1. Then
M ∼=

⊕
Y ∈J FK

(
RpY
)
[jY ] for some (possibly countably infinite) multiset J

with elements from LC(X) if and only if M(Y ) is an Fp-vector space for all
Y ∈ LC(X) and M ∼= FK(A) for some A ∈ KK(X).
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Proof. Say M(Y ) is an Fp-vector space for all Y ∈ LC(X) and M ∼= FK(A)
for some A ∈ KK(X). By Theorem 3.37 the latter conditions mean that M is
exact. Then by Theorem 3.43, conditions (3.4) and Remark 3.35

M(Z) ∼=
⊕
Y ∈J
NT p∗(Y,Z)[jY ] ∼=

⊕
Y ∈J
NT ∗(Y, Z)[jY ]⊗Z Fp[0]

∼=
⊕
Y ∈J

K∗
(
RY (Z)

)
[jY ]⊗Z Fp[0] ∼=

⊕
Y ∈J

K∗
(
RpY (Z)

)
[jY ].

Since M =
⊕

Z∈LC(X)M(Z), the definition of filtrated K-theory gives

M ∼=
⊕

Z∈LC(X)

⊕
Y ∈J

K∗
(
RpY (Z)

)
[jY ] ∼=

⊕
Z∈LC(X)

⊕
Y ∈J

FKZ(RpY )[jY ]

∼=
⊕
Y ∈J

⊕
Z∈LC(X)

FKZ(RpY )[jY ] ∼=
⊕
Y ∈J

FK(RpY )[jY ].

The reverse implication follows directly from Remark 3.35.
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4 Properties of B(X) and cohomological support

In this section, we collect some facts that will be used later to prove the
classification theorem.

4.1 Some general results for B(X)

In this subsection, X denotes an arbitrary topological space.

Definition 4.1. For an abelian group G, let κ(G) be the unique object in
B := B({∗}) with K0(κ(G)) = G and K1(κ(G)) = 0.

For example, in this notation κ(p) = κ(Fp).

Lemma 4.2. κ(−) has the following properties:
(i) κ(

⊕
i∈I Gi)

∼=
⊕

i∈I κ(Gi);
(ii) Let (Gi, f

i
j) be a countable inductive system and (κ(Gi), α

i
j) its lift by

K-theory. Then κ(lim−→Gi) ∼= ho-lim−→κ(Gi).

Proof. (i) follows from additivity of K-theory.
(ii) By definition, the homotopy limit fits in an exact triangle

Σ ho-lim−→κ(Gi) −→
⊕

κ(Gi)
id−shiftα−−−−−−→

⊕
κ(Gi) −→ ho-lim−→κ(Gi).

After applying the K-theory functor and decomposing the resulting exact
sequence into short exact sequences, we get

coker(id− shiftf ) ↪→ K∗(ho-lim−→κ(Gi)) � ker(id− shiftf ).

Now ker(id− shiftf [1]) ∼= 0 and coker(id− shiftf ) ∼= lim−→Gi by definition.

Lemma 4.3. Let S ⊂ B(X) be a localizing subcategory. For any A ∈ S and G
a countable abelian group, we have A⊗ κ(G) ∈ S.

Proof. First let G be finitely generated. Then G ∼= Zn ⊕ Z/pi11 · · · ⊕ Z/pimm .
Now A ⊗ κ(Z) ∼= A ⊗ C ∼= A ∈ S. Next consider the short exact sequence of
Z/2-graded abelian groups

0→ Z[0]
p
ik
k−−→ Z[0]→ Z/pikk [0]→ 0. (4.1)

Let K be the algebra of compact operators on a separable infinite-dimensional

Hilbert space. Since K∗(K) ∼= Z[0], let K
p̃
ik
k−−→ K denote the map that induces
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the multiplication with pikk in K-theory. Then (4.1) lifts to the following unique
triangle in B:

Σκ(Z/pikk ) −→ K
p̃
ik
k−−−→ K −→ κ(Z/pikk ). (4.2)

Now K is KK-equivalent to the C∗-algebra of complex numbers; hence the
triangle (4.2) is isomorphic to the triangle

Σκ(Z/pikk ) −→ C −→ C −→ κ(Z/pikk ). (4.3)

Tensoring (4.3) with A leads to the triangle

Σ
(
A⊗ κ(Z/pikk )

)
−→ A −→ A −→ A⊗ κ(Z/pikk ).

We conclude that A ⊗ κ(Z/pikk ) ∈ S. Thus A ⊗ κ(G) ∈ S. Now let G be an
arbitrary countable abelian group. Then G ∼= lim−→j∈NHj , where Hj ⊆ G are

finitely generated subgroups. We have

A⊗ κ(G) ∼= A⊗ κ(lim−→Hj) ∼= ho-lim−→A⊗ κ(Hj) ∈ S.

Corollary 4.4. For any D ∈ B and A ∈ B(X), if A ∈ S then A⊗D ∈ S.

Proof. D ∼= κ(G) ⊕ κ(H)[1] for some abelian groups G and H, namely, G =
K0(D) and H = K1(D).

Lemma 4.5. For all A ∈ B(X), 〈A〉 ∼= 〈A⊗ κ(p) | p ∈ SpecZ〉.

Proof. By Lemma 4.3, A ⊗ κ(Q), A ⊗ κ(Q/Z) ∈ 〈A〉. Moreover, there is an
exact triangle

Σ
(
A⊗ κ(Q/Z)

)
−→ A −→ A⊗ κ(Q) −→ A⊗ κ(Q/Z).

So 〈A〉 ∼= 〈A⊗ κ(Q), A⊗ κ(Q/Z)〉. We also have the isomorphisms

A⊗ κ(Q/Z) ∼= A⊗
⊕

p prime

κ
(
Z
[1
p

]
/Z
) ∼= ⊕

p prime

A⊗ κ
(

lim−→
n

Z/pnZ
)

∼=
⊕

p prime

ho-lim−→A⊗ κ(Z/pnZ).

These isomorphisms, together with the exact triangles

Σ
(
A⊗κ

(
Z
[1
p

]
/Z
))
→ A⊗κ(Z/pnZ)→ A⊗κ

(
Z
[1
p

]
/Z
) id⊗p̃n−−−−→ A⊗κ

(
Z
[1
p

]
/Z
)

and

Σ
(
A⊗κ(Z/pmZ)

)
→ A⊗κ(Z/pnZ)

id⊗p̃m−−−−→ A⊗κ(Z/pn+mZ)→ A⊗κ(Z/pmZ)

imply that
〈A⊗ κ(Q/Z)〉 ∼= 〈A⊗ κ(p) | p ∈ SpecZ\{0}〉.
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4.2 Cohomological support

Recall that every abelian group has a one-step minimal injective resolution,
which is unique up to isomorphism. Also, every injective abelian group is
isomorphic to a direct sum of indecomposable ones, namely, Q and Z[ 1

p ]/Z,

where p is a prime number [26]. All this naturally extends to graded abelian
groups.

Let p ∈ SpecZ. We say that p appears in a minimal injective resolution of
the abelian group G if Z[ 1

p ]/Z for p 6= 0, and Q for p = 0, appears in degree
zero or one in the direct sum decomposition of the minimal injective resolution
of G. We define

suppZG := {p ∈ SpecZ | p appears in a minimal injective resolution of G}.

Lemma 4.6. Let A ∈ B. Then A⊗ κ(p) � 0 if and only if p ∈ suppZ K∗(A).

Proof. First, assume p ∈ suppZ K∗(A) and p 6= 0; that is, Z[ 1
p ]/Z appears in

some degree as a direct summand of M0 or M1, where K∗(A) ↪→M0 �M1 is a
minimal injective resolution of Z/2-graded abelian groups. If it appears in M0

in degree k, then im(K∗(A)) ∩ Σk(Z[ 1
p ]/Z) � {0} (here we use Σ to denote the

shift functor, in order not to confuse it with adjoining an element) because M0

is an essential extension of K∗(A). So K∗(A) contains an isomorphic copy of
Σk(Z[ 1

p ]/Z) or Σk(Z/pn) for some n ∈ N (arbitrary subgroup of Σk(Z[ 1
p ]/Z)).

Thus K∗(A)
p−→ K∗(A) is not an isomorphism. Now if Σk(Z[ 1

p ]/Z) appears as a

direct summand in M1, but not in M0, then M0
p−→M0 is an isomorphism. If we

assume that K∗(A)
p−→ K∗(A) is also an isomorphism, then, by the Five Lemma,

so is M1
p−→ M1, which is a contradiction. So, if p 6= 0 and p ∈ suppZ K∗(A)

then K∗(A)
p−→ K∗(A) is not an isomorphism. Therefore, the lift of this map

A
p̃−→ A is also not an isomorphism. So, cone(A

p̃−→ A) ∼= A⊗ κ(p) � 0.

