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Abstract 

 

Plants detect potential pathogens by perception of conserved microbe-associated molecular 

patterns (MAMPs) through plasma membrane-localized receptors. Signalling initiated by 

these receptors is a key process of plant innate immunity. Typically, binding of MAMPs to 

the surface-exposed ectodomains of receptor components induces formation of homo- or 

heteromeric receptor complexes. These may consist of receptor-like kinases (RLKs), 

receptor-like proteins (RLPs) as well as receptor-like cytoplasmic kinases (RLCKs) which lack 

an extracellular ligand-binding domain. 

This study focuses on a potential heteromeric signalling complex involving the Arabidopsis 

lysin motif (LysM)-RLK CERK1 (Chitin Elicitor Receptor Kinase1), which mediates chitin-

induced signalling and defence responses. In a preceding yeast two-hybrid screen the RLCK 

CERK1-INTERACTING LysM-RLK-LIKE RLCK1 (CLR1) was identified as a putative interactor of 

the CERK1 kinase domain. When taking a closer look at the amino acid sequence of CLR1, it 

becomes obvious that the sequence shares high homology with the kinase domains of 

Arabidopsis LysM-RLKs. Data obtained in this study suggest that the CLR1 sequence 

annotated by TAIR10 seems to be not correct and the protein likely starts 23 amino acids 

C-terminal of the annotated start, thus exposing a predicted N-myristoylation motif. 

In vitro phosphorylation assays showed that the CERK1 kinase domain can directly 

phosphorylate CLR1 in vitro. This finding was supported by the fact that CLR1 fusion proteins 

stably expressed in Arabidopsis plants showed chitin-induced and CERK1-dependent 

phosphorylation. Thus, CLR1 represents a phosphorylation substrate of CERK1 in vitro and in 

vivo. This phosphorylation seemed to be independent of the N-terminal myristoylation of 

CLR1. Microsomal fractionations and subcellular localization studies in transgenic plants 

suggested that the majority of the CLR1 protein is soluble, but a membrane-associated CLR1 

subpopulation is present in plant cells. Three independent T-DNA insertion lines were 

isolated and characterized with regard to chitin signalling and immunity to fungal and 

bacterial pathogens. The clr1 T-DNA lines showed reduced chitin-induced ROS generation, 

MAPK activation and defence gene expression, suggesting that CLR1 plays a role in chitin 

signalling. The severity of the phenotype depended on the position of the T-DNA. clr1 plants 

were not impaired in resistance against fungal pathogens, but showed a subtly enhanced 
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sensitivity to bacterial infection. Since the CLR1 promoter showed high activity in 

hydathodes, CLR1 could be involved in selectively restricting pathogen entry through these 

constitutively open vents. 
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Zusammenfassung 

 

Pflanzen erkennen potentielle Pathogene anhand von konservierten Mikroben-assoziierten 

molekularen Mustern (MAMPs)1 welche sie über membranlokalisierte Rezeptoren 

wahrnehmen. Der durch diese Rezeptoren aktivierte Signalweg spielt eine wesentliche Rolle 

in der pflanzlichen angeborenen Immunität. Das Binden eines MAMPs an die 

oberflächenexponierten Ektodomänen der Rezeptoren führt typischerweise dazu, dass diese 

homo- oder heteromere Komplexe bilden. Diese Komplexe können aus rezeptorartigen 

Kinasen (RLKs), rezeptorartigen Proteinen (RLPs) sowie aus rezeptorartigen 

zytoplasmatischen Kinasen (RLCKs), welche keine extrazelluläre Domäne zur 

Ligandenbindung besitzen, bestehen. 

Der Fokus dieser Arbeit liegt auf einem möglichen heteromeren Signalkomplex der 

unteranderem aus der lysinhaltigen-Motiv (LysM) RLK CERK1 besteht. CERK1 spielt eine Rolle 

in der durch Chitin induzierten Signaltransduktion und Abwehrantwort in Arabidopsis. In 

einer vorangegangenen Hefe-Zwei-Hybrid-Analyse wurde die RLCK CLR1 als möglicher 

Interaktor der CERK1 Kinasedomäne identifiziert. Vergleichende Sequenzanalysen zeigen, 

dass die Aminosäuresequenz von CLR1 eine hohe Homologie zu den Sequenzen der 

Kinasedomänen anderer Arabidopsis LysM-RLKs aufweist. Dies könnte möglicherweise für 

die Funktion des Proteins eine Rolle spielen. Die auf TAIR10 annotierte CLR1 Sequenz scheint 

falsch annotiert worden zu sein, da das eigentliche Protein laut Analysen in dieser Arbeit 

wahrscheinlich erst 23 Aminosäuren Richtung C-Terminus beginnt, wodurch dann ein 

mögliches N-Myristoylierungsmotiv exponiert wird. 

In vitro wird CLR1 direkt von der CERK1 Kinasedomäne phosphoryliert. CLR1 Fusionsproteine 

wurden in stabil transgenen Arabidopsis-Pflanzen CERK1-abhängig durch Chitin 

phosphoryliert. Unabhängig von der möglichen N-terminalen Myristoylierung scheint CLR1 

sowohl in vitro also auch in vivo ein Phosphorylierungssubstrat von CERK1 darzustellen. 

Mikrosomale Fraktionierungen und Analysen zur subzellulären Lokalisation in transgenen 

Pflanzen zeigten dass die Mehrheit der CLR1 Proteine löslich ist, wobei auch eine kleine 

Subpopulation von CLR1 membrangebunden in Pflanzenzellen vorliegt. Drei unabhängige 

T-DNA Insertionslinien wurden isoliert und im Hinblick auf die Weiterleitung Chitin-

                                                     
1 Für sämtliche Abkürzungen werden im Folgenden die gängigen englischen Abkürzungen verwendet (siehe 
hierfür auch: Seite VI, Abbreviations). 
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induzierter Signale und Immunität gegen pilzliche und bakterielle Schädlinge getestet. Die 

clr1 T-DNA Linien wiesen eine verringerte ROS Produktion, MAPK Aktivierung und Expression 

von Abwehrgenen auf, was eine Rolle für CLR1 im Chitin-induzierten Signalweg bestätigt. 

Dabei hing die Ausprägung des Phänotyps von der Position der T-DNA ab. clr1 Pflanzen 

waren nicht in der Resistenz gegen pilzliche Schädlinge beeinträchtigt, wohingegen sie eine 

leicht erhöhte Anfälligkeit gegenüber bakterieller Infektionen zeigten. Da der CLR1 Promotor 

erhöhte Aktivität in Hydathoden zeigt, könnte CLR1 darin involviert sein selektiv das 

Eintreten von Pathogenen über diese konstitutiv geöffneten Öffnungen einzugrenzen.  
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Abbreviations 

:: fused to (associated with 
plasmid construction) 

°C Degree Celsius 
μ micro 
A. thaliana Arabidopsis thaliana 
A. tumefaciens Agrobacterium tumefaciens 
APS ammonium persulfate 
Asp/ D aspartate/ aspartic acid 
ATP adenosine triphosphate 
Avr avirulence 
B. cinerea Botrytis cinerea 
BAK1 BRASSINOSTEROID 

INSENSITIVE1-ASSOCIATED 
RECEPTOR KINASE1 

BIK1 BOTRYTIS-INDUCED KINASE1 
bp base pair(s) 
BR brassinosteroid 
BRI1 BRASSINOSTEROID 

INSENSITIVE1 
C- carboxy- 
CBB Coomassie Brilliant Blue 
CC coiled-coil 
ccdB cytotoxic protein 
cDNA complementary DNA 
CERK1 CHITIN ELICITOR RECEPTOR 

KINASE1 
CFP cyan fluorescent protein 
cfu colony forming unit 
CLR1 CERK1-INTERACTING LYSM-

RLK-LIKE RLCK1 
CLSM confocal laser scanning 

microscopy 
cm centimeter(s) 
Col-0 Columbia 
CSC crab shell chitin 
CT cycle threshold 
d day(s) 
DAMP damage-associated 

molecular pattern 
ddH2O double deionised water 
DMSO dimethylsulfoxide 
DNA deoxyribonucleic acid 
DNAse deoxyribonuclease 
dNTP deoxynucleosidetriphosphate 
dpi day(s) post infection 
DTT dithiothreitol 
E. coli Escherichia coli 
eCFP enhanced cyan fluorescent 

protein 
EDS1 ENHANCED DISEASE 

SUSCEPTIBILITY 1 
EDTA Ethylenediaminetetraacetic 

acid 
EFR EF-TU RECEPTOR 
EF-Tu ELONGATION FACTOR 

THERMO UNSTABLE 

  
  
et al. Et alii; and others 
ETI effector-triggered immunity 
EtOH ethanol 
ETS effector-triggered 

susceptibility 
Fig. figure 
FLS2 FLAGELLIN SENSING2 
FN Fast neutron 
fwd forward 
g gram 
gDNA genomic DNA 
GFP green fluorescent protein 
Glu/ E glutamate/ glutamic acid 
GUS - glucuronidase 
h hour(s) 
HCl hydrochloric acid 
HR hypersensitive response 
HRP horseradish peroxidase 
Kd dissociation constant 
kb kilobase(s) 
kDa kilodalton(s) 
l litre(s) 
LB left border primer 
Leu/ L leucine 
log decadic logarithm 
LP left genomic primer 
LPS lipopolysaccharide 
LRR leucine-rich repeats 
LysM lysin motif 
m milli/meter(s) 
M molar 
mA milliampere 
MAMP microbe-associated 

molecular pattern 
MAPK/ MPK mitogen activated protein 

kinase 
Met methionine 
min minute(s) 
MKK MAPK kinase 
ml millilitres 
mM millimolar 
mRNA messenger ribonucleic acid 
MS Murashige and Skoog 

medium 
N- amino- 
NASC Nottingham Arabidopsis 

Stock Centre 
NB-LRR nucleotide binding-leucine-

rich repeat 
NBS nucleotide binding site 
ng nanogram 
NLR nucleotide-binding domain 

leucine-rich repeat 
nm nanometer 
OD optical density 
PAD4 PHYTOALEXIN DEFICIENT4 
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PAGE polyacrylamide gel-
electrophoresis 

PAMP pathogen-associated 
molecular pattern 

PCD programmed cell death 
PCR polymerase chain reaction 
PDB potato dextrose broth 
PGN peptidoglycan 
pH negative log of the hydrogen 

ion activity in a solution 
PR pathogenesis related 
PRR Pattern recognition receptor 
Pst Pseudomonas syringae pv. 

tomato 
PTI PAMP-triggered immunity 
PVDF polyvinylidene fluoride 
qRT-PCR quantitative reverse 

transcription polymerase 
chain reaction 

R resistance 
rev reverse 
RLCK receptor-like cytoplasmic 

kinase 
RLK receptor-like kinase 
RLP receptor-like protein 
RNA ribonucleic acid 
RNAse ribonuclease 
ROS reactive oxygen species 
RP right genomic primer 
rpm rounds per minute 
RT room temperature/ reverse 

transcription 
RT-PCR reverse transcription-

polymerase chain reaction 
s second(s) 
SA salicylic acid 
SAR systemic acquired resistance 
SDS sodium dodecyl sulphate 
Ser/ S serine 
SERK SOMATIC EMBRYOGENESIS 

RECEPTOR KINASE 
T-DNA transfer DNA 
TAE tris-acetate-EDTA 
Taq Thermus aquatcus 
TBS tris buffered saline 
TEMED N,N,N’,N’-

tetramethylethane-1,2-
diamine 

TF Transcription factor 
Thr/ T threonine 
TIR Toll interleukin-1 receptor 
Tris Tris-(hydroxymethyl)-

aminomethane 
TTSS type III secretion system 
U unit 
UV ultraviolet 
V Volt 
v/v volume per volume 

vir virulence 
W Watt 
w/v weight per volume 
WT/wt wild type 
X-Gluc  5-Bromo-4-chloro-3-indolyl-

β-D-glucuronide 
Y2H yeast-2 hybrid 
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1 Introduction 

 

Plants, similar to most multicellular organisms are constantly exposed to various biotic and 

abiotic stress factors (de Wit, 2007). Since, in contrast to most animals, plants are sessile and 

cannot evade attackers and unfavourable environmental conditions, they need to adapt to 

different stresses including climate, light and soil conditions, as well as pathogens and pests. 

Plants need to recognize potential pathogens in time and also initiate a robust immune 

response in order to defend themselves effectively (Dangl and Jones, 2001). In contrast to 

vertebrates, which possess an adaptive immune system, plants can only resort on an innate 

immune system consisting of two layers of defence responses (Jones and Dangl, 2006). The 

first layer involves the recognition of conserved ‘non-self’ pathogen- or microbe-associated 

molecular patterns (P-/MAMPs) or danger-associated-molecular patterns (DAMPs) by cell 

surface pattern recognition receptors (PRRs). This perception results in PAMP-triggered 

immunity (PTI), a basal defence response against a broad spectrum of pathogens. Together 

with preformed barriers on the plant surface these PRR-mediated defence responses protect 

plants from a wide variety of phytopathogens, leading to the so-called non-host resistance 

(Thordal-Christensen, 2003; Nürnberger and Lipka, 2005). Specialised pathogens have 

evolved mechanisms to overcome this first layer of plant defence by transfer of effector 

molecules also known as virulence (vir) factors into the host cells (Jones and Dangl, 2006). In 

an evolutionary arms race, plants have in turn responded with a second layer of defence, the 

effector-triggered immunity (ETI). ETI depends on the ability of plant resistance (R) 

molecules to recognize the presence of or modifications caused by effector proteins. R 

protein activation effectively restricts further microbial growth (Jones and Dangl, 2006).  

 

1.1 Plant innate immunity 

 

Pathogens invading a plant, first encounter preformed constitutive barriers on the plant 

surface, such as a rigid cell wall, wax layers, secondary metabolites and anti-microbial 

enzymes to restrict pathogen proliferation (Heath, 2000; Muthamilarasan and Prasad, 2013). 

Should pathogens, however, be able to overcome the plants preformed barriers and breach 

the plant cell wall, they encounter the two-layered immune system of plants (Jones and 

Dangl, 2006). The plant immune system differs from that of vertebrates in one major aspect, 

which is the lack of an adaptive immunity. Plants do not possess mobile systemic cells or the 
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ability of antigen presentation in order to create an immunological memory. They rather 

depend on cell-autonomous immunity, which upon the recognition of microbes and the 

onset of immune responses generates mobile signals that prime distant tissues for defence 

against further infection (Nürnberger et al., 2004; Jones and Dangl, 2006). The first layer of 

plant innate immunity depends on the recognition of microbial elicitors by specific cell 

surface pattern recognition receptors (PRRs; Figure 1). 

 

Figure 1. Model of the plant immune system. Pathogens expose pathogen-/ microbe-associated molecular 
patterns (P-/ MAMPs) into the extracellular space of plants, where they are recognized by cognate pattern 
recognition receptors (PRRs). This interaction leads to the initiation of PAMP-triggered immunity (PTI; 1). To 
overcome or suppress PTI, pathogens deliver effector proteins to the plant cell (2). In order to counteract PTI, 
effectors are addressed to distinct subcellular locations (3). To counteract effector-triggered susceptibility 
(ETS), plants have evolved intracellular nucleotide-binding domain leucine-rich repeat (NLR) proteins also 
known as resistance (R) proteins. NLR proteins can recognize effector proteins in mainly three different 
ways: By directly interacting with the cognate effector (4a); by guarding a decoy protein which mimics an 
effector target with no other function in cellular processes (4b) and by sensing effector-triggered alterations 
made to host effector targets involved in immunity, like the cytosolic kinase domain of PRRs (4c). Activation 
of R proteins (5) subsequently leads to an induction of defence responses resulting in effector-triggered 
immunity (ETI). Figure from Dangl et al., 2013. 
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Microbial elicitors can be ‘non-self’ molecules such as pathogen- or microbe-associated 

molecular patterns (P-/MAMPs) as well as damage-associated molecular patterns (DAMPs), 

which are released from the plant host during pathogen attack (Figure 1; Chisholm et al., 

2006; Boller and He, 2009; Boller and Felix, 2009). PAMPs/MAMPs are evolutionary 

conserved molecules which are characteristic for a whole class of microbes (Boller, 1995; 

Felix et al., 1999). Since not only pathogenic microorganisms exhibit these conserved 

structures, the term MAMP is more appropriate (Boller and Felix, 2009) and will be used in 

the following work. To date, a great variety of MAMPs have been identified. Some of the 

best studied MAMP-PRR interactions are those of the bacterial flagellin and the PRR 

FLAGELLIN SENSING2 (FLS2, Gómez-Gómez and Boller, 2000), elongation factor thermo 

unstable (EF-Tu) and its cognate EF-TU RECEPTOR (EFR, Zipfel et al., 2006), as well as the 

fungal and oomycete chitin and the CHITIN RECEPTOR KINASE1 (CERK1, Miya et al., 2007). 

Upon recognition of MAMPs, PRRs trigger a number of signalling events and defence 

responses leading to PAMP-triggered immunity (PTI; Figure 1 (1)).  

Cellular processes involved in PTI are the generation of reactive oxygen species (ROS) and 

alterations of ion fluxes at the plasma membrane (PM), the activation of downstream 

mitogen-activated protein kinase (MAPK) signalling cascades, as well as the induction of 

defence-related genes (Boller and Felix, 2009). Usually PTI together with the preformed 

constitutive barriers is sufficient to protect most plant species from colonization and 

devastation by most non-adapted microbial pathogens, a mechanism termed non-host 

resistance (Thordal-Christensen, 2003). However, pathogens have evolved so-called effector 

molecules to evade recognition by PRRs and to suppress PTI-triggered defence responses. 

This leads to effector-triggered susceptibility (ETS; Figure 1 (2-3)) in the host (Jones and 

Dangl, 2006). Adapted pathogens can secrete these effectors into the apoplastic space or 

directly into the cytoplasm of host plants. For example, gram-negative bacteria use their 

type III secretion system (TTSS) to directly deliver effector molecules into the host cells 

(Figure 1 (2)). The TTSS, a specialized structure used by bacteria, is encoded by hrp 

(hypersensitive response and pathogenicity) as well as hrc (hrp conserved) genes (Alfano and 

Collmer, 1997; Lindgren, 1997; Badel et al., 2003; Jin et al., 2003). Pseudomonas strains 

deficient in hrp or hrc genes as for example the Pseudomonas syringae pathovar tomato 

(Pst) DC3000 hrcC mutant strain which lack a functional TTSS are unable to deliver effectors 

into the host cytoplasm. These Pseudomonas strains still trigger PTI but are not able to 
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counteract the activated defence responses, thus their proliferation on the host plant is 

strongly impaired (Peñaloza-Vázquez et al., 2000; Navarro et al., 2008). Instead of delivering 

effector molecules directly into the host through a TTSS, obligate biotrophic fungal and 

oomycete pathogens use specialized structures called haustoria (Figure 1 (2); O’Connell and 

Panstruga, 2006). During infection biotrophic fungi penetrate the host cell wall by forming 

an infection peg and invaginating the host plasma membrane to form the haustorium, which 

then serves to take up nutrients and deliver effectors. It has been shown that one group of 

effectors is secreted into the host apoplast, whereas as another group of effectors is present 

in the host cytoplasm (de Wit et al., 2009). So far, the exact mechanisms how fungal 

effectors enter the host cytoplasm have not yet been clarified. Effectors that have already 

been secreted into the apoplast need to overcome the plant cell wall, as well as the plasma 

membrane in order to enter the host cytoplasm. Haustorium-derived effector proteins, 

however, need to pass the pathogens PM and cell wall, the extrahaustorial matrix and the 

extrahaustorial membrane to reach the host cytoplasm (Panstruga and Dodds, 2009). 

Oomycete effector proteins with an N-terminal secretion signal followed by a host-targeting 

domain were suggested to be subject to exocytosis for secretion. Thereby, they could use a 

mechanism similar to the eukaryotic type II secretory pathway before exploiting host 

endocytosis for translocation into the cytoplasm (Whisson et al., 2007; Dou et al., 2008; Kale 

and Tyler, 2011). However, also effector proteins without a predicted translocation signal 

where shown to cross the plasma membrane (Kale and Tyler, 2011). So far, the question how 

effector molecules pass the host plasma membrane has not been solved fully and different 

hypothesises are under discussion. Once effector proteins are in the apoplast or translocated 

into the host cytoplasm or even the host nucleus, they target host proteins involved in plant 

immunity. Hence, host proteins like proteases (Song et al., 2009), glucanases (Rose et al., 

2002), PRRs (Gimenez-Ibanez et al., 2009a), RLCKs (Wang et al., 2015), MAPKs (Zhang et al., 

2007) and proteins associated with the transcriptional machinery (Schornack et al., 2010) as 

well as the ubiquitination machinery (Park et al., 2012) are just some examples for effector 

targets (Kale and Tyler, 2011). 

As a consequence of ETS plants have evolved a second layer of defence involving 

intracellular resistance (R) proteins, which sense the presence of specific effector molecules. 

R proteins are typically nucleotide-binding domain leucine-rich repeat (NLR or NB-LRR) 

proteins closely related to the NUCLEOTIDE-BINDING OLIGOMERIZATION DOMAIN 



I n t r o d u c t i o n | 5 

 

 

(NOD)-like immune receptors in animals (Ausubel, 2005). Apart from the central nucleotide 

binding site (NB) and the leucine-rich repeats (LRRs) at the C-terminus, these proteins 

contain a variable N-terminus either consisting of coiled-coil (CC) domains or Toll 

interleukin-1 receptor (TIR) domains (Dangl and Jones, 2001; Gay and Gangloff, 2007). 

So far three different R protein-mediated effector detection mechanisms are known. In the 

first one the R protein directly associates with and recognizes a specific pathogen effector 

(Jia et al., 2000; Dodds et al., 2006). In the second model the R protein guards a decoy 

protein which mimics an actual effector target with no further function (Mackey et al., 2003; 

Dodds and Rathjen, 2010). The R protein then senses alterations of the decoy protein 

exerted through the effector. Similar to this is the third mechanism, where the R protein 

associates with a putative effector target involved in plant innate immunity and senses 

effector-mediated alterations on the host protein (Mucyn et al., 2006; Gimenez-Ibanez et al., 

2009a). Upon recognition by a host R protein, the effector molecule is termed an Avirulence 

(Avr) protein. 

Recognition of effector molecules and the subsequent activation of R proteins lead to 

effector-triggered immunity (ETI) in the host plant (Figure 1 (5)). ETI culminates in a strong 

defence response, including processes already know from PTI as for example the generation 

of ROS, activation of MAPK signalling cascades and induction of defence gene expression. 

Often, ETI is associated with the initiation of local programmed cell death at the infection 

site, also known as hypersensitive response (HR, Chisholm et al., 2006). Since biotrophic 

pathogens depend on living host tissue to colonize and proliferate, the HR is an effective 

immune response against this class of pathogens. Necrotrophic pathogens which kill their 

host in order to feed on the dead tissue, however, benefit from the programmed cell death 

during HR (Govrin and Levine, 2000). 

ETI and the accompanying HR lead to a long-lasting broad spectrum resistance in the 

infected but also in distant tissues called systemic acquired resistance (SAR). This increased 

resistance is associated with the expression of PATHOGENESIS-RELATED (PR) genes and the 

accumulation of salicylic acid (SA) (Cao et al., 1994; Bowling et al., 1994; Durrant and Dong, 

2004).  
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1.2 Pattern recognition receptors 

 

The plasma membrane-localized PRRs can be subcategorized into two classes, the receptor-

like kinases (RLKs) and the receptor-like proteins (RLPs). Both, RLKs and RLPs have an 

extracellular ligand-binding domain (also known as ectodomain) and a plasma membrane-

spanning transmembrane domain. RLKs possess an additional cytoplasmic kinase domain 

which is important for intracellular downstream signal transduction. In contrast, RLPs 

contain only a short cytoplasmic tail (Monaghan and Zipfel, 2012). The ectodomain of PRRs 

may contain different functional motifs, which reflect the type of ligand they bind. PRRs with 

a variable number of leucine-rich repeats (LRRs) in their ectodomain have been shown to be 

involved in recognizing protein or peptide MAMPs (Monaghan and Zipfel, 2012). However, 

PRRs with an ectodomain composed of lysin motif (LysM) domains are important for the 

perception of N-acetylglucosamine-containing oligosaccharide MAMPs, including fungal 

chitin (Zhang et al., 2007). Although a great number of RLKs have been identified in 

Arabidopsis to date, the ligands are known only for a small number of RLKs and RLPs. Though 

the mentioned PRRs differ in structure and also in the MAMP specificity, they all seem to 

depend on dimerization for proper immune signalling. Both, homo- and heterodimerization 

have been described in plants (Macho and Zipfel, 2014). 

In the following section the most prominent examples will be described in more detail. 

 

1.2.1 LRR-RLKs and the perception of peptide MAMPs 

 

The LRR-RLK FLAGELLIN-SENSING2 (FLS2) constitutes the Arabidopsis flagellin receptor. FLS2 

directly binds the bacterial flagellin, or to be more precise its conserved N-terminal 22-amino 

acid epitope flg22 via its 28 LRRs in the ectodomain (Gómez-Gómez and Boller, 2000; 

Chinchilla et al., 2006). FLS2 orthologs are found in a great number of higher plants 

indicating that the perception of bacterial flagellin is an evolutionary old mechanism (Boller 

and Felix, 2009). Arabidopsis fls2 mutant plants as well as Nicotiana benthamiana plants 

silenced for NbFLS2 are more susceptible to both, adapted and non-adapted bacterial 

pathogens (Zipfel et al., 2004; Li et al., 2005; Hann and Rathjen, 2007). Likewise, mutations 

in the flg22 sequence can render bacteria more pathogenic since mutant flg22-variants 

partially or completely failed to elicit plant immune responses (Felix et al., 1999; Pfund et al., 
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2004; Sun et al., 2006). The Arabidopsis elongation factor Tu receptor (EFR) belongs to the 

same class of LRR-RLKs as FLS2, the LRR XII family (Shiu and Bleecker, 2003). With its 

ectodomain consisting of 21 LRRs EFR recognizes and binds to the elongation factor Tu 

(EF-Tu) and its conserved epitope elf18 (Zipfel et al., 2006). The presence of EFR orthologs 

and subsequently also the perception of elf18 is restricted to Brassicaceae (Kunze et al., 

2004). efr knockout mutants show an enhanced susceptibility to Agrobacterium tumefaciens 

transformation as well as to Pseudomonas syringae pv. tomato infection (Zipfel et al., 2006; 

Zipfel, 2009). A LRR-RLK which shares high homology to EFR is the rice XA21 (Boller and Felix, 

2009). Similar to EFR, XA21 possesses an ectodomain with 21 LRRs which were shown to 

bind the Xanthomonas oryzae pv. oryzae type I-secreted protein Ax21 and its minimal active 

peptide AxYS22. Ax21 was suggested to be involved in quorum sensing, a mechanism 

conserved among bacteria and therefore constitutes a typical MAMP (Han et al., 2011). 

XA21 was shown to confer resistance against X. oryzae (Song et al., 1995). Two LRR-RLKs 

involved in perception of the DAMP peptides AtPep1 and its homologs are PEP1 RECEPTOR1 

(PEPR1) and PEPR2 (Yamaguchi et al., 2006; Yamaguchi et al., 2010; Krol et al., 2010). The 

different AtPep peptides were shown to be involved in the induction of defence responses 

as for example in Ca2+ signalling (Huffaker et al., 2006; Qi et al., 2010). Studies in Arabidopsis 

and maize suggest a possible role for the AtPep/PEPR system in enhancing resistance against 

pathogen infection but also in signalling upon herbivore attack and wounding (Huffaker and 

Ryan, 2007; Huffaker et al., 2011; Boller and Flury, 2012). 

One LRR-RLK which is involved in complex formation and subsequent signalling of the 

described PRRs is the BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). A lot of research has 

been conducted on the heterocomplex formation of the co-receptor BAK1 (Mazzotta and 

Kemmerling, 2011). BAK1, also known as SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 

(SERK3), is a LRR-RLK and belongs to the LRR II family (Shiu and Bleecker, 2003). Initially, 

BAK1 was identified as positive regulator of brassinosteroid (BR) signalling due to its ligand-

dependent interaction and transphosphorylation with the BR receptor BRASSINOSTEROID 

INSENSITIVE1 (BRI1, (Nam and Li, 2002; Li et al., 2002; Wang, 2008; Sun et al., 2013). bak1 

mutants only show a subtle phenotype in BR-signalling because of functional redundancy 

with two other members of the SERK family of receptor-like kinases, SERK1 and SERK4/BAK1-

LIKE1 (BKK1; Karlova et al., 2006; He et al., 2007). Independent from its function in BRI1-

mediated BR signalling, BAK1 is also involved in plant innate immunity by forming 
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heteromeric complexes with FLS2 and EFR, respectively (Kemmerling et al., 2007; Chinchilla, 

2007; Heese et al., 2007; Schulze et al., 2010; Roux et al., 2011). Similar to its function in BR-

signalling, BAK1 is not important for binding of flg22 and elf18 to FLS2 and EFR, respectively, 

but rapidly dimerizes with the two receptor-like kinases upon MAMP perception (Chinchilla, 

2007; Roux et al., 2011). This heterodimerization between the different LRR-RLKs leads to 

mutual transphosphorylation on the intracellular domains (Schulze et al., 2010). bak1 

mutant plants are not fully impaired in FLS2- and EFR-mediated defence responses, they 

rather show quantitative alterations in the immune signalling pathways (Chinchilla, 2007; 

Roux et al., 2011). Studies in yeast and Arabidopsis indicated an association of BAK1 with 

PEPR1 and PEPR2, suggesting that BAK1 is also involved in DAMP signalling (Postel et al., 

2010; Schulze et al., 2010). BAK1 has also been shown to be involved in immune responses 

elicited by other bacterial and oomycete MAMPs including lipopolysaccharides (LPSs), 

peptidoglycans (PGNs), and the elicitin INF1 (Heese et al., 2007; Shan et al., 2008). Upon 

infection with the fungal pathogen Botrytis cinerea, bak1 mutants develop spreading 

necrosis indicating an enhanced susceptibility to necrotrophic pathogens (Kemmerling et al., 

2007). Interestingly, bak1 bkk1 mutants exhibit seedling-lethality due to constitutive active 

defence responses accompanied by spontaneous cell death (He et al., 2007). The bak1-5 

mutant allele is impaired in flg22- and elf18-triggered immune responses but does not show 

the pleiotropic defects in BR-signalling and cell-death formation of knockout mutants (Roux 

et al., 2011; Schwessinger et al., 2011). Analysis of a bak1-5 bkk1 double mutant showed 

that both, BAK1 and BKK1 contribute to FLS2-, EFR- and Pep1-dependent immune signalling. 

The reduced MAMP signalling in bak1-5 bkk1 led to reduced resistance against pathogens, 

for example the hemibiotrophic Pseudomonas syringae and the biotroph oomycete 

Hyaloperonospora arabidopsidis (Roux et al., 2011). BAK1 seems to be an important 

regulator in plant immunity due to its ligand-dependent complex formation with various 

PRRs (He et al., 2007).  

 

1.2.2 LysM-RLKs and the perception of carbohydrate MAMPs 

 

The carbohydrate-binding lysin motif (LysM) was initially identified in enzymes of bacteria, 

which were shown to be involved in degrading bacterial and fungal cell walls composed of 

peptidoglycan (PGN) and chitin, respectively (Bateman and Bycroft, 2000; Buist et al., 2008). 
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Moreover, also eukaryotic proteins like LysM-RLKs or a fungal effector were shown to 

contain LysM domains involved in binding fungal chitin oligosaccharides, structurally chitin-

related Nod factors and bacterial PGNs (Bolton et al., 2008; Buist et al., 2008; Jonge and 

Thomma, 2009).  

 

1.2.2.1 Chitin perception 

 

Chitin constitutes a major component of the fungal cell well and therefore represents a well-

conserved MAMP recognized by PRRs of several plant species (Boller and Felix, 2009). Chitin 

is a polymer consisting of β-1,4-linked N-acetylglucosamine (GlcNAc) monomers (Muzzarelli, 

1977). 

The first chitin receptor, CHITIN ELICITR BINDING PROTEIN (CEBiP), was identified in rice 

(Oryza sativa) due to its chitin-binding affinity (Kaku et al., 2006). CEBiP contains an 

extracellular domain with three LysMs and a C-terminal transmembrane domain, but lacks 

an intracellular part (Hayafune et al., 2014). Therefore CEBiP is assigned to belong to the 

class of RLPs. Due to the lack of an intracellular kinase domain which is vital for proper signal 

transduction, CEBiP seems to form a complex with the RLK OsCERK1 (Shimizu et al., 2010). 

Silencing of OsCERK1 led to disruption of chitin-induced immune responses in rice (Kouzai et 

al., 2014; Ao et al., 2014). Hayafune and colleagues (2014) suggested that two CEBiP 

molecules bind to one (GlcNAc)8 chain from opposite sides in a sandwich-type manner 

(Figure 2 (a)). In order to form a stable dimer, at least five internal GlcNAc moieties are 

necessary, since the two CEBiP molecules bind four monomers each, sharing three of them. 

