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1 Introduction
Das Blatt, auf dem die Raupe lebt, ist für sie eine Welt, ein
unendlicher Raum.

(Ludwig Feuerbach)

As Hallé states in [1], “Humans have always preferred animals to plants, no
matter what time and place”. The reason is simple: animals tend to exhibit
motion immediately exciting our mind, whereas plants, seemingly sessile, barely
even appear alive.1

Clearly, plants are very different from animals. Their mode of being proceeds on
timescales too large to be immediately recognized by us. Their form, even though
ubiquitous in daily life, is almost alien to us: a strange, fractal-like body, each
part seemingly consisting of a small copy of the whole. Yet, we are completely
dependent on them as they alone can perform photosynthesis, converting energy
from sunlight into a form usable by us. Despite their strangeness (that we may
not even notice because of their omnipresence!) and the fact that we are entirely
dependent on them for survival, we often neglect them save for the admiration
for a pretty flower.

Plants deserve recognition. From the overall space-filling, fractal growth of
tree branches to the phyllotactic patterns of individual leaves and leaflets, their
form exhibits remarkable mathematical symmetries and a degree of strict order
and regularity that is not often found in animals. Because they lack centralized
control (there is no equivalent of the mammalian central nervous system or a
central fluid pump such as a heart), a plant’s life is much more governed by local,
decentralized, often passive, self-organized processes. These include growth,
transport of fluids, induction of flowering, and many more.

In this thesis, we study the leaf, together with the roots arguably the most crucial
organ of modern vascular plants. Its function is to perform photosynthesis, thus
keeping the rest of the plant body alive. The forces of evolution have shaped
the leaf into a remarkably optimized machine whose transport system delivers
vital water throughout the leaf blade and transports away sugars, chemically
preserving the sun’s energy.

In modern vascular plants, the leaf venation system arises through a self-
organized morphogenetic process, resulting in a dense, highly reticulate planar
network structure that is optimized to be efficient and resilient to external dam-
age and fluctuations. This thesis is an attempt to further our knowledge of the
structure, topology, and morphogenesis of the leaf venation network which is,
despite its ubiquity, poorly understood.

1In some languages that possess a grammatical category of animacy, or aliveness, plants are considered inanimate.
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1 Introduction

1.1 Aim of this thesis

Understanding the leaf venation network is a multifaceted endeavor that re-
quires tools from several fields of study. This thesis addresses a broad range
of questions, all guided by a central theme: “How does the geometry and topology
of leaf venation depend on its function, development, and evolution?”. The aim of
this thesis is to make a small contribution towards answering this immensely
broad question and naturally, not every question can be answered. We attempt a
multi-pronged approach that we hope can serve as a first stepping stone to more
integrative studies in the future. To begin to attack it, it is necessary to break the
question down into smaller pieces that can be addressed individually.

We ask, broadly, “What is the connection between the geometry and the topology
of leaf networks?”, and “What is the connection between the physics of evolution and
development of leaf networks?”. The first question is attacked in Part II, the second
in Part III.

Still, these questions are too broad to be answered in a single dissertation.
Nonetheless, we hope that this work may provide a modest contribution to the
science of plant vasculature from a physicist’s perspective. In particular, we hope
that further studies will be facilitated through the software package nesting
that grew out of the work for Part II and that is freely available for anyone to use
and measure the topological structure of leaf venation networks and even more
general planar weighted graphs. The software package available at
http://www.github.com/hronellenfitsch/nesting.

1.2 Organization

The rest of this dissertation is organized in three parts and an appendix. In
Part I, we review the basic biology of plant leaf vasculature, including function,
development, and evolution. We also review leaf and plant hydraulics.

In Part II, we investigate the topological organization of leaf vascular networks,
providing the first ever study of the hierarchical nesting of loops in a large data
set of real leaves and showing that topology appears to be a new, previously
undescribed phenotypic trait of the leaf. We present a simple, empirical model
that explains much of the observed variation in topology and demonstrate the
usefulness of this new trait.

Finally, in Part III, we study the physics of leaf venation networks more di-
rectly by investigating models of its evolution and development. We show that
very simple models of development can produce the type of network topology
predicted by evolutionary models that is remarkably close to real leaves.

12
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1.2 Organization
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2 Biology of Leaves and Leaf Venation

FIGURE 2.1: Leaf blade of a dicot.
The highly complex venation net-
work is clearly visible.

In this section, we give an overview of the biology
and biomechanics of our main object of study, the
angiosperm dicotyledonous (dicot) plant leaf. We
discuss the leaf’s basic biological structure, function,
evolution and development, as well as its relation
to the rest of the plant body.

The leaf (see Figure 2.1) is an extraordinarily
complex plant organ that in addition shows great
variability and diversity of form amongst the an-
giosperms. Still, even given this staggering diversity,
all leaves follow a basic recipe of form and function
which we will try to present here. The strategy will
be to in a way look at the leaf from various different
“angles”, each time uncovering new physical and
biological properties.

In Section 2.1, we first focus on the functional as-
pects of the fully matured leaf. We describe its basic
functions, and how its form allows it to accomplish
them in an efficient manner. We then proceed to
look at a leaf in cross section, observing in detail the
various sub-organs inside, in particular focusing on
form and function of the venation system. Finally,
we look at the leaf from the outside, exploring the
various possible shapes that occur and how they are
related to function.

In Section 2.2, we then proceed to describe the
mechanism used by the plant to produce new leaves
from the shoot apical meristems, hosts of totipo-
tent stem cells. We then pay particular attention to
vein morphogenesis and the current hypotheses and
models that are used to describe it. Finally, we give
a short account of conifer needle development even

though our main focus lies on the angiosperms, not the gymnosperms. This is
done because conifers provide a one-dimensional model of venation in contrast
to the more complicated two-dimensional venation found in angiosperm dicots.

Last, in Section 2.3, we give a short account of the evolution of leaves and leaf
venation, with a particular focus on the development of the angiosperms and
the reasons behind their remarkable evolutionary success.
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2 Biology of Leaves and Leaf Venation

The content of this chapter is well-known biology and biomechanics, and
draws from many good textbooks. For the basic functional biology and devel-
opment we found [2] particularly helpful and clear. An excellent introductory
book about leaf biomechanics is [3]. Wherever the content presented here goes
beyond these introductory texts, we will refer to the relevant scholarly articles. In
order to make this introduction more palatable to the physically inclined reader,
we will intersperse the biological facts with the relevant physics describing the
particular biological system in question.

2.1 Functional leaf biology

FIGURE 2.2: Schematic diagram showing
the main leaf interactions with the environ-
ment. Sunlight (yellow waves) hits the leaf
blade, providing energy for photosynthesis
as well as heating up the leaf blade. Wind
(light blue arrow) leads to drag as well as
convective cooling. Water (dark blue ar-
row) evaporates from the leaf blade during
gas exchange with carbon dioxide (brown
arrow).

Leaves are ubiquitous in the world around
us. This is no accident, as together with the
roots, they are the most important organ of all
living higher plants. The leaf is the result of
hundreds of millions of years of evolutionary
adaptation, and as such it showcases several
crucial functions that assure survival for both
the tiniest meadow flowers and the tallest trees.
The most important function is fixation of so-
lar energy by photosynthesis. In this section,
we will first follow [3] in our description of the
basic functions, and later move on to the leaf
vasculature in more detail, since this is what
will be of interest in the rest of this thesis. We
should keep in mind though that this reduc-
tionist approach ignores many of the subtleties
of leaf biology. The leaf is a highly intricate,
interconnected machine, and discarding parts
of it we will necessarily lose some aspects that
may be crucial. Nevertheless, this is the ap-
proach we will take, and it has proved fruitful.

2.1.1 Basic functions

In games of strategy such as Chess or Go, the prime property of a good move is
that is achieves more than one goal at a time given a set of highly challenging
constraints. Evolution has had billions of years to perfect its moves, and indeed,
the dicot leaf is an excellent example of a multifaceted strategy. Four prime
goals for the leaf to achieve are identified in [3]. They are all based on how the
leaf needs to interact with its immediate environment, which typically contains
sunlight providing the energy for photosynthesis as well as heating up the leaf,
and wind that provides convective cooling as well as drag. The leaf constantly
exchanges gases (O2 and CO2) with the environment, losing water in the process
(see Figure 2.2). These basic functions can be summarized as [3]:

16



2.1 Functional leaf biology

1. Intercept light. Performing photosynthesis is the main function of the
leaf. The leaf needs to provide the appropriate chemical environment for
this life-giving reaction that converts the energy of the sun into sugars
(photoassimilates). Sugars which serve as the basis for all other metabolic
processes in the plant body, and indirectly those of all animals on the planet.
The leaf must be such that it maximizes the amount of sunlight it can catch
while at the same time being mechanically rigid enough to keep its shape.

2. Get water up. Photosynthesis requires copious amounts of water, much
more than what could be absorbed from the atmosphere. Thus, the plant
relies on its root system together with an intricate network of vascular tissue
(the xylem) to provide the leaf with water from the ground. Inside the leaf
itself, there is a complex network of interconnected veins that provide every
part of the leaf with sufficient water. The method employed to get the water
moving is entirely passive, relying on negative pressure due to evaporation
at the leaf surface.

3. Do not overheat. Leaves are exposed to the sun, a necessity for photosyn-
thesis to occur. Yet, they cannot use all of the energy contained in sunlight
efficiently, and therefore they heat up. So much so that the leaf needs to de-
ploy a host of additional measures to keep its temperature in an acceptable
range and prevent death from overheating.

4. Do not be too draggy. All larger plants and especially trees are exposed
to wind. Since leaves are necessarily numerous and almost flat, they are
subject to a considerable amount of drag — possibly a dangerous amount,
as wind forces may be strong enough to topple a tree. In order to minimize
drag, the leaf’s mechanical properties allow it to bend, curl and cluster in
high winds, reducing drag.

Because this thesis is about physical properties of the vascular network in leaves,
we will mostly ignore basic functions 3 and 4 in the remainder of the text.
However, in addition to the functions from [3], we propose another one.

*5. Get photoassimilates out. As a living organ, the chemical processes in
the leaf itself consume some of the energy captured from sunlight. How-
ever, almost all other plant organs such as shoots, roots, flowers and fruits
are unable to photosynthesize on their own and therefore energy must be
transported to them. Thus, the leaf needs to contain an additional vascu-
lar system (the phloem) whose function it is to remove photoassimilates
(sugars) and effectively “feed” the rest of the organism.

The rest of this section will be concerned with the structure of the leaf and its
vascular system, showing the principles that nature employs to facilitate efficient
water uptake and delivery and efficient translocation of photoassimilates and
thus efficient photosynthesis.

17



2 Biology of Leaves and Leaf Venation

2.1.2 Water transport and photosynthesis

Water is arguably the most crucial substance that plants need, and therefore
evolution has provided them with a highly complex system of water uptake,
transport, and delivery, surpassed in complexity maybe only by the vascular
system of animals, but certainly not surpassed in ingeniousness of mechanism.
This section discusses the interplay between water transport and photosynthesis.
It is based mainly on the expositions in [2, 4, 5] and [6].

2.1.2.1 Gas exchange and the evolution of photosynthesis

Even though water is one of the most abundant substances on the planet, plants
struggle to obtain a sufficient amount of it. In fact, they retain only about 5% of
all water taken up by the roots, the rest being lost to the atmosphere through
a process called transpiration. The reason lies in photosynthesis. The basic net
chemical reaction is [7]

CO2 + 2 H2X + light energy −−→ [CH2O] + 2 X + H2O, (2.1)

FIGURE 2.3: Electron micrograph of a sin-
gle stoma on a tomato leaf surface. The
stoma is partially opened to facilitate gas
exchange. The scale bar is 10 µm. (Im-
age by Louisa Howard, Dartmouth College,
public domain.)

where X is an oxidizing agent (e.g., O) and
[CH2O] represents a sugar. The carbon dioxide
necessary for this reaction to occur comes from
the surrounding air, thus the leaf needs to open
up in order to facilitate intake of CO2. This is
achieved through the stomata (see Figure 2.3),
small pores in the leaves the openings of which
the plant is able to control. Opened stomata
allow gas molecules to freely diffuse between
the inside of the leaf and the surrounding air,
leading to the CO2 assimilation rate [8]

A = gCO2(Cair − Cleaf), (2.2)

where Cair,leaf are the effective CO2 pressures
outside and inside of the leaf and gCO2 is the
effective diffusivity for CO2.

Because water is abundant inside the leaf
but CO2 is rare in the atmosphere, a stagger-
ing amount of water is lost in this process of
gas exchange. Indeed, for one molecule of car-
bon dioxide gained, 400 molecules of water
are lost [4]. This is the ratio between the CO2
assimilation rate A and the water transpiration rate E [6],

A
E

=
1

1.6
Cair − Cleaf

pair − pleaf
, (2.3)

18



2.1 Functional leaf biology

where pair,leaf is water vapor pressure outside and inside of the leaf and 1/1.6 is
the ratio of effective diffusivities for CO2 and water vapor.

sc
s

FIGURE 2.4: Gas exchange through a stoma.
Water evaporates inside the stomatal cav-
ity (sc) and diffuses through the stoma (s).
It is exchanged for carbon dioxide which
diffuses in from the outside. (“Dwars
doorgesneden huidmondje in het blad van
een dicotyle” by Yvan Lindekens, CC BY-
SA 3.0 / cropped and annotated.)

One possible reason for this remarkable
squandering of precious water is the fact that
when photosynthesis first evolved roughly 2.9
billion years ago in methanotrophic archaea,
it did so in the ocean, where access to water is
not a concern [9]. The crucial protein necessary
for carbon fixation that evolved at that time,
RuBisCO I, is still used by all modern plants,
algae, and cyanobacteria [9–11], making it the
most abundant protein on the planet [12]. Its
catalytic efficiency is also remarkably low [12],
showing that evolution appears to favor the
“never change a running system” approach to
engineering. For modern dicots, this leads to
a fundamental dilemma: Open your stomata
and risk dehydration, or close them and risk
starvation.

2.1.2.2 Uptake at the roots

Water is taken up from the soil through the roots, a complex branching network
of individual strands often covered by fine hairs that increase surface area and
thus the ability to absorb water. They have the ability to grow away from dry
areas (hydrotropism) and form huge exploratory networks in order to find wet
soil deep underground. The exact mechanism of this hydrosensing is not known,
but the root cap is likely responsible.

After being absorbed by the root, water travels either through the cell walls
(the apoplast) or inside the cells (the symplast) until it reaches the specialized
transport tissue responsible for efficient movement through the plant [13].

2.1.2.3 Transport through the plant: cohesion-tension theory

Specialized water transport cells (the xylem vessels) are responsible for keeping
an intact column of water between the root and the leaf, where finally, tran-
spiration happens. The mechanism thought to underlie this transport is called
Cohesion-Tension (CT) theory [13, 14]. The basic logic behind CT theory can be
summarized as follows.

• There is a continuous column of water starting at the plant roots and ex-
tending up into the leaves.

• Inside the stomatal cavities, water evaporates, thus creating tension on the
water column. This tension is responsible for pulling up more water.
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• Tension on the water column is counteracted by cohesive forces (hydrogen
bonds) in water.

• The water inside the xylem is in a metastable state, effectively at pressures
below vacuum, and thus prone to cavitation.

We note that the entire mechanism transporting water inside the plant as de-
scribed by CT theory is passive, meaning that there are no metabolic pumps
doing any sort of work to move liquid. The forces responsible for the motion of
water are generated by evaporation alone.1

FIGURE 2.5: Anatomy of the xylem.
(a) Cross-sectional micrograph of
xylem tissue showing tracheid cells.
(b) Sketch of xylem cell anatomy.
Vessels are subdivided by perfora-
tion plates and connected to adja-
cent tracheids through pits in the
cell wall. (“Diagram of xylem tissue
in plants” by Kelvin Song, CC BY-
SA 3.0 / rearranged and simplified).

Although very successful in describing the flow
of liquid in plants, CT theory, established over 100
years ago [16] is not free from controversy, in part be-
cause of a perceived “improbability” of water under
high tension [13, 14, 17]. However, several physical
arguments exist that render the idea plausible after
all. The simplest one estimates the cohesion pres-
sure by the energy stored in the hydrogen bonds
to about 1400 MPa. This is unrealistically high, and
more sophisticated estimates find values between
50 MPa and 300 MPa [13], sufficient to offset the ten-
sions necessary to transport water in a tall tree. Typ-
ical values of tensile pressure in plants tend to be
around −2 MPa (in crop plants) with the record at
around −12 MPa (in plants adapted to highly arid
climate) [3]. Other critics invoke spontaneous nu-
cleation of gas bubbles as a weakness of the theory,
but arguments against this exist as well [13], and in
fact, evolution appears to have endowed plants with
mechanisms to recover from such gas embolisms [18,
19]. An additional argument towards the validity of
CT theory consists of the construction of microflu-
idic “synthetic trees,” modeling the hydraulic prop-
erties of a real tree. Such models have been built and
successfully used to demonstrate the plausibility of
CT theory [20].

The physical model underlying CT theory is
similar to Darcy’s law from the theory of porous
flow [21] as well as the law of Hagen-Poiseuille. Volume flow of water through a
small xylem section is described by

F = −K
dp
dx

, (2.4)

1There is some “pushing” of water from the roots, but the effect is only relevant in herbs and shrubs [15] and mostly
negligible in trees.
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where F is volume flow, p is hydrostatic pressure, and K is xylem hydraulic
conductivity. In the case of a cylindrical cell of radius r, the conductivity works
out to be

K =
πr4

8η
, (2.5)

where η is the dynamic viscosity of water. This is the law of Hagen-Poiseuille.
The dependence on the fourth power of the radius means that the contribution
of small transport tissue can be negligible.

FIGURE 2.6: Hydraulic re-
sistor model for a tree. The
hydraulic conductance K
is partitioned into compo-
nents for root, stem, and
leaf. Additionally, the
stomatal conductance gs is
shown. Both Kleaf and gs
are variable because their
values strongly depend on
whether and how many
stomata are opened or not.
(Simplified after [5]).

This law also resembles Ohm’s law of electrical circuits
and indeed, it is possible to model water flow in plants
and microfluidic devices in terms of networks of hydraulic
resistors (see Figure 2.6 and [22]). It is important to note
that equations (2.4) and (2.5) are valid only for laminar
flow. Inside plants, the Reynolds number is of the order
Re ≈ 0.01 to 0.1, far below the critical regime for turbu-
lence [23]. Typical flow speeds are 20–40 cm h−1 in conifers
and 5 m h−1 in broad-leaved trees [24].

The xylem tissue consists of two separate kinds of con-
ducting cells, tracheids and vessels. Tracheids are smaller
in length and diameter and taper off at the end. Long ves-
sels consist of stacks of individual vessel elements. Vessel
diameters range between 20 and 100 µm, vessel lengths
between 2 and 20 cm [25]. Immediately after maturation,
xylem cells undergo apoptosis, shedding their nucleus
and other internal cell organelles. What is left over is a
dead, hollow cell that nonetheless is only now ready to
fulfill its function as both carrier of water and provider
of mechanical stability through strong lignin fibers in its
walls.

The vessels themselves are connected by overlapping
their ends, forming networks. Once liquid has reached
the end of one vessel, it moves to the next one through
membranes in openings along the lateral cell walls called
pits. The pit membranes allow water to pass but act as a
stop to air bubbles, preventing the spreading of cavitation

through the entire plant. Thus, damage to the transport system is limited. Across
species, the structure of the pit walls varies considerably [26]. In order to create
a single vessel tube, the cell walls between neighboring consecutive vessel
elements need to be partially dissolved so as to permit liquid to flow. This
results in the appearance of perforation plates inside xylem vessels. Several
different morphological types of perforation plates exist. Hypotheses as to why
perforation plates exist at all (minimizing flow resistance would mean doing
away with them completely) invoke increased resistance against embolisms both
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during freeze-thaw cycles and after cavitation. Instead of one large air bubble,
perforation plates would create several smaller bubbles that dissolve more easily.
Additionally, air is trapped by the perforation plates, preventing several small
embolisms from coalescing in a fatal manner [23]. Figure 2.5 contains both a
representative micrograph of xylem tracheids as well as a sketch of the vessel
anatomy described.

Finally, water enters the leaf through the petiole where it is distributed by a
network of veins and eventually evaporates or is used up in the photosynthetic
pathway. The venation network inside the leaf itself is complex enough to
warrant its own discussion, and will be presented in detail in Section 2.1.6 and
Section 2.1.7.

2.1.3 Transport of photoassimilates

All organs of the plant need to be continuously supplied with chemical energy in
the form of sugar molecules in order to perform their metabolic functions. How-
ever, not all plant organs possess the necessary cellular apparatus (chloroplasts)
to photosynthesize, and some lack exposure to the sun entirely (the roots). Thus,
it is necessary to transport energy, stored chemically in sugar molecules (photoas-
similates), from the sites of photosynthesis (the leaves) to sites of consumption
and growth such as roots, shoots and fruits (the heterotrophic organs, in contrast
to the autotrophic leaves). Transport of photoassimilates is taken over by the
phloem, a type of vascular tissue distinct from the xylem but still closely related.
Aside from its primary function, the phloem is also responsible for transporting
defensive compounds and information signals in the form of phytohormones
throughout the plant body, rendering it comparable to a sort of combination of
animal vascular, lymphatic, and nervous system. In this section we describe the
basic mechanism of phloem translocation in a plant. The exposition is based on
the reviews [27, 28].

2.1.4 Phloem sieve element structure

The phloem cells which are responsible for transport of sugars are called sieve
cells or sieve elements. Unlike the xylem, they are alive even though they
shed their nucleus and most of the internal cell organelles during maturation.
Because they do not possess the machinery necessary for most of standard cell
metabolism, they rely on associated companion cells (or in conifers, Strasburger
cells) to keep them alive. Like xylem vessels, the sieve elements are elongated
and optimized for transport of sap and form long stacks. Single sieve cells have
typical diameters up to 20 µm with records around 50 µm [29]. The length/dia-
meter ratio tends to be between 10 and 100 [29].

In order to facilitate flow, the cell walls between adjacent sieve elements are
perforated, similar to the perforation plates of the xylem. These walls are called
sieve plates, and some work has been done to estimate their effect on hydrau-
lics [30, 31]. Figure 2.7 shows a micrograph of phloem tissue as well as an
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illustration of the cell anatomy described.

FIGURE 2.7: Phloem anatomy. (a)
SEM image of phloem cell showing
sieve plates. The scale bar is 10 µm.
(From [32], CC BY / scale bar added)
(b) Sketch of phloem cell anatomy.
Sieve tubes are separated by sieve
plates and connected to companion
cells. Sugars are transported through
intermediary cells into the sieve tube–
companion cell complex. (“Diagram
of phloem tissue in plants” by Kelvin
Song, CC BY-SA 3.0 / cropped and
simplified).

The sap inside the sieve elements is rich in en-
ergy, containing 10–30% sugar by weight (mainly
sucrose) [28, 30], as well as various other sub-
stances such as flower-inducing phytohormones,
and is therefore highly valuable to the plant. It has
been suggested that a certain protein (P-protein,
or proteinacious sieve tube slime) is used by the
plant in response to damage in order to plug the
sieve pores and thus prevent loss of sap, but the
idea remains controversial [33, 34]. It is interesting
to note the difficulty of sampling phloem sap due
to the plant’s defense mechanisms. Certain aphids
have evolved a highly specialized organ (the sty-
lus) that is able to penetrate the plant epidermis
and directly tap into the phloem. These animals
provide the most efficient way to obtain phloem
sap for analysis, better than any other method [35].

Contact of sieve cells with life-preserving, on-
togenetically related companion cells is made
through extensive sets of intercellular pores called
plasmodesmata. In contrast to the sieve cells, the
companion cells contain a large number of ribo-
somes and mitochondria, rendering them highly
metabolically active and allowing them to provide
the sieve cell with the necessary enzymes, mem-
brane proteins, and metabolites to ensure survi-
val [28]. In addition to this function, the compan-
ion cells are often responsible for loading and un-
loading of photoassimilates into and out of the
sieve cells [36]. This is the crucial step for the functioning of the Münch mecha-
nism driving active long-range translocation described below.

2.1.5 Active transport in the phloem

Unlike flow of water in the xylem which is passively driven by evaporation
in the stomatal cavities, phloem translocation is actively driven by osmotic
pressure gradients along the whole length of the phloem sieve tube network.
The mechanism was first proposed by Münch in the 1920s [37]. Sugars produced
in the leaf are loaded into phloem sieve elements by companion cells (depending
on species using one of various available mechanisms). This generates an osmotic
concentration gradient with respect to the surrounding tissue, driving water into
the sieve elements. At the sink tissue, sugars are unloaded from the phloem
and carried into the surrounding cells. Again, this leads to an osmotic gradient
driving water out of the phloem. In total, the result is a net bulk flow of water
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from source to sink tissues, driven by an osmotic gradient [30]. Photoassimilates
are carried advectively by this bulk flow (the Péclet number has been estimated
to Pe ≈ 105 [38]; diffusion of solutes is irrelevant). Typical bulk flow speeds are
in the range of 1 m h−1 for angiosperms and 0.1 m h−1 for conifers [30].

Translocation of solutes in a whole plant can be modeled using a hydraulic
resistor model (much like the xylem, see Section 2.1.2.3 and Figure 2.6) with total
hydraulic resistance [30, 39]

Rtot = 1/Ktot (2.6)
= Rsource + Rstem + Rsink. (2.7)

Water must traverse a semipermeable membrane in the sink tissue. Assuming a
cylindrical sieve tube of radius r and length ` with lateral membrane permeability
Lp, the hydraulic resistance is Rsource = 1/(2πr`Lp). Similarly, in the sink tissue
of length s we have Rsink = 1/(2πs`Lp). In the stem of height h, the standard
Hagen-Poiseuille formula can be used with Rstem = 8ηh/(πr4). This yields
water velocity u in the stem as

u =
1

πr3
∆p

Rsource + Rstem
=

2r2Lp`

r3 + 16ηLp`h
∆p. (2.8)

Here ∆p is the pressure drop along the length of the tree. Surprisingly, this
number does not scale with height and can be estimated to a constant ∆p ≈
10 MPa [40, 41]. The sugar transport rate is then j = cu, where c is sugar
concentration. This model allows for several interesting estimates on maximum
tree height and leaf size using transport rate optimization arguments [39]. It can
also be used to derive a scaling relation between sieve element radius and plant
height that has been empirically verified [30, 39, 42]. A more refined model is
able to predict concentration profiles and translocation speeds analytically on
the whole-tree level [43, 44]. In reality, phloem tubes do not occur in isolation
but instead are part of a vascular bundle consisting of several similarly sized
tubes. Still, continuous models are possible [45].

So far, we have neglected the details of phloem loading and unloading even
though they are the crucial step that makes bulk flow possible. In the source tis-
sue, photoassimilates need to be transported against the concentration gradient
into the phloem. In most plants, active accumulation in the region close to a sieve
element–companion cell complex occurs. Several different mechanisms have
been proposed, and different plants use different means to accrue sugars [28, 36].
Apoplastic loaders release photoassimilates into the water-filled space inside the
cell wall (the apoplast) from where it is taken up by the adjacent cells. For this
mechanism, active transporter proteins are necessary to pump sucrose out of the
cytoplasm.

Symplastic loaders utilize pores (plasmodesmata) between neighboring cells
to move sugars between them. Typically, plants that utilize the symplastic route
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employ raffinose or higher polymers of sucrose. In contrast to apoplastic loaders,
symplastic loaders possess very large numbers of plasmodesmata. The polymer
trap mechanism allows these plants to accrue sugar against the concentration
gradient through the symplast. Sucrose diffuses freely into intermediary cells
where it is enzymatically polymerized into raffinose or higher sugars. These
are too large to diffuse back but small enough to diffuse further into the sieve
tube-companion cell complex.2

Finally, some plants such as Salix (willow) employ phloem that is directly
linked to the surrounding tissue, such that here, diffusion along the concentration
gradient occurs. The motor of “phloem loading” in this case is simply the process
that transports sucrose out of the photosynthesizing chloroplasts [28, 46].

In summary, the phloem, together with its associated companion cells as well as
the intermediary cells partly responsible for loading, appears to be a remarkably
complex system, much more than the comparatively simple xylem. Instead of
passive, dead tissue in the xylem, the phloem is alive, active and thus more
difficult to study. Evolution has brought forth several different, complicated
mechanisms for the accumulation of sugars in the transport tissue. In the case of
gymnosperms, the whole process is still even more poorly understood [47]. In the
light of this, it appears remarkable that simple physical models are even possible.
One should realize though that the difficult steps (i.e., sugar loading) have been
mostly omitted from these models. Sugar loading still poses a challenge if a more
complete understanding of the entire machinery of long range photoassimilate
transport is desired.

2.1.6 The leaf in cross section

In this section, we focus on the leaf structure, identifying the different internal
parts and their spatial relation to each other. This perspective allows us to see the
hydraulic transport system that we considered at the whole-tree level in more
detail inside the leaf, focusing on the structure of the vascular bundle and its
relation to the surrounding tissue. We base the explanations on [2].

Figure 2.8 shows the cross section of a typical dicot leaf. The outer layer is
called the epidermis. It covers and protects the more delicate internal structure
from the environment (e.g., from bacteria, fungi, or strong sunlight). Embedded
in the epidermis are the stomata which allow gas exchange with the surrounding
air.

Next, mesophyll tissue consists of the main photosynthesizing cells. In many
plants, the mesophyll is separated into the palisade layer, a layer of tightly
packed elongated cells directly beneath the epidermis, and the spongy layer be-
neath it, consisting of less elongated cells with large air spaces between them. The
palisade cells’ total surface area tends to be much larger than that of the spongy
cells.

2A sort of biological realization of Maxwell’s demon. Because energy is spent in the polymerization process, there are
no thermodynamical paradoxes.
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FIGURE 2.8: Cross section of a dicot leaf. The epidermis (A, C) is the outer protective layer, surrounding
the palisade cells (B, D) and the spongy mesophyll (E). Water and photoassimilates are transported in
the vascular bundle (F), which also provides structural support. The scale bar corresponds to 0.2 mm.
(“Photomicrograph of a dicot leaf” by Jon Houseman and Matthew Ford, CC BY-SA 4.0).
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FIGURE 2.9: Cross section of the vas-
cular bundle in a leaf of Taraxacum
officinale (common dandelion). Xylem
(A) transports water, phloem (B) pho-
toassimilates. Collenchyma (C) gives
structural support, bundle sheath
cells (D) envelop the vein. (“Tarax-
acum officinale, central leaf vein, Et-
zold green” by Micropix, CC BY-SA
3.0 / cropped and annotated).

Chloroplasts are also more abundant in the pal-
isade tissue, suggesting that it is the primary site of
photosynthesis. On the other hand, the air spaces
in the spongy tissue allow for more rapid diffusion
of gases.

Finally, vascular bundles are embedded within
the mesophyll. Figure 2.9 shows a more detailed
cross section of a single vascular bundle. The vas-
cular bundle is divided into several distinct sub-
systems. We have already discussed xylem and
phloem extensively as those tissues which are re-
sponsible for transport of water into the leaf and
photoassimilates out of the leaf, respectively. They
almost always occur together in the same vein
(in a number of different patterns, see [48]). The
smallest, freely ending veins often contain only
xylem [49]. Larger (major) veins are less often
integrated in the mesophyll and instead become
associated with non-photosynthesizing rib tissue.
Collenchyma found in the vascular bundle has
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particularly thick cell walls and provides structural stability. Finally, the entire
bundle is surrounded by tightly packed bundle sheath cells which control sub-
stances entering and leaving the vascular tissue. Still, pathogens such as fungi
may penetrate into the vascular bundle and thrive within. The plant is able to
compensate by producing additional vascular tissue [50].

Some plants (in particular many grasses, among them many economically
important crops such as corn and sugarcane) employ a particularly efficient
pathway for photosynthesis (called C4 photosynthesis) that is reflected in a
markedly different arrangement of the leaf parts and in particular the vascular
bundle, leading to more efficient transport of water and photoassimilates (for
details see [2]).

2.1.7 The shape of a leaf

In this section, we describe the overall outer leaf morphology. In particular, we
note the extreme variability in shape of the lamina, as well as the similarly high
variability in the organization of the visible venation network.

The leaf typically consists of a short stalk connecting it to the rest of the plant
called petiole as well as a broad, flat portion called the leaf blade or lamina
(see Figure 2.11). Sometimes, the petiole is missing. Leaves can be simple or
compound, i.e., the lamina consists of smaller leaflets that are typically attached
to the rachis, an extension of the petiole. Sometimes, the rachis is missing, and
sometimes it contains smaller petiolules from which even smaller sets of leaflets
arise.