Conversely, if A ⊗ κ(p) ∼= cone(A
p̃−→ A) � 0, then K∗(A)

p−→ K∗(A) is not

an isomorphism. By the Five Lemma, one of M0
p−→M0 or M1

p−→M1 is not an
isomorphism as well; so Z[ 1

p ]/Z has to appear in some degree in M0 or M1.

Now consider p = 0. Then Q appears in some degree k as a direct summand
of M0 or M1. In the first case, im(K∗(A)) ∩ Σk(Q) � {0}, meaning that K∗(A)
contains a torsion-free subgroup, thus K∗(A)⊗Q � 0. However, we also know
that K∗(A⊗ κ(0)) ∼= K∗(A)⊗Q by the Künneth formula. If now Q does not
appear in M0, then M0 ⊗Q ∼= 0 and tensoring the minimal injective resolution
with Q and using flatness of Q, we conclude that also M1 ⊗Q ∼= 0 and thus Q
does not appear as a direct summand in M1 either.

Conversely, if A⊗ κ(0) � 0, then K∗(A⊗ κ(0)) ∼= K∗(A)⊗Q � 0. As above,
tensoring the minimal injective resolution of K∗(A) with Q, gives M0 ⊗Q � 0,
so 0 ∈ suppZ K∗(A).
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5 Localizing subcategories in the totally ordered case

In this section, we restrict our attention to finite spaces with totally ordered
lattice of open subsets. As observed in the preliminaries, this amounts to
considering X = {1, . . . , n} totally ordered by ≤, where a subset is open if and
only if it is of the form [a, n] := {x ∈ X | a ≤ x ≤ n}, a ∈ X. Then locally
closed subsets are those of the form [a, b] with a ≤ b and a, b ∈ X. The set of
non-empty locally closed subsets is denoted by LC(X).

Definition 5.1. Let L ⊆ B(X) be a localizing subcategory and Y ∈ LC(X).
Define ULY ⊆ SpecZ by

ULY := {p ∈ SpecZ | p ∈ suppZ K∗(A(Y )) for some A ∈ L}.

Remark 5.2. In the introduction, we defined the support of an object A ∈ L in
a localizing subcategory L ⊆ B(X) as

suppA = {(p, Y ) | K∗(A(Y );Fp) 6= 0},

and the support of L as suppL =
⋃
A∈L suppA.

If A ∈ B, we may set K∗(A;Fp) := K∗(A⊗κ(p)). Since the classical Künneth
sequence for K-theory splits, K∗(A⊗ κ(p)) is an Fp-vector space.

Thus, by Lemma 4.6, for a localizing subcategory L ⊆ B(X),

ULY = {p ∈ SpecZ | (p, Y ) ∈ suppL}.

We will prove that these sets are not independent: for any Y ∈ LC(X) and
L ⊆ B(X) a localizing subcategory, if p ∈ ULY then there exists a maximal box

BZ = {W ∈ LC(X) | K∗(RZ(W )) � 0} = {W ∈ LC(X) | K∗(RpZ(W )) � 0},

such that Y ∈ BZ and p ∈ ULV for all V ∈ BZ . In other words, we have

Lemma 5.3. For every localizing subcategory L ⊆ B(X) and Y ∈ LC(X),

ULY =
⋃

Z∈LC(X):
Y ∈BZ

⋂
V ∈BZ

ULV .

Proof. First assume p ∈
⋃
Z:Y ∈BZ

⋂
V ∈BZ ULV . Then p ∈

⋂
V ∈BZ ULV for some Z

with Y ∈ BZ . But then ULY is itself in this intersection. Thus p ∈ ULY .
Now take p ∈ ULY . By definition, there is A ∈ L with p ∈ suppZ K∗(A(Y )).

Lemma 4.6 implies that cone(A(Y )
p̃−→ A(Y )) ∼= A(Y )⊗ κ(p) � 0. This implies

that cone(A
p̃−→ A) � 0 because cone(A

p̃−→ A)(Y ) ∼= cone(A(Y )
p̃−→ A(Y )).

However, FK(cone(A
p̃−→ A))(Z) ∼= K∗(cone(A

p̃−→ A)(Z)) ∼= K∗(A(Z)⊗ κ(p)) is
an Fp-vector space for any Z ∈ LC(X) and p ∈ SpecZ because the classical
Künneth sequence for K-theory splits. Thus, by Corollary 3.44, there exists

36
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a multiset I ⊆ LC(X) such that FK(cone(A
p̃−→ A)) ∼=

⊕
Z∈I FK(RpZ) ∼=

FK(
⊕

Z∈I R
p
Z).

Now we can use Corollary 3.39 and Theorem 3.37 to lift the isomorphism

of filtrated K-theories to an isomorphism in B(X). In other words, cone(A
p̃−→

A) ∼=
⊕

Z∈I R
p
Z . Since K∗

(
cone(A

p̃−→ A)(Y )
)
� 0, there is Z ∈ I such that

RpZ(Y ) � 0. Since L is localizing, it contains all the direct summands of its
objects. Thus RpZ ∈ L.

Since RpZ(V ) = (RZ ⊗κ(p))(V ) ∼= RZ(V )⊗κ(p), the following implications
hold for any V ∈ LC(X):

V ∈ BZ ⇐⇒ K∗(RpZ(V )) � 0

⇐⇒ K∗(RpZ(V )) is isomorphic to Fp[i], i ∈ Z/2
=⇒ p ∈ suppZ(K∗(RpZ(V ))

=⇒ p ∈ ULV ,

where the first two equivalences hold because K∗(RZ(V )⊗κ(p)) ∼= K∗(RZ(V ))⊗
K∗(κ(p)) by to the Künneth formula and because K∗(RZ(V )) ∼= Z[i] for some
i ∈ Z/2. In particular, these implications mean that p ∈

⋂
V ∈BZ ULV , and since

Y ∈ BZ , we get

p ∈
⋃

Z:Y ∈BZ

⋂
V ∈BZ

ULV .

Remark 5.4. Since ULY is itself in every intersection over which we are taking
the unions in

⋃
Z,Y ∈BZ

⋂
V ∈BZ ULV , we can factor it out and get

ULY = ULY ∩
⋃

Z∈LC(X):
Y ∈BZ

⋂
V 6=Y
V ∈BZ

ULV .

Therefore, Lemma 5.3 is equivalent to

ULY ⊆
⋃

Z∈LC(X):
Y ∈BZ

⋂
V 6=Y
V ∈BZ

ULV .

Definition 5.5. For a localizing subcategory L ⊆ B(X) and Y ∈ LC(X),
define VLY ⊆ SpecZ by

VLY := {p ∈ SpecZ | RpY ∈ L}.

Lemma 5.6. For any localizing subcategory L ⊆ B(X),

L ∼= 〈RpY | p ∈ VLY , Y ∈ LC(X)〉.

Proof. 〈RpY | p ∈ VLY , Y ∈ LC(X)〉 ⊆ L by definition.
Now if A ∈ L, then A ∈ 〈A⊗ κ(p) | p ∈ SpecZ〉 by Lemma 4.5. But as was

shown in the proof of Lemma 5.3, A⊗ κ(p) ∼= cone(A
p̃−→ A) ∼=

⊕
Z∈I R

p
Z with

RpZ ∈ L for Z ∈ I. Thus also A ∈ 〈RpY | p ∈ VLY , Y ∈ LC(X)〉.
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By Lemma 5.6, specifying the sets VLY ⊆ SpecZ for all Y ∈ LC(X) com-
pletely determines the localizing subcategory L. Our aim is to show that the
sets ULY for all Y ∈ LC(X) determine the sets VLY , and thus L itself. However,
in order to show this, we first need to prove some preliminary statements.

Lemma 5.7. Let Y, V,W ∈ LC(X). If Y equals V ∩W or V ∪W or V \W ,
then RY ∈ 〈RV ,RW 〉.

Proof. First, say V ∪W /∈ LC(X). This implies V \W = V and V ∩W = ∅,
trivially giving the assertion. The same way, if V \W /∈ LC(X), we must have
W ⊂ V , thus V ∪W = V and V ∩W = W , giving the result. Similarly, the
assertion is trivial if W \ V /∈ LC(X). So we assume V ∪W, V \W, W \ V ∈
LC(X). Write V = [v1, v2] and W = [w1, w2]. Without loss of generality,
we can also assume v1 ≤ w1, v2 ≤ w2 by exchanging V and W if necessary.
However, since we sacrificed the symmetry, we have to prove the lemma for
Y = W \ V as well.

