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Abstract

A prudent approach to understanding the function of the cerebral cortex begins with under-
standing the repertoire of its dynamics. In this thesis, I study how interactions between single
neuron properties, synaptic coupling, and connectivity produce the microstate stability and
macrostate activity exhibited by models of cortical circuits. One aim was to tie these micro
and macro levels of description together in the pursuit of understanding the collective be-
haviour. Another aim was to determine to what degree the collective behavior persists upon
making the single neuron model less idealized and exhibit a more rich class of dynamics. I
focused on purely inhibitory, random, balanced networks of spiking neurons, the most simple
in silico network model of spiking neurons with which one can obtain the kind of asynchronous
and irregular activity thought to act as a base state in many cortical areas.

In the biologically relevant limit of fast action potential onset and fast synapses, the collective
state of this dynamics exhibits stable chaos, where temporally irregular dynamics and stability
to small perturbations coexist. Previous work had demonstrated the existence of an exotic
phase space structure of flur tubes in such systems. Many answers regarding the mechanisms
underlying the emergence of this structure, as well as its full geometry were however lacking.
Also lacking was the analytical apparatus to exactly treat both the microstate stability and
macrostate activity for neuron models with additional somatic or synaptic currents.

For networks of Leaky Integrate-and-Fire (LIF) neurons, I present the empirical geometry of
a flux tube whose time-varying boundary is characterized by exponential decay to and irreg-
ular jumps away from the stable trajectory contained within it. A detailed analysis of the
spiking microstate reveals the finite-size instability underlying the separation of flux tubes:
perturbation-induced crossings of pre and postsynaptic spikes, which almost always decorre-
late the microstate. Building on this analysis, I derive a host of analytical results explaining
previous numerical observations: the near inevitability of a cascade of spike sequence changes
following a single spike failure; the pseudo-Lyapunov exponent characterizing the divergence
after such a perturbation; and the average cross section of the attractor basin making up the
phase space volume of a flux tube. I introduce and calculate the perturbation recall time, de-
fined as the characteristic delay between the time of a perturbation and when its effects appear
in the subsequent activity. Taken together, these results form the basis for a theory of stable
chaos in spiking networks and for a theory of the balanced state that keeps track of each and
every spike.

The means to extend such a theory were limited by the absence of methods to compute the
microstate stability of networks of neurons with more than one dynamical degree of freedom.
I present a semi-analytical framework based on machine-precise, event-driven simulations with
which I realize methods to compute the full Lyapunov spectrum of a general 2D linear neuron
model. Two notable limits of this model are the correlated LIF(cLIF) neuron, which exhibits
a filtering synaptic current, and the Generalized Integrate-and-Fire(GIF) neuron, which intro-
duces resonating subthreshold dynamics.



Previous work showed that balanced cLIF networks can be chaotic for some finite value of
the synaptic filtering timescale. With the presented methods, I characterize the Lyapunov
spectrum of cLIF networks as a function of this timescale across the transition to, and deep
into the chaotic regime. The critical value of the synaptic time constant is found to scale with
the rate of spikes into a neuron. Applications of the ideas developed for the stable chaos theory
in LIF networks are used to analytically estimated this scaling. The size of flux tubes are found
to vanish characteristically approaching the critical value, reminiscent of a second-order phase
transition. A potential source of the instability responsible for the transition is found in the
increasingly strong transient amplification exhibited by the single neuron dynamics.

Many cortical circuits have inhibitory interneurons that exhibit resonance properties and qual-
itatively affect the dynamics of the population. Yet, this resonance is often not incorporated in
models of cortical circuits and no expression for the response function of a resonating neuron
valid across all values of the timescale of the intrinsic currents was known. To fill the gap,
and motivated to understand the mutual dependencies between intrinsic frequency, voltage
resonance, and population spiking resonance, I employ the Gaussian neuron approach for the
calculation and analysis of the linear response function of the population firing rate for an
ensemble of GIF neurons. I find six distinct response types and use them to fully characterize
the routes to resonance across all values of the relevant timescales. I find that resonance arises
primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the
location of the resonant peak. I determine the parameter regions for the existence of an intrin-
sic frequency and for subthreshold and spiking resonance, finding all possible intersections of
the three. The expressions and analysis presented can facilitate the construction of an exact
theory of correlations and stability of population activity in networks containing populations
of resonator neurons.

Taken together, the results in this thesis provide both a theoretical foundation for the stable
chaos observed in models of cortical circuits and for understanding how cellular properties,
such as synaptic and intrinsic currents, contribute to the micro- and macroscopic activity and
response properties of these balanced state models.
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1 Towards an understanding of
computation in large neural circuits

The brain is an object of utmost scientific intrigue: a conspiciously haphazard meshwork of
neurons and their connections whose bewildering complexity is nevertheless capable of produc-
ing orderly processes like perception. Moreover, the putative computational versatility of the
local circuits distributed across the volume of the central nervous system leaves narrow and
superficial the most advanced of our attempts at artificial intelligence. Still, as a physical struc-
ture, the brain falls within the application of scientific inquiry, to which I can see no inherent
limitations in revealing its secrets. Indeed, we have already discovered much about its nuts
and bolts. In cortex, for example, the neurons that make up these circuits are excitable, each
coupled to each other through either inhibition or excitation. Furthermore, it appears that
in many local circuits, a dynamical runaway of excitation across the network is prevented by
recurrent inhibition [1, 2]. The resulting activity appears asynchronous and irregular[3]. How
are we to understand such a system?

Complex systems science enables the study of high-dimensional systems of strongly-interacting
units by understanding the system at multiple levels of description. An accessible target area of
study for these tools is the dynamical properties of a local circuit[1], whose functional relevance
rests on a relationship between dynamics and information processing which, under certain
conditions, be made mathematically precise. Understanding dynamics, and in particular its
stability with respect to perturbations, is then the first step to a bottom-up understanding of
function.

The dynamical degrees of freedom used to describe a neural circuit depend at which level
the system is considered. Three conventional levels are the spiking network, rate network,
and population firing rate. Each of these levels in principle offers a channel for computation.
Since there are experimental results that demonstrate the covariation of variables at each of
these levels with relevant sensory input and behavioral output, we cannot a priori privilege
one level over another. Moreover, the use of one channel does not preclude the simultaneous
use of another for redundant or non-redundant coding, and such multiplexing is likely present
throughout the brain. At which level of description a particular phenomenon can be best
described (or described at all) and to what degree the response properties at each of these
three levels of description influence each other are challenging questions[1]. In attempting to
answer them, we likely determine whether the phenomenon is a true collective effect emerging
from interactions between units or whether an explanation exists also for noise-driven, non-
interacting single unit dynamics.

Mean field theories describing population rate activity have been built from spiking and effec-
tive rate network dynamics for sparsely connected units exhibiting asynchronous and irregular
activity arising from excitation balanced by recurrent inhibition: the socalled balanced state[4].
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The population rate dynamics of the balanced state falls into a class of inhibition-stabilized
models that describe population-level responses like surround suppression in areas such as sen-
sory cortex[2]. It leads to a rapid restoration of the balance when perturbed. The stationary
population response is determined exclusively from the synaptic input, linear in the external
drive, so that large systems are insensitive to the single neuron parameters. The finite-size
effects of the restoration and any bifurcation away from this stationary state will depend on
the response function of a population of uncoupled neurons. The latter then serves as the main
ingredient in a mean field theory for the balanced state. Such functions have only been derived
and understood in simple cases or in certain limits. Real neurons, however, have non-trivial
filtering properties that will sculpt the temporal correlations of their spiking output, e.g. res-
onance [5]. It is a current goal of the field to extend such mean field theories to include the
correlations induced by realistic single neuron properties such as intrinsic currents, i.e. those
within the cell body. Other features such as synaptic dynamics also contribute. Short term
depression, for example, can lead to bistability in the population rate dynamics|6].

In the limit of slow synaptic currents, the microstate dynamics can be adequately described by
an effective rate dynamics that is chaotic above a critical value of the interaction strength[7].
Numerical studies have shown that synaptic connections in similar effective rate networks can
be trained to stabilize local, endogenous trajectories [8]. A theoretical understanding of this
phenomena and to what degree something similar is possible in spiking dynamics is not known.

Indeed, the first full characterization of the linear stability of a spiking network in the bal-
anced state came only in 2010[9]. The intuition gained from other high-dimensional systems
with nonlinear and disordered interactions is that such dynamics should be chaotic[10]. How-
ever, a transition to stable dynamics was observed in the biologically relevant regime of high
action-potential onset rapidness[11]. Further work in the high rapidness limit established the
phenomenon of stable chaos there[12, 13]. These authors revealed that the underlying phase
space is filled with stable trajectories of asynchronous and irregular spike sequence, each en-
closed in a tubular attractor basin boundary contiguous with neighboring tubes. Despite the
stability within these socalled flux tubes, neighboring tubes separate from each other expo-
nentially fast. Their tube size and their rate of divergence were found numerically to scale
characteristically with the network parameters. As predominately phenomenological studies,
these works left open the question of the dynamical origin of the tubes. Why do perturbations
to the network decay at a rate of the single neuron timescale in the macrostate but much faster
in the macrostate? What determines the size of the tubes and the rate at which they diverge
from each other? In particular, these tubes must have a shape, so what is it?

The first of the two goals of this thesis is to understand how single neuron dynamics can be
used to understand population-level effects in simple models. In the first example in chapter 2,
we provide elements of a theory for stable chaos in spiking networks, deriving the numerical
results of [12] analytically, and thereby establishing an explicit connection between the single
neuron spiking and the stability of the collective microstate. In chapter 5, we provide an exact
calculation of the population response function for a population of neurons, each containing
a somatic current capable of transforming the single neuron dynamics from integrating to
resonating dynamics. This result provides an essential ingredient for a theory of correlations in
networks with resonating neurons.

The use of simple models in bottom up approaches must be performed with discretion since
simplifications can often introduce artefactual behaviour. However, simplifications that allow
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for transparent assessment of the phenomena can merit narrowing the scope of the analyses
appropriately. The circuits of the simplistic Leaky Integrate-and-Fire (LIF) neuron model in
which stable chaos was first described have two types of mathematical discontinuities whose
analytical utility in making the phenomena tractable was essential: the hard threshold that
elicits spikes and the pulse nature of their effect on the post synaptic neuron. Their influence
on the dynamics, however, is not a priori clear. Mathematical discontinuities are certainly not
biologically consistent. Nevertheless, the demonstrated persistence of stability for large, but
finite rapidness [9] for which the hard threshold is smoothed suggests that the discontinuous
nature of the threshold is not a necessary condition for stable chaos. While the nature of flux
tubes across the transition is unknown, the critical rapidness was found to scale with the size
of the network. This implies that stable chaos does not persist in the thermodynamic limit,
N — oo, precluding an understanding of it, at least in these networks, as a true thermodynamic
phase of the system.

The other simplification to a discontinuity is the pulse-nature of the coupling between neurons
in the network. For a particular network size and connectivity, previous work[13, 14] showed a
smooth transition to chaos with the temporal width of the synaptic interactions. Up to now,
however, what such a critical value depends on was unknown and exactly why such a transition
occurs remained a mystery. It was also unknown how the geometry of flux tubes changes in
this regime. In particular, do they persist in the thermodynamic limit, and if so, through what
kind of phase transition might they emerge?

The second of the two goals in this thesis is to extend the theoretical apparatus enabling the
study of neurons with additional degrees of freedom, both to understand how they behave
and to establish to what extent the properties in the simple models in previous and this work
persist. To this end, we contribute in chapter 3 a versatile implementation of the mechanics of
computing stability applicable to neurons with multiple degrees of freedom. In chapter 4, we
apply these methods to establish the transition out of the stable chaos of LIF networks and
into conventional chaos with increasing time constant of the synaptic current dynamics. We
establish flux tubes as a veritable thermodynamic phase whose emergence is reminiscent of a
second-order phase transition. After this, we focus on the effect of a single intrinsic current
on the filtering properties of the single neuron and on the collective dynamics in chapter 5. In
particular, we give the calculation and exhaustive analysis of its population response function
to lay the foundation for mean field theories of it. We show that the validity of the model
includes the biologically relevant regime. We end the thesis with a discussion of the results and
an outlook for future work in chapter 6. In the remainder of this introduction we cover in more
detail and in a pedagogical style, the motivation, approach and techniques upon which the rest
of the thesis is based.

1.1 Neural circuits are versatile complex systems

The central nervous system contains a dense constellation of inter-connected cells called neu-
rons. In a single human individual, they number around 100 billion, the same as all of the
galaxies in the observable universe. This staggering complexity exponentiates with the realiza-
tion that within each of those 100 billion neurons are myriad families of active transmembrane
currents that together manifest the signal processing of that one cell. What does this com-
plexity achieve? To answer ‘the mind’ is at once obvious and impenetrable. Indeed, such a
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grandiose question seems premature given our state of knowledge (or rather ignorance) about
the how the brain functions. Perhaps such questions can be profitably addressed by first estab-
lishing the constraints set on the dynamics by the structure of the system. First of all, what is
its basic anatomical structure?

1.1.1 The local cortical circuit is large and densely structured

The volume of the cerebral cortex dominates that of the human central nervous system. Its
scrunched, sheet-like structure has layers of depth of morphologically distinct cells. The cells
nevertheless appear to work together in each local region of the sheet as a functional verti-
cal unit [15](see Figure 1.1). However, there is little that is obviously structurally distinct on
the scale of millimeters to centimeters as one moves along the sheet. Preprocessed sensory
input from the periphery enters into mostly spatially segregated areas of layer 4 and is fur-
ther processed in layer 2/3. Accordingly, different lateral areas of cortex are ascribed as being
dedicated to the modality that provides them with the largest source of input (visual cortex,
auditory cortex etc.). But how does such apparently powerful wetware, easily programmable
by experience and evolution, emerge out of a collection of neurons? One ingredient certainly
contributing to this complexity is numbers: every square mm in cortex contains about 10°
neurons. But, unlike the irreplaceable AVA neuron of C. elegans, the role of an individual in
these N = 10° neurons appears insignificant. Ablation and excision studies in which fractions
of cortical neurons are removed show little compromising effect on function[16]. A perhaps
more determining number for the function of these circuits, and determining in so far as it is
large, is the average number K = 102 — 10* synapses that each neuron receives (each of these
obeys Dale’s law: the postsynaptic currents of a given cell are either excitatory or inhibitory
but not both). The resulting interconnected network collects the containing neurons into a
unit that, in the words of the condensed matter physicist Phil Anderson, makes this ‘more’
different [17]. These many connections makes it clear that they are not individually specified
by genetics. There simply is not enough space in the code. Neither is such detailed specifi-
cation apparently required as computational work shows that distributing neurons randomly
in space and setting connections via proximity reproduces the connectivity statistics obtained
from electron-microscopy reconstructions from cortical slices [18]. Self-organization dictated
by external drive and morphogen gradients during development is likely responsible. The field
of connectomics is nevertheless establishing the detailed connection matrix of local circuits as
an obvious constraint that models should take into account. It is becoming clear, however,
that the degeneracy in the dynamics existing over a given substrate of connectivity means that
knowing the connections alone is insufficient to determine the function of the circuit.

1.1.2 The local cortical circuit produces asynchronous and irregular
activity

Measured single neuron activity in cortex, both under spontaneous and evoked conditions
(conditioned on a stimulus or task), in awake or behaving animals, is highly variable in time
and only weakly correlated with that of other neurons. In particular, the coefficients of variation
(CV) of the measured spiking activity of single cells, are near 1, while across cells the firing
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|10 mV

time 200 ms

Figure 1.1: The cortex is composed of neurons that spike. The structure of cortex, (a), is
sheet-like, (b). Within this sheet there are layers of cells, (¢, adapted from Ramon y Cajal),
called neurons, (d). Inputs to a neuron arrive through their dendrites (top) and travel down
to the cell body (bottom) where they are integrated. This complex and in general nonlinear
intregation process occasionally produces large excursions in the transmembrane voltage
potential called spikes, (e, adapted from [19]). Such action potentials propagate down the
axon that synapses onto the dendrites of other neurons.

rate distribution is broad and the pairwise correlations low (Pearson correlation coefficients of
r ~0.01 —0.1)(see Figure 1.2 )[3].

There are three areas from which irregularity could arise: the external drive to the network,
the intrinsic processing of the neurons, and the synaptic connectivity and transmission. We
consider each of the three areas in turn.

The irregularity of input from outside the local circuit, if mutually correlated, could explain
the irregular output of cells. Indeed, in sensory areas, the input activity is often highly cross-
correlated, but it appears that this correlation is progressively reduced through the layers of
processing between the periphery and cortex so that in the latter the correlation among these
external inputs is much too weak to produce mean input-driven firing even in the absence of
recurrent input.

If not in the input, another obvious potential source for the irregularity is the neuron itself.
Indeed, that biological units are just intrinsically noisy is an easy, albeit naive explanation for
any observed imprecision in biology. While ion channels are certainly subject to thermodynamic
fluctuations, the large number of them that partake in signal propagation make it difficult to
avoid the law of large numbers in the averaging. When there is nothing but the temporal
irregularity of the intrinsic noise to structure the temporal characteristics of the output, as in
the case of constant input current (a common electrophysiological injection protocol), this im-
precision gets through. Natural-like stimuli [20, 21], however, which exhibit temporal variation,
generate precise and reliable action potentials in the neurons into which they are injected.

With these two sources of irregularity excluded, there comes an apparent contradiction: the
combination of many, presumably uncorrelated synaptic inputs and reliable AP generation
would lead to regular output[3]. What are the wrong assumptions that invalidate this argu-
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Figure 1.2: The balanced state reproduces the asynchronous, irregular activity properties ex-
hibited by cortical circuits. (a) Schematic diagram of a recurrently connected network of
neurons. (b) A spike raster of a network in which only a small fraction of cells fire in a
narrow window of time, so that the activity is asynchronous. (c) The voltage trace of any
one of these neurons is highly irregular. The average number of inputs to a neuron in this
network is 102
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ment and its counterfactual conclusion? The only remaining potential source of irregularity is
synaptic transmission. Here, synaptic failure is an established source of imprecision in synaptic
transmission and such failure rates are quite high (mean synaptic vesicle release probabilities
are often less than 0.4 [22]). However, because the overall number of synapses is high, the suc-
cessfully transmitted fraction is likely still large enough for the fluctuations to be significantly
reduced and so would not generate significantly irregular input. Surprisingly, these high failure
rates do not even seem to degrade information transmitted through spike times[23].

A possible resolution to the contradiction concerns the distribution of synaptic weights hav-
ing few, strong synapses. Indeed, log-normally distributed synaptic weights arising from the
similarly distributed number of vesicle release sites on a bouton have been observed[24]. The
strong synapses, despite being low in number, imply that a single presynaptic neuron could
provide input that gets the neuron near or even above the threshold for firing. Self-consistently
then, since the output of that one presynaptic neuron is irregular, so too would be the out-
put of the postsynaptic neuron. However, the required activity of silence punctuated by large
excursions in the subthreshold activity that is implicit in such an explanation is not observed
experimentally, raising doubts about this possibility.

A final, and currently prevailing resolution to the apparent contradiction was a breakthrough
in our understanding of the dynamical operating regime of cortical circuits. We delay its
exposition to first motivate and present the theoretical framework out of which it emerged.

1.1.3 Dynamics constrains the function of a local circuit

Experimental results probing the functional capabilities of cortical tissue indicate that it is
highly versatile. Of these, perhaps the most striking is one in which the optic nerve that
brings sensory input to the visual cortex was surgically rerouted to auditory cortex where
the characteristic activity patterns only previously seen in visual cortex seemed to emerge[25].
This indicates that sensory input can play a determining role in structuring area-wide activity
patterns in cortex irrespective of the type of sensory cortex.

An intriguing working hypothesis emerging from this line of experimental work is that the cortex
serves as a kind of liquid computing resource that has added over evolutionary time to the
precision and complexity of the tasks that the thalamic pathway has evolved to perform. The
lack of overt lateral structure implies that, like a liquid, the cortex is laterally isotropic and, like
the molecules of a liquid, the exact number of cortical neurons in a local circuit does not change
its collective features. The cortex has evolved to serve different purposes in different species.
For many sensory and behavioral functions, mice appear to use the cortex predominately for
redundancy and fine-scale control. In vision, for example, while many functional properties
of neurons in cats and macaques are only present starting from the neocortex, in mice those
functions are already present in upstream regions like the retina or the LGN in the thalamus.
Indeed, experiments show that entire cortices of mice can be removed with little affect on
simple behaviors[16]. Humans reliance on thier cortex is likely much heavier, and may explain
the recent discovery of an able-bodied woman lacking a cerebellum.

Determining what actual sets of computations these areas have evolved to perform, akin to
inferring the purpose of a computer program from direct measurement of the voltages in the
hardware, is an extremely difficult task. While we can test the covariation of our favorite sensory
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variables and activity readouts, this is a far cry from unambiguously explaining why they covary
and whether this covariation was ever selected for by evolutionary pressures. Articulating
computations in terms of operations on external sensory input, to which the brain has no
direct access, is ontologically problematic and suggests a revision of some important concepts
in neuroscience such as the receptive field. Indeed, the paramount utility of the latter in
experimental neuroscience has no bearing on its utility in the nervous system’s design. The
degree to which knowledge of such computations would advance our understanding about the
brain as a computing device is also debatable, since they are likely extremely specific to the
species in question. A perhaps more insightful kind of knowledge about cortical networks
regards the sets of computations that such tissue is in principle capable of performing and
what determines these limitations. Whether or not the metaphor of the brain as a complex
input-output device proves best (and there are alternatives, e.g. [26]), local circuit computation
will still likely be important. We thus focus on the local circuit in this thesis irrespective of a
particular sensory context, leaving the external drive constant (chapter 2,chapter 3,chapter 4)
or characterizing the dynamics across a statistical ensemble of inputs (chapter 5).

Given a connectivity, the dynamical repertoire existing on the network will likely limit the
success that the network will have in learning to perform certain tasks. Understanding dynamics
can thus act as a first step to understanding function. If the dynamics is such that correlations
among neurons are high, then the effective dimensionality of the dynamics is reduced and the
reservoir of activity states the network can take on is limited[27, 28]. At the other extreme, if the
dynamics is decoupled between the neurons such that, conditioned on the input, they process
information independently, the capacity of the network is reduced by its inability to solve
tasks requiring inter-dependent operations. The singular reliance of conventional computing on
transistors, which implement such inter-dependent operations, suggests that inter-dependence is
also an important feature of the computation performed by the nervous system. In quantifying
possible constraints on computational capability, it would useful to have a measure of the
extent of the dynamics in the phase space. In addition, signal channels exhibiting either stable
or chaotic dynamics are likely best suited for different tasks. More generally, the degree of
chaos is a parameter that may covary with the performance of certain tasks. In particular,
the expansion of bundles of trajectories in the phase space can in principle provide additional
information about, for instance, past states. While the amount of information will depend
on the precision of the readout of the network state, articulating a notion intrinsic to the
network dynamics that captures the separation of bundles of trajectories would be useful. More
generally, a framework is needed that provides tools and methods to understand the dynamics
of such a complex system as these cortical circuits.

1.2 Complex systems neuroscience of neuronal ensembles

Just over 100 years ago, Ramon y Cajal’s hypothesis of the unidirectional propagation of signal
across a neuron was confirmed. This event laid to rest the debate of how signals propagate
through the nervous system. It also sparked the dawn of a reductionist research program
centered around the single neuron doctrine that dominated the conceptual and technical de-
velopment of the field in the remaining part of the 20th century[29]. Indeed, much of what we
know about the nervous system today comes from the resulting single cell electrophysiology
that has made great strides in revealing the how the mechanisms and functions of intrinsic cur-
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rents sculpt the voltage dynamics of neurons. Most neuroscientists would nevertheless wager
that much of what the brain does is distributed, insofar as whatever the computations, they are

performed in parallel among large groups of neurons, what Donald Hebb dubbed an ‘assembly’
[30].

The neuronal assembly is a task-specific object. It lives on the structural and dynamical sub-
strate provided by the recurrently connected neurons of the local circuit, what some have called
an neuronal ensemble. In statistics, an ensemble is a formally infinite number of realizations of
something, whose practical use in the context of studying a relatively large, but finite number of
similar things cannot be overstated. In this thesis, a collection of neurons whose exact number
is unimportant so long as it is large and whose mutual spatial proximity in the brain identifies
them as a unit will be called a neuronal ensemble. Over the last few decades, the techno-
logical advances taking place in many scientific fields are pushing experimental techniques in
neuroscience involving genetics, molecular biology, and especially optics into the regime of the
simultaneous, action potential-resolved measurement of large ensembles of neurons, not only
in vivo, but even while the animal performs behavioral tasks. A notable, recent advance is
the first ‘whole brain’ measurement of a behaving vertebrate animal, achieved in the Zebrafish
larva [31]. The time has finally come to understand neuronal ensembles, but this new realm
for neuroscience is complex and requires novel conceptual frameworks not yet contained in the
experimentalist’s toolbox. In particular, there are fundamental questions one can ask at the
level of the ensemble that would simply never arise and make little sense in single-cell studies,
just as asking how hard 10 molecules are does not make much sense.

1.2.1 Why use simple models?

The classic theory of theoretical neuroscience is that of the biophysics of single cells. Hodgkin
and Huxley, after whom the formalism is named, constructed[32] a model of the dynamics of
the somatic transmembrane voltage potential, V', of the giant axon of the squid,

OV = Iy + Ly (1.1)

where C' is the membrane capacitance, I, is the sum of all membrane currents and I, is the
total synaptic current arriving from the dendrite. In the most simple case (no longer exactly
the Hodgkin-Huxley formalism), each somatic current, I,,;, contributes additively to I,,, with
a term of the form
I = g,(V)(V = E)

where g;(V') is a voltage-dependent conductance, whose effect depends on the driving force
V — FE;, of the voltage relative to the reversal potential, F;. ¢; obeys kinetic equations based
on channel activation whose specification is often made ad hoc to fit the data. We discuss
approaches to reducing the complexity of such models in subsection 5.3.1.

These detailed models help little, however, when trying to gain insight into the collective
dynamics of large networks. From these detailed equations it is not obvious what, if any
emergent collective states can be exhibited by a coupled network of them. It is one of the
lessons of complex systems that in large systems, it is the types of interactions that contribute
most to shaping the collective states and not the details of the intrinsic dynamics of the units.
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Such interaction information is completely absent from single cell studies. Moreover, a standard
theme in the latter is to fit such models to reproduce features of the data. It is increasingly
appreciated, however, that the degenerate nature of how a collection of currents produce a
function nuances such an approach: there is no one, best-fit model[33] and insight is really only
gained from understanding the geometry of the good-fitting regions of the parameter space.
The mathematical complication and high dimensionality in these single cell models makes
them difficult targets for existing methods used to handle collective phenomena.

1.2.2 Leveraging disordered many-body physics: multiple levels of
description

In approaches guided by the tradition of generalization in physics, the focus shifts away from
understanding the qualitative behaviour of a specific system, and onto understanding the qual-
itative behaviour (or emergent phase) of the class of systems in which that specific system
resides. Macroscopic variables can be defined as ensemble properties of the microscopic dy-
namics and make up the axes of the phase diagram of the system. Again, their utility arises
when the number of elements in the system becomes large and their descriptions as averages
converge. Across certain macroscopic variables, the system can exhibit qualitative changes
denoting a transition from one macroscopic phase to another as a function of control parame-
ters. A classic example is the transition from ferro- to para-magnetism in which the magnetic
susceptibility diverges at the critical Curie temperature[34] and spontaneous magnetization
emerges below this critical value. The current forefront of such approaches is in characterizing
strongly-interacting physical systems. While not a conventional physical system, neural net-
work dynamics are being studied with these approaches in the hope that they provide the same
kind of insight about the collective dynamics.

The different levels of description of a neural network dynamics can include (see Figure 1.3):

e low-level (‘microstate’): the subthreshold voltage, with its spike times, forming a vector
across the network;

e intermediate (only when effective): the effective firing rate, in small time windows, form-
ing a vector across the network;

e high-level (‘macrostate’): the population firing rate, forming a scalar from an average of
spiking or rates over the network.

A relevant subfield of mathematics for the description of neural network dynamics at the mi-
crostate level is that of pulse-coupled networks. These are simplified neural circuits where the
neurons only interact at specific times through events called spikes, where one neuron reaches a
discrete threshold of firing. In this sense, they are hybrid dynamical systems in which isolated
continuous dynamics is punctuated by discrete spiking events at which interactions between
the neurons come into play. To begin to characterize the collective behaviour of such systems,
relevant macroscopic observables need to be defined. Perhaps the most obvious macroscopic
scalar observable of a spiking network is the instantaneous population firing rate, v(t), for a
population of N neurons indexed by k. In a time window of length, T', each one produces a
spike train, s (t) = SNk §(t — t¥), with N, spikes labeled by their spike times, t*. The average
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Figure 1.3: There are 3 conventional levels of description in a neural circuit, whose dynamics
we can observe (left) and from which the geometric properties of the underlying attractors
in the phase space can be inferred (right). (a) The macrostate is defined by the scalar
population firing rate, v. (b) The attractor geometry of the macrostate is relatively simple
to understand. Here is shown the nullclines (red lines) and fixed point (black dot) of the
dynamics of a coupled excitatory, vg, and inhibitory, v;, population. (c¢) Intermediate levels
of description such as effective rate network dynamics, v;, can also be informative when they
adequately describe the spiking microstate. (d) The spiking microstate is defined by the
set of subthreshold voltage, V;, and currents (blue lines) and super threshold spiking (black
ticks) for all the neurons, i = 1, ..., N, across the network. Downstream networks only have
access to the superthreshold spiking activity. (e) The attractor geometry of the microstate
is high-dimensional and complex.
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firing rate across the population in this window is then

W T) — 12; / su(t)dt (12)

t

For stationary input, Equation 1.2 becomes the stationary population firing rate, independent
of ¢, in the limit 7" — oco. In the other limit, 7" — 0, and for populations large enough that
there is still a statistically invariant number of spikes in the shrinking window, the expression
is a well-defined time-dependent ensemble average called the instantaneous population firing
rate,

v(t) = 5() (1.3)

where bar denotes population average, (), = % S

Given equations for the microscopic spiking dynamics, theoretical approaches to capture the
dynamics of v(t) have been pursued, with inspiration from mean field approaches pursued in
physics. The rationale in such approaches is that a unit in the network receives input from
so many other units that the total mean input to that cell can be taken as a finite sample
version of v(t). Assuming that the cell is representative of other cells in the network, the mean
output of that cell across many presentations of the input will also have a relation to v(t).
Solving this self-consistently, one arrives at a self-consistent meanfield description of v(t). The
key ingredient to building such a mean field theory is the population rate response function,
v(-) = F(I(-)): the way that external input current to a population of neurons is passed to
output population firing across the ensemble. This is one of the main tools currently being
developed and exploited in the field. We will provide a detailed discussion of it in chapter 5,
where we compute such a functional in a novel setting.

While v(t) for finite networks always exhibits some population-level fluctuations, much insight
can be gained from studying the resulting mean field in the thermodynamic limit of diverging
network size, where the number of neurons, N — oo, and the resulting dynamics of v(¢) becomes
exactly deterministic. Since the mean field is often observed to take on new properties as the
system undergoes a phase transition into a collective state, bifurcation analyses of the mean
field dynamics in the thermodynamic limit can reveal the emergence of novel collective phases.

The theoretical foundations of high-dimensional pulse-coupled network dynamical systems be-
gan mostly with the study of synchronization in pulse-coupled networks of phase oscillators
(a phase is a circular variable over the period of oscillation) [35, 36]. In these models, each
oscillator is connected to all the rest, the socalled all-to-all connectivity. Mean field theories
for such networks were developed to understand the emergence of the synchronous state. The
network-averaged phase was found to undergo a bifurcation from a fixed point to a limit cycle
as a function of the heterogeneity of intrinsic properties of the oscillators. To make the analysis
tractable, the assumption that the oscillators were weakly coupled had to be made such that the
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effect of their coupling could be described as small perturbations off the limit cycles exhibited
when the oscillators dynamically evolved in isolation.

Many real network connectivities are not all-to-all and those that are not are often disordered,
i.e. replicates in the form of genetically identical animals, do not have exactly the same con-
nectivity. Synaptic connectivity in cortex appears to fall into the latter class. How then is
the introduction of disorder into the connectivity between units handled? Again, the general
approach from physics is not to model a particular instance but to understand the equivalence
classes of the system induced by the definition of some statistical structure on their parameters.
An all-to-all connectivity provides the most symmetry: with no additional disorder, the system
is exactly unchanged after swapping any two neuron identities. This symmetry can be broken
by diluting the network connectivity via the removal of connections for which there are many
possible ways. Quenched dilution removes connections at random, while annealed dilution in-
volves some correlation in the process. The parameter that appears in this symmetry-breaking
is how many connections have been broken. The relevant class to study is those systems which
have had the same number of connections broken. Throughout the thesis, we will use K to
denote the average in-degree across the network, with 1 < K < N — 1. We will consider a
quenched-diluted ensemble of connectivities with only K specified, the socalled Erdos-Renyi
random graph[37]. Consistent with the networks in the central nervous system, we consider the
probability of connection

K
p~N<<1 (1.4)

so that the graphs and connectivities are sparse (with the socalled sparse thermodynamic limit:
p—0as N — c0). We have used N ~ N — 1 for N > 1 for simplicity. All observables de-
pendent on the connectivity are taken now as distributions over the socalled quenched disorder
introduced by this connectivity ensemble. We will only consider the means of these distri-
butions. This approach has been employed extensively in models of spin glasses, which have
become a powerful paradigm in the statistical physics of disordered systems and have had a
profound impact on the way we study and understand large network dynamics.

After mean field theories for the synchronous state, the next wave of research into emergent
neural network behaviour, however, was initiated, appropriately, by neuroscientists themselves.
They identified and highlighted the need for a theory of asynchronous activity in cortical cir-
cuits. The realization of this theory over the course of last two decades provides the mean field
theory of the collective state studied in the current work and so we dedicate the next section
to it.

1.3 Inhibition-stabilized networks and the balanced state

A major question driving research on cortex in the 1990s was to explain the irregularity ob-
served in the activity of cortical circuits. While one might have expected theorists to be the
ones to provide an answer, in this case it was in fact experimental neuroscientists who first
made a convincing proposal—one in which the irregularity emerges naturally. Denoting the
mean excitatory and inhibitory input to cell as I and I, , respectively. If I, +1_ ~ 0, so that
the total mean input to the cell is subthreshold, then any output spiking must be caused by
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the fluctuations around this subthreshold mean [38]. This proposal was first implemented in a
simulated network by Amit and Brunel where the balance was achieved by hand. However, the
following year, van Vreeswijk and Sompolinsky published the seminal work [4] that established
the first self-consistent mean field theory of this asynchronous and irregular collective state,
known since as the balanced state, in the context of binary neurons obeying a Glauber-like
dynamics using a random updating scheme originally developed for spin glass models in statis-
tical physics. Previous network studies had explored the large network size limit by normalizing
the synaptic strength, J o< O(1/K), by the number of inputs. This has the result of making
I ,I, < O(1) in K and the variance of the input current, o7, vanish as O(1/K), leading to
highly regular activity. The key to van Vreeswijk and Sompolinsky’s work was to instead scale
as J o« O(1/vK), in which case the mean I_, I, oc O(v/K) while the variance, o7 &< O(1),
and so persists even when K — oo. A simple argument can be used to show that the total
mean input must vanish as O(1/v/K). The most simple spiking model of the balanced state,
and the one considered throughout this thesis, is one in which constant external excitation,
denoted I.,, is balanced through purely inhibitory recurrent input, ..., with the strength of
each recurrent synapse,

7, = —1,Jo/ VK (1.5)

with Jy > 0. Assuming a finite, stationary population firing rate, v, in the network, the input
rate of spikes into any cell is on average Kv so that the total input current is

[ext + [rec = [ext + TvJKV
= lext — \/?JOVT’U

The mean external input, /.,; can also be thought of as composed of K inputs on average with
synaptic strength scaling as 1/v/ K now coming from outside the network and so also scaled by
v K.We can then rewrite the external drive,

Lo = VKI, (1.6)

with Iy ~ O(1) and interpreted as the current arriving from a single external afferent. We then
have

[ext + [rec == \/?(IO - JOI/TU)

The argument applies when K is large: If the expression in the bracket is negative, then the
total current to the cells is large and negative and the neurons are silent. If the expression in
the bracket is positive, then the total current to the cells is large and positive and the neurons
fire at their maximal rate. The only way to self-consistently maintain a finite rate of v, is for
the expression in the brackets to vanish as O(1/v/K) so that

VK (I — Jovr,) =20

Since this expression contains the mean rate of the recurrent population, v, the stationary mean
field equation, hereon called the balance equation, falls out to leading order in K,

vr, = 2 +0 (&) | (1.7)
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Stability analysis of the dynamics of v(t) around this stationary value showed that it is strongly
stable and restores the balance in the face of perturbations on an extremely fast time scale.
The asynchrony means there is always a sub-population near threshold waiting to respond to
even small input quickly. In addition, the dynamic response is effectively O(1/v/K) times faster
than the dynamics of the single units because of the O(\/F ) high gain of each input term that
quickly cancels any difference. (This is a mechanism similar to that used in the construction
of the operational amplifier of conventional electronics.) The system self-organizes into this
irregular and asynchronous state with no fine-tuning so long as the mean excitatory input
alone would bring the neuron to fire but is brought subthreshold by the mean inhibition. This
mean field theory was extended, though in the restricted case of fixed K for all neurons, to
the more tangible the Leaky Integrate-and-Fire (LIF) neuron in 1998 by Brunel and Hakim
(39, 40].

