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Summary 

The rotation of the Earth around its axis results in a repetitive succession of day and night. The profound 

environmental changes associated with the day-night cycle drove most organisms to evolve endogenous 

timekeepers to reliably anticipate predictable events at particular times of day and adjust their behaviors and 

physiology accordingly. Such endogenous timekeeping machineries are known as circadian (from Latin circa 

diem – about a day) clocks. In mammals, the cellular time-keeping machinery is comprised of an interlocked 

transcriptional-translational feedback loop (TTL) that during the daytime the transcriptional activating 

BMAL1/CLOCK complexes activate their own repressors PERs and CRYs which will then be degraded during 

the night. This molecular clockwork regulates local cellular physiology and is shared among the central 

circadian pacemaker – the suprachiasmatic nucleus (SCN) and other tissues in the brain and in the periphery. 

Recent studies have highlighted an extensive crosstalk between metabolism and circadian clock. For example, 

circadian misalignments contribute to metabolic disorders and vice versa. However, the mechanism of this 

link is still poorly understood. 

 

The mediobasal hypothalamus (MBH) is an assembly of hypothalamic nuclei which together play a major role 

in regulating behavioral rhythms such as feeding/fasting and sleep/wake cycles. It has been documented that 

the autonomous cellular clockwork exists in multiple MBH nuclei and regulates the local physiology such as 

electrophysiological properties and appetite-regulating neuropeptides (NP) expression, hinting for the role of 

molecular clock in appetite regulation. One of the most important features of the MBH is its ability to 

integrate information carried by circulating metabolic hormones to regulate energy homeostasis of the body. 

I therefore hypothesize that there are metabolic hormones that can modulate the molecular clock in the 

MBH and thereby regulating feeding rhythms.  

 

To search for metabolic hormones that can reset the MBH clock, I engineered a hypothalamic neuronal cell 

line to stably express a circadian reporter and used it as a model to screen for metabolic signals that are 

capable of resetting neuronal clocks. In a small scale screening, I identified an adipokines – adiponectin as a 
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novel mediobasal hypothalamic cellular clock modulator. As it is known that circulating adiponectin levels are 

regulated by the metabolic status of the body, I further hypothesize that adiponectin is a mediator that can 

feed back to the MBH clocks according to the metabolic status of the body.  

 

I demonstrated that adiponectin possesses a phase-resetting effect in multiple in vitro models of MBH 

neurons and an induction effects on Bmal1 transcription in MBH neurons both in vitro and in vivo. Further 

molecular analyses revealed that these circadian effects of adiponectin are, at least in part, mediated by a 

adiponectin receptor 1 (AdipoR1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha 

(PGC1α) and RAR-related orphan receptor alpha (RORα) dependent mechanism.  

 

Using adiponectin deficient (Adipoq KO) mice as a model, I investigated the role of adiponectin in circadian 

behavioral rhythms. Adipoq KO mice have largely normal circadian locomotor activity rhythms and photic 

entrainment of the circadian clock. However, they show significant dampened 24-hr feeding rhythms 

associated with altered diurnal profiles of clock and appetite-regulating gene expression in the MBH. 

Moreover, the mutants also show abnormal food entrainment of the locomotor activity under a 

time-restricted feeding (RF) regime - known as food anticipatory activity (FAA). Conversely, compared to ad 

libitum fed animals, the RF regime significantly enhances the circadian oscillation of plasma adiponectin, 

upregulates the diurnal expression of adiponectin receptors and Pgc1a clock genes associated with a 

profound reorganization of the diurnal expression patterns of appetite-regulating genes in the MBH of 

wild-type mice. Furthermore, central delivery of an antagonist of RORα in wild-type mice could recapitulate 

the impaired FAA phenotypes of Adipoq KO mice. These data thus provide evidence to support the role of 

central adiponectin signaling in food entrainment of MBH clocks and feeding rhythms.   

 

Together, these data reveal a novel metabolic feedback mechanism to the central circadian clocks. 
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1. Introduction 

In modern industrialized societies, there is an increasing prevalence of professions requiring irregular work 

hours. Extended shiftwork has been identified as a risk factor predisposing individuals to metabolic disorders 

(1, 2). Exposure to mistimed environmental time-cues (i.e., Zeitgebers) such as food intake leads to 

desynchrony among endogenous physiological rhythms and the external light/dark cycles and is believed to 

be one of the culprits that contributes to the adverse effects of shiftworking. Recent studies have highlighted 

an extensive crosstalk between metabolism and the circadian clock (3, 4). However, our understanding of 

the mechanistic links between these two systems is still largely incomplete.  

 

1.1. Mammalian circadian system 

The rotation of the Earth around its axis results in a repetitive succession of day and night. The profound 

environmental changes associated with the day-night cycle drove most organisms to evolve endogenous 

timekeepers to reliably anticipate predictable events at particular times of day and adjust their behaviors 

and physiology accordingly (5). Such endogenous timekeeping machineries are known as circadian (from 

Latin circa diem – about a day) clocks. In mammals, the cellular timekeeping machinery is comprised of a set 

of clock genes intertwined in a delayed interlocking transcriptional-translational feedback loop (TTL). 

Transcriptional activating Brain and muscle Arnt-like protein-1/ Circadian Locomotor Output Cycles Kaput 

(BMAL1/CLOCK) complexes activate the expression of their own repressors, Periods and Cryptochromes (Pers 

and Crys), during the day while high levels of PERs/CRYs protein accumulated in the nucleus during the night 

inhibit the activity of BMAL1/CLOCK and hence their own transcription. Progressive degradation of PERs and 

CRYs towards the end of the late night releases the inhibition and thus allows for the resumption of a new 

cycle of oscillation. This molecular clockwork regulates cellular physiology via controlling the rhythmic 

expression of E-box containing genes and is shared among the central circadian pacemaker – the 

suprachiasmatic nucleus (SCN) – and other tissues in the brain and in the periphery (Fig. 1).  

 

 



12 

 

 

 

Figure 1. Molecular make-up of the mammalian cellular circadian clockwork 

In mammals, the cellular timekeeping machinery is comprised of a set of clock genes intertwined with a delayed 

interlocking transcriptional-translational feedback loop (TTL). BMAL1/CLOCK complexes transcriptionally activates their 

own repressors Per1-3 and Cry1-2 via the E-box elements in their promoters during the day while the high level of 

PERs/CRYs accumulated in the nucleus during the night inhibits the activity of BMAL1/CLOCK and hence their own 

transcriptions. Progressive degradation of PERs and CRYs towards the end of the late night releases the inhibition and 

thus allows for the resumption of a new cycle of oscillation. This molecular clockwork regulates cellular physiology via 

controlling the rhythmic expression of other E-box containing clock control genes (CCGs). 

 

In order to produce coherent physiological rhythms, the mammalian circadian system is organized in a 

hierarchical fashion in which the SCN synchronizes the circadian clocks of different physiological structures in 

both the periphery and the central nervous system (CNS) to the external light-dark cycle via multiple routes 

including direct neural connections, neuro-endocrine secretion and behavioral regulations (5) (Fig. 2). 
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Figure 2. Schematic diagram of the hierarchical organization of mammalian circadian system. In order to generate 

coherent physiological and behavioral circadian rhythms, the local clocks residing in the periphery and the CNS are 

synchronized to the external day-night cycle by the SCN. The SCN clock is reset by the photic inputs transmitted from 

intrinsically photosensitive retinal ganglion cells (ipRGC) of the retina via the retinohypothalamic tract (RHT). The SCN 

clock then entrains the local clocks via multiple routes including direct neural connections, neuromodulators (in the 

CNS), hormones (in the periphery) and behavioral regulation 

 

1.2. Interaction between metabolism and the circadian clock 

Recently, metabolic signaling has been shown to impinge on the circadian system at various levels. Circadian 

clocks regulate feeding and metabolic rhythms of animals in sync with the environmental day/night cycle. 

Animals with mutations in clock genes are predisposed to develop feeding and metabolic deregulation (6, 7) 

(Table 1). Polymorphisms of clock genes have also been shown to associate with metabolic disorders in 

humans (8). Molecular clocks regulate a large array of metabolic pathways in various organs (5). 

Furthermore, many metabolic hormones such as ghrelin, glucocorticoids (GC), insulin and leptin are known 

to be regulated by the circadian clock on the one hand, and, on the other hand, are also known to feed back 

to the circadian system (9). Food is a potent Zeitgeber which can entrain and reset various non-SCN clocks 
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while having little effect on the SCN. Restricted feeding during the normal rest phase can uncouple 

peripheral tissue clocks from the SCN (10). The exact food-regulated clock resetting mechanisms in different 

tissues are still not completely understood (7). However, at the molecular level a number of important 

metabolic sensors such as adenosine monophosphate-activated protein kinase (AMPK), cellular nicotinamide 

adenine dinucleotide redox state (i.e., NAD
+
/NADH ratio), peroxisome proliferator-activated receptor 

gamma coactivator 1 alpha (PGC1α and β) and sirtuins (SIRT1 and 3) have been shown to impinge on 

molecular clock rhythms (7). However, the upstream physiological signals that couple to these metabolic 

pathways are still elusive. Together, not surprisingly many studies have demonstrated that compromised 

energy homeostasis of the body promotes circadian disruption (6). Feeding on diet that is rich in fat content 

(i.e., high fat diet; HFD) has been shown to disrupt circadian activity and local physiological rhythms even 

before the development of obesity (11). Moreover, mistimed feeding (i.e., eating during the normal rest 

phase) disturbs metabolic homeostasis (12, 13). When food access is temporally restricted to a particular 

time window of the day during the normal rest phase, animals will adapt by developing anticipatory 

behaviours and functions such as increased locomotor activity (i.e., food anticipatory activity; FAA), body 

temperature, glucocorticoid secretion just prior to the scheduled feeding. FAA rhythms represent a form of 

food entrainment of the circadian system as they persist even when the scheduled feeding condition is lifted 

(i.e., they free-run) (14). Food anticipation is believed to be advantageous for survival as it allows animals to 

organize their physiology for foraging in anticipation of a predictable food availability time window (15). 

Both the anatomical and molecular make-ups of the food entrainable oscillator (FEO) that is underlying FAA 

are still largely unknown. Of note, the SCN itself has been shown to suppress FAA (15, 16 and unpublished 

data). Some controversy exists about whether canonical clock gene function is necessary for FAA (15, 17, 

18). Both the CNS and periphery are involved in the development of FAA (15, 19). In the CNS, the 

hypothalamus, the reward circuitry and the cerebellum have been shown to regulate FAA rhythms while 

peripheral metabolic hormones are known to have modulatory roles (15).   
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Table 1. Summary of the impacts of clock gene alterations on feeding and metabolic regulations 

 
Adapted from Ref. 46  

    

 

1.3. Extra-SCN hypothalamic clocks in the mediobasal hypothalamus 

The mediobasal hypothalamus (MBH) is an assembly of hypothalamic nuclei, which controls body 

homeostasis and also plays a major role in regulating behavioral rhythms such as feeding/fasting and 

sleep/wake cycles (20). Despite the SCN has direct connections to multiple nuclei of the MBH, it has also 

been documented that autonomous cellular clocks exist in the MBH that regulate local physiology such as 

electrophysiological properties and the expression of appetite-regulating neuropeptides (NPs) (21, 22) (Fig. 

3). Diurnal expression rhythms of major NPs in the arcuate nucleus (ARC) – neuropeptide Y (NPY), 

agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine and amphetamine regulated 

transcript (CART) – have been documented (23-25). The importance of these appetite-regulating NPs in 

feeding rhythms was revealed in a number of studies using pharmacological and genetic approaches. For 

example, targeted ablation of NPY- or leptin- responsive neurons in the ARC profoundly disturbs diurnal 

feeding rhythms (26, 27). Genetic deletion of NPY receptors also results in altered feeding rhythms (28). 

More recently, postnatal ablation of AgRP expressing neurons has been shown to impair food anticipation 

(29). Along with these observations, neurons in the lateral hypothalamus (LH) expressing the orexigenic 

neuropeptide hypocretin (HCRT or also called orexin), which are downstream to the ARC’s NPY neurons, are 

also activated during food anticipation (30). Anorexinergic NPs appear to play a less important role in 

feeding rhythms. POMC is a precursor of multiple neuropeptides including the anorexigenic 

Gene target Metabolic/feeding phenotype Food anticipatoty activity Refs

BMAL1 Loss of feeding rhythm (arrhythmic) Maintained (88)

CK1 Altered activity, feeding, and metabolic rhythms in CK1
tau Maintained (89)

CLOCK
∆19 Hyperphagic, altered feeding rhythm, obese Maintained (76)

CRY1/CRY2 Loss of feeding rhythm (arrhythmic), hyperglycaemic Maintained (90,91)

Per1 — Maintained (92)

Per2 Altered feeding rhythms, lean, altered lipid metabolism Attenuated in Per2
brdm (92.93)

Per1/2 — Maintained in Per1
ldc

Per2
ldc (63,94)

— Attenuated in Per1
-/-

 /  Per2
brdm

Per3 Exacerbation of diet-induced obesity — (95)

Reverbα Obese, exacerbation of diet-induced obesity, altered lipid metabolism — (96)

Reverbα/β Arrhythmic, altered lipid metabolism — (63)

RORa Hyperphagic, lean, resistant to DIO — (97)
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alpha-melanocyte-stimulating hormones (α-MSH) which exerts its effects via melanocortin receptors (24). 

