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Abstract 

 
Canonical Wnt signaling has been shown to orchestrate the development of the 

neural crest (NC), a transient population of multipotent, migratory cells that generate 

a vast array of cell types. Canonical Wnt signaling is required for NC induction, as 

well as differentiation; however, its role in NC migration remains elusive. Conversely, 

ß-catenin independent, non-canonical Wnt pathways have been shown to be 

required in the migration of NC cells. To delineate a possible function of canonical 

Wnt-signaling in Xenopus NC migration, canonical Wnt signaling was activated or 

inhibited at different time points after NC induction using chemical modulators 

affecting ß-catenin stability and inducible glucocorticoid fusion-constructs of Lef/Tcf 

transcription factors. Modulation of non-canonical Wnt pathways was performed 

using chemical inhibitors and provided a comparision to migration defects observed 

upon dysregulation of canonical Wnt signaling. In each case, alternations in NC 

migration were analyzed either in vivo using whole mount in situ hybridization or in 

vitro by life-cell imaging of explanted NC cells. Ectopic activation of canonical Wnt 

signaling caused predominantly a strong inhibition of cranial NC migration. Less 

frequently patterning defects of the cranial NC streams were observed. Intriguingly, 

inhibition of canonical Wnt signaling phenocopies NC migration defects already 

observed upon activation. Furthermore, modulation of canonical Wnt caused 

differences in expression of NC-marker genes. Inhibition of non-canonical Wnt 

signaling results mostly in formation of unstructured NC branches, however, changes 

in expression of NC-markers were not observed. Additionally, life-cell imaging in 

combination with biophysical data analysis of explanted NC cells confirmed the in 

vivo findings and demonstrated that modulation of both canonical and non-canonical 

Wnt signalings affect cell mobility and the ability to perform single cell migration. 

Furthermore, it has been shown that endogenous ß-catenin is present in the nucleus 

at premigratory stages, but starts to be removed in the progress of migration, 

suggesting that canonical Wnt activity has to decrease to basal levels at the onset of 

NC migration. Thus, the data confirms necessity of non-canonical Wnt signaling for 

proper NC cells migration and support the hypothesis that canonical Wnt signaling 

needs to be tightly controlled to enable migration of NC cells.  
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1. Introduction 
 

1.1  An overview of NC cell development and the importance of NC research 
 

 
Neural crest (NC) is a population of multipotent cell progenitors found exclusively in 

vertebrate embryos. They are induced along the entire length of neuraxis as a 

bilateral, segmented stripe of cells at the lateral border of the neural plate and non-

neural ectoderm (Hall, 2008; Le Douarin and Kalcheim, 1999; Sauka-Spengler and 

Bronner-Fraser, 2008; Steventon et al., 2005). NC cells are subdivided into cranial 

(Graham et al., 2004; Cordero et al., 2011), cardiac (Kirby et al., 1983; Keyte and 

Hutson, 2012), vagal (Kuo and Erickson, 2011; Peters-Van Der Sanden et al., 1993; 

Burns and Le Douarin, 1998; Yntema and Hammond, 1954), trunk (Bronner-Fraser 

and Fraser, 1989; Serbedzija et al., 1994) and sacral (Burns and Le Douarin, 1998; 

Anderson et al., 2006) NC cells due to their diversity along neuraxis (Fig.1.1A). Upon 

closure of the neural plate, NC cells undergo epithelial-to-mesenchymal transition 

(EMT) (Ahlstrom and Erickson, 2009; Alfandari et al., 2010; Berndt et al., 2008 and 

Duband, 2010) allowing them to delaminate from prospective neural tube and migrate 

throughout the embryo (Fig.1.1B). Many of the genes involved in EMT of NC cells are 

transcription factors which have been also classified as proto-oncogenes contributing 

to cancer development (Thiery, 2003). Furthermore, motile properties as well as 

migration behavior of NC cells mirror the migration of cancer cells (Kuriyama and 

Mayor, 2008; Morales et al., 2005; Theveneau and Mayor, 2012; Dupin and Sommer, 

2012). Therefore, investigation of NC migration provides a deeper understanding of 

the molecular machinery govering the progression and invasivnes of metastatic 

cancer. Once NC cells reach their final location, they differentiate into various cell 

types including peripheral and enteric neurons, glia, smooth muscle cells, craniofacial 

cartilage and bone, endocrine cells and pigment cells (Dupin et al., 2006; Grenier et 

al., 2009; Hall, 2008; Kirby and Hutson, 2010; Le Douarin and Kalcheim, 1999; Le 

Douarin and Teillet, 1971; Minoux and Rijli, 2010 and Theveneau and Mayor, 2011a) 

(Fig.1.1C). Consequently many different systems like skin, face, and heart will have a 

contribution from the NC cells. Defects in induction, migration or differentiation of NC 

cell to derivatives will cause severe organ deficienties and malformations. These 

pathologies, called neurocristopathies (Bolande, 1997; Carmen Carrascosa-Romero 

and Carlos de Cabo de la Vega, 2012), include disorders such as Waardenburg- 
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Shah syndrome (deafness and pigmentation anomalies) (Mahmoudi et al., 2013; 

Keyte and Hutson, 2012), frontonasal dysplasia (malformations of the craniofacial 

structures) (Dee et al., 2013) DiGeorge syndrome (craniofacial, heart, kidney and 

mental defects) (Keyte and Hutson, 2012; Bertsch et al., 2015; Zhang et al., 2014) 
and Bardet-Biedl syndrome (malformations of the craniofacial structures) (Tobin et 

al., 2008). Therefore, revealing the mechanisms of NC development represents an 

important step in understanding the basis of various pathologies. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure.1.1. Induction, migration and differentiation of the NC cells on example of Xenopus leavis. A NC 

cells are induced along the whole neuraxis as a segmented group of cells. Cranial NC cells are subdivided into 

mandibular NC cells (MNC), hyoid NC (HNC), and anterior/posterior branchial NC (aBNC and pBNC). Cardiac, 

vagal and sacral NC cells being a small subset of cranial and trunk NC are not depicted B Migration of NC cells is 

performed in streams and quarters them in different locations all over the developing embryo. C Already during 

migration NC cells initiate a differentiation program which will lead to formation of many various derivatives. 

Adapted from Mayor et al.,1999 and Mason, 2007. 
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1.2 Induction of NC 
 

1.2.1 NC induction during gastrulation and neurulation 
 
 
NC induction is a sophisticated and long-lasting process, which in some vertebrates 

begins already during gastrulation, continues throughout the neurula stages and can 

be easily monitored by expression of NC-specific genes including several families of 

transcription factors. During the complex tissues rearrangments of gastrulation and 

neurulation prospective NC cells are thought to receive variety of inductive signals 

from different sources, which coordinate the formation of the NC. NC are initially 

induced already during gastrulation by the signals derived most likely from the 

ectoderm and subsequently during neurulation by the signals derived from the 

surrounding paraxial mesoderm, neural plate and non-neural ectoderm (Fig.1.2). 

Both in Xenopus and zebrafish mesoderm was believed to be the initial source of 

NC-inductive signals during gastrulation, however, most recent studies show that 

embryos lacking mesoderm or mesoderm-derived signaling are still able to express 

NC-specific genes (Wu et al., 2011; Ragland and Raible, 2004). On the contrary, 

studies in chick embryo show that NC induction during gastrulation can be performed 

without any support from the surrounding tissues (Basch et al., 2006) leaving the 

participation of other tissues in initial NC induction during gastrulation as an open 

question. The final emergence of NC cells at the boarder of neural plate and the non-

neural ectoderm into the post-gastrula development raises the question about the 

contribution of those tissues in the induction of NC cells. There are several lines of 

evidence that formation of NC cells depends on inductive signals derived from non-

neural ectoderm, but also from the underlying paraxial mesoderm (Fig.1.2C). 

Transplantation experiments using pigmented/non-pigmented axolotl embryos proved 

that interactions between neural plate and non-neural ectoderm lead to the 

development of NC in the cells derived from both tissues. (Moury and Jacobson, 

1989). Additionally, it has been shown that in vitro recombination of explanted neural 

plate and non-neural ectoderm from Xenopus and avian embryos is sufficient to 

activate expression of NC-specific gene Snail2 in the cells derived from both tissues 

(Mancilla and Mayor, 1996; Selleck and Bronner-Fraser, 1995; Dickinson et al., 1995; 

Mayor et al., 1995; Nieto et al., 1994). The preliminary evidence for a role of 

mesoderm as source of inductive signals comes from the path-breaking experiment 

of Raven and Kloos who were able to obtain NC derivatives in salamander embryos 
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by grafting paraxial and lateral mesoderm into the ectoderm of blastocoel (Raven and 

Kloos, 1945). Further studies show that removal of paraxial mesoderm in Xenopus 

embryos causes reduced expression of Snail2 and recombination of ectoderm 

explants with paraxial mesoderm can activate Snail2 expression and induce 

melanocyte formation (Bonstein et al., 1998, Marchant et al., 1998). Taken together 

these data provide the support for the necessity of inductive interactions between 

neural plate, non-neural ectoderm and paraxial mesoderm for proper formation of NC 

cells.   

 

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 
 
Figure.1.2. Formation of NC cells during gastrulation and neurulation on the example of a Xenopus 
embryo. A Induction of NC cells in respect to Nieuwkoop and Faber stages of Xenopus development. B Lateral 

view of the early gastrula. Preliminary NC induction starts at gastrulation. NC-specific markers (NC) are already 

expressed during gastrulation. Prospective NC cells are found above dorsolateral marginal zone (DLMZ) 

constituted from prospective paraxial mesoderm. C Dorsal view of the early neurula. NC cells are positioned 

between neural plate (NP) and non-neural ectoderm (NNE). D The proper induction of NC cells depends on the 

inductive signals derived from surrounding neural and non-neural ectoderm, but also from the underlying paraxial 

mesoderm. Combined action of those signals contributes to the formation of neural plate borders (NPB) - a NC 

progenitor domain. Adapted from Stuhlmiller and Garcia-Castro, 2012; OpenStax College- Antomy and 

Physiology. 

Neural plate border Non-neural ectoderm 

Paraxial mesoderm 

Notochord 

Neural plate D 
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1.2.2 Molecular basis of NC induction- cross-talk of BMP, FGF and Wnt 
signaling 
 
 

The molecular machinery controlling formation of NC is still not fully understood, 

however, series of studies performed across Xenopus, zebrafish, chick and mouse 

confirm BMP, Wnt and FGF signaling pathways as key players responsible for 

establishing a signaling network orchestrating the formation of neural plate borders 

(NPB), a NC progenitor domain which differs from neural plate and non-neural 

ectoderm (Fig.1.2.2). BMPs are members of the transforming growth factor-ß (TGFß) 

family of secreted proteins, which binds to type I and type II serine-threonine receptor 

and transduce the signal through canonical Smad and non-Smad pathways.The BMP 

signaling pathway has a broad spectrum of biological activities throughout embryonic 

development and its role in NC induction is tightly linked with the induction of the 

neural plate. BMP signaling plays a crucial role in the establishment of dorsal-ventral 

polarity in the early embryo and the promotion of non-neural ectoderm over neural 

cell fates (Barth et al., 1999). Currently there are two models which explain the role of 

BMP as well as FGF/Wnt signaling in induction of the NC cells; BMP gradient 

hypothesis and two-step model. In BMP gradient hypothesis, during gastrulation 

signaling molecules including noggin, chordin and follistatin, which are derived from 

the dorsal mesoderm induce the formation of the neural plate by blocking BMPs 

signaling in the ectoderm (Hammerschmidt et al., 1996). As a consequence of a 

spatial concentration gradient at neurulation, regions with high levels of BMP 

signaling form non-neural ectoderm while an intermediate level of BMP signaling 

together with FGF/Wnt signaling from the adjacent tissues determine NC fate at the 

neural plate border (NPB) - a NC progenitor domain (Mayor et al., 1995; Marchant et 

al., 1998; Tribulo et al., 2003; Weinstein and Hemmati-Brivanlou, 1999; Morgan and 

Sargent, 1997; Nguyen et al., 1998). On the contrary, various studies contradict the 

gradient hypothesis and propose a two-step model in which inhibition of BMPs during 

gastrulation allows FGF/Wnt signaling pathways from the adjacent tissues to specify 

NC, while later activation of BMPs at neurula stages maintains NC fate in NPB 

(Fig.1.2.2). An alternated absence of Smad1/5/8 signaling activity during gastrulation 

followed by gradual increase during neurulation at NPB and non-neural ectoderm has 

been observed in the avian embryos (Sthulmiller and Garcia-Castrio, 2012). Blocking 

Smad signaling in the chick embryo leads to the loss of NPB-specific genes (Faure et 
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al., 2002). Moreover, cultivation of prospective NC explants from gastrulating chick 

embryos in medium containing Noggin for the first 10 h has no effect on NC fate, but 

treatment after 10 h causes a loss of already present NC-specific genes and 

promotes induction of neural-specific genes. Correspondingly, cultivation of 

prospective NC explants with Bmp4 for the first 10h causes loss of NC-specific genes 

and promotion of epidermal fate, while treatment after first 10 h causes no change in 

expression of NC-specific genes (Patthey et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.1.2.2. Two phases of BMP activity during NC induction in Xenopus. During gastrulation initial 

induction of NC cells requires inhibition of BMP signaling, while later during neurulation BMP signaling becomes 

activated. Wnt signaling is required in both steps of NC induction. Signals responsible for induction of NC cells are 

derived from adjacent tissues. Abbreviations: NC-neural crest, DLZM/IM-dorsolateral marginal zone/intermediate 

mesoderm. Adapted from Steventon et al., 2009.  

 

 
1.3 Wnt signaling pathways 
 

Wnts are a large family of secreted lipid-modified glycoproteins (Willert and Nusse, 

2012), which can transduce signal through several different pathways including the 

canonical or β-catenin-dependent pathway and the non-canonical or β-catenin-
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independent pathways, which can be divided further into the Planar Cell Polarity 

(PCP) pathway and the Wnt/Ca2+ pathway (Komiya and Habas, 2008; Rao and 

Kühl, 2010) (Fig.1.3). Depending which pathway becomes activated Wnts are 

subdivided into two classes; canonical and non-canonical according to the ability to 

induce accumulation of β-catenin in the nucleus. Signaling through some Wnts such 

as; Wnt1 (Hinck et al., 1994; Young et al., 1998; Shimizu et al., 1997), Wnt3a 

(Shimizu et al., 1997) and Wnt8 (Wikramanayake et al., 2004; Kohn and Moon, 2005) 

has been shown to correlate with accumulation of β-catenin in the nucleus and 

transcriptional changes, while signaling trough others like Wnt5a (Shimizu et al., 

1997; Kikuchi et al., 2012) and Wnt11 (Kohn and Moon, 2005; Tada and Smith, 2000; 

Pandur et al., 2002) is β-catenin-independent and involves regulation of cytoskeleton 

or calcium release. All the metazoan species express Wnt genes and all of those 

genes encode secreted proteins based on their amino acid structure and biochemical 

characterization (Coudreuse and Korswagen, 2007; Smolich et al., 1993). Upon 

translation and targeting to the extracellular space, Wnt proteins are exposed to 

various modifications, which are essential for folding, secretion and Wnt-signaling 

activity (Mikels and Nusse, 2006; Coudreuse and Korswagen, 2007; Willert and 

Nusse, 2012). The most prominent modifications are glycosylation and acylation 

(Komekado et al., 2007; Kurayoshi et al., 2007; Janda et al., 2012; Takada et al., 

2006). Although the mechanism by which the lipid residues are attached to the Wnt-

polypepide backbone is still not fully understood several comperative and loss-of-

function studies suggest the involvement of the Porcupine (Porcn), an ER resident 

protein in this process (van den Heuvel et al., 1993; Kadowaki et al., 1996; Hofmann, 

2000; Barrott et al., 2011; Biechele et al., 2011). Beginning with Wnt secretion, Wnt-

dependent signal transduction requires binding of the Wnt ligand to the extracellular 

cysteine-rich domain of the seven-transmembrane-span receptor Frizzled (Fz) 

(Vinson et al., 1989; Adler et al., 1990; Park et al., 1994; Wang et al., 1996) and 

activation of the cytoplasmic phosphoprotein Disheveled (Dsh) (Wallingford and 

Habas, 2005), which regulates and branches all of the Wnt pathways (Miller et al., 

1999; Komiya and Habas, 2008) (Fig.1.3). Dsh itself is a protein exhibiting a typical 

modular structure (Fig.1.3). It contains three domains; a DIX, a PDZ and a DEP 

domain. DIX (Disheveled/Axin) domain located at the N-terminus (Capelluto et al., 

2002) is responsible for interaction with a scaffolding protein Axin and functions 

exclusively in canonical Wnt signaling (Axelrod et al., 1998; Boutros et al., 1998; 
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A 

B 

Moriguchi et al., 1999; Penton et al., 2002; Rothbächer et al., 2000). PZD (PSD-95, 

DLG, ZO1) domain located in the center mediates protein-protein interactions 

(Cheyette et al., 2002; Wong et al., 2003) and is required for all branches of Wnt 

signaling (Axelrod et al., 1998; Boutros et al., 1998; Moriguchi et al., 1999; Penton et 

al., 2002; Rothbächer et al., 2000). Finally, the DEP (Disheveled, EGL-10, Pleckstrin) 

domian situated at the C-terminus is essential for PCP signaling (Heisenberg et al., 

2000; Moriguchi et al., 1999; Tada and Smith, 2000; Wallingford et al., 2000). 

Additionally, PDZ and DEP domains are used in Wnt/Ca+ signaling (Sheldahl et al., 

2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.1.3. Different branches of Wnt signaling pathways. A Canonical WNT/ß-catenin-dependent signaling. 

B Wnt/Ca+ signaling. C Planar Cell Polarity signaling. B The schematic structure of the Disheveled protein. 

Disheveled is composed of three major domains; DIX, PDZ and DEP and various conserved motifs including a 

basic ser/thr-rich region, a proline-rich region and a highly conserved C-terminal region. Adapted from Wallingford 

and Habas, 2005; Montcouquiol et al., 2006. 
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1.3.1 Canonical Wnt signaling 

The canonical Wnt pathway was identified for the first time in the fruit fly Drosophila 

melanogaster and intensive studies in the various model organisms delineated the 

basic molecular signaling framework. Under unstimulated conditions cytoplasmic 

level of ß-catenin is kept low through the dual phosphorylation (Liu et al., 2002) by 

glycogen synthase kinase 3β (GSK-3β) (Hart et al., 1999; Yost et al., 1996) and 

casein kinase 1α (CK1α) (Price, 2006; Amit et al., 2002), which together with the 

adenomatous polyposis coli tumor suppressor protein (APC) (Hart et al., 1999; Ha et 

al., 2004), protein phosphatase 2A (PP2A) (Hsu et al., 1999; Seeling et al., 1999; 

Ratcliffe et al., 2000; Yamamoto et al., 2001) and Axin (Hart et al., 1999; Ikeda et al., 

1998; Dajani et al., 2003) form a destruction complex (Stamos and Weis, 2013). 

Phosphorylated β-catenin becomes ubiquitylated by β-TrCP and is targeted for 

degradation (Aberle et al., 1997; Orford et al., 1997; Kitagawa et al., 1999; Latres et 

al., 1999; Liu et al., 1999) (Fig.1.3.1A). Upon binding of canonical Wnt ligands to their 

coreceptors Frizzleds (Fz) and low-density-lipoprotein-related protein5/6 (Lrp5/6) on 

the cell surface (He et al., 2004; MacDonald and He, 2012) Lrp5/6 becomes dually 

phosphorylated by CK1 and GSK-3β and inactivates the destruction complex by 

recruitment of Axin to the plasma membrane (Davidson et al., 2005; Zeng et al., 

2005). Additionally, Dsh is also recruited to the plasma membrane where it binds Fz 

receptors (Wong et al., 2003) and regulates phosphorylation of Lrp5/6 (Bilic et al., 

2007). β-catenin, which is no longer phosphorylated and tagged for degradation 

translocates to the nucleus and regulates gene expression by interactions with 

Lef/Tcf family of transcription factors (lymphoid enhancer factor /T cell factor) 

(Behrens et al., 1996; Molenaar et al., 1996; van de Wetering et al., 1997). 

(Fig.1.3.1B). In the absence of Wnt signal Lef/Tcf acts as transcriptional repressors of 

Wnt target genes by forming a complex with several corepressors including myeloid 

translocation gene related-1 (Mtgr1) (Moore et al., 2008), corepressor of Pan (Coop) 

(Song et al., 2010), hydrogen peroxide-inducible clone (HIC5) (Ghogomu et al., 2006; 

Li et al., 2011) and the most intensively studied Groucho/transducin-like enhancer of 

split (Gro/TLE) repressor family (Roose et al., 1998; Chen and Courey, 2000). Upon 

translocation of β-catenin to nucleus Lef/Tcf factors become converted into 

transcriptional activators and perform expression of the target genes (Daniels and 

Weis, 2005). 
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Figure.1.3.1. Wnt signaling pathway. A In the absence of the Wnt ligands the cytoplasmic and nuclear levels of 

ß-catenin are kept low. ß-catenin is constantly phosphorylated and tagged for degradation by combined action of 

proteins forming the destruction complex (APC, PP2A, AXIN1, CK1, and GSK3ß) and ßTRCP. B Binding of Wnt 

ligands cause the disassembly of the destruction complex and translocation of ß-catenin to the nucleus. Adapted 

from Staal et al., 2008. 

 

 

1.3.2 Canonical Wnt signaling in development of NC cells 
 

As in the case of BMP signaling, broad range of experimental data confirms 

involvement of canonical Wnt signaling in the induction as well as in delamination 

and differentiation of NC cells. Inhibition of Wnt signaling in Xenopus and chick 

embryos by targeting different components of canonical Wnt pathway was shown to 

impair formation of the NC, while overexpression of some Wnt ligands or downstream 

components led to ectopic expression of NC-specific genes. Inhibition of canonical 

Wnt signaling by dominant-negative Wnt constructs results in an inhibition of NC 

formation in chick and Xenopus embryos (Garcia-Castro et al., 2002; LaBonne and 

Bronner-Fraser, 1998). Similar effects were also seen by Morpholino-mediated 

knockdown of β-catenin, LRP6 or frizzled3 in Xenopus embryos (Deardorff et al., 

2001; Hassler et al., 2007; Wu et al., 2005). Correspondingly, activation of canonical 

Wnt signaling by overexpression of β-catenin, LRP6, frizzled3 or canonical Wnt 

ligands in various experimental models led to an expansion of the NC cell population 

(Chang and Hemmati-Brivanlou, 1998; Deardorff et al., 2001; Saint-Jeannet et al., 

A B 
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1997; Tamai et al., 2000). In accordance with two-step induction model, canonical 

Wnt signaling was shown to be required for BMP activation during second step of NC 

induction in chick embryo (Patthey et al., 2009). What’s more, using avian embryos it 

was shown that canonical Wnt signaling stimulates G1/S transition and activates NC 

delamination, a process required for initiation of NC migration (Burstyn-Cohen et al., 

2004). Finally, a large body of evidence shows that canonical Wnt signaling regulates 

the last stage of NC development, namely lineage diversification. Constitutive 

activation of β-catenin in NC cells promotes sensory neural fate at the expense of 

other NC derivatives in mice or isolated NC stem cells (Lee et al., 2004). In zebrafish, 

targeting overexpression of β-catenin to premigratory NC cells promotes pigment cell 

formation at the expense of neurons and glia. Conversely, the inhibition of canonical 

Wnt signaling by truncated Tcf3 or a dominant negative Wnt promoted neuronal fates 

at the expense of pigment cells (Dorsky et al., 1998). MITF, a transcription factor 

required for melanocyte development, is directly activated by Wnt signaling indicating 

that canonical Wnt signaling can directly specify NC fate (Dorsky et al., 2000). As 

loss of Wnt1 and Wnt3a in the mouse leads to a marked deficiency in NC derivatives, 

canonical Wnt signaling may also be important for the proliferation of NC cells (Ikeya 

et al., 1997). Thus, canonical Wnt signaling possibly has a broad range of functions 

in post-induction stages of NC development. 