There was an important step in these theories that raised some questions. To compute the
current variance, the assumption of zero correlation between the inputs was used, valid in the
socalled sparse limit defined as taking N — oo with K fixed so that p = K/N — 0 and neurons
are uncorrelated due to the low probability of a path through the network that connects them.
And yet, this theory built to describe the p — 0 was quite accurate where finite (though small
p) where correlations at least due to shared input should play a role. Renart and coworkers
answered this last piece of the puzzle in 2010 [41] by carefully treating the dense limit where
p is fixed as N — oo. Leveraging the results that correlations do not have to vanish, but only
to decay as O(1/K) for the fluctuations of the mean field to scale as 1/K [42], he showed that
correlations are actively canceled by a fast-tracking of the excitatory and inhibitory currents.
Weak positive correlations between many excitatory and inhibitory inputs are amplified by
the connectivity leading to strong negative correlations which cancel precisely all the sources
of positive correlation including those due to shared input. With this work, we finally had a
description of spiking neural activity in a recurrent network that was consistent with the basic
anatomy and neurophysiology of the cortex. Looking forward, the development of a theory
that self-consistently accounts for the small deviations in temporal correlations away from the
exactly independent Poisson spiking statistics is currently underway [43, 44], but so far only
numerical methods exist.

The derived dynamic equations for the mean field around the exactly asynchronous state are
linear. As we have mentioned above, the mean-field approach admits more general population
rate transfer functions. In the context of a coupled inhibitory and excitatory population model,
the balanced state thus falls into a larger class of population rate dynamics models poised in
what is called the inhibition-stabilized regime, which explains a wide variety of non-intuitive
features observed of cortical dynamics such as surround suppression[2]. A similar approach was
applied to transfer functions with a power-law rise, as is observed experimentally [45]. This
regime exists when runaway excitation is avoided by sufficiently strong recurrent, and thus
stabilizing inhibition. This property is achieved through balanced inhibition, so all balanced
networks are inhibition-stabilized. The latter can be achieved, however, without exact balance.

Beyond these choices of transfer function, more data-driven research has fitted transfer func-
tions directly to data. Here it is not the population response that is desired but simply the
reproduction of the average response of single neurons to an ensemble of input. Realizations
of the spiking output are generated by having the output of the transfer function control a
non-homogeneous stochastic event process. These are the socalled Linear-Nonlinear cascade
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models[46].

The last decade has seen the calculation of specific transfer functions of a variety of essential
spiking neuron models for cases admitting an increasingly amount of structure in the statistics
of the input. Part of the motivation for such efforts is that the transfer function also serves as
the main theoretical object in the theory of correlations in recurrent networks when the latter
are low as is the case in cortex.

While the maturation of the techniques for mean field theories of spiking networks is a huge
milestone for the field, it delineates only part of the toolbox. Beyond collective behaviour,
we eventually want to be able to address how the collective states they describe constrain
function. The obvious volume growth of cortex over evolutionary time suggests that evolution
is fully utilizing its information processing capacity. This capacity is likely largest at the full,
microstate level of the spiking dynamics. Indeed, while population rate descriptions are useful,
they are likely a poor summary of the capacity of an information channel made from a large,
recurrently connected neuronal ensemble. Thus, methods are needed to directly access the
information processing capacity of spiking networks.

1.4 From dynamics to function via stability

Obtaining theories for the collective states as mean field equations with understood stability
properties was an important step. Nevertheless, we must eventually understand the machine
at a more detailed level, that of the microstate, not only because this response channel offers a
much higher bandwidth and thus potential for more complex computations, which in complex
and competitive environments such as ours likely confers a selective advantage, but also because
this is really the level at which the machine works. Obtaining the stability properties of even
low-dimensional chaotic dynamics is a challenge, however.

Only in the 1970s did mathematicians specializing in dynamical systems develop the contempo-
rary means with which we can begin to unravel-that is to understand the geometry—of strange
attractors. The complex shapes precluded classic analytical techniques that relied on a trans-
parent geometry. The core idea in their new theory was to leverage ergodicity, the property
that if observed long enough, a single trajectory traverses enough of the attractor that averages
taken over the trajectory are equivalent to those taken over the whole attractor. By taking
averages over trajectories then they could infer certain geometrical or topological properties
about the attractors[47].

Fortuitously for neuroscience, they also started thinking about information processing. They
formally characterized the phase space using partitions showing that the symbolic dynamics
generated as the trajectory moved through different partition elements could be used to refine
the partition and infer information about the initial condition. It became clear that chaotic
systems produce information [48]. The asymptotic rate of information gained about the initial
condition across an iteration of the dynamics is called the Kolmolgorov-Sinai entropy, Hgs.
They also defined the attractor (or information) dimension, D, as the limiting value of the
effective number of dimensions inferred by covering the attractor in ever smaller boxes, while
taking into account the frequency with which the trajectory visits each box. These quantities
can be computed explicitly only for the most simple of systems. Further theorems stated,
however, that these quantities could be accessed, under the assumption of ergodicity, via the
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stability properties of the system for which there was already some theory whose development
had begun in the late 19th century with Alexandr Lyapunov.

The Lyapunov spectrum of a dynamical map is an set of N real-valued exponents, {\;} =1 N
ranked beginning with the greatest. They are obtained from averages over the attractor and
correspond to the covariant Lyapunov vectors, a similarly indexed set of N vectors living in the
tangent space of each point on the attractor that act as a (non-orthogonal) basis into which the
dynamics of a small perturbation can be decomposed and its components evolved independently
(see Figure 1.4) using the Jacobian of the map. By definition, the exponent corresponding to a
vector of a given index gives the time-averaged exponential rate of growth or decay of the respec-
tive component of any perturbation. Work in the 1970s produced striaghtforward, if somewhat
costly algorithms with which to compute these exponents for any dynamical map[49](to be fair:
scaling as N2 as they do in general is much better than the 2V scaling required to compute
information theoretic entropies over a time series with np,s time bins). The application of
these methods to spiking networks is made in chapter 3. The Lyapunov exponents and vectors
capture the flow of local volumes in the phase space and can be thought of simply as the gen-
eralization of eigenvalues and eigenvectors from fixed points to arbitrary points of the phase
space reached by the dynamics. Practical algorithms to compute the Lyapunov vectors only
appeared in 2007[50]. Thier utility stems from a variety of properties. For one, such exponents
and vectors are invariants of the dynamics: the averages converge to the same value no matter
where the system is started[47]. Systems with A; > 0 for any i are called unstable. If the
dynamics of such systems are naturally bounded, this demonstrates the existence of a chaotic
attractor and is in fact taken to define chaos. The requirement that the systems be ergodic
(something quite difficult to prove) has been relaxed to only having to exhibit ergodicity on a
Lebesgue-measurable, i.e. spatially extended and thus physical, set of initial conditions, in this
case called an Sinai-Ruelle-Bowen (SRB) measure[51]. These quantities and the theory have
been generalized to stochastically driven systems in a theory called random dynamical systems,
which we only mention here for the curious reader.

With the Lyapunov spectrum in hand, the ergodic theory quantities are obtained simply: the
Pesin identity states

HKSNZ)\ia

Ai>0

i.e. the KS entropy is just the sum of positive Lyapunov exponents. This sum is simply
the average rate of growth of a volume element constrained to the unstable manifold of the
dynamics.

Derived from similar ideas, the Kaplan-Yorke conjecture is

22‘21 )\z .
D ~d+ === d=max{i|Y_ A\ > 0}.
| Ads1l i

This expression for D is effectively just the maximum number of exponents for which the
ordered sum is still positive and the simple geometric interpretation is that D is the largest
dimensionality of a subspace within which the expansion holds back the contraction. For
subspaces of larger dimensions, contraction onto the attractor eventually wins out, as is the
case for all dissipative systems whose mean exponent is negative.
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0z

Figure 1.4: The Lyapunov exponents and vectors capture the local expansion and contraction
across phase space. A perturbation, 523, to the state Z; can be decomposed into projections
onto the covariant Lyapunov vectors @) at Z,. These components evolve independently at
long time exponential rates of growth provided by the Lyapunov exponents J;.

A significant advance for the theoretical study of the stability of neural circuit dynamics came
with the implementation that semi-analytically computes the full Lyapunov spectrum of a
spiking network by Monteforte & Wolf in [9]. When the dynamics are chaotic, the way that H
and D vary with the model parameters gives qualitative insight into how they affect information
processing. Random dynamical systems theory was soon after exploited to compute these
quantities for network models driven by noise[52].

Monteforte also computed the spectra in the relevant regime of high rapidness, finding it stable
[12]. Finite-sized perturbations, however, induced exponentially diverging trajectories, remi-
niscent of chaos. The coexistence of stability and irregular dynamics is a phenomenon that
has been named stable chaos. Monteforte went on to show that stable chaos induces a novel
phase space structure made of a large, but finite set of irregular, asynchronous spike sequences
that are locally attracting but mutually repelling. Understanding what this finite-size stability
structure is and how it leaves the conventional ergodic theory inadequate to fully characterize
the information processing of networks of the most widely used simple neuron model was an
open question.
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2 Elements of a theory of stable chaos in
neural networks

2.1 Chapter summary

Flux tubes are a novel phase space structure found in network dynamics. They arise from
stable chaos: the coexistence of chaotic-appearing, irregular activity, for which the maximum
Lyapunov exponent is nevertheless negative, ... < 0 so that, in fact, the dynamics are stable.
Monteforte numerically obtained a handful of results about their structure. States within a
flux tube are attracted exponentially at a rate Ay ~ —7, * + O(1/VK) to a stable trajectory
with a unique spike sequence. Neighboring flux tubes, however, separate from each other
exponentially fast at a rate given by the so called pseudo-Lyapunov exponent, A\, o< (K7)~'. In
particular, the diverging distance between initially nearby trajectories started in neighboring
tubes is consistent with a exponential cascade of spike sequence changes. From the assumption
that the spike sequence does not remain the same under permutations induced by a perturbation
of the underlying state, the boundaries between tubes were expected to represent trajectories
that lead, at some point in time, to synchronous spikes in pairs of neurons. The average
diameter of tube, €, bridging these boundaries was found to scale as ey < (VANv)™!. A
schematic illustration was presented in [12] (Figure 2.1). The actual shape of tubes, however,
was unknown. More importantly, a theory that could explain all these results was lacking.

In pursuit of understanding the effects of single neuron properties on network dynamics, I
set out to provide a transparent understanding of stable chaos and this flux tube structure.
I computed the temporal evolution of the tubes by collecting successive cross-sections of the
phase space. The resulting non-trivial tube dynamics and the host of numerical results of
Monteforte I then sought to understand analytically through the presentation of elements of
a corresponding theory. First I explained how inhibitory events near the threshold for spiking
can lead to sharp changes in the spike time map as a function of the strength of an external
perturbation to the initial state. From this analysis, we refine the conjecture about the nature of
the decorrelating events and the sequence non-commutativity to apply only to the sub-sequence
of spike intervals from spikes coming from neurons between which there is a connection. I
analyzed the temporal distribution of these events, and showed that it provides an additional
characteristic of perturbation recall time that is used in conjunction with €z, to understand the
shape of flux tubes. I then showed that the observed divergence in the distance is guaranteed
after such events, and I derived the pseudo Lyapunov exponent. Finally, I explained the scaling
of €7, by formulating and explicitly calculating the fraction of restored perturbations, the main
analytical result of the chapter. Its theoretical utility is demonstrated in a proposal for how to
estimate the amount of information gained about the initial condition through the dynamics.
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2.2 Introduction

A classic example of unexpected coherence in high dimensional dynamical systems is the phe-
nomenon of solitons: solutions of nonlinear wave equations arising from a balance between
dispersion and steepening. They were first observed in one of the first ever in silico computer
experiments as a (Fermi-Pasta-Ulam) recurrence in the linearized modes of a 1D coupled lattice
of springs, numerically implemented as a coupled map lattice (CML)[53]. Another interesting
feature of these coupled map lattices is a phenomenon known as stable chaos. Stable chaos
is a dynamical property defined as a stability to infinitesimal perturbations despite apparent
temporal irregularity, i.e. aperiodic motion. The latter is a behavior usually attributed to
chaotic dynamics and thus the coexistence of stability and irregularity is somewhat surpris-
ing. Such behavior was first observed in the late 1980s in discrete cellular automata (DCA)
by Kaneko and Crutchfield[54]. Soon after, Politi and Kapral [55] showed how such discrete
variable dynamics could be obtained from a CML by partitioning the phase space and observ-
ing the resulting symbolic dynamics of this mesoscopic description. The continuous nature of
the CML, however, admits an infinitesimal perturbation analysis from which the maximum
Lyapunov exponent can be calculated. Doing so, Politi and Kapral found that indeed these
systems are dynamically stable. These systems displayed sharp changes in either the evolution
rule of the nodes or in the type of interactions. Such sharp changes were thought to produce
an instability that that could be accessed through finite-size perturbations.

The existence of stable chaos in high dimensional dynamical systems with sharp changes makes
one think it may have relevance for nervous systems with their thresholded and pulse-coupled
dynamics. A push to understand the stable chaos in spiking neural network models has surged
in the last years. A key ingredient in stable chaos is dynamic stability, A\,,q. < 0, so networks
exhibiting conventional chaos are excluded. The most obvious of the destabilizing mechanisms
underlying chaos in neural network dynamics is recurrent excitation. Network dynamics tends
to destabilize when either the number of excitatory neurons is increased [13], or the excitatory
synapses are strengthened [11]. Stable chaos, then, is only likely to be found in systems where
there is only a small amount of excitation. We now summarize the work in the last decade
that established the stability of purely inhibitory networks of Leaky Integrate-and-Fire (LIF)
neurons. Much of this work has focused on the balanced state of these networks because
the resulting asynchronous, irregular activity is the most consistent with network dynamics
observed in vivo (for a review of this regime, see section 1.3).

In 2002, it was shown that for globally coupled LIF networks, the exhibited spike sequences
are stable and lead to periodic orbits after a transient time[56]. In 2006, Zillmer et al. [57]
showed that LIF networks with weakly diluted connectivity indeed have a negative maximum
Lyapunov exponent. In [58], they also showed for such diluted networks, the transient time to
reach the periodic attractor diverges with system size (here the number of neurons, N) and
that conventionally chaotic dynamics can exist when the coupling is substituted for temporally
extended synaptic interactions (in this case exponential decay). This diverging transient time
was also shown for collective states in which clusters of neurons are synchronized (socalled
cluster states) produced by a weak 1/K-scaling of the synaptic strength, where K is the average
number of inputs to a cell. These transients diverge with system size as they were also found
to do in DCA and CMLs. In spiking networks, they are also longest at intermediate K/N
[59]. Realizations for which the stationary limit cycle attractor is reached become increasingly

20




2.2 Introduction

infrequent (even for N < 50) when the in-degree is not fixed. It is likely that this additional
disorder in the connectivity makes the transient time even longer.

Later, Jahnke et al. [60, 13] derived the linear stability of orbits, both during the transient
and once in the asymptotic periodic orbit. This was done for the more general case of synaptic
delays and arbitrary connectivity under the restriction that the sequence is unchanged. They
also show that the stability is robust to small amounts of both excitation and temporal width of
the synaptic interaction. They give examples of sensitivity to perturbations for larger synaptic
width in both the periodic orbit and transient. The key property in the derivation of stability
is the self-averaging of the spike time deviations across a spike because of the concavity of the
Phase Response Curve (PRC) that we extensively discuss in this chapter. The result relies
on the irregular nature of the activity. The inference of periodicity is then implicit from this
stability and the bounds on the accessible region of the phase space. This latter fact arises
as a consequence of the pure inhibition: a finite firing rate requires an upper bound on the
total amount of presynaptic inhibition so that voltages almost never get kicked below some
value. The spike times of two same-sized sub-sequences become more and more alike over their
duration because of the stability and thus are more and more likely with the sub-sequence
length to generate the same sequence afterward, , and since they must eventually repeat, this
gives the convergence of arbitrary irregular spike sequences to periodic orbits.

The notion of margin was introduced by Jin [56] and extensively applied in Jahnke et al’s
work[60, 13]. The margin is an upper bound on the size of spike time differences between the
perturbed and unperturbed trajectories that do not change the order of the spike sequence. If
the strength of a perturbation applied to the network state is such that the deviations stay
below this margin, then the network sequence remains unchanged. The margin thus repre-
sents a statistical boundary between stable and unstable dynamics. Monteforte and Wolf [12]
complemented this work with a stability analysis to finite-size perturbations, in which they
observed the time series of the distance between the perturbed and unperturbed trajectories.
For sufficiently strong perturbations, the distance exhibits at some time a divergence consistent
with a cascade of spike sequence changes. By applying perturbations in a plane orthogonal
to the trajectory, they also revealed the resulting flux tube character of the attractors, show-
ing numerically that the average size of the basin cross sections scaled as 1/vVKNvT,. An
explanation of this scaling behavior has not be obtained up to now.

The aim this chapter is threefold. First, it provides a more complete phenomenology of the flux
tube-based attractor structure of these systems. Second, it provides a deeper understanding
of the phenomenon through the presentation of a quantitative theory, from which all previous
numerically obtained results and the new ones presented here are analytically obtained. Last,
we apply our theory to obtain a finite-size, finite-time entropy production rate. As the first tan-
gible example of this in neural circuits, we can then explicitly demonstrate their non-negligible
contribution to information processing in such circuits.

Since most of the previous results on the LIF were obtained in the more analytically tractable
phase representation of it, we begin this chapter by exposing the derivation of the important
quantities of that model that we will use throughout the rest of the chapter. Next we obtain a
major remaining phenomenological result: the time dependence of flux tubes. We then present
the notion of discontinuity in the spike time map, presenting some tangible low-dimensional
examples of the resulting flux tubes. We go on to further quantify and then explain the
remaining unexplained properties of the decorrelation events, including the introduction of the
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notion of the perturbation recall time. Finally, we present the notion of a fraction of restored
perturbations and bring together the knowledge presented in the previous sections to derive this
function analytically. This central quantity sets the characteristic size of the partition naturally
imbedded in the dynamics of the network. Using this result, we then define and calculate the
finite-size entropy production rate. We close the section with an outlook of how the features
discussed herein generalize to models with more structure than the LIF, foreshadowing the next
chapter.

2.3 The Leaky Integrate-and-Fire (LIF) model

The majority of the research on stable chaos has focused on the dynamics of inhibitory Leaky
Integrate-and-Fire (LIF) networks. The dynamical evolution of the voltage, v, in the LIF is
state-dependent,

Tvi}i = + [rheo + Ieact + Jiij Z 6(t - ti)
JjeEpre(),k

where I}, is the socalled rheobase current, the minimum necessary to bring the neuron to
threshold; I.,; > 0 is a constant external current drive controlling the firing rate; J;; = JA;;
summarizes the state-independent coupling strength, J < 0, for existing connections specified
by the binary adjacency matrix, A;;; 7, is the membrane time constant; and ti is the kth input
spike from presynaptic neuron j. The delta-function input means that the voltage undergoes a
discontinuous jump of size |.J| across an input spike time. As the integrated voltage across an
input spike, J can be interpreted as the charge distributed to the post synaptic neuron. I,
appears simply to offset the current so that the onset of spiking is at the origin. The continuous
dynamics is augmented by a spike-and-reset criteria such that whenever the voltage crosses a
threshold, v; > vy, it is reset, v; = vg. For the LIF, I,,., = vy. We consider a rescaled voltage
such that vr = 1 and vg = 0. The state space is then (—oo, vy]. The LIF is the only invertible
model considered in this thesis: the threshold crossing time can be solved for explicitly using
the voltage solution. Event-based simulation methods for the LIF are thus straightforward.

Another consequence of the invertability is the existence of a phase representation. When
allowed to freely evolve under the external drive but in the absence of recurrent input, the LIF
fires periodically with a period , T,¢.. There is a one-to-one mapping between the state of the
voltage, v, and the relative temporal position along a period of free evolution. This is known as
the phase of the orbit, ¢, a conventionally circular variable with ¢ € [0, 1]. Here, ¢ € (—o0, 1]
because inhibition can knock the state below vg.

The system can be re-expressed such that the state-dependence of the voltage dynamics is
absorbed into an effective state-dependent coupling, leaving the dynamics between spiking
events state-independent and thus linear. Recast in this phase representation, the dynamics
are

¢i =T+ Y. PRC(¢i(t))

JEpre(),k

where the state-dependent coupling is expressed in the form of the Phase Resetting Curve
(PRC), Z(¢), which gives the change in phase when the phase at the time of the reception of
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a pulse is ¢,
Z(¢)=¢" — ¢~

where 4 superscripts denote the limiting value on each side of the event. A natural function
composed from the PRC is the Phase Transition Curve (PTC), Y (¢),

Y(¢) ="+ Z(9) (2.1)
Y(¢) =o¢"

that maps a phase across an input event.

In this chapter, we deal with flux tubes exclusively in the phase representation of the inhibitory
networks of the LIF neuron model and we derive the LIF PRC and some additional results
used herein.

Since we focus on inhibitory LIF networks in the balance state, the appropriate parameter
settings are J = —JO/\/KEquation 1.5, Jo > 0, and I,,; = V' KIyEquation 1.6, and the balance
equation is Equation 1.7, v = Iy/Jy7,, so that a firing rate v can be achieved with a current
estimate [y =~ Jyvt, that becomes increasingly good with larger K. In the absence of recurrent
input, when the model is solved from the reset to threshold voltage and inverted, one obtains,

1 1
— for K > 1 2.2
\/K]()) VK Joi 22)

Ttree = Ty 1In (1 +

where we have used the balance equation. The phase of the neuron then reads

Ty

v
SR WY
¢ Tfree n( 1+\/FIO>

The reverse transformation from phase to voltage is

o(0) = (14 VEL) (1- 5

¢
= (1+VKI) (1— <1+\/%IO> )
= (1 + \/%I() ¢+ O(K™)

The phase response curve, Z(¢), is then

T g Three Jo N
Z(9) = Ttree o (6 * VEK(1+ \/F10)> ¢
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The derivative of the PRC is:

1
Z'(¢) = - T 1L (2.3)
0 I
1+ \/?(1+\/?10)6
= ! 1 (2.4)

¢
Ji 1
1+ \/F(1+O\/Ffo) (1 T \/?Io)

with Y'(¢) = 14 Z'(¢). Z'(¢) becomes independent of the phase in the large K-limit:

Jo Jo(1—9) 9
! —t— .
Z'(¢) = KT~ KD +0(K2)
1 1—¢
=— - O (K2
Kvr,  JoK3/21272 + ( )
Kz?l . 1
Kvr,

due to the linearization of the spike time change with vanishing J o« 1/v/ K. Event-based
network simulations of this model require the next spike time, obtained simply by

=t,_ i 1—0;(ts_1)T .
2fs ts 1+Z€{I1I}II}N}[ ¢z(ts 1) free/Tv]

where s is the index of the network spike sequence. Thus, event-based simulations are simply
made by iterations of a map from just after one spike in the network to just after the next. The
map consists of evolving the phases to the next spike time, applying the pulse to the postsy-
naptic neurons via the PRC, and then resetting the spiking neuron. The map is formulated as
the composition of these three functions. The Jacobian of this map is then used to compute the
Lyapunov spectrum. It is a sparse matrix with unit-valued diagonal entries and Y’(¢;) entries
along the column corresponding to the spiking neuron. In the next chapter, we go through the
details of this semi-analytical method in a new application of it to a different neuron model.

Using this method, Monteforte computed the Lyapunov spectra for inhibitory LIF networksFigure 2.1(a).
It is negative-definite with a maximum, e, ~ —7; ' + O(1/VK).
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Figure 2.1: The known LIF flux tube phenomenology from [12]. (a) The Lyapunov spectrum
as a function of K and N. (b) Three distance times series examples for a relatively small,
intermediate, and large perturbation strength, respectively. (c) A cross section of the phase
space showing the cross sections of the flux tubes. (d) The schematic summary: perturbations
within a tube decay at a rate of the maximum Lyapunov exponent, A,q, = 7, . Neighboring
tubes separate at a rate of the pseudo Lyapunov exponent, A\, = Kv. The characteristic size
of the tubes, €, scales as 1/vVKNuv.

The mean Lyapunov exponent, \,con = % ZZN A, is then also negative in these dissipative
systems and so gives the time-averaged exponential rate of contraction of the phase space.

Using this latter definition, it can be calculated as
A _ ! li ! 1 det } D(t 2.5
mean — NSLI?OE og € H ( s’) ( . )

s'=1

where D is the Jacobian of the network spike map evaluated at network states along any tra-
jectory. The random matrix approximation of A, is obtained by assuming the Jacobians
to be random matrices of the same form with independent and identically distributed random
elements obtained from the function Y’(¢) and the distribution of ¢. The probability distribu-
tion of ¢, p(¢) = p(v(¢))v'(¢), is determined by the stationary membrane potential distribution
p(v) in the network [39],

B UTy _lemp? erfi (”Tf’i) — erfi (%‘i) v > VR
plv) =vr e { erﬁ(u)—erﬁ(w) v < VR }

[

(2.6)

g

where ¢ and o are the mean and standard deviation of the input current and erfi is the imaginary
error function. p(v) can be solved self-consistently with p = Ijeo + VEK(Iy — Jov7,) and
o7 = Jivr,. Iy is set by the normalization condition 1 = [ p(v)dv. Since, on average, there are
K postsynaptic neurons, the determinant has about K factors, each of which is Y’ (¢), and so
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Equation 2.5 reduces to
M % N5 [ 10 (Y(0)¥) p(0)d0
= K7 [In (14 2(0) plo (@)’ (9)do

Substituting the expressions for Z’(¢) and v'(¢) and noting that both approach constant func-
tions of ¢ for large K, we can expand both in K and use the linear proportionality between v
and ¢ in this limit to integrate the p(v(¢)) to unity,

1
_ Jo Jo(1 — ¢)

Mmean ~ K In{1-— — d
V/O n< K, K3/2.7§ p((/ﬁ) o)

! 1 1—¢
= kv /0 (‘ Kiry, J0K3/2u273> p(9)do

1 1
)\mean Kf%lN -——+4+0 <> 2.7
n TO\VR 2D

We note that p (¢) will also contribute terms at O (#)

Monteforte also performed a finite-size perturbation analysis. First, a single spike perturbations
were performed by removing a single spike and the resulting distance

Dot) = = 3 165(0) — ou(1) (28)

between the unperturbed, &(t), and perturbed, gg*(t), trajectories was observed. The distance
diverged exponentially with time at a rate Kv and in steps that appeared to be changes in spike
sequence between the two trajectories. Next, the authors applied a set of random perturbations
(each of a form 655, obtained from a set of directions, each with the vector norm, 3=, d¢? = 1,
and set of sizes) to a sequence of well-separated states on a trajectory on the attractor and then
observed the ensuing distance time series. Small perturbations lead to an exponentially decaying
distance, while large perturbations lead to a diverging distance Figure 2.1(b). For intermediate
strengths, either of the two occurred depending on the perturbation direction, size, and the
state being perturbed. The fraction of perturbations in which divergence occured, called in [12]

the probability of separation, P;(e), saturated exponentially in € with a characteristic size, €y,
that scaled as 1/vVKNw.

The underlying flux tube phase space structure responsible for this behavior was revealed by
mapping a portion of the phase space larger than the intermediate perturbation strength. Simu-
lations were performed from initial conditions in a plane spanned by two random N-dimensional
vectors orthonormal to the trajectory. Adjacent initial conditions were colored the same if the
distance between them decayed, otherwise they were colored differently Figure 2.1(c). The char-
acteristic size of the cross sections of the tubes was obtained and conformed to €. From these
results, the authors provide a summarizing schematic illustration, shown here in Figure 2.1(d).
With nothing known about the shape of flux tubes, the picture in Figure 2.1(d) leaves a lot to
the imagination. We begin the presentation of our results by revealing this shape.
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2.4 The time-dependence of flux tubes

The flux tube properties studied up to now have been restricted to those associated with
perturbations around a given point along a trajectory. Nevertheless, as both the choice of
the word tube and the schematic illustration Figure 2.1(d) suggest, these structures are locally
time-dependent, in the sense that their geometry to the stable trajectory contained within each
one of them changes as the state evolves along this trajectory. In this section, we measure these
temporal properties, confirming some expectations and revealing some unexpected features.

To get an illustration of this time dependence, we study the evolution of 2D cross sections. We
first describe the algorithm used to obtain this data set.

For each spike time, a cross section was created as follows. A rectilinear grid of initial conditions
were generated in a plane spanned by two random vectors orthogonal to the trajectory. In the
phase representation, this trajectory vector is the vector with all elements equaling 1. The
network was evolved from this set of initial conditions up to some future spike time chosen
well beyond the characteristic range of the decorrelation events at which the end state was
stored. Large jumps across elements in the matrix of end states were used to identify possible
boundaries between tubes. A tube identity was assigned to each region enclosed by these
boundaries. As a check, the end state of the center of mass of each putative tube was compared
pairwise with all others to ensure each tube was distinct. Tubes were joined if these fell below
a threshold of difference 0.01.

This algorithm was then repeated to obtain a set of successive cross sections orthogonal to and
centered on the stable trajectory. To present this data, these cross sections are placed in a third
dimension representing time giving a 2+1D representation of the tube and its neighborhood
along the stable trajectory within it. The identity of the center tube is trivially maintained
across sections since the (0,0) perturbation leaves the stable trajectory unchanged. To keep
track of the identities of the surrounding tubes represented in the successive sections requires
an identity list passed forward and updated from section to section. We constructed such a list
by comparing the long term state of trajectories initiated at the center of mass of all cells of
the previous and current cross sections and identifying successive cells as coming from the same
tube if the norm of the difference of their long term states fell below a threshold. Identities
are added when a current cell has no match in the previous section corresponding to the event
of a new tube entering the section. Identities are removed when a cell in the previous section
has no match in the current section corresponding to the event of an existing tube leaving the
section. Then we used this identity list to color the cells, using an adaptive color assignment
scheme in order to keep the range of colors reasonably bounded. This scheme assigned unused
colors, orphaned from tubes that had exited the section, to the cells of new tubes that had
entered the section.

An interval of tube assembled in this way is shown in Figure 2.2(a), with the full cross section
at the two endpoints of the interval shown. A subset of sections are also shown in the top-right
corner of the pages of this chapter, so that the reader may, by flipping the pages, observe the
cross-section dynamics. We also note that the sectionsWe made a few observations about the
center tube’s structure that also apply to all tubes in the section. First, the boundaries are
formed by sets of straight lines. Second, the location of these lines is fixed between spikes.
Third, there is an overall contraction of the center cell across most spikes. There is also a
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movement of boundary lines that is temporally correlated. The decrease in the tube diameter
appears to be punctuated by an immediate growth of the tube at some spike.
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Figure 2.2: An example flux tube. Shapes of flux tubes are irregular. (a) a 241D section of
tube over an interval of 150ms. (b) and (c) show the 1+1D €)- and éx-section of the same
tube showing decay punctuated by jumps. (d) The time series of the area of the tube cross
section.

A 1+1D representation from the x- and y-axes of the representation is shown in Figure 2.2(b)
and (c). Note that the distance exhibits an exponential-like decay at the rate of the Lyapunov
exponent which is punctuated by jumps. There is a stochastic character the dynamics, but it is
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likely a result of the 1 dimensional projection. For example, the bounding lines move through
the space smoothly but the change in identity in the 1D projection occurs at times that appear
random. The 2D area dynamics (Figure 2.2d) behaves similarly. We will be able to make a
qualitative explanation of the shape of this profile once we determine the microscopic origin of
the decorrelation cascade in section 2.6.A pertinent question about the neighboring tubes is if
they are really distinct. Here we show the negative result of no local recurrence of flux tubes
within a large simulated time window. In Figure 2.3, is a 2D section providing a profile of the
evolution along and traverse to the trajectory. The flux tube undergoes a series of jumps away
from its original position at ¢ = 0, never to return, at least for the long simulation window
used. This structure is complicated by the high number of dimensions. Next the instructive
results with some low dimensional flux tube examples are given.

Figure 2.3: Flux tubes do not appear to return to their local neighborhood. Shown is a
projection of the trajectory along the trajectory vector, & and a direction orthogonal to it,
and with the origin (0,0) set at the initial condition. The ensuing trajectory evolves parallel
with the main diagonal and towards larger values of || between spike times where the state
jumps away from the initial condition while jumping from the threshold manifold to the reset
manifold in this N-dimensional space. (N = 200, K = 100)

2.5 Low-dimensional flux tube examples

We can gain some intuition about flux tubes in many dimensions by observing how their
properties behave in low dimensions. We apply the same procedure in each case of dimension
n: draw the basin boundaries of the dynamics of dimension n — 1 and some trajectories. These
trajectories and the basin boundaries extend parallel to the main diagonal. Thus, we remove
the uninformative evolution between spikes by projecting the space down onto the subspace
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perpendicular to the main diagonal. This is the same as the projection onto that plane of the
Poincare section through the reset manifold used in the event-based simulations.

For n = 2, the basin boundaries are lines, which when projected appear as points. There is
only one tube in this case (Figure 2.4).

No Proj Proj to N-1 Proj to N-2 Proj to 2

Q)

) none
Dim=2
Dim=3
Dim=4 not
accessible
Dim=N

Figure 2.4: Flux tubes in low dimensions. The number of neurons, NN, considered increases
with the row. The first column is the full N-dimensional space. For N = 2, the trajectories
are colored with time from blue to red and shown only within the Poincare section at the
reset manifold, with corresponding attractor basins of different attractors shaded differently.
Successive columns show successive projections of the space orthogonal to the main diagonal
as discussed in the text.

For n = 3, we apply the same procedure. The basin boundaries are now planes which project
down to equal-angle lines forming a regular hexagon (with additional regions for trajectories
with any states below the reset obtained by extending the lines outward). There are now two
tubes, each with isolated regions within the projection of the cube. There are two tubes because
there are, in the case of no repetitions as is the case here since all neurons fire periodically at
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the same rate, only two relative orderings of 3 distinct elements: 123 and 132. The stable
dynamics around each of the two limit cycles is clearly visible.

For n = 4, the basin boundary is a 3-dimensional object. In particular, the projection of a
n = 4 hypercube is a rhombic dodecahedron, with one of its 4-edge vertices coincident with
(p1, P2, P3, 04) = (1,1,1,1) point. There are now (3 — 1)! = 6 number of tubes.

Diluting the connectivity in the n = 3 case keeps the basin boundaries fixed but moves the
fixed points of the map within their respective basins of attraction. Why is this so and what
generates the basin boundaries in the first place?

2.6 Decorrelation event analysis and implications

In this section, we examine the nature of the decorrelation events that precipitate the divergence
in the distance time series. Monteforte and Wolf conjectured from the assumption of the non-
commutativity of the spike sequence, that the boundaries between tubes represented trajectories
that lead, at some point in time, to synchronous spikes in pairs of neurons. Indeed, the change
in spike sequence has been used in many works (e.g. the margin in [13]) as a upper bound
to perturbations leading to a stable response. Whether a change in sequence invariably leads
to instability and the onset of the rapid increase in the distance between the perturbed and
unperturbed trajectories was not yet known. Here, we proceed to refine and confirm this
conjecture. We then show that once a pair of spikes become coincident, a cascade of sequence
changes ensues. Finally, we also show that the exponential rate of the divergence satisfies
A = K.