POMC deficient mice have shown to retain largely normal circadian activity and feeding rhythms, albeit 

showing altered nocturnal meal-patterns (31). On the other hand, the loss of melanocortin-3 receptor 

(MC3R) has been shown to significantly impair food anticipation under restricted feeding conditions (32). 

The dorsomedial nucleus of the hypothalamus (DMH) is an important integrating center that relays circadian 

inputs from the SCN to other physiological systems due to its direct connection to various brain nuclei such 

as the ARC, the LH, ventrolateral preoptic (VLPO) nuclei that regulate sleep/wake cycle, and the 

paraventricular nucleus of hypothalamus (PVN) controlling glucocorticoid secretion (33). Lesioning the DMH 

significantly disrupts circadian behavioral rhythms (34). The DMH has also been suggested as an important 

brain structure controlling FAA (35), but also (36).    

 

Figure 3. Self-sustaining molecular rhythms in various nuclei of the mediobasal hypothalamus organotypic slice 

cultures from Per2-luc mice. DMH: Dorsomedial hypothalamic nuceli, DMHc: DMH core, EP: Ependymal lining, ArcD: 

dorsal arcuate nucleus, ArcL: lateral arcuate nucleus, ME/PT: median eminence/pituitary, VMH: ventromedial 

hypothalamic nuclei. Adapted from Ref. 21. 
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1.4. Objectives of the current study 

One of the most important features of the MBH’s nuclei is the ability to perceive and integrate metabolic 

information carried by peripheral hormones to stabilize energy homeostasis of the body. Feeding-related 

hormones such as insulin, ghrelin and leptin have been shown to regulate appetite and energy expenditure 

via the MBH (20). Moreover, leptin and ghrelin have also been shown to regulate feeding rhythms and FAA 

(19). However, the physiological and molecular mechanisms conferring these effects are still elusive. I 

therefore hypothesize that metabolic hormones can reset molecular clocks in the MBH and thereby regulate 

feeding rhythms. To identify such factors, I established a cell-based approach to screen a list of candidate 

metabolic hormones for their ability to reset the cellular clock of hypothalamic neuronal cells. I identified an 

adipokines – adiponectin – as a novel mediobasal hypothalamic cellular clock modulator. In the periphery, 

adiponectin is known to enhance insulin sensitivity, modulating fatty acid oxidation and suppressing 

inflammation (37). In the CNS, it is involved in regulating food intake, energy expenditure and mood (38, 39). 

Importantly, circulating adiponectin levels are regulated by the metabolic status of the body. In a situation of 

energy excess (such as obesity) adiponectin secretion is suppressed. In contrast, during fasting, both 

circulating adiponectin level and the expression of its cognate receptors in the MBH are upregulated (40). 

Thus, I further hypothesize that adiponectin is a novel MBH circadian clock modulator which can modify the 

circadian feeding behaviour. In the current study, I employ in vitro models of MBH neurons as well as 

adiponectin deficient mice as an in vivo model to investigate the potential role of adiponectin as a modifier 

of the mediobasal hypothalamic circadian clock.    
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2. Results 

2.1. Establishment of the hypothalamic circadian reporter cell line 

To search for metabolic hormones capable of resetting the MBH cellular clock, I used an established 

SV40-immortalized mHypoE-N44 (N44 hereafter) cell line of embryonic hypothalamic neuronal origin (22). 

This cell line has been characterized to be GABAergic and express both Npy and Agrp, but not Cart and Pomc 

(22). In addition, the circadian oscillation of the molecular clockwork has been demonstrated in this cell line 

(22). To monitor the cellular rhythm in real-time, I engineered N44 cells to stably express a circadian reporter 

– Bmal1::LUCIFERASE (Bmal1-luc) in which the expression of luciferase is under the control of the Bmal1 

promoter – via lentiviral transduction (41). After synchronization with dexamethasone (Dex), Bmal1-Luc 

activity displayed a self-sustained circadian oscillation with a period length of 23.67 ± 0.1 hr (means ± SEM, n 

= 21) when cultured in serum-free, B-27 supplemented medium (Fig. 4 A). With this reporter cell line, I then 

set up a screening paradigm in which different peptide hormones were applied to the cells at roughly two 

opposite phases of the first circadian cycle (hr 13 and 23) separately and the peak times of the two 

subsequent circadian cycles after treatment were used as readout (Fig. 4 A). This anti-phasic treatment 

scheme was used to circumvent the potential existence of circadian dead zones, i.e. phase intervals at which 

the clock would be non-responsive to an otherwise active agent. I validated this experimental setting with 

two well established positive controls of clock-resetting reagents, forskolin (Fors; an adenylate cyclase 

activator) and Dex (a glucocorticoid receptor agonist) (5, 42). As expected, both of them significantly reset 

the cellular clock of N44 cells in a phase-dependent manner (Fig. 4 B - D). I then selected a short list of 

metabolic peptide hormones based on their reported binding sites and physiological effects on the MBH 

from the literature for our screen (Table 2). Among all candidates, only (globular) adiponectin (gAdn) showed 

significant effects on resetting the phase of the cellular circadian rhythm (Fig. 4 F & G). As a representative of 

the negative candidates, luminescence recordings from N44 Bmal1-luc cells treated with leptin are shown 

(Fig. 4 E). Adiponectin is an adipokine that has been shown to modulate a wide range of physiological 

systems in, both, the periphery and the CNS. Importantly, its functions are regulated by the metabolic state 

of the body (40). These screen data suggested that adiponectin may be a novel link between peripheral 
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energy metabolism and circadian clocks in the CNS. Thus I decided to further study the role of adiponectin in 

circadian rhythm regulation in detail.  

 

 

Figure 4. Adiponectin resets molecular clock in N44 cells 

(A) A representative normalized bioluminescence recording of N44 Bmal1-luc cells synchronized by 2hr dexamethasone 

shock. The period length was calculated from 21 independent recordings across 5 passages. Two arrows (at hr13 and 

hr23 after synchronization) indicate the time points for the drug treatments in the peptide hormone screen. The peak 

times of the 2nd
 
and 3rd circadian cycle were chosen as the readout of the screen. 

(B - D) Normalized luminescence recordings from synchronized N44 Bmal1-Luc cells treated with forskolin (B) and 

dexamethansone (C) as a positive control of the screen, respectively. (D) Analysis of the peak time of the 2nd circadian 

cycle of Bmal1-luc (n=4). 

(E) Leptin (5ug/ml) as a representative negative candidate of the screen (n=4). 

(F and G) gAdn as a positive candidate of the screen. Normalized luminescence recordings (F) and peak time analysis (G) 

of N44 Bmal1-Luc cells treated with gAdn (3ug/ml; n=3). 

(H and I) Phase-dependent response of gAdn-induced phase-shift in N44 Bmal1-Luc cells. (H) gAdn (5ug/ml) was treated 

on cells at indicated time points after synchronization. The peak time of the 3rd circadian cycle were used as readout. 



20 

 

(I) Phase-dependent response analysis of (H). The treatment time was adjusted into radian of the circadian Bmal1-luc 

rhythms. Colour code for the treatment time is consistent with (I) (n=3 per time point).  

Error bars indicate means ± SEM. **p<0.01, ***p<0.001, Student‘s t-test. Groups denoted with different alphabets 

indicates statistical significance (p<0.05), One-Way ANOVA with Tukey post-test. 

 

 

Table 2. Summary of the result from the screen for MBH clock-modulating metabolic peptide hormones 

 

+ve: phase advance; -ve: phase delay; ±SEM, *p<0.05, **p<0.01,***<0.001 vs PBS ctrl; N=3-4  
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2.2. Adiponectin phase-resets molecular clocks in mediobasal hypothalamic neurons 

From the screen, I had observed that adiponectin can phase-reset the Bmal1-luc rhythm in a 

phase-dependent manner with opposite directions as observed after forskolin or dexamethasone 

treatments (Fig. 4 D & G), suggesting the existence of a distinct resetting mechanism. To further characterize 

and confirm the phase-dependency of adiponectin’s clock-resetting effect, synchronized N44 Bmal1-luc cells 

were treated around the course of the first circadian cycle at 6-hr intervals with constant real-time 

luminescence recording to allow for a more precise determination of the circadian phase at the time of 

treatment. Using the peak time of the subsequent circadian cycle as readout allowed me to construct a 

phase response curve (PRC), which confirmed the phase-dependent clock resetting effect of gAdn on 

hypothalamic cells (Fig. 4 H - I) distinct from the PRCs of Fors and Dex (Fig. 5).  
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Figure 5. Resetting of molecular clock in N44 cells by forskolin and dexamethasone 

(A and B) Representative normalized bioluminescence recordings of synchronized N44 Bmal1-luc cells treated with 

10uM forskolin (A) and 100nM dexamethasone (B) at indicated time points. Grey curves are PBS treated controls. 

(C and D) Phase-dependent response of Fors-induced (C) and Dex-induced (D) phase-shift of Bmal1-luc rhythms in N44 

Bmal1-luc cells. Peak time of the 3
rd

 circadian cycles was used as readout. Treatment time was adjusted into circadian 

time of Bmal1-luc rhythm with CT0 defined as the middle point of the ascending phase from the trough to the peak of 

the curve. The last data points of treatment were replotted. 

 

To address the physiological relevance of the observations in immortalized N44 cells, I further tested the 

clock-modulating effects of gAdn on primary hypothalamic neurons and organotypic MBH slices. I isolated 

primary embryonic hypothalamic neurons and lentivirally transduced them to express Bmal1-luc. Upon Dex 

synchronization, the primary hypothalamic neurons showed a robust circadian Bmal1-luc expression rhythm 
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with a period length 24.45 ± 0.15 hr (means ± SEM, n = 2; Fig. 6 A). Treating the neurons at hr 68 (around the 

nadir) or hr 83 (around the peak) after Dex synchronization with gAdn resulted in stable phase-advances or 

-delays, respectively, consistent with the directions of phase-shift in N44 cells, except that the responses 

were more pronounced in primary neurons  (Fig. 6 B & C). Multiple nuclei in the MBH show robust 

self-sustaining circadian rhythms (21). I therefore used the slices of the ARC/ME complex from 

Per2::LUCIFERASE (Per2-luc) reporter mice as a model to test for the phase-resetting effect of gAdn ex vivo 

(43). Preparation of these slices indeed showed robust circadian oscillations of Per2-luc rhythms over 5 days 

of measurement (Fig. 6 D). In line with the effects observed from N44 cells and isolated neurons, treatment 

with gAdn resulted in phase-shifts of the Per2-luc expression rhythm in a phase dependent manner relative 

to PBS treated slices (Fig 6 E - I). Together, these data suggest that adiponectin is a bona fide MBH molecular 

clock modulator.  
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Figure 6. Adiponectin resets molecular clock in primary hypothalamic neurons and organotypic MBH slice cultures 

(A) Representative normalized luminescence recordings of synchronized primary hypothalamic neurons expressing Bmal1-luc. 

(B and C) gAdn resets cellular circadian rhythm in primary hypothalamic neurons expressing Bmal1-luc. (B) Normalized luminescence 

recordings of primary hypothalamic neurons treated with gAdn (5ug/ml) at indicated time points after synchronization. (C) 

Quantification of gAdn-induced phase shifts of Bmal1-luc rhythms shown in (H) (n=3). 

(D) Representative normalized luminescence recording of arcuate nucleus/median eminence (ARC/ME) slices from Per2-luc mice. 

The highlighted region of the insert indicates the ARC/ME preparation brought for luminescence recording. 

(E and F) Representative luminescence recordings of the ARC/ME slices of Per2-luc mice treated near the trough of the Per2-luc 

rhythm as indicated by the arrows with PBS (E) or 3ug/ml gAdn (F). 

(G and H) Representative luminescence recordings of the ARC/ME slices of Per2-luc mice treated near the peak of the Per2-luc 

rhythm as indicated by the arrows with PBS (G) or 3ug/ml gAdn (H). 

(I) Phase response curve of gAdn-induced phase shift of Per2-luc rhythms of ARC/ME slices. The treatment time was adjusted into 

radian of the circadian Per2-luc rhythm of slices. Note that the PBS treated slices regardless of the treatment time showed about 

1-2.5 hr phase-advancement compared to the old phases which is due to the natural transition to free-running period when kept ex 

vivo. Each dot represents individual slice treated with either PBS or gAdn at indicated circadian phase. 

Error bars indicate means ± SEM. ***p<0.001, Student‘s t-test. 
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2.3. Characterization of the circadian phenotype of adiponectin deficient mice 

To investigate the physiological relevance of the MBH clock-modulating effects of adiponectin signaling in 

vivo, I used an established adiponectin deficient (Adipoq KO) mouse line (44, 45). To assess the circadian 

phenotype of Adipoq KO mice, a battery of circadian behavioral assays with running-wheels was performed. 