Let Z ∈ LC(X) and U ∈ O(Z). By Lemma 3.29 this gives an exact triangle

ΣRU → RZ\U → RZ → RU

in KK(X).
Since W \ V = [v2 + 1, w2] is open in V ∪W = [v1, w2], V ∩W = [w1, v2] is

open in V = [v1, v2] and W = [w1, w2] is open in V ∪W = [v1, w2], we get the
following exact triangle

ΣRW\V → RV → RV ∪W → RW\V
along with two exact triangles fitting in a commutative square

ΣRV ∩W // RV \W // RV

��

// RV ∩W

ΣRW // RV \W // RV ∪W // RW

By the octahedral axiom, there exists a map RV ∩W → RW such that the
third square in the above diagram will be homotopy cartesian; in other words,
there is an exact triangle

ΣRW → RV → RV ∪W ⊕RV ∩W → RW

These four triangles show that RW\V ,RV ∩W ,RV ∪W ,RV \W ∈ 〈RV ,RW 〉.

Now we proceed to prove the key proposition.

Proposition 5.8. For a localizing subcategory L ⊆ B(X), we have

VLY =
⋂

Z∈BY

ULZ .
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5. Localizing subcategories in the totally ordered case

Proof. If p ∈ VLY , then RpY ∈ L by definition. Also, exactly as for Lemma 5.3,

Z ∈ BY ⇐⇒ K∗(RpY (Z)) � 0

⇐⇒ K∗(RpY (Z)) is isomorphic to Fp[i] for i ∈ Z/2
=⇒ p ∈ suppZ(K∗(RpY (Z))

=⇒ p ∈ ULZ .

Thus p ∈
⋂
Z∈BY ULZ .

The opposite inclusion needs more work. Let p ∈
⋂
Z∈BY ULZ . As in the

proof of Lemma 5.3, this means that for any Z ∈ LC(X) with Z ∈ BY , there
exists W ∈ LC(X) with Z ∈ BW and RpW ∈ L. Let J ⊆ LC(X) be the set
of all such W ’s. Tensoring with κ(p) is an exact functor and commutes with
coproducts. So RY ∈ 〈RW | W ∈ J〉 implies RpY ∈ 〈R

p
W | W ∈ J〉 ⊆ L and

thus p ∈ VLY . Therefore, it suffices to prove RY ∈ 〈RW |W ∈ J〉.
First, we show that Y is covered by intervals in J . Let Y = [a, b]. For any

i ∈ [a, b], by (3.4), we have [1, i] ∈ B[a,b] because 1 ≤ a ≤ i ≤ b. So we know that
there exists W ∈ J with [1, i] ∈ BW . Let W = [a1, b1]. Since [1, i] ∈ B[a1,b1],
again by (3.4), there is only one possibility, namely 1 ≤ a1 ≤ i ≤ b1, which
means i ∈W .

Now, let M i be the interval of minimal length such that i ∈ M i and
RMi ∈ 〈RW |W ∈ J〉. Such an interval is unique; if N i is another interval with
the same properties, then i ∈ M i ∩N i, RMi∩Ni ∈ 〈RW | W ∈ J〉 by Lemma
5.7 and |M i ∩N i| < |M i|, contradicting minimality.

We want to demonstrate that M i ⊆ Y ; because then Y =
⋃
j∈Y M

j , and
by Lemma 5.7, RY ∈ 〈RW |W ∈ J〉, concluding the proof of the proposition.

Let M i = [k, l]. Assume k < a. Now, by (3.4), [k + 1, i] ∈ B[a,b] because
k + 1 ≤ a ≤ i ≤ b. Therefore, there exists W ∈ J with [k + 1, i] ∈ BW . Let
W = [c, d]. Again by (3.4), we have two possibilities:

Case 1 k + 1 ≤ c ≤ i ≤ d. Then [c, d] ∩ [k, l] = [c,min{d, l}], and thus
R[c,min{d,l}] ∈ 〈RW | W ∈ J〉 by Lemma 5.7. But c ≤ i ≤ min{d, l},
thus i ∈ [c, d] ∩ [k, l]. Moreover, |[c, d] ∩ [k, l]| < |[k, l]| because k < c and
min{d, l} ≤ l; this contradicts the minimality of [k, l].

Case 2 c < k + 1, d < i, k ≤ d. Then [k, l] \ [c, d] = [d + 1, l] because
c ≤ k, d < i ≤ l. Thus R[d+1,l] ∈ 〈RW | W ∈ J〉 by Lemma 5.7. Since
d+1 ≤ i ≤ l, i ∈ [d+1, l]. Moreover, |[d+1, l]| < |[k, l]| because k < d+1;
this contradicts the minimality of [k, l].

We conclude that a ≤ k. Assume b < l. Now, by (3.4), [i + 1, l] ∈ B[a,b]

because a < i + 1, b < l, i ≤ b. Therefore, there exists W = [c, d] ∈ J with
[i+ 1, l] ∈ B[c,d]. Again, there are two cases to consider:

Case 1 i + 1 ≤ c ≤ l ≤ d. Then [k, l] \ [c, d] = [k, c − 1] because k < c, l ≤ d.
Thus R[k,c−1] ∈ 〈RW | W ∈ J〉 by Lemma 5.7. Since k ≤ i ≤ c − 1,
i ∈ [k, c − 1]. Moreover, |[k, c − 1]| < |[k, l]| because c − 1 < l; this
contradicts the minimality of [k, l].
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Case 2 c < i + 1, d < l, i ≤ d. Then [c, d] ∩ [k, l] = [max{k, c}, d], and thus
R[max{k,c},d] ∈ 〈RW | W ∈ J〉 by Lemma 5.7. But max{k, c} ≤ i ≤ d,
thus i ∈ [c, d] ∩ [k, l]. moreover, |[c, d] ∩ [k, l]| < |[k, l]| because d < l; this
contradicts the minimality of [k, l].

Finally, we have a ≤ k ≤ l ≤ b; that is, M i ⊆ Y . This finishes the proof of the
proposition.

Now we are ready to prove the main theorem of this section. We will restate
it by concretely constructing the isomorphism. Let m = |LC(X)| be the number

of non-empty intervals in X; that is, if X has n points, m = n(n+1)
2 .

Theorem 5.9. There is an inclusion-preserving isomorphism between localizing
subcategories of B(X) and those elements (UY1

, . . . ,UYm) ∈ P(SpecZ)m of the
m-fold Cartesian product of subsets of the Zariski spectrum of the ring of integers,
labeled by intervals Yi ⊆ X, which satisfy UYi =

⋃
j,Yi∈BYj

⋂
Yk∈BYj

UYk for all

i = 1, . . . ,m. The isomorphism and its inverse map are given by

L 7−→ {ULYi}
m
i=1

〈RpYi | p ∈
⋂

Yj∈BYi

UYj , i = 1, . . . ,m〉 ←− [ {UYi}mi=1.

Proof. By Proposition 5.8, the sets ULYi determine the sets VLYi and therefore,
by Lemma 5.6, the localizing subcategory L.

It remains to show that if L = 〈RpYi | p ∈
⋂
Yj∈BYi

UYj , i = 1, . . . ,m〉, then

UYi = ULYi
for all i.

Let p ∈ UYi , then p ∈
⋃
j,Yi∈BYj

⋂
Yk∈BYj

UYk . Therefore, there exists j

such that RpYj ∈ L and RpYj (Yi) � 0, since Yi ∈ BYj . This, in turn, implies that

p ∈ suppZK∗(RpYj (Yi)). Thus p ∈ ULYi .

Now let p ∈ ULYi . Then, as in the proof of Lemma 5.3, there exists j such that
RpYj ∈ L and RpYj (Yi) � 0. It follows that for any set of generators of L, at least
one generator has to not vanish at Yi because L contains an object not vanishing
at Yi and exact triangles in L come from short semi-split exact sequences of
C∗-algebras over X. In particular, there must exist k with p ∈

⋂
Yl∈BYk

UYl

and RpYk ∈ L. Since Yi ∈ BYk , we get p ∈ UYi .

Remark 5.10. Remark 5.2 identifies the set {ULYi}
m
i=1 with suppL. So Theorem

5.9 shows that every localizing subcategory is uniquely determined by its support
and describes which sets can appear as the support of a localizing subcategory.

5.1 Case of extensions

To illustrate Theorem 5.9, let X = {1, 2} be the Sierpiński space, a two point
topological space whose open sets are

O(X) = {∅, {2}, {1, 2}}.
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The category of C∗-algebras over X is equivalent to the category of exten-
sions of C∗-algebras. We have three non-empty locally closed sets, LC(X) =
{{1}, {2}, {1, 2}}. The conditions on the sets UY for Y ∈ LC(X) translate to

U{1} ⊆ U{2} ∪U{1,2}, U{2} ⊆ U{1} ∪U{1,2}, U{1,2} ⊆ U{1} ∪U{2}.