Studies with a modified oligosaccharide which instead of having four alternated N-acetyl 

groups only had the N-acetyl groups pointing to one side (GlcNβ1,4GlcNAc)4, showed that 

although it was able to bind to CEBiP it did not induce receptor dimerization and immune 

signalling. Additionally, pre-treatment with (GlcNβ1,4GlcNAc)4 blocked the receptor for 

further (GlcNAc)8 binding and dimerization (Hayafune et al., 2014). The LysM-RLK OsCERK1 

was shown to have no chitin-binding activity, underlining its function in solely transmitting 

the CEBiP-perceived signal into the intracellular part of the plant cell (Shimizu et al., 2010; 

Shinya et al., 2012). 
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Figure 2. Model for chitin-induced receptor complex formation in rice (Oryza sativa) and Arabidopsis. a) In 
rice two OsCEBiP molecules bind a chitin oligosaccharide in a sandwich-type manner via their central LysMs, 
leading to homodimerization. Ligand-dependent homodimerization of OsCEBiP leads to association of 
OsCERK1 in order to transmit and activate downstream signalling. b) and c): Two models for chitin 
perception in Arabidopsis. b) AtCERK1 homodimerizes upon chitin perception. The direct binding of AtCERK1 
to a chitin oligosaccharide is mediated via its central LysM. Homodimerization of AtCERK1 leads to activation 
of chitin-induced defence responses. c) In this model AtLYK5 represents the major chitin receptor. Upon 
chitin perception AtLYK5 heterodimerizes with AtCERK1 molecules. This dimerization is important to 
transduce the signal from the kinase inactive AtLYK5 via kinase active AtCERK1 to downstream defence-
signalling components. However, detailed chitin-binding mechanism and complex formation have not been 
resolved, yet. Figure from Shinya et al., 2015. 

 

Two additional LysM proteins, Oryza sativa LysM-CONTAINING PROTEIN4 (OsLYP4) and 

OsLYP6, were suggested to be involved in chitin signalling due to their chitin-binding ability 

(Liu et al., 2012). These probably glycosylphosphatidylinositol (GPI)-anchored plasma 

membrane proteins were shown to associate with CEBiP under non-elicited conditions. Upon 

chitin perception OsLYP4 and OsLYP6 were shown to form complexes with OsCERK1, similar 

to the previously described OsCERK1-CEBiP complex (Ao et al., 2014; Hayafune et al., 2014). 

Transgenic rice plants silenced for OsLYP4 or OsLYP6 were impaired in chitin-induced 

defence signalling, including ROS production, defence gene expression and callose 

deposition (Liu et al., 2012). To date, the exact complex formation and signalling mechanism 

upon chitin perception in rice has not been solved. 
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A similar mechanism involving heterocomplex formation between RLKs and RLPs was shown 

for the Arabidopsis LRR-RLP CLAVATA2 (CLV2) involved in shoot meristem and organ 

development. CLV2 forms a heteromeric signalling complex with the RLK CLV1 to initiate 

proper developmental signalling (Clark et al., 1993; Jeong et al., 1999).  

The OsCERK1 ortholog in Arabidopsis, CHITIN ELICITOR KINASE1 (CERK1)/LYK1/LysM-RLK1, 

was identified as the primary receptor for the fungal MAMP chitin (Miya et al., 2007). It is 

one of five LYK proteins encoded by the Arabidopsis genome (Zhang et al., 2007). CERK1 

directly binds chitin and its derivatives via its three LysMs on the extracellular domain and is 

directly involved in transmitting the perceived signal into intracellular parts of the cell 

(Figure 2 (b); (Petutschnig et al., 2010; Iizasa et al., 2010; T Liu et al., 2012). Analysis of the 

crystal structure of CERK1 in complex with a chitin pentamer revealed a chitin binding site in 

the second of the three LysMs (Liu et al., 2012). Upon chitin perception, the extracellular 

domains of two CERK1 molecules rapidly homodimerize leading to transphosphorylation on 

their intracellular domains (Liu et al., 2012). Phosphorylation of CERK1 induces a band shift 

of the CERK1 protein which can be visualized via immunoblot (Petutschnig et al., 2010). 

Besides chitin, CERK1 was also shown to recognize several chitin derivatives with varying 

lengths of the β-1,4-linked N-acetylglucosamine (GlcNAc) chains (Petutschnig et al., 2010). It 

was shown that the degree of polymerization of the chitin molecules is important for CERK1 

dimerization. Petutschnig and colleagues (2010) showed that besides chitin and chitosan, 

CERK1 also bound chitin oligomers with a polymerization degree (pd) of 5 and higher. In 

contrast, chitin mono- and dimers did not induce CERK1 mobility shift at all. Chitin tri- and 

tetramers as well as chitosan only induced a weak shift compared to polymeric chitin. 

However, chitin oligomers with a pd ≥ 5 induced a mobility shift comparable to that 

observed upon treatment with polymeric chitin and also activated subsequent immune 

responses like ROS production and MAPKs (Petutschnig et al., 2010). Interestingly, Liu and 

colleagues (2012) reported that upon binding of chitin pentamers no conformational change 

indicative for dimerization could be observed on the CERK1 ectodomain. Additionally, they 

proposed that neither chitin tetramers nor pentamers induced CERK1 ectodomain 

dimerization as it was observed for the octamer. These results contradict the observed 

induction of immune responses with chitin pentamers by Petutschnig et al., 2010. The 

mentioned discrepancies are probably due to the different experimental setups and 

differences in in vitro or in vivo performed assays.  
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Upon CERK1 phosphorylation downstream intracellular immune responses are initiated 

including the induction of early immune responses like the generation of ROS and activation 

of MAPK cascades (Wan et al., 2004; Miya et al., 2007; Petutschnig et al., 2010). The 

signalling cascade leads to up-regulation of MAMP-induced genes, including transcription 

factors (TFs) which contain a WRKY DNA-binding domain, such as WRKY 22/29/33/53 (Wan 

et al., 2004; Libault et al., 2007). cerk1-2, a T-DNA knockout mutant lacking a functional 

CERK1 protein, was shown to be completely insensitive to chitin (Miya et al., 2007). Hence, 

the mutant plants were more susceptible to fungal pathogens (Wan et al., 2004; Miya et al., 

2007). Additionally, cerk1 mutants showed enhanced susceptibility to strains of the bacterial 

pathogen Pseudomonas syringae (Gimenez-Ibanez et al., 2009b).  

Interestingly Arabidopsis also possesses an ortholog to the rice RLP CEBiP. The LysM-

CONTAINING RECEPTOR-LIKE PROTEIN2 (LYM2) was identified due to its high affinity to 

chitin in pull-down assays (Petutschnig et al., 2010; Shinya et al., 2012). Despite the shown 

chitin-binding capacity, no function in canonical chitin perception or CERK1-mediated chitin 

signalling could be assigned to LYM2 (Wan et al., 2008; Shinya et al., 2012; Narusaka et al., 

2013; Faulkner et al., 2013). Instead, LYM2 was shown to mediate molecular fluxes through 

plasmodesmata in a chitin-dependent manner (Faulkner et al., 2013). This CERK1-

independent function of LYM2 was reported to be an important mechanism in defence 

against necrotrophic fungal pathogens (Faulkner et al., 2013; Narusaka et al., 2013). 

So far, CERK1 was proposed to be the major chitin receptor in Arabidopsis responsible for 

perception and signalling of chitin and its derivatives (Petutschnig et al., 2010; Liu et al., 

2012). As shown earlier, PRR complex formation is an important mechanism in MAMP 

perception and signalling. The reported complex formation of OsCERK1 in rice suggested 

that Arabidopsis CERK1 might do so as well. The fact that CERK1 shows quite a low affinity to 

chitooctaose supports the idea (Liu et al., 2012; Cao et al., 2014). Recently, two Arabidopsis 

LysM-RLKs, LYK4 and LYK5, were shown to be involved in chitin signalling (Wan et al., 2012; 

Cao et al., 2014). LYK4 was shown to play a minor role in chitin signalling, since lyk4 mutants 

were only slightly impaired in the induction of chitin-responsive genes, ROS generation, 

calcium influx and resistance against bacterial and fungal pathogens (Wan et al., 2012). For 

LYK5 contradictory findings were published. Initially, the lyk5-1 mutant in the Landsberg 

(Ler) background was suggested to show no alteration in chitin-induced immunity based on 
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the expression of WRKY53 (Wan et al., 2008; Wan et al., 2012). These findings were revoked, 

due to the fact that in additional assay lyk5-1 mutants showed a reduced CERK1 band shift, 

reduced expression of WRKY33 and reduced activation of MAPKs upon chitin treatment. 

Moreover, the Ler background of lyk5-1 could be critical, since Ler wild type plants already 

showed a reduced ROS production compared to Col-0 upon chitin treatment (Cao et al., 

2014). To circumvent variations due to the Ler background, Cao and colleagues (2014) 

characterized lyk5-2 in the Col-0 background and showed that lyk5-2 mutant plants were 

significantly impaired in chitin-induced defence responses, however not to the same extent 

as cerk1 knockout mutants. lyk4 lyk5 double mutants showed a phenotype which resembled 

the complete blocking of chitin-induced responses seen in the cerk1-2 mutant, indicating a 

redundancy of LYK4 and LYK5 in chitin signalling (Cao et al., 2014). LYK5 constitutes an 

inactive kinase which forms homodimers in the absence of chitin and is suggested to be 

necessary for CERK1 homodimerization and phosphorylation (Figure 2 (c)). Interestingly, 

LYK5 association with CERK1 upon chitin perception seemed to be stronger than CERK1 

homodimerization (Cao et al., 2014). Recent findings indicated that the LYK5 kinase domain 

is phosphorylated by CERK1 (Erwig et al., in preparation). The chitin-binding affinity 

measured for LYK5 (Kd = 1.72 μM), was 200-fold higher than that of CERK1 (Kd = 455 μM) 

(Cao et al., 2014). Intriguingly, the value for CERK1 chitooctaose binding affinity differs from 

the value (Kd = 45 µM) measured by Liu and colleagues (2012). Hence, whether one of the 

two RLKs functions as the primary chitin receptor due to stronger chitin-binding affinity is 

not yet proven and the exact structure of the receptor complex around CERK1 involved in 

chitin signalling has not yet been fully solved.  

 

1.2.2.2 Nod factor perception 

 

The perception of MAMPs via LysM domains plays a role in symbiosis of legumes with 

specialized rhizobial microbes (Antolín-Llovera et al., 2014). Nod factors (NFs) represent 

modified chitin oligosaccharides, so-called lipochitooligosaccharides, which are produced by 

the bacteria and are necessary for infection and nodule formation of the host (Radutoiu et 

al., 2003; Nakagawa et al., 2011; Rey et al., 2013; de Mita et al., 2014). The exact structure 

of NFs can vary in the acyl chain attached to the non-reducing terminal glucosamine residue 

depending on the bacterial species (Oldroyd and Downie, 2008). In the interaction between 
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Lotus japonicus and NF-secreting rhizobia two LysM-RLKs, namely NOD FACTOR RECEPTOR1 

(NFR1) and NFR5 play an important role (Madsen et al., 2011). NFR1 and NFR5 are both 

involved in Nod factor-perception. nfr1 and nfr5 mutant plants exhibit similar mutant 

phenotypes, including impaired Nod factor responses as for example nodule primordia 

formation. However, only NFR1 possesses an active kinase domain and is thus thought to be 

required for initiation of downstream Nod factor-signalling (Radutoiu et al., 2003; Madsen et 

al., 2011; Broghammer et al., 2012). In Medicago truncatula two orthologs of NFR1/5 are 

responsible for NF perception, LysM-RLK3 (LYK3) and NOD FACTOR PERCEPTION (NFP) 

(Arrighi et al., 2006; Smit et al., 2007; Rey et al., 2013). While nfp mutants are impaired in 

rhizobial symbiosis including the NF perception, root hair deformation and initial NF 

responses (Amor et al., 2003; Mulder et al., 2006), lyk3 mutants are impaired in rhizobial-

infection including the formation of infection threads and nodules (Limpens et al., 2003; 

Riely et al., 2004). Interestingly, the lyk3 phenotype resembles the phenotype observed 

upon infection of wild type M. truncatula with a mutant Sinorhizobium meliloti (Sm) nodF 

nodL strain. NFs secreted by this Sm mutant miss an acetate substitution at the non-reducing 

terminal glucosamine residue and have a C18:1 chain in place of the C16:2 acyl chain 

(Ardourel et al., 1994). Whereas single mutations of nodF and nodL have only minor effects 

on nodulation, the double mutant leads to an impairment of the bacteria to initiate the 

formation of functional infection threads (Ardourel et al., 1994; Limpens et al., 2003). Taken 

these results together, LYK3 is suggested to function as entry receptor in M. truncatula with 

high stringency to NF structure and recognition (Limpens et al., 2003; Riely et al., 2004).  

 

1.2.2.3 Peptidoglycan perception 

 

Peptidoglycan (PGN) is composed of alternating GlcNAc and N-acetylmuramic acid residues 

and is thus structurally related to chitin. PGN is also a well-conserved MAMP due to its 

function as structural component in cell walls of Gram-positive and Gram-negative bacteria 

(Gust et al., 2007). As already mentioned, LysMs are not only involved in the binding and 

perception of chitin and Nod factors, but they were also shown to be important for 

perception of peptidoglycan in plants (Willmann et al., 2011).  

Recently, two Arabidopsis LysM-RLPs, LysM-CONTAINING RECEPTOR-LIKE PROTEIN1 and -3 

(LYM1 and LYM3) were shown to bind PGN and to be required for PGN perception together 
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with CERK1 (Willmann et al., 2011). In this tripartite PGN signalling complex proposed by 

Willmann and colleagues (2011), LYM1 and LYM3 were shown to be important for binding of 

the ligand, whereas CERK1 showed no direct binding to PGN. Willmann et al., (2011) showed 

that cerk1 mutants were more susceptible to bacterial infection probably due to the 

observed PGN-insensitivity. In contrast to that are the findings by Gimenez-Ibanez et al., 

(2009b) which show enhanced susceptibility to bacterial infection independent of PGN, since 

perception of PGN is not blocked in cerk1 mutants in their studies. Although the exact PGN 

perception and signalling mechanisms have not yet been clarified, a model has been 

proposed where LYM1 and LYM3 bind PGN and then form a complex with CERK1 for 

downstream signal transduction (Willmann et al., 2011).  

The rice LysM-RLK OsCERK1 was also suggested to play a role in PGN perception and 

immunity in rice together with the two LysM-RLPs OsLYP4 and OsLYP6 (Liu et al., 2012; 

Miyata et al., 2014). Plants silenced for OsCERK1 were impaired in PGN-induced defence 

responses indicating a dual role for OsCERK1 in chitin and PGN signalling (Kouzai et al., 

2014).  

 

1.3 Receptor-like cytoplasmic kinases 

 

Members of a subfamily of RLKs, the receptor-like cytoplasmic kinases (RLCKs) have emerged 

as essential proteins to transmit signals from PRRs to further downstream components (Lin 

et al., 2013). RLCKs represent about one quarter of all RLKs and can be divided into 12 

subfamilies (I-XII; Shiu et al., 2004). RLCKs differ from RLKs through the lack of an 

extracellular domain required for elicitor perception and a missing transmembrane domain. 

However, sequence analyses indicated that RLCKs exist which have additional domains to 

the cytoplasmic Ser/Thr kinase domain which might be important for interaction with other 

proteins (Shiu and Bleecker, 2001). These domains resemble structures already known from 

the ectodomains of RLKs, as for example LRRs, LysMs, and lectin domains (Shiu et al., 2004; 

Vij et al., 2008). RLCKs which lack any additional domains and/ or signal sequences for 

membrane localization may localize to the plasma membrane through association with 

membrane proteins or due to lipid modifications (Veronese et al., 2006; Tang et al., 2008). 

N-myristoylation is a co- or post-translational protein modification where a myristic acid 

residue is irreversibly linked to an N-terminal glycine residue which has been exposed due to 
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previous co-translational removal of the N-terminal methionine (Johnson et al., 1994). It has 

also been shown that myristoylation can proceed post-translationally. In this case the 

mature protein is enzymatically cleaved and an internal glycine is then exposed to the N-

myristoyltransferase (Zha, 2000). N-myristoylation plays a role in translocating and 

anchoring proteins to membranes within cells (Johnson et al., 1994). Interestingly, it was 

shown to be important for proper function and localization of several RLCKs, including BIK1, 

PBS1-LIKE1 (PBL1), and CAST AWAY (Burr et al., 2011; Lin et al., 2013; Ranf et al., 2014). 

 

1.3.1 RLCKs in hormone signalling 

 

The RLCK BR-SIGNALING KINASE1 (BSK1) constitutes a substrate of the BR receptor BRI1 and 

acts as a positive regulator in BR-induced responses (Tang et al., 2008). Under non-elicited 

conditions, BRI1 is inactive and the expression of BR-responsive genes is repressed due to 

inactivation of the corresponding transcription factors by the GSK3-like kinase BR 

INSENSITIVE2 (BIN2, (Wang et al., 2002; Li and Nam, 2002; Yin et al., 2002; He, 2002; Vert 

and Chory, 2006; Gampala et al., 2007). BSK1 contains an N-terminal myristoylation motif 

which could mediate plasma membrane localization and subsequently be involved in proper 

function of the protein (Tang et al., 2008). Together with BSK1, which belongs to the RLCK 

family XII (Shiu et al., 2004), an additional RLCK of the subfamily VII, CONSTITUTIVE 

DIFFERENTIAL GROWTH1 (CDG1), was identified to function in parallel in downstream BRI1-

signalling (Muto et al., 2004; Kim et al., 2011). The two RLCKs are phosphorylated by BRI1 

and also transphosphorylate BRI1 vice versa. Upon activation, BSK1 and CDG1 dissociate 

from BRI1 in order to associate with the phosphatase BRI1 SUPPRESSOR1 (BSU1) (Tang et al., 

2008; Kim et al., 2009, 2011). Enhanced BR perception leads to increased dephosphorylation 

of BIN2 by BSU1 (Kim et al., 2009). Dephosphorylated inactive BIN2 no longer 

phosphorylates the TFs BZR1 and BZR2/BES1 which are further dephosphorylated by the 

PROTEIN PHOSPHATASE2A (PP2A) and subsequently translocate into the nucleus to regulate 

expression of BR-sensitive genes (Sun et al., 2010; Tang, 2011). Kim et al. (2011) reported 

that either of the two RLCKs, CDG1 or BSK1, is enough to mediate BR-signalling from BRI1 to 

BSU. BSK1 and CDG1 were both found to be plasma membrane-associated, probably due to 

N-myristoylation and palmitoylation, respectively (Tang et al., 2008; Kim et al., 2011). bsk1 

and cdg1 mutant plants showed only subtle phenotypes indicating alterations in BR-
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signalling (Kim et al., 2011; Shi et al., 2013a). This could be explained by the fact that both 

proteins have homologs in Arabidopsis which show a redundant function in BR-signalling 

(Tang et al., 2008; Kim et al., 2011). Additionally to its role in BR-signalling BSK1 was found to 

also play a role in FLS2-mediated immunity (see below; Shi et al., 2013a). 

 

1.3.2 RLCKs in plant immunity 

 

BSK1 seems to have a dual function in BR-signalling as well as in PTI mediated by FLS2 (Shi et 

al., 2013b). bsk1-1 was identified in an suppressor screen for enhanced disease resistance2 

(edr2), involved in increased resistance against powdery mildews and connected induced cell 

death (Shi et al., 2013a). Additionally, bsk1 mutants also showed enhanced susceptibility to 

virulent and avirulent bacterial and oomycete pathogens. BSK1 was found to play a role in SA 

accumulation and in FLS2-mediated ROS production triggered by flg22. Elf18-triggered ROS 

burst was not affected in bsk1 mutants. BSK1 associates with FLS2 already under non-elicited 

conditions (Shi et al., 2013a). The bsk1 mutant phenotype suggests that similar to BIK1 (see 

below), BSK1 probably interacts with additional RLKs and therefore is involved in several 

different defence response pathways (Shi et al., 2013a). Taken together the RLCK BSK1 is not 

only a major component in BR-signalling but also takes up an important role in PTI. 

The RLCK subfamily VII protein BOTRYTIS-INDUCED KINASE1 (BIK1) was initially identified 

due to its involvement in resistance against necrotrophic fungal pathogens as well as a 

negative regulatory role in resistance towards a virulent Pst strain (Veronese et al., 2006). 

On the molecular level, BIK1 was shown to associate with the previously described 

FLS2/BAK1 and EFR/BAK1 complexes (1.2.1) and is rapidly phosphorylated upon flg22 and 

elf18 treatment suggesting a role in early flagellin and EF-Tu signalling (Lu et al., 2010). BIK1 

is associated with FLS2 under unstimulated conditions forming a constitutive complex (Zhang 

et al., 2010). Upon flg22 perception FLS2 is activated and heterodimerizes with BAK1. 

Activated FLS2 and BAK1 phosphorylate the FLS2-associated RLCK BIK1, which also 

transphosphorylates the two LRR-RLKs FLS2 and BAK1 (Lu et al., 2010). BIK1 then dissociates 

from the FLS2/BAK1 complex to positively regulate PTI signalling. BIK1 is not only important 

for FSL2-dependent immune signalling, but was also shown to associate with the RLKs EFR, 

CERK1 and PEPR1 (Lu et al., 2010; Zhang et al., 2010). Recent studies showed that BIK1 

directly phosphorylates the NADPH oxidase AtRBOHD (Arabidopsis thaliana RESPIRATORY 
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BURST OXIDASE HOMOLOG,D), the main component involved in production of apoplastic 

ROS in PTI upon flg22 perception (Nühse et al., 2007; Kadota et al., 2014). Phosphorylation 

of AtRBOHD and the associated ROS burst were shown to be important for initiation of 

further downstream immune responses (Kadota et al., 2014).  

Besides BIK1 also other closely related members of the RLCK subfamily VII were identified to 

be involved in PTI (Zhang et al., 2010). PBS1 (AVRPPHB SUSCEPTIBLE1) and several related 

PBL (PBS1-like) proteins were found to contribute to flg22-, elf18-, chitin- and Pep1-induced 

immune responses (Lu et al., 2010; Zhang et al., 2010). BIK1, PBS1 and several members of 

the PBL family are targeted and cleaved by the Pseudomonas syringae effector AvrPphB in 

order to overcome PTI (Zhang et al., 2010). The proteolytic cleavage of PBS1 seems to be 

recognized by its guard R-protein RPS5 which subsequently leads to ETI (Shao et al., 2003). 

Similar to BIK1, PBS1 and two PBLs associate with the inactive FLS2 and dissociate upon 

flg22-induced phosphorylation of FLS2 regulating downstream flg22-induced ROS production 

(Zhang et al., 2010). Whereas, ROS burst mediated by PEPR1 and PEPR2 seems to depend 

only on BIK1 and PBL1 (Liu et al., 2013). Although BIK1, PBS1 and PBL proteins are closely 

related, selectively only BIK1 and PBL1 were shown to be involved in regulating calcium 

influx during MAMP and DAMP associated PTI. Moreover, the RLCKs regulate overlapping 

but also distinct downstream calcium responses. Only pbl1 mutants showed arrested root 

growth in flg22-induced root growth assays (Ranf et al., 2014). Additionally, the CALCIUM-

DEPENDET PROTEIN KINASE28 (CPK28) which constitutes a negative regulator of PTI was 

shown to associate with and phosphorylate BIK1. CPK28 is suggested to reciprocal regulate 

BIK1 turnover. Presumably, the constitutive turnover of BIK1 is important for maintaining 

cellular immune homeostasis indicating that BIK1 could have a rate-limiting function in PTI 

signalling (Monaghan et al., 2014).  

BIK1 has already been shown to constitute a target of the Xanthomonas campestris pv. 

campestris (Xcc) effector AvrAC/XopAC, which inhibits BIK1 function through uridylylation 

and thereby interferes with BIK1-mediated PTI signalling in mesophyll cells (Feng et al., 

2012). AvrAC seems to be specifically recognized in vascular tissues leading to ETI (Xu et al., 

2008). Interestingly, also other BIK1-related RLCKs were suggested to interact with AvrAC. 

Recent findings suggest that the BIK1 paralog PBL2 functions as AvrAC decoy. Similar to BIK1, 

PBL2 is uridylylated by AvrAC which leads to the initiation of ETI in vascular tissues (Guy et 
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al., 2013; Wang et al., 2015). However, PBL2 is not involved in AvrAC-mediated virulence 

required for PTI. Uridylylated PBL2 associates with the NLR protein HOPZ-ACTIVATED 

RESISTANCE1 (ZAR1) and the RLCK family XII pseudokinase RESISTANCE RELATED KINASE1 

(RKS1), which activates ETI (Wang et al., 2015). This also supports the findings described 

before for redundant and selective functions of BIK1 and related RLCKs (Zhang et al., 2010; 

Lu et al., 2010; Ranf et al., 2014).  

So far, mainly RLCKs involved in signalling mediated by LRR-RLKs involved in the perception 

of peptide elicitors were identified. Two examples for RLCKs have been reported to be 

involved in chitin and PGN signalling in rice (Yamaguchi et al., 2013; Ao et al., 2014). 

OsRLCK185, target of the Xanthomonas oryzae effector Xoo1488, was shown to directly 

interact with OsCERK1 at the plasma membrane and to constitute a phosphorylation 

substrate of the same. The RLCK subfamily VII protein (Shiu et al., 2004) OsRLCK185 forms a 

heterodimer with OsCERK1 under non-elicited conditions. Upon chitin perception OsCEBiP, 

the major chitin receptor in rice, associates with OsCERK1 which gets activated and 

subsequently phosphorylates OsRLCK185 leading to dissociation of the RLCK probably in 

order to activate downstream immune responses (Yamaguchi et al., 2013). Phosphorylation 

of OsRLCK185 by OsCERK1 was shown to be suppressed by Xoo1488 inhibiting MAPK 

activation. Mutants silenced for OsRLCK185 were impaired for chitin- and PGN-induced 

immune responses like MAPK activation and defence-gene expression (Yamaguchi et al., 

2013). OsRLCK185 seems to be involved in downstream chitin- and PGN-induced immunity 

mediated by OsCERK1.  

An additional member of the RLCK subfamily VII, OsRLCK176, was identified due to its in vivo 

interaction with OsCERK1 (Shiu et al., 2004; Ao et al., 2014). Similar to OsRLCK185 and 

OsCERK1, the association between OsRLCK176 and OsCERK1 was also reduced upon chitin 

and PGN treatment. OsRLCK176-silenced rice plants were impaired in chitin- and PGN-

induced ROS production, MAPK activation and defence gene expression (Ao et al., 2014). 

These findings suggest that OsRLCK176 functions a positive regulator in OsCERK1-mediated 

chitin-and PGN-induced immunity together with OsRLCK185.  

Recently, the RLCK PBL27 involved in CERK1-mediated chitin signalling was identified due to 

its homology to the rice OsRLCK185 (Shinya et al., 2014). PBL27 belongs to the RLCK VII 

subfamily, similar to BIK1, PBS1 and PBL RLCKs mentioned above (Shiu et al., 2004). 
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Resembling the situation in rice, PBL27 was shown to interact with CERK1 at the plasma 

membrane. pbl27 mutant plants were impaired in chitin-triggered callose deposition, 

MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 activation and expression of 

defence-related genes. Interestingly, the chitin-induced generation of ROS was not 

influenced in these mutant plants. pbl27 mutants were specifically impaired in chitin-

induced immune responses, since flagellin signalling was not affected in these mutants. 

Furthermore, PBL27 was specifically phosphorylated by CERK1 but not by BAK1 or FLS2 in 

vitro (Shinya et al., 2014). The pbl27 mutant plants exhibited a decreased resistance against 

the fungal pathogen Alternaria brassicicola. Additionally, pbl27 plants were also impaired in 

resistance against the bacterial pathogen Pst DC3000 hrcC suggesting that PBL27 plays a role 

in signal transduction of a bacterial MAMPs (Shinya et al., 2014). 

Taken together, these studies demonstrate that different RLCKs act in specific MAMP-

induced signalling pathways, although some RLCKs also exhibit overlapping functions. 

Interestingly, RLCKs often constitute targets of effector proteins, emphasizing their 

important role in plant innate immunity. 
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1.4 Aim of thesis 

 

The formation of receptor complexes has been shown to be a common mechanism in plant 

innate immunity (1.2 and 1.3). These signalling complexes typically consist of an RLK or RLP 

that mediates ligand binding and associates with an RLK-type co-receptor. At least one of the 

receptor components needs to contain an enzymatically active kinase domain for 

phosphorylation and activation of the receptor complex and subsequent transduction of the 

perceived signal to downstream components. Activated receptor complexes then transmit 

the signal to RLCKs which target further downstream components involved in immune 

signalling and defence. RLCKs have been shown to be involved in immune signalling 

pathways mediated by different PRRs (Lin et al., 2013). While a considerable number of 

studies have been conducted on RLCKs that act downstream of receptor complexes involved 

in peptide MAMP perception, the RLCKs in chitin signalling are less well characterized.  

Recently, the RLCK OsRLCK185 was shown to act downstream of the chitin receptor in rice 

(Yamaguchi et al., 2013) and its homolog PBL27 performs a similar role in Arabidopsis 

(Shinya et al., 2014). However, the exact mechanisms of chitin receptor formation and 

immune signalling have not yet been clarified and many questions still remain open. 

To add more information to a putative CERK1 receptor complex and potential signalling 

partners of CERK1, a yeast two-hybrid screen was initiated in context of this study. In this 

screen the RLCK CLR1 was identified as a putative interactor of the CERK1 kinase domain. 

The main aim of this project was to characterize CLR1 and study its role in chitin signalling. 

First, clr1 T-DNA insertion mutants were isolated and analysed for their contribution in 

CERK1-mediated chitin signalling. Therefore, chitin-induced phosphorylation of CERK1 as 

well as ROS production, the activation of MAPKs and the induction of MAMP-induced genes 

were analysed in these lines. Furthermore, a possible involvement of CLR1 in CERK1-

dependent resistance against fungal and bacterial pathogens should be investigated.  

Since CERK1 is an active kinase, one of the aims was to investigate if the interaction between 

CERK1 and CLR1 leads to phosphorylation of CLR1. To do so, epitope-tagged versions of CLR1 

and the kinase domain of CERK1 were expressed in E. coli, purified and used in in vitro 

phosphorylation assays. To investigate the phosphorylation of CLR1 by CERK1 in planta, 

transgenic plants expressing tagged versions of CLR1 should be generated and further used 
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for biochemical analysis of CLR1 in the wild type and cerk1-2 knockout background in 

presence and absence of chitin and other MAMPs. 

For cell biological studies, CLR1 fusion proteins with different fluorescent tags were 

generated and CLR1 subcellular localization could be investigated after transient expression 

in N. benthamiana as well as in stably transformed Arabidopsis plants.  

According to the TAIR10 prediction the CLR1 protein harbours an N-myristoylation motif that 

is not at the N-terminus. Therefore, it was tested if the predicted start codon represents the 

real start of the protein. This could be achieved by fusing the two possible versions of the 

coding sequence to the Ubiquitin10 promoter and comparing the resulting proteins to the 

CLR1 protein expressed from the native promoter. To enable comparison of the CLR1 protein 

variants with regard to size, subcellular localisation and biochemical properties, the coding 

sequences were fused to fluorescence tags. 
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2 Materials and Methods 

The following chapter describes organisms, chemicals and materials, as well as methods 

used in this work. 

 

2.1 Materials 

2.1.1 Plants 

2.1.1.1 Arabidopsis thaliana 

The Arabidopsis (L.) Heynh. ecotype Columbia-0 (Col-0) was used as wild type plant line 

(J. Dangl, University of North Carolina, USA). Novel T-DNA insertion lines from the SALK 

collection (Alonso et al., 2003) were obtained from the Nottingham Arabidopsis Stock Center 

(NASC). T-DNA insertion lines from the GABI collection were ordered from GABI-KAT 

(Kleinboelting et al., 2012). For published mutants used in this work, the references are 

given in Table 1. 

 

Table 1. Mutant Arabidopsis lines used in this study. 

Genotype AGI locus 

identifier 

Accession T-DNA/mutagen Reference/ Source 

cerk1-2 At3g21630 Col-0 GABI_096F09 Miya et al., 2007 

clr1-1 At3g57120 Col-0 SALK_102100 NASC 

clr1-3 At3g57120 Col-0 GABI_267B04 GABI-KAT 

clr1-4 At3g57120 Col-0 GABI_416D04 GABI-KAT 

edr1 At1g08720 Col-0 γ-irradiation Frye and Innes, 1998 

eds1-2 At3g48090 Col-0 fast neutron Bartsch et al., 2006 

mpk3 DG At3g45640 Col-0 fast neutron Miles et al., 2005 

pbl27-1 At5g18610 Col-0 GABI_001C07 GABI-KAT 

pen2 pad4 sag101 At2g44490/ 

At3g52430/ 

At5g14930 

Col-0 EMS/ EMS/ 

transposon 

Lipka et al., 2005 

pen2-2 At2g44490 Col-0 GK-134C04 Lipka et al., 2005 

snc1 At4g16890 Col-0 EMS Li et al., 2001 

 

2.1.1.2 Nicotiana benthamiana 

N. benthamiana seeds originally obtained from T. Romeis (Biochemistry of Plants, Institute 

of Biology, Freie Universität Berlin) were used for propagation of plants used for transient 

expression mediated by Agrobacterium tumefaciens. 
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2.1.2 Pathogens 

2.1.2.1 Fungal pathogens 

2.1.2.1.1 Powdery mildews 

The adapted and the non-adapted filamentous powdery mildews Golovinomyces orontii and 

Erysiphe pisi, respectively, were used for inoculation experiments of Arabidopsis plants. Both 

pathogens were originally obtained from the Max-Planck-Institute for Plant Breeding 

Research, Cologne, Germany). 