Adipoq KO mice have showed normal levels of locomotor activity compared to wild-type (WT) controls 

under both light-dark (LD) and constant darkness (DD) conditions (data not shown). Under LD, Adipoq KO 

mice displayed higher activities during the early dark phase followed by a compensatory decrease in the late 

dark phase (Fig. 7 A). However, Adipoq KO mice had no obvious defects on other circadian parameters of the 

activity rhythm that I have analyzed in LD, DD and LL (constant light ON) (Fig. 7 B – F). Interestingly, in a 6-hr 

phase advance experimental jet-lag paradigm, Adipoq KO mice readapted their activity rhythms faster to the 

new light/dark cycle than control animals (Fig. 7 G & H). These data suggest that adiponectin is not a major 

regulator of the master circadian clock, but it may play a modulatory role in the entrainment of behavioral 

rhythms to shifts in the photic cycle.  
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Figure 7. Characterization of the behavioral circadian phenotypes of Adipoq KO mice assessed by running wheels 

(A) Daily activity profile integrated over 10 days in LD. 

(B) Activity onset variation in LD. 

(C) Alpha phase in LD. 

(D) Phase angle with respect to light-OFF in LD. 

(E) Average period over 10 days in DD. 

(F) Average period over 10 days in LL. 

(G) Activity onset under a 6 hr phase-advance experimental jet-lag paradigm. 

(H) Quantification of the half-shift time of the sigmoidal regressions in (G). 

Error bars indicate means ± SEM, n=12 per group, *p<0.05, ***p<0.001, ns=not significant, Mann-Whitney test. 
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2.4. The role of the molecular clock in MBH functions 

As aforementioned, the molecular clocks residing in the MBH have been shown to regulate the local 

physiology in vitro, thus it appears that MBH clocks may contribute to the regulation of daily feeding 

patterns in vivo (46). Animals lacking components of the molecular clockwork show disrupted daily feeding 

behaviors (46; Table 1). To gain insights into how the circadian clock impinges on MBH functions, I analyzed 

the circadian regulation of mRNA levels of appetite-regulating neuropeptides (NP) in the MBH of WT and 

clock-deficient Bmal1 knockout (Bmal1 KO) mice. Loss of Bmal1 abolished the circadian expression rhythm of 

a well-established clock output gene, D site of albumin promoter (albumin D-box) binding protein (Dbp), 

along with drastic downregulation of its overall expression in the MBH (genotype effect, F=340.1, p<0.0001; 

Fig. 8 A & B). In the Bmal1 KO MBH, the 24-hr expression profiles of Npy (F=11.96, p=0.0032), Cart (F=50.39, 

p<0.0001) and Pomc (F=51.14, p<0.0001) were significantly downregulated (Fig. 8 C - F), suggesting that the 

circadian clock is an important regulator of appetite-regulating NP expression in vivo. Adiponectin is known 

to regulate a variety of physiological systems via its two cognate receptors, AdipoR1 and R2, which have 

been shown to have a broad range of tissue distribution in both the periphery and in the CNS (39, 40). To 

test the role of the circadian clock in the expression of AdipoRs in the MBH, I analyzed their mRNA levels in 

WT and Bmal1 KO mice. Consistent with the reported 24-hr expression profile of these two receptors in the 

periphery (47), I found that in WT mice Adipor2 expression showed a significant circadian rhythm (P<0.05, 

cosinor analysis) while Adipor1 did not (Fig. 8 G & H). The loss of Bmal1 was reported to abolish the 

expression rhythms of Adipor2 and led to general downregulation of both Adipor1 and -r2 in the periphery. 

In the MBH, I observed that Bmal1 deficiency also abolished the circadian rhythm of Adipor2, but 

accentuated the overall expression of both Adipor1 (F=22.09, p=0.0002) and -r2 (F=18.29, p=0.0006), 

suggesting the existence of a tissue-specific regulatory mechanism for AdipoRs expression by the circadian 

clock.  
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Figure 8. Characterization of appetite-regulating neuropeptides and adiponectin receptors 24 hr expression profile in 

the MBH of WT and Bmal1 KO mice 

qPCR analysis of the MBH of WT and Bmal1 KO mice released into constant darkness for indicated timespan. 

(A) Threshold cycles of Dbp and housekeeping Ef1a genes in qPCR analysis. 

(B - H) Double-plotted 24-hr mRNA expression profile of selected genes. 

Error bars indicate means ± SEM, n=3 per time point, **p<0.01, ***p<0.001, Two-Way ANOVA with Bonferroni 

post-test. 

 

 

2.5. Adiponectin deficient mice have altered feeding rhythms 

Adipoq KO mice consumed comparable amounts of food per day as WT, however, they consumed 

significantly more food during the daytime (i.e. the light phase) in LD conditions and the subjective daytime 

(i.e. the normal rest phase) in DD. Further analysis revealed that Adipoq KO mice had a significantly 
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dampened feeding rhythm in both LD (Fig. 9 A - C) and DD conditions (Fig. 9 D - F). To investigate if the loss 

of adiponectin could affect clock gene and appetite-regulating NP gene expression in the MBH, I analyzed 

the 24-hr expression profiles of corresponding transcripts in the MBH of Adipoq KO and WT mice. The 

circadian expression rhythms of Bmal1, Per2 and Dbp were significantly dampened in Adipoq KO mice (Fig. 9 

G - I). Also, the diurnal expression oscillations of orexigenic NPs - AgRP, Npy and Hcrt - were markedly 

blunted, particularly during the subjective nighttime, in KO mice (Fig. 9 J - L). No significant effect was 

observed for anorexigenic NP transcripts - Cart and Pomc (Fig. 9 M & N).  
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Figure 9. Adiponectin deficient mice exhibit dampened feeding rhythm and disrupted diurnal expression profile of 

clock genes and appetite-regulating neuropeptide genes in the MBH 

(A - F) Altered feeding rhythm in Adipoq KO mice under LD (A-C) and DD (D-F) conditions. (A and D) The daily food 

consumption under LD and DD conditions. (B and E) Percentage of daily food consumption during the light phase (LD) 

and subjective daytime (DD). (C and F) 24-hr food intake profile of WT and Adipoq KO mice under LD (C) and DD (F) 

conditions. Data shown are an average of 2 measurements of the same cohort of mice separated by about a week 

(n=12). 

(G - N) Double-plotted 24 hr mRNA expression profiles of selected clock genes and appetite-regulating neuropeptide 

genes in the MBH of WT and Adipoq KO mice released into DD for indicated time span (n=3 per time point). 

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, Mann Whitney test for pairwise comparison and 

Two-Way ANOVA with Bonferroni post-test for profile data. 
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2.6. Tissue-specific effect of adiponectin on the circadian clocks in vivo 

To understand if loss of adiponectin also affects clock regulation in other tissues, I also analyzed the 24-hr 

expression profiles of clock genes in the prefrontal cortex (PFC), the liver and femur skeletal muscles in WT 

and Adipoq KO mice (Fig. 10). In the PFC, I observed a general dampening of the expression rhythms similar 

to those of the MBH, albeit the timing of effects was different. Only minor changes in clock gene expression 

were observed in the liver and muscles, suggesting that the effect of adiponectin on the cellular clock may 

be tissue specific and apparently clocks residing in the CNS are more affected.  

 

 

Figure 10. Tissue specific effects of adiponectin on Bmal1 expression in vivo 

Circadian expression profiles of selected clock genes in different tissues in WT and Adipoq KO mice released into DD for 

indicated time span (n=3 per time point). Error bars indicate means ± SEM. *p<0.05, **p<0.01, Two-Way ANOVA with 

Bonferroni post-test 

 

2.7. Npy is a direct target of the molecular clock  

In both Bmal1 KO and Adipoq KO mice I observed a blunted diurnal expression profile of Npy, together with 

dampened MBH clock gene oscillations. Given the pivotal role of NPY neurons in appetite regulation, these 

data indicate that altered Npy expression may play a major role in the dampened feeding phenotype of 



32 

 

Adipoq KO mice. In line with this claim, BMAL1 protein has been shown to rhythmically bind to the E-box 

elements of the Npy promoter in hypothalamic cells (22), suggesting that Npy is likely a direct target of 

BMAL1. To further interrogate this hypothesis, I used a short hairpin ribonucleic acid (shRNA) knock-down 

approach to demonstrate that reduction of Bmal1 expression in N44 cells resulted in Npy downregulation 

(Fig. 11 A & B), indicating a positive relationship between Bmal1 and Npy expression. Moreover, using a Npy 

promoter end-point luciferase assay, I demonstrated that overexpressing BMAL1 and CLOCK activates the 

Npy promoter in a dose-dependent manner (Fig. 11 C). CLOCK/BMAL1’s transactivating effect was abolished 

by co-expressing CRY1 (Fig. 11 D). Together, these data strongly indicate that NPY is a direct target of the 

molecular clockwork in the hypothalamus.  

 

 

Figure 11. Npy is a direct target of the molecular clock 

(A and B) qPCR analysis of Bmal1 (A) and NPY (B) expression N44 cells with shRNA knockdown of Bmal1 (n=3). 

(C and D) NPY promoter end-point luciferase reporter assay in HEK293T cells. (C) NPY promoter activity was activated 

by overexpressing CLOCK and BMAL1 in a dose- dependent manner (n=6). (D) The BMAL1/CLOCK‘s activating effect on 

NPY promoter was abolished by CRY1 overexpression (n=6). 

Error bars indicate means ± SEM. ***p<0.001, Student‘s t-test. Groups denoted with different letters indicates 

statistical significance (p<0.05), One-Way ANOVA with Tukey post-test. 
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2.8. Adiponectin regulates food anticipatory circadian rhythms 

When food availability is restricted to a particular time window of the day, circadian rhythms of animals will 

be entrained by the feeding schedule. At the level of behavior this is characterized by the development of 

FAA. The molecular clockwork in the central nervous system has been shown to play a role in regulating the 

FAA rhythm (48). In addition, metabolic hormones such as ghrelin and leptin can modulate FAA (19). To test 

if adiponectin is also involved in this behavioral re-adaptation, I challenged WT and Adipoq KO mice with a 

time-restricted feeding (RF) regime in which food availability was gradually confined to a 4-hr time window 

during the late rest phase (ZT 7-11). Locomotor activity within the 3-hr time window (ZT 4-7) preceeding 

feeding time was defined as FAA (Fig. 12 A). Of note, under this paradigm, I did not observe overt differences 

in well-being between WT and Adipoq KO mice as also reflected in body weight regulation and total activity 

levels (Fig. 12 B & C). However, Adipoq KO mice showed a significantly delayed development of FAA (Day 

3-5) compared to WT, but caught up with regard to total FAA from Day 6 on (Fig 12 D – F & J). To discern if 

the effects of adiponectin on food anticipatory behavioral rhythms affect the food entrainable oscillator 

(FEO) I resumed the ad libitum feeding on Day 10 until ZT11 on Day 11 followed by food deprivation until 

ZT11 on Day 12. The ad libitum feeding largely abolished the FAA of WT and Adipoq KO mice on Day 11 (Fig. 

12G, H & J). The subsequent removal of food resurrected the FAA in both WT and Adipoq KO mice on Day 

12, but the FAA of Adipoq KO mice was significantly reduced compared to that of WT animals (Fig. 12 I & J). 

This data indicate that adiponectin directly impinges on the FEO system. In parallel to FAA I also measured 

food intake during Day 0-10 of the RF paradigm. Adipoq KO ate less during the early phase of the RF (Day 2 - 

5), but then caught up later, similar to the dynamics observed for FAA (Fig. 12 K). Notably, on Day 2 when 

the food access was limited to the daytime, Adipoq KO mice consumed more food than WT, which is in line 

with what I observed under unchallenged conditions (Fig. 9 B). Together, I demonstrated that adiponectin 

contributes to the robustness of the FEO and promotes behavioral re-adaptation under a timed RF regime. 
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Figure 12. Adiponectin regulates food anticipatory circadian activity rhythm 

(A) The time-restricted feeding (RF) regime used to induce FAA. The blue shade areas indicate the food-available time 

window. The rectangle with red broken border indicates the 3hr time window of the FAA. 

(B) Body weight measured before and after the RF regime (n=12). 

(C) Normalized total daily activity over the course of RF regime (n=12 on Day 1-10; n=6 on day 11-12, also for (D-K)). 

(D - I) 24-hr activity profiles of individual day during the course of RF regime. The green bars overhead indicate feeding 

time; the blue rectangular windows indicate the 3hr FAA measured 
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(J) Quantification of the 3hr FAA over the course of RF regime 

(K) Total daily food consumption over the course of RF regime. 

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, Mann Whitney test. 