2.6.1 LIF decorrelation event idea as a crossing event

We find that the relevant scenario of study regardless of neuron model is when an input spike
time, t;,, from a presynaptic neuron n;, occurs as the voltage of the postsynaptic neuron, n,,
is near threshold. Assume first that ¢;, occurs late in this window so that the threshold is
crossed by the voltage, and an output spike is generated at a time, ¢y, < t;,(see Figure 2.5). If
tin < tout, however, the inhibition will in general delay t,,; relative to its value in the t,,; < t;,
case, and the dependence of the delay on t;, can be strong. If the coupling is pulsed, ..
undergoes a jump forward. For the purposes of this section, let us define time relative to ..
before the jumping event occurs. If this scenario arises as a result of a perturbation, it is
the sharp change in the spike time map as a function of perturbation strength that must be
considered. For asymmetric coupling, A, ., n:. © Aninng = 0, there are two cases, depending on
whether the spike jump event is approached by an input spike moving forward, dt;,/de > 0,
or backward, dt;,/de < 0, over t,,;. We will call such cases forward- and backward-connected,
respectively. We define the critical perturbation strength, €*, as that where the jump appears.
In the forward case, the interval vanishes, t;, — 0T, for € — €**, i.e. just after the crossing.
In the backward case, the vanishing interval, ¢;, — 0%, occurs as € — €¢*7, i.e. just before
the crossing. For either case, when on the side where the interval is vanishing, the input spike
occurs after the output spike, ¢;, > 0. In the two asymmetric cases, only one of the pair of spikes
undergoes a jump of size Atjym,p, Which we compute for the LIF below. In contrast, if the two
neurons are coupled symmetrically, they both undergo a jump of size At;ym,, simultaneously,
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by which they exchange spike times, and so no vanishing interval exists. We assert and later
show that all three of these cases induce a decorrelation of the network microstate.

(a) (b)
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Figure 2.5: Discontinuous jumps in the spike time. (a) A discontinuous jump in the spike
time, t,u, of a post synaptic neuron occurs from t,,, to t}, as an input spike time, t;,,
crosses it moving to the left. Adapted from [61]. (b) Suppose that as the perturbation
strength, |€], is increased t;, moves left relative to t_,;. t.u then undergoes a discontinuous
jump of average size At. ~ (Kv)™! at some critical €*.

The situation of an inhibitory event at threshold can be investigated for many neuron models.
Since the LIF solution is invertible, one can explicitly calculate the time, Atgyqy, that the
inhibitory event has delayed the spike. For the LIF,

Ate
T

V;fhr = Ie:r:t - ((Iext - V;fhr) + J) e ™

J
Atgelay = T In (1 + ———— 2.
detay B n( +Iezt_v;€h'r> ( 9)

With an accuracy determined by the accuracy of the balance equation Equation 1.7, we can
plug these expressions into Equation 2.9 which gives At ~ 7 In (1 + (K DTm)il) ~ (K 17)71,
for large K > 1. Note the independence of At;ym, on Jy for this choice of J , so that we would
not expect stable chaos to depend strongly on Jj.

2.6.2 Confirmation of conjectured decorrelation event properties

We computed an ensemble (n = 10 realizations of the connectivity) of pairs of trajectories of the
network state measured at the spike times with and without a given perturbation. Measuring at
spike times removes any global contribution to the perturbation, which is in any case 0 because
the perturbation was applied perpendicular to the trajectory so that perturbation strength
could be interpreted as a measure of change in relative spike times of the resulting perturbed
spike sequence. We use the distance measure from [12], Equation 2.8. Each simulation began
with a warmup period from the initial condition so that the network state could relax onto
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2.6 Decorrelation event analysis and implications

the balanced state attractor before applying the perturbation at ¢ = 0 and 50. For a given
perturbation direction, d¢ we obtained the critical perturbation size, €*in that direction. This
was achieved though a bisection method, in which the initial estimate of €*, ¢ = €5 was
bounded by €}, = 107 - €, and €, = 1. € was refined based on a divergence flag on the
final distance at time T,

if Dﬁi (T) > Dthresh s then EZigh = 6:

else €, = €

Then a bisection step was then made

p— 6zkow + 6Itigh

1+1 2
The procedure was repeated until the differences in successive values of € fell below a tolerance
threshold, tol = 107!, and the final estimate taken as €*. A pair of runs were then simulated
using a perturbation strength just above, €, and just below, ¢*~, this estimate. From the

simulation started at q;o + et 525, the decorrelation index, s*, was extracted as the index in
the spike sequence at which a sustained difference between the pair of sequences began.

10 , , . (d)

tolerance

20 =10 0 10 20

Figure 2.6: Distance divergence begins where the spike sequence begins to differ. (a) A small
window of the distance time series aligned to index, s*, at which the decorrelation of the
spike sequence begins. The perturbed trajectory started from ¢** (red) jumps up from the
unperturbed trajectory for *~(blue) at s*. (b) and (c) are the sequence intervals ts1 — t
obtained from trajectories for € = ¢** and € = €*~, respectively. Sequences where ny is not
a back-connected neuron have been greyed out. (d) Coincidence of successive spikes with
increasing precision (decreasing tolerance) of the bisection algorithm used to find €*.

We first show that the sustained jump in distance begins at s* by aligning all trial pairs of
distance time series, D.+(s) by the decorrelation index. The result, in Figure 2.6(a) shows
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Chapter 2 Elements of a theory of stable chaos in neural networks

the high correlation. In Figure 2.6(b) and (c) we see that the spike time interval, tg; — ¢4
corresponding to s* before (¢*7) and after (¢*7) the crossing event, respectively, vanishes only
when A, ... .1 = L. g1 —te scales inversely with the precision of the bisection algorithm used
to obtain €*, demonstrating that the event is indeed an exact coincidence of spikes, tg11 = s
(see Figure 2.6d).

2.6.3 Inevitable cascade and the pseudo Lyapunov exponent

Monteforte studied the diverging distance time series for spike failures. He found that during
the rise occurring directly after the failure, this distance is characterized by equal upward steps
of 2JovV'K /N, the expected change in the distance due to a jump of Jy/ VK in K postsynaptic
partners in both the unperturbed and perturbed trajectory. From the times of these step events,
tn, he numerically computed the pseudo-Lyapunov exponent, A, as the exponential rate of the
rise via A, =t *logn ~ Kv. Given the above description we now assert that these jumps in
distance are associated with crossing events and use this understanding to analytically show
first that an exponentially growing cascade of spike sequence changes is guaranteed for these
networks once a € > €*. Following this, we give an analytical calculation of \,.

Whether or not a crossing event directly induces another discontinuous jump in spike times
depends on how large the spike time shift (derived in the above description as Atgejay ~ (Kv)™1)
is relative to the average interval between susceptible spikes, i.e. those from neurons that are
asymmetrically connected to the neuron whose spike time has changed. The rate of spikes in the
network is N7, so the average interval between any two successive spikes is (INSI) = (Nv) ™.
Thus, a number of approximately (K7)™'/(N#)™' = N/K spikes will be crossed during a
time of (K7)~1. Of those, on average a fraction p will have an asymmetric connection, where
p = K/N, Equation 1.4. We can then state the probability of that the crossing event induces
another jump in spike time,

p sclics)(szzglt%b?i _ Z ( crossed spike is )
. a susceptible spike
spike spikes crossed
over jump
N K
“K'N
~ O(1)

Under the assumption of Poisson spiking, we can be a bit more precise. The probability of a

spike in an interval of size (Kv)™! is

(Kp)=1! o
P(spike in (Kv)™!) = / ve "t dt’
0

=1—e VK,
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2.7 K-dependence of A4

Then for all post synaptic neurons, numbering K on average,

P(any post-syn. neuron spikes in (K7) ') = K P(spike in (K7)™')
=K (1 — e’l/K)

:K<1—<1—[1(+21K2+(’)(K‘3))>

1 _
:1—ﬁ+o(f< )

and so for large K, another crossing event becomes increasingly certain. The same argument
applies to the change in spike time of the affected spike, and so on. Thus, in these balanced
LIF networks, once a crossing event has occurred, it is guaranteed that a subsequent cascade
of crossing events ensues and progressively alters the spike sequence. Since all the future spikes
of any neuron involved in such a crossing event are all shifted by at least (K7)™!, and since
this neuron spikes at a rate v and has K synaptic partners, this neuron then contributes a rate
Kv of crossing events after its first. Any event process whose rate depends on the number of
events exhibits a diverging rate. Formally, for a particular realization, neurons will be swept
up into the cascade in a specific sequence that we order by n and at specific times relative
to the onset of the cascade that we denote ¢,. Thus, the total rate of crossing events once
a number, n, of neurons have been involved is nKv. An estimate for the interval, ¢, — ¢,,_1,
between the times at which successive neurons join the cascade is then roughly the inverse of
the rate at that event ~ (nK7)~". Using n~' ~ log(1 — L)1 for n > 1, we can then write
tn — a1 ~ (KD) 'log(l — 1)~ which can be rearranged as n/(n — 1) = eX7tn=t-1)_ Since
the entry of any neuron to the cascade brings a jump of equal height in the distance away from
the unperturbed trajectory, we infer up to some initial constant and a scaling factor that the
distance at time ¢, is n oc e so that the increase in the distance is exponential with a rate
of Kv. Monteforte computed A\, = i log n numerically from actual distance time series and
found this result.

2.7 K-dependence of )\,

Why is A\jee < 07 It has long been known that it is a consequence of the contractive nature of
the LIF PTC Figure 2.7(a), such that differences in phases between two replicates are reduced
across an input spike.

Perturbations to a silent, isolated neuron decay with the relaxation time of the voltage, 7.
If the neuron is driven to fire periodically and is perturbed, the distance between the two
trajectories again decays as 7, but undergoes jumps at spike times such that the distance time
series is periodic because the perturbed trajectory is a time-shifted version of the unperturbed
trajectory.
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Figure 2.7: K-dependent, stable network dynamics explained from single neuron PRC. (a)
The contracting nature of inhibitory LIF map. Shown is the inhibitory LIF Phase Transition
CurveEquation 2.1. Note that phase differences get contracted across an iteration of the
map due to its concavity. (b) LIF PRC concavity reduces with K as a linearization with
the synaptic pulse strength, J o 1/\/? Shown is the LIF PRC for K = 50, 200, 800, 6400,
and normalized to the value at ¢ = 1. (c¢) Deviation of distance decay time scale A4z
from the relaxation time of single neuron dynamics, 7, (blue dashed line), due to upward
bias of return values after a period of spike sequence misalignment between perturbed and
unperturbed trajectories. The bias is due to the concavity of the LIF PRC.

This is more obvious when considering the same scenario in the phase representation. For a
recurrent network, however, the results for \,cqn and \,,q. deviate from 7,, but approach it in
the limit X' — oo. For finite K, the decay of perturbations in the recurrent network is slowed
relative those in isolated neurons, |Ana:| < 7, '. How can we understand this K-dependence?
Consider two replicate trajectories initially separated by a small distance Dy. With reference to
Figure 2.7(b), we know that between spikes, the neurons relax exponentially at the same rate,
Tv, to the same fixed point so that the evolution of the distance between the two replicates will
then also simply exhibit exponential decay at a rate 7,. The different initial states between
the two replicates will, however, lead to slightly offset spike times between the two, where for
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a particular spike in the sequence, one replicate spikes first and the other one a little later. At
the time of the spike in the first replicate, the distance jumps by an amount oc K \‘/]—OE = VK J,.
While the distance comes back down upon realignment of the spike sequence, it does so at
a slightly different value than if there had been no mismatch, due to the different effect that
input spikes have (captured by the PRC) depending on the state of the receiving neuron, which
is slightly different for the two replicates. While the difference can be positive or negative,
its mean for the LIF is slightly positive so that the decay of the distance relative to the rate
set by the relaxation time of the single neuron voltage dynamics is slowed slightly. This finite
K-deviation effect that separates Apyean and A, from —7,71 is a result of the K-dependence
of the coupling strength, J. The PRCs over a broad range of K are shown in Figure 2.7(c).
Note the linearizing effect of small synaptic input on the PRC for larger K, for which the slope
diminishes with v/ K, becoming phase-independent in the limit & — oo. Thus, the deviation
of Mnean and Mg, from —7,° 1 also diminishes with VK and becomes K -independent in this
limit.

2.8 Obtaining the perturbatin recall time from the
decorrelation times

A schematic illustration summarizing the insights of the previous sections is shown in Fig-
ure 2.8(a). Spikes occur at a rate Nv. Perturbations within a tube lead to changes in the spike
times relative to the unperturbed trajectory (grey trajectory). These changes can be large
enough to push two susceptible spikes to become coincident and induce a decorrelation event
at s*. Such spikes occur at a rate Kv. Nevertheless, the perturbation will be exponentially
less likely to lead to a decorrelation event after some characteristic time because the exponen-
tial decay in distance due to the contractive dynamics realigns the spike times between the
perturbed and unperturbed trajectory (blue trajectory). There is thus a characteristic time at
which memory of a supercritical pertubation is recalled.

From a numerically computed ensemble of perturbed trajectories of a given strength, e, over
a set of random directions and initial conditions, we obtained a distribution of decorrelation
times, p.(s*), from the subensemble of perturbed trajectories that exhibit a decorrelation event
from which we extract s* as explained in the previous section. We can define the survival
probability,

Se(s)=1-— /Ospe(s*)ds*

that a perturbation of strength € has yet to lead to a decorrelation event by the s** spike in the
sequence. Sc(s) is near exponential with a characteristic time which we denote s*. On what
does s* depend? Since stronger initial perturbations access a larger set of successive susceptible
spike times so that the probability of reaching one increases, s* scales as e~ ! for € > ey, . It
must then also depend on the rate of such susceptible events, K. We show s* as a function of
K for two different values of € in Figure 2.8. It scales linearly with e~ ! as expected. Its scaling
with the other parameters is non-trivial.

The graded shading in Figure 2.8(a) schematically illustrates the distribution of recall times.
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Figure 2.8: The perturbation recall time. (a) A schematic representation of what future be-
havior determines a flux tube boundary . Within the spike sequence where spikes occur at
a rate Nv, there are spikes from neurons that are connected (black) occurring at a rate Kv,
and those that are not (grey). The distance decays exponentially with A,,.,. A subcritical
perturbation, ¢ = €* (blue) to the initial condition (IC) leads to a trajectory (blue) that
decays exponentially to unperturbed trajectory (grey) at a rate A\,... A supercritical per-
turbation, € = €’ (orange) leads to a trajectory (orange) that initially decays exponentially,
but then begins to diverge at a spike s*. The red dashed line denotes the flux tube boundary
near the time of the perturbation, but with change due to the contraction of the shape.
(b) The perturbation recall time of the LIF for N = 10%. The survival probability, S(s) is
nearly exponential with characteristic index, s*.(Solid line is an exponential fit giving the
characteristic decorrelation index, s* = 131.1+2.7. (c) s* varies with e '. € = 2x107% (lower
curve), € = 1x1073(upper curve).

s* is a temporal analogue of €. Susceptible spikes in the local area of the state on the reset
manifold can be approached by the perturbed trajectory directly by perturbations in phase
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space orthogonal to the trajectory (these define €s,). Susceptible spikes can also be approached
by the perturbed trajectory, when such perturbations are along the trajectory, whose global
shift of the spike times simply advances the state along the trajectory (these define s*).

We can now explain the shape of the tubes from Figure 2.2. The fact that the punctuated
jumps are shared among all of the time series in Figure 2.2 is no coincidence. The obvious
inference is that there are sets of specific pairs of spikes distributed around the unperturbed
trajectory that, due to their proximity to one another and the identity of their neurons, are the
relevant decorrelating pair of the local neighborhood. The source of the observed decay of the
tube size with time is now clear: as the network state approaches one of these fixed-in-time,
decorrelating pair, the critical perturbation size decays with the decay of the distance from
the previous critical perturbation strength. Indeed, the contractive dynamics means that the
previous critical perturbation strength applied just later is more than sufficient, meaning that
a lower value is possible, and thus the decay. When the state of the network evolves past one of
these decorrelating pairs, the next decorrelating pair becomes the one defining the size of the
boundary at that time. Since this pair resides at some time in the future, the size of the tube
undergoes a jump upwards such that the perturbation, once evolved to that next event, will be
sufficiently large to induce a crossing there. This profile of exponential decay punctuated by
jumps is clear from the set of distance time series shown in Figure 2.9.

100 T T T

0 50 100 150 200 250 300 350 400

N

Figure 2.9: Profile of flux tube boundary explained by distance decay punctuated by upward
jumps across decorrelation events. Dashed line is e*mazs/N?.

2.9 Derivation of the fraction of restored perturbations

The final aim in this chapter is to explain a major remaining enigmatic feature of stable chaos:
the particular scaling behavior of the average critical flux tube diameter found by Monteforte
and Wolf in [12], e = (\/KND)_I. To this end, we propose the fraction of restored per-
turbations of a network, fr(e), that measures for a given set of perturbations the fraction of
perturbed trajectories that eventually return to the unperturbed trajectory, as a function of
perturbation strength. For globally stable dynamics, fr(e) = 1, and fr(e) = 6(¢) when the
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dynamics is unstable. For systems that lie in the regime of stable chaos, fr(€) varies over finite
€. (This function is equivalent to 1 — Ps(e€), where P (€) is the probability of separation function
considered in [12]. We chose to rename it as a fraction rather than a probability since the set
of perturbations are ultimately a preparation by the observer and so need not be random.)

In pursuit of such a function for spiking networks, we start from the main observation that
for a successive pair of spikes coming from backward-connected neurons (see subsection 2.6.1),
the vanishing of their inter-spike interval by a perturbation almost always causes a subsequent
decorrelation of the network’s microstate. More formally, consider a given, random perturbation
to such a network of N neurons at perturbation time ty,. The original, unperturbed spike
sequence after ty is denoted here as S = niny...ns... where each element is a neuron label
ns € {1,...,N} whose associated spike time at that point in the sequence is ts. We set
the reference time ¢y, = 0. For every perturbation strength, e, in the given direction, the
corresponding perturbed spike time sequence, {t';(€)}, can be denoted similarly. Monteforte &
Wolf’s work [12] implies the existence of a critical perturbation size, hereafter denoted €*, for
each activity pattern in the network generated by the realization of the underlying connectivity
that the authors expected to be the weakest perturbation for which a pair of successive spikes
in the perturbed spike sequence becomes coincident in time, i.e. for which ¢, (¢*) —t_(¢*) =0
for some s. Note that for € < €*, S = S’. Based on the conclusions of the previous sections, we
amend their conjecture and raise it to a definition by adding that the synchronous pair must
be asymmetrically back-connected, and that decorrelation can also occur for forward-connected
neurons, though in this case it occurs when the pair of spikes are separated by a finite amount
as explained above. It also occurs when the neurons from successive spikes are symmetrically
connected, though this occurs with reduced relative frequency p ~ K/N, compared to the other
two cases.

2.9.1 A flag function for decorrelation events

The vanishing of the interval is a well-defined event that can be flagged while observing how
the sequence of Inter Spike Intervals (ISIs) of the compound spike train of the network change
under a perturbation. From observed spikes within some window of length, T, we define the
flag function,

*
s—1 € <e<el

ts+1_ts

(@) e (i)
fr(e) = (2.10)

0 , otherwise

whose smallest positive and negative zero,denoted, €7 > 0 and €* < 0, respectively, flag the 1st
vanishing ISI event of the network spike sequence for the smallest € in each direction of € and
where the exponent includes elements of the binary adjacency matrix element, A;;, denoting a
connection from neuron j to neuron 7, that appears to remove any factor for successive spikes
coming from neurons that are not backward-connected. M is the number of spikes in the
window [0, 7]. In practice, we set the window to begin at the perturbation time and chose it
to be large compared to the decorrelation time Sgecorr, SO that it likely contains the majority of
decorrelation events (which according to the previous section are distributed exponentially so
an order of magnitude larger than Sgec..- suffices).
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For a fixed random perturbation direction, we compute a sample quenched ensemble of these
functions across realizations of A;; where in the resulting sequence of network spike intervals,
{ts+1—ts}, an interval vanished in both positive and negative € directions (this occurs ~ 3.3 =
of the 1000 trials). We show some examples of f in the Figure 2.10(e). The normalization by
the unperturbed intervals sets f(0) = 1 for all realizations. By the continuity of the dynamics
with respect to the perturbation strength and by the persistent activity, all realizations of f
for which a vanishing IST of the network spike sequence leads to decorrelation must approach
0 from above continuously as € increases away from 0 in both positive and negative directions.
Due to the decorrelation of the spike sequence after this crossing event, each realization of f
is discontinuous at €. They are the critical perturbation strength in each of the two opposite
directions between which each of the fs is smooth and whose difference, € — €*, is the flux

tube diameter in that transversal direction at the time t*.
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Figure 2.10: {c,} contains all information necessary to predict the decorrelation event.N =
1000, K = 100, (240 realizations). (a) Example as-sequence for multiples of an initial
perturbation strength (from white to red). (b) Exponential decay of the ¢y follows the
maximum Lyapunov exponent (black dashed line). The quality of the prediction of the
critical perturbation strength, ¢*, and the spike index, s*, at which it occurs is shown in
(c) and (d), respectively. (e) 10 examples of the function (dots) with the linearized version
defined using the ¢, (lines). (f) A histogram of the critical perturbation strengths p(e*) with
the numerically computed [f(¢)].

Each spike time deviation, 0ty = ts — ts_1, is composed of the deviation caused directly by
the perturbation itself, and the indirect effects of the perturbation via the deviations in the
subsequent input spikes from other neurons in the network. In general these effects can interact
leading to a nonlinear dependence. However, when the perturbation is small, and first-order
effects dominate (this depends on the time from the perturbation and K) the latter deviations
can be disregarded so that the deviation in any one neuron simply contracts with each input
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spike,
s—1 Ao
Sty ~ aze [] (1+d¢g) *"d (2.11)
j=1
where
Ng - €
s = = Tree
« c f

is the projection of the normalized perturbation onto neuron n,, which is then mapped to a time,
using the free period, T't,c., of spiking in the isolated neuron without recurrent input. A, .,

appears to include only neurons presynaptic to neuron ng, d 5 18 shorthand for the derivative
of the PRC Equation 2.3,

d¢g = Z/(¢ns (tj>)

h

evaluated at the phase of the ng neuron at the time of the jt spike in the network spike

sequence, 0t; is the deviation of this jth spike.

We use a random perturbation vector, whose elements are sampled from a distribution with

0 mean. After projecting orthogonal to the main diagonal and renormalizing, we get the unit

vector €/e. We express the nEh component of €/¢ as ﬁﬁns, where we have defined &,, as the

resulting zero mean, unit variance random variable that we will use for the remainder of the
derivation. Thus, we will use

1
Qg = ——=T reeSns
\/N f §
below.

With these definitions, we have

with

s—1

as: = @nsH<1+d¢g)

j=1

Angn;
a (2.12)

Note the notational difference between a, and a,. We confirmed this linear dependence in
direct numerical simulations over multiple values of the perturbation strength, e, from which
we fitted the spike time deviations to obtain a numerical set of as for later use in testing the
analyticsFigure 2.10(a).

Applying the above linearization, dt, &~ ase, to fr, we obtain

M

II (1 + A (1= Auin) “sﬂ—a%)

s=1 ts—l—l - ts
M

fr(e) = JJ (1 —ce)

s=1

fr(e)

Q
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with

Qs41 — Qg
Cot=—Anmp (1= Anin,) .
s+1 = Us

For a given realization of the connectivity, A;;, the simulated network activity provides the net-
work spike intervals, 5,1 —t5, and the as. We can thus simply access the set the ¢; numerically.
In each realization, while varying strongly with s, there was an overall trend to converge to
0 exponentially (Figure 2.10(b)) with s at a rate given by the maximum Lyapunov exponent.
The product thus converges and renders the exact choice of the window 7' irrelevant so long
as it extends beyond the time at which the factors contribute significantly. This linearized
version, dependent only on the set of coefficients {¢,}, stays close to the full function up to the
discontinuities located at its first zeros Figure 2.10(e), whose estimated values are then simply,

-1
€y 1= <msax j:cs> , (2.13)

i.e. the smallest-sized positive and negative e satisfying 1 — c,e = 0. As a check, we confirmed
the linearity of the a, over over €& < € < €. The ¢, can also be used to calculate where in
sequence the decorrelation event occurs via

* Pyp—
53 1= argmax Fc; .

Both these predictions match very well (>99% are exact) (Figure 2.10(c) and (d)), justifying
the focus on a flag function determined by only the set of ¢s. However, the extremum-based
criterion,Equation 2.13, does not lend itself to easy ensemble averaging, which we wish to do
to obtain fr(e). Instead, we turn back to the continuous flag function, fr, whose ensemble
average is better suited for this purpose.

Using the Gauss bracket, [z], = 2O (), we remove the factors in the product for which ce <0
since these never contribute to a decorrelation event, and define the amended function, f7 (¢),

0 =11 (1~ e,

While f; is not symmetric in €, the quantity that will be studied below is, and so for simplicity,
we focus on € > 0, so [cs€], = [cd], €.

2.9.2 Derivation of €y,

Our approach to obtain the average flux tube radius is to identify it as the characteristic

scale of the average of f7 over an ensemble py of random variables on which the set of ¢, are
dependent. The connectivity, A, and spike times,{ts}, appear explicitly in ¢, while there is an

implicit dependence via as on A, &, and the phases at the spike times, {gbs}. In general then,

pPr = pPr (g;Av {tS} ) (gs)
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To more directly obtain this characteristic scale, we take the average of the logarithm of fr in
the limit of small e,

so that the characteristic scale is

v -1
€ft: = lim lz [Cs]+] '
T—o0 |2 pr=pr(EA{ts}.8:)

where we remind the reader that M is the number of spikes observed in the window. To
calculate this ensemble average, we make the following tractable specifications of pr.

We take (1) perturbation vectors,g, with independent and identically Gaussian-distributed com-
ponents,

& € N(0,1).

This symmetry around 0 justifies restricting the analysis to € > 0. We take Erdos-Renyi graph
connectivity with (2) binary elements, A,,,, sampled independent and identically-distributed
with probability of connection,

~ K/N

for fixed in-degree, K. The ensemble of states qgs will exhibit correlations among its components,
and within a component with s, both of which we ignore by taking (3) network states gbl, for all
s, with components sampled iid from the stationary density, p(¢)[39]. The dependence on the
phases will be shown to vanish for the large- K regime we consider, justifying this simplification.
Since the random graph and O (K -1/ 2)-scaling of the coupling strength generate collective
dynamics of low statistical order approaching asynchronous (x ~ 0) and irregular (CV ~ 1)
spiking activity, we approximate (4) spiking events, {ts}, as a Poisson process. As such, its
ensemble can be decomposed into that of (4a) the number of spikes, M = 2,3, ..., satisfying a
renormalized Poisson distribution,

1 ) _
Pr(M) = 2 (NOT)™ (M7 — 1 - NoT) "
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(4b) the set of inter—spike intervals, denoted At = {At, }M ., with the distribution of each
component, At, = t, 1 — ts, of the compound spike sequence rapidly approaches with N an
exponential form with rate N7, p(At,) = Nue N7Ats for all s. The distribution of At is then

M —
— [ Npe v

s=1

Finally, the Poisson approximation implies that (4c) the ensemble of the spiking neuron index

sequence, 7 := ni ...nys, with the distribution of each element uniform across 1,..., N
1
P(ns) = N

and uncorrelated with s. This distribution arises from the Poisson approximation and ignores
the refractory period in single neurons. We come back to the consequences of this simplification
in the discussion.

A and At are independent under the Poisson approximation so their averages can be performed
separately. Thus, pr can be factorized into a product of the subensembles,

pr ~ P(A)p(€) p(d)p (AHM) P (M) Pr (M) .
We will denote the averages with respect to a specific ensemble by square brackets with the

corresponding random variable in the subscript and omit writing the conditioning of At and 7
on M explicitly. We can thus separate the averages as follows,
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for sparse networks, p < 1.

AvAtvﬁuquS‘Ansns+l:lyAnerlnS:l M

Q

We now focus on the average for a given s, leaving the sum over s and averaging over M until the
end. The factor, [a, — a41] ., is independent of At for large K, since it depends additionally
on the perturbation ensemble, while the spike times are determined upon the specification of A,

46



2.9 Derivation of the fraction of restored perturbations

i.e. the connectivity ensemble. These two ensembles are by construction taken independently
of one another. Thus,

[[GS_GS“L ~ [Ats—l}& [[as —~ a8+1]+h,ﬁ,g,$ (2.14)

At L,A*t,ﬁ,g;g

We handle the first, interval average by only considering intervals above a cut-off, At,,;,. We
define the cut-off distribution for all At as

Pt (AL) = NDO(AL — Aty )e NV AEAlmin)

so that the ensemble average can be calculated as

M
/ / H pAtmm (Ats)dAt
5 s=1

— _(At,)dAL,
/OAtpmm( 5)

o0
™
‘Atnnn ZXtS

i o0 1 i
= ND@NVAtmin /A WeiNVAtsd(NDAtS)
tmin s

{At;l} = Nwel /00 1e_ydy
b Y

where we have denoted the lower bound b = NvAt,,;,. The integral becomes independent of
N for fixed b, which we ensure with the scaling At,,;,, o< (Nv)~™'. As a result

At o« Nw

For calculating the second factor of Equation 2.14, {[as — s41] } agy Ve first note that the

dependence on gb arises though the set of d (the slopes of the PRC at the phases of the
respective postsynaptic neurons at spike tlmes) Under the assumption of Poisson spiking,
the d 5 are iid distributed and can be averaged separately. This average, [d (;%}, under the
same assumptions, was already discussed in the calculation of the mean Lyapunov exponent
Equation 2.7. At leading order in K the result is nevertheless phase independent, d o~

+0 (K 1/ 2) obfuscating the need to compute the average, and letting us use

Iezt

J 1
d:=|dy);~ L.  Kour,

The resulting phase independence means we can integrate away the network state average in
Equation 2.14. Secondly, we note that A, , ., never appears so that the conditioning on this
variable does not change the result and we omit it from here on.

Third, we use the fact that since the distribution of as is symmetric around O0-mean ([,]z =0
by construction),

[[as N QSH]J aaé > \/[(as N aS“)Q]A,ﬁ,E'
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-

as is a sum of about s! random variables and so converges rapidly to a Gaussian with s. In
this case the proportionality constant is \/g . We thus need only compute the variance of the
as and its covariance with agy;.

The average of ag can be approximated by

[as]:[anﬁ(ud )’ ]

j=1
1 s—1 1 Ansnj
— _ﬁTfree I:gns] Ll;[l (1 N KDTU> ]

= \/N free |[Sns KﬁTv

1, —1/or,\ ¥ e
\/N free [gns] 1+ K

K>1 1 1\ W (=)
r% _7Tfree [fns] (6 1/ U)N

VN
1 _s—1
ﬁTfree [En.J e N7

where we have assumed Poisson activity statistics. Similiarly, for N > 1 we can show that
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ree —

[[as — &8+1]+:| L N ¢ Nors |

Plugging these results back into the sum,

M M T2
[Z [Cs]+] p o Z pNv }‘\rfee o~ Nom
T

s=1

Recall that M o T — oo. In this case, T > 7, and the bulk of the probability mass of M
lies over a region where sum to be averaged has long saturated and so is effectively a constant
that can be pulled out of the average, leaving the integral of the distribution that integrates to
unity. The result is then simply this saturation value, > 32, e~ — 2NvT, for N > 1. We
now extend the window into the infinite future, and come to an expression for ey,

T—o0 -1
5= pT

€ = lim [i [Csh]_l
Y& (pVNiTp.. (2N07,)) (2.15)
~ ( \/_y\/_\/_JOVNI/TU>_1 (2.16)
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2.9 Derivation of the fraction of restored perturbations

where we have used the definitions Tty ~ I:’;t = \/FlJof/ for K > 1, and J = —Jp/ VK.

This expression matches the scaling behaviour in the numerical studies of [12]. Going beyond
numerics, however, this derivation provides the means to understand how the ingredients of the
model interact to produce €y. Namely, €4 is determined by a product of three factors,

) to conpensate for
time to

. [time]—[4] contraction
sus. spike P — e
M ox YN Prican (2.17)
€ ™~ su ) :
g Tpree A
d
—
VKI J
~ e x VN O % p NG (2.18)
v Ty
graph structure, Tree linear
mean activity stability

In Eq.Equation 2.17, €y is the intuitive product of the distance in time to a susceptible spike,
Atg,, a unit conversion factor from time to N-dimensional phase, and a final factor, |Ayean
(in units of spikes), that scales this critical phase space perturbation size in order to account
for the scaling down due to the contractive dynamics between the time of the perturbation
and the future crossing of the susceptible spike. Substituting for these quantities to obtain
Eq.Equation 2.18, we see that p and the external drive, v/K I, both cancel, leaving e #¢ inde-
pendent of these two a priori important variables (a sensible result due to the small p < 1
limit taken and because the drive contributes via the firing rate which is expressed explicitly).

The insight gained about the scaling arising from the above derivation adds subtlety to the
already subtle nature of the thermodynamic limit of stable chaos in these networks. While
the LIF was found to be linearly stable for finite networks, van Vreeswijk and Sompolinksy
[4] obtained an infinite maximum Lyapunov exponent from a mean field description of the
balanced state of binary spiking neurons. Monteforte correctly point outs [12] that the two
calculations do not have to coincide because they differ in the order in which the large N and
small perturbation size limits are taken. Namely, the LIF result is obtained by taking the limit
of vanishing perturbation size and then looking at large N, while the binary neuron approach
takes the large N and K limit first, and then characterizes the stability through the response
to infinitesimal perturbations. The derivation of the scaling of ¢ in this chapter shows that
its vanishing with network size arises from the spread of a randomly directed perturbation’s
components along the N-dimensions scaling as v/N, losing out to the stronger 1/N scaling of the
average time between spikes in the compound spike train. Indeed, in the thermodynamic limit,
the infinite density means that infinitesmal perturbations are sufficient to induce divergence,
consistent with the result of [62]. In the next chapter, we nevertheless provide evidence that
stable chaos can in principle persist in the large N limit for finite K.

We note that the calculation of €7, presented here could also be carried out over connectivities

ensembles with higher order correlations, so long as the statistical correlations among elements
is specified (e.g. as they are in second-order motifs networks|[63]).
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2.9.3 Conjecture for the function fx(¢)

In the above section, we focused on only obtaining the characterisitic scale, €, of the full
function of the fraction of restored perturbations, fr(e). In line with how I introduced f; (¢),
in this section I provide some additional derivation suggesting the following definition of the
full function,

NS +
frle) = Jim [f#(9)]
This function must be symmetric for a directionally symmetric perturbation set and is bounded
below by 0 by construction. The result of the last section shows that the small-e approximation
of this function is 1 — |e| /es. fr will likely tend with K towards an exponential form over

-1
values around its characteristic size € ~ {[cs] J . However, we cannot simply use the above

scaling result based on the average of the logarithm of f; (¢) to show this because the average
and the logarithm do not commute in general.

Assuming for the moment that correlations between successive ¢, are negligible in the large- K
limit, the average can be brought into the product,

Fale) ~ Jim [IMI (1= [fesle] s gumes )]M

s=1

The key calculation in [[cs] JJ is again that of the average of the as. In the last section, I
invoked some mean field arguments in order to simplify the calculation of the average of a4 by
using the random matrix approximation of \,cq.,. The difficulty of the full calculation of the
as without such an approximation is that it implicitly requires calculation of the mean field.
In particular, the task is to show that the combinatorics of all paths (number of paths for a
given number of steps) leaves a recognizable power series in, for instance, [dqu} [A;j] s over j,
which gives the average decay of perturbations with s and thus defines \,,cq,. In the limit of
large K and N, it would reduce to the same form as the mean field exponential result found
by the random matrix approach. Different from the random matrix approach, however, this
macroscopic result is built, in the true spirit of statistical mechanics, from ensembles of paths
through the microstate network. The desired result would be,

1 1A
[[a3+1 — as]+] ~ 7Tf’r‘eeb[ddﬂ] [A'LJ]

VN

for some finite, positive base b that tends to e for 1 < K < N. In this case, {[CS]JJ can be
written as above as

] ~ Ce

where we collect the factors into C' = /N UpTfree > 0 and v = —pd > 0.

20




2.9 Derivation of the fraction of restored perturbations

So, in the sparse limit (with p < 1 <> v < 1), but for finite, large K, {f;(e)] can, up to an
T
upper bound in € that diverges with v™! oc O (p™!), be approximated as

fa(©) "€ Jim [ﬁ (1- ce—vse)]M

s=1
Expanding the finite product to a finite sum, each term contains a product of exponentials
that sum to M. In the same line of argumentation as was made in the last section, the sums
saturate at some finite value such that in the limit M o T — oo, the average over M can be
ignored. In this case,

fr(€) 15 ﬁ (1 - 06_756)

s=1
Ce e )
fate) = (8

where (p; ¢)so is the g-Pochhammer symbol
P @)oo =[]1-p-¢
s=0

(p; @)oo naturally arises here from the enumerative combinatorics of partitions of s, i.e. sequences
of natural numbers that sum to s. In the expansion of (p; ¢), the coefficient of the ¢"p™ term
is the number of partitions of m into n or n — 1 parts. Here a partition represents a path within
the causally connected (via A;;) past of the neuron, n,, extending back to t;. We can use the
small-e and small-p limits to simplify (C'¢;e™7)y:

(Cee™) oo B (Cee™)oo
1—Ce P log 1—-Ce

= exp (— log (1 — Ce) + log (ﬁ 1-— Oe‘”%))

s=1
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Chapter 2 Elements of a theory of stable chaos in neural networks

We simplified the treatment by neglecting paths with loops, justified only under the rather
restrictive condition K < log N, valid in the sparse limit p — 0[64]. Thus, we have directly
obtained the exponential form from the system average of f;.

