Analysis of the transcriptional repressor function of Arabidopsis glutaredoxin ROXY19

Dissertation

for the award of the degree

"Doctor of Philosophy" (Ph.D.)

Division of Mathematics and Natural Sciences

of the Georg-August-Universität Göttingen

within the doctoral program Biology

of the Georg-August University School of Science (GAUSS)

Submitted by

Li-Jun Huang

from Wuhan, China

Göttingen 2016

Thesis Committee

Prof. Dr. Christiane Gatz

(Department of Plant Molecular Biology and Physiology)

Prof. Dr. Ivo Feussner

(Department of Plant Biochemistry)

Prof. Dr. Volker Lipka

(Department of Plant Cell Biology)

Members of the Examination Board

Reviewer:	Prof. Dr. Christiane Gatz	
	(Department of Plant Molecular Biology and Physiology)	
Second reviewer:	Prof. Dr. Ivo Feussner	
	(Department of Plant Biochemistry)	
Further members of	the Examination Board:	
Prof. Dr. Volker Lipka		
(Department of Plant Cell Biology)		
PD Dr. Thomas Teichmann		
(Department of Plant Cell Biology)		
Prof. Dr. Andrea Polle		
(Department of Forest Botany and Tree Physiology)		
Jr. Prof. Dr. Cynthia Gleason		
(Department of Molecular Plant Science)		

Date of the oral examination: 15.02.2016

Declaration

Hereby, I declare that this dissertation was undertaken independently and without any unauthorized aid.

I declare that this Ph.D. dissertation has not been presented to any other examining body either in its present or similar form.

Furthermore, I also affirm that I have not applied for a Ph.D. or Dr.rer.nat. at any other higher school of education.

Göttingen,_____

Li-Jun Huang

Table of Contents

Abstract
1 Introduction
1.1 Glutaredoxins (GRXs) in Arabidopsis
1.1.1 Class I GRXs in plant
1.1.2 Class II GRXs in plant
1.1.3 The plant-specific class III GRXs6
1.2 Class II TGAs play essential roles in stress-related signal transduction pathways
1.3 Possible role of epigenetic modification in SA and ET/JA crosstalk
1.4 Purpose of the study
2 Materials and Methods 12
2.1 Materials12
2.1.1 Organisms
2.1.2 Plasmids
2.1.3 Primers
2.1.4 Chemicals, kits and antibodies15
2.2 Methods
2.2.1 Molecular cloning methods
2.2.2 Plant growth conditions
2.2.3 Plant treatments
2.2.4 Analysis of gene expression by quantitative real-time PCR
2.2.5 Transient gene expression in protoplasts
2.2.6 Microarray analysis22
2.2.7 Chlorophyll content measurement 22
2.2.8 Protein extraction and Western blot analysis22
2.2.9 Yeast two-hybrid assays 22
3 Results
3.1 ROXY19 represses its own promoter24
3.1.1 ROXY19 represses its own promoter in transiently transformed protoplasts
3.1.2 ROXY19 requires class II TGA factors to repress the ROXY19 promoter
3.1.3 The ROXY19 active site is not important for the repression activity
3.1.4 ROXY19 may recruit TOPLESS to repress target genes
3.1.5 ROXY19 represses JA-induced <i>ROXY19</i> expression in transgenic plants
3.1.6 ROXY19 cannot repress JA-induced ROXY19 expression in the tga256 mutant

3.1.7. The ROXY19 active site is required for repression of its target promoter in plants	29
3.2 Characterization of <i>ROXY19</i> knock-out mutant	32
3.2.1 ROXY19 represses JA-induced CYP81D11 expression	32
3.2.2 JA-induced CYP81D11 expression is not altered in ROXY19 knock-out mutant	32
3.2.3 Microarray analysis of <i>roxy19DS</i> mutant	32
3.3 ROXY19 represses detoxification pathway genes	34
3.3.1 Isolation of ROXY19-regulated genes by microarray analysis	34
3.3.2 ROXY19 represses detoxification pathway genes	36
3.3.3 <i>ROXY19</i> is induced by xenobiotic stress	39
3.3.4 Class II TGA factors are required for TIBA-induced ROXY19 expression	39
3.4 ROXY19 facilitates susceptibility to necrotrophic fungus Botrytis cinerea	40
3.5 Development of a chemical inducible <i>ROXY19</i> expression transgenic line	40
3.6 Inhibiting DNA methylation cannot recover PDF1.2 expression in ROXY19 transgenic plan	nts 41
3.7 Characterization of the roles of class II TGA factors in Arabidopsis	42
3.7.1 The cysteine of class II TGAs is not important for regulating PDF1.2 expression	42
3.7.2 Defense hormone treatment does not influence protein stability of class II TGAs	44
3.7.3 Class I TGAs repress the ET/JA-induced PDF1.2 expression in the absence of class II T	GAs 44
4 Discussion	47
4.1 ROXY19-mediated repression requires a functional active site	47
4.2 ROXY19 suppresses the plant detoxification pathway	50
4.3 The repressive effect of ROXY19 is not relieved in <i>roxy19</i> mutants	50
4.4 Role of ROXY19 and TGAs for the crosstalk of SA- and ET/JA-signaling pathway	50
5 Outlook	51
6 Bibliography	52
7 Abbreviations	59
8 Supplemental data	62
Acknowledgement	76
Curriculum Vitae	77

Abstract

Glutaredoxins (GRXs) are small ubiquitous proteins that are characterized by a thioredoxin (TRX) fold and a glutathione (GSH) reducible active site, which is a CPYC motif in class I GRXs and a CGFS motif in class II GRXs. Biochemically, GRXs can function as thiol-reductases or as scaffold proteins to coordinate Fe-S clusters. Functionally, they are involved in maintaining the reduced state of proteins in the cell and to regulate signaling processes. Only plants encode a third class of GRXs (called ROXYs) which is characterized by a CCMC/S motif. Loss-and gain-of-function experiments have so far revealed that ROXYs regulate both developmental and stress-responsive processes.

ROXYs physically and genetically interact with bZIP transcription factors of the TGA family. It has been a long-held hypothesis that ROXYs modulate the activities of corresponding members of the TGA family through redox modification of their cysteine residues. Ectopically expressed ROXY19 suppresses ethylene/jasmonic acid (ET/JA)-induced defense genes through an unknown mechanism that requires the class II TGA transcription factors (namely TGA2, TGA5 and TGA6). The aim of this study was to investigate whether the transcriptional repressor function of ROXY19 involves redox modifications of TGA transcription factors or other targets and to investigate whether its function as a transcriptional repressor can be confirmed by loss of function evidence.

Using the protoplast transient expression assays, we identified that ROXY19 represses expression from its own promoter. The capacity of ROXY19 to repress its own promoter in transiently transformed Arabidopsis protoplasts requires TGA-binding sites in the promoter, TGA factors, the C-terminal ALWL motif and a conserved glycine that is required for glutathione binding. Surprisingly, the conserved active site was not important. Moreover, the single conserved cysteine of class II TGA transcription factors is not important for these proteins to confer activation and ROXY19-repressibility to the promoter. Preliminary data obtained from transient expression assays imply that ROXY19, which interacts with the transcriptional co-repressor TOPLESS (TPL) through the ALWL motif, recruits TPL to repress target gene expression. For reasons yet unknown, the active site is required for the negative effects on endogenous *ROXY19* and other target genes when ROXY19 is ectopically expressed in transgenic plants.

Loss of function evidence of the ROXY function might be hampered by potential redundant function of the 21 members in Arabidopsis. Since only ROXY19 is induced by JA and since it can represses the JA-induced TGA-dependent *CYP81D11* promoter when ectopically expressed, we hypothesized that *CYP81D11* transcription should be hyper-induced in the *roxy19* mutant. However, *CYP81D11* transcript levels were not influenced by JA-induced ROXY19.

In order to identify potential target genes of ROXY19, the transcriptomes of wild-type, *roxy19* and plants ectopically expressing *ROXY*s were performed. While these experiments

did not unravel any genes that were affected by the *roxy19* allele, genes from all three phases of the detoxification system were found to be down-regulated in plants ectopically expressing *ROXY19*. This result is consistent with the well-known function of class II TGA factors as activators of the detoxification pathway upon chemical stress. A motif based analysis revealed that the TGA-binding sites are the over-represented motifs in the promoters of ROXY19-repressed genes. Decreased expression of detoxification genes leads to higher sensitivity of the *tga256* triple mutant and plants ectopically expressing *ROXY19* towards the xenobiotic chemical TIBA (2,3,5-Triiodobenzoic). However, loss of function analysis showed that plants with mutations in *roxy19* and *roxy18* (*ROXY18* is a closest homolog of *ROXY19*) do not gain enhanced tolerance to TIBA stress.

1 Introduction

1.1 Glutaredoxins (GRXs) in Arabidopsis

Glutaredoxins (GRXs) are small ubiquitous proteins which are characterized by the so-called thioredoxin (TRX) fold. This structural motif, which consists of 4 β -sheets and 3 α -helices (β 1- α 1- β 2- $\alpha 2$ - $\beta 3$ - $\beta 4$ - $\alpha 3$), is found in TRXs, protein disulfide isomerases (PDIs), glutathione S-transferases (GSTs), glutathione peroxidases and GRXs (Lu and Holmgren, 2014). Most of the GRXs use glutathione (GSH) as a cofactor to catalyze the reversible reduction of protein disulfide bridges or protein-GSH mixed disulfide bonds. Other GRXs bind GSH and associate with iron sulfur (Fe-S) clusters. All GRXs contain a conserved active site located on the loop between β 1 sheet and α 1 helix and a GSH binding grove (Lillig et al., 2008). GRXs can reduce substrates by two distinct mechanisms (Fernandes and Holmgren, 2004): the monothiol and the dithiol way. The monothiol mechanism of CxxS-type GRXs uses the cysteine of the active site for a nucleophilic attack on glutathionylated protein, resulting in a GRX-GSH-mixed disulfide and the reduced substrate protein. The GRX-GSH-mixed disulfide is further reduced by another GSH molecule, yielding reduced GRX and oxidized glutathione (GSSG); the oxidized glutathione is reduced by the NADPH-dependent glutathione reductase (GR). The dithiol mechanism of CxxC-type GRXs also involves a nucleophilic attack of the first cysteine, but the target is a disulfide and the result of the reaction is a GRX-protein-mixed disulfide. Subsequently, the second cysteine of the active site reduces the GRX-protein-mixed intermediate to release the protein substrate and to form an intramolecular disulfide bond between the two cysteines of the active site. Similar to the monothiol mechanism the oxidized GRX is reduced by GSH. TRXs use a similar dithiol mechanism to reduce target proteins, while different to GRXs, oxidized TRXs are reduced enzymatically by thioredoxin reductases (TRs).

GRXs can also be involved in the assembly of Fe–S clusters in the mitochondrial matrix or in the delivery of Fe-S clusters to client proteins. A fundamental function of Fe-S clusters is to transfer electrons. Other biological roles of Fe-S clusters have been suggested such as sulfur or iron sources and sensor of cellular changes to regulate gene expression. Yeast Grx3 and Grx4 transfer a Fe-S cluster to transcriptional factor Activator of Ferrous Transport 1 (Aft1) which leads to its nuclear export. Under conditions of iron deficiency, insufficient amounts of Fe lead to the depletion of Fe-S clusters causing Atf1 to accumulate in the nucleus and to activate genes compensating the Fe deficiency (Poor et al., 2014). Fe-S clusters are structure combinations of iron and sulfur atoms assembled on scaffold proteins. The most common and simplest cluster - [2Fe-2S] - is constituted by two iron ions bridged by two sulfide ions and coordinated by cysteine of scaffold proteins. For example, structural analysis showed that in the poplar GRXC1 assembled Fe-S cluster, the [2Fe-2S] core unit is coordinated by the first cysteine of active site from two GRXC1 proteins, along with two cysteines from two GSH molecules (Feng et al., 2006 and Figure 1.1).

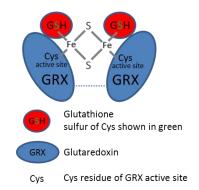
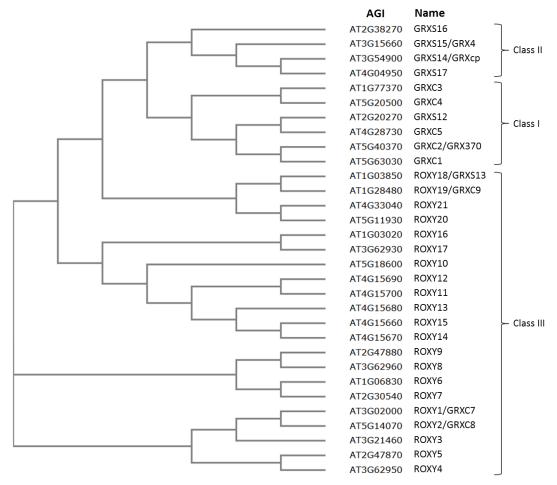



Figure 1.1 A simple proposed model of [2Fe-2S] cluster coordinated by poplar GRXC1. The cluster is composed of a [2Fe-2S] core coordinated by two GRX proteins and two GSH molecules. The gray lines indicate chemical bonds between Fe and sulfur. The dashed line indicates possible interaction between two GRX proteins. Modified from Feng et al. (2006).

The Arabidopsis genome encodes more than 30 *GRX* and *GRX-like* genes (Figure 1.2). According to the amino acid of the active site, they are divided into three classes: 1) the CPYC-type (class I) that contains six members: GRXC1, GRXC2, GRXC3, GRXC4, GRXC5 and GRXS12; 2) the CGFS-type (class II) that contains four members: GRXS14, GRXS15, GRXS16 and GRXS17; and 3) the plant-specific CC-type (class III or ROXY) that contains 21 members (Li et al., 2009; Rouhier et al., 2004).

Figure 1.2 A phylogenetic tree of the Arabidopsis glutaredoxin family. The phylogenetic tree was derived from the comparisons of protein sequences using the neighbor-joining method in Clustal Omega (EMBL-EBI). Protein sequences of each locus were obtained from TAIR. Gene names were assigned according to Rouhier et al. (2004) or Li et al. (2009).

1.1.1 Class I GRXs in plant

The plant CPYC-type GRXs are well characterized in Arabidopsis and poplar. Both *GRXC1* and *GRXC2* (*GRX370*) can rescue the yeast *grx1* mutant under oxidative stress (Riondet et al., 2012). Genetic studies revealed that single *grxc1* and *grxc2* mutants showed a decrease in global GRX enzymatic activity as assayed by the reduction of artificial substrates, but no obvious growth phenotype under various environmental stresses. However, a *grxc1 grxc2* double mutant is lethal (Riondet et al., 2012). GRXC2 was isolated as an interacting protein of BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR-LIKE KINASE 1 (BAK1); *in vitro* biochemical assays showed that GRXC2 catalyzes BAK1 glutathionylation and inhibits BAK1 peptide kinase activity (Bender et al., 2015). BAK1 is the first target that can be glutathionylated by GRX.

Concerning the catalytic activities, Sha et al. (1997) assayed the reductase activity of CPYC GRX *in vitro* using purified protein from rice. The protein exhibited efficient activity in the 2-hydroxyethyl disulfide (HED) reduction assay. Meyer et al. (2007) showed that recombinant GRXC1 is capable of reducing the disulfide bridge of roGFP, an artificial target. roGFP is a redox-sensitive protein, which was engineered from GFP through substitutions of two amino acids by redox-active cysteines (Hanson et al., 2004).

Rouhier et al. (2001) reported the isolation and characterization of the first plant GRX target, a type-C peroxiredoxin (PRX) in poplar. PRXs are thiol-dependent peroxidases that reduce hydrogen peroxide in the presence of an exogenous proton donor. The poplar enzyme was found to use both GRX (poplar GRXC4) and TRX as proton donors (Rouhier et al., 2001). Site-directed mutagenesis analysis found that the first cysteine residue (Cys27) of the active site of GRXC4 is required to promote the catalysis of PRX (Rouhier et al., 2002).

In order to isolate targets of GRX, novel proteomics technologies are being developed. One of these approaches is based on the assumption that an intermediate complex is formed between dithiol GRX (CPYC-type) and its target. Such an intermediate complex has been shown for TRX. A mutation of the last cysteine of the TRX active site stabilizes the complex (Brandes et al., 1993). Thus, expressing an active site mutant of TRX or GRX with a tag allows the trapping and further purification of target proteins. This method has been applied to isolate GRX targets in plants by expressing a polar *GRXC4* in Arabidopsis (Rouhier et al., 2005). This led to the identification of 94 putative target proteins, including many peroxiredoxins (PRXs). Serval of these proteins are also known to be targets of TRX. Moreover, it was shown that GRXC4 can reduce and activate peroxide-reducing activity of Arabidopsis type II PRX F (AtPRX IIF) using recombinant protein *in vitro* (Rouhier et al., 2005).

In addition to being potential oxidoreductases, Rouhier et al. (2007) reported that poplar GRXC1 expressed in *E. coli* can serve as a scaffold to form Fe-S clusters. The Arabidopsis GRXC5 exists in two forms with different functionalities when expressed in *E. coli* (Couturier et al., 2011). The monomeric form exhibits deglutathionylation activity, whereas the dimeric form assembles a Fe-S cluster. Site-directed mutagenesis experiments revealed that the last cysteine of the active site is required for the cluster formation (Couturier et al., 2011). In addition, the Arabidopsis GRXC1, but not its closest homolog GRXC2, was shown to be able to incorporate Fe-S cluster *in vitro*. However, both GRXC1 and GRXC2 cannot complement the yeast *grx5* (class II GRX) mutant defective in Fe-S cluster formation (Riondet et al., 2012).

1.1.2 Class II GRXs in plant

Glutaredoxins with a CGFS-type active site were only recently defined as class II GRXs. CGFS-GRXs were initially characterized in yeast (Grx3, Grx4 and Grx5), and subsequently found in all prokaryotes and eukaryotes. In Arabidopsis, there are four members of this class, GRXS14, GRXS15, GRXS16 and GRXS17.

Cheng et al. (2006) isolated a chloroplast-localized CGFS-type GRXS14 (AtGRXcp) which can rescue the yeast *grx5* mutant growth phenotype. Disruption of *GRXS14 in planta* resulted in oxidative damage of proteins and higher sensitivity to external oxidants (i.e. H_2O_2). Cheng et al. (2006) also found that GRXS15 (AtGRX4), a close homolog of GRXS14, complements the yeast *Grx5* function. *In planta*, *GRXS15* expression is altered under various stresses and is required for resistance against oxidative stress. Bandyopadhyay et al. (2008) showed that - like their poplar orthologs - both Arabidopsis GRXS14 and GRXS16 but not GRXS15 can serve as scaffold proteins for the assembly of Fe-S clusters. A most recent publication reported that recombinant GRXS15 can indeed coordinate Fe-S cluster formation. Mutation of *GRXS15* in Arabidopsis results in embryonic lethality (Moseler et al., 2015). Cheng et al. (2011) characterized another CGFS-type GRX, *GRXS17*; they showed that expression of *GRXS17* was induced by elevated temperatures and that *GRXS17* knockout plants display increased ROS levels and are hypersensitive to high temperature. Consistently, ectopic expression of Arabidopsis *GRXS17* in tomato renders the plants more tolerant to heat stress with increased catalase (CAT) enzyme activity and reduced ROS (H₂O₂) accumulation (Wu et al., 2012).

Knuesting et al. (2015) found that the shoot apical meristem (SAM) of *grxs17* plant was compromised under long-day photoperiod. The authors isolated a GRXS17 interacting partner, the NUCLEAR FACTOR Y SUBUNIT C11/NEGATIVE COFACTOR 2 α (NF-YC11/NC2 α). The *nf-yc11/nc2\alpha* mutant plant photocopied the *grxs17* mutant phenotype, indicating GRXS17 may play important roles in SAM maintenance by relaying a redox signal to its interaction partner NF-YC11/NC2 α . Like GRXS14 and GRXS16, recombinant GRXS17 shows capacity to bind Fe-S clusters and complement the yeast *grx5* mutant; however, the authors revealed that GRXS17 has a minor role in Fe-S cluster homeostasis *in planta*. So far, all members of Arabidopsis class II GRXs are demonstrated to be able to bind Fe-S clusters. Like class II GRXs in other organisms, class II GRXs in plants also play important roles in Fe-S cluster formation.

Class II GRXs are supposed to possess thiol reductase activity as well. Tamarit et al. (2003) showed that yeast Grx5 is not active in the classical HED assay. However, the authors demonstrated that Grx5 is able to reduce disulfides of glutathionylated rat carbonic anhydrase III in a biochemical assay. An active site mutant Grx5 lost the ability to deglutathiolate carbonic anhydrase (Tamarit et al., 2003). Enzymatic targets of class II GRX are missing.

1.1.3 The plant-specific class III GRXs

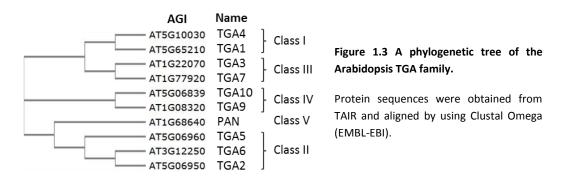
Whereas the CGFS-type and the CPYC-type GRXs are conserved in all eukaryotes, the CC-type is only found in land plants. In contrast to class I and class II GRX, recombinant class III GRX are difficult to obtain. Therefore, data demonstrating their biochemical functions are limited. Only poplar GRXS7.2 was successfully purified from *E.coli* in the presence of GSH. It displayed typical features of Fe-S cluster (such as brownish color and specific UV/visible light absorption) (Couturier et al., 2010) and poor oxidoreductase activity in the HED assay. Taking an alternative approach, the authors took the SCCMC active site to replace the unusual YCGYC active site of poplar GRXC1. The mutant GRXC1CCMC was indeed able to form Fe-S cluster (Couturier et al., 2010). They also replaced the active site YCPYC of GRXC4 against SCCMC or GCCMS. In contrast to GRXC1, GRXC4 has a strong oxidoreductase activity which was severely reduced in the SCCMC and GCCMS variants. Therefore, it can be tentatively concluded that class III GRXs are potential Fe/S binding proteins with poor oxidoreductase activities, at least with artificial substrates. Another structural hallmark of many class III GRXs is the hydrophobic C-terminal ALWL motif.

Genetic studies on the plant specific CC-type GRXs have revealed interesting results. During flower development, Arabidopsis forms four petals whereas the *roxy1* (*grxc7*) mutant initiates in average only 2.5 petals. At later stages of development, petal morphogenesis is also affected in the *roxy1* mutant (Xing et al., 2005). A *ROXY1* homolog, *ROXY2* (*GRXC8*) functions redundantly in anther development. A histological analysis of *roxy1 roxy2* mutant anthers revealed that sporogenous cell formation fails to occur at anther stage 3 in the mutant. At later stages, pollen mother cells fail to

differentiate and therefore meiosis is perturbed, resulting in smaller and empty anther locules without pollen grains. Thus, the *roxy1 roxy2* double mutant is sterile. Complementation experiments showed that the first but not the last cysteine residue in the active site is crucial for ROXY1 function in petal development (Xing et al., 2005). Interestingly, a conserved glycine residue in the putative GSH-binding site is critical for ROXY1 function (Xing and Zachgo, 2008).

ROXY1 and ROXY2 interact with all 10 members of the TGA transcription factor family (See section 1.2 below), including PERIANTHIA (PAN) (Li et al., 2009; Murmu et al., 2010). Intriguingly, PAN is involved in the determination of flower organ number (Chuang et al., 1999); the *pan* mutant forms one extra petal. The *roxy1 pan* double mutant exhibits a similar phenotype as the *pan* single mutant, indicating that *ROXY1* is upstream of *PAN*. Further characterization revealed that nuclear localization and interaction with PAN is required for ROXY1 function. Out of the six cysteine residues present in PAN, Cys340 was shown to be required for rescuing the *pan* phenotype. Therefore, the hypothesis was put forward that ROXY1 may direct target PAN for post-translational redox modification to inhibit its function.

Murmu et al. (2010) revealed that the *tga9 tga10* double mutant, which is deficient in the class IV TGAs, shows a phenotype similar to the *roxy1 roxy2* mutant in terms of anther development. The TGA9 and TGA10 expression pattern overlaps with that of ROXY1 and ROXY2 where they positively regulate a common set of genes to promote anther development. Again it is suggested that ROXY1 and ROXY2 influence TGA9 and TGA10 transcriptional activity through redox-modifications.


A maize CC-type GRX, *MALE STERILE CONVERTED ANTHER1* (*MSCA1*), positively regulates shoot meristem size by inhibiting *FASCIATED EAR4* (*FEA4*), an ortholog of the Arabidopsis *PAN* gene (Pautler et al., 2015; Yang et al., 2015). The *msca1* and *fea4* have opposite meristem size phenotypes. The double mutant shows a similar increased meristem size like the *fea4* single mutant, suggesting that *FEA4* is downstream of *MSCA1*. The last cysteine residue of the active site was found to be required for MSCA1 function in SAM formation (Yang et al., 2015). A direct protein interaction between MSCA1 and FEA4 supports the notion that FEA4 may be redox modified by MSCA1. The maize *MSCA1* was reported to control anther development as well, however the corresponding TGA factor is unknown (Chaubal et al., 2003).

The CC-type GRXs may also play roles in plant responses to environmental stresses. The defense hormone salicylic acid (SA) antagonizes the ethylene/jamsonate (ET/JA)-signaling pathway through manipulating transcriptional activity of class II TGAs. Expression of *ROXY19* (*GRX480* or *GRXC9*), which was isolated as an interaction partner of TGA2 in a yeast two hybrid screen, is induced by SA in a class II TGA-dependent manner (Ndamukong et al., 2007). ROXY19-mediated repression of JA-induced expression of the marker gene *PDF1.2* requires class II TGAs. A direct interaction between ROXY19 and class II TGAs again strongly suggests that SA-induced ROXY19 may inactivate ET/JA-induced transactivation capacity of class II TGA via redox modification. Consistently, the expression of *ORA59*, a master regulator of the ET/JA pathway and direct target of class II TGA, is repressed in transgenic plant expressing *ROXY19*. Only ROXYs with a C-terminal ALWL motif repress EIN3-activated *ORA59* promoter activity in transiently transformed plant protoplasts (Zander et al., 2012). Interestingly, the ALWL motif is also important to complement the *roxy1* phenotype indicating that ROXYs exert functions in developmental and defense-associated processes through the same mechanism. Increased susceptibility to necrotrophic pathogen observed in plants ectopically expressing *ROXY19* (Wang et al., 2009; Zander, 2011), may be ascribed to repression of

the ORA59-mediated defense. However, Wang et al. (2009) suggested that an increased ROS (H_2O_2) level in *ROXY1* overexpressing lines may be a major contribution to the increased susceptibility. Mutation in *ROXY18*, the closest homolog of *ROXY19*, resulted in enhanced resistance to the necrotrophic pathogen *B. cinerea*; unexpectedly, the expression of *PDF1.2* was not affected in this mutant (La Camera et al., 2011). The mechanism how ROXY18 facilitate necrotrophic pathogen infection requires further analysis. Laporte et al. (2012) reported that ROXY18 is required for plant protection against oxidative stress. *ROXY18* knock-down and overexpression resulted in increased and reduced accumulation of ROS (superoxide radicals), respectively; consistently, the knock-down plants showed reduced tolerance to methyl viologen (MV) and high light (HL) treatments, while the overexpression lines were more resistant.

1.2 Class II TGAs play essential roles in stress-related signal transduction pathways

As outlined above, class III GRXs interact with TGA transcription factors (TGAs). TGAs are basic region/leucine zipper motif (bZIP) transcription factors that regulate processes including hormone (SA and ET/JA) signaling transduction, xenobiotic detoxification and flower development. The Arabidopsis genome contains ten members of this family that are divided into five classes (Figure 1.3): class I contains TGA1 and TGA4; class II TGA2, TGA5 and TGA6; class III TGA3 and TGA7; class IV TGA9 and TGA10; class V contains only one member PERIANTHIA (PAN). TGA factors bind to variants of the palindrome TGACGTCA, with the half site TGACG being sufficient for binding.

This thesis focuses on class II TGA transcription factors TGA2, TGA5 and TGA6 which are positive regulators of the plant defense response "systemic acquired resistance (SAR)". This long lasting and broad range immune response, which is effective against biotrophic and hemi-biotrophic pathogens, is established in distal parts of plants after local infections with biotrophic pathogens. SAR establishment requires the plant phytohormone salicylic acid (SA). The SA-signaling pathway is controlled by the transcriptional coactivator *NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1* (*NPR1*). The NPR1 homologs - NPR3 and NPR4 - were demonstrated to be SA receptors and to regulate NPR1 stability (Fu et al., 2012). Moreover, NPR1 activity is triggered upon an SA-mediated redox-shift which is important for the translocation of NPR1 into the nucleus (Mou et al., 2003) where it interacts with class II TGA transcription factors to induce defense genes (Fan and Dong, 2002). Moreover, cytosol NPR1 was found to be required for SA-triggered antagonistic effect on ET/JA-dependent defense pathway, which is efficient against necrotrophic pathogens (Spoel et al., 2007).

Class II TGA factors are required for the ET/JA-regulated defense against necrotrophic pathogens (Zander et al., 2010). Increased levels of ET inactivate ER-localized ET receptors, which leads to the inactivation of the kinase CTR. Thus, the substrate of CTR, the ER-localized protein EIN2 becomes dephosphorylated which leads to the cleavage of the protein (Qiao et al., 2012). The soluble domain moves to the nucleus where it leads to stabilization of the transcriptional activator EIN3, which activates other transcriptional activators such as ORA59. Zhu et al. (2011) found that EIN3 is also controlled by the JA signaling pathway since it interacts with JASMONATE ZIM DOMAIN (JAZ) proteins which function as negative regulators of transcription (Chini et al., 2007; Pauwels and Goossens, 2011; Pauwels et al., 2010; Thines et al., 2007). Upon stress, accumulated jasmonoylisoleucine (JA-Ile) binds to the F-box protein CORONATINE INSENSITIVE1 (COI1) to facilitate the formation of the COI1-JAZ complex. COI1 mediates the ubiquitination and ultimately degradation of JAZ repressors (Chini et al., 2007; Thines et al., 2007). Thus, the activation of the ORA59 promoter can be achieved by two mechanisms: ET-induced stabilization of EIN3 and JA-induced degradation of the JAZ repressor proteins. Class II TGA proteins bind to the TGACGT element within the ORA59 promoter and strongly enhance ORA59 transcription and transcription of other ET/JA-regulated genes like PDF1.2 under conditions of increased ET levels. However, if JA alone is used to induce the pathway, TGA factors are dispensable (Zander et al., 2010).

Importantly, the SA- and ET/JA-mediated defense responses cannot be activated simultaneously and depending on the timing and intensity of infections with biotrophic and necrotrophic pathogens, one pathway is prioritized over the other (Pieterse et al., 2009). SA suppresses JA-induced expression of *PDF1.2* through a mechanism that involves TGA factors and NPR1. In the presence of elevated levels of ET, NPR1 becomes dispensable (Leon-Reyes et al., 2009). Evidence has been provided that SA may manipulate the transcriptional activity of the class II TGA factors at the *ORA59* promoter to control the ET/JA-signaling pathway (Zander et al., 2014). In addition, the stability of the ORA59 protein seems to be affected by SA (Van der Does et al., 2013) and the relative contributions of transcriptional and post-transcriptional control mechanisms merging on the ORA59 protein seem to vary depending on the environmental conditions.

Chromatin immunoprecipitation (ChIP) assays unraveled that class II TGAs directly bind to the *ORA59* promoter (Zander et al., 2014). A possible mechanism for the inactivation of TGA2 at the *ORA59* promoter was postulated after the identification of a plant-specific GRX - ROXY19 - that physically interacts with the class II TGA factors in Y2H assays. Ectopically expressed ROXY19 strongly represses the ET/JA-induced *ORA59* and *PDF1.2* expression in a class II TGA-dependent way (Ndamukong et al., 2007). (See section 1.1.3)

Finally, class II TGA factors have been shown to be essential for the regulation of genes involved in the activation of the detoxification pathway that metabolizes xenobiotics to non-toxic forms for long-term storage. In general, plant detoxification uses a three-phase process: transformation (Phase I), conjugation (Phase II) and compartmentation (Phase III) (Sandermann, 1992).