 
1.4. Transcriptional network maintaining NC identity 

 

Taken together BMBs, Wnts and FGFs signaling pathways integrate into complex 

transcriptional network, which induce the expression of the first set of regulatory 

transcription factors called neural plate border specifiers including: Tfap2, Msx1, Zic1, 

Gbx2, Pax3/7, Dlx5/6, Gata2/3, Foxi1/2 and Hairy2 (Simões-Costa Bronner, 2015) 

(Fig.1.4A). Those genes specify the neural plate border, a wider domain including 

prospective epidermis and neural plate. Subsequently these factors along with 

combinations of the same signaling pathways then trigger the expression of NC 

specifires, a second set of transcription factors including Ets1, Snail1/2, FoxD3, 

Sox9/10, Twist, cMyc, and Ap2 (Simões-Costa Bronner, 2015), which activate the 

epithelial-mesenchymal transition (EMT) allowing NC cells to delaminate from the 

neural tube and become migratory cells (Fig.1.4B). On the contrary to neural plate 

border specifiers, expression of NC specifires is restricted exclusively to the 
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prospective NC cells. The combination of these genes is most probably also crucial 

for the maintenance of NC cells in undifferentiated state through delamination and 

migration (Fig.1.4C,D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure.1.4. Signaling cascades in particular stages of NC induction. A FGF signaling from the paraxial 

mesoderm as well as canonical Wnt signaling from the paraxial mesoderm and non-neural ectoderm induce 

expression of NPB specifiers. B FGF/Wnt signaling in combination with NPB specifiers induce expression of NC 

speifiers which control C NC maintenance and D progression through EMT. Adapted from Sauka-Spengler and 

Bronner-Fraser, 2008. 

 

 

1.5. Epidermal-to-mesenchymal transition (EMT)- basic concept 
After specification NC cells undergo epidermal-to-mesenchymal transition (EMT), a 

sophisticated process, which governs a structural remodeling of the premigratory NC 

cells. The core of EMT is the breakdown of the highly integrated epithelium and 

formation of the mesenchymal cells causing complex tissue rearrangements common 

in early embryogenesis and tumor metastasis (Fig.1.5) (Nieto, 2011; Thiery et al., 

2009). During EMT cells can go through the series of transient stages, from typical 

epithelial tissues with firm cell-cell adhesions, to not fully determined mesenchymal 

cells with transient contacts and finally to the entirely separated mesenchymal cell 

without epithelial polarity and cell-cell adhesions (Acloque et al., 2009; Ahlstrom and 
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Erickson, 2009; Baum et al., 2008; Duband, 2010; Theveneau and Mayor, 2012). 

During NC delamination from the prospective neural tube, NC cells undergo partial 

EMT and migrate as group of mesenchymal cells with transient cell-cell adhesions. 

EMT of NC cells involves divers cellular processes and is performed in several steps 

to rearrange cytoskeleton and loosen the stable junctions before delamination from 

the neuroepithelium. Additionally, EMT is triggered by the combined action of 

extracellular signals, including components of the extracellular matrix (ECM), like 

collage and hyaluronic acid, many of secreted ligands, such as members of TGFß, 

Wnt and FGF family (Vallin et al., 2001; Yook et al., 2006; Thiery and Sleeman, 

2006) and numerous transcription factors belonging to the group of NC-specifires. 

Proteins of the tight junctions responsible for establishing an epithelial state as well 

as type I classical cadherins are mostly downregulated. Cell-cell adhesions after NC 

delamination are maintained usually by type II classical cadherins (Kuriyama et al., 

2014; Theveneau et al., 2010).  

 
Figure.1.5. Scheme of epidermal-to-mesenchymal transition. Upon EMT NC cells lose stable junction and the 

typical close-adherent epithelial arrangement. Cells acquire a mesenchymal character, become loosely 

associated and can easily migrate. Adapted from Acloque et al., 2009. 

 

1.5.1 Loss of epithelial polarity and modulation of cell adhesion 
 

Initially, premigratory NC cells are arranged in epithelial structure defined by apical-

basal polarity, which needs to be abolished to allow for the proper delamination 

(Fig.1.5.1). In avian embryos shortly before migration de-epithelization of cranial NC 

tissue is achieved by downregulation of claudin-1, which leads to the decomposition 

of tight junctions and subsequently loss of the apical zones (Aaku-Saraste et al., 

1996). Moreover, studies in cultured mouse epithelia show that repression of occludin 

and claudins (claudin-3, claudin-4 and claudin-7) is performed by the direct 

interaction of Snail1 (Ikenouchi, 2003), what indicates that similar mechanism might 
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be involved in the EMT of NC cells. Disassembly of tight junctions has been 

recognized as a transition into the gap junctions both in avian and amphibian EMT 

during early embryonic development (Shook and Keller, 2003). As a support for this 

observation an excess of the gap junction protein connexin-43α1 (Cx43α1) has been 

shown to significantly increase the migration rate of mouse cardiac NC cells. On the 

other hand, downregulation of Cx43α1 impairs migration of human glioblastoma cells, 

which share similarities with migrating NC cells (Huang et al., 1998). The cadherin-

dependent adhesion, a major player of cell interactions is also subjected to 

modifications. Cadherins constitute a large family of cell-cell adhesion proteins 

comprising classical cadherins, protocadherins and atypical cadherins (Halbleib and 

Nelson, 2006). In various organisms delamination of the cranial neural crest is 

preceded by a switch in expression between different types of classical cadherins, 

which bind each other in Ca2+-dependent manner to form adherens junctions 

(DeLuca et al., 1999). Type I cadherins mediating stronger cell-cell interations (E-

cadherin and N-cadherin) are downregulated at the expense of type II cadherins 

(cadherin-6B, cadherin-7, cadherin-11), which not only mediate weaker, more 

suitable for migratory NC cell-cell interactions, but also promote protrusive activities 

(Fig.1.5.1) (Kashef et al., 2009). Modulation of cadherin composition is an essential 

step in EMT progression, however, there are crucial species-specific differences in 

the term of cadherin type exchange. Many NC specifires have been shown to directly 

down- or upregulate specific cadherins with the predominant emphasis on Snail2, 

Sox10, FoxD3, Twist and Zeb2 (Sip1) transcription factors. Snail2, has been shown 

to participates in EMT progression in many system ranging from cancer lines to 

embryos (Niesto et al., 1994; Blanco et al., 2007). The role of Snail2 in the EMT of 

chick trunk NC cells is linked with the transcriptional repression of N-cadherins by 

interaction with LIM domain only protein 4 (Lmo4) (Ferronha et al., 2013). On the 

contrary, in Xenopus N-cadherins are only slightly downregulated during 

delamination and migration of cranial NC cells and have been shown to be crucial for 

the response to chemoattractants (Barriga et al., 2013; Theveneau et al., 2010). 

Additionally, cranial NC cells in Xenopus require expression of cadherin-11 for proper 

migration (Borchers et al., 2001). Interestingly Snail2 has been also shown to 

transcriptionally repress cadherin-6B, which belongs to type II classical cadherins in 

chick cranial and trunk NC cells during delamination (Taneyhill et al., 2007; Coles et 

al., 2007). The action of Snail2 is supported by interaction with Sox9, another 
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transcription factor, which upon phosphorylation, induced by BMP and canonical Wnt 

signaling, binds directly Snail2 and promotes EMT of chick trunk NC (Cheung and 

Briscoe, 2003; Liu et al., 2013). Furthermore, canonical Wnt signaling is also thought 

to be involved in EMT by transcriptional and post-transcriptional regulation of Snail2 

(Vallin et al., 2001; Yook et al., 2006). Sox10 and FoxD3 have been also shown to 

downregulate N-cadherins in the migratory chick trunk NC cells (Cheung et al., 2005; 

Dottori et al., 2001). What’s more, FoxD3 also downregulates cadherin-6B by 

repressing transmembrane protein tetraspanin18 (Tspan18), which is required for 

maintenance of cadhrein-6B and prevents delamination of chick cranial NC (Fairchild 

and Gammill, 2013). FoxD3 additionally up-regulates cadherin-7, which promotes NC 

motility (Cheung et al., 2005). Further progression of EMT requires dispersion of NC 

and acquisition of truly mesenchymal fate, what is achieved in later stages of 

migration. In Xenopus, the dissociation of cranial NC is mediated by Twist, which 

represses E-cadherin, a type I cadherin, in the delaminating cells.  Knockdown of 

Twist together with its regulator Hifα causes up-regulation of E-cadherin and 

impairment in NC dispersion (Barriga et al., 2013). In contrast to frog, Twist is not 

expressed in the avian NC cells during premigratory and migratory stages, however, 

its role is performed by another transcription factor called Zeb2 (Sip1). In chick, 

knockdown of Zeb2 leads to maintains of E-cadherin, which normally needs to be 

downregulated in migratory cranial NC cells. Persistence in expression of E-cadherin 

does not prevent delamination from the prospective neural tube, but results in the 

formation of aggregated NC cells remaining in the premigratory position (Rogers et 

al., 2013). Thus, repression of particular cadherins is crucial for loss of adhesion 

between NC cells and prospective neural tube, while repression of other cadherins 

enables NC cells dispersion.  
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Figure.1.5.1. Loss of epidermal polarity and modulation of cadherin-dependent adhesion. During EMT NC 

cells lose the epithelial polarity, tight junctions become disassembled and are substituted by gap junctions, what is 

reflected in the downregulation of occludin and claudins and up-regulation of connexin-43 respectively. 

Delamination of NC cells from prospective neural tube is additionally facilitated by a switch in expression between 

class I and II of classical cadherins causing changes in adherens junctions (AJ). Expression of E- and N-

cadherins is usually repressed at the expanse of Cad6B, Cad7 and Cad11. Many NC-specifieres including 

Snail1/2 and Twist are involved in this processes. Abbreviations: TJ-tight junctions, AJ-adherens junctions, 

Cad6B- cadherin-6B, cCda7- chick cadherin-7, xCad11- Xenopus cadherin-11. Adapted from Kuriyama and 

Mayor, 2008. 

 
1.5.2 Modulation of extracellular matrix 
 
In addition to the structural rearrangements, delamination of NC cells and active 

migration throughout the whole embryo involves penetration of the basement 

membranes and invading extracellular matrices (ECM) (Fig.1.5.2). Migrating NC cells 

encounter barriers of connective tissue buildup of collagens, fibronectin, laminins, 

vitronectin and proteoglycans. Proteolytic activity of matrix metalloproteases (MMPs) 
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favoring invasive behavior of the metastatic cells is also involved in progression of 

NC migration, however, in contrast to cancer, NC cells invade surrounding tissue in 

controlled manner upon regulation by the tissue inhibitors of matrix metalloproteinase 

(TIMPs) (Fig.1.5.2). Matrix metalloproteinase-2 (MMP-2) and it inhibitor TIMP-2 were 

shown to be required for the migration of the chick cardiac NC cells. Both MMP-2 and 

TIMP-2 accumulate on the surface of migrating NC cells and are more abundant at 

the leading edge in comparison to the trailing edge of the migratory front (Cai et al., 

2000; Cantemir et al., 2004; Duong and Erickson, 2004). Also expression of several 

members of the novel metalloproteinase/disintegrin family ADAM identified in cancer 

have been reported in Xenopus cranial NC cells (Alfandari et al., 2001; Gaultier et al., 

2002; Smith et al., 2002; Harrison et al., 2004). In Xenopus, ADAM13 has been 

shown to initially decrease adhesion of NC cells to the ECM, facilitate delamination 

from the prospective neural tube and subsequently enable further migration by 

cleaving ECM substratum (Fig.1.5.2) (Alfandari et al., 2001; Kee et al., 2007). What’s 

more, ADAM13 has been shown to cleave cadherin-11 generating an extracellular 

soluble fragment and a membrane-bound cytoplasmic tail, which is crucial for 

protrusive activities by stimulating small Rho GTPases in cranial NC (Kashef et al., 

2009; McCusker et al., 2009). Although the transcriptional control of MMPs/ADAMs 

proteolytic activity is not fully understood, Zeb2 (Sip1) and Snail2 could be potential 

regulators of those proteinases (Joseph et al., 2009). After initial degradation of 

connective barriers further invasion and migration requires additionally formation of 

contacts between NC cells and proteins of EMC. These interactions are established 

by integrins (Fig.1.5.2); a large family of transmembrane non-covalently associated α 

and ß subunits, which bind EMC proteins to the cell’s actin cytoskeleton. In Xenopus, 

at least four integrins have been shown to be expressed in favorable temporal and 

special distribution to function in cranial NC migration (Joos et al., 1995; Kil et al., 

1996; Lallier et al., 1996; Ransom et al., 1993; Whittaker and DeSimone, 1993). 

However, so far only α5ß1 was shown to support cranial NC migration on fibronectin 

(Alfandari et al., 2003). In chick, ß1 promotes attachment of trunk NC cells to 

fibronectin, laminin and collagen (Lallier and Bronner-Fraser, 1991) and more recent 

studies also confirm involvement of ß1 in attachment of cranial NC to fibronectin 

(Strachan and Condic, 2003, 2008). 
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Figure.1.5.2. Interactions with basement membranes and extracellular matrix (ECM). Combined action of 

MMPs/ADAMs metalloproteinases and integrins facilitates invasion and migration of NC cells through connective 

tissues. Adapted from Kuriyama and Mayor, 2008. 

 
1.6 Migration of NC cells 

 

1.6.1 Guiding signals-repellents  
 
After successful completion of delamnination NC cells start active migration 

throughout the embryo following specific external guiding cues. NC cells migrate as a  

segmented groups of cell at all axial levels following two stereotypical pathways; a 

medial pathways leading directly through the anterior-half of the somatic mesoderm 

or between the neural tube and somatic mesoderm, and a dorsolateral route between 

the dermamyotome and ectoderm (Fig.1.6.1). During migration NC cells express 

many genes crucial for migratory behavior, but also initiate a differentiation program, 

which will lead to formation of various derivatives. After induction, usually during 

neurulation cranial NC becomes segmented into three groups corresponding to the 

segmental organization of the brain (Fig.1.6.1) (Sadaghiani and Thiebaud, 1987). 

Subsequently, those groups of NC cells migrate dorsolateraly into specific branchial 

arches giving rise to mandibular, hyoid and branchial NC cells (Sadaghiani and 

Thiebaud, 1987; Bradley et al., 1993; Smith et al., 1997). Only a small amount of 

cranial NC cells invade the underlying mesoderm (Noden, 1975, 1988). Migration into 

NC arches is performed in a rostrocadual wave and is temporally separated. NC cells 

segregated into specific arches contribute to various derivatives like bones, 

Integrins 

Integrins 
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cartilages, cranial ganglia and melanocytes. In turn, trunk NC cells migrate in the 

metameric fashion along two pathways; a medial and dorsolateral route (Fig.1.6.1). 

Migration via both pathways is also temporally separated. Firstly, NC cells migrating 

along the medial path generate neurons and glial, of the peripheral nervous system. 

In a second wave NC cells travel longwise the dorsolateral path and differentiate into 

melanocytes. In addition, vagal NC cells, regarded as a transition between the cranial 

and trunk NC cells, were shown to migrate both in a medial and dorsolateral pathway 

(Kuo and Erickson, 2011). Those NC cells contain a subset of the cardiac NC, which 

mainly contributes to the connective tissue and smooth muscles (Kirby et al., 1983; 

Kirby and Waldo, 1995). In all cases, NC cells require a special signaling guidance to 

assure proper separation of distinct NC cells groups. Interestingly, most of the 

characterized external guiding cues exhibit a repulsive effect preventing NC cells 

from entering certain regions and mutual intermingling. Studies in various animal 

systems proved an essential role of ephrins, semaphorins and slit/robo signaling 

pathway in directing NC movement (Fig.1.6.1) (Kuriyama and Mayor, 2008).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure.1.6.1. Repulsive guidance of migrating NC cells. NC cells migrate as segmented group of cells along 

two stereotypical pathways; medial and dorsolateral. At all axial levels NC cells receive repulsive signals 

preventing them from spreading and intermingling. Ephirin and semaphoring signaling control migration of cranial 

NC, while trunk NC are additionally guided by slit/robo signaling. Adapted from Kuriyama and Mayor, 2008. 
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Ephrins constitute a family of membrane-bound proteins, which serve as  ligands for 

Eph receptors. Due to their structural differences and varied linkage to the cell 

membrane they are divided into ephrin-As and ephrin-Bs subclasses. Eprin receptors 

in turn belong to the superfamily of receptor protein-tyrosine kinases and are 

classified as either EphAs or EphBs. Although Eph receptors demonstrate high 

affinity binding for ligands belonging to corresponding classes there are also cases of 

cross-interactions (Himanen et al., 2004). Activation of the Eph signaling cascade 

occurs via direct cell-cell interactions, as both ligands and receptors are membrane-

bound proteins. In Xenopus, EphA4 and EphB1 are expressed in migrating cranial 

NC cells as well as in mesoderm of the third and fourth arch respectively (Smith et 

al.,1997; Helbling et al.,1998), while their ligand, namely ephrin-B2 is expressed in 

migrating NC cells/mesoderm of the adjacent second arch (Robinson et al., 1997; 

Smith et al., 1997). Using truncated forms of those proteins it has been shown that 

their interactions provide a repulsive signaling allowing the proper segregation of the 

second and third-arch NC cells and additionally target third-arch NC cells to their 

proper destination (Smith et al., 1997). Mutations in human ephrin-B1 and ephrin-B4 

are linked with failure of cranial NC migration (Twigg et al., 2004; Merrill et al., 2006), 

while overexpression of cytoplasmic domain of ephrin-B2 rescues cranial NC 

migration in ephrin-B2 knockdown mice (Adams et al., 2001). Furthermore, in 

zebrafish ephrin-B2 has been shown to interact with gap junction protein; connexin-

43 and regulate its distribution in migratory cranial NC cells (Mellitzer et al., 1999). 

Avian trunk NC cells invade only anterior, but not the posterior part of each somatic 

mesoderm due to repulsive guidance cue imposed by the somite. EphB3 expression 

is localized to the anterior-half of the somite and NC cells, while ephrin-B1 ligand is 

expressed in the posterior-half of the somite. The addition of soluble ephrin-B1 

causes a loss of metameric migration pattern. A similar situation is observed in the 

murine system where ephrin-B1 and ephrin-B2 ligands are expressed in the 

posterior-half of the somite, while corresponding Eph receptors are localized 

exclusively to anterior-half of the somite and truck NC cells (Krull et al., 1997; Wang 

and Anderson, 1997; Koblar et al., 2000; McLennan and Krull, 2002; Kasemeier-

Kulesa et al., 2006; Santiago and Erickson, 2002). Ephrin signaling also controls 

entering into medial versus dorsolateral pathway by quail trunk NC cells. NC cells 

which are specified as neurons and glial migrate only via the medial pathway and are 

prevented from dorsolateral migration into epidermis. On the contrary, NC cells 



31 
 

specified as melanoblasts are directed into dorsolateral pathway (Santiago and 

Erickson, 2002). Another group of proteins crucial for proper guidance of NC cells are 

semaphorins constituting a class of secreted and membrane-bound proteins which 

were preliminary recognized as axon growth cone guiding molecules (Kolodkin, 

1998). Semaphorins can alter the organization of actin filaments and the microtubule 

network by interaction with neuropilins and plexins receptors, which in turn have well 

established roles in regulation of Rho-family GTPases (Yu and Kolodkin, 1999). 

Additionally, recent work shows that Sema4D/plexins-B1 can also influence R-Ras 

GAP activity and inhibit cell migration by regulating ß1 integrin what could be relevant 

for NC migration (Oinuma et al., 2006). In zebrafish, Sema3F and Sema3G ligands 

are expressed in the NC-free cephalic region, while Npl2a and Npl2b are expressed 

in the migrating NC cells (Yu and Moens, 2005). Similarly, in chick Sema3F and 

Sema3A are expressed in the hindbrain neuroepitelium adjacent to the NC-free 

mesenchyme, while their neurophilins are expressed in NC cells. Expression of 

neurophilin-Fc fusion construct causes a migration of NC cells into a NC-free 

mesenchymal tissue (Osborne et al., 2005; Gammill et al., 2006). Sema3F is also 

expressed in the posterior-half of the somites where it serves as a repulsive ligand for 

trunk NC cells expressing Npl2. Sema3F -/- and Npl2 -/- mutant mice show loss of 

metameric migration of trunk NC cells. Additionally, in mice Sema3A/Npl1 repulsion 

prevents population of sacral NC from the premature entrance of the gut (Anderson 

et al., 2007). In chick, RNAi-mediated knockdown of PlexinA2 or PlexinD1 impairs 

migration of cardiac NC cells into the outflow tract (Toyofuku et al., 2008). PlexinA1 is 

expressed in premigratory and migratory cranial NC cells in Xenopus. Both up- and 

downregulation of PlexinA1 inhibits migration of NC indicating that level of PlexinA1 

needs to be finely controlled (Wagner et al., 2010). In addition to ephrin and 

semaphorin signaling another pathway termed Slit/Robo also plays a role in the NC 

guidance. Slits are secreted proteins, which bind to the Robo receptors. Slit2 

expressed in the chick dermamyotome has been shown to repel early migrating trunk 

NC cells expressing Robo1 and Robo2 showing that Slit/Robo repulsive interactions 

are required to prevent the entry of NC cells into the dorsolateral pathway (Jia et al., 

2005). Moreover, in quail Slit/Robo interactions prevent migrating trunk NC cell 

expressing Robo1 and Robo2 from invading gut tissue expressing Slit2 but not the 

vagal NC cells (De Bellard et al., 2003).  
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1.6.2 Guiding signals-attractants  
 
Although most of the investigated molecules exhibit repellent interactions restricting 

NC migration some actually work as attractants. Among them are netrins which 

belong to family of laminin-related proteins and have been shown to have a dual 

behavior in axon guidance (Culotti and Merz, 1998; Serafini et al., 1994; Wang et al., 

1999). In avian and mice, a subpopulation of vagal NC cells expressing netrin 

receptors (deleted colon cancer gene (DCC)) migrate toward the developing gut and 

pancreas expressing netrins. NC cells from explanted intestine were able to migrate 

out towards the cocultured cells expressing netrin-1, while in vivo blockage of DCC 

causes loss of directional migration toward target tissues (Jiang et al., 2003). Glial 

cell line-derived neurotrophic factor (GDNF), belonging to TGFß superfamily also 

plays a role in attracting a subpopulation of vagal NC expressing receptor tyrosine 

kinase RET into the prospective gut (Fig.1.6.2.1). Similarly, NC cells from explanted 

intestine were able to migrate in the direction of GDNF-exogenous source, while RET 

loss-of-function causes defects in NC migration into target tissue in mice (Natarajan, 

2002). Additionally, Endothelin signaling has also been implicated in guiding 

migratory NC cell, which will contribute to the formation of the enteric nervous system 

(ENS) (Heanue and Pachnis, 2007). Endothelins are a family of peptides comprising 

potent vasoconstrictors, which are primaliry expressed by the endothelium (Agapitov 

and Haynes, 2002). NC cells, which invade the developing gut express Endothelin 

receptor type B (EDNRB), while Edn3 is expressed in the midgut and hindgut 

mesoderm as well as in the caecum and proximal colon (Barlow et al., 2003, Leibl et 

al., 1999) (Fig.1.6.2.1) In mouse, mutations in Edn3 and EDNRB cause delayed 

migration of gut-destinated NC cells (Barlow et al., 2003; Lee et al., 2003; Ro et al., 

2006). Another factor, which has been proposed to attract NC cells is stromal derived 

factor-1 (Sdf1), a secreted protein which binds transmembrane receptor CXCR4. In 

mice and chick, expression of CXCR4 is observed in the subpopulation of trunk NC 

emerging from the neural tube, while Sdf1is expressed along the migration pathway 

to the dorsal root ganglia (DRG) or sympathetic ganglia respectively. CXCR4 - / - 

mice show underdeveloped DRG (Belmadani, 2005), while chick NC cells expressing 

CXCR-shRNA perform slower migration in comparison to control cells. Furthermore, 

overexpression of CXCR4 in other subpopulations of trunk NC exerts migration to 

sympathetic ganglia (Kasemeier-Kules et al., 2010). In Xenopus, Sdf1 is expressed in 
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the ectoderm facing premigratory and migratory cranial NC cells (Fig.1.6.2.2). 