We now consider the simplification of the result in the limit of large connectivity, K. Ty =
T, In (1 + ﬁ) ~ I:” and the logarithm in C' is removed C' ~ \/%K v I, then cancels in

Iext

ot

the result C/~ = Jio\/ KNvrt,. fr(e) then reduces to
Fr(e) ~ e /e

—1
with e ~ (Jio VKN DTm) recapitulating not only the scaling behavior but even the functional

form of the probability of separation function, Ps(¢) = 1 — fr(e) ~ 1 — limp_,oo [ I (e)]
T

computed numerically by Monteforte[12], noting an additional dependence here on Jy, which
comes from the derivative of the PRC'.

The main source of the finite size correction comes from the deviations from a linear PRC for
finite K so that there is a non-negligible state dependence of its derivative. This weakens the
validity of the approximation of d ~ _me in the same way that the approximation A\peqn ~ 7, !
suffers at finite K. The deviation leads to an underestimate of the true value of \,,cq, Which
in turn overestimates the average critical perturbation size, €..;. Finite size deviations in €..;
are thus expected at low K and indeed they were observed numerically, though not explained

in [12].

2.10 Discussion

2.10.1 Summary

Stable chaos has been investigated in inhibitory LIF spiking networks for some time now but a
quantitative and mechanistic theory of it that could be generalized was lacking. In this chapter,
we aimed to contribute to such a foundation.

Starting from the basic notion that a discontinuity in the spike time map as a function of
perturbation strength occurs as one spike is pushed past another when the neurons producing
these two spikes are synaptically connected. We called such spikes susceptible spikes, and laid
out the three cases for such a crossing, arising from the three possible connectivity motifs. In
the balanced state, the discontinuous jump in the spike time is just the inverse input rate to
a cell, (Kv)~'. In this time, there is always a crossing with another susceptible spike. The
cascade arises from the combined contributions to the distance of the neurons that have taken
part in a crossing of susceptible spikes. This leads to a proportionality between the number
and the rate of events, providing the exponential growth of perturbations characterized by the
previously found expression for the pseudo Lyapunov exponent, \, ~ Kv.

Next we characterized the remaining unknown features of flux tubes. We proposed the notion
of a perturbation recall time, as a characteristic future window in which the network responds
to perturbations and which is captured by the average decorrelation time. We then, for the first
time, went along one such tube to reveal the time dependence of a tube’s geometry, finding an
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exponentially tapering dynamics of the boundary that is punctuated by jumps. This behavior
is simply explained by a random distribution of synchronized spikes in time (relative to the
reference frame local to the vtrajectory) and the contractive nature of the inhibitory map.

Finally, we derived the enigmatic scaling behavior found numerically by Monteforte. By ac-
counting for the combined effects of the causally-connected past of a neuron, we computed
the condition where spikes from two connected neurons cross. We then conjectured a form
for the fraction of restored perturbations and then derived the scaling explicitly for randomly
connected balanced LIF networks. The result provides the scaling found by Monteforte.

2.10.2 Experimental relevance

What additional features might we expect to observe in measured neuronal network activity
if something like stable chaos were present? The reliability observed in the timing of spikes
across trials[65] may be a consequence of such locally stable dynamics. Since the precision of
this reliability is certainly not exact, however, the instability due to the low but finite rate of
spike sequence differences would have to be controlled, by for example the stabilizing effect of
external input. Nevertheless, population recordings can indeed show a progressive divergence
with spike sequence changes (M. Deweese, personal communication). There is evidence for
the sensitivity of the dynamics to single spike perturbations[66], though it is important to
point out that that work did not show stability to smaller perturbations, which is required
to unambiguous distinguish stable chaos from conventional chaos, and that it only inferred
the diverging spiking trajectory from population measurements. So it seems we are still far
from any conclusive evidence. Determining the extent of stable chaos will establish whether
biologically relevant and experimentally accessible regimes exist. We explore a such a direction
in chapter 4.

While the benefits stable chaos in specific computations are not yet worked out, the coexistence
of local stability with respect to small perturbations and yet a sensitivity to larger perturbations
would seem to give a combination of selectivity with robustness to noise useful for the encoding
of input. In particular, reservoir computing is a framework for computation using recurrent
networks where the latter systems serve as input-dependent pattern reservoirs from which
downstream networks learn to effectively sample. This is a topic of current research and a first
hint of such a process was investigated numerically in Laje and Buonomano(8]. They trained an
otherwise chaotic rate network via supervised learning of the synaptic weights to stabilize the
neighborhood around one of its endogenous, input-driven trajectories. The learning produced
a dynamics local to the trained trajectory that was robust to small perturbations applied
throughout the interval over which it was trained. The flux tubes found by Monteforte [12]
are a potential mechanism by which this type of phenomenon could be achieved in spiking
networks.

This first incarnation of flux tubes, with properties such as the vanishing of tube size for large
networks, make them of limited experimental relevance. As they are further explored, thier
behaviour will change and it should be found what added features give them more realistic
properties. The theory presented in this chapter, is a first step. Indeed, the proven existence of
the phenomena in theory is often the most important step towards finding it in practice. This is
true of a variety of phenomena that were discovered in theory, and only later were altered to be
then found in more realistic models or with more realistic properties. Two recent examples of the
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Chapter 2 Elements of a theory of stable chaos in neural networks i

latter from our own group are the emergence of synfire chains in diluted networks with dendrite
spikes [67] and inter-network phase coherence in noisy, heterogeneous networks with delays (A.
Palmigiano, unpublished). Both concepts were originally developed in simple models and these
received substantial criticism when they were found not to be robust to simple generalizations
of those models. It took time to understand the essence of each phenomenon, which in turn
lead to an appreciation of its wider range of applicability. We might expect the same to be true
of flux tubes.

2.10.3 Topics of future research

2.10.3.1 Extension of theory to finite synapse and action potential onset speed

A natural question that has yet to be precisely determined is to what extent flux tubes persist
in sharp but smooth dynamics, in contrast to the truly discontinuous case considered in this
chapter. Politi and Kapral already asked this kind of question in the seminal study of CMLs
[55] and found that indeed stable chaos persisted when they smoothed out the discontinuity,
while keeping it sharp.

There are two ways in which neurons are sharp: in their synaptic currents and in their spike-
generating currents. We will consider the first case in depth in chapter 4 and so delay discussion
of that case until then except to say that indeed there is a finite critical synaptic time constant
within which stable chaos is observed. As for the latter case of spike generating currents, we
here present a short explanation of how to generalize the analysis performed in this chapter.

A natural model to study such finite and variable rise of the action potential is the rapid theta
(rf) neuron recently formulated by Monteforte[11]. It is a variant of a standard phase neuron
model, the theta neuron, where, unlike in that model, the rise of the action potential of its
voltage equivalent can be parametrically varied. The theta neuron is a phase representation
of the normal form version of any neuron model in which the bifurcation from resting to
spiking occurs via a saddle-node bifurcation and so is thought to be quite generic. Pyramidal
cortical cells are thought to exhibit this behavior for example. The rf-neuron is equivalent
to the conventional theta neuron when the rapidness, r = 1. Monteforte studied networks of
these neurons and found that the dynamics was generally chaotic. However, as the rapidness
parameter is increased, the PRC of the rapid theta neuron qualitatively approaches that of
the LIF (see Figure 2.11a) and at a critical rapidness depending on K, N, and v, the network
dynamics were found to transition out of chaos into stable dynamics. With recurrent excitation,
this transition occurred at much higher rapidness. We now give some initial suggestions for
how our framework might apply to the rapid theta neuron.
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Figure 2.11: (a) The rf-neuron PRC approaches the qualitative shape of the discontinuity in
the LIF PRC at ¢ = 1 for increasing rapidness, r.(b) The speed of an output spike time, ¢y,
as an input spike at t;,, passes over it as a result of the perturbation. The maximum speed
increases with the rapidness, 7.

First, the smooth dynamics suggests there are no discrete tube boundaries, but regimes of phase
space where small changes in state introduce large differences in subsequent activity. When an
input spike, t;,,, is pushed by a perturbation down from ¢ = 1 to lower values of ¢, its speed
as a function of the perturbation strength, dt;,/de, will be much higher than all other neurons
around that value of € (see Figure 2.11). As a result, ¢;, may overtake enough other spikes that
it crosses one sufficiently far to induce it through this regime and might, depending on other
features of the network, precipitate a cascade. It is not obvious, however, how to describe the
relative movement of the output spike relative to the background spiking activity.

2.10.3.2 Tube-sculpting

Another point to address in future work is to what degree tubes exist and are useful in
more biologically realistic contexts. One current limitation is their small size, which scales
as (VK Nvt,)"t. To be used for robust encoding in the brain where intrinsic noise manifests in
the voltage dynamics and has some significant finite strength, tube size should be consistently
above this value for the duration of the computation.

Since the tube size depends on the prevalence of nearby spikes arising from connected neurons,
an attractive alternative would be to train a network to make such events less prevalent. Anti-
Hebbian learning in principle accomplishes this. As with other implementations of such rules[68]
to balanced networks, a homeostatic correction to the rule is required to maintain the average
total input to a cell roughly constant.

The shape of tubes should also change with the magnitude of \,,... Amez can be altered by
changing the connectivity and /or the input structure. Feed forward chains and larger variability,
for example, have a stabilizing effect. The larger negative values of ., would likely lead to
an increased tube size far from susceptible spikes. However, since the contraction is faster, the
tubes shrink more quickly so that the increased variance of the tube diameter may in fact come
with a decreased correlation time, making the usefulness of this stabilizing approach unclear.
A perhaps more fruitful approach would be to sculpt the local Lyapunov exponents.

Another approach to this problem that leaves the tubes small is to take the reservoir computing
approach and put the workload on the decoder. This might be accomplished by learning sets
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of flux tubes such that a spatially local group of tubes as a whole is above the noise floor.
However, since the tube identities in the local neighborhood have a finite correlation time,
the number of trajectories that have to be learned grows exponentially with the duration over
which the decoding occurs. Since the load on the decoder scales linearly with the number of
patterns and decoders have a maximum load called the capacity above which they fail to learn,
this approach may be infeasible.

A final approach is to drive the network with input, whose variability is known to suppress
chaos. Non-autonomous dynamical systems require an extension of all the information theoretic
quantities mentioned in the introduction, which take on new, qualitatively distinct meanings
[69].

2.10.3.3 Calculating a transient entropy production

From an information theoretic point of view, the finite volume of the accessible phase space and
of the attractor basins means there is a natural partitioning of the phase space into flux tubes.
The ergodic theory of chaos describes how phase space partitions are refined by a chaotic
dynamics to produce information about the initial conditions[70, 10]. Flux tubes then may
provide a tangible example of such refinement. They are, nevertheless, ignored by conventional
ergodic theory. Determining their influence is, thus, important for any application of these
ideas to systems exhibiting stable chaos.

fr(€) is a central quantity in any finite-time, finite-size instability analysis. It, and in particular
the characteristic size, €, might be informative in computing the amount of information gained
from the instability of the flux tube dynamics. Since no finite-size notion of entropy production
currently exists for dynamically stable systems, a rough sketch of one is introduced here.

We define a partition, A, over the phase space, qg, whose elements,q;, like flux tubes, have
boundaries that extend parallel to the main diagonal, so that we can specify them by their
projection orthogonal to the main diagonal. The relevance of a partition to neuroscience comes
from the necessarily finite precision with which downstream networks can decode the output
activity. For a characteristic element size, €, of this decoding partition (so that the total number
of elements, n(e) oc 1/e¥=1, there is only entropy production if € > €., and then it only lasts
until the refinement of the partition, A®) = Vico T7A=AVTAV...vT5A, under the
dynamics, T, has reduced the characteristic size, €, of the refined elements Ozl(s), to a size
€®) ~ €., after which no further information about the initial condition can be obtained. We
can compute the total information gained as a function of the average size of the initial partition
element, €, by assuming no previous knowledge of the network state has been acquired and that
there is a uniform measure on 1]& (approximately true locally around the main diagonal, I,
where most of the trajectories lie). In this case, downstream networks acquire logn(e) o
—log eV ~1 bits about the initial condition at the first measurement using the partition, A. For
€ > €qqt, at long times after the initial measurement, the partition has refined to the flux
tube partition which gives — log €Y' bits of information about the initial condition. Thus, the
total amount of information gained due to the dynamics is I o« — log E%—’ji = —(N —1)log ©erit,
showing that indeed information is gained when € > €..;;. The evolution of the information
gain between these two limits is one of exponentially diminishing returns. Each tube initially
contained within a given output partition element will jump out of that local neighborhood as
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a decorrelation event for it occurs. At that time, the initial condition can be unambiguously
assigned to that tube because no other tubes jump with it to its new location. No further
information can be obtained from observing the dynamics of that tube. These jump events do
not happen all immediately for all contained tubes but are distributed probabilistically into the
future exponentially with a rate set by the perturbation recall time, captured by S.(s) and in
the case of the LIF, determined by s*.

Thus the ensemble averaged time evolution of the information gain is then

[gain(ea 8) = (N - 1) <_ 10g €crit + <10g ECMt) S€(S)>
€

Verifying such an expression is a challenge, however, and so its validity for the moment rests
on the rather rough logic above.
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3 Computing the Lyapunov spectrum of
the the 2D-linear neuron model

The Lyapunov spectrum is an essential object in characterizing the stability properties of a
dynamical system. A general approach to computing it requires linearizing the dynamical
evolution equations around an invariant object in phase space. While this is simple for fixed
points or limit cycles even for dynamical systems with many degrees of freedom, it represents
a challenging numerical problem for chaotic orbits and strange attractors in high dimensions.

Regarding spiking networks, event-based simulation methods exist in which the network state
is iterated from the time of one spike in the network to the time of the next. These methods
are mathematically exact when applied to neuron models for which the analytical solution is
invertible[56], since in this case the next spike time can be obtained analytically. The exactness
of this event-based approach was leveraged to perform a numerically exact, event-based calcu-
lation of the Lyapunov spectra of a variety of spiking neural network models [11]. Nevertheless,
many biologically-relevant dynamical behaviors are not captured by invertible models. These
behaviors often require additional dynamical degrees of freedom. For example, through invert-
ible models alone it was not yet possible to analyze the effects of intrinsic and synaptic currents
on the stability of spiking network dynamics. Indeed, the latter is a challenging problem. While
the exact methods require an analytical solution to the single neuron dynamics, their exactness
is maintained so long as a machine-precise calculation of the next threshold crossing time is
available.

In this chapter I present methods to implement the network dynamics and compute the Lya-
punov spectra with machine precision for a network whose units consist of the analytically
solvable, but non-invertible 2D-linear neuron model. First a versatile implementation of the
model needs to be developed, which unifies the LIF, cLIF, and GIF neurons discussed in chap-
ters 2, 4, and 5, respectively. The analytical time-domain solution of the model is obtained
and recast into a compact form. Since the solution is non-invertible, a machine-precise, next-
threshold-crossing time that is required for the event map is obtained via the implementation of
a root-finding algorithm. The latter is made efficient through derivative-based methods whose
robustness was achieved by carefully choosing initial estimates for the root. With these in-
gredients, the explicit map and Jacobian for the 2Dlinear model is then derived from a more
general formulation that is applicable to neuron models of arbitrary dimension. These results
lay the foundation for computing the Lyapunov spectrum of networks of 2Dlinear neuron mod-
els and are the basis of our studies into the effects of additional synaptic and intrinsic degrees
of freedom on neural network dynamics.
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Chapter 3 Computing the Lyapunov spectrum of the the 2D-linear neuron model

3.1 Versatile implementation

vV = “V+aW+71X+V,
W = W+ BV +6X + W, (3.1)

Each equation in (Equation 3.1) contains four terms. In their order: a dissipative term, a
scalable coupling term, an input term from external input, X, which is distributed across V'
and W according to v, d € [0, 1], and finally a constant term. V' € (—o0, 1] is a somatic voltage
variable whose membrane time constant, 7y, sets the units of time. W € R is an auxiliary
current variable that takes on different biologically meaningful roles depending on the context
as specified by the parameters. 7y, «, 5, Vy, and Wy are the five parameters of the model.
Both the cLIF of chapter 4 and the pulse-coupled GIF model of chapter are obtained from
the parameter specifications listed in Table 3.1, where we note that W is interpreted as a fast
inward synaptic current in the cLIF and as a resonant somatic current partially activated at
rest in the RF (e.g. persistent K*- or h-current).

LIF/rf,s: | cLIF | Mixed input | GIF
o 0 1 1 1
3 10 0 0 q
v 1 0 1 1
) 0 1 1 0
Vb Iezt Iemt Iemt Iert
Wo |0 0 0 0
W | - Ty | Loyn w
X [rec [rec [rec Irec
T™w - Tsyn Tsyn Tw

Table 3.1: Table of parameter values for which the 2D linear model reduces to a given model:
LIF(Leaky Intregrate-and-Fire)/rf,s1(rapid theta neuron at high rapidness), cLIF (corre-
lated Leaky Integrate-and-Fire), Mixed input (LIF with fast and slow synapses), GIF (Gen-
eralized Integrate-and-fire).

The neuron model is said to elicit an action potential when V' > V; whereupon the voltage
is reset to Vg. At these events, W can be reset: (1) to 0 when W is a fast voltage-gated
current, (2) to some value Wgr when W is voltage gated, or (3) not at all if W is slow or not
voltage-gated. Also, Vi was set to 0.

Networks with instantaneous and linearly summing synapses were considered. The input to
neuron ¢ can be formally written as

X, =7, Jyd(t —th) (3.2)
3.k

for © = 1,..., N where J;; is the coupling strength of the connection from neuron j to neuron
i and t¥ is the k' spike time of a presynaptic neuron, j. Nevertheless, this expression for the
input is not be needed since the simulation approach used here is event-based. Specifically, we
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3.2 Time-domain solution of neuron model

iterated from just after one spike in the network to just after the next, such that, given the initial
condition (V' (ts), W (ts)) at ts just after a neuron has spiked, we find ¢4, 1, the next spike time in
the network, and use it to update the states of all neurons. In each iteration, the spiking neuron’s
index was denoted as j* and those post synaptic to this neuron as i* € post(j*) = {i|J;;= # 0}.
In addition to paving the way to a precise numerical simulation of the network, such a discrete-
time map is amenable to the method for evaluating Lyapunov exponents through which we
can establish the Lyapunov stability properties of the system. That calculation, in particular
the orthonormalization, is the most computationally intensive. As such, a slowdown of this
implementation relative to ones optimized for specific cases is not severe. A means to both
these ends is a solution to the system (Equation 3.1), which is obtained in the next section.

o) =>1—=>V—0d()

cLIF
) V— o
50)— V= &) O
LIF/r9r>>1 GIF
o() _)(V_) o()
>
Mixed Input

Figure 3.1: Schematic of models. The four model types attained through different parameters
setting of the model exposed in this chapter. Each integrates spikes, 'd()’, and produces
spikes,’d()’, but the filtering of input in each is different.

3.2 Time-domain solution of neuron model

The system can be written in matrix form,

14 /v a/tv 4 v/Tv Vo/1v
= + X+ . 3.3
(W) (B/TW —1/7’W W 5/7’W Wo/TW ( )
We consider the evolution between spikes where X = 0. The remaining system can be written
more compactly as

z=Az+ 2, (3.4)

V(1)

where 2(t) = (W( )

> is now the new state variable for which an expression as a function of

the initial condition z(t,) = (I‘/[//((%D and At =t — t,. First, the solution to the homogeneous
system,
2y = Azg, (3.5)
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Chapter 3 Computing the Lyapunov spectrum of the the 2D-linear neuron model

is obtained via Putzer’s method, which gives an expression for e42* such that zp(t) = e42lq
for ¢ some constant vector determined by initial conditions. To obtain the eigenvalues of A the
trace and determinant are

1 1
det A = p— (1—ap). (3.7)

The eigenvalues, thus, are

0 = XN —trA\+det A
1 1
Ay = §t7’A + 5\/tr2A —4det A

171 1 1 1 1\? 4
A = —5 <+>i\/<+> - (1—ap) (3.8)
2\1v Tw 2V \1vy W TV TW

To aid the clarity of further expressions, define r and w via Ay = r + w, and then write

w= \/r2 — (1 —ap)/mymw. Ais complex when

1
21z (3.9)
vVTw
and real otherwise, which implies the following condition on the model parameters:
17 oo\ 2
— - (1-2)" > aB. (3.10)

4 T™wW

Note that the left hand side of the inequality is always negative. For the cLIF, o > 0 so that
A4 is always real since [ never assumes negative values. In passing from the values of the
parameters in the cLIF to those of the RF, we cross the bifurcation point that takes the neuron
from an integrator to a resonator. This degenerate case occurs when

1w (1- m)Q — B, (3.11)

4 T™wW v

where A = r. Thus, o and § must have opposite signs. The solution to the system is, then,
radially symmetric in the (V, W) phase plane. We exclude further consideration of such a case,
solving the system for w # 0 or

1 (1- %v)z £ 0B, (3.12)

4 T™wW

We also exclude the singular case of a single eigenvalue with eigenspace dimension 1, which
arises when det A =0 < af =1 < A = 2r,\_ = 0. The exclusion is naturally satisfied for
a, B <1,o0rk, gear. > 1, which also implies Ay < 0.
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3.2 Time-domain solution of neuron model

After solving the two ordinary differential equations provided by Putzer’s method, we obtain
the two time dependent coefficients of the following expression
ALAE _ AAL

€ €
AL _ Ay

T (A= A.I). (3.13)

(&

Let S(At) := 2! denote the time dependent operator. Note that S(0) = I. S(At) can be
rewritten with explicit dependence on the possibly imaginary w. Namely,

1

1
A = A -l
_ ;{(A—rﬂ)/w—]l}. (3.14)

Plugging this into the expression for S(At) and collecting terms with the same time dependence
gives

S(At) = e+ ;((A — 1) jw — D) (A0 — A=A
S(At) = ; {4 (A = 1) fw)e 2 4 (1 = (A = 1T) Jw)e =21} (3.15)

By substituting in Ay = r 4 w, the €™ factor can be factored out and rearranging gives

S(At) = ; {4 (A = 1) fw)eT T 4 (1 — (A = 7T) fw) e
wAt —wAt wAt _ —wAt
S(AL) = S +2€ T+ (AT} (3.16)
so that for A € R,
S(At) = e {cosh(wA)I + sinh(wAt)(A — 1) /w} (3.17)
and for A € C
S(AL) = e"{cos(|w| AT + sin(|w|At)(A — 7T)/|w]|}. (3.18)

For the inhomogeneous problem, only a particular solution is needed to which the homogeneous
solution is added to obtain the general solution. We try a constant vector, x:

= Ark+ 2z
= —A'z (3.19)
where
TVTW . —
A—l — < T TV)
T—ap\-% =
—1 TV aTWwW
= —— ) 2
1—ap <57'V W ) (3:20)
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Chapter 3 Computing the Lyapunov spectrum of the the 2D-linear neuron model

So

s
- 1—ap \Bv w ) \Wo/Tw

1 ‘/0 + OéWO
= . 21
T T 1 (6% + W0> (3.21)

2(t) = zg(t) + k solves the inhomogeneous problem. By imposing the initial condition at t =
the value of ¢ can be determined,

2(ts) = zp(ts) +k (3.22)
z(ts) = S0)g+k
¢ = a(t)—x (3.23)

so that the completed solution to the full problem is
z2(t) = S(At)(z2(ts) — k) + K (3.24)

and we have an expression for z(t) as a function of the initial condition, z(t¢,), and At =t — t,,
as promised, where x is the fixed point and S(At) is a 2x2 time-dependent matrix. With this
solution, each neuron can be evolved to the next spike time in the network. The procedure for
obtaining this time is described in the following section.

3.3 Algorithm for finding the next spike time

The next spike time is defined as
tsr1 = min{t;|Vi(t;) = Vr} (3.25)
The expression for V(t) is,

V(t) = (10)-2(@)
= (10)-{S(A)(2(ts) — k) + K}
= Sll(At)(V(ts) — Hv) + Slg(At) (W(ts) — liw) + Ry (326)

For computational efficiency, let us first express this expression in a compact form, considering

the case of A1 € R and Ay € C in turn.

For real A, the exponentials in (Equation 3.16) are collected to compute the fewest number of
them.

1 ({140 (A = r)eMA 4 (1= w (A — 1)) (V(ts) — ky)

V(t) = 5 ( + {(w—1A126)\+At i w_lAlge)‘*At)} (W(ts) B liW) ) 63/‘2‘7)
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3.3 Algorithm for finding the next spike time

Now plug in A;; = —1/7y and A = a/71y,

! ({(1 +w (=1 = /1)) A (1= w i (—r = 1/my))er 20 (V () — m) e

2 +{(w la/ry e A — wla /A L (W (L) — k)
) - )) .

2
Now collect terms with the same temporal dependence, and then again by w dependence:

_ 1 <{(1 —wlr+ /)M + (1 +w e+ 1/7y))et At} (V(ts
9 Fw o/ (A — A AW (1) — k)

O ( {

_ ( {

+l€v

(1- ””WXV@%—MO+WJWWJ—MW}@”t)+K
{0+ V() = wv) = S5 W (k) — ) p 2]

(V(t) = sv) + - *&uﬁxw«u>—nw>—<r+1/n»a«n>—mvn}eﬂﬂf)
LV () = rv) =™ /v (W(ts) = i) = (r + /1) (V (ts) = v ) X2

By denoting the two terms in the prefactor of each exponential, C) = V(t5) — ky, and Cy =
{a/7v (W (ts) — kw) — (r + 1/7v)C1} Jw, we finally obtain our expression in simple form,

V(t) = ; {(Cr+ Co)e™a 4 (Cy — C)e>21) + . (3.28)

The threshold crossing time, ¢, is defined implicitly by V(¢) = Vr and, thus, the root of the
function,

h)\eR(t) = (Ol + CQ>BA+At —+ (Cl — CQ)GAfAt + 2(:‘1\/ — VT) (329)

For the case that A is complex, we apply (Equation 3.18) to (Equation 3.26) to get

_ et ({eos(Jw|At) + sin(|w|Af) jw| T (A — 7))} (V(E) — k)
Ve = ° ( + sin(|w|At) |w| LA™ (W (ts) — k) ' ) v

o (V(t,) — ) cos([| M) )
Ho| TH{=1/mv +1)(V(ts) = kv) + a/7v(W(ts) — mw)} sin(|w]|At) v
= At (C’l cos(|w|At) + Cy sin(|w|At)) + Ky, (3.30)

In this case, the root of
haec(t) = €™ (Cy cos(|w|At) + Cysin(|w]At)) + (kv — Vi) (3.31)

is needed. While there is no analytical solution for the root of either of the two h(t)s, root
finding algorithms for such functions efficiently yield machine-precise estimates. Derivative-
based methods, such as Newton’s method, are fastest, with a precision that scales quadratically
with iteration, and so are suitable here since the derivative is easily calculated in the real case,

d
%hAeR(ﬂ = )\+(Cl + CQ)€A+At + A (Cl — CQ)@A_At, (332)
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Chapter 3 Computing the Lyapunov spectrum of the the 2D-linear neuron model

and in the complex case,

d .
%h,\ec(t) = rhyec(t) + |wle™ {—~Cy sin(|w|At) + Cy cos(|w|At)}

= " {(rCy + |w|Cs) cos(|w]At) + (rCy — |w|Cy) sin(|w|At) } . (3.33)

h(t) will, in general, have first and second order extrema points. The resulting problems
associated with a bad choice of the initial estimate when applying derivative methods to such
functions are often solved by nesting the algorithm within the more robust bisection method.
However, bisection algorithms only give linear scaling of precision with iteration. If a good
choice can be obtained without much computational cost, the slower bisection is called less often,
thus speeding up the routine. We take this approach here. A good choice of initial estimate
is one for which the subsequent deviations in the successive estimates decrease monotonically.
For the case where h/(ts,) > 0, this is a property of ascending sequences on intervals where
the function is concave and descending sequences on intervals where the function is convex.
Thus, we need only specify a time before or after the spike time, respectively, for which there
are no inflection points between it and the root. We classify the cases through some simple
expressions and obtain these root-containing, mono-convex ranges using the first and second
order extrema times of h(t). In order to account for the case when the model is excitable, an
additional spike condition is added to avoid running the algorithm when the neuron remains
silent. We now go through the cases, starting from the constraint, h(0) < 0, that the initial
state be subthreshold.

For A € R, there are three shapes of h(t) characterized by whether the curve has a maximum, a
minimum, or neither. In the excitable case, C5 < 0, consider only the cases in which there is a
maximum. A maximum exists when C; < Cy and C; > —C5. When these conditions hold, we
check if the maximum is superthreshold, h(t') > 0, where t' = (Ay — A;) "' In (i—; %) is the
extremum time, if so, then, t;,;; is set to 0 and estimates move right upper bounded by ', and
otherwise there is no spike. In the oscillator regime, if the curve has a minimum (Cy < C) and
the time of the inflection point, ¢’ == t'+ (Ay — A\;) ! 1In (i—;
h(t") < 0, estimates move right, otherwise they move left lower bounded by max(0,t"). If the
curve lacks a minimum or ¢t < 0, t;,;; is again 0 and estimates move right.

), is positive, then set t;,;; = t”. If

For A € C, the single type of voltage trace exhibits damped oscillations. We compute the
first positive extremum time, ¢’ = min,c(o1) wt (arctan _T]? + mr), where £k = wCy 4+ rCy and
kQ = ?"CQ — CL)Cl.

If this extremum is a maximum (Cy > 0 or rC; > —wCy), we check that h(t') > 0, otherwise
the neuron remains silent. We then compute the time of the first positive inflection point
" = min,eqo13 w™! (arctan (%) + mr). If t € (0,t), we set tyy = t". If h(t") > 0, the
estimates move left, lower bounded by 0. If A(t") < 0, then the estimates move right, upper
bounded by ¢'. If ¢’ ¢ (0,), then we set t;,,;; = 0 and the estimates move right, upper bounded

by t'.

If instead the extrema at ¢’ is a minimum, we compute the the value of h(t) at the next
maximum, ¢’ + 7/w, and ensure it is positive, else the neuron does not spike. In the case there
is a zero, we again compute the inflection point, ¢, between ¢’ and ¢’ + 7/w, and set t;,; = t".
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3.4 The network ‘spike-to-spike” Poincare map

Again, if h(t") < 0, the estimates move right, this time upper bounded by t' + 7/w, and if
h(t") > 0, the estimates move left, lower bounded by ¢'.

Finally, the algorithm was set to switch to the more robust bisection method whenever any of
a handful of numerical health checks failed. These included more surpassing a fixed a number
of iterations, and when C ~ (Y, since this denotes when the root is near an inflection point,
h(t") = 0.

Such an algorithm was implemented and its results were compared over an ensemble of initial
conditions and model parameters to the spike time obtained by numerically integrating the
deterministic dynamics. The validating result for both real and complex eigenvalues is shown
in Figure 3.2.

-3
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9(\
;\\\\
-4 -e-cLIF
1070
SR -«-GIF
\\\\*\
5 \D\\\\
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— N ~
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= s *
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10" ]
\\\:\*\ 7
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10+ IR
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10_8 | | |
1 02 3 4 5
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Precision. At—1

Figure 3.2: Spike time estimate from numerical integration approaches estimate from root-
finding as precision of the former is increased. Two examples are shown for the model in the
cLIF and GIF regime, respectively.

After applying this root-finding algorithm to all the neurons, the spike time is simply the
minimum of the set of existing root values. With a machine precision approximation of the
next spike time, and the solution to the system calculated in the previous section, we are finally
able to define our iterative map.

3.4 The network ‘spike-to-spike’ Poincare map

The iterative spike-to-spike map was defined using 1) the spike time, 1, found through the
procedure in the previous section; 2) the propagation function,

2(tsi1) = f(2(ts), tsy1 — ts) = S(AL)(2(ts) — k) + K, (3.34)
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Chapter 3 Computing the Lyapunov spectrum of the the 2D-linear neuron model

that evolves the states from one spike time, 5, to the next, 541 (At = ts11 —t5); and finally 3)
the spike update function,

zi(ti) = g(zi(to) = zi(to) + Ji (g;::/) Oii+ — Vr (é) Oij* (3.35)

where tét-i—l = lim,_.o ts11 & € and recalling that +* denotes a postsynaptic neuron, 5* the spiking
neuron, and that (1 0) - z;=(t;) = Vr. A delta function integrates to a step change so the
voltage across the spike update function for the spiking neuron is immediately knocked to the
reset voltage. This change has no immediate effect on the current for the spiking neuron because
a step change integrates smoothly. The iterative map is then given by

Zi (ts+1> = g(f(zl (ts)a At)) (336)

The map was implemented by computing the four elements of the real or complex eigenvalue ver-
sion of S(At), performing the same matrix algebra on each neuron as given by (Equation 3.24),
and finally applying the update function to those neurons involved in the spike.

This iterative map is used to simulate the evolution of the network state. For computations
of the Lyapunov exponents, a set of vectors is evolved in parallel using Jacobian of the map,
which we now define.

3.5 Jacobian of ‘spike-to-spike’ map

To calculate the Jacobian, we considered a shifted interval (t5 + 0,%s11 + 0] to account for a
perturbed spike time, 74,1, around ts,; and took the limit 6 — 0 afterward since the pertur-
bation is infinitesimal. Defining the time to the spike At; = 75,1 — (ts + 0), and the time from
the spike to the end of the shifted interval Ats = t,11 + 0 — 7511, the shifted map reads,

Zitss +6) = f (9 (f(zi(ts + ), Aty)) , Aty) (3.37)
where, consistent with the above notation, z;(7,, 1) = f(2i(ts+9), Ats) and z;(7.5 1) = g(zi(7.14))-
From this map we see that the state of each neuron at t,,1 + ¢ is explicitly dependent on its
own state at t,+ 0. In addition, the states of the post synaptic neurons and that of the spiking
neuron at t,,q + 0 is implicitly dependent on the state of the spiking neuron at ¢, through its
spike time, 7,41, which appears in At, and At;. The Jacobian, D;;(t,), is thus

d2i<ts+1) — lim 8zi(t5+1 + (S) 6zi(t5+1 + 5) de—i—l
dzi(ts) 620 Ozj(ts +0) OTsr1 dzi(ts +0)

(3.38)

Note that each term is a 2x2 matrix. We now calculate separately each of the specific three
partial derivatives in (Equation 3.38). The following general partial derivatives are required,

f-(z,At) = S(At) (3.39)
fi(z,At) = S'(At)(z — k) (3.40)
9:(z) = 1, (3.41)
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3.5 Jacobian of ‘spike-to-spike’” map

where we write partial derivatives of f with respect to its first and second argument using
subscripts z and t, respectively. Time derivatives of f are time derivatives of z, evaluated at
the corresponding time. They can, thus, be expressed using the differential equations of the
model (Equation 3.1). This fact is used to simplify the expressions below.

The first term of (Equation 3.38) is calculated using the chain rule.

8zi (t5+1 + (5)

; (T A+ .
6% 8zj(t8 T 5) (lsg% fz<ZZ(Ts+1)a At&)QZ(ZZ(Ts-f—l))fZ(ZZ(tS + 5): Até‘)

= S(At)d;; (3.42)
where in the last step we used S(Ats) — I and S(Ats) — S(At) as 6 — 0. The second term of

the Jacobian expression contributes only for neurons involved in the spike. The first factor is
obtained using the product rule. Note that 0Ats /07,11 = —1.