Phase I reaction is the initial step to modify toxic chemicals with reactive substituent groups (i.e. methyl, hydroxyl), which makes the xenobiotics less toxic and more susceptible for Phase II. The major reactions involved in Phase I are oxidation, hydrolysis and reduction. Enzymes catalyzing these reactions are cytochrome P450 (CYP) monooxygenases and hydrolases. In Phase II, metabolites of Phase I are conjugated to endogenous substrates such as sugars, glutathione, and amino acids, resulting in compounds of higher molecular weight and less toxicity. Enzymes involved in Phase II are

Uridine-diphospho-Glucuronosyltransferases (UGTs) and Glutathione S-Transferases (GSTs). In Phase III, non-toxic products are transported into the vacuole or incorporated into cell wall material. ATPbinding cassette (ABC) transporters and major facilitator superfamily (MFS) transporters are involved in this phase.

Microarray analysis revealed that 56% (250/446) of the herbicide safener-induced and 60% (247/411) of the phytoprostane PPA1-induced genes are less expressed in the *tga256* mutant, which lacks all three class II TGAs. Further analysis revealed that 60% and 42% of these genes contain TGA-binding sites (TGACG motif) in their promoters (Behringer et al., 2011; Mueller et al., 2008). Thus, xenobiotic stresses induce these genes through activating of class II TGA factors. A robust example is the expression of (Fode et al., 2008; Köster et al., 2012). Interestingly, the JA biosynthesis and signaling pathways are also required for xenobiotic-induced *CYP81D11* expression. Indeed, several TIBA-induced genes are less well expressed in the JA signaling mutant *coi1*, underpinning the notion that basal JA signaling amplifies the response to chemical stress (Köster et al., 2012). Activation of a subset of the detoxification genes requires the TGA-interacting GRAS protein SCL14 (Fode et al., 2008).

The question is how xenobiotic stresses activate transcriptional activity of class II TGAs. Figure 1.4 shows a list of chemicals that activate gene expression in a class II TGA-dependent manner. Unlike endogenous phytohormones, so far no receptor for specific xenobiotic chemicals has been identified (Ramel et al., 2012). A variety of xenobiotics are revealed to induce a common set of genes (Behringer et al., 2011; Mueller et al., 2008), suggesting a similarity of signaling cascade shared by these chemicals. Various xenobiotic stresses are known to cause ROS accumulation and oxidative stress (Ramel et al., 2012). The *as-1*-like promoter element is oxidative stress-responsive. ROS-inducer (MV) activates the *as-1*-like promoter element, while antioxidants (DMTU and BHA) prevent SA-induced oxidative damages and inhibit SA-activated *as-1*-like element (Garretón et al., 2002). Thus a signaling transduction pathway of xenobiotic response might be that xenobiotics induce the accumulation of ROS, which is perceived by class II TGA factors and these TGAs bind to the *as-1*-like element of xenobiotics responsive gene promoters to activate their expression.

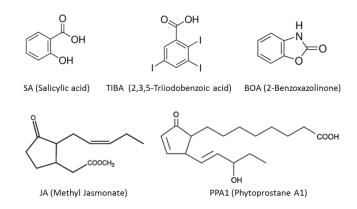


Figure 1.4 Chemical structures of SA, JA and some xenobiotics.

1.3 Possible role of epigenetic modification in SA and ET/JA crosstalk

The hormone SA influences the expression of approximately 10% of the Arabidopsis transcriptome. Such a broad effect indicates a possible involvement of chromatin remodeling. Chromatin is a

dynamic nucleoprotein complex composed of DNA wrapped around histones. Chromatin underlies tight regulation of gene expression by controlling access of transcriptional machinery to DNA. Transcriptional activators and repressors typically recruit enzymes to modify chromatin structure through methylation, acetylation, and phosphorylation of histone tails. Histone acetyltransferases (HAT) and deacetylases (HDA) are responsible to histone acetylation (Kuo and Allis, 1998). In Arabidopsis it has been reported the JA- and ET-inducible *HDA6* and *HDA19* are involved in regulating the ET/JA-signaling pathway. For instance, HDA6 is recruited via association with the bridging protein JAZ to repress EIN3-mediated transcription of the ERF-branch (Zhu et al., 2011). Conversely, HDA19 is a positive regulator of the ERF-branch. Overexpression of *HDA19* confers plant more resistance to necrotrophic pathogen *Alternaria brassicicola* (Zhou et al., 2005). Thus SA may take control of the ET/JA-signaling through manipulating activities of these enzymes. Using pharmacological treatment and ChIP analysis, Koornneef et al. revealed that histone modification at the *PDF1.2* promoter is not altered by SA, indicating chromatin remodeling is not essential for the crosstalk (Koornneef et al., 2008).

1.4 Purpose of the study

The aim of this work was to address the function of ROXY19 in *Arabidopsis thaliana*. Specifically, the question of how ROXY19 represses gene expression was addressed and which types of genes were repressed. Finally, the role of the cysteine residues of class II TGA factors was analyzed.

2 Materials and Methods

2.1 Materials

2.1.1 Organisms

2.1.1.1 Bacteria

Bacteria strain	Description (Genotype)	Usage	Reference
Escherichia coli DH5α	F ⁻ Φ80 <i>lac</i> ZΔM15 Δ(<i>lac</i> ZYA- <i>arg</i> F) U169	Plasmid	Thermo Fisher
	<i>rec</i> A1 <i>end</i> A1 <i>hsd</i> R17(r _k ⁻ , m _k ⁺) <i>pho</i> A	construction	Scientific
	supE44 thi-1 gyrA96 relA1 λ ⁻		
Escherichia coli DB3.1	F– gyrA462 endA1 Δ(sr1-recA) mcrB	Plasmid	Thermo Fisher
	<i>mrr hsd</i> S20(rB–, mB–) <i>sup</i> E44 ara-14	construction	Scientific
	galK2 lacY1 proA2 rpsL20(SmR) xyl-5		
	λ– leu mtl1		
Agrobacterium	C58; Rif ^R ; Gent ^R	Plant	Koncz and
tumefaciens GV3101		transformation	Schell, 1986
(pMP90RK)			

2.1.1.2 Yeast

Yeast strain	Description (Genotype)	Usage	Reference
PJ69-4A	MATa trp1-901 leu2-3,112 ura3-52	Yeast two-hybrid	James et al.
	his3-200 gal4∆ gal80∆ LYS2::GAL1-		1996
	HIS3 GAL2-ADE2 met2::GAL7-lacZ		

2.1.1.3 Plants

Plant	Description	Reference
Col-0	Arabidopsis thaliana Columbia-0 (Col-0)	TAIR
tga256	<i>tga2, tga5</i> and <i>tga6</i> triple mutant in Col-0 background	Zhang et al., 2003
tga14	<i>tga1</i> and <i>tga4</i> double mutant in Col-0 background	AG Gatz
tga12456	<i>tga1, tga2, tga4, tga5</i> and <i>tga6</i> pentuple mutant in Col-0 background	AG Gatz
tpl-1	The temperature sensitive dominate <i>topless</i> mutant in Landsberg background	Long et al., 2006
ROXY19OE (35S:HA-ROXY19CCMC)	ROXY19 overexpressing in Col-0	AG Gatz
ROXY19OE/tga256	ROXY19 overexpressing in tga256 background	AG Gatz
35S:HA-ROXY19CPYC	Active site mutant (CPYC) ROXY19 overexpression in Col-0	This work
35S:HA-ROXY19SSMS	Active site mutant (SSMS) ROXY19 overexpression in Col-0	This work
35S:HA-GRX370	GRX370 overexpressing in Col-0	This work
XVE:HA-ROXY19 (XVE#9)	β-estradiol-inducible ROXY19 expressing in Col-0	This work
35S:TGA5	TGA5 overexpressing in Col-0	This work

35S:TGA5C ¹⁸⁶ S	Cys mutant TGA5 overexpression in Col-0	This work
35S:TGA2	TGA2 overexpressing in Col-0	AG Gatz
35S:TGA2C ¹⁸⁶ S	Cys mutant TGA2 overexpressing in Col-0	AG Gatz
pB2/Col-0	Col-0 transformed with empty vector	This work
pB2/ <i>tga256</i>	tga256 mutant transformed with empty vector	This work
Nossen	Arabidopsis thaliana Columbia-0	NASC (The European Arabidopsis seeds stock center)
roxy19DS	Arabidopsis Nossen with mutation in ROXY19	AG Gatz
roxy18 roxy19DS	A genetic cross between <i>roxy18</i> mutant and <i>roxy19DS</i> mutant	AG Gatz

2.1.2 Plasmids

Plasmid	Description	Reference
35S:GW	Destination plasmid for gateway cloning	Karimi et al., 2002
(pB2GW)	binary plasmid	
35S:HA-GW	Destination plasmid for gateway cloning	AG Gatz
(pB2HAGW)	binary plasmid	
35S:HA-ROXY19CCMC	Binary plasmid	This work
35S:HA-ROXY19SSMS	Binary plasmid	This work
35S:HA-ROXY19CPYC	Binary plasmid	This work
35S:HA-GRX370	Binary plasmid	This work
35S:GFP-ROXY19	Binary plasmid	This work
ROXY19:GFP-ROXY19	Binary plasmid	This work
XVE:HA-GW	Destination plasmid gateway cloning	AG Gatz
35S:TGA5	Binary plasmid	This work
35S:TGA5C ¹⁸⁶ S	Binary plasmid	This work
XVE:HA-ROXY19	Binary plasmid	This work
	β-estradiol inducible ROXY19 expression	
pUBQ10:HA-GW	Destination plasmid for gateway cloning	This work
	binary plasmid	
pUBQ10:HA	Binary plasmid	This work
pUBQ10:HA-ROXY19	Binary plasmid	This work
pUBQ10:HA-ROXY19SCMC	Binary plasmid	This work
pUBQ10:HA-ROXY19ACMC	Binary plasmid	This work
pUBQ10:HA-ROXY19ACMA	Binary plasmid	This work
pUBQ10:HA-ROXY19SSMS	Binary plasmid	This work
pUBQ10:HA-ROXY19CPYC	Binary plasmid	This work
pUBQ10:HA-ROXY19ALWA	Binary plasmid	This work
pUBQ10:HA-ROXY19∆ALWL	Binary plasmid	This work
pUBQ10:HA-ROXY18	Binary plasmid	This work
pUBQ10:HA-ROXY18SSLG	Binary plasmid	This work
pUBQ10:HA-TPL	Binary plasmid	This work
pUBQ10:HA-TPL351	Binary plasmid	This work
pCSV:HA-tpl-1	Protoplast transient expression	Zhang et al. 2010
pUBQ10:rLuc	Reference plasmid for protoplast	AG Gatz
	transient expression	
ROXY19:Luc	Binary plasmid	This work
mROXY19:Luc	Binary plasmid	This work

CaMV35S:Luc	Binary plasmid	This work
mCaMV35S:Luc	Binary plasmid	This work
(as-1-like motif mutant)		
pDEST-GBKT7	Yeast two hybrid plasmid	AG Gatz
pDEST-GBKT7-ROXY19	Yeast two hybrid plasmid	This work
pDEST-GBKT7-ROXY19SCMC	Yeast two hybrid plasmid	This work
pDEST-GBKT7-ROXY19SSMS	Yeast two hybrid plasmid	This work
pDEST-GBKT7-GRX370	Yeast two hybrid plasmid	This work
pDEST-GAD	Yeast two hybrid plasmid	This work
pDEST-GAD-TGA2	Yeast two hybrid plasmid	This work
pDEST-GAD-ROXY19	Yeast two hybrid plasmid	This work
pDEST-GAD-ROXY19SCMC	Yeast two hybrid plasmid	This work
pDEST-GAD-ROXY19SCMC	Yeast two hybrid plasmid	This work
pDEST-GAD- GRX370	Yeast two hybrid plasmid	This work
pDONR207-ROXY19pro	Gateway entry vector	This work
pDONR207-PDF1.2pro	Gateway entry vector	This work
pDONR207-ROXY19	Gateway entry vector	This work
pDONR207-ROXY19SCMC	Gateway entry vector	This work
pDONR207-ROXY19SSMS	Gateway entry vector	This work
pDONR207-ROXY19CPYC	Gateway entry vector	This work
pDONR207-ROXY19ALWA	Gateway entry vector	This work
pDONR207-TPL	Gateway entry vector	This work

2.1.3 Primers

Primer	Sequences(5'-3')	Purpose	
Sequencing		•	
SEQ-L1	TCGCGTTAACGCTAGCATGGATCTC	DOND207	
SEQ-L2	GTAACATCAGAGATTTTGAGACAC	 pDONR207 sequencing 	
pUBQ10seq-fwd	CTAGTTTGTGCGATCGAATTTGTC	pUBQ10 sequencing	
pB2GW7 fwd	CACAATCCCACTATCCTTCGCA	nP2 coquencing	
pB2GW7 rev	CATGAGCGAAACCCTATAAGAACC	 pB2 sequencing 	
pMDC7seq-d1	GGTAATGCCATGTAATATGCTCG	XVE vector sequencing	
upperGAD	TTCGATGATGAAGATACCCCACCAAACCC		
lowerGAD	GATGCACAGTTGAAGTGAACTTGCGGGG	 pDEST-GAD sequencing 	
pBD2	TCATCGGAAGAGAGTAGTAAC	- pDEST-GBKT sequencing	
GBTerm-primer	ATCATAAATCATAAGAAATTCGCCCG		
Ocg43Luc	ATGCAGTTGCTCTCCAGCGGTTCC	pBGWL7 sequencing	
roGFP-NR	AGCTCGACCAGGATGGGCAC	GFP N-terminal reverse	
Cloning			
ROXY19pro-gw-d1	GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGGT		
	GCACAGAAGAATGG	- ROXY19 promoter cloning	
ROXY19pro-gw-r1	GGGGACCACTTTGTACAAGAAAGCTGGGTGACAT		
	TTTCAAGTATGTTTTTAAAG		
mROXY19pro-d1	CATAGCTTCCTGTAGCTCACATCCTTATGGAACCAT		
	CGTCTAAGCTAGACTTTC	TGA-binding sites mutant ROXY19 promoter cloning	
mROXY19pro-r1	GAAAGTCTAGCTTAGACGATGGTTCCATAAGGAT		
	GTGAGCTACAGGAAGCTATG		
PDF1.2pro-gw-d1	GGGGACAAGTTTGTACAAAAAGCAGGCTCC	PDF1.2 promoter cloning	
	GCAGCATGCATCGCCGCATC	i bi 1.2 promoter cioning	

GCCATGATGATTATTACTATTTTGCaMV35Spro-gw-d1GGGGACAAGTTTGTACAAAAAGCAGGCTCCTGA GACTTTTCAACAAAAGGCaMV35S promoter cloningCaMV35Spro-gw-d1GGGGACCACTTTGTACAAGAAAGCTGGGTGACAT TGTTCTCGACTAGAATAGTACaMV35S promoter cloningmCaMV35Spro-d1GATATCTCCACTAATATAAGGGACGGTTCACAATC CCACTas-1-like mutant CaMV35S promoter cloningmCaMV35Spro-d1GATATCTCCACTAGTACCGTCCCTTATATTAGTGGGA ATATCpromoter cloningROXY19SSMS-d1CGGAGAGGATCTTCCATGTCCATGTGG CGGAGAGGATCTTCCATGTGGACACGActive site mutant ROXY18 cloningROXY19SSMS-d1CGAGAGGAGCTCTTCTTGGGACACG CGGAGAGGCTCTTCTTGGGACACGcloningROXY19SSLG-d1CAAGGAAGGCTCTTCTTGGGACACG CGTGTCCCAAAGAAGAGCCTCTCTTGdcloning qRT-PCR primer QuantiTech (Qiagen)Cidagen QT00743561 ANAC032Detection of gene expressionLOX2Qiagen QT00840406 Qiagen QT00840406expressionCVP81D11Qiagen QT00840406 Qiagen QT00852054 ROXY18PDF1.2 expressionPDF1.2Qiagen QT00869715Self-designed primersPDF1.2Qiagen QT00869715PDF1.2 expressionPDF1.2-fwdCTTGTTCTTTGCTGCTTTC CCACGTTCCAAGCPR1 expressionPN1-revGCGAAAGGCTAACTACAACTAC ACAACAACTACPR1 expressionPR1-revGCGAAAGGCTAACTACAACAACTAC GAXY19RT-d2Endogenous ROXY19UBQ5-revGTAAACAACAACTACCAATCCAAGATTCUBQ5 expression	PDF1.2pro-gw-r1	GGGGACCACTTTGTACAAGAAAGCTGGGT		
GACTTTTCAACAAAGGCaMV35S promoter cloningCaMV35Spro-gw-r1GGGGACCACTTTGTACAAGAAAGCTGGGTGACAT TGTTCCCACTAGAATAGTAcloningmCaMV35Spro-d1GATATCTCCACTAGAATAGTAas-1-like mutant CaMV35SmCaMV35Spro-r1AGTGGGATTGTGAACCGTCCCTTATATTAGTGGAG ATATCpromoter cloningROXY19SSMS-d1CGGAGAGGATCTTCCATGTCGATGTGGActive site mutant ROXY18ROXY19SSMS-r1CCACATGAGACATGGAAGATCCTCTCCG CCACATGAGAGGCTCTTCTTTGGGACACG ROXY18SSLG-r1Active site mutant ROXY18QuantiTech (Qiagen)ANAC032Qiagen QT00743561 Qiagen QT00743561COR78COR78Qiagen QT00781662JAZ1Qiagen QT00785309DPR2Qiagen QT00852054 ROXY18Qiagen QT00867314 ROXY18Detection of gene expressionPDF1.2-fwdCTTGTTCTTTGCTGCTTTCPDF1.2 expressionPDF1.2-fwdCTTGTTCTTTGCTGCTTTCPDF1.2 expressionPDF1.2-revCATGTTTGCCCCAACAACTACA CCAGGTTAGATACAACTACAACTAC ROXY19RT-d2PR1 expressionWBQ5-fwdGACGCTTCATCTCGTCCUBQ5 expression		GCCATGATGATTATTACTATTTTG		
CaMV35Spro-gw-r1GGGGACCACTTTGTACAAGAAAGCTGGGTGACAT TGTTCTCGACTAGAATAGTAcloningmCaMV35Spro-d1GATATCTCCACTAATATAAGGGACGGTTCACAATC CCACTas-1-like mutant CaMV35SmCaMV35Spro-r1AGTGGGATTGTGAACCGTCCCTTATATTAGTGGAG ATATCpromoter cloningROXY19SSMS-d1CGGAGGGATCTTCCATGTCATGTGG GGAGAGGATCTTCCATGGAGAAGATCCTCTCGActive site mutant ROXY18ROXY19SSMS-r1CCACATGAGACAGGAAGATCCTCTCG CCACATGAGAGAGGCTCTTCTTTGGGACACG ROXY18SSLG-d1Active site mutant ROXY18ROXY18SSLG-d1CAAGGAGAGGCTCTTCTTTGGGACACG GROXY18SSLG-r1CGTGTCCCAAAGAAGAGCCTCTCCTTG GGTGCCCAAAGAAGAGCCTCTCCTTGActive site mutant ROXY18QuantiTech (Qiagen) ANAC032Qiagen QT00743561 Qiagen QT00861378 LOX2Detection of gene expressionLOX2Qiagen QT00861378 Qiagen QT00867314 ROXY18Qiagen QT00869715Detection of gene expressionPDF1.2-revCATGTTTGCTGCTTTC CTGACTTTCCCAAACAACTACAACTAC PR1-fwdPDF1.2 expressionPDF1.2 expressionPDF1.2-revCATGTTTGCTCTTCAAG CGAAAGAGGTAACTACAACTAC ROXY19RT-d2PR1-GAGGTTAGATAGGGTTAGATAGGGTTAGGA ROXY19RT-d2PR1-GAGGTTAGATAGAGGTAACTACAACTAC ROXY19RT-d2PR1-SevaressionUBQ5-fwdGACGCTTCATCTCCGTCCUBQ5 expressionUBQ5-fwdGACGCTTCATCTCGTCC	CaMV35Spro-gw-d1	GGGGACAAGTTTGTACAAAAAGCAGGCTCCTGA		
TGTTCTCGACTAGAATAGTAmCaMV355pro-d1GATATCTCCACTAATATAAAGGGACGGTTCACAATCCCACTas-1-like mutant CaMV355mCaMV355pro-r1AGTGGGATTGTGAACCGTCCCTTATATTAGTGGAGATATCGGAGAGGATCTTCCATGTCATGTGGROXY19SSMS-d1CGACAGGACGATCTTCCATGTCGGROXY19SSMS-r1CCACATGAGACATGGAAGATCCTCTCCGACtive site mutant ROXY18ROXY18SSLG-d1CAAGGAGAGGCTCTTCTTTGGGACACGROXY18SSLG-r1CGTGTCCCAAAGAAGAGCCTCTCCTTG qRT-PCR primer QuantiTech (Qiagen)QuantiTech (Qiagen)ANAC032ANAC032Qiagen QT00743561COR78Qiagen QT00840406CYP81D11Qiagen QT00851378LOX2Qiagen QT00894768OPR2Qiagen QT00894768OPR42Qiagen QT0089715Self-designed primersPDF1.2 expressionPDF1.2-fwdCTTGTTCCTTTGCTGCTTTCPDF1.2-fwdCTTGTTCCTTCAAACAACTACPN1-revGCGAGAAGGCTAACTACAACTACPR1-revGCGAGAGGCTAACTACAACTACROXY19RT-d2TTGGAGGTTAGATAGGGTTAGGTATGGROXY19RT-d2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC		GACTTTTCAACAAAGG	CaMV35S promoter	
mCaMV35Spro-d1GATATCTCCACTAATATAAGGGACGGTTCACAATC CCACTas-1-like mutant CaMV35SmCaMV35Spro-r1AGTGGGATTGTGAACCGTCCCTTATATTAGTGGAG ATATCpromoter cloningROXY19SSMS-d1CGGAGAGGATCTTCCATGTCCATGTGG CGAGAGGACATGGAACATGGAAGATCCTCTCCG ACtive site mutant ROXY18ROXY19SSMS-r1CCACATGAGACATGGAAGATCCTCTCCG CAAGGAGGCTCTTCTTTGGGACACG CONT8SSLG-d1Active site mutant ROXY18ROXY18SSLG-d1CAAGGAGGCTCTTCTTTGGGACACG CGTCCCAAAGAAGAGCCTCTCCTTGcloning qRT-PCR primer QuantiTech (Qiagen)Qiagen QT00743561 Quagen QT00840406Detection of gene expressionANAC032Qiagen QT00861378 Qiagen QT00861378 DOX2Qiagen QT00869309 Qiagen QT00852054 ROXY18Detection of gene expressionORA59Qiagen QT00867314 ROXY19Qiagen QT00869715PDF1.2 expressionSelf-designed primers PDF1.2-fwdCTTGTTCTCTTTGCTCTTTC PDF1.2-revPDF1.2 expressionPN1-revGCGAGAAGGCTAACTACAACTAC ROXY19RT-d2PR1 expressionROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGG ROXY19RT-r2Endogenous ROXY19UBQ5-fwdGACGCTTCATCTCGTCCLIBO5 expression	CaMV35Spro-gw-r1	GGGGACCACTTTGTACAAGAAAGCTGGGTGACAT	cloning	
CCACTas-1-like mutant CaMV35SmCaMV35Spro-r1AGTGGGATTGTGAACCGTCCCTTATATTAGTGGAG ATATCpromoter cloning promoter cloningROXY19SSMS-d1CGGAGAGGATCTTCCATGTCCATGTGG CGAGAGAGACATGGAAGATCCTCTCCGActive site mutant ROXY18ROXY19SSMS-11CCACATGAGACATGGAAGATCCTCTCCG CAAGGAGAGGCTCTTCTTTGGGACACG cloningActive site mutant ROXY18ROXY18SSLG-d1CAAGGAGAGGCTCTTCTTTGGGACACG CGTGTCCCAAAGAAGAGCCTCTCCTTGCloning qRT-PCR primer QuantiTech (Qiagen)AAAC032 ANAC032 Qiagen QT00743561 COR78 Qiagen QT00840406 CYP81D11 Qiagen QT00785309Detection of gene expressionLOX2Qiagen QT00861378 LOX2Qiagen QT00852054 Qiagen QT00852054 ROXY18 Qiagen QT00867314 ROXY19Detection of gene expressionPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTC PDF1.2-revPDF1.2 expressionPDF1.2-fwdCTTGTTCTCTTGGCTCTTCAAG PPI-1.2-revPDF1.2 expressionPDF1.2-revCATGTTTGGCTCCTTCAAG CRACTTTCCCAAACAACATTACCAACTAC ROXY19RT-d2PR1 expressionROXY19RT-d2TTGGAGGTTAGATAGGGTTAGGA ROXY19RT-r2PR1-revEndogenous ROXY19UBQ5-fwdGACGCTTCATCTCGTCCUBQ5 expression		TGTTCTCGACTAGAATAGTA		
mCaMV35Spro-r1AGTGGGATTGTGAACCGTCCTTATATTAGTGGAG ATATCpromoter cloningROXY19SSMS-d1CGGAGAGGATCTTCCATGTCATGTGG CGGAGAGGATCTTCCATGTGAGACATGGAAGATCCTCTCCG ROXY18SSLG-d1Active site mutant ROXY18 cloningROXY18SSLG-d1CAAGGAGAGGCTCTTCTTTGGGACACG CGTGTCCCAAAGAAGAGCCTCTCCTTG qRT-PCR primer QuantiTech (Qiagen)Active site mutant ROXY18 cloningANAC032Qiagen QT00743561 Qiagen QT00781662 JAZ1COR78 Qiagen QT00840406 QT00785309Detection of gene expressionDPR2Qiagen QT00861378 Qiagen QT00852054 ROXY18Qiagen QT00867314 ROXY18Detection of gene expressionPDF1.2-revCATGTTGGCTCTTCAAG CATGTTGGCTCTTCAAGPDF1.2 expressionPDF1.2-revCATGTTTGGCTCCTTCAAG CATGTTTGGCTCTTCAAGPR1 expressionPR1-revGCGAGAAGGCTTAGATAGGGTTATGG ROXY19RT-d2PR1-GAGGGTTAGATAGGGTTATGG GACGCTTCATCTCGTCCEndogenous ROXY19UBQ5-fwdGACGCTTCATCTCGTCCUBQ5 expressionUBQ5 expression	mCaMV35Spro-d1	GATATCTCCACTAATATAAGGGACGGTTCACAATC		
ATATCROXY19SSMS-d1CGGAGAGGATCTTCCATGTCCATGTGGROXY19SSMS-r1CCACATGAGACATGGAAGATCCTCTCGActive site mutant ROXY18ROXY18SSLG-d1CAAGGAGAGGCTCTTCTTTGGGACACGROXY18SSLG-r1CGTGTCCCAAAGAAGAGACCTCCCTTG qRT-PCR primer		CCACT	as-1-like mutant CaMV35S	
ROXY19SSMS-r1CCACATGAGACATGGAAGATCCTCTCCG AGGAGAGGCTCTTCTTTGGGACACG cloningROXY18SSLG-d1CAAGGAGAGGCTCTTCTTTGGGACACG cloningROXY18SSLG-r1CGTGTCCCAAAGAAGAGCCTCTCCTTG qRT-PCR primer QuantiTech (Qiagen)ANAC032Qiagen QT00743561 COR78COR78Qiagen QT00840406 CYP81D11CN22Qiagen QT00861378 Qiagen QT0085309Detection of gene expressionLOX2Qiagen QT00894768 Qiagen QT00852054Detection of gene expressionORA59Qiagen QT00867314 ROXY18Qiagen QT00869715Self-designed primersPDF1.2 expressionPDF1.2-fwdCTTGTTCTCTTGCGCTTTC CTTCAAACAACAACTAC ROXY19RT-d2PR1 expressionPR1-revGCGAGAAGGCTAACTACAACTAC GAGGGTTAGATAGGGTTATGG ROXY19RT-r2PR1 expressionUBQ5-fwdGACGCTTCATCTCGTCCUBQ5 expression	mCaMV35Spro-r1		promoter cloning	
ROXY18SSLG-d1CAAGGAGAGGCTCTTCTTTGGGACACG CGTGTCCCAAAGAAGAGCCTCTCCTTGcloningQRT-PCR primerQuantiTech (Qiagen)ANAC032Qiagen QT00743561COR78Qiagen QT00781662JAZ1Qiagen QT00781662JAZ1Qiagen QT00785309OPR2Qiagen QT00840406ORA59Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdPDF1.2-fwdCTTGTTCTCTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCCCAAACAACTTGPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACATTACCAATCACAACTACUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	ROXY19SSMS-d1	CGGAGAGGATCTTCCATGTCTCATGTGG		
ROXY18SSLG-r1CGTGTCCCAAAGAAGAGCCTCTCCTTG qRT-PCR primer	ROXY19SSMS-r1	CCACATGAGACATGGAAGATCCTCTCCG	Active site mutant ROXY18	
QRT-PCR primer QuantiTech (Qiagen)ANAC032Qiagen QT00743561COR78Qiagen QT00781662JAZ1Qiagen QT00781662JAZ1Qiagen QT00785309DPR2Qiagen QT00894768OPR2Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdPDF1.2-fwdCTTGTTCCTTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCCCAAACAACTTGPR1-fwdCTGACTTTCCCAACAACATCAROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	ROXY18SSLG-d1	CAAGGAGAGGCTCTTCTTTGGGACACG	cloning	
QuantiTech (Qiagen)ANAC032Qiagen QT00743561COR78Qiagen QT00840406CYP81D11Qiagen QT00781662JAZ1Qiagen QT00861378LOX2Qiagen QT00785309OPR2Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdPDF1.2-fwdCTTGTTCTCTTTGCTGCTTCCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCTCCAAACAACTTGPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	ROXY18SSLG-r1	CGTGTCCCAAAGAAGAGCCTCTCCTTG	-	
ANAC032Qiagen QT00743561COR78Qiagen QT00840406CYP81D11Qiagen QT00781662JAZ1Qiagen QT00861378LOX2Qiagen QT0085309OPR2Qiagen QT00852054ROXY18Qiagen QT00869715Self-designed primersPDF1.2-fwdPDF1.2-fwdCTTGTTCTCTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCCCAAACAACTACPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAACTACCAACTACAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	qRT-PCR primer			
COR78Qiagen QT00840406CYP81D11Qiagen QT00781662JAZ1Qiagen QT00861378LOX2Qiagen QT00785309OPR2Qiagen QT00894768ORA59Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdPDF1.2-fwdCTTGTTCTCTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCCCAACAACTACPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	QuantiTech (Qiagen)			
CYP81D11Qiagen QT00781662JAZ1Qiagen QT00861378LOX2Qiagen QT00785309OPR2Qiagen QT00894768ORA59Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCTCCAAACAACTTGPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	ANAC032	Qiagen QT00743561		
JAZ1Qiagen QT00861378LOX2Qiagen QT00785309OPR2Qiagen QT00894768ORA59Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCCCAAACAACTTGPR1-revGCGAGAAGGCTAACTACAACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	COR78	Qiagen QT00840406	-	
LOX2Qiagen QT00785309Detection of gene expressionOPR2Qiagen QT00894768expressionORA59Qiagen QT00852054expressionROXY18Qiagen QT00867314expressionROXY19Qiagen QT00869715PDF1.2-fwdSelf-designed primersPDF1.2-fwdCTTGTTCTCTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPDF1.2 expressionPR1-fwdCTGACTTTCTCCAAACAACTTGPR1 expressionPR1-revGCGAGAAGGCTAACTACAACTACPR1 expressionROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGEndogenous ROXY19ROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdUBQ5-fwdGACGCTTCATCTCGTCCUBQ5 expression	CYP81D11	Qiagen QT00781662	-	
LOX2Qiagen Q100785309expressionOPR2Qiagen QT00894768expressionORA59Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCTCCAAACAACTTGPR1-fwdCTGACTTTCTCCAAACAACTACPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	JAZ1	Qiagen QT00861378	- Detection of some	
OPR2Qiagen QT00894768ORA59Qiagen QT00852054ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTC PDF1.2-revPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCTCCAAACAACTTG PR1-revPR1-revGCGAGAAGGCTAACTACAACTAC ROXY19RT-d2ROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGG 	LOX2	Qiagen QT00785309	-	
ROXY18Qiagen QT00867314ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTC PDF1.2-revPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCTCCAAACAACTTG PR1-revPR1-revGCGAGAAGGCTAACTACAACTAC ROXY19RT-d2ROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGG GACGCTTCATCCGTCCROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	OPR2	Qiagen QT00894768	expression	
ROXY19Qiagen QT00869715Self-designed primersPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCTCCAAACAACTTGPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	ORA59	Qiagen QT00852054	-	
Self-designed primersPDF1.2-fwdCTTGTTCTCTTTGCTGCTTTCPDF1.2-revCATGTTTGGCTCCTTCAAGPR1-fwdCTGACTTTCTCCAAACAACTTGPR1-revGCGAGAAGGCTAACTACAACTACROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5-fwdGACGCTTCATCTCGTCC	ROXY18	Qiagen QT00867314	-	
PDF1.2-fwdCTTGTTCTCTTTGCTGCTTTCPDF1.2 expressionPDF1.2-revCATGTTTGGCTCCTTCAAGPDF1.2 expressionPR1-fwdCTGACTTTCTCCAAACAACTTGPR1 expressionPR1-revGCGAGAAGGCTAACTACAACTACPR1 expressionROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGEndogenous ROXY19ROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdGACGCTTCATCTCGTCCUBQ5 expression	ROXY19	Qiagen QT00869715	-	
PDF1.2-revCATGTTTGGCTCCTTCAAGPDF1.2 expressionPR1-fwdCTGACTTTCTCCAAACAACTTGPR1 expressionPR1-revGCGAGAAGGCTAACTACAACTACPR1 expressionROXY19RT-d2TTGGAGGGTTAGATAGGGTTATGGEndogenous ROXY19ROXY19RT-r2CGTAAACAACAATTACCAATCAAGATTCUBQ5-fwdUBQ5-fwdGACGCTTCATCTCGTCCUBQ5 expression	Self-designed primers			
PDF1.2-rev CATGTTIGGCTCCTTCAAG PR1-fwd CTGACTTTCTCCAAACAACTTG PR1-rev GCGAGAAGGCTAACTACAACTAC ROXY19RT-d2 TTGGAGGGTTAGATAGGGTTATGG ROXY19RT-r2 CGTAAACAACAATTACCAATCAAGATTC UBQ5-fwd GACGCTTCATCTCGTCC	PDF1.2-fwd	CTTGTTCTCTTTGCTGCTTTC	- DDE1 2 overaccion	
PR1-rev GCGAGAAGGCTAACTACAACTAC PR1 expression ROXY19RT-d2 TTGGAGGGTTAGATAGGGTTATGG Endogenous ROXY19 ROXY19RT-r2 CGTAAACAACAATTACCAATCAAGATTC UBQ5-fwd UBQ5-fwd GACGCTTCATCTCGTCC UBQ5 expression	PDF1.2-rev	CATGTTTGGCTCCTTCAAG	PDF1.2 expression	
PR1-rev GCGAGAAGGCTAACTACAACTAC ROXY19RT-d2 TTGGAGGGTTAGATAGGGTTATGG ROXY19RT-r2 CGTAAACAACAACTACCAATCAAGATTC UBQ5-fwd GACGCTTCATCTCGTCC	PR1-fwd	CTGACTTTCTCCAAACAACTTG	- PR1 expression	
ROXY19RT-r2 CGTAAACAACAACTACCAATCAAGATTC Endogenous ROXY19 UBQ5-fwd GACGCTTCATCTCGTCC UBQ5 expression	PR1-rev	GCGAGAAGGCTAACTACAACTAC		
UBQ5-fwd GACGCTTCATCTCGTCC UBQ5 expression	ROXY19RT-d2	TTGGAGGGTTAGATAGGGTTATGG	Endogonous POVV10	
	ROXY19RT-r2	CGTAAACAACAATTACCAATCAAGATTC	Endogenous KONT19	
UBQ5-rev GTAAACGTAGGTGAGTCCA OBQ5 expression	UBQ5-fwd	GACGCTTCATCTCGTCC		
	UBQ5-rev	GTAAACGTAGGTGAGTCCA	OBQ5 expression	