 

2.9. Adiponectin upregulates Bmal1 expression in the mediobasal basal hypothalamic neurons 

In the luminescence recordings of my phase-resetting experiments, I consistently observed that gAdn 

treatment resulted in an acute and long-lasting upregulation of the Bmal1-luc signal in the raw luminescence 

recordings independent of the phase of treatment (Fig. 4 H). In vivo, I observed that adiponectin deficiency 

led to a dampening of the molecular clock oscillation in the MBH (Fig. 9 G - I). Together these findings 

suggested a positive effect of adiponectin on Bmal1 transcription. To confirm this, I compared gAdn 

treatment effects with that of other clock resetting agents on unsynchronized N44 Bmal1-luc cells. I found 

that gAdn treatment induced Bmal1-luc activity robustly over the course of 24 hr; in contrast, Fors and Dex 

did change the timing of luminescence peaks, but they rather led to a decrease of Bmal1-luc raw activity (Fig. 

13 A - B). These data were consistent with the conclusion from the phase-resetting experiments that the 

mechanism of adiponectin clock resetting may differ from that of Fors and Dex, which both exert effects 

mainly via Per – but not Bmal1 – gene induction (5). gAdn treatment on N44 cells stably expressing luciferase 

under control of the constitutive mouse phosphoglycerate kinase 1 (Pgk) promoter (Pgk-luc) did not cause 

discernable changes in luciferase activity, supporting the specificity adiponectin’s effects on Bmal1-luc 

expression (Fig. 13 C). Using qPCR I confirmed the upregulating effect of gAdn on endogenous Bmal1 

expression at the mRNA level (Fig. 13 D) and by Western blot at the protein level (Fig. 13 F). Notably, Per2 

was not acutely upregulated by gAdn (Fig. 13 E).  Adiponectin is known to exist in different forms – in a 

globular form, as trimer, hexamer and high molecular weight (HMW) oligomers, all of which are formed via 

posttranslational processings of adiponectin peptides and display distinct affinities to AdipoR1 and R2 

receptors (49, 50). Whilst the bacteria-expressed recombinant gAdn used so far represents a specific agonist 

of AdipoRs, treating unsynchronized N44 cells with full-length adiponectin (fAdn) expressed from 

mammalian cells (and comprising a mixture of different isoforms of adiponectin in a physiological ratio 

similarly resulted in a dose-dependent increase of Bmal1-luc activity, albeit with a lower efficacy compared 
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to gAdn alone (Fig. 13 G & H) (38, 50). To further confirm the physiological relevance of our observations, I 

performed gAdn treatment on synchronized Bmal1-luc expressing primary hypothalamic neurons around the 

peak time of the Bmal1-luc rhythm. Comparable to what I had observed in N44 cells, gAdn treatment of 

neurons acutely stimulated Bmal1-Luc activity (Fig 13 I & J). These cell-based data are thus in line with the in 

vivo observations that adiponectin has an enhancing effect on Bmal1 expression. To investigate if the 

increase of circulating adiponectin could impinge on the MBH clock in vivo, with the help of my colleague Dr. 

Christiane Koch, we intravenously (i.v.) administered fAdn (1μg/g) to Adipoq KO mice at ZT6 (in the middle of 

the descending phase of the MBH Bmal1 rhythm) via the tail vein. Bmal1 expression in the MBH of fAdn 

treated mice was significantly enhanced compared to PBS treated controls (Fig. 13K). To investigate if 

modulating endogenous central adiponectin bioavialability could impinge on Bmal1 expression in the MBH, I 

– again with the help of Dr. Koch – performed intracerebroventricular (i.c.v.) injections to centrally deliver 

anti-adiponectin antibodies (α-Adn) with the aim to antagonize central adiponectin signaling (39) on awake 

WT mice at ZT 21-22 (a few hours before the peak of MBH Bmal1 rhythms) under dim red illumination. 

α-Adn treatment significantly reduced Bmal1 expression in the MBH compared to unimmunized 

immunoglobulin G (IgG) controls (Fig. 13 L). In sum, in vitro and in vivo data provide compelling evidence 

that adiponectin signaling is a positive regulator of Bmal1 expression in the MBH.      
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Figure 13. Adiponectin induces Bmal1 transcription 

(A and B) gAdn (5ug/ml) and others clock-resetting agents treatment on unsynchronized N44 Bmal1-luc cells. (A) Raw 

bioluminescence recordings of the cells treated with drugs as indicated. (B) Quantification of the normalized peak 

luminescence magnitudes of recordings in (A) (n=3). 

(C) Normalized bioluminescence recordings of unsynchronized N44 cells stably expressing Pgk-luc treated with gAd 

(5ug/ml) (n=5). 

(D and E) qPCR analysis of endogenous Bmal1 (F) and Per2 (G) expression in unsynchronized N44 cells treated with 

gAdn for 3 hr. 
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(F) Immunoblot analysis of BMAL11 protein level in N44 cells 6 hr after gAdn treatment (5ug/ml). β-tubulin was used as 

the loading control (n=4). 

(G and H) Full-length mammalian cells-expressed adiponectin (fAdn) treatment on unsynchronized N44 Bmal1-luc cells. 

(G) Raw bioluminescence recordings of the cells treated with different doses of fAdn as indicated. (H) Quantification of 

the normalized peak luminescence magnitudes of recordings in (G) (n=3). 

(I and J) gAdn treatment on synchronized primary hypothalamic neurons expressing Bmal1-luc. (I) Raw luminescence 

recordings of Bmal1-luc expressing primary hypothalamic neurons treated with PBS or gAdn (5ug/ml) at the time as 

indicated by the arrow. (J) Quantification of the normalized peak magnitudes of the recordings shown in (I) (n=3). 

(K) qPCR analysis of Bmal1 expression in the MBH of Adipoq KO mice at ZT9 after i.v. injection with PBS or fAdn (1ug/g) 

at ZT6.  

(L) qPCR analysis of Bmal1 expression in the MBH of WT mice at ZT0 after i.c.v. administration with control IgG or 

anti-adiponectin antibody (0.6ug) at ZT21-22.  

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, ns = no significant difference. Groups denoted with 

different alphabets indicates statistical significance (p<0.05). One-Way ANOVA with Bonferroni post-test for 

multi-groups analysis compared to the control group in (B). Student‘s t-test in (F) and (J). Mann Whitney test in (K) and 

(L). One-Way ANOVA with Tukey post-test in (D) and (E).  

 

2.10. Dose-dependency of adiponectin-induced phase resetting and Bmal1 induction 

The paradigm used for the peptide screen with synchronized N44 Bmal1-luc cells was proven to be a robust 

experimental setting which allows for simultaneously assessing the phase-resetting and Bmal1 induction 

effects of adiponectin (Fig. 4 A). To better determine phase- and dose-dependencies of adiponectin 

treatment, I treated synchronized N44 Bmal1-luc cells with gAdn at various doses and at roughly two 

opposite circadian phases – hr 13 (near the peak; Fig. 14 A) and hr 23 (near the trough; Fig. 14 B). Consistent 

to the data shown in Figure 4, the direction of the phase shift was opposite when the treatments were 

performed at opposite circadian phases. In contrast, the dose-dependency of the phase-resetting effect (i.e., 

the absolute phase shift) of gAdn did not depend on treatment phase (Fig 14 B & E). Similarly, gAdn could 

also upregulate Bmal1-luc in a dose-dependent manner regardless of the circadian phase of the treatment 

(Fig. 14 C & F). These data shed light on the mechanistic nature of the gAdn-induced clock-modulating 

effects.  
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Figure 14. Dose-dependency of adiponectin-induced phase resetting and Bmal1 induction 

(A - C) Dose-dependent effects of adiponectin on synchronized N44 Bmal1-luc cells treated near the peak (hr 13). (A) Raw 

luminescence recordings of synchronized N44 Bmal1-luc cells treated with various doses of gAdn at hr13. (B) Analysis of the peak 

time of the 2nd circadian cycle (rectangle with red broken-line) of recordings as shown in (A). (C) Analysis of the peak magnitude of 

the 2nd and 3rd circadian cycle of recordings as shown in (A). 

(D - F) Dose-dependent effects of adiponectin on synchronized N44 Bmal1-luc cells treated near the trough (hr 23). (D) Raw 

luminescence recordings of synchronized N44 Bmal1-luc cells treated with various doses of gAdn at hr23. (E) Analysis of the peak 

time of the 2nd circadian cycle (rectangle with red broken-line) of recordings as shown in (D). (F) Analysis of the peak magnitude of 

the 2nd and 3rd circadian cycle of recordings as shown in (D). 

Error bars indicate means ± SEM. Groups denoted with different alphabets indicate statistical significance (p<0.05), One-Way ANOVA 

with Tukey post-test, ns=not significant. 
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2.11. Tissue-specific effects of adiponectin on the circadian clocks in vitro 

In vivo, adiponectin’s clock-modulating effects were strongly tissue-specific. To delineate if this specificity 

occurs at the cellular level (i.e. is cell-type specific) or at the systemic level (such as influenced by systemic 

signals), I tested the acute Bmal1 inducing effect of gAdn in different cell-lines engineered to stably express 

Bmal1-luc. Under unsynchronized conditions, gAdn treatment also acutely stimulated Bmal1-luc activity in 

another mediobasal hypothalamic cell line, mHypoE N41 (Fig 15 B). In contrast, gAdn treatment failed to 

elicit discernable changes in Bmal1-luc expression in cell lines of fibroblast origin (Fig 15 C & D). Interestingly, 

this tissue specificity cannot be explained by the absence of particular adiponectin receptors including 

T-cadherin, which presumably is a decoy receptor of adiponectin signaling in cardiac tissues (Fig. 15 E) (40). 

Together, this experiment revealed that the acute Bmal1 inducing effect of adiponectin appears to be 

cell-type specific, probably due to the specific wiring of the downstream signaling cascades of adiponectin in 

different cell types (37, 40, 49). 

 

 

 

Figure 15. Tissue specific effects of adiponectin on Bmal1 expression in vitro 

(A - D) Raw luminescence recordings of different unsynchronized cell lines stably expressing Bmal1-luc treated with gAdn (n=4). 

(E) RT-PCR analysis of mRNA expression of adiponectin receptors in cell lines used in (B-E). 
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Error bars indicate means ± SEM.  

 

2.12. Differential roles of adiponectin receptors on in clock resetting  

In an early phase of this study, I noticed that the phase-resetting effect of gAdn treatment in N44 cells was 

observed only when cells were cultured in serum-free medium (Fig. 16 A - C). One potential explanation to 

this phenomenon is that adiponectin signaling is already saturated by the abundant presence of adiponectin 

molecules in serum-containing medium. If this would be the case, then a loss-of-function approach that 

knocks down individual components of the adiponectin signaling cascade in N44 cells maintained in 

serum-containing medium would be feasible to allow us to gain insight into the molecular mechanism of 

adiponectin clock resetting effects. Using a shRNA approach I knocked down (KD) Adipor1 and -r2 

individually to less than one third of the original level in N44 cells. While knocking down Adipor2 had no 

effect on the mRNA level of Adipor1, knocking down Adipor1 led to a simultaneous downregulation of 

Adipor2 (Fig. 16 D & E). This effect did not depend on a specific shRNA, but may actually reflect an 

Adipor1-dependent regulation of Adipor2 expression, as transduction with a second AdipoR1-targeting 

shRNA gave a similar result (Fig. 17 C & D). Knocking down individual adiponectin receptors intriguingly 

resulted in differential effects on Bmal1 expression: AdipoR1 KD led to downregulation of Bmal1 while 

AdipoR2 KD had the opposite effect (Fig. 16 F). These observations were confirmed with a second set of 

shRNAs targeting distinct sequences of both Adipor1 and -r2 transcripts (Fig 17 C-H). Interestingly, when 

both Adipor1 and -r2 were knocked down simultaneously (R1R2 dKD), it appeared that the Bmal1 

downregulating effect of AdipoR1 KD was dominating over the upregulating effect of the AdipoR2 KD (Fig. 16 

E and Fig. 17 A & B). I speculated that REV-ERBα, a transcriptional repressor of Bmal1, may be involved in the 

differential effect of the two adiponectin receptors on Bmal1 expression. Knocking down either Adipor1 or 

-r2 individually reduced the expression of Nr1d1 (encoding gene of REV-ERB α) (Fig. 17 B). While the 

downregulation of Nr1d1 in AdipoR1 KD cells is likely secondary to the downregulation of Bmal1, the 

reduction of Nr1d1 in AdipoR2 KD cells could explain the observed Bmal1 upregulation in these cells (Fig. 17 

B).  To understand the role of adiponectin receptors in cellular circadian rhythms, luciferase activity in 
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synchronized N44 Bmal1-luc cells cultured in serum-containing medium with individual AdipoR knockdown 

was recorded. Consistent with previous data, AdipoR1 KD led to lower overall luminescence magnitudes 

while AdipoR2 KD had the opposite effect. I also analyzed the timing of the first peak which is related to the 

response of the cellular clock to the synchronizing signal and the average period over 4 circadian cycles. 

AdipoR1 KD resulted in a phase advance of the first peak together with period lengthening during 

subsequent cycles while AdipoR2 KD had no significant effects on these two parameters (Fig. 16 H - J). 