Morpholino-mediated knockdown of CXCR4 inhibits NC migration. Interestingly, in 

both in vitro/in vivo studies NC cells steer their migration in the direction of 

exogenous/ectopis source of Sdf1 proving its role as an attractant (Theveneau et al., 

2010).  

 
Figure.1.6.2.1. Migration of NC cells contribuits to the formation of the enteric nervous system (ENS). A In 

the early development of mouse embryos, vagal NC cells (red stream) enter the anterior gut and migrate 

rostrocadualy to populate foregut (FG), midgut (MG), caecum, and hindgut (HG) respectively. Those NC cells will 

form the majority of the ENS. The most cadual subpopulation of vagal NC cells together with the most anterior 

subpopulation of trunk NC cells (blue stream) will contribute to the formation of ENS in oesophagus and the 

anterior stomach (blue dots). The sacral NC cells positioned at the most posterior part of the developing neural 

tube (yellow stream) migrate in cadual-rostral direction to colonize the colon (yellow dots). All of the NC cells, 

which enter the developing gut, are defined as enteric neural crest-derived cells (ENCCs) and will give rise to the 

ENS. B,C Vagal NC cells migrating anteriorly into the gut express EDNRB and start to express RET, while 

mesenchyme of the gut expresses high levels of GDNF in foregut (green) and EDN3 in mid- and hingut (pink). D 

In the later stages, NC cells migrating cadually encounter high levels of GDNF and EDN3 expression in the 

caecum (yellow). Adapted from Heanue and Pachnis, 2007.  
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Figure.1.6.2.2. Expression of CXCR4 receptor and Sdf1 ligand. In Xenopus, expression of CXCR4 overlaps 

with expression of NC-marker genes confirming expression of this receptor by NC cells. Conversely, CXCR4 

ligand, namely Sdf1 is expressed in the ectoderm facing premigratory and migratory NC cells. A,B Expression of 

NC-marker Twist in the premigratory and migratory NC cells. C,D Expression of CXCR4 receptor in premigratory 

and migratory NC cells. E Expression of Sdf1 ligand facing premigratory NC cells expressing Slug (Snai2) marker. 

F Expression of Sdf1 ligand in front of the migratory NC cells. G Graphical comparison of premigratory and 

migratory NC cells and expression of Sdf1 ligand. H Horizontal sections of Xenopus embryos showing expression 

of CXCR receptor and Sdf1 ligand. Adapted from Theveneau et al., 2010. 

 
1.6.3. Establishment of cell polarity  
 
Once NC cells undergo delamination, they migrate with very persistent polarity either 

as clusters or as individual cells in the direction of a target tissue. A prerequisite for 

directional migration is a formation of front-back polarity. In vitro analysis of single-

cell migration revealed that cell protrusions arise at the front and retract at the back of 

cells respectively through the localized assembly of the actin controlled by the Rho 

family of small GTPases (Fig.1.6.3). At the very tip of the cell front cdc42 GTPase 

controls actin polymerization, which becomes organized in the parallel bundles and 

contributes to formation of filopodia and nascent cell-substratum adhesion (Itoh et al., 

2002). More backwards, but still at the front Rac1 GTPase regulates actin 

polymerization, which forms a mesh-like network controlling lamellipodia extension 

and formation of nascent cell-substratum adhesion. Rac1 directly activate the WAVE 

family of actin nucleators and phosphoinositides, which are required for activity of 
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actin-nucleating proteins including N-WASP-Arp2/3 complex (Burridge and 

Wennerberg, 2004; Ridley et al., 1992; Rohatgi et al., 2001). Finally, at the rear RhoA 

small GTPase promotes assembly of stress fibers and mature focal adhesions 

(Burridge and Wennerberg, 2004; Ridley and Hall, 1992). RhoA activates Rho kinase 

(ROCK), which in turn activates PTEN and causes actomyosin-based contractility, 

protrusions collapse and finally cell translocation (Chrzanowska-Wodnicka and 

Burridge, 1996; Li et al., 2005; Ridley et al., 2011). RhoA and Rac1 have also been 

shown to mutually antagonized each other at the front and back (Bustos et al., 2008; 

Ohta et al., 2006) 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure.1.6.3. Small GTPases and acting remodeling. Polarized activities of Cdc42, Rac1 and RhoA are 

responsible for the establishment of front-back polarity of the migratory cell. At the front Cdc2 and Rac1 promote 

protrusion activity, while at the back Rho controls protrusion disassembly. Adapted from Barriga and Mayor, 2015. 

 

1.6.4 Mechanism of planar cell polarity (PCP) 

Activation of proteins belonging to the Rho family of small GTPases occurs mainly 

through the planar cell polarity (PCP) pathway, which was extensively studied in the 

fruit fly Drosophila melanogaster where it controls the proximal-distal orientation of 

hair and bristles on the body (Klein and Mlodzik, 2005; Tree et al., 2002; Adler 2002). 

Genetic screening of Drosophila mutants revealed a set of ‘core PCP’ proteins, which 

drive localized actin polymerization responsible for the localized growth of hair and 
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bristles. The ‘PCP’ core components include several transmembrane proteins, such 

as Frizzled (Fz) (Adler et al., 1997; Vinson and Adler, 1987), Strabismus (Stbm)/Van 

Gogh (Vang) (Taylor et al., 1998; Wolff and Rubin, 1998), Flamingo (Fmi) (Chae et 

al., 1999; Usui et al., 1999) and intracellular proteins like Disheveled (Dsh) (Theisen 

et al., 1994), Prickle (Pk) (Gubb et al.,1999) and Diego (Dgo) (Feiguin et al., 2001). In 

the Drosophila wing cells, all of those proteins are initially uniformly distributed in the 

whole cell membrane, however, upon mutual interactions they become 

asymmetrically segregated; Fz, Dsh and Dgo accumulate at the distal and 

Stbm/Vang and Pk at the proximal edge of the cell membrane (Axelrod, 2001; Strutt,  

2001; Feiguin et al., 2001; Tree et al., 2002; Bastock et al., 2003). The atypical 

cadherin, Fmi resides on both distal and proximal edges, where it binds neighboring 

cells through heomophilic interactions (Usui et al., 1999; Shimada et al., 2001). 

Establishment of PCP is the best understood in Drospohila and involves intra and 

intercellular interactions. The initial asymmetrical proximal-distal distribution of Fz-

Fmi and Stbm/Vang-Fmi is most likely caused by preferential recruitment of Fz to the 

cell membrane by Fmi by so far unknown mechanism (Chen et al., 2008; Strutt and 

Strutt, 2008; Struhl et al., 2012). Fz-Fmi complexes interact with Stbm/Vang-Fmi 

complexes, which are localized in the membranes of the adjacent cells, however, the 

same complexes, anchored in the proximal and distal edges of the same cell 

antagonizes each other. This repulsive interaction between Fz- and Stbm/Vang- 

complexes is performed by cytoplasmic proteins; Dgo and Pk, which can bind the 

same domain of Dsh (Fig.1.6.4). Overexpression of Pk was shown to prevent Dsh 

translocation to the membrane, suggesting that Pk can displace Dsh from the 

proximal edge of the cell (Tree et al., 2002; Carreira-Barbosa et al., 2003). On the 

contrary, Dgo binding to Dsh at the distal edge of the cell would prevent association 

with Pk and promote distal localization of Dsh. In vertebrates embryos, such as 

Xenopus, zebrafish and the mouse, the same set of ‘core PCP’ proteins has been 

shown to regulate a plethora of early developmental events ranging from convergent 

extension movements during gastrulation, orientation of cochlear hair cell in the ear, 

neural tube closure, oriented cell division, lung branching, hair follicle alignment and 

polarized ciliary beating in the trachea and brain ventricles (Goodrich and Strutt, 

2011, Gray et al., 2011; Zallen, 2007; Bosoi et al., 2011; De Marco et al., 2012; Kibar 

et al., 2009; Kibar et al., 2007; Rida and Chen, 2009; Wang and Nathans, 2007; 

Yates and Dean, 2007; Segalen and Bellaïche, 2009; Vladar et al., 2012) 
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(Fig.1.6.4.1). In all cases local modulation of cytoskeleton is crucial for the proper 

conduct of these processes. 

 

 

 

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure.1.6.4.1. Planar cell polarity in invertebrates and vertebrates model organisms. A In the wing of 

Drosophila PCP is established by the asymmetrical distribution of ‘core PCP’ components. Fz, Dsh and Dgo are 

localized to distal/posterior end, while Vang and Pk are localized to proximal/anterior end. Fz-Dsh-Dgo and Vang-

Pk interact extracellulary, but antagonize each other intracellulary. B PCP controls convergent extension (CE) 

movements which narrow the later tissues and elongate the embryo along anterior-posterior axis. C Defects in 

PCP caus; misorientation of wing  hair cells in the fly (b), misorientation of mice hair cells (d), misorientation of 

rhabdomers in ommatidia (f), misorientaion of inner ear hair cells (h), shortened and widened body axis due to 

impaired CE. Adapted from Deventpor, 2014, Seifert and Mlodzik, 2007. 

 

Similarly to the canonical Wnt pathway, Wnt ligands are also involved in PCP. In 

vertebrates, Wnt ligands which do not cause stabilization of β-catenin such as 

Wnt5a, Wnt5b, Wnt9b and Wnt11 were shown to activate PCP signaling in various 

A 

B 

C 



38 
 

processes. What’s more, those ligands also act as a global directional cues, which 

orient PCP in a group of cells. In zebrafish, mutations in Wnt5b (pipetail) and 

Wnt11(silberblick) interfere with convergent extension movements. Elongation of the 

body axis is impaired and phenocopies mutation in core PCP protein Vangl2 

(Heisenberg et al., 2000; Jessen et al., 2002; Rauch et al., 1997). Orientation of 

sensory hair cells in inner ear and neural tube closure in mice is regulated by Wnt5a 

and also involves Vangl2 (Qian et al., 2007). Additionally, Wnt5a is required for 

establishing PCP in the developing murine limb (Fig.1.6.4.2). Gradient of Wnt5a 

along the developing limb bud causes a gradient in Vangl2 phosphorylation which is 

translated into asymmetrical localization of this protein in chondrocytes and polarized 

cell behavior. Gradients of Wnt5a were also described in the facial primordia, tail bud 

and tongue where most likely are responsible for regulating PCP (Fig.1.6.4.2) (Gao et 

al., 2011). In chick, expression of Wnt11 in the neural tube controls the alignment of 

skeletal muscle fibers along the body axis by providing the directional cue for PCP 

(Gros et al., 2009). Convergent extension and polarized divisions of the kidney 

epithelial cells, which maintain proper diameter of kidney tubules, are controlled by 

Wnt9b through PCP. In mice, mutations in Wnt9b disturb PCP causing an increase in 

diameter of kidney tubules which contributes to cystogenesis (Karner, 2009).  

 

 

 

 

 

 
 
 
 
 
 
Figure.1.6.4.2. Wnt ligands as a source of PCP directional cues. In mouse embryo, gradient of Wnt5a  

establishes a gradient of Vang activity, which results in a polarized character of cells building up limbs and most 

probably tongue, tail bud and facial primordial. In the chick embryo, Wnt11 provides a PCP directional cue for the 

muscle cells aligned along the neural tube. Ectopic source of Wnt11 causes alignment of muscle cells along the 

source. Adapted from Gao, 2012. 
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Binding of non-canonical Wnt ligands to the Frizzled receptor includes recruitment of 

Dsh to the cell membrane, but on the contrary to the canonical Wnt pathway, 

interactions with downstream targets is performed by the PDZ and DEP domains 

(Cheyette et al., 2002; Wong et al., 2003; Heisenberg et al., 2000; Moriguchi et al., 

1999; Tada and Smith, 2000; Wallingford et al., 2000). Once Dsh is properly localized 

it affects cytoskeleton rearrangement via two distinct small GTPases-dependent 

pathways, namely Rho- and Rac- pathways. In the Rho-pathway, Dsh associates 

with Disheveled-associated activator of morphogenesis 1 (DAAM1), which resides in 

the cytoplasm at the autoinhibited state achieved by intramolecular binding between 

N- and C-terminal domains (Fig.1.6.4.3A) (Alberts, 2002; Higgs, 2005). Dsh activates 

DAAM1 through interaction with its C-terminal domain (Liu et al., 2008). 

Subsequently, Dsh as well as activated DAAM1 activate Rho through a guanine 

exchange factor WEGF (weak-similarity GEF), which in turn activates Rho-

associated kinase (ROCK) and remodels actin cytoskeleton. WEGF has been 

reported in regulation of convergent extension during Xenopus gastrulation (Habas et 

al., 2001). Additionally, DAAM1 can also mediate actin modifications by interaction 

with the actin-binding protein Profilin1, which has been shown to regulate blastopore 

closure during gastrulation of Xenopus embryos (Fig.1.6.4.3A) (Matusek et al., 2008; 

Sato et al., 2006).  In the Rac-pathway, Dsh activates Rac, which then activates c-

Jun N-terminal kinase also involved in actin modulation (Fig.1.6.4.3A) (Habas et al., 

2001). The activation of cdc-42, which is required for the formation of filipodia usually 

occurs through the Wnt/Ca2+ pathway, however, it was also shown to be a 

downstream transducer of ‘core PCP’ proteins (Schlessinger et al., 2007; Tada and 

Kai 2009).  Transduction of the signal through the PCP pathway also requires binding 

of co-receptors to Wnt/Fz complexes, but unlike canonical Wnt pathway Lrp5/6 is not 

involved. Instead PTK7, ROR2 or Ryk, have been reported to work as co-receptors in 

PCP signaling (Fig.1.6.4.3B).  

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/PTK7
https://en.wikipedia.org/wiki/ROR2
https://en.wikipedia.org/w/index.php?title=Ryk&action=edit&redlink=1
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Figure.1.6.4.3. A Two branches of the PCP pathway; Dsh-Rac1 and Dsh-DAAM1. Actin modification and thus 

polarized cell behavior can be achieved by direct interaction of Dsh with Rac1 or interactions with DAAM1, which 

in turn interacts with Rho or Profilin causing localized actin assembly. B Atypical cooreceptores regulating PCP 

pathway. Several single transmembrane proteins classified as tyrosine kinase receptors with dead-kinase domain 

were shown to participate in regulation of PCP signaling. Among them are; PTK7, Ryk and Ror2. Adapted from 

Wallingford and Habas, 2005; Avilés et al., 2013. 

 

Protein tyrosine kinase 7 (PTK7) with defective kinase domain is a single 

transmembrane protein belonging to the family of receptor tyrosine kinases. Also 

known as colon carcinoma kinase 4 (CCK4), PTK7 was initially identified in colon 

cancer where its up-regulation is linked with high metastatic. In mice, PTK7 has been 

shown to interact genetically with Vangl2 in regulating neural tube closure and 

polarity of inner ear hair cells (Lu et al., 2004). In addition, PTK7 was reported to 

regulate convergent extension movements during gastrulation both in mice and 

Xenopus (Yen et al., 2009; Lu et al., 2004).  

Receptor tyrosine kinase like orphan receptor 2 (Ror2) is a single transmembrane 

protein belonging to receptor tyrosine kinase like orphan receptor (Ror) family. Ror2 

interaction with Wnt5a is well established and is classified as a separated branch of 

the Wnt pathway, namely Wnt5a/Ror2 pathway (Green et al., 2008; Minami et al., 

2010). In Xenopus, activation of Wnt5a/Ror2 pathway was shown to promote 

A B 
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expression of paraxial protocedherin (XPAPC), which promotes convergent extension 

movements by acting through PI3K, Cdc-42, MKK7, JNK and c-jun (Schambony and 

Wedlich, 2007). In mice, double knockdowns of Wnt5a and Ror2 cause a plethora of 

anatomical defects, which phenocopy defects observed in individual with Robinow 

syndrome caused as well by mutations in Wnt5a and Ror2 (DeChiara et al., 2000; 

Gao et al., 2011; Oishi et al., 2003; Takeuchi et al. 2000; Afazal et al., 2000). Vangl2 
-/- mutants mice have similar defects as Wnt5a -/- and Ror2 -/-. Furthermore, a 

biochemical study demonstrated that Wnt5a induces complex formation between 

Ror2 and Vangl2 indicating that Ror2 is involved in regulation of PCP signaling (Gao 

et al., 2011).  

Receptor-like tyrosine kinase Ryk is another single transmembrane receptor with 

defective kinase domain involved in regulating PCP. In mice, Ryk -/- mutants show 

defects in the orientation of sensory hair cells in the inner ear and genetic interactions 

with Vangl2 -/- mutants (Macheda et al., 2012). Additionally, Ryk was also found to 

genetically interact with Wnt11 during convergent extension movements in zebrafish 

(Kim et al., 2008).   

 
1.6.5 Role of PCP in NC migration 
 

Several studies across various vertebrates’ models confirmed the requirement of the 

PCP pathway in NC migration. Expression of Wnt11 and Wnt11R ligands was 

observed in the ectoderm next to premigratory NC cells just before the delamination 

in Xenopus (De Calisto et al., 2005; Garriock and Krieg, 2006). What’s more, 

inhibition of Wnt11 through overexpression of dominant-negative construct leads to a 

complete inhibition of NC migration (De Calisto et al., 2005). In zebrafish, mutations 

of Stbm/trilobite (Jessen et al., 2002), Wnt11/silberblick (Heisenberg et al., 2000) or 

Wnt5/pipetail also causes a defect in directional NC migration (Rauch et al., 1997; 

Matthews et al., 2008). Injections of dominant-negative Dishevelled inhibiting PCP 

signaling but not canonical Wnt signaling inhibit migration of NC cells in Xenopus (De 

Calisto et al., 2005) and severely disrupt the directional migration of NC cells in 

zebrafish (Matthews et al., 2008). In Xenopus and mice, expression of ‘core PCP’ 

components including Stbm/Vang, Prickle and DAAM was observed in the cranial NC 

(Bekman and Henrique, 2002; Darken et al., 2002; Goto and Keller, 2002; Nakaya et 

al., 2004). Depletion of the syndecan-4, a transmembrane modulator of PCP 
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signaling, which co-operated with integrins during cell-matrix interactions, reduces 

the directional migration of NC cells in Xenopus. Loss of syndecan-4 causes 

uncontrolled formation of lamellipodia in all directions as an outcome of upregulated 

Rac activity (Fig.1.6.5). Additionally, depletion of Dishevelled causes the same effect 

on migration/protrusion orientation through downregulation of RhoA activity which 

elevates Rac activity (Fig.1.6.5) (Carmona-Fontaine et al., 2008). FRET analysis of 

NC cell migrating in vivo revealed that interaction of syndecan-4 with fibronectin is 

responsible for spatial modulation of Rac and Rho activity. Delaminated NC cells 

come in contact with fibronectin, which constitutes the main substrate for NC 

migration. Interactions of fibronectin with syndecan-4 causes the gradient of Rac 

activity across the cell with the highest enrichment at the leading edge where it 

promotes formation of lamellipodia required for directional migration. PCP signaling 

becomes localized to the back of the cell where it promotes Rho activity and 

simultaneously inhibits Rac thereby preventing formation of protrusions (Carmona-

Fontaine et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure.1.6.5 A,B,C Exemplary tracks of control NC cell and NC cells with impaired PCP or Syn4 signaling. Lack 

of PCP and Syn4 signaling causes loss of directional migration. D Activation of PCP and Syn4 signaling results in 

inhibition of Rac activity at the back of the cell leading to cell polarization and directional migration. E,F Inhibition 

of PCP and Syn4 increases Rac activity at the back of the cell leading to ubiquitous formation of cell protrusions. 

Adapted from Carmona et al., 2008. 



43 
 

 

In Xenopus, PTK7 which has been shown to modulate PCP signaling in many 

developmental processes is expressed in premigratory and migratory cranial NC 

cells. Morpholino-mediated knockdown of PTK7 causes complete inhibition of NC 

migration. What’s more, in vitro studies revealed that PTK7 recruits Dsh to the 

plasma membrane and this interaction depends on Dsh-PZD domain and defective 

kinase domain of PTK7. Immunoprecipitation assay demonstrated that Frizzled-7 is 

required for PTK7-mediated recruitment of Dsh.  In vivo, NC-specific overexpression 

of PTK7 construct lacking kinase homology domain also leads to a dramatic inhibition 

of migration. Interestingly, NC-specific overexpression of Dsh-ΔPZD causes only mild 

migration defects in comparison to defects observed upon overexpression of Dsh-

ΔDEP what indicates that PTK7 mediates PCP signaling in NC (Shnitsar and 

Borchers, 2008). Taken together these data confirm a requirement of PCP signaling 

in the migration of NC cells. 