Therefore, we get:

Corollary 5.11. There is a bijection between localizing subcategories of the
Kasparov category of extensions of C∗-algebras and those triples of subsets of
SpecZ which have the property that each one is inside the union of the other
two. The bijection and its inverse map are given by

L 7−→

 {suppZ K∗(I) | I / A ∈ L}
{suppZ K∗(A) | I / A ∈ L}
{suppZ K∗(A/I) | I / A ∈ L}


〈 κ(p) / κ(p) p ∈ U{2} ∩U{1,2}

0 / κ(q) q ∈ U{1,2} ∩U{1}
κ(s)[1] / 0 s ∈ U{1} ∩U{2}

〉
←− [

 U{2}
U{1,2}
U{1}

 .

This example already demonstrates a difference between the classification
of Theorem 5.9 and other instances in the literature, where the triangulated
category T in question carries an action of a commutative ring. In the latter
case, as explained in the introduction, the lattice of localizing subcategories
Loc(T) is isomorphic to the lattice of subsets of some topological space Y , where,
in addition, the topology on Y determines certain structure on Loc(T). In this
case, one can regard Y as a good candidate for a topological space associated
to T. However, this construction is not possible for B(X).

Theorem 5.12. The lattice of localizing subcategories Loc
(
B(X)

)
of the boot-

strap category B(X) is not isomorphic to the sublattice of a subset lattice P(S)
for any set S.

Proof. Assume such an isomorphism:

φ : Loc
(
B(X)

) ∼=−→ L,

where L ⊆ P(S) is a sublattice of a subset lattice of some set S.
First, we want to show that we can assume φ(〈0〉) = ∅, where 〈0〉 denotes

the trivial localizing subcategory. If this is not the case, let

L̃ := {A ∈ P
(
S \ φ(〈0〉)

)
| A ∪ φ(〈0〉) ∈ L}.

Define L
α−→ L̃ by α(A) = A \ φ(〈0〉). Since φ is an isomorphism, φ(〈0〉) is a

least element in L. It directly follows that α is a lattice isomorphism. So we
can replace φ with α ◦ φ and consider L̃ instead of L. However, α ◦ φ(〈0〉) = ∅.
So we may assume φ(〈0〉) = ∅.
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Figure 3.1: The first picture shows the noncrossing partition
{{1, 2, 4}, {3}, {5, 6}} of the regular hexagon represented as vertices
on a circle. The partition {{1, 2, 4}, {3, 6}, {5}} on the second
picture is crossing.

By Corollary 5.11, elements of Loc
(
B(X)

)
are characterized by triples of

subsets of SpecZ, which have the property that each one is inside the union of
the other two. In particular, for some prime p ∈ SpecZ, we have three localizing
subcategories described by triples ({p}, {p}, ∅), (∅, {p}, {p}) and ({p}, ∅, {p}).
Let φ({p}, {p}, ∅) = A, φ(∅, {p}, {p}) = B and φ({p}, ∅, {p}) = C for some
non-empty A,B,C ∈ L.

Since φ is order preserving and ({p}, {p}, ∅) ⊂ (∅, {p}, {p})∨({p}, ∅, {p}), we
must have A ⊂ B ∪C. Hence A∩B 6= ∅ or A∩C 6= ∅. However, the only local-
izing subcategory that is contained in any two of the subcategories ({p}, {p}, ∅),
(∅, {p}, {p}) and ({p}, ∅, {p}) is the trivial subcategory 〈0〉 = (∅, ∅, ∅); hence
({p}, {p}, ∅) ∧ (∅, {p}, {p}) = (∅, ∅, ∅) and ({p}, {p}, ∅) ∧ ({p}, ∅, {p}) = (∅, ∅, ∅).
So φ

(
({p}, {p}, ∅)∧ (∅, {p}, {p})

)
6= A∩B and φ

(
({p}, {p}, ∅)∧ ({p}, ∅, {p})

)
6=

A ∩ C. This contradicts the assumption that φ is a lattice isomorphism.

6 Classification by noncrossing partitions

In this section, describe the lattice of localizing subcategories of B(X) in another
way, namely, by noncrossing partitions.

Definition 6.1. For p ∈ SpecZ, we say that the localizing subcategory L is
p-local if, for all Y ∈ LC(X), the set ULY is equal to {p} or is empty.

Remark 6.2. The p -local localizing subcategories are exactly the ones generated
by RpY for Y ∈ I ⊆ LC(X). Every localizing subcategory L ⊆ B(X) can be
uniquely represented by the p -local subcategories it contains, if we require that
there is at most one (the largest) p -local subcategory for each p ∈ SpecZ in this
representation. This follows from Theorem 5.9, since the corresponding property
is trivial for the sets (ULY1

, ...,ULYm) ∈ P(SpecZ)m, where m = |LC(X)| is the
number of non-empty intervals.
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6. Classification by noncrossing partitions

Figure 3.2: The lattice of noncrossing partitions of a square, that
is, of the 4-element set. By Theorem 6.3, it corresponds to the
lattice of all p -local localizing subcategories of B({1, 2, 3}).

Classical noncrossing partitions

A partition of a given set of n elements is a collection of pairwise disjoint,
nonempty subsets called blocks, whose union is the entire set. Since being in
the same block is an equivalence relation, we denote it by ∼. A partition of
{1, . . . , n} is noncrossing if, when four elements with 1 ≤ a < b < c < d ≤ n are
such that a ∼ c and b ∼ d, then the two blocks coincide, meaning a ∼ b ∼ c ∼ d.
The terminology comes from the fact that a noncrossing partition admits a
planar representation as a partition of the vertices of a regular n-gon (labeled
by {1, . . . , n}) with the property that the convex hulls of its blocks are pairwise
non-crossing (see Figure 3.1). The collection of noncrossing partitions of an
n-element set is denoted by NCn.

NCn becomes a partially ordered set when partitions are ordered by re-
finement : given partitions σ, τ ∈ NCn, we say that τ ≤ σ if each block of σ
is contained in a block of τ . For each n, the partially ordered set NCn is a
self-dual, bounded lattice with Cn elements, where Cn = 1

n+1

(
2n
n

)
is the nth

Catalan number. Figure 3.2 depicts this lattice for n = 4. For the exposition of
the classical theory of noncrossing partitions and the proof of these facts, we
direct the interested reader to [1, Chapter 4].

6.1 Classification

Again let X = {1, 2, . . . , n} with the Alexandrov topology.
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3. Classification

Theorem 6.3. There is a lattice isomorphism between p-local localizing sub-
categories of B(X) ordered by inclusion and NCn+1, the lattice of noncrossing
partitions of a set with n+ 1 elements.

Proof. Denote the lattice of p-local localizing subcategories of B(X) by Ln. We
are going to construct a lattice isomorphism

ψ : Ln
∼−→ NCn+1.

By Theorem 5.9, a localizing subcategory L ∈ Ln is determined by the sets
UL[a,b] for 1 ≤ a ≤ b ≤ n. Given L, we define a symmetric relation ψ(L) on

{1, . . . , n+ 1} by a ∼ b+ 1, b+ 1 ∼ a ⇐⇒ UL[a,b] = ∅ for a ≤ b and a ∼ a for

all a ∈ {1, . . . , n+ 1}.
We want to show that ψ(L) is indeed a noncrossing partition. First, we

prove transitivity. Let a, b, c ∈ {1, . . . , n + 1} and a ∼ b, b ∼ c. If a = b or
b = c or a = c the assertion is trivial; so we assume they are all distinct. Define
x1 := min{a, b, c}, x3 := max{a, b, c} and let x2 be the remaining third point.
Thus x1 < x2 < x3.

In the proof of Lemma 5.7, we showed that for V \W,W \V, V ∪W ∈ LC(X)
there is the following exact triangle in B(X):

ΣRW\V → RV → RV ∪W → RW\V .

Setting V = [x1, x2 − 1] and W = [x1, x3 − 1], and applying the functor
KK∗(X;−, A) for any A ∈ B(X) to this triangle, we get the six term exact
sequence

KK0(X;R[x2,x3−1], A) // KK0(X;R[x1,x3−1], A) // KK0(X;R[x1,x2−1], A)

��

KK1(X;R[x1,x2−1], A)

OO

KK1(X;R[x1,x3−1], A)oo KK1(X;R[x2,x3−1], A)oo

Theorem 3.27 gives KK∗(X;RY , A) ∼= FKY (A) = K∗(A(Y )). Hence

K0(A([x2, x3 − 1])) // K0(A([x1, x3 − 1])) // K0(A([x1, x2 − 1]))

��

K1(A([x1, x2 − 1]))

OO

K1(A([x1, x3 − 1]))oo K1(A([x2, x3 − 1]))oo

The exactness of the latter sequence implies

suppZ K∗(A([x2, x3−1])) ⊆ suppZ K∗(A([x1, x2−1]))∪suppZ K∗(A([x1, x3−1])),

suppZ K∗(A([x1, x3−1])) ⊆ suppZ K∗(A([x2, x3−1]))∪suppZ K∗(A([x1, x2−1])),

suppZ K∗(A([x1, x2−1])) ⊆ suppZ K∗(A([x1, x3−1]))∪suppZ K∗(A([x2, x3−1])).
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6. Classification by noncrossing partitions

1

a

b+ 1

1

a

b+ 1

Figure 3.3: The first picture shows the decomposition into two
connected blocks corresponding to the interval [a, b]. The second
picture is an example of a “separating” decomposition (indicated
by dashed lines) for a noncrossing partition drawn with bold lines.