Acicular
needle shaped

Falcate
hooked or sickle shaped

Orbicular
circular

Rhomboid
diamond-shaped

Acuminate
tapering to a long point

Flabellate
fan shaped

Ovate
egg-shaped, wide at base

Lobed
deeply indented margins

FIGURE 2.10: Examples of various leaf shapes and their nomenclature. Many more possible shapes exist,
presenting adaptive trade-offs between many factors. (“Chart of leaf morphology characteristics” by
McSush, CC BY-SA 3.0 / cropped and rearranged).

The possible shapes of a single leaflet or simple leaf are manifold, and an
extensive amount of nomenclature has been developed to classify leaf shapes
[51]. Important characteristics of the lamina are the appearance of lobes and
the type of margin (which can be serrated in various ways or not). Figure 2.10
shows some examples of the variety found in nature. Some leaves even fall out
of the standard classification completely, such as those of carnivorous plants
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whose leaves are adapted in various ways to catch and digest small prey animals.

petiole

lamina

margin

vein 

network

FIGURE 2.11: The basic shape of a
leaf. The petiole connects the lam-
ina with the rest of the plant. In
this example, the margin is entire
and shows no serrations. The hier-
archical vein network is embedded
in the lamina.

Inside the lamina, the venation network is often
conspicuous. In angiosperms, it typically consists
of one main vein running from the petiole to the tip.
Branching off of it are the secondary veins, some-
times ending freely, but sometimes connected to
each other through anastomoses. In the space be-
tween the secondaries, higher order veins are em-
bedded in a highly reticulate, hierarchically orga-
nized fashion. At the highest level, small veins
enclose polygonal patches of lamina, the areoles.
Sometimes, even smaller veinlets can be found in-
side the areoles, but these are not reticulate and end
freely in the mesophyll tissue. Similar to the overall
shapes, a vast nomenclature classifying the venation
structure at all levels exists [51]. We will discuss the
venation network in more detail in Section 2.1.8.

Functionally, many explanations for leaf shape
have been brought forth. They include thermoreg-
ulation, hydraulic constraints, biomechanical con-
straints [52], and even drag resistance [3]. The rela-
tive importance of these possible explanations is un-
clear, conventional wisdom identifying thermoreg-
ulation as the most likely driver of leaf shape evolution [52]. Because the leaf
performs several functions at once, leaf shape evolution is likely driven towards
a trade-off solution.

2.1.8 Structure and hydraulics of the leaf venation network

In this section, we discuss the structure of the dicot leaf venation network, first
in a descriptive manner, then in the context of leaf economy and robust optimal
hydraulics. In the context of the whole tree as an integrated system (but ignoring
the details of leaf venation), great descriptive success came from scaling and
minimum hydraulic resistance arguments. West-Brown-Enquist theory is able
to predict allometric scaling laws in animals [53] and plants [54, 55] but fails
when it comes to leaf networks, presumably due to the assumption of a treelike,
space-filling network.

As discussed above, the leaf venation network is mostly embedded in the
leaf mesophyll tissue and consists of the vascular bundles. It is effectively two-
dimensional, i.e., veins do not cross over each other. Instead, they form junctions
where branching occurs. Topologically, these are almost always T-junctions,
where one parent vein branches into two daughter veins.

In a typical dicot leaf (see Figure 2.12), there is one main vein (or rarely several)
which connects the leaf network to the vascular network in the rest of the plant
through the petiole. Branching off from it, there are secondary veins which
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FIGURE 2.12: Hierarchical organization of the venation network in a leaf of Protium wanningianum (the leaf
was chemically cleared and the network stained). Branching off from the main vein (red) are the secondaries
(green). Third order veins (blue) connect the secondaries, and fourth order veins (purple) the third order
veins. The network is reticulate with hierarchically organized loops.

are often connected through anastomoses. From the secondaries, third order
veins branch off, and so forth. The different vein orders are characterized by
decreasing typical width [51].

FIGURE 2.13: Highest order vena-
tion network in a leaf of Protium
grandifolium. Even at the highest
level, veins are nested hierarchi-
cally. The smallest loops (areoles)
enclose treelike veinlets that end
freely in the mesophyll. The scale
bar corresponds to 1 mm.

The highest order of veins that can be well rec-
ognized is associated with the leaf rank, a crude,
semi-quantitative measure of network complexity
that heavily relies on human learned recognition of
form [56, 57]. Again, there is a vast nomenclature for
classification of venation diversity at all orders [51].
Despite this fact, the functional relevance of this
structural diversity is unknown.

Instead of focusing on the branching structure of
the network, it is possible to consider the loop nest-
ing structure [58, 59], recognizing that the network
consists of hierarchically nested loops starting from
the outer margin which is subdivided by the main
vein and descending all the way down to the small-
est loops, the areoles (see Figure 2.13). This idea will
be the main driver behind the work in Part II, and
we shall expand on it there.

Recently, the idea of the leaf economics spectrum
was been brought forth, connecting whole-leaf traits
such as mass per area and photosynthetic assimi-
lation rates to habitat and climate, and identifying
the key investment trade-offs that evolution has to

work with in leaves in order for species to remain competitive by maximizing
leaf carbon gain [60, 61]. Even though the leaf economics spectrum is based on
summary, whole-leaf traits, the venation network is intimately linked to most
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of them. Thus, a “low-level” description of the leaf economic spectrum can be
obtained from geometric venation traits such as areole size, vein density, and
vein distance [62]. Developmental models further link geometric traits of the
mature leaf to development [63].

This leads to the general idea of a phenotypic space describing leaf venation
characteristics. The work described above has done the first steps of mapping
out such a space, but the geometric leaf traits analyzed so far tend to be highly
correlated due to developmental effects [63]. It is one of the aims of this the-
sis to extend the known phenotypic space of leaf venation, identifying new,
uncorrelated traits in the topological structure of the network.

The topology of the vascular network dictates many aspects of its function. The
leaf network can be seen as a collection of hydraulic resistors in the sense of CT
theory (see Section 2.1.2.3). The xylem contributes to the total leaf conductivity
via [64]

1
Kleaf

=
1

Kx
+

1
Kox

, (2.9)

where Kx is total xylem conductivity and Kox is total outside-xylem conductivity
(this includes hydraulic pathways from the vascular bundle through the meso-
phyll and then through the stomata, see also the simplified model in Figure 2.6).
It should be noted that the xylem conductivity empirically appears to be of the
same order of magnitude as the outside-xylem conductivity (in [64], a ratio of
Kx/Kox ≈ 6 was found). Thus, the effect of Kox on Kleaf is slightly greater than
that of Kx.

One interesting question is how the venation network should be organized
to confer the maximum fitness advantage to the plant. In the context of animal
vasculature, Murray’s law was brought forth as a guiding principle [65, 66]. It
relates the radii of branching vessels according to

r3
p = r3

d1
+ r3

d2
, (2.10)

where rp is the radius of the parent branch and rdi the radii of the daughter
branches.3 It is derived under the assumption that blood is a costly substance
that should be moved under minimum energy expenditure. For the xylem
in plants, this assumption does not seem to be valid as water is not costly
and the CT mechanism is externally powered by the sun, requiring no energy
expenditure [68]. Interestingly, it still appears to hold [69]. As we will show
in Chapter 9, the geometry of the phloem can be explained well by minimum
energy expenditure arguments (phloem sap is indeed costly and the Münch
mechanism does require expenditure of energy). A different model proposes
that the network is arranged in such a way as to minimize water stress, meaning
the network supplies all parts of the leaf with sufficient amounts of water [68, 70].

3Leonardo da Vinci already developed a similar rule for tree branching. He proposed the relation r2
p = r2

d1
+ r2

d2
from

the principle of conservation of area [67].
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2.1 Functional leaf biology

Equivalently, the network can be understood to minimize the average pressure
drop on the leaf blade because a more homogeneous distribution of hydrostatic
pressures results in less water stress. In the case of one-dimensional pine needles,
this model was successfully used to explain xylem geometry [71]. The total
cross-sectional area A(x) of the xylem was shown to scale as

A(x) ∼ x1/2, (2.11)

where x is the distance from the tip.
Combined with the requirement of robustness against damage, the idea has

led to remarkably realistic simulated 2D network topologies [72]. The model
minimizes the objective function

∆p =
1
N

N

∑
i=0

(pi − p0) (2.12)

FIGURE 2.14: Example simulated
leaf network using the damage-
resistant model from [72]. Many
of the features of real leaf net-
works (compare to Figure 2.12)
are present such as hierarchy of
main, secondary and higher order
veins, anastomoses connecting sec-
ondaries, and hierarchically nested
loops.

under a fixed-cost constraint for the amount of ma-
terial invested in the network. Here, pi is the hy-
drostatic pressure at node i of a planar network con-
taining N + 1 nodes (node 0 is the petiole). This
objective function can be shown in the limit of uni-
form evaporation on the leaf blade to be equivalent
to both

∆p ∼ P = ∑
e

F2
e

Ke
(2.13)

∆p ∼ 1
Kx

, (2.14)

where the sum in (2.13) runs over all edges e in the
network and Fe is volume flow through edge e. Thus,
(2.13) is the total viscous power dissipation in the
network. The simple objective function (2.12) can
be modified to take into account robustness against
damage. An example simulated network is shown
in Figure 2.14. We will extend these ideas slightly in
Chapter 10.

Thus, the venation network optimizes three objectives at the same time: Pres-
sure drop, hydraulic conductivity, and power dissipation. Pressure drop and
hydraulic conductivity are connected with efficient xylem operation and power
dissipation is linked to the phloem (see Chapter 9).

The fact that both vascular systems almost always occur in the same vascular
bundle (see also Figure 2.9) may be a reflection of this multiple optimality, and
an example of the principle of parsimony in nature: There is no need to build
two different networks if the same network architecture optimizes transport
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2 Biology of Leaves and Leaf Venation

through both xylem and phloem.

2.1.9 “Design” in nature and the constructal law

Many natural systems (by which we mean systems on all scales, e.g., forests,
trees, leaves, venation networks, etc. . . ) have the appearance of design. Of
course this is a wrong observation because evolution through natural selection is
non-teleological [73]. Still, as a metaphor it is useful to speak of functional “goals”
and “design” of natural systems. The principles of optimization (of optimal
design) described above can be put into the larger context of the constructal
law, which stipulates that there exists a global architecture facilitating cyclical
flow of water (in the plant–atmosphere–river–soil continuum) as well as flow of
mechanical stresses (from atmosphere to ground) [74, 75]. The constructal law
can be seen as a guiding principle for the appearance of design in nature. Any
natural system should be expected to optimize flow. This leads to the prediction
of some well-known allometric scaling laws [76] such as Kleiber’s law, stating
that an animal’s metabolic rate scales as M3/4, where M is its mass [77]. It also
puts the objective functions we used to explain venation structure into a broader
context.

It should be noted that the constructal law is not a fully fleshed-out mathemat-
ical theory of biological systems but rather a set of (vague) ideas that may guide
the modeler in the right direction.

2.2 Developmental leaf biology

In this section, we discuss the developmental biology of the dicot leaf. First,
we describe the emergence of leaves from specialized tissue found at the tip
of the shoots, the shoot apical meristem (SAM). The SAM contains totipotent
stem cells able to differentiate into any plant tissue and produces leaf “embryos,”
the leaf primordia. Next, we describe the growth of the primordia in several
phases during which the vascular system is differentiated. The growth of vas-
cular tissue (and many other plant tissues) is thought to be regulated by the
phytohormone auxin. Finally, for completeness, we discuss the slightly different
growth mechanism of gymnosperm needles.

2.2.1 Leaf initiation and the shoot apical meristem

The shoot apical meristem is a collection of undifferentiated (meristematic)
cells found at the very tip (apex) of a shoot. Its function is to act as the initial
site of growth and formation of new plant organs such as leaves and flowers.
At the very center of the SAM (the central zone), slowly dividing stem cells
continuously replenish the supply of tissue which migrates away from the apex
to the peripheral zones. There, organ initiation takes place. Even though there is a
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2.2 Developmental leaf biology

constant flux of cells as well as budding off of organs, SAM size and organization
remain unchanged [78].

leaf primordia

central zone

procambium

FIGURE 2.15: Shoot apical meris-
tem of Coleus sp. Two leaf primor-
dia have been formed by the meris-
tem tissue. Inside the primordia,
vascular tissue (procambium) has
already differentiated. The scale
bar corresponds to 0.2 mm. (“Pho-
tomicrograph of a Coleus stem tip”
by Jon Houseman and Matthew
Ford, CC BY-SA 4.0 / cropped and
annotated).

Figure 2.15 shows a micrograph of a SAM where
the central zone as well as two leaf primordia can
be discerned. As they grow, leaf primordia move
downward (from the perspective of the SAM), form-
ing intricate phyllotactic patterns. A combination
of mechanical stresses and hormonal regulation is
believed to be responsible for both initiation of the
primordia and their phyllotactic spatial organiza-
tion [79–83].

The formation of a new primordium is accom-
panied by an accumulation of the plant hormone
auxin which is transported actively towards the site
of initiation. Once initiation is complete, transport
reverses away from the primordium which now acts
as a source of auxin [84]. Inside the growing pri-
mordium, auxin is believed to be the main driver of
vascular development [84, 85], responsible for dif-
ferentiation of cells into procambium, from which
both xylem and phloem are derived.

In leaves with an entire margin, two distinct nar-
row bands (the marginal meristem) form, which de-
velop into the leaf blade. The tissue between them
develops into the main vein [2]. In lobed or serrated
leaves, the marginal meristem is further subdivided
into alternating areas of growth enhancement and

suppression that later develop into the distinct serrations and folds.

2.2.2 Vein morphogenesis

FIGURE 2.16: Polar accumulation
of PIN in a leaf primordium of Ara-
bidopsis. PIN is marked in red. Scale
bars correspond to 10 µm. (From
[82], reprinted with permission).

The development of the vascular system in an-
giosperm leaves proceeds in several overlapping
phases [63, 86]. In the first phase, growth in the leaf
primordium occurs primarily by cell division. In
this phase, the main vein and the secondary veins
are formed, starting from the tip of the leaf down-
ward to the petiole. In the second phase, growth
is mainly by cell expansion. Now, minor veins suc-
cessively subdivide the space between higher order
veins, forming an intricate network (see Figure 2.17).

Similar to the process of leaf initiation at the SAM,
vascular differentiation is believed to be controlled
mainly by flow of the hormone auxin, even though
the precise mechanism is unknown [84, 85, 87, 88].
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2 Biology of Leaves and Leaf Venation

FIGURE 2.17: Development of the vascular pattern in Arabidopsis thaliana. D–F, J–L, dark field microscopy
of differentiated xylem. Development of a cotyledon is shown from day 1 to day 8 after germination. The
main vein differentiates from bottom to top, higher order veins differentiate from top to bottom. D–F, scale
bars correspond to 200 µm, J–L, scale bars correspond to 1 mm. (From [86], reprinted with permission,
c© 2004 by The University of Chicago. All rights reserved.)

It is generally believed that auxin is produced in special cells within the develop-
ing lamina from which it moves away by diffusion. The petiole acts as a sink.
In addition to diffusion, it has been shown that auxin is actively transported
through plant cells by means of a class of efflux carrier proteins called PIN. They
accumulate polarly in the cell walls (see Figure 2.16), facilitating transport of
auxin from one cell to the next [89–91]. Cells sense either auxin concentration
or auxin flux which triggers differentiation into vascular tissue. Increased flux
leads to more differentiation, which in turn further increases flux. This positive-
feedback mechanism is called auxin canalization theory and is, together with
polar auxin transport by PIN, the main accepted explanation for vascular tissue
development. Auxin canalization theory is not without criticism, and models
have been brought forth that invoke mechanical effects as drivers of vein pat-
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2.2 Developmental leaf biology

terning [92–95]. One fundamental problem in assessing such models is the high
difficulty of directly measuring auxin in the developing leaf.

Mathematical models of vascular development are plentiful, the first being
Mitchison’s seminal contribution [96]. The review [85] alone lists 16 different
approaches, many with only minor differences. Fundamentally, the models can
be divided into two classes: flux-based and concentration-based, differing in
which quantity (flux or concentration of auxin) the cell measures and adapts to.
The large number of models shows a fundamental difficulty, it is very hard to
verify (or falsify) any of them because their predictions are largely similar, and
no sufficiently sensitive experimental techniques exist to rule out at least some
of them.

A simple way to model the flux of auxin through a cell wall connecting two
cells is [97]

F = D ∆c, (2.15)

where ∆c is the difference in auxin concentration and D is an effective diffusion
coefficient (e.g., incorporating facilitated transport via PIN but no effects of polar
transport) that depends on flux through

dD
dt

= αF2 + β− γD, (2.16)

where α, β, and γ are parameters. Equation (2.16) describes a positive feedback
mechanism. If the flux is large, D increases, further facilitating higher flux.
Similarly, if the flux is small, D decays, shutting off the connection. Most flux-
based models are variants of this basic idea, either using a different feedback
function (some f (F) instead of αF2) or more sophisticated models for facilitated
diffusion. Concentration based models tend to be more complicated as they often
incorporate various additional processes such as auxin influx, efflux, saturation,
production and degradation. A comparatively simple one-dimensional model
is described in [98]. It is interesting to note that equation (2.15) is formally
equivalent to cohesion-tension theory upon replacing the effective diffusion
constant by conductivity and concentration by hydrostatic pressure. We discuss
the general theory of such linear flow models in Chapter D of the Appendix.

One major modeling question is how to explain the formation of closed loops
in the venation system. The “bare bones” models result in networks that are
topological trees, and one needs to add additional “bells and whistles” to make
closed loops persist [99, 100]. In Part III, we show that fluctuating sources and
sinks can account for closed loops. Despite continuous work over the past
decades, the morphogenesis of vascular networks in leaves is so far not well-
understood.
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2 Biology of Leaves and Leaf Venation

2.2.3 Global geometry and folded growth

The global geometry of plant leaves, i.e., the overall shape, is extremely variable
(see Figure 2.11). As discussed above, it has been explained as an adaptation to
minimize air drag or maximize convective cooling of the lamina. However, it is
important to take into account possible developmental constraints. Two basic
developmental modes exist. The so-called pre-formed leaves grow and develop
within a protective bud. Many temperate species of trees employ this strategy,
presumably to be able to have functional leaves immediately available upon start
of the growing season and to take advantage of good conditions in the previous
season [101]. In contrast, neo-formed leaves do not grow inside a bud and can
expand freely. Many tropical and subtropical species employ this strategy.

(a)

(b)

FIGURE 2.18: Venation types and folded
growth. Secondary veins are in brown.
(a) Brochidodromous venation, related
to neo-formed leaves. (b) Craspedodro-
mous venation, related to folded growth.
Blue dashed lines are folds.

It has been recently observed that there is
a rich interplay between pre-formed folded
growth and leaf shape [102–104]. In essence, it is
possible to predict the lobed leaf shape as well as
serrated margins of many temperate tree species
(e.g., hornbeams, or maple) by the constraint
that the folded leaf needs to be space-filling in-
side the bud. Additionally, leaf shape is closely
linked to vascular patterning [105]. Lobes and
serrations in the margin act as points of termi-
nation for veins and, during development, as
localized auxin sources [90]. This is also sup-
ported by simple computer simulations [106].

Two basic venation patterns have often been
used as proxy for climate. In brochidodromous leaves, secondary veins are
connected by thick anastomoses. Such leaves are often found in tropical climates.
In craspedodromous leaves, the secondary veins terminate in the serrations
of the leaf margin and are not connected by anastomoses. Such leaves are
predominantly found in temperate regions. Folded growth provides an expla-
nation for this, as the temperate species’ pre-formed leaves could be subject to
developmental constraints preventing anastomoses and promoting lobes and
serrated margins (see Figure 2.18). Limited studies in species that produce both
pre-formed and neo-formed leaves appear to support this [107, 108].

2.2.4 The gymnosperm needle

In gymnosperms and monocots, leaf formation proceeds differently from the
angiosperms. If one compares the process in angiosperms with drawing on an
expanding balloon, where the network is formed in the embryo and then later
continually added upon as the leaf lamina expands, gymnosperms can be more
aptly compared to an inkjet printer. After leaf initiation, the primordium becomes
hood-like, enclosing the central zone of the SAM. The zone of growth is restricted
to a small band where the lamina attaches to the SAM. New cells are added in a
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2.3 Evolution of leaf venation

linear fashion to the growing leaf from the bottom [2]. Because of this process,
the venation network is not nearly as intricate as in dicots. Gymnosperms tend
to form only a single or double midvein, monocots form a set of parallel veins
running from the tip of the leaf to the petiole, interconnected by smaller veins
running perpendicularly.

Thus, the topology of the monocot and gymnosperm venation network is
much less rich than that of the angiosperms. Still, this simplicity allows for a
mathematical treatment of the flow processes that can admit analytical solutions.
In the case of the phloem in conifer needles (gymnosperms), we show in Chap-
ter 9 that a very simple optimization model can explain the observed pattern of
total cell area.

2.3 Evolution of leaf venation

In this section, we describe the evolution of the angiosperm leaf venation net-
work. The unique structure of their venation network has been a major contribu-
tor to the angiosperms’ evolutionary success. Today, they are the dominant land
plants on earth, having replaced the conifers around 60–100 million years ago.
This section is based on the reviews [49, 68, 109], a survey of extant and extinct
venation patterns in plants is [110].

2.3.1 Evolution of land plants and leaves

From the first appearance of land plants in the Ordovician (ca. 450 million
years ago), atmospheric CO2 fluctuated strongly. The lowest concentration was
found during the late Carboniferous (ca. 300 million years ago) and the highest
when the first land plants appeared. High CO2 conditions favored relatively low
hydraulic conductance and high water storage capacity, both features found in
the earliest plants. However, even at optimum conditions, there still was a need
for water transport. The CT mechanism is likely to have evolved rather directly,
as the driving force comes for free and all it takes is a hydrophilic cell wall to
act as a wick for water. The precursors for such a mechanism would have been
present in the primitive algae that terrestrial plants evolved from [109]. Thus,
the basic transport tissue had already evolved by the time the leaf arose.

The earliest land plants lacked leaves. Yet, by the mid Carboniferous (ca. 320
million years ago), leaves had already independently evolved five or more times.
Macrophylls (i.e., leaves with multiple veins) likely arose as lateral branches
that exhibited in-filling, or webbing, between branches in the same plane [49].
Because of the origin of venation from branches, all early venation was topolog-
ically treelike, without loops. The same venation topology can be seen today
in the “living fossil” Ginkgo biloba. Simple reticulate venation and hierarchical
organization evolved in ferns and early gymnosperms (e.g., in Gnetum) dur-
ing the Upper Carboniferous, but did not reach the sophistication of the later
angiosperm system.
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2 Biology of Leaves and Leaf Venation

2.3.2 Evolution of the angiosperm venation network

FIGURE 2.19: The angiosperm radiation event in evo-
lutionary time (green shaded region). (a) Relative
abundance of plant groups (filled regions). (b) An-
giosperm stomatal conductance (black line) and re-
constructed vein density (red dashed line). (Redrawn
and simplified after [111]).

During the early and mid Cretaceous
(between 145 and 66 million years
ago), the angiosperms rapidly began
to dominate all land [111]. This “an-
giosperm radiation” was so extreme
that even Charles Darwin found it at
odds with his theory of gradual evo-
lution, even calling it an “abominable
mystery” [112].4 The rapid expansion
of the angiosperms is closely linked
with falling atmospheric CO2 concen-
tration during and directly before this
extreme event. This is thought to
have put the early angiosperms un-
der considerable selective pressure to
improve their CO2 exchange capabil-
ities. This was primarily achieved
by increasing stomatal conductance gs.
In order to minimize the bottleneck
length scale of diffusive transport, the
stomata became smaller but increased
in number [111].

In order to efficiently supply a large
number of stomata with water, vein
density (total vein length per area) in-
creased in two phases during the Cre-
taceous, first during the Late Albian (ca. 100 million years ago), when the non-
angiosperm maximum density (6 mm mm−2) was surpassed, and then again at
the border between Cretaceous and Tertiary (ca. 60 million years ago), when
the first modern values of the vein density were observed [111] (on the order of
10 mm mm−2). This massive increase was achieved through the highly reticulate,
hierarchically organized venation topology we find today. The timeline of the
angiosperm radiation event together with the environmental conditions is shown
in Figure 2.19.

2.4 Summary

In this introduction, we discussed aspects of function, development, and evolu-
tion of the dicotyledonous plant leaf with special focus on physical modeling.
We began by summarizing the numerous functions a leaf needs to accomplish
effectively in order for the plant to survive and thrive. We then described the

4Now that we have a much better fossil record, the apparent incompatibility with the theory of evolution has all but
vanished [113].
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basic theory of photosynthesis and how it relates to water and nutrient transport
within plant and leaf. Further, we gave a description of the cohesion-tension
theory of passive, evaporation-driven water movement through the plant. We
discussed the xylem as water transport tissue as well as the mathematics behind
CT theory in terms of local (vein level) and global (whole tree level) models of
hydraulic resistors. Next, we discussed the Münch mechanism of active, osmotic-
gradient driven photoassimilate transport through the phloem. Following, we
gave a short overview over the structural biology of a leaf in cross-section, bring-
ing the vascular tissue into context. We then discussed aspects of leaf shape and
presented a global view of the leaf venation network and its hydraulics. We
especially focused on the fact that the venation network appears to be highly
optimized by evolution for its task of water and photoassimilate transport. Fol-
lowing, we discussed development of the dicot and monocot leaf from the shoot
apical meristem as well as vein morphogenesis and simple auxin canalization
models. Finally, we turned to evolution, giving a brief history of the dicots and
their venation network, focusing specifically on the evolutionary advantage and
eventual success of the modern efficient and highly dense, reticulate venation
network.
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Part II

Topological Phenotypes in Leaf
Vascular Networks
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3 Phenotyping Leaf Venation Networks

As we saw in the introduction, transport networks are of critical importance to
the efficient and robust functioning of biological systems. In man-made systems,
optimality is achieved through careful design and engineering. In biological
systems such as leaf networks, evolution through natural selection appears to
drive vein patterning towards networks that tend to optimize certain proxies for
biological fitness (e.g., energy expenditure), see [72, 114] as well as Part III of this
thesis. In the case of leaf venation, the optimized network has a highly reticulate,
hierarchically nested topology that certain models are able to reproduce (see
Part III). However, comparisons between model topology and real leaf networks

(a) (b) (c)

(d)

2 cm (d)

(c)

FIGURE 3.1: Examples of reticulate topology in natural and man-made networks. (a) Cleared leaflet of
Protium nervosum from the database analyzed in this thesis. The highly reticulate, hierarchically organized
venation topology is clearly visible. (b) False color composite of the delta of the river Lena, flowing into
the Arctic Ocean. Thermal erosion due to the local seasonal variability (for seven months of the year, the
delta is frozen tundra, the rest of the time, wetland) has resulted in the particular, highly reticulate topology
of the river delta network [115]. (c) The slime mold Physarum psittacinum forages for food by producing
a network of cytoplasm-filled tubes. (d) Jammed photoelastic disks show reticulate force-chains. (b) by
NASA Landsat 2000, in the public domain. (c) “Physarum psittacinum” by Helen Ginger, CC BY-SA 3.0 /
cropped. (d) From [116], reprinted with permission.)

still largely rely on the capability of humans to detect similar patterns. In this
part of the thesis, we make a contribution towards producing a quantitative tool
which is able to encode the topological structure of planar, reticulate, weighted
networks such as leaves, blood vessels in the brain, river deltas, slime molds,
force chain networks in granular materials or even human-made street networks
(see Figure 3.1 for examples). The topological metric we use is based on ideas
from computational topology [117] for finding persistent cycles in discretized
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3 Phenotyping Leaf Venation Networks

data (in particular representations of proteins) which were generalized to the
case of hierarchically nested, weighted networks [58, 59, 118].

Leaf venation networks provide an excellent test case for such topological
metrics because their diversity and variability is staggering—even within a
single family (see Figure 3.2).

FIGURE 3.2: Examples of the diversity of leaf network morphology in the Burseraceae family. We show
the highest order venation morphology in leaf scans from A Protium ovatum, B Protium madagascariense,
C Pouteria filipes, D Canarium betamponae. In D, one areole (smallest loop) is marked together with freely
ending veins that are typically found inside. Scale bars correspond to 2 mm.

cell division

cell expansion

FIGURE 3.3: Leaf venation morphogenesis
in Arabidopsis thaliana [86, 119–121]. Leaf
blade morphogenesis is characterized by
overlapping phases of (slow) growth by
cell division and (fast) growth by cell ex-
pansion. Vein orders develop in successive
fashion, the main vein being formed first,
then the secondaries, then finally higher
order veins. (Redrawn after [63]).

Researchers have developed a variety of ge-
ometric metrics characterizing venation prop-
erties in adult [62, 63, 94] and developing
leaves [121] and showed that they correlate
with photosynthetic efficiency [122–124] (in-
deed, the ability of dicots to form highly dense,
nested venation is thought to be a major con-
tributing factor to their evolutionary success
as discussed in the introduction), as well as
climate and vegetation type [61, 63, 125, 126].
These metrics typically involve the measure-
ment of quantities such as vein density (total
vein length per area), thickness, or areole area.
They were shown to scale with leaf size ac-
cording to a developmental model [63]. Es-
sentially, during morphogenesis, large veins
form first during a phase of growth by cell
division, whereas smaller veins form later dur-
ing a partly overlapping phase of growth by
cell expansion (see Figure 3.3). Thus, the ge-
ometric properties of large veins (such as the
main vein) turn out to correlate with leave size whereas the properties of small,
higher order veins do not.

Little work exists analyzing the architecture of leaf venation beyond simple
geometry, researchers so far having concentrated on a qualitative, descriptive
nomenclature [51]. A semi-quantitative approach different from ours was pur-
sued in [56]. However, both these approaches still rely on human inspection
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of photographs or leaf specimens for identification of traits. In this part of the
thesis, we develop an automatized quantitative method that is able to extract
topological venation traits from cleared, scanned and vectorized leaf networks.
The groundwork for this method was laid in [58]. The method focuses on the
hierarchically nested nature of the loops that make up the venation and that is
characteristic for many transport networks, including leaf venation, and that
will be of importance in Part III as well. Our work is the first ever study of these
topological leaf traits in a large data set.

In conjunction with geometric traits such as those investigated in [62, 63, 121],
we are able to compute a leaf fingerprint, or quantitative phenotype, from local
geometry and topology (i.e., using only information available in the higher order
venation pattern) that can be used to improve identification of leaf specimen (or
even species) as compared to using geometry alone. With the help of a custom
dataset of 186 fully vectorized leaf networks, we use eight local phenotypic traits
(or features) comprising the fingerprint, three from topology and five from geom-
etry, and show that the feature space is spanned by two orthogonal dimensions
approximately given by geometry and topology (in the sense of Principal Com-
ponent Analysis and Factor Analysis). Identification of leaf specimen and leaf
species from fragments is significantly improved when using topological infor-
mation, thus establishing the relevance of both the fingerprinting method and
our topological metrics. Even though we produce a proof-of-principle instead
of a fine-tuned identification system, the basic idea is relevant to both the field
botanist and the palaeobotanist, who may only have access to small leaf frag-
ments or leaf litter. Albeit rare, sufficiently well-preserved fossil fragments exist
(e.g., [127]). We finally present a simple, empirical developmental model that
reproduces the measured topological statistics for a wide range of leaf networks
and that is controlled by a set of parameters regulating noise.

The rest of Part II is organized as follows. Chapter 4 introduces the metrics we
use to quantify local geometry and topology, most prominently the hierarchi-
cal decomposition method used to extract the hierarchical nesting structure of
loops [58]. In Chapter 5 we summarize the results of our quantitative analysis of
186 leaves in our data set. Chapter 6 presents a phenomenological growth model
that is able to reproduce a wide range of topological statistics measured in the
dataset. In addition, Chapter A of the appendix contains an overview over the
statistical and machine learning techniques that we used to analyze our data.

The results from Part II were published in part in [128].
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4 Metrics for Planar Networks

In this chapter we discuss metrics that can be applied to the problem of pheno-
typing planar networks such as leaf venation. We use the word “metrics” to refer
to quantitative methods which assign some number to the whole or a part of a
network that is chosen to provide a summary statistic of some abstract property.

As discussed before, in the study of leaf networks and phenotyping in general,
geometrical metrics have had a long tradition. They can be shown to be linked
to photosynthetic efficiency [122–124], high venation density being one of the
main factors contributing to the evolutionary success of the angiosperms [109].
Indirectly, geometric metrics are also known to be correlated with climate and
vegetation type [61, 63, 125, 126], in particular as part of the global leaf economics
spectrum [60]. In addition, they are known to scale with leaf area due to universal
properties of morphogenesis (see [63] and Figure 3.3). Here, we concentrate on
local traits which can be estimated from a small fragment of the leaf without
knowledge of global properties such as total leaf area. In the study of fossilized
leaves, often only such fragments exist.