 

2.1.2.1.2 Botrytis cinerea  

The B. cinerea strain B05.10 (A. Sharon, Tel Aviv University, Israel) was used for inoculation 

experiments of Arabidopsis plants.  

 

2.1.2.2 Bacterial pathogens 

Different isolates of the Pseudomonas syringae pv. tomato (Pst) strain DC3000 were used for 

infections of Arabidopsis plants.  

 

Table 2. Pseudomonas strains and their respective antibiotic resistance used in this study. 

Pseudomonas strain Antibiotic resistance References 

Pst DC3000 (-) Kan, Rif Buell et al., 2003 

Pst DC3000 (hrcC) Kan Deng et al., 1998 

Pst DC3000 (ΔavrPto/ΔavrPtoB) Kan, Rif Lin and Martin, 2005 

Kan: Kanamycin; Rif: Rifampicin 

 

2.1.3 Bacterial strains for cloning and transformation 

2.1.3.1 Escherichia coli 

Chemically competent E. coli TOP10 cells (F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 deoR recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG) were used 

for cloning and amplification of plasmids (InvitrogenTM, Life Technologies GmbH, Darmstadt, 

Germany).  

 

2.1.3.2 Agrobacterium tumefaciens  

The A. tumefaciens strain GV3101 (Koncz and Schell, 1986) was used for transient expression 

in N. benthamiana leaves and stable transformation of A. thaliana plants. One of the strains 

used in this study possesses the helper plasmid pMP90RK, which confers resistance to 
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kanamycin (Koncz and Schell, 1986). The other strain used in this work contains the helper 

plasmid pSoup, which confers resistance to tetracycline (Hellens et al., 2000). The bacterial 

genome itself additionally contains resistances against gentamycin and rifampicin. 

 

2.1.4 Fungal strain for cloning and transformation  

2.1.4.1 Saccharomyces cerevisiae 

S. cerevisiae cells of the S288C-derived haploid BY4741 strain (MATa his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0; Brachmann et al., 1998) were used for heterologous recombination of DNA 

fragments used for cloning.  

 

2.1.5 Vectors 

The following table contains vectors used or generated during this work, as well as their 

description and antibiotic resistance. Cloning was performed according to the 

manufacturer’s instructions using the Gateway® System (InvitrogenTM, Life Technologies 

GmbH, Darmstadt, Germany). 

 

Table 3. Vectors used in this study. 

Nomenclature Description Resistance Reference/ source 

pENTRTM/D-TOPO® Entry vector of the Gateway® 
System for TOPO® Cloning of blunt-
end PCR products. 

Kan InvitrogenTM 

pGWB643; no 
promoter, C-eCFP 

Binary Gateway® destination 
vector for expression of fusion 
proteins with a C-terminal eCFP-tag 
under control of the endogenous 
promoter. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

Nakamura et al., 
2010 

pUBC-GFP Binary Gateway® destination 
vector for expression of fusion 
proteins with a C-terminal GFP-tag 
under control of the Ubiquitin10 
promoter. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

Grefen et al., 2010 

pGWB604; no 
promoter, C-sGFP 

Binary Gateway® destination 
vector for expression of fusion 
proteins with a C-terminal sGFP-tag 
under control of the endogenous 
promoter. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

Nakamura et al., 
2010 

pGWB643-
pCLR1::CLR1-eCFP 

Binary Gateway® vector for 
expression of the CLR1 gDNA with 
a C-terminal eCFP-tag under 
control of pCLR1. 
 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

This work 
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pUBC-GFP-
pUBQ10::CLR1-M1-
GFP 

Binary Gateway® vector for 
expression of the CLR1-M1 gDNA 
with a C-terminal GFP-tag under 
the Ubiquitin10 promoter. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

This work 

pUBC-GFP-
pUBQ10::CLR1-M2-
GFP 

Binary Gateway® vector for 
expression of the CLR1-M2 gDNA 
with a C-terminal GFP-tag under 
the Ubiquitin10 promoter. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

This work 

pGWB604-
pCLR1::CLR1-sGFP 

Binary Gateway® vector for 
expression of the CLR1 gDNA with 
a C-terminal sGFP-tag under 
control of pCLR1. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

This work 

pGreenII-0229-
pCLR1::CLR1-GFP 

Vector for expression of the CLR1 
gDNA with a C-terminal GFP-tag 
under the endogenous promoter. 
Generated by homologous 
recombination of the N-terminal 
part of pCLR1::CLR1-sGFP and the 
C-terminal part of pUBQ10::CLR1-
M1-GFP. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

This work 

pGWB633; no 
promoter, no tag 

Binary Gateway® destination 
vector for expression of uidA, the 
gene encoding for β-glucuronidase 
(GUS), under control of the 
promoter if interest. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

Nakamura et al., 
2010 

pGWB633-
pCLR1::GUS 

Binary Gateway® vector for 
expression of uidA, the gene 
encoding for β-glucuronidase 
(GUS), under control of the 1000 
bp-long putative CLR1 promoter. 

Bacterial 
selection: Spc 
Plant marker: 
Basta® 

This work 

pHG22_pGH215 Vector expressing free GFP under 
the maize Ubiquitin1 promoter. 

Hyg H. Ghareeb 
(University of 
Göttingen) 

Spec: Spectinomycin; Kan: Kanamycin; Hyg: Hygromycin; Basta®: Glufosinate ammonium/ 

Phosphinothricin (PPT) 
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2.1.6 Oligonucleotides 

Primers used in this work where synthesized by InvitrogenTM. The lyophilised 

oligonucleotides were dissolved in ultrapure H2O to a concentration of 100 μM. These stocks 

were further diluted to ready-to-use 10 μM aliquots. The oligonucleotides were stored at -20 

°C. 

 

Table 4. List of oligonucleotides used in this work. Start codons are highlighted in red. The CACC sequences 

for pENTRTM/ D-TOPO® cloning are marked in blue. 

Nomenclature Sequence 5’3’ Description 

Primers for genotyping and expression analyses 

UU41  CCCATTTGGACGTGAATGTAGACAC Left border primer for GABI-KAT T-DNA 

lines 

EP64  ATTTTGCCGATTTCGGAAC Left border primer for SALK T-DNA lines 

YZ01 RP TAAAACCGTCATAAAGCGGTG Genotyping of SALK_102100 (clr1-1, 

At3g57120) 

YZ02 LP CGATCTCTAAGCTCATCCGTG For genotyping SALK_102100 (clr1-1, 

At3g57120) and GABI_416D04 (clr1-4, 

At3g57120) 

EP128 RP GCCGTCTGATGTCTGATCTTC For genotyping GABI_416D04 (clr1-4, 

At3g57120) and semi-quantitative RT-

PCR on At3g57120 

YZ35 LP CACCATGGGAGTCAATGCTTCAG For genotyping GABI_267B04 (clr1-3, 

At3g57120) and semi-quantitative RT-

PCR on At3g57120 

YZ36 RP TCTGGGAGCGAAAGAGACG For genotyping GABI_267B04 (clr1-3, 

At3g57120) and semi-quantitative RT-

PCR on At3g57120 

YZ127 LP TCATGCAGATACTCCAGTCCC For genotyping GABI_001C07 (pbl27-1; 

At5g18610) 

YZ128 RP GATCTGATGTGTTTTGGGAGG For genotyping GABI_001C07 (pbl27-1; 

At5g18610) 

YZ156  ATCGGATGTTTACGCTTTCG Semi-quantitative RT-PCR on At3g57120 

EP127  CGATCTCTAAGCTCATCCGTG Semi-quantitative RT-PCR on At3g57120 

Act fwd  TGCGACAATGGAACTGGAATG Semi-quantitative RT-PCR on Actin1 

Act rev  GGATAGCATGTGGAAGTGCATAC Semi-quantitative RT-PCR on Actin1 

Primers for cloning 

YZ33 CACCGGTGTCACACTGCTTGTAGTTG Fwd. primer for amplification of 

gAt3g57120 (CLR1) with 1000 bp 

promoter sequence from Col-0 for 

cloning into pENTRTM/ D-TOPO® 

YZ34 CACCATGTCTGATCTTCTAGG Fwd. primer for amplification of 

gAt3g57120 (CLR1-M1) from Col-0 for 



28 |M a t e r i a l s  a n d  M e t h o d s  

 

 

cloning into pENTRTM/ D-TOPO® 

YZ35 CACCATGGGAGTCAATGCTTCAG Fwd. primer for amplification of 

gAt3g57120 (CLR1-M2) from Col-0 for 

cloning into pENTRTM/ D-TOPO® 

YZ36 TCTGGGAGCGAAAGAGACG Rev. primer for amplification of 

gAt3g57120 without stop codon for 

cloning into pENTRTM/ D-TOPO® 

YZ109 CAGACGGCGAAGAGAGGCTGAG Rev. primer for amplification of 

At3g57120 promoter sequence for 

cloning into pENTRTM/ D-TOPO® 

YZ122 TTGATGTGATTGTGAACTAGGTTTTC Rev. primer for amplification of pUBQ10 

and N-terminal CLR1 fragment 

YZ123 GATCGAAAACCTAGTTCACAATCACATCAA

GAGCTCGGCGGTGATCGTGACGGAGCCAG 

Fwd. primer to amplify C-terminal CLR1 

fragment and GFP tag; adding overhang 

to YZ122 sequence 

YZ124 GCGGATAACAATTTCACACAGGAAACAGCC

CCGGGTTATAACTTGTACAGCTCGTCCATGC

CGAGAGTG 

Rev. primer to amplify C-terminal CLR1 

fragment and GFP tag; adding SmaI 

restriction site and pRS426 overhang 

YZ125 GTAACGCCAGGGTTTTCCCAGTCACGACGG

GTACCGGTGTCACACTGCTTGTAGTTGTAAT

TTTTAATG 

Fwd. primer to amplify pCLR1 and N-

terminal CLR1 fragment; adding pRS426 

overhang and KpnI restriction site 

Primers used for colony PCR or sequencing 

Lac25 CAGTCACGACGTTGTAAAACGACGG pENTRTM/ D-TOPO® sequencing and 

colony PCR 

Lac26 CAGTCACGACGTTGTAAAACGACGG pENTRTM/ D-TOPO® sequencing and 

colony PCR 

MW6  GTAAAACGACGGCCAG pENTRTM/ D-TOPO® sequencing and 

colony PCR 

MK5 CGATTTTCTGGGTTTGATCG Sequencing and colony PCR on pUBQ10 

UL205 TGATTATTGACCCACACTTTGC Sequencing and colony PCR on GUS 

JE4 GGAATTCCCGGGGAGACGATCTCCGTCAAC

GAGCAAC 

Sequencing CLR1 fusion constructs 

EP156 AGCTTGCCGTAGGTGGCATC Sequencing and colony PCR on GFP 

EP164 GACTGGTGATTTTTGCGGACTC Sequencing and colony PCR on t35S 

35SGC248 GACGCACAATCCCACTATCCTTCG  Sequencing and colony PCR on p35S 

YZ01 TAAAACCGTCATAAAGCGGTG Colony PCR and sequencing of CLR1 

YZ03 TGCTTTCTCATCCGTTTATCG Colony PCR and sequencing of CLR1 

YZ04 CGATCTCTAAGCTCATCCGTG Colony PCR and sequencing of CLR1 

YZ35 CACCATGGGAGTCAATGCTTCAG For sequencing CLR1 

YZ36 TCTGGGAGCGAAAGAGACG For sequencing CLR1 

YZ56 GGGATCGCAGTGGTGAGTAAC For sequencing CLR1 

YZ59 TAGGCCGGAGATGGGAAGAG CLR1 sequencing 

YZ109 

 

 

CAGACGGCGAAGAGAGGCTGAG 

 

 

pCLR1 sequencing  
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Primers used for qRT-PCR 

YZ149 ACACCGCATCAAGAAACCGA 
qRT-PCR on At3g43250 

YZ150 TACCACATGTGTTGCAGCGA 

YZ153 AGGTCACCTCCACAAATTCG 
qRT-PCR on At3g57120 

 

YZ154 TTGACTTGGTCGCGATCGTG  

YZ155 GGCGTTGCAATTTAAGAGGG 
qRT-PCR on At3g57120 

 

YZ02 CGATCTCTAAGCTCATCCGTG  

YZ156 ATCGGATGTTTACGCTTTCG 
qRT-PCR on At3g57120 

 

YZ157 TCCGCTCGAAATCTCCTGTG  

YZ158 CCGGGTTGTTGGATCCGTTA 
qRT-PCR on At4g16820 

 

YZ159 TTCCGGGTCTGAGTGAAACG  

JE73 GGTCACAACAATCCGGAAGA 
qRT-PCR on WRKY33 

C
ao

 e
t 

a
l.,

 2
0

1
4

 

JE74 GGAGAGACAAGAGAAGGAGAGA 

JE77 AGCCAAATTTCCAAGAGGAT 
qRT-PCR on WRKY30 

JE78 GCAGCTTGAGAGCAAGAATG 

JE79 TCACCGAGCGTACAACTTATTCC 
qRT-PCR on WRKY53 

JE80 CGTTTATCGATGCCGGAGATT 

EP223 GGTTTTCCCCAGTGTTGTTG 
qRT-PCR on Actin8 

EP224 CTCCATGTCATCCCAGTTGC 

LP: left primer, RP: right primer 

 

2.1.7 Enzymes 

2.1.7.1 Restriction endonucleases 

Restriction endonucleases were obtained either from New England BioLabs (Frankfurt/Main, 

Germany) or Thermo ScientificTM (Life Technologies GmbH, Darmstadt, Germany) and used 

according to the manufacturer’s manual.  

 

2.1.7.2 Nucleic acid modifying enzymes  

Genotyping and colony PCRs were performed using homemade Taq DNA polymerase. PCR 

products for further use in cloning were either amplified with iProofTM High-Fidelity DNA 

Polymerase (BioRad, München, Germany) or the Phusion® High-Fidelity DNA Polymerase 

(Finnzymes, Espoo, Finland). The LR recombination reaction using the Gateway® system was 

performed with the Gateway® LR ClonaseTM enzyme mix (InvitrogenTM, Life Technologies 

GmbH, Darmstadt, Germany). 
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2.1.8 Chemicals  

Chemicals used in this work were obtained from Sigma-Aldrich (München, Germany), Roth 

(Karlsruhe, Germany), Merck (Darmstadt, Germany), BioRad (München, Germany), 

AppliChem (Darmstadt, Germany), Duchefa (Haarlem, Netherlands), VWR (Lutterworth, UK), 

Serva (Heidelberg, Germany) or InvitrogenTM. 

 

2.1.8.1 Antibiotics 

 

Ampicillin (Amp) 100 mg/ml in ddH2O  

Chloramphenicol (Cam) 34 mg/ml in ethanol 

Carbenicillin (Carb) 50 mg/ml in ddH2O  

Gentamycin (Gent) 15 mg/ml in ddH2O  

Kanamycin (Kan) 50 mg/ml in ddH2O  

Rifampicin (Rif) 50 mg/ml in methanol 

Spectinomycin (Spc) 100 mg/ml in ddH2O 

Tetracyclin (Tet) in 5 mg/ml in ethanol 

Phosphinothricin (PPT) 25 mg/ml in ddH2O 

 

Aqueous stock solutions were sterile filtrated using filters with a pore size of 0.2 µm. The 

stock solutions were stored at -20°C and used in 1:1000 dilutions. 

 

2.1.8.2 Media  

All media were prepared with deionized water and autoclaved for 20 min at 121 °C. If not 

used immediately after autoclaving, the solidified media were liquefied for a few minutes in 

the microwave. Before adding any additives, the hot media were cooled down to a moderate 

temperature of about 60 °C.  
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Table 5. Media used for cultivation of the different organisms included in this study. 

Medium Composition 

Luria-Bertani (LB) medium Tryptone  10.0 g/l 

 Yeast extract  5.0 g/l 

 NaCl  5.0 g/l 

 Adjust to pH 7.0 

 For LB agar 1.5 % (w/v) agar was added to the broth 

before autoclaving.  

Double yeast, tryptone (DYT) medium Tryptone  16.0 g/l 

 Yeast extract  10.0 g/l 

 NaCl 5 g/l  

 Adjust to pH 7.0. 

 For DYT agar 1.5 % (w/v) agar was added to the broth 

before autoclaving. 

½ Murashige and Skoog (MS) medium MS powder  2.2 g/l 

 Sucrose  0.5 % 

 Adjust to pH 5.7 (KOH). 

 For ½ MS agar 4.5 g/l plant agar were added before 

autoclaving. After autoclaving 100 μg/ml ampicillin were 

added. 

NYG medium Peptone 5.0 g/l 

 Yeast extract 3.0 g/l 

 Glycerol 20 ml/l 

 Adjust to pH 7.0.  

 For NYG agar plates 1.5 % (w/v) agar was added before 

autoclaving. 

Potato Dextrose Broth (PDB) PDB powder  26.5 g/l 

 For PDA 1.5 % (w/v) agar was added before autoclaving. 

YPD Yeast extract  10 g/l 

 Peptone 20 g/l 

 Dextrose/ glucose 20 g/l 

 For YPD agar plates 1.5 % (w/v) agar was added before 

autoclaving. 

Synthetic complete (SC) medium (- Ura 

+Glu) 

Yeast nitrogen base (YNB) 

w/o amino acids 

13.4 g/l (2x) 

Drop-out base (- Ura) 4.0 g/l (2x) 

 Agar 40.0 g/l (2x) 

 Glucose 40.0 g/l (2x) 

 Prepare glucose solution separate from the remaining 

components. Solutions were prepared in 2x 

concentrations because they were mixed after 

autoclaving before pouring the plates. 
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2.1.8.3 Antibodies 

 

Table 6. List of primary antibodies and the respective secondary antibodies used in this work. 

Primary 
Antibody/ 
dilution 

Source Reference/ 
provider 

Secondary 
Antibody/ 
dilution 

Source Reference/ 
provider 

αGFP/ 
1:3000 

Rat, 
monoclonal 

ChromoTek 
GmbH, Planegg-
Martinsried, 
Germany  

α-rat, AP-
conjugate/ 
1:5000 

Rabbit, 
polyclonal 

Sigma-Aldrich 
Chemie GmbH, 
Taufkirchen,  
Germany 

αCERK1/ 
1:3000 

Rabbit, 
polyclonal 

Eurogentec 
Deutschland 
GmbH, Köln,  
Germany 

α-rabbit, AP-
conjugate/ 
1:5000 

Goat, 
polyclonal 

Sigma-Aldrich  

αpMAPKs 
(Phospho-
p44/42 
MAPK)/ 
1:2000 

Rabbit, 
polyclonal 

Cell Signaling 
Technology, 
Danvers, MA, USA 

α-rabbit, HRP-
conjugate/ 
1:5000 

Goat, 
polyclonal 

Cell Signaling 
Technology, 
Danvers, MA, 
USA 

αPEPC/ 
1:7500 

Rabbit, 
polyclonal 

Rockland 
Immunochemicals 
Inc., Limerick, PA, 
USA 

α-rabbit, AP-
conjugate/ 
1:5000 

Goat, 
polyclonal 

Sigma-Aldrich  

αBAK1/ 
1:3000 

Rabbit, 
polyclonal 

Agrisera AB, 
Vännäs, Sweden 

α-rabbit, AP-
conjugate/ 
1:5000 

Goat, 
polyclonal 

Sigma-Aldrich  

αGST/ 
1:5000 

Mouse Sigma-Aldrich 
Chemie GmbH, 
Taufkirchen,  
Germany 

α-mouse, AP-
conjugate/ 
1:5000 

Goat, 
polyclonal 

Sigma-Aldrich  

αHis/ 
1:2000 

Mouse GeneTex 
International 
Corporation 
(Global), Hsinchu 
City, Taiwan, 
R.O.C. 

α-mouse, AP-
conjugate/ 
1:5000 

Goat, 
polyclonal 

Sigma-Aldrich  

AP: alkaline phosphatase; HRP: horse radish peroxidase 
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2.1.8.4 Buffers and solutions 

Buffers and solutions used in this work were sterilized by autoclaving for 20 min at 121°C. All 

buffers and solutions were prepared with ultrapure water. Solutions which were not 

autoclaved were sterile filtered using filters with a pore size of 0.2 µm. 

Table 7. List of buffers and solutions used in this work. 

Buffer/solution Composition  

Bacterial infection 

Agrobacterium infiltration medium MgCl2 
Acetosyringone 

10 mM 
150 µM 

Pseudomonas infiltration medium MgCl2 5 mM 
 Silwet L-77 0.002 % 

GUS staining 

Washing solution (1 ml) Na-phosphate buffer, pH 7.2 
[100mM] 

500 µl 

 EDTA [500 mM] 20 µl 
 Ferricyanide [50 mM] 10 µl 
 Ferrocyanide [50 mM] 10 µl 
 Triton X-100 [10 %] 20 µl 
 ddH2O 440 µl 
 Prepare freshly and keep on ice before use 
Staining solution (1ml) Na-phosphate buffer, pH 7.2 

[100mM] 
500 µl 

 EDTA [500 mM] 20 µl 
 Ferricyanide [50 mM] 10 µl 
 Ferrocyanide [50 mM] 10 µl 
 Triton X-100 [10 %] 20 µl 
 ddH2O 420 µl 
 Add 1 mg X-Gluc dissolved in 20 µl DMSO (Do not put 

on ice). Prepare freshly and keep on ice before use. 

Kinase buffer (10x)  

 Tris, pH 7.5 200 mM 
 Glycerol 10 % 
 MgCl2 100mM 
 MnCl2 100 mM 
 DTT 100 mM 
 ATP 500 µM 

PCR and agarose gel electrophoresis 

Homemade Taq DNA polymerase PCR 
reaction buffer (10x) 

Tris 100 mM 

 KCl 500 mM 
 MgCl2 15 mM 
 Triton X-100 1 % 
 Adjust to pH 9.0 and autoclave.  
TAE (50x) Tris 242 g/l 
 Glacial acetic acid  57.1 ml/l 
 EDTA [0.5 M; pH 8.0] 100 ml/l 
TE buffer (1x) Tris-HCl, pH 8.0 2 M 
 EDTA 1 mM 
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DNA loading dye (6x) Sucrose 4 g 
 EDTA [0.5 M] 2 ml 
 Bromophenol blue 25 mg 
 Add ddH2O to 10 ml.  
DNA loading dye, yellow (6x) Orange G 0.25 % 
 Xylene cyanol 0.25 % 
 Glycerol 30 % 
 Fill up with ddH2O.  

Plasmid preparation (homemade protocol) 

Buffer P1 Tris-HCl, pH 8.0 50 mM 
 EDTA, pH 8.0 10 mM 
 RNase A (DNase free) 100 µg/ml 
 Store at 4 °C after addition of RNase A 
Buffer P2 NaOH 200 mM 
 SDS 1 % 
Buffer P3 KAc 3 M 
 Acetic acid 2 M 

Preparation of competent E. coli cells   

Transformation buffer PIPES 10 mM 
 CaCl2 15 mM 
 KCl 250 mM 
 MnCl2 55 mM 
 Dissolve all components except for MnCl2 and adjust to 

pH 6.7. Then add MnCl2 and sterilize by filtration. Store 
at 4 °C. 

Genomic DNA extraction from plants for PCR  

Extraction buffer Tris-HCl, pH 7.5 0.2 M 
 NaCl 1.25 M 
 EDTA 0.025 M 
 SDS 0.5 % 

ROS burst assay   

L-012 solution Tris-HCl, pH 9.5 10 mM 
 Horseradish peroxidase (HRP) 10 µg/ml 
 L-012 100 µM 

Protein extraction, SDS PAGE and Western blot 

CERK1 extraction buffer Sucrose 250 mM 
 HEPES-KOH, pH 7.5 100 mM 
 Glycerol 5 % (v/v) 
 Na4P2O7 50 mM 
 Na2MoO4 1 mM 
 NaF 25 mM 
 EDTA 10 mM 
 DTT 1 mM 
 Triton X-100 0.5 % (v/v) 
 Before use add PIC (1:100). 

 
 

Coomassie staining solution Methanol 45 % 
 Acetic Acid 10 % 
 Coomassie R 250 

 
 
 

0.05 % 
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Destaining solution   
for polyacrylamide gels Methanol 25 % (v/v) 

 Glacial acetic acid 7 % (v/v) 
 Add H2O 

 
 

for PVDF membranes Methanol 45 % (v/v) 
 Glacial acetic acid 10 % (v/v) 
 Add H2O. 

 
 

Laemmli (SDS) sample buffer (2x) Tris-HCl, pH 6.8 0.125 M 
 SDS 4 % (w/v) 
 Glycerol 20 % (v/v) 
 Bromophenol blue 0.02 % (w/v) 
 DTT 0.2 M 
  
SDS loading buffer (loading dye, 4x) Tris-HCl, pH 6.8 200 mM 
 DTT 400 mM 
 SDS 8 % 
 Glycerol 40 % 
 Bromophenol blue 

 
0.1 % 

SDS running buffer (10x) Tris base 30.28 g/l 
 Glycine 144.13 g/l 
 SDS 

 
10 g/l 

Stacking gel buffer  1 M Tris, pH6.8 38.58 ml 
 10 % SDS 3.06 ml 
 H2O 

 
208.24 

Resolving gel buffer (8 %) 1 M Tris, pH8.8 130.9 ml 
 10 % SDS 3.46 ml 
 H2O 

 
115.64 ml 

Resolving gel buffer (10 %) 1 M Tris, pH8.8 143.6 ml 
 10 % SDS 3.79 ml 
 H2O 

 
102.53 ml 

Resolving gel buffer (12 %) 1 M Tris, pH8.8 160.2 ml 
 10 % SDS 4.24 ml 
 H2O 

 
85.39 ml 

TBS-T (20x) NaCl 3 M 
 Tris-HCl, pH 8.0 200 mM 
 Tween-20 

 
1 % 

Transfer buffer (20x) Tris-base 1 M 
 Boric acid 1 M 
 Adjust to pH 8.3. 

 
 

Alkaline phosphatase (AP) buffer Tris, pH 9.5 100 mM 
 NaCl 100 mM 
 MgCl2 

 
50 mM 
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Mild washing buffer for pull-downs Sucrose 250 mM 
HEPES-KOH, pH 7.5 100 mM 

 Glycerol 5 % (v/v) 
 Triton X-100 0.5 % (v/v) 
 Before use add PIC (1:100). 

 
 

Protease inhibitor cocktail (PIC, 200 ml, 
100x) 

4-(2-aminoethyl)benzenesulfonyl 
fluoride hydrochloride (AEBSF) 

1 g 

 Bestatin hydrochloride 5 mg 
 Pepstatin A 10 mg 
 Leupeptin hemisulfate 100 mg 
 E-64 (trans-epoxysuccinyl-L-

leucylamido-(4-
guanidino)butane) 

10 mg 

 Phenanthroline (1, 10-
phenanthroline monohydrate) 

10 g 

 All components were solved separately in a small 
amount of DMSO, before being combined and filled 
with DMSO to a total volume of 200 ml. Aliquot in 2 ml 
tubes and store at – 20 °C. 

Preparation of competent yeast cells and their transformation 

Li-PEG buffer Lithium acetate 100 mM 
 Tris-HCl, pH 8.0 10 mM 
 EDTA, pH 8.0 1 mM 
 PEG4000 50 % (w/v) 
 Autoclave before use.  
SORB buffer Lithium acetate 100 mM 
 Tris-HCl, pH 8.0 10 mM 
 EDTA, pH 8.0 1 mM 
 Sorbitol 1 M 
 Autoclave before use.  

 

2.2 Methods 

2.2.1 Methods for working with plants and plant material 

2.2.1.1 Seed sterilisation 

Seeds to be sown on soil were frozen to kill off potential pests (in particular thrips eggs). For 

this, seeds were packed doubly in airtight plastic bags, incubated at -20 °C for at least 48 h 

and then allowed to warm up to room temperature while still in the bags.  

For in vitro propagation seeds were surface sterilized by washing twice with 70 % ethanol 

(EtOH) in a sterile hood. For this an appropriate amount of seeds was poured in a 1.5 ml 

reaction tube and incubated in 1 ml 70 % EtOH for 5 min. To ensure equal washing of the 

seeds, the tube was inverted several times. Then the seeds were allowed to sink to the 

bottom and the EtOH was removed before repeating the washing step. Next, the 70 % EtOH 

was exchanged by 100 % EtOH and the seeds incubated in it for 2 min. A Whatman® filter 

paper was placed into a petri dish lid and the seeds together with the 100 % EtOH were 
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poured onto the filter paper. The EtOH was allowed to evaporate before seeds were used 

further.  

 

2.2.1.2 Plant cultivation 

Surface-sterilized Arabidopsis seeds were sown onto damp soil (Frühstorfer Erde, Type T25, 

Str1, Archut), which was steamed before use to eliminate potential contaminations. Plant 

pots were covered with a plastic lid to increase humidity and transferred into a climate 

chamber (Johnson Controls, Milwaukee, WI, USA) set to short-day growth conditions (8 h 

light [~150 µEinstein m-2 s -1], 22 °C, 65 % relative humidity). After germination the plastic 

lids were removed. About 4-week-old plants were then used for subsequent assays. 

To induce flowering and for seed production plants were transferred into climate chambers 

with long-day conditions (16 h light [~200 µEinstein m-2 s -1], 22 °C, 65 % relative humidity). 

For harvesting seeds, shoots with still green siliques were put in paper bags and left to ripen.  

Arabidopsis plants used in qRT-PCRs were grown in vitro in 24-well plates. For this, the wells 

were filled with 2 ml ½ MS liquid medium before adding 3-5 surface sterilized Arabidopsis 

seeds using a sterile toothpick. The seeds were allowed to germinate and grow for 13 d in a 

Percival® plant growth chamber (CLF Plant Climatics, Wertingen, Germany) before replacing 

the medium with 1.5 ml new ½ MS medium. After another day in the growth chamber (on 

day 14 of the experiment), the seedlings were treated with polymeric chitin, chitin oligomers 

or medium as control. For this, 0.5 ml ½ MS medium with 4x the final concentration of the 

respective substance were added to the wells. 

N. benthamiana seeds were also frozen at -20 °C for at least 48 h before being sown into 

soil. The plant pots were directly transferred to long-day conditions for germination and 

further growth. About 5-week-old plants were used for transient expression studies. 

All plants grown on soil were watered with tap water every 2-3 days. 

 

2.2.1.3 Stable transformation of Arabidopsis thaliana (floral dip) 

Flowering Arabidopsis plants were transformed via the Agrobacterium-mediated floral dip 

method (Clough and Bent, 1998). A single colony of A. tumefaciens cells transformed with 

the construct of interest (2.2.2.5) was used to inoculate a 25 ml pre-culture in DYT mixed 

with the appropriate antibiotics. The pre-culture was incubated in a shaker overnight at 28 

°C and 180 rpm. The complete pre-culture was used to inoculate the main culture containing 

250 ml DYT with antibiotics which was also incubated at 28 °C and 180 rpm overnight. Next, 

cells were spun down at 1200 g for 20 min at room temperature. After discarding the 

supernatant, the pellet was resuspended in 250 ml 5 % sucrose solution. To decrease surface 

tension, 0.05 µl Silwet-77 were added to the cell suspension before dipping flowers for 2 x 

15 s into the suspension. After dipping into the solution, flowers were tapped onto paper 
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towels to wipe of any excess liquid. Plant pots with the dipped flowers were placed back 

onto the tray and covered with a plastic lid overnight to increase humidity. Plants were kept 

in the dark until the plastic lid was removed and the trays placed into a climate chamber 

with long-day conditions for seed set. 

 

2.2.1.4 Transient transformation of N. benthamiana 

For Agrobacterium-mediated transformation of N. benthamiana a 5 ml pre-culture in DYT 

with the appropriate antibiotics was inoculated with a single A. tumefaciens colony carrying 

the plasmid of interest. The pre culture was incubated in a shaker at 28 °C overnight at 180 

rpm. Cells were then pelleted for 10 min and 1200 g at room temperature. The pellet was 

resuspended in 1 ml infiltration buffer and the concentration of the bacterial solution 

measured. The bacterial solution was then adjusted to OD600= 0.4 with infiltration buffer and 

further incubated at room temperature until used. Several hours before infiltrating, 4-week-

old N. benthamiana plants were placed on the bench and covered with a plastic lid after 

watering to increase relative humidity. Whole leaves were infiltrated with a 1 ml syringe and 

marked with coloured tape at the petioles. Three days after infiltration samples for protein 

extracts were harvested or leaves were analysed by confocal laser scanning microscopy.  