2.1.4 Chemicals, kits and antibodies

2.1.4.1 Chemicals

Chemical	Source
1-Aminocyclopropane-carboxylic acid (ACC)	Calbiochem
Dimethylsulfoxid (DMSO)	Carl Roth
β-Estradiol (β-est)	Sigma-Aldrich
2-Mercaptoethanol	Carl Roth
Methyl jasmonate 95% (MeJA)	Sigma-Aldrich
Sodium salicylate	Sigma-Aldrich
2,3,5-Triiodobenzoic acid (TIBA)	Sigma-Aldrich
5-Azacytidine 98% (5-azaC)	Sigma-Aldrich

2.1.4.2 Kits and Enzymes

Kit and Enzyme	Source
Nucleo Spin [®] Gel and PCR Clean-up	Macherey-Nagel
Nucleo Spin [®] Plasmid	Macherey-Nagel
Nucleo Spin [®] Plasmid PC100 Prep Kit (Midi, Maxi)	Macherey-Nagel
Phusion High-Fidelity DNA Polymerase	Thermo Scientific
RevertAid Reverse Transcriptase	Thermo Scientific
BIOTAQ™ PCR Kit	Bioline
Advantage [®] 2 Polymerase Mix	Clontech
Gateway [®] Technology kit	Invitrogen
Pierce 660nm Protein Assay Reagent	Thermo Scientific
Ionic Detergent Compatibility Reagent	Thermo Scientific
SuperSignal™ West Femto kit	Thermo Scientific
Dual-Luciferase [®] Reporter Assay System	Promega

2.1.4.3 Antibodies

Antibody	Description	Source
anti-HA (ChIP grade)	Monoclonal antibody anti HA tag from rabbit	Abcam
anti-TGA2,5	Polyclonal antiserum anti TGA2,5 from rabbit	AG Gatz
anti-rabbit	HRP-conjugated anti rabbit IgG from goat	Life Technologies

2.2 Methods

2.2.1 Molecular cloning methods

Standard molecular cloning was performed according to *Molecular Cloning* 3rd edition (Sambrook and Russell, 2001). Gateway cloning was performed according to the protocol of Invitrogen (Gateway[®] Technology User Guide). All plasmids were sequenced by SeqLab (Microsynth). Plasmid maps and sequences were saved electronically as VectorNTI (Invitrogen) files.

2.2.2 Plant growth conditions

2.2.2.1 Surface sterilization of Arabidopsis seeds

Arabidopsis seeds were sterilized in a desiccator with a mixture of 100 ml hypochloric solution and 5 ml hydrochloric acid under fume hood. The desiccator was sealed with a weak vacuum (750 mbar). After 2 h (for soil grown) or 4 h (for axenic culture) incubation, the vacuum and the gaseous phase were released under a clean bench.

2.2.2.2 Plant growth conditions on soil

For soil grown plants, surface sterilized seeds were sown on autoclaved soil and stratified in dark at 4°C for 2 days. The plants were grown in climate chambers (Johnson Controls) under long day condition (16 h light/8 h dark, 22°C/18°C, 80-100 μ mol/m²/s light intensity, 60% humidity) for hormone spray treatment, or short day condition (8 h light/16 h dark, 22°C/18°C, 80-100 μ mol/m²/s light intensity, 60% humidity) for pathogen infection. For protoplast isolation, the plants were grown in growth chambers (Percival Scientific) under 12 h light/12 h dark, 22°C, 80-100 μ mol/m²/s light intensity.

2.2.2.3 Plant growth conditions on axenic plates

Surface sterilized seeds were sown on MS-plates under the clean bench and stratified in dark at 4°C for 2 days. The plates were placed in climate chambers (Johnson Controls) under 14 h light /10 h dark, $22^{\circ}C/18^{\circ}C$, 80-100 μ mol/m²/s, 60% humidity for 12 to 14 days.

2.2.3 Plant treatments

2.2.3.1 Arabidopsis transformation

Arabidopsis plants were transformed by *Agrobacterium tumefaciens* (strain GV3101) mediated gene transfer using the floral dip method (Clough and Bent, 1998). Agrobacterium were pre-cultured overnight in 5 ml YEB medium supplemented with 20 μ g/ml Spectinomycin, 25 μ g/ml Gentamycin and 50 μ g/ml Rifampicin. This culture was used to inoculate 400 ml YEB medium supplemented with antibiotics for overnight culture. Agrobacterium cells were harvested by centrifugation at 2000 rpm for 20 min and the pellet was re-suspended in 500 ml of 5 % (w/v) sucrose solution. Inflorescences of Arabidopsis plants were dipped into the solution. Dipped plants were kept in dark under high humidity overnight. Positive T1 transformed lines were selected by BASTA (Bayer CropScience) resistance.

YEB medium

Ingredient	Amount per 1 l
Beef extract	10 g
Yeast extract	2 g
Peptone	5 g
Sucrose	5 g
Adjust pH to 7.0	Drops of 1 M NaOH
ddH₂O	to 1 l
1 M MgSO ₄ (sterile)	add 2 ml after autoclave

2.2.3.2 Chemical treatment with soil grown Arabidopsis

For ET and SA treatment with soil grown plants, four-weeks-old plants were sprayed using a bottle diffuser (Carl Roth) with mock (H_2O), 1 mM ACC solution, or solution containing 1 mM ACC and 1 mM SA. The leaves were harvested at 24 h after treatment and flash frozen in liquid nitrogen.

For JA treatment with soil grown plants, four-weeks-old plants were placed in glass translucent aquarium containing 4.5 μ M methyl jasmonate deposited on Whatman filter paper. Control plants were incubated under the same conditions without JA. The leaves were harvested at 10 h after treatment.

For TIBA treatment with soil grown plants, four-weeks-old plants were sprayed using a bottle diffuser (Carl Roth) with mock (0.05% DMSO) or 0.1 mM TIBA solution. TIBA solution was prepared by dilution a 200 mM stock solution in dimethyl sulfoxide (DMSO). The leaves were harvested at 10 h after treatment.

2.2.3.3 Chemical treatment with axenic grown Arabidopsis

For ET/JA and SA treatment with MS-plates grown plants, Arabidopsis seeds were germinated on MSplates, the plates were placed vertically in climate chambers (Johnson Controls). After 12 days growth, Arabidopsis seedlings were transferred onto MS-plates containing: 0.01% ethanol (mock) or 5 μ M MeJA in 0.01% ethanol (JA) and 500 μ M ACC, or plus 200 μ M SA as indicated. About 50 seedlings of each treatment were harvested at 48 h after treatment.

For hormone crosstalk assay in combination with 5-azaC treatment, Arabidopsis seeds were germinated on MS-plates with or without 10 μ M 5-azaC, the plates were placed vertically in climate chambers (Johnson Controls). After 12 days growth, Arabidopsis seedlings were transferred onto MS-plates with or without 10 μ M 5-azaC, and supplemented with: 0.01% ethanol (mock) or 5 μ M MeJA in 0.01% ethanol (JA) and 500 μ M ACC, or plus 200 μ M SA as indicated. About 50 seedlings of each treatment were harvested at 48 h after treatment.

For hormone crosstalk assays with β -estradiol inducible lines, Arabidopsis seeds were germinated on MS-plates, the plates were placed vertically in climate chambers (Johnson Controls). After 12 days growth, Arabidopsis seedlings were transferred onto MS plates with or without 10 μ M β -estradiol and supplemented with: 0.01% ethanol (mock) or 5 μ M MeJA in 0.01% ethanol (JA) and 500 μ M ACC, or plus 200 μ M SA as indicated.

For SA growth assay, Arabidopsis seeds were directly germinated on MS-plates with or without 50 μ M SA, the plates were placed horizontally in climate chambers (Johnson Controls). After 12 days growth, the images were taken using Nikon camera.

For TIBA growth assay, Arabidopsis seeds were directly germinated on MS-plates containing 0.025% DMSO (mock) or 50 μ M TIBA (dissolved in DMSO as 200 mM stock), the plates were placed horizontally in climate chambers. After 12 days growth, the images were taken using Nikon camera.

For TIBA growth assay with β -estradiol inducible lines, Arabidopsis seeds were directly germinated on MS-plates containing: 0.05% DMSO (mock control), 10 μ M β -estradiol, 50 μ M TIBA, or 10 μ M β -estradiol plus 50 μ M TIBA. After 12 days growth, the images were taken using Nikon camera.

Murashige and Skoog (MS) plant medium

Ingredient	Amount per 500 ml
MS-Medium incl. vitamins (Duchefa)	2.2 g
MES (Carl Roth)	5 g (1%)
Adjust pH to 5.7	Drops of 1 M KOH
ddH ₂ O	to 500 ml
Agar-Agar, plant (Carl Roth)	3.4 g

2.2.3.4 Inoculation of Arabidopsis with Botrytis cinerea

Infection of Arabidopsis with *B. cinerea* was performed as described previously (La Camera et al., 2011). *B. cinerea* strains BMM was provided by Brigitte Mauch-Mani (University of Neuchatel, Switzerland). Mature leaves of 4-weeks-old Arabidopsis (short day condition) were drop inoculated with 10 μ l of B. *cinerea* spore solution (5 x 10⁴ spores/ml) or ¼ Difco potato dextrose broth (PDB) media as mock control and kept under high humidity. The lesion size was determined with a caliper 4 days after infection. Leaves were harvested and frozen in liquid nitrogen for RNA extraction.

2.2.4 Analysis of gene expression by quantitative real-time PCR

2.2.4.1 RNA extraction and cDNA synthesis

Plant tissue harvested was frozen in liquid nitrogen and transferred into 2 ml micro tube (Sarstedt), with a 5.0 mm stainless steel ball, and homogenized two times with a mixer mill MM301 (Retsch) for 30 sec each at 20 cycles per sec. TRIzol method was used to extract total RNA (Chomczynski, 1993). Fine ground plant tissue (~200 mg) was dissolved in 1.3 ml extraction buffer (380 ml/l phenol saturated with 0.1 M citrate buffer pH 4.3, 0.8 M guanidinthiocyanate, 0.4 M ammoniumthiocyanate, 33.4 ml 3 M Na-acetate pH 5.2, 5% glycerol) and shaken at RT for 10 min using Vortex-Genie 2 Mixer (Scientific Industries). Chloroform (260 μ l) was added to each sample and shaken at RT for additional10 min. The samples were centrifuged at 4°C 12,000 rpm for 30 min. The clear supernatant (~900 μ l) was transferred into a new 1.5 ml micro tube (Sarstedt) and 325 μ l of high salt buffer (1.2 M NaCl, 0.8 M Na-citrate) and 325 μ l of isopropanol was added to each tube. The tubes were inverted and incubated at RT for 10 min. After centrifugation at 4°C 12,000 rpm for 20 min, the supernatant was discarded, the pellets were washed two times with 70% ethanol. The pellets were allowed to air dry at RT and then dissolved in 20-60 μ l doubly distilled water.

TRIzol buffer

Ingredient	Amount per 500 ml
380 ml/l phenol with citrate buffer	190 ml
0.8 M guanidinium thiocyanate	47.264 g
0.4 M ammonium thiocyanate	15.224 g
33.4 ml/l Na-acetate (3 M stock)	16.7 ml
5% glycerine (100%)	25 ml
ddH ₂ 0	to 500 ml
Store at 4°C	

RNA concentration was measured with NanoDrop 2000 spectrophotometer (Thermo Scientific). 1 μ g total RNA was treated with DNase in a 10 μ L reaction mixture containing 1 μ l of 10x DNase I reaction buffer and 1 μ l DNase I (1 U/ μ l, Thermo Scientific). The reaction mixture was incubated at 37°C for 30 min followed by addition of 1 μ l of 25mM EDTA. The mixture was then incubated at 65°C for 10 min to denatured DNase I. cDNA synthesis was then performed with adding of 0.2 μ l of 100 μ M oligo-dT primers and 1 μ l of 200 μ M random monomer to the reaction solution. After annealing at 70°C for 10 min, 4 μ l 5x RT-buffer, 2 μ l of 10 mM dNTPs, 0.3 μ l Reverse Transcriptase (RevertAid H Minus Reverse Transcriptase; 200 U/ μ l, Thermo Scientific) and 1.5 μ l doubly distilled water were added to a final volume of 20 μ l and the solution was incubated at 42°C for 70 min and afterwards at 70°C for 10 min.

Reaction mix and program for cDNA synthesis

Stock component	Volume	Temperature and duration
1 mg/ml RNA	1 µl	
10x DNase buffer	1 µl	37°C 30 min
1 U/μl DNase	1 µl	57 C 50 mm
ddH ₂ O	to 10 μl	
25 mM EDTA	1 µl	65°C 10 min
100 μM oligo-dT	1 µl	70°C 10 min
200 μM random monomer	1 µl	70 C 10 mm
5x RT-buffer	4 μl	
10 mM dNTPs	2 μl	42°C 70 min
200 U/µl Reverse Transcriptase	0.2 μl	then 70°C 10 min
ddH ₂ O	to 20 μl	

2.2.4.2 Quantitative real-time PCR (qRT-PCR)

For quantification of cDNA, qRT-PCR was performed with *Ubiquitin 5* (*UBQ5*) as reference gene and the fluorescence intensity was measured with the MyiQTM PCR Detection System (BioRad). The amplification mix consisted of 1 μ l of 1:10 diluted cDNA, 1x NH4-reaction buffer (Bioline), 2 mM MgCl2, 100 μ M dNTPs, 0.4 μ M primers, 0.25 U BIOTaq DNA polymerase, 10 nM fluoresceine (BioRad), 100,000x diluted SYBR Green I (Cambrex) solution and 17.2 μ l doubly distilled water (final volume 25 μ l). PCR started with a denaturation for 6 min and 95°C followed by 40 cycles of 20 s at 95°C, 20 s at 55°C and 40 s at 72°C. Calculation of relative gene expression was done with the 2^{-[CT(gene of interest)-CT(reference gene)]} method (Schmittgen and Livak, 2008).

Reaction mix for qRT-PCR using BIOTAQ DNA Polymerase

Stock component	Volume in a 25 µl reaction
10X NH ₄ reaction buffer	2.5 μl
MgCl ₂ 50 mM	1 μl
dNTPs 40 mM (10 mM each)	0.25 μl
F and R primers (each 4 mM)	2.5 μl
Sybr Green (1/1000)	0.25 μl
Fluorescein (1 mM)	0.25µl
BIOTAQ DNA Polymerase (2500 U)	0.05 μΙ
cDNA template (~0.05µg)	1 μl

Program of qRT-PCR cycler using BIOTAQ DNA Polymerase

Cycle step and repeat	Temperature and duration	Cycles
Initial denaturation	95°C ,90 sec	1
Denaturation	95°C, 20 sec	
Annealing	55°C, 20 sec	39
Extension	72°C, 40 sec	
Final extension	72°C, 4 min	1
	95°C, 1 min	1
Generation of melt curve	55°C, 1min	1
	55°C, 10 sec (+0.5°C/cycle)	81

2.2.5 Transient gene expression in protoplasts

2.2.5.1 Arabidopsis protoplasts isolation

Protoplasts isolation was performed according to the method described by Sheen laboratory (Yoo et al., 2007). The lower surface of leaves of 4-6 week old plants grown in 12/12 light condition was lightly scratched with a razor blade and placed in a petri dish containing 10 ml enzyme solution. After incubation overnight in 12/12 light condition the digested solution was filtrated (75 μ m mesh) and the protoplasts were centrifuged (2 min, 780 rpm, soft start and stop). The pellet was washed two times with 10 ml W5 solution (1 min, 780 rpm, soft start and stop) and afterwards the protoplasts were re-suspended in W5 solution and incubated on ice before transfection.

Enzyme solution

Ingredient	Amount per 50 ml
Cellulase	0.625 g
Maceroenzyme	0.150 g

0.75 M Mannitol	26.6 ml	
0.5 M KCL	2 ml	
0.5 M MES	2 ml	
1 M CaCl ₂	5 ml	
ddH ₂ 0	to 50 ml	
Filter sterile and store at 4°C		

2.2.5.2 PEG-mediated plasmid transfection into protoplasts

For PEG-mediated transfection of the protoplasts, the W5 solution covering the protoplasts was removed carefully and the pellet was re-suspended in MMG solution. Protoplasts in MMG solution (200 μ l per transfection) were transferred into a 2 ml Eppendorf tube containing 220 μ l 40% PEG-4000 solution and 20 μ l plasmid DNA mix (7.5 μ g effector plasmid, 5.0 μ g reporter plasmid and 1.0 μ g reference plasmid). The solution was gently mixed and incubated at RT for 30 min. Then 800 μ l W5 buffer was added and gently mixed by inverting the tube. The supernatant was removed after centrifugation at 780 rpm for 2 min and protoplasts. The supernatant was removed and the pellet was re-suspended in 300 μ l WI solution, mixed gently and incubated overnight in 12/12 light condition.

W5 buffer

Ingredient	Amount per 50 ml
1 M NaCl	7.7 ml
1 M CaCl ₂	6.25 ml
0.5 M KCl	0.5 ml
0.5 M MES	0.2 ml
ddH ₂ 0	to 50 ml
Filter sterile and store at 4°C	

MMG buffer

Ingredient	Amount per 50 ml
0.75 M Mannitol	26.6 ml
0.5 M MgCl ₂	1.5 ml
0.5 M MES	0.4 ml
ddH ₂ 0	to 50 ml
Filter sterile and store at 4°C	

40% PEG 4000 solution

Ingredient	Amount per 50 ml
PEG4000	20 g
0.75 M Mannitol	13.3 ml
1 M CaCl ₂	5 ml
ddH₂0	to 50 ml
Filter sterile and store at 4°C	

2.2.5.3 Dual luciferase assay

Luciferase activities of transfected protoplasts were determined with the Dual Luciferase Assay Kit (Promega) using the CentroXS³ LB 960 luminometer (Berthold Technologies). After removing the WI solution, protoplasts were frozen in liquid nitrogen. The frozen protoplasts were dissolved in 20 μ l

PassivLysisBuffer and kept on ice. Then 3 μ l of the each lysate was transferred into a single well of a 348 well-plate, each well was measured as followed: 30 sec waiting time, injection of 15 μ l LARII, 5 sec waiting time, measurement of fLuc activity for 5 sec, injection of 15 μ l Stop&Glo, measurement of rLuc activity for 5 sec.

2.2.6 Microarray analysis

For microarray analysis, Arabidopsis seeds were germinated on MS-plates and grown vertically in climate chamber (Johnson Controls). After two weeks, approximately 50 seedlings were harvested as one pool. The experiments were repeated four times. RNA was extracted using TRIzol method. RNA samples were sent to the Centre for Organismal Studies (COS) at Heidelberg where the microarray analysis was performed with Arabidopsis GeneChip® Gene 1.0 ST Arrays (Affymetrix). Up- or down-regulated genes between different lines were determined by fold change more than two-fold and *p* value less than 0.05. For *cis*-element enrichment analysis, the Motif Mapper (Berendzen et al., 2012) was deployed to define significant distribution alterations compared with 1000 randomly composed, equally sized reference promoter datasets; 1000 bp upstream regions of Arabidopsis genes were downloaded from TAIR. Genes down-regulated in *35S:HA-ROXY19CCMC*#8 were subjected to AgriGO database to investigate the gene ontology (Du et al., 2010).

2.2.7 Chlorophyll content measurement

Approximately 25 two-weeks-old seedlings from MS-plates were collected as pool. Fresh weight was measured before the seedlings were homogenized in liquid nitrogen. Total chlorophyll was extracted with 80% acetone (v/v) for 24 h in darkness. After a centrifuge at 13000 rpm for 2 min, absorbance of the supernatant was measured at 645 and 663 nm (Biochrom Libra S11). Total chlorophyll content was calculated using $(20.2 \times A_{645} + 8.02 \times A_{663})/g$ fresh weight.

2.2.8 Protein extraction and Western blot analysis

Proteins were extracted from homogenized plant tissue under denaturing conditions. The deep frozen plant powder (~200 μ l) was thaw in 600 μ l extraction buffer (4 M urea, 16.6% glycerol, 5% SDS, 0.5% β -mercaptoethanol) with shaking at 65°C for 10 min. Afterwards the solution was centrifuged for 20 min at 13000 rpm at RT and the supernatant was used for SDS-PAGE and Western blot analysis. Protein concentration was determined using the Pierce 660nm Protein Assay kit (Thermo Scientific).

Protein extraction buffer

Ingredient	Final concentration
Urea	4 M
Glycerol	16.6 % (v/v)
SDS	5 % (w/v)
β-mercaptoethanol	0.5% (w/v)

2.2.9 Yeast two-hybrid assays

A high efficiency transformation protocol was used to transfer PJ69-4a yeast strain in yeast-twohybrid assays. The yeast cells were grown overnight in 20ml YPAD medium at 29°C on a shaker (200 rpm). Overnight culture was sub-cultured into new YPAD media and incubated at 29°C until the OD600 was between 0.6-1.2. Yeast cells were collected and wash with ddH_2O by centrifugation at 4000 rpm for 5 min at room temperature in 50 ml falcon tube. The cells were re-suspended in 1 ml of water and transferred into a sterile Eppendorf tube before briefly centrifuging at 13,000 rpm to pellet the cells. Cells were re-suspended in 1 ml of 100 mM LiAc pH 7.5 and were distributed as 100 μ l aliquots into 1.5 ml centrifuge tube (number of aliquots depend on number of transformation reactions). Supernatant was removed by brief centrifugation followed by adding a transformation mix containing 240 μ l of 50% PEG 4000, 36 μ l of 1 M LiAc pH 7,5, 25 μ l single stranded DNA and 250-500 ng of plasmid. The mixture was vortexed vigorously to re-suspend the cells. Next, the mixture was incubated at 30°C for 25 min with occasional shaking. Transformation was performed by heat shock. The yeast was incubated at 42°C for 25 min. Subsequently, cells were centrifuged at 4000 rpm for 10 sec and supernatant was removed. Yeast cells were re-suspended in 200 μ l of sterile water. Aliquots were spread onto suitable selective drop out media. Plates were allowed to air dry and incubated at 29°C for 3 days or until the colonies developed.

3 Results

3.1 ROXY19 represses its own promoter

3.1.1 ROXY19 represses its own promoter in transiently transformed protoplasts

Previously, Zander et al. have shown that ectopically expressed ROXY19 represses ET/JA-induced *ORA59* expression (Zander et al., 2012). Since ORA59 activates the *PDF1.2* promoter, *PDF1.2* is also not activated in *35S:ROXY19* plants. Importantly, repression of *PDF1.2* promoter activity depends on class II TGA transcription factors. Likewise, ROXY19 represses EIN3-activated *ORA59* promoter activity in transiently transformed protoplasts. However, ROXY19-mediated repression only partially depends on class II TGA factors in this assay (Zander et al., 2012). We were interested in testing whether ROXY19 represses its target promoters through redox modification of class II TGA factors. In order to allow structure function analysis of class II TGA factors in protoplasts, we set out to identify a promoter which is repressed by ROXY19 in a class II TGA-dependent manner in transiently transformed protoplasts.

The Cauliflower Mosaic Virus 355 (*CaMV355*) promoter and the promoters of the *ROXY19* and *GSTF8* genes contain *as-1*-like elements, which are characterized by variants of two TGA-binding TGACGTCA palindromes spaced by 4 bp (Figure 3.1A). Using the transient expression assay in Arabidopsis mesophyll protoplasts, we sought to evaluate whether these promoters are repressed by ROXY19.

For construction of reporter vectors, the promoter region including the 5'-UTR from position -1480 to +1 relative to the annotated translational start site (ATG) of *ROXY19* (AT1G28480) and the promoter region from position -1070 to the ATG of *GSTF8* (AT1G28480) were cloned from the Arabidopsis Col-0 genome. The viral *CaMV35S* promoter was cloned using the pB2GW7-HA plasmid (Weiste et al., 2007) as template. The *CaMV35S* promoter region spans from position -442 to the ATG site of HA tag.

Binary vectors including reporter vector which express *firefly lucifease* (*fLuc*) under the control of target promoters (*ROXY19*, *GSTF8* or *CaMV35S*) and an effector vector which expresses *ROXY19* under the control of the Arabidopsis *UBQ10* promoter were transformed into protoplasts. In order to normalize the transformation efficiency, a reference vector which expresses *Renilla luciferase* (*rLuc*) controlled by the *UBQ10* promoter was used (Figure 3.1B). Importantly, the *UBQ10* promoter is not affected by ROXY19 (Figure 3.1G). Dual Luc activity tests show that promoter activities of *ROXY19* and *CaMV35S* are significantly (more than six-fold) repressed in the presence of ROXY19 (Figure 3.1C) and 3.1D). Expression from the *GSTF8* promoter was very low and only slightly repressed (Figure 3.1E). Further mutagenesis analysis showed that the *CaMV35S* promoter activity is abolished when the *as-1*-like element is mutated (Figure 3.1D). Mutation of the *as-1*-like element and another TGACG motif (at position -70 to -66) strongly compromised the *ROXY19* promoter activity (Figure 3.1C).

It had been reported that the C-terminal ALWL motif is important for the function of ROXYs when regulating petal number or when repressing *ORA59* promoter activity (Li et al., 2009; Zander et al., 2012). To address whether the motif is required for repression of its own promoter, we constructed ROXY19 mutants where the ALWL motif was deleted (ROXY19ΔALWL) or the last leucine was replaced by an alanine (ROXY19ALWA). Indeed, both ROXY19 mutants lost their repression activities on the *ROXY19* promoter (Figure 3.1F), indicating that the repression requires the C-terminal ALWL motif.

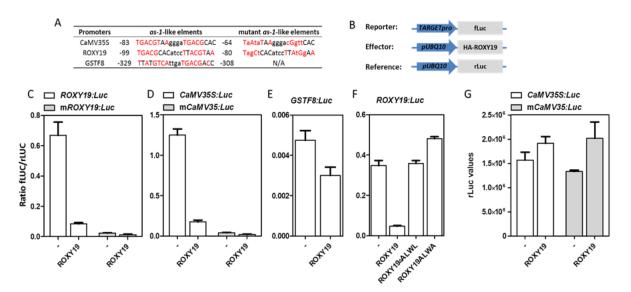


Figure 3.1 ROXY19 specifically represses as-1-containing promoters in transiently transformed Arabidopsis protoplasts. (A) Sequences of as-1-like elements of promoters used to test ROXY19 repression activity. The numbers indicate their positions relative to the translational start sites (+1). Conserved nucleotides within the two 8-bp palindromes (uppercase letters) are highlighted in red. The sequences of the respective mutated as-1-like elements are shown next to the wild-type sequences. For ROXY19 promoter mutagenesis analysis, another mutation of a putative TGA-binding site (from TGACG to ctAaG at position -70 to -66) is not shown here. Point mutations are shown in in lowercase letters. (B) Schematic representation of the reporter, effector and reference constructs. Sequence of target promoters are placed upstream of the firefly luciferase gene (fLuc). The ROXY19 coding region is fused to the HA-tag and placed downstream of the UBQ10 promoter. The renilla luciferase gene (rLuc) is placed downstream of the UBQ10 promoter. (C) - (E) Transient expression assays. Expression of the target promoters (CaMV35S, ROXY19 and GSTF8) or corresponding mutant variants fused to the *fLuc* gene was analyzed in transiently transformed Arabidopsis mesophyll protoplasts in the absence or presence of ROXY19 effector. An empty plasmid was used when ROXY19 effect plasmid was absent (-). Luc activities were determined 16 h after transfection. Values are means of four replicates (±SE). (F) Transient expression assays with ROXY19 promoter and ROXY19 effectors either lacking the C-terminal ALWL motif (ROXY19ΔALWL) or containing a mutant ALWL motif (ROXY19ALWA). (G) Arbitrary luminescence units of rLuc in Figure 1D are shown.

3.1.2 ROXY19 requires class II TGA factors to repress the ROXY19 promoter

Taking the advantage of Arabidopsis protoplast transient gene expression assay, we analyzed the role of class II TGA factors in ROXY19-mediated repression of the *ROXY19* promoter. First, we compared ROXY19 repression activities in protoplasts derived from Col-0 WT and *tga256* mutant plants. ROX19 strongly represses ROXY19 promoter activity in WT protoplasts but not in *tga256* protoplasts (Figure 3.2A).

All three members of class II TGA transcription factors contain a conserved cysteine (Cys186). In order to investigate whether this cysteine is important for TGA2 to regulate the *ROXY19* promoter activity, we constructed TGA2 mutant (TGA2C¹⁸⁶S) by exchanging the cysteine residue with a serine. These TGA2 and TGA2C¹⁸⁶S effectors were expressed under the control of Arabidopsis *UBQ10* promoter. In Col-0 and *tga256* mutant protoplasts, both TGA2 and TGA2C¹⁸⁶S activate the *ROXY19* promoter and this activation is repressed in the presence ROXY19 (Figure 3.2A). These results suggest that class II TGA factors are necessary to mediate ROXY19-mediated repression activity in protoplasts. However, the conserved cysteine of class II TGA factors is not important.

A protoplast transient expression assay showed that a GFP-ROXY19 fusion protein is localized in the cytosol, similar to free GFP. Notably, the GFP-ROXY19 protein accumulates in the nucleus when coexpressed with TGA2 (Figure 3.2B). Since TGA2 and ROXY19 physically interact (Ndamukong et al., 2007) it may be speculated that TGA2 triggers the nuclear localization of GFP-ROXY19 through a piggyback mechanism. Alternatively, it might trap ROXY19 in the nucleus.