In contrast to geometry, the topological metrics we employ have not been
used before in botany. Some unrelated topological metrics have been applied to
semi-automatic quantification of leaf venation [56], but these still rely on visual
inspection of the network by a human. A qualitative classification of leaf traits
exists as well [51] but cannot be easily automated. Our metrics [58, 59] rely on
encoding the hierarchical nesting structure of loops in the network as a tree
graph and can be computed automatically. This tree graph is then analyzed
statistically using methods inspired by neuroscience [129–131], where they were
devised to quantify the branching structure of dendrites. As an additional metric,
we quantify the topological length of tapered veins.

We use the statistics of our topological metrics to define a statistical distance
between local topologies, quantifying the degree of similarity between hierarchi-
cally nested structures.

A convenient representation of leaf networks is a weighted planar graph.
Such a representation is able to capture the essential features: small stretches of
venation between junctions correspond to edges, junctions correspond to nodes,
and areoles correspond to facets of the planar polygon associated to the graph.
Basic geometry of the network such as vein widths are encoded as weights.

The rest of this chapter is organized as follows. We first describe the graph
representation of leaf network geometry which we use. Then, we describe five
geometrical leaf traits, following [63] and [62]. The traits are vein density, vein
distance, weighted vein thickness, areole area, and areole density. Furthermore,
we describe two different topological traits. First, the (weighted) nesting number
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4 Metrics for Planar Networks

which is derived from the nesting tree [58, 59], as well as a detailed description
of the hierarchical decomposition algorithm used to construct it. Second, the
topological length of tapered veins.

4.1 Graph representation of leaf venation

FIGURE 4.1: Partial representation of leaf
venation as a weighted planar graph. Ve-
nation between junctions is represented
by edges (dark lines, line thickness corre-
sponds to vein width), junctions are repre-
sented by nodes (orange dots). True vena-
tion length (including the effect of vein cur-
vature) is encoded as a second edge weight.
The graph can be seen as a planar polygon
by removing all treelike components, keep-
ing only the facets (green). The scale bar is
1 mm.

Representing a leaf venation network as a
weighted planar graph is a natural choice
in many respects. The network is two-
dimensional and veins do not cross without
forming junctions (see also Figure 4.1). For a
given leaf network, we can therefore define
a graph G = (N, E) consisting of node set N
and edge set E ⊂ N×N. A planar embedding
is given by a set of coordinates (xn, yn) associ-
ated to each node n ∈ N. Weights representing
vein diameter ae and length `e are associated
to each edge e ∈ E. The lengths are not neces-
sarily the Euclidean distances between nodes
but are the measured actual lengths of possibly
curved pieces of venation.

Because of the planar embedding, G con-
tains additional structure as a planar polygon
when removing all treelike components (see
Figure 4.1). In practice, this is achieved by
removing all edges from the graph that can-
not be expressed as a linear combination of its
topological oriented cycles (for the mathemat-
ics of topological cycles see Chapter D of the
appendix).

4.2 Geometric leaf traits

In this section, we describe all the geometric leaf traits that are analyzed in
this thesis. Where appropriate, we also briefly present the algorithms used
to calculate them. The most important geometric leaf traits are schematically
represented in Figure 4.2. They are the areole area, vein distance, vein density and
weighted vein thickness. These metrics have been used extensively, e.g., in [62,
63].
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4.2 Geometric leaf traits

4.2.1 Vein density

FIGURE 4.2: Geometric leaf traits
schematically overlaid on top of an im-
age of the vein network in one leaflet of
Protium grandifolium. The traits shown
are areole area A, distance between adja-
cent veins d, vein density (total length of
venation per area) σ and vein diameter
a. We additionally consider (not shown)
areole density (number of areoles per
area) ρA and vein radius weighted by
length of venation between two junc-
tions a`. The scale bar is 1 mm. (Re-
drawn and extended after [62]).

Vein density σ is calculated by summing the to-
tal length of all veins and dividing by total leaf
area or the area of the leaf segment that is being
analyzed,

σ =
total length of all veins

total area
. (4.1)

4.2.2 Vein distance

The mean distance between veins d is not easy
to calculate directly from the graph description.
Given a binary image of a leaf and the associated
Euclidean distance map, one can find the max-
ima of the distance map inside the areoles and
take these as estimates of the vein distance [62].
For computational ease, we use a slightly differ-
ent procedure that only uses the graph descrip-
tion, but is potentially less accurate.

For each facet i in the network, we first com-
pute the convex hull, and from this the largest
inscribed circle (this is now a linear program-
ming problem [132]). This circle’s diameter di is
taken as an estimate of the vein distance. The
mean vein distance is now simply the mean over
all di.

4.2.3 Areole area

Mean areole area A is calculated by taking the facets of the network and calculat-
ing their areas using the standard formula for the area of a general polygon. The
formula for a single areole area Ai is

Ai =
1
2

∣∣∣∣∣N−1

∑
k=0

(xkyk+1 − xk+1yk)

∣∣∣∣∣ . (4.2)

Here, the sum runs over all N vertices (xk, yk) in the closed polygon, i.e., the first
and last coordinate pairs are identical. Then, the mean over the Ai is taken.
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4 Metrics for Planar Networks

4.2.4 Areole density

Areole density ρA is simply the number of areoles divided by the total area of
the leaf or leaf segment,

ρA =
total number of areoles

total area
. (4.3)

4.2.5 Weighted vein thickness

FIGURE 4.3: Topological leaf traits schemat-
ically overlaid on top of an image of the
vein network in one leaflet of Protium gran-
difolium (the same as in Figure 4.2). (a) Hi-
erarchically nested structure as measured
by the nesting tree. Two areoles (repre-
sented by white dots) with the smallest
width intersection (dotted line) are merged
to form a larger facet (represented by green
dot), and the intersection is removed. The
white dots are connected to the green dot,
forming the first part of the nesting tree.
The algorithm is presented in detail in Sec-
tion 4.3.1. (b) Topological vein tapering.
Starting from an edge, we walk on the net-
work to that adjacent edge with the largest
diameter that is still smaller than that of
the current edge. The scale bar is 1 mm.

Weighted vein thickness a` is calculated as the
average

a` =
1
w ∑

j
aj `j, w = ∑

j
`j, (4.4)

where aj are the diameters of individual veins
(i.e., straight venation segments between two
junctions), and `j are their lengths. We chose
this weighting to prevent over-representation
of very short segments that are sometimes spu-
rious.

4.3 Topological leaf traits

In this section, we describe the hierarchical
decomposition algorithm and show how to
use the resulting nesting tree to extract a mea-
sure of the quantitative hierarchical topology
of nested loops in vein networks. Additionally,
we show how the topological length of tapered
veins can be used to complement loop nesting
(see Figure 4.3).

4.3.1 Hierarchical decomposition

The hierarchical decomposition algorithm it-
self is rather straightforward (see Figure 4.3 (a)
and Figure 4.6). However, given a weighted
graph representing the venation network of
a leaf (or even other planar networks), several pre-processing steps need to
be applied first to convert a general network from our data set into a pla-
nar polygon which can be decomposed. Because the vectorization proce-
dure we use for our leaf images can produce errors and artifacts such as spu-
rious crossing edges, we take some heuristic measures to ensure planarity.
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4.3 Topological leaf traits

FIGURE 4.4: Illustration of the pre-processing steps. (a) Edge crossings and collinear edges (red dashed
lines) are detected and removed. (b) Treelike components (dashed edges) are detected and removed. (c)
The resulting planar polygon represents the “loopy backbone” G of the network.

We use the general rule to remove rather than try to fix “broken” parts of a
network. As long as the excised regions are small enough, this should not bias
the estimates of our metrics too strongly. The basic idea is to remove errors from
the network and prune treelike components, such that we are left with the “loopy
backbone” G of the network (see Figure 4.4). This loopy backbone is then used
to detect the fundamental cycles of the network (the facets of the planar polygon)
that are used for hierarchical decomposition. For a detailed description of the
vectorization process, the pre-processing steps, and an algorithm to compute the
fundamental cycle basis, see Chapter B of the Appendix.

FIGURE 4.5: Dual graphs
used for hierarchical
decomposition. The
graph-theoretical dual (a)
is turned into the cycle
dual (b) by introducing
“virtual” boundary nodes.

We now describe the hierarchical decomposition algo-
rithm. We split up the procedure into sub-algorithms for
the construction of the cycle dual graph, and then the ex-
traction of the nesting tree.

4.3.1.1 Constructing the cycle dual graph

The cycle dual graph G∗ is constructed to represent neigh-
borhood relationships between the fundamental cycles.
An efficient algorithm to achieve this proceeds by iterating
through all cycles, storing for each edge in the cycle which
cycle(s) it belongs to. This way, one can obtain for each
edge a pair of cycles that the edge belongs to by inverting
the obtained relationship because each edge can belong to
at most two cycles in a planar graph. This information be
used to construct the cycle dual graph G∗ in which each
node corresponds to one cycle, and cycles that share at
least one edge are connected. Finally, the outer boundary
cycle is removed, and each cycle sharing edges with the
boundary is assigned its own “virtual” boundary cycle
(replacing the single boundary cycle). This way, more information about the
cycles on the network boundary is retained. The resulting graph is very similar
to the dual from Chapter D in the appendix, except that self-loops represent-
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4 Metrics for Planar Networks

FIGURE 4.6: Example hierarchical decomposition. (a-c) Successive detection of smallest intersection between
cycles and construction of the nesting tree on top of the original graph. Nesting tree nodes have the same
color as the graph cycles they represent.

ing boundaries are replaced by connections to “virtual” boundary loops. The
procedure effectively first constructs Figure 4.5 (a) and turns it into Figure 4.5 (b).

4.3.1.2 Hierarchical decomposition

The hierarchical decomposition algorithm proceeds as follows. We start with the
cycle dual graph G∗ and a set of disconnected, single nodes S = {ci} representing
the fundamental facets that will eventually be leaf nodes of the nesting tree T.
At each step,

1. find a pair of facets ci, cj from S such that mine∈ci∩cj ae is minimal over all
pairs of adjacent cycles, where ae is the edge diameter. Effectively, we find
the two cycles sharing the minimum diameter edge.

2. construct the cycle ck = ci4cj, where 4 denotes set-theoretic symmetric
difference on the set of edges. The cycle ck is the facet formed by adding
facets ci and cj and removing their intersection.

3. add a new node ck to the tree T and connect it to the original cycles using
the new edges (ci, ck), (cj, ck).

4. remove the nodes ci, cj from G∗ and add ck instead. Ensure that all neigh-
boring cycles of ci and cj are neighbors of ck.

The steps are repeated only one cycle remains in G∗. The result of this algorithm
is a binary tree graph T, called the hierarchical decomposition tree or nesting
tree, representing the nesting structure of loops within the original graph G. An
example is shown in Figure 4.6. We note that the map G 7→ T is not injective.
Many inequivalent planar graphs map to the same nesting tree.

4.3.2 Quantifying the nesting tree

The hierarchical decomposition algorithm produces a nesting tree which encodes
the hierarchical nesting of loops in the planar network. Although binary trees are
highly constrained combinatorial structures, they still have measurable degrees
of freedom which can be used to extract information about the underlying nesting
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structure. In neuroscience, binary trees have been used extensively as models
for dendritic growth of neurons [133], and several methods for quantifying their
topology were developed [129, 130, 134]. The metric found to be most highly
discriminative between different topologies in a statistical sense was shown to
be the one described in [130], and in the following, we will use a variant of this
(the nesting number) to quantify the nesting tree structure. We note that other
metrics have been proposed to quantify binary trees.1

FIGURE 4.7: Properties of the binary nesting tree. Each
node is assigned a subtree degree d, the number of
leaf nodes in subtree rooted at the node, and a par-
tition ratio q = r

s , the ratio of the left and right sub-
tree degrees that have been ordered such that s ≥ r.
The (weighted) average partition ratio is called the
(weighted) nesting number, providing a summary
statistic of the binary tree properties.

Another metric inspired from com-
plex network science is the subtree-
degree distribution of the nesting tree.
It is defined in a similar way to the
degree distribution for complex net-
works (see [139]) but instead captures
the size distribution of subtrees. It
has been applied to the characteriza-
tion of urban street grids, exhibiting
power law tails [140]. However, we
do not use this metric because esti-
mating it automatically in a reliable
fashion tends to be difficult due to the
fitting procedures involved. We now
describe the nesting number.

Each node j in the nesting tree can
be assigned a subtree degree dj, the number of leaf nodes in the subtree rooted
at j. For nodes with dj > 1, we define the left and right subtree degrees sj, rj as
the degrees of the subtrees rooted at the left and right child nodes. We order the
nodes such that rj ≥ sj. It is now sensible to consider the partition ratio

qj =
sj

rj
, (4.5)

measuring how the leaf nodes are distributed to the left and right subtrees. As a
summary statistic, one can look at the nesting number

Q =
∑j wj qj

∑j wj
, (4.6)

the weighted mean of all nesting ratios. Sensible choices of weights are wj = 1,
resulting in a simple average (we call this the unweighted nesting number Qu),
and wj = dj − 1, the degree-weighted nesting number Qw.

Since the number of nodes at level n (distance from the root) tends to grow like
2n in a fairly balanced tree, the unweighted nesting number Qu will be dominated

1Most well-known are the Horton-Strahler number [135, 136] and the Shreve number [137] which were introduced to
quantify the geomorphology of rivers. However, they are to a large degree uninformative when it comes to detecting
structure or randomness [138]. Therefore, we will not use them in this work.
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4 Metrics for Planar Networks

by the contribution of nodes far away from the root. Theses contributions
correspond to local features at a high level of the hierarchy. In contrast, Qw
corrects for this by giving nodes in the upper level of hierarchy a very large
weight, such that the local features become negligible in comparison, and Qw is
dominated by global features of the hierarchy.

4.3.3 Statistical distance between topologies

It is an interesting problem to quantify how similar (or different) two nesting trees
are in a statistical sense. This allows us to make quantitative statements about
topological similarity of networks in contrast to qualitative, subjective statements.
The problem of assigning a distance measure between binary trees has some
history in the mathematics of botany and phylogeny. One approach has the
tree represented as a point in a space of nontrivial curvature and then calculate
geodesics [141], another defines a tree-edit distance, counting the minimum
number of node insertions, removals, and re-labelings necessary to turn one tree
into the other [142, 143]. Though elegant, both approaches suffer from problems.
For the curved-space method, nodes need a label and between two trees to
compare, the leaf nodes must be identical, which is natural for phylogenies
but impossible for leaves. The edit-distance is dominated by the effect of size
differences as soon as two trees differ in their number of nodes appreciably.
Again, this is common in nesting trees for different leaves.

Thus, we decide to employ a different measure which is based on a distance
between the statistical distributions of nesting ratios qj. Let F1,2(q) be the em-
pirical cumulative distribution functions of nesting ratios for two nesting trees.
Then we define the Kolmogorov-Smirnov distance

DKS = max
q
|F1(q)− F2(q)|. (4.7)

The distance (4.7) is a heuristic measure that is robust when tree sizes differ and
that captures statistical similarity well. Being derived from the corresponding
Kolmogorov-Smirnov statistic (see Chapter A of the Appendix), it is also well-
understood.

4.3.4 Topological tapering length

Tapering is a hallmark of plant venation, and can be observed both in flat leaves
(see Figure 4.3 (b)) and needles (see Chapter 9 of Part III), where it is respon-
sible for efficient transport [45, 71]. Because of the two-dimensional, complex
network-like nature of leaf venation, results similar to those found for needles,
i.e., measuring tapering of the conduits themselves, are difficult to obtain. In-
stead, we opt for a topological characterization of tapering, the topological tapering
length. We define this topological length for an edge e by the following algorithm.
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4.3 Topological leaf traits

1. Starting from the current edge e, find all adjacent edges { fi} with diameter
less than the diameter of e.

2. Find the edge f with maximum diameter among the { fi}.
3. Set the current edge to f .

These steps are repeated until no more edges with smaller diameter can be
found. The topological tapering length Le is then defined as the number of edges
traversed in this fashion, starting from e. For a full network or network fragment,
it is sensible to define the mean topological length

Ltop =
1
|E| ∑

e∈E
Le (4.8)

as a measure of overall tapering. Because in our data set, some nodes with degree
2 exist that would distort this metric (each edge can in principle be subdivided
an arbitrary number of times, changing the associated tapering length), these
nodes are removed and the associated edges merged.

4.3.5 Topological length and nesting number

topological tapering length
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FIGURE 4.8: Topological tapering length
and nesting number encode complemen-
tary information about network topology.
High values of the tapering length cor-
respond to long, tapered venation struc-
tures, high values of the nesting number
correspond to a large amount of hierarchi-
cal order.

Topological tapering length and nesting tree
metrics encode complementary features of the
weighted network topology. Large nesting
numbers correspond to a highly nested struc-
ture, large topological lengths correspond to a
large amount of long range tapering. Small val-
ues of either metric essentially correspond to a
random distribution of edge diameters. These
features can be present or absent independently
from each other (see also Figure 4.8), thus fur-
nishing two complementary metrics.

It should be noted that in order to calculate
the different metrics, only the network topol-
ogy and the relative ranks in terms of diameter
of the edges are strictly necessary, not the ex-
act values of edge diameters. Thus, the metrics
should be expected to be robust against noise
in the data. In practice, the nesting number is
very robust even when a part of the smallest
veins are pruned away. The topological taper-
ing length on the other hand is more sensitive
to noise. This will be seen explicitly in the later chapters.
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In this chapter we collect and present the analysis results of our leaf data set.
The data set consists of 207 different vouchered leaves and leaflets1 from diverse
species of dicotyledonous plants mainly from the Burseraceae family. Even
though most of the species represented are closely related, the leaf networks
present a striking diversity of form. Before further analysis, all leaves containing
fewer than 256 areoles were discarded because they are either too small to be able
to provide meaningful statistics or come from damaged samples. This reduced
data set contains 186 good quality specimens representing 137 different species.

We present the results in two separate sections. First, we analyze the complete
leaf venation networks, calculating averages of the various geometric and topo-
logical metrics described in Chapter 4 for each whole network. The data is then
further analyzed by investigating its principal components and latent factors.
Leaves with similar topology are identified according to a statistical distance
between nesting ratio distributions. The calculated distances are also used to
perform hierarchical clustering, showing a tendency to cluster specimens of the
same species and separating the Burseraceae family from the other families to
some degree. However, detailed phylogeny is not represented.

Second, we split each leaf network into fragments in-silico of equal size, com-
puting the metrics for each fragment. We then proceed to employ discriminant
analysis to compare how well a given leaf specimen can be identified from
its fragments, showing that using topology in addition to standard geometry
provides a highly significant improvement.

It should be noted that we did not try to design a “production quality” leaf
identification system but rather strove to create a proof-of-concept that topologi-
cal information can be highly relevant in such tasks.

In Chapter 6, we move from the purely descriptive analysis of this chapter to an
attempt at explaining the observed data in terms of a simple, phenomenological
model of venation growth.

5.1 Full leaf networks

In this section we show the analysis results for the full leaf networks. For each
leaf specimen in the reduced data set, the geometric and topological metrics were
calculated. In order to minimize effects from different size leaves, the nesting
ratios were taken only from those subtrees of the nesting tree with degree d ≤ 256.
These were used to calculate the two averaged nesting numbers Qu,w as well as

1Vouchered specimens are representative for a given species and are typically collected as part of an ecological survey.
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FIGURE 5.1: Topological degrees of freedom and projection on the first two principal components. We mark
two test leaves (orange circle, A, Protium grandifolium; yellow triangle, B, Dalbergia miscolobium) together
with their two nearest neighbors (1, 2) according to the statistical KS distance between nesting ratios. (a)
Plot of the data projected onto the topological degrees of freedom Qu, Ltop. The test leaves’ two nearest KS
neighbors are also very close in their means Qu, and reasonably close in Ltop. We explicitly marked the
three most abundant genera in the data set, revealing a weak clustering trend. (b) Plot of the data projected
onto the first two principal components. The test leaves’ two nearest neighbors are very close in PC 2
(topology) and also reasonably close in PC 1 (geometry).

Ltop Qu Qw σ a A ρA d rel. expl. var.
PC 1 −0.29 −0.15 −0.14 0.45 −0.44 −0.36 0.40 −0.43 55.9%
PC 2 −0.29 −0.61 −0.64 −0.04 0.19 0.30 −0.04 0.09 26.2%
PC 3 −0.54 0.36 0.16 0.20 0.23 0.42 0.47 0.25 9.3%
PC 4 −0.71 0.10 0.07 −0.31 −0.14 −0.39 −0.44 0.15 5.5%

TABLE 5.1: First four eigenvectors of the covariance matrix (principal components) as well as the relative
explained variance. The first principal component is dominated by geometry whereas the second is
dominated by topology. Topological length is shared equally between the two. The other components do
not have a clear interpretation.

the nesting ratio statistics used to define topological distance between specimens.
This means we calculated local features of the venation system. The scale on
which these features occur is approximately 7 mm.

Because the different metrics (different features) have different units, we re-
scaled the reduced data set to zero mean and unit variance in each feature before
performing further data analysis, rendering them comparable. Figure 5.1 (a)
shows the topological degrees of freedom in the data set. We marked two test
leaves together with their two nearest neighbors according to the KS statistical
distance. The test leaves are shown in Figure 5.4 together with their closest neigh-
bors according to our statistical distance. Additionally, we marked the members
of the three most abundant genera in our data set. They are 98 Protium, 21 Bursera,
and 8 Parkia. There appears to be a weak trend towards members of the same
genus clustering, but our data set is inadequate to draw firm conclusions at this
stage.
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5.1 Full leaf networks

FIGURE 5.2: The first two principal component weights and the first two latent factors loadings for the
eight topological and geometrical leaf features. (a) Principal component weights. (b) Factor loadings. Both
show very similar trends, the first component (factor) being dominated by geometry and the second by
topology. Mean topological length appears to be shared equally between the two.

Ltop Qu Qw σ a A ρA d rel. expl. var.
F 1 0.48 0.18 0.14 −0.92 0.97 0.86 −0.81 0.92 54.0%
F 2 0.40 0.94 0.96 −0.12 −0.10 −0.29 −0.09 0.06 25.9%
F 3 −0.20 0.20 0.08 0.32 0.15 0.37 0.54 0.05 8.1%
F 4 −0.27 0.09 −0.13 −0.06 −0.00 −0.06 0.08 0.21 2.0%
rel. noise var. 6.2% 0.5% 0.6% 0.4% 0.2% 0.4% 0.5% 1.2%

TABLE 5.2: Factor loading matrix entries for the leaf data set as well as estimated noise variances for factor
analysis with four factors. Results for the factor loadings and explained variance are comparable to those of
PCA (see Table 5.1). Relative noise variance and relative explained variance add up to 100%.

5.1.1 Principal Component Analysis

The results of principal component analysis of the reduced full leaf data set
are shown in Figure 5.1 (b) (projection onto the first two components) and Ta-
ble 5.1. We find that the first principal component is dominated by geometric
leaf network features, whereas the second is dominated by topological features.
The topological lengths Ltop are roughly shared equally between the first two
components. The first two principal component vectors are visualized in Fig-
ure 5.2 (a). We interpret this as a signature of two orthogonal2 directions in the
phenotypic space of leaf venation (our feature space), one spanned primarily by
leaf geometry, the other primarily by leaf topology.

5.1.2 Factor Analysis

A latent factor model with 4 factors was fit to the reduced full leaf data set.
This is the maximum number of factors compatible with the feature space, with
maximum p-value among all possible factor models. Even though p = 0.003 (see
Section A.4.2 for an explanation), the model still provides a good interpretation
of the data. The results are shown in Figure 5.2 (b) and Table 5.2. They are

2In the sense of PCA.
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FIGURE 5.3: Topological similarity as measured by the KS distance between nesting ratio distributions. (a)
Distance matrix between all analyzed 186 specimens. The matrix is ordered lexicographically by species
name. (b) A small submatrix showing the relationships between 20 specimens. Identical species tend to be
close but there do not appear to be clusters of significantly different hierarchical topology.

comparable to the results from PCA because again, the first factor is dominated
by geometric features, whereas the second is dominated by topology, with the
topological lengths contributing approximately equally to either.

5.1.3 Topological similarity

We quantify the topological similarity of leaves using a distance measure between
the nesting ratio statistics (thresholded at d ≤ 256) between leaves. We tested
several statistical distances and found that the Kolmogorov-Smirnov distance
DKS = maxx |F1(x)− F2(x)| worked best.3 In Figure 5.3, we show the distance
matrix computed from pairwise KS distances between thresholded nesting ratio
statistics of all 186 specimens. The structure of the distance matrix is such that
specimens belonging to the same species tend to be close, but there do not appear
to be clusters of significantly differing topology.

The data set therefore appears as a continuum of varying topologies with little
internal structure or clustering. This may likely be due to the close relatedness of
the species involved but could also point towards a universal mechanism during
vein morphogenesis which leads to very similar vein topologies. We explore this
idea further in the next chapter.

5.1.4 Hierarchical clustering

Hierarchical clustering was employed to further try to uncover similarities
between groups of leaf network specimens based on topology. The complete-
linkage method (see Section A.5.3) was applied to the distance matrix DKS to

3Other tested distances include the Jensen-Shannon divergence and the Bhattacharyya distance (see Section A.2.2 in the
appendix).
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Protium grandifolium Protium cuneatum Protium sp. nov. 6

Dalbergia miscolobium Parkia nitidaProtium heptaphyllum

FIGURE 5.4: Two test leaves (the same as in Figure 5.1) together with their two nearest neighbors according
to DKS applied to the nesting ratio statistics. Shown are 1 cm× 1 cm grayscaled crops of the original scans.
The crop (b1) was zoomed in by a factor of 2 because of the very dense venation. (a) The two nearest
topological neighbors (a1,2) show high similarity to the test leaf. All leaves have a high nesting number Qu.
(b) The two nearest topological neighbors (b1,2) show reasonable similarity to the test leaf. All leaves have
a low nesting number Qu.

produce the dendrogram in Figure 5.5. This method was chosen because it tends
to produce clusters of approximately equal size and is not prone to the “chaining”
effect [144].

Inspection of the dendrogram reveals that topology alone indeed clusters
specimens belonging to the same species close together. However, comparison
with phylogenetic trees derived from molecular genetic methods [145, 146] shows
that topology alone does not appear to reflect phylogeny. A more sensitive
phenotypic tool might uncover additional correlations, but it is possible that
topology alone is insufficient to describe phylogenetic relationships.

We performed a similar analysis on a distance matrix computed from the cosine
distances of normalized feature vectors (the same as in Section 5.1.1). Although
the distances between same species appear smaller and those between different
species larger, the clustering results do not appear to change significantly.

5.2 Leaf network fragments

In this section we present the results of the leaf fragment analysis. Each leaf was
split in-silico into 1.2 cm× 1.2 cm (3000 px× 3000 px) fragments, then the local
geometric and topological features were calculated for each fragment individu-
ally.
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FIGURE 5.5: Hierarchical clustering of reduced full leaf data set. The dendrogram was produced using
the KS distances between nesting ratio statistics and the complete-linkage (maximum distance) clustering
method. The height of the U-shaped links corresponds to the distance between clusters, different colors
were used when the distance between clusters was larger than 0.5 times the maximum distance. Specimen
belonging to the same species tend to be clustered closely together, but there appears to be no correlation
with phylogeny.

In order to estimate the usefulness of our new topological features, we test
how well the features allow one to discriminate between different leaf specimens
or species (or identify a particular specimen or species) first based on geometry
alone, then on geometry combined with topology. We find a significant improve-
ment of identification accuracy when using topology together with geometry.
To this end, we employ the Machine Learning technique of Linear Discriminant
Analysis (see Chapter A of the Appendix), which fits a hyperplane to a training
subset of our data that optimally separates known specimens or species. This
hyperplane is then used to predict specimen or species of a test subset of our data,
and the prediction accuracy and receiver operating characteristic are measured.
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5.2 Leaf network fragments

5.2.1 Linear Discriminant Analysis

FIGURE 5.6: Accuracy estimation of Linear Discriminant Analysis for leaf specimen fragments. (a) His-
tograms of the distribution of accuracy scores obtained using 10-fold stratified cross-validation fitting LDA
to all fragments. Combining geometrical and topological information improves the classification accuracy
by roughly 54% from 0.35 (95% CI: [0.31, 0.39]) to 0.54 (95% CI: [0.48, 0.60]). The improvement is significant
(Welch’s t(15.6) = 15.8, p < 0.001). (b) Histogram of pairwise Linear Discriminant Analysis mean accuracy
score distribution. For each pair of specimens, LDA was fitted to the fragments and mean accuracy of
the estimator was calculated using cross validation. Topology improves the mean scores significantly in
distribution (KS D = 0.07, p < 0.001).

FIGURE 5.7: Accuracy estimation of Linear Discriminant Analysis for leaf species fragments. (a) Histograms
of the distribution of accuracy scores obtained using 10-fold stratified cross-validation fitting LDA to all
fragments. Combining geometrical and topological information improves the classification accuracy by
roughly 37% from 0.38 (95% CI: [0.33, 0.43]) to 0.52 (95% CI: [0.42, 0.63]). The improvement is significant
(Welch’s t(12.7) = 7.4, p < 0.001). (b) Histogram of pairwise Linear Discriminant Analysis mean accuracy
score distribution. For each pair of specimens, LDA was fitted to the fragments and mean accuracy of
the estimator was calculated using cross validation. Topology improves the mean scores significantly in
distribution (KS D = 0.21, p < 0.001).

We used LDA to assess the separability of leaf specimen and leaf species based
on geometric and topological metrics. Each leaf graph was cut into 3000 px×
3000 px fragments which were analyzed separately, calculating the same metrics
as for the full leaves. For all 186 leaves, fragments were generated. Fragments
with fewer than 128 areoles were discarded, leaving a total data set of 3446
fragments representing 183 specimen (some leaves were too small to be included
in this analysis). Reducing the data set to only those species for which more than
one specimen was available, we were left with 1123 fragments representing 80
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FIGURE 5.8: Micro-averaged Receiver Operating Characteristic (ROC, plotting true positive rate against
false positive rate, see Chapter A of the Appendix) improves when using topological metrics. (a) Specimen
ROC area-under-curve (AUC) improves from 0.92 (95% CI: [0.88, 0.95]) to 0.95 (95% CI: [0.91, 0.97]) using
topology and geometry as compared to geometry alone. (b) Species ROC AUC improves from 0.89 (95% CI:
[0.85, 0.92]) to 0.93 (95% CI: [0.90, 0.95]) using topology and geometry as compared to geometry alone.

specimens of 33 species.
Two test scenarios were considered. First, we performed LDA on the full data

set, considering all fragments together with their specimen or species information
in a 10-fold stratified cross-validation scheme. We then calculated the accuracy,
the probability of correctly classifying a given sample, and the receiver operating
characteristic given either only the geometric features or the geometric and
topological features together. This was done for the specimen identification case
in Figure 5.6 (a) and species identification in Figure 5.7 (a). Because we consider
the entire point cloud consisting of all our data and try to separate it, this is a
hard classification task.

Second, we performed a pairwise test. For each pair of leaf specimens or
species, LDA was used to fit a separating hyperplane to a training subset, and
then the accuracy was measured for a test subset. The pairwise test results are
shown in Figure 5.6 (b) and Figure 5.7 (b). Because we only test small subsets of
the data, this is a comparatively easy classification task.

In order to obtain robust estimates of the accuracies, we employed stratified
cross-validation schemes (see Chapter A in the Appendix). For the species
identification tests, we considered all leaf fragments from leaves of the same
species as belonging to the same classification unit. We now present the detailed
results.

5.2.1.1 Full data set test

In this test scenario, LDA was fit to the complete data set of leaf fragments.
Because as a whole, the leaf data set forms a continuum without well-defined
clusters, there is typically considerable overlap between data belonging to differ-
ent leaf specimens. Therefore, this is a hard classification task, and we do not
expect stellar performance in the first place, especially using a simple method
such as LDA.
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5.3 Summary

Specimen identification. Using only geometrical venation traits, we found an
accuracy of 0.35 (95% CI: [0.31, 0.39]). Adding topology, we found a significant
increase to 0.54 (95% CI: [0.48, 0.60]) (Welch’s t(15.6) = 15.8, p < 0.001). This
is a performance increase of roughly 54% when using geometry and topology,
vs. geometry alone, see Figure 5.6 (a). In addition, the Receiver Operating
Characteristic improves markedly, see Figure 5.8 (a).

Species identification. Using only geometrical venation traits, we found an ac-
curacy of 0.38 (95% CI: [0.33, 0.43]). Adding topology, we found a significant
increase to 0.52 (95% CI: [0.42, 0.63]) (Welch’s t(12.7) = 7.4, p < 0.001). This is a
performance increase of roughly 37%, see Figure 5.7 (a). In addition, the receiver
operating characteristic improves markedly as well, see Figure 5.8 (b).