 

2.2.1.5 Selection of stably transformed Arabidopsis plants 

2.2.1.5.1 Glufosinate selection on soil 

For selection with the herbicide Basta ® (200 g/l glufosinate/ phosphinothricin ammonium 

solution, Bayer CropScience AG, Monheim, Germany) T1 seeds were sown densely onto 

damp soil and allowed to germinate covered with a plastic lid. After germination, the plastic 

lid was removed and the seedlings grown for another week. Seedlings were then thoroughly 

sprayed with a 1:1000 diluted Basta ®solution. The spraying was repeated three times in two 

day intervals. Resistant and therefore successfully transformed seedlings which survived the 

Basta ® treatment were picked and transplanted into fresh single pots onto soil. Seedlings 

were then grown as described in 2.2.1.2 before being used for further analyses. 

 

2.2.1.5.2 In vitro selection  

For segregation analyses of transgenic Arabidopsis T2/T3 plants, sterilized seeds were spread 

onto ½ MS agar plates containing 25 µg/ml phosphinothricin (PPT) as a selection marker. 

Seedlings were grown under short-day conditions until resistant seedlings clearly differed 

from non-resistant seedlings. Resistant plants were picked and transferred onto soil for 

further propagation (see 2.2.1.2).  
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2.2.1.6 Confocal laser scanning microscopy (CLSM) 

To analyse stable transgenic Arabidopsis plants or transiently transformed N. benthamiana 

leaves expressing fluorescence protein-tagged fusion proteins, a SP5 DM6000 CS confocal 

laser scanning microscope (Leica, Wetzlar, Germany) and the appropriate software (LAS AF 

Leica Application Suite, Version 2.7.2) were used. Small and preferably even leaf discs were 

cut out and placed onto an object slide wetted with water, before the cover glass was placed 

on top. Analyses were performed with the appropriate lasers and emission filters. GFP was 

excited at 488 nm and the fluorescence emissions detected between 500 and 540 nm. The 

autofluorescence of chlorophyll was captured between 720 and 760 nm. 

 

2.2.1.7 Inoculation of Arabidopsis plants with powdery mildews 

For infection with Erysiphe pisi, 4-week-old Arabidopsis plants were placed in a box, the so-

called inoculation tower, and evenly inoculated with spore material from above. For this, 

infected pea plants were shaken above the Arabidopsis plants to transfer the spore material. 

For the infection with Golovinomyces orontii 4-week-old Arabidopsis plants were also placed 

in an inoculation tower covered with a nylon mesh. The spore material was harvested from 

host plants using a paint brush which was then evenly swept across the mesh to inoculate 

the Arabidopsis plants beneath. 

For macroscopic analyses plants were photographed after the indicated amount of days.  

 

2.2.1.8 Drop-inoculation with B. cinerea 

B. cinerea spores were harvested from an overgrown PDA plate by washing small pieces of 

the agar in a 50 ml falcon tube with ¼ PDB medium by vortexing. The spore suspension was 

filtered through a miracloth tissue to get rid of contaminations by agar residues and fungal 

mycelium. Spore concentrations were determined by counting in a Neubauer counting 

chamber. The spore solution was adjusted to a working concentration of 5x104 spores/ml 

with ¼ PDB. Spores were either directly used for inoculation or after adding 20 % glycerol 

frozen in liquid nitrogen for longer storage at -80 °C.  

The final spore suspension was incubated at room temperature for 2 h to allow germination 

of the spores. 4-week-old Arabidopsis plants were inoculated with 6 µl droplets of the B. 

cinerea spore solution. The droplet should not be placed on the middle vein. Up to three 

leaves per plant were inoculated. The petioles of the inoculated leaves were marked with a 

pen. Trays with inoculated plants were watered and then covered with a plastic lid. To 

increase relative humidity the trays were sealed with adhesive tape and the plants were 

incubated in a growth chamber under short-day conditions. After three days, the inoculated 

leaves were harvested and the lesion diameters measured using a calliper rule.  
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2.2.1.9 Pseudomonas syringae pv. tomato (Pst) vacuum-infiltration assay 

Seeds of Arabidopsis plants used for Pst infiltration were sown onto pots with piled up soil 

covered with a fine mesh. The mesh prevents the bacterial suspension from contamination 

through soil during infiltration. The plants were grown for four weeks under short-day 

conditions and the number reduced to five plants per pot. One of the Pst strains described 

above (2.1.2.2) was grown on a NYG plate for at least two days and used to inoculate a 50 ml 

NYG liquid culture supplemented with the appropriate antibiotics for selection. After 

incubation overnight at 28 °C and 180 rpm, 3 ml of this culture were used to inoculate a new 

50 ml culture. The new bacterial culture was incubated as described for approximately 3 h. 

The cells were then harvested by centrifugation at 1200 g for 10 min and room-temperature. 

The supernatant was discarded and the cells resuspended in 50 ml 5 mM MgCl2. Prior to 

vacuum-infiltration, the bacterial solution was diluted to a concentration of 1x105 colony 

forming units (cfu)/ ml. Per two plant pots about 1 l of bacterial solution is needed for 

infiltration. For infiltration, two plant pots were put upside down into a plastic desiccator, 

which was then filled up with the bacterial suspension until most of the leaves were 

submerged. The vacuum was then applied for 1:15 min and maintained for 1:30 min before 

being released very slowly. The pots were then removed from the desiccator and the leaves 

gently swayed in a tub filled with tap water. Non-infiltrated leaves were then removed 

immediately. 

Day zero (d0) samples were prepared by harvesting four leaf discs from four different plants 

from one pot using a cork borer (diameter 0.55 cm, with a total area of 1 cm2). The leaf discs 

were transferred into a 1.5 ml reaction tube. 50 µl 10 mM MgCl2 were added and the leaf 

discs disrupted using a plastic pistil. The leaf suspensions were then diluted 1:10 by adding 

450 µl 10 mM MgCl2. 50 µl of each sample were plated on NYG agar plates with the 

respective antibiotics for selection. d0 samples were harvested in duplicates.  

The infiltrated plants were well watered and further grown in a Percival® growth cabinet 

(CLF Plant Climatics, Wertingen, Germany) under short-day conditions. Day three samples 

(d3) were prepared in a similar way as the d0 samples, only that three replicates of four leaf 

discs from four independent plants were harvested and further processed. Instead of 

preparing a 1:10 dilution, a dilution series ranging from 10-1 to 10-7 was pipetted in a 96-well 

microtiter plate. 5 µl of each dilution were pipetted on NYG agar plates supplemented with 

the appropriate antibiotics for selection. When the plates appeared no longer wet, they 

were incubated for two days at 28 °C before counting the cfu. 

 

2.2.1.10 Vacuum-infiltration for MAMP treatment 

Depending on the following experiments, an appropriate amount of leaves from 

approximately six-week-old plants was harvested of each genotype of interest. For standard 

chitin treatment, 10 leaves (approximately 3 cm long) per genotype were harvested and 

divided into two 15 ml tubes. The tubes were then filled with tap water until leaves were 

fully covered. To one of the two 15 ml tubes polymeric chitin (stock concentration: 10 
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mg/ml) was added to a final concentration of 100 µg/ml. The second tube served as a 

control with only water being infiltrated. The tubes were then placed in a plastic desiccator 

and vacuum-infiltrated for about 5 min. After releasing the vacuum, the leaves were 

incubated in the solution for another 15 min. The leaves were then blotted dry using a paper 

towel and either wrapped in aluminium foil or transferred into a new tube before being 

frozen in liquid nitrogen. The leaf samples were either directly used for protein extraction or 

stored at -80 °C. 

 

2.2.2 Methods for working with bacteria 

2.2.2.1 Cultivation of bacteria 

E.coli TOP10 cells used for plasmid amplification were either grown in liquid LB medium with 

the appropriate antibiotics for selection or on the respective solid LB agar plates. The 

bacteria were incubated at 37 °C overnight and liquid cultures additionally shaken at 200 

rpm.  

A. tumefaciens GV3101 (pMP90RK or pSoup) cells used for transformation of plants were 

cultivated in liquid DYT medium supplied with the respective antibiotics for selection 

(2.1.3.2) or on the corresponding DYT agar plates. Bacteria were grown for 2-3 days at 28 °C 

and liquid cultures were additionally shaken at 180 rpm.  

Pseudomonas strains were grown on NYG agar supplemented with the appropriate 

antibiotics for selection. Plates were incubated for two days at 28 °C and then sealed with 

Parafilm® and stored at 4 °C. The strains were subcultured on plates every two weeks. 

 

2.2.2.2 Preparation of chemically competent E.coli TOP10 cells 

25 ml of LB supplemented with the appropriate antibiotics were inoculated with a single 

colony of E. coli TOP10 cells grown on plate. The culture was incubated overnight at 37 °C 

and 200 rpm. A new 300 ml LB culture was then inoculated to an OD600 of 0.2 using inoculum 

from the overnight culture. The culture was incubated at room temperature under constant 

shaking until it reached an OD600 of 0.6. The culture was then chilled on ice for 10 min before 

being centrifuged at 4°C and 2500 g for 10 min. The supernatant was discarded and the 

pellet resuspended in 80 ml ice cold transformation buffer. The bacterial solution was kept 

on ice for 10 min again, before centrifuging as described before and resuspending the pellet 

in 20 ml ice cold transformation buffer. DMSO was added to a final concentration of 7 % and 

the cells kept on ice for another 10 min. The bacterial solution was divided into 100 µl 

aliquots in new 1.5 ml reaction tubes and frozen in liquid nitrogen for storage at – 80 °C.  
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2.2.2.3 Preparation of electro-competent A. tumefaciens cells 

A 2 ml LB overnight culture supplemented the appropriate antibiotics was inoculated with an 

A. tumefaciens colony from a fresh plate. The cells were incubated at 28 °C and 180 rpm 

overnight. 0.5 ml of the culture were used to inoculate a fresh 50 ml culture and the cells 

were grown at 28 °C and 180 rpm overnight. A 300 ml LB culture containing the appropriate 

antibiotics was inoculated to an OD600 of 0.3 and the cells were grown at 28 °C and 180 rpm 

to an OD600 of 1- 1.5. The cultures were then chilled on ice for 15 min before being spun 

down at 4°C and 5000 g for 20 min. The supernatant was removed and the pellet 

resuspended in 30 ml ice cold 1 mM HEPES, pH 7.0. The samples were centrifuged as 

described before and this washing step repeated twice. After removal of the supernatant the 

pellet was resuspended in 30 ml ice cold 10 % glycerol and centrifuged as before. The 

supernatant was removed and the pellet resuspended in 2 ml ice cold 10 % glycerol. The 

bacterial solution was the aliquoted in 45 µl aliquots into sterile 1.5 ml reaction tubes and 

frozen in liquid nitrogen before being stored at – 80°C. 

 

2.2.2.4 Transformation of chemically competent E. coli TOP10 cells 

E.coli cells were transformed with plasmid DNA using the heat shock method. The complete 

reaction volumes of Gateway® cloning approaches were added to the E. coli cells, whereas 

only 1-50 ng of plasmid DNA was added to the cells for re-transformations. To start off, 

100 µl of competent E. coli cells were thawed on ice before adding 1 µl (0.25 µl for 

retransformations) of the plasmid DNA. After another 20 min on ice, the mixture was heat 

shocked in a heating block at 42 °C for 45 s. The cells were immediately put back on ice and 

kept there for another 5 min, before adding 750 µl of liquid LB medium. The sample was 

incubated at 37 °C for 1 h and 220 rpm. Then the cells were pelleted for 5 min at 6000 rpm 

and room temperature. Most of the supernatant was discarded and the cell pellet 

resuspended in the residual liquid in the tube. The bacterial solution was then plated onto LB 

agar plates supplemented with the appropriate antibiotics for selection. The plates were 

incubated at 37° overnight for the bacteria to grow. 

 

2.2.2.5 Transformation of electro-competent Agrobacterium tumefaciens cells 

40 µl of competent A. tumefaciens cells were used for transformation with plasmid DNA by 

electroporation. First, the cells were thawed on ice and 0.3 µl plasmid DNA were added. The 

mixture was then transferred into a precooled electroporation cuvette with 0.1 cm gap 

width. The cuvette was pulsed in a Micro PulserTM (BioRad, München, Germany) 

electroporation apparatus which was set to 25 µF, 2.5 kV and 400 Ω. 750 µl ice cold liquid 

DYT were then added to the transformed cells and the bacterial solution was transferred 

into a 2 ml centrifugation tube. The sample was incubated at 28 °C and 180 rpm for 2-3 h. 

Then 50 µl of the mixture were plated onto a DYT agar plate with the appropriate antibiotics 

and the plate incubated at 28 °C for 2-3 days. 
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2.2.2.6 Preparation of glycerol stocks 

For longer storage glycerol stocks of bacterial strains were prepared. 800 µl of a bacterial 

liquid culture were mixed with 200 µl sterile 86 % glycerol. The aliquots were frozen in liquid 

nitrogen and stored at -80 °C. 

 

2.2.3 Cultivation of filamentous pathogens 

2.2.3.1 Powdery mildews 

Erysiphe pisi was propagated on its host plant pea ‘Kleine Rheinländerin’ (Pisum sativum) 

under 8 h light, 22 °C and 80 % relative humidity. 

Golovinomyces orontii was propagated in parallel on two Arabidopsis genotypes, namely Col-

0 and eds1-2. Fungal material grown on Col-0 plants was used for re-inoculation of Col-0 and 

eds1-2 to maintain the fungal culture. eds1-2 plants which are more susceptible to G. orontii 

and form more spores were used for inoculation of experimental plants. 

 

2.2.3.2 Botrytis cinerea 

B. cinerea was propagated on PDA plates at room temperature in the dark. When the fungus 

started to sporulate (after circa 10 days) it was transferred onto a fresh PDA plate. For this a 

small agar cube was cut out from the overgrown plate and placed onto the centre of the 

new agar plate. The older and overgrown agar plate was sealed with Parafilm® and stored at 

4 °C for up to 4 weeks. For longer conservation the spores were washed off from the 

overgrown plate with ¼ PDB, adjusted to a concentration of 5x104 spores/ ml and 

supplemented with 20 % glycerol before being frozen in liquid nitrogen and stored at - 80 °C. 

 

2.2.4 Molecular biological methods 

2.2.4.1 Extraction of genomic DNA from plants using the ‘Quick-Prep’ method 

One small Arabidopsis leaf was harvested and transferred into a 1.5 ml reaction tube. 300 µl 

extraction buffer were added to the leaf and the leaf was disrupted using a plastic micro 

pistil. The mixture was left to incubate for 1 min at room temperature before being 

centrifuged at maximum speed for 5 min. The supernatant was transferred into a new 1.5 ml 

tube with 300 µl isopropanol. After mixing by pipetting up and down the solution was 

incubated for 5 min at room temperature. The sample was centrifuged at 14 000 rpm for 5 

min before the supernatant was removed. The pellet was air-dried and later resuspended in 

50 µl ultrapure water. 1 µl of the sample was used as template in PCRs. 
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2.2.4.2 Extraction of RNA 

Arabidopsis RNA was prepared using the innuPREP Plant RNA kit (Analytikjena, Jena, 

Germany). The extraction was performed according to the manufacturer’s instructions. 

About 100 mg powdered plant material or 3-5 seedlings that were disrupted using a 

TissueLyser LT (Qiagen, Hilden, Germany) were used as starting material for the extraction. 

The plant material used in this study was resuspended in the lysis buffer RL. For quality 

control, the total RNA was analysed via agarose gel electrophoresis (2.2.4.7). For this 3 µl of 

RNA were mixed with 7 µl water and 2 µl 6x loading dye. The samples were then loaded onto 

a 1 % agarose gel and separated electrophoretically.  

The exact RNA concentration was then measured using the TECAN Infinite® 200 PRO 

NanoQuant plate reader (2.2.4.9). 

 

2.2.4.3 cDNA synthesis 

cDNA was synthesized from 1-4 µg of total RNA prepared as described in 2.2.4.2 using the 

RevertAidTM H Minus Reverse Transcriptase (Fermentas) according to the manufacturer’s 

instructions. The RNA and 1 µl of oligo(dT)18 primer (100 µM) were pipetted into a PCR tube 

which was filled up with RNase-free water to a total volume of 12.5 µl. The PCR tube was 

kept on ice. Then, 4 µl 5x reverse transcriptase (RT) reaction buffer, 0.5 µl (20u) RiboLockTM 

RNase inhibitor (Fermentas), 2 µl dNTP mix (10 mM each) and 1 µl (200u) RevertAidTM H 

Minus RT were added to make a final volume of 20 µl. The mixture was mixed gently and 

centrifuged briefly. The synthesis was performed at 42 °C for 60 min before being 

terminated at 70 °C for 10 min. The produced cDNA was either directly used for further 

experiments or stored at -20 °C. 

 

2.2.4.4 Preparation of plasmid DNA from E. coli 

Plasmid DNA was extracted using a homemade small scale plasmid preparation protocol. All 

steps of this protocol were carried out at room temperature.  

A 3-ml overnight culture was inoculated with the bacteria strain containing the plasmid of 

interest and incubated at 37 °C and 220 rpm overnight. 

1.5 ml of the overnight culture was poured into a new 1.5 ml reaction tube and spun down 

at maximum speed for 1 min. The supernatant was removed and the pellet was resuspended 

in buffer 200 µl P1 until no clumps were visible. Then, 200 µl buffer P2 were added and the 

solutions were mixed by inverting the tube 5-6 times gently but thoroughly. The reaction 

was incubated for 3-5 min and then stopped by adding 200 µl buffer P3. The content of the 

tube was mixed immediately by inverting the tube 5-6 times. The mixture was then spun 

down at maximum speed for 5-10 min. 500 µl of the clear supernatant were transferred into 

a new 1.5 ml reaction tube without disturbing the white precipitate. 1 ml of 96 % EtOH was 

added and the tubes were inverted 5-6 times for mixing. The tubes were centrifuged at 
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maximum speed for 5 min and the supernatant was removed. The pellet was washed by 

adding 1 ml of 70 % EtOH and centrifuging at maximum speed for 1 min. The supernatant 

was discarded and the centrifugation step repeated. The residual EtOH was removed and the 

pellet air-dried. Finally, the dried pellet was resuspended in 50 µl ddH2O and stored at -20 °C. 

 

2.2.4.5 Polymerase chain reaction (PCR) 

Standard PCRs for plant genotyping and colony PCRs using the homemade Taq DNA 

polymerase were performed according to the following program: 

 
The PCR program was adjusted to the manufacturer’s instructions when using a different 

polymerase. Also the annealing temperature was adjusted depending on the primers used 

for amplification. 

 

Standard reactions were prepared in a 20 µl volume: 

10x Taq buffer 2 µl 

dNTP mix (10 µM each) 0.5 µl 

Primer 1 (10 mM) 1 µl 

Primer 2 (10 mM) 1 µl 

Taq DNA polymerase 0.5 µl 

Water 15 µl 

 

To test for presence of a T-DNA, a T-DNA left border (LB) primer (UU41 for plants from the 

GABI-KAT collection and EP64 for SALK lines) and an appropriate flanking primer (RP) were 

used. To detect the wild type allele, a second reaction was performed using primers which 

flank the T-DNA insertion (LP and RP).  

For amplification of products used for cloning, the iProofTM High-Fidelity DNA Polymerase 

(BioRad, Munich, Germany) or the Phusion® High-Fidelity DNA Polymerase (Finnzymes, 

Espoo, Finland) were used according to the manufacturer’s instructions. The amplified PCR 

products were then loaded onto agarose gels and separated electrophoretically to analyse 

the resulting bands.  
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2.2.4.6 Quantitative reverse transcription PCR (qRT-PCR) 

For qRT-PCR, the amplification and simultaneous quantification was performed using the 

CFX96 Touch™ Real-Time PCR Detection System equipped with the CFX ManagerTM Software 

(BioRad, Hercules, CA, USA) and matching qRT-PCR-96-well plates (BioRad). One reaction 

volume consisted of 5 µl SsoFast™ EvaGreen® Supermix (BioRad), 2 µl primer mix (2 µM 

each) and 3 µl cDNA. The following PCR program was used: Denaturation at 95 °C for 30 s 

followed by 45 cycles of 95 °C for 5 s and 55 °C for 10 s. The melting curve was measured and 

analysed during a temperature increase from 60 °C to 95 °C in 0.5 °C and 5s steps. 

To test primer efficiency and determine the optimum cDNA concentration, a calibration 

curve was analysed for each experiment and primer combination. For this, 3 µl of each 

sample within an experiment were pooled and a 1:3 dilution series of the pooled cDNA was 

pipetted in a PCR 8-tube strip resulting in 8 dilution steps. 

Primer efficiency (E) was inferred from the calibration curve (E =10^(-1/slope of calibration 

curve). Primers were used only if the calibration curve was linear over several dilution steps 

and efficiency was close to 2 (perfect doubling of DNA in each cycle). Optimum template 

concentration (in the middle of the linear range) was chosen based on the calibration curve. 

Four technical replicates were measured for each sample. For each of the 4 replicates E^Cq 

was calculated and the mean was determined. The relative gene expression (gene of 

interest/ reference gene) was then calculated as (mean [reference gene])/ (mean [target 

gene]). Each experiment was performed three times. The results from individual 

experiments were normalized by division by the mean of the respective experiment. The 

mean of the normalized values ± standard deviation were calculated.  

 

2.2.4.7 Agarose gel electrophoresis 

DNA fragments were separated according to their size via agarose gel electrophoresis. DNA 

samples were mixed with 6x DNA loading dye prior to loading onto an agarose gel with 

appropriate percentage of agarose (ranging from 0.8-3 %). The smaller in size the expected 

fragment is, the higher the percentage of the gel. The respective amount of agarose was 

melted in 1x TAE buffer using a microwave. After the agarose was completely dissolved and 

cooled down to about 60°C, one drop of ethidium bromide solution (10 mg/ml) was added 

to 50 ml gel. The gel was then cast and after solidifying, placed in 1x TAE buffer in a Sub-Cell 

GT apparatus (BioRad) for electrophoretic separation. The DNA samples were loaded into 

the prepared pockets. The GeneRulerTM (Thermo ScientificTM) was applied as a size standard. 

The electrophoresis was performed at 90-120 V for 25 min - 1h 25 min, depending on the 

size and percentage of the gel. The gel was exposed to UV light (312 nm) to visualize DNA 

bands and a picture was taken using a gel documentation and analysis system (VWR, 

Lutterworth, UK).  
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2.2.4.8 Isolation of DNA fragments from agarose gels 

DNA fragments which were separated by agarose gel electrophoresis and required for 

further cloning were cut out of the gel under UV-light (365 nm) for visualization using a 

scalpel and stored in a 1.5 ml reaction tube. The DNA was then extracted from the agarose 

using the QIAquick® gel extraction kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions.  

 

2.2.4.9 Photometric measurement of DNA and RNA concentration 

The TECAN Infinite® 200 PRO NanoQuant plate reader (Tecan Group Ltd, Männedorf, 

Switzerland) was used for determination of DNA and RNA concentrations as well as for 

checking the purity of the nucleic acids. For this, 1 µl of the sample was pipetted onto the 

NanoQuant PlateTM and the absorption was measured at 260 nm and 280 nm. The ratio 

between the absorbance of 260 nm and 280 nm indicates the purity of the sample. The 

optimal ratio (OD260/280) for DNA is ~ 1.8 and for RNA ~ 2.0. 

 

2.2.4.10 Clean-up of DNA 

To purify DNA samples after restriction digestion or PCR amplification, the QIAquick® gel 

extraction kit (Qiagen, Hilden, Germany) was used according to the respective manual. 

 

2.2.4.11 Sequencing of DNA and subsequent evaluation 

DNA sequencing was performed through Seqlab (Göttingen, Germany) using the Barcode 

Economy Run Service. Sequencing reactions were prepared considering the Seqlab sample 

requirements. The results were then analysed using the bioinformatics software Geneious 

version 7.1.5 (Kearse et al., 2012).  

 

2.2.4.12 Restriction digest 

To obtain specific ends for ligation or to check plasmids during cloning and after 

transformation, restriction endonucleases from Thermo Fisher ScientificTM or New England 

Biolabs were used to process DNA fragments according to the manufacturer’s instructions. 

 

2.2.4.13 Gateway® cloning 

The pENTRTM Directional TOPO® cloning kit (InvitrogenTM) was used for directional cloning of 

blunt-end PCR products into the Gateway® entry vector pENTRTM/ D-TOPO®. The TOPO® 

cloning reaction was performed according to the manufacturer’s instructions, but only using 

¼ of the recommended reaction volume. The complete reaction was transformed into 

chemically competent E. coli TOP10 cells. The Gateway® LR Clonase® enzyme kit 
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(InvitrogenTM) was used in the next step to perform the LR reaction. This enables a 

sequence-specific recombination of the DNA fragment of interest from the entry vector into 

a Gateway® destination/ expression vector. The LR reaction was performed in a total 

reaction volume of 2.8 µl, containing 0.3 µl entry vector, 0.6 µl destination vector, 0.5 µl 5x 

LR Clonase® buffer, 0.9 µl TE buffer and 0.5 µl LR Clonase®. The reaction mixture was 

incubated for 1 h at 25 °C before being terminated by adding 0.5 µl Proteinase K and 

subsequent incubation at 37 °C for 10 min. The whole reaction was then used for 

transformation of chemically competet E. coli TOP10 cells (2.2.2.4). Subsequently, positive 

transformants were determined by colony PCR (2.2.4.5). 

 

2.2.4.14 Preparation of chemically competent Saccharomyces cerevisiae cells 

A 5 ml YPD overnight culture of the Saccharomyces cerevisiae S288C-dervied BY4741 strain 

(Brachmann et al., 1998) was used to inoculate a new 20 ml YPD culture with an OD600 of 0.1. 

The new culture was grown for 6 h at 30 °C and 200 rpm before being spun down at 2000 

rpm for 3 min. The cell pellet was washed with 0.5 volumes of sterile water, followed by a 

wash step with 0.1 vol of sterile SORB buffer. Cells were then resuspended in 180 µl SORB 

buffer and 20 µl single-stranded (ss) carrier-DNA (salmon sperm DNA, 2 mg/ml). The mixture 

was then aliquoted in 50 µl aliquots, which were either frozen at -80 °C or directly used for 

transformation.  

 

2.2.4.15 Cloning of pCLR1::CLR1-GFP by homologous recombination in Saccharomyces 

cerevisiae 

Due to usage of different Gateway® systems, the expression vector 

pGWB604-pCLR1::CLR1-sGFP had a different vector backbone than 

pUBC-GFP-pUBQ10::CLR1-M1-GFP and pUBC-GFP-pUBQ10::CLR1-M2-GFP. Therefore the 

fusion constructs had different linker sequences between the gene of interest and the 

C-terminal tag. By homologous recombination of the 5’ part of pGWB604-pCLR1::CLR1-sGFP 

(including the promoter and the CDS for the N-terminal part of CLR1) and the 3’ part of 

pUBC-GFP-pUBQ10::CLR1-M1-GFP (including the CDS for the C-terminal part of CLR1 and the 

C-terminal GFP-tag), the pGreenII-0229-pCLR1::CLR1-GFP vector was generated to make the 

fusion protein comparable to those expressed from pUBC-GFP-pUBQ10::CLR1-M1-GFP and 

pUBC-GFP-pUBQ10::CLR1-M2-GFP concerning the molecular mass. 

For this, the N-terminal fragment (1) was amplified from pGWB604-pCLR1::CLR1-sGFP with 

primers adding a 5’ overhang matching the plasmid pRS426 followed by a KpnI restriction 

site. The 3’ fragment from pUBC-GFP-pUBQ10::CLR1-M1-GFP (2) was amplified with primers 

adding a 5’ overhang overlapping in sequence with the fragment (1) and a SmaI restriction 

site followed by a pRS426 overhang. The correct sizes of the PCR products were checked via 

agarose gel electrophoresis and the products then purified as described in 2.2.4.10. 

Fragment (1) and (2) were then used to transform chemically competent S. cerevisiae 
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BY4741 cells. 3 µl of pRS426 plasmid DNA, 500 ng of fragments (1) and (2), 300 µl Li-PEG 

buffer and 20 µl DMSO were mixed and added to 50 µl of yeast cells in a 1.5 ml reaction 

tube. The sample was incubated for 30 min on a wheel at 18 rpm and room temperature, 

before heat shocking the cells at 42 °C for 15 min. The cells were then spun down for 3 min 

at 2000 rpm and the supernatant was discarded. The pellet was resuspended in the residual 

liquid in the tube and the cell suspension was plated onto an SC medium agar plate (- Ura + 

Gluc). Cells were allowed to grow for 2 d at 28 °C.  

An appropriate amount of cells was harvested by scraping some smear of the overgrown 

plate by using a sterile pipette tip. The cells were resuspended in 500 µl ddH2O in a 1.5 ml 

reaction tube. The solution was spun down at 2000 rpm for 2 min and the supernatant was 

discarded. The plasmid was then extracted using the GeneJET Plasmid Miniprep Kit (Thermo 

ScientificTM) according to the manufacturer’s instructions. About 50 ng of the extracted 

plasmid was the used for transformation of chemically competent E.coli TOP10 cells as 

described in 2.2.2.4. The transformed cells were plated on LB agar plates supplemented with 

ampicillin and incubated at 37 °C overnight. After checking the grown colonies for insertion 

of the plasmid by colony PCR, overnight cultures for plasmid preps were inoculated and the 

plasmids extracted the next day (see 2.2.4.4). The plasmids were checked in restriction 

digests using KpnI and SmaI and positive bands were extracted from the agarose gel (see 

2.2.4.8). The products were then used for ligation with KpnI- and SmaI- digested pGreenII-

0229 (kindly provided by J. Erwig).  

 

2.2.4.16 Ligation of DNA fragments and vectors 

The ligation was performed using the T4 DNA ligase (FermentasTM) according to the 

manufacturer’s instructions. 20 – 200 ng linearized vector were mixed with the DNA insert at 

a ratio of 1:1 to 1:5. 2 µl 10x reaction buffer, 2 µl 50 % PEG 4000 solution, 1 µl (5 u) T4 DNA 

ligase were added and the reaction was filled up with water to a total volume of 20 µl. PEG 

4000 solution was added only for blunt-end ligations. The ligation reaction was then 

incubated for 1.5 h at room temperature. 5 µl of the reaction volume were then used for 

transformation of chemically competent E. coli TOP10 cells.  

After checking for correctly ligated plasmids by colony PCR and sequencing, plasmids were 

transformed into electro-competent pMP90RK A. tumefaciens  

 

2.2.4.17 ROS burst assays 

This chemiluminescent-based assay was performed in 96-well microtiter plates. For the 

standard setup used in this work, one microtiter plate was needed per treatment (chitin or 

control). The wells were filled with 100 µl tap water each. For analysing the production of 

reactive oxygen species (ROS) upon MAMP treatment 12 leaves per genotype were 

harvested. 2 leaf discs were cut out from each leaf and transferred into the same well on the 
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different microtiter plates, ending up with 2 times 12 wells in a row per genotype. The plates 

were wrapped in a plastic bag and incubated overnight.  

The next day, the L-012 solution was prepared. For each well, 100 µl L-012 solution were 

needed, but some extra solution was prepared to allow pipetting with multichannel pipettes. 

The water in the microtiter plates was removed and replaced either by 100 µl L-012 solution 

(control) or L-012 solution containing 100 µg/ml chitin. The L-012 solution was added to the 

wells just before the measurement. The chemiluminescence was measured every minute 

over a period of 35 min using a TECAN infinite® M200 plate reader (Tecan Group Ltd., 

Männedorf, Switzerland). The data were evaluated using Excel. 

 

2.2.4.18 Histochemical staining with X-Gluc 

The plant tissue of interest from stable transgenic Arabidopsis plants expressing the GUS 

reporter gene was harvested and distributed into water-containing 2 ml reaction tubes. The 

water was then exchanged to ice-cold acetone and the samples incubated for 20 min to 

destain. The acetone was then replaced by the washing solution and the samples were 

incubated for 10 min. Then the washing solution was removed and the staining solution was 

added. The samples were vacuum-infiltrated in a plastic desiccator for 1 min and afterwards 

kept in the dark at 37 °C overnight. The staining solution was replaced with 100 % ethanol 

and the samples were incubated at 37 °C for further destaining of the tissue. The samples 

were then analysed and documented using a stereo microscope (Leica, Wetzlar, Germany).  

 

2.2.5 Biochemical methods 

2.2.5.1 Total protein extraction from plants for Western blotting 

2.2.5.1.1 Protein extraction optimized for receptor-like kinases 

50 – 100 mg frozen plant material was ground in 300 µl CERK1 extraction buffer and a small 

spatula of quartz sand using a glass drill until the mixture was smooth. Residual plant extract 

was rinsed of the drill using 700 µl extraction buffer. The samples were then centrifuged at 

12 000 rpm and 4 °C for 10 min. The supernatants were transferred into new reaction tubes 

and kept on ice. The protein concentrations were determined via the Bradford assay 

(2.2.5.3). Then, the samples were adjusted to the same protein concentration and volume 

using CERK1 extraction buffer. 