Therefore, by definition UL[x2,x3−1] ⊆ UL[x1,x2−1]∪UL[x1,x3−1], UL[x1,x3−1] ⊆ UL[x2,x3−1]

∪UL[x1,x2−1], UL[x1,x2−1] ⊆ UL[x1,x3−1] ∪ UL[x2,x3−1]. So for any distinct i, j =

1, . . . , 3 such that a = xi and c = xj , we get UL[a,c−1] = ∅; thus, a ∼ c, proving

that ψ(L) is a partition.

Now let 1 ≤ a < b < c < d ≤ n + 1 and a ∼ c, b ∼ d; so UL[a,c−1] = ∅ and

UL[b,d−1] = ∅. In the proof of Lemma 5.7, we also had a triangle

ΣRW → RV → RV ∪W ⊕RV ∩W → RW .

After setting V = [a, c − 1] and W = [b, d − 1], the same argument as above
gives that UL[a,d−1] ∪UL[b,c−1] ⊆ UL[a,c−1] ∪UL[b,d−1]. Thus a ∼ b ∼ c ∼ d. So the

partition ψ(L) is a noncrossing.

If ψ(L) = ψ(L′), then ULY = UL
′

Y for all Y ∈ LC(X) since L,L′ are p -local.
So L = L′ by Theorem 5.9. So ψ is injective.

Now we prove that ψ is surjective. The subintervals of [1, n] are in one-
to-one correspondence with the decompositions of the n + 1-gon into two
(nonempty) connected subsets (see Figure 3.3). Here [a, b] ∈ LC(X) corresponds
to the decomposition into [a+ 1, b+ 1] and its complement. Let L = 〈Rp[a,b]〉.
If 1 ≤ x < y ≤ n + 1, then (3.4) implies x � y in ψ(L) if and only if
x ≤ a < y ≤ b + 1 or a < x ≤ b + 1 < y. This exactly means that ψ(L) is a
decomposition of n+1-gon into two connected blocks (as in Figure 3.3). Since ψ
is injective, it gives a bijection between p-local localizing subcategories generated
by a single interval and noncrossing partitions which are decompositions into
two connected subsets.

Given a noncrossing partition σ ∈ NCn+1, ψ−1(σ) should be a p -local
localizing subcategory L with UL[a,b] = ∅ if and only if a ∼ b + 1 in σ. For

such an L to exist, we must show that this family of subsets UL[a,b] satisfies the

condition in Lemma 5.3. This is trivially satisfied if U[a,b] = ∅. If U[a,b] = {p}
then a and b+ 1 are in different blocks of σ. By the noncrossing property, one
finds another decomposition into two connected subsets (corresponding by ψ
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to an interval [c, d]) such that it contains σ, and a and b + 1 are in different
blocks of the decomposition. We call these decompositions “separating”. To
construct this, for example, one could move from vertex a on the n + 1-gon
clockwise and counterclockwise connecting all vertices to a along the way until
the block of b + 1 is reached, and connect all the remaining vertices to b + 1
(see Figure 3.3). This implies that [a, b] ∈ B[c,d]. Moreover, if x � y + 1 in
the decomposition corresponding to [c, d] then x � y + 1 also in σ. Hence if
[x, y] ∈ B[c,d] then U[x,y] = {p} for σ. In other words, the localization condition
is satisfied. Therefore, ψ is a bijection.

It is straightforward to see that ψ and ψ−1 are inclusion and refinement
preserving, respectively. Therefore, ψ is an isomorphism of lattices.

As a corollary, we get our main result

Theorem 6.4. The lattice of localizing subcategories of B(X) is isomorphic to∏
p∈SpecZ NCpn+1.

Proof. The statement directly follows from Theorem 6.3 and Remark 6.2.

7 Algebraic analogue

In this section, we use our techniques to classify localizing subcategories in a simi-
lar algebraic triangulated category. For the classification, we only used the struc-
ture of Mod(NT )c and properties of the functor FK : KK(X) →Mod(NT )c.
Thus any triangulated category D together with a functor FH : D→Mod(NT )c
that satisfies analogous conditions to FK will have an isomorphic lattice of
localizing subcategories. We will construct such a pair (D,FH).

For n ∈ N, let An denote the quiver

n→ n− 1→ · · · → 2→ 1.

Let ZAn denote the path ring of An. This is the free Abelian group on the
set of paths with multiplication defined by concatenation of paths when possible
and zero otherwise (see Appendix A.2).

Remark 7.1. The ring ZAn is isomorphic to Tn(Z), the ring of upper triangular
n × n-matrices with coefficients in Z. An isomorphism φ : ZAn → Tn(Z) is
defined as follows: for 1 ≤ a ≤ b ≤ n let

φ(b, a) = Ea,b,

where Ea,b is the n× n-matrix with coefficient 1 in the intersection of the a-th
row and the b-th column and all other coefficients zero.

A countable Z -representation of a quiver is an assignment of a countable
abelian group to every vertex and a map between the corresponding countable
abelian groups to every edge. The category of countable Z -representations of a
quiver is equivalent to the category of countable right modules over the path
ring. See Appendix A.2 for details.
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7. Algebraic analogue

Now we consider the derived category D := Der(ZAn;Z/2)c of 2-periodic
chain complexes over Mod(ZAn)c; in other words, the derived category with
chain complexes (G•n → · · · → G•1, d

•) of countable Z -representations of ZAn as
objects, which in addition satisfy Gia = Gi+2

a and dia = di+2
a for all i ∈ Z, 1 ≤

a ≤ n, and where all maps between complexes are 2-periodic. So every G ∈ D
is of the form

G0
n

//

d0n
��

G0
n−1

//

d0n−1

��

· · · // G0
2

//

d02
��

G0
1

d01
��

G1
n

//

d1n

OO

G1
n−1

//

d1n−1

OO

· · · // G1
2

//

d12

OO

G1
1

d11

OO

Definition 7.2. For 1 ≤ a ≤ n, let S[a,n] ∈ D be the object with S[a,n],i = Z[0]
with identity maps in between if 1 ≤ i ≤ a and S[a,n],i = 0 for a < i ≤ n.

So S[a,n] is of the form

0 //

��

· · · // 0 //

��

Za
id //

��

· · · id // Z1

��

0 //

OO

· · · // 0 //

OO

0 //

OO

· · · // 0

OO

(7.1)

For 1 ≤ a ≤ b < n, there is a natural map S[a,n] → S[b+1,n] given by
identities and zeros appropriately. So we can define

Definition 7.3. For 1 ≤ a ≤ b < n, let

S[a,b] := cone(S[a,n] → S[b+1,n])[1].

So S[a,b] is of the form

0 //

��

· · · // 0 //

��

0 //

��

· · · // 0 //

��

Za

id

��

id // · · · id // Z1

id

��

0 //

OO

· · · // 0 //

OO

Zb+1
id //

OO

· · · id // Za+1

OO

// Za

0

OO

id // · · · id // Z1

0

OO

(7.2)

Lemma 7.4. If 1 ≤ a ≤ b ≤ c ≤ n, then for any G ∈ D there is a long exact
sequence

· · · → D(S[b,c], G)→ D(S[a,c], G)→ D(S[a,b−1], G)→ D(S[b,c], G)[1]→ · · · ,

where D(−, G) is the Z/2 -graded Hom-functor.

Proof. If c = n, then there is an exact triangle

S[a,b−1] → S[a,n] → S[b,n] → S[a,b−1][1] (7.3)
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3. Classification

by definition of S[a,b].
If c < n, we have a map of triangles

S[c+1,n][1] // S[a,c]
//

��

S[a,n]

��

// S[c+1,n]

S[c+1,n][1] // S[b,c]
// S[b,n]

// S[c+1,n]

Therefore, the octahedral axiom gives cone(S[a,c] → S[b,c]) ∼= cone(S[a,n] →
S[b,n]) = S[a,b−1][1], and we get an exact triangle in D

S[a,b−1] → S[a,c] → S[b,c] → S[a,b−1][1]. (7.4)

In both cases, applying the functor D(−, G) to the exact triangles (7.3)
or (7.4) gives the desired long exact sequence.