Together, these data indicate that AdipoR1 may mediate the clock-modulating effects of adiponectin in 

hypothalamic neurons. To further test this, I treated AdipoR1 KD and scramble shRNA transduced N44 

Bmal1-luc cells cultured in serum free medium at hr 23 after synchronization with gAdn to analyze 

phase-resetting and Bmal1 induction. AdipoR1 knockdown significantly reduced gAdn induced Bmal1 

upregulation and phase advances (Fig 16 K - N). Together, these data lead us to conclude that AdipoR1 is the 

major receptor that mediates the clock-modulating effects of adiponectin in MBH neurons.  
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Figure 16. AdipoR1 mediates the clock modulating effects of adiponectin. 

(A - C) Presence of serum abolishes the phase-shifting effect of gAdn in N44 cells. Normalized luminescence recordings 

of N44 cells cultured in B27 supplemented media (A) or in FBS containing media (B) treated with gAdn (3ug/ml) at 

indicated time points. (C) Quantification of the peak time of the 2nd circadian cycle in (A) and (B) (n=3). 

(D - F) qPCR analysis of AdipoR1, AdipoR2 and Bmal1 expression in unsynchronized N44 cells with shRNA knockdown of 

AdipoR1 or AdipoR2 in serum-containing medium. 

(G) qPCR analysis of Bmal1 expression in unsynchronized N44 cells with double knockdown of AdipoR1 and AdipoR2 in 

serum-containing medium. 
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(H - J) Differential effects of shRNA knockdown of AdipoR1 and AdipoR2 on Bmal1-luc rhythm in synchronized N44 

Bmal1-luc cells in serum-containing medium. (H) Raw luminescence recordings; (I) Peak time analysis of the first 

circadian cycle; (J) The average period length of the Bmal1-luc rhythms over 4 days of recording (n=8). 

(K - N) Effects of AdipoR1 knockdown on the phase-shifting and Bmal1 upregulating effect of gAdn treatment (5ug/ml, 

treated at near the trough (hr23) of the 1st circadian cycle) in synchronized N44 Bmal1-luc cells (n=4). (K) Raw 

luminescence recordings; Quantification of the gAdn induced phase-shift (L) and the normalized peak magnitudes of 

the 2nd (M) and 3rd (N) circadian cycles in control and AdipoR1 KD cells. 

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, ns= no significant difference. Groups denoted with 

different alphabets indicates statistical significance (p<0.05). Student‘s t-test for pairwise comparison in (C, G and L). 

One-Way ANOVA with Bonferroni post-test for multi-groups analysis compared to the control group in (D-F). One-Way 

ANOVA with Tukey post-test in (I,J,M, & N). 
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Figure 17. Supplementary data for the effects of shRNA knockdown of AdipoRs on the molecular clockwork in N44 

cells. 

(A) qPCR analysis of AdipoR1 and R2 expression in N44 cells with AdipoR1 and R2 double-knockdown (n=4). 

(B) qPCR analysis of Nr1d1 expression in N44 cells with various shRNA knockdowns as indicated (n=3). 

(C - E) qPCR analysis of selected genes in N44 cells with the 2nd AdipoR1 knockdown shRNA target sequence (AdipoR1 KD2) (n=4). 

(F - H) qPCR analysis of selected genes in N44 cells with the 2nd AdipoR2 knockdown shRNA target sequence (AdipoR2 KD2) (n=4). 

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, Student‘s t-test for pairwise comparisons and One-Way ANOVA 

with Bonferroni post-test for multi-groups analysis compared to control in (B). 

 

2.13. PGC1α mediates the clock-modulating effect of adiponectin in MBH neurons     

Recently, PGC1α has been identified as a crucial mediator of AdipoR1 controlled metabolic effects in skeletal 

muscles (51). Interestingly, PGC1α has also been identified as a modulator of the molecular clock acting via 



46 

 

induction of Bmal1 expression (52). This mechanism highly resembles what I had observed for adiponectin. 

Therefore, I speculated that PGC1α may play a crucial role in mediating adiponectin’s clock-modulating 

effects. To test this, I investigated if alterations of adiponectin signaling could modify the expression of 

Pgc1α in hypothalamic neurons. qPCR analysis of N44 cells cultured in serum-containing medium revealed 

that AdipoR1 KD resulted in dramatic reduction in Pgc1α expression while AdipoR2 KD had no significant 

effect (Fig 18 A). These observations were consistent with previous reported findings on skeletal muscles 

(51). Conversely, gAdn treatment of N44 cells cultured in serum free medium resulted in an upregulation of 

Pgc1α expression (Fig. 18 B) and enhanced the occupancy of an retinoic acid-related orphan receptor 

response element (RORE) in the Bmal1 promoter by PGC1α, but not in the 3’ untranslated region (3’-UTR) of 

the Bmal1 gene (Fig. 18 C). Thus, the adiponectin-AdipoR1-PGC1α signaling cascade is conserved in MBH 

neurons similar to what has been shown in skeletal muscle (51). In vivo, I analyzed PGC1α mRNA and protein 

levels in the MBH of WT and Adipoq KO mice. In WT mice, I did not observe significant circadian oscillations 

of Pgc1α mRNA expression in the MBH (Fig. 18 D), but significant differences were observed in protein levels 

during the subjecting day and night (Fig. 18 E). Adiponectin deficiency resulted in significant downregulation 

of Pgc1α mRNA at early subjective day and night (Fig. 18 D) and of PGC1α protein during the subjective night 

time (Fig. 18 E). Thus, it can be concluded that adiponectin is a positive regulator of PGC1α expression in the 

MBH in vitro and in vivo. To characterize the role of PGC1α in regulating the molecular clockwork in MBH 

neurons, I investigated the cellular rhythms of synchronized N44 Bmal1-luc cells after Pgc1α knockdown 

(PGC1α KD) cultured in serum-containing medium. PGC1α KD cells displayed cellular circadian phenotypes 

similar to those seen in AdipoR1 KD cells - dampened Bmal1-luc magnitudes, advanced phasing and 

lengthened period (Fig 18 F - H), indicating that the clock-modulating functions of PGC1α and AdipoR1 use 

the same pathway. In synchronized N44 Bmal1-luc cells in serum-free medium, PGC1α KD diminished the 

phase-resetting and Bmal1-inducing effects of gAdn treatment at hr 23 after synchronization, similar to what 

was observed in AdipoR1 KD cells (Fig. 18 I - L). It has been shown that RAR-related orphan receptor alpha 

(RORα) activity is necessary for the circadian effects of PGC1α (52). To test if RORα is needed for 

adiponectin’s circadian effects, N44 cells were pretreated with a recently established RORα antagonist, 
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VPR66 prior receiving gAdn treatment (53). I observed that VPR66 pretreatment abolished the Bmal1 

inducing effect of gAdn (Fig. 19), further confirming the involvement of PGC1a-RORα signaling in adiponectin 

mediated clock resetting in MBH neurons.  
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Figure 18. PGC1α mediates clock modulating effect of Adiponectin via AdipoR1. 

(A) qPCR analysis of Pgc1α expression in unsynchronized N44 cells with shRNA knockdown of AdipoR1 or AdipoR2 in 

serum-containing medium (n=3).  

(B) qPCR analysis of Pgc1a expression in unsynchronized N44 cells after 2hr gAdn treatment (5ug/ml) (n=4). 
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(C) PGC1α occupancy at the RORE sequence of the promoter and at the 3’UTR of the Bmal1 gene in N44 cells 2 hr after gAdn 

treatment (5ug/ml) (n=3). 

(D) Double-plotted 24-hr mRNA expression profile of Pgc1a in the MBH of mice released into DD for the indicated time span (n=3 per 

time point). 

(E) Immunoblot analysis of PGC1α protein level in the MBH from mice released into DD for the indicated time span (n=4). 

(F - H) Effects of shRNA knockdown of Pgc1α on the Bmal1-Luc rhythms in synchronized N44 cells in serum-containing medium. (F) 

Raw luminescence recordings; (G) Quantification of the timing of the first peak; (H) The average period of the cellular rhythm over 4 

days of recording. (n=8) 

(I - L) Effects of PGC1α knockdown on the phase-shifting and Bmal1 upregulating effect of gAdn treatment (5ug/ml, treated at near 

the trough (hr 23) of the 1st circadian cycle) in synchronized N44 Bmal1-luc cells (n=4). (I) Raw luminescence recordings; 

Quantification of the gAdn induced phase-shift (J) and the normalized peak magnitudes of the 2nd (K) and 3rd (L) circadian cycles in 

control and PGC1α knockdowned cells. 

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, ns= no significant difference. Groups denoted with different 

alphabets indicates statistical significance (p<0.05). Student‘s t-test for pairwise comparison. One-Way ANOVA with Bonferroni 

post-test for multi-groups analysis compared to the control group in (A). One-Way ANOVA with Tukey post-test in (E) and (J-L).. 

 

 

Figure 19. Adiponectin’s Bmal1 induction effect is dependent of RORα activity 

qPCR analysis of Bmal1 expression in unsynchronized N44 cells pretreated with an antagonist of RORα - VPR66 (5uM) 

30 min before gAdn (5ug/ml) treatment for 3 hrs (n=4). Groups denoted with different alphabets indicates statistical 

significance (p<0.05). One-Way ANOVA with Tukey post-test 

 

In the MBH, AMPK has been described as a mediator of central adiponectin signaling downstream of 

AdipoR1 (38). AMPK activates PGC1α activity directly via phosphorylation and indirectly via a 

SIRT1-dependent pathway (54, 55). Interestingly, AMPK was also shown to directly modify the molecular 
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clock by destabilizing CRY protein via phosphorylation (56). In N44 cells, gAdn treatment resulted in a 

transient phosphorylation of AMPK at Thr172 on the α-subunit which is known to stimulate the kinase 

activity of AMPK (Fig. 20 A & B) (57). Pre-treatment with an AMPK inhibitor, compound C, on the N44 

Bmal1-luc cells significantly attenuated, but not fully abolished, gAdn induced Bmal1-luc activity (Fig. 20 C & 

D), suggesting that AMPK also participates in adiponectin’s clock modulating effect in MBH neurons. 

Together, conclude that the AdipoR1-AMPK-PGC1α-Bmal1 signaling cascade mediates adiponectin’s 

circadian effects in mediobasal hypothalamic neurons.  

 

Figure 20. AMPK is involved in adiponectin induced Bmal1 upregulation. 

(A and B) (A) Time-course immunoblot analysis of the phosphorylation of AMPK at Thr172 in N44 cells treated with gAdn (5ug/ml) 

(A). (B) Quantification of (A). 

(C and D) (C) Normalized luminescence recordings of unsynchronized N44 Bmal1-Luc cells pretreated with an AMPK inhibitor - 

compound C (5uM) 2 hrs before gAdn treatment (5ug/ml). (D) Quantification of the 24-hr area under the curve after gAdn treatment 

as shown in (C). 

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, One-Way ANOVA with Bonferroni post-test compared to control in 

(B) and Student‘s t-test in (D). 

 

2.14. The role of central adiponectin signaling in regulating food anticipatory circadian rhythms 

As mentioned, it has been shown that neuronal Bmal1 expression plays a role in regulating circadian FAA 

rhythms (48). Bmal1 expression in the DMH has been shown to contribute the FAA (58), but also (59). To 
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characterize the mechanism of the FAA modulating effects of adiponectin, I analyzed the 24-hr profiles of 

plasma adiponectin and the mRNA levels of selected adiponectin signaling components, clock genes and 

appetite-regulating NP genes in the MBH of WT mice that were either fed ad libitum or submitted to the RF 

regime for 10 days as depicted in Figure 12A, except that food was also removed after ZT11 on Day 10. I 

observed that there was a modest but significant diurnal rhythm in plasma adiponectin (p<0.001, cosinor 

analysis) under ad libitum feeding conditions with peak-to-trough change of 27.62 ± 8.39 %. On the other 

hand, the RF regime significantly reinforced this diurnal rhythm with a peak-to-trough change of 56.82 ± 6.31 

% (means ± SEM, n = 3; Fig. 21 A). Interestingly, the diurnal mRNA expression of adiponectin in adipose 

tissues was not significantly modified by RF, suggesting the existence of post-transcriptional mechanism 

mediating the influence of RF on diurnal blood oscillation (Fig. 21 B). In the MBH, the RF regime significantly 

enhanced the amplitude in the diurnal variation of transcripts of adiponectin signaling - Adipor1, Adipor2 

and Pgc1a (Fig. 21 C - E) and of clock gene rhythms - Bmal1, Per2, Dbp (Fig. 21 F - H). Moreover, the RF 

regime dramatically reorganized the 24-hr expression profiles of appetite-regulating NP genes in the MBH 

(Fig. 21 I - L). Expression of AgRP was upregulated throughout the day and expression of Npy was 

upregulated during daytime (Fig. 21 I & J). On the other hand, RF differentially regulated the expression of 

anorexigenic NPs – with Cart expression being upregulated during the early morning (Fig. 21 K) while there 

was a trend for downregulation in Pomc during the day (F=4.16, p=0.0582) (Fig. 21 L). These data together 

with the impaired food anticipation phenotype in Adipoq KO mice  suggest that reinforced central 

adiponectin signaling in the MBH may play a role in promoting the behavioral re-adaptation of the circadian 

system to temporally restricted feeding schedules.  
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Figure 21. Regulation of the adiponectin signaling components in the MBH under time-restricted feeding regime 

(A) Double-plotted 24-hr plasma adiponectin profile of WT mice under Ad libitum feeding and after 10 days in time-restricted 

feeding conditions as described in Fig. 3A under LD condition (n=3 per time point). 