From each sample an equal volume of 60 – 120 µl was transferred to a new 1.5 ml reaction 

tube and mixed with 4x SDS loading dye to serve as total extract (TE) for Western blots. 

Samples were stored at -20 °C. The residual extract was either stored at – 20 °C or used in 

pull-down experiments.  
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2.2.5.1.2 SDS extraction 

For preparation of total protein extracts 15 leaf discs per sample were cut out with a cork 

borer (diameter 0.5 cm) and transferred into a 2 ml reaction tube together with two metal 

beads (diameter 0.4 cm) before being frozen in liquid nitrogen. Samples were either stored 

at -80 °C or directly ground to a fine powder by disrupting the plant material using a 

TissueLyser LT (Qiagen, Hilden, Germany) for 3x 2 min at 50 Hertz. Between the three 

repetitions of 2 min the samples were cooled in liquid nitrogen to prevent thawing. After 

grinding, the samples are transferred back onto ice and 150 µl 2x SDS (Laemmli) sample 

buffer were added. The tubes were flicked to dispense the buffer. The tubes were vortexed 

twice while thawing. The samples were then boiled at 95 °C for 5 min before being 

centrifuged for 25 min at 4 °C and 13 000 rpm. The supernatants were transferred into new 

1.5 reaction vials and stored at -20 °C. 

 

2.2.5.2 Chitin pull-down 

First, chitin magnetic beads (NEB, Frankfurt/Main, Germany) were washed with ultrapure 

water at least two times and then the volume was adjusted to the volume of the original 

suspension. 20 µl beads were added to each tube of protein extract. The samples were then 

incubated in a cold room on a wheel at about 18 rpm for 45 min. The samples were 

transferred on ice and the magnetic beads were pelleted using a magnetic rack. The 

supernatants were discarded and the beads washed 1 ml cold TBST-T. This was repeated 

once before performing a washing step with cold deionized water. After removing the water, 

the magnet was removed and 20 µl of 1.5x SDS sample buffer were added. The samples 

were spun down for a few seconds in a table top centrifuge to mix all the beads with the SDS 

buffer. The samples were stored at -20 °C. Before use, samples were boiled at 95 °C for 5 

min.  

 

2.2.5.3 Bradford assay 

Protein concentrations were determined by using a method based on Bradford, 1976. A 

calibration curve using a bovine serum albumin (BSA) standard was measured. For this, the 

following volumes of 1 mg/ml BSA were pipetted into a cuvette each: 0 µl, 3 µl, 5 µl, 10 µl 

and 15 µl. For the samples to be measured an appropriate volume of protein extract was 

pipetted into cuvettes (typically 3 µl). The samples were pipetted in duplicate to later 

calculate the mean. Then 1 ml of Bradford solution (Roti®-Quant, Roth, diluted 1:5 with 

water) was added to each cuvette, which were then carefully vortexed to mix the solution. 

After 10 min of incubation at room temperature the absorption at 595 nm was measured 

using a WPA Biowave II photometer (Biochrom, Berlin, Germany) for each sample. The 

absorption values of the BSA standards were plotted against the protein concentration to 

obtain a calibration curve.  
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Based on the calibration curve, the protein amount (µg/µl) was calculated in the measured 

samples and subsequently, the mean protein concentration of the duplicate samples was 

calculated. 

 

2.2.5.4 Lambda Protein Phosphatase (λPPase) treatment 

Total protein extracts were prepared as described before (2.2.5.1.1). Protein extracts from 

chitin-treated and control plants were divided into three aliquots, respectively. The protein 

of interest was pulled down using appropriate magnetic beads (in this work 20 µl GFP-

binding protein magnetic beads (GFP-Trap®_M, ChromoTek, Planegg-Martinsried, Germany) 

were used). The samples mixed with the magnetic beads were incubated in a cold room for 

1:15 h on a wheel at 18 rpm. After the incubation time, the samples were washed similar as 

described in 2.2.5.2. However, instead of being washed with TBS-T and water, the samples 

were washed twice with 1 ml mild washing buffer. After removal of the buffer from the last 

wash step, 5 µl 10x λPPase buffer (NEB, New England Biolabs, Ipswich, MA, USA) and 5 µl 

MnCl2 (NEB) were added to each aliquot. 6 µl of λPPase were added to one of the aliquots 

and all aliquots were supplemented with water to a total volume of 50 µl. One aliquot 

without λPPase was directly mixed with 17 µl 4x SDS sample buffer and frozen at – 20 °C 

(dir). The residual two samples were then incubated for 1 h at 30 °C either with λPPase (λ) or 

mock-treated in parallel without λPPase (m). After the incubation the samples were mixed 

with 4x SDS sample buffer and stored at – 20 °C.  

 

2.2.5.5 Microsomal fractionation 

For microsomal fractionations about 100 mg ground plant material were transferred into a 

1.5 ml reaction tube. The plant powder was further ground in 800 µl CERK1 extraction buffer 

without Triton X-100 using a glass drill. The samples were spun down at 1000 rpm and 4 °C 

for 5 min. 120 µl of the supernatant were transferred into a new 1.5 ml reaction tube and 

mixed with 40 µl 4x SDS sample buffer to serve as total extract (TE). The residual 

supernatant was transferred into a 1.5 ml ultracentrifuge tube. The pellet was mixed with 

150 µl 1.5x SDS sample buffer  pellet 1 sample (P1). The supernatant in the ultracentrifuge 

tube was ultracentrifuged at 29 000 rpm and 4 °C for 30 min. 120 µl of the supernatant were 

transferred into a new 1.5 ml reaction tube and mixed with 40 µl 4x SDS sample buffer  

supernatant sample (S). The residual supernatant was removed and immediately frozen in 

liquid nitrogen and stored at -80 °C for later experiments. 800 µl CERK1 extraction buffer 

without Triton X-100 were added in 200 µl steps to the pellet, which was resuspended using 

a plastic micro pistil. The dissolved pellet was centrifuged at 29 000 rpm and 4 °C for 30 min. 

Again, 120 µl of the supernatant were transferred to a new 1.5 ml reaction tube and mixed 

with 40 µl 4x SDS sample buffer  wash 1 (W1). This time, the microsomal pellet was 

dissolved in 800 µl CERK1 extraction buffer (with Triton X-100) with a micro pistil. 90 µl of 

the dissolved pellet were transferred into a new 1.5 ml reaction tube and mixed with 30 µl 

4x SDS sample buffer  microsomal pellet (MP). The residual microsomal extract was frozen 
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in liquid nitrogen and stored at – 80 °C. The samples mixed with SDS buffer were stored 

at -20 °C. 

 

2.2.5.6 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

For separation of proteins according to their molecular mass the Mini-PROREAN® 3 system 

(BioRad) was used. First, resolving gels with the appropriate percentage (see below) were 

prepared and poured between two glass plates with a spacing of 1.5 mm set in a gel stand. 

Immediately, the gel solution was completely overlaid with isopropanol. After the gels had 

polymerized, the isopropanol was poured off and any residual isopropanol was removed by 

wiping with a piece of Whatman® paper. Next, the stacking gel was prepared and poured 

onto the resolving gels and a comb was inserted on top to form the sample pockets. After 

polymerization of the stacking gel, the gels between the glass plates were either directly 

used or wrapped in damp paper towels and stored in plastic bags in the fridge.  

 

Table 8. Composition of resolving and stacking gels used in this study.  

Resolving gel (8 %, 10 ml) 8 % resolving gel buffer 7.2 ml 

 30 % acrylamide/ Bis solution, 

29:1 

2.7 ml 

 10 % APS 0.1 ml 

 TEMED 0.006 ml 

Resolving gel (10 %, 10 ml) 10 % resolving gel buffer 6.6 ml 

 30 % acrylamide/ Bis solution, 

29:1 

3.3 ml 

 10 % APS 0.1 ml 

 TEMED 0.004 ml 

Resolving gel (12 %, 10 ml) 10 % resolving gel buffer 5.9 ml 

 30 % acrylamide/ Bis solution, 

29:1 

4.0 ml 

 10 % APS 0.1 ml 

 TEMED 0.004 ml 

Stacking gel (10 ml) Stacking gel buffer 8.16 ml 

 30 % acrylamide/ Bis solution, 

29:1 

1.66 ml 

 10 % APS 0.05 ml 

 TEMED 0.005 ml 

 

Gels for direct use were placed in the gel apparatus and put in the running tank before filling 

the tank with 1x SDS running buffer. Samples which had not yet been boiled were boiled 

before loading on to the gels. Next, the combs were carefully removed from the gels and the 

samples were then loaded into the gel pockets. The volume loaded depended on the protein 
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concentration of the samples and size of the pocket. As size standard the PageRulerTM 

Prestained Protein Ladder (FermentasTM) was used. The SDS-PAGE was run at 30 mA per gel 

until an appropriate separation of the proteins was achieved. After disassembling the gel 

apparatus, the gels were then either directly stained with Coomassie Brilliant Blue (CBB) 

(2.2.5.9) or used further for immunoblot analysis (2.2.5.7).  

 

2.2.5.7 Immunoblot analysis 

After SDS-PAGE the gels were released from the glass plates and the stacking gel was cut off. 

To transfer the separated proteins from the gel onto a polyvinylidene difluoride (PVDF) 

membrane with a pore size of 0.45 µm, the gel and the membrane were assembled in the 

transfer cassette according to the manufacturer’s instruction (BioRad) and placed in a 

blotting tank filled with 1 x transfer buffer. The transfer was performed at 100V for 2 h. After 

disassembly of the blotting cassette, the membranes were blocked with 1 x TBS-T containing 

3 % milk powder for 1 h at room temperature. Next, the blocking solution was poured off 

and the membranes were incubated with the primary antibody in 1x TBS-T + 3 % milk 

powder overnight at 4 °C under slow constant shaking. The primary antibody solution was 

removed and the membranes briefly rinsed with 1 x TBS-T  + 3 % milk powder before being 

washed 6 x for 15 min with 1 x TBS-T + 3 % milk powder on a rotary shaker. After discarding 

the TBS-T + 3 % milk powder from the last washing step, the secondary antibody diluted in 

1 x TBS-T with 3 % milk powder was added. The membranes were then incubated for 2 h at 

room temperature under slow constant shaking. After removing the antibody solution, the 

membranes were again washed 6 x with 1 x TBS-T (without milk powder) as described 

before. The TBS-T was then replaced by AP buffer, in which the membranes were incubated 

for 10 min under constant shaking. The membranes were then incubated in Immun-StarTM 

substrate for 5 min before they were placed in a plastic bag and transferred into a exposure 

cassette. The luminescence was then detected by exposing the membranes to an X-ray film. 

To visualize protein amounts, membranes were stained with CBB afterwards (2.2.5.9). 

To enhance the detected signal and reduce the background in αGFP Western blots, the 

SuperSignalTM Western Blot Enhancer (Thermo ScientificTM, Life Technologies GmbH, 

Darmstadt, Germany) was used according to the manufacturer’s instructions.  

 

2.2.5.8 In vitro kinase assay 

His- and GST-tagged fusion proteins used in this assay were obtained from Jan Erwig (Erwig, 

2012). Proteins were heterologously expressed in E. coli. GST-tagged fusion proteins were 

purified via glutathione magnetic beads (Pierce™, Thermo Fisher; Erwig, 2012) and His-

tagged fusion proteins were purified by binding to His Mag Sepharose Ni magnetic beads (GE 

Healthcare, Freiburg, Germany) according to the manufacturer’s purification protocol for 

high capacity.  
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For the in vitro phosphorylation assay different combinations of the fusion proteins were 

incubated together as indicated in Figure 15. To each reaction, 2 µl 10x kinase buffer and 

148 kBq [γ32-P]-ATP were added and the reaction was filled up to 20 µl with water. During 

pipetting, reactions were kept on ice. The reactions were then incubated for 30 min at room 

temperature before being stopped by adding 4x SDS loading dye and boiling at 95 °C for 2 

min. The proteins were then separated by SDS-PAGE (2.2.5.6) and the gels were stained with 

Coomassie Brilliant Blue (2.2.5.9). After destaining, the gels were placed on a Whatman® 

paper covered with a cling film and dried at 80 °C for ~ 2 h using a vacuum gel dryer. Then 

they were exposed to AGFA CRONEX 5 X-ray films (Agfa HealthCare, Mortsel, Belgium) 

overnight.  

For visualization of protein amounts, Western blots were performed with kinase reactions 

performed in parallel which lacked the [γ32-P]-ATP. The membranes were probed with αHis 

and αGST antibodies simultaneously.  

 

2.2.5.9 Coomassie staining of SDS-PAGE gels and membranes 

For visualization of proteins, polyacrylamide gels and PVDF membranes were stained with 

Coomassie Brilliant Blue. For this the gels/ membranes were placed in a plastic box and 

covered with Coomassie staining solution. Membranes were incubated for 2 min and gels for 

30 min at room temperature while shaking. Then the staining solution was removed and the 

gels/ membranes rinsed with water. Background staining was removed by incubation in 

destaining solution until only protein bands were stained. The staining solution was removed 

and the membranes/ gels rinsed twice with water.  
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3 Results 

 

The results chapter of this work is divided into three parts. The first chapter describes the 

identification of the receptor-like cytoplasmic kinase (RLCK) CERK1-INTERACTING LysM-RLK-

LIKE RLCK1 (CLR1), in silico analyses and sequence comparisons with Arabidopsis LysM 

receptor-like kinases. In the second part three independent homozygous CLR1 T-DNA 

mutant alleles were isolated and analysed regarding their genetic requirement for CERK1-

dependent chitin signalling. The CLR1 alleles were tested for chitin-induced defence 

responses and the involvement of CLR1 in immunity against fungal and bacterial pathogens 

was assessed. The third chapter describes the generation of CLR1 fusion proteins for analysis 

in biochemical assays and localization studies using confocal laser scanning microscopy 

(CLSM). 

 

3.1 Identification and in silico analysis of CERK1-INTERACTING LysM-RLK-LIKE 

RLCK1 CLR1 

 

Despite the crucial role of Arabidopsis CERK1 in chitin perception and signalling, only little is 

known about its complex partners and possible downstream targets. A yeast two-hybrid 

screen with the CERK1 intracellular domain was initiated and performed by Hybrigenics 

(Paris, France) in order to identify putative intracellular interactors and components of the 

signalling cascade downstream of CERK1. The intracellular domain of CERK1 (amino acids 

254-617) was used as a bait to screen a prey cDNA library from 1-week-old Arabidopsis 

seedlings. From the total clones obtained in the yeast two-hybrid assay, the single clone 

which contained a prey fragment of 1167 bp, corresponding to amino acids 83-456 of an 

uncharacterized protein kinase superfamily protein encoded by At3g57120 was further 

analysed (Figure 3). According to The Arabidopsis Information Resource (TAIR) genome 

annotation (Lamesch et al., 2012), At3g57120 is a single exon gene with a coding region of 

1371 bp.  
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Figure 3. Genomic sequence of At3g57120 obtained from TAIR10 with the At3g57120 prey fragment 
retrieved from a single clone in a yeast two-hybrid screen with the CERK1 intracellular domain. The 1371 bp 
coding sequence of the single exon gene At3g57120 is shown in black with the putative start codon marked 
in red and the stop codon shown in bold black. The 5’ and 3’ untranslated regions are indicated in orange. 
The sequence of the 1167 bp long prey fragment obtained in the yeast two-hybrid assay is underlined in 
green.  

 

Analysis with the NCBI Conserved Domain Database online tool (NCBI CDD, 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi; Marchler-Bauer et al., 2015) 

identified the At3g57120 protein as a serine/threonine protein kinase (calculated Expect (E) 

value of 4.65e-21). Analysis with the Basic Local Alignment Search Tool (BLAST, blastp NCBI, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi; Altschul et al., 1997) using the At3g57120 amino acid 

sequence as query against the Arabidopsis proteome database revealed that the identified 

protein shares high homology to Arabidopsis LysM-RLKs (data not shown). Among the first 

four hits with the highest alignment scores are three described LysM-RLKs, as well as a yet 

uncharacterized putative receptor-like protein. LYK3 (At1g51940) showed the highest match 

to the At3g57120 sequence with a E value of 5e-45, followed by LYK1/ CERK1 and LYK5 with 

E values of 3e-31 and 4e-30, respectively.  

 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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In particular, the amino acids in the kinase subdomains (I-XI) show a high level of 

conservation comparing the sequence of At3g57120 to that of the other LysM-RLKs 

(Figure 4). Interestingly, also an amino acid stretch N-terminal of the kinase subdomain I 

shares high homology among the depicted proteins (Figure 4). Protein kinases contain ten 

subdomains (Hanks and Hunter, 1995). Subdomains I-V are required for ATP-binding and 

subsequently for the activity of the corresponding kinase. Important conserved features 

involved in ATP binding are the GxGxxG-motif (P-loop) in subdomain I, a conserved lysine (K) 

 
 
Figure 4. Amino acid sequence alignment of CLR1 (At3g57120) with the intracellular domains of the five 
Arabidopsis lysin motif-containing receptor-like kinases (LysM-RLKs). The kinase subdomains I-XI are shown 
as red boxes. The myristoylation motif of CLR1 was predicted with Podell and Gribskov, 2004 
(http://plantsp.genomics.purdue.edu/myrist.html) and is indicated by a green box. Framed with a blue box 
is the putative glycine-rich nuclear localization motif (Cokol et al., 2000). The alignment was generated in 
Geneious 7.1.7 using the ClustalW algorithm (Kearse et al., 2012). Colouring was performed in Jalview 2.8.2 
using the Clustalx settings with a conservation threshold of 30 (Waterhouse et al., 2009). 
 
 

http://plantsp.genomics.purdue.edu/myrist.html
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in subdomain II and a nearly invariant glutamate (E) residue in subdomain III (Hanks and 

Hunter, 1995). All these motifs/residues are absent in the amino acid sequence of 

At3g57120, suggesting that it constitutes an inactive kinase. CLR1 also lacks conserved 

amino acids in subdomain VIb (catalytic loop), subdomain VII (magnesium binding loop) and 

subdomain VIII. The activation loop which spans subdomains VII and VIII and is involved in 

switching the kinase activity on and off (Taylor and Radzio-Andzelm, 1994) contains an 

insertion of several amino acids in At3g57120. Taken together, these variations in the kinase 

domain make it very unlikely for the At3g57120 protein to have enzymatic activity. 

No transmembrane domain or extracellular domain was predicted for the protein encoded 

by At3g57120, making it a member of the class of receptor-like cytoplasmic kinases (RLCKs). 

Phylogenetic analyses assigned At3g57120 specifically to the RLCK subfamily XII (Shiu and 

Bleecker, 2003). Due to the lack of an extracellular domain and sequence homology to the 

kinase domain of LysM-RLKs we named the protein encoded by At3g57120 CERK1-

INTERACTING LysM-RLK-LIKE RLCK1 (CLR1). 

In the TAIR10 genome annotation (Lamesch et al., 2012) CLR1 is predicted to be a protein of 

456 amino acids. However, analysis with a plant specific myristoylation prediction tool 

(PlantsP; Podell and Gribskov, 2004) revealed a putative internal N-myristoylation motif that 

lies 23 amino acids C-terminal of the annotated N-terminus (Figure 4, green box). Typically, 

N-myristoylation is a co-translational protein modification where the N-terminal methionine 

is removed from the growing peptide and an N-myristoyltransferase (NMT) attaches a 

myristic acid residue to the now N-terminal glycine at position two (Johnson et al., 1994; 

Thompson and Okuyama, 2000). However, it is also known that myristoylation can occur 

post-translationally. Here, a mature protein is enzymatically cleaved to expose a previously 

internal glycine residue (Zha, 2000; Martin et al., 2011). This raises the question whether the 

start codon annotated for CLR1 in TAIR10 is correct or the protein in fact starts at the 

methionine associated with the N-myristoylation motif. The methionine encoded by the 

originally predicted start codon is named M1 and the methionine at position 23 is named M2 

for the remainder of this work (Figure 4). If CLR1 starts at M1, CLR1 is either not 

myristoylated or is subject to post-translational cleavage behind M2 in order to expose the 

internal glycine residue for N-myristoylation to take place. In the alternative scenario the 

open reading frame of CLR1 is misannotated and the actual start of the protein is M2. 
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Besides the putative N-terminal myristoylation motif CLR1 harbours a glycine-rich segment 

inserted between the kinase subdomains IV and V (Figure 4). This stretch of amino acids 

might constitute an uncommon nuclear localization signal (NLS) with potential DNA-binding 

ability (Cokol et al., 2000). Glycine-rich sequences near the C-terminus have been reported 

to mediate nuclear import in some proteins, including the human heterogeneous NUCLEAR 

RIBONUCLEOPROTEIN (hnRNP) A1, which is involved in alternative pre-and mRNA splicing as 

well as in regulating telomere length (Siomi and Dreyfuss, 1995; Cokol et al., 2000). In 

Arabidopsis a hnRNP homolog, RNP1, and a glycine-rich (RNA-binding) protein, AtGRP7 were 

reported to have a glycine-rich sequence shown to be important for nuclear import of the 

two proteins which is similar to that present in hnRNP A1 (Ziemienowicz et al., 2003). For 

AtGRP7 a role in alternative (pre-mRNA) splicing was demonstrated, regulating a feedback 

loop which negatively controls the circadian rhythm (Heintzen et al., 1994; Heintzen et al., 

1997). 

Based on BLAST analysis (NCBI blastp, http://blast.ncbi.nlm.nih.gov/Blast.cgi; Altschul et al., 

1997, the CLR1 protein is encoded by a single copy gene in Arabidopsis. However, related 

proteins can be found in other plant species (data not shown). The majority of these proteins 

are not yet characterized but predicted to be LysM domain receptor-like kinases of a similar 

length to the CLR1 sequence. Since, like CLR1, they probably only resemble the kinase 

domain of LysM proteins, these predicted proteins could represent orthologues of CLR1. 

 

3.2 Characterization of CLR1 mutant lines 

 

In order to analyse the involvement of CLR1 in MAMP signalling and immunity, homozygous 

CLR1 T-DNA knockout mutant alleles were isolated and tested for chitin-induced signalling 

and defence responses. Furthermore, the CLR1 T-DNA insertion mutants were used to 

investigate the role of CLR1 in immunity towards pathogens, including biotrophic powdery 

mildews, a necrotrophic fungus and different bacterial pathogens.  

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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3.2.1 CLR1 T-DNA insertion mutant lines used in this study 

 

All T-DNA insertion mutants used in this work were obtained from the Nottingham 

Arabidopsis Stock Centre (NASC). Three independent alleles of CLR1, namely clr1-1 

(SALK_102100), clr1-3 (GK-267B04) and clr1-4 (GK-416D04) were characterized in this work. 

The schematic gene structure of the single exon gene CLR1 and the position of T-DNA 

insertions in the characterized lines are depicted in Figure 5 A.  

 

 
Figure 5. Position of T-DNA insertions in CLR1 and transcript analysis in clr1 mutants. (A) Schematic depiction 
of the CLR1 gene structure. CLR1 consists of only one 1371 bp exon. The transcribed region of CLR1 is 
indicated as black box. Start and stop codons are labelled with ATG and TGA, respectively. White boxes 
represent the 5’ and 3’ untranslated region of the mRNA. The T-DNA insertions are shown as triangles and 
arrows indicate the orientation of the left T-DNA border. Primers used for genotyping and RT-PCR are 
indicated as arrow heads. (B) Semi-quantitative RT-PCR in leaves confirms transcript disruption in clr1 
mutants. PCR reactions were performed using the flanking primers indicated in A. Expression of Actin1 was 
analysed to demonstrate equal cDNA concentrations. Col-0 cDNA as well as gDNA were used as wild type 
and genomic controls, respectively. The no template control (NTC) was used to rule out contamination or 
primer dimer formation in the reactions. (C) qRT-PCR analysis of transcripts downstream of clr1 T-DNA 
insertions reveals a moderate knockdown in clr1-1, and enhanced transcript levels in clr1-3 and clr1-4. 
Primers 4 and 5, as indicated in A, were used for the analysis in two-week-old in vitro grown seedlings. Col-0 
and cerk1-2 were included as positive and negative control, respectively. Actin8 served as reference gene. 
The bars represent the mean ± STDEV of three biological replicates consisting of four technical repetitions. 
Asterisks indicate statistical significance of the mutants compared to Col-0 (**** = p ≤ 0.0001, *** = p ≤ 
0.001, ** = p ≤0.01, * = p ≤ 0.05, ns = p > 0.05). P-values were calculated using the unpaired student’s t-test. 
D) qRT-PCR shows that CLR1 is moderately chitin inducible. Two-week-old in vitro grown seedlings of the 
indicated lines were treated with the chitin concentrations indicated, ranging from 0 µg/ml to 100 µg/ml, for 
30 min. The samples were further processed and analysed as described in (C).  
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The clr1-1 T-DNA insertion is located between the two possible start codons (M1 and M2, 

compare chapter 3.1) and thus may not have an effect if CLR1 translation starts at M2. In 

contrast, clr1-3 and clr1-4 insertions are downstream of the second possible start codon, 

likely disrupting both possible variants of the CLR1 protein. Homozygous mutant plants were 

identified via PCR-based genotyping and the positions of the T-DNAs were verified by 

sequencing. Subsequently, homozygous plants were analysed for disruption of the full-

length transcript by semi-quantitative reverse transcriptase PCR (RT-PCR) with cDNA-specific 

primers flanking the T-DNA insertions (Figure 5 B).  

Transcript analysis was performed in leaves and two different primer combinations were 

used. The first combination (P1+P2) spans the two T-DNA insertions in the 5’ region of the 

gene (clr1-1 and clr1-4) while the second combination (P3+P4) flanks the T-DNA insertion 

clr1-3 in the 3’ region (Figure 5 A). PCR with flanking primers shows that the clr1-1, clr1-3, as 

well as clr1-4 T-DNA insertions disrupt the full-length CLR1 transcript (Figure 5 B). PCR with 

the non-flanking primer pair revealed the presence of upstream transcripts in clr1-3 and 

downstream transcripts in clr1-1 and clr1-4. Expression of the 3’ transcript appeared to be 

enhanced in clr1-4 compared to the Col-0 wild type. To address this question further, 

quantitative reverse transcriptase PCR (qRT-PCR) was performed in seedlings using primers 

P4 and P5 to amplify the transcripts 3’ of all CLR1 T-DNA insertions (Figure 5 C). Indeed, 

clr1-4 as well as clr1-3 showed significantly enhanced transcript levels 3’ of the T-DNA 

insertions. These transcripts are likely derived by strong promoters present in the T-DNAs. 

Compared to Col-0, clr1-1 showed a moderate reduction in expression of the CLR1 transcript, 

suggesting that it might have a mild knockdown effect on CLR1 even if the translation starts 

at M2. In order to investigate if CLR1 expression itself is chitin responsive, seedlings were 

treated with different concentrations of polymeric chitin (Figure 5 D) and CLR1 transcripts 

were analysed by real-time PCR with primers P4 and P5. In Col-0, CLR1 expression was 

slightly induced by chitin in a dose-dependent manner. The same effect could be observed in 

clr1-1 (albeit at somewhat lower levels), but not in the CERK1 knockout mutant cerk1-2 

(Miya et al., 2007).  
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3.2.2 Chitin-induced phosphorylation of CERK1 and MAPKs in clr1 mutants 

 

To assess the involvement of CLR1 in CERK1-mediated chitin signalling, CLR1 T-DNA lines 

were tested for chitin induced CERK1 phosphorylation. CERK1 phosphorylation is a very early 

chitin response and can be visualized as a distinctive band shift of the CERK1 full-length 

protein in SDS-PAGE (Petutschnig et al., 2010). The band shift was analysed in clr1-1, clr1-3 

and clr1-4. Col-0 and cerk1-2 served as controls, as well as pbl27-1, a mutant of a RLCK 

reported to function downstream of CERK1 (Shinya et al., 2014). Leaves of four-week-old 

Arabidopsis plants were either vacuum-infiltrated with H2O or polymeric chitin to induce 

CERK1 phosphorylation and the consequent CERK1 mobility shift. Total protein extracts were 

prepared and used in a Western blot which was developed with a CERK1 specific antibody 

(Petutschnig et al., 2010; Figure 6). CERK1 has a predicted molecular mass of 67.3 kDa and 

migrates at around 70 kDa in SDS-PAGE. Col-0 showed a clear signal and chitin-induced band 

shift for CERK1. As expected, the knockout mutant cerk1-2 did not contain any CERK1 

protein. A band shift indicating phosphorylation of CERK1 was detected in all clr1 T-DNA 

lines to a comparable degree as in Col-0. Also in pbl27-1 CERK1 phosphorylation seemed 

similar to the wild type Col-0. 

 

Figure 6. Immunoblot analyses of clr1 T-DNA insertion mutants show chitin-induced phosphorylation of 
CERK1, MPK3 and MPK6. Total protein extracts from leaf tissue of four-week-old Arabidopsis plants after 
vacuum-infiltration with H2O (-) or 100 µg/ml polymeric chitin (+) were loaded. Samples were separated on 
10 % SDS-PAGE. Membranes were either probed with αCERK1 or αpMAPK antibodies. Equal loading was 
monitored by staining the membrane with Coomassie Brilliant Blue (CBB). CERK1 has a molecular weight of 
67.3 kDa. Phosphorylated MPK3 and MPK6 appear at a molecular weight of 43 kDa and 46 kDa, respectively. 
The experiment was repeated three times with similar results. 
 
 

One downstream event in chitin signalling after phosphorylation of the chitin receptor 

CERK1 is the activation of mitogen-activated protein kinase (MAPK) cascades (Miya et al., 

2007). Activation, and hence phosphorylation of two MAPKs, MITOGEN-ACTIVATED PROTEIN 
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KINASE3 and -6 (MPK3 and MPK6), can be readily visualized in immunoblot analyses using an 

antibody (αMAPK) which specifically recognizes their phosphorylated form (Shinya et al., 

2014). MPK3 and MPK6 are important positive regulators of plant disease resistance due to 

their involvement in multiple defence signalling pathways (Han et al., 2010, 2010; Galletti et 

al., 2011; Mao et al., 2011). To analyse the role of CLR1 in chitin-induced activation of MAPK 

signalling cascades, phosphorylation of MPK3 and MPK6 upon chitin treatment was 

investigated in the clr1 mutants, with Col-0, cerk1-2 and pbl27-1 as controls.  

To do so, the protein extracts used for CERK1 band shift analysis (see above) were used in a 

Western blot probed with the antibody specific for phosphorylated MAPKs (Phospho-p44/42 

MAPKs/ αpMAPK; Figure 6). The two bands detected with αpMAPK correspond to the 

MAPKs MPK3 (43 kDa) and MPK6 (46 kDa) (Zhao et al., 2014). In all tested clr1 T-DNA lines 

MPK3 and -6 were activated upon chitin treatment similarly to Col-0, except for clr1-4 where 

a reduced degree of MAPK activation could be seen. The Coomassie Brillant Blue (CBB) 

stained membrane indicates equal loading of the samples, suggesting that the weaker signal 

for phosphorylated MPK3 and MPK6 in clr1-4 was due to reduced signal transduction. 

pbl27-1 knockout lines were reported to show reduced chitin-induced MAPK 

phosphorylation (Shinya et al., 2014) but surprisingly, MAPK activation was similar to the 

wild type in this study. 

 

3.2.3 MAMP-induced generation of reactive oxygen species in CLR1 mutants 

 

Activation of PRRs results in rapid production of reactive oxygen species (ROS) by NADPH 

oxidases at the cell surface, which is a commonly analysed early MAMP-induced defence 

response (Torres et al., 2006). The ability of the different clr1 T-DNA mutant lines to 

generate ROS upon treatment with the fungal elicitor chitin was investigated in a luminol-

based assay with L-012 (Figure 7). 
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Figure 7. clr1 mutants show reduced ROS-generation upon chitin treatment. Leaf discs of five-week-old 
Arabidopsis plants were either treated with 100 µg/ml polymeric chitin (A) or mock treated with buffer (B). 
Relative luminescence units (RLU) were measured for 35 min after the respective treatment. The data are 
shown as mean of 12 leaf discs per genotype ± SE. The experiment was repeated three times with similar 
results. 
 
 

In addition to the three clr1 alleles, wild type Col-0, cerk1-2 and pbl27-1 were included as 

controls. Although PBL27 is involved in regulating chitin-induced defence responses the 

generation of ROS is not impaired in pbl27 mutants (Shinya et al., 2014). As described 

previously (Miya et al., 2007; Petutschnig et al., 2010) chitin did not induce a ROS burst in 

cerk1-2 (Figure 7 A). All three clr1 mutants showed reduced chitin-induced ROS generation 

compared to Col-0 in the three independent experiments, suggesting that CLR1 is required 

for full activation of ROS generating enzymes (Figure 7 A; Suppl. Figure 1). In pbl27-1 the ROS 

burst was not decreased in comparison to Col-0, which is in agreement with previous reports 

(Shinya et al., 2014). pbl27-1 even appeared to have a slightly higher chitin-induced ROS 

production, but more sensitive methods would be required to investigate the significance of 

this. None of the tested lines showed induction of ROS burst without elicitor treatment in 

the mock-treated assay (Figure 7 B). 