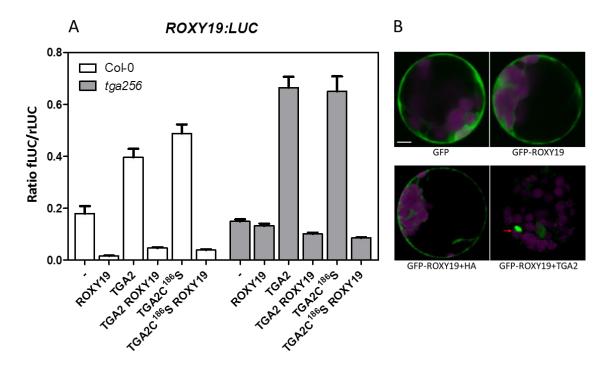


Figure 3.2 ROXY19 represses its own promoter activity in a class II TGA-dependent manner. (A) Transient expression assays with TGA2 and ROXY19 effectors and the *ROXY19* promoter in Col-0 or *tga256* mutant protoplasts. Expression of the *ROXY19* promoter fused to the *fLuc* was analyzed in transiently transformed mesophyll protoplasts in the presence of effector plasmids encoding ROXY19, TGA2 or TGA2C¹⁸⁶S under the control of the *UBQ10* promoter. An empty plasmid was used when effector plasmid was absent (-). Luc activities were determined 16 h after transformation. Values are means of four replicates (±SE). (B) Subcellular localization of GFP-ROXY19 fusion protein transiently expressed in Arabidopsis protoplasts. Different combinations of constructs expressing free GFP, HA tag, GFP-ROXY19 and HA-tagged TGA2 were transformed into Arabidopsis protoplasts. After 16 h incubation, GFP fluorescence and images were captured with a Leica confocal laser scanning microscope. The arrow denotes the presumed nucleus. Scale bar = 5µm.

3.1.3 The ROXY19 active site is not important for the repression activity

Next, we examined whether the active site of ROXY19 was important to mediate the repression of *ROXY19* promoter activity. The amino acids of the active site (CCMC) were replaced by SCMC, SSMS, ACMC or CPYC. As shown in Figure 3.3A, all active site mutant variants of ROXY19 still significantly repress *ROXY19* promoter activity. In addition, the closest homologue of ROXY19 in Arabidopsis, ROXY18, also represses *ROXY19* promoter activity regardless of the active site mutation. As shown before for the *ORA59* promoter, the CPYC-type GRX, GRX370, does not repress the *ROXY19* promoter (Figure 3.3A).

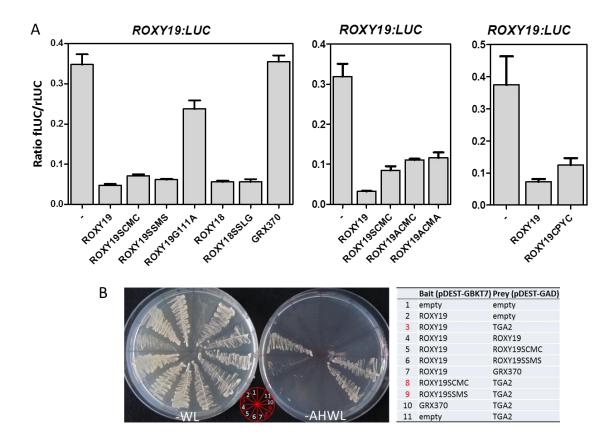
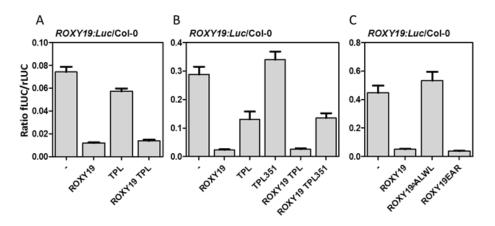


Figure 3.3 The ROXY19 active site is not important for repression of the *ROXY19* promoter in transiently transformed protoplasts. (A) Transient expression assays with WT and mutant ROXY effectors and the *ROXY19* promoter. Expression of the *ROXY19* promoter fused to the *fLuc* was analyzed in transiently transformed mesophyll protoplasts in the presence of effector plasmids encoding WT and mutant variant CC-type ROXYs (ROXY18 and ROXY19) and CPYC-type glutaredoxin GRX370 under the control of the UBQ10 promoter. An empty plasmid was used when effector plasmid was absent (-). Luc activities were determined 16 h after transfection. Values are means of four replicates (±SE). (B) Protein interaction between ROXY19 and TGA2 in yeast-two-hybrid assays. The bait plasmids encoding the indicated open reading frames fused to the GAL4 DNA binding domain (DBD); the prey plasmids encoding the indicated open reading frames fused to the GAL4 activation domain (AD); plasmids were co-transformed into yeast strain PJ69-4A. The combination of plasmids is indicated on the right. For interaction analysis, transformed yeasts were grown on selective media (A-H-W-L dropout); as control, yeasts were grown on non-selective media (W-L dropout).

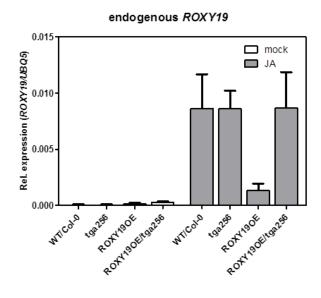

In the GRX catalytic cycle, GRX itself is oxidized once the substrate becomes reduced. The oxidized GRX is reduced by binding to GSH. Mutation of an essential glycine (G110) in the putative GSH binding site of ROXY1 prevents the complement of the abnormal flower phenotype in *roxy1* plants (Xing and Zachgo, 2008). ROXY19 with the corresponding glycine mutated into alanine (G111A) does not repress *ORA59* promoter (Zander et al., 2012). Consistently, this ROXY19 mutant (ROXY19G111A) does not repress the *ROXY19* promoter in protoplasts (Figure 3.3A), suggesting the GSH binding site is critical for ROXY19 function.

Yeast two hybrid assays showed that mutation of the GSH binding site (Zander et al., 2012) or the active site (Figure 3.3B) do not impede protein interaction between ROXY19 and TGA2.

3.1.4 ROXY19 may recruit TOPLESS to repress target genes

The C-terminal hydrophobic ALWL motif of ROXY19 resembles the consensus sequence LxLxL of the so-called EAR (ERF-associated amphiphilic repression) motif that recruits transcriptional co-repressors such as TOPLESS (TPL) and TOPLESS-RELATED PROTEINS (TPRs) (Kagale and Rozwadowski, 2011).

Dr. Joachim Uhrig (Department of Plant Molecular Biology and Physiology) found that ROXY19 interacts with TPL in yeast two hybrid assays and that the interaction requires an intact ALWL motif (Dr. Joachim Uhrig, personal communication). To test if the co-repressor TPL may be involved in ROXY19-mediated gene repression, we employed the protoplast transient expression assay. As shown in Figure 3.4A and B, ROXY19 strongly represses *ROXY19* promoter activity, whereas TPL alone shows only a slightly negative effect. Co-expression of ROXY19 and TPL showed similar repression to that of ROXY19 alone (Figure 3.4A and B). A truncated variant TPL351 (Dr. Joachim Uhrig, personal communication), which includes only the N-terminal 351 amino acids and which still interacts with ROXY19 in yeasts, significantly intercepted ROXY19 repression activity (Figure 3.4B). It is envisioned that association of the N-terminal domain of TPL with ROXY19 does lead to repression but that it blocks the access of the endogenous TPL. When replacing the C-terminal ALWL motif by an EAR motif of SUPERMAN protein (ROXY19EAR, Dr. Joachim Uhrig, personal communication) we observed a strong repression suggesting that the ALWL motif and the EAR motif have the same function, i.e. recruitment of TPL (Figure 3.4C).


Figure 3.4 ROXY19 may recruit TOPLESS (TPL) to repress target genes. (A) Transient expression assays with ROXY19 and TPL effectors and *ROXY19* promoter in Col-0 protoplasts. Expression of the *ROXY19* promoter fused to the *fLuc* was analyzed in transiently transformed mesophyll protoplasts in the presence of effector plasmids encoding ROXY19 or TPL under the control of the *UBQ10* promoter. (B) Transient expression assays with ROXY19, TPL and the truncated TPL351 effectors and the *ROXY19* promoter in Col-0 protoplasts. (C) Transient expression assays with WT and mutant ROXY19 effectors and *ROXY19* promoter in Col-0 protoplasts. ROXY19EAR contains the EAR motif (LELRLDL) of Arabidopsis SUPERMAN protein that was used to replace the ALWL motif. An empty plasmid was used when effector plasmid was absent (-). Luc activities were determined 16 h after transformation. Values are means of four replicates (±SE).

These preliminary results indicate that TPL may be deployed by ROXY19 to repress target gene expression. Since TPL alone has a weak effect on *ROXY19* promoter activity, it is likely that ROXY19 is a limiting factor that inactivates TGA-mediated activation of the *ROXY19* promoter by recruitment of TPL.

3.1.5 ROXY19 represses JA-induced ROXY19 expression in transgenic plants

So far, our results showed that ROXY19 represses its own promoter in a manner that requires TGA factors and possibly the interaction with TPL. However, the repression mechanism does not require the active site or the presence of the conserved cysteine in the coding region of at least TGA2.

Next we aimed to investigate whether the mechanism of repression involves similar molecular components if the target promoter is not part of a transiently transformed plasmid but rather located in its native locus in the chromatin. First, we tested whether ectopically expressed ROXY19 represses its own promoter. We examined JA-induced endogenous *ROXY19* expression in a previously established ROXY19 overexpression line (ROXY19OE) in which the expression of *ROXY19* is driven by the *CaMV35S* promoter (Zander et al., 2012). Figure 3.5 showed that JA-induced endogenous *ROXY19* is strongly repressed in *ROXY19* overexpression plants. This result was reproduced with more independent *35S:HA-ROXY19* transgenic lines (See section 3.1.7 Figure 3.6A and Supplemental Figure S3A).

Figure 3.5 Class II TGA factors are required for ROXY19 to repress JA-induced *ROXY19* **expression in transgenic plants.** qRT-PCR analysis of endogenous *ROXY19* expression in WT Col-0, *tga256*, ROXY19OE and ROXY19OE/*tga256* plants treated with JA. Arabidopsis seeds were germinated and grown on soil for four weeks, and subsequently treated with volatile JA (MeJA) in glass aquaria. After 8 h of treatment, plant leaves were harvested for RNA extraction, endogenous *ROXY19* transcripts were analyzed by qRT-PCR. The mean values (±SE) from 6-8 independent replicates (one pot with one plant as a biological replicate) are shown.

3.1.6 ROXY19 cannot repress JA-induced ROXY19 expression in the tga256 mutant

The ROXY19 overexpression line (ROXY19OE) was crossed with the *tga256* mutant to generate a homozygous line ROXY19OE/*tga256* (AG Gatz). Since ROXY19 expression cannot be induced by SA in the *tga256* mutant, we induced the gene with JA, which induces the *ROXY19* gene independently of class II TGAs (Köster et al., 2012 and Figure 3.5). qRT-PCR analysis revealed that ectopic *ROXY19* expression represses JA-induced endogenous *ROXY19* transcription in Col-0 but not in *tga256* mutant background (Figure 3.5).

3.1.7. The ROXY19 active site is required for repression of its target promoter in plants

In order to investigate the importance of the conserved active site for ROXY19-mediated repression of genes in their natural chromatin context, we generated Arabidopsis transgenic plants constitutively expressing HA-tagged WT (ROXY19CCMC) or active site mutant (ROXY19SSMS) *ROXY19* under the control of the *CaMV35S* promoter. These transgenic plants were named *35S:HA-ROXY19CCMC* and *35S:HA-ROXY19SSMS*, respectively. Western blot assay showed that all these lines express HA-ROXY19 protein to similar levels (Figure 3.6C), except for a heterozygous line CCMC N#18

and a homozygous line SSMS N#14. Therefore, these lines were not included in hormone induction experiment.

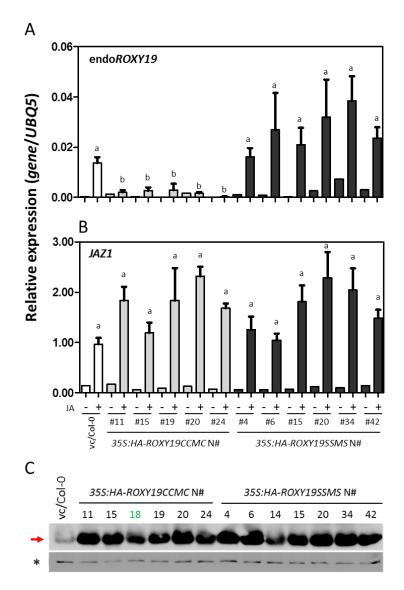


Figure 3.6 Repression of JA-induced ROXY19 expression by ROXY19 depends on a functional active site. (A) qRT-PCR analysis of endogenous ROXY19 expression in 35S:HA-ROXY19CCMC and 35S:HA-ROXY19SSMS transgenic plants after JA treatment. Homozygous Arabidopsis seeds from the T2 generation were germinated and grown on soil for 4 weeks, and subsequently treated with volatile JA (MeJA) in glass aquaria. After 10 h of treatment, plant leaves were harvested for RNA or protein extraction, endogenous ROXY19 transcripts were analyzed by qRT-PCR. (B) qRT-PCR analysis of JAZ1 expression in ROXY19 transgenic plants after JA treatment. Samples are the same as used in Figure 3.6A. The mean values (±SE) from four independent replicates (one pot with one plant as one biological replicate) of JA-treated samples are shown. One replicate of the corresponding mock sample is shown. Different letters in Figure 3.6A indicate significant difference among genotypes after treatment (Student's t-test, p < 0.05). The same letter Figure 3.6B indicates no significant difference among genotypes after treatment (Student's t-test, p<0.05). White, gray and black bars indicate empty vector, WT and active site mutant ROXY19 transformed Col-0 samples, respectively. (C) Western blot analysis of the ROXY19 transgenic lines using the antibody against the HA tag. Protein was extracted from mock plant samples used for RNA extraction in Figure 3.6A. Asterisk and arrow indicate unspecific bands, which serve as loading control, and specific bands, respectively.

After JA treatment of 30-days-old soil-grown plants, all *35S:HA-ROXY19CCMC* lines (lines CCMC N#11, #15, #19, #20 and #24) but not *35S:HA-ROXY19SSMS* lines (lines SSMS N#4, #6, #15, #20, #34 and #42) were compromised with respect to JA-induced endogenous *ROXY19* expression (Figure 3.6A). As control for the successful JA treatment, expression of the JA-responsive *JAZ1* was monitored (Figure 3.6B). The results suggest that the active site of ROXY19 is important for repressing endogenous *ROXY19* expression. These results differ from the observations made in transiently transformed protoplasts.

Our previously generated transgenic plants showed the same results. In transgenic lines *35S:HA-ROXY19CCMC*#8 and #12 JA-induced expression of endogenous *ROXY19* is strongly repressed which is not the case in lines *35S:HA-ROXY19SSMS*#9 and #18 (Supplemental Figure S3A). As control, all transgenic plants showed induction of the JA-responsive *LOX2* gene to a similar level when compared to Col-0 plants (Supplemental Figure S3B). Western blot analysis showed that all these transgenic lines express similar levels of HA-ROXY19 protein (Supplemental Figure S3C).

Next, we exchanged the active site of ROXY19 from CC-type into CPYC-type (ROXY19CPYC) and generated Arabidopsis transgenic plants, which were named *35S:HA-ROXY19CPYC*. Among four transgenic lines, three lines (lines CPYC#2, #10 and #15) showed protein expression to the same level as the previously generated *35S:HA-ROXY19CCMC*#8 line (Figure 3.7B). After JA treatment of soil-grown plants, the induction of *ROXY19* expression was compromised in lines *35S:HA-ROXY19CPYC*#9 and #15 and totally abolished in lines *35S:HA-ROXY19CPYC*#2 and #10 (Figure 3.7A).

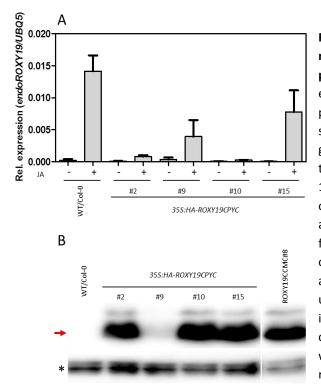


Figure 3.7 ROXY19 with a CPYC-type active site represses JA-induced ROXY19 expression in transgenic plants. (A) qRT-PCR analysis of endogenous ROXY19 expression in Col-0 and 35S:HA-ROXY19CPYC transgenic plants after JA-treatment. Homozygous Arabidopsis seeds from the T2 generation were germinated and grown on soil pot for four weeks, and subsequently treated with volatile JA (MeJA) in glass aquaria. After 10 h of treatment, plant leaves were harvested for RNA or protein extraction, endogenous ROXY19 transcripts are analyzed by qRT-PCR. The mean values (±SE) from four independent replicates (one pot with one plant as one biological replicate) are shown. (B) Western blot analysis of the 35S:HA-ROXY19CPYC transgenic plants using antibody against HA tag. Asterisk and arrow indicate unspecific bands, which served as loading control, and specific bands, respectively. All samples were analyzed in the same gel, there is one lane removed between CPCY#15 and CCMC#8 in the image.

3.2 Characterization of ROXY19 knock-out mutant

3.2.1 ROXY19 represses JA-induced CYP81D11 expression

The *CYP81D11* gene, which contains a functional *as-1*-like element, is induced by JA in a class II TGAdependent manner (Köster et al., 2012). Since ectopically expressed ROXY19 represses JA-induced *ROXY19* expression, we tested whether JA-induced *CYP81D11* is repressed in our *35S:HA-ROXY19* plants after JA treatment. Indeed, the *CYP81D11* gene is repressed in four *35S:HA-ROXY19CCMC* lines (lines CCMC N#11, #15, #19 and #20) (Figure 3.8A). The capacity to repress *CYP81D11* requires the active site of ROXY19 (Figure 3.8A).

3.2.2 JA-induced CYP81D11 expression is not altered in ROXY19 knock-out mutant

Since we found that ectopically expressed ROXY19 can repress JA-induced genes, such as its own gene and *CYP81D11* gene and since ROXY19 is the only ROXY that is induced by JA, we expected that the *CYP81D11* gene would be hyper-induced in the *ROXY19* loss-of-function mutant after JA treatment.

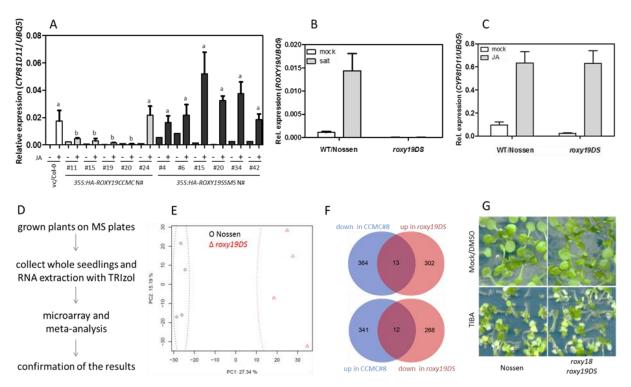
Since no T-DNA insertion mutant of *ROXY19* in the Col-0 background is available we worked with the transposon-tagged line *roxy19DS*, in which a *Ds* transposon is inserted 45 bp upstream of the *ROXY19* start codon in the Nossen background (Ndamukong, 2006 and Ito et al., 2002). qRT-PCR analysis revealed that salt (NaCl)-induced *ROXY19* expression in root tissues was not detected in the *roxy19DS* plants (Figure 3.8B), indicating this line is a knock-out mutant. However, expression of *CYP81D11* was induced to a similar level by JA in Nossen and *roxy19DS* plants (Figure 3.8C).

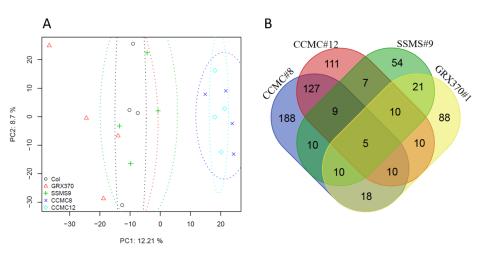
3.2.3 Microarray analysis of roxy19DS mutant

We used microarray analysis to identify genes that are differentially expressed in *roxy19DS* and WT Nossen plants. The WT Col-0 and *35S:HA-ROXY19* transgenic plants were also included for further analysis (See section 3.3.1). We chose to grow the plants under unstressed conditions in order to be able to identify target genes unhampered by the variability of the applied stress. In essence we expected to identify reciprocal changes in the expression of genes in the loss-of-function and the gain-of-function plants assuming that uninduced levels of *ROXY19* would already influence gene expression. A similar approach had been previously successful for the identification of target genes of the GRAS protein SCL14 (Fode et al., 2008). Arabidopsis seeds of each background were germinated side by side and grown vertically on MS-plates for two weeks. Subsequently, the whole seedlings (shoots and roots) were collected for microarray analysis with the Arabidopsis GeneChip[®] Gene 1.0 ST Arrays (Affymetrix) (Figure 3.8D). Four biological repeats were performed with independently grown plants.

A principle component analysis of the microarray data showed that the expression profile of *roxy19DS* is distinct from that of WT Nossen (Figure 3.8E). However, it has to be considered that the *DS* transposon line *roxy19DS* contains part of the Landsberg genome (Ndamukong, 2006). Therefore, we first compared the expression profile of the Nossen ecotype to that of Col-0 ecotype and selected the genes that expressed to a similar degree (fold change<1.5) in both ecotypes. This step excluded genes that show an ecotype-specific expression pattern and might be due to the difference between Nossen and the Nossen/Landsberg hybrid. Because ROXY19 specifically represses targeted genes of class II TGA factors, we were interested in genes that were up-regulated in *roxy19DS* mutant. However, none of the genes (*PDF1.2, ORA59, CYP81D11* and *ROXY18*), which are down-regulated in the *ROXY19* overexpressing lines was up-regulated in the mutant. No GO term was enriched in genes

down- or up-regulated in *roxy19DS* mutant according the method and criteria (more than 5% genes) used for analysis of genes down-regulated in CCMC#8 (See section 3.3.1 Figure 3.10A). Nevertheless, top 100 up-regulated and down-regulated genes (fold change>1.5, *p* value<0.05) were selected and listed in Supplemental Table S2.




Figure 3.8 Characterization of ROXY19 gain- and loss-of-function plants. (A) qRT-PCR analysis of CYP81D11 expression in ROXY19 transgenic plants after JA treatment. Samples are the same as used in Figure 3.6A. The same letter indicates no significant difference among genotypes after treatment (Student's t-test, p<0.05). White, gray and black bars indicate empty vector, WT and active site mutant ROXY19 transformed samples, respectively. (B) gRT-PCR analysis of ROXY19 expression in Nossen and roxy19DS mutant plants after salt (NaCl) treatment. Nossen and roxy19DS mutant plants were grown in hydroponic jars for two weeks, and subsequently treated with mock and 150 mM salt (NaCl). After 6 h of treatment, root tissues were harvested for RNA extraction. ROXY19 transcripts were analyzed with gRT-PCR. The mean values (±SE) from five independent replicates (one jar with approximately 100 seedlings as one biological replicate) are shown. (C) qRT-PCR analysis of CYP81D11 expression in Nossen and roxy19DS mutant plants after JA treatment. Nossen and roxy19DS mutant plants were grown on soil for four weeks and subsequently treated with mock and volatile JA (MeJA) in glass aquaria. The mean values (±SE) from 8 independent replicates (one pot with one plant as one biological replicate) are shown. (D) Experimental procedures of microarray analysis with ROXY19 gain- and loss-of-function mutants and control plants. Arabidopsis seeds were germinated and grown vertically on MS-plates for two weeks, and subsequently ~50 seedlings of each genotype were harvested for RNA extraction with TRIzol solution. Four biological replicates were performed. RNA sample were analyzed with Affymetrix GeneChips® Gene 1.0 ST Arrays. (E) Principal components analysis of microarray data from Nossen and roxy19DS. (F) Venn diagram shown genes that are reciprocally regulated in roxy19DS and CCMC#8 plants. Genes that were down- or upregulated in roxy19DS and CCMC#8 were used (FC>1.5, p value<0.05). Overlapping genes and their expression are shown in Supplemental Table S3. (G) Growth phenotype of Nossen and roxy18 roxy19DS double mutant plants on MS-plates containing DMSO (mock) or TIBA. Arabidopsis seeds were germinated and grown on MS-plates containing DMSO (mock) or 50µM TIBA for two weeks.

3.3 ROXY19 represses detoxification pathway genes

3.3.1 Isolation of ROXY19-regulated genes by microarray analysis

So far, we have identified the potential target genes of ROXY19 through educated guesses. We were able to support our hypothesis by using plants ectopically expressing *ROXY19*, but so far loss-of-function evidence is lacking and the microarray analysis of WT Nossen and the *roxy19DS* mutant under non-inducing conditions had not given any hint on the endogenous function of ROXY19. The identification of further target genes of ROXY19 might give us a hint under which experimental conditions we might detect a loss-of-function phenotype. Therefore, we carried out transcriptional profiling analysis of lines *35S:HA-ROXY19CCMC*#8 and #12, line *35S:HA-ROXY19SSMS*#9, line *35S:HA-GRX370*#1 and corresponding WT Col-0. Growth conditions (axenically grown seedling) and type of harvest (roots and shoots) were done as described in the previous section for the analysis of Nossen and *roxy19DS* mutant (See section 3.2.3).

A principle component analysis (PCA) revealed that expression profiles of line 35S:HA-ROXY19SSMS#9 was much closer to that of Col-0 and defined a group that was distinct from lines 35S:HA-ROXY19CCMC#8 and #12 (Figure 3.9A). This result suggests that ROXY19SSMS is dysfunctional *in planta*. To check the specific repression of genes in different transgenic lines, genes that were down-regulated in CCMC#8, CCMC#12, SSMS#9 and GRX370#1 when compared to WT Col-0 were selected with a cut-off of fold change more than 1.5 and *p* value less than 0.05 (FC>1.5, *p* value<0.05). This analysis identified 398 genes for CCMC#8, 296 for CCMC#12, 130 for SSMS#9 and 173 for GRX370#1, respectively. A Venn diagram analysis showed that 151 and 43 genes are down-regulated in both CCMC#8 and CCMC#12 plants, and CCMC#8 and GRX370#1 plants, respectively (Figure 3.9B).

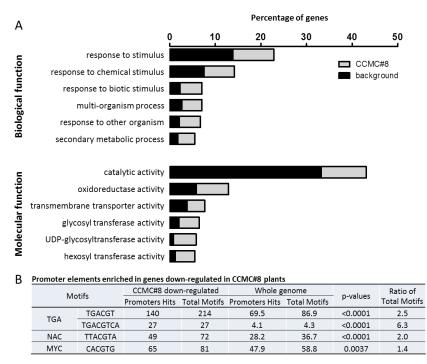


Figure 3.9 Microarray analysis of *ROXY19* **overexpression lines.** (A) Principal components analysis of microarray data. (B) Venn diagram analysis of down-regulated genes in transgenic plants. Genes that were down-regulated in CCMC#8, CCMC#12, SSMS#9 and GRX370#1 when compared to Col-0 were selected (FC>1.5, *p* value<0.05). This analysis identified 398 genes for CCMC#8, 296 for CCMC#12, 130 for SSMS#9 and 173 for GRX370#1, respectively. AGI (Arabidopsis Genome Initiative) codes of these genes were used for Venn diagram sorting.

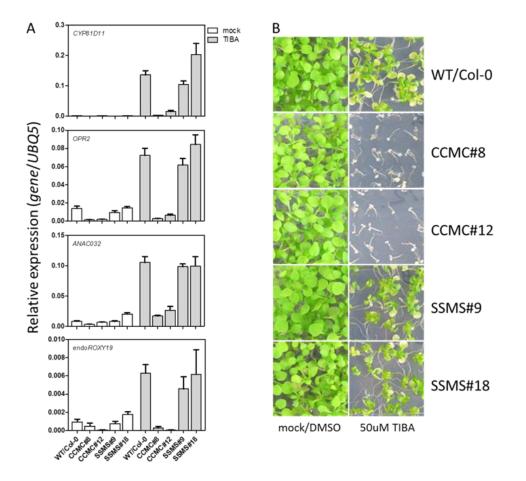
Next, we tested, whether genes that are repressed or induced in the overexpressing lines were reciprocally regulated in the knock-out mutant. A Venn diagram analysis showed that 13 genes are up-regulated in *roxy19DS* and down-regulated in CCMC#8 and 12 genes reversely (Figure 3.8F,

Supplemental Table S3). Interestingly, the TGACGTMA (M = A or C) motif was found in the promoter regions of three genes (AT2G18230/AtPPa2, AT2G21187/other RNA and AT4G34000/ABF3) which are up-regulated in *roxy19DS* and down-regulated in CCMC#8. It is interesting to verify whether these three genes are direct targets of the ROXY19-TGA-module. No TGACGT motif was found in the promoter of genes that are down-regulated in *roxy19DS* and up-regulated in CCMC#8, suggesting their expression is indirectly influenced in those plants.

Since the microarray analysis of the knock-out plants did not reveal any clue on the endogenous function of ROXY19, we focused on those genes that were significantly altered in the *35S:ROXY19CCMC#8* line. Due to the fact that the ALWL motif is important for ROXY19 function and that it mediates the interaction with the transcriptional co-repressor TPL, we concentrated our interest on 337 genes that were significantly repressed (FC>1.5, *p* value<0.05) in CCMC#8 but not in SSMS#9 and GRX370#1 when compared to Col-0 plants. These genes are listed in Supplemental Table S1. From ROXY19-repressed genes, a gene ontology (GO) analysis with the agriGO platform (Du et al., 2010) revealed that the following biological terms were over-represented (Figure 3.10A).

Figure 3.10 Meta-analysis of genes down-regulated in *35S:HA-ROXY19CCMC#8* **plants.** (A) Gene Ontology (GO) over-representation analysis of 337 putative target genes which show reduced expression (FC>1.5, *p*-value<0.05) in *35S:HA-ROXY19#8* but not in *35S:HA-ROXY19SSMS#9* plants. Black bars indicate the percentage of genes of each GO term found within the group of all annotated genes of the Arabidopsis genome. Gray bars indicate the percentage of genes of each GO terms encompassing more than 17 genes (5%) are shown. (B) Promoter elements enriched in genes negatively affected in *35S:HA-ROXY19CCMC#8* plants. The occurrence of enriched motifs was determined in the 1-kb sequences upstream of the 5' -untranslated regions using Motif Mapper (Berendzen et al., 2012).

The GO term "response to stimulus" and its sub-GO term "response to chemical stimulus" revealed the most significant enrichment within the GO domain "biological process". Within the GO domain "molecular function", the GO term "catalytic activity" and its sub-GO terms "oxidoreductase activity" (phase I of the detoxification process) and "transmembrane transporter activity" (phase III of the


detoxification process) were enriched. Moreover, the GO term "transferase activity, transferring glycosyl groups" (phase II of the detoxification process) was overrepresented.

Among transcription factors repressed in CCMC#8, five (ATAF1/ANAC002, ANAC014, NAC032, ANAC041 and ANAC102) belong to the NAC [for NAM (no apical meristem), ATAF (Arabidopsis thaliana activating factor), CUC (cup-shaped cotyledon)] family. The expression of *ATAF1* and *ANAC102* is also inducible by the xenobiotic chemical benzoxazolin-2(3*H*)-one (BOA) (Baerson et al., 2005).

Subsequently, a motif-based sequence analysis performed using Motif Mapper (Berendzen et al., 2012) revealed that TGA- and NAC-binding sites are the most enriched motifs in the promoters (1000 bp upstream of the 5' -untranslated regions) of *ROXY19* repressed genes (Figure 3.10B). Notably, the TGACGTCA palindrome is more than six-fold enriched with 27 hits in the repressed genes. This already indicates that ROXY-mediated repression operates at TGA-regulated promoters.

3.3.2 ROXY19 represses detoxification pathway genes

In order to confirm the novel results from our microarray analysis, we analyzed the expression of specific detoxification genes after xenobiotic treatment by qRT-PCR. Previous analysis had shown that the electrophilic halogenated phenol TIBA (2,3,5-Triiodobenzoic acid) induces genes of the detoxification pathway, many of them in a class II TGA-dependent manner (Fode et al., 2008). TIBA-induced expression of three detoxification pathway genes (*CYP81D11, OPR2* and *ANAC032*) is strongly repressed in *35S:HA-ROXY19CCMC* plants (lines CCMC#8 and #12) but not in *35S:HA-ROXY19SSMS* plants (lines SSMS#9 and #18) (Figure 3.11A). In concert with gene expression results, both *35S:HA-ROXY19CCMC* lines were more sensitive to TIBA on MS-plates (Figure 3.11B).