Now we describe the homological functors represented by S[a,b] for 1 ≤ a ≤
b ≤ n. For this we define

Definition 7.5. Let G ∈ D. For 1 ≤ a ≤ n let

FH[a,n](G) := H∗(G
•
a),

and for 1 ≤ a ≤ b < n let

FH[a,b](G) := H∗
(
cone(G•b+1 → G•a)

)
.

Here the cone is taken in Der(Z), the derived category of abelian groups.

Lemma 7.6. There is a natural isomorphism

FH[a,b](G) ∼= D(S[a,b], G)

for all G ∈ D and 1 ≤ a ≤ b ≤ n.

Proof. For any ring R, the homology functor is representable on the derived
category Der(R). In other words, for every j ∈ Z we have a natural Yoneda
isomorphism

Der(R)
(
R[j],−) ∼= Hj(−), f 7→ Hj(f)(1R).

In our case, ZAn as a module over itself is represented by the diagram

Z
(idZ

0 )
−−−→ Z⊕ Z

(idZ⊕Z
0 )

−−−−−→ Z⊕ Z⊕ Z −→ · · · −→
n⊕
k=1

Z. (7.5)

So ZAn[j] ∼=
⊕n

k=1 S[k,n][j] for j ∈ Z/2. By definition, Hj(G) ∼=
⊕n

k=1 Hj(G
•
k)

for any G ∈ D. Thus

H∗(G) ∼=
n⊕
k=1

FH[k,n](G).
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7. Algebraic analogue

Consider the composition

D(S[a,n][∗], G) ↪→ D(ZAn[∗], G)
∼=−−→ H∗(G) � FH[a,n](G)

given by

f 7→ fp[a,n] 7→ H∗(fp[a,n])(1ZAn) 7→ π[a,n]H∗(fp[a,n])(1ZAn), (7.6)

where p[a,n] :
⊕n

k=1 S[k,n] → S[a,n] and π[a,n] :
⊕n

k=1 FH[k,n](G) → FH[a,n](G)
are the projections onto direct summands. We claim that this is an isomorphism.

Since f ∈ D(S[a,n][∗], G), H∗(fp[a,n]) is supported on those direct summands
in (7.5) that correspond to paths in An starting at the vertex a. However, the
element 1ZAn corresponds to the sum of trivial paths for every vertex in An.
Thus H∗(fp[a,n])(1ZAn) is exactly in the summand corresponding to the trivial
path at a, which is the summand FH[a,n](G). Now, if we start with an element
of FH[a,n](G), we get a map f ∈ D(ZAn[∗], G) such that H∗(f) is supported on
a summand corresponding to paths starting at a; this means that f is in the
summand D(S[a,n][∗], G). So the composite is an isomorphism. Since all the
maps are natural, so is their product.

Say now 1 ≤ a ≤ b < n and consider the exact triangle

G•b −→ G•a −→ cone(G•b → G•a) −→ G•b [1]

in Der(Z). Applying the homology functor to this triangle gives the long exact
sequence

· · · → FH[b,n](G)→ FH[a,n](G)→ FH[a,b−1](G)→ FH[b,n](G)[1]→ · · ·

Let b < n. By definition, FH[a,b](S[a,b]) =
(
{(a,−a) | a ∈ Z}, 0

)
. So there is

the isomorphism FH[a,b](S[a,b]) ∼= Z[0] given by
(
(a,−a), 0

)
7→
(
a, 0
)
. Let u =(

(1,−1), 0
)

be the generator of FH[a,b](S[a,b]) corresponnding to 1 ∈ Z[0] under
this isomorphism. By Yoneda lemma, this gives a natural map D(S[a,b], G)→
FH[a,b](G) defined by

f 7→ FH[a,b](f)(u). (7.7)

So we have the commutative diagram

· · · // D(S[b+1,n], G) //

∼=
��

D(S[a,n], G) //

∼=
��

D(S[a,b], G) //

��

D(S[b+1,n], G)[1] //

∼=
��

· · ·

· · · // FH[b+1,n](G) // FH[a,n](G) // FH[a,b](G) // FH[b+1,n](G)[1] // · · ·

Its commutativity comes down to the commutativity of individual homomor-
phisms in chain maps; more precisely it follows from the definition of the objects
S[a,b] and the fact that f ∈ D(S[a,b], G) is represented by two chain maps, where
one is a quasi-isomorphism. So we conclude the proof by the Five Lemma.
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Let LC(An) denote the set of all connected non-empty subquivers in An or,
equivalently, non-empty intervals in {1, . . . , n}.

Let FH−(G) be an assignment that assigns a Z/2-graded abelian group
FH[a,b](G) to every [a, b] ∈ LC(An). Now we prove that FH−(G) can be
enriched to a functor.

Lemma 7.7. FH−(G) is an NT -module with projective resolution of length 1.

Proof. First, we prove that for any G ∈ D there is an additive functor FH−(G) :

NT → AbZ/2. Take [a, b], [c, d] ∈ NT with NT ∗([a, b], [c, d]) ∼= Z[0]; then
c ≤ a ≤ d ≤ b by conditions (3.4). If d = b, then the exact triangle (7.3)
or (7.4) gives a map S[c,d] → S[a,b]. If d < b, then [a, d] = [a, b] \ [d + 1, b]
and again the exact triangle (7.3) or (7.4) gives canonical maps S[c,d] → S[a,d]

and S[a,d] → S[a,b]; after composing, we once again get the canonical map
S[c,d] → S[a,b]. So, in both cases, applying D(−, G) gives the canonical map
FH[a,b](G) → FH[c,d](G). We send the generator of NT ∗([a, b], [c, d]) to this
map.

If NT ∗([a, b], [c, d]) ∼= Z[1], then c−1 ≤ b and a < c and b < d by conditions
(3.4). We already showed that this gives the maps FH[a,b](G)→ FH[1,c−1](G)
and FH[c,n](G)→ FH[c,d](G). Since [c, n] = [1, n] \ [1, c− 1] the exact triangle
(7.3) gives a canonical map FH[1,c−1](G)→ FH[c,n](G)[1]. After composing, we
get the degree-one map

FH[a,b](G)→ FH[1,c−1](G)→ FH[c,n](G)[1]→ FH[c,d](G)[1].

So indeed FH−(G) is an NT -module.
The long exact sequence of Lemma 7.4 is the definition of exactness of

an NT -module. So Lemma 7.6 shows that FH−(G) is an exact module. By
Theorem 3.37, this is equivalent to having a projective resolution of length 1.

Lemma 7.7 allows us to define

Definition 7.8. Filtrated homology is the functor

FH : D→Mod(NT )c, G 7→
(
FHY (G)

)
Y ∈LC(An)

.

The more precise reason why our classification result carries over from
B(X) to D is best explained in the context of relative homological algebra in a
triangulated category recalled in Section 2. As was explained there, roughly
speaking, having a homological ideal I and a universal I-exact stable homological
functor means that homological algebra in a target abelian category is the same
as in a domain triangulated category with respect to I.

In our setup, we put

I :=
⋂

Y ∈LC(An)

ker FHY = ker FH.

In other words,

I(G,G′) = {f ∈ D(G,G′) | FHY (f) vanishes for all Y ∈ LC(An)}.
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7. Algebraic analogue

Theorem 7.9. The functor FH : D → Mod(NT )c is the universal I-exact
stable homological functor.

Proof. We show that the theorem is a special case of a more general fact about
relative homological algebra. Let C be an at most countable set of objects in a
triangulated category T with countable coproducts. Let IC be the homological
ideal defined as the kernel of the functor

FC : T→
∏
C∈C

AbZ, A 7→
(
T(C,A)

)
C∈C,

where we assume that FC(A) is countable for all A ∈ T.

If we view C as a Z -graded pre-additive full subcategory of T, we get a
corresponding category of countable graded right modules Mod(Cop)c. Then
the enrichment of FC to the functor

F ′C : T→Mod(Cop)c,

with the right C-module structure on
(
T(C,A)

)
C∈C coming from composition

of morphisms in T, is the universal IC-exact stable homological functor [32,
Theorem 4.4].

We apply this to our case, where T = D, C = {SY | Y ∈ LC(An)}, F ′C = FH
and IC = I. Therefore, we only need to show that NT ∼= Cop.

Let [c, d] ∈ LC(An). If d = n, the object S[c,d] ∈ D is of the form (7.1).
If d < n, by definition of the object S[c,d], it is of the form (7.2). So for
any [a, b] ∈ LC(An), computing appropriate homologies gives: for d = n,
FH[a,b](S[c,d]) is isomorphic to Z[0] if a ≤ c ≤ b and to zero otherwise; for d < n,
FH[a,b](S[c,d]) is isomorphic to Z[0] if a ≤ c ≤ b ≤ d, to Z[1] if c+ 1 ≤ a ≤ d+ 1,
d < b and to zero otherwise. Summing these up and using Theorem 7.6, we get

D(S[a,b],S[c,d]) ∼= FH[a,b](S[c,d]) ∼=


Z[0] if a ≤ c ≤ b ≤ d,
Z[1] if c < a and d < b and a− 1 ≤ d,
0 otherwise.