 

3.2.4 clr1 T-DNA mutants show reduced expression of MAMP-induced genes after chitin 

polymer and chitin heptamer treatment 

 

After the very early MAMP-triggered signalling events such as receptor phosphorylation, 

ROS burst and MAPK activation, defence-related genes are induced. Among many others, 

the expression of several genes from the WRKY-transcription factor family was shown to be 

upregulated upon treatment with chitin and other MAMPs (Wan et al., 2004; 2008). To test 

whether lack of functional CLR1 leads to alterations in chitin-induced expression of defence 
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genes, qRT-PCR was performed. For this, the expression of WRKY30, WRKY33 and WRKY53, 

was monitored in response to different polymeric chitin concentrations in the clr1 mutants, 

Col-0 and cerk1-2. In all of the tested lines, apart from cerk1-2, a clear dose-dependent 

induction in expression of the three WRKYs was visible (Figure 8). The expression of WRKY30 

and WRKY53 in the clr1-3 and clr1-4 mutants was significantly lower than in Col-0 at all 

tested chitin concentrations (Figure 8 A and C). clr1-1 showed an intermediate phenotype 

between Col-0 and the other two clr1 mutant alleles. The expression of WRKY33 was 

reduced in clr1-3 and clr1-4 only at lower chitin concentrations (Figure 8 B). The obtained 

results lead to the assumption that CLR1 contributes to chitin-induced expression of 

defence-related genes and that different genes might be affected to different degrees. 
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Figure 8. Chitin-induced expression of WRKY30, WRKY33 and WRKY53 is reduced in the clr1 mutants. Two-
week-old in vitro grown seedlings of the depicted clr1 Arabidopsis mutants were treated with the chitin 
concentrations indicated, ranging from 0 µg/ml to 100 µg/ml, for 30 min. Col-0 and cerk1-2 were included as 
positive and negative control, respectively. qRT-PCR of the following genes was performed: (A) WRKY30, (B) 
WRKY33, (C) WRKY53. ACTIN8 served as a reference gene. The bars represent the mean ± STDEV of three 
biological replicates consisting of 4 technical repetitions each. Asterisks indicate statistical significance of the 
mutants compared to Col-0 (**** = p ≤ 0.0001, *** = p ≤ 0.001, ** = p ≤0.01, * = p ≤ 0.05, ns = p > 0.05). P-
values were calculated using the unpaired student’s t-test. 
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Besides polymeric chitin, also fully acetylated chitin oligomers are able to induce CERK1-

mediated immune responses in Arabidopsis (Miya et al., 2007; Wan et al., 2008; Petutschnig 

et al., 2010; Liu et al., 2012). Chitin oligomers with a polymerization degree ≥ 5 are efficiently 

able to induce CERK1-dependent immune responses as for example CERK1 band shift, ROS 

burst and MAPK activation (Petutschnig et al., 2010).  

To analyse whether chitin oligomers have the same effect on WRKY gene expression as 

observed for seedlings treated with polymeric chitin (Figure 8), the previous experiments 

were repeated with chitin heptamer (7mer; Figure 9). Similar to the results obtained after 

treatment with polymeric chitin, the 7mer treatment resulted in a significant induction of 

WRKY30, WRKY33 and WRKY53 expression compared to mock treatment in all tested 

genotypes apart from cerk1-2. Also, the 7mer-induced expression of the WRKYs was 

significantly reduced in clr1-3 and clr1-4 compared to Col-0 (Figure 9). The reduction of 

WRKY expression levels in clr1-1 however was not significant. 
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Figure 9. Expression levels of WRKY30, WRKY33 and WRKY53 are significantly reduced in clr1-3 and clr1-4 
mutants after treatment with chitin heptamer (7mer). Two-week-old in vitro grown Arabidopsis seedlings of 
the indicated clr1 mutants were treated with 1 µM 7mer for 30 min. Col-0 and cerk1-2 were included as 
positive and negative control, respectively. qRT-PCR of the following genes was performed: (A) WRKY30, (B) 
WRKY33, (C) WRKY53. ACTIN8 served as a reference gene. The bars represent the mean ± STDEV of three 
biological replicates consisting of 4 technical repetitions. Asterisks indicate statistical significance of the 
mutants compared to Col-0 (**** = p ≤ 0.0001, *** = p ≤ 0.001, ** = p ≤0.01, * = p ≤ 0.05, ns = p > 0.05). P-
values were calculated using the unpaired student’s t-test. 
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3.2.5 Identification of specifically chitin-induced genes and their analysis in clr1 mutants 

 

The reduction of chitin-induced expression of WRKY30, WRKY33 and WRKY53 in clr1 mutants 

was relatively moderate. Also, the three WRKY genes appeared to be reduced to different 

degrees, indicating that CLR1 might affect some MAMP-responsive genes more than others. 

In an attempt to identify genes whose expression might be more strongly dependent on 

CLR1, chitin-specific marker genes were investigated. Since the majority of chitin-responsive 

genes are not only induced by chitin, but also after elicitation with other MAMPs publicly 

available microarray data were analysed in order to identify exclusively chitin-induced genes. 

Only studies using the Affymetrix ATH1 gene chip and Arabidopsis seedlings were included to 

ensure comparability of the data and are listed in Table 9. The gene expression data from 

these studies were compared and 27 genes were found to be induced after both chitin 

octamer (8mer) and crab shell chitin (CSC) treatment but not after treatment with flg22 or 

elf18/elf26 (Suppl. Table 1). 

 

Table 9. List of studies used for selection of specifically chitin-induced genes. Microarrays were performed 
with plant material from Arabidopsis seedlings using the full-genome Affymetrix Gene Chip® (ATH1). 

Publication Treatment 

Ramonell et al., 2005 1 µM chitooctamer or 100 µg/ml crab shell chitin mixture; 30 min 

Mészáros et al., 2006 1 µM flg22; 30 min 

Navarro et al., 2004 10 µM flg22; 30 min 

Tintor et al., 2013 1 µM elf18; 2 h 

Zipfel et al., 2004 10 µM flg22, 30 min 

Zipfel et al., 2006 1 µM elf26, 30 min 

 

From the 27 genes specifically upregulated after chitin treatment (Suppl. Table 1), two genes 

with high fold induction compared to mock treatment were selected as putative marker 

genes for further analysis by qRT-PCR in this work. The first gene is At4g16820, coding for 

DAD1-LIKE LIPASE 1 (DALL1, Ruduś et al., 2014), which showed a 37-fold induction after 

8mer treatment and 42-fold induction after CSC treatment. At3g43250, a gene of yet 

unknown function, was the second gene selected for further analysis. It showed a 23-fold 

induction after 8mer treatment and a 30-fold induction after CSC treatment compared to 

the mock-treated controls (Ramonell et al., 2005). 
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As described above, clr1 mutant seedlings were treated with different concentrations of 

polymeric chitin and Col-0 and cerk1-2 served as controls. qRT-PCR confirmed the chitin 

responsiveness of the two putative chitin-specific novel marker genes. In Col-0, the 

expression of both genes increased with the concentration of polymeric chitin. In cerk1-2, 

this induction did not occur (Figure 10).  

 

 
Figure 10. Expression levels of putatively chitin-specific marker genes (At3g43250, At4g16820) was not 
clearly reduced in clr1 mutants after chitin treatment. Two-week-old in vitro grown seedlings of the 
indicated clr1 mutants were treated with the chitin concentrations indicated, ranging from 0 µg/ml to 100 
µ/ml, for 30 min. Col-0 and cerk1-2 were included as positive and negative control, respectively. Quantitative 
RT-PCR of the following genes was performed: (A) At3g43250, (B) At4g16820. ACTIN8 served as a reference 
gene. The bars represent the mean ± STDEV of three biological replicates consisting of 4 technical 
repetitions. Asterisks indicate statistical significance of the mutants compared to Col-0 (**** = p ≤ 0.0001, 
*** = p ≤ 0.001, ** = p ≤0.01, * = p ≤ 0.05, ns = p > 0.05). P-values were calculated using the unpaired 
student’s t-test. 
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For At3g43250 no significant difference regarding the expression levels could be observed 

for the clr1 mutants compared to Col-0 (Figure 10 A). For At4g16820, chitin-induced 

expression levels appeared to be reduced in clr1-3 and clr1-4 at low chitin concentrations, 

but not at higher ones. The expression of the two potential specifically chitin-induced genes 

At3g43250 and At4g16820 was also assessed upon treatment with chitin heptamer (Suppl. 

Figure 2). The overall induction was low and variability between experiments was high. 

Consequently, the obtained results were not informative. 

The high variation between the biological replicates of At3g43250 and At4g16820 could be 

due to their low expression levels. Because of this technical limitation and the fact that no 

clear difference between Col-0 and clr1 mutants was observed, the response of these genes 

to other MAMPs was not investigated further. 

 

3.2.6 Involvement of CLR1 in immunity against biotrophic and necrotrophic fungal 

pathogens 

 

Early MAMP-triggered defence responses such as the generation of ROS, activation of MAPK 

signalling cascades and expression of defence genes result in immunity towards non-

adapted plant pathogens. Since CLR1 was found to interact with CERK1 (see chapter 3.1) and 

showed reduced chitin-induced gene expression, we hypothesized that it might be involved 

in MAMP-triggered immunity against fungi and possibly also other pathogens. To test this 

hypothesis, several pathogen assays were conducted in this work.  

First infection assays with the pea powdery mildew Erysiphe pisi were performed. This 

pathogen is not adapted to Arabidopsis and cannot grow to macroscopically visible levels on 

wild type Col-0. However, Arabidopsis mutants with impaired non-host resistance have been 

described that allow growth of this pathogen (Lipka et al., 2005). PENETRATION2 (PEN2) 

encodes a glycosyl hydrolase, that is important for pre-invasion resistance (Lipka et al., 

2005). The pen2 mutant allows higher penetration rates of non-adapted powdery mildews, 

which leads to increased cell death formation (Lipka et al., 2005). PHYTOALEXINE-

DEFICIENT4 (PAD4) and SENESCENCE-ASSOCIATED GENE101 (SAG101) are two structurally 

related lipase-like proteins. Both are involved in post-invasion resistance and TIR-NB-LRR R-

protein-mediated immune responses (Feys et al., 2005). In the triple mutant 
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pen2 pad4 sag101 both pre- and post-invasion non-host resistance are impaired, thus this 

mutant is susceptible to E. pisi.  

As expected, no growth of E.pisi could be seen on Col-0 macroscopically 11 days after 

inoculation, but was clearly visible on pen2 pad4 sag101. The pen2 single mutant showed 

slight chlorosis, which is in agreement with enhanced cell death. For the clr1-1 and clr1-3 

mutants, no fungal growth could be detected macroscopically (Figure 11). Also, no cell death 

lesions could be observed, which suggests normal penetration rates and resistance. 

 

 

 
Figure 11. The macroscopic Erysiphe pisi infection phenotype of clr1 mutants resembles the wild type. Four-
week-old plants of the indicated Arabidopsis mutants were inoculated with the non-adapted powdery 
mildew E. pisi. pen2-2 and pen2 pad4 sag101 serve as controls impaired in pre-invasion and nonhost 
resistance, respectively. Pictures were taken 11 dpi. The size standard corresponds to a length of 1 cm. 
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Next, the interaction of clr1 mutants with the adapted powdery mildew Golovinomyces 

orontii was tested (Figure 12). Besides the wild type Col-0 and the highly susceptible triple 

mutant pen2 pad4 sag101, a mutant of ENHANCED DISEASE RESISTANCE1 (edr1) was 

included as a more resistant control. The protein kinase EDR1 negatively regulates disease 

resistance and its loss leads to enhanced resistance to different fungal and bacterial 

pathogens (Frye and Innes, 1998). In the G. orontii infection experiment, the enhanced 

susceptibility of pen2 pad4 sag101 could be clearly observed as dense growth of fungal 

mycelium on the leaf surface (Figure 12). After inoculation with the powdery mildew G. 

orontii edr1 plants start to develop chlorotic lesions on the leaves and fungal growth was 

strongly reduced compared to wild type (Figure 12). The clr1 mutants showed no obvious 

differences compared to the wild type Col-0 seven days post-inoculation (Figure 12), 

suggesting normal levels of susceptibility to G. orontii.  

 

 
Figure 12. clr1 mutants show wild type-like resistance to Golovinomyces orontii. Four-week-old wild type and 
mutant Arabidopsis plants were inoculated with G. orontii and pictures were taken 7 dpi. pen2 pad4 sag101 
serves as susceptible control, whereas edr1 represents as more resistant control, compared to the wild type 
Col-0. The standard corresponds to a length of 1 cm. 



R e s u l t s | 75 

 

 

Miya et al., (2007) and Wan et al., (2008) showed enhanced susceptibility of the cerk1-2 

T-DNA mutant line against the incompatible fungal pathogen Alternaria brassicicola implying 

a role for CERK1 in defence against necrotrophic fungi. Thus, the necrotrophic fungal 

pathogen Botrytis cinerea was used to assess the involvement of CLR1 in defence responses 

against necrotrophic fungi. In this assay, lesion size correlates with the level of susceptibility. 

Besides Col-0 as wild type control, mpk3 as a more susceptible mutant was included in this 

assay (Han et al., 2010, 2010; Galletti et al., 2011; Mao et al., 2011). Upon B. cinerea 

infection, mpk3 showed bigger lesions than the wild type (Figure 13). cerk1-2 and the clr1 

mutant lines tested showed no significant differences compared to Col-0.  

 

 
Figure 13. clr1 mutants are not significantly altered in resistance towards the fungal pathogen Botrytis 
cinerea. Four-week old Arabidopsis wild type and mutant plants were drop-inoculated with B. cinerea 
droplets containing 5x104 spores/ml. Per leaf a 6 µl droplet was applied beside the mid leaf vein. Lesion 
diameters were measured macroscopically 3 dpi with a calliper rule. Depicted are the mean ± STDEV of 24 
inoculation sites (one site per leaf, three leaves per plant). Statistically significant differences of the mutants 
compared to Col-0 are indicated by asterisks. *** = p ≤ 0.001, ns = p > 0.05. P-values were calculated using 
unpaired student‘s t-test (GraphPad Software QuickCalcs (http://www.graphpad.com/quickcalcs/ttest1/). 
The experiment was repeated twice with similar results. 

 

3.2.7 Involvement of CLR1 in immunity towards virulent and avirulent Pseudomonas 

strains 

 

Since CLR1 seems not to be involved in defence against the fungal pathogens analysed, the 

contribution of CLR1 in immunity towards virulent and avirulent Pseudomonas syringae pv. 

tomato strains was addressed. Previous experiments showed that CERK1 plays a role in 

restricting bacterial proliferation in Arabidopsis (Gimenez-Ibanez et al., 2009b). Thus the 

http://www.graphpad.com/quickcalcs/ttest1/
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cerk1-2 mutant was included as a susceptible control. Further mutants used in addition to 

Col-0 wild type were eds1 (enhanced disease susceptibility1) as more susceptible and snc1 

(suppressor of npr1-1, constitutive1) as more resistant control, respectively. EDS1 has been 

shown to be involved in defence against virulent and avirulent bacterial pathogens (Feys et 

al., 2005). snc1 was previously demonstrated to be more resistant to the virulent strains 

Pseudomonas syringae pv. maculicola ES4326 and Pseudomonas syringae pv. tomato 

DC3000 (Li et al., 2001; van Hulten et al., 2006). Three different Pseudomonas syringae pv 

tomato (Pst) strains were used in this work: The virulent Pst DC3000 (-), the weakly virulent 

Pst DC3000 (ΔavrPto/ΔavrPtoB) and the non-pathogenic Pst DC3000 (hrcC). Pst DC3000 

(ΔavrPto/ΔavrPtoB) lacks two secreted effectors that suppress MAMP perception and one of 

them (AvrPtoB) has been shown to mediate degradation of CERK1 (M de Torres et al., 2006; 

Xiang et al., 2008; Göhre et al., 2008; Gimenez-Ibanez et al., 2009a). The type III secretion 

system (TTSS) mutant Pseudomonas strain Pst DC3000 (hrcC) is secretion-defective and thus 

only very weakly or rather non-pathogenic (Laluk et al., 2011). None of the tested clr1 T-DNA 

mutants showed significant alterations in resistance against the virulent Pst DC3000 (-) 

rendering a role of CLR1 in defence against Pst DC3000 (-) unlikely (Figure 14 A). As 

expected, the snc1 mutant showed significantly enhanced resistance to Pst DC3000 (-), while 

eds1 was moderately more susceptible. In experiments with Pst DC3000 (ΔavrPto/ΔavrPtoB) 

clr1-3 and cerk1-2 showed significantly more bacterial growth 3dpi compared to Col-0 

(Figure 14 B). Although susceptibility was not significantly enhanced, elevated numbers of 

colony forming units could be observed as a trend for all the other clr1 alleles as well (Figure 

14 B). Pst DC3000 (hrcC) showed very little growth on all tested Arabidopsis lines (Figure 

14 C). No significant differences between Col-0 and any of the mutants could be seen, 

presumably due to the very low virulence of the strain under our experimental conditions. 
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Figure 14. clr1 mutants show wild type-like resistance to Pst DC3000 (-) but are more susceptible to Pst 
DC3000 (ΔavrPto/PtoB). Leaves of four-week-old Arabidopsis plants were vacuum-infiltrated with a bacterial 
suspension of (A) Pst DC3000 (-) (B) Pst DC3000 (ΔavrPto/PtoB) or (C) Pst DC3000 (hrcC) at a density of 1x105 
cfu/ml. Immediately after infiltration leaf discs were taken for the d0 samples (white bars) to check for equal 
infiltration. Three days post infiltration leaf discs were harvested for d3 samples (black bars). d0 samples 
represent biological duplicates, whereas d3 samples were taken in triplicates. The error bars show the mean 
of replicates ± STDEV. Asterisks indicate statistical significance of the mutants compared to Col-0 (*** = p ≤ 
0.001, ** = p ≤0.01, * = p ≤ 0.05, ns = p > 0.05). P-values were calculated using the unpaired student’s t-test. 
Experiment A was performed twice with similar results; experiments B and C were conducted once. 
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3.3  CLR1 phosphorylation studies 

 

The putative receptor-like cytoplasmic kinase (RLCK) CLR1 was identified in a yeast two-

hybrid screen due to its interaction with the CERK1 intracellular kinase domain (see section 

3.1). The association of RLCKs with receptor-like kinases (RLKs) is an emerging common 

theme in plants and RLCKs have been reported to play important roles in signalling cascades 

downstream of numerous RLKs (Macho and Zipfel, 2014). In several cases 

transphosphorylation events between the kinase domains have been demonstrated and 

constitute an indispensable mechanism for intracellular signal transduction (Macho and 

Zipfel, 2014). 

 

3.3.1 CERK1 phosphorylates CLR1 in vitro 

 

To investigate whether CLR1 is an active kinase and to characterize transphosphorylation 

events between CLR1 and CERK1 in vitro phosphorylation assays were performed. For this, 

the intracellular kinase domains of wild type and enzymatically inactive CERK1, as well as the 

putative kinase domain of CLR1 were heterologously produced in E.coli and purified via their 

respective added C-terminal tag. Expression of the active CERK1 intracellular kinase domain 

fused to a C-terminal 6xHis-tag (CERK1-His) was perfomed as described previously (Gimenez-

Ibanez et al., 2009a). Also, the loss-of-function (kinase dead) version of CERK1-His was 

expressed as has been described before (cerk1-LOF-His; Petutschnig et al., 2010). Since both 

His-tagged proteins had already been described previously and their activity was shown, the 

respective constructs were included in this study. CERK1-His and cerk1-LOF-His were purified 

via nickel magnetic beads. For CLR1, the coding sequence after the predicted myristoylation 

site (base pairs 144-1371, amino acids 48-456 based on TAIR10) was fused C-terminally to a 

glutathione-S-transferase (GST)-tag (GST-CLR1; Erwig, 2012). The resulting fusion protein 

was expressed in E. coli and purified via its GST-tag. GST alone served as a control protein. In 

SDS-PAGE, all proteins were detected at their calculated masses (42 kDa for CERK1-His, 71 

kDa for GST-CLR1, 27 kDa for GST-tag alone; Figure 15). 
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Figure 15. CLR1 is enzymatically inactive, but is transphosphorylated by CERK1 kinase domain in vitro. CLR1 
was C-terminally fused to a GST-tag, whereas CERK1 and its kinase dead variant cerk1-LOF were N-terminally 
fused to a 6xHis-tag. Fusion proteins were heterologously expressed and purified from E. coli before being 
used in an in vitro phosphorylation assay in the presence of [γ

32
-P]-ATP. Upper panel: autoradiograph after 

SDS-PAGE on 8 % gel. Lower panel: immunoblot with αGST and α6xHis antibodies of parallel conducted 
phosphorylation reactions lacking [γ32-P]-ATP. The red star indicates autophosphorylated CERK1. The 
experiment was repeated three times with similar results. 

 

In in vitro phosphorylation reactions the proteins to be tested were incubated with 

radioactively labelled [γ32-P]-ATP. Enzymatically active kinases transfer the radioactive 

phosphate group to their substrates, facilitating the detection in autoradiographs. First, the 

intracellular domains of CERK1, cerk1-LOF and CLR1 were tested on their own for 

autophosphorylation activity (Figure 15, lanes 1-3).  

Previous reports showed that the CERK1 kinase domain is active and autophosphorylates in 

vitro, while the loss-of-function version does not (Petutschnig et al., 2010). These findings 

were confirmed in this in vitro kinase assay (Figure 15). In the autoradiograph a clear signal 

for CERK1-His could be detected, but not for cerk1-LOF-His. Also, CERK1-His appeared as a 

double band in the immunoblot, while cerk1-LOF-His was visible only as a single band. The 

slower mobility band of CERK1-His likely represents the autophosphorylated form (Figure 15, 

red star). In agreement with the lacking kinase subdomains identified in the CLR1 amino acid 

sequence, we were not able to detect any autophosphorylation activity for GST-CLR1. 

However, it is conceivable that CLR1 may represent a substrate for other active kinases and 
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thus this idea was tested in transphosphorylation assays. To do so, GST-CLR1 was incubated 

either with the His-tagged wild type intracellular domain of CERK1 or the kinase dead 

variant. Both CERK1 variants were also incubated with only the GST-tag as a negative control 

(Figure 15, lanes 5-8). In the transphosphorylation assay with CERK1-His, 

autophosphorylation of CERK1-His is represented by a band at about 42 kDa. In addition a 

band of about 70 kDa corresponding to the GST-CLR1 fusion protein was detected in the 

same lane. This signal is absent in the transphosphorylation reaction with cerk1-LOF-His 

(Figure 15, lane seven), demonstrating CERK1-dependent phosphorylation of CLR1. Any 

unspecific transphosphorylation of the GST-tag can be excluded since incubation of the GST-

tag with CERK1-His showed no signal in the autoradiograph (Figure 15, lane 6). 

In summary, in vitro phosphorylation assays confirmed that CLR1 lacks kinase activity and 

demonstrated that CLR1 is a direct phosphorylation substrate of CERK1 in vitro. 

 

3.3.2 Chitin-induced and CERK1-dependent phosphorylation of CLR1 in planta 

 

In order to investigate whether the CERK1-dependent phosphorylation of CLR1 occurs in 

planta, stably transformed Arabidopsis lines were generated expressing epitope-tagged 

CLR1. For this, the genomic CLR1 sequence including 1000 bp upstream of the annotated 

start codon (coding for M1) was fused to either a C-terminal enhanced cyan fluorescent 

protein (eCFP)-tag or green fluorescent protein (GFP)-tag. These fusion constructs were 

stably transformed into Arabidopsis Col-0 and the knockout mutant cerk1-2. Transformants 

were screened for expression of the transgenic fusion proteins by Western blotting (data not 

shown), because fluorescence signals were too low for screening by confocal laser scanning 

microscopy (see below). Stable transgenic lines expressing the pCLR1::CLR1-eCFP construct 

in Col-0 or cerk1-2 were used for the experiments described below. CERK1 is phosphorylated 

upon chitin treatment of plants, which is visible as an upward band shift in Western blots 

(Petutschnig et al., 2010). Thus, the in planta phosphorylation of CLR1 was investigated using 

the same method. To do so, three independent transgenic lines expressing pCLR1::CLR1-

eCFP in Col-0 or cerk1-2 were infiltrated with 100 µg/ml polymeric chitin to induce CERK1 

phosphorylation. Col-0 and cerk1-2 were used as controls (Figure 16).  
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Figure 16. CERK1 and pCLR1::CLR1-eCFP show chitin-induced mobility shift in planta. pCLR1::CLR1-eCFP was 
stably expressed either in the Col-0 background (left section) or in the cerk1-2 background (right section). 
Shoots of two-week-old Arabidopsis seedlings were vacuum-infiltrated with 100 µg/ml polymeric chitin and 
incubated for 30 min. Western blots of total protein extracts developed with αCERK1 and αGFP antibodies 
are shown. The bottom panel depicts the Coomassie Brillant Blue (CBB)-stained membrane used as loading 
control. The experiment was repeated three times with similar results. 

 

Western blots were performed with total protein extracts and probed either with αCERK1 or 

αGFP antibodies to detect CERK1 and CLR1-eCFP, respectively. The chitin-induced CERK1 

band shift could readily be observed in the three transgenic pCLR1::CLR1-eCFP expressing 

Col-0 lines (#5, #8, #11, Figure 16). As expected, the transgenic plants expressing 

pCLR1::CLR1-eCFP in the cerk1-2 mutant background did not contain any CERK1 protein. The 

blot section probed with αGFP shows that pCLR1::CLR1-eCFP is present in both, Col-0 and 

cerk1-2, as a band of 79,2 kDa. Notably, the pCLR1::CLR1-eCFP fusion protein shows a band 

shift similar to the CERK1 protein after chitin treatment. This shift is not present in the cerk1-

2 background, indicating that it is not only chitin-induced, but also CERK1-dependent. Since 

the chitin-induced CERK1 band shift is caused by phosphorylation (Petutschnig et al., 2010) 

and CLR1 is phosphorylated by CERK1 in vitro (Figure 15), it is highly likely that the chitin-

induced band shift of CLR1 is caused by phosphorylation as well. However, to rule out that 

the band shift of CLR1 is due to other protein modifications such as ubiquitination, a λ 

protein phosphatase (λ-PPase) assay was performed. For this, pCLR1::CLR1-eCFP expressing 

transgenic Col-0 plants were treated with chitin to induce the chitin-dependent band shift or 

water as a control. Subsequently, CLR1-eCFP was purified from leaf total protein extracts 

with GFP-binding protein (GBP) coupled to magnetic beads. An aliquot of the purified 

protein was directly mixed with sample buffer and frozen away. The remaining two aliquots 

were incubated in λ-PPase buffer with or without the enzyme. After the λ-PPase treatment, 

proteins were analysed by Western blots and probed with αGFP antibody (Figure 17).  
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Figure 17. λ-PPase assay confirms in vivo phosphorylation of pCLR1::CLR1-eCFP. Leaves of five-week-old 
Arabidopsis plants were vacuum-infiltrated with either H2O (-) or 100 µg/ml polymeric chitin (+) and 
incubated for 30 min. CLR1-eCFP was purified from total protein extracts using magnetic GBP beads. Samples 
were then either directly boiled with SDS buffer (dir), or incubated for 60 min at 30 °C with λ-PPase (λ) or 
mock-incubated without the enzyme (m). A Western blot with αGFP detecting CLR1-eCFP is shown. The 
experiment was repeated three times with similar results.  

 

A band shift for pCLR1::CLR1-eCFP was only visible in chitin-treated samples (Figure 17). This 

shift was completely abolished after λ-PPase treatment. In the control-incubated samples 

without λ-PPase the band shift was not affected, demonstrating that loss of the shift is due 

to dephosphorylation by the λ-PPase. Thus, the λ-PPase assay confirms in planta 

phosphorylation of CLR1. 

 

3.3.3 In planta phosphorylation of CLR1 is specifically induced by chitin 

 

Additionally to its function in chitin perception and signalling, CERK1 was reported to be 

involved in the perception of and immunity against bacterial pathogens (Gimenez-Ibanez et 

al., 2009b; Willmann et al., 2011). clr1 mutants likely also show alterations in immunity 

towards bacterial pathogens (Figure 14), which raises the question whether CLR1 is involved 

in signal transduction of bacterial MAMPs. Since CLR1 is phosphorylated upon chitin 

treatment, several bacterial MAMPs were tested for their ability to induce CLR1 

phosphorylation. 

First, stably transformed transgenic plants expressing pCLR1::CLR1-eCFP were vacuum-

infiltrated with the bacterial peptide MAMPs flg22 and elf18, as well as chitin. As a control 

for CERK1 phosphorylation the wild type Col-0 was subjected to the same treatments. The 

upper panel in Figure 18 shows that CERK1 shifted specifically after chitin treatment in the 
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wild type as well as in the tested stable transgenic pCLR1::CLR1-eCFP plants. Treatment with 

neither one of the two bacterial peptide MAMPs flg22 and elf18, led to a band shift of 

CERK1. Similar to CERK1, CLR1 also only showed a band shift in the chitin-treated samples.  

 

 
Figure 18. Chitin-specific phosphorylation of CLR1. Leaves of four-week-old Arabidopsis Col-0 and 
pCLR1::CLR-eCFP expressing Col-0 plants were vacuum-infiltrated with 100 µg/ml polymeric chitin, 100 nM 
flg22, 100 nM elf18 or with H2O (-) and incubated for 30 min. Total protein extracts were analysed by 
Western blotting with αCERK1 or αGFP antibodies. Equal loading was monitored by CBB staining of the 
membranes. The experiment was repeated twice with similar results. 

 

In an additional assay also chitin heptamer (7mer) and the bacterial carbohydrate MAMP 

peptidoglycan (PGN) were tested for their ability to induce phosphorylation of CLR1 (Figure 

19). Peptidoglycan is a particularly interesting MAMP to test because it is structurally related 

to chitin and has been reported to be perceived via CERK1 (Willmann et al., 2011). For this 

experiment, transgenic lines expressing pCLR1::CLR1-GFP in Col-0 or cerk1-2 background 

were used. All treatments were performed in parallel for the transgenic lines in the two 

backgrounds.  
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Figure 19. Chitin- and chitin heptamer (7mer)-specific phosphorylation of CLR1. Leaves of four-week-old 
Arabidopsis plants were vacuum-infiltrated with 100 µg/ml chitin heptamer, 100 µg/ml polymeric chitin, 
100 nM flg22, 100 nM elf18, 100 µg/ml peptidoglycan (PGN) or with H2O (-) and incubated for 30 min. Total 
protein extracts were analysed by Western blotting with αCERK1, αGFP or αpMAPKs antibodies. Equal 
loading was monitored by CBB staining of the membranes. CERK1 has a molecular weight of 67.3 kDa. MPK3 
and MPK6 appear at a molecular weight of 43 kDa and 46 kDa, respectively. The experiment was conducted 
once. 

 

Apart from polymeric chitin, only chitin heptamer (7mer) was able to induce 

phosphorylation of CERK1 and CLR1 (Figure 19). None of the tested bacterial MAMPs had an 

effect on phosphorylation of either CERK1 or CLR1.  

In addition to the phosphorylation of CERK1 and CLR1, the ability of the various MAMPs to 

activate MAPKs in the different transgenic lines was analysed. This was done by Western 

blotting with an antibody recognizing phosphorylated and thus active MAPKs. The upper 

band corresponds to MPK6 (46 kDa) and the lower one to MPK3 (43 kDa). As expected, 

chitin, chitin heptamer, elf18 and flg22 induced the activation of MAPKs in the lines 

expressing pCLR1::CLR1-GFP in the Col-0 wild type background. In the cerk1-2 background 

chitin and 7mer treatment had no effect on the MAPKs, while flg22 and elf18 as expected 

induced activation of the depicted MAPKs. Peptidoglycan yielded the only unexpected result, 

failing to activate MAPKs in either background. 
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3.4 Analysis of two possible CLR1 start codons 

 

As described in chapter 3.1, CLR1 contains a putative myristoylation site 23 amino acids C-

terminal of the protein start annotated by TAIR10. Since many RLCKs contain N-terminal 

myristoylation motifs (Lin et al., 2013), CLR1 translation might begin at an alternative later 

start codon that codes for the methionine associated with the myristoylation motif (M2) and 

not the one predicted by TAIR10 (M1) (Figure 20).  

 

 
Figure 20. Fusion constructs for identification of the CLR1 start codon. (A) The 456 amino acids of CLR1. 
Indicated in bold are the originally annotated protein start (M1) and methionine (M2) associated with the 
putative myristoylation motif (bold green). (B) The structure of the three different CLR1 fluorescent protein-
fusion constructs generated and analysed in this work. a) Genomic CIR1 sequence with 1000 bp stretch 
upstream of M1 including the endogenous promoter region. b) Full-length CLR1 expressed under the 
Ubiquitin10 promoter. c) CLR1 starting at the M2 expressed under Ubiquitin10 promoter.  