8Zi(t5+1 + (S)

(lslgl[l) Orons (3.43)
= lim — fy(2i(751), Ats) + f2(2i(750), Ats)g:(2:(mo50)) fizi(ts + 0), Aty)
= lim —§'(Aly)(2i(751) — K) + S(Als)2i(7511)

where in the last term, 2;(7,,,) = fi(zi(ts + 9), Aty) in the last step. To simplify, we first take

the limit, then use S(0) = I and S’(0) = A (true for both real and complex A\;), and finally
substitute, %;(t5,,) = A(z:(t5,) — k):

= —S0)(z(tf ) — k) + S(0)z(t )

= —A(z(tH,) — k) + %)
= =% (t5+1) + Zz(ts—i-l)‘ (344)

Subtracting the right sides of the matrix differential system (Equation 3.4), evaluated at ¢,

and ¢/, respectively, gives
.
—JijA (g// V) if i =3
™w

Gltin) = () =4, ((1)) i i (3.45)

0 otherwise

where we have obtained z;(t, 1) — zi(t[,) using the update function, g. Thus,

fjm D7iller1 +0) _ A{ Jij (7/ TV) Siie + Vir (é) 5@-*} . (3.46)

550 OTs11 5/
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Chapter 3 Computing the Lyapunov spectrum of the the 2D-linear neuron model

Finally, the last factor of the last term of the Jacobian expression in (Equation 3.38), is non-zero
only for j = j* and we can obtain

dT5+l OTs+1 OTs4+1

m - (BVj(ts+5)> aWj(tS+5)) 035 (3.47)
ATy — V(ts+)\ "L fow,(ts+6) L

dzits +6) ({ ol B s el )5@-* (3.48)

from the implicit definition of the next spike time, 751,
VT = Sll(Ats) . (V}(ts + 5) - KZV) + Slz(Ats) . (Wj(ts + 5) - Kiw) + Ry (349)

where Aty = 7,41 — (ts + 0) as before. We now take the limit 6 — 0. Solving for V;(t;) and
W;(ts), respectively, and then taking the partial derivative with respect to 7,41, again taking
the product rule, then gives the result, which is
Vit Su(A
Orerr  SH(AY)

S12(At)
S11(At)

(Vi = v = Sia(AO(W (t,) = aw)) —

OW;j(ts) _ _ Sip(At) _ Su(At)
8Ts+1 S%Q(At) Sm(At)

Since these are reworked expressions of a projection of a matrix equation, there is no simple
matrix form, so we leave these expressions in their scalar form. The dependence on the state of
neuron j at t, can be replaced with the dependence at ¢y, using the expression for W, so that
only quantities at t;,1 are required to compute the Jacobian. Recall that 7 = j* for this factor
so that any parameters that are heterogeneous across the network and appear in this factor
should retain their j* identity when computed in the i # j* elements (e.g. for heterogeneous
time constants one obtains a ratio of j* and ¢ # j* time constants that only cancel if the time
constants are homogeneous).

(Ve = kv = Su(AB(V (L) — kv)) (Vi(ts) — ky), (3.51)

With these derived quantities, we can write down the complete expression for the Jacobian,

. dZZ' (t3+1> . azi<ts+1 + 5) azi (tS—H + 5) dTS+1
D =—0— =1 o2
f&(s)) dzi(ts) 550 0z;(ts +9) * OTst1 dzj(ts + 9) (852
S(At)d;+

g (T s D5 L froean - rowe—353)
A{ i (5/TW> e+ Vr <o) 5”*} ({5} ™ (o) )i
The additional computations for the Jacobian beyond those required for the map are the com-

putation of Si;(At) and Si,(At) and the subsequent matrix algebra for each 2x2 Jacobian
element.

3.6 Conclusion

This completes the generic implementation of the 2D linear neuron model. The neuron models
considered in subsequent chapters are obtained simply by particular choices for «,53,v,d, Vo,

and W,.
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4 The transition from stable chaos to
deterministic chaos

4.1 Chapter Summary

In chapter 2, I investigated the stable chaos in the microstate dynamics in the balanced state of
inhibitory networks in pulse-coupled leaky Integrate-and-Fire (LIF) neurons. These networks
exhibit a negative maximum Lyapunov exponent, \,,. < 0. The mean field theory of the
balanced state is relatively well-understood and does not depend on the single neuron properties.
It is therefore surprising that network simulations of LIF neurons coupled through temporally
extended pulses can generate a positive maximum Lyapunov exponent, \,.. > 0, indicating
chaotic dynamics and a qualitative change in the temporal behavior. Little more was known
than the putative existence of a critical temporal width at which A, changes sign. On which
parameters do A, and the critical temporal width depend, and what is the nature of these
dependencies? It was also unclear how this transition from stable chaos to deterministic chaos
occurs. In particular, what happens to the flux tube phase space structure in the process?

In this chapter, I apply the methods from chapter 3 to compute the Lyapunov spectrum of a
2D linear neuron model. In particular, I set its parameters to give a LIF-type neuron having a
dynamic synaptic current. The dynamic synaptic current, I, with an arbitrary time constant,
77, gives an additional, temporally-correlated degree of freedom to the model, from hereon
called the correlated Leaky Integrate-and-Fire (cLIF) neuron. For inhibitory networks of cLIF
neurons, I calculated the network activity and the maximum Lyapunov exponent, A\, as
function of 7; and the coupling strength, J, for fixed values of the other parameters. Then,
for fixed J, I computed the full Lyapunov spectra for cLIF networks as a function of 7; and
characterized its chaotic component, {\;|A; > 0}. Extensive calculations of A,,,, were performed
over the number of neurons, N, the mean number of synaptic inputs, K, to a neuron, and the
population firing rate, 7, to determine the behaviour of the critical synaptic time constant, 7§
at which A, changed sign. To assess the effect of this transition on the underlying phase space
structure, I numerically computed the fraction, fg(¢), of restored, finite-size perturbations, from
which T obtained the average flux tube diameter, exr, as function of 7; approaching 7¢".

I found that the maximum Lyapunov exponent, \,,.., changes sign at a value independent of
the coupling strength, J. The rest of the \,,,-profile also becomes independent of J when its
effect in increasing the number of silent neurons in the network is accounted for. A, and
the entropy production, H, exhibit a maximum in 7; before decaying at large 7;. In contrast,
the attractor dimension, D, monotonically converged to a finite value with 7;. Thus, chaos
emerges at a critical synaptic time constant, 7¢"% which has a finite limiting value in the
thermodynamic limit, N — oco. 7 was found to scale with the remaining parameters as
7t oc 1/(Kv). As for the average flux tube diameter, ey, approaching 767 it was found to
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crit

scale as e€pr o (7§ 77)%. These results are discussed at the end of this chapter.

4.2 Introduction

As stable chaos was probed in networks with more structure than those of pulse-coupled LIF
neurons, transitions to chaos (i.e. the change sign of A, from negative to positive) were
observed. For instance, higher external input variability has been found to have a stabilizing
effect [71, 72, 52|, while sufficiently slow action potential rise gives chaotic dynamics. Also,
there is indication that the second-order connectivity statistics capture much of the influence
of connectivity on the dynamics[63]. Of the four second-order connectivity motifs, it was found
for instance that the chain motif is stabilizing, while the diverging motif is destabilizing.

The effects on the stability of the coupling and the unit dynamics, in general, depend on each
other. The breadth of models available up to now to assess these effects has been limited.
Nevertheless, as mentioned in chapter 2, for the LIF it is the contractive nature of the single
neuron dynamics captured by the contractiveness of the inhibitory LIF PRC that endows the
network with stable dynamics in the case where there is no input structure or higher-order
connectivity structure. The excitatory LIF on the other hand has an expansive PRC and
networks of those neurons are unstable. LIF networks can also be made unstable by reversing
the sign of the dissipative term the equation for the voltage in any one of the neurons. We
will return to this interplay between the sign of the synaptic input and the convexity of the
return map later in this chapter. Perhaps less intuitively, it was also shown that simply adding
a not-too-small finite decay time to the synaptic interactions moves the network out of the
stable regime [58] (also see [13]) and into chaos. What exactly underlies this latter transition
and what happens to flux tubes across it has remained unclear.

In this chapter then, we aim to obtain more information about stable chaos in neural networks
by examining how it emerges from conventional chaos in the case that the speed of synaptic
interactions is made temporally extensive. To precisely identify the effects of the single neuron
dynamics and synaptic interactions, the effects of the connectivity and the input should remain
unstructured. A base case for this is leaving the connectivity random and the inputs constant.

This chapter begins with the motivation, exposition, and validation of the model used herein.
The finite decay time, 77, of the synaptic current, I, in the model leads to temporally correlated
output activity of the neurons. The extension of the mean field theory of the balanced state
to the case of correlated response statistics was treated by Lerchner[43]. The determining
parameter in that theory is the strength of the synaptic coupling, J. Since we have so far
only considered this fixed, we take the opportunity to show how the balanced state emerges
with increasing synaptic strength across a range of values of 7;. Computing the stability
of the balanced state in this plane reveals the essential dependence on 7; and the essential
independence on J, so that we again fix the latter, but now with some justification. While
previous work established the existence of the stability transition, the only characterization of
the chaotic regime appeared this year, and not of the microstate spiking dynamics, but only of
the effective rate dynamics that emerge when 7; is large[7]. We thus continue the chapter with a
complement to that work, providing some phenomenology of the microstate in this limit via its
activity statistics and Lyapunov spectra that indicates why the approximation to an effective
rate network dynamics becomes good. With the chaos on the other side of the transition
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characterized, we move on to mapping the critical value of 7; at which the transition occurs.
Motivated by the understanding gained from the approach of the chapter 2, we apply the same
ideas here, providing a prediction of the critical value as a function of K and v. Then, in an
attempt to understand the fate of flux tubes across the transition we are lead to explain how the
distance time series between trajectories initially separated by some finite value are qualitatively
altered as 7; increases. From these observations, we can identify a microscopic destabilizing
mechanism likely responsible for the instability which dominates the stability behaviour once
the stabilizing effect of the pulsed inhibition is removed beyond the critical 7;. This chapter
concludes with an outlook on the transition out of stable chaos.

4.3 The correlated Leaky Integrate-and-Fire (cLIF)

The equations for the leaky integrate-and-fire neuron model with exponentially decaying synap-
tic currents (cLIF), are obtained from the 2D linear model Equation 3.4 when the voltage does
not feedback to the current, ¢ = 0, and the input is fed only into the current, v = 0, such
that the auxiliary current becomes a low pass filtering synapse. Replacing the symbol for the
auxiliary current W with I for synaptic current, the dynamical equations of the system are

7-117.)2' = —v; + I+ Irheo + Iext

jepre(),k

with differential matrix operator

-1 1
B = ( OT'U _T"l )
TI
1

with characteristic equation (1/7, + A) (1/7, + A) = 0 so that the eigenvalues are Ay = —=

TI

and A\_ = —%. From our general propagator solution Equation 3.17 for real eigenvalues
S(At) =e"{cosh(wAt)I + sinh(wAt) (A — ) /w}

with r = (A +A_)/2 and w = (Ay — A\_)/2 we get
U(t+At) . 0 % 7% 1 ;;%:: _At U(t) _]ea:t Iel‘t
([(t+At)>_<<0 1 )e +<0 0 )e )( ey )70 o

So that the equations reduce to

At At

1) <6_T1 - e-m> -

ot + AL = ((t) — Lyp)e 71 + 17

1T — Ty

I(t+At) = I(t)e =

As with the LIF, the spike is approximated by a hard voltage threshold at vy = 1, whose
crossing by the state leads to a discontinuous reset of the voltage to a reset value vy = 0.
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The synaptic current can be normalized to keep either the mean or variance of the input fixed,
but not both. By placement of 7, as a prefactor in the input to I, we are normalizing by the
mean input current.

o0 t
J/ e wrdt = J7,
0

TT

which when integrated over v normalizes to J, the total effect on the voltage as in the case
of the LIF considered in chapter 2. Together, the many, uncorrelated inputs to I resemble a
white noise Gaussian process, a limit that is precisely the diffusion approximation discussed in
the next chapter. Such a process has a constant power spectrum. Thus, I is approximately
an Ohrenstein-Ulhenbeck process, whose statistics are easily handled analytically. Its power
spectrum is obtained for its Fourier domain solution, from which we can use the Wiener-
Khinchine theorem to get its autocorrelation function,

JoT, 2 & 1
0'wv — W
C(r): = (\/ETI> KV/ dtil—l—w?ﬁ?e t

2

so that the current variance is

2 2 Tv _
o7 =J5—UT, . 4.3
To normalize instead by this variance, we would replace the 7, prefactor in Equation 4.1 with
\/27, /71, making 0% = JZUT,, matching the variance of the LIF. We will return to this seemingly
innocuous choice of normalization when we consider the large-K behaviour of the stability in
subsection 4.7.2.

We note that there are other temporally extended kernel functions, aside from the exponential
one used here, that could be used for the synaptic current. A notable example is the a-function
studied in a pair of papers[14, 73], that is obtained from a normalized difference of exponentials,
with characteristic times 77, and 775 by taking the limit 77; — 772. It allows additionally for
a finite rate of rise into the voltage, which then integrates to a smooth voltage (the step rise in
the current considered here integrates to a voltage kink). The effects that we will study arise
from sharp rises in current, which both models allow, so we expect our results to generalize to
that model. However, one difference between that study and here is that there they have have
fixed the number of connections entering any neuron, while in our case we only fix the mean.
A discrepancy in the observed N-scaling of \,,,, between the two models may arise from this
difference. In particular, the cLIF value was observed [12, 11] to scale as log N while the value
obtained from the a-function model was found to converge exponentially to a finite value. We
conjecture that the discrepancy is due to the silent fraction existing in our networks and not in
theirs, whose size grows with log N. Nevertheless, given that this a-function kernel brings with
it the added complications of higher order differential equations and more complex conditions,
we keep with the simple low pass integrator model for the synaptic current.

Also note that the cLIF solution, Equation 4.2, is not generally invertible. Monteforte calculated
a few of the special cases in which it is invertible. These exist by setting the value of synaptic
time constant to a low-valued integer multiple or fraction of the membrane time constant.
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4.3 The correlated Leaky Integrate-and-Fire (cLIF)

The voltage solution is then a polynomial in the exponential of the time and can be solved
analytically using algebraic techniques. Such special cases do not suffice for comprehensively
tracking the transition to chaos as 7; varies, however. As that is the topic of this chapter, we use
the 2D linear model exposed in chapter 3 for which 7; varies smoothly and over an unrestricted
range. Since the implementation of that model and of Monteforte’s special cases are completely
different, however, a comparison the results of the two models serves as a consistency check
when the 2D linear model is set to these special cases. We give a comparison of spectra obtained
both ways in Figure 4.1, both to show consistency and to show the qualitative nature of cLIF
spectra. The correspondence is exact to the desired precision, limited only by the machine.
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10° ¢
8 10°
5
5 7= 1,/3,h0 = —0.072365(— 0.072365)
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Figure 4.1: Consistency check of implementation by comparison with another. (a) cLIF
spectra of our implementation (black) shows consistency with another implementation(red
dashed). Black dashed line is —1/7;, dotted line is —1/7,. (b) Convergence with the simula-
tion window of the 0-exponent, )\, for the two stable cases shown in (c). (¢) The amplification

(or not) of finite machine precision deviations due to chaotic (or stable) dynamics, respec-
tively. (N =200, K = 100)

Note that the spectra have two lobes, each with a plateau, one at 7, and the other at 7;
and that the last exponent is separated from the rest. We also show that machine precision
differences in the numerics are amplified in the chaotic regime of the dynamics such that the
simulations of the formally identical implementations diverge from each other after some time.
Simulations of chaotic dynamics will always diverge from the physical trajectory started at the
same initial condition due to finite precision. Nevertheless, for a wide class of systems, the
numerical trajectory is shadowed by some other physical trajectory and thus remains relevant
to the system [74]. We will assume that the networks considered here exhibit this property. In
the distance time series, we can also see what appears to be the finite-size spiking instability
discussed in the previous chapter take hold at around the time when the spike time difference
reaches 107°. We will discuss the effects of this instability later in the chapter. We only mention
here that it has a non-negligible contribution to the chaotic dynamics. The two trajectories
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Chapter 4 The transition from stable chaos to deterministic chaos

nevertheless stay within machine precision of each other when simulated in the stable regime, as
expected. The demonstrated accuracy of both implementations can be seen in the convergence
of the zero-exponent, \g, which converges to 0 with simulation time as required.

Since Monteforte gave some results for this model in his PhD thesis, we end this preliminary
section by listing them. In the range of 7; that he accessed (77 /7, = 1/3,1/2,2,3), he found that
the maximum Lyapunov exponent, \,,.. « log N. He also found that the entropy production
and the attractor dimension, H, D o« N (with a rather small coefficient) so that the chaos is
extensive. Defining h := H/N and d := D/N, he found that \,.z, h, d converge with K. Aaz
and h also converged with 7. A mean field approximation of the mean Lyapunov exponent
can be made for the cLIF similar to that exposed in chapter 2 for the LIF. For currents much
larger than Irheo, the corresponding integral over the states vanishes and the result simplifies
t0 Anean ~ —35 (— + —) whose approximation appears to be much better at moderately sized
K than for the finite- K approximation of the mean exponent of the LIF. It holds valid even in
this chaotic regime. We will show that some of these scaling properties change at large 7;.

Motivated to understand the novel feature of correlated activity in the cLIF compared to the
LIF, arising from the ongoing dynamics of the synaptic currents, we begin the results of this
chapter in the next section by situating the dynamics of balanced networks of cLIF neurons
along the axis of the strength of recurrent interactions.

4.4 Single neuron properties as a function of synaptic time
constant

In Figure 4.2, we plot a raster of activity for low and high 7; along with the distribution
over a range of intermediate 7;. The spiking activity is noticeably more bursty with larger
77, exhibiting temporal correlations that manifest clearly when compared to the case of a fast
synaptic timescale, 77/7, < 1. The cause is the combined slowness of the dynamics and
reduction the strength of current fluctuations at long 7; leading to temporally extended periods
of sub and super threshold voltage and thus silence and spiking, respectively. The reduction
in the strength of fluctuations leaves the current distribution Gaussian. It is Gaussian in this
regime because the longer time scale and the resulting smoothing effectively takes an average
of a larger and larger number of input events. In this limit, the evolution of the instantaneous
spike rate of the neuron can be obtained by simply passing it through the stationary response
function v(t) = F(I(¢)). This limit and in particular its stability is treated in detail in [7].
The conclusion there is that the network dynamics based on these instantaneous firing rates is
chaotic for the case of sufficiently strong (Jy ~ 1) and slow (77 > 20ms) recurrent coupling, as
is the case here (weak coupling would be Jy = 1/v/K so that J oc 1/K). In Figure 4.3 is plotted
the distribution p(v, I). I is tightly bound to I = 0 at low 7; because of the fast relaxation. I
then anti-correlates with v at large 77, due to the effective rate limit discussed above.

76



4.4 Single neuron properties as a function of synaptic time constant

(@) (b)

20 277 2 i T S O N o i f i i e e A 2 e
/) Vidodl P
15 Rl bl e e O eGSR X

) T — — —
AT 7 i
~' 7

R S S NG O e TR
e e A e A ey ]

i At VN A A

wmm/l;ml‘q :1:,/1 r~-|’fzr~/:4/1 ,-»:q/p Pl e

ij {
| {
N i
§ |
= ‘
=

-

=2y
IS§J
=
%J
= |
=)
=
=
,e)

g

» »

2 epemdresmobdebitpincio  Sup o M

= i e B KR g 1o gy T
:5) 8/\']"'";:\1""1 /:' /h.k,,«/v‘—/wr"*w./l/‘.ﬂ/‘}zgf\m;“ et :5) 8’—-‘\_I‘-\h S 5}’ V‘;
N R oo e e 54 2 e
s o S e 4;/;;19&}3 Lo o VAT

N s QoA s p Nt M A A ] T

. A7 S L e gy
N e e B ——— e —
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

time, s time, s

Figure 4.2: Microstate activity at low and high 7;. (a) 77 =1 (b) 77 = 100 (N = 1000,K =
100).
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Figure 4.3: State distribution of v and I. With increasing 77, (a)-(f), the distribution shifts
towards threshold and the current distribution approaches a Gaussian. (g) and (h) show the
marginal distributions of v and I, respectively.
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4.5 Transition into the balanced state with the synaptic
strength

Since the source of many phenomena can be traced to the phase transitions at which they
appear, we investigate to what extent the stability properties associated with 7; depend on
the collective state properties. Also, we demonstrate how the balanced state emerges with the
strength of recurrent coupling.

4.5.1 Collective activity emerges smoothly with strength of recurrent
interactions

We computed four measures to quantify the activity properties of the collective state: (1)
the average spike train irregularity across neurons captured by the average of the coefficient
of variation (C'V') of the distribution of their inter-spike intervals; (2) the satisfaction of the
mean field prediction of the external current, /.., required to achieve a fixed firing rate (here
10Hz); (3) the synchrony in the N-dimensional voltage dynamics of the network captured by
the synchrony index, y? = 02/02; and (4) the heterogeneity in activities across the network
captured by the spread in the distribution of firing rates, p(v). We also observed the dark ratio,
faark = Nsitent/IN, defined as the fraction of silent neurons in the network, since these neurons do
not contribute to the recurrent dynamics, and so bias network size-dependent quantities. fgu.x
was estimated by its convergence with increasing simulation windows, which accounts for low-
firing neurons. These quantities were computed over a range of coupling strengths, Jy, 1073 to
10° and a range of synaptic time constants, 7; ranging from 1072 to 10%. The results are shown
in Figure 4.4. All of these measures show a smooth emergence of the asynchronous-irregular
regime of the balance state as the interaction strength is increased.

The irregularity, as quantified by the CV = o;4;/(ISI), grows with 7; due to bursty spiking
dynamics that we observed in Figure 4.2. At Jy ~ 1, the finite-size deviations from complete
irregularity (CV = 1) and from exact satisfaction of the balance equation, v = Iy/.Jy, both
vanish as K ~'/2. As discussed in the previous section, normalizing the current by its mean
removes 7; from the meanfield equation so that its satisfaction should not depend strongly on
77, as is observed. While the mean field prediction becomes more exact with increasing 7;, the
agreement is good across all values of 77 used, as expected. We study the effects of K and 7;
on this agreement in more detail in subsection 4.7.2. The synchrony index, y, increases with
the coupling strength, Jy, but remains low (~0.1) throughout the range of coupling strengths
tested. The firing rate distributions, p(v), become wider and more left-skewed with 7;. Indeed,
the dark (v = 0) component captured by fi.,x grows with 7;. Slower currents can amplify the
darkness because they dampen the voltage excursions responsible for spiking. The existence
of a dark component arises from heterogeneity between cells[75], arising here from the variable
number of the synaptic inputs to a cell across the network. For the Gaussian neuron treated
in chapter 5, this heterogeneity explicitly generates a pole in p(v) at v = 0[75].
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Figure 4.4: Smooth transition into the balanced state. (a) Synchrony index, x. (b) CV of the
ISI distribution. (c) Satisfaction of the balance equation. (d) Firing rate distribution, p(v).
(e) Dark ratio, fgurk = Nsitent/N. For all but (d), blue to red denotes an log-uniform range
of 77 € (1072,10%) - 7. (N = 10%, K = 10?)

4.5.2 Stability is independent of J; what matters is 7;

To determine the stability of networks of cLIF neurons, we ran simulations to compute their
maximum Lyapunov exponent across the synaptic time constant, 77, and the coupling strengths,
J, for a fixed mean in-degree, K. The results are displayed in Figure 4.5. For all balanced
states, we found that whether the dynamics is stable or unstable does not depend on J so that
all balanced states across J for fixed 7; share their qualitative stability through the sign of
Amaz, though the magnitude|\,,q,| increases with J. This also implies a J-independent critical
767 at which the maximum Lyapunov exponent changes sign. For the rest of the chapter then,
we will investigate the nature of this stability transition in the case of fixed Jy = —1, so that
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J = K12 as a representative example and the one for which the mean field theory is best
understood. As another health check, we note that \,,,, approaches that of the LIF for 7; — 0.
We note that in the chaotic regime, the J-dependence of A4, strongly mirrors that of the dark
ratio fy.-1. We suspected that the neuron average used in the definition of the population firing
rate was biasing \,,.. to larger values because the fewer active neurons were being required to
fire at higher rates. Indeed, the curves collapse onto each other if we rescale them by fgur%, SO
that A, loses its dependence on J. That the stability of the microscopic dynamics appears
independent of a parameter that determines its corresponding mean field theory is a familiar
scenario in many-body physical systems where the chaotic nature of particle interactions are
irrelevant to the stable characteristics of the macrostate. We suspect that the discrepancy in
the N-scaling of the A4, with the a-function model of the synaptic current [14] is due to the
scaling of the dark component with N. There is a unique maximum, here at a value near 7,
though we will see that the location depends on the other parameters in the network. A, ..
then decays as 7; 2/3
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Figure 4.5: Transition into chaos with 7;. (a) A contour plot of A, over Jy and 77. (b)
Amaz in profile as a function of 77 at Jy = —1. (¢) The dependence on Jy can be scaled away
by normalizing the rate over the active subset of neurons(J, = 0.01,0.03,0.1). (N = 10,
K =10?).

4.6 cLIF Lyapunov spectra with increasing 7;

The stability transition shown in the previous section arises as the synapses in the network
realize their own dynamics as 7; becomes on the order of 7,. A natural question regards the
nature of the chaos on the other side of the transition. In this section, we compute and analyze
the full Lyapunov spectrum, respectively.

4.6.1 Stability transition to chaos

Here we present an analysis of the shape of the cLIF spectra with a focus on the 7;-dependence
of the chaotic regime and also as an opportunity to explain how conventional ergodic theory
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quantities like the attractor dimension, D = max{i|>; A\; > 0}, and the entropy production,
H = 37,,~0Ai, are interpreted. Referring to Figure 4.6, the large-7; cLIF spectra all have a
chaotic component of positive exponents. This component rises quickly with its maximum,
Amaz, Scaling at first with 7; with only few exponents above zero, after which this unstable
component drops down with A, scaling as 7; ' and becomes distributed over more exponents.
The entropy production also achieves a maximum with 77, but at a larger value, after which it
also decays. How do we interpret the distinguishing features of H and A,,427 Apas is maximized
at a value near 7,, such that the network exhibits the effects of a perturbation fastest there.
Distinguishing which of a set of perturbations was made, however, can be done fastest at a value
of 77 above 7, where H is largest. In contrast, the attractor dimension, D, seems to saturate
at a value near 100. It would be interesting to compare this value with some similar measure
of the effective dimensionality of the dynamics obtained from the rate network considered in
[7] to see if the attractor of the effective rate dynamics captures as much of the N-dimensions
as the attractor of the spiking dynamics in this regime.
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Figure 4.6: cLIF Lyapunov spectra become chaotic with 7;. Spectra in the chaotic regime as 7;
crosses over T, (17 = 1,7.5,9,9.9,11,12.5ms). (b) A set of spectra well into the chaotic regime
(17 = 12.5,25,50,100ms). (Inset shows the chaotic component). In (a) and (b), dashed lines
are —1/77; dotted line is —1/7,. (¢) Top: maximum Lyapunov exponent. Middle: entropy
production. Bottom: Attractor dimension. Dots are numerics. Lines aid the eye only. Black
dot is located at 7§, Dots colored as in (b). (N = 10%, K = 10?%).

This ends the presentation of the chaotic behaviour of cLIF Lyapunov spectra. The chaos in
figure Figure 4.6(c) emerges at the left most point shown, 76", that serves as the critical value
of the synaptic time constant at which the stability of the dynamics changes. The analysis of
its behaviour has not previously been possible to study. We take on this task in the following
section.
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4.7 Behaviour of the critical synaptic time constant, Tf”t

With chaos on the other side of the transition characterized, we return to the transition to
characterize it through the critical value of the synaptic time constant, 7.

4.7.1 Computing Tf”t from )\, over K, v, and N

We ran simulations for obtaining Lyapunov spectra across K, N, and v. The simulations were
made over 10 realizations of the connectivity at small K values to only a pair of connectivity
matrices at large K to check mutual consistency (at large K values the dynamics is self-
averaging so that 1 realization is sufficient). All simulations were performed over a range of
77 in which a change of sign in A, occurred. The critical value of 7; was then linearly
interpolated from the first value of \,,.; above and below 0, with a margin included so as to
avoid the asymptotically slower convergence of the exponents around 0. The interpolated values
were spot-checked for accuracy. The results are presented in Figure 4.7. In Figure 4.7(a), we
show that the critical value saturates with N ~1/2 at a finite value, which simply shows the effect
of the extensivity of the spectra. Taking a value of N at which 7§ had converged to precision
of less than 107!, N = 5x10°, we then ran simulations over K and 7, limiting the range of K
explored such that P = K/N < 0.1. In contrast with N, 7" had a tight, inverse dependence
on both K and 7, with slight deviations at large K where the K ! scaling seems to weaken. We
confirmed that this deviation from the scaling was not due to a lack of convergence by running
simulations in this regime at larger N = 10°, where we still observed a deviation. There is also
deviation at low v.
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Figure 4.7: Numerical scaling of 7§". (a) Convergence to a finite value with N='/2. (b) Linear
decay with v. (c) Linear decay with K. Lines guide the eye. Default parameters: v = 10,
K =100, N = 5x10%.

In the following section, we apply ideas of the previous chapter into explaining this scaling.
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4.7.2 Stability arises with discontinuity: prediction of K-scaling and
crossover

To attempt to understand the scaling found in the previous section, we take the intuition gained
from the work presented in the previous chapter. The average time between susceptible spikes
in the network sequence was (Kv)™!. As 7y > (Kv)™ !, effects of deviations in the spike sequence
are distributed over a large enough window to couple these successive susceptible spikes so that
the spiking instability exists for any perturbation strength and so the network is chaotic. This
is only a heuristic argument. The benefit of the theory is that we can be precise. That theory
convincingly established that stability for these networks is tied to the sharpness of changes in
the spike time map. In analogy with the LIF example subsection 2.6.1, we analyze the scenario
of an inhibitory event when the voltage is just below threshold. However, since the model is
not invertible we can not analytically derive the time At. that it takes the neuron to evolve
back up to threshold after the inhibition event as we did with the LIF. Nevertheless, we can
calculate analytically the condition for which this time vanishes since it is simply given by the
more general condition v(t) = 0 conditioned on v(t) = vy and an input spike at ¢~. This event
consists of the synaptic current value, denoted I7, just before v reaches vy, receiving an input
spike and being knocked down an amount J = — \‘/7%( The voltage then is deflected down away
from the threshold, delaying the output spike.

This condition is equivalent to the vanishing of the return time between the input spike time
and the output spike time (see Figure 4.8).

VJ\

> time
11\

> time
Figure 4.8: Inhibitory event at threshold as a function of 7;. TICth is obtained as the time for
the voltage to return to threshold goes to 0.

Referring back to the equation for v, Equation 4.1, we get

v J
O:Tv'{J:—UT_[ _7;70‘{’[7"}160—1_]61‘15

TI\/?

where we have substituted in the value of the voltage at threshold, v = vy. We can solve this
condition for the critical time constant, nglt, with —vp canceling with I,,.,. Re-expressing the
non-current factors using the balance prediction for I..;, Iy = VK JyvT,, T}fglt can then be

expressed through the input rate, Kv, multiplied by a factor of currents,
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Chapter 4 The transition from stable chaos to deterministic chaos

(4.4)

T L K (12

where we note that I..;/lye — 1 rapidly with K (Iozt/Ipe > 0.9 for K = 10%), so that for large
K we have

crit 1
MK (1- )

Iﬁzt

We note that Iy < I.,;. What is this remaining ingredient, I;? It is the synaptic current at an
event where the voltage almost reached threshold but was deflected down brought down by an
inhibitory input spike to the current. It must then obey some distribution over the ensemble
of such events. The stationary distribution for (v, ) is not known analytically in general, let
alone the one conditioned on v = vy (though see [76] for the large-7; approximation, whose
usefulness is precluded here because 7; < 7,). However, the stationary value of the current
scales as JyvV KT, so we might expect I to as well. Across a range of K and 77, we computed
the distribution of I at spike times as an estimate of the I assuming that contribution of the

additional conditioning on reception an input spike was minimal. The results are shown in
Figure 4.9.

We observe that the mean of I7 scales as VK at large K while the fluctuations of I saturate
at large K. So, for large K, the mean dominates I7, and the resulting v/ K -scaling of I cancels
in Equation 4.4 with the v/ K-scaling of I,,;, which itself cancels the v/ K-scaling of Iy in the
Iext/Iya factor leaving 7777 oc O(K~'); the same as the K-scaling of 77" obtained from the
Amaz = 0 condition found in the previous section.

Because this framework is explicit, we can go beyond the scaling and directly obtain a quan-
titative estimate of the critical transition line in the (K, 77)-plane. At fixed input rate, Kv,
the condition determining the loss of discontinuity is now a curve in the (77, I7) plane (see
Figure 4.10). We can plot Ir + o5 as function of 7 for a fixed values of the other parameters.
The bulk of the probability mass of I will have crossed the critical curve where it intersects
with I+ o7, which occurs at a particular value of 77, denoted Tﬁglt. We apply this procedure
to networks of variable K and v for N = 5x10° and present in Figure 4.11 nglt along side the
76 obtained from the change in sign of \jqe.-

84



4.7 Behaviour of the critical synaptic time constant, 76
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Figure 4.9: Statistics of current at threshold display crossover behaviour. Top: the mean and
fluctuation strength of the input current over K. Middle: same over 7;. Bottom left: The
deviating factor approaches 1 and has a crossover to K ! at larger K for smaller 7;. Bottom
Right: the total current is constant at large 7; but then begins falling as 7; decreases. (Colors
from blue to red in plots with K and 7; on the x axis correspond to increasing 7; and K over
the range shown).

The correspondence between the appearance of a discontinuity in the map and the onset of
stable dynamics is striking, especially given that there is no requirement that the effects be so
precisely connected. The prediction using the balance equation gives the exact K~! scaling,
to which the prediction using only I decays. We note the apparent reduction in the power of
the scaling of A4, at large K. The prediction using o; seems to follow this trend. Whatever
the effect, the two qualitatively distinct possibilities are that the power of the scaling reduces
to some finite value, in which case it decays or that 7¢"* asymptotes at a finite value of K.
We could not easily obtain the Lyapunov-critical 7; for such large networks (N ~ 10°) to
observe the larger K behaviour required to reveal which of these scaling scenarios holds due to
computational limitations. Nevertheless, the fact that the deviations from the low-K scaling
also arise as an unexpected feature of our prediction framework motivates its continued use in
this high- K regime when such computational resources become available.
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Figure 4.10: Computing the o-critical time constant. (a) the time to spike is shown at the
initial condition at which its corresponding trajectory was started. Note that the time to
spike (heat map) just after receiving an input spike when v ~ vz, depends on the value of
the current there, Ir. (b) As a function of (I7,77), the time to spike vanishes along at a
(black dashed) curve. The critical 76" is obtained by finding where the bulk of the current,
Iy = Ir & o7 (mean (black) enclosed by 4std. dev. (red)), passes this curve.
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Figure 4.11: The scaling of the critical time constant and its prediction. Circles are obtained
from the change in sign of \,,4,. The square dot was simulated at twice the network size, N =
10°. The black solid line is the prediction based only on the mean current, Ir. Black dashed
line is the prediction including the current variance. The grey lines are the corresponding
curves under the assumption of exact satisfaction of the balance equation.
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4.8 Microstate analysis of the transition to chaotic dynamics

4.7.3 The mixed synapse

While the results of the previous section demonstrate that the stability arises with the dis-
continuity in the map, it did not address how strong this stabilizing effect is relative to the
destabilizing effect of larger synaptic time constants. One approach to address this question is
to add a somehow small amount of the discontinuity and see the degree of resulting change in
the stability. We thus analyzed the stability of networks of neurons that receive a mixture of
the pulse- and smoothly-integrated input, whose putative stabilizing and destabilizing effects,
respectively, we could vary by adjusting the size of each term. Again, the generic nature of the
2D linear model comes in handy as the range of v from 1 to 0 gives the exactly this transition
from all smooth input to all pulse-coupled input. We thus computed the stability transition in
the (75,7) plane for K = 50,500, 5000. The results, shown in fig.Figure 4.12, show a dominant
role of pulse-coupling in determining the stability of these networks. With less than a fraction
of a percent of pulse-coupled input the networks become stable even for intermediate values
of synaptic time constant,7;, where the destabilizing effect of the synaptic time constant is
strongest. Thus, the space is overwhelming filled with stable dynamics with chaos constrained
to a small region bounded just slightly away from v = 0.
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Figure 4.12: Even small amounts of pulse-coupling restore stability. Chaos is constrained to
a small regime near v = 0. Pulsed input fraction, v, versus 7; across K.

4.8 Microstate analysis of the transition to chaotic dynamics

In this section, we investigate the stability transition at the microstate level, i.e. at level of
particular spiking trajectories, observing novel behaviour compared the tubes of LIF networks.
In particular, the distance time series produced by finite-sized perturbations of such networks
take on new properties. We infer from these the corresponding effects on flux tubes, from which
we aimed to understand how they disappear, as they somehow must, across the transition to
chaotic dynamics. We end with a suggestive result highlighting a property of the single neuron
dynamics as underlying the transition to chaos.
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Chapter 4 The transition from stable chaos to deterministic chaos

4.8.1 Flux tube shrinkage

Since we wish to investigate the structure of flux tubes whose computation is intensive, we
restrict the analysis in this section to a small network of N = 200 neurons and K = 100. We
first present in Figure 4.13 a set of cross sections obtained for a range of 7; leading up to the
transition using the same algorithm as described in chapter 2.. The dissolution or at least the
shrinkage of flux tube structure is clear.
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Figure 4.13: Tube cross section shrink as € oc (7" — 77)% approaching the transition. (a)
Cross-sections of the phase space for 77 = 4,5,6 (75" = 7.68). (b) Lyapunov exponents,
Niyi = 1,2,3 as a function of 77 used to determine 7§ ~ 7.6. (c) Ps(e) for 7; shown in
the inset: e; obtained as the half-maximum of P;(e) as a function of the distance to the
transition, 76" — 7;. Dashed line grows as (75 — 77)2.