(7.8)
which is exactly opposite to conditions (3.4). Thus we have an isomorphism of
abelian groups NT ∗(Y,Z) ∼= D(SZ ,SY ) for all Y,Z ∈ LC(An).

Say a ≤ c ≤ b ≤ d. There is a natural chain (diagram) map S[a,b] → S[c,d]

given by identities and zeros appropriately. Denote this map by µ
[c,d]
[a,b]. The

map (7.6) or (7.7) maps µ
[c,d]
[a,b] to the generator of the group FH[a,b](S[c,d]) ∼= Z[0],

and since n · µ[c,d]
[a,b] 6= 0 for n ∈ Z, µ

[c,d]
[a,b] generates the group D(S[a,b],S[c,d]).

If b < c, then D(S[a,b],S[c,d]) ∼= 0 and we let µ
[c,d]
[a,b] be the zero map. With this

convention, we get µWZ ◦µZY = µWY for all Y,Z,W ∈ LC(An), whenever all three
maps are defined; this equality holds on the level of chain maps and thus also
in the derived category.

51



3. Classification

If a− 1 ≤ d, we get a degree-one chain map given by the composition

S[a,b]

µ
[a,n]

[a,b]−−−→ S[a,n]
δ−→ S[1,a−1][1]

µ
[a,n]

[1,a−1]
[1]

−−−−−−→ S[c,d][1],

where δ is the boundary map coming from the triangle (7.3). Denote this

chain map by δ
[c,d]
[a,b]. If c < a and d < b, the map (7.6) or (7.7) maps δ

[c,d]
[a,b] to

the generator of the group FH[a,b](S[c,d]) ∼= Z[1]. Since S•[a,b],x is acyclic for

1 ≤ x ≤ a, the map (7.6) or (7.7) maps δ
[c,d]
[a,b] to zero if a ≤ c or b ≤ d. Thus

δ
[c,d]
[a,b] vanishes in the derived category as predicted by the equation (7.8). Hence,

if a− 1 ≤ d and c < a and d < b, δ
[c,d]
[a,b] generates D(S[a,b],S[c,d]).

By (7.8) any odd map from S[1,a−1] vanishes. Since δ
[c,d]
[a,b] factors through

S[1,a−1], any product of degree-one morphisms is zero. In addition, for Y,Z,W ∈
LC(An), a product µZY ◦ δYW or δZY ◦ µYW is equal to δZW whenever all three
morphisms are defined, and zero otherwise; again, this equality holds on the
level of chain maps and thus also in the derived category.

We conclude that the composition on Cop coincides with the one on NT ,
proving that NT ∼= Cop.

This allows us to state the Universal Coefficient Theorem:

Theorem 7.10. For any G,K ∈ D and j ∈ Z/2, there are natural short exact
sequences

Ext1
NT
(
FH(G)[j + 1],FH(K)

)
↪→ D(G,K)[j] � HomNT

(
FH(G)[j],FH(K)

)
.

Proof. By Theorem 7.7, FH(G) has a projective resolution of length 1 for any
G ∈ D.

Next, by definition of I and Lemma 7.6

I =
⋂

Y ∈LC(An)

kerD(SY ,−) = ker FH.

Thus the objects {SY | Y ∈ LC(An)} are I-projective. Now for any ring R, the
derived category Der(R) is generated by the objects {R[i] | i ∈ Z}. In our case,
in the proof of Lemma 7.6, we showed that ZAn[j] ∼=

⊕n
k=1 S[k,n][j] for j = 0, 1.

Therefore, the localizing subcategory generated by the I-projective objects is
the whole D.

Since FH is the universal I-exact stable homological functor by Theorem 7.9,
Theorem 2.12 now gives the desired short exact sequence.

Now we can also prove the analogue of Corollary 3.39.

Corollary 7.11. Let M ∈Mod(NT )c have a projective resolution of length 1.
Then there is G ∈ D with FH(G) ∼= M , and this object is unique up to isomor-
phism in D.
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7. Algebraic analogue

Proof. Idempotent morphisms split in any triangulated category with countable
coproducts (see [34]). Then Theorem 2.11 gives a length 1 projective resolution
of M of the form

0→ FH(P1)
FH(f)−−−−→ FH(P0)→M → 0,

where P1, P0 are I-projective objects.

Embed the morphism f in an exact triangle

G[1]
h−→ P1

f−→ P0
g−→ G.

Since FH is homological and FH(f) is injective, we see that FH(h) ∼= 0 and
FH(g) is surjective. Thus FH applied to the above triangle gives the short exact
sequence

0→ FH(P1)→ FH(P0)→ FH(G)→ 0.

Thus FH(G) ∼= M .

Now we prove the uniqueness. In the proof of Lemma 7.6 we showed
that ZAn[j] ∼=

⊕n
k=1 S[k,n][j] for j ∈ Z/2. However, FH(G) ∼= FH(G′) =⇒

FH[k,n](G) ∼= FH[k,n](G
′) for all 1 ≤ k ≤ n =⇒ D(S[k,n], G) ∼= D(S[k,n], G

′),
for all 1 ≤ k ≤ n =⇒ D(

⊕n
k=1 S[k,n], G) ∼= D(

⊕n
k=1 S[k,n], G

′) =⇒
D(ZAn[∗], G) ∼= D(ZAn[∗], G′) =⇒ H∗(G) ∼= H∗(G

′). But by Theorem 7.10
the isomorphism FH(G) ∼= FH(G′) can be lifted to a morphism f ∈ D(G,G′);
thus f also induces the isomorphism H∗(G) ∼= H∗(G

′) and therefore is a quasi-
isomorphism. So G ∼= G′ in D.

To classify localizing subcategories in B(X), we used the existence of a
tensor functor

⊗ : KK(X)× KK→ KK(X).

Similarly, in the case of D, we use the derived tensor product; in other
words, we employ the biexact functor

⊗ : D×Der(Z)→ D

which is associative and unital up to coherent isomorphism with respect to the
derived tensor product in Der(Z).

In this setting, for p ∈ SpecZ, the objects Fp[0] ∈ Der(Z) play the role of
the objects κ(p) ∈ KK. For example, SpY := SY ⊗ Fp[0] for Y ∈ LC(An).

Now we exhibit the analogues of the remaining the facts we used for our
classification. Namely,

Corollary 7.12. Let M ∈ Mod(NT )c, p ∈ SpecZ and j = 0, 1. Then
M ∼=

⊕
Y ∈I FH

(
SpY
)
[jY ] for some (possibly countably infinite) multiset I with

elements from LC(X) if and only if M(Y ) is an Fp-vector space for all Y ∈
LC(An) and M ∼= FH(G) for some G ∈ D.
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3. Classification

Proof. The result follows from Corollary 3.44, Theorem 3.37, Theorem 7.11
because

FK(RY ) ∼= FH(SY )

for all p ∈ SpecZ and Y ∈ LC(An); this is true because FKY (RZ) ∼=
NT ∗(Z, Y ) ∼= FHY (SZ) for all Y, Z ∈ LC(An) by (7.8).

The analogues of Lemmas 4.5 and 4.6 are proven entirely similarly to their
counterparts. We just replace κ(−) by h(−), where h(G) = G[0] for G ∈ AbZ/2c

is a unique object in Der(Z) with H∗(h(G)) ∼= G[0], FKY (−) by FHY (−) for
Y ∈ LC(An), and where we replace exact triangles in B by appropriate exact
triangles in Der(Z). This way, we have all the results we used, the support
theory is identical, and finally we get

Theorem 7.13. The lattice of localizing subcategories of Der(ZAn;Z/2)c is
isomorphic to

∏
p∈SpecZ NCpn+1.

Of course, Theorem 5.12 also carries over, and we find that the lattice of
localizing subcategories does not recover any space from Der(ZAn;Z/2)c.
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A. Appendices

A.1 Localization of a category

In this section, we recall some aspects of localization theory for categories. All
definitions and proofs can be found in [17].

A.1.1 General localization

For the theorem that follows, we use a more relaxed notion of a category where
we allow morphisms not to be sets. In practice, however, one does not usually
encounter any set theoretic issues.

Theorem A.1.1. Let C be a category and let S be an arbitrary class of mor-
phisms in C. Then there is a category C[S−1] and a functor Q : C −→ C[S−1]
such that:

• Q(s) is an isomorphism for each s ∈ S;

• For any category E and any functor F : C −→ E such that F (s) is an
isomorphism for all s ∈ S, there exists a functor FS : C[S−1] −→ E, and a
natural isomorphism F ∼= FS ◦Q. The functor FS is unique up to natural
isomorphism.