 

Starting at M1 the calculated molecular mass of CLR1 would be 50.5 kDa, whereas the CLR1 

protein starting at M2 would be only 47.9 kDa. To test which of these variants reflects the 

true CLR1 protein in planta, three types of CLR1 constructs were used that differ at the start 

codon but all have the same C-terminal fluorescent protein tag: a) The endogenous 

promoter constructs already introduced above contain the genomic CLR1 sequence including 
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a 1000 bp stretch upstream of the annotated methionine (M1). b) The genomic CLR1 

sequence starting at the first methionine (M1) fused to the Ubiquitin10 promoter sequence. 

c) The genomic CLR1 sequence starting at the second methionine (M2) fused to the 

Ubiquitin10 promoter. The purpose of the overexpression constructs (b and c) was to 

compare the size of the respective fusion proteins to the protein expressed from construct 

(a). Two sets of these three fusion constructs were generated in two different vector 

systems with either an eCFP- or GFP-tag. 

The generated eCFP-fusion constructs were transiently expressed in Nicotiana benthamiana 

to analyse the molecular masses of the resulting proteins by SDS-PAGE and Western blotting 

(Figure 21 A).  
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Figure 21. Translation of CLR1 does not start at methionine predicted by TAIR10. A) The indicated CLR1 fusion 
constructs were transiently expressed in six-week-old N. benthamiana plants by syringe-infiltration and 
analysed 3 dpi. Samples infiltrated with the empty Agrobacterium tumefaciens GV3101 pMP90RK strain 
were included as a negative control (mock). pUBQ10::CLR1-M1-eCFP has an expected molecular mass of 
79,2 kDa and pUBQ10::CLR1-M2-eCFP a molecular mass of 76.6 kDa. Western blotting with an αGFP antibody 
demonstrated that pUBQ10::CLR1-M1-eCFP has a higher molecular mass than pCLR1::CLR1-eCFP. CBB staining 
was used to monitor equal loading. B) CLR1 fusion constructs were transiently expressed in N. benthamiana 
as described in A. Transformed leaves were vacuum-infiltrated with 100 µg/ml polymeric chitin or water and 
incubated for 30 min. Samples infiltrated with the empty A. tumefaciens GV3101 pMP90RK strain were 
included as a negative control (mock). Western blotting with a αGFP antibody demonstrated that 
pCLR1::CLR1-eCFP, pUBQ10::CLR1-M1-eCFP and pUBQ10::CLR1-M2-eCFP show a chitin-induced mobility shift. 
C) Total protein extracts of four-week-old Arabidopsis Col-0 plants stably expressing the indicated CLR1 
fusion constructs were analysed via Western blotting. pUBQ10::CLR1-M1-GFP has an expected molecular 
mass of 81.1 kDa and pUBQ10::CLR1-M2-GFP a molecular mass of 78.3 kDa. Probing with an αGFP antibody 
demonstrated that pUBQ10::CLR1-M1-GFP has a higher molecular mass than pCLR1::CLR1-GFP. CBB staining 
was used to monitor equal loading. D) Chitin-induced band shift of pUBQ10::CLR1-M1-GFP and 
pUBQ10::CLR-M2-GFP stably expressed in Arabidopsis Col-0 plants. Leaves of four-week-old plants were 
vacuum-infiltrated with either 100 µg/ml polymeric chitin (+) or with H2O (-) and incubated for 30 min. Total 
protein extracts were loaded onto SDS-PAGE. Western blotting using a αGFP antibody showed that 
pUBQ10::CLR1-M1-GFP and pUBQ10::CLR1-M2-GFP exhibit a chitin-induced mobility shift. Col-0 was used as 
negative control. Equal loading was monitored by CBB staining. 

 

The protein expressed from pUBQ10::CLR1-M2-eCFP exhibits the same apparent molecular 

mass as the protein expressed from the endogenous promoter pCLR1::CLR1-eCFP construct. 

Besides the fact that the intensities of the bands corresponding to the pUBQ10::CLR1-M1-

eCFP protein were significantly weaker than those of the other samples, the bands showed a 
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higher molecular mass as well. This finding suggests that the protein translation starts at M2 

and not at the initially annotated M1 (Figure 21 A). 

To test for presence of the chitin-induced band shift in CLR1 fusion proteins of both lengths, 

N. benthamiana leaves were vacuum-infiltrated with 100 µg/ml polymeric chitin three days 

after transformation with the eCFP-fusion constructs. Chitin treatment of N. benthamiana 

leaves also led to an upwards shift of bands corresponding to pCLR1::CLR1-eCFP proteins 

suggesting that NbCERK1 can interact with AtCLR1 (Figure 21 B). Interestingly, proteins 

expressed from all three constructs (pCLR1::CLR1-eCFP, pUBQ10::CLR1-M1-eCFP, 

pUBQ10::CLR1-M2-eCFP) showed the chitin-induced shift.  

In order to investigate if the results obtained in N. benthamiana can also be observed in 

Arabidopsis, Col-0 plants were stably transformed with pCLR1::CLR1-GFP, pUBQ10::CLR1-M1-

GFP and pUBQ10::CLR1-M2-GFP. Transformants that expressed the CLR1 fusion proteins 

were selected and then analysed by SDS-PAGE and Western blotting (Figure 21 C and D). 

Similar to the results obtained with transient expression in N. benthamiana, the shorter 

pUBQ10::CLR1-M2-GFP fusion protein exhibits the same molecular mass as the protein 

derived from the endogenous promoter pCLR1::CLR1-GFP construct, while 

pUBQ10::CLR1-M1-GFP migrates at a higher molecular weight. This provides additional 

evidence that the actual CLR1 protein expressed in wild type Arabidopsis starts at the second 

methionine (M2) associated with the myristoylation motif. To test if both, CLR1 proteins 

(starting at M1 and M2) can be phosphorylated upon chitin perception in Arabidopsis two 

independent lines per construct were infiltrated with chitin and the samples were analysed 

by Western blotting (Figure 21 D). Interestingly, both variants of the CLR1 protein showed 

the chitin-induced shift. This indicates that the signal transduction from CERK1 to CLR1 is 

similar in N. benthamiana and Arabidopsis. Since also the longer variant of the CLR1 fusion 

protein showed the band shift, it is unlikely that myristoylation is important for proper 

chitin-induced phosphorylation of CLR1. 

Furthermore the results suggest that if myristoylation does occur it is probably not required 

for CLR1 interaction with CERK1. 
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3.5 CLR1 subcellular localization 

3.5.1 CLR1 is a soluble protein but membrane-associated pools exist in Arabidopsis cells 

 

As shown in Figure 4 the amino acid sequence of CLR1 contains a putative myristoylation 

motif. Analyses of different promoter-gene fusions (see above) suggested that this 

myristoylation motif is located at the very N-terminus of the protein. Thus, myristoylation of 

CLR1 might take place and might be involved in anchoring CLR1 to membranes. To address 

the question whether CLR1 is soluble or membrane-associated, microsomal fractionation 

experiments were performed. For this, transgenic plants stably expressing pCLR1::CLR1-eCFP 

in the Col-0 or cerk1-2 background were used. After vacuum-infiltrating the transgenic plants 

and corresponding controls with 100 µg/ml polymeric chitin, extracts enriched for soluble 

proteins (S) and membrane-bound proteins (MP) were prepared. Figure 22 A shows the 

immunoblot results for pCLR1::CLR1-eCFP expressing Col-0 plants and the Col-0 wild type 

control, whereas Figure 22 B shows the results for pCLR1::CLR1-eCFP expressed in the 

cerk1-2 background with the corresponding cerk1-2 control.  

 
Figure 22. Microsomal preparations reveal that CLR1-eCFP is mainly a soluble protein in Arabidopsis cell 
extracts, but a smaller membrane-associated pool likely exists. Leaves of transgenic plants stably expressing 
pCLR1::CLR1-eCFP in Col-0 (A) and cerk1-2 (B) were vacuum-infiltrated and incubated for 30 min with 
100 µg/ml polymeric chitin (+). Mock samples were infiltrated in the same way with H2O (-). Col-0 and 
cerk1-2 plants were included as controls. Protein extracts enriched for membrane-bound proteins (MP) and 
soluble proteins (S) were prepared and analysed by Western blotting together with total protein extracts 
(TE). CLR1-eCFP (79.2 kDa) was detected with αGFP antibody. Cross contaminations between the fractions 
were monitored by using specific antibodies for the plasma membrane proteins CERK1 (67.3 kDa) and BAK1 
(73.7 kDa) as well as the cytoplasmic protein PEPC (110.3 kDa). Equal loading was monitored by CBB staining. 
Experiment was performed twice with similar results. 
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In the Col-0, as well as in the cerk1-2 background CLR1-eCFP was present in both, the soluble 

and the membrane-enriched protein fractions. However, the majority of CLR1-eCFP was 

detected in the soluble protein preparation. Antibodies against the two plasma membrane 

proteins CERK1 and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) and against the 

cytoplasmic protein PHOSPHOENOLPYRUVATE CARBOXYLASE (PEPC) were used to confirm 

the specificity of the S and MP fractions. As expected, full-length CERK1 and BAK1 were 

detected in the membrane, but not the soluble fraction, whereas PEPC was present in 

soluble preparation but not the membrane-enriched extract. 

As already demonstrated earlier, CLR1 is phosphorylated upon chitin treatment in the Col-0 

background, whereas this chitin-induced phosphorylation is not present in the 

pCLR1::CLR1-eCFP expressing cerk1-2 plants. Interestingly, soluble and membrane-bound 

subpools of pCLR1::CLR1-eCFP in Col-0 show the CERK1-dependent chitin-induced shift. In 

summary, the results show that CLR1 in Arabidopsis cell extracts is mainly soluble, but a 

small membrane- or vesicle-associated pool exists and both subpopulations are 

phosphorylated upon chitin perception. 

 

3.5.2 Localization studies with CLR1 fusion proteins transiently expressed in N. 

benthamiana and stably expressed in A. thaliana 

 

CLR1 is phosphorylated in a chitin- and CERK1-dependent manner in vivo (section 3.3.1). 

Microsomal preparations of plants expressing pCLR1::CLR1-eCFP from the endogenous 

promoter revealed that the majority of the protein is found in the soluble protein fraction, 

whereas a small portion also localized to the microsomal fraction (Figure 22). To get more 

insight into the in planta subcellular localization of CLR1, pCLR1::CLR1-GFP was expressed 

transiently in N. benthamiana as well as stably in A. thaliana and analysed by confocal laser 

scanning microscopy (CLSM). To assess the potential effect of myristoylation on subcellular 

localization, pUBQ10::CLR1-M1-GFP and pUBQ10::CLR1-M2-GFP (compare section 3.4) were 

also transformed and included in the subsequent analyses. Figure 23 shows the localization 

of the different CLR1 fusion proteins transiently expressed in N. benthamiana by 

Agrobacterium-mediated transformation. As positive control free GFP was expressed and as 

a negative control, leaves infiltrated with the empty Agrobacterium strain (GV3101 

pMP90RK) were used.  



R e s u l t s | 91 

 

 

 

 
Figure 23. Subcellular localization of CLR1-GFP fusion proteins transiently expressed in N. benthamiana. The 
genomic pCLR1::CLR1-GFP construct, as wells as pUBQ10::CLR1-M1-GFP and pUBQ10::CLR1-M2-GFP were 
transformed into N. benthamiana by Agrobacterium-mediated transformation. Agrobacteria containing a 
vector for expression of free GFP were used as positive control. The empty bacteria strain GV3101 pMP90RK 
was used as negative control (mock). Pictures were taken 3 dpi using the Leica TCS SP5 CLSM. Pictures show 
overlays of GFP fluorescence in green and chloroplast autofluorescence in red. The plasmolysis images also 
contain the bright field channel. First column: Empty arrows indicate localization at a reticulate structure 
which is likely the endoplasmic reticulum (ER), arrows indicate localization at the cell boundary. Second 
column: Striped arrows indicate cytoplasmic strands, asterisks mark the nuclei. Third column: Plasmolysis, 
full arrow heads indicate Hechtian strands, empty arrow heads mark plasmolysis events without visible 
Hechtian strands. Size markers are given in µm. 
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Confocal laser scanning microscopy (CLSM) revealed that the three tested CLR1 fusion 

proteins (expressed from the pCLR1::CLR1-GFP, pUBQ10::CLR1-M1-GFP and 

pUBQ10::CLR1-M2-GFP constructs) all showed a very similar subcellular localization pattern. 

CLR1-GFP signal can be observed at the cell periphery, but CLR1-GFP is also present in the 

cytoplasm, indicated by fluorescence signal in cytoplasmic strands (Figure 23, striped 

arrows). All three CLR1 fusion proteins were also found in a reticulate structure which likely 

represents the endoplasmic reticulum (ER) (empty arrows, first column) and in nuclei 

(asterisk) as well as nucleoli. The free GFP control was used to distinguish the true CLR1 

subcellular localization from that of possibly unspecific signal due to free GFP. The free GFP 

control is found at the cell boundary, in the cytoplasmic strands and nuclei, but not in the 

nucleoli or ER. To investigate if the signal at the cell periphery corresponds to the plasma 

membrane, plasmolysis experiments with 1 M NaCl were performed (Figure 23, third 

column). With both CLR1-GFP and free GFP the fluorescence signal detached from the cell 

wall, but while CLR1-GFP was clearly present in Hechtian strands, no fluorescence signal 

associated with Hechtian strands was visible with free GFP. These findings indicate plasma 

membrane localization of CLR1-GFP.  

Next, the subcellular localization of fusion proteins expressed from the pCLR1::CLR1-GFP, 

pUBQ10::CLR1-M1-GFP and pUBQ10::CLR1-M2-GFP constructs was analysed in stably 

transformed Arabidopsis plants by CLSM. In comparison to the expression in 

N. benthamiana, CLR1-GFP signals in the stable transgenic Arabidopsis plants were much 

weaker (Figure 24).  
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Figure 24. Subcellular localization of CLR1-M1-GFP and CLR1-M2-GFP stably expressed from the Ubiquitin10 
promoter in Arabidopsis thaliana Col-0. Col-0 expressing pCERK1::CERK1-GFP was used as positive control, 
whereas untransformed wild type Col-0 plants were used as negative control. Pictures were taken using the 
Leica TCS SP5 CLSM. Pictures in the first and second column represent overlays of GFP fluorescence shown in 
green and chloroplast autofluorescence shown in red. The overlays in the third and fourth columns also 
contain the bright field image. First column: Striped arrow heads indicate cytoplasmic strands (cyt). Asterisks 
mark nuclei (nuc). Second column: Arrows indicate the cell periphery. Third and fourth column depict the 
subcellular localization upon 1 M NaCl treatment leading to plasmolysis. Third column: Arrows indicate the 
plasmolysed plasma membrane and empty arrow heads mark circular invaginations. Fourth column: Arrows 
show plasma membrane detachment from the cell wall and arrow heads mark Hechtian strands. Size 
markers are given in µm. 

 

With pCLR1::CLR1-GFP no specific signal could be detected at all and thus this construct 

could not be included in the CLSM analysis. For the two CLR1 constructs driven by the 

Ubiquitin10 promoter fluorescence could be detected in the cell periphery (Figure 24). Both 
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fusion proteins are also present in the cytoplasm, indicated by fluorescence localized to 

cytoplasmic strands. pUBQ10::CLR1-M2-GFP but not pUBQ10::CLR1-M1-GFP was also visible 

in nuclei (Figure 24, asterisk). After treatment with 1M NaCl to induce plasmolysis, 

pUBQ10::CLR1-M2-GFP showed Hechtian strands but pUBQ10::CLR1-M1-GFP did not. 

Another difference between the two Ubiquitin10 promoter-driven CLR1 constructs was the 

formation of circular structures within the cell after NaCl treatment of 

pUBQ10::CLR1-M2-GFP (Figure 24, empty arrow heads). Since fluorescence of free GFP 

would have been too strong, pCERK1::CERK1-GFP was used as a control. As expected, 

pCERK1::CERK1-GFP localized to the cell periphery and also shows a fluorescence signal in 

the Hechtian strands after NaCl treatment.  

Taken together, these results indicate that the native expression levels of the 

pCLR1::CLR1-GFP fusion protein were too low to be detected by CLSM in the present 

experimental setup. However, both CLR1-GFP fusion proteins driven by the Ubiquitin10 

promoter were stably expressed in Arabidopsis to expression levels detectable by CLSM. The 

expression levels of pUBQ10::CLR1-M2-GFP seemed to be higher than those of 

pUBQ10::CLR1-M1-GFP. The fact that CLR1-M2-GFP but not CLR1-M1-GFP could be observed 

in nuclei and Hechtian strands, might be explained by the different fluorescence intensities 

of the fusion proteins.  

 

3.5.3 Expression of β-glucuronidase under the native CLR1 promoter reveals expression 

of CLR1 in hydathodes and stipules 

 

Based on the results observed by CLSM for the CLR1 subcellular localization (see section 

3.5.2) and data obtained from the Arabidopsis eFP Browser (http://bar.utoronto.ca; Winter 

et al., 2007) the activity of the CLR1 promoter in leaves appears to be very weak. To 

investigate if expression of CLR1 might be higher in other organs, promoter fusions with β-

glucuronidase (GUS) were generated. The 1000 bp sequence upstream of the annotated 

start codon of CLR1 was fused to the gusA reporter gene encoding the GUS enzyme to assess 

the spatial expression pattern of CLR1. The construct was transformed into Col-0 plants and 

GUS activity was detected by infiltration of the colourless substrate 5-bromo-4-chloro-3-

indolyl glucuronide (X-Gluc), which is turned into an intensely blue product by the GUS 

enzyme (Jefferson et al., 1987). Thus, tissues with strong CLR1 promoter activity will show a 

http://bar.utoronto.ca/
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bright blue staining (Figure 25). At least ten independent transgenic Col-0 plants expressing 

pCLR1::GUS were analysed showing similar results. 

 
 
Figure 25. Histochemical staining of Arabidopsis plants expressing pCLR1::GUS fusions reveals strong CLR1 
promoter activity in hydathodes and stipules. 3-week-old seedlings were analysed. The respective 
untransformed wild type plants were used as negative control. The histochemical analysis of transgenic 
pCLR1::GUS plants is depicted in A-C, the wild type in D-F. Scale bars represent 0.5 mm. At least ten 
independent pCLR1::GUS expressing Col-0 lines were analysed giving similar results. 

 

In contrast to the untransformed wild type controls, transgenic plants expressing the 

pCLR1::GUS construct showed blue staining which was restricted to the hydathodes 



96 |R e s u l t s  

 

 

(Figure 25 A) and the stipules (Figure 25 B). Hydathodes are stomata-like openings at the leaf 

margins, which secrete water from the xylem vessels in a process called guttation. Since 

hydathodes are constitutively active openings, they represent ideal entries for pathogen 

infection (Melotto et al., 2008). Stipules are small tissue outgrowths at the base of leaves 

and their function is not yet clarified. In both tissues high free auxin concentrations were 

determined during early leaf development (Aloni et al., 2003). 

Since GUS staining experiments revealed strong activity of the CLR1 promoter in hydathodes, 

Arabidopsis plants expressing pCLR1::CLR1-GFP were analysed for accumulation of the CLR1-

GFP protein in hydathodes using CLSM (Figure 26). This was done to test whether enhanced 

CLR1 promoter activity also correlates with enhanced abundance of the CLR1-GFP fusion 

protein in hydathodes.  

 
Figure 26. Analysis of pCLR1::CLR1-GFP accumulation in hydathodes using confocal laser scanning 
microscopy. pCLR1::CLR1-GFP was stably expressed in the Arabidopsis Col-0 background. Plants expressing 
pCERK1::CERK1-GFP were used as positive control, whereas wild type plants were used as negative control. 
Pictures were taken using the Leica TCS SP5 CLSM. GFP fluorescence is shown in green, chloroplast 
autofluorescence is shown in red. Pictures represent overlays of the two channels and the bright field image. 
Size markers are given in µm. 
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As mentioned before, no GFP signal could be detected for the pCLR1::CLR1-GFP fusion 

protein in the leaf blade because of the low activity of the native CLR1 promoter. Also, no 

accumulation of pCLR1::CLR1-GFP at hydathodes could be observed. pCERK1::CERK1-GFP 

plants served as positive control and as expected a fluorescence signal could be detected at 

the plasma membrane of epidermis as well as hydathode cells.  

Whether pCLR1::CLR1-GFP accumulates at hydathodes may be analysed by Western blotting 

in the future. In contrast to confocal microscopy, pCLR1::CLR1-GFP can be detected in 

Western blots. Thus this method may be more suited for hydathode analysis. Whether CLR1 

plays a role in hydathode immunity remains to be determined by appropriate infection 

assays. 
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4 Discussion 

 

In order to mount an effective immune response towards different potential pathogens, 

plants depend on the presence and activity of PRRs. Recognition of a ligand by the 

corresponding PRR is a crucial step in activating downstream immune responses involved in 

restricting pathogen proliferation (Jones and Dangl, 2006). For proper activation of PRRs, 

complex formation with co-receptors is an important mechanism (Monaghan and Zipfel, 

2012). Also, receptor-like cytoplasmic kinases have emerged as important interactors, 

phosphorylation targets and signal transducers of PRRs (Lin et al., 2013). This study focused 

on characterization of a novel putative complex partner involved in CERK1-dependent chitin 

signalling, namely the receptor-like cytoplasmic kinase CLR1.  

 

4.1 The putative inactive kinase CLR1 resembles the kinase domains of LysM-RLKs 

 

In the yeast-two hybrid assay performed for this work the receptor-like cytoplasmic kinase 

CLR1 was identified as an interactor of the CERK1 intracellular domain. CLR1 consists of a 

serine/ threonine protein kinase domain and a relatively short N-terminal sequence of 

unknown function. Typical for a RLCK, CLR1 does not contain an extracellular nor 

transmembrane domain and phylogenetic analyses assigned it to the RLCK subfamily XII 

(Shiu and Bleecker, 2003). Interestingly, CLR1 did not only interact with the CERK1 kinase 

domain, it also showed considerable homology to the amino acid sequence of the latter. 

CLR1 also shares high sequence homology to the kinase domains of other LysM-RLKs 

described in Arabidopsis (Figure 4). Despite the similarity to LysM-RLKs (I-XII, Figure 4), 

amino acids important for kinase activity (Hanks et al., 1988) are altered in the kinase 

subdomains of CLR1. Especially the lack of conserved motifs and amino acids in subdomains 

I-V which are essential for ATP binding (Hanks and Hunter, 1995) led to the hypothesis that 

CLR1 has no kinase activity. For example, CLR1 does not contain a highly conserved lysine (K) 

residue in the VAIK motif of subdomain II which interacts with the phosphate of ATP. 

Mutation of the lysine renders kinases inactive, which has been shown for RLKs like the LRR-

RLK ERECTA (Shpak et al., 2003), BAK1, BRI1 (Li et al., 2002) and CERK1 (Petutschnig et al., 

2010). The conserved aspartates (D) in the HRD motif in subdomain VIb and the DFG motif in 

in subdomain VII are also mutated in the CLR1 sequence. Since the three preceding motives 

were shown to be essential for proper ATP binding and catalytic activity of the kinase (Eyers 
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and Murphy, 2013), CLR1 probably is an inactive kinase. The amino acid sequence of CLR1 

shows an insertion of several amino acids in the stretch between subdomain VII and VIII also 

known as the activation loop. The activation loop is required for switching on and off the 

kinase activity (Taylor and Radzio-Andzelm, 1994). Alterations in this motif in CLR1 

additionally supported the hypothesis that CLR1 constitutes an inactive kinase. Later, it could 

be shown in an in vitro phosphorylation assay (3.3.1) that CLR1 indeed displays no kinase 

activity.  

In Arabidopsis, 13 % of all kinases and 20 % of RLKs were predicted to be catalytically 

inactive due to alterations in the amino acid sequences of the mentioned conserved motives 

(Castells and Casacuberta, 2007). In plants, several atypical kinases which lack conserved 

amino acids necessary for the catalytic activity were described to contribute to signalling 

processes. These atypical kinases are also known as pseudokinases (Eyers and Murphy, 

2013). Since these inactive kinases were shown to be impaired in relaying phosphoryl 

transfer required for phosphorylation processes, alternative signalling mechanisms are 

required.  

NFR5 and LYK5, two LysM-RLKs in Lotus japonicus and Arabidopsis, involved in Nod-factor 

signalling and plant immunity, respectively, where suggested to lack kinase activity due to 

structural alterations (Madsen et al., 2003; Cao et al., 2014). The LYK5 kinase domain 

showed no kinase activity in in vitro kinase assays. Interestingly, a LYK5 mutant lacking the 

kinase domain was not able to complement the lyk5-2 mutant phenotype, whereas a LYK5 

mutant disrupted in ATP binding did. Although the kinase activity of LYK5 is not important 

for immune signalling, the presence of the kinase domain seems to be important for proper 

signalling. Co-immunoprecipitation experiments with the putative complex partner CERK1 

also showed that the LYK5 kinase domain is essential for association of the two proteins (Cao 

et al., 2014). These findings indicate a role for LYK5 in mediating protein-protein 

interactions.  

Besides atypical and pseudokinases, also non-arginine-aspartate (RD) kinases lack conserved 

amino acids involved in kinase activity. In contrast to RD kinases, non-RD kinases lack the 

conserved motif consisting of an arginine (R) and a preceding aspartate (D) in the kinase 

subdomain VIb important for phosphorylation of the activation loop. Most of the 

characterized RLKs involved in perceiving MAMPs were shown to belong to the class of non-
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RD kinases, whereas CERK1, BRI1, the co-receptor BAK1 and kinases involved in DAMP 

perception belong to the class of RD kinases (Brutus et al., 2010). Interestingly, the presence 

or the lack of the RD motif seems to determine the activation mechanisms of the respective 

kinase. RD kinases were shown to depend on autophosphorylation of the activation loop, 

whereas non-RD kinases could be constitutively active (Nolen et al., 2001) or activated by 

mechanisms independent of the autophosphorylation (Nolen et al., 2004). This assumption 

was also supported by Schwessinger et al. (2011), who showed that the RD-kinases BRI1 and 

BAK1 had strong auto- and transphosphorylation ability in vitro, whereas the non-RD kinases 

FLS2 and EFR had only weak to no phosphorylation activity at all.  

One mechanism executed by non-RD kinases for activation is the release of a C-terminal 

autoinhibitory domain (AID). This mechanisms is well-described for animal proteins as for 

example giant protein kinases (Kobe et al., 1996), muscle myosin light chain kinases (MLCKs) 

(Yano et al., 1993) and calmodulin (CaM)- dependent protein kinases (CaMK) (Goldberg et 

al., 1996). But also in plants autoinhibition represents a common mechanism. As shown for 

the Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE (CDPK)- SNF1‐RELATED PROTEIN 

KINASES (SnRK) superfamily (Hrabak et al., 2003; Gleason et al., 2006), including SALT 

OVERLY SENSITIVE2 (SOS2) protein kinase which was suggested to be autoinhibited by a 

domain required for binding of its signalling partner SOS3 (Guo et al., 2001). For the 

vertebrate giant muscle protein non-RD kinase titin it was shown that besides regulation 

through an autoinhibitory Ca2+/CaM-binding domain, also the phosphorylation of an 

inhibitory tyrosine residue in the P+1 loop of the kinase domain is important for activation of 

the protein (Mayans et al., 1998).  

For animal and plant non-RD kinases, like INTERLEUKIN-1 RECEPTOR-ASSOCIATED KINASE1 

(IRAK1, Knop and Martin, 1999) and XA21 (Andaya and Ronald, 2003), respectively, it was 

shown that kinase activity was dispensable for at least some of the downstream responses, 

indicating similar to the above mentioned LYK5 a scaffolding function of some kinase 

domains. Although the two non-RD kinases FLS2 and EFR only showed a weak kinase activity, 

their catalytic activity is necessary for proper signalling, contradicting the sole scaffolding 

function. Interestingly, heterodimerization with the co-receptor BAK1 was independent of a 

functional kinase domain (Schwessinger et al., 2011).  
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Lack of the conserved RD motif, assigning CLR1 to the class of non-RD kinases, and 

subsequent impairment in autophosphorylation activity, additionally supports the predicted 

enzymatic inactivity of CLR1. Recently, the two pseudokinases RESISTANCE RELATED 

KINASE1 (RKS1) and HOPZ-ETI-DEFICIENT1 (ZED1) have been described to play a role in 

Arabidopsis immunity (Roux et al., 2014). Similar to CLR1, both kinases are classified to the 

RLCK XII subfamily (Shiu and Bleecker, 2003). Similar to CLR1 they lack the conserved 

aspartate (D) of the RD motif and are therefore non-RD kinases. Interestingly, the RLCK XII 

subfamily contains an over-average amount of pseudokinases compared to other RLCK 

subfamilies (Lehti-Shiu and Shiu, 2012; Roux et al., 2014). Although both pseudokinases are 

involved in Arabidopsis immunity, RKS1 was shown to confer broad spectrum resistance to 

Xanthomonas campestris (Huard-Chauveau et al., 2013) and ZED1 is involved in mediating 

ETI upon recognition of the Pseudomonas syringae type III effector HopZ1a (Lewis et al., 

2013), no kinase activity could be detected for either of the kinases. RKS1 and ZED1 cluster 

in a gene locus together with six additional ZED1-RELATED KINASES (ZRKs), amongst which is 

also the active kinase ZRK10. Similar to the Pto kinases in tomato, which were also shown to 

be present in a cluster and to transphosphorylate (Gutierrez et al., 2010; Ntoukakis et al., 

2013), also RKS1 and ZED1 could be transphosphorylated through other active ZRK proteins 

as for example ZRK10 in a putative complex.  

Subsequently, although CLR1 represents an atypical kinase it could still be involved in 

mediating protein-protein interactions or function as substrate for other active kinases. At 

least for CERK1, it could be shown in this study that it not only associates with but also 

phosphorylates CLR1. 

 

4.2 CLR1 is a potentially myristoylated protein 

4.2.1 CLR1 contains a myristoylation motif 

 

Besides the homology to LysM-RLK kinase domains the amino acid sequence of CLR1 

revealed some additional features which could be important for its function. Using the 

PlantsP online prediction tool (http://plantsp.genomics.purdue.edu/myrist.html; Podell and 

Gribskov, 2004) an internal N-myristoylation motif was identified 23 amino acids C-terminal 

of the N-terminus. N-myristoylation usually is a co-translational protein modification 

http://plantsp.genomics.purdue.edu/myrist.html
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involving the attachment of a myristic acid residue to the glycine residue at position two of a 

nascent polypeptide chain (Johnson et al., 1994). Over 300 Arabidopsis proteins have been 

predicted to by myristoylated (Podell and Gribskov, 2004). N-myristoylation was shown to be 

involved in biological processes like development and signal transduction (Zha, 2000; 

Thompson and Okuyama, 2000; Podell and Gribskov, 2004). Most commonly N-

myristoylation was shown to facilitate membrane association of the corresponding proteins. 

For several protein kinases of different families including RLCKs (Burr et al., 2011; Ranf et al., 

2014), calcium-dependent protein kinases (CDPKs, Mehlmer et al., 2010; Lu and Hrabak, 

2013) and small GTPases (Boisson et al., 2003) the necessity of N-myristoylation for 

membrane association was shown. G2A mutations leading to disruption of the N-

myristoylation motif led to loss of membrane association in various proteins like BIK1, PBL1, 

CPK5 and CAST AWAY (Burr et al., 2011; Ranf et al., 2014; Lu and Hrabak, 2013). Ranf and 

colleagues (2014) showed that for flg22-dependent phosphorylation of BIK1 and PBL1 N-

myristoylation of the two kinases is essential, suggesting that the correct subcellular 

localization of RLCKs is important for proper phosphotransfer. However, the mutant forms of 

the two RLCKs, BIK1G2A and PBL1G2A, still exhibited autophosphorylation ability in vitro. 

Intriguingly, PBL1G2A was not able to complement the pbl1 mutant concerning MAMP-

induced immune responses implying the importance of N-myristoylation not only for 

membrane-association but also for proper function of the RLCK (Ranf et al., 2014). 

N-Myristoylation is also important for protein-protein interactions. Not only does the 

hydrophobic myristate chain lead to membrane association and subsequent association with 

other membrane-bound proteins, but the hydrophobic moiety itself was reported to be able 

to interact with hydrophobic regions of other proteins (Thompson and Okuyama, 2000).  

Although N-myristoylation is an irreversible modification, the subsequent membrane 

association was shown to be reversible by a mechanism named ‘myristoyl switch’ (Zozulya 

and Stryer, 1992). In animals, the myristoylated Ca2+-binding protein Recoverin, serves as 

Ca2+ sensor involved in phototransduction in retinal rod cells (Baldwin and Ames, 1998). 

Under low Ca2+ conditions the N-terminal myristoyl group is secluded in a hydrophobic 

pocket of the protein. Upon Ca2+-binding the myristoyl moiety is released in a ligand-

dependent manner to establish membrane binding (Baldwin and Ames, 1998; Ames et al., 

2000). Although for several plant proteins of the CDPK-SnRK subfamily a possible regulation 
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via the myristoyl switch was predicted (Ishitani et al., 2000; Martín and Busconi, 2000; 

Batistič et al., 2008), so far, no evidence for plant proteins using this mechanism has been 

reported.  