 
1.6.6 Cell-cell interactions in establishment of PCP 
 

During migration NC exhibit typical mesenchymal morphology and maintain cadherin-

depended interactions, which are also crucial in performing directional movement by 

abolishing cell protrusion at contact points and restricting protrusive activity to the 

front. Studies in epithelial as well as non-epithelial cells revealed several steps in 

establishment of cadherin-dependent cell-cell contacts. Initially, exploring cells use 

large protrusions to scan the surrounding for potential binding partners. Establishing 

a cell-cell contact results in accumulation of cadherins at the contact point, which 

bind adjacent cells together through calcium-dependent heomophilic interactions 

(Cavey and Lecuit, 2009; Meng and Takeichi, 2009). During the initial step of 

exploration, at the very first moment of contact cells exhibit a transient peak of Rac1 

activity allowing for further exploration, which is immediately inhibited by activation of 

RhoA upon formation of adherents junctions (Perez et al., 2008). Activation of RhoA 

also leads to the disassembly of actin filaments and retraction of lamellipodia (Baum 

and Georgiou, 2011; Vasioukhin et al., 2000; Yonemura et al., 2011). Initial contact 

sites are regarded as footholds for lateral expansion of adherent junctions, which 

occurs outward in alternated rounds of activation and inhibition of Rac1 and RhoA 

activities. Subsequently myosin-mediated tension pulling inward on the contacts sites 
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mechanically facilitates expansion of adherent junctions (Cavey and Lecuit, 2009). 

And finally, maintenance and stabilization of adherence junctions is achieved by 

downregulation of actin turnover at the contact points (Pilot et al., 2006; Zandy et al., 

2007). In various epithelial and mesenchymal cells which perform migration, similar 

process contributes to contact inhibition of locomotion (CIL), a cellular behavior 

causing retraction of cell protrusions upon cell-cell contact. In migratory group of 

cells, CIL prevents formation of protrusions between neighboring cells. Filopodia and 

lamellipodia are only formed at the leading edge imposing directionally for the 

migrating collective. In singularly migrating cells, which collide with each other, CIL 

enable collapse of protrusion at the contact point, repolarization and migration in the 

opposite direction (Shih and Yamada, 2012; Carmona-Fontaine et al., 2008; 

Heckman, 2009). In Xenopus and zebrafish, N-cadherin has been shown to cause 

local activation of PCP signaling in colliding cranial NC cells. Activation of RhoA 

results in inhibition of Rac1 activity at the contact points and establishment of cell 

protrusion at the opposite ends (Carmona-Fontaine et al., 2008; Theveneau et al., 

2010; Theveneau and Mayor, 2011b). Recently, cadherin-11 was shown to promote 

CIL in colliding NC cells by mediating cell-cell adhesion, however, mechanism 

orchestrating this process requires further investigation (Becker et al., 2013). Taking 

in consideration that CIL causes repolarization of cells after contact, one could 

assume that it would lead to complete dispersion of NC cells and loss of collective 

migration. Interestingly, NC cells studied in vitro, in the absence of repulsive 

signaling, which would restrict their migration in vivo, are still able to migrate as a 

group. Recently, it has been shown that NC cells are able to mutually attract each 

other. In Xenopus, migrating cranial NC cells express the complement fragment C3a 

and cognate receptor C3aR both well characterized in chemotaxis in immune system 

(Carmona-Fontaine et al., 2008; Ricklin et al., 2010). Concentration of C3a is higher 

in area with higher density of NC what allows C3aR-positive cells, which detached 

from the group after CIL to be attracted back to the cluster (Fig.1.6.6). 
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Figure.1.6.6. Cross-talk of chemotaxis, contact inhibition of locomotion and coattraction during collective 
migration on NC cells. A Repulsive signaling is represented as parallel dotted lines. Concentration of Sdf1 is 

represented as green gradient. After delamination from prospective neural tube, NC experience CIL what results 

in cell repolarization and dispersion. Single NC cells become polarized in the direction of increasing Sdf1 

concentration. NC cells following Sdf1 gradient encounter each other and form transient cell-cell contacts. Upon 

new contacts NC cells again undergo repolarization and dispersion. Alternating cycles of CIL and Sdf1 

coattraction are proposed to impose directive migration of transient NC clusters. B Colliding NC cells form 

transient N-cadherin-dependent contacts, which promote activation of PCP signaling. Repression of Rac1 and 

activation of RhoA at the contact side leads to cell repolarization and migration in opposite directions. C 

Additionally, repolarized NC cells, which experienced CIL can mutually coattract each other through expression of 

C3a and C3aR. NC cells form transient collectives and again undergo CIL. Adapted from Barriga and Mayor, 

2015. 
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1.7 Cross-talk of Wnt pathways 
 

The classical view of Wnt signaling assumes participation of particular components 

either in canonical or non-canonical Wnt pathway. Currently accumulating evidence 

shows that Wnt ligands can transduce signals through both pathways depending on 

the tissue-specific combination of receptors (van Amerongen et al., 2008, Mikels and 

Nusse, 2008). What’s more, several studies indicate that activation of one Wnt 

pathway results in attenuation of another one. Signal transduction through 

Wnt5a/Ror2 causes the inhibition of canonical Wnt signaling (Mikels and Nusse 

2006). In mice, Ryk promotes Wnt1 and Wnt3a-dependent gene expression. (Lu et 

al., 2004). Additionally, several groups reported that Ryk mediates Wnt5a-dependent 

axon guidance in Drosophila and mammals, as well as, Wnt11-dependent regulation 

of convergent extension movements in zebrafish. Thus, Ryk is proposed to play a 

role in canonical and non-canonical Wnt pathway. In Xenopus, PTK7 was shown to 

be required for PCP-dependent regulation of NC migration (Shnitsar and Borchers, 

2008). Furthermore, PTK7 mediates inhibition of Wnt3a- and Wnt8-dependent 

canonical Wnt signaling (Peradziryi et al., 2011). Taken together, this evidence 

emphasizes the complexity of Wnt pathways and their mutual interactions.  

 

 

 

 

 

 

 

 

 

Figure.1.7 Wnt signaling pathways. Tissue-specific combination of receptors as well as involvement of Ror2, 

Ryk and PTK7 coreceptors results in the activation or inhibition of particular Wnt pathway. Adapted from Gao, 

2012. 
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1.8  Methodes to investigate migration of NC cells in Xenopus laevis 
 

In vivo analysis of NC migration comprises microinjection techniques, which allow 

down or upregulation in gene expression through morpholino-mediated knowdown 

preventing protein translation, overexpression of dominant-nagative mRNA/DNA 

variants overwhelming endogenous gene expression and overexpression of full-

function mRNAs/DNAs enforcing extensive expression of a particular gene. In this 

kind of experiment RNA/DNA constructs are injected dorsally in one blastomere at 

the 2-cell stage leaving the second blastomer as an internal control. Subsequently, 

defects in NC migration are analysed by whole mount in situ hybridization (WISH) 

using specific, antisense RNA probes detecting endogenous mRNAs coding for NC 

markers (Fig.1.7A). The advantage of this approach is the ability to monitor migration 

changes caused by genetic manipulations among various subpopulations of NC 

cells. WISH provides information about the ability of NC cells to perform migration, 

form NC streams as well as alternations in expression of NC markers upon 

manipulations. In addition, transplantation of NC cells overexpressing particular 

RNA/DNA constructs together with fluorescent dye into wild type embryo and vice 

versa allows determining if observed defect is NC cells-autonomous or if it is caused 

by the surrounding tissues (Fig.1.7B). Furthermore, in vitro experiment where NC 

cells are explanted from the embryos and cultivated on fibronectin-coated dishes, 

allows time-lapse monitoring of NC migration, migration behavior and formation of 

cell protrusion by NC cells upon overexpression of mRNAs/DNAs constructs, 

chemical treatment or exposure to attractant/repellent molecules (Fig.1.7C).  

A 
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Figure.1.8. Methodes to investigate NC migration in Xenopus leavis. A Visualisation of changes in migration of 

Twist-positive NC population upon overexpression of RNA/DNA constructs through whole mount in situ 

hybridization (WISH). B Transplantation of NC cells from embryos overexpressing particular RNA/DNA constructs 

to wild type host and vice versa allows to determine if observed phenotyope is NC-specific or if it is caused by 

adjacent tissues. C Explantation of NC cells and cultivation on fibronectin-coated dishes allows life-cell imaging 

and analysis of migrational behavior. Adapted from Wagner et al., 2010, Shnitsar and Borchers, 2008.  
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1.9 Aims 
 

Canonical Wnt signaling plays a crucial role in the two phases of NC development, 

namely induction and differentiation. Interestingly, a potential involvement of 

canonical Wnt signaling in migration, which occurs after induction and precedes 

differentiation, remains elusive. So far, another Wnt pathway, the PCP pathway has 

been shown to be a key player in the orchestration of NC migration. Since both 

pathways share core components and several studies proved their antagonistic 

interactions we expect a fine-tuning of canonical Wnt signaling during migration of 

NC cells. As little is known about the potential participation of canonical Wnt signaling 

in post-induction NC development, we will determine the necessity of canonical Wnt 

signaling in migratory NC cells. Additionally, we will delineate the temporal and 

spatial activity of canonical Wnt signaling during NC cells migration. To study the 

effects of canonical Wnt signaling in migratory NC cells we will activate and inhibit 

canonical Wnt signaling at different time points after NC induction. Activation and 

inhibition of canonical Wnt signaling will be performed by whole-embryo treatment 

with commercially available modulators including BIO, LiCl and IWR-1. As all 

chemical modulators work at the level of the cytoplasm they might exert a more 

global effect and not only gene expression, but also cell-cell adhesion could be 

affected. Therefore, modulation of canonical Wnt signaling will be expanded to 

overexpression of glucocorticoid-receptor (GR) fusion constructs of the Lef/Tcf 

transcription factors family. mRNA of GR-fusion constructs of known 

activatory/inhibitory activity in canonical Wnt signaling will be injected in one 

blastomer of 2-cell stage embryos and subsequently activated at specific time-points 

by Dexamethasone treatment. Alternations of NC migration in whole-embryos will be 

analyzed by in situ hybridization and RT-PCR for cranial NC markers. In addition, to 

in vivo experiments, migration behavior of explanted NC cells upon modulation of 

canonical Wnt signaling will be monitored by time-lapse imaging to asses changes in 

cell morphology, formation of protrusions and cell motility. Temporal and spatial 

activity of canonical Wnt signaling will be analyzed by monitoring nuclear localization 

of ß-catenin in migrating NC cells. Finally, modulation of non-canonical Wnt signaling 

will be performed by in vivo and in vitro treatment with commercialy available 

chemicals including SP600125, Box5 and IWP-2 and will allow the comparison to 

phenotypes observed upon modulation of canonical Wnt signaling.  
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2 Materials 
 

2.1 Materials 
2.1.1 Model organism 
In vivo and in vitro experiments were done with the use of Xenopus laevis embryos. 

The embryos were obtained by in vitro fertilization and staged according to Niewkoop 

and Faber (Niewkoop P.D., 1956). Adult frogs were provided by Nasco (Ft. Atkinson, 

USA). 

 

2.2 Chemicals, solutions, media and buffers 
2.2.1 Chemicals 
All chemicals, used in the given work, were obtained from the following companies: 

Roth (Karlsruhe), Sigma (Munich), Cayman (Hamburg), Merck (Darmstadt), Life 

Technologies (Carlsbad, California) and Amresco (Ohio) 

 

2.2.2 Buffers and Solutions 
Alkaline phosphatase buffer (APB): 100 mM Tris-HCl (pH 9.5), 50 mM MgCl2,  

100 mM NaCl, 0.1% Tween-20 

Cystein solution: 2% L-Cystein-HCl, pH 7.8 

Danylchik’s for Amy (DFA) medium: 53 mM NaCl, 5 mM Na2CO3, potassium 

gluconate 4,5 mM, sodium gluconate 32 mM, MgSO4 1 mM, CaCl2 1 mM, BSA 0.1% 

Ficoll: 10% (w/v) Ficoll PM 400 (Sigma), sterile filtered 

Hybridization mix (Hyb-mix): 50% (v/v) Formamid; 5xSSC; 1 mg/ml Torula RNA 

(Sigma); 100 μg/ml Heparin (Sigma); 1x Denhards; 0.1 % (v/v) Tween-20; 0.1 % 

(w/v) CHAPS (Sigma) 

Injection buffer: 1x MBS, 1% Ficoll  
MAB (5x): 100 mM Maleinic acid; 150 mM NaCl, pH 7.5 
MEM (10): 100 mM MOPS, 2 mM EGTA, 1 mM MgSO4 

MEMFA: 1x MEM with 3.7% Formaldehyde 

PBS (10x): 8% (w/v) NaCl, 2% (w/v) KCl, 65 mM Na2HPO4, 18 mM KH2PO4, pH 7.4 

SSC (20x): 150 mM NaCl, 15 mM Na-Citrate, pH 7.2-7.4 

PBS/Tween: PBS (1x)/Tween 0,1% 

TAE (Tris/Acetat/EDTA) (50x): 40 mM Tris-Acetate (pH 8.5), 1 mM EDTA 
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X-gal staining solution: 1 mg/ml X-gal, 5 mM K3Fe (CN)6, 5 mM K4Fe (CN)6, 2 

mM MgCl2 

 

2.3 Other chemical substances and reagents 
Bovine fibronectin: F4759-5MG, Sigma; 

DNA ladder: Low, Middle, High-Range, MBI Fermentas 

6x Loading Dye, Fermentas 

Human chorionic gonadotropin (HCG), Sigma 

NBT and BCIP (NBT: C40H30Cl2N10O6, BCIP: C8H6NO4BrClP x C7H9N), Roche 

X-gal (5-Bromo-4-chloro-3-indolyl α-D-galactopyranoside), Roche 

DMSO Sigma 

1,9-Pyrazoloanthrone, Anthrapyrazolone (SP600125), Sigma 

N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-

d]pyrimidin-2-yl)thio]-acetamide (IWP-2), Sigma 
6-bromoindirubin-3’-oxime (BIO), Sigma and Cayman  

4-[(3aR,4S,7R,7aS)-1,3,3a,4,7,7a-hexahydro-1,3-dioxo-4,7-methano-2H-isoindol-2-

yl]-N-8-quinolinyl-benzamide (IWR-1-endo), Cayman 

t-Boc-NH-Met-Asp-Gly-Cys-Glu-Leu-CO₂H (Box5), Calbiochem 

Random Hexamers, Roche 

Dexamethasome, Sigma 

 

2.4 Enzymes and Kits 
Illustra RNAspin Mini, GE Healthcare 

GeneJET PCR purification Kit, Thermo Scientific 

dNTPs 100 mM, Thermo Scientific 

M-MulV Reverse Transcriptase, Thermo Scientific 

Proteinase K (20 mg/ml), Merck; 

RNase A (100 U/μl), Sigma 

RNase T1 (1000 U/μl), MBI Fermentas 

RNase Mix A (2 mg/ml)/T1(5000 U/ml), Thermo Scientific 

RNase Out (40 U/μl), Life Technologies 

Restriction endonucleases (normal and Fast Digest), MBI Fermentas 

SP6, T3, T7 RNA Polymerases (20 U/μl), Fermentas 

RNeasy Mini Kit, Qiagen 
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SP6, T3 and T7 mMESSAGE mMACHINE Kits, Ambion 

Tag DNA polymerase (5 U/µl) and 10x buffer, GE Healthcare 

Tag DNA polymerase (recombinant) (5 U/µl), 10x buffer and 25 mM MgCl2, Thermo 

Scientific 

 

2.5 Laboratory equipment and software 

Microinjection 
Microinjector 5242, Eppendorf 

Needle puller PN-31, Narishing 

Equipment for the work with DNA 
Visualization and documentation of agarose gels: UV solo and P93, Biometra 

Nanodrop: NanoDrop 2000 Spectrophotometer, Thermo Scientific 

PCR-machines: Flex Cycler 4, Analytik Jena 

Table centrifuge: Heraeus Pico and Fresco 17, Thermo Scientific 

Water Bath: GFL 1092, GFL 

Thermo Sheker: Grant Bio PCMT 

Optics 
Fluorescent microscope: Leica M165 FC, camera Leica DFC 450C 

Confocal microscope: LSM780 with ZEN software 2011, Zeiss 

Spinning Disc microscopy: Axio Observer Z1 with ZEN software 2012, Zeiss 

Software: 
Microsoft office 7 

BLAST online system (Altschul et al., 1990) 

Adobe Photoshop CS6 

LAS AF Lite 

LAS V4.3 

Zeiss software 2011 and 2012 
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2.6 Tables 

Table 1 DNA constructs 

 
Name 
 

 
Vector 

 
Description 

 
References 

Twist pGEM-T Twist Hopwood et al., 1989 

Sox10  Sox10 Aoki et al., 2003 

AP2  AP2  Winning et al., 1991 

Krox-20 pGEM-T Krox-20, early growth 

response protein 2 

EGR-2 

Wilkinson et al., 1989 

LacZ pCS2+ n-ß-galactosidase Smith and Harland, 1991 

GAP43-GPF pCS2+ membrane localized 

GFP 

Kashef et al., 2009 

H2B mcherry  Momosapiens histone 

cluster 1 H2bJ 

Moriyoshi et al., 1996 

Lef-1-GR GR/pCS2+  
 

Inducible mouse full-

lengh Lef1 fused to  

human GR-LBD. 

 
 

Behrens et al., 1996 

EnR-Lef-1-GR GR/pCS2+  
 

Inducible full-length 

Lef-1 fused to 

Drosophila EnR and 

human GR-LBD 

 

Lyons et al., 2009 

Tcf3-VP16-

GR 

GR/pCS2+ Inducible Tcf3 fused to 

VP16 transcription 

enhancer from 

Herpres simplex and 

human GR-LBD. 

Borday et al., 2012 
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Tcf3∆C-GR GR/pCS2+  
 

Xenopus Tcf3 

lacking the CtBP 

binding domain 

fused to human GR-

LBD.  
 

Tcf3ΔC-GR was cloned by PCR 

amplification from Tcf3AΔC/pCS2+ 

(Pukrop et al., 2001) using the 

following primers: 5’ 

ACGAATTCATGCCTCAGCTCAA 

3’ (forward) and 5’ 

GTCTCGAGGTTTTCCATCTCAGG 

3’ (reverse) primers. The PCR 

product was cut with EcoRI/XhoI 

and inserted into the same 

restriction sites of the GR/pCS2+ 

vector containing the human 

glucocorticoid receptor domain 

(GR) (Generated by Dr. Juliane 

Melchert, PhD Thesis: “Expression 

screen for Wnt signaling-like 

phenotypes identifies Fam132b as 

a novel inhibitor of BMP signaling in 

Xenopus”) 

 

 Table 2 Linearization and in vitro transcription of DNA constructs 

 
Construct Name 
 

 
Lin. Enzyme 

 
Polymerase 

 
Direction 

Twist EcoRI T7 antisense 
Sox10 EcoRI T3 antisense 
AP2 HindIII T7 antisense 
Krox-20 EcoRI T3 antisense 
Lef-1-GR NotI Sp6 sense 
EnR-Lef-1-GR NotI Sp6 sense 
Tcf3-VP16-GR NotI Sp6 sense 
Tcf3∆C-GR NotI Sp6 sense 
GAP43-GPF NotI Sp6 sense 
H2B mcherry NotI Sp6 sense 
LacZ NotI Sp6 sense 
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Table 3 RT-PCR primers 

All primers were ordered in the lyophilized form from Sigma Aldrich (Germany) and 

subsequently diluted to 100μM with HPLC-pure water (Roth).  

 

Gene name 
Xenopus 
laevis 

 
Forward  and revers primer 

 
Product 
length 

 
Design 

H4 5’CGGGATAACATTCAGGGTATCACT3’ 

5’ ATCCATGGCGGTAACTGTCTTCCT3’ 
189bp Accession No. 

X03017 
Twist  

 

5’ GGGATGCAGAAAGAGGCGAT 3’ 

5’ AAGGCTTCGTTGAGGGACTG 3’ 

186bp designed with the use 

of NCBI Primer-

BLAST, NCBI 

Reference Sequence: 

NM_001085883.1 
Sox10  

 

5’ TCACGTTAAGCGGCCAATGA 3’ 

5’ CATGGGAGAACCATGTCGGT 3’ 

 

349bp designed with the use 

of NCBI Primer-

BLAST, GenBank 

Reference Sequence: 

AY157667.1 
c-Jun  

 

5’ ACAGCAACAGCATGGGCTAT 3’ 

5’ ACAGCCACTGTTGACGTGAT 3’ 

365bp designed with the use 

of NCBI Primer-

BLAST, NCBI 

Reference Sequence: 

NM001090797.1 

Brachyury  

 

5’ CAACTTTGGAGCCCACTGGA 3’ 

5’ TGTGTGGATTGGGCGAACAT 3’ 

 

395bp designed with the use 

of NCBI Primer-

BLAST, NCBI 

Reference Sequence: 

NM001090578.1 
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Table 4 Antibodies and dyes 

Name 
 

Produced in Purpose Dilution Company 

anti-β-catenin rat IF 1:150 generous gift of Ralph 

Rupp 

donkey anti-rat 

Alexa 594 nm 
donkey IF 1:400 Santa Cruz 

Biotechnology 

anti-Twist rabbit IF 1:50 Abcam 

anti-rabbit 

Oregon Green 

488 nm 

goat IF 1:200 Life Technologies 

DAPI - IF 1µg/ml Carl Roth 

 

3 Methods 

3.1 DNA methods 
 
3.1.2 DNA concentration measurement 
 
DNA quantification was performed by measurement of the absorption values at 260 

nm (OD260) using the NanoDrop (2000 Spectrophotometer, Thermo Scientific). The 

DNA concentration in a given sample was calculated according to the following ratio: 

OD260 =1 corresponds to 50 μg of dsDNA. The purity of the DNA sample was 

estimated by OD260/OD280 for protein contamination (optimal values: 1.6-1.8) and 

OD260/OD230 for salt contamination (optimal values: higher than 2,0). 

 
3.1.3 Agarose-gel electrophoresis 
 
DNA or RNA fragments were size-separated in a horizontal electrical field being 

embedded into agarose-matrix. 1 % (w/v) agarose gels were prepared in 1x TAE 

buffer. Gels always contained 0.5 μg/ml ethidium bromine to visualize nucleic acids. 

Before loading samples into gel slots, nucleic acids were mixed with 5/1 (v/v) of DNA 

loading dye (6x, Fermentas). The electrophoresis was run in the 1x TAE running 

buffer at 100-120 V in a house made horizontal electrophoresis chamber (Sharp et 
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al., 1973). After electrophoresis, DNA bands were visualized with UV-transilluminator 

and documented with UV solo (Biometra). The DNA fragments were sized according 

to the standard DNA ladder run in parallel (High, Middle or Low Range, Fermentas) 

 

3.1.4 DNA restriction digest 
 
For the digest of plasmid DNA, 0.5-1 μg of the DNA sample was incubated with 2-10 

U of a chosen enzyme in the corresponding buffer. The total reaction volume was 25 

μl, and the digest was performed for 1-12 h at 37°C. 