We computed the Lyapunov exponents around the transition to determine 7¢"*Figure 4.13(b),
and then computed the probability of separation, Ps(e) Figure 4.13(c). The result is that we
find that € o< (75" — 77)% so that there is no discontinuity in the growth rate of the tubes as
the dynamics transitions between stable and chaotic dynamics.
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4.8 Microstate analysis of the transition to chaotic dynamics

4.8.2 Distance time series fluctuations near the transition

With the synaptic current as an additional degree of freedom in the single neuron dynamics
there is some choice now compared to the LIF case as to how both the perturbation is applied
and the resulting distance measured. Since there is no simple phase representation, we must
perturb in the voltage and current representation. In that space, the trajectory vector is state-
dependent and so must be calculated specifically for the state being perturbed in order to
ensure the perturbation vectors lie in the plane orthogonal to the trajectory so that all of the
perturbation strength is mapped into relative changes in the spike time sequence, and not lost
to global shifts. Indeed, the trajectory vectors for perturbed states will now be angled away
from that of the state being perturbed, in contrast to the case of the phase representation of the
LIF in which they are all parallel. We have checked this angle Figure 4.14. In particular, one
sees that the continuous flow in the full space has a local divergence whose rotational symmetry
is increasingly broken with 7;. This can be explained, at least partially, through the effect of
77 on the eigenvectors of the single neuron dynamics, which we will investigate in more detail
in a later section. The angles are nevertheless small.

L= Zres - Zperp

0.2

62 01 0 01 02

Figure 4.14: Anisotropy in the local divergence of the flow increases with 7;. Shown is a
contour plot of the degree of separation of tangent vectors, Zpep, of trajectories local to the
unperturbed trajectory in a plane orthogonal to the tangent vector, Z..r, of that trajectory
and spanned by 2|1 and Z5. The separation is quantified by the deviation from 1 in the
mutual overlap between 2, and Z..s. The contour values increase from 0 away from (0, 0)
and range up to ~ 107° at the edges of the plot, with larger values for larger 7;. The contour
color (ranging from blue to red) denotes the set of contours for a given 77 from 7; = 1ms to
71 = 10ms.

The difference between the voltage and current subspace with regards to where the perturbation
is applied comes down to the additional filtering of the perturbation through the current. This
adds an additional layer of complication and so here for simplicity we perturb only in the
voltage subspace.

The quantitative effects of the perturbation in the distance depend on which space that distance
is calculated in. The only qualitative difference between the two choices is that over periods
when the index sequences are aligned the distance evolution between spike times can grow or
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Chapter 4 The transition from stable chaos to deterministic chaos

decay in the voltage subspace, while it always decays in the current subspace. We only consider
the voltage subspace. The decorrelation criteria is relatively independent of the choice of the
space since the voltage and the current both undergo a decorrelation. We continue to use the
1-norm, normalized by NN, to measure the distances so that the magnitudes are relative to the
distance between the resting and threshold voltage, vy — vg = 1.

Figure 4.15: (A) distance times series exhibits transient amplification whose strength and
length increases with 7; from blue to red approaching the transition. (7; values from Fig-
ure 4.13)

In Figure 4.15, we show a representative set of distance examples for values of 7; asymptotically
approaching the critical value from the stable side. They were obtained from perturbation
strengths just below the one at which they diverged. We make a few qualitative observations
from these examples. Their clarification sets the agenda for the remainder of this chapter.

First, the decay of the distance far from the transition is well approximated by the mean
Lyapunov exponent. Second, the ‘spikes’ observed in distance are periods over which the
spike sequence of the perturbed trajectory is advanced or delayed by one spike relative to the
unperturbed trajectory. Once the spike sequences align again, the distance falls back down.
However, the evolution of the distance on these spikes is now qualitatively different than for the
LIF. Third, as the transition is approached with 7; and the long term decay slows; on the short
term, there appear stronger, temporally correlated fluctuations in the decay of the distance.

From this third observation, we highlight an important complication arising from long obser-
vations of the strongly fluctuating distance. Namely, the distance can have decayed to machine
precision, where it remains, until experiencing a sufficiently strong and long fluctuation over
which it can grow past the characteristic distance where the finite-size spiking instability takes
hold, leading it to then diverge. This fluctuation, however, may not have led to such a diver-
gence had the precision of the machine been higher and the distance allowed to decay further
before experiencing the fluctuation. Thus, reliable results can only really be made over the
subset of trajectories that have not yet dropped to machine precision.
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4.8 Microstate analysis of the transition to chaotic dynamics

(@)

Figure 4.16: (a) P,(e) for 7, approaching the critical transition (dashed lines are at double
precision; lines are at long double precision). (b) €qi and fgecorr are anti-correlated. (c)
Convergence of A4 (solid lines) and Ag(dotted lines) for 77 = Tms < 7§ (blue) and 7 =
8ms > 7§ (red) .

However, this subensemble of trajectories produces a bias in any averaging towards less stability
because the subset of trajectories that fail hit machine precision tend to be the ones that have
decayed slower. Leaving in the other part of the ensemble does not help in removing the
bias either for the above stated reason that they have a higher propensity to diverge. A final
possibility is that we limit the simulation period over which we consider the distances for a
given 7; to the time when the first sample reaches machine precision, a time that away from
the transition is lower bounded by that given by a deterministic decay to that precision with
the rate of the maximum Lyapunov exponent. However, even this introduces a bias, though in
the other direction, as we likely miss many decorrelation events that fall beyond the simulation
window. As a result, we falsely label as local the trajectories that were in fact from another
flux tube, biasing the probability of separation to lower values.

We computed two sections just above and below the transition Figure 4.16(b). Two immedi-
ately obvious features is that there are completely pixelated regions consistent with a chaotic
dynamics below the transition and extended undecorrelated areas of apparent stability above
the transition. While the first can be explained by the chosen resolution of the grid of initial
conditions being too coarse to resolve the smaller tubes, the latter cannot be consistent with
Amaz > 0 and suggest the existence of decorrelation times beyond the chosen simulation win-
dow. To further understand the features in these sections, we evolved a long trajectory starting
from a pair of pixels, one of each type, for both below and above the transition. The results
conform to those provided by the behaviour of \,,., with 7;. The apparent tubes above the
transition are exposed as artefacts by realizing that we have just not simulated long enough to
allow the instability time to decorrelate the microstate due to the aforementioned long tempo-
ral correlations in the distance. Indeed, these sections were constructed from simulation times
long enough to contain the decorrelation events of the corresponding LIF network. However,
given the temporal correlations, perhaps this estimate is no longer valid. We computed a set
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Chapter 4 The transition from stable chaos to deterministic chaos

of Py(e) for a range of 7; approaching the transition and with exponentially longer simulation
windows Figure 4.16(a). Unfortunately, the biases discussed in the previous section still have
the expected effect on the numerically computed probability of separation curves Figure 4.16.
In particular, the curves obtain an artefactual finite limiting value for ¢ — 0. Increasing the
precision from double to long double allows the numerics to get closer to the transition without
exhibiting a bias, but only marginally. The effect will always skew results within some distance
from the critical value.

4.8.3 Sources of transient amplification

From where do the large fluctuations in the distance shown in the previous section arise? How
can they arise if the dynamics is stable? We are reminded that the Lyapunov spectrum is an
asymptotic quantity so that transient expansion is not excluded for \,,., < 0. In this section,
we thus search for sources of transient amplification.

4.8.3.1 Transients not visible in Local Lyapunov Behaviour

As an asymptotic quantity, A4, ignores the any transient periods of instability in the Local
Lyapunov Exponents (or the Oseledec subspace versions used to compute it). Just as the
Lyapunov exponents characterize the asymptotic growth along the Lyapunov vectors, the Local
Lyapunov exponents characterize the temporally local growth behaviour.
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Figure 4.17: No apparent temporal correlation in LLEs. Left: The distribution of local Lya-
punov exponents. Right: Evolution of the local Lyapunov exponents.(N = 200,K = 100)

In Figure 4.17, we show the distribution of LLEs and their temporal evolution. Surprisingly, we
find no periods of extended instability in the LLE spectrum capable of explaining the periods
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4.8 Microstate analysis of the transition to chaotic dynamics

of transient growth in the distance time series. Instead, we see high cross correlations between
the exponents such that the spectra shifts up and down as a unit, sometimes being completely
unstable despite being in the stable regime. We are reminded that the Lyapunov vectors are
generally nonorthogonal vectors, so that the set of the growth rates along each one are not
easily related to the growth of the decomposed perturbation vector.

4.8.3.2 Transient amplification observed in distance decorrelation cascade

Does increasing 7; have any obvious transient destabilizing effect on the distance?” We observed
the cascade occurring after decorrelation events. Since 7;’s effect will be most apparent in
the continuous evolution between spikes over which it acts, instead of across the jumps in
the distance at spike times, we systematically removed the latter by leveraging the distinctive
discontinuous nature of the jumps across spikes in the distance measured in the full voltage
and current phase space. A simple threshold criteria in the changes in this distance across
successive time points was sufficient to separate the two contributions. We found that for the
limiting LIF case of 77 — 0, the distance always decays between spikes (see Figure 4.18). In
contrast, the finite 7; case shows a transient amplification manifesting as an initial rise in the
distance, followed by the eventual decay.
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Figure 4.18: cLIF distance decorrelation cascade exhibits transient amplification. Between
spikes, the distance decays in the LIF (a), while it transiently increases in the cLIF (b). Blue
are red are the between and across spike contributions to the distance evolution (black).
(N =200, K = 100)

Since the transient amplification appears only between spikes, when the neuron’s evolve in
isolation, we were motivated to search for sources of transient amplification in the single neuron
dynamics.

4.8.3.3 Non-normal amplification in single neuron dynamics
As 77 increases, the current eigenmode moves from being fast and orthogonal to the voltage

eigenmode, to being slower and more oblique (see Figure 4.19). As a consequence there is a
region in the single neuron phase space from which the state can be initially amplified away from
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Chapter 4 The transition from stable chaos to deterministic chaos

the fixed point before it is inevitably attracted. The property of a dynamics being transiently
amplified in this way is captured by how non-normal is the linearized differential matrix. A
normal matrix, B, is one for which BBl = BTp , and is equivalent to B having an orthonormal
set of eigenvectors. We can already guess that the cLIF matrix is non-normal. Indeed
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Figure 4.19: Non-normal dynamics in the cLIF neuron. Left: Shown is the relevant region
of the single neuron phace space whose brightness denotes the local divergence of the vector
field. The blue to red arrows show the oblique eigenvector across values of increasing 7;. The
corresponding trajectories initiated from a single initial condition at low current show the
increasing transient amplification caused by the slowness of this oblique eigenvector. These
are sensitive zones in the 2D single neuron phase space, where small perturbations have a
large effect.

B

Expanding the formal solution of the 2D dynamics, Z(t) = eP'Z,, in time and taking the

coefficient at linear order gives BJFQBT. The spectral abscissa of this matrix,
B+ BT
n(B) :=max |\ (%)
\/27'12 — 2T Ty + T2 —T1 — Ty

I

2T To

is often a faithful relative measure of the transient amplifcation due to non-normality of the
matrix B. n(B) increases monotonically with 77, with th eincreae. In attempting to assess the
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quantitative influence of non-normality, however, the dependence on K and © via the input
rate must be incorporated in a principled way. We leave it to future work to determine whether
nonnormal amplification in the single neuron dynamics can be related to the onset of chaos in
these networks.

4.9 Discussion

In this chapter, we have investigated how the network dynamics transitions out of stable chaos
when the neurons interact through temporally extended pulses.

Another main conclusion of this section regards the extent of stable chaos. The critical 7¢"

was shown to scale as 1/Kv. It arises at the boundary where the single neuron dynamics loses
its contractive behaviour. How are we to interpret this scaling behaviour? If 7; is greater than
K7 then the memory of a perturbation extends beyond the average time between successive
susceptible events in the network, coupling their effects so that they gain a sensitivity that
can lead to chaotic dynamics. The region of stable chaos persists in the thermodynamic limit
N — oo. This is at odds with the result from rapidness transition[11]. Considering a model
that contains both finite action potential rise and extended synaptic width can in principle
tease out the nature of this discrepancy.

Some researchers have studied this model with the additional constraint that the current is set
to 0 after a spike. This has the important consequence of erasing any memory in dynamics by
removing the serial correlations in the inter-spike intervals. The treatment of correlations then
becomes tractable (for an example see [77]) and a natural period exists because the current
no longer acts as an independent degree of freedom, implying the existence of a unique phase
representation. When the current is not reset on the other hand, the period is state-dependent
and there is no unique phase representation away from the regime of weak input, though a 2D
phase and phase velocity dynamics exists. The 1/ V'K coupling of the balanced state is not
weak and so this choice is not valid. When synapses are not fast, the simplification to a spike-
resetting current is probably also not valid and since we wish to have a single representation
valid throughout 7; we choose not to reset the state of the synapse of the firing neuron when it
spikes. However, we did confirm the intuition that the loss of memory caused by resetting leads
to a slight increase in the chaos as seen in an increase in A4, (not shown). Further analysis
on the effects of resetting the current was not carried out however.

We found a suggestive connection between the onset of chaos and the increase in the transient
amplication in the single neuron dynamics. Future work should aim to test the correlation, by
for instance comparing the distance time series to the time dependence of 1 computed fo the
corresponding Jacobian time series.

With chapter 2 and this chapter, we have sketched out a foundation for stable chaos of the
spiking microstate, both its properties and its emergence. How does this phenomenon affect
the other levels of description? A notable recent work has treated the mesoscopic effective
rate network in the limit of long synaptic time constant [7]. These models exhibit a transition
to chaos with increasing strength of the coupling. The transition is not observed here in the
spiking model. Continuously coupled rate networks can also not exhibit stable chaos, as we
have described it here. Because of these fundamental differences between the formulations of
the system at these two levels, there is no requirement that they exhibit the same qualitative
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behaviour except in limits where their dynamics are effectively the same. One such limit appears
to be the large 77 limit, where indeed they are both chaotic. It would be interesting to see how
dynamical invariants for the two dynamics compare.

The stable chaos theory presented here is based on the LIF and cLIF. However, neurons are
multidimensional units, and the artificial restriction of its dynamics to one dimension is severe.
In the next chapter, we broaden the scope of the analysis of the asynchronous irregular regime,
by studying it in the regime where the units have an additional somatic degree of freedom, the
socalled GIF model neuron.

96



5 Response properties of an ensemble of
GIF neurons

5.1 Chapter summary

The response of a neuronal population over a space of inputs depends on the intrinsic prop-
erties of its constituent neurons. Two main modes of single neuron dynamics—integration and
resonance—have been distinguished. While resonator cell types exist in a variety of brain ar-
eas, few models incorporate this feature and fewer have investigated its effects. To understand
better whether and how a resonator’s frequency preference emerges from its intrinsic dynamics
and contributes to its local area’s population firing rate dynamics, in this chapter I construct
an analytically solvable two-degree of freedom neuron model and obtain its dynamic gain. In
the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice ap-
proach lifts the resetting of the voltage after a spike. This allows us to derive for the first time
a complete expression for the dynamic gain of a resonator neuron model. I find six distinct
response types and use them to fully characterize the routes to resonance across all values of
the relevant timescales. I find that resonance arises primarily due to slow adaptation with an
intrinsic frequency acting to sharpen and adjust the location of the resonant peak. I deter-
mine the parameter regions for the existence of an intrinsic frequency and for subthreshold and
spiking resonance, finding all possible intersections of the three. The expressions and analysis
presented here provide an account of how intrinsic neuron dynamics shape dynamic population
response properties and can facilitate the construction of an exact theory of correlations and
stability of population activity in networks containing populations of resonator neurons.

5.2 Introduction

Integration and resonance are two operational modes of the spiking dynamics of single neurons.
These two modes can be distinguished from each other by observing the neuron’s signal transfer
properties: how features in its input current transfer to features in its output spiking. The
traditional approach to investigating neuronal transfer properties is to measure the stationary
response: the time-averaged rate of firing of spikes as a function of the mean input current, or
fI-curve. In Hodgkin’s classification [78], Type I membranes can fire at arbitrarily low rates,
while the onset of firing in Type Il membranes occurs only at a finite rate. This distinction
arises naturally from the topology of the bifurcations that a neuron can undergo from resting
to repetitive spiking [79]. In many central neurons, it is fluctuations rather than the mean
input current that drive spiking, putting them in the so-called fluctuation-driven regime [38].
Many dynamical phenomena are nevertheless tightly linked to excitability type. For example,
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Type II neurons exhibit rebound spikes, subthreshold oscillations and spiking resonance (e.g.
mitral cells, [80, 81, 82], respectively). The qualitative explanation for these phenomena is that
the dynamical interplay of somatic conductances endow some neurons with a voltage frequency
preference, i.e. a subthreshold resonance. This preference can contribute to a superthreshold
resonance in the modulation of their output spiking [83]. How dynamic response properties of
spiking dynamics such as resonance emerge can be directly assessed by considering the neuron’s
dynamic gain.

Dynamic gain, first treated by Knight [84], quantifies the amount by which features at specific
frequencies in the input current to a neuron are amplified or attenuated in its output spiking. It
can accurately distinguish functional types and unveil a large diversity of phenomena shaping
the response to dynamic stimuli [85, 86, 87, 83, 89, 90, 91, 92, 93, 94]. Dynamic gain and
response are also essential ingredients for theoretical studies of network dynamics in recurrent
circuits [87, 95, 39, 96, 97, 98, 99, 84, 100, 101, 93, 5, 102, 103, 104, 105, 106, 107, 108, 109,
110, 88, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122]. First, they determine the
stability of the population firing rate dynamics [99, 39]. Second, they determine how input
correlations between a pair of cells are transferred to output correlations [117, 118, 119, 120,
116, 114, 121, 101], and from which self-consistent relations for correlations in recurrent circuits
can be obtained.

Experimental studies have started over the past years to use dynamic gain measurements to
investigate the encoding properties of cortical neuron populations [94, 85, 86, 87, 88, 89, 90, 91,
92, 93]. Although theoretical studies have investigated many neuron models, very few models
are known for which dynamical response can be explicitly calculated. One basic reason for this
lies in the fact that Fokker-Planck equations for neuron models with two or more degrees of
freedom are not solvable in general [123]. For Type II neuron models that require at least two
degrees of freedom, no solvable model is known.

The simplest model capable of subthreshold resonance was introduced by Young [124] in the
early theories of excitability. Later, Izhikevich formulated a structurally similar neuron [125].
Richardson and coworkers performed the calculation of the linear response function of a neuron
model capable of resonance, the Generalized Integrate-and-Fire (GIF) neuron [96, 5]. Only in
the limit of relatively slow intrinsic current time constant can analytical expressions for the GIF
response be obtained. The distinct transfer properties of resonant vs. non-resonant dynamics
leads to different information transfer properties. While this has been demonstrated in the
mean-driven regime [126, 127], no such results exist for the fluctuation-driven regime, in part
due to a lack of exact analytical expressions for even the linear the dynamic gain. Type II
excitability and dynamic response thus are representative of the more general challenge posed
by response properties of neurons with complex intrinsic dynamics.

In the current study, I derive and analyze the linear response function in the fluctuation-driven
regime of a neuron model capable of resonance. It is valid across all relevant input frequencies
and over all relevant values of the intrinsic parameters. In particular, I apply to the GIF
neuron model the Gauss-Rice approach in which the voltage reset after a spike is omitted. The
methods generalize to additional intrinsic currents and to the full nonlinear response with spike
generation. To understand how subthreshold features interact to determine a neuron’s filter
characteristics, including resonance, I provide a two-dimensional representation of the response
properties that completely characterizes all possible filter types. For this idealized model, I
determine analytically and numerically a wide and biologically-relevant regime of validity of
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the derived expression.

The chapter begins with the definition of the model and its numerical implementation. I then
derive a general expression for the linear response in the mean channel of a Gauss-Rice neuron.
In the next section, the analytical results for the response properties of the Gauss-Rice GIF
neuron model are obtained. The final section then presents an analysis of the expression.

5.3 Definition of and methods for a population of
Gauss-Rice GIF neurons

We consider for the main model in this chapter the most simple hard-threshold, no-reset,
GIF-type neuron capable of exhibiting resonator dynamics. A reset version of this model was
already presented in [5], where the response properties were computed in the long intrinsic time
constant regime. In subsection 5.3.1, I present and extend their exposition of the reasons for
using such a model, and justify the additional simplification of forgoing a voltage reset after a
spike. After this, I state the model and show results of its numerical implementation.

5.3.1 Reduction of model complexity

Here, I detail how one arrives at a model like the one used in this chapter from simplifications
made to the synaptic, subthreshold, spiking, and spiking reset currents of a Hodgkin-Huxley
type neuron model for the dynamics of the somatic transmembrane voltage potential, V' (mea-
sured in mV),

OV = Lnem + Lyyn (5.1)

where C' is the membrane capacitance, I,,¢,, is the sum of all membrane currents and I, is
the total synaptic current arriving at the soma.

5.3.1.1 Synaptic current

Iy, contributes current terms of the form gy, (¢)(V — E), where E is the reversal potential for
the synapse type and gy, (t) is the time-varying, synaptic input conductance for that class of
synapse whose time course is determined by presynaptic activity. For a neuron embedded in a
large, recurrently-connected population, this presynaptic activity arises from both the recurrent
presynaptic pool of units (numbering K > 1 on average) and any external drive. In networks
with sufficient dissipation, the external drive acts to maintain ongoing activity. The measured
activity of networks in this regime is asynchronous and irregular and can be achieved robustly
in models by an approximate 1/ VK -scaling of the recurrent coupling strength, .JJ. This scaling
choice has the effect of balancing in the temporal average the net excitatory and inhibitory
input to a cell, leaving fluctuations to drive spiking. In this fluctuation-driven regime, the
mean-field input to a single neuron resembles a stochastic process. In the limits of (1) many,
(2) weak, and (3) at most weakly correlated inputs, a diffusion approximation of I, (t) can be
made such that it obeys a Langevin equation [128, 129]. While not yet developed for the Gauss-
Rice neuron approach, analytical tools for computing the response in the case of the shot noise
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resulting when (1) fails are appearing [130]. Strong inputs do exist in the cortex where synaptic
strengths are logarithmically distributed. Nevertheless, many strengths are weak, and I treat
only (2) here. Finally, an active decorrelation in balanced networks justifies (3). Expanding
Iy to leading order in the conductance fluctuations reduces the input to additive noise yielding
the Gaussian approximation to the voltage dynamics, also known as the effective time constant
approximation [131, 130]. The quality of this approximation depends on the relative difference
between the reversal potential and the voltage. Somas receive input from two broad classes of
synapse: excitatory ones for which the difference is large, and inhibitory ones for which the
difference is smaller so that they are less well-approximated. The two types can also differ in
their kinetics. While both are generally low pass, their characteristic times can be different.
Their combination can thus have qualitative effects on the response [122]. I retain only a single
synapse type so as to concentrate on the shaping of the filter properties by the intrinsic currents
of the neuron model.

In this approximation to additive Gaussian noise, the time-dependent ensemble from which
the input signal, I, (t), is sampled is completely described by a variance channel carrying the
dynamics of the fluctuations of the network activity, and a mean channel carrying the dynamics
of the mean network activity. More complicated compound input processes described by higher
order statistics offer more channels but they are negated by the diffusion approximation to a
Gaussian process. The variance channel determines the fluctuations of I, (¢) on which rides a
DC component described by the mean channel. I can thus write

Lon(t) = 1(t) + S1(2)

where the 0-mean Gaussian process 01(t) is characterized by the variance, 0%, and correlation
time, 77, of the fluctuations, both of which can in general vary in time, and I(t) is the time-
dependent population mean. The population mean of a quantity, x, will be denoted by a bar so
that 7 := (xy), = % >k T, where k indexes the neuron. For stationary input, the time average
of I(t) is ~ O(1/v/K) due to the balance. In this chapter, I consider deterministic changes in
the mean channel, I(t), produced for example by a global and time-dependent external drive.
I compute the resulting frequency and phase response, and leave the analysis of the variance
channel to a forthcoming work. For much of the chapter, I will also remove explicit dependence
of the model’s behavior on the input by setting o; for a desired output firing rate and measuring
time relative to 77.

5.3.1.2 Subthreshold current

In the most simple case (no longer exactly the Hodgkin-Huxley formalism), each somatic cur-
rent, Iyem,i, contributes additively to /e, with a term of the form

[mem,i =g, (V>(V - El)

where ¢;(V) is a voltage-dependent conductance, whose effect on the voltage dynamics depends
on the driving force, V — F;, the difference of the voltage and the reversal potential, E;. g¢;
obeys kinetic equations based on channel activation whose specification is often made ad hoc
to fit the data since the details of the conformational states and transitions of a neuron’s ion
channels is often unknown or at least not yet well understood. Nevertheless, for voltages below
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the threshold for action potential initiation the voltage dynamics can be well-approximated
by neglecting spike-generating currents and linearizing the dynamics of the subthreshold gat-
ing variables around the resting potential, V*. Following ref. [5], the resulting subthreshold
dynamics is then given by

Tzwz = UV — w;, 1= ]_, (52)
where v = V — V* and w; = (2 — 2} |v=v~)/ (dé’”‘;m]\/:v*) are the linearized variables

for the voltage and subthreshold gating variable, z;, respectively; gy = (dé%h/:v*) and

gi = ((%ﬂ;mw‘/) (dé""/"" |vv*) are the effective membrane conductances for the leak and

for x;, respectively; and 7, = 7;(V*) is the time constant of the dynamics of w;. C); is the
capacitance of the membrane. The w variables have dimensions of voltage. Activation and
inactivation gating variables have g; > 0 and ¢g; < 0, respectively. I denote the linearized
voltage by V instead of v throughout the chapter to better distinguish it from the firing rate,
v.

With the addition of a hard (i.e. sharp and fixed) voltage threshold and a reset rule to define
the spiking dynamics, this defines the GIF class of models [5]. Among the models considered
in ref. [5], the simplest has only one additional degree of freedom,

CyV = — gV — guw — Loy

ToW =V —w

with spikes occurring at upward crossings of the threshold, ). With time in units of 7,, the
authors multiply the voltage equation by 7,,/C)s and analyze the behavior as a function of two
dimensionless model parameters, a = g7, /Cyr and 5 = ¢,y Tw /Cr, upon which the qualitative
shape of the current-to-voltage filter for white noise input depends.

We consider correlated noise input that introduces an additional time scale which serves as a
more natural time unit. I are also interested in the explicit dependence on 7,,. Thus, I retain
both of the timescales of the neuron model, 7, and 7,,. I then parametrize our model using the
relative conductance g = /a = g, /g, the relative membrane time constant 7y /7 = o™ =
Chri/Tr9m, and the relative w timescale, 7,,/7; = /779 . Input variance is independently fixed

in order to achieve a desired firing rate. I thus make a slight alteration to the model in ref. [5],

TVV = =V —gw+ Iy,
T = V—w. (5.3)

We have absorbed the 1/g); factor into the units of I, so that all dynamic quantities are in
dimensions of voltage. I keep 7, > 0 by setting gj; > 0, that together with g > —1, this gives
stable voltage dynamics.

The approximation to a hard threshold from a set of spike-generating currents that are in
principle contained in I, but are not considered explicitly in [5] involves some assumptions
and approximations that have since been nicely formalized in [98] and so I include them in the
following section.
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5.3.1.3 Spike-activating current

The formulation of spike-activating currents can be simplified using the fact that all the infor-
mation that the neuron provides to downstream neurons is contained in the times of its action
potentials and not their shape. Only the voltage dynamics contributing to this time is retained
in the model; namely, the summed rise of voltage-gated activation of the spike-generating x;,
summed into a single function, 1(V'), dependent only on the voltage when its dynamics is rel-
atively fast [98]. 1(V') then appears as a term in the voltage dynamics and, when supralinear
in V', acts as the spike-generating instability that, in the absence of superthreshold, hyperpo-
larizing currents, causes the voltage to diverge in finite time. These latter currents are simply
omitted and the time at which the voltage has diverged is used in these models as the spike
time. The spike slope factor, Ar, sets the slope of the rise of the action potential, with smaller
values giving steeper rise. Its value should be measured at the site of action potential initia-
tion, the precise location of which is not yet known in general. An upper bound on the realistic
range of Ar is, however, likely smaller than that achievable by conventional Hodgkin-Huxley-
like models, even with multiple compartments [109, 111], and this speed has motivated neuron
models with fast action potential onset rapidness [11].

The time between the crossing of a fixed threshold voltage, Vi, defined implicitly by % =
0, and the spike time vanishes quickly with 1/AZ% oc " (V7), so that the further approximation
to a hard threshold, i.e. for omitting ¢(V') altogether by setting the spike time at V7, becomes
good for Ar — 0. However, the instantaneous rise in voltage in this limiting approximation
introduces artefactually fast population responses at high input frequencies, denoted by f,
raising the scaling behavior to 1/4/f and constant for white and colored noise, respectively [95].
Nevertheless, since the discrepancy begins above some fj;,,;; depending on A, the artefact can
be safely ignored by considering the shape of the response only for f < fimi:. Conveniently,
an upper bound on realistic values of Ay given by the surprisingly quick rise of real action
potentials leads to a value of fi.; well beyond the range of input frequencies over which
realistic filtering timescales act. As a result, the approximation to a hard threshold does not
alter the sub-spiking timescale response properties of the full model.

For concreteness, a popular choice for ¢(V') is ¥(V) = exp [(V — V) /Ar], the family of so-
called exponential integrate-and-fire (EIF) models [132] for which the difference between the
threshold crossing and the spike time vanishes very fast as exp[—Az']. Its high frequency

response falls off as 1/f, with a high frequency cut-off o< A7, I consider an EIF version of our
. V-V
model defined having an additional, superlinear term in the V-equation, ¥(V') = rye 5. The

approximate upper limit of input frequencies, fiinit, below which the no-reset approximation is
valid is given implicitly by the intersection of the response of the simplified model computed
in this chapter and the analytical high frequency response of the EIF version of the full model,
computed from an expansion of the corresponding Fokker-Planck equation in w™' = 1/(27 f).
I choose examples where the intrinsic dynamics are slow relative to the cut-off so I use the high
frequency limit result of the EIF with no additional degree of freedom calculated in [98],

IZ0) 1
VEIFJu'gh(f) ~ EQT(fTV .

(5.4)

The high frequency limit of the Gauss-Rice GIF is Equation 5.34. Equating these two expres-
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sions, I obtain

V2 Yo7
w32 Ap Ty
where g, 7., and 7, are parameters defined later. I check this condition through numerical
simulations of the EIF-version of the model. Instead of the heuristic constraints for choosing
the integration time step dt as specified in [98], T more simply obtain the f~! fall-off by raising
the numerical voltage threshold for spiking, allowing the speed of the action potential to play a
role at higher frequencies. While this gives an artifact in the phase response (not shown), the
high frequency limit of the gain is correct. Two example gain functions are shown in Figure 5.1
for a widely used value of Ar = 3.5mV(0.35 in our units), and a value an order of magnitude
smaller, Az = 0.35mV(0.035 in our units). The former value gives a cut-off slow enough that it
affects the resonant feature, while the latter value gives a cut-off high enough that it does not.
The features of the filter in this case are thus well below fj;.;:. Notably, the LIF FP methods
have been used to obtain the linear response to a piecewise linear models [106, 105]. In these
works, the high frequency artifacts induced by the hard threshold are treated explicitly and
removed.

(5.5)

flimit Ts =

10 N ‘ : ‘

10 10° 10
f,Hz

Figure 5.1: Correspondence of response between analytical result of no-reset model (blue line)
and the numerical result of its EIF version (black circles). The correspondence holds up to a
high frequency cut-off, fim:: Equation 5.5, due to finite rise time of action potential controlled
by A7 = 0.35,0.035. The EIF-version was simulated with V,, = 1.15,3, and Vp = 0.8, —1
(the latter was adjusted to keep vy = 2Hz fixed). The black dashed lines correspond to the
high frequency limit of the response of the EIF-type model Equation 5.4. The no reset model
had the default parameters.

5.3.1.4 Resetting current

Models that neglect the downward part of the action potential require the addition of, or have
already built-in a reset voltage to which the voltage is reset after a spike. The reset makes
the dynamics discontinuous and a closed form expression for the frequency response for more-
than-1D models appear intractable. I forgo this reset rule in order to open up the problem for
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deeper analysis. With this simplification, however, come three issues that I avoid by narrowing
the scope of the analysis.

First, without the reset and for the case of mean-driven activity, the mean voltage is taken
into an unrealistic, super-threshold range. Thus, only fluctuation-driven activity with low,
subthreshold mean input is covered by this approximation. This is nevertheless the operating
regime of cortical networks that I wish to study. I thus set the mean input to 0.

Second, the lack of reset produces periods of artefactually high and low firing rates for respec-
tively small and large values of the input correlation time, 77, relative to the voltage correlation
time defined here as the differential correlation time, 7, = oy /oy. Ts is the quadratic ap-
proximation to the voltage correlation function around 0-delay (discussed in detail in the main
text). This definition precludes the use of white noise input whose correlation function is non-
differentiable around 0-delay. Indeed, the fractal nature of the voltage traces when the no-reset
model is driven by white noise endows the model with the problematic feature that every
threshold crossing has in its neighborhood infinitely many such crossings. A version of this
effect explains the discrepancy between reset and non-reset dynamics even in the finite realm
where 7;/7s < 1. In the other limit, 77/75 > 1 means that the voltage stays super threshold
for long spans of time and so must also be excluded. Badel compares the stationary response
of the LIF with and without reset across 77, finding correspondence only in a fairly tight band
around the membrane time constant, 7, from 7; = 0.57y to 7; = 27 [122]. Given that the
stationary response of the LIF also deviates from more realistic models, in this chapter I do not
aim for exact correspondence with the LIF but rather analyze the more general and less strong
condition, 77 /75 ~ 1, which reduces to a less strong version of the one Badel used for the LIF
where 7, = /7y 77. From the derivation of 7, for the Gauss-Rice GIF exposed in the main text,
the condition 77/75 ~ 1 implies that the membrane time constant is no longer required to lie
within an order of magnitude of 7; but that the validity now holds around a manifold in the
space of intrinsic parameters of the model.

Third, for those neurons that do exhibit reset-like dynamics, this approach can nevertheless
provide a good approximation so long as the model dynamics allow for the sample paths of
the voltage trajectory after a spike with and without reset to converge onto one another before
the next spike occurs. The formal condition for this is 147, < 1, where 14 is the firing rate
and 7, is the relaxation time of the deterministic dynamics of the voltage, i.e. the negative
of the largest real part of the eigenvalues of the solution to the linearized voltage dynamics.
For the case of 2D linear dynamics considered in this chapter, with differential matrix operator
B, 771 = —r — /12 —detB when r* > detB and 7' = —r when 7? < detB, where r is
the real part of the complex eigenvalue (see next paragraph for details). For relatively fast
intrinsic kinetics, this constraint limits the range of parameters and output firing rates over
which the no-reset model approximates reset dynamics to within some tolerance. However, I will
show that, for relatively slow intrinsic kinetics, the condition 7, < 7, holds up to a saturation
level, and this together with 173 < 1 (a condition that all healthy Gauss-Rice neurons must
satisfy) guarantees the near equivalence of reset and no-reset dynamics, independent of the
other parameters. In other words, the approximation is valid in this regime if the relaxation
time falls within a correlated window of voltage trajectory as this is a lower bound to the time
between spikes. Indeed, for any temporally correlated dynamics, it always takes some time for
the state to move some fixed amount. In this context, that effect induces an relative refractory
period in reset dynamics as the state must move from reset to threshold again in order to spike.

104



5.3 Definition of and methods for a population of Gauss-Rice GIF neurons

It is not absolute because this time depends on the firing rate. The same type of refractoriness
emerges in non-reset dynamics as the voltage must fall back below threshold in order to pass
it from below again.

5.3.2 Definition of the Gaussian GIF neuron

The feature that distinguishes the GIF model from the classical Leaky Integrate-and-Fire (LIF)
model is that the dynamics of the voltage, V', is coupled to an intrinsic activity variable, w,

TVV = =V —-gw+ Iy,
Tl V—w, (5.6)

where ¢ is a relative conductance and 7, and 7, are the respective time constants of the
dynamics. The notation & denotes the derivative with respect to time of the variable x. Spikes
are emitted at upward crossings of a threshold, ¢. Synaptic current modeled by I, drives the
model whose dynamics are kept stable by keeping ¢ > —1. When g < 0, w is depolarizing.
When g > 0, it is hyperpolarizing and can lead to resonant voltage dynamics.