The predicted myristoylation motif in CLR1 is located behind an internal methionine (M2) 23 

amino acids C-terminal of the predicted protein start at methionine (M1). This raised the 

question how and if CLR1 can be myristoylated. One possibility for CLR1 to get myristoylated 

could be by post-translational N-myristoylation. Here, a mature protein is enzymatically 

cleaved by caspases in order to expose a previously internal glycine residue for subsequent 

N-myristoylation (Zha, 2000). This mechanism was shown to play an important role during 

apoptosis for several eukaryotic proteins (Zha, 2000; Vilas et al., 2006; Tilleman et al., 2012). 

So far, post-translational N-myristoylation was only shown to occur during apoptosis in 

animal cells. Hence, it is unlikely to apply for CLR1. Also, the fact that the fusion protein 

expressed from pUBQ10::CLR1-M1-GFP showed a higher molecular mass compared to the 

proteins expressed from pCLR1::CLR1-GFP and pUBQ10::CLR1-M2-GFP (see section 3.4) 

indicates that the proteins were not post-translationally cleaved ahead of the annotated 

internal methionine M2. Therefore, it seems more likely that the CLR1 sequence was not 

annotated correctly and the actual protein start is represented by the current internal M2. 

Podell and Gribskov (2004) have already suggested that some predicted internal 

myristoylation sites could be the results of gene annotation errors, since post-translational 

N-myristoylation is rather unusual.  

 

4.2.2 CLR1 does not start at the annotated start codon 

 

To analyse whether the start codon annotated by TAIR10 (coding for M1) or the ATG 

associated with the myristoylation motif (coding for M2) is the in vivo start of the CLR1 

protein, three different CLR1-fluoresence protein (FP) fusion constructs were generated: 1) 

pCLR1::CLR1-FP, 2) pUBQ10::CLR1-M1-FP and 3) pUBQ10::CLR1-M2-FP. Transient expression 

of the three fusion proteins in N. benthamiana, as well as stable expression in A. thaliana 

revealed that the molecular mass of the CLR1-FP fusion protein expressed from 

pUBQ10::CLR1-M2-FP resembled the molecular mass of the CLR1-FP protein expressed under 

the native promoter (pCLR1::CLR1-FP). In contrast, the CLR1-FP fusion protein expressed 

from pUBQ10::CLR1-M1-FP showed a higher apparent molecular mass. These results suggest 
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that indeed the CLR1 sequence is not predicted correctly in the current Arabidopsis genome 

annotation (TAIR10, https://www.arabidopsis.org) and that the endogenous CLR1 protein 

seems to start at the start codon coding for M2. Results from the analysis of clr1 T-DNA 

insertion lines are in agreement with this finding. Chitin-induced gene expression is reduced 

in the two lines clr1-3 and clr1-4, which disrupt the kinase domain of CLR1 (3.2.4 and 3.2.5). 

However, clr1-1, the T-DNA mutant with insertion located between the two possible start 

codons, showed only a weak reduction of chitin-induced gene expression compared to the 

wild type Col-0, indicating that it is probably not a knockout line (see 4.4 and 4.5).  

The fact that CLR1 does not start at the annotated start codon means that it could undergo 

co-translational N-myristoylation, which is a much more common mechanism than post-

translational N-myristoylation. Consequently, the finding that CLR1 is a shorter protein than 

predicted makes it more likely to be indeed myristoylated. Interestingly, N-myristoylation of 

CLR1 seemed not important for phosphorylation by CERK1 since both fusion proteins, 

pUBQ10::CLR1-M1-GFP and pUBQ10::CLR1-M2-GFP, showed the chitin-induced mobility shift 

(Figure 21). In contrast to the flg22-induced phosphorylation of BIK1 and PBL1 which was 

shown to depend on N-myristoylation of the RLCKs (Ranf et al., 2014). 

For most of the described N-myristoylated proteins, the lipid modification is essential for 

membrane association of the corresponding protein, as it was shown for several RLCKs like 

CASTAWAY (Burr et al., 2011). Although CLR1 is suggested to be membrane-associated due 

to N-myristoylation, the majority of the protein seems to be cytoplasmic in microsomal 

preparations with only a small quantity of the protein associated with membranes (Figure 

22). This finding could be due to disruption of the N-myristoylation of CLR1 during the 

extraction method, since also subcellular localization studies with fluorescence-tagged CLR1 

indicate plasma membrane-association of the protein. Several myristoylated proteins were 

shown to be not membrane-associated but located to the cytoplasm or as described before 

showed reversible membrane-association due to ‘myristoyl switches’ (Towler et al., 1988; 

Ames et al., 2000). Interestingly, it was shown that N-myristoylation alone is not sufficient 

for efficient anchoring of proteins to membranes, thus myristoylated proteins need a second 

membrane binding signal (Resh, 1999). This second signal could be a polybasic domain for 

electrostatic interaction with membrane bilayers (Sigal et al., 1994; Zhou et al., 1994) or an 

additional lipid modification as for example palmitoylation (Galbiati et al., 1996; Wolven et 

https://www.arabidopsis.org/
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al., 1997). Palmitoylation represents a post-translational reversible protein modification 

where a 16-C saturated fatty acid (palmitate) is attached to a cysteine residue (Linder, 2001). 

Additionally, also the interaction with another membrane-bound protein can enhance the 

membrane-association of a myristoylated protein. So far, less is known about a second 

membrane-binding signal in myristoylated proteins, although Hemsley and colleagues (2013) 

suggested that more than 600 Arabidopsis proteins are subject to S-acetylation due to 

thioester linkages. One plant protein which requires both, N-myristoylation and 

palmitoylation for efficient membrane-binding is the rice CALCIUM-DEPENDENT PROTEIN 

KINASE (CDPK, Martín and Busconi, 2000). Also the Arabidopsis RLCK II family protein SHORT 

SUSPENSOR (SSP) involved in embryonic patterning depends of N-myristoylation and 

palmitoylation for membrane-binding and probably also for proper function (Bayer et al., 

2009). For other membrane-localized proteins like the pepper PIK1 (Kim and Hwang, 2011) 

and Arabidopsis CPK32 (Choi et al., 2005), only the presence of putative N-myristoylation 

and palmitoylation sites was reported. 

Since the CLR1 amino acid sequence contains no cysteine residues adjacent to the 

myristoylated glycine, it is unlikely that CLR1 is subject to N-terminal palmitoylation. 

However, CLR1 possesses several residues of the basic amino acids lysine (K) and arginine (R) 

in its N-terminal domain, indicating a possible additional membrane-association through this 

domain. The interaction with the CERK1 kinase domain seems not required for efficient 

membrane association of CLR1, since no difference in localization could be observed for 

CLR1 fusion proteins expressed in Col-0 or cerk1-2 background (data not shown). Whether, 

CLR1 associates with other membrane proteins involved in chitin signalling like LYK4 and 

LYK5 remains speculative. Transgenic lyk4 and lyk5 plants expressing pCLR1::CLR1-GFP could 

be used to analyse the subcellular localization of CLR1 and whether loss of the two proteins 

alters the observed plasma membrane-association of CLR1. 

Interestingly, CLR1 also harbours a predicted uncommon NLS in form of a glycine-rich loop 

integrated between kinase subdomains IV and V (Figure 4) suggesting a possible nuclear 

localization and DNA-binding capacity of CLR1 (Cokol et al., 2000). Together with the N-

myristoylation motif involved in membrane-association of proteins, this could indicate that 

CLR1 has the ability to change its subcellular localization. This translocation could be 

mediated by a ‘myristoyl switch’ or due to a differential subcellular localization of 
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myristoylated and non-myristoylated CLR1. The animal neuron-specific activators p35 and 

p39 which activate the CYCLIN-DEPENDENT KINASE5 (CDK5) were shown to be plasma 

membrane-localized when myristoylated. Mutating the myristoylation motif led to nuclear 

accumulation of the two proteins (Asada et al., 2008). To analyse whether myristoylation of 

CLR1 is important for the observed PM-localization, the putative N-myristoylated glycine 

residue of the existing CLR1 fusion constructs should be mutated to an alanine as described 

for other myristoylated proteins like SOS3 (Ishitani et al., 2000), PBL1 and BIK1 (Ranf et al., 

2014). The mutant fusion proteins could then be further analysed concerning their 

subcellular localization via CLSM and microsomal fractionations. Similar results could be 

obtained by treating transgenic Col-0 plants expressing pCLR1::CLR1-GFP with 2-

hydroxymyristic acid (HMA), the competitive inhibitor of the N-myristoyltransferase, the 

enzyme catalysing myristoylation (Ishitani et al., 2000). If CLR1 subcellular localization 

depends on proper N-myristoylation, mutating the myristoylation site or inhibition of 

myristoylation itself should alter its localization.  

 

4.3 The kinase inactive CLR1 is a direct downstream phosphorylation target of 

CERK1 

 

The RLCK CLR1 was identified as an interactor of the CERK1 kinase domain in a yeast two-

hybrid screen. Since RLCKs are known as downstream interactors and phosphorylation 

targets of RLKs (Lin et al., 2013), it seemed likely that CLR1 is a substrate of CERK1. Well-

described examples for RLK/RLCK signalling partners in plants are CERK1 and PBL27 (Shinya 

et al., 2014), BAK1 and BIK1 (Nam and Li, 2002; Li et al., 2002), and OsCERK1 and OsRLCK185 

(Yamaguchi et al., 2013). This hypothesis was confirmed in an in vitro phosphorylation assay 

using heterologously expressed fusion proteins (3.3.1). As expected, based on the analysis of 

CLR1 kinase subdomains, GST-CLR1 did not show kinase activity. However, it was 

phosphorylated by the CERK1 intracellular domain (CERK1-His). CERK1-His did not 

transphosphorylate the GST-tag on its own, confirming that the transphosphorylation was 

CLR1-specific.  

The kinase assays that demonstrated direct phosphorylation of CLR1 by CERK1 were 

performed in vitro using heterologous proteins produced in E. coli. The next step was then to 
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confirm that phosphorylation of CLR1 by CERK1 also occurs in planta. Stable transgenic 

Arabidopsis plants expressing pCLR1::CLR1-eCFP were analysed with respect to CERK1-

induced CLR1 phosphorylation. Western blot experiments showed that CLR1 shows a chitin-

induced band shift that requires the presence of CERK1. A similar mobility shift could be 

seen for CERK1 itself upon chitin treatment and was found to be caused by phosphorylation 

(Petutschnig et al., 2010). For other RLCKs like PBL27 (Shinya et al., 2014), BIK1 and PBL1 

(Zhang et al., 2010) this MAMP-induced mobility shift was also demonstrated. LYK5, a LysM-

RLK that is phosphorylated by CERK1 after chitin treatment also displays such a band shift 

(Erwig et al., in preparation). A λ-PPase assay confirmed that the chitin-induced mobility shift 

of CLR1 is indeed due to phosphorylation. These findings suggest that CLR1 is a substrate of 

CERK1 in planta (Figure 16 and Figure 17). Treatment with other bacterial MAMPs showed 

that CLR1 phosphorylation is specific to polymeric chitin and chitin heptamer (7mer), as 

none of the tested bacterial MAMPs were able to induce the mobility shift (Figure 18 and 

Figure 19). Similar to PBL27 (Shinya et al., 2014), CLR1 seems to be specifically involved in 

chitin-induced downstream signalling events mediated by CERK1. However, not all chitin-

induced downstream immune responses were affected in clr1 mutants and those which 

were influenced were not abolished completely. This suggests that CLR1 functions 

downstream of CERK1 together with an additional signalling component, as for example 

another RLCK like PBL27. It has also been shown for other RLCKs like BIK1, PBS1 and several 

PBL proteins (Zhang et al., 2010; Liu et al., 2013) to function in the same signalling pathway, 

but also regulating different specific defence responses.  

 

4.4 CLR1 in CERK1-dependent chitin-signalling 

 

Upon perception of MAMPs by PRRs and transduction of the signal via RLCKs downstream 

defence responses are activated that result in PTI (Monaghan and Zipfel, 2012). The RLCK 

CLR1 analysed in this study functions downstream of CERK1 in chitin signalling since CERK1 

phosphorylates CLR1 upon chitin treatment, but chitin-induced CERK1 phosphorylation was 

not altered in the tested clr1 mutants. However, early downstream defence responses like 

the production of ROS (Apel and Hirt, 2004) and activation of MAPKs (Tena et al., 2001) 

involved in signalling cascades seemed to be affected in clr1 mutants upon chitin treatment. 

All three tested clr1 mutant alleles showed a reduced sensitivity to chitin in ROS-burst assays 
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(Figure 7). Interestingly, a reduction of chitin-induced MAPK activation could be detected for 

clr1-4, but not the other two T-DNA lines clr1-1 and clr1-3. To assess the effect of CLR1 loss 

on chitin-induced gene expression, qRT-PCR experiments were performed with defence-

related WRKY genes (Wan et al., 2004) upon treatment with increasing chitin 

concentrations. All three clr1 mutant alleles showed reduced expression for WRKY30 and 

WRKY53 compared to Col-0, with clr1-3 and clr1-4 exhibiting a more severe reduction in 

comparison to clr1-1. The differences between the T-DNA lines are likely due to the position 

of the T-DNA insertion and the differences between the assay types may reflect their 

sensitivity. As mentioned before, the T-DNA insertion of clr1-1 is located upstream of the 

newly described start codon coding for M2, thus clr1-1 is likely a knockdown rather than a 

knockout mutant. clr1-3 and clr1-4 both carry T-DNA insertions within the kinase domain of 

CLR1, but clr1-4 is located further upstream, possibly making it a stronger allele. ROS-burst 

assays require a high concentration of chitin for a reliable read out, thus even weak alleles of 

CLR1 might show a reduced ROS response. MAPK activation and gene expression are more 

sensitive, and thus might make differences between the alleles visible. It cannot be ruled out 

that the requirements for MAPK activation and gene expression differ. A truncated protein 

in clr1-3 might be able to mediate MAPK activation, but not chitin-induced gene expression. 

In contrast to the expression of WRKY30 and WRKY53, the expression levels of WRKY33 were 

not obviously altered in the clr1 mutants compared to the wild type. Sole treatment with the 

lower chitin concentrations led to a significant reduction of expression in all three clr1 T-DNA 

mutants. This indicates that different subsets of genes may be more, and others less affected 

by loss of CLR1. The reduced responsiveness of the T-DNA mutants to chitin was even clearer 

when treated with chitin heptamer (7mer). Here, all mutant lines showed a significant 

reduction in the expression of the tested WRKY genes.  

To test whether the clr1 T-DNA lines were also impaired in expression of specifically chitin-

responsive genes, additionally to the general MAMP-induced WRKY genes, two putative new 

marker genes were tested. Although the induction of both genes, At3g43250 and 

At4g16820, upon chitin treatment could be confirmed, no significant alterations in 

expression could be detected for the clr1 mutants upon chitin or 7mer treatment compared 

to Col-0. The different biological replicates showed a high variation in the expression levels, 

probably due to the generally low expression of At3g43250 and At4g16820 in planta. 

Therefore the two putative marker genes were not used in further experiments. 
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Taken together, the obtained results indicate an involvement of CLR1 in chitin-signalling. The 

phenotypes of clr1 mutants are less severe than the phenotype of the CERK1 knockout 

mutant, cerk1-2 (Miya et al., 2007). This suggests that CLR1 contributes to full chitin 

signalling, but is not essential for it. Since CLR1 is a single copy gene in Arabidopsis, 

functional redundancy seems unlikely. Also, the two LysM-RLKs LYK4 and LYK5 which were 

shown to be involved in chitin signalling showed intermediate mutant phenotypes between 

the wild type and the cerk1-2 knockout mutant (Wan et al., 2012; Cao et al., 2014).  

Furthermore, different clr1 alleles were impaired to different degrees and not all early 

chitin-induced defence responses were affected equally. A similar situation has been 

described for the RLCK PBL27, which was shown to selectively regulate chitin-induced 

defence responses (Shinya et al., 2014). Although MAPK activation, callose deposition and 

defence-gene expression were impaired in pbl27 mutants, the ROS production was not 

altered. Similar to the different tested clr1 alleles, also the localisation of the T-DNA in the 

PBL27 sequence had an effect on the impact of the observed phenotypes (Shinya et al., 

2014). 

To gain further information about the function of CLR1, further CERK1-dependent chitin-

induced defence responses should be checked in clr1 mutants, as for example the callose 

deposition and Ca2+ levels. 

 

4.5 CLR1 in CERK1-mediated immunity 

 

Consistent with the rather subtle chitin signalling phenotypes of clr1 mutants, no significant 

impairment in immunity against fungal pathogens was observed for these mutants. In 

contrast to CERK1, which has been shown to be involved in the resistance against the 

incompatible fungus A. brassicicola (Miya et al., 2007) as well as different Pseudomonas 

syringae pv. tomato (Pst) DC3000 strains (Gimenez-Ibanez et al., 2009a; Gimenez-Ibanez et 

al., 2009b). Also PBL27, the RLCK that functions downstream of CERK1, was demonstrated to 

play a role in resistance against A. brassicicola and non-pathogenic Pst DC3000 (Shinya et al., 

2014). The impaired resistance against fungal pathogens that has been described for cerk1-2 

could not be observed in this study. This generally indicates that the contribution of chitin 
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signalling to immunity against fungal pathogens is subtle in Arabidopsis and probably many 

other factors from fungal pathogens are recognized as well. 

For CERK1, PBL27 and OsRLCK185, a contribution to resistance against bacterial pathogens 

was proposed (Gimenez-Ibanez et al., 2009b; Yamaguchi et al., 2013; Shinya et al., 2014). To 

test if this is also the case with CLR1, inoculation experiments with Pst were performed. 

Infections with the virulent Pst DC3000 (-) and the non-virulent Pst DC3000 (hrcC) showed 

no significant alterations in resistance in the clr1 mutants compared to Col-0 (Figure 14). This 

is probably due to the fact that subtle phenotypes in the clr1 mutants were suppressed due 

to the strong virulence of Pst DC3000, whereas the non-virulent Pst DC3000 (hrcC) is hardly 

able to proliferate efficiently on Arabidopsis. Also the significantly more susceptible 

phenotype for cerk1 mutants (Gimenez-Ibanez et al., 2009a; Shinya et al., 2014) could not be 

reproduced under our conditions. Interestingly, infection with the weakly virulent Pst 

DC3000 (ΔavrPto/ΔavrPtoB) strain showed a significant increase of bacterial proliferation in 

clr1-3 similar to cerk1-2. Also, the other clr1 alleles showed a trend for increased 

susceptibility to Pst DC3000 (ΔavrPto/ΔavrPtoB) although the results were not significant 

(Figure 14). Intriguingly, neither flg22 nor PGN induce phosphorylation of CLR1 in Western 

blot experiments, indicating that CLR1 could be involved in perception of an additional, yet 

unknown bacterial MAMP. 

Stable expression of the CLR1 promoter-GUS fusion gene (pCLR1::GUS) in Arabidopsis 

indicated an enhanced CLR1 promoter activity in hydathodes. Hydathodes represent 

specialised secretory structures involved in guttation. Guttation is a well-described process 

where due to low transpiration activity and high soil moisture, water pressure increases in 

the roots and can be released through the constitutively open hydathodes. The exposed 

guttation droplets can be contaminated by bacteria, which together with drawn back liquid 

can easily enter the leaves vascular tissue through the hydathode cavity. Since hydathodes 

are constitutively open they lack a structural barrier against pathogen infection (Taiz and 

Zeiger, 2007). Pathogens like Xanthomonas campestris pv. campestris (Xcc) and other closely 

related crucifer-infecting pathovars have been shown to enter their hosts mainly through 

hydathodes and stomata (Cook et al., 1952; Bretschneider et al., 1989; Hugouvieux et al., 

1998). Genes of several defence-related components as for example the LysM-CONTAINING 

RECEPTOR-LIKE KINASE4 (LYK4, Wan et al., 2012), the PAMP-induced secreted peptides PIP1 
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and PIP2 (Hou et al., 2014) and chitinases (Gerhardt et al., 2004) have been shown to be 

highly expressed in hydathodes possibly performing a role in hydathode-specific immunity.  

Taken together we could show that the contribution of CLR1 in resistance against fungal and 

bacterial pathogens is rather low. One explanation could be that CLR1 is mainly involved in 

resistance against pathogens entering via hydathodes due to the enhanced CLR1 promoter 

activity in this tissue. By vacuum-infiltrating the bacteria into the leaves as performed in this 

study, entry of the pathogen through hydathodes is circumvented. Thus, infection assays 

using pathogens like Xanthomonas which enter via hydathodes or techniques which 

promote pathogen entry via hydathodes could give more insights into this issue.  

 

4.6 Possible roles of CLR1 in CERK1-dependent PTI or ETI 

 

So far, CLR1 seems to play a role in CERK1-mediated chitin signalling by modulating 

downstream immune responses and signalling events. The production of ROS, as well as the 

expression of defence-related genes was altered in clr1 T-DNA insertion mutants as shown in 

this study. A selective regulation of downstream CERK1-triggered defence responses was 

previously also shown for the RLCK PBL27 (Shinya et al., 2014). CLR1 and PBL27 could act in 

concert for full chitin-signalling. It is a common theme that different PRRs share downstream 

RLCKs, but also vice versa, that several RLCKs function downstream of the same PRR (Lin et 

al., 2013). Interestingly, especially RLCKs of the subfamilies VII and XII seem to play an 

important role in the signal transduction. BIK1, PBS1 and PBL proteins of the RLCK subfamily 

VII transmit flg22 signals downstream of the FLS2 complex (Lu et al., 2010; Zhang et al., 

2010). Similarly, the subfamily VII RLCK CDG1 mediates BL signals perceived by BRI1 (Kim et 

al., 2011). BSK1 (and its homologs) belongs to the subfamily XII and was identified as a 

regulator of BRI1-mediated BL responses (Tang et al., 2008). Similar to the LRR-RLK BAK1, it 

was later shown to also be involved in PTI signalling mediated by FLS2 (Shi et al., 2013a; Shi 

et al., 2013b). Thus in both, flg22 and BL signalling, subfamily VII and XII RLCKs act 

downstream of the receptor complexes. 

While BIK1 does play some role in CERK1-mediated chitin signalling (Zhang et al., 2010), the 

main VII RLCK downstream of CERK1 appears to be PBL27 (Shinya et al., 2014). CLR1 as a 
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member of the RLCK subfamily XII could contribute to CERK1-dependent chitin signalling 

similar to the BSK family in flg22 and BL signalling.  

Potentially, CLR1 could also function as an effector target involved in triggering ETI as it was 

proposed for PBS1 (Zhang et al., 2010). PBS1 was shown to be guarded by the CC-NB-LRR R 

protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5). The bacterial effector AvrPphB 

interacts with PBS1 and other members of the PBL family and proteolytically cleaves them to 

supress PTI. Alterations of PBS1 are then sensed by RPS5 which subsequently induces ETI 

responses (Shao et al., 2003; Ade et al., 2007; Lin et al., 2013). Components involved in PTI, 

including several PRRs, have already previously been described to constitute effector targets 

(Fu et al., 2007; J Zhang et al., 2007; Xiang et al., 2008; Göhre et al., 2008; Zhou and Chai, 

2008; Gimenez-Ibanez et al., 2009a). Based on its significant homology to the kinase 

domains of LysM-RLKs, CLR1 could also constitute an effector target mimic functioning as 

decoy (van der Hoorn and Kamoun, 2008). One example for this is the tomato RLCK Pto 

which directly interacts with the effectors AvrPto and AvrPtoB and is also required for 

AvrPto- and AvrPtoB-triggered ETI. Pto is guarded by the R protein Prf with which it forms a 

complex involved in effector recognition (Mucyn et al., 2006). AvrPto functions as kinase 

inhibitor and was shown to block the activity of FLS2 and EFR promoting pathogen virulence 

(Xing et al., 2007; Xiang et al., 2008). AvrPtoB is a E3 ubiquitin ligase which targets different 

host components involved in PTI, as for example FLS2 (Göhre et al., 2008) and CERK1 

(Gimenez-Ibanez et al., 2009a), but also the tomato R protein Fen involved in the initiation of 

HR (Rosebrock et al., 2007). No function in PTI could be attributed to Pto to date (Oh and 

Martin, 2011) and the fact that AvrPto promotes bacterial virulence also in plants lacking Pto 

(Chang et al., 2000), has led to a model where Pto only functions as an effector decoy, 

whereas the actual effector targets are FLS2, CERK1 and other Ser/Thr kinases (Xiang et al., 

2008; Zipfel and Rathjen, 2008; Gimenez-Ibanez et al., 2009a). Because of the relatively mild 

phenotype of clr1 mutants it is tempting to speculate that CLR1 might be a decoy for CERK1 

or other LysM-RLKs. Investigation of AvrPtoB-mediated degradation of CERK1 (Gimenez-

Ibanez et al., 2009a) in a clr1 knockout background could shed light on this in the future. 
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4.7 Conclusion 

 

Overall, CLR1 is a receptor-like cytoplasmic kinase, which resembles high homology to the 

kinase domain of other LysM-RLKs present in Arabidopsis. Presumably, the annotated 

sequence of CLR1 on TAIR10 is wrong and the actual gene starts further downstream 

exhibiting an N-terminal myristoylation motif. Whether this lipid modification involved in 

membrane association of proteins is important for CLR1 function and subcellular localization 

is not yet clear, since CLR1 fusion proteins with and without exposing the N-terminal 

myristoylation motif are phosphorylated by CERK1, respectively. CLR1 seems to play a minor 

role in chitin signalling, due to subtle phenotypes in chitin-induced ROS production and 

defence gene expression. Interestingly, clr1 T-DNA mutants show an enhanced susceptibility 

against the weakly virulent Pst DC3000 (avrPto/ avrPtoB), although treatment with bacterial 

MAMPs flg22 and PGN had no influence on CLR1 phosphorylation. Together with the 

enhanced CLR1 promoter expression in hydathodes, these results could indicate an 

additional role besides involvement in chitin signalling for CLR1 in immunity against bacterial 

pathogens entering through hydathodes.  

 

4.8 Outlook 

 

This study showed that the CLR1 sequence on TAIR10 is the result of an annotation error and 

the actual sequence starts further C-terminal exposing a putative N-myristoylation motif. So 

far, it seems as if the myristoylation motif has no influence on the phosphorylation of CLR1, 

since CLR1 fusion proteins with different N-termini were all phosphorylated in a CERK1-

dependent manner. Additionally, these fusion proteins also showed a similar subcellular 

localization. To analyse whether CLR1 is actually an N-myristoylation substrate, in vitro 

translation assays with radiolabelled myristic acid should be performed. As controls, CLR1 

constructs with a G2A mutation should be generated and included in the mentioned assay. 

Also, the already performed experiments should be repeated with the mutant CLR1G2A fusion 

proteins to assess the importance of the N-myristoylation for CLR1 function and subcellular 

localization. 

CLR1 seems to play a role in CERK1-mediated chitin signalling based on reduced ROS 

production and expression of defence-related genes in clr1 T-DNA mutants. These 
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phenotypes could be further affirmed by additional assays as for example analysing the 

MAMP-induced callose deposition in clr1 T-DNA mutants and measuring the Ca2+ response 

upon MAMP-perception in clr1 T-DNA mutants crossed with stable transgenic plants 

expressing the Ca2+-binding protein Aequorin.  

clr1 mutants showed no obvious phenotype upon infection with fungal pathogens and also 

the infection with bacterial pathogens only induced a subtle phenotype. Interestingly, stable 

transgenic Arabidopsis plants expressing pCLR1::GUS revealed an enhanced CLR1 promotor 

activity in hydathodes. Pathogen assays using for example Xcc strains should be performed 

to analyse an involvement of CLR1 in hydathode-mediated immunity. Additionally, infection 

methods restricting pathogen entry to the hydathodes as for example soaking leaf rims in 

bacterial solution could also help analysing CLR1 contribution to plant immunity. 

So far CLR1 seems to be a phosphorylation target of CERK1 due to results from experiments 

like the yeast two-hybrid analysis and in vitro and in vivo phosphorylation assays. Next, it 

would be interesting to analyse whether CLR1 also associates with other RLKs involved in 

chitin-signalling like LYK4 and LYK5. For this, stable transgenic lyk4 and lyk5 plants expressing 

CLR1 fusion proteins should be generated and analysed in similar experiments as described 

in this study. Moreover, interactions between CLR1 and the other LysM-RLKS could be 

confirmed in planta by using the bimolecular fluorescence complementation (BiFC). 

Due to its homology to the kinase domain of Arabidopsis LysM-RLKs and the rather subtle 

phenotypes in chitin signalling and plant immunity, CLR1 could potentially be an effector 

target functioning as decoy. To test this, CLR1 could be used in a yeast two-hybrid screen 

using a pathogen effector cDNA library to check for interaction with pathogen effectors.  
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6 Supplemental 

 

 

 

Suppl. Figure 1. clr1 mutants show reduced ROS generation upon chitin treatment. Diagrams depict two 
independent repetitions of the experiment in Figure 7. Leaf discs of five-week-old Arabidopsis plants were 
treated with 100 µg/ml polymeric chitin. Relative luminescence units (RLUs) were measured for 35 min after 
the treatment. The data shown are the means ± SE of 12 leaf discs per genotype measured for 35 min. 

 

 

Suppl. Table 1. List of 27 genes induced at least 2.5-fold upon chitooctamer (8mer) and crab shell chitin (CSC) 
treatment (Ramonell et al., 2005), which were not induced upon flg22 and elf18/ elf26 treatment. The two 
genes (At4g16820 and At3g43250) used for further qRT-PCR analysis in this work are highlighted in bold. 
Modified from Ramonell et al., 2005. 

AGI 
Ramonell et al., 20051 Mészáros et 

al., 20062 

Zipfel et al., 

20043 

Zipfel et 

al., 20063 

Navarro et 

al., 20044 

Tintor et 

al., 20135 8mer CSC mix 

At4g16820 37,2 42,0 ni ni ni 2,98 ni 

At3g53600 18,6 25,0 ni ni ni ni ni 

At3g43250 14,9 19,5 ni ni ni ni ni 

At2g45760 5,2 15,7 ni 2 1.4 ni ni 

At1g61460 6,3 8,4 ni ni ni ni ni 

At1g76210 4,8 9,0 ni ni ni ni ni 

At1g21230 5,6 8,8 ni ni ni ni ni 

At5g48530 4,5 6,6 ni ni ni ni ni 

At1g33760 7,1 6,1 ni ni ni ni ni 

At1g67000 4,5 5,8 ni ni ni ni ni 

At2g25460 6,4 7,5 ni ni ni ni ni 

At1g32960 6,8 8,3 ni ni ni ni 1,39 

At1g42980 5,4 5,4 ni ni ni ni ni 
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At2g37810 5,1 5,1 ni ni ni ni ni 

At3g44860 4,1 5,5 ni ni ni ni 1,45 

At5g66620 3,0 4,6 ni ni ni ni ni 

At1g77910 2,6 3,7 ni ni ni ni ni 

At2g38590 5,5 5,6 ni ni ni ni ni 

At5g46510 2,9 4,0 ni ni ni ni ni 

At5g39100 4,5 4,5 ni 1.2 1 ni ni 

At1g51280 3,1 3,3 ni 1.7 1.4 ni ni 

At1g73010 3,1 3,7 ni 1.9 2.3 ni ni 

At2g28820 2,8 3,3 ni ni ni ni ni 

At1g64380 3,5 3,5 ni ni ni ni ni 

At3g48450 2,8 2,8 ni ni ni ni ni 

At1g17240 2,9 3,0 ni ni ni ni ni 

At4g29610 4,0 2,6 ni ni ni ni ni 

ni: not included in the respective data set because PAMP-triggered gene induction was below threshold. 
1Threshold = Genes ≥ 1.5-fold induction after normalization. 
2Threshold = > 3-fold change of expression after normalization using the global scaling method. Expression 
signals < 50 were floored to 50 to eliminate noise and the number of minor significant changes. 
3Threshold = Raw value > 100 in one of the experiments. Genes with a p-value cut-off of < 0.003 between the 
repetitions were further analysed. Genes with a p-value > 0.05 in all repetitions were discarded from 
analysis. Data were further filtered using a one-way ANOVA (p-value < 0.05) with a Benjamini and Hochberg 
false discovery multiple testing correction. 
4Threshold = Expression level ≥ 10 (noise level of expression) and p-value cut-off < 0.05. 
5Threshold = Genes with a ≥ 2-fold change in transcript levels (q-value ≤ 0.05) after normalization to the 0 
time point.  
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Suppl. Figure 2. Expression levels of the putatively chitin-specific marker genes (At3g43250 and At4g16820) 
are only weakly induced after treatment with chitin heptamer (7mer). Two-week-old in vitro grown seedlings 
of the indicated clr1 mutants were treated with 1 µM 7mer and incubated for 30 min. Col-0 and cerk1-2 were 
included as positive and negative control, respectively. qRT-PCR of the following genes was performed: (A) 
At3g43250, (B) At4g16820. ACTIN8 served as a reference gene. The bars represent the mean ± STDEV of three 
biological replicates consisting of 4 technical repetitions. The expression levels in the mutants were not 
statistically different from Col-0 (ns). P-values were calculated using the unpaired student’s t-test. 
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