 
 
3.2 RNA methods 
 
In order to avoid the RNA degradation by RNAses, the work with RNA samples was 

performed exclusively with RNAse-free water (Amresco) 

 

3.2.1 Total RNA extraction, cDNA synthesis and RT-PCR 

For expression analysis of embryos injected with GR-inducible constructs embryos 

were injected with 25 pg of Tcf3AΔC-GR, 25 pg of Tcf3-VP16-GR, 25 pg of Lef-1-GR 

and 25 pg of EnR-Lef-1-GR into two blastomers of a 2-cell stage embryo, cultivated 

till premigratory stages (16-18) and treated with Dexamethasome (4 µg/ml). For 

extraction of total RNA 10 embryos from each injection pool were fixed in N2liq at 

stage 24/25 and macerated in 720µl TRIzol® Reagent (Life Technologies) using a 

sterile Omnican® 40 syringe (Braun). Lysates were incubated for 10 min (RT). 

Subsequently 144 μl of Chloroform (Roth) were added to the samples followed by 5 

min of incubation (RT) and 20 min of centrifugation (4°C, 13000 rpm). The upper 

phase was transferred into a new tube, 1 vol. of Chloroform (Roth) was added to the 

samples followed by 10 min of centrifugation (4°C, 13000 rpm). Again the upper 

phase was transferred into a new tube and precipitation of nucleic acids was 

performed by addition of 360 μl of 2-Propanol (Roth) and overnight incubation (-

20°C). After 30 min of centrifugation (4°C, 13000 rpm) pellet was washed with 500 μl 

of 75 % ethanol by centrifugation for 5 min (4°C, 13000 rpm). The air-dried pellet was 

dissolved in 20 μl of RNase-free water. DNA digestion was performed for 1h at 37°C 

(1 µl DNase TURBO (Ambion Kit), 0,5 µl Rnase Out (Life Technologies), 10 µl 5x 

transcription buffer (Thermo Scientific), filled up with H2O to 50µl). DNase treatment 
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was stopped by addition of 150 µl RNase-free water. Subsequently 1 vol. of Roti®-

Aqua-Phenol/C/I (Roth) was added to the samples followed by 10 min of 

centrifugation (4°C, 13000rpm). The upper phase was transferred into a new tube, 1 

vol. of Chloroform/Isoamylalkohol (24:1) (Merck/Roth) was added to the samples, 

followed by 10 min of centrifugation (4°C, 13000 rpm). The upper phase was again 

transferred into a new tube and another precipitation was performed by addition of 

0.2 vol. of 5 M ammonium acetate and 1 vol. of 2-Propanol (Roth) and overnight 

incubation (-20°C). After 30 min of centrifugation (4°C, 13000 rpm) the pellet was 

washed with 75 % ethanol by centrifugation for 5 min (4°C, 13000 rpm), air-dried and 

dissolved in 30 μl of RNase-free water.  

 

3.2.2 Revers transcription and RT-PCR 
 

cDNA synthesis was performed according to the manufacturer's instructions (M-

MuLV Reverse Transcriptase, Protocol for First Strand cDNA Synthesis, Thermo 

Scientific). RNA concentration was adjusted to 1 µg, hexamers concentration was 

adjusted to 0,2 µg (100 pmol). The total volume of reaction was 11,5 µl. An optional 

step for GC rich templates was included. Samples were mixed gently, centrifuged 

brifly and incubated for 5’ at 65°C. Samples were placed chilled on ice, centrifuged 

briefly and placed back on ice. Subsequently, samples were mixed with following 

components: 4 µl 5x RT reaction buffer (Thermo Scientific), 0,5 µl (20U) RNase Out 

(Life Technologies), 2µl (1 mM final concentration) dNTPmix 10mM each (Thermo 

Scientific), 2µl (40U) M-MuLV Reverse Transcriptase. The total volume of reaction 

was 20 µl. 

To amplify desired cDNA fragments, a standard PCR reaction was used, which 

contains the following components: 2,5 µl 10x buffer (GE healthcare), 0,5 µl dNTP 

mix 10 mM each (Thermo Scientific), 0,5 µl each forward and revers primer (Sigma), 

0,25 µl Tag Polymerase (GE healthcare), 1 µl cDNA and filled up to 25 µl with H2O. 

Or according to protocol of Tag DNA polymerase (recombinant) (Thermo Scientific): 

2,5 µl 10x Tag buffer with KCl (Thermo Scientific), 0,125 µl Tag Polymerase (Thermo 

Scientific), 0,5 µl dNTP mix 10 mM each (Thermo Scientific), 0,5 µl each forward and 

revers primer (Sigma), 1,5 µl of 25 mM MgCl2 (Thermo Scientific), 1 µl cDNA and 

filled up to 25 µl with H2O. The initial DNA denaturation step was performed for 5 min 

at 95°C, and all subsequent DNA denaturation steps for 30 sec at 95°C. The 
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annealing step was done for 30 sec at 58°C. The elongation step was done for 30 

sec at 72°C. The one PCR cycle included 27 loops. The final elongation step was 

done for 10 min at 72°C (Mullis et al., 1986).  

 

3.2.3 In vitro transcription 
 
3.2.3.1 In vitro transcription of the dioxigenin-labelled antisense RNA for the 
whole mount in situ hybridization (WISH) 
 
For the synthesis of a digoxigenin-labelled antisense WISH RNA probe the following 

reaction mixture was set up: 

 

5 μl of a 5x transcription buffer 

0,5 µl of pyrophosphatase 4U/mol (Fermentas) 

4 μl DIG mix (Stock solutions: Digoxigenin-11-UTP (250 nmol)(Roche), ATP, GTP, 

CTP (100 mM each, diluted 1:10)(Fermentas), UTP single (100 mM, diluted 1:10) 

(Fermentas). Mix: 25 µl Digoxigenin-11-UTP (10 mM), 44 µl UTP (10 mM), 69 µl 

ATP, CTP, GTP (10 mM)) 

1 μl 0.75 M DTT 

1 μl RNAseOut (40U/µl) 

200 ng linearized plasmid (the DNA template) 

1 μl corresponding polymerase (T3, T7 or Sp6) 

RNAse-free water to the final volume of 25 μl 

 

The reaction was carried out for 2 h at 37°C, and then the DNA template was 

destroyed by incubation with 1μl of the TURBO DNase (2 U/ml) (mMESSAGE 

mMACHINE Kits Ambion) for 15 min at 37°C. The obtained WISH probe was purified 

from the reaction mixture with RNeasy Mini Kit (Quiagen) according to 

manufacturer’s instructions. 

 

3.2.3.2 In vitro transcription of capped-mRNA for microinjections 
 
The synthesis of mRNA for microinjections was done with Sp6, T7 or T3 

mMESSAGE mMACHINE Kits (Ambion) according to manufacturer’s instructions. 
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The reaction was set up in a volume of 20 μl and 0.5-1 μg of the linear DNA was 

used for 1 reaction (6 µl linearized plasmid, 10 µl NTP/Cap, 2 µl buffer, 2 µl enzyme). 

The in vitro transcription was carried out for 2 h at 37°C, and subsequently the 

template was destroyed by 15 min DNase treatment. The mRNA was purified with 

RNeasy Mini Kit (Qiagene). 

 

3.2.4 RNA analysis and concentration measurement 
 
The RNA samples, both DIG-labelled and capped-mRNA, were analyzed on the 1% 

agarose gel supplemented with 0.5% ethidium bromide. The concentration of the 

total RNA and capped-mRNA was measured using the NanoDrop (2000 

Spectrophotometer, Thermo Scientific), by using the following ratio: OD260=1 

corresponds to 40μg of the RNA. Similar to DNA, the RNA purity was analyzed by 

measurement of OD260/OD280 and OD260/OD230 ratios. Additionally, the amount 

of DIG-labeled RNA was estimated visually on an agarose gel. 

 

3.3 Xenopus laevis embryos injections and manipulations 
 
3.3.1 Preparation of Xenopus laevis testis 
 
The testis was removed from a narcotized decapitated male frog, washed with and 

stored in 1x MBS buffer at 4°C 

 

3.3.2 Injections and culture of Xenopus laevis embryos 
 
Embryos were obtained from Xenopus laevis female frogs by HCG induced egg-

laying (800 -1000 U HCG approximately 12 hours before egg-laying). Spawns were 

in vitro fertilized with minced testis in 0.1 X MBS, dejellied with 1.5-2 % cyteine 

hydrochloride, pH 8.2 and cultured in 0.1 X MBS at 12.5-18°C. Injections were 

performed in the injection buffer on a cold plate (12.5°C). The mRNAs were injected 

animally to the prospective ectodermal tissues. For all purposes 2-, 4-cell injections 

were done. The injection volume was adjusted to 2 or 4nl. Injected embryos were 

kept for at least 1 hour in the injection buffer on a cooling plate (12,5°C) and then 
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transferred into 0.1x MBSH. The staging of embryos was done according to 

Niewkoop and Faber (1956). 

 

3.3.2.1 Functionality of GR-inducible constructs in canonical Wnt pathway 
 
Activity and hormone inducibility of GR-inducible constructs was verified by their 

function in canonical Wnt signaling. Each construct was determined as activator or 

inhibitor of canonical Wnt pathway by analyzing its effect on primary dorsalventral 

body axis formation. RNAs of candidate activating constructs – like Lef1- GR and 

Tcf3-VP16 – were injected marginally into one ventral blastomere at the 4-cell stage. 

Embryos were cultured with Dexamethasone (Sigma) starting at the 16-cell stage 

(the solution was changed to normal medium at gastrula stages 10-11) and induction 

of double axis was analyzed at early tailbud stages. RNAs coding for candidate 

inhibiting constructs – like EnRLef1-GR or Tcf3ΔC-GR – were injected into both 

dorsal blastomeres at the 4-cell stage, treated with Dexamethasone starting at the 

16-cell stage (the solution was changed to normal medium at gastrula stages 10-11) 

and ventralized embryos were scored at early tailbud stages (Most work was done by 

Dr. Juliane Melchert, PhD Thesis: “Expression screen for Wnt signaling-like 

phenotypes identifies Fam132b as a novel inhibitor of BMP signaling in Xenopus”). 

 

3.3.2.2 In vivo and in vitro analysis of NC migration 
 

For analysis of NC migration RNAs of Tcf3ΔC-GR , Tcf3-VP16-GR, Lef-1-GR (50 pg 

for migration analysis in whole embryos, 75 pg for life-cell imaging analysis of 

explanted NC cells), were co-injected with 30 pg GAP43-GFP and 150 pg H2B 

mcherry or 50 pg of lacZ RNA into one blastomere of a 2-cell stage embryo. Embryos 

at stage 16/17 exhibiting GFP- and mcherry-fluorescence were sorted in terms of left 

or right side fluorescence and used for explanation. Embryos co-injected with 50 pg 

lacZ RNA were treated with Dexamethasome (Sigma) (4 μg/ml) at premigratory (16-

18) or migratory NC cell stages (20-21), further cultivated until stages 22-24 (Sox10) 

or 25-29 (Twist) and analyzed by whole mount in situ hybridization. β-galactosidase 

staining and whole mount in situ hybridization were performed as described (Harland, 

1991; Borchers et al., 2001). Antisense probes were synthesized from the published 

plasmids listed in table 2.1. For chemical treatment embryos at premigratory (16-
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18/19) or migratory NC cell stages (20-21) were transferred to 1 x MBS medium 

containing 6-bromoindirubin-3’-oxime (BIO) (12,5 μM, 25 μM) or IWR-1 (10 μM, 20 

μM, 100 μM) or DMSO as solvent control, cultivated until stage 22-29 and analyzed 

using whole mount in situ hybridization. 

 

3.3.2.3 Xenopus NC explants for life-cell imaging 
 
For in vitro life-cell imaging cranial NC cells (CNC) from embryos co-injected with 

GR-inducible constructs and GAP43-GFP/H2B mcherry RNA, were explanted at 

stage 16/17. The operation took place in petri dishes coated with 1% agarose in 0,8 x 

MBS. Prior to explantation, the embryonic vitelline membrane was manually removed 

and the embryo was immobilized by placing it in a rectangular hole cut out of the 

agarose coating. A small piece of epidermis covering the cranial NC area was peeled 

off from the GFP/mcherry-positive side. The underlying NC cells were removed, 

divided into smaller pieces and placed on fibronectin-coated chamber slides (Lab-

Tek® Chamber Slide, Thermo Scientific) containing DFA medium with diluted 

reagents. Chamber slides were washed once with pure DFA before applying DFA 

with reagents. For inducing GR-constructs, Dexamethasone was used at the 

concentration of 20 μg/ml was used. For chemical treatment concentration of 1µM 

BIO, 2,5 µM IWR1, 1 µM IWP-2, 1 µM SP600125 and 100 µM Box5 in DFA was 

used. The respective concentrations of ethanol or DMSO were used as solvent 

control. Explants were cultured in the respective media directly after explantation and 

time-lapse imaging was started on average 2-3 hours after preparation of explants 

representing stage 19/20 of control embryos from the same batch. Time-lapse 

analysis of NC cell migration was performed using Spinning Disk microscopy (Axio 

Observer Z1 with ZEN software 2012 (Zeiss)). For data analysis membrane tethered 

GFP (GAP43- GFP) was used to assess the general morphology of explanted NC 

cells, their ability to form protrusions, and their interactions with other NC cells. Histon 

2B tagged with mcherry marked cell nuclei and allowed tracking of individual NC 

cells. 
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3.3.2.4 ß-catenin localization in Xenopus NC explants 
 
To analyze the nuclear localization of ß-catenin cranial NC cells were explanted as 

described above. Explanted NC cells were placed on a fibronectin-coated chamber 

slide (Lab-Tek® Chamber Slide, Thermo Scientific) filled up with DFA medium 

containing 1 μM BIO or DMSO as a solvent control and cultivated for 30 minutes, 3 

hours or 7 hours at 16°C on a cooling plate. After cultivation the medium was 

removed. Cranial NC cells were covered with a cover slide attached with Vaseline 

and fixed with MEMFA for 20 minutes. Explants were washed 3x 10’ in Ptw and 

blocked overnight with 1% BSA or 10% FCS in Ptw. Next day bloking solution was 

removed and explants were rinsed once with Ptw and primary antibodies diluted in 

Ptw with 1% BSA or 10% FCS were applied overnight. Next day primary antibodies 

were removed, explants were washed 3x 10’ with Ptw with 1% BSA or 10% FCS and 

secondary antibodies diluted in Ptw with 1% BSA or 10% FCS were applied for 2-3h. 

Subsequently, secondary antibodies were removed, explants were washed 3x’10 

with Ptw with 1% BSA or 10% FCS, stained with DAPI diluted in PBS for 7’, washed 

2x10’ with PBS. Antibodies were used in the following dilutions: rat anti-β-catenin 

(generous gift of Ralph Rupp) 1:150, donkey anti-rat Alexa 594 nm (Santa Cruz 

Biotechnology) 1:400, rabbit anti-Twist (Abcam) 1:50, goat anti-rabbit Oregon Green 

488 nm (Life Technologies) 1:200, DAPI (Carl Roth) 1μg/ml. After immunostaining 

cranial NC cells were imaged using a confocal microscope (LSM780 with ZEN 

software 2011 (Zeiss)). The area of each nucleus in the NC explants was determined 

by DAPI staining and the intensity of the ß-catenin fluorescent signal expressed as 

Integrated Density was measured using ImageJ. Integrated Densities of ß-catenin 

fluorescent signals from all explants of a particular treatment were averaged. One 

Way ANOVA and post hoc Games-Howell test were used for statistical analysis. 

 

3.4 Image Analysis 
 
Image analysis and data evaluation was performed in collaboration with Dr Timo 

Aspelmeier (Institute for Mathematical Stochastics and Felix Bernstein Institute for 

Mathematical Statistics, Georg August University, Göttingen) and Lutz Künneke 

(Institute for Theoretical Physics, Georg August University, Göttingen). The 

description of methods was done by Dr Timo Aspelmeier. 
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Image analysis was performed using a custom filtering routine in Matlab 2010b, 

adapted from the one described in Kanesaki et al. (Kanesaki et al., 2011). Images 

were presmoothed by convolution with a gaussian kernel with a width of 2-3 pixels. 

The typical inverse diameter of the fluorescently labeled nuclei was approximated by 

the position Kmax of the dominant mode of the radial averaged power spectral 

density (PSD), and this position was estimated by the first moment of the PSD. 

Contributions to the Fourier transform of the image from wavevectors both much 

smaller and much larger than Kmax were removed by multiplication of the Fourier 

transform with a gaussian window function with variance Kmax2/8 centered around 

Kmax (a gaussian window function was used rather than a box-like window function 

to minimize artifacts). This serves to remove both high frequency image content 

(noise) and low frequency content (slow variations in background intensity). An 

inverse Fourier transform was then applied to the modified Fourier transform to 

obtain a filtered image showing only the nuclei against a homogeneous background. 

The images were then binarized by thresholding, and image pixels containing a “1" 

were assumed to belong to a nucleus. A suitable threshold was found to be the 80% 

quantile of the gray value distribution of the image. Single isolated “0" pixels inside a 

cluster of “1" pixels were removed by the operation of image opening (Soille, 2003). 

The resulting segmentation was verified by eye for some exemplary cases. The cell 

positions were then extracted from the images by calculating the center of mass of 

each connected cluster of pixels belonging to a nucleus (see Savin and Doyle (Savin 

and Doyle, 2005) for a discussion of particle tracking errors). These positions were 

tracked over the image sequence, i.e. for each pair of consecutive images each 

nucleus in the first image was identified with a nucleus in the second image in such a 

way that the total squared movement between the images was minimized. 

Sometimes nuclei are lost by going out of the focal plane or crossing the image 

border, or new ones may appear for similar reasons. Hence tracking of nuclei is not 

failsafe. Therefore we discarded tracks with very large jumps between consecutive 

images (more than half the mean nearest neighbor distance) or of very short length 

(2-3 images). 
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3.4.1 Data evaluation- cell classification 
 
To allow for a structural characterization of the cell configurations, cells were 

classified as center, border, or outlier cells in the following way. In each frame the 

Delaunay triangulation of cell positions was calculated. Connected cells were treated 

as neighbors. The mean distance between neighbors in the first frame was denoted 

as r0. Each cell, which had all of its neighbors at a distance of r0 or less away, was 

classified as a center cell. Cells with at least one neighbor further away than r0 but 

with at least one center cell neighbor were classified as border cells. All remaining 

cells were classified as outlier cells. The concept is illustrated in Fig. 5C. 

 
3.4.2 Data evaluation-mean cluster size 
 
To characterize the tendency of cells to stick together, we partitioned the cells into 

clusters. A cluster is defined as a maximal set of neighboring cells connected by 

distances ≤ r0. We define the “size" of a cluster as the number of cells in the cluster. 

At each time we can determine the mean cluster size, which is a measure of how 

much the cells have moved apart: a mean cluster size of the order of the total 

number of cells means that almost all cells form one big cluster, whereas a mean 

cluster size of the order of 1 means that most cells have separated from each other 

and each one forms its own cluster. 

 

3.4.3 Data evaluation-mean square displacement 
 
The previous concepts of cell classification and cluster sizes describe static (i.e. 

single time) properties of the cell assemblies. In order to characterize dynamic 

properties, i.e. movement of cells over several points in time, we used the mean 

square displacement where ri→(t) denotes the position of cell i at time t and N is the 

total number of cells. For cells undergoing directed motion this quantity grows 

quadratically in time, whereas for cells fluctuating around a fixed point in space it 

approaches a limit. The intermediate case of diffusive motion shows a linear increase 

in time. For a review of applications of the mean square displacement in living cells 

see Gal et al. (Gal et al., 2013). 
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4  Results 

 
4.1 Activation of canonical Wnt signaling by BIO and treatment causes defects 
in migration of NC cells 
 
To analyze the role of canonical Wnt signaling in migration of cranial NC cells, 6-

bromoindirubin-3’-oxime (BIO), an inhibitor of GSK3ß was used (Meijer et al., 2003; 

Myers et al., 2014) to specifically activate canonical Wnt signaling during migration of 

NC cells. Embryos were treated with BIO either at premigratory stages (16-18), 

where NC cells were already induced but had not migrated yet, or at early migratory 

stages (20-21) (Fig.4.1.1). BIO was added to the culture media and embryos were 

kept in this solution till fixation. NC migration upon treatment was analyzed at tadpole 

stages by in situ hybridization using the NC marker Twist. Twist is expressed already 

in NC precursor cells and remains to be expressed as the cranial NC cells migrate 

through the branchial arches (Lander et al., 2013), thus is an excellent marker to 

monitor NC migration throughout all stages. Treatment of Xenopus embryos with BIO 

at premigratory NC cell stages caused three types of defects in NC migration (Fig. 

4.1.2A). In the first, most frequent phenotype embryos showed a strong inhibition of 

migration. Additionally, a severe reduction of Twist-positive cells was observed. A 

small cluster of Twist-positive NC cells remained in the premigratory position next to 

neural tube and only NC cells of the mandibular branch reached the final location 

surrounding the developing eye (phenotype: ‘inhibited migration’ Fig. 4.1A, panel IV, 

red arrowheads; Fig. 4.1.2B, red bars). In the second, less severe phenotype, cranial 

NC cells were separated into the typical branches, but the Twist-positive cells were 

also reduced and their migration was inhibited (phenotype: ’reduced branches’ Fig. 

4.1A, panel III, yellow arrowheads; Fig. 4.1.2B, yellow bars). In the third, the least 

severe phenotype, NC cells showed the typical branch-like structure but the posterior 

NC streams seemed to be merged and their migration was also inhibited (phenotype: 

‘merged branches‘ (Fig. 4.1.2A, panel II, green arrow; Fig. 4.1.2B, green bars). To 

sum up, the inhibition of migration was less severe for the ‘reduced branches’ and 

‘merged branches’ phenotypes in comparison to ‘inhibited migration’ phenotype. BIO 

treatment at migratory stages caused the same defects, however, most embryos 

showed the less severe ‘reduced branches’ phenotype (Fig. 4.1.2C, panel III; yellow 

arrowheads; Fig. 4.1.2D, yellow bars). Similarly to treatments at premigratory stages, 
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the separation of the cranial NC cells into branches in this phenotype was not 

disrupted, but a reduction of the Twist-expressing cells was again observed. In 

addition, the embryos treated at migratory stages also showed the ‘merged branches’ 

and ‘inhibited migration’ phenotype. Taken together, BIO treatment at premigratory 

and migratory stages produced comparable results, however, these were less severe 

if embryos were treated at migratory stages. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure.4.1.1.Experimental scheme. Wild type Xenopus embryos were treated with particular chemical modulator 

at premigratory or migratory NC stages. DMSO served as a solvent control. The given scheme was applied in 

each experiment using chemical modulators. 
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Figure 4.1.2. Activation of canonical Wnt signaling using BIO at premigratory and migratory NC cell 
stages affects NC migration. Wild type Xenopus embryos were treated with BIO at NC premigratory or 

migratory stages or with DMSO as a solvent control. A The panel shows the different phenotypes observed after 

BIO treatment at premigratory stages. Phenotypes are grouped by increasing severity: unaffected embryo (I), 

embryo with merged NC branches (II), embryo with reduced NC branches (III), embryo with inhibited NC 

migration and reduced Twist expression (IV). Green arrow marks merged posterior NC streams. Yellow arrows 

mark reduced NC branches. Red arrows mark a weakly stained NC cluster in the premigratory position and the 

remaining mandibular branch. The black frame marks the most frequent phenotype. B Graph summarizing the 

percentage of phenotypes observed in 5 independent experiments. Standard errors of the mean and number of 

treated embryos are indicated for each column. C The panel shows the different phenotypes observed after BIO 

treatment at migratory stages. Phenotypes are grouped by increasing severity as for the premigratory treatment. 