5.3.3 Intrinsic dynamics of the GIF neuron

For the linear matrix evolution operator

1 _ g
b= 1 _¥
Tw Tw

the eigenvalues are obtained via the identity Ay = trTB + %\/trB2 —4detB = r £ /r? — detB,

where r = % = —% (% + %) = —% is the negative reciprocal of the harmonic mean of
the two time constants, 7., and detB = THT?/ . When 7? > detB, |\+| = ’ri Vr? — detB’.

When 7?2 < detB, the eigenvalues are complex with r as the real part. I define the imaginary
part that plays the role of the intrinsic frequency, 2 > 0, via Ay = r £+, so Q = v/detB — r?
and now |A|> = r2 + Q2 = detB. I can substitute the expression for detB, obtaining the
relation between ¢g and (2,

TVTwQ2 = 9 — Yerit (57)
where g > gerit = (TXT;::;)Z is the condition for complex eigenvalues (see Figure 5.2).

For a fixed, constant value of Ig,,, and with time in units of 7y, the structure of the phase
space of the single neuron dynamics described by Equation 5.6 is determined by a point in
the 7, vs. g plane, the two parameters defining the intrinsic current, w (see Figure 5.2). For
Tw < Ty, w speeds up or slows down V depending on whether g is hyperpolarizing (g > 0)
or depolarizing (¢ < 0) characterized by an effective time constant 7.;y = 7//1 + g. While
the dissipative voltage term stabilizes the voltage dynamics, the dynamics can be effectively
unstable for g < —1, and we exclude this case. For depolarizing intrinsic current, there is a
region where the model exhibits an intrinsic frequency, f;,; = 2/27. For a fixed g > 0, a given
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value of €2 can be achieved at both a high and a low value of 7,,. For fast 7, the {2-contour
density is high and the model exhibits high parameter sensitivity, while for large 7,, the contour
density is low and the model is relatively insensitive to local parameter variation. Taking the
respective limits, the set of isofrequency curves are linear for large 7,, with slope o< 9% and
o 7., with a slope independent of Q for small 7,,. In particular,

g=((vQ)* + }l)Tw/TV

for 7, > 1 and

1

= 3G=-1)

g 2Tw

for 7, < 1. Furthermore, there is a minimum relative conductance, ¢,.;, = % (—1 +v1+ 492)
for which a given 2 can be achieved. The minimum shifts to increasing short 7, with €2. To
emphasize the timescale of the intrinsic frequency when it exists, we reparametrize the model
by replacing g with Q (see Equation 5.7). The statistical structure of the relative timings of
the output spikes of the model will be affected by €.

(a) fast | slow (b)
1
1
10 L 10 10 -1 04
: |
8
: |
6
en 4 Q QTV
2 4
h L [
0 perpo B,
________ 1 _ _ depolarizing
-2 unstable 0
1072 107" 10 10! 10?
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Figure 5.2: The type of w-current depends on the values of the intrinsic parameters. (a)
Intrinsic parameter phase diagram in (7, /7y, ¢g). w can be depolarizing (g < 0) or hyper-
polarizing (g > 0). w contributes an intrinsic frequency to the model in the colored region.
The dynamics are unstable if g < —1. Iso-Q lines are shown in white. (b) When © > 0, the
phase diagram can be cast in (7, /7y, 27/)-space. Iso-g lines are shown in white.

5.3.4 Population firing rate dynamics

Given a population of NV neurons indexed by k, in a time window, 7', each one produces a spike
train,

su(t) = 60t — )
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with ny spikes labeled as t*. The average firing rate across the population in this window is

t+T

W T) = ;V kz% / se(t)dt (5.8)

t

For stationary input, this becomes the stationary population averaged firing rate, independent
of t, in the limit T — oo,

vo = lim v(t,T) . (5.9)
T—o00
In the other limit, taking T" — 0 while keeping N'T' constant, such that there is a statistically
invariant number of spikes in the time window, the integrand of Equation 5.8 is a well-defined
time-dependent ensemble average, the instantaneous population firing rate,

v(t) = 5(t) (5.10)

where T = (z3), = + SN 7 denotes the population average of a single neuron quantity, z.
Note that this population firing rate can exhibit time dependence on arbitrarily fast timescales.

5.3.5 Fluctuation-driven populations

The input to the neuron, I, from Equation 5.6 arrives from many, weak synapses. The total
drive will thus resemble a stochastic process. The system can then be solved under this assump-
tion by directly simulating the corresponding stochastic differential system of Equation 5.6,

vV = =V —gw+I(t) +5I(t)
Tth = V—w (5.11)

where I(t) is the time-dependent mean input and §1(¢) is the noise process. Solutions give
the output spike times, which averaged over an ensemble give the population firing rate, v(t).
Under the diffusion approximation, the stochastic drive, §I(¢), can be taken as an 0-mean
Ornstein-Uhlenbeck process with variance 0% and correlation time 7;. The resulting stochastic
dynamics were simulated by numerical integration via a Runge-Kutta scheme (see ref. [133] for
details).

To illustrate the dynamic ensemble response, I show in Figure 5.3 an example of input, intrinsic,
and output variable time series produced by the model for two choices of signal in the mean
channel, I(t): a weak oscillation of amplitude A and frequency w and, separately, a step of height
A. In addition, I show the corresponding population firing rate, v(t), obtained from a histogram
of the spike times of the sample ensemble produced by the two inputs. The input modulation
structures the spike times produced by the ensemble relative to the stationary response in a way
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that only becomes salient in the population firing rate, v(¢). The smooth lines overlaid on the
two histograms were calculated analytically from the linear response function (Equation 5.31)
and the step response function ((Equation 5.32)), respectively. While the input oscillation
produces modulation in the output spiking at only one frequency, the step input produces a
response that has power across a broad band of frequencies.

population
firing rate

voltage
- Vihresh
V;‘est

_ -1

ﬂ'

— 1
Lo ) mean input 0. o
0. 4 . 0.1 , , . . .
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
time, s time, S

Figure 5.3: From input to ensemble response: numerics and prediction. Model output for
the default parameter set: 7; = lms, o; = 1, 7, = 10ms, ¢ = 1, 7, = 20ms, f;,; = 20Hz
(g = 3.15). Left: in in the case of an oscillation of amplitude A = 0.05 and input frequency
w = (2m)20 rad/s. Right: in the case of a step of height A = 0.1. The example realization
shown is the one with the maximum number of spikes from the sample ensemble. The red
line is the response calculated using the analytical expressions for the oscillation and step
response, Equation 5.31 and Equation 5.32, respectively.

5.4 Approaches to obtaining the population response

Response theory captures the population response to input signal with arbitrary frequency
content and so I now turn to it, and linear response theory in particular, in the pursuit of
understanding population firing rate dynamics of the GIF neuron model.

5.4.1 Obtaining the response directly from spike times

The formal, implicit definition of the linear response function, 14 (w), arises from a weak oscil-
latory modulation of amplitude A and frequency w in the mean input, and an expansion of the
response, v(t), in powers of A,

v(t) = vy + v (w)Ae™ + O(A?) , (5.12)
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where 1y is the stationary response, (Equation 5.9). v;(w) can be expressed using the complex
response vector,

1 & .
r(w)=— Ze‘“ i
T j
T
1 [
:/ §(t—t;) e ™dt
T A ;
-7

where in the last step I use ny, =~ 14T, good when T is made much larger than 1. Taking the
ensemble average,

2
1 e —ww
(r(w)) = T </ j d(t—tj)e tdt>
T
1 ok it
= — o(t—t Tt
V(]T / <zj: ( ])>e
_r
2
3
1 —iwt
1
T
] 2
~ iwt —iwt
N T / (1/0 + v1(w)Ae )e dt
T
)

v1(w) can be expressed using the relative response, r(t) := "(tl)jio_yo

, as follows. (For any time vary-
ing quantity, $x(t)$, I denote its frequency domain analogue x(w) = F[z(t)] := &= [ 2(t)e”""dt.) Taking
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Chapter 5 Response properties of an ensemble of GIF neurons

Equation 5.12 to linear order in A and Fourier transforming, I can write

r(w) =

Q

/ Vo + Vl A iwt ) oWt dtl
7T

( iwt > —iwt’dt’

r(w) is a complex quantity whose norm, |r(w)|, as a function of w is called the vector strength
and which connects directly to the response function via the dynamic gain, |v;(w)|.Using the
decomposition of the response into its gain and phase, vy (w) = |11 (w)| ) the linking identity
Is

8

DO
S|E

2V0

(W) = —= Ir(w)] - (5.13)

>

r(w) is computed directly from the spike times through the definition of v(t), Equation 1.3,

1
r(w%;ﬂ-vw
t'+T
_ lim — Zé ! f}k kdt// eiwt’dt/

1/0 ,/271-/ T—0 T /

] t’+T
-y [ [ T earay

1 TNkT

- zwt
m%&o T | g 20 dt')y

1 1 Mg 7 »
= ——(lim Z/ St —th)e™ dt' ),

27T T—o0 N]{?T S -7

Ng,1 N
= lim elts

r(w) =

<eiwtk>k (5.14)

HﬂH

ﬁ

2T

where I have replaced 1T by Nj 7 (the latter approaches the former for large 7'), and in the
final step I have simplified the ensemble from that over realizations of the noise and time to
that over all obtained spike times. Using the decomposition of the response into its gain and
phase, vi(w) = |v1(w)| ™), the dynamic gain is thus obtained from the norm of the ensemble-
averaged response vector, called the vector strength,

)l = 5 (),

)
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5.4 Approaches to obtaining the population response

where here I have simplified the notation by having k£ run over all the spikes from the full
ensemble. I computed this expression using the spike times obtained directly from numerical
simulations of the stochastic dynamics generated by the neuron model. I use the result to
confirm the validity of the analytical gain function derived below, whose utility goes far beyond
the numerical result because it provides the explicit dependence on the model parameters.

5.4.2 Obtaining the response from the statistics of the voltage dynamics

To obtain v (w) analytically, I go back to the definition of v(t) containing sx(t), (Equation 1.3).
sk(t) can be rewritten as

si(t) = Za(t — t%)

= 6(Vi(t) — )0 (Vi () |[Vi(t)] ,

where © is the Heaviside theta function defined as ©(z) = 0 for x < 1 and ©(z) = 1 for x > 0.
@(V) appears since spikes are only generated at upward threshold crossings of the voltage.
The factor [V (t)| results from the coordinate change in the argument of the -function. When
combined with @(V), the absolute value can be omitted. For a population of such neurons, I
can then obtain the population-averaged firing rate as the rate of upward threshold crossings
known as Rice’s formula [134],

v(t) = 5(t) = (8(Va(t) = )O(Vi(t))Vi(1)), -

The underlying ensemble of the population is captured by the distribution of voltages and
voltage time derivatives at a given time, p(V, V|t). When each neuron’s state is identically and
independently distributed, the average over k neurons is an average over this distribution at
fixed t,

v(t) = (8(V —¢)e()V)

This time-varying expectation value over the statistics of the voltage dynamics in the population
is the central time-domain quantity in the response theory for neuronal populations. It is in
general analytically intractable.

o (5.15)

Subthreshold dynamics can be approximately linear and the many, weak inputs to each neuron
can permit a diffusion approximation to a Gaussian process input. In this situation, a model
of voltage dynamics that omits the nonlinear voltage reset gives a voltage statistics that is also
Gaussian and can be treated analytically. This is the Gauss-Rice approach, which I employ in
this chapter.Dynamic gain for the mean channel of a population of Gauss-Rice neurons

In this section, I employ the Gauss-Rice approach to compute the dynamic gain for a generic
population of neurons specified only by the Gaussian statistics and frequency response of their
voltage dynamics.

Because at zero-lag the voltage and its time derivative are uncorrelated for a stationary variance

channel, (§VoV) = <%%(5V2> = %%<5V2> = 0, the Gaussian probability density function of

the voltage dynamics factorizes over V and V,

) 1 _(V—Vz(z))2_(v—\?2(t))2
PVVI =5 e *V
Toy oy,
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Chapter 5 Response properties of an ensemble of GIF neurons

where 0% and 0‘27 are the respective variances. Substituting this expression into (Equation 5.15),
I obtain

V-v)?  (-v)?

u(t) = / / SV — O —e " quar .

2royoy,

This expression can be computed in terms of error functions to obtain the full nonlinear dynamic
response, e.g. for the Gauss-Rice LIF neuron model [114].

For a transparent analytical treatment of the mean channel in the fluctuation-driven regime I
consider the linear response. That is, for case of weak mean input I expand, for each time ¢,
this expression in terms of the resulting weak deviations to the ensemble mean voltage V/(t)

and to its derivative V(¢). To linear order,

oo ) _v2_v2 Y/ > ’
v(t) ~ / dV/ AVS(V — )V - vy (1 + V(?V + V(?V) .
0 —o0

—e
2moy oy oy o

Solving the integral, one obtains the response in the mean signal channel,

y(t)zy0<1+¢-m+\/z'm>, (5.16)

oy oy Oy

where 14 is the stationary firing rate attained in the absence of modulation around the mean
input current, I,

1 _ (p=1Ip)?

e v (5.17)

vy i= ————
O 9oy Joy,
V is offset by I, and since Iy < ¢ in the fluctuation-driven regime I set Iy to 0 without loss
of generality, so that V' = 0. This expression can then be rewritten using only two quantities:
the differential correlation time, 7, = oy /oy, and the size of voltage fluctuations relative to

threshold, o := oy /1,

1 _ 1
YTy = 5 ¢ 207 . (5.18)

7s thus provides a natural time unit by which to measure the rate of output spikes, vy, as a
function of the relative voltage fluctuations, . Since 7, is the width of the quadratic approxi-
mation to the correlation function around 0 delay, 17 is interpreted as the number of spikes in
a correlated window of voltage trajectory, and according to Equation 5.18 rises with o, saturat-
ing for large o at (27)~! < 1. Fluctuation strength is less than the voltage difference between
resting and threshold for most physiological conditions, o < 1, in which case the useful bound,
s S (2my/e)! < 1, holds. (Large output firing rates can nonetheless be achieved so long
as the voltage correlation window, 7y, is short enough to maintain vy7, < 1.) Spike-generating
voltage excursions are thus on average well-separated in time so that the produced spiking
exhibits low temporal correlations.

According to Equation 5.16, I can then identify v1(w) as the finite frequency component of its
Fourier transform,

= (2 L) 7).
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5.4 Approaches to obtaining the population response

where I note that our definition of 14 (w), Equation 5.16, that has the amplitude of the input
modulation, A, factored out implies that A has been factored out of the voltage response. All
response quantities are implicitly defined as these A-independent versions. This expression
can be simplified further by pulling out the time-derivative operator. In the Fourier domain,
this is just multiplication by iw so that the V(w) factors out and calculation of v;(w) requires
only the first two voltage moments, as any statistic derived from a stationary Gaussian process
should. V/(w) is the mean voltage response and the variances, of = Cy(0) and o2 = —Cy(0),
are computed from the correlation function of the stationary unperturbed voltage correlation
function, Cy (1) = F~' [|[6V (w)|?], obtained from the voltage noise spectrum §V (w). The latter
provides only the variances, and so in the space of correlation functions, only directions along
which these quantities change affect the rate response [115]. The relative response can then be
written

Vly(;ﬂ) _ (;/‘;/ +Z-w\/jalv> V(w) . (5.19)

We can re-express it using 7, and o,

VIV(;U) = (1 + iW\/ZUTs) 012‘_/1(;}) .

The ensemble response of a population of Gauss-Rice neurons to a small modulation in the
mean input is thus simply a first-order high pass filter of the ensemble mean voltage response
with characteristic frequency 1/7., with 7, defined as

\/7
Te =] =0Ts
2
Vi
T .
V log (27r1/075)2

where I have removed o with 072 = 5 Tsz, obtained from Equation 5.18.

The relative linear rate response is then

nw) wr? a H%)‘_/Epw)’ (5.20)

where the dependence on 17y is concealed in the definition of 7. Thus, in units of 7, the high
pass filter resulting from crossing the spike threshold can be expressed as (1 + iwT,) /72, with

120} 27'02

-1
72 o 72 (log (1/07'5)_2 + const.) . From Equation 5.20, I see that the characteristic frequency,

1/7., shifts to lower values for larger output firing rates, as the prefactor, 7,2, further atten-
uates the low frequency response. One consequence is that the effect of the low pass voltage
characteristics are made negligible by the differentiating action of the spike at high firing rate.

The dynamic gain of this complex-valued linear rate response function is its modulus,

2 V(w
\Vllfw)! :g;\/m‘ ;)’ (5.21)
0 c
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Chapter 5 Response properties of an ensemble of GIF neurons

here normalized by the stationary rate, vy. Since Equation 5.12, can be rewritten v(t) =
vo(1 + vy (w)/rpAe™t + ...), T see that the strength of the linear term and thus the quality
of the linear approximation of the response is then controlled by the size of the right hand
side of Equation 5.21 relative to 1. The effect of this spiking filter contributes a factor that
scales as 7—12 when 7, < 1 so the linearity assumption is better at larger values of 7., which
means larger values of vy7,. The quality of the approximation will also depend on the size
of ‘V(w)‘ I also note that focusing on the linear response neglects boundedness features of
the population firing rate such as its non-negativity. Nevertheless, once a voltage dynamics is
specified, Equation 5.21 gives the explicit dependence of the dynamic gain on the underlying

parameters of the single neuron model.

5.5 Derivation of the dynamic gain of a population of
Gauss-Rice GIFs

In this section, I take the general result of the previous section, Equation 5.21, and go through
its explicit calculation for a population of the GIF neuron defined above. Both the response
function of the voltage dynamics to mean input modulation and the voltage correlation function
dependent on the input fluctuations are required to compute the linear response expression,
Equation 5.19. They can be obtained with a solution to the voltage dynamics.

5.5.1 Voltage solution
For arbitrary input, /(t), the system in the Fourier domain is

(1+iwry)V(w) = —gw(w)+ I(w)
(1 +iwn))w(w) = V(w).

Multiplying the first equation by (1 4 iw7,) and eliminating w(w) one obtains
(1 +iwt,)(1 + iwry)V(w) = =gV (w) + (1 + iwTy) [ (w) ,

so that the solution for any g > —1 is, with respect to the representation of the model by its
explicit parameters (g, Tv, Tw),

VW)

B (1+iwTty,)
g+ (1 + iwTy)(1 + iwTy)

I(w). (5.22)

When the neuron exhibits an intrinsic frequency, €2, I can use |A+|> = Tl%f/ and the definition

of the complex eigenvalues by their real and imaginary parts, |A\.+|> = r? + Q2, to substitute Q
into the denominator of Equation 5.22 after expanding:

g+ (1 +iwr,) 1 +iwry) = g+ 1+ (Tw+ 7)iw — TuTyw?
= TyTy (7‘2 + QQ> — 2Ty Ty TiW — Ty Tyw?
= TyTw [92 + 72 — 2riw — wﬂ

= TVTw {Qz + (r — iw)ﬂ :
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5.5 Derivation of the dynamic gain of a population of Gauss-Rice GIFs

withr = =1 (7 +7,%) and Q = /% — 72, r defines the relaxation time of the dynamics, 7, =

—r~!. Thus, in the representation of the model based on the implicit time scales, (2, 7, 7o),

the solution is expressed as

T2 1+ iwTy

Viw)=—"- 2 2 . 2
TvTw 272+ (1 —iwT,)

I(w). (5.23)

We now specify the input, I(w). An input oscillation of frequency wy will produce an oscillation
in the mean input expressed as [ (t) = Ae™°'. In the frequency domain, the spectrum of the
mean input, (t), and power spectral density of the noise, dI(t), is, respectively,

Vorl(w) = 0w — wp) (5.24)
21|01 (w)]* = 1552712, (5.25)

with noise strength, D = 7707, in the latter. Because of the linearity of the dynamics, I can
solve the system for mean and fluctuating input separately. In the next paragraph, I employ
Equation 5.24 to obtain the mean voltage response, and in the following paragraph I employ
Equation 5.25 to obtain the voltage correlation function.

5.5.2 Mean voltage response function

The population mean voltage response, V(w), required for Equation 5.19 is obtained by inserting
the expression for the mean input, Equation 5.24 | into the voltage solution. the mean voltage
response is given in the explicit representation, (v, 7, g), by

—_—— 1+ iwT,
2nV(w) = g+ (1 +iwt,)(1+ inv)é(w ~ o)

or in the implicit representation, (2,7, 7,),

2

V2rV(w) = = L 5w — wp) .

TV Tw Q2724+ (1—iwTy)

A third convenient representation consists of effective parameters, (wp,Qr,7,), determining
the shape of the filter

V(w) 1 + iwTy,
2 — e (5 _
o = T2 4 iw Qo & T #0)

where the second order low pass filter has been re-expressed using its center frequency,

1+
wr =1/y/1724+ Q2 = UTVTg
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Chapter 5 Response properties of an ensemble of GIF neurons

at which its contribution to the gain is its quality factor,

(with Qp = %1/ 1 + Q272 when > 0), and [ have pulled out the broadband voltage response,
Vp, attained in the limit w — 0, which gives

_ 1 1
% = 5 = .
Wi Ty T 1+g¢

For the remainder of the chapter, I omit the factor §(w — wy) and denote the input frequency
by w.

The stability constraint, g > —1 is naturally satisfied by w; > 0 and keeps V; finite. With
dependence on 7y, removed in the shape representation, I must explicitly add the stability
constraint, 7 > 0, which is expressed using the definition of 7y in this representation,

WL Tw

WrLTw 1 )

QL

WrTy =

so that the stable regime corresponds to Q, < wrT,. Vi is expressed in this shape representation
as

WLTw 1

v QL
%_ w27—2
L'w

so that Vj > 0 is satisfied by the stability constraint. Using the gain,

V(w 1+ w?T2
\/27‘(" E )’ (5.26)
‘/b OJ2 2 w2
e
L L™L

we constructed a diagram of its qualitative features in Qp, vs. wy T, (see Figure 5.4).

116



5.5 Derivation of the dynamic gain of a population of Gauss-Rice GIFs

(a) (b) (c)
1.
10 o * : V-resonance, but no Q) 0: Q>0, but no V-resonance
unstable
(Ty<0)
voltage
100
1(_)1 ..... - resonance
2 e AU
d 1depolarizing\\
107! 2 ) - Y, ' 10! 102 100 10*
10 10 10 o, radfs w,rad/s
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Figure 5.4: Regimes of the current-to-voltage transfer function. (a) Phase diagram of the
transfer function. The region of depolarizing w (low frequency amplifying, V; > 1) is shown
in purple and voltage resonance in green. The filter is unstable in the blue region. An intrinsic
frequency exists, above the dotted line, @, = 1/2. Note that there is a region with @, > 1/2
and no voltage resonance, and vice versa. The star and circle denote the example values
of (wpTw, @) used in (b) and (c), respectively. (b) An example of the current-to-voltage
filter in the case of resonance with no intrinsic frequency (7, = 10, 7, = 100, ¢ = 1.2).
(¢) An example of the current-to-voltage filter in the case of no voltage resonance despite
the existence of an intrinsic frequency (7 = 10, 7, = 5, g = 0.5). The rising and falling
dashed lines in (b) and (c) denote the contributions of the high pass, 1 + iwT,, and the
low pass, (1 —w?/w? +iw/Qrwr) ", respectively. Their combination forms the current-to-
voltage filter, which are shown as solid lines.

The model exhibits low frequency voltage gain amplification (1, > 1) or attenuation (V, < 1)
depending on whether w is depolarizing (g < 0) or hyperpolarizing (g > 0), respectively. wy =0
at ¢ = —1 and grows with g as /1 +¢. Qp = wr7./2 also grows with g, generating three
parameter regions of qualitatively distinct low pass filter gain shapes: w;7, < 1, 1 < wp7,. < 2
and wy 7, > 2. Indeed, in units of wy, the shape of the current-to-voltage filter depends only on
7. and 7,, and so in the next paragraphs and with reference to Figure 5.5, I describe this 2D
parameter space completely by considering qualitative differences in the full filter shape across
wp T, in each of three distinct regimes of wy7,.. Note that relatively slow and fast intrinsic

dynamics is obtained when @y, is less than or greater than “4™, respectively.
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(

[
p—

(b) (c)
1/2<Qx1 QL> 1

Nw)/V,

wlw, wlw,; wlw,

Figure 5.5: The qualitative shape of voltage response depends on ();. Here I classify the
current-to-voltage filter shapes shown as colored solid lines in (a), (b), and (c¢), which show the
three () -regimes with respective examples for ), = 0.1,0.75,10. In each plot, the high pass
component of the voltage response is shown as the colored dashed lines, one for each of three
representative values of its characteristic frequency, wr, = 10* > ~(blue), wyT, = 1(green),
and wyT, = 1072 < v~ !(red). The solid black line is the low pass component of the voltage
response. For the regime shown in (a), the green case can not be achieved when w is
hyperpolarizing (¢ > 0) and the example red case cannot be achieved because it violates
the stability condition Q) < wrT,.

For wyr, < 1 (see Figure 5.5(a)), the low-pass gain contribution, 1 + Q(ﬁ - 1):’—; + Zj—i, can
L L L
(.U2

be factored into a contribution arising from two first order low pass filters, (1 + W)(l +
Wi‘%’Q), where v = (Qr) > 1 is the solution to Q = v/ (7*+1). The low pass gain thus
begins falling as w™? after wy /v and then as w™* after ywy. The intermediate region, w/wy €
(v71,7), is given by the inequality Qr < 7/ (7?+ 1) and disappears as Q; approaches 1/2
where v and wy 7. approach 1. The region of depolarizing w (¢ < 0) shown in Figure 5.4
satisfies Qr < wrTy/ (w272 + 1) in this representation, whose solution in w7, is also the
range (7~1,7). Thus, response shapes in this intermediate region (see Figure 5.5(b)) are only
achievable by depolarizing w, and w must be depolarizing for any response exhibiting such
shapes. Consequently, the three qualitatively distinct shapes of the current-to-voltage filter
for wyT. < 1 are determined by the location of wy7, relative to 1/~ and 7, with the middle
regime, (y~1,7), only achievable for depolarizing w. For wy7, > 7, the filter first rises with w
after 1/7,, is flattened at wy, /7, and then falls after ywy. The result is an intermediate, raised
plateau of width (v —y~!)wz. The condition for this voltage resonance is w?72 > 42 + 72 or
in terms of Qr, Qp > (2 + wLTw)_l/Q. For 1/v < wrm, < 7, the response attenuates first and
so the plateau is now an intermediate, downward step of width (y — 1)wy. For wy7, < 1/7,
there is only low pass behavior and the high pass only acts to pull up the w*-falloff up to
a w2-falloff. As w7, approaches 1 from below, v also approaches 1, and the qualitatively
distinct region between wy, /v and ywy, shrinks as the two roots coalesce into one and the low
pass expression forms a perfect square. In the case that wy7, > 7, this leave a well-defined
maximum located just before wy. The slight offset arises simply because the second order low
pass begins falling significantly before wy, at wy7,. = 1.

For 1 < w7 < 2 (see Figure 5.5(b)), the impact of the high-pass on the shape of the filter is
determined simply by whether its characteristic frequency is above or below wy. For wy7, > 1,
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5.5 Derivation of the dynamic gain of a population of Gauss-Rice GIFs

the plateau existing for wy 7, < 1 becomes a flat-topped peak in the gain with a maximum again
slightly lower than wy . Otherwise, the behavior is low pass. Note that wy7,. > 1 is also where
the intrinsic frequency exists. However, this property does not contribute to a resonance until
wr T, > 2. Indeed, the resonance here, as in the regime w7, < 1, arises solely from a high pass
attenuation of low frequencies sculpting a peak from a low pass, and comes alongside a region,
QL < (2+ wLTw)fl/ 2, that lacks resonance. This latter region is upperbounded in general by

Q1 = 1/+/2, and specifically for stable filters by Q1 = \/v/2 — 1 so that above these values of
@1, all filters are voltage resonant.

For wyr, > 2 (see Figure 5.5(c)), by definition a resonant peak emerges in the low pass filter.
If wym, < 1, this contributes a de novo resonance in the current-to-voltage filter located near
wr. Otherwise, it simply acts to sharpen the existing resonance that appears progressively over
0 < wrT < 1, and again with a peak slightly to the left of wy,.

Of the two mechanisms for resonance just described, the contribution of first ‘sculpting” mech-
anism leads to a linear increase in the response height and input frequency range of elevated
response with 7, i.e. with the slowness of the intrinsic dynamics, for the reason that the low
frequency amplification continues over a broader range the further wy /v and 1/7, are apart.
This amplification in the relative response is actually over-compensated by a broadband atten-
uation with 7, so that the actual effect is the carving out of a resonant peak using adaptation,
i.e. a low frequency attenuation of an otherwise low pass filter.

The second low-pass resonance mechanism emerges in the expression when the low pass filter
exhibits a maximum, which itself emerges when the two low pass characteristic times of the
low pass coalesce. From the point of the view of the voltage dynamics, this occurs from a
sufficiently strong and negative feedback interaction between v and w, whose timescales are
sufficiently similar so that the delayed feedback is constructive. In the time domain voltage
solution, this occurs when the two eigenvectors align. The height of the resonant response
grows linearly with 7, (with range of elevated response fixed) because there is less dissipation.

These two resonance mechanisms contribute to the height of the response at wr, V(wp) =
\_/0%1/1 + w?72, which is resonant by definition if it is greater than V. The condition for

voltage resonance is thus wyr, > 1/Q;? — 1 and the relative ratio of their contributions is

%wLTr /\/1+wit2 < 1 so that at a given wy7, the sculpting mechanism always contributes
more gain than the intrinsic frequency mechanism. Indeed, this sculpting can exist in the
absence of an intrinsic frequency (w7, < 1), so long as the intrinsic dynamics is slow enough.
Conversely, even with an intrinsic frequency (wp7,. > 1), the response can lack a resonance if
in addition wyT, < 2, demonstrating that an intrinsic frequency is not a sufficient condition
for resonance. These two cases become apparent in a plot of the resonance frequency as a
function of the intrinsic frequency (Figure 5.6), where I observe x- and y-intercepts because of
the preexisting or absent resonance, respectively. The location of the maximum converges to
wr, = Vr2 4+ Q2 for wyr, > 1, which itself converges to Q for Q7. > 1. For smaller values of

w1, Tw, the location converges to a value slightly larger than wy.
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Figure 5.6: A resonance frequency emerges in the voltage response in one of two ways depend-
ing on the intrinsic timescale. For slow intrinsic current (w7, > v/2), a maximum response
already exists at 2 = 0. For fast intrinsic current (w7, < \/5), a resonance emerges at finite
2, whose value converges for vanishing w7, .

We will make use of the representation of the current-to-voltage filter in terms of (wp, 7y, Q1)
to understand the full response. What is left to calculate, however, is the voltage correlation
function which I do in the next paragraph.

5.5.3 Voltage correlation function and the variances, of- and o7,

For the correlation function of V', I add Equation 5.25 to the modulus squared of Equation 5.23,

B 1+ szi J24T]U%
1+ w2t T2 [(r? — 02 + w?)? + (2Qr)?]

2|6V ()2

The auto-correlation thus requires computing an inverse Fourier transform integral of the form

a® + w? et

V21 / D +w? (r2 — Q2 + w?)® + (2Qr)?

dw. (5.27)
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The result is

7 (L= 7a/71) d

Cv(r) = _ e
(1=l 7)) + 72 (0 = A
B 44 1-— )\37'3) N 1— X272 Al
Ot =)\ (T dme) (1= Aem)© A (LA T0) (1A 7)”
(5.28)

where A1 are the eigenvalues and the units are [Time] 3. The correlation has two components,
one decaying with 7; and the other with 7,.. The first component is strongly suppressed for
7,./71 < 1. The second component exhibits damped oscillations within the exponential envelope
with frequency 2. Examples are shown in Figure 5.7. for increasing g and 7. Note that
variation in g affects the width of the function around 0O-delay while it is fixed over a variation
in 7. These results were checked against numerical autocorrelation functions computed from
the voltage time series output of the numerically implemented model. The correspondence is
excellent.

(a) (b)

C(1)/C(0) C(1)/C(0)
1 |
0.4

T
‘10 10 v
20.5F
o g =0(LIF) {' * WT =5
LoE I

Figure 5.7: Emergence of oscillatory behavior in the voltage dynamics and a consequent ring-
ing appears in the voltage correlation functions. (a) The frequency of the ringing increases
with the strength of the intrinsic current (¢ = 0,1,5 shown; 7 in units of 7). (b) The

[l

envelope of the ringing widens with 7, (dashed lines are e” 7wy = 1,2,5 shown and 7 in
units of wy'). Lines are Equation 5.28; dots are numerics.
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The variance of the voltage and that of the time derivative of the voltage are given by

Tepy 0f 1towd

2
oy = Cy(0)
Vv Vv TV Tw
TV ; + 1 oy + ;
2 7 ]_ O'% 1 + Oéw%
O-V = _CV<0) = TV TI
T[T\/*‘Fl 14_0([7
TI T
where, for notational convenience, I have defined o, = SEw/Teis o, = HL/Teir gnd 7.0 =
) ) w 147w /7v 1 T+r/7v eff

v /(1 + g) as the minimum value that the effective membrane time constant can take, ap-
proached when 7, < 7y by the tonic conductance change induced by w. For the LIF (g = 0),
Teff = Ty, 0 = &, = 1 and the variances simplify to

o
2 I
VT
TI

2

2 UU
O'V_ s
TITV

from which the differential correlation time 74 for the LIF can be read off as 7, = oy /oy =
7Tr7v. 1 consider this quantity more generally in the next paragraph. When () exists, the
variances can be written as

J2otry 1= 2rm + | AL)?T2

v = _27"7‘2/7'120 IAL]? (1 = 2r7r + [Ai]?73)

J2027, 1 —2rT (L‘”)Z + Ay 22

2 o UIT[ I T + w
O'V = —

2rr272 1= 2r7y + | AL|?7F

where [Ai]? = 7% + Q2 and r < 0 ensures that the values are positive. Note that the only

difference is a factor of ( ) and a factor of 1/|\.|%. T will nevertheless focus on the expressions
with g. In both cases, the influence of intrinsic kinetics set by 7, is negligible when 7, is near
the input timescale, 77. w still affects the variances via g or €.

5.5.4 Computing the input variance for given firing rate

Rearranging the expression for vy and then substituting in the o;-dependent expression for the
voltage fluctuations, o, I have

1 P
% = e
0 21T,
2
A - (log 27vyTs) ™"
JQO'% ) ]. + Oéw?? _ (log 27TV07_ )—1
vl v Tw ®
I + Te‘f/f (aI - TI)
vl Pl L0 ey
o7 = _%2 L . eff ( ’> (5.29)

J? (1 + ozw%“) log 27TV07'S.
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5.5 Derivation of the dynamic gain of a population of Gauss-Rice GIFs

When I study the model’s behavior I will use this relation to set the input variance for a chosen
output firing rate so that the dimensions of the parameter space to be explored are the four
time scales in the problem, (7, Tesf, Tw, 1/10) and when Q exists, (1, 1/, 7, 1/10).