(B) Double-plotted 24-hr mRNA expression profile of Adipoq gene in adipose tissues (n=3 per time point). 

(C - L) Double-plotted 24-hr mRNA expression level of selected adiponectin signaling components (C-E), clock genes (F-H) and 

appetite regulating NP genes (I-L) in the MBH of WT mice under Ad libitum feeding and after 10 days in RF (n=3 per time point). 

Error bars indicate means ± SEM, *p<0.05, **p<0.01, ***p<0.001, Two-Way ANOVA with Bonferroni post-test for profile data. 
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To further strengthen the proposed role of central adiponectin signaling in food anticipatory circadian 

rhythms, and exclude that the observed phenotypes of Adipoq KO mice may result from general metabolic 

alterations as a consequence of non-circadian effects of adiponectin deficiency, in a collaboration with Dr 

Koch, we tested if acute pharmacological blockade of central adiponectin signaling in WT would similarly 

affect FAA. I submitted 2 groups of WT mice received i.c.v. administration of either DMSO vehicle or the 

RORα antagonist-VPR66 at ZT0 on Day 4 and 5 under the RF protocol. VPR66 treated animals showed a delay 

in the development of FAA mirrored by reduced food intake from Day 5 to 7 (Fig 22 A - F, H & I), similar to 

what was observed in Adipoq KO mice. Notably, I did not observe any significant reduction of total daily 

activity in VPR66 treated mice, suggesting that the general well-being was not compromised by VPR66 

treatment (Fig. 22 G). Thus, these data further support the role of central adiponectin signaling in the 

entrainment food anticipatory circadian rhythms.   
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Figure 22. Central adiponectin signaling contributes to food anticipatory circadian activity rhythm. 

i.c.v. administration of VPR66 (RORa inhibitor, 5uM) at ZT0 on day 4 and 5 (red arrows) under the RF regime impairs the 

development of FAA (assessed by infrared detectors).  

(A-F) 24-hr activity profiles on individual days during the course of RF regime. The overhead green bars indicate feeding time; the 

blue rectangular windows indicate FAA measured. On day 4 (E) and 5 (F) mice were i.c.v. administered with 2ul VPR66 or DMSO 

vehicle control at ZT0.  

(G) Normalized total daily activity over the course of RF regime.  

(H) Quantification of the 3hr FAA over the course of RF regime.  

(I) Daily food consumption over the course of RF regime. 

Error bars indicate means ± SEM. *p<0.05, **p<0.01, ***p<0.001, Mann Whitney test for (G-I). 
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2.15. Role of adiponectin in the clock-modulating effects of high fat diet  

Diet-induced obesity has been shown to down-regulate adiponectin (60). Feeding mice with a high fat diet 

(HFD) has been shown to disrupt circadian rhythms at both the behavioral and the molecular levels (11, 61). 

To investigate if adiponectin interacts with HFD-induced circadian modulations I compared circadian 

rhythms in WT and Adipoq KO mice fed with normal diet (ND) and HFD. HFD has been shown to acutely 

modulate diurnal feeding rhythms even before the development of obesity itself (11). Consistently, I also 

observed that HFD rapidly induced daytime feeding in WT mice compared to week 0 (i.e., fed with ND in all 

groups) (diet x time variation, F=9.949, p<0.0001), but failed to do so in Adipoq KO mice which already 

showed an accentuated daytime feeding phenotype under ND conditions (diet x time on diet, F=0.2183, 

p=0.9267) (Fig. 23 A). HFD did not significantly alter the total activity (Fig. 23 B) and daily energy intake (as 

compensated by reduced food intake) of both WT and Adipoq KO mice (Fig. 23 C & D). Consistent with a 

previous report, HFD led to a higher body weight gain in Adipoq KO mice compared to WT despite their 

energy intake was comparable (Fig. 23 C), while on ND both groups showed no significant difference (Fig. 23 

E) (45). Further, HFD lengthened the free-running period of locomotor activity in DD in WT and Adipoq KO 

mice, indicating that adiponectin plays no role in this effect (Fig. 23 F) (11). Finally, plasma adiponectin levels 

were significantly reduced in WT mice after 16 weeks of HFD (Fig. 23 H). These data suggest that the loss 

adiponectin is unlikely to be the cause of the HFD-induced modulation of circadian system. The absence of 

an effect of HFD on daytime feeding in Adipoq KO mice suggests that both HFD and adiponectin deficiency 

converge to the same mechanism to modulate diurnal feeding patterns which may potentially be mediated 

by altered regulation of the appetite-regulating NP circuitry in the MBH.          
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Figure 23. Role of adiponectin in the clock-modulating effects of high fat diet  

(A) Normalized daily food intake during the light phase in WT and Adipoq KO mice fed with either normal diet (ND) or high fat diet 

(HFD) over 5 weeks of treatment. Week 0 refers to the week before HFD treatment in which all animals were fed with ND. The 

measurements were done once per week. 

(B) Percentage of daily activity during the light phase. 

(C and D) Food mass (C) and energy (D) intake per day. 

(E) Body weight change since the start of experiment. 

(F) Free-running period integrated from 10 days in DD on week 18-19 on diets. 
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(G) Plasma adiponectin level in WT ND, HFD fed groups and Adipoq ND fed group after 20 weeks on diets measured at ZT0. 

Error bars indicate means ± SEM, (n=6 per group throughout the experiment). Diet x time variation, ***p<0.001, Two-Way ANOVA in 

(A); *p<0.05, ***p<0.001, ns=not significant, ud= undetected, Mann-Whitney test in (F&G). 

 

3. Discussion 

In this study, I identified adiponectin as a novel modulator of circadian clocks hypothalamic neurons of the 

MBH. In vitro, I found that adiponectin treatment reset the MBH clock in a phase-dependent manner and 

induced Bmal1 upregulation. These effects were at least in part mediated via an AdipoR1-PGC1α dependent 

pathway. Adipoq KO mice, while having a largely normal circadian activity rhythm, exhibited dampened 

feeding rhythms accompanied by dampened clock gene circadian expression rhythms and altered 

appetite-regulating NP diurnal expression profiles in the MBH. Under scheduled RF, Adipoq KO mice showed 

delayed development of FAA and an impaired FEO. In WT mice scheduled RF reinforced the diurnal 

oscillation of circulating adiponectin, upregulated the expression of adiponectin signaling components and 

clock gene oscillations in the MBH which may be involved in promoting the reorganization of diurnal 

expression of appetite-regulating NPs and, thus, the re-adaptation to the altered feeding rhythm. The 

importance of central adiponectin signaling for food anticipatory rhythm generation was further confirmed 

by i.c.v. administration of RORα antagonists which phenocopied the Adipoq KO’s FAA and food intake 

defects (Fig. 24).  
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Figure 24. Summary of the findings in the current study 

In this study, I identified adiponectin as a novel circadian modulator of mediobasal hypothalamic neurons which can 

phase-reset the clocks and transcriptionally activate Bmal1 expression. These effects are at least in part mediated by an 

AdipoR1-PGC1α dependent pathway. In vivo, I demonstrated that adiponectin deficient mice had dampened diurnal 

feeding rhythms and impaired food anticipatory circadian rhythms. These phenotypes were in line with the 

clock-modulating effects of adiponectin and the regulatory role of molecular clockwork on appetite-regulating 

neuropeptides expression.   

 

3.1. Molecular mechanism of the circadian effects of adiponectin 

I demonstrated in hypothalamic cells and in vivo that the AdipoR1-PGC1α-Bmal1 axis plays a crucial role in 

the clock-modulating effects of adiponectin. However, it is highly surprising that while the components of 

this signaling pathway are believed to be ubiquitously expressed, I observed a strong tissue specificity of the 

circadian effects of adiponectin both in vitro and in vivo (Fig. 10 & 15). One possibility is that the antagonistic 

effect of AdipoR2 on Bmal1 expression may counterbalance AdipoR1’s effects in certain cell types. In N44 

cells the loss of AdipoR2 led to a sharp downregulation of Nr1d1 which encodes for REV-ERB α - a 
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transcriptional repressor of Bmal1 (Fig. 17 B). REV-ERB α inhibits Bmal1 transcription via binding to the RORE 

in Bmal1 promoter (62-64). It has been shown that REV-ERB α can antagonize the transactivating effect of 

PGC1α-RORα complexes for Bmal1 induction (52). One potential mediator that links AdipoR2 to REV-ERB α is 

peroxisome proliferator-activated receptor alpha (PPARα). On one hand PPARα has been shown to 

transcriptionally upregulate Nr1d1 expression (65), on the other hand AdipoR2 has been shown to activate 

PPARα activity in the liver (66). The AdipoR2 effects on the circadian clock and its physiological relevance in 

different tissues remain to be further investigated. Another explanation may lie in the involvement of AMPK 

activation. It has been shown in peripheral tissues and fibroblasts that persistent activation of AMPK leads to 

an upregulation of CRY activity and subsequent dampening of the molecular clock due to increased negative 

feedback via REV-ERB α (56). In this study, I demonstrated that gAdn treatment led to an acute, but 

short-lasting induction of AMPK activation in hypothalamic neurons (Fig. 20). Activation kinetics of AMPK 

appear different in this context from what has been observed in peripheral tissues (66-68). Thus, it is 

possible that while acute AMPK activation may transiently activate PGC1α activity and Bmal1 expression on 

one hand, extended AMPK activation in certain tissues may finally lead to a dampening of the circadian 

clock. Obviously, as adiponectin is known to activate multiple signaling pathways (40, 49), other potential 

mechanisms that may locally modify the adiponectin signaling to the molecular clock may exist depending 

on the cellular contexts which need to be further investigated. 

 

3.2. The role of adiponectin in photic entrainment of circadian rhythms 

The lack of overt abnormalities in the circadian activity rhythm of Adipoq KO mice suggests that the SCN 

pacemaker may not be a direct target of adiponectin. The accelerated re-adaptation after an experimental 

jetlag paradigm on the other hand implies that SCN input or downstream neural substrates may be subject 

to adiponectin’s influences (33). Brain regions such as the intergeniculate leaflet (IGL) and raphe nucleus 

have been shown to modulate the function of the SCN and also express AdipoR1 (ISH data from Allen Brain 

Atlas). Therefore, it is possible that adiponectin may locally modify the physiological functions of these 
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neural circuits. Further studies are needed to elucidate the mechanism of adiponectin’s influences on the 

photic entrainment of circadian system.  

 

3.3. The role of adiponectin in feeding rhythm regulation 

The dampened feeding rhythms under both LD and DD conditions suggest that adiponectin plays a crucial 

role in regulating the circadian gating of appetite regulation (Fig. 9 A - F). In agreement with the in vitro data, 

the loss of adiponectin led to dampened clock gene rhythms in the MBH in vivo (Fig. 9 G - I). Consistent with 

previous findings, I provided further evidence from Bmal1 KO mice and in vitro data to support that MBH 

clocks can directly regulate NP expression (Fig. 8 & 11). However, owing to the complexity of the 

hypothalamic NP circuitry, the role of MBH clocks in specific subtypes of neurons in vivo needs to be further 

elucidated. From our data, I believe that the orexigenic NPs are more sensitive to adiponectin compared to 

anorexingenic NPs. It has been shown that central adiponectin applications acutely promote food intake 

(38). Therefore, the feeding phenotype observed in Adipoq KO mice may comprise of both clock-dependent 

and clock-independent pathways. In WT mice, I observed a significant diurnal oscillation of plasma 

adiponectin under ad libitum conditions which was further reinforced under RF conditions (Fig. 21 A). This 

diurnal oscillation appears to be heavily regulated by general metabolic state as under the scheduled RF 

protocol plasma adiponectin dramatically fell off after (re-)feeding (Fig. 21 A), consistent with the described 

role of adiponectin as a hunger hormone (38). Under ad libitum feeding conditions, circulating adiponectin 

gradually increased in the second half of the night and reached its acrophase during the first half of the day. 