Figure 3.11 ROXY19 represses detoxification pathway genes and renders plant more sensitive to TIBAtreatment. (A) qRT-PCR analysis of detoxification pathway genes and endogenous *ROXY19* expression in *35S:HA-ROXY19CCMC* and *35S:HA-ROXY19SSMS* transgenic plants. Arabidopsis seeds were germinated on soil and grown for four weeks, and subsequently sprayed with DMSO (mock) or 0.1mM TIBA. After 10 h of treatment, plant leaves were harvested for RNA extraction and cDNA synthesis, *CYP81D11, OPR2, ANAC032* and endogenous *ROXY19* transcripts were analyzed with qRT-PCR. The mean values (±SE) from 4-5 independent replicates (one pot with one plant as one biological replicate) are shown. (B) Growth phenotype of WT Col-0 and different *ROXY19* overexpression lines on TIBA-containing plates. Arabidopsis seeds were germinated and grown on MS-plates containing DMSO (mock) or 50µM TIBA for two weeks.

Quantification of the chlorophyll content also showed that the transgenic line XVE#9, which expresses *ROXY19* under the control of a β -estradiol-inducible promoter (See section 3.5 Figure 3.17A and B), is more sensitive to TIBA than Col-0 in the presence of β -estradiol (Figure 3.12A and B).

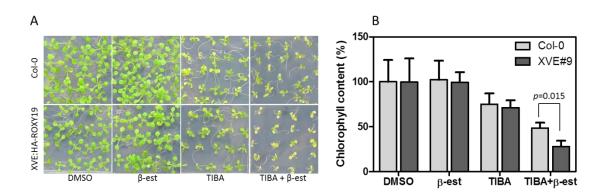


Figure 3.12 β -estradiol-induced *ROXY19* expression renders Arabidopsis transgenic plants more sensitive to TIBA. (A) Growth phenotype of Arabidopsis plants grown on MS-plates. WT Col-0 and XVE#9 transgenic plants were germinated and grown on MS-plates containing DMSO (mock), β -estradiol, TIBA and β -estradiol plus TIBA. The images were taken after 2 weeks of growth. (B) Quantitative analysis of total chlorophyll content in leaves of the indicated genotypes grown on MS-plates as shown in Figure 3.12A. Data are mean ± SEM of three biological replicates. *p*-value indicates significant difference between genotypes after treatment with TIBA and β -estradiol (Student's *t*-test).

A growth assay with another set of independently generated transgenic lines showed that four *35S:HA-ROXY19CCMC* lines (lines CCMC#11, #15, #19 and #20) are more sensitive to TIBA, while all seven *35S:HA-ROXY19SSMS* lines (lines SSMS#4, #6, #14, #15, #20, #34 and #42) are affected to the same degree as Col-0 (Figure 3.13).

Next, the TIBA-induced marker gene *CYP81D11* expression was analyzed in the *35S:HA-ROXY19CPYC* transgenic plants (Section 3.1.7). TIBA-induced *CYP81D11* expression was repressed in lines CPYC#2 and #10 (Figure 3.14A). However, TIBA-induced *CYP81D11* was only compromised in line CPYC#15 which expressed relative high protein amounts (Section 3.1.7, Figure 3.7B). Consistently, the growth assay revealed that lines (*35S:HA-ROXYCPYC*#2 and #10), which repress *CYP81D11* expression, were also more sensitive to TIBA (Figure 3.14C).

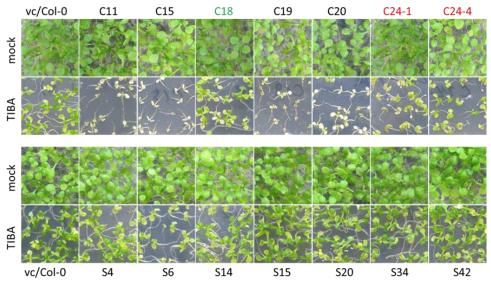
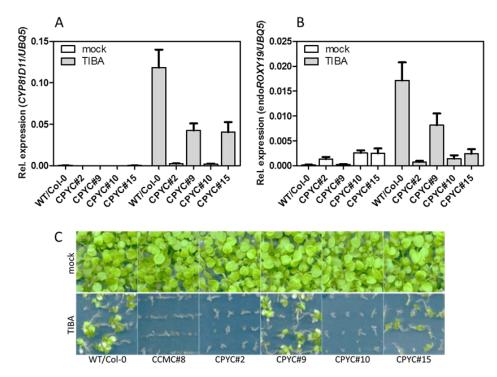
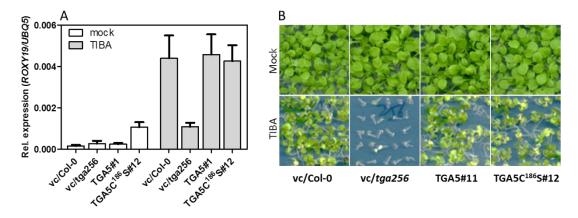



Figure 3.13 ROXY19 overexpression plants are more sensitive to xenobiotic TIBA. Like in Figure 3.11B, Arabidopsis seeds of the indicated lines were germinated and grown on MS-plates containing DMSO (mock) or 50μ M TIBA for two weeks.

Figure 3.14 The *355:HA-ROXY19CPYC* transgenic plants repress TIBA-induced *CYP81D11* and endogenous *ROXY19* expression and are more sensitive to TIBA treatment. (A) and (B) qRT-PCR analysis of *CYP81D11* and endogenous *ROXY19* in WT Col-0 and *355:HA-ROXY19CPYC* transgenic plants. Arabidopsis seeds were germinated on soil and grown for four weeks, and subsequently sprayed with DMSO (mock) or 0.1mM TIBA. After 10 h treatment, plant leaves were harvested for RNA extraction and cDNA synthesis, *CYP81D11* and endogenous *ROXY19* transcripts were analyzed with qRT-PCR. The mean values (±SE) from 4-5 independent replicates (one pot with one plant as one biological replicate) are shown. (C) The *355:HA-ROXY19CPYC* transgenic plants are more sensitive to TIBA. Arabidopsis seeds were germinated and grown on MS-plates containing DMSO (mock) or 50μM TIBA for two weeks.


To obtain a loss-of-function phenotype, we examined whether the *roxy19* mutant is more resistant to xenobiotics. Considering potential gene redundancy, our lab had crossed *roxy19DS* with *roxy18* (a T-DNA insertion line in Col-0 background) to generate a double mutant in which the two most homologous *ROXYs* are simultaneously mutated (AG Gatz). Although transgenic plants expressing *ROXY19* are more sensitive to xenobiotic stress (Figure 3.11B and 3.13), no enhanced resistance in the *roxy18 roxy19DS* double mutant was observed as compared to Nossen after growth on TIBA-containing plates (Figure 3.8G).

3.3.3 ROXY19 is induced by xenobiotic stress

Consistent with the occurrence of TGA-binding sites in its promoter, we found that the expression of *ROXY19* was induced by TIBA in Col-0 plants (Figure 3.11A). In addition, the TIBA-induced endogenous *ROXY19* was repressed in *35S:HA-ROXY19CCMC* plants (lines CCMC#8 and #12) but not in *35S:HA-ROXY19SSMS* plants (lines SSMS#9 and #18) (Figure 3.11A). Again, the *35S:HA-ROXY19CPYC* transgenic plants were used to check the expression of endogenous *ROXY19*. The qRT-PCR analysis revealed that endogenous *ROXY19* was repressed in those three lines (CPYC lines#2, 10 and #15) (Figure 3.14B), that show strong ROXY19 protein expression (Figure 3.7B). This result indicates that, like detoxification genes, *ROXY19* is also responsive to xenobiotic stress and can be repressed by ROXY19.

3.3.4 Class II TGA factors are required for TIBA-induced ROXY19 expression

We have shown that *ROXY19* promoter activity was activated by class II TGA transcription factors (TGA2) in protoplasts (Figure 3.2A). We examined whether class II TGA factors are required for TIBA-induced *ROXY19* expression. 30-days-old soil grown plants were treated with 100 μ M TIBA solution. qRT-PCR analysis showed that TIBA-induced *ROXY19* expression is hampered in the *tga256* mutant (Figure 3.15A). The induction of *ROXY19* is recovered in transgenic plants expressing TGA5 (line *35S:TGA5#*1) or TGA5C¹⁸⁶S (line *35S:TGA5C¹⁸⁶S#*12) in the *tga256* mutant background (Figure 3.15A). It has been known that the *tga256* mutant is more sensitive to TIBA (Fode et al., 2008). We found that both TGA5 and TGA5C¹⁸⁶S restore TIBA-sensitivity of t*ga256* to Col-0 level (Figure 3.15B). Under these conditions, the existence of the putative redox-active cysteine is not important.

Figure 3.15 Characterization of *tga256* mutant and complementation lines in response to xenobiotic treatment. (A) TIBA induces *ROXY19* expression in a class II TGA-dependent way. Arabidopsis seeds were germinated on soil and grown for four weeks, and subsequently sprayed with DMSO (mock) or 0.1mM TIBA solution. After 10 h of treatment, plant leaves were harvested for RNA extraction and cDNA synthesis, *ROXY19* transcripts were analyzed with qRT-PCR. The mean values (±SE) from 5 independent replicates (one soil pot with one plant as one biological replicate) are shown. (B) The *tga256* mutant is more sensitive to xenobiotic TIBA. Arabidopsis seeds of were germinated and grown on MS-plates containing DMSO (mock) or 50μM TIBA for two weeks.

3.4 ROXY19 facilitates susceptibility to necrotrophic fungus Botrytis cinerea

Since defense hormone-induced *PDF1.2* expression is repressed in *ROXY19* overexpressing plants (Ndamukong et al., 2007 and Supplemental Figure S4), we examined whether these plants are more susceptible to infections with necrotrophic pathogens. As expected, the *35S:HA-ROXY19CCMC* plants (lines CCMC#8 and #12) were more susceptible to *Botrytis cinerea* with larger lesion size than Col-0 and the *35S:HA-ROXY19SSMS* plants (lines SSMS#9 and #18) (Figure 3.16A). Consistent with these results, gene expression analysis revealed that pathogen triggered *PDF1.2* expression (Figure 3.16B) and also JA-induced *PDF1.2* expression (Supplemental Figure S4) is repressed in *35S:HA-ROXY19CCMC* plants but not in *35S:HA-ROXY19SSMS* plants. The results confirm that the active site is important for ROXY19 function. *Botrytis cinerea*-induced *PDF1.2* expression was also strongly repressed in lines CPYC#2 and CPYC#10 (Figure 3.16C). Since line CPYC#9 does not express the protein, *PDF1.2* can be induced. As observed before (Figures 3.7), line CPYC#15, which expresses similar amounts of HA-ROXY19 as lines #2 and #10, does not repress *PDF1.2*. The same pattern was observed in JA-induced plants (Supplemental Figure S5). Still, the consistent repressive activity observed in lines #2 and #10 supports the notion that the CCMC motif can be exchanged by the CPYC active site. Thus, the specific function of the CCMC sequence has remained elusive.

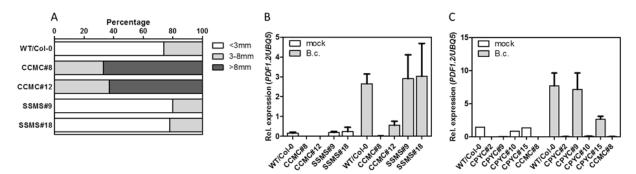


Figure 3.16 Symptom development and *PDF1.2* expression in Col-0 and *ROXY19* transgenic plants after infection with *Botrytis cinerea*. (A) Lesion size on Col-0 and *ROXY19* transgenic plants at three days post infection with *B. cinerea*. Leaves of four-week-old soil grown plants were drop-inoculated with a *B. cinerea* spore solution $(5 \times 10^4 \text{ spores per ml})$ or quarter-strength potato dextrose broth (mock). The diameters of at least 30 lesions per experiment were measured and grouped according to their size into the three indicated classes. (B) qRT-PCR analysis of *PDF1.2* expression in Col-0 and *35S:HA-ROXY19CCMC* transgenic plants after *B. cinerea* infection. Leaf samples from Figure 3.16A were harvested for RNA extraction. (C) qRT-PCR analysis of *PDF1.2* expression in Col-0 and *35S:HA-ROXY19CPYC* transgenic plants after *B. cinerea* infection. Leaves of four-week-old soil grown plants were drop-inoculated with a *B. cinerea* infection. Leaves of rour-week-old soil grown plants were drop-inoculated with a *B. cinerea* spore solution (5 x 10⁴ spores per ml) or quarter-strength potato dextrose broth (mock). Three days after infection, leaf samples were harvested for RNA extraction. The mean values (±SE) from four independent replicates (samples from 3-4 plants as one biological replicate) of infected samples are shown. One replicate of uninfected samples are shown.

3.5 Development of a chemical inducible ROXY19 expression transgenic line

Our results with the stable transgenic plants show that ROXY19 represses pathogen and JA-induced *PDF1.2* expression (Figure 3.16 and Supplemental Figure S4). In order to investigate whether the repression can directly occur after induction of *ROXY19* expression, we used a β -estradiol-inducible vector (Curtis and Grossniklaus, 2003) to generate Arabidopsis transgenic plants expressing *ROXY19*. The resulting lines were called XVE lines (Figure 3.17). In the presence of the inducing chemical, β -estradiol, line XVE#9 showed ROXY19 protein expression to a similar level of a previous produced constitutive expression line (Figure 3.17B). After ACC/JA-treatment of MS-grown plants, both WT and

XVE#9 plants showed strong *PDF1.2* induction. Although the induction already become compromised in Col-0 in the presence of β -estradiol, the *PDF1.2* expression was more repressed in XVE#9 than in Col-0 (Figure 3.17C). The induction was totally abolished in the previously generated *35S:HA-ROXY19CCMC*#8 plants. The result suggests that an inducible *ROXY19* expression can also repress ET/JA-induced *PDF1.2*.

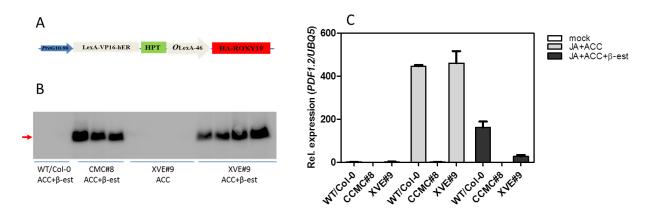


Figure 3.17 Development and characterization of transgenic plants containing ROXY19 under the control of a chemically inducible promoter. (A) Schematic diagram of the inducible expression construct. Only the core region between T-DNA left and right border is shown. A synthetic promoter, ProG10-90, controls the expression of the transactivator, LexA-VP16-hER (XVE), which encodes a chimeric transcription factor consisting of the DNA-binding domain of LexA, the transcription activation domain of VP16 and the ligand-binding domain of the human estrogen receptor; upon induction, XVE binds to the LexA operators upstream of a core promoter (OLexA-46) and induces the expression of HA-tagged ROXY19. (B) Western blot analysis of the ROXY19 expression. Protein extracts as indicated were prepared from the same plant samples (2 to 4 replicates) used for RNA preparation in Figure 3.17C. HA-ROXY19 protein was detected with anti-HA. Red arrow denotes ROXY19 specific bands. (C) qRT-PCR analysis of PDF1.2 expression in chemically induced ROXY19 plants after hormone and chemical treatment. Col-0, 35S:HA-ROXY19CCMC#8 and XVE#9 transgenic plants were grown vertically on MS-plates for 12 days and subsequently transferred to MS-plates containing 0 or 10 μ M β -est and supplemented with 0.01% ethanol (mock) or 5 μ M MeJA in 0.01% ethanol (JA) and 500µM ACC as indicated. After 48 h of treatment, approximately 50 seedlings were harvested for RNA and protein (B) extraction. The mean values (±SE) from four independent replicates (one treatment with 50 seedlings as one replicate) are shown.

3.6 Inhibiting DNA methylation cannot recover PDF1.2 expression in ROXY19

transgenic plants

Since epigenetic regulation such as DNA methylation interferes with gene expression, it is interesting to known whether the promoter of *PDF1.2* or upstream genes become hyper-methylated in *ROXY19* overexpression plants. We grew Arabidopsis plants on MS-plates containing DNA methylation inhibitor 5-azacytidine (5-azaC) to erase gene methylation. However, after ACC/JA-induction the expression of *PDF1.2* was still repressed in 5-azaC treated plants (Figure 3.18A).

Although these results suggest that ROXY19 does not repress *PDF1.2* expression through DNA hypermethylation, we set out to check whether SA may manipulate DNA methylation of ET/JA-mediated genes to repress their expression. Both plants grown in the absence or presence of 5-azaC showed strong *PDF1.2* expression after induction, though plants grown with inhibitor had an alleviated induction, the induction was repressed by SA (Figure 3.18B). As control the expression of a DNA methylation marker gene, *FWA*, was dramatically induced in all plants grown with 5-azaC (Figure 3.18C). These results reveal that DNA methylation does not play a major role in SA-mediated repression of ET/JA-induced *PDF1.2* expression.

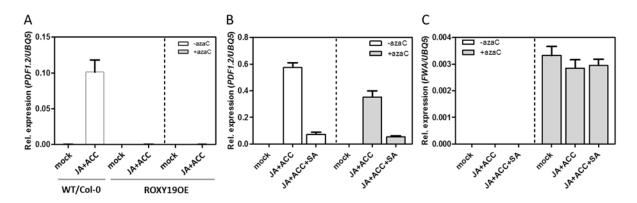
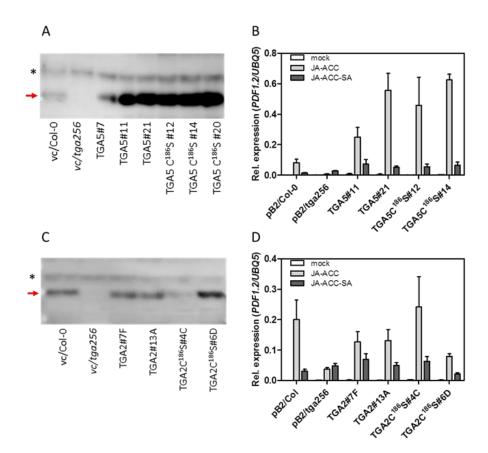


Figure 3.18 DNA methylation does not play a major role in regulating PDF1.2 expression. (A) Inhibiting of DNA methylation cannot recover PDF1.2 expression in ROXY19 gain-of-function plants. ROXY19 transgenic line (ROXY19OE) was germinated and grown vertically on MS-plates with or without 25µM 5-azaC (5-Azacytidine) for 12 days and subsequently transferred to MS-plates containing 0 or 25µM 5-azaC and supplemented with 0.01% ethanol (mock) or 5µM MeJA in 0.01% ethanol (JA) and 500µM ACC as indicated. As control, Col-0 plants was germinated and grown vertically on MS-plates for 12 days and subsequently transferred to MS-plates containing 0 or 25µM 5-azaC and supplemented with 0.01% ethanol (mock) or 5µM MeJA in 0.01% ethanol (JA) and 500µM ACC as indicated. After 48hr of treatment, approximately 50 seedlings were harvested for RNA extraction. The mean values (±SE) from four independent replicates (one treatment with 50 seedlings as one replicate) are shown. (B) qRT-PCR analysis of PDF1.2 expression in hormone treated Col-0 plants grown on MS-plates with or without 5-azaC. Col-0 seeds were germinated and grown vertically on MS-plates with or without 25µM 5-azaC for 12 days, and then transferred to MS-plates supplemented with 0.01% ethanol (mock) or 5µM MeJA in 0.01% ethanol (JA) plus 500µM ACC or 200µM SA as indicated. After 24 h of treatment, approximately 50 seedlings were harvested for RNA extraction. The mean values (±SE) from five independent replicates (one treatment with 50 seedlings as one biological replicate) are shown. (C) qRT-PCR analysis of FWA expression in hormone treated Col-0 plants grown on MS-plates with or without 5-azaC. RNA samples were the same used for analysis in Figure 3.18B.

3.7 Characterization of the roles of class II TGA factors in Arabidopsis


3.7.1 The cysteine of class II TGAs is not important for regulating PDF1.2 expression

Since SA represses the ET/JA-induced expression of defense genes and since these genes depend on class II TGA transcription factors, it has been hypothesized that SA induces a regulatory protein that interferes with class II TGA activity. A candidate protein is ROXY19, as its expression is induced by SA and as ROXY19 protein interacts with TGA factors. Moreover, the ET/JA-signaling pathway is suppressed in *ROXY19* overexpressing plants. Since the active site of ROXY19 is important for efficient repression of target genes, it is possible that the potential oxidoreductase activity of ROXY19 interferes with TGA function by controlling its redox state.

All three members of class II TGA factors contain only one conserved cysteine (Cys186). In order to investigate whether the cysteine is important for class II TGA factors in regulating *PDF1.2* expression, the cysteine residue was mutated to serine (Ser/S). We generated transgenic Arabidopsis plants

expressing TGA5 and TGA5C¹⁸⁶S under the control of *CaMV35S* promoter in the *tga256* triple mutant. Transgenic plants showed high expression of TGA5 (lines TGA5#7, #11 and #21) and TGA5C¹⁸⁶S (lines #12, #14 and #20) as shown by Western blot analysis (Figure 3.19A). Transgenic plants grown on MS-plates were used for the hormone crosstalk assays. As reported previously, ACC/JA-treatment strongly induced expression of the marker gene *PDF1.2* and the induction was repressed in the presence of SA (Zander et al., 2010). In the *tga256* triple mutant, induction ACC/JA induction was abolished and SA slightly induced *PDF1.2* expression in a previous report (Zander et al., 2010). Both *35S:TGA5* and *35S:TGA5C*¹⁸⁶S transgenic plants exhibited stronger ACC/JA-induced *PDF1.2* expression as compared to Col-0 plants. Moreover the induction was repressed by addition of SA (Figure 3.19B). This result suggests that the conserved Cys residue is not important for TGA5 function in terms of regulating ACC/JA-induced and SA-repressed *PDF1.2* expression.

The previously generated Arabidopsis transgenic plants expressing TGA2 (lines TGA2#7F and #13A) and TGA2C¹⁸⁶S (lines TGA2C¹⁸⁶S#4C and #6D) under the *CaMV35S* promoter (AG Gatz) were used to test the importance of Cys residue of TGA2. Western blot analysis revealed these transgenic plants expressed protein level similar to Col-0, but much less than the *35S:TGA5* transgenic plants (Figure 3.19C). Hormone crosstalk assays showed that both WT and TGA2C¹⁸⁶S restore ACC/JA-induced *PDF1.2* expression. However, the negative effect of SA was not as strong as the observed in WT and *35S:TGA5* plants (Figure 3.19D). This result indicates that the conserved Cys residue is not important for TGA2 function in regulating *PDF1.2* expression.

Figure 3.19 Complementation of *tga256* triple mutant plant with WT and cys mutant TGA factors. (A) Western blot analysis of *35S:TGA5* and *35S:TGA5C*¹⁸⁶*S* transgenic using antibody against TGA2 and TGA5. (B) Quantitative real-time RT-PCR (qRT-PCR) analysis of *PDF1.2* expression in complementation plants after hormone treatment. (C) Western blot analysis of *35S:TGA2* and *35S:TGA2C*¹⁸⁶*S* transgenic plants using

(Figure 3.19 continued) antibody against TGA2 and TGA5. (D) qRT-PCR analysis of *PDF1.2* expression in transgenic plants after hormone treatment. In Figure (A) and (C), asterisk and arrow indicate unspecific bands which serve as loading control and specific bands, respectively. In Figure (B) and (D), Arabidopsis seeds of each genotype were germinated on MS-plates and grown vertically for 12 days, and subsequently transferred to MS-plates supplemented with 0.01% ethanol (mock) or 5µM MeJA in 0.01% ethanol (JA) and 500µM ACC, or 200µM SA as indicated. After 48 h of treatment, approximately 50 seedlings were harvested for RNA or protein extraction. The mean values (±SE) from four independent replicates (one MS-plate with 50 seedlings as one biological replicate) are shown.

3.7.2 Defense hormone treatment does not influence protein stability of class II TGAs

Pontier et al. (2002) reported that certain TGA proteins (TGA1 and TGA3) were post-translationally regulated by proteasome-mediated proteolysis. As the transgenic *TGA5* complemented the *tga256* mutant (Figure 3.19B and D), we continued to examine whether TGA5 protein level is regulated by ACC/JA and SA treatments. Protein was extracted from hormone treated samples used in Figure 3.19B. However, our result showed that both endogenous TGA5 (and TGA2) protein in Col-0 plants and *35S:TGA5* transgenic plants were quite stable in response to different hormone treatments (Figure 3.20).

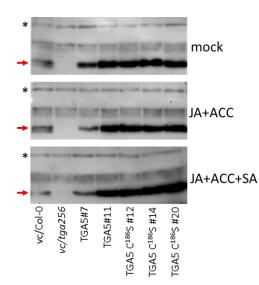


Figure 3.20 Protein stability of TGA5 is not regulated by defense hormones. Detection of TGA5 protein using antibody against TGA2 and TGA5 after hormone treatments in transgenic plants. Protein was extracted from plant samples used for RNA extraction in Figure 3.19B. Asterisk and arrow indicate unspecific bands, which serve as loading control, and specific bands, respectively.

3.7.3 Class I TGAs repress the ET/JA-induced PDF1.2 expression in the absence of class II TGAs

The Arabidopsis genome encodes 10 TGA genes which are divided into five classes. Studies have shown that individual TGA proteins vary in their ability to regulate target gene expression. For instance, it has been shown that class I TGA1 and class II TGA5 have opposite effects on the *octopine synthase* (*ocs*) element (Foley and Singh, 2004). Like the *as-1* element, the *ocs* element – originally identified in Agrobacterium T-DNA gene - is recognized by TGA factors. Genetic analysis revealed that class II TGA factors are required for both ET/JA-induced and SA-repressed *PDF1.2* gene expression (Zander et al., 2010). Whether other TGA factors are involved in these hormone responses is not characterized. However, our hormone crosstalk assay showed that ACC/JA-induced and SA-repressed *PDF1.2* expression was not affected in the *tga14* double mutant (Figure 3.21A).

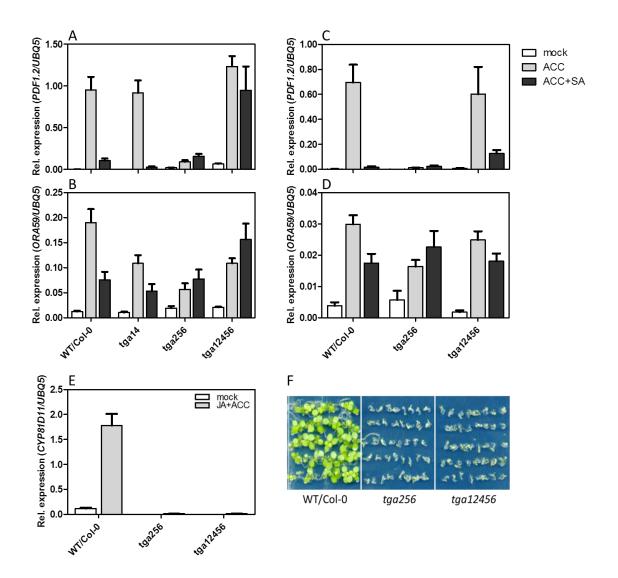
The *tga12456* pentuple mutant was generated by crossing the *tga256* with the *tga14* mutant and a homozygous line was selected by genotyping PCR in F2 generation (AG Gatz). Next we performed hormone crosstalk assays using Arabidopsis seedlings grown on MS-plates. We found that the ACC/JA-induced *PDF1.2* expression, which was abolished in *tga256*, was recovered in the *tga12456*

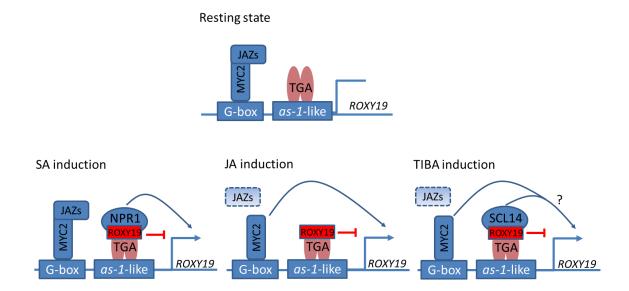
mutant (Figure 3.21A and C). This means that class I TGA factors can function as negative transcription factors and that the function of class II TGA factors is to prevent their access to the promoter. Moreover, induction in *tga12456* mutant was not repressed by SA (Figure 3.21A), this result confirms pervious finding that SA-mediated repression is class II TGA factors dependent (Leon-Reyes et al., 2010; Zander et al., 2010).

We confirmed our findings that class I TGA factors are repressors of *PDF1.2* gene expression in the absence of class II TGA factors in soil grown plants. However, recovered *PDF1.2* expression in *tga12456* mutant was still significantly repressed by SA (Figure 3.21C) indicating that under these conditions hitherto not described class II TGA-independent negative effect of SA is operational. This discrepancy observed among MS-plates grown seedlings and soil grown mature plants requires further clarification. Nevertheless, since both Col-0 and *tga14* double mutant showed a similar induction of *PDF1.2* expression in WT Col-0 plants. Zander et al. (2014) showed that class II TGA factors regulate the ET/JA-signaling pathway via directly binding to *ORA59* promoter and activating *ORA59* expression. Thus it is of interest to know whether JA/ACC-induced *ORA59* are recovered in the *tga12456* plants. However, in this experiment, the expression of *ORA59* was inconsistent (Figure 3.21B and D).

The expression of JA-responsive *CYP81D11* is also class II TGA factors dependent (Köster et al., 2012). Thus we examined the induction of *CYP81D11* in the *tga12456* plants. However, the JA-induced *CYP81D11* expression was not recovered in *tga12456* (Figure 3.21E).

It has been known that *tga256* mutant plants are more sensitive to SA (Fode et al., 2008). As the ET/JA-induced *PDF1.2* was restored in *tga12456* plants, we further tested whether SA sensitivity is restored in *tga12456*; however like *tga256*, *tga12456* plants grown on SA-containing plates are more sensitive and become chlorosis as compared to WT Col-0 (Figure 3.21F). These results suggest not all alternations observed in *tga256* mutant can be suppressed by *tga14* mutant.




Figure 3.21 Class I TGA factors repress the ET/JA-induced PDF1.2 expression in the absence of class II TGA factors. (A) and (B) gRT-PCR analysis of PDF1.2 and ORA59 expression in WT/Col-0, tga14, tga256 and tga12456 grown on MS- plates after hormone treatment. Col-0, tga14, tga256, and tga12456 were grown vertically on MS-plates for 12 days and subsequently transferred to plates supplemented with 0.01% ethanol (mock) or 50μM MeJA in 0.01% ethanol (JA) and 500μM ACC, or 200 μM SA as indicated. After 48 h of treatment, approximately 50 seedlings were harvested for RNA extraction. (C) and (D) qRT-PCR analysis of PDF1.2 and ORA59 expression in WT/Col-0, tga14, tga256 and tga12456 mutant grown on soil after hormone treatment. Col-0, tga14, tga256, and tga12456 were grown on soil (one plant/ pot) for four week, and then sprayed with 1mM ACC or 1mM SA. After 24 h of treatment, approximately 50 seedlings were harvested for RNA extraction. (E) qRT-PCR analysis of CYP81D11 expression in WT/Col-0, tga256 and tga12456 mutant after hormone treatment. Col-0, tga256, and tga12456 were grown vertically on MSplates for 12 days and subsequently transferred to MS-plates supplemented with 0.01% ethanol (mock) or 50µM MeJA in 0.01% ethanol (JA) and 500µM ACC as indicated. After 48 h of treatment, approximately 50 seedlings were harvested for RNA extraction. (F) Growth phenotype of 10-day-old WT/Col-0, tga256 and tga12456 seedlings on MS-plates containing 50µM SA. Like tga256, tga12456 quintuple mutant was more sensitive to SA and cannot grow over the cotyledon stage. For gRT-PCR analysis, the mean values (±SE) from four independent replicates are shown.

4 Discussion

4.1 ROXY19-mediated repression requires a functional active site

ROXY19 belongs to the 21-membered family of *ROXY* genes. As observed also for its closest homolog, *ROXY18*, *ROXY19* expression is induced upon infection by necrotrophic and biotrophic pathogens. Whereas *roxy18* mutant plants are more resistant to the necrotrophic pathogen *B. cinerea* (La Camera et al., 2011), no phenotype has yet been observed for *roxy19* plants. However, ectopically expressed ROXY19 represses the *ORA59* promoter after ET treatment (Zander et al., 2012) and its own promoter after SA treatment (Herrera-Vásquez et al., 2014). In the first part of the thesis, experiments addressing the mechanism of gene repression were addressed.