5.2.1.2 Pair test

Unlike in the previous section, we now do not consider the data set as a whole
but instead pick out all pairs of leaf specimens or species and calculate the
cross-validated identification accuracy using LDA. Because for some leaves there
were fewer than 10 fragments, we chose a k-fold cross-validation scheme with
k = min(na, nb)− 1, where na,b is the number of fragments in specimen/species
a, b. In comparison to the previous section, this is an “easy” classification task,
and indeed accuracies tend to be high.

For most pairs the change in identification accuracy is not significant individ-
ually. However, in distribution (taking all pairs together), the improvement is
significant as shown by the KS test. (see Figure 5.6 (b) for the specimen results
and Figure 5.7 (b) for the species results).

5.3 Summary

We analyzed the phenotypic space of leaf venation networks. The features
(phenotypes) investigated were a combination of traditional geometric leaf traits
and novel topological traits. Principal Component Analysis and Factor Analysis
revealed the topological traits as approximately orthogonal with respect to
geometry, therefore constituting an entirely new dimension in the phenotypic
space of leaf venation.

Quantifying topological similarity by a statistical distance and hierarchical
clustering revealed that leaves from the same species indeed tend to be close in
topological space. However, topology appears not sufficient to reproduce phy-
logenetic relationships. Similar results were obtained when using hierarchical
clustering on feature vectors.

We showed that nevertheless, topological information may be highly useful
for tasks such as leaf identification from fragments by splitting leaf networks
into small pieces and using Linear Discriminant Analysis with and without
topological features to distinguish between either specimen or species. In both
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cases, we see a highly significant improvement in identification accuracy when
using topological features in addition to geometric features.
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6 Empirical Growth Model

In past times when one lived in contact with nature, abstraction was
easy; it was done unconsciously. Now in our denaturalized age
abstraction becomes an effort.

(Piet Mondrian)

In this chapter, provide a tentative explanation for the data observed in Chapter 5
by developing an empirical model for vein topology morphogenesis that takes
into account sources of randomness during development. It is compatible with
both competing theories of higher order vein morphogenesis that invoke either
auxin canalization [84, 87, 99] (some aspects of which we will investigate in
Part III), mechanical instabilities [93, 94] or a combination of both. There is
much debate about the precise details of vein morphogenesis because of the
inherent difficulty in measuring either mechanical stress or auxin gradients in
the developing leaf.

Our model is agnostic to such problems because it abstracts from the under-
lying mechanism and simply stipulates that vein loops are subdivided roughly
equally by new veins as the leaf grows. Thus, it tries to capture the essential
features of loop formation leading to specific, measurable topological features
while remaining blind with regard to the underlying biology. Still, the process
our model intends to capture is empirically very well known [86, 147]. It should
be noted that low order vein formation (main and secondary veins) can not be
explained using our model because the growth rules are symmetric (there is
no preferred direction for a vein to develop along). Low order veins require an
explicit symmetry breaking mechanism (in auxin canalization models, this is
provided by the presence of a sink at the petiole, see Chapter 10. Mechanical
models can also incorporate this aspect [92]). Similar models have been consid-
ered before but were mostly applied to the study of general network geometry
or as toy models [93, 148]. We stress again that our model does not aim to exactly
reproduce vein morphogenesis in any way but only to serve as an investigation
of possible effects leading to the observed topological statistics.

In our model, several parameters can be tuned explicitly in order to produce
varying topologies as measured by nesting ratio and topological length statistics.
We find that the statistics observed in our leaf data set can be reasonably well
reproduced using the model, the topological length statistics even exceptionally
well. This suggests that the topological lengths are dominated by random effects
while nesting statistics can be explained in a large part by them.
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6 Empirical Growth Model

6.1 The model

FIGURE 6.1: Sketch of the empirical growth model dynamics together with representation of leaf growth
stages (compare Figure 3.3). (a) The model starts with one rectangular loop, representing one region in
the leaf located inside at least a secondary vein loop. Node positions xi grow exponentially while vein
thicknesses re grow linearly. The rectangular loops are successively subdivided once their area A becomes
close to the critical area A0. (b) The position of a new vein is controlled by the parameter ρ, the relative
distance from the center. The probability psplit of forming a new vein during one time step dt is a sigmoidal
of width β.

Growth is modeled in phenomenological and probabilistic fashion, simulating
the formation of nested loops by means of “growing rectangles which can divide.”
The model starts with a single rectangle. Each vertex with coordinates xi moves
according to the equation

dxi(t)
dt

= a xi(t), (6.1)

where a is the tissue growth rate. This type of exponential growth law is popular
for modeling uniform tissue dynamics in the continuum approximation [149,
150]. Here, it represents growth of the underlying tissue matrix in which the vein
cells are embedded. The edges representing veins are modeled to grow linearly
in width according to

dre

dt
= b. (6.2)

Here, b is the linear thickness growth velocity and re is the thickness of edge
(vein) e.

During each time interval of length dt, there is a finite probability psplit for
each rectangle to instantaneously split in two by formation of a new vein. This
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6.1 The model

probability depends on the loop area A and a fixed critical area A0 as follows:

psplit(A) =
w
2

(
1 + Erf

(
A− A0√

2σA

))
(6.3)

= w f
(

A− A0

σA

)
. (6.4)

Here, σA controls the width of the sigmoidal function f and w sets a maximum
probability (the effective splitting rate). The motivation for this form is given by
the fact that a single leaf tends to have roughly equally sized areoles. This can
also be explained by simulation of hypothesized underlying biological mecha-
nisms [87, 93]. Crucially, we assume that the time scale on which veins appear is
much smaller than the time scale for overall leaf growth (this is roughly justified,
see Figure 2.17).

When a rectangle is divided, the position of the new edge is chosen such that
it splits the rectangle along the long side. The position relative to one corner is

xrel =
1
2
+ ρ ξ, (6.5)

where ξ is a uniform random number between −1/2 and 1/2 and the parameter
ρ controls the strength of randomness. Due to the resulting networks’ similarity
to certain pieces of abstract art, they have been termed Mondrian lattices in the
literature [148].

The five dimensionful parameters a, b, A0, σA, w can be combined to yield
four dimensionless control parameters α = b(a

√
A0)

−1, β = σA A−1
0 , ρ, w. They

can be interpreted as growth rate (α), growth noise (β, ρ) and splitting rate
(w). We choose the length and time scales xc =

√
A0, tc = a−1, obtaining the

nondimensional set of equations

dxi(t)
dt

= xi(t) (6.6)

dre

dt
= α (6.7)

psplit(A) = w f
(

A− 1
β

)
. (6.8)

These equations can be discretized and solved using a simple forward Euler
scheme. In all of the following, we choose dt = 0.01 and w = 0.1.

As the termination criterion we choose a final number of loops N (in the
following, we always arbitrarily set N = 2048). After the termination criterion
has been reached or exceeded (this can happen if more than one new vein is
created during one time step), we add Gaussian noise with zero mean to all edge
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6 Empirical Growth Model

widths re.1 The standard deviation is chosen to fn µr, where µr = 〈re〉 is mean
edge thickness and fn is a parameter. Edge widths may become negative during
this procedure and such edges are removed from the network (this changes
network topology). The addition of this noise is meant to represent measurement
noise or intrinsic noise in the vein thicknesses. Simulations of growth conditions
that produce nested vein structures but whose widths typically vary less than
fn µr will appear to have a more random, less highly nested topology.

We compare the simulation results to our cleared leaf data set by computing
the topological features Qu and Ltop. In order to further constrain the model
using geometric features, we also calculate for for each simulated network

SA =

√
1

n−1 ∑i(Ai − A)2

A
, (6.9)

the standard deviation of the n individual areole areas Ai normalized by the
mean areole area A = 1

n ∑i Ai. We choose this number because it is dimension-
less, easy to compute and can be compared for both real and simulated leaf
networks.

6.2 Results

We summarize the simulation results, give a general overview over the model
behavior, and then compare to our cleared leaf data set. We find that most of the
variation in the nesting number and indeed much of the nesting ratio statistics
can be explained by the model. The topological length statistics are an even
better fit, suggesting that they are in fact dominated by noise. We show this
by comparing model topological lengths with fn = 0 to those with fn > 0. We
further verify the model by comparing the normalized standard deviation of
areole size SA with the data set, finding good agreement. To develop an intuition
for the model, final networks for several simulation parameters are shown in
Figure 6.2. Networks generated without or with very small noise parameters
tend to be highly symmetric and hierarchically organized. This organization is
gradually lost on all scales when increasing growth noise (i.e., β, ρ) and more
strongly on small scales when increasing measurement noise ( fn).

6.2.1 Phase diagrams

In this section, we show phase diagrams of the model behavior for varying
parameters and noise levels.

The phase diagram Figure 6.3 shows the measured values of Qu and Ltop when
varying the growth noise parameters β, ρ. At zero measurement noise fn = 0,
the growth rate α has almost no influence on the measured values. We can

1Alternatively, noise could be added to the growth rate α.
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6.2 Results

(a) (b) (c)

FIGURE 6.2: Hierarchical nesting of typical final networks at N = 64. (a) No noise, α = 0.5, β = 0, ρ =
0, fn = 0. The network is highly symmetric and hierarchically organized, Qu ≈ 1. (b) Growth noise
but no measurement noise, α = 0.5, β = 0.5, ρ = 0.5, fn = 0. The network is much less symmetric but
still shows a degree of hierarchical organization, Qu = 0.79 (c) Growth noise and measurement noise,
α = 0.5, β = 0.5, ρ = 0.5, fn = 0.2. The network still shows some degree of hierarchical organization at the
level of the thickest veins, but organization is destroyed at the level of very thin veins, Qu = 0.63.

FIGURE 6.3: Phase diagrams of the model for varying β and ρ while fixing α = 0.5 , fn = 0 and N = 2048.
At zero measurement noise ( fn = 0), α has almost no effect on the measured topology. We performed 10
simulations for each combination of parameters and plot the mean results. (a) Unweighted nesting number
Qu thresholded at d ≤ 256. For β < 1, Qu can be changed by tuning ρ. For β > 1, Qu becomes independent
of ρ (at Qeq

u ≈ 0.75). The model values are larger than but relatively close to measured ones. (b) Mean
topological length Ltop. For small ρ, topological length can be varied by tuning β, for large ρ, it becomes
independent at Leq

top ≈ 16. The model values are much larger than measured ones. (c) Normalized areole
area standard deviations. For β < 1, SA is independent of ρ.

distinguish two different regimes. For values of β < 1, the nesting number can
be varied between approximately 0.6 and 1.0 by tuning ρ. The mean topological
length is approximately constant at Ltop ≈ 14, and the normalized areole area
standard deviation SA is independent of ρ. For β > 1, the nesting number
becomes independent of both ρ and β at a value of approximately 0.75. The
mean topological lengths vary between approximately 11 and 16.5, and SA varies
with ρ.

The independence of Qu from either parameter in the regime β > 1 can be
explained by the fact that if psplit becomes large enough to introduce new veins
at almost every time step, the effects of different loop sizes (controlled by ρ)
become irrelevant.

Figure 6.4 further shows the same three observables in simulated networks
with higher measurement noise ( fn = 0.2). The qualitative behavior of the
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6 Empirical Growth Model

FIGURE 6.4: Phase diagrams of the model for varying β and ρ while fixing α = 0.5 , fn = 0.2 and N = 2048.
The nesting number Qu behaves qualitatively similarly to the no-noise case Figure 6.3. The values of Ltop
and Qu are significantly lowered by the presence of measurement noise, SA is not changed much.

nesting number is similar to the no-noise case, but the mean topological lengths
are significantly shorter because even small amounts of noise break vein tapering
in the model. Similarly, the maximum values of Qu are around 0.75 because
hierarchical symmetry is broken by noise (see also Figure 6.2 for the visual effects
of measurement noise). Thus, Ltop is much less robust against noise as compared
to Qu.

6.2.2 Comparison with the data set

FIGURE 6.5: The same observables as in Figure 6.3 as measured in the data set. Vertical dashed lines are
interdecile range, encompassing 80% of the observed data. (a) The interdecile range is [0.57, 0.69]. (b) The
interdecile range is [3.33, 3.79]. (c) The interdecile range is [0.59, 1.53].

We proceed to compare the model results with our data set. Figure 6.5 shows
the observed distributions of the three metrics considered together with their
10% and 90% percentiles (the interdecile range). The observed values of Ltop
and SA are consistent with the model parameter range fn > 0 and β < 1 and
thus constrain the model parameter space. Clearly, measurement noise has a
visible effect on the measurements while noise controlling areole size during
morphogenesis must be comparatively small. It must be noted that what we
term measurement noise in the simulations may be a combination of actual
measurement noise and another kind of variability in vein thickness that cannot
be disentangled using this model.
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Comparing Figure 6.5 to Figure 6.4, we see that roughly 80% of the topological
variation in the cleared leaf data (as enclosed by the interdecile range) is repro-
duced by the model (i.e., the model produces the same range of values of the
observables as found in the data set).

FIGURE 6.6: Comparison of topological length, nesting ratio, and areole area statistics between model and a
real leaf with comparatively high nesting number (Protium grandifolium, see Figure 5.4 (a)). The parameters
used are α = 0.2, β = 0.4, ρ = 0.25, fn = 0.1; the final network had 1038 loops. This is a low noise setting.
Except for the areole sizes where the real leaf contains more small areoles, the distributions fit quite well,
in particular the nesting ratios. This is quantified by KS tests. (a) DKS = 0.03, p = 0.33. (b) DKS = 0.02,
p = 0.12. (c) DKS = 0.08, p < 0.001.

It is possible to reproduce the topological length and nesting ratio statistics of
select leaves relatively well by tuning the model parameters. The parameters
were tuned by hand until good agreement was reached as measured by KS
tests between the distributions of nesting ratios and topological lengths. Very
good agreement of the topological statistics can be achieved for highly nested
leaves such as Protium grandifolium, the agreement for areole areas is not as
good but still acceptable (see Figure 6.6). For less highly nested leaves such
as Dalbergia miscolobium, less good agreement of the nesting ratio statistics is
achieved (see Figure 6.7). This is due to the appearance of a large number of
very small nesting ratios (q < 0.2) that may be due to additive nesting structures
(see Chapter C of the Appendix for an explanation of this terminology) in the
real leaf that the model does not reproduce. Curiously, the areole areas are much
better reproduced in the less highly nested model as compared to the highly
nested one.

Because the parameter tuning was done by hand, we do not expect the results
to be optimal. Additionally, due to the stochastic nature of the model the same
parameters can lead to different statistics of the final network. They are, however,
distributed around a characteristic mean value. Still, good agreement of the
statistics was achieved, further demonstrating the link between noise and topo-
logical features. Low noise parameters lead to highly symmetric, hierarchically
nested networks with large topological lengths; high noise parameters lead to
more asymmetric, less hierarchically nested networks with shorter topological
lengths.
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FIGURE 6.7: Comparison of topological length, nesting ratio, and areole area statistics between model and a
real leaf with comparatively low nesting number (Dalbergia miscolobium, see Figure 5.4 (b)). The parameters
used are α = 0.2, β = 0.2, ρ = 0.75, fn = 0.35; the final network had 896 loops. This is a high noise setting.
All distributions fit rather well, the very lowest nesting ratios are not reproduced. (a) DKS = 0.04, p = 0.17.
(b) DKS = 0.02, p = 0.31. (c) DKS = 0.03, p = 0.40.

6.3 Summary and discussion

We presented an empirical model for the growth and development of reticulate
leaf venation patterns. The model is simple, consisting of rectangular loops that
grow and divide by the introduction of new veins. This simplicity allows com-
patibility with the most important biological hypotheses of vein morphogenesis,
auxin canalization and mechanical instabilities. The model is stochastic, with
tunable noise strength at various stages of development.

We analyzed the model’s phase diagram, identifying two phases when varying
the growth noise parameter β. For β > 1, the hierarchical topology of the final
networks becomes quasi-independent of the noise parameters, for β < 1 the
other parameters can be varied to obtain different hierarchical topologies. Our
cleared leaf data set imposes constraints on the possible parameter values of the
model to reproduce realistic networks.

We then compared the model networks’ mean topological lengths, nesting
numbers, and normalized areole area standard deviations to the cleared leaf
data set, finding that the bulk of the data (as measured by the interdecile range)
can be reproduced by the model. The areole areas served as a geometrical
constraint, ensuring that the model networks are realistic in terms of their areole
size distributions. We went further and hand-tuned the model parameters to
fit the nesting ratio, topological length, and normalized areole area statistics of
two test leaves from the data set. We were able to obtain quantitatively good
agreement, demonstrating the model’s power in reproducing both topological
and geometrical features of real leaf networks. We stress that there are some
aspects of real leaf venation that are not captured by the model, in particular
the existence of very low nesting ratios in some leaves. These may stem from
biological processes not modeled.

We conclude that, whichever underlying biological mechanism is true, it is
likely to involve growth patterns similar to those of the model. In particular,
the influence of random noise appears to be a major component and cannot
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be neglected when striving for a realistic description of vein morphogenesis.
It is important to stress the difficulty of separating true measurement noise
in the data (from imperfect scanner focus, vibrations during scanning, image
post-processing, etc. . . ) from variations in vein thickness growth.

As we have shown in Chapter 5, although noise is a large factor, topology
appears to be relatively stable at the level of leaf specimen and even species.
This suggests the existence of a characteristic combination of random effects that
define a specimen and to a lesser degree a species, partly explaining the earlier
observations of Chapter 5.
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7 Discussion and Outlook

In this chapter, we summarize the results and conclusions presented in Part II
once more and discuss their relevance with respect to biology. Furthermore, we
propose future work and at the same time discuss possible sources of systematic
errors in the data.

7.1 Summary and discussion of results

In Part II, we systematically analyzed the topological and geometrical traits of
a set of 186 leaves and leaflets, mainly from the Burseraceae family. For each
leaf we calculated a “fingerprint” consisting of five well-studied geometrical
and three novel topological traits. The resulting feature vectors constituting the
phenotypic space of leaf venation were then analyzed by Principal Component
Analysis and Factor Analysis, revealing geometry and topology as complemen-
tary dimensions.

We then concentrated on topology in terms of nesting ratio statistics, calculat-
ing statistical distances between leaf topologies. The statistical distances were
found to weakly reflect a genetic relationship between samples, with leaves
belonging to the same species generally exhibiting smaller distances. We showed
how in the case of two test leaves, there is high visual similarity between nearest
neighbors according to our topological distance. However, hierarchical clus-
tering based on topological statistics as measured by our metrics showed that
phylogeny is not, or only to a very limited degree, encoded in leaf network
topology.

In order to demonstrate the usefulness of our new topological metrics, we used
them to improve accuracy in an identification task. The leaves were digitally
cut into equally sized fragments, and the fingerprint data was computed for
each fragment individually. We then used Linear Discriminant Analysis to
identify which specimen or species within our leaf data set a single fragment
belongs to. We showed that employing topological features in addition to
geometry leads to a highly significant improvement in identification accuracy
of the classifier. Additionally, pairwise comparison was performed, deciding
whether two samples belong to the same specimen or species. Here, using
topological features also lead to an improvement in identification accuracy.

In order to explain the observed values of the topological leaf traits and get an
intuition about how they come to be, we considered a simple empirical growth
model that is compatible with prevailing hypotheses of vein morphogenesis and
includes stochasticity. The model can explain the bulk of our data set in terms
of aggregate features such as mean topological length and nesting number. We
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additionally showed how by fine-tuning the model parameters, we were able
to obtain good quantitative agreement between model and real leaf topological
and geometrical statistics in the case of two test leaves.

Our results demonstrate that hierarchical topology consists an entirely new
dimension in the phenotypic space of leaf venation that is approximately or-
thogonal to geometry, in the sense of PCA and FA. It contains a large amount
of additional information about the venation network as shown by its ability to
significantly improve specimen identification from fragments. Such identifica-
tion tasks may be important especially when dealing with leaf fossils where only
small parts are available.

Additionally, we showed how this new phenotype may be explained by ran-
dom noise affecting vein morphogenesis. To our knowledge, modelers of ve-
nation development mostly dismiss the effects of stochasticity. Although they
are sometimes incorporated, systematic study is severely lacking. Our work
shows that noise may indeed be an absolutely crucial ingredient for a description
of vein morphogenesis, and surely warrants significantly more work. This is
further supported by our results in Part III, where we are able to produce realistic
leaf networks from a model of auxin canalization in conjunction with random
fluctuations. We stress that these results are complementary to those of Part II in
the sense that here, we model the high level (minor vein) network architecture
whereas our auxin model can be thought of as modeling the low level (major
vein) structure.

7.2 Future work

In this section, we expand more on possible future work that would support and
enhance the conclusions made so far. We distinguish several main paths of new
work, each improving on some aspect or proposing new projects. The order in
which we present these ideas is in no way intended to convey a sense of relative
importance.

7.2.1 Global leaf topology survey

Despite the fact that our data set contains a large variety of leaves and leaf
networks, it is severely limited because most specimens belong to the same
family (Burseraceae), and even those that do not were all collected in tropical
South America. As such, it provides only limited diversity in terms of habitats
and growth environments. We believe that it is important to apply the methods
outlined in this thesis to a much broader collection of leaves that constitute a truly
diverse, global sample of leaf venation, similar to the work [60] but incorporating
topology as well. This would imply also measuring more key traits, such as leaf
mass per area and photosynthetic assimilation rates, that were unavailable to us.
We would hope and expect to see interesting correlations between topology and
ecological and environmental factors.
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7.2.2 Improving data acquisition techniques

Data acquisition is an inherent factor contributing to readout noise, rendering
it difficult to disentangle systematic errors from true fluctuations in the leaf
venation. The protocols for leaf clearing and staining appear mature [151], but
vectorization or skeletonization methods are still being actively developed. This
is valid for both our approach [152] and others such as [153]. Pre-processing
steps requiring the use of filters such as Gaussian Blur can subtly distort vein
geometry. Thus, even more accurate vectorization methods are needed. More
problems with existing methods have been identified [154, 155]. Additionally,
although our scans were captured ad very high resolution (6400 dpi), an even
higher resolution with the use of microscopy rather than a flatbed scanner could
improve data quality.

7.2.3 Systematic study of developmental noise

As we have already mentioned, to our knowledge no systematic study of the
effects of random noise during vein morphogenesis exists. Our results suggest
that random effects have a significant influence on venation geometry and
topology, therefore we believe it important to further investigate other models of
the underlying biology (auxin canalization [85] or mechanical instabilities [93])
specifically with regard to stochasticity. We believe that such an analysis might
uncover the mechanism that is responsible for morphogenesis, or at least rule
out some of the proposed models.

7.2.4 Applications to other fields

We strongly believe that many fields can strongly benefit from an analysis similar
to the one in this thesis. This includes investigating planar or almost planar
weighted networks such as those found in the retina, the mammalian neocortex,
urban street patterns, power grids, and river deltas, possibly uncovering unex-
pected relationships. Additionally, our methods are applicable even when the
network possesses only an embedding onto some surface of possibly nonzero
genus [156].

7.2.5 Improved topological metrics

Even though we believe in the power of our topological metrics, nesting num-
ber and topological length, they still only capture a small part of the network
topology. Topological lengths are affected by noise and because the hierarchical
nesting tree is a binary tree, it underlies very strong constraints. Therefore, it
would be interesting to consider new metrics that could possibly make use of
the dual graph in a more direct fashion.
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Network Modeling
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FIGURE 8.1: The levels of coarse-graining appropriate for the analysis of various transportation systems. (a)
Two-dimensional, flat leaf venation is modeled as weighted flow network. Each edge e has conductivity Ke
related to its vein thickness. (b) One-dimensional transport is modeled using a continuum description of
total cross-sectional area A(x) of the conducting cells (red rectangles), where x is distance from tip.

In this part of the thesis, we present some results on models of evolution and
development of leaf venation. We study the two transport systems xylem [157]
and phloem [158]. The xylem, responsible for carrying water into the leaf, is ana-
lyzed from the perspectives of development and evolution in two-dimensional,
flat angiosperm leaves using a network approach that results in models of overall
network topology. The phloem, responsible for transporting photoassimilates
(i.e., the results of photosynthesis) out of the leaf to sites of consumption, is
analyzed from the perspective of evolution in one-dimensional gymnosperm
needles using a microscopic geometric approach that results in a prediction for
the scaling behavior of the total conduit cross sectional area as a function of
distance from needle tip. Being effectively one-dimensional, conifer needles
benefit from a microscopic description, whereas the relevant features of two-
dimensional dicot leaves are captured more effectively by a network model.
Thus, we have two descriptions of different aspects of venation at different levels
of coarse-graining. We find that fundamentally, an equivalent mathematical
description applies to both evolution and development at both these levels. This
may be a coincidence or a telltale sign that nature indeed selects not for the
complicated topology or geometry of the venation patterns themselves, but
instead for a simple, universal mechanism that is able to produce them in a
self-organized fashion.

For modeling evolution, we take a fitness function approach [159], assuming
that successful evolutionary designs maximize fitness (i.e., the expected number
of offspring). However, because we are interested in very specialized plant
organs such as leaves and needles, it is necessary to come up with a proxy
for fitness that captures some feature of the organ’s design that is likely to
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contribute to overall fitness. In our case it turns out that the proxy function
that reproduces overall leaf venation topology is the mean hydrostatic pressure
drop in the xylem elements (this was shown in earlier work [71, 72]), whereas
the proxy reproducing phloem geometry is dissipated power (shown by the
author and others in [45]). In a certain limit, we show that they are equivalent.
Fundamentally, our evolutionary models are steady state models that are meant
to capture the “average leaf topology” or “average needle geometry” that natural
selection may care about.

A theory of linear flow and perturbations on networks is necessary for the
network modeling section. Interesting as it is in its own right, we relegate most
of the material that is not directly necessary to Chapter D of the appendix. Some
of it has interesting applications in the computational physics of power grids
(shown by the author and others in [160]).

For modeling development, we focus on the most well-supported hypothesis,
called auxin canalization theory [84, 85]. Vein development is assumed to be con-
trolled by the flow of the phytohormone auxin which is produced in the growing
leaf embryo, at first diffusing freely and being removed at the petiole. Auxin
is then part of a positive feedback mechanism where areas of high flow of an
initially homogeneous cellular matrix are modified into vascular precursor cells,
further increasing auxin flow. The model captures the essential venation growth
dynamics and drives toward a steady state that represents the mature network
topology. We find that the crucial ingredient leading to realistic networks similar
to those obtained from optimization is the introduction of spatially correlated
fluctuations of auxin sources and sinks. This ties in with and supports the re-
sults from Part II, where we identified random noise during development as an
important factor for producing realistic network topologies.

The rest of this part is organized as follows. First, we introduce evolutionary
models of venation networks that are based on the idea of optimizing fitness
functions or fitness function proxies. We then apply these principles to the
problem of finding the optimal phloem geometry in pine needles. We proceed to
consider optimal xylem networks in two-dimensional leaves, extending earlier
work [72] to much higher resolution using a clever choice of boundary conditions.
Finally, we present a model of auxin canalization that shows how correlated
fluctuations in auxin sources and sinks can produce networks very similar to
those obtained from optimization procedures and how by tuning the correlation
range we can access a continuous family of network topologies.

8.1 Fitness function models of evolution

The basic philosophy behind the models of evolution and adaptation we use
was put forth very early by Wright [159]. He identified fitness, measured by the
expected number of offspring, as the major objective function that is maximized
by evolution through natural selection. In a most simplistic view, because popu-
lations in the absence of resource limitations or competition grow exponentially
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with growth rate proportional to fitness, the population that is, on average, fitter
will in time always overtake the less fit competitors, thus selecting for traits that
maximize fitness.

Essentially, the fitness function f : P→ R as proposed by Wright maps from
the space P of phenotypes to the positive real line. Here, P depends on the model
in question and can be continuous or discrete.1 Wright envisaged a continuous
landscape of hills and valleys, with populations occupying the hills, represent-
ing large fitness. In order to increase their fitness, they would have to “move”
through valleys or along ridges to the next higher hill. This intuition from pictur-
ing P as “basically” R2 is wrong, or at least grossly misleading [161, 162]. Real
phenotypic spaces are high-dimensional, possibly containing tens of thousands
of phenotypic traits [162]. Such spaces behave quite counter-intuitively, contain-
ing various “short-cuts” that allow one to move quickly between high-fitness
loci without crossing valleys. Thus, they are often better represented as networks
of such connected high-fitness loci [161].

In our case, we need to take a step back and realize that one plant organ such
as the leaf can not determine fitness alone, but it can make a contribution to the
fitness of the whole organism. We quantify this contribution by considering a
proxy function π : Pleaf → R, where Pleaf ⊂ P is the phenotypic space of the leaf,
which may be maximized or minimized in order to maximize fitness.

A fundamental question then becomes, what is the “right” choice of π? This
question is very hard to answer definitively (and possibly, a definitive answer
does not even exist!), and one must feel very content indeed when one has identi-
fied a candidate whose optimization correctly predicts the observed phenotypes
and is consistent with the known biology. In our case, studying leaves and nee-
dles, there are a few clues (such as the constructal law, discussed in Section 2.1.9)
that can guide one towards towards the right proxy function, but surprises
may still be in store. Still, once a good candidate proxy has been identified, it
can actually be more informative about biology than the very abstract fitness
function itself. Finding and interpreting the proxy functions is the main goal of
the following chapters dealing with evolutionary modeling.

1Indirectly, the phenotype is in some way determined also by the genotype, but this distinction further complicates the
argument and is not relevant to our analysis.
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9 Optimal Geometry of Pine Needle
Phloem

9.1 Introduction

Being effectively one-dimensional, conifer needles provide a particularly simple
model system for transport phenomena in plants, because there are no com-
plications arising from vein branching. Most conifer needles possess only one
or two parallel veins close to the center of the needle. Despite their simplicity,
transport of water through the xylem and nutrients through the phloem are not
well understood.

In this chapter, we concentrate on an analytical description of photoassimilate
transport in the phloem of conifer needles, explaining measured phloem bun-
dle geometry using a power dissipation minimization argument. Our results
complement earlier work on the scaling of single phloem cells on the scale of a
whole tree [30, 39, 42]. Furthermore, we augment the simple analytical model by
numerical simulations, relaxing simplifying assumptions. Finally, we show that,
contrary to expectations, overall needle phloem geometry cannot be explained
by flow rate optimization.

The results discussed in this chapter were published in part in [45].

9.2 Mathematical model of sugar flow in needle phloem

In this section, we describe a simple, analytically solvable model of sugar translo-
cation, based on earlier work [163, 164]. We consider a one-dimensional conifer
needle of length L containing a vascular bundle of phloem sieve elements with
equal cross-sectional area A0. This approximation can be justified by data [160].
The number of sieve elements (conducting channels) at position x from the tip of
the needle is N(x), which is typically very small at the tip (x = 0) and steadily
rises towards the petiole (x = L) (see Figure 9.1). This continuum descrip-
tion is unaffected by the exact mechanism of adding new conducting channels
(branching of existing tubes or appearance of additional, new tubes).

9.2.1 Transport equations

We define the volume flow rate of sap Q(x) [m3 s−1] and solute concentration
c(x) [mol m−3], as well as total sugar current J(x) = Q(x)c(x) [mol s−1]. Because
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FIGURE 9.1: Phloem geometry in a pine needle. Micrograph cross sections of the phloem of an Abies
nordmanniana needle taken at distances x = 0.4, 0.8, 1.6, 2.9, 4.9 mm from the tip. The diameter of the circular
cross sections is 100 µm. The conductive phloem area A(x) and the number of cells (red) increases with
distance x from the needle tip while the size of individual cells remains roughly constant.

phloem loading in conifers is thought to be passive (i.e., relying on cell-to-
cell diffusion) [34], the rate Γ(x) of sugar loading per length depends only on
mesophyll photosynthetic rate and needle circumference. Since the conifer
needle circumference is constant to a very good approximation (except very
close to the tip) and the photosynthetic rate should not depend on position,
we assume that Γ(x) ≡ Γ is a constant. The continuity equation for sugar can
therefore be expressed as

dJ
dx

= Γ. (9.1)

Similarly, we can express the continuity equation for water in the form

dQ
dx

= 2
Lp A(x)

r0
( f (∆c)− ∆p). (9.2)

Here, Lp is the permeability of the sieve element membranes, A(x) = N(x)A0 is
the total cross sectional area of all sieve tubes, r0 is the radius of a single tube,
∆p is the hydrostatic pressure difference between phloem cells and surrounding
tissue, ∆c is the sugar concentration difference between phloem cells and sur-
rounding tissue, and f (∆c) is a law relating concentration gradient to osmotic
pressure. An approximate choice for f is the linear van ’t Hoff law,

f (∆c) = RT∆c, (9.3)

where R is the universal gas constant and T is temperature. In practice, the error
introduced by the van ’t Hoff law for sugar concentrations in phloem sap is on
the order of 10% ([165], c < 1 M).