D Graph summarizing the percentage of phenotypes observed in 3 independent experiments. Standard errors of 

the mean and number of treated embryos are indicated for each column. 

 

 

 

A 

B 

C 

D 



69 
 

4.2 Functionality of Lef1/Tcf3 constructs in double axis assay 

BIO increases ß-catenin levels in the cytoplasm by inhibiting GSK3ß and can 

potentially influence other intercellular processes. Since Lef/Tcf transcription factors 

are the most downstream targets of canonical Wnt signaling, the inducible constructs 

of these proteins were used to compare phenotypes observed upon BIO treatment. 

Prior to investigating the effect of Lef/Tcf modulation on NC migration, the 

functionality of the respective Tcf/Lef glucocorticoid-receptor (GR)-fusion constructs 

was assessed by analyzing their ability to induce a secondary axis in Xenopus 

embryos (Supplement Fig.6.1) (tested mostly by Dr. Juliane Melchert-PhD Thesis: 

Expression screen for Wnt signaling-like phenotypes identifies Fam132b as a novel 

inhibitor of BMP signaling in Xenopus). Among many constructs tested only Lef1-GR 

and Tcf3-VP16-GR were able to activate canonical Wnt signaling in double axis 

assays, therefore these constructs were used to analyze how Lef/Tcf signaling 

affects NC migration (Fig.4.2).  
 

 

 

 

 

 

 

 
Figure 4.2. Lef-1-GR and Tcf3-VP16-GR activate canonical Wnt signaling in early Xenopus embryos as 
indicated by secondary axis induction A Schematic representation of wild type and modified GR-fusion 

constructs of Tcf3 and Lef1 used for activation of canonical Wnt signaling. Tcf3-VP16-GR is a construct, where 

the ß-catenin binding domain was replaced with the VP16 transcriptional activator (Vonica et al., 2000; 

Agathocleous et al., 2009; Borday et al., 2012).  

 
 

4.3 Activation of Lef1/Tcf3 signaling causes the same defects as BIO treatment 
 
To activate canonical Wnt signaling in migrating NC cells by overexpressing Lef1-GR 

or Tcf3-VP16-GR, mRNA of each construct was injected in one blastomere of a 2-cell 

stage embryo together with lacZ RNA for lineage tracing (Fig.4.3.1). The uninjected 
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blastomer served as an internal control allowing comparison of NC migration in the 

same embryos. The respective fusion-proteins, blocked by the heat shock proteins in 

the cytoplasm, were activated at premigratory (16-18) and early migratory stages (20-

21) by Dexamethasone treatment, which allowed for their translocation into the 

nucleus. Alternations in NC migration were analyzed by Twist in situ hybridization at 

late migratory stages (25-29). Overexpression of Lef-1-GR caused two types of 

defects, which were also classified according to their severity. Similarly to BIO 

treatment, activation of Lef1-GR at premigratory NC stages lead mostly to an 

inhibition of NC migration and a reduction of Twist-expressing cells. The majority of 

embryos showed strongly inhibited NC migration where clusters of NC cells were 

remaining at the premigratory position. Only the mandibular branch was present at its 

final location surrounding the developing eye (‘inhibited migration’ phenotype: Fig. 

4.3.2E, upper panel, red arrowheads; Fig. 4.3.2F, red bar). Less frequently the 

activation of the Lef1-GR construct caused the less severe ‘reduced branches’ 

phenotype, where the NC branches were more narrow and/or shorter and the most 

posterior stream was either missing or appeared diffuse (‘reduced branches’ 

phenotype: Fig. 4.3.2E, lower panel, yellow arrowheads, Fig. 4.3.2F, yellow bars). If 

the Lef1-GR construct was activated at migratory NC stages the same phenotypes 

were observed (Fig. 4.3.2G,H).  
 

 

 

 

 

 

 

 

 

 
Figure.4.3.1 Experimental scheme. mRNA coding for a particular GR construct was injected into one blastomer 

of 2-cell stage embryos. The respective fusion-protein was activated by Dexamethasone treatment at 

premigratory or migratory NC stages. EtOH served as a solvent control. The given scheme was apply in each 

experiment using GR-constructs. 
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Figure 4.3.1. Activation of canonical Wnt signaling at premigratory and migratory NC cell stages by Lef1-
GR overexpression affects NC migration A Wild type Xenopus embryos were injected with 50 pg of Lef-1-GR 

in 1 blastomer at the 2-cell stage embryos. Panel shows the different phenotypes observed after Lef1-GR 

activation at premigratory stages. Phenotypes are grouped by increasing severity: embryo with inhibited NC 

migration and reduced Twist expression (upper panel), embryo with reduced NC branches (lower panel). Red 

arrows mark a weakly stained NC cluster in the premigratory position and the remaining mandibular branch. 

Yellow arrows mark reduced NC branches. The black frame indicates the most abundant phenotype. B Graph 

summarizing the percentage of phenotypes observed in 6 independent experiments. Standard errors of the mean 

and number of injected embryos are indicated for each column. C The panel shows the different phenotypes 

observed after Lef1-GR activation at migratory stages. Phenotypes are grouped as in the premigratory treatment. 
D The graph summarizes 9 independent experiments. Standard errors of the mean and number of injected 

embryos are indicated for each column. 
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Consistent with these findings activation of Tcf3-VP16-GR at both premigratory and 

migratory stages, also caused defects already observed upon BIO treatment and Lef-

1-GR overexpression. Interestingly, overexpression of Tcf-VP16-GR caused mostly 

the ‘reduced branches’ phenotype both at premigratory and migratory stages 

(Fig.4.3.2). In summary, these findings show that activation of canonical Wnt 

signaling using either BIO-treatment or an inducible Lef1/Tcf3-GR construct results in 

similar NC migration defects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.2. Activation of canonical Wnt signaling at premigratory and migratory NC cell stages by Tcf3-
VP-16-GR overexpression affects NC migration A Wild type Xenopus embryos were injected with 50 pg of 

Tcf3-VP16-GR at 1 blastomer at 2-cell stage embryos. Panel shows embryo with reduced NC branches (yellow 

arrows), which is the predominant phenotype observed after Tcf3-VP16-GR activation at premigratory stages. B 

Graph summarizing 5 independent experiments. Standard errors of the mean and number of injected embryos 

are indicated for each column C Panel shows embryo with reduced NC branches (yellow arrows) representing the 

predominant phenotype observed after Tcf3-VP16-GR activation at migratory stages. Injected site is shown on 

the right. D The graph summarizes 5 independent experiments. Standard errors of the mean and number of 

injected embryos are indicated for each column.  
 
4.4 Activation of canonical Wnt signaling also causes defects in migration of 
Sox10-positive NC cells 
 
Twist is a bona fide NC marker, expressed in all areas of the cranial NC at 

premigratory and migratory stages and therefore well suited for investigating NC 
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migration. As, not all cranial NC cells express Twist, the analysis of migration 

behavior upon activation of canonical Wnt signaling was additionally extended to the 

other cranial NC population, namely the Sox10-positive NC cells. Sox10 is initially 

expressed in NC cells from all axial levels, but at tailbud stages downregulated in the 

cranial NC (Aoki et al., 2003). Therefore, we focused on treatments at premigratory 

stages and analyzed the migration of Sox10-positive NC cells by in situ hybridization 

at early tailbud stages (22-24). As expected, treatment with BIO affected the 

migration of Sox10-positive cells (Fig.4.4.1A, B). Embryos showed either an inhibition 

of migration (Fig. 4.4.1A, panel III, red arrowheads; Fig. 4.4.1B, red bars) or merged 

NC branches, where the Sox10-expressing otic placode, could not be distinguished 

from the NC cells (Fig. 4.4.1A, panel II, Fig. 4.4.1B green bars). On the contrary to 

Twist-positive NC cell, a reduction of Sox10 was not observed. 

 

 

 

 

 

 

 

 

 

 
Figure 4.4.1. Activation of canonical Wnt signaling by BIO treatment affects the migration of Sox10-
positive NC cells. Wild type Xenopus embryos were treated with BIO at premigratory NC stages and DMSO 
treatment served as a solvent control. A The panel shows the different phenotypes observed after BIO treatment 

at premigratory stages. Phenotypes are grouped by increasing severity: unaffected embryo (I), embryo with 

merged NC branches (II), embryo with inhibited NC migration (III). Red arrows mark cells with inhibited migration 

and the remaining mandibular branch; merged NC cells are indicated by a dashed line. Black frame marks the 

most abundant phenotype. B Graph summarizing 4 independent experiments. Standard errors of the mean and 

number of treated embryos are indicated for each column. 

 

Similar effects were observed, if canonical Wnt signaling was activated using the 

Lef1-GR construct. In this case, similarly to BIO treatment, Sox10-positive NC cells 

remained in a premigratory position (Fig. 4.4.2C, upper panel, red arrowhead; Fig. 

4.4.2D, red bar) or NC cells migrated to some extent, but the streams appeared to be 

merged (Fig. 4.4.2C, lower panel; Fig. 4.4.2D, green bar). This latter, less severe, 
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phenotype was also observed if canonical Wnt signaling was activated using Tcf3-

VP16-GR, while inhibited migration was rarely observed (less than 2%). Thus, 

activation of canonical Wnt signaling using BIO or inducible Lef/Tcf constructs also 

affects the migration of Sox10-positive NC cells. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.2. Activation of canonical Wnt signaling by overexpression of Lef1-GR and Tcf3-VP16-GR 
affects the migration of Sox10-positive NC cells. Wild type Xenopus embryos were injected with 50 pg of Lef-

1-GR or  Tcf3-VP16-GR in 1 blastomer at the 2-cell stage embryo. A The panel shows the different phenotypes 

observed after Lef1-GR activation at premigratory stages. Phenotypes are grouped by increasing severity: 

embryo with a strong inhibition of NC migration (upper panel), embryo with merged NC branches (lower panel). 

Red arrows mark NC cluster in the premigratory position and the remaining mandibular branch; merged NC cells 

are indicated by a dashed line. Black frame marks the most abundant phenotype. B Graph summarizing 5 

independent experiments. Standard errors of the mean and number of injected embryos are indicated for each 

column. C The panel shows an embryo with merged NC branches, which is the predominant phenotype observed 

after Tcf3-VP16-GR activation at premigratory stages. Black frame marks the most abundant phenotype. D Graph 

summarizing 6 independent experiments. Standard errors of the mean and number of injected embryos are 

indicated for each column.  
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4.5 Inhibition of canonical Wnt signaling by IWR-1 treatment causes the same 
defects in migration of NC cells as BIO treatment 
 
To determine if inhibition of canonical Wnt signaling also has an influence on cranial 

NC cell migration, embryos were treated with IWR-1, which inhibits canonical Wnt 

signaling by stabilizing the destruction complex (Chen et al., 2009; Myers et al., 

2014). Treatment of embryos with IWR-1 at premigratory stages led mostly to a 

fusion of the posterior Twist-positive NC branches corresponding to the less severe 

‘merged branches’ phenotype already seen for BIO-treated embryos (Fig. 4.5A,B). 

The most posterior branchial NC streams did not separate properly and their 

migration was inhibited. IWR-1 treatment at migratory NC cell stages caused the 

same defects. Other defects like; ‘inhibited migration’ or ‘reduced branches’, which 

were caused by BIO-treatment, were only rarely observed.  

 

 

       

 

 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 4.5. Inhibition of canonical Wnt signaling using IWR1 at premigratory and migratory NC cell stages 
affects NC migration. Wild type Xenopus embryos were treated with IWR1 at NC premigratory and migratory 
stages or with DMSO as a solvent control. A The panel shows an embryo with merged NC branches (right panel, 

black frame, green arrow), the predominant phenotype observed after IWR1 treatment at premigratory stages. An 

untreated control embryo is shown on the left. B Graph summarizing the percentage of phenotypes of 4 

independent experiments. Standard errors of the mean and number of treated embryos are indicated for each 

column. C The panel shows an embryo with merged NC branches (right panel, green arrow) after IWR1 treatment 

at migratory stages. A control embryo is shown on the left. D The graph summarizes 3 independent experiments. 

Standard errors of the mean and number of treated embryos are indicated for each column. 
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4.6 Functionality of Lef1/Tcf3 constructs in ventralization axis assay 
 

Since IWR-1 also works at the level of the cytoplasm and could therefore modulate 

wider spectra of intercellular processes we asked if direct inhibition of Lef1/Tcf3 

signaling also affects NC migration. As for the activation, the functionality of the 

respective Tcf/Lef glucocorticoid-receptor (GR)-fusion constructs in inhibiting 

canonical Wnt signaling was assessed by analyzing their ability to induce 

ventralization of Xenopus embryos (Supplement Fig.6.2) (all tested by Dr. Juliane 

Melchert PhD Thesis:- Expression screen for Wnt signaling-like phenotypes identifies 

Fam132b as a novel inhibitor of BMP signaling in Xenopus). Again, form the panel of 

potential inhibitors only EnR-Lef-1-GR (Lyons et al., 2009) and Tcf3∆C-GR (Pukrop 

et al., 2001) were able to ventralize Xenopus embryos (Fig.4.6).  

 

 

 

 

 

 

 

 
 
Figure 4.6. EnR-Lef-1-GR and Tcf3∆C-GR inhibit canonical Wnt signaling in early Xenopus embryos as 
indicated by secondary axis induction. A Schematic representation of wild type and modified GR-fusion 

constructs of Tcf3 and Lef1 used for inhibition of canonical Wnt signaling. Tcf3∆C-GR is a construct lacking CtBP 

binding domain (generated by Dr. Juliane Melchert), while EnR-Lef1-GR instead of ß-catenin binding domain and 

trans-activation domain has Drospohila engrailed repressor domain (Lyons et al., 2009) 

 

 

4.7 Inhibition of Tcf3 signaling causes the same defects in migration of NC 
cells as Lef1/Tcf-activation 
 

Interestingly, overexpression of EnR-Lef-1-GR caused no defects in the migration of 

Twist-positive NC cells either at premigratory or migratory stages (Supplement 

Fig.6.3). On the contrary, overexpression of Tcf3ΔC-GR, which showed high 

ventralization potency, at both premigratory and migratory stages resulted mainly in 

occurence of a less severe ‘reduced branches’ phenotype observed already upon 
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overexpression of Lef1/Tcf3 activators (Fig. 4.7A,B lower panel, yellow arrowheads; 

Fig. 4.7C,D, yellow bars). In addition, Tcf3ΔC-GR also caused the more severe 

‘inhibited migration’ phenotype (Fig. 4.7A,B, upper panel, red arrowheads; Fig. 

4.7C,D, red bar).  

 

 
Figure 4.7. Inhibition of canonical Wnt signaling at premigratory and migratory NC cell stages by Tcf∆C-
16-GR overexpression affects NC migration A Wild type Xenopus embryos were injected with Tcf3ΔC-GR 

RNA in one blastomere at the 2-cell stage. The panel shows the different phenotypes observed after Tcf3ΔC-GR 

activation at premigratory stages. Phenotypes are grouped by increasing severity: embryo with inhibited NC 

migration and reduced Twist expression (upper panel), embryo with reduced NC branches (lower panel). Red 

arrows mark a weakly stained NC cluster in the premigratory position and the remaining mandibular branch. 

Yellow arrows mark reduced NC branches. Black frame indicates the most abundant phenotype. B Graph 

summarizing the percentage of phenotypes in 9 independent experiments. Standard errors of the mean and 

number of injected embryos are indicated for each column. C The panel shows the different phenotypes observed 

after Tcf3ΔC-GR activation at migratory stages. The same phenotypes as for the premigratory Dexamethasone 

treatment are observed. D Graph summarizing 3 independent experiments. Standard errors of the mean and 

number of injected embryos are indicated for each column. 
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4.8 Inhibition of canonical Wnt signaling also causes defects in migration of 
Sox10-positive NC cells 
 
In addition we analyzed if inhibition of canonical Wnt signaling affects the migration of 

Sox10-expressing NC cells. The defects observed after treatment with IWR1 were 

comparable to the ones observed for the Twist-positive cells, but only a low 

percentage of embryos were affected (Fig. 4.8.1A,B). Sox10-positive cells remained 

in a premigratory position and only the first mandibular branch showed some 

migrating NC cells. As in the case of the Twist-positive NC cells, inhibition of 

canonical Wnt signaling by overexpressing the Tcf3ΔC-GR construct strongly 

inhibited the migration of the Sox10-expressing NC cells. They clustered in a 

premigratory position and only cells of the mandibular arch migrated (‘inhibited 

migration’ phenotype) (Fig. 4.8.2C, upper panel; Fig. 4.8.2D). In addition a less 

severe phenotype was observed where the branchial NC streams merged and the 

Sox10-staining of the otic placode could not be distinguished from the NC staining 

(Fig. 4.8.2C, lower panel; Fig. 4.8.2D). Thus, these data are consistent with our 

previous findings on the migration of Twist expressing cells and show that over-

activation or inhibition of canonical Wnt signaling affect NC migration. 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.8.1. Inhibition of canonical Wnt signaling by IWR-1 treatment affects the migration of Sox10-
positive NC cells. Wild type Xenopus embryos were treated with IWR-1 at premigratory NC stages and DMSO 
treatment served as a solvent control. A Panel shows an unaffected embryo (I) and the ‘inhibited migration’ 

phenotype (II) observed after IWR1 treatment at premigratory stages. Black frame marks the only observed 

phenotype B Graph summarizes 4 independent experiments for 10 μM and 20 μM of IWR1 and 3 independent 

experiments for 100 μM of IWR1. Standard errors of the mean and number of injected embryos are indicated for 

each column. 
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Figure 4.8.2. Inhibition of canonical Wnt signaling by overexpression of Tcf3∆c-GR affects the migration 
of Sox10-positive NC cells Wild type Xenopus embryos were injected with 50pg of Tcf3∆C-GR at 1 blastomer at 

2-cell stage embryo. A The panel shows the different phenotypes observed after Tcf3ΔC-GR activation at 

premigratory stages. Phenotypes are grouped by increasing severity: embryo with a strong inhibition of NC 

migration (upper panel), embryo with merged NC branches (lower panel). Red arrows mark NC cluster in the 

premigratory position and the remaining mandibular branch; merged NC cells are indicated by a dashed line. 

Black frame marks the most abundant phenotype. B Graph summarizing the percentage of phenotypes in 5 

independent experiments. Standard errors of the mean and number of injected embryos are indicated for each 

column.  
 
4.9 Activation of canonical Wnt signaling by BIO affects in vitro NC migration 

 
To investigate the role of canonical Wnt signaling in the orchestration of NC migration 

on the cellular level, we used life-cell imaging of explanted NC cells. For this type of 

experiment, NC cells were dissected from embryos at premigratory NC cell stages 

and cultured in medium containing either Dexamethasone or BIO/IWR1 for 2 to 3 

hours before imaging. Controls were cultured in the respective solvent controls. For 

each experimental condition, being it treatment with a chemical modulator or 

overexpression of a GR-inducible construct, a control from the same embryonic batch 

was used. Cell movements were monitored using spinning disk time-lapse imaging. 

As expected from the results in whole embryos, activation of canonical Wnt signaling 

using BIO-treatment inhibited NC migration (Mov.1 Supplement, Fig.4.9). Border cells 
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formed proper lamellipodia as long as they remained in the NC cluster, however, 

these were lost upon detachment and cells were not able to move any further. In 

contrast control cells left the NC clusters efficiently and performed single cell 

migration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.9. BIO treatment inhibits migration of explanted NC cells. Time-lapse images of control (left panels) 

and BIO-treated NC cells (right panels) at the start of imaging (0 hours) and after 2 and 3.5 hours. Cells were 

treated with 1 µM BIO and DMSO as a control. Control NC cells leave the cluster and perform single cell 

migration. BIO treated NC cells show inhibited migration. Upon detachment from the cluster cell protrusions are 

retracted.   

 

 

4.10 Activation of canonical Wnt signaling by Lef1-GR affects in vitro NC 
migration 
 

Similary to BIO treatment, activation of canonical Wnt signaling using Lef1-GR 

overexpression also inhibited NC migration (Mov.2 Supplement, Fig.4.10.1). This 

effect was even more severe than upon BIO-treatment and Lef1-GR-overexpressing 

cells were unable to leave the NC cluster. Interestingly, the ability of the Lef1-GR-



81 
 

overexpressing NC cells to form lamellipodia was not affected. Conversely, control 

NC cells from the same batch rapidly left the main cluster and spread efficiently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.10.1. Lef-1-GR overexpression inhibits migration of explanted NC cells. Time-lapse images of 

control (left panels) and Lef1-GR-overexpressing NC cells (right panels) at the start of imaging (0 hours) and after 

3 and 5 hours. Control NC cells leave the cluster and perform single cell migration. NC cells overexpressing Lef-

1-GR are not able to leave the cluster. Formation of cell protrusions is normal. 

 

Migration of NC cells overexpressing Lef-1-GR was additionally characterized by cell 

classification (center, border, outsider cells; Fig.4.10.2.A), determination of mean 

cluster size and mean square displacement. These parameters were employed here 

to describe the cell migration behavior of explanted NC cells quantitatively. The 

definition, as well as calculation of these parameters is introduced in the Materials 

and Methods section. In short, successful NC migration is accompanied by a fast 

reduction in mean cluster size and an increase in outsider cells at the expense of 

center and border cells. These parameters were used to analyze how activation of 

canonical Wnt signaling by Lef1-GR affects NC migration. In control NC cells the 

mean cluster size dropped rapidly and center cells were quickly replaced by border 
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and outsider cells (Fig. 4.10.2B,C). In contrast in Lef1-GR overexpressing explants 

the mean cluster size remained high and no significant increase in outsider cells at 

the expense of center cells was observed (Fig. 4.10.2D,E). Moreover, there was even 

an increase in mean cluster size as the explant stretched as the cells were trying to 

leave, but still remained attached together (Fig. 4.10.2D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10.2. Data analysis of NC overexpressing Lef-1-GR and respective control A Classification of 

center, border and outsider cells. For classification criteria see Material and Method section. B Changes in mean 

cluster size of control NC explants over time. Time is given in “frames”, which constitutes a time interval of 2.03 

minutes. This is identical for all graphs shown in this figure. C Cell classification of a control NC explant. D 
Changes in mean cluster size of Lef1-GR-overexpressing NC explant. E Cell classification of a Lef-1-GR-

overexpressing explant. Anlyzed was performed by Lutz Künneke. 
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4.11 Inhibition of canonical Wnt signaling by IWR1 affects in vitro NC 
migration 
 

By analogy to the whole embryos, treatment with IWR1 also exhibited less severe 

defects in migration of explanted NC cells. NC cells treated with IWR-1 formed proper 

lamellipodia, but shortly after leaving the cluster these were partially retracted, while 

controls showed normal migration behavior (Mov.3 Supplement, Fig.4.11). IWR1-

treated cells also continuously left the NC cluster, but due to their decreased mobility 

they remained in close proximity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.11. IWR1 treatment limits the motility of explanted NC cells. A Time-lapse images of control (left 

panels) and IWR1-treated NC cells (right panels) at the start of imaging (0 hours) and after 3 and 5 hours. Cells 

were treated with 2,5 µM IWR1 and DMSO as control. Control NC cells left the cluster and performed single cell 

migration. IWR1-treated NC cells show decreased motility. Upon detachment from the cluster cell protrusions are 

partially retracted. 
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4.12 Inhibition of canonical Wnt signaling by Tcf3∆C-GR affects in vitro NC 
migration 
 

As already seen in the whole embryos, in vitro overexpression of Tcf3∆C-GR also 

results in decreased severity of migration defects (Mov.4 Supplement, Fig.4.12.1). 