To this aim, we chose the *ROXY19* promoter as a target promoter for the repressive effect of ROXY19. TGA factors and their binding sites are important for the expression of this promoter after SAmediated activation of the transcriptional co-activator of TGA factors, NPR1. Moreover, their binding sites and TGA factors are important for its activity in protoplasts (Figure 3.1C and 3.2A). In contrast, JA induction of the promoter, which is driven by MYC2 binding to the G-box, does not require TGA factors (Köster et al., 2012). Still, TGA factors, which are constitutively bound to the promoter as revealed by ChIP experiments (Herrera-Vásquez et al., 2014) are required for the repressive effect of ROXY19. Moreover, TGA factors are required for the repression in transient assays (Figure 3.2A). Figure 4.1 displays a sketch of the *ROXY19* promoter under different states.

Figure 4.1 The expression of *ROXY19* **under different conditions.** 1) In the resting state, both TGAs and MYC2 bind to their target sites, the *as-1*-like element and the G-box in the *ROXY19* promoter, respectively, however no transcription activator is available for TGAs and transcription activity of MYC2 is repressed by JAZ proteins. 2) Upon SA induction, activated NPR1 interacts with TGAs to induce *ROXY19* transcription. 3) Upon JA induction, JAZ proteins are degraded and MYC2 is released to activate *ROXY19* expression. 4) Based on current knowledge, we hypotheses that upon TIBA induction, SCL14 interacts with TGAs. In addition, TIBA-triggered JA signaling leads to JAZs degradation and releasing of MYC2. Like TIBA-induced *CYP81D11* expression, both TGAs and MYC2 are required for maximal *ROXY19* expression. In all induction circumstances, ectopically expressed or induced ROXY19 binds to TGAs to repress its own promoter activity, possibly through recruiting the transcriptional co-repressor TPL. TGAs are required for both induction and repression of *ROXY19* promoter after SA and TIBA induction and in protoplasts. Experimental evidences are missing that MYC2 and SCL14 are required to activating *ROXY19* expression upon TIBA

In order to get closer to the mechanism of repression, we performed functional assays both in transiently transformed protoplasts and in stable transgenic plants. Table 4.1 summarizes our observations.

Factor Method	Transiently transformed protoplasts	Stable transgenic plants
Class II TGAs	Yes	Yes
Cys of class II TGAs	No	No
TPL (ALWA)	Yes	Yes
GSH (G111A)	Yes	Yes
Active site (CCMC)	No	Yes

Table 4.1 Factors that regulate ROXY19-mediated repression in protoplasts and plants

As summarized in the table, so fa we found that: class II TGAs, co-repressor TPL and GSH binding are essential for ROXY19 repressive effect in both stable transgenic plants and transiently transformed protoplasts; the active site is required in transgenic plants but not in protoplasts; the conserved Cys of class TGAs seems to be irrelevant to ROXY19 function.

Our preliminary data imply that ROXY19 may recruit TPL, a transcriptional co-repressor. This assumption is based on the observation that the C-terminal ALWL motif, which is critical for ROXY19mediated repression of the *ORA59* promoter (Zander et al., 2012) and of the *ROXY19* promoter in transient assays (Figure 3.1 and 3.4), is responsible for the interaction with TPL in yeast two hybrid assays (Dr. Joachim Uhrig, personal communication). Expression of the N-terminal domain of TPL, which interacts with the ALWL motif, intercepts the repressive capacity of ROXY19 (Figure 3.4B), indicating that the N-terminal domain blocks the access of the endogenous protein to the ALWL motif. Conclusive evidence will include the loss-of-function mutant in which the activity of the five-membered TPL gene family is compromised. Wang et al. (2013) showed that TPL-repressed circadian period was significantly lengthened only when all five members were depleted by using artificial microRNA (amiRNA). Since the *tpl-2 tpr1 tpr3 tpr4* quadruple and the *tpl-2 tpr1 tpr2 tpr3 tpr4* pentuple loss-of-function mutants are available (Krogan et al., 2012), we can investigate the effect ROXY19-mediated repression in these mutants now.

The importance of the ALWL motif has been observed by Li et al. (2009), who have shown that only ROXYs with an ALWL motif (ROXY1, ROXY2, ROXY3, ROXY4, ROXY5, ROXY18 and ROXY19) but not ROXYs lacking the ALWL motif (ROXY6, ROXY7, ROXY8, ROXY9 and ROXY20) can complement the *roxy1* flower phenotype when expressed under the *ROXY1* promoter. Thus, recruitment of TPL to TGA-regulated target promoters might be a conserved mechanism of those ROXYs that contain such a motif.

Another important feature of ROXYs is their assumed function to bind glutathione. Mutation of a glycine residue, which is conserved in all glutaredoxins, into an alanine residue is presumed to interfere with glutathione binding (Xing and Zachgo, 2008). This mutation interferes with the repressive capacity of ROXY19 both in transient assays (Figure 3.3A) and in transgenic plants (Zander et al., 2012) and with ROXY1 function in complementation experiments (Xing and Zachgo, 2008). However, the protein still interacts with TGA transcription factors. It is thus hypothesized that ROXY19 requires glutathione to repress gene expression. Therefore, we performed transient assays in protoplasts derived from *pad2-1* and *gr1* mutant plants. The *pad2-1* mutant with a mutation in the γ -GLUTAMYLCYSTEINE SYNTHETASE 1 (*GSH1*) gene contains only about 22% of wild-type amounts of GSH (Parisy et al., 2007). Glutathione is maintained in the reduced state by glutathione reductase

(GR). In Arabidopsis *gr1* mutant, the amounts of oxidized glutathione (GSSG) increase approximately fourfold, while the amounts of reduced form (GSH) are not affected (Marty et al., 2009). However, repression was still observed *pad2-1* and *gr1* mutant protoplasts (Supplemental Figure 1). Since the residual glutathione levels might still be sufficient, it has remained an open question whether glutathione is required for the repressive activity of ROXY19. Evidence supporting direct binding of ROXYs to GSH is lacking.

Our transient expression assays in protoplasts showed that the active site is dispensable for ROXY19 function, while glutathione binding might be important (Figure 3.3A). However, gRT-PCR of selected genes and transcriptome analysis of stable transgenic plants expressing either ROXY19CCMC or ROXY19SSMS revealed that the active site is indeed important for the repression of target genes. However, the CCMC motif can be replaced by the CPYC motif (Figure 3.7), which still leaves the question open why the CCMC motif is so conserved. If we assume that the active site is important for the function of the protein as an oxidoreductase, we have to postulate that proteins at the promoter have to be redox-modified to allow the establishment of the repressive complex. These might be constitutively modified in protoplasts thus rendering the oxidoreductase activity of ROXY19 dispensable. Alternatively, it might well be that the high amounts of ROXY19 in the protoplast system can render the repressive complex independent of another redox-modulated yet unknown factor. Last, it has to be considered that the promoter is located in a plasmid in transiently transformed protoplasts, whereas it is integrated in the chromatin when we analyze ROXY function in stably transformed plants. It might well be that chromatin-associated events that depend on the active site of ROXYs have to be initiated. For ROXY1, it has been shown that the first but not the second cysteine of the active site is crucial for proper function of ROXY1 during petal development (Xing et al., 2005). And the predicted GSH binding site is important for ROXY1 function during anther development (Xing and Zachgo, 2008). Although, the conserved Cys340 is critical for PAN activity in flower development (Li et al., 2009), no evidence is available that PAN is redox modified by ROXY1. Alternatively, ROXYs might act as Fe/S-containing scaffold proteins that recruit TPL to target promoters. Biochemical analysis of ROXY19 in vitro is required and may provide new information to guide characterization in plants.

Our understanding of the repressive events in transgenic *35S:HA-ROXY19* plants is still very limited. Induction of elevated ROXY19 protein levels under the control of the β -estradiol-inducible promoter led to the repression of target promoters after 48 hours (Figure 3.17). However, we frequently observed that repression was not yet established in the first generation after transformation. In addition transgenic plants that express similar amounts of ROXY19 protein can be very different with respect to their capacity to repress target promoters (Figure 3.6 and 3.7). Therefore, there are still unknown parameters which influence the repression process. Once, repression is established, it is very stable. Therefore, we have started to investigate whether epigenetic effects might be involved in the establishment of the repressed state. However, growth of *35S:HA-ROXY19* plants on medium preventing methylation of the DNA did not relieve the repression (Figure 3.18A). Since it was found during the course of this thesis that TPL and therefore recruitment of histone deacetylase might be involved, it remains to be shown whether inhibitors of histone acetylation like Trichostatin A (TSA) would interfere with repression. For instance, in the presence of the TSA, TPL-mediated repression of the core clock genes was diminished in protoplasts (Wang et al., 2013).

4.2 ROXY19 suppresses the plant detoxification pathway

As outlined in the introduction, class II TGA factors play a role in at least three distinct processes: systemic acquired resistance (SAR), activation of the ET/JA pathway and activation of the detoxification pathway upon chemical stress. Analysis of the transcriptome of unstressed plants ectopically expressing ROXY19 unraveled that genes of the detoxification pathway are repressed, an observation that was confirmed by qRT-PCR of selected genes from TIBA-treated plants (Figure 3.11A). Moreover, 35S:HA-ROXY19 plants were – like tga256 mutant plants – more sensitive to TIBA (Figure 3.11B). Consistently, the TGACGT motif was 2.5-fold enriched in the promoters of the downregulated genes. Five ATAF-type NAC transcription factors (ATAF1/ANAC002, ANAC014, NAC032, ANAC041 and ANAC102) were amongst the target genes of ROXY19. Since these are induced by xenobiotic stress, they might act as secondary transcription factors (Ratnakaran, 2014), which would explain the enrichment of the NAC binding sites in the target promoters. The strong down-regulation of the detoxification pathway might thus be the consequence of ROXY19 repressing TGA-factors at the TGACGT motifs of the promoters of 140 of the 337 (Figure 3.10B) genes and the consequence of reduced transcript levels of TGACGT-free promoters being regulated by ATAF-type transcription factors. It remains to be shown, whether the third class II TGA-regulated process, namely SAR, is also repressible by ROXY19. No hints can be derived from our microarray analysis since these genes might be expressed at too low levels, similar to ORA59, which is a target of ectopically expressed ROXY19 in ET-induced plants, but did not show reduced levels under the growth conditions used for our microarray analysis.

4.3 The repressive effect of ROXY19 is not relieved in roxy19 mutants

As outlined above, *roxy18* plants are more resistant to the necrotrophic pathogen *B. cinerea* (La Camera et al., 2011), whereas no phenotype has yet been observed for *roxy19* plants. Since ectopically expressed ROXY19 represses the JA-inducible *CYP81D11* promoter and since *ROXY19* is the only ROXY that is induced by JA, we tested whether JA-induced *CYP81D11* expression would be hyper-induced in the *roxy19* mutant. However, this was not the case (Figure 3.8C). Since *ROXY19* is induced by xenobiotics and since it represses the xenobiotic response, one might have expected that mutation of *roxy19* confers plants more resistant to high doses of xenobiotic treatment. In our growth assays both *roxy19DS roxy18* double mutant and Nossen plants showed similar resistance to TIBA treatment (Figure 3.8G). Therefore, it has to be considered that other ROXYs containing an ALWL motif are highly expressed in leaves (e.g. *ROXY4*) and that JA- or TIBA-induced *ROXY19* levels do not add considerably to the pool of ROXYs present in the leaf. Therefore, it remains to be explored whether higher-order *ROXY* mutants are necessary to validate their function in plants.

4.4 Role of ROXY19 and TGAs for the crosstalk of SA- and ET/JA-signaling pathway

The first report on the putative function of ROXY19 described that *ROXY19* is induced by SA and that it represses JA-induced *PDF1.2* expression (Ndamukong et al., 2007). Moreover, repression depends on class II TGA factors. Since SA suppresses JA-induced *PDF1.2* expression and since this repression requires class II TGA factors, it has been proposed that SA induces *ROXY19* expression, which subsequently inactivates class II TGA factors through reducing their Cys residue, leading to loss of ET/JA-induced maker genes expression, i.e. *PDF1.2* (Caarls et al., 2015; Herrera-Vásquez et al., 2015).

In agreement with this hypothesis, we found that the active site of ROXY19 was required for repressing ACC/JA-induced *PDF1.2* (Supplemental Figure S4). However, previous experiments with the *roxy19* and *roxy18 roxy19* double mutant and even with the *roxy18 roxy19 roxy20* triple mutant has shown that the negative effect of SA on JA- or ET-induced *PDF1.2* expression is still functional (Zander, 2011). This might either show that ROXY19 does not play a role in the SA-ET/JA antagonism, or that another TGA-dependent mechanism is operational.

In this thesis, several experiments were performed to further investigate the role of TGA factors in the SA-ET/JA antagonism. Our complementation results showed that ET/JA-induced and SA-repressed *PDF1.2* expression was not altered at all in Arabidopsis transgenic plants expressing mutant TGA5 or TGA2 in which the cysteine residues had been changed against serine residues (Figure 3.19). This suggests that redox modifications of class II TGAs at potentially critical cysteine residues are not involved in regulating *PDF1.2* expression.

Moreover, we found that the impaired *PDF1.2* expression in the *tga256* triple mutant was restored in *tga14256* pentuple mutant (Figure 3.21). Since *PDF1.2* expression is like wild-type in the *tga14* mutant, it has to be concluded that class II TGA factors are bound to critical TGACG binding sites (e.g. in *ORA59* or *PDF1.2* promoter) to prevent access to the negative class I TGA factors.

The restored *PDF1.2* expression in ACC/JA-treated *tga12456* seedlings grown on MS-plates was not repressed by SA (Figure 3.21A). This is in accordance to previous results that SA-mediated repression is class II TGA-dependent (Leon-Reyes et al., 2010; Zander et al., 2010). However, in soil grown *tga12456* plants, ACC-induced *PDF1.2* was still significantly repressed by SA (Figure 3.21C). This kind of inconsistency needs further characterization.

5 Outlook

One of the most urgent questions is the role of ROXY19 in Arabidopsis. As discovered in this thesis, *ROXY19* is induced upon xenobiotic stress and it is able to repress genes that are induced under these conditions. However, the *roxy19* mutant did not show altered responses under these conditions. *ROXY19* is also induced under numerous conditions related to biotic stress, like PAMP (Pathogen-associated molecular pattern) treatment, infections with Pseudomonas, in leaves establishing systemic acquired resistance and SA and JA treatment. At the moment, the *roxy19* allele is in the Nossen background which contains genomic regions from Landsberg. Therefore, the results of pathogen infection assays might be influenced by the Landsberg introgression. Due to genome editing technologies, it is feasible to construct a *roxy19* mutant that can be investigated with regard to the sensitivity of pathogens. These future studies should also include a *roxy18 roxy19* double mutant. The second urgent question concerns the relevance of the active site which is important for repression as shown in this thesis. It remains to be investigated, whether glutathione binding, Fe/S binding and/or oxidoreductase activity is required for the repressive effect. Since repression is still functional if a CPYC motif is present, it remains to be investigated why the CCMC motif is so conserved.

6 Bibliography

Baerson, S.R., Sánchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, I.A., Agarwal, A.K., Reigosa, M.J., and Duke, S.O. (2005). Detoxification and Transcriptome Response in Arabidopsis Seedlings Exposed to the Allelochemical Benzoxazolin-2(3H)-one. J. Biol. Chem. *280*, 21867–21881.

Bandyopadhyay, S., Gama, F., Molina-Navarro, M.M., Gualberto, J.M., Claxton, R., Naik, S.G., Huynh, B.H., Herrero, E., Jacquot, J.P., Johnson, M.K., et al. (2008). Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters. EMBO J. *27*, 1122–1133.

Behringer, C., Bartsch, K., and Schaller, A. (2011). Safeners recruit multiple signalling pathways for the orchestrated induction of the cellular xenobiotic detoxification machinery in Arabidopsis. Plant Cell Environ. *34*, 1970–1985.

Bender, K.W., Wang, X., Cheng, G.B., Kim, H.S., Zielinski, R.E., and Huber, S.C. (2015). Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro. Biochem. J. *467*, 399–413.

Berendzen, K.W., Weiste, C., Wanke, D., Kilian, J., Harter, K., and Dröge-Laser, W. (2012). Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biol. *12*, 125.

Brandes, H.K., Larimer, F.W., Geck, M.K., Stringer, C.D., Schürmann, P., and Hartman, F.C. (1993). Direct identification of the primary nucleophile of thioredoxin f. J. Biol. Chem. *268*, 18411–18414.

Caarls, L., Pieterse, C.M.J., and Van Wees, S.C.M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. *6*, 170.

Chaubal, R., Anderson, J.R., Trimnell, M.R., Fox, T.W., Albertsen, M.C., and Bedinger, P. (2003). The transformation of anthers in the msca1 mutant of maize. Planta *216*, 778–788.

Cheng, N.-H., Liu, J.-Z., Brock, A., Nelson, R.S., and Hirschi, K.D. (2006). AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J. Biol. Chem. *281*, 26280–26288.

Cheng, N.-H., Liu, J.-Z., Liu, X., Wu, Q., Thompson, S.M., Lin, J., Chang, J., Whitham, S.A., Park, S., Cohen, J.D., et al. (2011). Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperaturedependent postembryonic growth and development via modulating auxin response. J. Biol. Chem. *286*, 20398–20406.

Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671.

Chomczynski, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques *15*, 532–534, 536–537.

Chuang, C.F., Running, M.P., Williams, R.W., and Meyerowitz, E.M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. *13*, 334–344.

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell Mol. Biol. *16*, 735–743.

Couturier, J., Didierjean, C., Jacquot, J.-P., and Rouhier, N. (2010). Engineered mutated glutaredoxins mimicking peculiar plant class III glutaredoxins bind iron–sulfur centers and possess reductase activity. Biochem. Biophys. Res. Commun. *403*, 435–441.

Couturier, J., Ströher, E., Albetel, A.-N., Roret, T., Muthuramalingam, M., Tarrago, L., Seidel, T., Tsan, P., Jacquot, J.-P., Johnson, M.K., et al. (2011). Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins. J. Biol. Chem. *286*, 27515–27527.

Curtis, M.D., and Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiol. *133*, 462–469.

Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. *38*, W64–W70.

Fan, W., and Dong, X. (2002). In Vivo Interaction between NPR1 and Transcription Factor TGA2 Leads to Salicylic Acid–Mediated Gene Activation in Arabidopsis. Plant Cell *14*, 1377–1389.

Feng, Y., Zhong, N., Rouhier, N., Hase, T., Kusunoki, M., Jacquot, J.-P., Jin, C., and Xia, B. (2006). Structural Insight into Poplar Glutaredoxin C1 with a Bridging Iron–Sulfur Cluster at the Active Site⁺,[‡]. Biochemistry (Mosc.) *45*, 7998–8008.

Fernandes, A.P., and Holmgren, A. (2004). Glutaredoxins: Glutathione-Dependent Redox Enzymes with Functions Far Beyond a Simple Thioredoxin Backup System. Antioxid. Redox Signal. *6*, 63–74.

Fode, B., Siemsen, T., Thurow, C., Weigel, R., and Gatz, C. (2008). The Arabidopsis GRAS Protein SCL14 Interacts with Class II TGA Transcription Factors and Is Essential for the Activation of Stress-Inducible Promoters. Plant Cell *20*, 3122–3135.

Foley, R.C., and Singh, K.B. (2004). TGA5 acts as a positive and TGA4 acts as a negative regulator of ocs element activity in Arabidopsis roots in response to defence signals. FEBS Lett. *563*, 141–145.

Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Tada, Y., Zheng, N., et al. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature *486*, 228–232.

Garretón, V., Carpinelli, J., Jordana, X., and Holuigue, L. (2002). The as-1 Promoter Element Is an Oxidative Stress-Responsive Element and Salicylic Acid Activates It via Oxidative Species. Plant Physiol. *130*, 1516–1526.

Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. (2004). Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators. J. Biol. Chem. *279*, 13044–13053.

Herrera-Vásquez, A., Carvallo, L., Blanco, F., Tobar, M., Villarroel-Candia, E., Vicente-Carbajosa, J., Salinas, P., and Holuigue, L. (2014). Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis. Plant Mol. Biol. Report. *33*, 624–637.

Herrera-Vásquez, A., Salinas, P., and Holuigue, L. (2015). Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front. Plant Sci. *6*, 171.

Ito, T., Motohashi, R., Kuromori, T., Mizukado, S., Sakurai, T., Kanahara, H., Seki, M., and Shinozaki, K. (2002). A New Resource of Locally Transposed Dissociation Elements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome. Plant Physiol. *129*, 1695–1699.

James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.

Kagale, S., and Rozwadowski, K. (2011). EAR motif-mediated transcriptional repression in plants. Epigenetics *6*, 141–146.

Karimi, M., Inzé, D., and Depicker, A. (2002). GATEWAY[™] vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. *7*, 193–195.

Knuesting, J., Riondet, C., Maria, C., Kruse, I., Bécuwe, N., König, N., Berndt, C., Tourrette, S., Guilleminot-Montoya, J., Herrero, E., et al. (2015). Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α , contribute to maintenance of the shoot apical meristem under long-day photoperiod. Plant Physiol. *167*, 1643–1658.

Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. MGG 204, 383–396.

Koornneef, A., Rindermann, K., Gatz, C., and Pieterse, C.M. (2008). Histone modifications do not play a major role in salicylate-mediated suppression of jasmonate-induced PDF1.2 gene expression. Commun. Integr. Biol. *1*, 143–145.

Köster, J., Thurow, C., Kruse, K., Meier, A., Iven, T., Feussner, I., and Gatz, C. (2012). Xenobiotic- and jasmonic acid-inducible signal transduction pathways have become interdependent at the Arabidopsis CYP81D11 promoter. Plant Physiol. *159*, 391–402.

Krogan, N.T., Hogan, K., and Long, J.A. (2012). APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Dev. Camb. Engl. *139*, 4180–4190.

Kuo, M.-H., and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays *20*, 615–626.

La Camera, S., L'haridon, F., Astier, J., Zander, M., Abou-Mansour, E., Page, G., Thurow, C., Wendehenne, D., Gatz, C., Métraux, J.-P., et al. (2011). The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. Plant J. Cell Mol. Biol. *68*, 507–519.

Laporte, D., Olate, E., Salinas, P., Salazar, M., Jordana, X., and Holuigue, L. (2012). Glutaredoxin GRXS13 plays a key role in protection against photooxidative stress in Arabidopsis. J. Exp. Bot. *63*, 503–515.

Leon-Reyes, A., Spoel, S.H., Lange, E.S.D., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F.F., Welschen, R.A.M., Ritsema, T., and Pieterse, C.M.J. (2009). Ethylene Modulates the Role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in Cross Talk between Salicylate and Jasmonate Signaling. Plant Physiol. *149*, 1797–1809.

Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A.P., Memelink, J., Pieterse, C.M.J., and Ritsema, T. (2010). Ethylene Signaling Renders the Jasmonate Response of Arabidopsis Insensitive to Future Suppression by Salicylic Acid. Mol. Plant. Microbe Interact. *23*, 187–197.

Li, S., Lauri, A., Ziemann, M., Busch, A., Bhave, M., and Zachgo, S. (2009). Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. Plant Cell *21*, 429–441.

Lillig, C.H., Berndt, C., and Holmgren, A. (2008). Glutaredoxin systems. Biochim. Biophys. Acta 1780, 1304–1317.

Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M. (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science *312*, 1520–1523.

Lu, J., and Holmgren, A. (2014). The thioredoxin superfamily in oxidative protein folding. Antioxid. Redox Signal. *21*, 457–470.

Marty, L., Siala, W., Schwarzländer, M., Fricker, M.D., Wirtz, M., Sweetlove, L.J., Meyer, Y., Meyer, A.J., Reichheld, J.-P., and Hell, R. (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. *106*, 9109–9114.

Meyer, A.J., Brach, T., Marty, L., Kreye, S., Rouhier, N., Jacquot, J.-P., and Hell, R. (2007). Redoxsensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. *52*, 973–986.

Moseler, A., Aller, I., Wagner, S., Nietzel, T., Przybyla-Toscano, J., Mühlenhoff, U., Lill, R., Berndt, C., Rouhier, N., Schwarzländer, M., et al. (2015). The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 201510835.

Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell *113*, 935–944.

Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Mueller, M.J., and Berger, S. (2008). General Detoxification and Stress Responses Are Mediated by Oxidized Lipids through TGA Transcription Factors in Arabidopsis. Plant Cell *20*, 768–785.

Murmu, J., Bush, M.J., DeLong, C., Li, S., Xu, M., Khan, M., Malcolmson, C., Fobert, P.R., Zachgo, S., and Hepworth, S.R. (2010). Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. *154*, 1492–1504.

Ndamukong, I.C. (2006). Characterization of an Arabidopsis glutaredoxin that interacts with core components of the salicylic acid signal transduction pathway. Its role in regulating the jasmonic acid pathway. PhD thesis.

Ndamukong, I., Abdallat, A.A., Thurow, C., Fode, B., Zander, M., Weigel, R., and Gatz, C. (2007). SAinducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. Cell Mol. Biol. *50*, 128–139.

Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., and Mauch, F. (2007). Identification of PAD2 as a γ -glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. *49*, 159–172.

Pautler, M., Eveland, A.L., LaRue, T., Yang, F., Weeks, R., Lunde, C., Je, B.I., Meeley, R., Komatsu, M., Vollbrecht, E., et al. (2015). FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell *27*, 104–120.

Pauwels, L., and Goossens, A. (2011). The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. Plant Cell *23*, 3089–3100.

Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Pérez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., et al. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature *464*, 788–791.

Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C.M. (2009). Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. *5*, 308–316.

Pontier, D., Privat, I., Trifa, Y., Zhou, J.-M., Klessig, D.F., and Lam, E. (2002). Differential regulation of TGA transcription factors by post-transcriptional control. Plant J. Cell Mol. Biol. *32*, 641–653.

Poor, C.B., Wegner, S.V., Li, H., Dlouhy, A.C., Schuermann, J.P., Sanishvili, R., Hinshaw, J.R., Riggs-Gelasco, P.J., Outten, C.E., and He, C. (2014). Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc. Natl. Acad. Sci. U. S. A. *111*, 4043–4048.

Qiao, H., Shen, Z., Huang, S.C., Schmitz, R.J., Urich, M.A., Briggs, S.P., and Ecker, J.R. (2012). Processing and Subcellular Trafficking of ER-Tethered EIN2 Control Response to Ethylene Gas. Science *338*, 390–393.

Ramel, F., Sulmon, C., Serra, A.-A., Gouesbet, G., and Couée, I. (2012). Xenobiotic sensing and signalling in higher plants. J. Exp. Bot. ers102.

Ratnakaran, N. (2014). Identification of the role of Arabidopsis ATAF-type NAC transcription factors in plant stress and development. PhD thesis.

Riondet, C., Desouris, J.P., Montoya, J.G., Chartier, Y., Meyer, Y., and Reichheld, J.-P. (2012). A dicotyledon-specific glutaredoxin GRXC1 family with dimer-dependent redox regulation is functionally redundant with GRXC2. Plant Cell Environ. *35*, 360–373.

Rouhier, N., Gelhaye, E., Sautiere, P.-E., Brun, A., Laurent, P., Tagu, D., Gerard, J., Faÿ, E. de, Meyer, Y., and Jacquot, J.-P. (2001). Isolation and Characterization of a New Peroxiredoxin from Poplar Sieve Tubes That Uses Either Glutaredoxin or Thioredoxin as a Proton Donor. Plant Physiol. *127*, 1299–1309.

Rouhier, N., Gelhaye, E., and Jacquot, J.P. (2002). Glutaredoxin-dependent Peroxiredoxin from Poplar PROTEIN-PROTEIN INTERACTION AND CATALYTIC MECHANISM. J. Biol. Chem. *277*, 13609–13614.

Rouhier, N., Gelhaye, E., and Jacquot, J.-P. (2004). Plant glutaredoxins: still mysterious reducing systems. Cell. Mol. Life Sci. CMLS *61*, 1266–1277.

Rouhier, N., Villarejo, A., Srivastava, M., Gelhaye, E., Keech, O., Droux, M., Finkemeier, I., Samuelsson, G., Dietz, K.J., Jacquot, J.-P., et al. (2005). Identification of Plant Glutaredoxin Targets. Antioxid. Redox Signal. *7*, 919–929.

Rouhier, N., Unno, H., Bandyopadhyay, S., Masip, L., Kim, S.-K., Hirasawa, M., Gualberto, J.M., Lattard, V., Kusunoki, M., Knaff, D.B., et al. (2007). Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe–2S] cluster in poplar glutaredoxin C1. Proc. Natl. Acad. Sci. *104*, 7379–7384.

Sambrook, J., and Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual (CSHL Press).

Sandermann, H. (1992). Plant metabolism of xenobiotics. Trends Biochem. Sci. 17, 82–84.

Schmittgen, T.D., and Livak, K.J. (2008). Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. *3*, 1101–1108.

Spoel, S.H., Johnson, J.S., and Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. U. S. A. *104*, 18842–18847.

Tamarit, J., Bellí, G., Cabiscol, E., Herrero, E., and Ros, J. (2003). Biochemical Characterization of Yeast Mitochondrial Grx5 Monothiol Glutaredoxin. J. Biol. Chem. *278*, 25745–25751.

Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature *448*, 661–665.

Van der Does, D., Leon-Reyes, A., Koornneef, A., Van Verk, M.C., Rodenburg, N., Pauwels, L., Goossens, A., Körbes, A.P., Memelink, J., Ritsema, T., et al. (2013). Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell *25*, 744–761.

Wang, L., Kim, J., and Somers, D.E. (2013). Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc. Natl. Acad. Sci. U. S. A. *110*, 761–766.

Wang, Z., Xing, S., Birkenbihl, R.P., and Zachgo, S. (2009). Conserved Functions of Arabidopsis and Rice CC-Type Glutaredoxins in Flower Development and Pathogen Response. Mol. Plant *2*, 323–335.

Weiste, C., Iven, T., Fischer, U., Oñate-Sánchez, L., and Dröge-Laser, W. (2007). In planta ORFeome analysis by large-scale over-expression of GATEWAY[®]-compatible cDNA clones: screening of ERF transcription factors involved in abiotic stress defense. Plant J. *52*, 382–390.

Wu, Q., Lin, J., Liu, J.-Z., Wang, X., Lim, W., Oh, M., Park, J., Rajashekar, C.B., Whitham, S.A., Cheng, N.-H., et al. (2012). Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol. J. *10*, 945–955.

Xing, S., and Zachgo, S. (2008). ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J. Cell Mol. Biol. *53*, 790–801.

Xing, S., Rosso, M.G., and Zachgo, S. (2005). ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Dev. Camb. Engl. *132*, 1555–1565.

Yang, F., Bui, H.T., Pautler, M., Llaca, V., Johnston, R., Lee, B., Kolbe, A., Sakai, H., and Jackson, D. (2015). A maize glutaredoxin gene, abphyl2, regulates shoot meristem size and phyllotaxy. Plant Cell *27*, 121–131.

Yoo, S.-D., Cho, Y.-H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. *2*, 1565–1572.

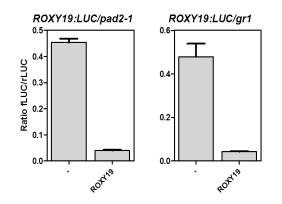
Zander, M. (2011). Arabidopsis thaliana class II TGA transcription factors provide a molecular link between salicylic acid and ethylene defense signalling. PhD thesis.

Zander, M., La Camera, S., Lamotte, O., Métraux, J.-P., and Gatz, C. (2010). Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J. Cell Mol. Biol. *61*, 200–210. Zander, M., Chen, S., Imkampe, J., Thurow, C., and Gatz, C. (2012). Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol. Plant *5*, 831–840.

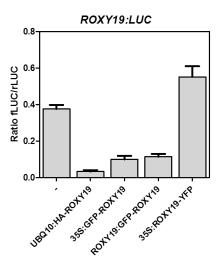
Zander, M., Thurow, C., and Gatz, C. (2014). TGA Transcription Factors Activate the Salicylic Acid-Suppressible Branch of the Ethylene-Induced Defense Program by Regulating ORA59 Expression. Plant Physiol. *165*, 1671–1683.

Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell *17*, 1196–1204.

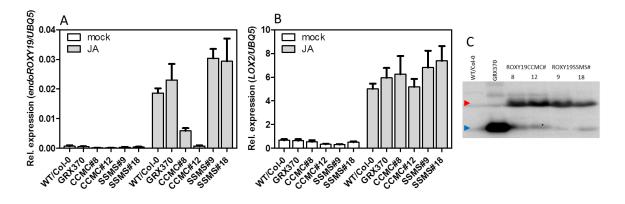
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.-M., To, T.K., Li, W., et al. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. *108*, 12539–12544.