5.5.5 The differential correlation time and the stationary response

From the correlation function providing the variances, the differential correlation time is cal-
culated with 7, = oy /oy. The Gauss-Rice GIF differential correlation time is

I+ a2
Ts _ |= 17 (5.30)

o
Ts,fast Qyy + ?1;

where the limiting value of 7, for 7,, smaller than all other timescales is 7, fos¢ = lim,, 0 7s =
/TiTeff- Defining 7, g0 = lim,, 00 7o = /777y, the ratio of slow and fast limiting values is

Ts,slow/ Ts,fast = \/Tv/Ters = 1+ g > 1, so that 7, increases over the full range of 7,,/7;. In
particular, the curves of Equation 5.30 have a characteristic shape for the non-trivial (g # 0)

cases. | focus on the hyperpolarizing case. In the left panels of Figure 5.8, I plot some example
shapes of 7,/7 vs. 7,/7 over a range of 7.5y < Ty. Referring to that figure, for 7.;; < 7y,
the curves monotonically interpolate between the limiting values, with the abscissa value at
half-maximum increasing linearly with 7y /7;. With 7, /7 increasing from 0, 7, first drops
from /T/7es; to a minimum (whose depth grows with g) and then rises into a |/7;7,-scaling
regime around 7, /7; = 1, where it passes through the same value as that attained in the
limit7s fqs¢, and then eventually saturates for 7,/7; > 1 at its maximum, T, sow = /7717v-
Thus, for 7,/71 — oo the g # 0 case is equivalent to the ¢ = 0 case and I conclude that
any novel features attributable to the extra degree of freedom are washed out in this limit by
the relatively slow intrinsic dynamics. The validity of the no-reset approximation lies around
7s/7Tr ~ 1, implying that 7 2 7;. When 7.¢¢ ~ 77, the approximation is valid across 7,, < 77
and for other 7.r¢ < 77 only in ranges around the value of 7, > 7; for which 7, ~ 77. T also find
for relatively slow intrinsic dynamics that 7, < 7,, for 7, < Q7! . When Q exists, I can write 7,
as

w%ﬁ—i—?% +1

wiT? + 21 (T—w)Q +1 7

wir? =

TI

where w? = A4 |* = 7,72+ Q% = 7.47Tw, is the center frequency analyzed in the previous section.
In the (7,7, ) representation and as a function of 7, (see Figure 5.8), 7, grows faster and
slower than linear for 7,,/7; less than or greater than 1, respectively, and passes through 1/w?
when 7,,/77 ~ 1, finally saturating at Q~'. Up to this saturation level, 7, > 7, for 7, < 77, 80
that the condition vg7, < 1 implies that vy7,. < 1 and the approximation to reset dynamics is
valid. In the case 7,, > 77, the range of 7, over which the 1y7, < 1 validity constraint is not
already covered by the 197, < 1 built-in constraint is centered around 7, = Q~! and grows in
size with 7, /7.
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Chapter 5 Response properties of an ensemble of GIF neurons
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Figure 5.8: Differential correlation time depends on intrinsic parameters. (a) 75 increases
(not always monotonically) with 7,,. For the sake of comparison, I show 7, normalized by
its small-7,, limiting value, \/7ef77, vs. 7/77 across 7y /7; = 10°,10',10%,10°10* (from blue
to red) with g adjusted so their large-7,, limiting value, 7/ /7r = 1 + g = 10%. Shapes are
sigmoidal for 7.¢s/7; > 1 (e.g. green to red) and include an initial dip for 7.5¢/7 < 1 (blue
to green). The dot-dashed line denotes 7,/,/7eff71 = \/Tws- (b) 75 follows the relaxation
time, 7,, (the dashed line is 7, = 7,.) and saturates at Q~!. Colors indicate the value of 7, /77
on a logarithmic scale from 107! (red) to 10'(purple). (c) General shape of 7, vs. 1. Values
in the blue region are forbidden due the maximum rate achievable in a Gauss neuron. The
thick black line denotes the boundary between high and low pass.

Next, I compute the stationary firing rate of the neuron model Equation 5.6 as a function of the
two input parameters and the two intrinsic parameters. It is shown in Figure 5.9. Recall that
the fluctuation-driven regime requires Iy < 1 = 1. Thus, I focus on the parameter dependence
at Iy = 0. The model’s stationary response to increased input noise exhibits a cross-over
from silence to linear growth around o; ~ 1, simply due to the higher propensity of threshold
crossings. In subsequent analyses in this chapter, I explore the parameter dependence at fixed
stationary output firing rate by adjusting the input variance accordingly. The rate dependence
at Iy is similar for both 7; and 7,,, growing from zero at vanishing time constants to a maximum
located just below the membrane time constant. While the rate decays with increasing 77, it
seems to saturate and even rise for slowly with 7, for 7, > 7. The stronger the flow of the
dynamics around the resting state at Iy, the more the voltage fluctuations are dampened so
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5.5 Derivation of the dynamic gain of a population of Gauss-Rice GIFs

that the the firing rate decreases with €2. As for the [y-dependence, I see that all curves rise
monotonically simply because the average voltage moves closer to the threshold.
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Figure 5.9: Effect of model parameters on the fluctuation-driven stationary response. The
stationary firing rate, Equation 5.18 for Iy ~ 0 (a) increases monotonically with the strength
of input fluctuations and (d) decreases monotonically with the intrinsic frequency. Across
each of 7; and 7, ((b) and (c) respectively), the rate exhibits a maximum. Insets are the
mean input dependent expression for the stationary response, Equation 5.17, valid in the
regime [y < 1. Inset color refers to the value of the parameter (oy, 77, 7, and Q) at the
location of the colored dots in the main plots. Parameters were otherwise set to their default
values.

5.5.6 Expression for the complex response function

With the variances and the mean voltage response in hand, I can write down the complex linear
frequency response,

1/1<W) _ ™ (Ts 2 — . 1+inw
VorEl = o) <> Y (1 + iwTe) PR R C— (5.31)
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Chapter 5 Response properties of an ensemble of GIF neurons

This biquad filter is composed of two-step cascade of a combined 1st-order high-pass and 2nd-
order low-pass current-to-voltage filter followed by a first-order high-pass voltage-to-population
firing rate filter. In the remaining part of the chapter, I analyze the properties of this filter.

5.5.7 Step response

The firing rate response derived in this chapter allows us to compute the response to any weak
signal and I demonstrate that in this section where I derive the response to step-like input.
The time-domain version of linear frequency response, v;(t), is the impulse response function,
which when convolved with any input times series gives the corresponding response time series,

v(t) =vo+ (v x I)(t)
- / n (It — t')dF

- / FL [y ()] (£ — #)dt" |

where v;(t) has units of [Time] 2[Current]™'. If there is an accessible frequency representa-
tion of the input, the interaction can be made in the frequency domain and then the result
transformed back to the time domain,

v(t) = vy + F v (w)I(w)].

We used this definition to study the response to step-like input, 7(t) = AO(t), with step height,
A, and with frequency domain expression,
Ow) = m(w) — - .

w

Applying the inverse Fourier transform to the product of this with the linear frequency response
gives the expression for the response. The relative response is then,

v(t) — v 1 1 (L4 7ep s A) (1 + Twj) x4
=% _ jtin 32
” CLM?JFM—A— 2 Y ‘ (5:32)

j=+,— J

with C' = i (027 7) . I can express Equation 5.32 in terms of 7 and €,

v(t) - _ 1 e i(Qt+4+3) —i(Qt+¢-—T)

where R4 and ¢4 depend on the parameters. Taking the limit ¢ — 0T, the relative instanta-

neous jump height is C7,7.p; = 2o 2% = JrILTelf  consistent with the notion that higher

P v %272 v
characteristic cutoff frequencies, i.e. 7,1, imply better instantaneous transmission. The expo-
nent of the subsequent decay is r = —277!, providing an envelope that funnels into the relative

asymptotic response, &, attained in the limit ¢ — co. Since the oscillation amplitude scales
as 1/Q while the asymptotic response scales with 1/Q?, there will be a tapering envelope for
2 > 1. Within this envelope the response oscillates at the intrinsic frequency and with a phase
that is explicitly dependent on the neuron parameters, as well as implicitly though 7.;¢. This
function was used to calculate the step response shown in Figure 5.3.
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5.6 Analysis of the dynamic gain function of a GIF ensemble

5.6 Analysis of the dynamic gain function of a GIF ensemble

In this section, I present an exhaustive characterization of the qualitative features of the re-
sponse function, Equation 5.31.

5.6.1 The w — 0 and w — oo limits simply determine a high/low pass
criterion

The matched order between the high and low pass filter components of Equation 5.31 implies
that there are finite limiting values of the dynamic gain at low and high input frequencies,

2
V2t + = lim V27| (w)] = yow-lgﬂ% (5.33)
Tv T¢

2

T T
2 Upigh + = lim /2 S 5.34
VErmn s = lim VI ()] = G T (5.34)
with the size of vy, relative to vy, Voo 1= Vy’;’—gh = % = w?T,T.. I note that both v, and

Vnigh can be written without explicit dependence on the intrinsic timescale, it influences the
limiting values only by setting the value of 7, in the way demonstrated in the previous section.

Viow Scales the above filter shapes up or down and itself scales down linearly with 7.p¢/7y
and thus with g. The boundary in the parameter space between low and high pass is defined
implicitly by v, = 1 providing the simple criterion for low or high pass behavior as whether 7,
is below or above 7.s¢ respectively. The high pass behaviour for large g or @1, is not due to an
increase in vp;g, (in which g does not appear) but in fact a consequence of the low frequency
attenuation. Recalling that the approximation to a hard threshold keeps the response flat
to arbitrarily high frequencies, while in fact it eventually decays beyond wy;it, the high pass
case here implies a large elevated high frequency band up to this cut-off, while the low pass

condition implies a large intermediate downward step. The low/high pass criterion implies a
-2 2 72

critical relative variance o,,;; = £, and in turn the critical output firing rate,
ets
4 1 2 72
vt = exp[————] (5.35)
TTs Ty

at which the response changes from low to high pass. Both of these values are intrinsic properties
of this model whose dependence on the input relies only on the units of time taken. For
Ts K Teffs v§™ diverges as 7, 1. For 7, > Test, it falls off as e ™. In Figure 5.8(c), I plot 7
as a function of 1. One can now use the plot in this figure to determine the high or low pass
behavior for a given 7,/7; and v,. For example, when 7, < 7./, (attained for instance with
small 7, and large 7/ /7.ff), there is only low-pass behavior due to the divergence of 1/277.

The high pass region nevertheless grows quickly with 73 > 7.¢¢.

The low and high input frequency limits become independent of 7, when time is expressed
in those units. Nevertheless, I can still write the critical condition independent of 7, when
expressing time in units of 7; by combining Equation 5.33 and Equation 5.34 and eliminating
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Chapter 5 Response properties of an ensemble of GIF neurons

7, altogether by substituting in the expression for 72/ Tfff (cf. Equation 5.35) to get the high-
low pass condition explicitly and solely in terms of the four timescales: 7, 7.sr, 7, and 1/,
(the latter value chosen by setting o; appropriately using Equation 5.29). Setting any three of
these determines the critical value of the remaining one above, across which the model changes
from high to low pass behavior. For example, when time is measured in units of 77, I have

2 1 14T
. epl-no L]
ngt _ eff 1f;:;w“’ (536)
27?,/Teff w7
. . " exp[—2 ]
For g = 0, I have o, = 1 and 7.5y = 7 and this reduces simply to v§™* = T\/TT/V’ the

expression presumably underlying results for the LIF in [114].

As for the limiting behavior of the phase response, the model gives 0 delay for both high and
low frequencies. At low frequencies, this is because the input changes slowly so that the model
dynamics can directly follow the oscillation. At high frequencies, the return of the lag to 0,
just like the flat high-frequency gain, is an artifact associated to the hard threshold.

5.6.2 There are six qualitatively distinct filter shapes

When g = 0 (LIF), the filter, Equation 5.31, simply reduces to single order. The intermediate
behavior is then only the respective monotonic decay or rise beginning and ending around the
smaller and larger of the two characteristic frequencies.

For g # 0, the voltage modulation by the current, w, comes into play. To analyze the effect
of the high pass voltage-to-spiking filter on the current-to-voltage filter I employ a similar
exhaustive characterization as was done above in the analysis of the current-to-voltage filter,
i.e. by going through all the cases arising from distinct orderings of the characteristic times
of the components of the combined filter. The ordering can give simple information about the
filter shape. For instance, any contribution of the voltage-to-spiking filter to the qualitative
behavior of the complete filter beyond just low or high pass requires that 1/7. be no larger than
either wy, or 1/7,. Otherwise, the only effect of the spiking is to flatten the high frequency
response beyond 1/7.. In general, however, there are many possible shapes. To further facilitate
the classification of these shapes, I present a single parameter space representation in which
they are all simply mapped.

For this general case, I can introduce the relative quality factor for the full filter, v,, :=
|1(wr)|/View- The response then depends on the five shape features, Vi, Vhigh, wr, Qr, and
Y, - Denoting § = 7, /7., so that “#* = w}7? and {vnign = wiTy, I can re-express the response
function as

nw) (1 + 1, /V?Jl) (1+ivEre)
Vlow N 1—w2/w%+iw/QLwL
with dynamic gain

14 222 ) (14 Evey
V(@) ( il w>( e WL> , (5.37)

2
Viow . w? + w?
wi Qiwi
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5.6 Analysis of the dynamic gain function of a GIF ensemble

When w =wy, v, = QL\/(l + ”?’O)(l + &) > Qr(1+ Vs ), which implicitly defines £ in terms
of v, , Qr and vy, and closes the representation. Indeed, with time in units of wzl and gain
values relative to v, the shape of the filter depends only on this triplet: each of the six regions
in (Voo, Yy, )-space defined by the boundaries v, = 1, 1, = 1, and v, = v, provides filters of
a qualitatively similar class (see Figure 5.10).
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Figure 5.10: The 6 distinct filter shapes in (v, , Voo )-space. (c,f) Region 1-6 denote the regions
exhibiting qualitatively similar filter shapes. E.g. spiking resonance is by definition region
1 and 2. Not all of these six regions are accessible for a given ();. Colored lines (blue to
red) represent the () -dependent boundary below which filter shapes are forbidden because of
unstable dynamics. I note that v, ,. 0 = Q. An intrinsic frequency exists in region above
the Q1 = 1/2 boundary. A voltage resonance exists in the region above the @), = 1 boundary.
I show the accessible subset of corresponding filter shapes at representative positions within
the regions (located at (10=%", 10¥°7) and (10%%7, 10%%")) and at the border between regions
(located at v, ,ve = 1071°,10° 10"%). (f) Same type of plot as (c), but for the phase
response. m/2 and —m/2 are shown as top and bottom bounding dashed lines for the set of
phase responses at each location. The gain and phase for the position denoted by the circle

138re shown in (a) and (c¢), and for the star in (b) and (e), respectively.



5.6 Analysis of the dynamic gain function of a GIF ensemble

In particular, depending on the region there is a peak, dip or step at wy whose width varies
with ;. The additional high or low pass nature of the filter gives the six classes of filter shape.

While the possible shapes are simply represented in this space, the constraints are no longer
represented in a plane since they depend additionally on (7. I now dissect the effects of
the stability and voltage resonance constraint on determining which filter shapes are allowed
where. A main conclusion that can be drawn is that a lower bound for accessible filters is
Vi, = Qr(1 + V) (the colored lines in Figure 5.10).

With reference to Figure 5.11, the stability constraint, Q7 < wrT,, translates into Q% < vy,

with the correct root of ¢ given by the values of Qr, Ve, , Viow, and wy.
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Figure 5.11: The accessible region of filter shapes depends on ()7, and the relative speed of
spiking to intrinsic dynamics £ = 7,/7.. The purple region marks the region of voltage
resonant filters. This region is contained in the red region of stable filters, whose lower
bound moves to larger v,, with Q. For relatively slow intrinsic spiking (a,b,c), there are
regions of non-spiking resonant(v., > v, ), but voltage resonant filters. Filters for relatively
fast intrinsic dynamics (d,e,f) only exist as high pass resonant filters for large Q1. (Left to
right: Q@ = 0.3,v/2,1.1. Top row: ¢ = 10. Bottom row: & = 0.1).

Which root can also be checked by which of 7, and 7. is larger. This constraint breaks into
branches when combined with the other constraints.

For £ < 1 so that the intrinsic dynamics is faster than the spiking dynamics, the region exhibit-
ing stable filters is constrained to a sliver, Q1 (1 + vs) < v, < \/(Q% +12) (14 Q%), with an
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Chapter 5 Response properties of an ensemble of GIF neurons

additional constraint on the lower bound, v,, > Qr (1 + Q?%), so that stable filters only exist
for v, > Q% and v,, > Qr(1+ Q%). For values of vy and v, increasing from this lower
bound point, the accessible region forms a band whose vertical thickness grows with v, and
it extends out parallel with the line v,,, = v for large v,. For increasing ()1, the accessible
region shifts right and up so that the band is eventually contained in v,, > vs and v, > 1
region, i.e. only high pass, resonating filters are allowed.

For £ > 1 so that the spiking is faster than the intrinsic dynamics, the region exhibiting stable
filters has no upper bound in v, . The lower bound is v, > Qr(1+vs) when v, > Qr(14+Q%)
and v, > \/(Q% +12) (14 Q%) when v, < Qr(1+Q3%). The latter bound differs significantly
from Qr(1 4+ vy ) when Qp > 1/2.

The voltage resonance condition can also be mapped to this space by replacing w; 7, by v/&Veo
giving Q7% < &vs + 2. For both roots of £, all stable filters are voltage resonant when Qg >
1/V/2.

For £ < 1,and 1/2 < Q1 < 1/+/2 the voltage resonant filters exist at large s only for v, < Vs,
i.e. only for non-spiking resonant filters, possible because the high pass limit is brought up by
the additional high pass filter above the peak of the resonance, e.g. Figure 5.12. Conversely,
the spiking resonant filters here lack a voltage resonance because the spiking resonance arises
not from the voltage resonance but from the lower frequency amplification due to the high pass
spiking filter.
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Figure 5.12: An example of filter shaping: attenuation at high frequencies uncovers an am-
plified band of intermediate frequencies. (a) The shape space representation showing the
region of accessible filters (white) for @, = 0.1. The blue regions exhibit unstable filters.
Filters obtained from points above the thick black line are spiking resonant. Filters obtained
from points above the black dashed line are voltage resonant. The arrow illustrates a path
in shape space along which v, is decreased. (b) and (c) show the beginning and end filters
along the path in (a). For (b) and (c), blue dashed lines are the high and low pass compo-
nents of the current-to-voltage filter, which itself is shown in solid blue. Shown in red is the
voltage-to-spiking filter which combined with the current-to-voltage filter gives the full filter,
shown in black.

For ¢ > 1, and @ decreasing from 1/+/2, the lower bound to the voltage resonance region
interpolates across v, from the line v, = 1 — Q%, which rapidly approaches v, = 1 as @, is
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5.7 Discussion

increased, to the lower bound of the region of stable filters, v,, = Qr(1 + V). Thus, stable
filters exhibit a voltage resonance when v, > 1, independent of (1. The absence of a spiking
resonance, v,, < Vs, however holds over a large sub region of these stable, £ > 1, and voltage-
resonant filters, for same reason as in ¢ < 1 that the high pass limit is brought up by the

additional high pass filter above the peak of the resonance, thus covering it.

For Q < 1/2, the depolarization condition, 72 < {vpien < 72, also excludes some regions for
hyperpolarizing w (see Figure 5.10).

The phase response across this representation is shown in Figure 5.10(f). I find 0 lag when
w = wy, so that the input and the response are synchronous. For the spiking resonance region,
I always find a delay for slower and an advance for faster input frequencies. For non-resonant
cases, it is possible to observe delays or advances for both faster and slower input frequencies.

5.7 Discussion

A neuron’s dynamic gain constrains its signal processing capabilities. Our analysis provides
the first complete expression for dynamic gain of a general resonator neuron model. The level-
crossing approach used here has been previously applied to 1D models to study correlation
gain [135, 97, 114, 116], dynamic response[114, 109, 122], and Spike-Triggered Averaged stim-
ulus and variance[114, 97]. Consistent with conditions for the validity of the approach [122],
experiments have directly demonstrated that Gauss-Rice neurons can provide a surprisingly
accurate description of cortical neurons [97, 116, 136]. I find that the space of gain functions
contains six types, two of which are resonant. The height of a resonant response is strictly
dominated by intrinsic adaptation, while its sharpness is controlled by the strength of the
subthreshold resonance. In particular, sharper peaks arise for higher intrinsic frequencies. I
determined the parameter region where an intrinsic frequency exists and where subthreshold
and spiking resonance are exhibited. I find that all possible combinations of the presence or
absence of these three features have finite volume in parameter space. I expect profitable appli-
cations of our results to the study of the connection between intrinsic properties and population
oscillations.

Model limitations I gave a rationale for the reduction to a no-reset, hard-threshold model.
Neuron models with hard-thresholds, such as the LIF and GIF, have been unexpectedly suc-
cessful in modeling cortical neurons [132]. Previous work has argued for the validity of the
Gauss-Rice LIF model in the regime that the input and membrane time constants do not differ
too much [122]. Here, I propose the more general validity condition for any Gauss-Rice neuron,
75/71 ~ 1. For the Gauss-Rice GIF and any higher dimensional neuron model, the range of
validity is then an extended volume, determined by the expression for 7, in the multidimen-
sional parameter space. For example, since 7, < 7y, 1 ~ 75/77 < 7/ /77 so that the timescale
of the input fluctuations, 77, should not be much slower than the membrane time constant, 7 .
Furthermore, I show that vy7. < 1 for relatively slow intrinsic kinetics, which guarantees the
near equivalence of reset and no-reset dynamics for that regime. To verify the validity of this
reduction within the prescribed range, I made a direct, quantitative comparison to a canon-
ical model with an active-spike generating mechanism. In summary, these results show that
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Chapter 5 Response properties of an ensemble of GIF neurons

the simplification to a no-reset, hard threshold is an adequate approximation when response
features are slower than the speed of action potential onset.

In this study of the Gauss-Rice GIF neuron and a previous on the Gauss-Rice LIF [114],
exponentially-correlated Gaussian noise was used as an example of a Gaussian input statistics
with non-trivial temporal correlations. These input statistics will not in general produce self-
consistent firing statistics. It is therefore important to note that the approach to the linear
response taken here admits arbitrary temporal correlations in the input, so long as their effect on
the short-delay features of the temporal correlation of the voltage can be calculated, since that
is what determines 7, and thus the effect of temporal correlations on the response properties.
I also note that since the voltage correlation affects the response properties only through 7,
there is an equivalence class structure over the space of input correlation functions based on
how they influence 7.

Relation to previous work on Type Il membrane excitability Excitable membranes are
classified by the type of bifurcation that they undergo from resting to spiking, with Type I
and II referring to super and sub critical Hopf bifurcation, respectively. The respective set of
eigenvalues around the resting state are real and complex, with the imaginary part of the latter
providing an intrinsic frequency. In this case, the voltage impulse response exhibits decaying
oscillations and the voltage response function can exhibit a resonant peak near the intrinsic
frequency. The mean-driven stationary spiking response rises continuously from 0 for Type I
while firing in Type II neurons begins only at a finite frequency. The dynamic gain of the
spiking response of Type II neurons can exhibit a superthreshold resonance arising from such
subthreshold resonance.

Frequency-sweeping ZAP input currents have revealed resonant responses from neurons in the
inferior olive [137, 138], thalamus [139], hippocampus [140], and cortex [141]. Consistent with
the type classification, these cells often display Type II membrane excitability properties such
as subthreshold oscillations with power at similar frequencies as the spiking resonance (for a
review, see ref. [83]). Type II stationary spiking responses have been measured in cortical in-
terneurons [142]. Direct measurements of the dynamic gain of resonator neurons are lacking,
however. Moreover, these existing measurements used the mean input to drive the neurons to
spike. Resonator response properties in the in vivo fluctuation-driven regime remain unmea-
sured.

Numerical simulations of resonator models containing the minimally required currents can
nevertheless reproduce the peaked voltage and ZAP response and bimodal ISI distributions in
both mean and fluctuation-driven regimes[143]. The few analytical results for the stationary
and linear response have so far been restricted to the long intrinsic time constant limit, 7, >
1[96, 5]. In this chapter, I are able to obtain exact results for the stationary and linear response
for all values of 7,,, something not possible in ref. [96] due to the difficulty of the analytics of the
Fokker-Planck approach used there. For large 7, and the fluctuation-driven regime, our results
qualitatively match their high noise results, where o; ~ 0.1 — 1. Since Gauss-Rice models
apply only to the fluctuation-driven regime, there is no meaningful mean-driven, deterministic
limit attained in the limit of vanishing noise strength with which to compare to the mean-
driven results of ref. [96]. I also note that the low frequency limit will differ slightly between
the models due to the slightly differing slopes of their fI curves. These small quantitative
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discrepancies between idealized models should not, however, be emphasized over their ability
to provide a qualitative explanation of the phenomena.

Uses of the dynamical response in the theory of recurrent networks Explicit expressions
for the linear response, such as Equation 5.31 obtained above, are essential ingredients for
the analysis of the collective states in recurrent networks. First, they are the key quantity
in the evaluation of population stability [39]. The dynamics of the population firing rate
linearized around one of its fixed points is defined by the linear response function. Second,
knowledge of the response function additionally reveals the correlation gain in the mapping
of input current correlations to output spiking correlations. Recurrent networks exhibiting
such gain will generate self-consistent patterns of inter-neuron correlations [121, 119, 144]. In
the Gauss-Rice approach used here, the linear response providing the population stability and
correlation gain is tractable for arbitrary Gaussian input current. Many networks generate such
input statistics, most prominently balanced networks [145, 62]. T expect that the correlation
gain and population firing rate stability of these networks can be theoretically investigated
using the expressions for the linear response derived here.

One target application area is in understanding the connection between circuit oscillations
and single cell excitability. Subthreshold resonance is often neglected in modeling studies of
the PING and ING mechanisms for population oscillations [146]. This is despite the ample
suggestive evidence of phase locking between subthreshold oscillations and gamma band pop-
ulation oscillations [83]. This connection has been studied in the olfactory bulb where mitral
cells display a host of resonator properties such as subthreshold oscillations[81, 82], rebound
spikes [147], and Type II phase resetting curves [148]. The role of this resonance in sustaining
the population oscillation has not been directly assessed in detailed network models of resonat-
ing mitral cells [149], though it should play a role in either of two existing hypotheses for the
origin of the oscillations [150].

The demonstrated subthreshold resonance in inhibitory interneurons in cortex likely also con-
tributes to the population oscillation observed there (as suggested by the numerical results of
[151]) and could be investigated using the expression for dynamic gain that I provide.

Finally, an ad hoc dynamic response filter of the same form as the one derived here [152] has
been successful in modeling responses of cortical neurons (personal communication O. Shriki).
The explicit dependence in our derived expression on the parameters of an underlying neuron
model can used to extend those studies, in particular, by inferring from the fitted values the
properties of the intrinsic dynamics of the measured cells.

Response properties depend on the differential correlation time The differential correla-
tion time, 75, was used in a variety of ways throughout this chapter.

First, it appeared in expressions for other important quantities in the theory. It appears most
prominently in our expression for the fluctuation-driven voltage autocorrelation function for
exponentially-correlated Gaussian input current. The result for a Type II GIF, Equation 5.28,
gives exponentially enveloped, oscillatory decay, with a decay constant equal to the relaxation
time of the model and oscillation frequency given by the intrinsic frequency, 2. Despite these
oscillations, I find that the dynamic gain depends only on the initial falloff behavior away from
0-delay, a feature that can be shown to define, 7,. From the perspective of the response then,
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voltage correlation functions differ only insofar as they exhibit different 7,. The characteristic
time, 7., and thus also the attenuation of the spiking filter scales linearly with 75, influencing
the high or low pass nature of the filter accordingly.

Second, 75 appears in the validity conditions for the model. Namely, the range of valid firing

rates for all Gauss-Rice neurons must lie below 7,

Third, model parameters such as the intrinsic time scale, 7,,, have an effect on dynamic response
features, such as the high and low frequency limits, only through 7,. The analysis of their effect
on T, provides insight as to their role in sculpting the response properties. In Figure 5.8(c)
for example, 7, grows with 7, and for large 7, saturates at 75, qrp — 75 L1 = Ty, so that 7,
can only be made shorter, not longer, than the membrane time constant, 7/, by intrinsic and
synaptic current parameters.

The central role of 74 could be tested by applying a variety of input correlation functions with
significant differences only away from the fall-off at 0-delay so that they provide the same ;.
Our model predicts no significant change in the response properties. Such a large number of
experiments could be performed by methods of high-throughput electrophysiology currently
under development.

The six filter types of the Gauss-Rice GIF We re-expressed the response expression, Equa-
tion 5.19, using the center and high frequency response relative to the low frequency response,
v, and vy, respectively. I find six qualitatively distinct filter shapes distributed around (1,1) in
the (Voo, Uy, ) Plane, with the value of Q1 determining which of the six are accessible. Depending
on the region there is a peak, dip or step at w;, whose width is determined by @);. I summarize
below the constraints on the accessible shapes set by Q. For Qp < 1/2, all six filters shapes
are possible for fast relative spiking (7. < 7,). There are no high pass resonating shapes in

the limit of vanishing @, for slow relative spiking (7. > 7,,). For Q > /(=1 +v/5)/2 ~ 0.7
all accessible shapes have elevated response at the center frequency, v, > 1. For @ > 1, all
allowed filter shapes are resonating, that is v,,, > v+. There are no low pass resonating filters
for slow relative spiking and so a sharp resonance, i.e. a high ), is only possible when the
overall filter is high pass.

Neither voltage nor spiking resonance strictly imply the other in this model. First, there can be
voltage resonance with no spiking resonance because the spiking high pass pulls up the response
in the high input frequency range above the elevated response around the intermediate-range
resonant input frequency. The high frequency limitation of the approach (e.g. Figure 5.1)
implies that the elevated response extends up to the speed of the action potential, leaving a
broad resonant band at high input frequencies. Second, there can be spiking resonance with
no voltage resonance because of a low frequency attenuation by the spiking high pass filter of
a low pass current-to-voltage filter.

In addition, neither voltage nor intrinsic resonance strictly imply the other. First, the existence
of an intrinsic frequency does not imply voltage resonance in general because the response at
wy, where € becomes finite is @1 = 1/2 and is thus still attenuated relative to the response at
low input frequencies. This response only becomes resonant at (), = 1. Second, there can be
a voltage resonance with no intrinsic resonance for the same reason that a high pass with low
characteristic frequency (this time from relatively slow intrinsic dynamics) can sculpt a peak
from the low pass component of the full filter.
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Finally, I found that the strength of the spiking resonance (~ v, ) is composed of a contribu-
tion from the intrinsic timescale, 7,, and from the intrinsic frequency, 2. Nevertheless, v, is
dominated by the attenuation at low input frequencies associated with the high pass effect of
large 7,,, while the unique effect of €2 is to sharpen this resonance.

The cascade representation of the dynamic response The effect of spiking in the Gauss-
Rice formulation of the response is as an explicit first-order high pass filter of the voltage
dynamics (see Equation 5.19). I note that this high pass behavior associated with spiking is
distinct from that discussed in the literature as arising from sodium channel inactivation [153].
This has nothing to do with the Gauss-Rice high pass arising in this chapter. In this work,
I always consider the threshold fixed. Closed form expressions are thus obtained for the low
frequency limit and characteristic time of this filter in terms of the parameters of the model.
When the characteristic frequency is high, the filter has the effect of flattening an otherwise
decaying voltage response. The flattening effect is physiologically meaningful up to frequencies
at which the spike-generator cut-off appears. It thus sculpts a plateau of constant response
at high frequencies that can be elevated or depressed relative to the low frequency response.
On the other hand, when the characteristic frequency is low, the resulting effect is a low
frequency attenuation that carves out a resonant peak. The high pass characteristics are then
also dependent on the intrinsic timescales.
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In this thesis, I combined various levels of description to investigate the microstate stability and
macrostate activity of simple network models relevant to the central nervous system. I began
by tackling the phenomenon of stable chaos in chapter 2. Through a detailed consideration
of finite-size perturbations in the network, I showed that much of the phenomenology has an
explanation in terms of the phase response curve (PRC) of the single neuron and the pulsile
nature of the interactions. In particular, the dependence of the maximum Lyapunov exponent
on the network connectivity appears to arise from the linearizing effect of the K-dependence
of the coupling strength on the PRC. The average interval between input spikes to a neuron,
(Kv)~!, was found to play an important role for the non-trivial reason that it sets the temporal
distance between spikes in the compound spike sequence coming from neurons that share a
connection. It is only these susceptible spikes that are sensitive to the spike crossings induced
by perturbations to the network state. That Kv also sets the rate of divergence of flux tubes
is a natural consequence of this definition. I also introduced a temporal characteristic, the
perturbation recall time, that measures the time it takes for the system to realize the effects
of a supercritical perturbation. It was shown to scale with ¢!, and completed the phase
space picture of flux tubes as being approached in directions perpendicular and parallel to the
unperturbed trajectory.

I revealed the shape of a flux tube for the first time. Initially peculiar, the origin of the shape
is also a natural consequence of the distribution of susceptible spikes in the phase space and
the exponential decay of perturbations given by the maximum Lyapunov exponent. The final
main result presented in chapter 2 was the derivation of the scaling of the average diameter
of flux tubes. The explicit approach maps the way in which microscopic and macroscopic
parameters of the dynamics combine to generate this complex phase space geometry. The
derivation generalizes to any statistically controlled connectivity ensemble, and also to other
PRCs with a LIF-type discontinuity. Extensions to neuron models with smooth PRCs will
require some additional consideration. This is the first calculation of attractor basin size in
spiking networks and carries the spirit of a similar such calculation in the 1980s for continuously
coupled spin glass systems.

It may seem surprising that such a simple feature as how spike times change at an inhibitory
event at threshold can determine this complex attractor structure. In stable chaos, however, the
attractor basins are so tightly defined by the local stable trajectory that this tight connection
is perhaps not so surprising.

The balanced state in systems exhibiting stable chaos is, in fact, a transient to a periodic
attractor. The length of this transient, however, diverges rapidly with the network size. Thus,
flux tubes are a legitimate quasi-stationary solution of the networks dynamics for large N.
However, the question of whether they could also persist in the thermodynamic limit of N — oo
was until now not clear. For finite but high action potential rapidness the flux tube regime
vanishes. Is this true more generically? The remaining discontinuity is the pulse-nature of
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the interactions. Determining to what extent flux tubes are generated by this mathematical
discontinuity is important for the applicability of stable chaos to real systems. Thus, exploring
the extent of stable chaos with synaptic width further clarifies its relevance for neuroscience and,
for interested physicists, brings another dimension in which it may persist in the thermodynamic
limit as a true collective phase.

By analyzing balanced networks of cLIF model neurons, 1 found that the spiking dynamics
of such networks get bursty at large values of the synaptic time constant, 77, simply due to
the long excursions in the currents induced by the slow dynamics. The balanced state never-
theless persists in this highly irregular regime with large CV values of the inter-spike interval
distribution. The balance mechanism, thus, appears robust to the introduction of temporal
correlations. The stability of such networks undergoes a transition to chaos as expected from
previous work[13, 14, 58]. In the process, the plateau in the Lyapunov spectrum corresponding
to the relaxation in the current passes through the plateau corresponding to the relaxation in
the voltage, with no drastic changes. The chaos that emerges is relatively weak compared to
that of the rapid theta neuron[11]. The maximum Lyapunov exponent and the entropy pro-
duction exhibit a maximum with 7; before decaying as 7;'. A similar linear dependence was
observed for low rapidness. To what degree these two transitions can be interpreted jointly
using the framework provided in this thesis remains to be undertaken. The addition of a cor-
related current to the rapid theta neuron would be an ideal model to study the interaction of
these effects. In particular, it would be interesting to know how \,,.. behaves as a function
the product, r7;. What happens to the regime of stable chaos in the large-N limit for this
model is not clear since the rapid theta model and the cLIF have difference large-N limits. At
least in the cLIF model, flux tubes appear to persist as N — oo. Indeed, with the average flux
tube diameter, €, grows as (7§ — 77)? with decreasing 77, the emergence of stable chaos is
reminiscent of a continuous phase transition.

The rate response function for any neuron model is an essential quantity for understanding how
ensembles of such neurons behave in response to perturbations. In chapter 5, we provided the
first complete treatment of such a function for the biologically relevant case of an additional
intrinsic voltage-gated current. This neuron model undergoes a bifurcation in its sub-threshold
dynamics. On one side of the bifurcation the voltage simply integrates the input, while on the
other it can resonate in some input frequency band. The same is true of the output spiking and
the population firing rate of an ensemble of such neurons. The degree to which the bifurcation
in the sub-threshold dynamics is exhibited by the spiking and the firing rate is not a priori
clear, and I showed that the relation is subtle. There are tendencies for the resonance to work
its way into higher levels of description. In particular, the intersection of the parameter space
volumes of the various levels of resonance is much larger than the union of their complements.
However, I found that none necessarily implies the other. The same can be said for the resonant
frequency in the resonant regimes at these different levels of description.

I close this work with an subjective outlook on the implications it might have for neuroscience
at large. Many of the currents in the CNS neurons of large brains come from channels that
are clearly homologous to those in CNS neurons of smaller brains. The latter, however, have
likely evolved to help the neuron achieve a particular function, such as the rhythm used for
digestion in the lobster or the gating of backward movement in C. elegans. In contrast, however,
it becomes less clear what signal processing the homologous currents in large brains should
accomplish in order to satisfy the often unknown, but certainly distinct, functional constraints.
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In particular, these constraints are now likely best understood at the level of the local circuit,
not the individual cell. In this thesis, I have shown that one should not assume that the effects
of such currents in this 'big brain’ context are washed away in the collective sea of network
activity in which they reside. Indeed, experimental work suggests to the contrary that these
currents not only continue to play a functional role, but are, in fact, actively regulated over a
range of time scales in response to the environment and past experience [154, 155]. This thesis
sets the theoretical foundation to study such currents in large neural circuits. Incorporation of
parameters with which the theory can make contact with experiments should be the next goal.
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