The category C[S−1] is unique up to equivalence of categories.

We would like to sketch the construction of the category C[S−1]. Uniqueness
is clear from the universal property.

Define objects of C[S−1] as being the same as objects of C.
It remains to define morphism in C[S−1]. For any objects A,B ∈ C a path

from A to B of the length n consists of:

(i) n+ 1 objects of C, such that P0 = A,P1, . . . , Pn−1, Pn = B

(ii) n morphisms, one for each pair (Pi, Pi+1), where either fi : Pi → Pi+1

can be any morphism in C, or si : Pi+1 → Pi can only be a morphism
from the class S.

Now we define an equivalence relation ∼ on the set of all paths between A
and B. It is generated by

• for all X,Y ∈ C and f : X → Y and g : Y → Z,

(X
f−−→ Y

g−→ Z) ∼ (X
g◦f−−→ Z)
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• for all X,Y ∈ C and s : X → Y with s ∈ S,

(Y
s←− X s−→ Y ) ∼ (Y

idY−−→ Y )

and
(X

s−→ Y
s←− X) ∼ (X

idX−−−→ X)

• for all X,Y ∈ C and s : X → Y with s ∈ S,

(Y
idY−−→ Y

s←− X) ∼ (Y
s←− X)

Morphisms between A and B in C[S−1] are defined to be the equivalence classes
of paths between A and B. The composition is defined as concatenation, which
clearly induces a composition on equivalence classes of paths.

The functor Q, called the localization functor, is defined to be the identity

on objects, and to map the morphism f : A→ B to the path A
f−−→ B. Clearly,

Q(s) is invertible if s ∈ S.
Let E be as in the statement of the theorem. We define FS(A) := F (A) for

every object A ∈ C[S−1]. For a path P , consisting of n morphisms h1, h2, . . . , hn,
let

FS(P ) := FS(hn) ◦ · · · ◦ FS(h2) ◦ FS(h1),

where

FS(hi) =

{
F (hi) if hi : Pi → Pi+1,

F (hi)
−1 if hi : Pi+1 → Pi.

It is now easy to see that the conditions of the theorem are satisfied.

A.1.2 Calculus of fractions

Let C be a category. We concentrate on a special class of morphisms for
localization in order to get more manageable results.

Definition A.1.2. We say that the class of morphisms S in C admits a calculus
of left fractions if the following are satisfied:

(CF1) For any object X in C, the identity morphism idX is in S.
(CF2) If s : X → Y and t : Y → Z are in S, then t ◦ s is also in S.

(CF3) For each diagram X ′
s←− X f−→ Y with s ∈ S, there exists a commuta-

tive square

X
f
//

s

��

Y

t
��

X ′
f ′
// Y ′

with t ∈ S
(CF4) If f, g : X → Y are morphisms of C and if s : X ′ → X is a morphism

of S with f ◦s = g ◦s, there exists a morphism t : Y → Y ′ of S with t◦f = t◦g.
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The calculus of fractions gives special form to the morphisms in the localized
category. Let C[S−1] be the localization of C with respect to S, where S admits
the calculus of left fractions. Let Q : C → C[S−1] be the localization functor
constructed earlier.

By (CF2), Q(t)−1 ◦Q(s)−1 = Q(s ◦ t)−1 for s, t ∈ S. Hence any morphism
in C[S−1] has the form Q(f1) ◦Q(s1)−1 ◦ · · · ◦Q(fn) ◦Q(sn)−1, with si ∈ S.

By (CF3), for any morphism f and morphism s ∈ S, there exist some
morphism g and a morphism t ∈ S with f ◦ t = s ◦ g, so that Q(g) ◦Q(t)−1 =
Q(s)−1 ◦Q(f). Induction on n gives that any morphism in C[S−1] is represented
by a composition of two morphisms Q(s)−1 ◦Q(f) with s ∈ S.

The above observation leads us to consider the following: Let S admit a
calculus of left fractions. Let us define the new category S−1C. Its objects are
those of C. For any two objects X and Y , consider the pairs of morphisms (f, s)
in C of the form

X
f−−→ U

s←− Y.

If s ∈ S, we call this pair a left fraction.
Now define the morphisms X → Y in S−1C as equivalence classes [f, s] of

such left fractions, where two diagrams (f1, s1) and (f2, s2) are equivalent if the
following commutative diagram exists with s3 ∈ S

U1

��

X

f1

>>

f3 //

f2   

U3 Y

s1

``

s3oo

s2
~~

U2

OO

Define the composition of two equivalence classes [f1, s1] and [f2, s2] to be the
equivalence class of [f3 ◦ f1, s3 ◦ s2] where f3 and s3 are obtained from (CF3)
as in the following commutative diagram:

U3

U1

f3

>>

U2

s3

``

X

f1
>>

Y

s1

``
f2

>>

Z

s2

``

We have a canonical functor

P : C −→ S−1C

which is the identity on objects and takes the morphism f : X → Y to the
equivalence class [f, idY ].
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Let C[S−1] be the localization of C with respect to S, and let Q be the
localization functor.

Proposition A.1.3. The functor F : S−1C −→ C[S−1] which is the identity on
objects and which takes a morphism [f, s] to Q(s)−1 ◦Q(f) is an isomorphism.

We say that a set of morphisms admits a calculus of right fractions if the
dual conditions of (CF1)–(CF4) hold. All results about a set of morphisms
admitting a calculus of left fractions have a dual version for a set of morphisms
admitting a calculus of right fractions. If the class of morphisms satisfies both
a calculus of left and a calculus of right fractions, we simply say that it satisfies
a calculus of fractions.

A.2 Quiver representations

In this section, we very briefly recall basic definitions and constructions for
quivers and their representations. The notions mentioned here can be found
in [2].

Definition A.2.1. A quiver Q = (Q0, Q1, s, t) consists of a set of vertices Q0,
a set of edges (arrows) Q1, and two maps

s, t : Q1 → Q0,

which assign a source and target vertex to every edge, respectively.

Definition A.2.2. A Z-representation of a quiver Q is a collection M =
{Mx,Mα}x,α, where Mx is an abelian group for every vertex x ∈ Q0 and
Mα : Ms(α) →Mt(α) is a homomorphism of abelian groups. A map between two
representations f : M →M ′ is a collection of homomorphisms fx : Mx →M ′x
for every vertex x ∈ Q0 such that the obvious diagrams commute.

This way, we get a category of quiver representations Rep(Q,Z), which is
nothing but a category of Q-shaped diagrams of abelian groups. In particu-
lar, considering Q itself as a category, with vertices as objects and paths as
morphisms, a Z-representation of Q is a covariant functor from Q to the cate-
gory of abelian groups. The maps of representations are precisely the natural
transformations of the corresponding functors.

Definition A.2.3. Given a quiver Q, a path in Q is a sequence of arrows
(α1, . . . , αn) such that s(αi) = t(αi+1) for 1 ≤ i ≤ n−1. In addition, any vertex
x ∈ Q0 is considered as a path of length zero with source and target both x; it
is denoted by ex.

Definition A.2.4. The path ring ZQ of a quiver Q is the ring (possibly
non-unital) generated by all paths in Q, where multiplication is given by
concatenation of paths when possible and by zero otherwise.
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In general, the path ring of a quiver only has an approximate identity. The
path ring of a quiver Q is unital if and only if Q has finitely many vertices, that
is, Q0 is finite. In this case, the unit is given by the sum Σx∈Q0

ex.
In certain cases, modules over a path ring can be characterized as represen-

tations of a quiver and vice versa. We recall this construction in the case which
is relevant to us.

Theorem A.2.5. Let Q be a quiver with finitely many vertices. The category
of Z-representations Rep(Q,Z) of the quiver Q is equivalent to the category
Mod(ZQ) of (right) ZQ-modules.

Given a Z-representation {Mx,Mα}x,α of Q, let M =
⊕

x∈Q0
Mx. This way,

M becomes a ZQ-module with obvious multiplication: given a path α with
s(α) = x and t(α) = y define

α · b =

{
αb if b ∈Mx,

0 otherwise.

This also gives maps of modules from maps of Z-representations. For a map
{fx}x : {Mx,Mα}x,α → {M ′x,M ′α}x,α, we just take a direct sum f =

⊕
x fx :⊕

xMx →
⊕

xM
′
x.

Given a ZQ-module M ∈Mod(ZQ), put Mx = exM for every x ∈ Q0; for
an arrow α ∈ Q1 with s(α) = x and t(α) = y, let Mα : Mx → My be the
multiplication with α.

For a ZQ-module homomorphism f : M →M ′, let fx = f |Mx . Then, since
f is a module map, we get f =

⊕
x fx :

⊕
xMx →

⊕
xM

′
x.

Straightforward computations show that these constructions are inverse to
each other.
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