NC cells remained joined together while they migrated. Thereby, the whole cell 

cluster stretched, and only eventually cells were able to detach. Therefore, the mean 

cluster size remained at a steady state level and the appearance of outsider cells 

was severely delayed compared to the control (Fig. 4.12.2A-D). The rapid drop in the 

number of outsider cells in the control can be explained by migration of the big cell 

cluster out of the focus plane. Taken together, inhibition of canonical Wnt signaling 

using IWR or overexpression of Tcf3ΔC-GR inhibited the motility of NC cells and their 

ability to perform single cell migration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.12.1. Tcf3∆C-GR overexpression limits motility of explanted NC cells. Time-lapse images of control 

(left panels) and Tcf3ΔC-GR overexpressing NC cells (right panels) at the start of imaging (0 hours) and after 3 

and 5 hours. Control NC cells leave the cluster and perform single cell migration. NC cells overexpressing 

Tcf3∆C-GR remain joined together and spread all over the fibronectin dish as one cluster. Gradually single NC 

cells are released from the collective. Formation of cell protrusions is normal. 
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Figure 4.12.2. Data analysis of NC overexpressing Tcf3∆C-GR and respective control C Changes in mean 

cluster size of control NC cells over time. Time is given in “frames”, which constitutes a time interval of 2.03 

minutes. This is identical for all graphs shown in this figure. D Cell classification of a control NC explant. E 
Changes in mean cluster size of a Tcf3∆C-GR-overexpressing NC explant. F Cell classification of a Tcf3∆C-GR-

overexpressing explant. Analysed was performed by Lutz Künneke. 
 

4.13 Comparison of Mean Square Displacement 
 

Determination of mean cluster size and cell classification were further confirmed by 

analyzing the mean square displacement (Fig.4.13) describing the dynamic 

properties of cell movement. Here cell movement during the starting phase of the 

experiment (first 2 hours, Fig. 4.13A) is compared to cell movement during a later 

time period of the experiment (4-6 hours, Fig. 4.13B), when cell movement is in 

general accelerated. Lef1-GR and Tcf3ΔC-GR overexpression both result in a strong 

decrease of the mean square displacement in comparison to control NC cells. This 

effect is already apparent in the first 2 hours of the experiment (Fig. 4.13A) and is 
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getting more severe during the course of the experiment (Fig. 4.13B). Control NC 

cells show in general a wider range of cell motility likely also depending on their 

position in explants or their position in respect to other migrating cells. In summary 

the in vitro migration data confirm the results obtained in whole embryos, but shows 

that cell mobility as well as the ability to leave the NC clusters is impaired. 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 4.13. The mean square displacement confirms that modulation of canonical Wnt signaling inhibits 
in vitro NC migration. Comparison of the mean square displacement of control cells and NC cells 

overexpressing Lef1-GR or Tcf3ΔC respectively. The mean square displacement is given for cell movement 
during the first 2 hours of the experiment A compared to cell movements during a later time period in the course 

of the experiment (between 4 and 6 hours) B. Analysed was performed by Lutz Künneke. 

 

 

4.14 Endogenous nuclear ß-catenin levels decrease during NC migration 
 
As our data indicate that canonical Wnt signaling has to be tightly controlled to allow 

for NC migration, we asked if this is also reflected by the endogenous activity of 

canonical Wnt signaling during NC migration. Nuclear localization of β-catenin as 

readout for canonical Wnt activity was analyzed at different time points of NC 

migration (premigratory, early migratory, late migratory). Premigratory NC explants 

showed higher levels of nuclear β-catenin (Fig. 4.14.1/4.14.2) in comparison to 

migratory explants, where ß-catenin was mainly localized at the plasma membrane 

(Fig. 4.14.1/4.14.2). This indicates that during stages of NC migration nuclear ß-

catenin levels decreased compared to the premigratory stage, consistent with the 

hypothesis that canonical Wnt activity has to be tuned down to allow for proper NC 
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migration. In contrast, explants cultured in BIO-containing medium showed elevated 

levels of nuclear ß-catenin. While canonical Wnt activity – measured as nuclear 

localization of ß-catenin – decreased in control explants after 3 hours (Fig. 

4.14.1/4.14.2), BIO-treated cells retained the high levels of nuclear ß-catenin as seen 

in premigratory NC cells (Fig. 4.14.1/4.14.2). This effect is even enhanced in explants 

treated for 7 hours with BIO (Fig. 4.14.1/4.14.2 ), where ß-catenin accumulation is 

visible in the cytoplasm as well as the nucleus. Considering that BIO treatment 

inhibits in vivo and in vitro NC migration (Fig. 4.1A-D, Fig. 4.9) ectopic activation of 

canonical Wnt signaling likely causes these defects. Thus, these data suggest that 

endogenous canonical Wnt activity has to be kept at a comparably low level to 

enable NC migration. 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.14.1 The levels of nuclear β-catenin change during stages of NC migration and are upregulated 
by BIO treatment. A A premigratory control NC explant (30 minutes after explantation) showing elevated levels 

of nuclear ß-catenin in comparison to control NC explants fixed 3 hours B or 7 hours D after explantation. NC 
explants treated with 1 μM BIO for 3 hours C or 7 hours E showing translocation of ß-catenin into the nuclei and 

elevated levels of cytoplasmic ß-catenin (Fig.21, panel I and II). F Graph summarizing averaged fluorescent 

intensity expressed as Integrated Density of control and BIO-treated explants. The area of each nucleus was 

determined by DAPI staining (Fig.21) and the intensity of the ß-catenin fluorescent signal expressed as Integrated 

Density was measured using ImageJ. Integrated Densities of ß-catenin fluorescent signals from all explants of a 
particular treatment were averaged. One Way ANOVA and post hoc Games-Howell test were used for statistical 

analysis. Numbers of nuclei and explants analyzed are indicated for each column. BIO treatment leads to 

increased nuclear ß-catenin compared to controls. One Way ANOVA and post hoc Games-Howell test confirm 

that NC explants treated with 1 μM BIO for 3 hours C show similar levels of nuclear ß-catenin compared to 

untreated NC explants fixed 30 min after explantation A. 
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Figure 4.14.2. The levels of nuclear β-catenin change during stages of NC migration and are upregulated 
by BIO treatment NC explants were dissected at premigratory stages and fixed at premigratory stages (30 

minutes after explantation) or migratory stages (3 hours or 7 hours after explantation). ß-catenin localization was 

determined by immunostaining (red, panel I and II). Panel I shows an optical section through the membrane layer 

of the explant, while panel II shows a section through a layer containing the nuclei. Panel III shows DAPI staining 

(blue) of the layer seen in panel II. Panel IV shows an immunostaining for Twist (green). 
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4.15 Modulation of non-canonical Wnt pathway 
 
In addition to modulation of canonical Wnt pathway, we also investigated the 

migration behavior of NC upon inhibition of non-canonical Wnt signaling. Here, we 

took advantage of three commercially available chemicals, including SP600125, 

Box5 and IWP-2. SP600125 inhibits phosphorylation of Jun N-terminal kinase (JNK) 

by competing with ATP (Bennett et al., 2001). JNK kinases are mostly linked with 

inflammation, proliferation and cell apoptosis, however, they have been also shown 

to play a role in cell migration. In Drosophila, JNK is required for dorsal closure 

(Riesgo-Escovar et al., 1996; Sluss et al., 1996), while in zebrafish and rat JNK1 is 

responsible for the rapid movement of keratocytes and bladder tumour epithelial cells 

respectively (Huang et al., 2003). Moreover, JNK phosphorylates paxillin, a focal 

adhesion adaptor, where its role in cell migration is well established. Mutation in 

serine residue phosphorylated by JNK causes formation of focal adhesions and 

limited cell movement indicating that phosphorylation of paxillin by JNK is crucial for 

labile adhesions facilitating rapid movement (Huang et al., 2003). Furthermore, 

activation of JNK has been also linked to the expression of metalloproteinase, which 

are also required during delamination of NC cells (Han et al., 2001). Since SP600125 

has been shown to inhibit proliferation, angiogenesis, growth as well as migration of 

tumor cells (Bruce et al., 2004,) it might be an attractive tool to investigate inhibition 

of non-canonical Wnt signaling in migratory NC cells. Upon treatment of whole 

embryos with SP600125 we observed an inhibited migration of Twist-positive NC 

cells as well as a ‘comb-shaped’ NC streams, where all four stream where formed, 

but remained in close proximity with each other and seemed to be compact 

(Fig.4.15.1AB) Interestingly, a reduction of Twist expression was not observed. 

Treatment of explanted NC cells with SP1600125 caused an increase in cell-

substratum adhesiveness. NC cell formed proper protrusions in the direction of 

anticipated movement maintaining thereby directional polarity, but were unable to 

leave the NC cluster (Fig.4.15.2, Mov.5). Noteworthy, the whole NC cluster seemed 

to be highly immobilized and its movement was strongly limited.  
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Figure.4.15.1. Inhibition of non-canonical Wnt signaling in whole embryos by treatment with the JNK 
inhibitor SP600125. Wild type Xenopus embryos were treated with increasing concentrations of SP600125 at NC 

premigratory stages or DMSO as a solvent control. A Panel shows an unaffected embryo (I), ‘comb-like’ 

phenotype with compacted NC branches (II) (white bracket) and ‘inhibited migration’ phenotype where clusters of 

NC remaining at the proximity of the neural tube (III) (red arrowhead). Black frame marks the most abundant 

phenotype B The graph summarizes three independent experiments. Standard errors of the means and number 

of treated embryos are indicated for each column.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.4.15.2. SP600125 treatment inhibits migration of explanted NC cells. A Time-lapse images of control 

(left panels) and SP600125-treated NC cells (right panels) at the start of imaging (0 hours) and after 2,5 and 4,5 

hours. Cells were treated with 1 µM SP600125 and DMSO as control. Control NC cells leave the cluster and 

perform single cell migration. SP600125-treated NC cells show decreased motility. NC cells do not detach from 

the cluster, but form normal cell protrusions. 
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Another chemical modulator used in our studies is Box5, a Wnt5a-derived 

hexapeptide which has been shown to antagonize activities mediated by Wnt5a and 

Fz5 such as calcium response, cell invasion and migration in tumor cell lines (Jenei 

et al., 2009). Wnt5a can also bind Ror2 and this interaction is well established and 

classified as a separated branch of the Wnt pathway, namely Wnt5a/Ror2 pathway 

(Grenn et al., 2008, Minami et al., 2010).  In Xenopus, activation of the Wnt5a/Ror2 

pathway was shown to promote expression of paraxial protocedherin (XPAPC) which 

promotes convergent extension movements by acting through PI3K, Cdc-42, MKK7, 

JNK and c-jun (Schambony and Wedlich, 2007). What’s more, expression of Ror2 in 

Xenopus cranial NC cells starts already at stage 15 (Hikasa et al., 2002), but so far 

expression of Wnt5a in NC cells has been reported in the early and mid-tadpole 

stages (Aaron Zorn Lab Xenbase Archive: XB-IMG-38521; Jung et al., 2011).  

Treatment of the whole embryos with Box5 caused mostly formation of unstructured 

NC streams, however, the percentage of observed defects was very low 

(Fig.4.15.3AB). Defects resembling the ‘inhibited migration’ phenotype were not 

observed. Since Box5 is a hexapeptide it is likely that penetration through vitellin 

membrane and epidermis was impaired, therefore additional analysis would require 

higher concentrations, mechanical removal of the vitellin membrane as well as slight 

enzymatic digest of the epidermis using proteinase K. As in the case of SP600125 

treatment, reduction in Twist-positive NC cells through Box5 activity was either not 

observed or was mild. Treatment of explanted NC cells with Box5 phencopies 

migration behavior observed upon treatment with SP600125 (Fig.4.15.4. Mov.5). NC 

cells formed proper protrusion and exerted directional polarization, but showed 

limited ability in detaching from the NC cluster, which separated into smaller clusters 

migrating with decreased motility. In comparison to SP600125, Box treatment results 

in milder disturbances in NC migration both in vivo and in vitro experiments what 

could be credited to limited penetrance of Box5, but also the fact that Wnt5a seems 

to play a role in later migration of NC cells. Another possibility could be that Box5 

structurally mimics other Wnt ligands.  
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Figure.4.15.3. Inhibition of non-canonical Wnt signaling in whole embryos by treatment with Box5 
mimicking Wnt5a. Wild type Xenopus embryos were treated with increasing concentrations of Box5 at NC 

premigratory stages or DMSO as a solvent control. A Panel shows an unaffected embryo (I), two variants of 

‘unstructured branches’ phenotype, milder (IIa) (pink brackets) and stronger (IIb) (pink arrowheads). B The graph 

summarizes two independent experiments. Number of treated embryos are indicated for each column.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.15.4. Box5 treatment limits migration of explanted NC cells. A Time-lapse images of control (left 

panels) and Box5-treated NC cells (right panels) at the start of imaging (0 hours) and after 2,5 and 4,5 hours. 

Cells were treated with 100 µM Box5 and DMSO as control. Control NC cells leave the cluster and perform single 

cell migration. Box5-treated NC cells show decreased motility. NC cells don’t detachment from the cluster. The 

NC cluster becomes divided into smaller clusters, which migrate with limited motility.  
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Finally we used IWP-2, which is an inhibitor of Wnt processing and secretion. IWP-2 

inactivates Porcupine (Porcn), a membrane-bound O-acyltransferase, thereby 

selectively inhibiting palmitoylation of Wnt ligands. In the cell lines IWP-2 was shown 

to block all canonical Wnt-dependent biochemical changes including phosphorylation 

of the Lrp6 receptor and Dvl2 and ß-catenin accumulation. This inhibition was not 

only specific for Wnt3a activity, but also for Wnt1 and Wnt2. In addition, IWP-2 was 

also able to decrease palmitoylation of Wnt5, regarded as “non-canonical” Wnt 

indicating that IWP-2 might be a global inhibitor of Wnt signaling (Chen et al., 2009). 

Interestingly, treatment of whole-embryos and explanted NC cells with IWP-2 

resulted in migration defects observed already upon treatment with BIO and IWR-1. 

In whole-embryos analysis, migration defects resembling ‘inhibited migration’ and 

‘merged branches’ phenotypes were observed (Fig.4.15.5AB) In explanted NC cells, 

treatment with IWP-2 caused only slightly decreased cell mobility, however formation 

of protrusion seemed to be more disturbed (Fig.4.15.6. Mov.6). The amount and 

severity of observed phenotypes were milder in comparison to BIO and IWR-1 

treatment suggesting that IWP-2 might not be a potent modulator. 

 
 
 
 
 
 
 
 
 
 
 
Figure.4.15.5. Global inhibition of Wnt signaling in whole embryos by treatment with IWP-2 inactivating 
Wnt processing and secretion. Wild type Xenopus embryos were treated with increasing concentrations of 

IWP-2 at NC premigratory stages or DMSO as a solvent control. A Panel shows an unaffected embryo (I), embryo 

with merged NC branches (II), embryo with inhibited NC migration (III). Green arrow marks merged posterior NC 

streams. Red arrows mark a weakly stained NC cluster in the premigratory position and the remaining mandibular 

branch. Black frame marks the most abundant phenotype B The graph summarizes three independent 

experiments. Standard errors of the means and number of treated embryos are indicated for each column. 
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Figure.4.15.6. IWP-2 treatment slightly limits migration of explanted NC cells. A Time-lapse images of 

control (left panels) and IWP-2-treated NC cells (right panels) at the start of imaging (0 hours) and after 2 and 3,5 

hours. Cells were treated with 1 µM IWP-2 and DMSO as control. Control NC cells leave the cluster and perform 

single cell migration. IWP-2-treated NC cells show slightly decreased motility. NC cells detach partially from the 

cluster and migrate in the restricted area. 
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5 Discussion 
 

Activation and inhibition of canonical Wnt signaling causes the same migration 
defects  
 

A requirement of canonical Wnt signaling in NC induction as well as in the formation 

of its derivatives has been well established, however, its function in NC migration 

remains in the initial phase of investigation. Taking advantage of chemical 

modulators and inducible constructs to activate or inhibit canonical Wnt signaling 

either at premigratory or migratory NC cell stages, we show that Wnt signaling needs 

to be tightly controlled to allow for proper NC migration. Intriguingly, our data 

demonstrate that up-regulation or inhibition of canonical Wnt signaling both lead to 

the same NC migration defects. Since similar defects are observed upon treatment of 

whole embryos at premigratory and migratory stages, this effect seems not to be 

restricted to a function in NC delamination, but likely causes defects in NC migration. 

Results obtained in explanted NC cells, where activation and inhibition of canonical 

Wnt signaling severely reduced the migration abilities of NC cells, confirm the in vivo 

studies.  

 

Role of canonical Wnt signaling in post-induction development of NC cells 
 

The concept that canonical Wnt signaling plays a role in post-induction NC 

development has been supported by a plethora of studies across vertebrates. 

Canonical Wnt signaling has been associated with development of craniofacial 

structures and NC derivatives including melanocytes and sensory neural cells 

(Dorsky et al., 1998; Brault et al., 2001; Hari et al., 2002; Lee et al., 2004; Lewis et 

al., 2004; Hari et al., 2012). In zebrafish, overexpression of ß-catenin in premigratory 

NC cells has been shown to promote pigment cell formation at the expense of 

neurons and glia, while inhibition of Wnt signaling using a truncated form of Tcf3 or a 

dominant-negative Wnt1 caused an opposite effect promoting neuronal fate at the 

expense of pigment cells (Dorsky et al., 1998). In accordance with these findings, 

conditional deletion of ß-catenin in premigratory mouse NC cells also prevented the 

formation of melanocytes (Hari et al., 2002). However, here sensory neurogenesis 
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was also impaired. Another study in mouse, contradicting zebrafish data shows that 

sustained ß-catenin activity in NC cells promoted the generation of sensory neurons, 

but had no effect on melanocyte formation (Lee et al., 2004). A later study using 

different Cre-lines to activate ß-catenin signaling at specific time points during NC 

development proved a temporal separation in generation of NC derivatives where 

sensory neurons are determined earlier than melanocytes (Hari et al., 2012). Thus, 

even after migration there seem to be a clear-cut time windows where canonical Wnt 

signaling exerts certain functions in the development of NC cells. Interestingly, in 

none of these studies comprising in vitro and in vivo analysis in the mouse model 

system, any defects in NC migration have been observed (Brault et al., 2001; Hari et 

al., 2002; Lee et al., 2004). However, it is worth noting that sustained ß-catenin 

signaling in the mouse has been shown to prevent cranial NC cells from entering the 

branchial arches (Lee et al., 2004) indicating that NC migration should also be 

affected.  In addition, the growing concern on the usage of mouse as a model system 

for the study of NC development supports the necessity to use complementary 

systems (Barriga et al., 2015). As an example, further usage of the Wnt1-Cre lines for 

conditional gene knockout seem to be doubtful, as its expression is not limited to the 

NC domain and was recently found to cause ectopic activation of Wnt signaling 

(Lewis et al., 2013).  

 
Role of canonical Wnt signaling in delamination of NC cells 
 

As opposed to the mouse data, our results as well as studies in the avian embryo 

support a role of canonical Wnt signaling in NC delamination and migration (Burstyn-

Cohen et al., 2004; de Melker et al., 2004). In chick, canonical Wnt signaling has 

been shown to facilitate G1/S transition and delamination of trunk NC cells (Burstyn-

Cohen et al., 2004). Inhibition of canonical Wnt signaling by expression of a dominant 

negative dsh, a dominat negative Lef1 or a ß-catenin-engrailed fusion protein 

prevented G1/S transition and inhibited NC delamination. Interestingly, activation of 

canonical Wnt signaling using LiCl or exogenous Wnt1 treatment was shown to 

inhibit in vitro migration of avian trunk NC cells (de Melker et al., 2004). Thus, these 

data provide evidence for a specific requirement of canonical Wnt signaling in 

different phases of post-induction NC development. NC delamination requires 

canonical Wnt activity, however later it needs to be downregulated to enable NC 
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migration. The hypothesis that post-induction NC development is divided into distinct 

phases of canonical Wnt signaling activity is further supported by the time-course of 

nuclear localization of ß-catenin, which is a hallmark of active canonical Wnt 

signaling. Analysis of the avian trunk NC cells emigrating from neural tube explants, 

revealed a subset of NC cells remaining in close proximity to the neural tube, most 

likely representing NC cells at the onset of migration, which showed nuclear 

localization of ß-catenin. On the contrary, in migrating NC cells ß-catenin was mainly 

localized to cell-cell contacts in association with N-cadherin (de Melker et al., 2004). 

In this study, ß-catenin staining was analyzed in NC cells emigrating from trunk 

neural tube explants, and distinction between premigratory and migratory cells was 

based on their distance from the neural tube. In our approach we determined ß-

catenin localization in cranial NC explants at premigratory stages versus explants 

that were cultured for extended time periods corresponding to migratory stages (3 or 

7 hours respectively). Supporting that canonical Wnt signaling is still active before NC 

emigration, we detected nuclear ß-catenin in NC explanted from embryos at the 

premigratory stages, while ß-catenin in NC explants which underwent migration was 

mainly localized at cell-cell contacts. These data suggest that canonical Wnt needs to 

be active possibly to allow for delamination, but then has to be down-regulated during 

NC migration. Consistent with this, we find that BIO-treatment leads to an increase in 

nuclear ß-catenin levels in explanted NC cells, comparable to the level detected in 

NC explanted at premigratory stages contributing to defects in NC migration in vivo 

and in vitro. Since ß-catenin staining is still detected at cell-cell contacts of BIO-

treated embryos and similar defects in NC migration are also observed after 

activation of Lef1- or Tcf3-signaling, these migration defects are likely the result of a 

transcriptional regulation and not simply caused by an absence of ß-catenin at cell-

cell contacts. A recent study in zebrafish analyzing the function of rabconnectin-3a, a 

v-ATPase interacting protein, has shown that loss of function of rabconnectin-3a 

leads to NC migration defects linked to elevated nuclear localization of ß-catenin in 

comparison to controls (Tuttle et al., 2014). Conversely, at premigratory stages, ß-

catenin was localized mostly to the nucleus in controls, but not in rabconnectin-3a-

deficient NC cells. Taken together, these data support a necessity of active canonical 

Wnt signaling at premigratory stages followed by a decrease in activity at migratory 

stages as shown both in avian and Xenopus NC cells (this study) and suggests that 

deregulation of canonical Wnt activity impairs NC migration. Further as 
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Rabconnectin-3a deficient embryos showed alterations in the expression of cell-

adhesion molecules – like for example an upregulation of the canonical Wnt-target 

gene cadherin-11, which we have previously shown to inhibit NC migration (Borchers 

et al., 2001) - this may explain how overstimulation of canonical Wnt signaling affects 

NC migration. Considering that endogenous nuclear ß-catenin peaks at premigratory 

stages and is subsequently reduced in migratory stages it is surprising that inhibition 

of canonical Wnt signaling leads to similar defects in migration as ectopic activation. 