We use Darcy’s law to describe flow velocity in terms of hydrostatic pressure
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gradient,

u(x) = − k
η

dp
dx

, (9.4)

where u(x) = Q(x)/A(x) is bulk flow velocity, k is a geometrical constant (for
cylindrical tubes, k = A0/8π), η is the sap viscosity and p is the hydrostatic
pressure. Phloem sap viscosity is typically about 5 times that of water [39],
and Darcy’s law holds because flow in the phloem is laminar to a very good
approximation.

Imposing the boundary condition J(0) = 0 (no flow at the tip), we can integrate
equation (9.1) to obtain J(x) = Γx. The total sugar flow leaving the needle is
therefore J(L) = ΓL. Using the van ’t Hoff law and assuming that both the
hydrostatic pressure and the sugar concentration in the tissue surrounding the
vascular bundle are constant and uniform, we end up with the following set of
differential equations approximately describing sugar loading and transport in a
conifer needle:

Q(x) = − k
η

A(x)
dp
dx

dQ
dx

= 2
Lp A(x)

r0

(
RT

Γ x
Q(x)

− p(x) + ∆
)

, (9.5)

where ∆ = RTc̃− p̃ with constant external solute concentration c̃ and constant
external hydrostatic pressure p̃. Choosing the needle length L as the length scale,
it is possible to nondimensionalize this system, obtaining

Q(x) = −A(x)
dp
dx

ζ
dQ
dx

= 2A(x)
(

x
Q(x)

− p(x) + ∆̃
)

, (9.6)

where we introduced the dimensionless control parameters ζ = kr0/(ηL2Lp),
the ratio between typical phloem bulk and membrane conductivity, and ∆̃ =
(k/(RTΓη))1/2∆, the external pressure normalized by the geometric mean of
typical phloem bulk and lateral pressure drop. Using the cylinder approximation
k = πr2

0/8 as well as the numerical values for viscosity η ≈ 5× 10−3 Pa s,
sieve element radius r0 ≈ 1× 10−5 m, needle length L ≈ 0.1 m, and membrane
permeability Lp ≈ 5× 10−14 m Pa−1 s−1 [39], we estimate a value of ζ ≈ 104

in realistic conditions. Estimating ∆̃ is more difficult because the value of Γ is
unknown. We take ∆̃ = −10 to emphasize that in the absence of sugar in the
phloem, water must leave the conductive tissue. The precise numerical value of
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∆̃ is not critical for the qualitative results.1
We solved the system (9.6) numerically for the two relevant geometries A(x) =

1 and A(x) = x1/2 with the additional boundary condition p(0) = 0. The
second geometry was chosen because it will arise later as the optimum phloem
geometry. In both cases, the concentration profile c(x) is reasonably close to
constant far from the tip (see Figure 9.2), such that in the following, we will make
the additional approximation c(x) ≡ c0. Similar results can also be found in [30,
164].

FIGURE 9.2: Numerical solution of the system of ordinary differential equations (9.6). We chose the values
ζ = 104, ∆̃ = −10. The y axis has arbitrary units, showing only qualitative behavior. (a) Solution with
constant geometry, A(x) = 1. The concentration profile is almost perfectly constant. (b) Solution with
realistic geometry, A(x) = x1/2 (see also Section 9.3). The concentration profile is reasonably close to
constant for x > 0.2.

9.2.2 Optimizing the energetic cost of transport

There are two factors contributing to the energetic cost of transport through
the phloem. First, phloem cells themselves are alive and thus require energy
to be sustained. This is an energetic “maintenance cost”, which we assume to
be proportional to total conductive volume V0 =

∫ L
0 A(x) dx. Second, there is

viscous power dissipation due to internal friction in the fluid during transport.
High dissipation forces the plant to maintain stronger osmotic gradients between
source and sink tissue in order to support a desired flow rate, which translates
to higher energetic cost of transport. Viscous power dissipation in a conduit of
infinitesimal length is dP = −(Q dp + p dQ). With the approximation c(x) ≡ c0,
we easily derive dQ/dx ≡ const from equation (9.1). This knowledge allows
us to find the total viscous power dissipation along the length of the needle by

1Additional numerical experiments showed that the solutions are practically independent of ∆̃ for a wide range of
values of either sign. Indeed, it can be shown that the set of equations (9.6) is equivalent to a single second-order
differential equation that is independent of ∆̃. However, this system is numerically more difficult to solve.
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integration as

P = Q(L)∆p = Q(L)
∫ L

0

dp
dx

dx =
η

k
Γ2

c2
0

∫ L

0

x
A(x)

dx, (9.7)

where we fixed p(0) = 0. Using the method of Lagrange multipliers to find the
optimum phloem geometry A(x) minimizing power dissipation P under the
volume preserving constraint

∫ L
0 A(x) dx ≡ const, we obtain the optimization

functional

Π =
∫ L

0

x
A(x)

dx + λ

(∫ L

0
A(x)dx−V0

)
. (9.8)

The volume constraint models the assumption that the plant has a fixed “energy
budget” to maintain its phloem cells. Equivalently, one can think of a fixed
amount of cell material that is available to build the phloem. The functional (9.8)
is minimized by

A(x) =
3
2

V0

L

( x
L

)1/2
. (9.9)

This is a scaling law with A(x) ∼ x1/2. We note that this law is the same the
one found by Zwieniecki et al. who applied similar reasoning to the case of
water transport in the xylem of pine needles [71], deriving an optimization
principle for the tapering of the xylem bundle. Remarkably, the mathematical
form of their optimization functional is identical to ours, even though their ansatz
is quite different. This convergence of models points towards an interesting
mathematical connection between models of transport of solutes and transport
of water in plants. In a sense, it is a lucky coincidence for the plant that the
identical vascular geometry optimizes both xylem and phloem transport.

9.2.2.1 Generalized constraints

We note that the constraint
∫ L

0 A(x) dx = V0 can be modified by allowing a more
general dependence on phloem geometry through a parameter by fixing

K =
∫ L

0
A(x)γ dx. (9.10)

Minimizing equation (9.7) under this constraint leads to the modified scaling law
A(x) ∼ x1/(1+γ), which is always sub-linear. However, with this ansatz we lose
the intuitive geometrical interpretation of the constraint as the total conductive
volume V0.
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9.3 Experimental results

The scaling behavior of phloem geometry was investigated experimentally by
the group of Johannes Liesche and Alexander Schulz at the University of Copen-
hagen in order to compare to our theoretical results. To this end, needles from
four conifer species were collected and measurements taken. The species were
selected from three genera of conifers for their high diversity in needle size and
habitat (see Figure 9.3). The conifers chosen were Picea omorika, which natu-

(a) (b)

Picea omorika

Abies nordmanniana

Pinus cembra

Pinus palustris

10 cm

100 µm

Picea omorika Abies nordmanniana Pinus cembra Pinus palustris

FIGURE 9.3: Conifer needle characteristics. (a) Photographs of representative needle specimens of the
species studied. Lengths range between 1 cm (P. omorika) and 30 cm (P. palustris). (b) Micrographs showing
cross sections of typical needle specimens. The vascular tissue in the center of each needle (light color) is
clearly discernible.

rally occurs only in a small region in Serbia (typical needle length 1 cm), Abies
nordmanniana, which naturally occurs in a region from the Western Caucasus to
North-East Turkey (typical needle length 2 cm), Pinus cembra, which naturally
occurs in the Alps and Carpathians (typical needle length 10 cm), and Pinus palus-
tris, which naturally occurs in the South-Eastern United States (typical needle
length of a juvenile plant 25 cm).

From each species, 3–6 needles were collected, sectioned, live phloem cells
chemically stained and the sections imaged. Image analysis was used to ex-
tract the total conductive area A(x) for each needle. Figure 9.4 shows both
the measured total sieve element areas A(x) as well as the normalized sieve
element areas A(x)/A(L) on a logarithmic scale. Clearly, the needle data falls
closely within the range predicted by the optimization arguments presented in
the previous section.

Not much other work exists investigating phloem geometry in linear leaves
such as needles. Evert et al. measured phloem conductive area in several grass
species (maize [166], barley [167], and sugarcane [168]). Out of these, the results
for barley are in good agreement with our scaling law, whereas maize and
sugarcane only show approximately sub-linear scaling. Since grass leaves are
not perfectly one-dimensional, consisting of several parallel, interconnected
veins, stronger deviations from our scaling law for ideal one-dimensional leaves
are to be expected. However, scaling is still sub-linear and could be explained by
a modified constraint such as (9.10).
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FIGURE 9.4: Comparison of experimental sieve element area data with prediction from optimization. Lines
connect data from the same needle. (a) Double-logarithmic plot of normalized total sieve element area
A(x)/A(L) against normalized distance from tip x/L. The dashed line corresponds to y = (x/L)1/2. The
colored regions correspond to yα = (x/L)α whose power dissipations exceed the optimum at α = 0.5 by
the given percentages. Most of the needles fall within the 1% range α ∈ [0.35, 0.65]. (b) Total conductive
phloem area as function of distance from tip for all analyzed needles. The inset shows details near x = 0 for
the shorter species.

9.4 Alternative objective functions

Although successful, the model described in Section 9.2 suffers from the same
problem as virtually all optimization based explanations of biological form and
function. It is in practice nearly impossible to verify that the objective function
employed is really the one nature herself had chosen as well. In this section,
we investigate a number of alternative but still reasonable optimization models
and show that they do not lead to the same prediction for vein scaling as the
model (9.8).

The most important alternative model was proposed in [30, 39] by deriving
a model for long range translocation of solutes in the phloem of whole trees.
The authors modeled a whole tree as a system of hydraulic resistors, taking
into account contributions from source (leaf), transport (branches and trunk)
and sink (fruits, roots) tissue, R = Rsource + Rtrans + Rsink, and showed that
observed scaling behavior of single phloem vessel radius could be explained
using a principle of sugar flow rate maximization. This is valid on the level of
the whole tree (in contrast to our model, which is valid on the level of a single
needle, but takes into account flow through the whole vascular bundle and
not just single vessels). Thus, sugar flow rate j or volume flow J are identified
as viable candidates for optimization models. In the following, we analyze a
single needle model under the assumption of flow rate optimization, keeping
the constraint

∫ L
0 A(x) dx = V0. We show that flow rate optimization can not be

used to explain the observed needle geometry.
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9.4.1 Flow rate and volume flow do not explain needle phloem

A straightforward, obvious goal for the needle is to maximize flow rate j(L) or
volume flow rate J(L) of sugars at the petiole. These are defined as

J(L) = Q(L) c(L) (9.11)

j(L) =
Q(L) c(L)

A(L)
. (9.12)

We note that under the simplifying first order assumptions from Section 9.2,
J(L) = ΓL, which is a constant and does not depend on geometry. Thus, maxi-
mizing (9.11) does not explain phloem geometry.

To show that maximizing flow rate (9.12) can not explain phloem geometry
either, we note that the family of ansatz functions

Aγ(x) =
γ + 1

L

( x
L

)γ
(9.13)

all satisfy the volume fixing constraint. Since j(L) = J(L)/A(L) = ΓL/A(L), we
can insert our ansatz function and see that flow rate at the petiole j(L) diverges
as γ→ ∞. Therefore, flow rate maximization at the petiole is not responsible for
the observed phloem geometry, either.

Finally, we can consider the average flow rate within the needle,

〈j〉 = 1
L

∫ L

0
j(x) dx =

1
L

∫ L

0

J(x)
A(x)

dx. (9.14)

Under the assumptions from Section 9.2, we have J(x) = Γx, such that 〈j〉 is
formally identical to the functional describing power dissipation in the needle.
Therefore, it attains its critical point at A(x) ∼ x1/2. However, it is easy to see by
comparing

〈j〉A(x)∼x1/2

〈j〉A(x)∼1
=

8
9

, (9.15)

that this critical point in fact represents a minimum of the average sugar flow rate.
This result is interesting in its own right. A conifer needle appears to minimize
power dissipation due to flow by adjusting its geometry while at the same time
minimizing average flow rate.

9.5 Summary and further work

We have studied a simple model of nutrient transport in the phloem of pine
needles and compared its predictions to direct measurements of phloem geome-
try in four conifer species. The model is based on the optimization of viscous
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power dissipation during flow. This is biologically sensible because, in contrast
to the passive transport of water in the xylem, the plant needs to spend energy
in order to keep up an osmotic gradient along the entire length of the transport
pathway. Therefore, in this context, minimizing energy expenditure is useful,
and potentially leading to a selective advantage.

Analytically optimizing power dissipation in the needle under the constraint
of constant total volume leads to the prediction that the total cross-sectional area
of all phloem cells should scale as A(x) ∼ x1/2 as a function of distance from the
needle tip. This scaling is roughly observed in the experimental data.

We then investigated alternatives, in particular flow rate optimization, which
had been observed on the whole-tree–vessel-element scale before. We showed
that on the needle–vessel-bundle scale, it cannot hold true.

Our results are not in contradiction to flow rate optimization on the single-
vessel scale. Rather, they complement each other, showing how nature has once
again chosen a structure for plant organs and tissues that is optimal in multiple
ways.

Simple models such as the one from this chapter can serve as a stepping stone
for more elaborate ones, providing a more refined description of transport in
biological organisms. This includes the network models studied in the next
chapter. Because of the mathematical equivalence between the power dissipation
and pressure drop objective functions, similar results for xylem and phloem
network are expected (and indeed, as noted earlier, xylem and phloem occur
together in the vascular bundle).

It is highly interesting that recently, similar scaling relations were found in kelp
(a type of brown algae) [169]. Kelp and vascular plants are approximately equally
distantly related to animals. Thus, this is an excellent example of convergent
evolution (note though that for biological reasons the observed scaling power in
kelp is 1/3 instead of 1/2 in conifers).

It may be worthwhile to further study models with different loading functions
in order to elucidate the effect of loading on optimal phloem geometry. So
far, we only analyzed uniform loading dJ/dx = Γ. However, depending on
phloem loading strategy, plants may try to achieve a constant photoassimilate
concentration in the phloem more actively. For instance, in [43], “target loading”
with dJ/dx = a(c(x)− σ) with target concentration σ and loading rate a was
proposed.
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10 Robust Optimal Transport Networks
and Auxin Canalization

In this chapter, we analyze robust optimal transport networks and dynamical
models of venation development in growing plants. Previous work [72, 114]
has shown how optimal transport networks that are robust against damage or
fluctuations develop a reticulate, nested structure as an evolutionary adaptation.
We extend this work in several directions. First, we investigate the question
of possible sequences in which loops can develop over the course of evolution.
This is done by considering two models of damage strength, assuming that
different levels of hierarchical reticulation guard against different strengths of
damage (e.g., it is not necessary for the leaf to form large anastomoses if only
small damage is expected). Comparison with the fossil record then suggests that
reticulate venation may have first developed to guard against embolisms but not
against pathogens.

Then, we develop a simple, heuristic method to analyze substructures of
the leaf network that had previously been unavailable due to computational
limitations. We do this by a clever choice of boundary conditions, effectively
modeling parts of one single leaf structure. This allows for “zooming in” to
small sections and analyzing the optimal hierarchical topology. We compare our
results to real leaves and find good visual agreement.

Finally, we connect our optimal robust networks to development. We show
that the simplest possible model of auxin canalization is able to replicate the
optimal topology if one allows for spatially correlated fluctuations in auxin
sources and sinks. Further, we demonstrate that by tuning the correlation range
of spatial fluctuations, it is possible to access a continuous family of reticulate
network topologies.

10.1 Robust optimal transport networks

In this section we review the theory of optimal robust transport networks. Ro-
bustness is understood to refer to resilience against expected damage in the
network, as well as against fluctuations in the load. Even though the model is
designed to apply to biological networks in leaves, it is mathematically equiv-
alent to models used in the theory of power grids. Thus, the results may be
just as applicable there (the theory of damage in power grids is reviewed for
instance in [170, 171]). Mathematicians also extensively study such networks;
many results can be found in [172].
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10.1.1 Modeling leaf xylem networks

FIGURE 10.1: Simplifying leaf xylem network models. (a) A network model including the outside-xylem
pathways through the mesophyll. The total evaporating water flow ρ enters the network at the petiole and
leaves it at the node representing the surrounding air. The flow through each small section of mesophyll
surrounding node i is F0i = Km(pair − pi). (b) Simplified model taking into account the relative hydraulic
resistance between xylem and outside-xylem pathways. In the limit Km → 0, evaporation is uniform and
ρi = −ρ/N becomes a boundary condition.

We adopt the following simplified model for leaf xylem networks. Venation is
modeled as a graph containing N + 2 nodes. The first N + 1 nodes represent the
leaf venation network itself, with node 0 corresponding to the petiole, where the
leaf is attached to the rest of the plant. Thus, the subgraph consisting of these
nodes is planar and models water flow through the hierarchical leaf venation
network. The nodes 1, . . . , N are assumed to be roughly uniformly distributed on
the leaf lamina. Each of them is connected to the outside node N + 1, representing
the ambient air into which water is assumed to evaporate (see Figure 10.1 (a)).
Water flow follows the law

Fij = Kij(pj − pi), (10.1)

where Kij = Kji is the hydraulic conductivity between nodes i and j, and pi is
the hydrostatic pressure at node i. The water vapor pressure in the ambient air
is pN+1 ≡ pair. At each node i, the continuity equation

∑
j

Fij + ρi = 0 (10.2)

holds, where the sum runs over all neighbors j of i. Here, ρi is the net flow at
node i. The hydraulic conductivity inside the venation network is related to
vein thickness, but because the precise geometry inside the vein is complicated,
Poiseuille’s law does not hold directly (see the introduction as well as [173]).
Still, flow is pressure-driven. For the outside-xylem pathway we assume that all
stomata are opened equally and that the hydraulic resistance water encounters
on its way out is independent of position on the leaf blade. Thus we have for the
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flows through the mesophyll and stomata

F0i = Km(pair − pi), (10.3)

where Km is the mesophyll-pathway hydraulic conductivity. In addition, the
steady-state relation ρ = ∑i F0i holds, where ρ is the total flow of water entering
the leaf network at the petiole. The model is visualized in Figure 10.1 (a).

10.1.1.1 Decoupling the hydraulic pathways

We now derive the decomposition (2.9) from the introduction. The derivation al-
lows us to further simplify the model by neglecting the outside-xylem pathways
and provides an intuition for the way water moves through a leaf. We consider
the whole leaf as a single hydraulic resistor with conductivity Kleaf and write

ρ = Kleaf (pair − p0)

= Kleaf (pair − pi︸ ︷︷ ︸
=F0i/Km

− (pi − p0)) . (10.4)

Summing the last equation over the internal network nodes i ∈ {1, . . . , N} and
rearranging, we are left with

1
Kleaf

=
1

NKm
+

1
ρ

1
N

N

∑
i=1

(pi − p0)

=
1

Kox
+

1
Kx

. (10.5)

Here, Kox = NKm is the total outside-xylem conductivity and

1
Kx

=
1
ρ

1
N

N

∑
i=1

(pi − p0) (10.6)

is the total xylem conductivity. We see that Kx is inversely proportional to the
average pressure drop inside the leaf blade.

10.1.1.2 The uniform-evaporation approximation

In a typical leaf network, the number of nodes (vein junctions) is of the order
of N ≈ 104 − 106 (this is supported for instance by our data set from Part II).
Because Kx is of the same order of magnitude as Kox [64], mesophyll conductiv-
ity Km is negligible compared to leaf xylem conductivity Kx. Therefore, in this
limit, water is subject to a network of N parallel resistors with conductivity Km
connecting petiole and air. By Kirchhoff’s laws, the flow will divide equally be-
tween the parallel resistors. This means that we can approximate the mesophyll
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conductivities by Km ≈ 0 and the mesophyll flows F0i ≈ ρ/N.
Because we are interested in the flow on the leaf blade, we are therefore al-

lowed to neglect the outside-xylem pathways and replace them by the boundary
condition ρi = ρ/N, see Figure 10.1 (b). This boundary condition can also be
understood as modeling uniform evaporation of water from the leaf blade.

10.1.2 Pressure drop minimization

Following the preceding arguments, we model the leaf venation network as a
weighted flow network. The general mathematics of such networks is reviewed
in in Chapter D of the appendix.1 The model we use is based on the idea of
adjusting the network conductivities such as to achieve minimization of pressure
drop in the leaf network (see [70] for the biological underpinnings, and [72] for
the initial work in physics; compare also the introduction of this thesis). The
objective function is thus (see also (2.12))

∆p =
1
N

N

∑
i=1

(pi − p0), (10.7)

where pi is the hydrostatic pressure at node i in a network of N + 1 nodes.

10.1.2.1 Network cost

Because the plant has only finite resources to build its network, we need to add
a constraint fixing the total cost that venation represents for the plant, similar to
the volume-fixing constraint in Chapter 9. Since water comes for free, the major
cost is the carbon cost of the xylem vessel cell walls, which we assume to be
proportional to cell wall volume V. Cell wall width w is assumed to scale with
the radius as w ∼ rα, where α is a parameter. For a single vessel of length L, the
cost in the thin-wall limit w/r � 1 is

C ≈ 2πrwL

∼ rα+1L

∼ K
α+1

β L, (10.8)

where K is the hydraulic conductivity of the vessel that is assumed to scale as
K ∼ rβ. For Poiseuille flow, β = 4. Introducing the cost parameter γ = α+1

β , the
total cost of the network is

C = ∑
(ij)

Kγ
ij Lij, (10.9)

1We make a slight change in notation in this chapter, denoting the hydrostatic pressure by the symbol p instead of the
general potential φ used in Chapter D.
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where sensible values of γ lie in (0, 1), defining an economy of scale. This means
that it is “cheaper” or more efficient to build one large vessel instead of two
smaller ones.

Assuming Poiseuille flow2 (β = 4), the parameter γ has a geometrical inter-
pretation for special values. For γ = 1/2, the cost is proportional to total xylem
volume; for γ = 1/4 to total cross-sectional area.

10.1.2.2 Equivalence to power dissipation

We now show that the objective function (10.7) is equivalent to the total viscous
power dissipation in the network. The total viscous power dissipation is

P = ∑
(ij)

F2
ij

Kij

= −∑
i,j

piFij = ∑
i>0

piρi − p0ρ

= ρ∆p. (10.10)

Combined with (10.6), this is a remarkable result: To first approximation, the leaf
network can optimize three physiologically relevant quantities at the same time.
First, pressure drop minimization is highly relevant for local function of the leaf,
reducing water stress on the cells. Second, leaf hydraulic resistance minimization
is highly relevant for global functioning of the whole-plant hydraulic system
because leaves provide the bulk of the whole-plant resistance. Third, power
dissipation minimization is relevant for the leaf phloem, which exists in the same
vascular bundle as the xylem (see also Chapter 9).

Mathematically, the power dissipation function is easiest to handle, therefore
we will in the following phrase all optimization problems in the sense of power
dissipation minimization.

10.1.2.3 The ensemble-averaged objective function

Using a Lagrange multiplier, we can combine the power dissipation with the
network cost as a constraint into one objective function. Being interested in the
effects of damage to the network, we consider the damage-averaged version of the
power dissipation. The functional is

ξ = ∑
(ij)

〈F2
ij〉

Kij
+ λ

∑
(ij)

Kγ
ij − C

 . (10.11)

Here, the angle brackets denote an average over the ensemble of all network
topologies where a single edge was completely severed. Thus, minimizing

2Remember that in real leaves this is just a simplifying assumption.
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this functional amounts to optimizing the expected power dissipation under
the assumption that damage to the leaf network will happen in some edge.
By taking partial derivatives with respect to the conductivities, we find for an
optimal network the relation

Kij =
〈F2

ij〉
1

1+γ(
∑(kl)〈F2

kl〉
γ

1+γ

) 1
γ

. (10.12)

The network perturbation methods developed in Chapter D of the appendix
can be used to numerically calculate the expected flow 〈F2

ij〉. Because the function
(10.11) is non-convex (remember that γ ∈ (0, 1)), in general many local minima
exist. From evolutionary reasoning we expect that a realistic leaf network would
fall into one that is close to the global optimum. Thus, we employ a numerical
simulated annealing scheme to refine minima found by iterating the fixed-point
equation (10.12) (our method is very similar to the one used in [72]).

One result of numerically optimizing a network using this type of scheme on a
triangular lattice was shown in Figure 2.14 in the introduction, demonstrating
the remarkable similarity with real leaf networks that the method is able to
achieve. In the following, we present some refinements of the method. First,
we consider different damage models that represent cases where not the whole
network edge is removed but only a part of the conductivity is lost. This could
for instance correspond to damage due to plant pathogens such as fungi [50]
or embolisms that do not occlude the entire vein [18, 174]. Then, we increase
resolution of the optimizations by choosing particular boundary conditions.

10.1.3 Effects of partial damage on topology

In this section we present results for optimal robust transport networks using
numerical minimization of the objective function (10.11) for models that include
partial damage. All models are defined on a triangular lattice with hexagonal
boundary with E edges and N nodes (see Figure 10.2 for examples).

10.1.3.1 Two models for partial damage

Instead of completely severing the veins by setting the conductivity Kij → 0 for
the network edges, we introduce two alternative models that damage the veins
only partially. This is inspired by the fact that the xylem cells are equipped with
specialized mechanisms to prevent embolisms from spreading (among them
the perforation plates, see Figure 2.5), suggesting that embolisms represent an
important class of damage [175, 176]. Another inspiration comes from plant
pathogens such as fungi whose hyphae grow inside xylem cells but do not fully
occlude them [50].
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We distinguish two models. The first is multiplicative damage (model A), where
for each damaged edge (ij) we set Kij → (1− δ)Kij, with δ ∈ [0, 1] representing
the amount of damage. Thus larger vessels lose more conductivity in absolute
terms than smaller vessels. This may represent embolisms due to drought or
freeze-thaw cycling where typically a certain fraction of conductivity is lost [175,
176].

The second model is additive damage (model B), where Kij → Kij − κ, with
κ = E1/γκ̃ an absolute damage parameter. In order to render models with
different γ comparable, we introduced κ̃ by normalizing with a typical edge
conductivity. This model may represent damage due to plant pathogens that
grow inside the xylem but that only reduce conductivity by some fixed value
given for instance by hyphae size.

10.1.3.2 Results

FIGURE 10.2: Formation of first loops in multiplicative and additive damage models at γ = 0.5 on a
triangular lattice with N = 217 nodes and E = 600 edges. Edge color and width are proportional to K0.15.
Some anastomoses are marked in red. The leftmost node was chosen as an inlet, all other nodes are uniform
outlets. (a) Multiplicative damage, δ = 0.99, large anastomoses form first between the secondary veins. (b)
Additive damage, κ̃ = 0.7, small anastomoses form first between small veins.

Typical optimal network topology. In both models, the optimal networks contain
no loops for small values of the damage parameter. As the damage parameter is
increased, loop formation is induced in different ways in the optimal networks
depending on the damage model.

For multiplicative damage, large anastomoses form first, connecting the sec-
ondary veins. This can be explained by the fact that when the main vein is
strongly damaged, a large flow must be rerouted. Since power dissipation is
inversely proportional to conductivity, it can be minimized by rerouting through
the secondary veins, which possess the largest conductivities apart from the
main vein.
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For additive damage, small anastomoses form first, connecting high order
veins. The secondary veins remain unconnected. There is no need to build
large bypass structures because the damage to the main and secondary veins
is negligible. Small veins however are strongly affected such that small, local
bypasses need to be built, keeping the cost low.

As the damage parameters are further increased, both optimal network topolo-
gies become indistinguishable, as both models become equivalent.

Typical optimal networks for damage models A and B are shown in Figure 10.2
for parameter values above the limit for loop formation.

FIGURE 10.3: Density of loops in the network as a function of damage for the two damage models and
several values of γ. Networks had 2437 nodes and 7140 edges. (a) Multiplicative damage Kij → (1− δ)Kij.
Very large damage δ is needed before the network starts investing in loops. The number of loops increases
smoothly up to a final value. The first loops (small δ) are anastomoses between the secondary veins, later
(δ ≈ 1) smaller loops form. (b) Additive damage Kij → Kij − E1/γκ̃, where κ̃ is the typical edge weight.
Loop density jumps at a critical κ̃c and then stays approximately constant. The first loops (κ̃ & κ̃c) are many
very small ones, later (κ̃ � κ̃c) few larger anastomoses form.

How much damage is necessary to induce loops? In order to determine the amount
of damage necessary to induce loops, we considered optimal networks in tri-
angular lattice geometry in both models for a range of damage parameters
and measured the loop density L/Lmax, where L is the number of loops in the
network and Lmax = E− N + 1 is the maximum possible number of loops in
the network according to Euler’s formula. To compute L, we thresholded the
converged network and discarded all edges with conductivity value below the
numerical machine accuracy, and then calculated L = E′ − N + 1, where E′ is
the number of conducting edges that were not discarded.

The results for both models are shown in Figure 10.3 for some values of γ. The
behavior is strikingly different. In the multiplicative model, a large amount of
relative damage is necessary to even make it economical for the network to pro-
duce loops (typically, δ > 0.95). Even then, loop density increases continuously
by first adding few large loops connecting large veins and then successively
introducing smaller and smaller anastomoses until a characteristic final loop
density (depending on γ) is reached. We can distinguish two regimes. First, loop
density grows approximately exponentially, then linearly (see Figure 10.3 (a) in
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particular for γ = 0.85).
In contrast, the additive model is characterized by a critical damage κ̃c below

which there are essentially no loops and above which the loop density grows
approximately linearly until it reaches the characteristic final loop density. The
critical damage is the conductivity of the smallest veins of which there are many
with very similar conductivity. These smallest veins are completely severed at the
threshold, triggering the formation of many small anastomoses. As the damage
parameter increases, few larger anastomoses are added until the characteristic
loop density for given γ is reached.

Comparison with the fossil record [68, 113, 177] suggests that early angio-
sperms already possessed large anastomoses between the secondary veins. If
they arose as an adaptation to damage, our models thus suggest that damage
due to embolisms may be the dominant driver of natural selection as compared
to damage through pathogens.

10.1.4 Increasing resolution

So far, we have looked at networks that model the complete venation pattern of
a whole leaf. As one wants to increase resolution, computation time becomes
prohibitive to exploring higher order structures. For this reason, we now show
some ideas that allow us to consider only small parts of the leaf venation pattern
by appropriately choosing the lattice on which to optimize and modifying the
boundary conditions. These models not only allow us to “zoom in” to small
regions of the simulated leaf, but they also provide us with an abstract model
for those regions. We consider two main “zoom regimes” and compare to real
leaf networks. Each regime is characterized by a particular choice of boundary
conditions. In both cases, we switch from the triangular lattice used to model the
whole leaf to a square lattice and use the original damage model that completely
severs edges with a cost parameter of γ = 0.5. The different lattice is used
because we are not interested in approximating a leaf margin anymore, and
because the higher order structures of the network are better represented by a
square lattice.

10.1.4.1 Section adjacent to the main vein

We consider a N × M square lattice whose bottom line of N nodes is used
to model the main vein. To these nodes we assign the boundary condition
ρi = −ρ/N, i ∈ {1, . . . N}, with ρ the total amount of water transported into the
small section of leaf. The other N − 1×M nodes model uniform evaporation
such that for them, ρj = ρ/((N − 1)M), j ∈ {N + 1, . . . , N M}. In a real leaf, the
main vein’s rate of fluid delivery per unit length ρi depends on the leaf profile
(assuming that the same amount of water needs to be delivered per area) such
that this model is valid in a region where the distance between leaf margin and
main vein remains roughly constant. Such a region exists for many elongated
leaves near the center (see, e.g., Figure 2.12).
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(a) (b)

FIGURE 10.4: Boundary condition models reproduce higher order structures found in real leaves near the
main vein. (a) Crop of a cleared and stained leaf of Protium paniculatum, showing a typical brochidodromous
venation pattern. Three typical sub-patterns are marked in red. The scale bar corresponds to 5 mm. (b)
Typical optimal robust transport network on a square lattice with uniform inflow at the bottom (blue
arrows). The network reproduces similar sub-patterns as found in the real leaf.

The model clearly reproduces many of the sub-patterns that were not present
in the whole-leaf model due to low resolution, in particular those inside large
vein-loops formed by the secondary veins (see Figure 10.4). These patterns are
commonly found in real leaves with brochidodromous venation such as many
of the Burseraceae we analyzed in Part II.