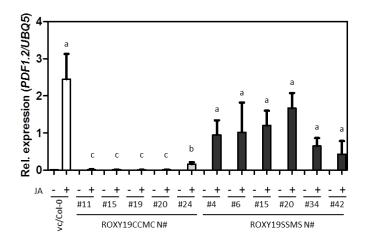

7 Abbreviations

%	Percent
°C	degree Celsius
μΙ	microliter
μM	micromolar
5-azaC	5-Azacytidine
A. thaliana	Arabidopsis thaliana
A. tumefaciens	Agrobacterium tumefaciens
ABC	ATP-binding cassette
ACC	1-aminocyclopropane-1-carboxylic acid
AD	activation domain
AGI	Arabidopsis genome initiative
as-1	activation sequence-1
ATAF	ARABIDOPSIS THALIANA ACTIVATION FACTOR
B. cinerea	Botrytis cinerea
BHA	butylated hydroxyanisole
BOA	benzoxazolin-2(3H)-one
bZIP	basic domain/leucine zipper
CAT	Catalase
cDNA	complementary DNA
ChIP	chromatin immunoprecipitation
cm	centimeter
COI1	CORONATINE INSENSITIVE 1
Col	Columbia
COR78	COLD REGULATED 78
C _t	cycle threshold
CUC	CUP-SHAPED COTYLEDON
СҮР	Cytochrome P450
DBD	DNA-binding domain
DMSO	dimethyl sulfoxide
DMTU	dimethylthiourea
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
dNTP	deoxynucleoside triphosphate
dpi	day(s) post infection
DS	dissociation
E.coli	Escherichia coli
e.g.	for example (exempli gratia)
EAR	ERF-associated amphiphilic repression
EDTA	ethylene di-amine tetra-acetic acid
EIN3	ETHYLENE INSENSITIVE 3
ERF	APETALA2/ETHYLENE RESPONSIVE FACTOR
β-est	β-estradiol
ET	ethylene
EtOH	ethanol
FC	fold change
FEA4	FASCIATED EAR4
Fe-S	Iron-sulfur
fwd	forward
GO	Gene Ontology
GR	Glutathione reductase
GRAS	GAI, RGA, SCR
GRX	Glutaredoxin
GSH	Glutathione
GST	Glutathione S-Transferases
GUS	β-glucuronidase
GW	gateway
	0


h	hour
HCI	hydrochloric acid
HED	2-hydroxyethyl disulfide
HL	high light
HSPB	high salt precipitation buffer
JA	jasmonic acid
JA-Ile	•
	(+)-7-iso-Jasmonyl-L-isoleucine JASMONATE ZIM DOMAIN PROTEIN
JAZ KCl	
	potassium chloride
	litre
i.e.	that is (id est)
LD	long day
Ler	Landsberg erecta
M	molarity
MeJA	methyl jasmonate
MES	2-[N-Morpholino]-ethanesulfonic acid
MFS	major facilitator superfamily
mg	milligram
MgCl ₂	magnesium chloride
min	minute
ml	milliliter
mM	millimolar
mRNA	messenger RNA
MS	Murashige and Skoog medium
MSCA1	MALE STERILE CONVERTED ANTHER1
MV	methylviologen
Na ₂ CO ₃	sodium carbonate
NAC	NAM, ATAF1/2, CUC2
NaCl	sodium chloride
NAM	NO APICAL MERISTEM
NASC	Nottingham Arabidopsis stock centre
NF-YC/NC	NUCLEAR FACTOR Y SUBUNIT C/NEGATIVE COFACTOR
ONPG	o-nitrophenyl-β-D-galactopyranoside
OCS	octopine synthase
OPDA	12-oxo-phytodienoic acid
p	<i>p</i> -value (probability of obtaining a test statistic assuming that the null hypothesis
	is true)
PAMP	pathogen associated molecular pattern
PCA	Principal components analysis
PCR	polymerase chain reaction
PDF1.2	PLANT DEFENSIN 1.2
PDI	protein disulfide isomerase
рН	negative logarithm of the activity of the (solvated) hydronium ion
PPA1	phytoprostane A1
PR-1	PATHOGENESIS RELATED-1
qRT-PCR	quantitative Real-time PCR
rev	reverse
RNA	ribonucleic acid
RNase	ribonuclease
ROS	reactive oxygen species
rpm	rotations per minute
RT	reverse transcriptase
RT	room temperature
SA	salicylic acid
SAG	salicylic acid-2-O-β-D-glucoside
SAM	shoot apical meristem
SAR	systemic acquired resistance

SCL14	SCARECROW LIKE-14
SD	short day
SDS	sodium dodecylsulfate
SE	standard error of mean
Sec	second
taq	Thermus aquaticus
TAIR	the Arabidopsis information resource
TF	transcription factor
TGA	TGACG motif binding protein
TIBA	2,3,5-Triiodobenzoic acid
TPL/TPR	TOPLESS/TOPLESS-RELATED PROTEINS
TRX	thioredoxin
UBQ5	UBIQUITIN-5
UGT	uridine-diphospho-glucuronosyltransferases
w/v	weight per volume
WT	wild-type
YPAD	Yeast extract-peptone-adenine-dextrose


8 Supplemental data


Figure S1 ROXY19 represses its own promoter in protoplast derived from mutant plants with altered GSH. Transient expression assays with ROXY19 effectors and the *ROXY19* promoter in *pad2-1* and *gr1* mutant protoplasts. Expression of the *ROXY19* promoter fused to the *fLuc* was analyzed in transiently transformed mesophyll protoplasts prepared from *pad2-1* or *gr1* mutant in the presence of effector plasmid encoding *ROXY19* under the control of the *UBQ10* promoter. An empty plasmid was used when effector plasmid was absent (-). Luc activities were determined 16 h after transfection. Values are means of four replicates (±SE).

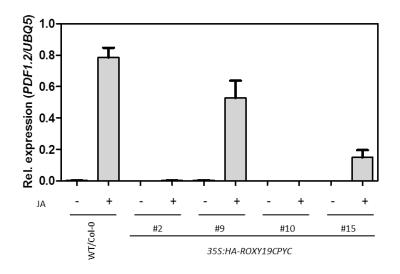

Figure S2 ROXY19 represses its own promoter requires the C-terminal ALWL motif. Transient expression assays with the *ROXY19* promoter and ROXY19 effectors protoplasts. Expression of the *ROXY19* promoter fused to the *fLuc* was analyzed in transiently transformed mesophyll protoplasts in the presence of effector plasmids encoding HA-, GFP- or YFP-tagged ROXY19 controlled by *UBQ10, 35S* or *ROXY19* promoter as indicated. An empty plasmid was used when effector plasmid was absent (-). Luc activities were determined 16 h after transfection. Values are means of four replicates (±SE).

Figure S3 The active site is required for ROXY19 to repress JA-induced endogenous *ROXY19* **expression in transgenic plants.** (A) and (B) qRT-PCR analysis of endogenous *ROXY19* and *LOX2* expression in Col-0 and different transgenic plants after JA-treatment. Arabidopsis were grown on soil for four weeks, and subsequently treated with volatile JA (MeJA) in glass aquaria. After 10 h of treatment, plant leaves were harvested for RNA or protein extraction, endogenous *ROXY19* and *LOX2* transcripts were analyzed by qRT-PCR. The mean values (±SE) from 4-5 independent replicates (one pot with one plant as one biological replicate) are shown. (B) Western blot analysis of transgenic lines using antibody against HA tag. Protein was extracted from mock plant samples used for RNA extraction in Figure S3 (A) and (B). Red and blue arrowheads denote specific ROXY19 and GRX370 bands, respectively.

Figure S4 Expression of PDF1.2 in 355:HA-ROXY19CCMC and 355:HA-ROXY19SSMS plants after JA treatment. Samples were the same as used in Figure 3.6A. Homozygous Arabidopsis seeds from the T2 generation were germinated and grown on soil for four weeks, and subsequently treated with volatile JA (MeJA) in glass aquaria. After 10 h of treatment, plant leaves were harvested for RNA or protein extraction, *PDF1.2* transcripts were analyzed by qRT-PCR. The mean values (±SE) from four independent replicates (one pot with one plant as one biological replicate) of JA-treated samples are shown. One replicate of the corresponding mock sample is shown. Different letters indicate significant difference among genotypes after treatment (Student's *t*-test, p<0.05). White, gray and black bars indicate empty vector, WT and active site mutant *ROXY19* transformed Col-0 samples, respectively.

Figure S5 Expression PDF1.2 in 355:HA-ROXY19CPYC lines after JA treatment. qRT-PCR analysis of PDF1.2 expression in Col-0 and 355:HA-ROXY19CPYC transgenic plants after JA-treatment. RNA samples were the same used for analysis in Figure 3.7. Homozygous Arabidopsis seeds from the T2 generation were germinated and grown on soil pot for four weeks, and subsequently treated with volatile JA (MeJA) in glass aquaria. After 10 h of treatment, plant leaves were harvested for RNA or protein extraction, PDF1.2 transcripts are analyzed by qRT-PCR. The mean values (±SE) from four independent replicates (one pot with one plant as one biological replicate) are shown.

AGI code	Description			inear expres			Col-0/CCMC#8	p-value
Aditotte	Description	Col-0	GRX370#1	SSMS#9	CCMC#8	CCMC#12	(fold repression)	p-value
AT1G03850	Glutaredoxin family protein, ROXY18	161.7	193.5	128.1	14.2	15.4	11.37	2.99E-11
AT3G28740	CYP81D1	682.4	612.7	784.9	136.1	399.4	5.02	1.05E-11
AT5G38910	RmIC-like cupins superfamily protein	118.2	401.6	148.4	24.6	16.0	4.81	2.95E-09
AT2G43510	ATTI1, TI1	112.3	137.1	102.0	24.2	29.9	4.63	5.64E-08
AT5G16980	Zinc-binding dehydrogenase family protein	49.8	48.2	37.4	10.8	32.0	4.62	9.21E-10
AT1G55850	ATCSLE1, CSLE1	434.8	423.6	397.4	110.7	250.2	3.93	7.18E-12
AT4G11650	ATOSM34, OSM34	648.0	1009.4	783.8	169.6	146.6	3.82	4.49E-11
AT5G25130	CYP71B12	133.5	128.8	109.2	36.3	75.5	3.68	7.42E-09
AT4G12290	Copper amine oxidase family protein	294.7	391.9	320.0	81.4	195.4	3.62	3.75E-10
AT1G05560	UGT1, UGT75B1	243.4	186.1	243.6	69.0	131.4	3.53	7.33E-09
AT2G37770	NAD(P)-linked oxidoreductase superfamily	217.8	202.2	207.3	62.3	99.4	3.49	5.14E-06
AT5G16970	AT-AER, AER	112.4	104.0	101.8	32.2	75.0	3.48	4.49E-09
AT3G11340	UDP-Glycosyltransferase superfamily protein	125.3	136.3	137.8	37.0	32.1	3.39	5.29E-08
AT1G02850	BGLU11	314.3	260.6	329.3	96.7	153.5	3.25	8.45E-07
AT4G23700	ATCHX17, CHX17	81.5	140.7	92.1	25.4	21.0	3.21	5.07E-09
AT1G07900	LBD1	36.5	62.6	30.0	11.5	22.2	3.16	0.00098
AT1G78670	ATGGH3, GGH3	548.1	609.3	507.6	173.7	329.0	3.16	1.48E-13
AT5G39050	HXXXD-type acyl-transferase family protein	336.9	288.5	338.2	107.6	184.3	3.13	5.09E-09
AT5G23760	Copper transport protein family	55.3	52.7	43.3	17.7	32.0	3.12	7.03E-08
AT1G67550	URE	100.4	102.3	84.3	32.2	62.0	3.12	5.23E-10
AT1G26240	Proline-rich extensin-like family protein	55.4	49.8	67.9	17.8	10.5	3.11	9.77E-0
AT4G19880	Glutathione S-transferase family protein	35.6	22.4	20.2	11.4	14.2	3.11	0.00232
AT5G62760	P-loop containing nucleoside triphosphate							
	hydrolases superfamily protein	16.4	8.1	8.7	5.5	5.4	3.02	0.00688
AT5G13750	ZIFL1	269.0	275.0	281.7	89.3	136.8	3.01	2.17E-0
AT3G21250	MRP6, ABCC8	417.6	431.1	400.7	139.7	267.6	2.99	1.86E-0
AT4G15530	PPDK	12.2	8.4	10.9	4.1	6.2	2.94	0.01141
AT4G12480	pEARLI 1	161.1	189.3	94.2	54.8	94.3	2.94	0.00562
AT1G09160	Protein phosphatase 2C family protein	28.8	27.1	35.5	9.9	23.1	2.92	0.01461
AT2G36750	UGT73C1	73.7	64.5	68.9	25.4	36.4	2.91	4.44E-0
AT1G64780	ATAMT1	111.1	118.6	108.0	38.6	38.7	2.88	2.56E-0
AT4G31970	CYP82C2	94.1	119.4	126.1	32.8	24.5	2.87	0.00013
AT4G15550	IAGLU	226.8	224.9	220.8	80.3	140.4	2.83	2.89E-0
AT2G26020	PDF1.2b	16.7	14.4	10.0	6.0	8.3	2.81	0.00054
AT5G24210	alpha/beta-Hydrolases superfamily protein	40.2	52.4	44.7	14.6	32.1	2.75	2.17E-0
AT1G14520	MIOX1	48.6	45.9	46.1	18.0	25.2	2.69	4.29E-0
AT2G36800	DOGT1, UGT73C5	195.7	192.8	224.8	73.1	141.4	2.68	7.63E-0
AT4G15530	PPDK	25.0	57.7	18.5	9.3	141.4	2.67	0.00722
AT4G13530	IQD22	131.6	109.5	123.9	49.3	76.8	2.67	2.43E-0
AT1G05570	CALS1, GSL06, ATGSL6, ATGSL06, GSL6	151.0	220.9	123.9	49.3 56.5	143.0	2.67	0.00167
	NAD(P)-binding Rossmann-fold superfamily	61.8			23.5		2.63	
AT1G68540	MR157A		74.1	46.4		56.1		0.00026
AT1G66783	Peroxidase superfamily protein	18.6	14.1	17.6	7.1	15.1	2.63	6.11E-0
AT4G37520		65.4	82.9	67.2	25.1	24.2	2.60	2.05E-1
AT3G18100	MYB4R1, AtMYB4R1	15.2	13.4	10.5	5.9	5.3	2.59	0.01363
AT3G61880	CYP78A9	43.5	42.8	38.6	16.8	27.1	2.58	0.00072
AT2G47890	B-box type zinc finger protein with CCT domain	444.8	462.8	442.9	175.1	270.6	2.54	6.2E-10
AT3G04000	NAD(P)-binding Rossmann-fold superfamily	88.9	69.2	107.5	35.1	50.8	2.53	3.28E-0
AT4G19810	Glycosyl hydrolase family protein with							
714013010	chitinase insertion domain	164.7	263.7	156.4	65.7	80.0	2.51	4.35E-0
AT1G26770	ATEXPA10	89.2	81.5	66.7	35.8	49.0	2.49	1.38E-0
AT5G61820	FUNCTIONS IN: molecular_function unknown	786.5	894.0	748.2	320.2	493.2	2.46	2.79E-0
AT1G69440	AGO7, ZIP	79.4	61.8	73.0	32.7	49.7	2.43	2.85E-0
AT1G26770	ATEXPA10	342.3	344.7	263.3	141.6	192.6	2.42	4.83E-0
AT1G17170	ATGSTU24, GST, GSTU24	101.3	104.8	121.8	42.4	75.5	2.39	0.00018
AT1G68570	Major facilitator superfamily protein	315.1	406.4	246.1	132.3	212.1	2.38	0.00043
AT4G23680	Polyketide cyclase/dehydrase and lipid							
	transport superfamily protein	226.6	288.4	164.0	95.8	144.4	2.37	2.63E-0
AT4G14040	EDA38, SBP2	518.7	444.4	471.5	219.8	297.3	2.36	2.32E-1
AT2G04270	RNEE/G	7.0	3.8	3.9	3.0	3.7	2.34	0.02036
AT5G51830	pfkB-like carbohydrate kinase family protein	87.7	93.2	96.7	37.6	57.0	2.33	7.54E-0
AT4G25360	TBL18	15.2	11.8	10.9	6.5	12.2	2.33	0.00512
AT3G43930	BRCT domain-containing DNA repair protein	9.1	5.9	7.8	3.9	6.1	2.33	0.00124
AT1G08270	CONTAINS InterPro DOMAIN/s: MIT							
	(InterPro:IPR007330)	8.4	4.4	5.4	3.6	5.6	2.33	0.02163
AT1G11310	MLO2, ATMLO2, PMR2	8.8	11.1	9.9	3.8	4.6	2.32	0.0073
AT3G44300	NIT2, AtNIT2	41.1	48.4	37.7	17.8	18.9	2.32	3.69E-0
AT1G55500	ECT4	105.6	70.8	81.3	45.8	59.5	2.30	0.00461
AT3G59140	ATMRP14, MRP14, ABCC10	123.2	123.1	121.2	53.7	97.8	2.29	1.74E-0
AT1G01720	ATAF1, ANAC002	281.1	285.5	275.6	123.5	173.7	2.28	4.45E-0
AT1G34220	Regulator of Vps4 activity in the MVB	17.0	8.8	16.4	7.6	16.2	2.25	0.03016
	pathway protein	17.0	0.0	10.4	7.0	10.2	2.23	0.05010
AT1G15125	S-adenosyl-L-methionine-dependent	232.6	155.0	222.7	103.4	224.3	2.25	0.02152
AT5G52800	methyltransferases superfamily protein DNA primases	8.8	8.1	4.6	3.9	5.0	2.24	0.01882

Table S1 List of genes down-regulated in 35S:HA-ROXY19CCMC#8 plants (FC>1.5, p<0.05).

AT1G77450	anac032, NAC032	257.3	238.2	227.9	115.3	160.2	2.23	1.29E-07
AT4G13180	NAD(P)-binding Rossmann-fold superfamily	207.7	225.6	213.8	93.9	110.4	2.21	2.95E-06
AT3G45060	ATNRT2.6, NRT2.6	14.1	11.7	13.7	6.4	8.6	2.21	6.36E-05
AT4G01070	GT72B1, UGT72B1	624.6	801.4	622.9	284.3	358.9	2.20	3.68E-07
AT5G63790	ANAC102, NAC102	517.8	547.5	561.3	235.7	372.1	2.20	4.84E-09
AT1G12200	Flavin-binding monooxygenase family	94.5	86.6	71.7	43.0	70.4	2.19	3.42E-08
AT4G10970	unknown protein	23.4	21.0	19.8	10.7	18.5	2.19	0.048218
AT3G56080	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein	55.1	74.3	51.6	25.3	32.0	2.17	2.55E-05
AT1G76690	OPR2, ATOPR2	53.2	50.5	45.5	24.5	36.4	2.17	2.83E-06
AT3G14660	CYP72A13	46.0	49.2	45.9	21.3	35.7	2.17	2.39E-08
AT1G55900	TIM50, emb1860	8.1	4.3	5.1	3.8	7.0	2.15	0.033372
AT2G37760	NAD(P)-linked oxidoreductase superfamily	191.1	165.0	168.8	89.3	123.5	2.14	1.64E-07
AT5G50200	WR3	114.1	116.0	104.8	53.3	57.7	2.14	9.28E-08
AT4G04450	WRKY42, AtWRKY42	46.5	47.5	47.0	21.7	23.3	2.14	5.48E-05
AT5G23360	GRAM domain-containing protein / ABA-	13.9	12.8	15.2	6.5	13.1	2.14	0.000348
	responsive protein-related							
AT5G36130	Cytochrome P450 superfamily protein	51.7	63.6	50.9	24.3	19.6	2.13	0.000171
AT5G26000	TGG1, BGLU38	4297.1	5030.4	3892.6	2019.1	3137.7	2.13	1.06E-09
AT5G36140	CYP716A2	46.7	61.8	49.2	22.0	10.6	2.12	0.000664
AT1G76680	OPR1	31.0	30.5	33.6	14.7	23.0	2.12	2.48E-06
AT4G15530	PPDK	128.1	135.5	138.2	60.7	82.9	2.11	1.2E-05
AT4G02280	SUS3, ATSUS3	58.6	67.6	46.4	27.8	31.5	2.11	0.000101
AT5G50200	WR3, ATNRT3.1, NRT3.1	11.3	13.3	272.4	5.4	4.8	2.10	0.004031
AT1G17860 AT1G07570	Kunitz family trypsin and protease inhibitor APK1A, APK1	377.2	403.0 10.6	373.4	179.9 4.8	162.4 7.3	2.10	4.02E-07
	FUNCTIONS IN: molecular_function unknown			14.6	4.8	9.4	2.09	0.018857
AT2G40316	DPP6 N-terminal domain-like protein	10.8 847.4	7.6	8.8			2.09	0.01045
AT1G21680	GPI transamidase component PIG-S-related	-	807.3	887.0	406.4	608.1	2.08	8.83E-09
AT3G07180 AT5G67430	Acyl-CoA N-acyltransferases (NAT)	16.3	14.3	10.1	7.9	9.4	2.07	0.03616
m1300/43U	superfamily protein	77.1	82.3	69.9	37.7	35.4	2.05	1.23E-05
AT4G34135	UGT73B2	59.8	46.4	65.0	29.4	42.9	2.04	0.000939
AT3G28007	SWEET4, AtSWEET4	23.6	38.0	17.2	11.6	11.3	2.03	0.014064
AT3G50650	GRAS family transcription factor	35.4	32.1	33.5	17.4	23.3	2.03	1.12E-06
AT3G17185	TASIR-ARF, TAS3, ATTAS3	29.0	28.6	28.0	14.4	17.5	2.02	0.000241
AT2G22120	RING/FYVE/PHD zinc finger superfamily	23.5	17.1	15.7	11.6	24.9	2.02	0.008653
AT5G65890	ACR1	51.9	50.7	30.4	25.8	29.5	2.01	0.02437
AT2G19500	CKX2, ATCKX2	20.5	20.4	18.8	10.2	12.6	2.00	0.000307
AT2G29490	ATGSTU1, GST19, GSTU1	51.0	53.3	54.6	25.5	36.0	2.00	0.001171
AT3G49120	ATPERX34, PERX34, PRXCB, ATPCB, PRX34	147.2	183.5	156.4	73.6	56.1	2.00	7.45E-10
AT3G47780	ATATH6, ATH6	66.5	75.3	67.2	33.3	30.7	2.00	9.5E-05
AT4G17030	ATEXLB1	61.9	65.4	50.6	31.0	41.6	2.00	9.97E-05
AT5G24850	CRY3	34.8	32.0	25.4	17.4	27.7	1.99	2.13E-05
AT2G05380	GRP3S	3277.2	2702.5	3212.5	1650.1	2398.4	1.99	5.1E-08
AT4G28040	nodulin MtN21 /EamA-like transporter family	48.8	57.8	41.9	24.7	27.2	1.97	0.000463
AT2G21187	other RNA	12.3	14.3	11.8	6.3	11.8	1.96	0.005592
AT1G14520	MIOX1	10.5	8.1	11.1	5.3	6.7	1.96	0.001802
AT1G51070	bHLH115	141.0	150.7	123.5	72.0	83.1	1.96	3.2E-07
AT5G47220	ATERF2, ATERF-2, ERF2	23.9	23.0	23.3	12.3	17.6	1.94	3.82E-05
AT1G05570	CALS1	167.2	186.6	156.0	86.1	95.2	1.94	8.46E-08
AT1G29640	Protein of unknown function, DUF584	41.8	40.0	38.8	21.6	31.6	1.94	6.39E-05
AT3G55880	Alpha/beta hydrolase related protein	131.8	163.3	128.8	68.0	83.5	1.94	4.51E-05
AT3G46130	ATMYB48-1	61.0	56.5	57.3	31.6	39.9	1.93	8.45E-05
AT5G48010	THAS, THAS1	210.4	331.5	217.9	109.0	49.3	1.93	0.000299
AT2G36950	Heavy metal transport/detoxification superfamily protein	191.6	194.8	179.2	99.5	137.6	1.93	3.14E-06
AT2G15480	UGT73B5	139.6	134.1	136.3	72.5	117.0	1.92	8.91E-05
AT4G15760	M01	201.3	184.5	258.9	104.7	155.8	1.92	2.39E-05
AT2G06005	FIP1	69.4	48.3	63.9	36.1	42.4	1.92	0.02866
AT1G79410	AtOCT5, 5-Oct	173.4	167.3	161.9	90.3	121.1	1.92	3.45E-0
AT1G73410 AT2G16660	Major facilitator superfamily protein	486.4	398.1	494.9	254.2	333.9	1.92	0.00039
AT4G16260	Glycosyl hydrolase superfamily protein	266.5	379.0	267.8	139.6	128.7	1.91	4.8E-06
AT1G14540	Peroxidase superfamily protein	56.3	66.0	57.8	29.7	27.2	1.90	6.26E-00
AT3G14690	CYP72A15	33.2	37.5	39.4	17.5	25.7	1.90	2.61E-0
AT5G49990	Xanthine/uracil permease family protein	131.0	127.6	102.9	69.0	77.6	1.90	1.73E-0
AT3G13062	Polyketide cyclase/dehydrase and lipid							
	transport superfamily protein	25.0	18.4	19.8	13.2	16.7	1.89	0.00994
	BEST Arabidopsis thaliana protein match is:	7.0	5.1	4.8	3.7	5.0	1.89	0.01308
AT1G07860								
	Protein kinase superfamily protein		531.2	362.6	226.5	298.0	1.88	0.00253
AT2G18230	AtPPa2, PPa2	426.5	210.0		241.6	276.6	1.88	1.92E-0
AT2G18230 AT1G30820	AtPPa2, PPa2 CTP synthase family protein	453.8	319.9	467.2				
AT2G18230 AT1G30820 AT1G33110	AtPPa2, PPa2 CTP synthase family protein MATE efflux family protein	453.8 129.3	145.6	148.9	68.9	108.3	1.88	3.94E-0
AT2G18230 AT1G30820 AT1G33110 AT5G66930	AtPPa2, PPa2 CTP synthase family protein MATE efflux family protein unknown protein	453.8 129.3 8.0	145.6 6.2	148.9 6.0	68.9 4.3	108.3 5.7	1.88 1.88	3.94E-0 0.02702
AT2G18230 AT1G30820 AT1G33110 AT5G66930 AT1G69260	AtPPa2, PPa2 CTP synthase family protein MATE efflux family protein unknown protein AFP1	453.8 129.3 8.0 72.7	145.6 6.2 102.7	148.9 6.0 60.9	68.9 4.3 38.8	108.3 5.7 44.5	1.88 1.88 1.87	3.94E-0 0.02702 0.00477
AT2G18230 AT1G30820 AT1G33110 AT5G66930 AT1G69260 AT4G19880	AtPPa2, PPa2 CTP synthase family protein MATE efflux family protein unknown protein AFP1 Glutathione S-transferase family protein	453.8 129.3 8.0 72.7 466.5	145.6 6.2 102.7 432.5	148.9 6.0 60.9 524.1	68.9 4.3 38.8 249.5	108.3 5.7 44.5 317.3	1.88 1.88 1.87 1.87	3.94E-03 0.02702 0.00477 3.18E-00
AT2G18230 AT1G30820 AT1G33110 AT5G66930 AT1G69260 AT4G19880 AT1G72680	AtPPa2, PPa2 CTP synthase family protein MATE efflux family protein unknown protein AFP1 Glutathione S-transferase family protein ATCAD1, CAD1	453.8 129.3 8.0 72.7 466.5 263.9	145.6 6.2 102.7 432.5 233.9	148.9 6.0 60.9 524.1 287.3	68.9 4.3 38.8 249.5 141.8	108.3 5.7 44.5 317.3 182.2	1.88 1.88 1.87 1.87 1.87 1.86	3.94E-0 0.02702 0.00477 3.18E-0 2.27E-0
AT2G18230 AT1G30820 AT1G33110 AT5G66930 AT1G69260 AT4G19880 AT1G72680 AT3G46130	AtPPa2, PPa2 CTP synthase family protein MATE efflux family protein unknown protein AFP1 Glutathione S-transferase family protein ATCAD1, CAD1 MYB48	453.8 129.3 8.0 72.7 466.5 263.9 132.3	145.6 6.2 102.7 432.5 233.9 147.7	148.9 6.0 60.9 524.1 287.3 116.0	68.9 4.3 38.8 249.5 141.8 71.5	108.3 5.7 44.5 317.3 182.2 91.3	1.88 1.88 1.87 1.87 1.86 1.85	3.94E-0 0.02702 0.00477 3.18E-00 2.27E-00 0.00658
AT2G18230 AT1G30820 AT1G33110 AT5G66930 AT1G69260 AT4G19880 AT1G72680	AtPPa2, PPa2 CTP synthase family protein MATE efflux family protein unknown protein AFP1 Glutathione S-transferase family protein ATCAD1, CAD1	453.8 129.3 8.0 72.7 466.5 263.9	145.6 6.2 102.7 432.5 233.9	148.9 6.0 60.9 524.1 287.3	68.9 4.3 38.8 249.5 141.8	108.3 5.7 44.5 317.3 182.2	1.88 1.88 1.87 1.87 1.87 1.86	3.94E-05 0.027020 0.004775 3.18E-06 2.27E-06 0.006585 0.000282 0.049043