This is in phase with the MBH Bmal1 expression rhythm which peaks during the early morning (Fig. 9 G), 

suggesting that the late evening rise of circulating adiponectin may be important for the morning peak of 

MBH Bmal1 expression. This inference is further supported by the observation that i.c.v. administration of 

anti-adiponectin antibodies at late subjective night diminished Bmal1 expression in the MBH in the 

subjective morning (Fig. 13 L).          
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3.4. The role of adiponectin in food anticipation regulation 

In vitro, I observed that adiponectin could robustly phase-reset MBH neuronal clocks. The lack of obvious 

alterations of the phasing of the MBH clock gene rhythms in Adipoq KO mice under unchallenged conditions 

apparently suggests that adiponectin may not be a potent regulator of the phasing of the MBH clock when 

food is ubiquitously available. In contrast, the strong diurnal oscillation of plasma adiponectin under RF 

conditions indicates that adiponectin may become important in the regulation of physiological systems and 

behavioral neural circuits when food availability becomes scarce. The potential role of adiponectin in the 

kinetics of food entrainment of clock genes rhythms in non-hypothalamic tissues should be further 

investigated. At the same time, how adiponectin regulated MBH clock gene rhythms are translated into FAA 

and food intake behaviors is similarly worth studying (Fig. 12).  

The ability to anticipate physiological needs in sync with predictable availability of valuable resources 

provides organisms evolutionary advantages. Light is the major Zeitgeber to the mammalian circadian 

system that entrains behavioral rhythms to the day-night succession. However, when the daily food access 

time window is shifted suddenly due to seasonal (i.e., photoperiod) change or other factors such as 

unexpected changes in ecological landscapes (e.g., wildfire), an anticipatory timekeeping mechanism that 

can reorganize and optimize the physiology for foraging according to the new food available time window 

may therefore increase the evolutionary success of an organism and is selected by evolution (15). In the 

current study, I provide strong evidence that central adiponectin signaling is involved in promoting the 

behavioral re-adaptation under RF. It has been shown previously that the appetite-regulating system plays a 

major role in the regulation of FAA. Peripheral metabolic hormones such as anorexigenic leptin and 

orexigenic ghrelin are an integral part of the food anticipatory system (19). Leptin deficient ob/ob mice and 

Zuker rats show increased FAA under RF which can be suppressed by administration of recombinant leptin 

(69, 70). In contrast, under RF ghrelin receptor deficient mice have attenuated FAA (71, 72), despite 

intriguingly that ghrelin deficient mice have been reported to have a normal FAA (73). More recently, as 

aforementioned, orexigenic AgRP/NPY neurons in the ARC have been suggested as crucial elements of the 

food anticipation circuitry (29). These observations strongly point out that the interaction of metabolic 
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hormones and MBH, particularly the orexigenic neural circuits, is a key regulator of the food anticipatory 

system. Adipoq KO mice displayed a delayed development of FAA and RF-mediated entrainment of food 

intake. Critically, these phenotypes were mimicked by central administration of a RORα antagonist (Fig. 22), 

which excluded the potential secondary off-target peripheral influences downstream to the loss of 

adiponectin in Adipoq KO mice such as alteration of immune function or lipid homeostasis (37). In the i.c.v. 

VPR66 administration experiment, I noticed that VPR66 did not acutely inhibit FAA and food intake on the 

day of injection, but did do so with a day of delay, suggesting that it does not act directly, but by 

incorporation of external signals into MBH clock feedback loops. This also argues against the involvement of 

an acute hypothalamic orexigenic effect of adiponectin mediated via AMPK signaling (38). Rather VPR66 may 

antagonize the adiponectin-mediated resetting of clock gene expression rhythms in the MBH which 

mediates adaptation of appetite systems and behavior to the RF schedule through reprogramming of diurnal 

NP expression. Multiple lines of evidence support this interpretation. First, as mentioned, the orexigenic 

neuronal network in the MBH has been shown to be important for FAA circadian rhythms (46). Second, RF 

has been shown to reinforced and phase-reset the clock gene oscillations in the ARC and DMH (74, 75). 

Finally, extra-SCN neural Bmal1 expression has been shown to contribute to the robustness of the FEO (48). 

These data are in line with our observation that adiponectin acts as a positive regulator of Bmal1 expression 

and that the CLOCK/BMAL1 dimer is an important regulator of appetite-regulating NP expression (76). 

However, further studies with genetically and anatomically defined abrogation of central adiponectin 

signaling in specific neuronal subtypes will be needed to identify the responsible neural circuitries involved 

in the regulation of adiponectin-regulated FAA rhythms.                 
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3.5. The role of adiponectin in high fat diet induced circadian disturbances 

HFD has been shown to promote daytime feeding independent of the development of obesity (11). In this 

study, I also observed similar effects of HFD in WT animals, but failed to further induce daytime feeding in 

Adipoq KO mice (Fig. 23 A). One explanation may be a convergence of the physiological routes of 

adiponectin deficiency and HFD to induce daytime feeding (i.e. ceiling effect in Adipoq KO mice) – which may 

likely occur at the level of appetite regulating hypothalamic NPs - HFD treatment dramatically suppresses the 

orexigenic AgRP and Npy overall diurnal variations but upregulated the overall diurnal expression of 

anorexigenic Cart and Pomc (11). In our hands WT mice fed with HFD did not reach the morbid obese state 

in which the circulating adiponectin dramatically has been reported to drop to less than one fifth of ND fed 

controls according to some other papers (60), thus precluding assessment of the potential effects of the 

pathophysiological loss of adiponectin induced by morbid obesity in the circadian functions (i.e., in contrast 

to the complete prenatal loss of adiponectin in Adipoq KO mice). Under basal conditions, Adipoq mice have 

been reported to have only minor, if any, effects on various metabolic parameters (44, 45). However, under 

HFD challenge, Adipoq KO mice show significant reduction in energy expenditure, impairment of systemic 

glucose and lipid homeostasis and obesity compared to wild-type control animals (45). In line with this 

previous report, I observed that Adipoq KO mice in our hand were also susceptible to HFD-induced weight 

gain despite of comparable energy intake. This suggests an altered energy turnover in Adipoq KO mice under 

a HFD challenge. Mistimed high fat feeding during the normal rest phase has been shown to promote energy 

incorporation and bodyweight gain (12). Given that Adipoq KO mice also showed an increased daytime 

feeding phenotype, it is tempting to postulate that a part of the body weight gain may be due to mistimed 

feeding. However, further experiments with carefully designed feeding time windows are clearly needed to 

dissect the relative contribution of metabolic functions of adiponectin and feeding rhythm disruption to the 

body weight gain in Adipoq KO mice upon HFD challenge.  

While this thesis project was under way adiponectin has been independently reported as a circadian clock 

modulator in peripheral organs (77). However, owing to the different approaches chosen in that study 

compared to ours (ectopic overexpression of adiponectin, use of heterogenic mouse models and 
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physiological systems of interest), a direct comparison between both studies proves difficult. Nevertheless, 

Hashinaga T. et al also came to the conclusion that adiponectin signaling may play an important role in 

maintaining proper circadian rhythms of clock gene expression in certain physiological systems under 

metabolic challenge (77). They reasoned that a part of the circadian effects of adiponectin may be mediated 

by suppressing the expression of a pro-inflammatory cytokine - tumor necrosis factor alpha (TNFα) which has 

been shown to modulate the circadian clock system upon inflammatory challenges (78). More recently, the 

expression of adiponectin in adipose tissues has been shown to be subject to molecular clock regulation via 

PGC1a and PPARγ (79), thus further strengthening the claim that adiponectin is an integral part of the 

circadian metabolic circuitry.   

 

3.6. Clinical implications 

Together, the present study reveals that adiponectin is a metabolic feedback signal to the mediobasal 

hypothalamic circadian clock where it regulates feeding rhythms. Disturbance of adiponectin signaling such 

as in obesity may therefore involve in alter feeding rhythms as seen in patients suffering from night eating 

syndrome (NES). NES is characterized by a lack of appetite in the morning, but consuming a half or more of 

daily food intake in the evening and at night associated with various sleep abnormalities (80). Obesity has a 

strong positive correlation with NES (81). NES patients have increased hunger at night accompanied with 

blunted nocturnal rise of leptin (82) and a phase advance of ghrelin (83). Mistimed intake of high energy 

food, on the other hand, has been shown to further promote metabolic disorders, thus forming a viscous 

cycle (4, 12, 13). The positive role of adiponectin in FAA suggests that people suffering from adiponectin 

deficiency might have impairment in adapting their feeding rhythms when food availability time window is 

changed. Though direct evidence that link metabolic syndromes and appetite regulation after a shift of 

Zeitgeber cycle is still missing, a recent epidemiological study supports this inference showing that that body 

mass index (BMI) has a positive correlation with social jetlag though the blood hormones has not been 

investigated in this study (84). Occupations that require frequent shiftwork may represent a condition when 

food intake becomes uncoupled from the SCN. It can be expected that people with adiponectin deficiency 
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will suffer from more severe loss of appetite following the shift and require more time to recover under such 

conflicting Zeitgeber conditions. Thus, together with other metabolic humoral factors reported in literature, I 

conclude that proper metabolic feedback signals to the circadian clock system either directly or indirectly are 

important for the robustness of the circadian clock and therefore contribute to the general well-being (Fig. 

25).    

Our study also sheds light on the therapeutic potential of adiponectin signaling in inhibiting circadian 

disruption associated with metabolic disorders. Recently, a small molecule agonist of AdipoRs (for both R1 

and R2) has been developed, thus providing an opportunity to test this idea in preclinical animal models of 

circadian disruption (85). Timed administration of adiponectin or AdipoRs’ agonists may help to normalize 

the altered circadian appetite rhythms in individuals suffering from obesity or NES and circadian 

misalignments such as shiftworkers. Development of individual receptor-specific agonists/antagonists on the 

other hand will be helpful to further delineate the molecular mechanism of the circadian effects of 

adiponectin signaling.   

 

3.7. Concluding remarks 

This study identified adiponectin as a novel modulator of the MBH clocks and is involved in regulating 

feeding rhythms and food anticipatory circadian rhythms which at least partly mediated by a mechanism 

dependent of the AdipoR1-PGC1α/RORα-Bmal1 pathway.  
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Figure 25. Overview of established endocrine feedback to the circadian clock.  

While the circadian system are known to regulate the diurnal hormone abundance in the bloodstream, a number of 

metabolic peptide hormones such as insulin, leptin and ghrelin have been shown to modify the molecular rhythms 

directly on central and peripheral clock function. In the CNS, leptin and ghrelin have been shown to directly modulate 

the SCN clock and may also presumably affect the circadian clock in mediobasal hypothalamic structures such as 

arcuate nucleus (ARC) or lateral hypothalamus (LH). In this study, I identify adiponectin as a new player to modulate the 

MBH’s clocks and may also impinge on other central and peripheral clocks as well. Melatonin and glucocorticoid (GC) 

are two well established feedback hormones that modify the circadian clocks of a board spectrum of central and 

peripheral tissues. Their productions are strongly influenced by the circadian clock. While melatonin can directly act on 

the SCN, the SCN is insensitive to GC. However, GC can also modulate the SCN clock indirectly via other brain structures 

such as the raphe nuclei of the brainstem. The central clocks may also be affected by metabolic hormones indirectly via 

changes in blood metabolite levels such as glucose or free fatty acid. Adapted from Ref. 9. 
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4. Materials and Methods 

Unless otherwise stated, standard chemicals were purchased from Roth (Karlsruhe, Germany), tissue culture 

products were obtained from Gibco (Life Technologies GmbH, Darmstadt, Germany).  

 

4.1. Animals and circadian behavioral experiments 

Adiponectin knockout mice (JAX stock #008195) and PER2::LUCIFERASE animals (Per2-luc; JAX stock 

#006852) were purchased from the Jackson’s Laboratory (Maine, USA) and maintained at the animal 

facilities in Göttingen or Lübeck. The use of Bmal1 KO mice has been described previously (86). All mice used 

were kept on C57BL6J genetic background. For all experiments, unless stated otherwise, male mice were 

individually housed under 12-hour light, 12-hour dark conditions (LD; ~100 lux) with ad libitum access to 

chow pellets (normal diet (3.4% kJ fat, Ssniff #V1536) or high fat diet (45% kJ fat, Ssniff #EF D12451) and 

water. For experiments in constant darkness (DD), mice were first entrained under LD conditions for at least 

a week and then released into DD for the indicated timespans. Behavioral experiments were performed on 

animals aged 10-12 weeks at the beginning of the experiment. Molecular analyses were performed on 16-24 

weeks old animals. All animal experiments (including MEF cells and primary hypothalamic neuron isolations) 

were done after ethical assessment and licensed by the Office of Consumer Protection and Food Safety of 

the State of Lower Saxony and the Ministry of Agriculture of the State of Schleswig-Holstein and in 

accordance with the German Law of Animal Welfare (TierSchG).  

 

4.2. Plasmid construction 

pLKO-WPRE-GFP was modified from the original pLKO.1-TRC (Addgene plasmid #10878) backbone in which 

the puromycin resistance open reading frame (ORF) was replaced with a GFP-WPRE sequence from 

pLenti-CMV-GFP-Zeo (637-7) (Addgene plasmid #17449) with Kpn I and BamH I restriction sites. Nucleotide 

sequences for generating shRNAs are listed in the Table 3 and were cloned into pLKO-WPRE-GFP using Age I 

and EcoR I restriction sites. 
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Npy-luc plasmid was generated by cloning a ~2 kb 5’-regulatory fragment of the murine Npy gene into pGL4 

vector (Promega, Mannheim, Germany) with Kpn I and Bgl II restriction sites. This fragment has previously 

been identified to contain multiple E-boxes (22). The integrity of the recombinant plasmids was confirmed 

by sequencing. 