10.1.4.2 Section between two large veins

Again, we consider a N×M square lattice, but this time the bottom-most and top-
most rows are used to model secondary veins. Assuming that both secondaries
contribute equally to water delivery into the region between them, we assign
them the source net currents ρi = −ρ/2N, i ∈ {1, . . . 2N}. The nodes in between
are uniform sinks with ρj = ρ/((N − 2)M), j ∈ {2N + 1, . . . , N M}. A region
with approximately this type of flow pattern exists in real leaves with many long
secondary veins, e.g., in some leaves with craspedodromous venation pattern
such as hornbeam or birch.

Again, the model reproduces sub-patterns obscured by low resolution or pos-
sibly other effects in between the secondary veins of other models. In particular,
it reproduces the cross-connections between third order veins the central region
between the secondary veins (see Figure 10.5). Because flows in the central
region are small, there is little patterning, and veins appear more random.

“Zooming in” even further appears not sensible because the model now be-
comes self-similar. The region between two third order veins is expected to
look roughly like a rescaled version of that between the secondary veins up to a
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(b)(a)

FIGURE 10.5: Boundary condition models reproduce higher order structures found in real leaves between
secondaries. (a) Crop of a cleared and stained leaf of Carpinus betulus (European hornbeam). Hornbeams
have particularly long, almost parallel secondary veins, approximately satisfying the model conditions.
The scale bar corresponds to 5 mm. (b) Typical optimal robust transport network on a square lattice with
uniform inflow at the bottom and top (blue arrows). Again, the network reproduces similar sub-patterns
as found in the real leaf, in particular in the central region between the two secondaries. (Leaf image (a)
courtesy of Torsten Eckstein).

rotation by 90◦. The effect of symmetry breaking by the single inlet at the petiole
can be neglected. In addition, real leaves tend to possess only up to three well-
defined vein orders, and at the scale probed by further increasing the resolution
it becomes unclear whether optimization effects still dominate the network. It
is likely that effects of mechanical stress on the cells during development take
over [93].

10.1.5 Summary, challenges, and future work

We have presented a model for damage-robust optimal transport networks. The
model minimizes expected power dissipation in a complex flow network under
the assumption of damage to the edges. We showed that this optimization
is equivalent to both minimizing mean pressure drop on the leaf blade and
maximizing the total xylem hydraulic conductivity.

We then extended the model by introducing two different versions of partial
damage, one multiplicative the other additive and showed that these lead to
different network topologies when increasing the damage parameter. Multiplica-
tively damaged networks (modeling, e.g., vein embolisms) form large anasto-
moses first whereas additively damaged networks (modeling, e.g. pathogens)
form small anastomoses first. Comparison with the fossil record suggests that
embolism damage may be the more important driver of leaf venation evolution.

Next, we introduced two variants of the original damage model with modi-
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fied boundary conditions that represent different regions of the leaf blade. We
considered the regions adjacent to the main vein near the center of the lamina
and those between long secondary veins. By comparison with real leaves, we
showed that the model still applies and reproduces higher order sub-patterns
that are found in the real leaves as well.

10.1.5.1 Challenges and future work

Although the evolutionary damage optimization model appears remarkably
good at reproducing venation patterns found in real leaves, the global pattern
found in craspedodromous leaves poses a challenge. In craspedodromous leaves,
the secondary veins do not connect through anastomoses but rather extend
further and terminate at the leaf margin, often in serrations.

We have not been able to reproduce this type of venation pattern using an
optimal transport network model. It has been suggested that this pattern is
correlated to climate, it being prevalent in temperate tree leaves. The pattern is
sometimes thought to arise from a principle of parsimony. Because temperate
leaves are formed anew each year, they must be produced cheaply and the safety
benefit of large anastomoses with respect to cost appears too small [70]. In
contrast, non-temperate leaves must remain functional for many years, making
a larger investment worthwhile. An example for the craspedodromous pattern
is shown in Figure 10.6.

FIGURE 10.6: The craspedodro-
mous venation pattern in Carpi-
nus betulus. Secondary veins ter-
minate in the serrations at the mar-
gin. Creases from folded growth
can be discerned between the sec-
ondary veins. Leaf length is approx-
imately 8–10 cm. We have not been
able to reproduce this global pat-
tern. (“Carpinus betulus” by Frank
Vincentz, CC BY-SA 3.0 / cropped).

However, we speculate that the craspedodromous
venation pattern may be due to developmental con-
straints arising from folded growth of the lamina
within a bud. Such pre-formed leaves are the norm
for temperate species and it has been shown that
the folds typically occur parallel to the secondary
veins [102, 103], thus precluding large (rigid) anas-
tomoses between them because they would pre-
vent efficient unfolding. This hypothesis is further
strengthened by observations of tree species that
can produce both pre-formed (in a protective bud)
and neo-formed (without a bud) leaves. Indeed,
in limited studies, pre-formed leaves show craspe-
dodromous venation and neo-formed leaves show
brochidodromous venation [107, 108].

Thus, an optimal transport network model alone
may be inappropriate to explain the transition be-
tween the two patterns. Instead, in the future it will
be necessary to consider models that can integrate geometrical constraints aris-
ing from developmental conditions to the network. In addition, more data is
necessary to investigate the correlations between venation pattern, growth habit
(pre-formed or neo-formed), and climate.
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10.2 Auxin canalization models of vein morphogenesis

Auxin canalization is the most widely accepted theory of vein morphogenesis in
plant leaves. It stipulates that a certain phytohormone, auxin, that is produced
in the leaf during development and actively transported by certain proteins
called PIN is responsible for cell differentiation into vascular tissue. The petiole
acts as a sink for auxin. A large number of subtly different models have been
proposed [85], some relating vein formation to auxin flux, others to auxin con-
centration. One fundamental problem in validating these models is the current
inability to experimentally measure auxin in the growing leaf; it is only possi-
ble to infer transport indirectly [89]. In addition, many models make similar
predictions. It must be stressed, though, that the fact that auxin is responsible
for vascular differentiation is uncontested and can be clearly demonstrated by
experiment [88].

One problem with many models of auxin canalization is explaining the for-
mation of vein loops [178, 179]. Modelers have been forced to resort to either
introducing new hypothesized chemicals (“flux-bifurcators”) [99] or to manually
add and remove auxin sources at specific times [97]. Either way, the resulting
networks do not look particularly realistic, or contain only one or two loops
that are thought to model the first loops that form in the growing leaf. A more
abstract approach was used in [180], producing very realistic networks. How-
ever, the model does not use a feedback mechanism but rather a set of geometric
rules because it was designed to produce leaf networks for use in computer
generated images. The way the model employs stochasticity however suggests
its usefulness in explaining venation patterns.

Our aims for this section are not to provide yet another detailed and fine-
tuned model for vein morphogenesis. Instead, we introduce a simple flux-based
model for auxin canalization, neglecting even polar auxin transport by PIN.
Recently, dynamic expression of auxin-related genes was reported in live imaging
experiments [91]. It was demonstrated that expression levels of both PIN proteins
and a certain vascular commitment marker show transient behavior, leading
us to hypothesize fluctuations in auxin flow during morphogenesis. Thus, we
introduce random but spatially correlated dynamics of auxin sources in the flow
network.

In addition, we introduce an empirical term to the model that represents how
veins tend to grow—large veins grow first, smaller veins grow later [86]. We
show that this stochastic model (with no need for hypothetical new chemicals or
manual placement of auxin sources) reproduces low order venation patterns of
real leaves remarkably well.

Our model is not meant to be biologically accurate but rather to serve as a
proof-of-concept. The emergence of reticulate venation patterns does not rely
on the often emphasized polar auxin transport by PIN and can be explained by
stochastic auxin sources coupled to growth. We emphasize that no fine-tuning
of parameters is necessary to achieve natural-looking networks.

We also show that by varying the correlation range (i.e., the spatial extent of
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(c)

(d)

(e)

FIGURE 10.7: Typical results from auxin canalization models on a triangular grid. The petiole (leftmost node)
acts as a net auxin sink, all networks have 817 vertices and 2353 edges and τ = 50, κ = 1. Edge thickness and
color represent the facilitated diffusion coefficient between cells Dij. The differential equation was solved
using a forward Euler scheme with dt = 0.1. (a) Steady state network without any fluctuating sources,
ρi ≡ const. The network is a topological tree but shows main vein as well as secondaries. (b) Steady state
network with uncorrelated fluctuations, each node is a fluctuating source with zero spatial extent, σ→ 0.
There is a main vein, but the remaining topology is not leaf-like. (c–e) Time series of network dynamics
with spatially correlated fluctuations. We chose σ = 3.8h, where h is the bond length (blue circle in (c) for
one source/sink). There is one auxin source/sink centered at each node with frequencies and shifts chosen
uniformly at random, ωj ∈ [0, 10], θj ∈ [0, 10]. The main vein forms first, followed by secondaries and higher
order veins. The steady state network (e) shows the reticulation pattern typical for real brochidodromous
leaves. (f) The standard deviation of the normalized diffusion coefficient distribution shows a continuous
transition between non-hierarchical, highly reticulate topologies (σ� h) and hierarchical, non-reticulate
topologies (σ� h). Results are shown for two system sizes, typical networks are shown for σ/h = 0.5, 1, 5
in the system with 600 edges.

auxin sources and sinks) it is possible to obtain a continuous family of venation
topologies whose individual members differ in loop density and the amount of
hierarchical organization.

10.2.1 Correlated fluctuations lead to realistic networks

The model for auxin canalization we use is based on the simple model described
in [97]. We represent the cells of the growing leaf lamina as nodes of a planar
network. Between adjacent cells, there is auxin flow according to

Fij = Dij(ci − cj), (10.13)
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where Fij is the flow of auxin between cells i and j, Dij is an effective facilitated
diffusion constant, and cj is auxin concentration in cell j. Thus, this is a linear
flow law (see Chapter D of the appendix) for the auxin concentrations.

The network evolves according to a positive feedback mechanism governing
the magnitude of the facilitated diffusion constants. This is the core of the canal-
ization hypothesis. High flow increases facilitated diffusion, leading to higher
flow; unused channels die out. A large Dij is then interpreted as corresponding
to vein precursor tissue. In our model, the diffusion constants evolve according
to the nondimensional equation

dDij

dt
=
(

F2
ij

) 2
3 − Dij + κe−t/τ. (10.14)

This dynamical system contains three competing terms. The first term can be
interpreted as positive feedback to the flow magnitude. The precise form of
the nonlinearity is not crucial for the results. Because our model is a simple
proof-of-concept, we focus on one particular flow-feedback relationship amongst
many that produce realistic looking networks. The second term models decay
of unused channels. If it dominates, flow is small and the channel vanishes.
The third term models growth. The initial conditions are chosen such that it
dominates at the beginning (by an appropriate value of κ) as growth starts out
uniform. As the term decays with the time scale τ, the feedback mechanism is
able to take over first where flow is largest and consequently the largest veins
will grow. As time progresses, the feedback mechanism successively applies to
smaller and smaller veins until convergence. This corresponds to the empirical
fact that during development, veins appear in order of their relative thickness
(compare Figure 2.17). It must be emphasized that the third term in (10.14)
is purely phenomenological but produces very realistic networks. This type
of growth term has a similar effect on the network growth dynamics as the
simulated annealing technique used in [72] and in the previous section has on
optimization dynamics.

Cells can be producers or sinks for auxin. Our model assumes spatially corre-
lated, fluctuating sources and sinks. The nondimensional sources and sinks are
modeled by

ρi =
N

∑
j=1

e−‖xi−xj‖2/(2σ2) cos(ωj(t− θj)), i > 0 (10.15)

ρ0 = −
N

∑
i=1

ρi. (10.16)

Here, the node 0 corresponds to the petiole, which acts as a sink for the
net produced auxin. All other nodes nodes are sources or sinks with spatial
extent (correlation range) σ and centered at position xj. They alternate between
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source and sink behavior according to the frequencies ωj and shifts θj. Simple
alternatives to this model include no fluctuations (ρi ≡ const), or spatially
uncorrelated fluctuations (ρi ∼ cos(ωi(t− θi)).

Typical simulation results are shown in Figure 10.7. If fluctuations are absent,
the steady state network is a topological tree but still shows the characteristic
main and secondary veins. If fluctuations are spatially uncorrelated, a main vein
forms but the rest of the topology is not leaf-like (the topology resembles the
fluctuating sink models described in [72, 114]). Only if fluctuations are spatially
correlated do characteristic, realistic anastomoses between the secondary and
higher order veins form that resemble the results from the damage optimization
models from the preceding section and [72], as well as real leaf topologies.

It should be noted that the values of the fluctuation frequencies ωj and time
shifts θj need no fine-tuning. The behavior shown in Figure 10.7 is robust over
one to two orders of magnitude in the ωj.

10.2.2 A continuous transition between network topologies

FIGURE 10.8: Loop density shows a contin-
uous transition between topologies as the
correlation range varies. The inset shows
typical steady state networks at σ/h =
0.5, 1, 5. Data are taken from the same net-
works as in Figure 10.7 (f).

There exists a continuous transition between
strongly differing steady-state topologies as
the spatial extent of correlated fluctuations
varies in comparison with the edge length h
(i.e., cell size). This is quantified by the stan-
dard deviation s(D/Dmax) of the normalized
steady state distribution of non-zero effective
diffusion coefficients.3 For σ = 0, the distri-
bution is close to Gaussian and the standard
deviation is small. For σ � h, the network
becomes more fractal-like and the conductiv-
ity distribution is long-tailed. This is shown
in Figure 10.7 (f). The transition point where
the network begins to “feel” the spatial corre-
lations appears to be at σ ≈ h/2.

As σ becomes comparable with the lattice
size, the loops in the network vanish. In gen-
eral, the loop density decreases as σ increases.
This behavior is shown in Figure 10.8.

We emphasize that the steady state solutions of (10.14) for t → ∞ are for-
mally very similar to the minima (10.12) of the evolutionary optimization func-
tional (10.11) (for appropriate choice of boundary conditions, averaging ensem-
ble, and cost parameter γ, if such a choice is possible; in the case of no fluctuations
they can be immediately seen to coincide). For instance, the fluctuating sink
model from [72] corresponds to our model with σ = 0. Thus, there is a direct
link between dynamical models such as the one explored in this section and

3All conductivities below a fixed threshold are assumed to have converged to zero and are removed from the distribu-
tion.
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optimization models such as the one presented in the preceding section. Similar
models have been considered in the past finding similar connections where local
adaptation rules globally optimize some functional [181, 182], but these were not
focused on the peculiarities of leaves. The work [181] found a transition between
non-reticulate and reticulate networks as fluctuations are gradually switched on,
but apparently missed the transition between different types of topologies that
we have pointed out here. We note that the dynamical system (10.14) minimizes
pressure drop (or equivalently power dissipation) during the dynamics [181].

10.2.3 Summary and future work

In this section, we presented an extremely simple dynamical model for auxin
canalization that neglects polar transport by PIN proteins. The model represents
the way auxin flows and leaf tissue dynamically adapts during growth and
morphogenesis of the leaf blade. We showed that spatially correlated source and
sink strength fluctuations during growth, which we modeled using an empirical
term in the dynamical equation, lead to realistic, leaf-like topologies with main
vein, secondary veins and characteristic anastomoses. This may be related to
a connection between optimal flow networks and steady states of dynamical
systems such as those in this and the preceding section.

In addition, we uncovered a transition between different reticulate topologies
as one moves from spatially uncorrelated to spatially correlated fluctuations that
had been previously missed. It is precisely the spatial correlations that lead to
realistic leaf networks, and dynamical fluctuations have been observed in leaves
during morphogenesis. It is remarkable that a simple local feedback rule such as
(10.14) coupled to growth leads to a pattern that optimizes a global functional.
Thus, natural selection has had it easy: instead of encoding complicated network
patterns, very simple morphogenetic mechanisms suffice to produce highly
optimized structures “automatically” in a self-organized fashion.

Our model is extremely simple, and there is no direct justification for the
growth term in our dynamical equation. Thus, future work needs to focus on
both justifying the growth term (possibly modifying it) and performing simu-
lations on growing networks. Additionally, it would be worthwhile to further
investigate connections between optimal transport networks and dynamical
systems, possibly finding a “dictionary” allowing one, e.g., given a dynamical
system and its steady states, to construct the corresponding optimization func-
tional with the same minima, and vice-versa. It would also be interesting to
incorporate more realistic auxin dynamics, i.e., polar transport by PIN proteins.
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11 Final Summary

In this final chapter we briefly summarize all the work in this thesis once more,
put it into perspective, and discuss in which ways the goals set in the introduction
have been met.

11.1 Biology of Leaves and Leaf Venation

In Part I, we discussed aspects of function, development, and evolution of the
dicotyledonous plant leaf with special focus on physical modeling. We gave a
description of the cohesion-tension theory of water movement through the plant.
We discussed the xylem as water transport tissue as well as the mathematics
behind CT theory in terms of local (vein level) and global (whole tree level)
models of hydraulic resistors. Next, we discussed the Münch mechanism of
active, osmotic-gradient driven photoassimilate transport through the phloem.
We discussed aspects of leaf shape and presented a global view of the leaf
venation network and its hydraulics. We especially focused on the fact that the
venation network appears to be highly optimized by evolution for its task. In the
following section, we discussed development of the dicot and monocot leaf from
the shoot apical meristem as well as vein morphogenesis and auxin canalization
theory.

11.2 Topological Phenotypes in Leaf Vascular Networks

In Part II, we systematically analyzed the topological and geometrical traits
of a set of 186 leaves and leaflets, mainly from the Burseraceae family. Our
work is the first study of its kind. For each leaf we calculated a “fingerprint”
consisting of five well-studied geometrical and three novel topological traits. The
resulting feature vectors constituting the phenotypic space of leaf venation were
then analyzed by Principal Component Analysis and Factor Analysis, revealing
geometry and topology as complementary dimensions.

Our results demonstrate that hierarchical topology consists an entirely new
dimension in the phenotypic space of leaf venation that is approximately orthog-
onal, in the sense of PCA and FA, to geometry. It contains a large amount of
additional information about the venation network as evidenced by its ability
to significantly improve specimen identification from fragments. Such identifi-
cation tasks may be important especially when dealing with leaf fossils or leaf
litter where only small parts are available.
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Additionally, we showed how this new phenotype may be explained by sig-
nificant amounts of noise affecting vein morphogenesis at different stages. Our
work shows that stochasticity may be a crucial ingredient for the description of
vein morphogenesis.

11.3 Network Modeling

In Part III, we studied several models of venation optimization and morphogen-
esis in diverse settings. We started from simple, one-dimensional pine needles
and moved on to two-dimensional leaves.

11.3.1 Optimal Geometry of Pine Needle Phloem

We studied a simple model of nutrient transport in the phloem of pine needles
and compared its predictions to direct measurements of phloem geometry in
four conifer species. The model is based on the optimization of viscous power
dissipation during flow.

Analytically optimizing power dissipation in the needle under the constraint
of constant total volume leads to the prediction that the total cross-sectional area
of all phloem cells should scale as A(x) ∼ x1/2 as a function of distance from the
needle tip. This scaling is roughly observed in the experimental data.

11.3.2 Robust Optimal Transport Networks

We presented a model for damage-robust optimal transport networks. The
model minimizes expected power dissipation in an ensemble of complex flow
networks under the assumption of damage to the edges. We showed that this
optimization is equivalent to both minimizing mean pressure drop on the leaf
blade and maximizing the total xylem hydraulic conductivity.

We then extended the model by introducing two different versions of partial
damage, one multiplicative the other additive and showed that these lead to
different network topologies when increasing the damage parameter. Multiplica-
tively damaged networks (modeling e.g. vein embolisms) form large anasto-
moses first whereas additively damaged networks (modeling e.g. pathogens)
form small anastomoses first. Comparison with the fossil record suggests that
embolism damage may be the more important driver of leaf venation evolution.

Next, we introduced two variants of the original damage model with modi-
fied boundary conditions that represent different regions of the leaf blade. We
considered the regions adjacent to the main vein near the center of the lamina
and those between long secondary veins. By comparison with real leaves, we
showed that the model still applies and reproduces higher order sub-patterns
that are found in real leaves as well.
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11.3.3 Auxin Canalization

Finally, we presented a simple dynamical model for auxin canalization, neglect-
ing polar transport by PIN proteins. The model represents the way auxin moves
and leaf tissue dynamically adapts during growth and morphogenesis of the leaf
blade. We showed that spatially correlated source and sink strength fluctuations
during growth lead to realistic, leaf-like topologies with main vein, secondary
veins and characteristic anastomoses. This may be related to a connection be-
tween optimal flow networks and steady states of the dynamical model.

In addition, we uncovered a transition between different reticulate topologies
as one changes the spatial correlation range of fluctuations. It is precisely the spa-
tial correlations that lead to realistic leaf networks, and dynamical fluctuations
have been observed in leaves during morphogenesis.

11.4 Have we achieved our aims?

In the introduction, we described our aims very broadly as finding an answer
to the questions “What is the connection between geometry and topology of leaf net-
works?”, and “What is the connection between the physics of evolution and development
of leaf networks?”.

Clearly, we were only able to give partial answers. We showed that empirically,
topology and geometry of leaf venation networks are approximately indepen-
dent (in the sense of PCA), and that a very simple empirical model can explain
the variation in topology as measured by our metrics as effects of characteristic
stochasticity during development. Additionally, we showed that simple models
of evolution and development can produce realistic leaf networks, and that they
are linked because the critical points of the evolutionary optimization functional
appear formally equivalent to the steady states of the developmental model.

Thus, much work remains to be done, and we have given several examples
for possible follow-up research to each of our topics in their respective chapters.
Additionally, it appears worthwhile to use the tools developed in Part II for
quantitative analysis of the venation patterns generated from the models in
Part III, thus connecting the two main avenues followed in this thesis.

We hope that the nesting software package developed for the work in Part II
will stimulate other workers to include topology of venation networks in their
research.
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A Statistical Techniques for Phenotyping

The evaluation of topological and geometrical information contained in leaf
venation networks necessitates the use of tools from statistics. Most of the
algorithms we use can be grouped under the umbrella of machine learning, the
study of pattern recognition, classification, and artificial learning. There exists
no overarching theory of machine learning; instead it consists of a collection of
related algorithms, tools and methodologies which can be used to ask questions
of similarity (how similar are these two leaf networks?), classification (which leaf does
this fragment belong to?) or validation. The tools from machine learning are data-
driven and aimed at mimicking and enhancing human information processing
capabilities [183]; they can be used to make sense of large amounts of data for
which no or little a priori intuition exists. Therefore, they are ubiquitous in the
fields of image analysis, data mining, statistics, and artificial intelligence [184–
186]. Many different approaches exist. Here, we will mainly follow the notation
and algorithms in [183], many of which were implemented in scikit-learn,
a machine learning package for the Python programming language [187]. This
package was used to analyze the data set and obtain the results presented in
Chapter 5. We will not give a comprehensive overview of available techniques
or present any novel insights but rather focus on a concise summary of well-
established methods which we have found to be useful in the study of leaf
venation networks.

The rest of this chapter is organized as follows. First, we present a refresher
on basic statistics, including the Gaussian distribution, statistical tests, and the
notion of likelihood. Then, we present validation techniques for statistical meth-
ods. Further, we give a short introduction to information theory and distance
measures between probability distributions. Following this, we define data and
covariance matrices, and present algorithms extracting information contained
therein and providing dimensional reduction (Principal Component Analysis
and Factor Analysis). We proceed to discuss clustering algorithms, unsuper-
vised machine learning techniques that detect structure in the data not directly
contained in the covariance matrix. Finally, we discuss discriminant analysis,
a supervised machine learning technique that, once trained on known data,
allows to predict class membership of new data as well as provide a means of
dimensional reduction.

A.1 Statistics

Statistics is the basic tool of any data scientist. It allows one to make quantitative
statements about the validity of hypotheses about the data. Since mathemati-
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cal statistics underlies all of the machine learning techniques described in the
later sections, and is important in its own right, in this section we will give a
short overview over some basic ideas that will be used later both as the basis
of machine learning and for its evaluation. Our approach for the most part
follows [183] for specific machine learning terminology and is mostly thought of
as a refresher. Many good textbooks for general statistics exist, e.g., [188].

A.1.1 The Gaussian distribution

Arguably the most important probability distribution in all of science and mathe-
matics because any mean of i.i.d. random variables converges to one in probabil-
ity, the multivariate Gaussian distribution with mean m and covariance matrix
Σ is defined as

p(x) = N (x|m, Σ) =
1√

det(2πΣ)
exp

(
−1

2
(x−m)TΣ−1(x−m)

)
. (A.1)

We note that any projection onto a lower dimensional subspace of a multivariate
Gaussian distribution is again a Gaussian.

A.1.2 Statistical tests

Statistical tests are used as a means to quantitatively discriminate between two
hypothesis for a given sample, called the null hypothesis H0 and the alternative
hypothesis HA. A statistic s is some number calculated from the sample for
which the conditional distribution p(s|H0) is known or can be estimated. After
defining a significance level α, it can be used to decide whether or not to reject the
null hypothesis given the observed sobs (one often chooses p(s ≥ sobs|H0) ≤ α
as the condition) and accept the alternative hypothesis instead.

In the following we describe some simple tests that are we found useful in the
study of leaf phenotypes. All of them are well-known.

A.1.2.1 Student’s t test

Student’s t test can be used to test whether the means of two random samples
µ1, µ2 coming from Gaussian distributions with equal variance σ differ signifi-
cantly. If the variances are unequal, Welch’s test must be used. For the sake of
simplicity, we only describe the classical Student’s test for equal size samples.
One calculates the statistic

t =
√

n
2

µ1 − µ2

s
, (A.2)

where s =
√
(σ2

1 + σ2
2 )/2 and σ2

1,2 are unbiased estimators of the sample vari-
ances and n is the sample size. If the null hypothesis H0 : µ1 = µ2 is true, (A.2)
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now follows a t distribution with 2n− 2 degrees of freedom.

A.1.2.2 Kolmogorov-Smirnoff test

The Kolmogorov-Smirnoff (KS) test is used to decide whether two samples are
drawn from the same underlying probability distribution. Given the (empirical)
sample distributions p1,2(X = x) one calculates the (empirical) cumulative
distributions F1,2(x) = p1,2(X ≤ x). The KS statistic is then

DKS = sup
x
|F1(x)− F2(x)|, (A.3)

the greatest distance between the cumulative distribution curves. Under the null
hypothesis H0 : F1 = F2, the statistic asymptotically follows a distribution which
is analytically known. The KS statistic (A.3) can also be used as a simple way of
defining a metric on the space of probability distributions (see Section A.2.2).

A.1.2.3 Likelihood and likelihood-ratio test

Often, one is interested in fitting a statistical model to a sample, e.g., a Gaussian.
This means selecting a set of model parameters (e.g., mean and variance) which
fit the sample. We define the likelihood of a set of parameters θ given the sample
x as

L(θ|x) = p(x|θ), (A.4)

i.e., the probability of observing the data given the model and the parameters. If
all observations are independent, the likelihood factorizes into

L(θ|{x1, . . . xn}) =
n

∏
i=1

p(xi|θ). (A.5)

Because such products are often difficult to handle, one defines the log-likelihood

Λ(θ|x) = log L(θ|x). (A.6)

The log-likelihood can be used for discriminating between hypotheses for the
parameters. Let Θ be some subset of the parameter space, then the hypotheses
H0 : θ ∈ Θ and HA : θ ∈ Θc can be discriminated by calculating the log-
likelihood ratio

D = −2Λ0 + 2ΛA. (A.7)

Asymptotically, this statistic follows a χ2 distribution with degrees of freedom
equal to the difference in dimensionality between Θc and Θ. It is useful for testing
whether the sample can be modeled using a special case of a more complicated
model (i.e., by fixing some parameters).
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A.1.3 Validation techniques

Predictive statistical methods such as regression or supervised learning algo-
rithms like discriminant analysis (see section A.6.1) need to be validated to guard
against overfitting and assess prediction quality. In this section we review some
basic techniques aimed at classification algorithms (i.e., the predictions are taken
to be discrete classes).

A.1.3.1 Confusion matrix

Once an algorithm has been trained to classify some data, its performance can
be quantified by looking at the classification results on some other, known data.
Often, a single data set is split into a training set and a test set. The predictions
of a binary classifier (operating on the two classes “positive” and “negative”)
can be assessed using the confusion matrix:

true positives (TP) false positives (FP)
false negatives (FN) true negatives (TN)

The confusion matrix can be extended to multi-class classification. More metrics
can be defined using its entries. The accuracy (TP + TN)/(TP + TN + FP + FN)
measures the probability of correctly classifying a sample. This definition can
also serve as the generalization to the multi-class case. Similarly, one defines the
sensitivity, or true positive rate TP/(TP + FN), the specificity, or true negative
rate TN/(FP + TN) and the fall-out, or false positive rate FP/(FP + TN) =
1 − specificity. There exist two ways of generalizing these metrics to multi-
class classifiers. First, the confusion matrix is calculated for each class in a
one-vs-rest fashion, lumping all other classes together and comparing. Then,
macro-averaging computes the metric for each class individually and then takes
the average (possibly weighted by the class population). Alternatively, micro-
averaging first takes the averages of each entry in the confusion matrix, and then
uses these to calculate the metrics.

A.1.3.2 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) is obtained by plotting the true
positive rate against the false positive rate. For classifiers that depend on some
parameter, each point on the plot corresponds to one parameter value. In ma-
chine learning one often lets each point correspond to a subset of the sample
for which some confidence score (measuring how “certain” the algorithm is in
its classification) is above a certain threshold. The details can depend on the
algorithm in question. In both cases we obtain a curve between (0, 0) and (1, 1).

A perfect classifier would end up in at the point (0, 1) with only true positives
and zero false positives. A random classifier would lie on the diagonal, and a
classifier that is worse than random occupies a point below the diagonal.
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FIGURE A.1: Receiver Operating
Characteristic (ROC) curve for a
generic better-than-random classi-
fier (red curve). A random classifier
corresponds to the diagonal (gray
dashed curve). The area under the
curve (ROC AUC) is a convenient
measure for classifier performance.

To assess a machine learning algorithm one cal-
culates the area under the ROC curve (ROC AUC),
with a value of 1 corresponding to a perfect classifier,
and a value of 1/2 to a random classifier.

Multi-class generalizations of the ROC AUC are
possible via micro- or macro-averaging.

A.1.3.3 Cross validation

Given a data set T, the performance of a classifier
can be estimated by randomly partitioning T =
Ttrain ∪ Ttest. Typically, the training set is chosen
larger than the test set. The classifier is trained using
the data in Ttrain and tested on Ttest by calculating
metrics such as accuracy or ROC AUC. This method
can be extended to k-fold cross validation by parti-
tioning T not into two but k equally sized subsets
{Ti}k

i=1. The algorithm is trained for each T \ Ti and
then tested on Ti. The performance metrics are then
averaged, leading to a more robust estimate of per-
formance. A popular choice is k = 10. A further increase in robustness can be
achieved by stratified k-fold cross validation. In this method, the relative number
of elements from each class is kept roughly constant in each fold, giving a more
realistic representation of the data.

A.2 Information theory and statistical distances

A.2.1 Entropy

Statistical information theory is based on the seminal work by Shannon [189]
who was interested in quantifying the capacity of transmission channels and
devising optimal encoding schemes. However, his ideas have found applications
in diverse other settings. Given a discrete probability distribution PX(x) for a
random variable X, Shannon defined the entropy

H(X) = −∑
x

PX(x) log PX(x), (A.8)

where the sum runs over all events in the probability space. The entropy of a
probability distribution PX(x) is the expected information I(X) = − log PX(x)
which is the unique function that satisfies the axioms

1. I(p) ≥ 0 (non-negativity)

2. I(1) = 0 (events that always occur do not carry information)
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3. I(pq) = I(p) + I(q) (the information carried by independent events is
additive).

Notice the structural similarity to the thermodynamic Gibbs entropy of a statisti-
cal mechanical system. The entropy H(X) is often interpreted as the amount of
uncertainty or disorder in a probability distribution. An alternative interpreta-
tion is as average surprise. A certain event elicits no surprise (− log 1 = 0), an
impossible event leads to infinite surprise (− log 0 = ∞).

One defines the conditional entropy as

H(X|Y) = H(XY)− H(Y) = ∑
y

PY(y)H(X|Y = y) (A.9)

= ∑
x,y

PXY(x, y) log
PY(y)

PXY(x, y)
, (A.10)

where H(XY) is the entropy of the joint distribution PXY(x, y) with marginals
PX(x) = ∑y PXY(x, y) and PY(y). The conditional entropy is H(X|Y) = 0 if and
only if X is entirely determined by Y and H(X|Y) = H(X) if and only if X and
Y are independent (i.e., PXY(x, y) = PX(x)PY(y)).

The information entropy H(X) is the basis of several measures used to charac-
terize the amount with which probability distributions differ from one another.