Possibly, migrating NC cells retain a basal level of canonical Wnt signaling, which 

may be affected by our inhibitory approaches. In addition, a reduction in overall 

cytoplasmic levels may also reduce ß-catenin at sites of cell-cell contacts and 

thereby account for defects in NC migration. This may explain how IWR1, which 

stabilizes axin and thereby reduced ß-catenin levels, may affect NC migration. 

However, overexpressions of a dominant negative Tcf3 construct inhibiting Wnt 

signaling downstream of ß-catenin also caused NC migration defects, suggesting that 

defects are caused by transcriptional changes rather than a transcription-

independent direct modulation of ß-catenin adhesion complexes.  

 

Interplay of NC-specifiers 
 

Time-laps images provide information about the initial changes in migration behavior 

of NC cells upon modulation of canonical Wnt pathway allowing assessment of 

general cell morphology, adhesiveness, motility and formation of cell protrusion. On 

the contrary, manipulation of canonical Wnt signaling in the whole embryos provides 

more global information about the ability to perform migration, formation of NC 

streams and expression of NC markers.  In a two-step model of NC induction, which 

has been proposed in Xenopus, zebrafish and chick systems (Stuhlmiller and Garcia-

Castrio 2012; Faure et al., 2002, Patthey et al., 2009), canonical Wnt signaling has 

been shown to be responsible for activation of BMP signaling in the second step of 

NC induction. In accordance with this two-step model inhibition of BMPs during 

gastrulation allows other signaling pathway (Wnts, FGFs) to initially specify NC, while 

later activation of BMPs at neurula stages maintains NC fate in the neural plate 

borders (NPB) and is followed by expression of NC specifiers including: Snail2, 

FoxD3, Sox9/10, Twist, cMyc, and Ap2. NC specifiers establish a gene regulatory 

network, which governs further development of NC cells. Activation of canonical Wnt 
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signaling could therefore cause a dysregulation in the expression of those specifiers 

and impairment in either delamination or NC migration. Indeed, treatment with BIO 

and LiCl (summarized in the supplement, only Twist-positive NC cells) as well as 

overexpression of Lef1/Tcf3 activator constructs in vivo inhibited NC cell migration or 

disturbed the formation of separate NC streams. This was observed for Twist- and 

Sox10-positive NC cells respectively. However, while in general the Sox10 

expression was rather increased and branches seemed to merge to a broad Sox10-

positive cluster, the Twist expression appeared reduced. The preliminary RT-PCR 

data (summarized in the supplement) seem to confirm the in vivo data. Twist 

expression is initiated in an anterior to posterior sequence, beginning in the 

presumptive mandibular crest and subsequently expanding to the hyoid and two 

branchial NC segments, which could explain an increasing reduction of Twist-positive 

cells in NC streams along anterior-posterior axis. The mandibular branch is the least 

affected, found at its final location around or under the developing eye in contrast to 

the II branchial arch either being merged with the I branchial arch or missing, 

indicating that the mandibular branch migrates earlier making it less prone to 

activation of canonical Wnt signaling. Moreover, Twist has been shown to regulate 

NC migration by repression of E-cadherin in delaminating cells. Knockdown of Twist 

leads to an upregulation of E-cadherin and subsequently inhibition of cell dispersion 

(Barriga et al., 2013). In vitro monitoring of NC explants treated with BIO or 

overexpressing Lef1 activator construct revealed an elevated cell adherence. NC 

cells were unable to perform single cell migration and remain joined together in NC 

clusters. Since E-cadherin is a target gene of canonical Wnt signaling it’s up-

regulation causing impaired migration could also lead to loss of Twist expression in 

cells unable to move. NC cells treated with BIO showed additionally disturbances in 

membrane dynamics, which could be credited not only to transcriptional changes, but 

also dysregulation of the ß-catenin pool at the cell membrane.  

Expression of Sox10 during induction is stimulated by canonical Wnt signaling. 

Analysis of Sox10 gene in mouse revealed multiple regulatory regions including 

Lef/Tcf binding sites which are responsible for controlling expression of Sox10 

(Werner et al., 2007). Sustained activation of canonical Wnt signaling could therefore 

explain enhanced expression of Sox10 in the migratory NC cells. Furthermore, our 

preliminary data summarized in the supplement, show that expression of AP2 and 

Krox-20 upon chemical modulation of canonical Wnt signaling differs from the 
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expression of Twist and Sox10 indicating that each population of NC cells might 

exhibit a distinct requirement for canonical Wnt signaling. However, more precise 

conclusion will be possible after analysis of NC migration defects cause by 

modulation of Lef1/Tcf3 signaling. 

 

Lef1 and Tcf3 signaling  
 

Both Lef1 and Tcf3 have been reported to be expressed in the NC cells (Molenaar et 

al., 1998). In tailbud stages, Lef1 has been shown to be present at higher levels in 

comparison with Tcf3, while in tadpole stages expression of Lef1 is less prominent 

than that of Tcf3 providing an additional explanation for different frequencies of 

defects cause by overexpression of Lef1-GR and Tcf3-VP16-GR activator constructs 

at premigratory versus migratory stages in Twist-positive NC and indicating opposite 

requirements for Lef1/Tcf3 expression during development of NC cells. Since several 

studies have shown that Lef/Tcf’s have overlapping but also unique expression 

patterns as well as different functions in canonical Wnt pathway, it is likely that Lef1 

and Tcf3 signaling represtents distinct pathways in the development of NC cells 

(Cadigan and Waterman 2012, Staal and Clevers, 2000). Furthermore, defects in the 

migration of NC cells upon overexpression of Tcf3∆C-GR inhibitor construct in later 

stages could be linked not only with NC migration, but also with formation of Twist-

positive NC derivatives since its expression (Yoon et al., 2011) together with others 

Tcf’s including; Tcf1 (Roël et al., 2003.), Tcf12 (Yoon et al., 2011) and Tcf21 (Simrick 

et al., 2005) have been shown in the branchial arches at late talibud stages. 

Overexpression of EnR-Lef1-GR inhibitor construct in different concentrations and at 

different stages of NC development did not cause any defects in migration of NC 

cells implicating that most likely EnR-Lef1-GR is not functional (summarized in 

supplement). Thus, further investigation of Lef1 signaling in NC cells migration would 

require a generation of another dominan-negative GR-construct.  

 
Lef/Tcf signaling as a platform for canonical and non-canonical Wnt signaling 
 

The necessity to down-regulate ß-catenin levels at the onset of NC migration and 

expression of ß-catenin effectors, namely Lef1/Tcf3 in the NC cells seems to be 

contradictory, however, Lef1/Tcf3 could provide a platform to integrate canonical and 
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non-canonical Wnt signaling. A ß-catenin independent activity of Lef1/Tcf1 and 

expression of target genes associated with canonical Wnt pathway involving direct 

recruitment of ATF2 in Human Hematopoietic tumor cells has been reported (Sprowl, 

and Waterman 2013, Grumolato et al., 2013). Since ATF2 is activated in response to 

signals that converge on proteins involved in cell migration including JNK, it is 

tempting to speculate that Lef1/Tcf3 could mediate expression of genes being targets 

of both Wnt pathways. Many of NC specifiers including Snai2 and Sox10 have 

Lef/Tcf binding motives. It could be possible that expression of various NC-specific 

genes during migration would be maintained by ß-catenin-independent Lef/Tcf 

signaling, while down-regulation of ß-catenin before NC migration would serve to 

restrict the number of target genes expressed during NC migration and potentially 

also explain less severe effect of IWR1 treatment in comparison to overexpression of 

Tcf3 inhibitor. 

 

Perspectives 
 

For the time being, the most crucial question is why activation as well as inhibition of 

canonical Wnt signaling results in a comparable defects in migration of Twist- and 

Sox10-positive NC cells. So far, the preliminary RT-PCR data (summarized in 

supplement) show that modulation of Lef1/Tcf3 signaling increases expression of c-

Jun and Brachyury suggesting a possible contribution of those genes in the observed 

defects. Therefore, future studies should employ transcriptome analysis to precisely 

reveal how canonical Wnt signaling controls migration of different NC populations. 
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6 Supplement  

6.1 Functionality of Lef1/Tcf3 constructs in double axis assay  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplement figure 6.1. Functionality of Lef1/Tcf3 constructs in double axis assay. A Experimental 

procedure leading to dorsalization of Xenopus embryos. RNAs of Lef1- GR and Tcf3-VP16 were injected 

marginally into one ventral blastomere at the 4-cell stage. Embryos were cultured with Dexamethasone starting at 

the 16-cell stage (the solution was changed to normal medium at gastrula stages 10-11) and induction of double 

axis was analyzed at early tailbud stages. B Graph summarizing the percentage of secondary axes of 3 

independent experiments of embryos injected with 50 pg of Tcf3-VP16-GR RNA. Numbers of injected embryos 

and standard error of the means are indicated for each column. C Graph summarizing the percentage of 

secondary axis in 3 independent experiments after injection of increasing concentrations of the Lef1-GR 

construct.  

B C 

A 
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6.2 Functionality of Lef1/Tcf3 constructs in ventralization axis assay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplement figure 6.1. Functionality of Lef1/Tcf3 constructs in ventralization axis assay A Experimental 

procedure leading to ventralization of Xenopus embryos. RNAs coding for EnRLef1-GR or Tcf3ΔC-GR were 

injected into both dorsal blastomeres at the 4-cell stage, treated with Dexamethasone starting at the 16-cell stage 

(the solution was changed to normal medium at gastrula stages 10-11) and ventralized embryos were scored at 

early tailbud stages. The analysis of EnR-Lef1-GR and Tcf3∆C was done by Dr. Juliane Melchert. B Graph 

summarizing the percentage of ventralized embryos in 3 independent experiments after injection of EnR-Lef1-GR. 

At low concentrations EnR-Lef1-GR overexpression did not show strong ventralizing activity and at high 

concentrations, it showed activation even in the absence of Dexamethasone. C Graph summarizing the 

percentage of ventralized embryos of 3 independent experiments in embryos injected with increasing 

concentrations of Tcf3ΔC-GR RNA. Numbers of injected embryos and standard error of the means are indicated 

for each column. Tcf3ΔC-GR is a potent ventralizing agent, however, also active to some extent in the absence of 

Dexamethasone  

B C 

A 
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6.3 Inhibition of canonical Wnt pathway by overexpression of EnR-Lef1-GR 
does not cause any defects in migration of Twist-positive NC cells 

 

Overexpression of EnR-Lef1-GR in the concentration with no significant background 

(50 pg) at the premigratory and migratory NC stages, as well as in the higher 

concentration (500 pg) at the premigratory NC stages did not cause any defects in 

migration of the Twist-positive NC cells (Supplement Fig.6.3).  

  

Supplement figure.6.3. Overexpression of EnR-Lef1-GR does not cause any defect in migration of Twist-
positive NC cells. A Overexpression of EnR-Lef1-GR at premigratory NC stages (50 pg). C Overexpression of 

EnR-Lef1-GR at migratory NC stages (50 pg). E Overexpression of EnR-Lef1-GR at premigratory NC stages (500 

pg). B,D,F Each graph summarizes three independent experiments. Standard errors of the means and number of 

treated embryos are indicated for each column 

A 

B 

C 

D 

E 

F 
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6.4 Activation of canonical Wnt signaling by LiCl treatment causes defects in 
migration of NC cells 

  

The role of LiCl in activation of canonical Wnt signaling is well established (Klein and 

Melton 1996). As BIO, it activated canonical Wnt signaling by inhibiting GSK3ß. 

Treatment with LiCl was performed in the same maner as with the BIO and caused 

the same phenotypes observed already upon BIO treatment. Treatment at the 

premigratory stages resulted mostly in occurrence of ‘inhibited migration’ phenotype 

(Supplement Fig.6.4A), while in the migratory treatment ‘merged braches’ phenotype 

was the most prominent (Supplement Fig.6.4). On the contrary to the BIO, LiCl did 

not cause ‘reduced branches’, which was observed in embryos treated with BIO: 

 

  

Supplement figure.6.4. Activation of canonical Wnt signaling using LiCl at premigratory and migratory NC 
cell stages affects NC migration. Wild type Xenopus embryos were treated with LiCl at NC premigratory or 

migratory stages or with DMSO as a solvent control. A The panel shows the different phenotypes observed after 

LiCl treatment at premigratory stages. Phenotypes are grouped by increasing severity: unaffected embryo (I), 

embryo with merged NC branches (II), embryo with inhibited NC migration and reduced Twist expression (III). 

Green arrow marks merged posterior NC streams. Red arrows mark a weakly stained NC cluster in the 

premigratory position and the remaining mandibular branch. B Graph summarizing the percentage of phenotypes 

observed in 1 experiment. C The panel shows the different phenotypes observed after LiCl treatment at migratory 

stages. Phenotypes are grouped by increasing severity: unaffected embryo (I), embryo with merged NC branches 

(II). Very few embryos showed ‘inhibited migration phenotype’. D Graph summarizing the percentage of 

phenotypes observed in 1 experiment.  

A B 

C D 
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6.5 Modulation of non-canonical Wnt pathway affects migration of Sox10-
positive NC cells 

 

Similary to Twist-positive NC cells, inhibition of non-canonical Wnt signaling using 

SP600125 causes an inhibited migration of Sox10-positive NC cells as well as a 

‘comb-shaped’ NC streams where all  streams where formed, but remained in close 

proximity with each other and seemed to be compact. Additionally, in the ‘com-

shaped’ phenotype the typical tear-shape of NC branches was lost and otic placode 

was not easily distinguishable as in the control. In ‘inhibited migration’ phenotype otic 

placide was not visible (Supplement Fig.6.5A). As in the case of Twist-positive NC, 

treatment with SP600125 did not result in reduction of Sox10 staining.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplement figure.6.5. Inhibition of non-canonical Wnt signaling in whole embryos by treatment with the 
JNK inhibitor SP600125 causes defects in migration of Sox10-positove NC cells. Wild type Xenopus 

embryos were treated with increasing concentrations of SP600125 at NC premigratory stages or DMSO as a 

solvent control. A Panel shows an unaffected embryo (I), ‘comb-like’ phenotype with compacted NC branches (II) 

(white bracket) and ‘inhibited migration’ phenotype where clusters of NC remaining at the proximity of the neural 

tube (III) (red arrowhead). B The graph summarizes 1 experiment. Number of treated embryos are indicated for 

each column. 

A 

B 
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6.6 Determination of Twist and Sox10 expression by RT-PCR  

 
Since Twist- and Sox10-positive NC cells seemed to be reduced and expanded 

respectively through modulation of Lef1/Tcf3 signaling we performed RT-PCR to 

reveal if activation and inhibition of Lef1/Tcf3 signaling has an effect on Twist and 

Sox10 expression levels. In the case of embryos overexpressing Lef1/Tcf3 constructs 

a clear reduction of Twist expression in comparison to controls was observed. 

Interestingly, all constructs including activators and inhibitors caused Twist reduction. 

On the contrary, reduction of Sox10 was not observed upon modulation of Lef1/Tcf3 

signaling. Noteworthy, expression of Sox10 is slightly increased with a clear rise 

upon overexpression of Tcf3∆C-GR (Supplement Fig.6.6A,B) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplement figure 6.6. Expression of Twist and Sox10 upon modulation of Lef1/Tcf3 signaling. A,B Wild 

type Xenopus embryos were injected with 25pg of Lef-1-GR, Tcf3∆C-GR and Tcf3-VP16-GR at 2 blastomers at 2-

cell stage embryo. Embryos were treated with Dexamethasone at the premigratory stages and processed for RT-

PCR. 10 embryos were processed for each treatment. Modulation of Lef1/Tcf3 signaling caused clear reduction of 

Twist expression and slightly elevated Sox10 expression with significant increase upon Tcf3∆C-GR 

overexpression. H4 served as a control. Figure summarizes 2 independent experiments.  

  

A 

B 
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6.7 Determination of c-Jun and Brachury expression by RT-PCR  

 

Both c-Jun and Brachyury are recognized as target genes of canonical Wnt signaling. 

Expression of c-Jun is found in premigratory as well as migratory NC cells (Knöchel 

et al., 2000). On the contrary, Brachyury expression is localized to the 

circumblastopolar collar and notochord at NC-induction stages and later to the eye, 

otic placode and head region at NC-differentiation stages (Cast et al., 2012). 

Overexpression of Lef1-GR caused a significant increase in expression of c-Jun and 

Brachyury. Overexpression of Tcf3∆C-GR also slightly elevated the expression of 

both genes (Supplement Fig.6.7). It is tempting to speculate that phenotypes 

observed upon modulation of Lef1/Tcf3 pathway are caused by dysregulated 

expression of c-Jun and Brachyury, however, the final conclusion will be only 

possible after performing transcriptome analysis of explanted NC overexpressing 

Lef1/Tcf3 constructs.  

 

 

 

 

 

 

 

 

 

 

 

 

Supplement figure 6.7. Expression of c-Jun and Brachyury upon modulation of Lef1/Tcf3 signaling. Wild 

type Xenopus embryos were injected with 25pg of Lef-1-GR and Tcf3∆C-GR at 2 blastomers at 2-cell stage 

embryo. Embryos were treated with Dexamethasone at the premigratory stages and processed for RT-PCR. 10 

embryos were processed for each treatment. Overexpression of Lef1-GR causes increase in expression of c-Jun 

and Brachyuyr. Figure summarizes experiment.  
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6.8 Effects of chemical modulation on AP2- and Krox20-positive NC cells 
 
In addition to monitoring the migration behavior of Twist- and Sox10-positve NC upon 

chemical modulation we also investigated migration of AP2- and Krox20-positive NC 

cells. In the case of the AP2-positive NC cells, activation of canonical Wnt signaling 

by BIO treatment at post-induction stages causes the ‘reduced branches’ phenotype 

observed already for Twist-positive cells. NC cells were able to migrate away from 

the prospective neural tube but the AP2-positive staining was considerably reduced. 

The more severe ‘inhibited migration’ phenotype defined as a small cluster of NC 

cells remaining at the premigratory position was not observed at all (Supplement 

Fig.6.8A,B). Interestingly, inhibition of canonical Wnt signaling by IWR1 treatment did 

not cause any defects in NC migration indicating that canonical Wnt signaling needs 

to be attenuated at the post-induction phase and is not required for the proper 

migration of the AP2-positive population of NC cells. In the case of Krox-20-positive 

NC population, neither activation nor inhibition of canonical Wnt signaling by 

chemical modulation caused defects in migration indicating that canonical Wnt might 

not play any role in their post-induction development (Supplement Fig.6.8C,D). 

 

 
 

 
Supplement figure 6.6. Effect of chemical modulation on AP2- and Krox20-positive NC cells Wild type 

Xenopus embryos were treated with BIO or IWR1 at premigratory NC stages and DMSO treatment served as a 

solvent control. A The panel shows phenotypes observed after BIO and IWR1 treatments at premigratory stages. 

Left panel; control embryo. Middle panel; embryo showing ‘reduced branches’, the only phenotype observed upon 

BIO treatment. Right panel; embryo showing no NC migration defects after IWR1 treatment. B Graph 

summarizing 2 independent experiments. C Panel shows no defects observed after BIO and IWR1 treatment on 

Krox-20-positive NC cells D Graph summarizing 2 independent experiments. 

A B
  

C D
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6.9 Time-laps images 
 

Mov.1 BIO treatment inhibits in vitro migration of NC cells. Control NC explant 

(left panel) disassembles completely by frame 80th corresponding to approximately 

2.45 h (out of 6h). NC cells detach from the cluster and perform single cell migration. 

BIO-treated NC cells (right panel) form initially proper lamellipodia, however, these 

are lost immediately upon detachment from the NC cluster and NC cells remain in 

close proximity to the explant. 

 

Mov.2 Lef1-GR inhibits in vitro migration of NC cells 

Control NC cells (left panel) disassemble completely by frame 100th, corresponding 

to approximately 3 h (out of 7). NC cells are able to detach from the cluster and 

perform single cell migration. NC cell overexpressing Lef-1-GR (right panel) show a 

strong inhibition of migration. NC cells form proper protrusion, but remain joined 

together and are not able to leave the cluster. 

 

Mov.3 IWR1 treatment inhibits in vitro migration of NC cells 

Control NC clusters disassemble completely by frame 50th, corresponding to 

approximately 3.40h (out of 15). NC cells are able to detach from the cluster and 

perform single cell migration. IWR1-treated NC cells (right panel) leave the cluster 

efficiently. Initially cells form proper lamellipodia, which are partially retracted after 

leaving the cluster. Cells continuously leave the NC clusters, but due to their 

decreased mobility they remain in close proximity. 

 

Mov.4 Tcf3ΔC-GR inhibits in vitro migration of NC cells 
Control NC clusters disassemble completely by frame 100th, corresponding to 

approximately 3 h (out of 7). NC cells are able to detach from the cluster and perform 

single cell migration. NC cells overexpressing Tcf3ΔC-GR (right panel) form proper 

protrusion, but remain joined together for a prolonged time period until they finally 

detach. 

 

Mov.5 SP600125 and Box treatment inhibits in vitro migration of NC cells 

Control NC explant (left panel) disassembles completely by frame 125th 

corresponding to approximately 4h (out of 8h). NC cells detach from the cluster and 
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perform single cell migration. Box5-treated NC cells have limited ability to migrate out 

from the NC cluster. NC cells migrate as smaller cluster (right panel). SP600125-

treated NC cells (middle panel) form proper lamellipodia, however, these are unable 

to detachment from the NC cluster and NC cells remain stick together. 

 
Mov.6 IWP-2 treatment slightly limits in vitro migration of NC cells Control NC 

explant (left panel) disassembles completely by frame 80th corresponding to 

approximately 2.45 h (out of 6h). NC cells detach from the cluster and perform single 

cell migration. IWP-2-treated NC cells (right panel) form initially proper lamellipodia, 

however, these are partially lost upon detachment from the NC cluster and NC cells 

remain in closer proximity to the explant 
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