 

4.3. Lentivirus production and transduction 

The Bmal1-luc encoding pBluF-puro plasmid was a kind gift from Prof. Steven Brown, University of Zurich, 

Switzerland. To produce Bmal1-luc lentiviral particles, a 10-cm dish of HEK293T cells was cotransfected with 

10 μg psPAX2 (Addgene plasmid #12260, Prof. Didier Trono, EPFL, Switzerland), 5 μg pMD2.G (Addgene 

plasmid #12259, Prof. Didier Trono, EPFL, Switzerland), and 15 μg pBluF-puro using Xfect transfection 

reagent (Clontech, Saint-Germain-en-Laye, France). Cells were rinsed with PBS on the second day and 

restored with fresh culture medium. Viral containing medium was harvested at 36 hr after transfection and 

stored at 4 °C. Cells were restored with fresh medium, and further medium collections were performed on 

the next day. Two collections were pooled and concentrated using LentiX concentrator reagent (Clontech) 

according to the manufacturer’s protocol. Virus titers were determined by transducing HEK293T cells with a 

serial dilution of GFP encoding lentiviral particles (produced as described above but with pWPI (Addgene 

plasmid #12254, Prof. Didier Trono, EPFL, Switzerland) instead of pBluF-puro). At 72 hr after transduction, 

GFP-positive cells were counted under a fluorescence microscope. The same serial dilution was also 

subjected to quantitative real-time PCR (qPCR) analysis using a primer pair amplifying the viral WPRE 

element (forward: 5′-GGCACTGACAATTCCGTGGT-3′; reverse: 5′-AGGGACGTAGCAGAAGGACG-3′) to 

determine viral genome abundance. qPCR was also done for Bmal1-luc virus containing medium, and the 

titer was estimated by comparison with pWPI abundance in relation to the GFP calibration curve. To 

transduce hypothalamic cells, cells at 50 % confluence were loaded with ~0.85 × 10
8
 infection units (IFUs) 

per 1 ml medium in the presence of 8 μg/mL polybrene. Experiments on cells were carried out 72 hr after 

transduction. 
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4.4. Cell culture and circadian luminescence recording 

mHypoE-N44, N41 (Cedarlanelabs, NC, USA), HEK293T, NIH3T3 (ATCC, LGC Standards GmbH, Wessel, 

Germany), and MEF cells were maintained in DMEM with 2mM glutamine supplemented with 10 % fetal 

bovine serum (FBS) and 1 % penicillin/streptomycin at 37 °C with 5 % CO2. Cells stably expressing Bmal1-luc 

reporter via lentiviral transduction were generated polyclonally with puromycin selection. For circadian 

luminescence measurements, cells seeded in 96-well plates were synchronized by 100 nM dexamethasone 

treatment for 2 hours. After that, medium was replaced with recording medium (DMEM without phenol red 

supplemented with 2 mM Glutamax, 3 mM sodium carbonate, 10 mM HEPES, 2 % B-27 supplement, 1x 

penicillin/streptomycin and 0.5 mM D-luciferin). The plates were then sealed with transparent films and 

luminescence was recorded at 34 °C using the Berthold TriStar LB 941 plate reader (Berthold Technologies, 

Wildbach, Germany). 

 

4.5. Primary hypothalamic neuronal culture  

Hypothalami of E16 embryos were dissected and isolated using the papain dissociation system 

(Worthington) according to the manufacturer’s protocol. 3.25x10
5
/cm

2
 viable cells in plating medium (neural 

basal medium supplemented with 2 mM Glutamax, 2 % B-27, 10 % FBS and 1 % pen/strep) were seeded to 

vessels double-coated with poly-D-lysine and laminin. On the next day, the plating medium was replaced 

with feeding medium (same as plating medium, but without FBS) and transduced with Bmal1-luc lentivirus. 

24 hr later, half the volume of the old medium was refreshed with fresh feeding medium containing 5μM 

cytosine arabinoside. Half the volume of the old medium was subsequently refreshed every 3 days. On day in 

vitro (DIV) 9, neurons were subjected to bioluminescence experiments in feeding medium supplemented 

with D-luciferin.       
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4.6. ARC/ME slice cultures  

Luminescence was measured from cultured ARC/ME slices of heterozygous Per2-luc mice as described 

previously (21). Briefly, brains were isolated and harvested in ice-cold Hank's balanced salt solution (HBSS). 

300 µm thick ARC/ME coronal slices (-1.80 mm and -2.10 mm relative to bregma) were prepared using a 

vibratome (Thermo Scientific, MA, USA). The slices were immediately placed onto a culture plate insert 

(Merck Millipore, Darmstadt, Germany) in 35-mm petri dishes filled with 1 ml recording medium (same as 

the one used for cell culture). Luminescence was measured in a LumiCycle (Actimetrics Inc, IL, USA) at 32.5 

°C.  

 

4.7. Quantitative real-time polymerase chain reaction  

Isolated tissues were harvested and kept in RNAlater solution (Ambion, Life Technologies GmbH) according 

to the manufacturer’s protocol. Total RNA of tissues and cell cultures was extracted using TRIzol reagent 

(Invitrogen, Life Technologies GmbH). cDNA synthesis was performed using the High Capacity cDNA Reverse 

Transcription Kit (Life Technologies) with random hexamer primers. qPCR was performed using GoTaq qPCR 

Master Mix (Promega GmbH, Mannheim, Germany) on a CFX96 thermocycler (Bio-Rad, Munich, Germany). 

Relative gene expression was quantified using a ΔΔ threshold cycle (Ct) method with adjustments of the 

amplification efficiencies of individual primer pairs; Ef1α was used as the reference gene (except for the 

epididymal fat pads for which β-actin was used as reference). Primer sequences are listed in Table 3. 

 

4.8. Western blot 

To detect BMAL1 protein in N44 cells, cells were lysed in a lysis buffer (1 % triton X-100, 2 % sodium dodecyl 

sulfate (SDS), 1 % sodium deoxycholate, 1 % NP40 and 1x cOmplete protease inhibitor cocktail (Roche, 

Grenzach-Wyhlen, Germany) in Tris-buffer saline (TBS) and subjected to sonication with the Branson 450 

sonifier (Thermo Scientific; amplitude: 50, duty: 30%, duration: 30 sec) and subsequent Western blot 

analysis according to standard protocols of SDS-polyacrylamide gel electrophoresis (PAGE) and Western blot 

(87) using anti-BMAL1 antibody (dilution 1:1000; Novus Biologicals, Cambridge, UK). To detect the 
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phosphorylation of the AMPK alpha subunit, N44 cells were harvested in a lysis buffer with phosphatase 

inhibitors (1 % triton X-100, 2 % SDS, 1 % sodium deoxycholate, 1 % NP40 and 1x cOmplete protease 

inhibitor cocktail, 1 mM dithiothreitol (DTT), 50 mM sodium fluoride (NaF), 1 mM sodium orthovandate 

(NaVO5),  5 mM sodium pyrophosphate (NaPPi) in TBS) and subjected to sonication and subsequent 

Western blot analysis with anti-phospho-AMPKα (Thr172) (dilution 1:1000) and anti-AMPKα (dilution 

1:1000) antibodies (Cell Signaling Technology, MA, USA). To detect PGC1α in the MBH, tissues were 

dissected and frozen immediately on dry ice and stored at -80 
o
C until use. To extract protein, the MBH was 

homologized in RIPA buffer (150 mM sodium chloride (NaCl2), 10 mM Tris, 0.1 % SDS, 0.1 % triton X-100, 25 

mM sodium deoxycholate, 5 mM ethylenediaminetetraacetic acid (EDTA) and sodium deoxycholate) and 

boiled for 5 minutes. The lysates were then subjected to Western blot analysis using anti-PGC1α antibody 

(H300) (dilution 1:500; Santa Cruz Biotechnology, Heidelberg, Germany). In all cases, the protein 

concentration was determined with BCA protein assay kit (Thermo Scientific); Endogenous β-tubulin level 

determined with anti-β-tubulin (dilution 1:1000; Cell Signaling Technology) was used as loading reference. 

Densitometry analyses of bands intensity were performed with Quantity One software (Bio-Rad).      

 

4.9. Chromatin immunoprecipitation  

2 hr after adiponectin treatment, N44 cells were fixed with 1 % formaldehyde at 37 
o
C for 10 minutes. Cells 

were then lysed with SDS lysis buffer (1 % SDS, 19 mM EDTA, 50 mM EDTA, 50 mM Tris, pH8.1 with 1x 

cOmplete protease inhibitor cocktail) and subjected to sonication using Branson 450 sonicator (amplitude: 

50, duty: 30%, duration: 30 sec, 6 repeats with 1 min intervals between each sonication) which yielded a 

majority of DNA fragments with sizes of 200-1000 bp. Precleared samples were incubated overnight at 4 °C 

with 10 μg anti-PGC1α antibody (H300). The samples were incubated with Protein-G agarose beads (Thermo 

Scientific) for 1 h at 4 °C followed by intensive washings. Afterward, immune complexes were eluted with 

elution buffer (1 % SDS, 0.1 M sodium hydrogen carbonate (NaHCO3). The eluates were then treated with 40 

μg/ml proteinase K and further subjected to phenol-chloroform-isoamyl alcohol purification. Purified 
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samples were then subjected to qPCR analysis with primer pairs flanking the RORE and the 3’-UTR of Bmal1 

and values were normalized to the pre-IP inputs. Primer sequences are listed in Table 3.  

 

4.10. NPY promoter end-point luciferase assays 

HEK293T cells were plated into 96-well plates coated with poly-D-lysine and transfected with the following 

expression plasmids: 10 ng NPY-luc and 2 ng CMV-Renilla luciferase in various combinations of the following 

clock gene constructs: HA-Clock, HA-Bmal1, CRY1 and pcDNA3.1 (mock transfection) using Lipofectamine LTX 

transfection reagent (Life Technologies). 48 hr after transfection, luciferase activity was measured using 

Dual-Glo Luciferase Assay System (Promega) and the Berthold TriStar plate reader. 

 

4.11. Intracerebroventricular administration 

Intracerebroventricular (i.c.v.) cannulae were implanted to mice at 8-10 weeks of age under isoflurane 

anesthesia (CP-Pharma, Burgdorf, Germany) and carprofen analgesia (5 mg/kg; Rimadyl, Pfizer Deutschland 

GmbH, Berlin, Germany). A stainless steel guide cannula (internal cannula 2.8 mm with 1 mm projection 33 

gauge, C315I-5/Spc; Plastics One, VA, USA) was stereotaxically implanted into the lateral cerebral ventricle 

(0.9 lateral and 0.1 posterior to bregma, 2.2 ventral to the surface of the skull). The cannula was fixed with 

dental cement on two small steel screws (screw 00-96x1/96). After surgery animals were single-caged and 

allowed to recover for 1-2 weeks with handling everyday. Substances for i.c.v. administration were dissolved 

in artificial cerebrospinal fluid (aCSF; 125 mM NaCl, 25 mM NaHCO3, 1.25 mM sodium phosphate monobasic 

monohydrate (NaH2PO4), 20 mM D-glucose, 5 mM potassium chloride (KCl). 2 μl in total volume were 

injected into manually restrained awake mice.   
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4.12. ELISA analysis of plasma adiponectin 

Blood was collected from decapitated animals into EDTA-containing tubes. Plasma concentrations of 

adiponectin were determined with an ELISA detection kit for mouse adiponectin (Adipogen Inc, CA, USA) 

according to the manufacturer’s protocol using the Epoch microplate spectrophotometer (Biotek 

Instruments, VT, USA). 

 

4.13. Statistical analysis 

To access the circadian parameters of luminescence recording rhythms, all traces were subjected to the 

subtraction of their own 24-hr moving average as baselines. To construct phase response curves, the 

baseline-subtracted data were further fitted with a standard sine wave regression. The intersection of the 

ascending cross-section of the sine wave with the x-axis was defined as 0 or 2π in radian and the peak as 0.5 

π. To compare the phase before and after drug treatments, phase shifts were determined by comparing 

extrapolated peak times from sine wave fits of at least two consecutive circadian cycles before and after the 

treatment. All measurements of circadian parameters were performed using the Lumicycle analysis software 

(Actimetrics). Diurnal variation of 24-hr profile data was tested using sine-cosine fitting with CircWave 

software version 3.3 (University of Groningen, NL). General statistical analysis was performed using 

GraphPad Prism 5.0 (GraphPad, CA, USA). All data are represented as means ± standard error mean (SEM). In 

general, Student’s t test was used for pairwise comparison in cell-based experiments and Mann Withney test 

for pairwise comparison in animal experiments. Multi-groups analyses were performed with One-Way 

ANOVA with either Tukey or Bonferroni post-test. 24-hr profile experiments were analyses with Two-Way 

ANOVA with Bonferroni post-test for comparison at specific time point.  
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Table 3. Sequence information of the oligos used in current study.  
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