A.2.2 Distance measures

In this section we describe several methods allowing one to define a distance
(metric) on the space of probability distributions. Some of them are derived
from information theory, others follow different ideas. In general, they can
be separated into metrics that use the probability distributions directly and
those that use the cumulative distribution. Metrics that use the cumulative
distribution have the benefit of not relying on binning if the samples are drawn
from continuous distributions.

A.2.2.1 Kullback-Leibler divergence

The Kullback-Leibler divergence of the distribution P with respect to the distri-
bution Q is

DKL(P‖Q) = −∑
x

P(x) log
P(x)
Q(x)

. (A.11)

Intuitively, DKL(P‖Q) measures the additional number of bits needed to encode
samples from P using a code optimized for Q [190]. It is not symmetric and
therefore not a metric in the mathematical sense. In order to circumvent this
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problem, one often uses a symmetrized version

D′KL(P‖Q) = DKL(P‖Q) + DKL(Q‖P), (A.12)

but this still does not satisfy the triangle inequality. However, both standard
and symmetric Kullback-Leibler divergence vanish if and only if P and Q are
identical, and are non-negative.

The entropy H(P) can be interpreted as the special Kullback-Leibler divergence
DKL(P‖1/n) = H(P) − log n, where n is the cardinality of the event set and
Q(x) = 1/n is the uniform distribution.

A.2.2.2 Mutual information

The mutual information between two random variables X, Y with distributions
PX, PY is defined as

I(X : Y) = H(X) + H(Y)− H(XY) (A.13)
= H(X)− H(X|Y) = H(Y)− H(Y|X) (A.14)
= DKL(PXY‖PXPY). (A.15)

It is non-negative, symmetric and captures any statistical dependency between
the random variables X and Y (not just linear relationships like the correlation
coefficient). This can be seen from its expression as the Kullback-Leibler diver-
gence of the joint distribution PXY with respect to the product distribution PXPY,
the mutual information vanishes if and only if X and Y are independent.

The mutual information can be turned into a true metric in various ways [191],
one of which is the variation of information

d(X, Y) = H(XY)− I(X : Y), (A.16)

which satisfies non-negativity and the triangle inequality, and vanishes if and
only if X = Y.

A.2.2.3 Jensen-Shannon divergence

The Jensen-Shannon divergence [192] between two random variables X, Y with
distributions P, Q is defined as

J(P‖Q) =
1
2

DKL (P‖M) +
1
2

DKL (M‖Q) (A.17)

= H
(

1
2
(X + Y)

)
− 1

2
(H(X) + H(Y)) , (A.18)

where M = (P+ Q)/2 is the symmetric mixture distribution of P and Q. J(P‖Q)
is non-negative, bounded from above by log 2, vanishes if and only if P = Q,
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and its square root satisfies the triangle inequality, making
√

J(P‖Q) a true
metric [193]. It has the added benefit of not needing the distributions P, Q
to be absolutely continuous with respect to each other (i.e., the existence of
events x∗ with P(x∗) > 0 but Q(x∗) = 0 is allowed), unlike the (symmetric)
Kullback-Leibler divergence, which is undefined in such cases. This makes the
Jensen-Shannon divergence an excellent tool even when one has only samples to
work with and not complete distributions.

A.2.2.4 Bhattacharyya distance

The Bhattacharyya distance is defined through the Bhattacharyya coefficient
between probability distributions P(x), Q(x)

B = ∑
x

√
P(x)Q(x). (A.19)

The distance is then

DB = − log B. (A.20)

This “distance” does not obey the triangle inequality but the Hellinger distance

DH =
√

1− B (A.21)

does.

A.2.2.5 Kolmogorov-Smirnov and Cramér distances

Unlike the others, the distance measures described here operate on the (empirical)
cumulative distribution functions F(x), G(x). They are induced by the Lp norms

Dp(F, G) = ‖F− G‖p =

(
∑
x
|F(x)− G(x)|p

)1/p

, (A.22)

where the sum is replaced by an integral for continuous distributions. The
Cramér distance [194] is derived from the Euclidean norm

D2(F, G) =

(
∑
x
|F(x)− G(x)|2

)1/2

, (A.23)

128



A.3 Data and Covariance

and the Kolmogorov-Smirnov distance (see Section A.1.2.2) is derived from the
supremum norm

D∞(F, G) = lim
p→∞

(
∑
x
|F(x)− G(x)|p

)1/p

(A.24)

= sup
x
|F(x)− G(x)|. (A.25)

A.3 Data and Covariance

The data we are interested in can be viewed as n observations consisting of m
features (e.g., lengths, velocities, etc. . . ). These can be written in terms of a n×m
matrix y whose rows correspond to the individual observations vi. The simplest
statistical measures are then the row-wise mean

µj =
1
n ∑

i
yij (A.26)

and the unbiased variance

σ2
j =

1
n− 1 ∑

i
(yij − µj)

2, (A.27)

where yij are the matrix elements of y. For many applications it is important to
center the data such that the mean vanishes. For this, we introduce the shorthand
notation Y where

Yij = yij − µj. (A.28)

Additionally, often different features contain data with different dimensions
(e.g., mass, length, and velocity of a particle) or are measured on vastly different
scales. Many algorithms are not scale invariant. In these cases it can be sensible
to rescale the data matrix (thus also non-dimensionalizing it). We define the
rescaled data matrix Ỹ with elements

Ỹij = (yij − µj)/σj, (A.29)

which has zero mean and unit variance. Of course, there are cases in which it is
important not to rescale or center, as some information is inevitably lost. In the
following, we will make extensive use of the notation introduced above.

Mean and variance reflect variation within each feature. The simplest metric
that is able to capture interrelations between different features in the data is the
unscaled covariance matrix

Cov(Y) = YTY (A.30)
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with elements

Cov(Y)ij = ∑
k
(yik − µk)(ykj − µj). (A.31)

In order to obtain unbiased estimates for the true statistical covariances, Cov(Y)
needs to be scaled by a factor of 1/(n− 1). Then, the off-diagonal elements are
the pairwise covariances between features, the diagonal contains the variances.
The total variance of the data is given by the trace

Var(Y) = Tr(Cov(Y)). (A.32)

If we calculate the covariance of the scaled data, we obtain the correlation matrix
Corr(y) = Cov(Ỹ). Its off-diagonal elements contain the Pearson correlation
coefficients between features. Correlation coefficients lie between −1 and 1 and
represent linear relationships between features. Nonlinear dependencies are not
detected.

A.4 Covariance analysis

FIGURE A.2: Principal Component
Analysis detects orthogonal direc-
tions of highest variance (white ar-
rows) in the data. The first princi-
pal component (longer arrow) lies
in the direction of maximum vari-
ance, the second principal compo-
nent (shorter arrow) is orthogonal
to the first.

One of the simplest yet highly informative statis-
tics that can be computed is the covariance matrix
(A.30). It contains information about the linear rela-
tionships between the different data features. Often,
the features are highly correlated and it is interesting
to try to disentangle them by finding combinations
of features that vary together (e.g., because there is
some linear functional relationship between them).

In this section, we describe two simple methods
which can make use of the information contained
in the covariance matrix to find linear combinations
of features that explain a large amount of variance
in the data. At the same time, these combinations
of features can be used for dimensional reduction,
discarding unimportant feature combinations.

A.4.1 Principal Component Analysis

The covariance matrix is symmetric and real, and
therefore admits an eigen-decomposition with real
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm,

Cov(Y) = ∑
k

λkφkφT
k , (A.33)
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where the set of {φk}k form an orthonormal basis of Rm. This expression is called
Principal Component Analysis (PCA). It was first introduced by Pearson in [195].
Since the total variance is now simply Var(Y) = ∑k λk, the subspaces spanned
by the φk provide successive orthogonal directions of maximal variance in the
data, the first few often containing the most “information” in the sense of total
variance (see Figure A.2 for a visual example).
This can be seen as a linear change of variables on the feature space which may
have interesting interpretations. The new variables are weighted linear combi-
nations of the features, the weights being given by the eigenvector components
(φk)j. It can be shown (see [183]) that projecting Y on the first k such principal
components corresponds to an optimal k-dimensional approximation of the data
in the least squares sense, or equivalently to an optimal fit of the point cloud by
a k-dimensional ellipsoid.

It should be noted that PCA makes no assumptions whatsoever on the data
and solely uses intrinsic information, making it unbiased with regards to any
model of the data that might exist. Therefore, PCA is called a non-parametric
method.

A.4.2 Factor Analysis

Closely related to PCA, Factor Analysis (FA) also attempts to find a low dimen-
sional representation of the data [196]. However, it is not entirely intrinsic but
makes the assumption that the data can be explained by a linear combination of
k latent variables (factors) in conjunction with Gaussian noise. An observation v
(row in Y) is written as

vT = Γz + ε. (A.34)

Here, Γ is a m × k matrix of factor loadings and ε ∼ N (0, Ψ) is taken from a
multivariate Gaussian distribution with zero mean and diagonal covariance
matrix Ψ = diag(σ2

1 , . . . , σ2
m).1 This assumption makes FA a parametric method,

in contrast to PCA.
The optimum entries of Γ and Ψ for given data can be found using an iterative

expectation maximization method [183]. Often, the factor loadings provide
similar insights as the PCA components even though they are determined using
a different set of assumptions. The covariance matrix as estimated by a factor
model is

ΣFA = ΓTΓ + Ψ, (A.35)

separating into a term from the factor loadings and Gaussian noise. It is this
separation together with a more refined noise model that provides a substan-
tial advantage in comparison with PCA. Whereas PCA simply partitions the

1 (Probabilistic) PCA can be shown to correspond to a similar model, however with Ψ = σ2I. The crucial difference is
that in FA, each feature is modeled with independent Gaussian noise.
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variance, FA is able to discard whole features that it explains as noise. Such
noise-dominated features can not be detected using PCA. In fact, if the noise
variances strongly differ in different features, PCA may wrongly assign a high
weight to pure noise.

A.4.2.1 Estimating the number of factors

The additional assumptions made when using FA allow us to make a probabilistic
estimate of the quality of a model with a given number of factors. Given a data
set consisting of n i.i.d. observations, the log-likelihood under the assumption of
a factor model is [183]

Λ0(Y) = −
1
2

n (log det(2πΣFA) + Tr(Cov(Y)ΣFA)) . (A.36)

We take this assumption as our null hypothesis H0. As the alternative hypothesis
HA we postulate that the covariance is simply given by its empirical value
Cov(Y). In this case, the log-likelihood is

ΛA = −1
2

n (log det(2π Cov(Y)) + n) . (A.37)

We can use the χ2 test to decide whether the factor model must be rejected. The
test statistic is D = −2(Λ0 −ΛA). A factor model with k factors has km degrees
of freedom in the loading matrix Γ, and m degrees of freedom for the diagonal
elements of Ψ. The latent variables z are constrained to be uncorrelated (their
correlation matrix is diagonal), and we end up with d0 = km + m− k(k− 1)/2
total degrees of freedom.2 The alternative matrix is a symmetric matrix, therefore
it has dA = m(m− 1)/2 degrees of freedom. The log-likelihood ratio D follows
a χ2 distribution with dA − d0 degrees of freedom, allowing us to calculate a
p-value. If this p-value is less than a pre-set threshold (e.g., 0.05), the factor model
must be rejected. Typically, the more factors one chooses, the higher the p-value.
However, this method of estimating the p-value is not without problems when
the number of factors in the model exceeds the “true” number of factors [197].

A.5 Clustering algorithms

Similar to covariance based techniques, clustering methods attempt to uncover
structure in a data set by identifying clusters. Data points within one cluster
share a high degree of similarity with each other, but are dissimilar to members
of different clusters.

In machine learning, clustering algorithms are an example of unsupervised
learning, i.e., after choosing some parameter (e.g., the desired number of clusters),

2We see that d0 can be negative. Such models must be dismissed outright. Thus, there is a constraint on the possible
number of factors that make sense, d0 > 0.
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the algorithm can produce a result directly from the raw data without being
trained first.

A.5.1 k-means

Given a set of n observations {vi}, the goal of the k-means algorithm is to find k
cluster centroids {mj} and a partitioning of {1, . . . , n} into k subsets {Sj} that
minimize the sum of squared distances

k

∑
j=1

∑
i∈Sj

‖vi −mj‖2. (A.38)

data point

cluster centroid

FIGURE A.3: Final configuration
of the k-means algorithm for k =
4. Cluster centroid positions (large
circles) and cluster membership
of data points (small circles) are
computed such that the functional
(A.38) is minimized.

Each observation is then assigned to the nearest cen-
troid, forming k clusters in total (see Figure A.3).
This is a simple reflection of the rule that intra-
cluster distances should be small (all members of
one cluster are close to their centroid).

In general, there are many local minima of the
functional (A.38) and finding the globally optimal
solution is an NP-hard problem (because it involves
the discrete problem of finding an optimum parti-
tion of the data points). Given an initial guess for
the mj, it can be solved iteratively. However, the
quality of the solution strongly depends on the ini-
tial guess, and many heuristics to find a good one
exist. A possible strategy involves making several
guesses for the initial values and then selecting that
final converged solution with the smallest value of
the functional (A.38).

A.5.2 Gaussian Mixing Models

Instead of partitioning the observations according to distance from a cluster
centroid, Gaussian Mixing Models (GMMs) fit a sum of multivariate normal
distributions, each corresponding to one cluster. A GMM with k clusters is given
by the probability distribution

p(v|{mj, Σj, λj}) =
k

∑
j=1

1√
det(2πΣj)

exp
(
−1

2
(x−mj)

TΣ−1
j (x−mj)

)
λj

=
k

∑
j=1
N (v|mj, Σj)λj. (A.39)
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Here, Σi are covariance matrices, mi are means and λi with ∑i λi = 1 are weights.
The optimum values for these parameters of the model given a set of observa-
tions {vi} can be found using an iterative expectation maximization algorithm
(see [183]). As in the case of k-means, the algorithm’s performance strongly
depends on choice of initial values and additionally on constraints placed on the
form of the covariance matrices Σi (possible strategies include e.g., constraining
Σi to be diagonal or proportional to the unit matrix). Once a set of parameters
has been found, an observation v can be assigned a cluster, e.g., by choosing

C(v) = arg max
j

N (v|mj, Σj)λj, (A.40)

where C(v) is the cluster index.

A.5.3 Hierarchical clustering

FIGURE A.4: Hierarchical clustering. (a) Point cloud. (b) Associated dendrogram computed from an
agglomerative hierarchical clustering algorithm. The dendrogram reflects distances between points and
point clusters.

Instead of specifying the number of clusters, hierarchical clustering algorithms
successively combine clusters with minimum distance to new clusters until only
one large cluster is left.3 The result is a binary tree called a dendrogram that
encodes the cluster distance relationships and contains the original data points
as leaf nodes (see Figure A.4).

In the case of point clouds the main difficulty lies in determining what a
sensible distance between clusters of points is. Popular approaches include
centroids between point clouds, the minimum, maximum or average distance
between the points belonging to two clusters, as well as Ward’s variance based
method [144, 198].

Some methods (such as Ward’s) require an explicit embedding of the data
points in an Euclidean space, whereas others (such as the minimum-distance
method) only require all pairwise distances between points to be specified.

Hierarchical clustering is very closely related to the hierarchical decomposition
algorithm described in Section 4.3.1.

3This is agglomerative clustering. Divisive clustering exists as well, successively splitting a large cluster into smaller
ones.
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A.6 Classification algorithms

Similar to clustering, classification algorithms can reveal structure in unknown
data, typically assigning a label to each observation. However, they are an
example of supervised learning and need to be trained with data whose class
membership is known in advance before they can classify unknown data. Binary
(two-class) problems tend to be easier to solve than multi-class problems, but
binary classifiers can be converted into multi-class classifiers by calculating class
membership probabilities for all pairs of classes (one-vs-one scheme) or by a
one-vs-rest scheme.

A.6.1 Linear and Quadratic Discriminant Analysis

Linear (LDA) and Quadratic Discriminant Analysis (QDA) are amongst the
simplest parameter-free multi-class classifiers. First introduced by Fisher [199],
they are based on modeling the data in each class by a Gaussian, and then
finding an orthonormal projection of the data onto linear subspaces of the feature
space such that the between-class variance is maximized while the within-class
variance is minimized. If no additional assumptions are made, the decision
boundaries (i.e., the loci of points that have equal probability of belonging to
either two classes) are quadratic manifolds, and we have QDA. If we add the
assumption of homoscedasticity, i.e., the within-class covariance matrices are
all equal, the decision boundaries become hyperplanes, and we have LDA. The
basic properties of LDA are visualized in Figure A.5.

A.6.1.1 Decision boundaries

We now derive the equation describing the decision boundary for QDA and
LDA. For the sake of simplicity, assume that we are only dealing with a binary
classification problem. Each class is modeled by a normal distribution

p1(v) = N (v|m1, Σ1)

p2(v) = N (v|m2, Σ2). (A.41)

The decision boundary is given by the set of points for which p1(v) = p2(v). We
take the logarithm of this expression to obtain the equation defining the decision
boundary,

(v−m1)
TΣ−1

1 (v−m1) + log det Σ1

− (v−m2)
TΣ−1

2 (v−m2)− log det Σ2 = 0. (A.42)

Equation (A.42) is quadratic in v, its solution is the decision boundary for QDA.
Adding the homoscedasticity assumption Σ1 = Σ2 ≡ Σ, the quadratic terms
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cancel and we obtain the linear decision boundary equation

(m2 −m1)
TΣ−1v + mT

1 Σ−1m1 −mT
2 Σ−1m2 = 0, (A.43)

defining the decision boundary for LDA. We see that LDA is a special case of
QDA.

A.6.1.2 Variance maximization

FIGURE A.5: Linear Discriminant
Analysis projection and decision
boundary. Shown is an example
data set consisting of two classes.
Projecting on either coordinate axis
leads to a difficult to separate dis-
tribution. LDA finds a decision
boundary (light gray) and an asso-
ciated projection in which the two
classes are optimally separated.

We now show how to find a projection of the data
onto a subspace of the feature space which max-
imizes between-class variance while minimizing
within-class variance. For the sake of simplicity we
again restrict ourselves to binary classification. As
before, let the data from classes 1, 2 be modeled by
Gaussians. Let f1,2 be the fractions of data points
in class 1, 2. We want to find an optimal projection
vector w such that

F(w) =
wT(m1 −m2)(m1 −m2)

Tw
wT( f1Σ1 + f2Σ2)w

=
wT Aw
wTBw

(A.44)

is maximized. The numerator of this Rayleigh
quotient is the projected between-class separation,
measured by the squared distance of the projected
means. The denominator is the weighted total
within-class variance. The optimal projection can
be found by differentiating (A.44) with respect to w
and setting the resulting expression to zero. This
result can be generalized to multi-class problems. In
general, one can find up to C− 1 projections, where
C is the number of classes [183]. The optimal projec-
tion is visualized in Figure A.5.

In order to predict class membership of a new data point, one calculates a
score. In the case of binary classification this is simply the signed distance to the
separating hyperplane. The sign then tells us on which side of the hyperplane the
point falls, and thus how to classify it. This idea can be extended to multi-class
predictions as well [200].
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B The Leaf Data Set

In this chapter we describe the leaf data set and the vectorization process used
to convert leaf scans into weighted graph representations, as well as the pre-
processing steps necessary for hierarchical decomposition. The section on vector-
ization is taken from the supplementary information to [128].

B.1 The data set

The leaf data set analyzed in Part II consists of 207 vouchered leaves and leaflets
collected by Douglas C. Daly, cleared, stained and mounted in resin at the New
York Botanical Garden [151]. Most of them belong to the frankincense and myrrh
family Burseraceae. They were scanned using a high-resolution film scanner
at 6400 dpi by Eleni Katifori. After vectorization by Jana Lasser, we extracted a
number of local geometrical quantities for each leaf, as described in Part II. We
discarded from the analysis all leaves with fewer than 256 areoles (either very
small or badly stained/damaged specimens), leaving us with 186 good quality
leaves to analyze.

Among the 186 good quality leaves there are 98 specimens from the genus
Protium, 21 from Bursera, 8 from Parkia, and the rest from various other genera.
All species’ natural habitat is in Southern America.
What follows is a complete list of all specimens.

Protium grandifolium, Protium ovatum, Bursera ovata, Bursera shaferi, Protium dawsonii, Bursera
simaruba, Protium aracouchini, Protium altsonii, Bursera gracilipes (2x), Bursera spinescens (3x), Com-
miphora leptophloeos (3x), Protium calanense, Protium copal, Protium calanense, Bursera ovalifolia,
Protium aracouchini, Bursera shaferi, Protium altsonii, Protium leptostachyum, Tetragastris breviacumi-
nata, Crepidospermum atlanticum, Bursera simaruba, Protium brasiliense (2x), Protium ptarianum, Protium
rubrum, Protium confusum (2x), Protium gallicum, Protium altsonii, Protium elegans, Protium cuneatum,
Protium divaricatum subs. krukofii, Protium glaucescens, Protium guianense, Protium giganteum, Protium
attenuatum, Protium trifoliolatum, Protium cubense, Protium apiculatum, Protium camosum, Protium
carolense, Protium connarifolium, Dacryodes belemensis, Bursera attenuate, Tetragastris occhionii, Pouteria
filipe, Pouteria torta, Pouteria glomerata, Bowdichia nitida, Andira macrothrysa, Apuleia leiocarpa, Diploon
cuspidatum, Brosimum guianensis, Hymenaeae parvifolia (2x), Schizolobium amazonicum (2x), Ocotea sp.
1, Apuleia leiocarpa (2x), Dipteryx ferrea, Cedrela odorata, Pouteria coriaceae, Clarisia racemosa, Eschweil-
era sp., Licania cuspidata, Protium heptaphyllum, Astronium lecointei, Dalbergia miscolobium, Terminalia
oblonga (2x), Shefflera morototoni, Dipteryx alata, Dipteryx ferrea, Aspidospenna parvifolium, Diallium
guianensis, Batocarpus amazonicus, Walsura sp. 2, Jacaranda copaia, Dalbergia miscolobium, Qualea
grandiflora, Parkia nitida (8x), Cedrela odorata, Brosimum guianensis, Ocotea sp. 2, Tabebuia serratifolia,
Schizolobium amazonicum, Unknown species 2, Enterolobium sp. 1, Unknown species 3, Nectandra cuspi-
data, Apuleia leiocarpa, Enterolobium sp. 3, Protium sp. nov. 8, Protium pittieri, Tetragastris hostmanii,
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Protium pallidum, Protium tenuifolium, Protium sp. nov. 3 aff. P. warmingianum, Protium neglectum,
Bursera hollikii (2x), Protium madagascariense (2x), Protium subserratum, Protium nitidifolium, Protium
nervosum, Canarium planifolium, Bursera aromatica, Protium polybotryum, Protium glabrurm, Protium
inodorum, Protium rynchophyllum, Protium tovarense, Protium llanorum, Protium mcleodii, Protium
crenatum, Protium multiramiflorum, Protium sp. nov. 7, Protium sp. nov. aff. P. montanum, Protium
sp. nov. 10, Protium subserratum, Bursera inversa, Protium strumosum, Protium sagotianum, Protium
occultum, Protium demerarense, Protium sp. nov. 9, Protium subserratum “lobo”, Protium reticulatum,
Protium ravenii, Bursera aromatica, Protium divaricatum, Protium gallosum, Protium krukovii, Protium
sp. nov. 6, Protium sp. nov. 4, Protium sp. nov. 11, Protium laxiflorum, Protium hebetatum, Canarium
obtusifolium (2x), Protium decandrum, Canarium nitidifolium, Protium sp. nov. 13, Protium morii, Protium
urophyllidium, Protium sp. nov. 5, Protium grandifolium, Protium puncticulatum, Protium glabrescens,
Canarium scholasticum, Protium divaricatum, Protium heptaphyllum, Protium sp. nov. 13, Protium pittieri,
Protium copal, Protium subacuminatum (2x), Protium guianense, Protium icicariba, Protium sprumanum,
Protium unifolioiatum, Protium serratum, Protium heptaphyllum, Protium beandou, Protium opacum
subs. opacum, Protium sp. nov. 12 (2x), Bursera glabrifolia (4x),

The full leaf venation feature data set can be found in the online supplement
to [128].

B.2 Vectorization

The extraction the networks from the original high-resolution scans can be
divided into two main steps: segmentation of the image to create a suitable
binary representation and skeletonization of the shapes.

To segment the image we use a combination of Gaussian blurring to reduce
noise, local histogram equalization and recombination with the original image
to increase contrast, and Otsu thresholding [201] to find the optimal threshold
for the creation of the binary image.

For the skeletonization we use a vectorization technique known from opti-
cal sign recognition [202, 203]. The approach relies on the extraction and ap-
proximation of the foreground features’ contours using the Teh-Chin dominant
point detection algorithm [204] and subsequent triangulation of the contours via
constrained Delaunay triangulation [205]. The foreground is partitioned into
triangles that are used to create a skeleton of the shape. Each triangle contributes
a central point to the skeleton that is determined by searching for local maxima
in the Euclidean distance map [206] of the binary. Together, these central points
approximate the skeleton.

By looking at edges shared between two triangles, neighborhood relations can
be established and an adjacency matrix can be created. This adjacency matrix
defines a graph composed of nodes (the former triangle centers) and edges (the
connections between two adjacent triangles). In addition to the topology of the
graph the original geometry of the network including coordinates of the nodes
and lengths and radii of edges are preserved and stored in the graph.

The processing is done using algorithms implemented in the Python program-
ming language. The package uniting this functionality was written by Jana
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Lasser. It is called NET, and is available at
http://github.com/JanaLasser/network_extraction/.
Earlier digitization work [153] used other techniques and can be limited in terms
of resolution [155, 207]. Our vectorization process is visualized in Figure B.1.

1 2 3

4 5

FIGURE B.1: The vectorization process. (1) We start from a high resolution scanned image (6400 dpi) of the
leaf. (2) A binary is generated using a combination of blurring, local histogram equalization and finally
Otsu thresholding. (3) Teh-Chin dominant point detection is used to obtain a set of contour points. (4)
Constrained Delaunay triangulation of the contour points. (5) The final graph representation of the vascular
network. Although we are showing a small crop, the process was performed for a whole leaf.

B.3 Automatic pre-processing of the leaf graphs

Because the vectorization procedure may produce errors in the leaf network
graphs, several pre-processing steps are applied to minimize their impact and
prepare the networks for hierarchical decomposition. The first step of pre-
processing is visual inspection of a plot of the graph and manual removal of
obvious artifacts, such as erroneously vectorized dirt and smudges. Next, a
set of automatic procedures is applied to remove spurious crossing edges and
spurious (almost) collinear edges. Finally, the graph is pruned and the loopy
backbone constructed. From this, the fundamental cycle basis is computed.
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B.3.1 Removal of nonplanar artifacts

FIGURE B.2: Detecting fundamen-
tal cycles (facets) in a planar graph
without treelike components. First,
a minimum spanning tree M is con-
structed (red). Then, each edge
(ij) /∈ M is taken as the starting
point of two cyclic traversals, us-
ing the embedding to consistently
take the left-most (or right-most) di-
rection at every junction. This way,
each traversal is guaranteed to end
up at the starting edge again hav-
ing traversed exactly the edges of
one facet.

It is possible that during vectorization, crossings of
some edges appear. This can be due to numerical er-
rors or errors during creation of the graph skeleton.
Such artifacts are removed by a heuristic method,
iterating over all nodes n of the network and con-
sidering their 5-neighborhoods (i.e., the subgraph
of all nodes which are at most 5 hops away from
n). This is an arbitrary choice which works suffi-
ciently well in practice.1 For all pairs of edges in the
5-neighborhood, it is tested whether they intersect,
and if they do, both edges are removed from the
graph. Typically not more than one or two cross-
ings are detected in each whole leaf network, most
networks contain none at all.

B.3.2 Removal of collinear edges

It is possible that during vectorization, spurious
cycles occur in which the edges (ab), (bc), (ac) exist,
but (ab) and (ac) are exactly or very nearly collinear.
Such edges are removed by testing all edges ending
in a certain node for collinearity by calculating the
inner product of their normalized associated vectors,

cos φ =
−−→
(ab) ·

−−→
(ac). (B.1)

If collinear edges are found (up to a threshold of cos φ < 10−3), the longer one is
removed. Typically, up to ten such edge-pairs can occur in a leaf network graph.

B.3.3 Cycle pruning

Hierarchical decomposition works only on the “loopy” part of a network that
makes up the associated planar polygon. Therefore, all edges that are not part of
a (topological) cycle are removed. This is done by first computing an arbitrary
cycle basis using [208] (which does not necessarily correspond to the basis given
by the facets of the polygon but can be computed quickly). Then, all edges
of the graph that are not part of at least one cycle in the basis are removed.
This is equivalent to removing all “treelike components” of the network (see
Figure 4.1). Biologically, the smallest treelike components are crucial for uniform
water delivery [209], and in a future version of the method, we intend to include
them in some way.

1To be guaranteed to always work, one would have to search the whole graph instead of a small neighborhood.
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B.3.4 Choice of connected component

If there are several connected components in the network after cycle pruning,
we choose the largest one to do hierarchical decomposition. This is done in order
to remove artifacts stemming from vectorizing dirt or smudges in the original
image, or from small freely ending veinlets which appear disconnected because
image resolution was not high enough for the vectorizer to reliably detect a
connection to the rest of the network.

B.4 Constructing the fundamental cycle basis.

FIGURE B.3: If α is
the angle between two
vectors, the function
S = sign(sin α)(1 − cos α)
allows one to determine
how far the second vector
is to the left or right of the
first.

The fundamental cycles of a graph are given by the facets
of the loopy backbone graph G seen as a planar poly-
gon. A simple way of constructing such a basis is to first
construct a minimum spanning tree M. Then, starting at
each edge (ij) /∈ M and the reverse edge (ji), traverse the
graph in such a way that at each node ni, the next node
is chosen to be the left-most (or right-most) as seen from
the unit vector ni−1,i that points from node i− 1 to node
i. Let the current edge be (ij), and a decision needs to be
made about where to proceed. To do this, first the unit
vectors nij (pointing from point ni to point nj) and {njk}k
for all neighbors k 6= i of j are formed. Then, we calculate
the set of {Sk}k with Sk = sign(sin αk)(1− cos αk), where
αk is the angle between nij and njk, chosen on the interval
[−π, π] (see Figure B.3). The maximum value of Sk is at-
tained for the left-most direction as seen from nj, coming
from ni. The corresponding node k? will be visited next,
and the next edge is (jk?). This way, one can never leave
the cycle corresponding to one facet. The procedure is shown in Figure B.2.
Traversal is complete once the same node is encountered that one had started
with.
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C Nesting Number Analytics

FIGURE C.1: Nesting tree model topologies. (a) Perfectly additive tree. (b) Perfectly multiplicative tree. This
topology is also called a fully balanced binary tree. (c) Mixed tree. Here, n perfect multiplicative trees of
given size are attached to the leaf nodes of a perfectly additive tree. (d) Iteratively self-similar tree. At each
iteration step k, copies of the initial tree T0 are attached by their roots to the leaf nodes of the tree Tk−1.

In this chapter, we provide some analytical results for the nesting ratios and
nesting numbers of several model topologies. Some of these were published
before in [58]. The model topologies we consider are perfectly additive, perfectly
multiplicative, mixed, and iteratively self-similar (see Figure C.1). For each type,
we calculate the nesting ratios qj, the unweighted nesting number Qu and the
degree weighted nesting number Qw.

(a) Perfectly additive tree. Let the degree of the whole tree be d. We label the
bifurcating vertices starting with the lowest one. Then it is easy to see that
the nesting ratios are

qj =
1
j
, j = 1, 2, . . . , d− 1 (C.1)

Similarly, the weights are

wj = j

w =
d−1

∑
j=1

wj =
1
2

d(d− 1). (C.2)

Calculating the weighted nesting number, we end up with

Qw =
2

d(d− 1)

d−1

∑
j=1

j
1
j
=

2
d

. (C.3)
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Similarly, the unweighted nesting number is

Qu =
Hd−1

d− 1
, (C.4)

where we introduced the harmonic numbers Hn = ∑n
i=1 i−1. In the limit

n→ ∞, both nesting numbers vanish.1

(b) Perfectly multiplicative tree. The nesting ratios are all equal to 1, therefore

Qu = Qw = 1. (C.5)

(c) Mixed tree. This tree model consists of k perfectly multiplicative trees with
2` leaf nodes each chained together by an additive tree. It is supposed to
serve as a model for real leaf network hierarchies which consist of many ap-
proximately multiplicative elements at the smallest level, chained together
in additive fashion at the largest level. First, we calculate the nesting ratios,
noting that they are vanishing for all nodes in the perfectly multiplicative
subtrees. Enumerating the nodes of the additive tree as in (a), their nesting
ratios are

q1 = 1

qj =
2`

2` j
=

1
j
, 2 ≤ j ≤ k− 1. (C.6)

In all k perfectly multiplicative subtrees, there are 2`−1 nodes with weight
2− 1, 2`−2 nodes with weight 22 − 1, and so on. The additive nodes have
weights wj = (j + 1)2` − 1. Thus we can calculate the total weight

wk,` = k
`

∑
s=1

2`−s (2s − 1) +
k−1

∑
j=1

(
(j + 1)2` − 1

)
= 2`−1 (k (2`+ k− 1)− 2) + 1 (C.7)

The weighted nesting number for a k, ` mixed tree is therefore

Q(k,`)
w = 1− 1

wk,`

k−1

∑
j=2

1− j
j

(
(j + 1)2` − 1

)
= 1− 1

wk,`

(
2`(k`− 1) + k + (2` − 1)Hk−1

)
. (C.8)

Here, we used the fact that Qw,u = 1 − Rw,u, where in Ru,w all nesting

1Asymptotically, the harmonic numbers behave as Hn ∼ log n + γ, where γ is the Euler-Mascheroni constant.
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ratios are replaced by the subtree asymmetries aj = 1 − qj. This way,
all contributions from the perfectly multiplicative trees vanish. As a test,
we calculate Q(k,0)

w = 2
k , reproducing the nesting number of the perfectly

additive model. Performing all the summations with trivial weights we find
for the unweighted nesting number

Q(k,`)
u =

Hk−1 + k(2` − 1)
k− 1 + k(2` − 1)

, (C.9)

again reproducing the correct nesting number in the case when ` = 0.

(d) Iteratively self-similar architecture. This tree is constructed through an
iterative procedure starting from any given initial tree with n leaf nodes by
successively attaching copies of itself to the leaf nodes. It is easy to see that,
defining the initial tree as k = 1, at step k the tree has nk leaf nodes and,
defining the initial tree as level ` = 0, there are tk,` = n` copies of the initial
tree at level 0 ≤ ` < k. Labeling each bifurcating node of the initial tree by
an index i = 1, . . . , n− 1, we can label each node by a triple

(`, m, i), 0 ≤ ` < k, 1 ≤ m ≤ tk,`, 1 ≤ i ≤ n− 1. (C.10)

Here, m counts the tree copies at level `. A node in a copy at level ` that
had degree di in the original tree has degree di,k = di nk−`−1. In order to
calculate all nesting ratios, we note that if one node had nesting ratio

qi =
si

ri
, ri ≥ si (C.11)

in the initial tree, then at step k it will have partition ratio

qk,`=0,m,i =
si nk−1

ri nk−1 = qi. (C.12)

Since any subtree copy is really just a copy of the whole but at an earlier
iteration step, we generally find qk,`,m,i = qi. With the above information,
we easily see that the weights are

wk,`,m,i = di nk−`−1 − 1. (C.13)

Leading us to the total weight

wk =
k−1

∑
`=0

n`

∑
m=1

n−1

∑
i=1

(
di nk−`−1 − 1

)
= k nk−1(w1 − 1) + (k− 1)nk + 1. (C.14)
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The weighted nesting number is now

Q(k)
w =

1
wk

k−1

∑
`=0

n`

∑
m=1

n−1

∑
i=1

wk,`,m,i qi

=
k nk−1Q(1)

w w1 +
(
(k− 1)nk − k nk−1 + 1

)
Q(1)

u

k nk−1(w1 − 1) + (k− 1)nk + 1
, (C.15)

where we introduced the unweighted nesting number of the initial tree

Q(1)
u =

1
n− 1

n−1

∑
i=1

qi. (C.16)

Thus we were able to reduce the weighted nesting number of any iteratively
self-similar tree at iteration step k to an expression of the nesting numbers
of the initial tree. Another form of (C.15) is

Q(k)
w = Q(1)

w +
Q(1)

u −Q(1)
w

1 + w1
n
k (k−1+n−k)−1

. (C.17)

It is instructive to calculate the limit for infinite trees,

Q(∞)
w = lim

k→∞
Q(k)

w

= Q(1)
w +

Q(1)
u −Q(1)

w

1 + w1
n−1

. (C.18)

Whether the nesting number of the self-similar tree decreases or increases
with the iteration step depends on the difference Q(1)

u −Q(1)
w . As an example,

consider the case of a self-similar tree composed of perfectly additive trees
of degree n. Then

Q(1)
u −Q(1)

w =
Hn−1

n− 1
− 2

n
, (C.19)

which is positive for all n.

The unweighted nesting index at any iteration step k is simply Q(k)
u = Q(1)

u
because of equation (C.12).
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D Linear Flow Networks
Everything flows.

(Heraclitus of Ephesus, attributed)

In this section we introduce the basic mathematical framework needed to de-
scribe flow networks. Flow networks can be used to model optimal venation
networks, vein morphogenesis, power grids, and much more.

We sketch a unified theory of linear flow networks that includes the effects of
edge weight perturbations. Our theory is based on the idea of the description of
flow in terms of either potentials (or pressures) that are defined at the network
nodes, or equivalently in terms of cycle flows along the topological cycles of the
network. These two descriptions are dual to each other in the sense that they
both give the same resulting physical edge flows. The cycle flow description also
allows us to look into edge perturbations of the network in the continuum limit
in a simple way. We find that they behave similarly to dipoles in electrostatics.
This decay behavior is also found in real leaf networks.1

We note that some of the ideas in this chapter are new (to the best of our
knowledge), in particular the duality of perturbation flows in terms of projection
matrices.2 This allows us to construct a continuum theory for planar networks
and derive a scaling relation for the strength of the perturbation flow as a function
of distance from the perturbation. We will use this to compare to simulations
in real leaf networks in a later chapter. We note that the duality can be used to
speed up calculations, which is relevant for many applications (e.g., in power
grids [170]). Unfortunately, these speedup results do not fit well with the rest of
this thesis. They are available in [160].

For the basic graph theory, we follow the excellent textbook [210]. We make
limited use of concepts from algebraic topology. A very comprehensive resource
about this topic is [211]. Some earlier ideas about cycle and cocycle spaces can
be found in [212].

D.1 Linear algebra of graphs

In this section we define the basic concept of a graph and the associated linear
algebraic concepts that allow us to model flow networks. We start with the most
abstract definition.

1Unpublished observation in our vectorized leaf graphs.
2The fact that equation (D.15) is true has been well-known for a long time. The original idea to decompose a perturbation

flow into cycle flows is due to Dirk Witthaut. What is new to the best of our knowledge is the connection between
equations (D.24) and (D.25).
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A graph G = (V, E) consists of a set of nodes V = {v1, · · · vN} and a set of
edges E = {e1, · · · eL} where each edge e ∈ V × V “connects” two nodes. A
subgraph of G is defined by subsets V′ ⊂ V and E′ ⊂ E such that G′ = (V′, E′)
is again a graph. An induced subgraph G[V′] = G′ of G is defined by a node
set V′ ⊂ V and its edge set is E′ = {{e, f } ∈ E | e, f ∈ V′}. Let NG(v) =
{w ∈ V | ∃x∃{w, x} ∈ E} be the set of neighbors of v in G. Then we call
dG(v) = |NG(v)| the degree of node v.3 We define the line graph L(G) = (E, F)
with node set E and edge set F such that two nodes in L(G) are adjacent if and
only if the associated edges in G share one node. A path is a nonempty graph
with V = {v1, · · · , vk}, E = {{v1, v2}, {v2, v3}, · · · , {vk−1, vk}} where the vi are
pairwise disjoint. A cycle is a path for which v1 = vk. A graph is called connected
if there exists a path between any two of its nodes.

A graph is called planar if there exists an embedding map ϕ : V → R2 such
that, if lines are drawn on the plane between all adjacent nodes, no two lines
cross. The embedding map is generally not unique.

Next, we define and analyze the three fundamental vector spaces that can
be associated to a graph. They correspond to the nodes, oriented edges, and
oriented cycles of G (see Figure D.1 (a)).

FIGURE D.1: Illustration of oriented graphs (this one is planar) and flows. (a) Nodes (orange dots); oriented
edges (gray lines between dots), only some orientations have been indicated; oriented cycles (blue and red),
orientation has been indicated. Note that cycle orientation and edge orientation need not coincide. (b) The
algebraic dual graph constructed from the graph in (a) (red edges). (c) A flow (light blue arrows) with one
source ρin and one sink ρout (dark blue arrows). One particular choice of u for this flow is shown in red.
The physical flow is a superposition of this particular flow and cycle flows.

D.1.1 The node vector space

The neighborhood relationships between nodes are encoded in the |V| × |V|
adjacency matrix A, with entries

Aij =

{
1 {vi, vj} ∈ E
0 otherwise.

(D.1)

3If the context is clear, we drop the subscript G from the notation.
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D.1 Linear algebra of graphs

The adjacency matrix maps the node space A : V → V , where V ' R|V|. In the
standard basis of V (where the ith basis vector has a 1 at the ith position and
zeros otherwise), the ith basis vector is associated to the respective node vi.

A weighted graph is G = (V, E, K), where K : E→ R is the weight function.4
The weighted adjacency matrix has entries

Kij =

{
K({vi, vj}) {vi, vj} ∈ E
0 otherwise.

(D.2)

Clearly, any graph is completely defined by its adjacency matrix or by its weigh-
ted adjacency matrix if all weights are non-zero. A related matrix is given by the
(weighted) Laplacian

L = D− A, (D.3)

where the diagonal matrix with entries Dii = ∑j Aij is the degree matrix of G.
The (weighted) Laplacian also defines G completely in a similar fashion.

D.1.2 The edge vector space

More linear structure can be defined by equipping G with an orientation (ar-
bitrary but fixed) of the edges. This allows us to define the edge vector space
E ' R|E| on which the edge-node incidence matrix E : E → V operates. It is
defined by

Ev,e =


+1 v is the head of edge e
−1 v is the tail of edge e
0 otherwise.

(D.4)

The Laplacian matrix has a decomposition as L = EET. Defining the diagonal
edge weight matrix K : E → E by Kii = K(ei), the weighted Laplacian is
L = EKET.

D.1.3 The cycle vector space

The null space C ' ker E is called the cycle space of G. This is true because any
linear combination of vectors representing the edges of an oriented cycle contain
each node twice, once as the head and once as the tail of a particular oriented
edge. Therefore, they are mapped to zero by E. The cycle space thus contains all
linear combinations of oriented edges that form a cycle in G. We now construct
a basis for the cycle space. Without loss of generality, let G be connected. Let
T be a minimum spanning tree of G. Then T contains exactly N − 1 edges. For

4More generally, the range of K can be any set and not just R.
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each e /∈ T, the (unique) oriented path in T from one end-node of e to the other,
together with e itself forms a cycle. The corresponding |E| − |V|+ 1 vectors are
linearly independent because each of them contains at least one edge (non-zero
component) not present in the others. They form a basis of the cycle vector space
[210] (see also Figure D.1 (b)).

Let {c1, · · · , c|E|−|V|+1} be a basis of the cycle space. We define the cycle-edge
incidence matrix C : C → E with entries

Ce,c =


+1 e ∈ c with positive orientation
−1 e ∈ c with negative orientation
0 otherwise.

(D.5)

Using this, we define the dual Laplacian L∗ = CTK−1C, where K−1 is the inverse
edge weight matrix. If the graph is planar and the cycle basis corresponds to the
facets of the graph as seen as a planar polygon, L∗ is the reduced Laplacian of
the topological dual graph G∗, where the line and column corresponding to the
outside boundary cycle have been removed.

In general, L∗ defines the algebraic dual graph with respect to the given cy-
cle basis. In this graph, each basis cycle corresponds to one node, two nodes
are connected if their cycles c1, c2 share at least one edge, and the weights are
∑e∈c1∩c2

K−1
e . This definition of edge weights is natural for linear flow networks

(see later). The dual Laplacian L∗ is always invertible because unlike E, the
matrix C has full rank by construction.

D.1.4 Algebraic topology of graphs

Consider the three fundamental vector spaces we can associate to a graph to-
gether with the homomorphisms that map between them,

0→ C C−→ E Ẽ−→ V⊥ → 0. (D.6)

Here, we define V⊥ = {v ∈ V | 〈v, (1, 1, · · · , 1)T〉 = 0}. A basis of this space is
given by the vectors bi with components

(bi)j = δ1j − δi+1,j, i ∈ {1, · · · , |V| − 1}. (D.7)

This definition makes Ẽ : E → V⊥, where Ẽ equals E expressed in this basis, an
epimorphism (it now has full row rank in this basis of V⊥). Physically, this means
we fix the gauge by measuring all potentials with respect to node 1. Because C is
a monomorphism (it has full column-rank) and

ẼC = 0, (D.8)
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D.2 Linear flow networks

(D.6) is a short-exact sequence. It is also split because we are dealing with vector
spaces [211]. A basic result for short-exact sequences [211] is

V⊥ ' E/ im(C)
' E/C ' C∗ (D.9)

where C = im(C) is called the cycle space and C∗ = C⊥ is called the cocycle
space [210, 212]. Cocycles, or cuts [210], are those sets of edges of G whose
removal cuts G into two disconnected parts. There is a direct correspondence
between cuts C∗ and physical gauge fixed potentials V⊥ which is given by the
isomorphism Ẽ|C∗ : C∗ → V⊥.

D.2 Linear flow networks

In this section, we present a unified theory of linear flow networks using the
mathematical language from the previous chapter. Linear flow networks can
be used to model a wide variety of ubiquitous natural and human-made sys-
tems. Applications range from electrical networks and power grids [171, 213]
to fluid flow in plant vasculature [72], macroscopic pipe systems [214, 215] or
microfluidics [216, 217]. The description is fundamentally steady-state.

Given a graph with weighted adjacency matrix Kij, the flow Fij from node i to
node j is

Fij = Kij(φj − φi), (D.10)

or more compactly

F = KETφ, (D.11)

where F ∈ E is the vector of flows and φ ∈ V is the vector of potentials. F may
represent volume flows of water or gas in plants or pipe networks, or flow of
electrical power in power grids. In the respective cases, φ represents hydrostatic
pressure or voltage angles. In the case of power grids, the linear equation (D.11)
is an approximation to a more general non-linear law [170]. In order to be
physical, the flow vector needs to satisfy the boundary conditions (Kirchhoff’s
laws)

EF = ρ (D.12)

CTK−1F = 0. (D.13)

Equation (D.12) is the junction rule; the sum of all incoming flows at a given
node i must equal the net flow ρi.5 Equation (D.13) is the mesh rule; the sum of

5Note that for convenience, we changed the sign convention for ρi from the one used in Part III.
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all potential differences along any cycle must vanish.6
Clearly, any flow constructed like equation (D.11) automatically satisfies the

mesh rule because of (D.8). In order to satisfy the junction rule, we note that
(D.11) can be plugged into (D.12) to obtain the potential vector and from that the
flow vector,

φ = (EKET)†ρ (D.14)

⇒ F = KET(EKET)†ρ, (D.15)

where A† is the Moore-Penrose pseudo-inverse of a matrix A. It is well known
that the nullspace of the weighted Laplacian L = EKET is spanned by the all-ones
vector 1 = (1, · · · , 1)T. Therefore we can w.l.o.g. assume ρ ∈ V⊥ and there exists
a (non-unique) vector u ∈ E such that Eu = ρ (because E is an epimorphism).
The vector u is some particular solution to the junction rule (D.12) that does not
necessarily satisfy the mesh rule (D.13) as well. Such solutions u are easy to
construct by first writing ρ in the basis given by (D.7) and noting that each basis
vector has an expression bi = Ep1i, where p1i ∈ E is an oriented path connecting
nodes 1 and i. See Figure D.1 (c) for an illustration.

This allows us to write the flow projector equation

F = KET(EKET)†Eu (D.16)
= Su. (D.17)

The matrix S has very interesting properties that can be expressed as a duality
between potentials and cycle flows on the network.

Proposition 1. The matrix S = KET(EKET)†E is an oblique (orthogonal if K = 1)
projection on E . Its complementary projection is given by T = C(CTK−1C)−1CTK−1,
i.e., we have S2 = S, T2 = T, ST = TS = 0, S + T = 1.

Proof. An elementary calculation shows both S2 = S and T2 = T, thus S and T
are oblique projectors. If K = 1, S and T are symmetric and therefore orthogonal.
We now prove complementarity.

Clearly, ker S = C, im T ⊆ C, ker T = KC⊥, im S ⊆ KC⊥, where C⊥ is the or-
thogonal complement of C, the space of cocycles [210]. Because of dimensionality,
all the “⊆” are actually “=”. Because EC = 0, we have

ST = 0 = TS. (D.18)

Thus S and T commute and can be diagonalized simultaneously. Because the
eigenvalues of projection matrices are either 1 or 0, and the kernels and images of
S and T are exactly complementary, we must have the complementarity relation

S + T = 1. (D.19)
6If φ represents a set of angles such as in the case of power grids, this rule must be relaxed to allow multiples of 2π.
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We now have two dual methods of calculating the edge flows,

F = KET(EKET)†Eu (D.20)

= (1− C(CTK−1C)−1CTK−1)u. (D.21)

Note that while the Laplacian L = EKET is singular and requires the use of a
pseudo-inverse, the algebraic dual Laplacian L∗ = CTK−1C is invertible. The
dual form (D.21) has an interesting interpretation. The flow F is made up out of
some particular solution u of the junction rule that is corrected by cycle flows to
satisfy the mesh rule.

D.3 Edge perturbations in linear flow networks

Consider a solution F to Kirchhoff’s laws on a network with given weights K.
How does the flow change if we perturb one of the edge weights Ke for some
edge e with Ke = Kee by some amount κ while still satisfying the same boundary
conditions? Formally,

Ke → Ke − κ (D.22)
F→ F′. (D.23)

We note that the weight matrix changes as K → K− κeeT. This is a rank-1 update
to the pseudo-inverse of the Laplacian L† = (EKET)† → (EKET − κEeeTET)†

and we can calculate (D.11) with the new weights using the Sherman-Morrison
formula [218, 219]. After some algebra we find

F′ = F−Fe
κ

Ke

(1− S)e
1− κRe︸ ︷︷ ︸

=∆F

. (D.24)

Here, Fe = eTF and Ke = eTKe are the original flow and the original weight
at the perturbed edge, and Re = eTET(EKET)†Ee is the resistance distance
between the nodes that are connected by e. For two arbitrary nodes i, j, the
resistance distance is defined as Rij = L†

ii + L†
jj − 2L†

ij. It is the potential drop
measured when injecting a current of strength 1 at node i and of strength −1 at
node j [220, 221]. It is one of the most important network characteristics (see for
instance [222]).

We immediately see that this formula has a dual form (using proposition 1),

∆F = −Fe
κ

Ke

Te
1− κRe

. (D.25)
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(a) (b)

FIGURE D.2: Edge perturbations in a leaf network of
Protium grandifolium. Colors correspond to |∆F/∆Fe|.
(a) Realistic leaf network. The hierarchical network
localizes the perturbation and reroutes flow through
high-conductivity edges. (b) Homogeneous network
(all Ke = 1). The perturbation appears as a dipole and
decays as r−2.

The dual form can be obtained alter-
natively noting that

K−1 → K−1 +
κ

Ke(Ke − κ)
eeT (D.26)

and using the Sherman-Morrison for-
mula with equation (D.21). This also
provides an alternative proof of Propo-
sition 1. It is interesting to note that
because ST = 0, FT∆F = 0.

Thus, all possible flows on a
weighted flow network and all flow
changes due to edge weight pertur-
bations are encoded in the projection
matrix S (or equivalently T). Because
for many networks, the number of cy-
cles |E| − |V|+ 1 is much smaller than
|V|, a considerable computational ad-
vantage can be gained from using the
dual description of the perturbations
in terms of T. This is relevant in par-
ticular for power grids [160].

Leaf venation networks are designed in such a way as to efficiently localize
perturbations and reroute flow through high-conductivity veins, minimizing the
dissipated power due to the flow change (see Figure D.2 (a)).

D.3.1 Power dissipation

We now show an application of the formalism developed above. In many
problems (in particular for fluid flow), one wants to compute the total power
dissipation P in the network. It is

P = FTK−1F. (D.27)

In fluid flow networks, this is the power dissipated due to internal viscous
friction [223], in electrical resistor networks, it is the thermal dissipation in
the resistors. In the perturbed network, we can plug F′ and the new K−1 into
equation (D.27) and obtain

P′ = P +
κ

Ke

Pe

1− κRe︸ ︷︷ ︸
=∆P

. (D.28)
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By expanding ∆P to order O(κ) we also obtain a formula for the partial deriva-
tives

∂P
∂Ke

= − F2
e

K2
e

. (D.29)

This result is intimately related to Cohn’s theorem, but is usually proved in a
different way [224].

D.3.2 Cycle flows and decay of perturbations in 2D

The perturbation flows ∆F have two dual descriptions in terms of perturbation
potentials ∆φ ∈ V and cycle flows f ∈ C. The expressions are

F′ = (K− κeeT)ET(φ + ∆φ) (D.30)
= F + κCf, (D.31)

where ∆φ and f satisfy

(EKET)∆φ =
Fe

Ke

Ee
1− κRe

(D.32)

(CTK−1C)f = − Fe

Ke

CTe
1− κRe

. (D.33)

These expressions can be checked using equations (D.24) and (D.25). We note
that the matrices on the left hand side are the Laplacian L = EKET and the dual
Laplacian L∗ = CTK−1C. We now specialize to the case where the network is
planar and the choice of basis cycles coincides with the facets of the graph as a
planar polygon. Then the right hand sides are dipole source terms.

D.3.3 Decay of perturbations in the continuum approximation

It is now instructive to construct a continuum approximation for very large
networks. The differential equations can be found for a square lattice with lattice
spacing h as h → 0. Because the details are uninteresting, we omit them and
directly state the continuum theory. The continuum corresponds to something
like a “network density”. We write the original flow as a gradient vector field

v(x) = K(x)∇ϕ(x), (D.34)

where v(x) is the flow, K(x) is a “weight density” and ϕ(x) is the potential. We
consider a perturbation of K(x) at position a, changing v(x) → v(x) + ∆v(x).
Assuming constant weights K(x) ≡ K, the continuum version of equation (D.33)
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FIGURE D.3: Dipole perturbation in the continuum model on the infinite plane R2. (a) Contour plot of the
cycle flow density ψ(x). The vector p is the cycle dipole moment, which is perpendicular to the perturbed
edge and thus to the perturbation flow. (b) Stream plot of the perturbation flow density v(x).

becomes

1
K
4ψ(x) = −pT∇δ(2)(x− a), (D.35)

where ψ(x) is the “cycle flow density”, K is the constant weight density and the
right hand side is indeed a dipole source at a with dipole moment p ⊥ v(a). The
perturbation flow is

∆v(x) =
(

0 1
−1 0

)
∇ψ(x), (D.36)

and the boundary condition on the cycle potential is such that ψ|∂A = 0, where
A ⊂ R2. This leads to ∆v being parallel to the boundary. These laws are very
similar to those of electrostatics (because of the appearance of a 90◦ rotation we
call them “electrostatics with a twist”) and indeed, the solutions are very similar
as well. On the infinite plane R2 we find

ψ(x) =
pTx
‖x‖2 ∼

1
r

(D.37)

‖∆v(x)‖ ∼ 1
r2 , (D.38)

where r = ‖x‖. A plot of both is shown in Figure D.3. Thus, in planar networks
that are sufficiently regular and have weights sufficiently close to constant, we
expect algebraic decay of the perturbation currents with exponent −2. This is
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seen even in networks with uniform conductivity but the topology of a leaf
network (see Figure D.2 (b)).

As in regular electrostatics, there exists a complex-analytic formulation of
the continuum theory. The cycle potential becomes a meromorphic function of
z = x + iy ∈ C. The real potential is given by ψ(x) = Re(ψ(z)) and the physical
flow vector can be obtained from the complex potential by

∆v(x) =
(
+ Im(ψ′(z))
−Re(ψ′(z))

)
. (D.39)

This amounts to the vector version of iψ′(z). On the infinite plane, the complex
cycle potential is

ψ(z) =
p
z

, (D.40)

where p is the complex version of the dipole moment p.

D.3.3.1 Boundaries and global topology

Leaf networks are characterized by being bounded and roughly elliptical in
shape. Thus, it is important to study the effects of boundaries and geometry
on the decay behavior of perturbations. Similarly, the global topology has an
interesting influence on perturbations. Zeros of the perturbation flow appear if
the network can be embedded on a sphere or a topological torus. We consider
four test cases.

Infinite strip. We consider a network that is an infinite strip in y direction and
bounded between −L/2 and L/2 in x direction. Thus, there are two infinite
boundaries at x = ±L/2. Let the perturbation be located at −L/2 < a <
L/2, then the cycle potential can be obtained by the method of mirror charges,
superposing an infinite number of periodic perturbations. The final result is

ψ(z) = − π

2L

(
p tan

( π

2L
(z + a)

)
− p̄ cot

( π

2L
(z− a)

))
. (D.41)

The complex cycle potential has a simple pole at z = a with residue p and its real
part vanishes at z = ±L/2 + iy.

Close to the perturbation, ψ(r) ∼ r−1, where r is the distance to the perturba-
tion. Close to the boundary, ψ(r) ∼ r, where r is the distance to the boundary.
Thus, close to the boundary, the component of ∆v parallel to the boundary must
tend to a constant. The normal component vanishes because of conservation of
total flow. This does not necessarily happen when the flow is not a perturbation
because there may be other sources and sinks.
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FIGURE D.4: Continuum perturbation flow ∆v(x)/||∆v(x)|| in two bounded geometries. (a) Infinite strip.
Boundaries marked in red. (b) Circular disk. In both cases, it can be seen that the flow is parallel to the
boundary.

For a perturbation located at z = 0 we find

ψ(0, y) = πp2 csch(πy). (D.42)

Thus, in the direction of the infinite strip the perturbation decays exponentially
instead of algebraically as on the infinite plane. The appearance of two bound-
aries has localized the perturbation. A single boundary does not lead to this
localization behavior.

Circular disk. The solution for a network with circular boundary is easy to
construct from the mirror principle again. The (real) solution for a perturbation
located at ae1 and a circle of radius R centered at (0, 0) is

ψ(x) =
pT(x− ae1)

‖x− ae1‖2 + R2 pTx + p1a‖x‖2

‖ax− R2e1‖2 . (D.43)

Again, ψ(r) ∼ r−1 near the perturbation and ψ(r) ∼ r near the boundary.

Sphere. The sphere can be stereographically projected onto the complex plane.
This is a conformal map, therefore the solution to the Poisson equation on
the plane can be simply mapped back to the sphere, resulting in the solution
of the corresponding Poisson equation on the sphere. The result in spherical
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FIGURE D.5: Continuum perturbation flow ∆v(x)/||∆v(x)|| in two different global topologies. (a) Sphere
(genus g = 0). The flow field strength becomes constant at the north pole, opposite of the perturbation
site (south pole). (b) Flat torus (g = 1) with periods ω1 = 1, ω2 = i. There is a zero of the flow field in the
bottom left. The identified sides of the torus are marked in blue and red.

coordinates for a real dipole moment is

ψ(θ, ϕ) = 4p
cos ϕ

sin θ
(1− cos θ) . (D.44)

The perturbation is located at the south pole (θ = π). The factor of 4 comes from
the distortion of the area element due to the stereographic projection. The flow
field is given by

∆v(θ, ϕ) = −4
sin ϕ

sin θ
tan

θ

2
eϕ + 2

(
1 + tan2 θ

2

)
cos ϕeθ. (D.45)

It is interesting to note that close to the perturbation, ψ(θ, ϕ) ∼ θ−1 but there
is also a zero, ψ(0, ϕ) = 0. The flow field becomes constant at the north pole,
‖∆v(0, ϕ)‖ = p.

This behavior can be seen on the complex plane, too. Close to the perturbation
(corresponding to θ = π), the complex potential is simply ψ(z) = p/z. The
neighborhood of infinity (θ = 0) can be reached by the transformation z 7→ 1/z,
resulting in ψ(z) = pz.

Torus. Networks that can be embedded on surfaces with nonzero genus (tori
with several handles) have been investigated in terms of their hierarchical topol-
ogy [156], similarly to our work in Part II. The idea is that general networks that
do not possess an a priori geometrical embedding can be embedded onto some
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surface of possibly nontrivial genus. The simplest nontrivial such surface is a
torus with one hole (A genus g = 1 surface).

A complex (flat) torus is C/Λ, where Λ is a lattice spanned by periods ω1, ω2 ∈
C with ω1/ω2 /∈ R. Two points in the complex plane are identified if they differ
by a lattice vector.

The naive ansatz for finding the cycle potential would be to try the superposi-
tion

ψ(z) = p ∑
ω∈Λ

1
z−ω

. (D.46)

However, this sum does not converge and is not periodic as required. This can
be easily seen by integrating ∮

ψ(z)dz (D.47)

along the fundamental cell of the torus. Clearly, due to periodicity, the integral
must vanish. By the residue theorem it has value p because of the simple pole in
the fundamental cell. There is a standard construction to force convergence [225].
One defines

ζ(z) =
1
z
+ ∑

ω∈Λ,ω 6=0

(
1

z−ω
+

1
ω

+
z

ω2

)
. (D.48)

This is the Weierstraß ζ-function. Its series representation converges, and it
is quasi-periodic. It also possesses the correct poles, and the additional terms
vanish under application of the Laplacian. This is the best we can do because
in a discrete network with toroidal symmetry, there appears another cycle, in
addition to the cycles given by the facet basis, due to the nontrivial topology of
the torus (the additional cycle is one of the generators of the torus’ fundamental
group). This means that the cycle basis of facets on a discrete network with
toroidal symmetry is incomplete. This incompleteness is reflected in the fact that
no continuous cycle potential exists that satisfies periodicity. The Weierstraß
ζ-function is only quasi-periodic (ζ(z + ωi) = ζ(z) + ηi for some ηi that depends
on the torus periods), similar to the behavior of the complex logarithm.

Note that the physical currents are related to

ζ ′(z) = −℘(z) = − 1
z2 − ∑

ω∈Λ,ω 6=0

(
1

(z−ω)2 −
1

ω2

)
, (D.49)

where ℘(z) is the Weierstraß ℘-function. This function is periodic and describes
the correct physics. Thus, the continuum approximation can still be used to
derive interesting facts about the physical flows if one accepts that the continuous
cycle potential is unphysical.

One interesting fact is that ℘(z) has zeros. Thus, on a torus, there exist points
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where the flow field vanishes. There is a formula for the location of the zeros [226].
It states that they are located at ±z0, where z0 is a generally complicated expres-
sion. For τ = i (i.e., a square lattice torus), the expression is easy to evaluate,
yielding z0 = (1 + i)/2. Because z0 ∼ −z0, this is a double zero.

D.4 Summary

In this section, we presented a short review of graph theory followed by an
account of the theory of linear flow networks. They are used in many applications
such as for modeling vascular flow in plants or animals, microfluidics, or power
grids. Our variant of the theory features the introduction of a duality between
the potential flows (defined at nodes) and the cycle flows (defined on algebraic
cycles) making up physical flows (defined on edges). This duality allowed us to
derive very compact formulae for the change in flow after perturbing a single
edge, the corresponding change in dissipated viscous power as well as its partial
derivatives in a particularly easy way. We showed that real leaf networks appear
to localize such perturbations by rerouting flow through high-conductivity edges,
minimizing dissipated power due to the perturbation. Finally, we sketched the
construction of a two-dimensional continuum theory of perturbations (where the
continuum represents something like a “network density”), allowing us to derive
decay laws for the perturbation strength. The decay laws were then analyzed in
two geometrical settings (relevant for leaf venation and similar networks) and
two topological settings (relevant for more general networks).
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[226] W. Duke and Ö. Imamoğlu. “The zeros of the Weierstrass ℘-function and hypergeometric
series”. Mathematische Annalen 340.4 (2008), pp. 897–905. ISSN: 0025-5831. DOI: 10.1007/
s00208-007-0174-3.

179

http://dx.doi.org/10.1090/S0002-9939-1950-0036696-4
http://dx.doi.org/10.1090/S0002-9939-1950-0036696-4
http://dx.doi.org/10.1007/s00208-007-0174-3
http://dx.doi.org/10.1007/s00208-007-0174-3




Curriculum vitæ

personal

name Henrik Michael Ronellenfitsch
born 19 August 1987 in Homburg, Germany
nationality German
e-mail henrik.ronellenfitsch@gmail.com

education and academia

10/2012–present PhD student, Max Planck Institute for Dynamics and Self-
Organization, Göttingen,
Physics of Biological Organization,
supervised by Eleni Katifori

03/2012–06/2012 Research assistant, ETH Zürich,
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MSc Physics ETH “with distinction,”
thesis “Twisted Twining Genera in Mathieu Moonshine”
supervised by Matthias R. Gaberdiel

09/2007–10/2010 ETH Zürich, BSc Physics ETH
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