AT1G51690	ATB ALPHA, B ALPHA	9.0	8.1	5.6	4.9	4.7	1.84	0.04573
AT3G63280	ATNEK4, NEK4	38.1	28.7	23.6	20.8	25.6	1.84	0.04076
AT1G54740	Protein of unknown function (DUF3049)	22.7	20.7	23.0	12.4	15.8	1.83	1.01E-0
AT4G19660	NPR4, ATNPR4	105.0	106.7	98.5	57.4	75.3	1.83	6.51E-0
AT3G62400	unknown protein	42.8	42.9	42.0	23.5	29.9	1.82	0.02969
AT3G44310	NIT1, ATNIT1, NITI	207.4	187.1	175.9	114.2	136.9	1.82	4.75E-0
AT2G43120	RmIC-like cupins superfamily protein	16.0	19.7	14.2	8.8	10.7	1.81	1.12E-0
AT5G49015	Expressed protein	22.7	16.5	19.3	12.6	14.8	1.81	0.02136
AT4G28040	nodulin MtN21 /EamA-like transporter family	5.4	4.4	4.3	3.0	3.8	1.81	0.03793
AT5G65445	pre-tRNA	8.4	9.3	6.9	4.7	6.8	1.81	0.00413
T2G16700	ADF5, ATADF5	8.4	5.7	6.0	4.7	9.8	1.80	0.00178
T4G34135	UGT73B2	107.6	125.0	141.3	59.7	89.8	1.80	0.00014
AT3G51895	SULTR3	174.7	270.0	182.2	96.9	124.7	1.80	0.03529
T1G54100	ALDH7B4	463.5	463.0	504.5	257.3	300.2	1.80	0.0001
T3G21260	Glycolipid transfer protein (GLTP) family	55.2	56.6	55.4	30.7	40.5	1.80	3.23E-0
T3G51430	YLS2, SSL5	122.0	98.5	142.8	68.1	97.4	1.79	0.0103
T3G14680	CYP72A14	64.7	81.9	69.8	36.1	23.4	1.79	0.0001
T2G30140	UDP-Glycosyltransferase superfamily protein	1139.6	1041.5	1245.8	636.4	775.8	1.79	3.23E-0
T5G57655	xylose isomerase family protein	690.7	653.2	711.3	387.3	493.8	1.78	1.04E-0
T3G19230	Leucine-rich repeat (LRR) family protein	43.1	35.4	35.4	24.2	30.8	1.78	4.47E-0
T2G43820	GT, UGT74F2, ATSAGT1, SGT1, SAGT1	809.9	747.6	1010.3	454.9	590.7	1.78	0.0001
T3G43430	RING/U-box superfamily protein	34.7	27.8	33.0	19.5	21.0	1.78	1E-07
T1G09500	NAD(P)-binding Rossmann-fold superfamily	39.2	37.0	36.2	22.1	29.5	1.77	0.0202
T4G30490	AFG1-like ATPase family protein	251.2	286.2	236.4	142.0	181.5	1.77	2.91E-
T5G16140	Peptidyl-tRNA hydrolase family protein	7.5	6.3	5.8	4.2	4.1	1.77	0.0301
T4G36880	CP1	20.8	25.1	19.0	11.8	14.0	1.76	0.0002
T2G30750	CYP71A12	6.2	10.3	6.8	3.5	3.7	1.76	0.0022
T5G21280	hydroxyproline-rich glycoprotein family	31.6	26.1	27.1	18.0	21.9	1.76	3.8E-0
T4G15260	UDP-Glycosyltransferase superfamily protein	20.0	18.9	24.9	11.4	16.4	1.76	0.0001
T5G22970	unknown protein	5.9	5.1	4.8	3.3	5.0	1.75	0.0063
T3G26690	ATNUDT13, ATNUDX13, NUDX13	61.7	53.9	55.3	35.3	40.0	1.75	0.0001
T3G01420	ALPHA-DOX1, DOX1, DIOX1, PADOX-1	997.9	1430.4	1053.4	571.2	469.8	1.75	1.88E-
T3G14620	CYP72A8	460.9	461.5	492.5	263.8	318.8	1.75	2.24E-
T4G01070	GT72B1	48.1	59.4	47.3	27.6	30.3	1.75	4.86E-
T3G44310	NIT1, ATNIT1, NITI	1328.2	1310.8	1155.3	762.4	907.8	1.74	1.26E-
T1G68568	other RNA	107.4	116.2	77.6	61.7	73.0	1.74	0.0055
T5G27600	LACS7, ATLACS7	174.4	172.0	183.3	100.2	132.2	1.74	5.97E-
T3G22410	Sec14p-like phosphatidylinositol transfer	20.4	25.0	24.6	22.4	22.0	4.74	0 0000
	family protein	38.4	35.0	34.6	22.1	23.8	1.74	0.0003
T1G63650	EGL3, EGL1, ATMYC-2	6.3	4.5	5.5	3.6	4.1	1.74	0.0147
T1G77120	ADH1, ADH, ATADH, ATADH1	120.1	170.2	133.8	69.1	95.9	1.74	0.0272
T5G37970	S-adenosyl-L-methionine-dependent	13.0	9.7	8.8	7.5	8.5	1.73	0.0058
T4C2C010	methyltransferases superfamily protein	20.2	25.0	20.0	10.0	10.1	4 70	0.0144
T4G26810	SWIB/MDM2 domain superfamily protein	29.3	25.6	30.9	16.9	19.1	1.73	0.0144
T4G29740	CKX4, ATCKX4	75.4	77.1	76.0	43.6	36.2	1.73	5.35E-
T4G10400	F-box/RNI-like/FBD-like domains-containing	7.8	6.2	5.3	4.5	5.5	1.73	0.0005
T5G25110	CIPK25, SnRK3.25	8.0	11.8	7.9	4.6	5.3	1.73	0.0075
T2G31750	UGT74D1	94.1	79.3	87.2	54.6	76.3	1.73	2.11E-
T4G21910	MATE efflux family protein	9.3	5.8	7.2	5.4	8.4	1.72	0.0495
T1G21460	SWEET1, AtSWEET1	29.5	34.8	32.5	17.1	21.2	1.72	0.0033
T2G45023	other RNA	27.3	27.3	24.9	15.9	26.8	1.72	0.0097
T5G67240	SDN3	169.6	149.1	123.4	98.5	154.4	1.72	0.0030
T5G40850	UPM1	626.1	605.0	667.7	363.9	440.7	1.72	1.82E-
T1G80530	Major facilitator superfamily protein	85.6	91.4	80.9	49.9	68.9	1.72	2.51E-
T5G19440	NAD(P)-binding Rossmann-fold superfamily	542.3	539.6	601.5	316.4	352.1	1.71	0.0001
T3G07730	unknown protein	27.9	36.8	23.8	16.3	20.0	1.71	0.0296
T3G56880	VQ motif-containing protein	144.6	168.7	168.9	84.5	112.6	1.71	5.42E-
T4G10510	Subtilase family protein	40.6	30.2	40.1	23.7	20.1	1.71	0.001
T2G01890	PAP8, ATPAP8	180.0	183.8	168.7	105.4	99.9	1.71	0.0002
T2G15220	Plant basic secretory protein (BSP) family	113.6	181.8	151.8	66.6	71.6	1.71	0.0035
T5G11950	Putative lysine decarboxylase family protein	156.3	153.1	122.4	91.6	147.4	1.71	0.0076
T1G05562	Potential natural antisense gene, locus	128.5	127.4	128.0	75.4	94.4	1.70	1.79E-
T2C//200	overlaps with AT1G05560 Bifunctional inhibitor/lipid-transfer						Ŧ	
T2G44300	Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily	22.7	22.6	20.2	13.3	17.2	1.70	0.0011
T5G17000	Zinc-binding dehydrogenase family protein	8.6	7.9	7.3	5.0	6.6	1.70	0.000
T1G24400	LHT2, AATL2, ATLHT2	105.9	104.1	95.5	62.4	82.6	1.70	2.84E-
T2G32170	S-adenosyl-L-methionine-dependent							
	methyltransferases superfamily protein	77.4	57.5	51.1	45.6	58.2	1.70	0.0278
T1G65970	TPX2	12.7	13.3	11.4	7.5	6.5	1.70	0.0046
T5G45080	AtPP2-A6, PP2-A6	42.9	49.4	46.8	25.3	20.6	1.70	7.72E-
T3G57520	AtSIP2, SIP2	862.5	576.9	927.6	510.3	556.1	1.69	0.0007
T1G05700	Leucine-rich repeat transmembrane protein							
	kinase protein	19.7	25.2	17.6	11.7	9.8	1.69	0.0001
T4G22070	WRKY31, ATWRKY31	128.9	157.3	125.1	76.4	63.1	1.69	0.0001
T4G33150	lysine-ketoglutarate reductase/saccharopine	163.6	234.3	158.4	97.0	87.6	1.69	0.0003
	dehydrogenase bifunctional enzyme							
T1G30410	ATMRP13, MRP13, ABCC12	55.6	56.7	64.4	32.9	43.1	1.69	0.0035
T1G04350	2-oxoglutarate (2OG) and Fe(II)-dependent	72.9	76.8	69.0	43.3	48.2	1.68	1.3E-0
1200.000	ovvranace cuperfamily protoin	/ =						
T5G15860	oxygenase superfamily protein ATPCME, PCME	43.2	47.5	41.0	25.7	34.2	1.68	0.0001

AT4G21990	APR3	1177.5	1009.1	1341.2	700.4	1019.2	1.68	0.000555
AT1G79170	unknown protein	48.2	37.4	33.6	28.7	32.8	1.68	0.003705
AT1G14860	atnudt18, NUDT18	64.8	64.9	64.5	38.6	36.2	1.68	4.28E-06
AT3G22200	POP2	1022.3	949.4	1039.5	608.8	688.5	1.68	1.43E-07
AT1G30700	FAD-binding Berberine family protein	69.4	84.8	75.4	41.4	30.5	1.68	0.000433
AT1G67980	CCOAMT	10.0	10.5	11.3	6.0	5.7	1.67	0.031105
AT3G52060	Core-2/I-branching beta-1,6-N-	83.8	98.7	102.2	50.3	71.3	1.67	2.38E-05
471050500	acetylglucosaminyltransferase family protein other RNA	31.9			19.2	22.1		0.000402
AT1G58590 AT5G12323	unknown protein	8.6	36.1 7.5	31.7 7.1	5.2	5.8	1.67	0.01402
AT3G12323	Class I glutamine amidotransferase-like							
A13014330	superfamily protein	1151.0	902.7	1161.8	691.6	956.4	1.66	5.06E-07
AT1G17250	AtRLP3, RLP3	38.6	29.0	36.7	23.2	31.1	1.66	0.003393
AT2G20650	RING/U-box superfamily protein	5.9	5.9	4.4	3.6	5.8	1.66	0.020359
AT1G50590	RmIC-like cupins superfamily protein	11.9	12.8	11.0	7.2	8.2	1.66	0.000172
AT2G23910	NAD(P)-binding Rossmann-fold superfamily	143.5	109.0	116.6	86.7	91.2	1.66	0.000453
AT1G72770	HAB1	47.2	50.7	42.7	28.5	33.1	1.65	0.001558
AT5G63530	ATFP3, FP3	182.7	219.2	157.0	110.5	159.5	1.65	0.000498
AT1G15960	NRAMP6, ATNRAMP6	20.1	19.2	14.1	12.1	17.3	1.65	0.005585
AT3G57520	AtSIP2, SIP2	1355.3	913.9	1362.6	821.4	970.6	1.65	0.000208
AT5G65980	Auxin efflux carrier family protein	49.7	48.1	64.4	30.2	23.3	1.65	0.000476
AT2G33480	ANAC041, NAC041	94.0	90.5	82.6	57.1	81.7	1.64	0.000161
AT5G13370	Auxin-responsive GH3 family protein	405.8	378.5	390.0	246.9	304.1	1.64	6.95E-06
AT3G49780	ATPSK4, ATPSK3 (FORMER SYMBOL), PSK4	229.5	204.8	236.2	139.9	136.8	1.64	0.00011
AT2G15490	UGT73B4	93.6	88.1	112.2	57.1	66.8	1.64	0.003845
AT2G29420	ATGSTU7, GST25, GSTU7	55.3	54.4	54.1	33.8	45.5	1.64	7.02E-05
AT2G29500	HSP20-like chaperones superfamily protein	25.3	27.0	23.6	15.5	18.7	1.63	0.001711
AT1G20880	RNA-binding (RRM/RBD/RNP motifs) family	42.7	37.1	40.5	26.2	37.1	1.63	0.000563
AT5G65380	MATE efflux family protein	457.2	492.4	472.2	280.5	258.0	1.63	0.000136
AT4G21990	APR3, PRH-26, PRH26, ATAPR3	961.1	755.9	1032.0	590.5	755.1	1.63	0.00147
AT4G37980	ELI3-1, ELI3, ATCAD7, CAD7	60.0	63.7	46.9	37.0	52.6	1.62	0.002785
AT4G23050	PAS domain-containing protein tyrosine kinase family protein	68.7	87.6	67.7	42.4	45.6	1.62	2.97E-05
AT5G06750	Protein phosphatase 2C family protein	64.3	62.4	52.9	39.8	41.3	1.62	9.66E-05
AT2G46270	GBF3	188.9	231.0	154.6	116.7	134.4	1.62	0.008365
AT1G64950	CYP89A5	32.0	34.1	36.5	19.8	21.7	1.62	0.002303
AT1G12050	fumarylacetoacetase, putative	347.5	341.3	343.1	215.0	261.3	1.62	1.17E-05
AT1G65690	Late embryogenesis abundant (LEA)							
	hydroxyproline-rich glycoprotein family	24.3	32.3	23.5	15.0	17.6	1.61	0.000722
AT4G15490	UGT84A3	60.7	59.7	66.0	37.6	44.8	1.61	4.03E-05
AT1G18970	GLP4	12.9	15.8	15.3	8.0	7.1	1.61	0.009147
AT1G73390	Endosomal targeting BRO1-like domain-	145.0	164.0	129.0	90.2	106.4	1.61	0.002587
ATEC26000	containing protein						-	
AT5G26900	Transducin family protein / WD-40 repeat family protein	10.6	11.6	8.7	6.6	11.2	1.61	0.008029
AT4G32010	HSL1, HSI2-L1, VAL2	185.1	168.7	176.1	115.5	138.5	1.60	2.84E-07
AT2G38880	NF-YB1	6.0	4.2	4.8	3.7	3.5	1.60	0.036985
AT3G57040	ARR9, ATRR4	65.7	67.7	55.9	41.1	48.0	1.60	0.006834
AT1G29200	O-fucosyltransferase family protein	5.0	4.0	3.5	3.1	5.0	1.59	0.041085
AT4G34138	UGT73B1	510.1	387.0	483.1	319.9	404.4	1.59	9.64E-05
AT5G44005	unknown protein	32.9	31.1	33.8	20.6	26.3	1.59	0.000784
AT3G12520	SULTR4	78.1	73.8	63.7	49.0	41.1	1.59	0.040093
AT3G03300	DCL2	65.4	71.1	63.7	41.0	55.7	1.59	0.001375
AT1G08230	Transmembrane amino acid transporter	133.8	141.0	107.5	84.0	94.2	1.59	5.51E-06
	family protein							
AT5G14780	FDH	1450.5	1519.0	1550.3	911.1	1088.1	1.59	0.000144
AT5G56470	FAD-dependent oxidoreductase family protein	18.3	17.0	14.4	11.5	14.2	1.59	0.029523
AT4G28870	unknown protein	287.9	233.6	214.5	181.0	180.8	1.59	0.002567
AT14G28870 AT1G03220	Eukaryotic aspartyl protease family protein	117.9	129.3	132.8	74.2	77.3	1.59	0.002367
AT1G03220 AT1G23760	JP630, PG3	49.0	42.6	43.2	30.8	28.7	1.59	2E-06
AT1G23760 AT5G64250	Aldolase-type TIM barrel family protein	163.8	185.0	149.5	103.3	122.4	1.59	2.25E-05
AT2G01422	chr2:183940-184734 FORWARD							
	LENGTH=795	6.1	6.3	4.3	3.9	4.5	1.58	0.002634
AT5G16120	alpha/beta-Hydrolases superfamily protein	19.4	15.4	18.8	12.3	14.7	1.58	0.042856
AT1G66200	ATGSR2, GSR2, GLN1	658.5	781.9	768.5	416.5	361.9	1.58	0.001236
AT5G62480	ATGSTU9, GST14, GST14B, GSTU9	63.6	76.9	70.5	40.2	34.3	1.58	0.00375
AT3G21260	GLTP3	65.6	66.1	46.9	41.5	50.6	1.58	0.030872
AT1G69880	ATH8, TH8	17.6	18.4	19.0	11.2	10.3	1.58	0.009941
AT5G15610	Proteasome component (PCI) domain protein	5.8	4.0	4.4	3.7	4.5	1.58	0.017036
AT2G40780	Nucleic acid-binding, OB-fold-like protein	16.2	14.2	15.5	10.3	10.7	1.58	0.021475
AT1G74390	Polynucleotidyl transferase, ribonuclease H-	79.6	92.9	86.0	50.6	39.9	1.57	0.004862
	like superfamily protein							
	FMO GS-OX4	66.0	94.3	59.2	42.0	46.6	1.57	0.001345
AT1G62570	LIGT72E1	226.9	260.7	236.9	144.6	123.1	1.57 1.57	0.000233 5.4E-05
AT1G62570 AT3G50740	UGT72E1		250 4					
AT1G62570 AT3G50740 AT2G34660	MRP2, ABCC2, AtABCC2	279.4	259.4	273.4	178.2	209.0		J.4L-0J
AT1G62570 AT3G50740	MRP2, ABCC2, AtABCC2 Leucine-rich repeat transmembrane protein		259.4 75.0	273.4 72.3	47.1	55.0	1.57	3.31E-06
AT1G62570 AT3G50740 AT2G34660 AT1G56145	MRP2, ABCC2, AtABCC2	279.4		72.3				
AT1G62570 AT3G50740 AT2G34660	MRP2, ABCC2, AtABCC2 Leucine-rich repeat transmembrane protein kinase	279.4 73.8	75.0		47.1	55.0	1.57	3.31E-06

AT1G50055	TAS1B	139.3	116.9	119.2	89.2	128.2	1.56	0.002875
AT1G76600	unknown protein	31.9	28.5	35.2	20.5	30.6	1.56	0.003443
AT1G60730	NAD(P)-linked oxidoreductase superfamily	130.3	139.2	177.2	83.6	92.9	1.56	0.003612
AT1G80290	Nucleotide-diphospho-sugar transferases superfamily protein	30.0	21.3	20.6	19.3	21.2	1.56	0.008097
AT1G49130	B-box type zinc finger protein with CCT domain	18.4	19.7	23.1	11.8	17.6	1.56	0.009306
AT1G28260	Telomerase activating protein Est1	105.1	76.1	127.8	67.6	68.0	1.55	0.010228
AT4G37295	unknown protein	18.7	13.8	15.4	12.1	17.1	1.55	0.000489
AT5G20885	RING/U-box superfamily protein	89.0	111.9	92.3	57.4	70.4	1.55	4.31E-05
AT2G07140	F-box and associated interaction domains- containing protein	7.2	6.0	5.1	4.7	5.2	1.55	0.000104
AT5G07860	HXXXD-type acyl-transferase family protein	14.7	12.8	14.0	9.5	11.3	1.55	3.66E-05
AT5G47560	ATTDT, ATSDAT, TDT	536.9	594.0	602.5	347.2	336.5	1.55	0.002085
AT1G54020	GDSL-like Lipase/Acylhydrolase superfamily protein	5.0	4.2	3.4	3.2	3.9	1.55	0.002525
AT1G08220	FUNCTIONS IN: molecular_function unknown	193.4	164.3	168.7	125.1	116.8	1.55	0.033143
AT4G34000	ABF3, DPBF5	112.8	153.0	94.6	73.0	90.0	1.55	0.02235
AT1G21000	PLATZ transcription factor family protein	129.0	115.6	136.2	83.5	93.9	1.54	0.003908
AT5G35603	Protein of unknown function (DUF3287)	20.8	16.7	17.0	13.5	13.4	1.54	0.048617
AT2G30620	winged-helix DNA-binding transcription factor family protein	68.4	49.5	59.6	44.3	48.3	1.54	0.027922
AT5G17010	Major facilitator superfamily protein	10.0	8.5	10.1	6.5	5.7	1.54	0.041014
AT1G70790	Calcium-dependent lipid-binding (CaLB domain) family protein	85.8	72.0	84.8	55.6	59.0	1.54	0.00113
AT5G18840	Major facilitator superfamily protein	18.0	17.5	16.3	11.7	11.6	1.54	0.004931
AT3G54950	PLP7, PLA IIIA	78.6	77.1	63.6	51.0	58.7	1.54	9.16E-05
AT3G51430	YLS2	105.3	83.7	101.9	68.5	83.2	1.54	0.002719
AT3G11930	Adenine nucleotide alpha hydrolases-like superfamily protein	33.4	24.4	27.1	21.7	18.9	1.54	0.021078
AT5G23370	GRAM domain-containing protein / ABA- responsive protein-related	9.6	7.6	7.3	6.2	6.6	1.53	0.00844
AT1G29195	unknown protein	35.7	40.3	40.4	23.3	25.3	1.53	0.01857
AT1G24350	Acid phosphatase/vanadium-dependent haloperoxidase-related protein	41.9	45.2	40.9	27.3	36.1	1.53	0.018452
AT4G32175	PNAS-3 related	29.9	28.0	22.4	19.5	21.4	1.53	0.008029
AT2G37240	Thioredoxin superfamily protein	322.9	351.7	282.7	210.8	245.3	1.53	1.9E-06
AT5G47720	Thiolase family protein	84.1	78.6	75.8	54.9	67.0	1.53	0.000585
AT4G16745	Exostosin family protein	14.2	13.8	12.5	9.3	10.6	1.53	0.000443
AT2G37750	unknown protein	43.1	49.1	45.4	28.2	26.3	1.53	0.004385
AT3G01970	WRKY45, ATWRKY45	84.5	83.2	89.0	55.2	55.9	1.53	0.002944
AT4G33070	Thiamine pyrophosphate dependent pyruvate decarboxylase family protein	70.5	98.2	87.8	46.2	47.8	1.53	0.00356
AT2G02390	ATGSTZ1, GST18, GSTZ1	1094.3	1190.9	1139.3	717.1	754.4	1.53	1.31E-05
AT1G26410	FAD-binding Berberine family protein	8.9	11.1	8.9	5.8	4.9	1.53	0.034838
AT3G14020	NF-YA6	140.8	131.0	146.7	92.3	122.9	1.53	9.18E-05
AT3G12955	SAUR-like auxin-responsive protein family	25.1	20.3	19.7	16.5	19.3	1.53	0.000177
AT1G70530	CRK3	141.0	146.6	147.9	92.6	129.8	1.52	0.000719
AT5G47700	60S acidic ribosomal protein family	5.4	4.5	4.6	3.6	3.8	1.52	0.002895
AT1G78380	ATGSTU19, GST8, GSTU19	682.8	758.1	707.6	449.1	589.1	1.52	0.001484
AT1G09420	G6PD4	38.7	36.6	34.2	25.5	30.4	1.52	9.58E-05
AT2G35940	BLH1	577.8	629.7	582.2	380.6	451.4	1.52	0.002556
AT1G14130	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein	12.0	11.1	11.0	7.9	9.4	1.52	0.002771
AT3G07960	Phosphatidylinositol-4-phosphate 5-kinase family protein	13.9	12.7	13.0	9.2	11.5	1.52	0.00282
AT4G30470	NAD(P)-binding Rossmann-fold superfamily	123.6	111.3	107.3	81.5	86.7	1.52	0.001267
AT5G28780	PIF1 helicase	10.1	7.7	7.4	6.7	8.1	1.52	0.017381
AT5G45870	PYL12, RCAR6	7.7	5.6	6.7	5.1	5.6	1.52	0.02092
AT1G04380	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein	7.2	6.3	5.1	4.8	5.2	1.51	0.00124
AT2G07680	ATMRP11, MRP11, ABCC13	41.2	35.9	32.1	27.3	34.9	1.51	0.000644
AT3G54680	proteophosphoglycan-related	201.4	220.5	186.3	133.1	148.3	1.51	0.003763
AT1G33060	ANAC014, NAC014	44.9	43.7	43.5	29.7	39.5	1.51	0.000397
AT4G10380	NIP5	58.3	57.4	51.5	38.6	41.4	1.51	0.004553

	Description		Nossen/					
AGI code	Description	Col-0	CCMC#8	ear expression v CCMC#12	Nossen	roxy19DS	roxy19DS	<i>p</i> -valu
AT1G67105	other RNA	19.8	13.8	17.0	31.3	899.0	28.72	2.78E-1
AT3G48560	CSR1, ALS, AHAS, TZP5, IMR1	225.7	232.0	221.2	215.0	1668.3	7.76	4.1E-1
AT1G62250	unknown protein	11.4	18.0	22.0	9.1	41.9	4.60	0.0062
AT4G21650	Subtilase family protein	434.3	382.2	381.9	315.5	1345.3	4.26	7.34E-0
AT2G07689	NADH-Ubiquinone/plastoquinone (complex I) protein	698.9	687.9	681.9	585.8	2256.0	3.85	4.08E-0
AT3G25150	Nuclear transport factor 2 (NTF2) family protein with RNA binding (RRM-RBD-RNP motifs) domain	4.0	9.7	5.4	5.2	18.7	3.58	0.00324
AT1G63855	Putative methyltransferase family	14.7	26.9	22.0	16.1	54.2	3.36	0.0002
TMG01330	ORF107H	727.5	708.6	693.5	668.0	2186.4	3.27	2.76E-0
T2G14580	ATPRB1, PRB1	17.5	19.5	17.3	22.6	71.7	3.17	1.7E-0
AT2G25964	unknown protein	44.3	42.5	39.3	39.7	122.4	3.08	2.55E-0
T2G01422	chr2:183940-184734 FORWARD LENGTH=795	6.1	3.9	4.5	5.1	14.9	2.92	0.0066
AT5G06640	Proline-rich extensin-like family protein transducin family protein / WD-40	33.7	82.7	69.1	29.1	83.9	2.88	0.0003
AT2G34260	repeat family protein LBD26	4.2	4.8	4.5	2.8	7.8	2.79	6.445
AT3G27940 AT2G22980	SCPL13	14.8 16.7	13.7 12.1	14.4 22.4	5.3 12.0	14.6 30.8	2.73	6.44E-0 0.0350
AT2G22980 AT5G03350	Legume lectin family protein	7.1	12.1	8.8	7.9	20.1	2.56	0.0350
T2G24270	ALDH11A3	32.3	31.4	34.1	23.3	58.6	2.55	0.0004
AT2G24270 AT2G30390	FC2, FC-II, ATFC-II	8.8	22.8	17.3	10.0	24.6	2.52	0.0139
AT3G07360	PUB9, ATPUB9	18.6	22.8	21.1	10.0	47.3	2.47	0.0010
AT3G53980	Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein	131.8	138.8	128.7	120.3	287.9	2.39	0.0132
AT5G35190	proline-rich extensin-like family protein	18.3	30.6	28.3	24.2	57.5	2.37	0.0014
AT5G41670	6-phosphogluconate dehydrogenase family protein	8.2	7.4	8.4	4.8	11.3	2.36	0.0381
AT4G04220	AtRLP46, RLP46	28.5	39.3	40.1	32.0	75.5	2.36	4.35E-
AT5G57150	basic helix-loop-helix (bHLH) DNA- binding superfamily protein	18.9	56.5	48.6	20.2	47.4	2.35	0.0130
AT5G39150	RmIC-like cupins superfamily protein	4.5	4.9	5.1	4.1	9.6	2.34	0.0023
AT4G15530	PPDK	25.0	9.3	18.3	23.0	53.2	2.31	0.0189
AT1G49180	protein kinase family protein FRO2, FRD1, ATFRO2	4.9	5.0 449.4	4.8 293.8	4.1 255.7	9.4 584.5	2.31	0.0073
AT1G01580 AT1G77320	MEI1	253.6 12.6	14.2	16.7	8.9	20.2	2.29	0.0069
AT4G16960	Disease resistance protein (TIR-NBS- LRR class) family	14.4	14.2	21.9	15.7	35.6	2.28	0.0208
AT1G15520	PDR12, ATPDR12, ABCG40, ATABCG40	13.8	19.1	20.5	15.0	33.2	2.21	0.0004
AT1G19960	BEST Arabidopsis thaliana protein match is: transmembrane receptors (TAIR:AT2G32140.1)	48.4	88.4	67.0	47.6	105.0	2.20	0.0002
AT2G22240	ATMIPS2, MIPS2, ATIPS2	32.0	44.3	40.7	22.2	49.0	2.20	5.95E-0
AT3G60330	АНА7, НА7	4.8	8.2	7.0	5.1	11.1	2.20	0.0250
T4G10040	CYTC-2	66.2	77.3	61.7	53.9	118.2	2.19	6.34E-
AT2G45930	unknown protein	29.0	31.0	26.0	23.3	50.0	2.15	0.0006
AT4G04745	unknown protein	23.4	17.9	13.5	23.4	50.1	2.14	1.36E-
AT3G61430	PIP1A, ATPIP1, PIP1, PIP1	3.8	3.9	4.8	4.3	9.1	2.14	0.0237
113001430					22.2	70.1	2.11	0.0170
	ATHRGP1, HRGP1	40.7	56.7	54.3	33.2			
AT3G54590 AT1G44800	nodulin MtN21 /EamA-like transporter family protein	68.6	117.0	102.8	70.8	147.9	2.09	
AT3G54590 AT1G44800	nodulin MtN21 /EamA-like						2.09	
AT3G54590 AT1G44800 AT3G21950	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases	68.6	117.0	102.8	70.8	147.9		0.0002
AT3G54590 AT1G44800 AT3G21950 AT1G08320	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein	68.6 25.5	117.0 35.3	102.8 25.1	70.8 27.9	147.9 57.8	2.08	0.0002
AT3G54590 AT1G44800 AT3G21950 AT1G08320 AT4G16940	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS-	68.6 25.5 20.8	117.0 35.3 30.3	102.8 25.1 45.4	70.8 27.9 18.1	147.9 57.8 37.3	2.08	0.0002 0.0343 0.0023
AT3G54590 AT1G44800 AT3G21950 AT1G08320 AT4G16940 AT3G58810	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family	68.6 25.5 20.8 7.2	117.0 35.3 30.3 6.2	102.8 25.1 45.4 5.3	70.8 27.9 <u>18.1</u> 6.0	147.9 57.8 37.3 12.4	2.08 2.07 2.07	0.0002 0.0343 0.0023 0.0053
AT3G54590 AT1G44800 AT3G21950 AT1G08320 AT4G16940 AT3G58810 AT3G61740	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family MTPA2, ATMTPA2, MTP3, ATMTP3 SDG14, ATX3 basic helix-loop-helix (bHLH) DNA- binding superfamily protein	68.6 25.5 20.8 7.2 20.3	117.0 35.3 30.3 6.2 22.0	102.8 25.1 45.4 5.3 18.3	70.8 27.9 18.1 6.0 12.9	147.9 57.8 37.3 12.4 26.4	2.08 2.07 2.07 2.06	0.0002 0.0343 0.0023 0.0053 0.0217
AT3G54590 AT1G44800 AT3G21950 AT1G08320 AT4G16940 AT3G58810 AT3G61740 AT3G61740 AT3G12900	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family MTPA2, ATMTPA2, MTP3, ATMTP3 SDG14, ATX3 basic helix-loop-helix (bHLH) DNA- binding superfamily protein 2-oxoglutarate (20G) and Fe(II)- dependent oxygenase superfamily	68.6 25.5 20.8 7.2 20.3 4.7 14.4 111.8	117.0 35.3 30.3 6.2 22.0 3.7 17.0 270.9	102.8 25.1 45.4 5.3 18.3 5.2 43.2 167.0	70.8 27.9 18.1 6.0 12.9 4.1 12.1	147.9 57.8 37.3 12.4 26.4 8.4 24.7 224.0	2.08 2.07 2.07 2.06 2.05 2.05 2.04	0.0002 0.0343 0.0023 0.0053 0.0217 0.0440 0.0149
AT3G54590 AT1G44800 AT3G21950 AT1G08320 AT4G16940 AT3G58810 AT3G61740 AT3G61740 AT3G612900 AT3G12900 AT1G70730	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family MTPA2, ATMTPA2, MTP3, ATMTP3 SDG14, ATX3 basic helix-loop-helix (bHLH) DNA- binding superfamily protein 2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily PGM2	68.6 25.5 20.8 7.2 20.3 4.7 14.4 111.8 50.8	117.0 35.3 30.3 6.2 22.0 3.7 17.0 270.9 56.4	102.8 25.1 45.4 5.3 18.3 5.2 43.2 167.0 47.3	70.8 27.9 18.1 6.0 12.9 4.1 12.1 109.6 36.5	147.9 57.8 37.3 12.4 26.4 8.4 24.7 224.0 74.6	2.08 2.07 2.07 2.06 2.05 2.05 2.04 2.04	0.0002 0.0343 0.0023 0.0053 0.0217 0.0440 0.0149 0.0291
AT3G54590 AT1G44800 AT3G21950 AT1G08320 AT4G16940 AT3G58810 AT3G61740 AT3G61740 AT3G612900 AT3G12900 AT1G70730	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family MTPA2, ATMTPA2, MTP3, ATMTP3 SDG14, ATX3 basic helix-loop-helix (bHLH) DNA- binding superfamily protein 2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily PGM2 S-adenosyl-L-methionine- dependent methyltransferases	68.6 25.5 20.8 7.2 20.3 4.7 14.4 111.8	117.0 35.3 30.3 6.2 22.0 3.7 17.0 270.9	102.8 25.1 45.4 5.3 18.3 5.2 43.2 167.0	70.8 27.9 18.1 6.0 12.9 4.1 12.1	147.9 57.8 37.3 12.4 26.4 8.4 24.7 224.0	2.08 2.07 2.07 2.06 2.05 2.05 2.04	0.0002 0.0343 0.0023 0.0053 0.0217 0.0440 0.0149 0.0291
AT3G54590 AT1G44800 AT3G21950 AT4G16940 AT4G16940 AT3G58810 AT3G61740 AT3G61740 AT3G12900 AT3G12900 AT1G70730 AT5G38020	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family MTPA2, ATMTPA2, MTP3, ATMTP3 SDG14, ATX3 basic helix-loop-helix (bHLH) DNA- binding superfamily protein 2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily PGM2 S-adenosyl-L-methionine-	68.6 25.5 20.8 7.2 20.3 4.7 14.4 111.8 50.8	117.0 35.3 30.3 6.2 22.0 3.7 17.0 270.9 56.4	102.8 25.1 45.4 5.3 18.3 5.2 43.2 167.0 47.3	70.8 27.9 18.1 6.0 12.9 4.1 12.1 109.6 36.5	147.9 57.8 37.3 12.4 26.4 8.4 24.7 224.0 74.6	2.08 2.07 2.07 2.06 2.05 2.05 2.04 2.04	0.0002 0.0343 0.0023 0.0053 0.0217 0.0440 0.0149 0.0291 1.33E-
AT3G54590 AT1G44800 AT3G21950 AT4G16940 AT4G16940 AT3G58810 AT3G61740 AT3G61740 AT3G12900 AT3G12900 AT3G12900 AT3G54580	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family MTPA2, ATMTPA2, MTP3, ATMTP3 SDG14, ATX3 basic helix-loop-helix (bHLH) DNA- binding superfamily protein 2-oxoglutarate (20G) and Fe(II)- dependent oxygenase superfamily PGM2 S-adenosyl-L-methionine- dependent methyltransferases superfamily protein	68.6 25.5 20.8 7.2 20.3 4.7 14.4 111.8 50.8 115.7	117.0 35.3 30.3 6.2 22.0 3.7 17.0 270.9 56.4 177.2	102.8 25.1 45.4 5.3 18.3 5.2 43.2 167.0 47.3 155.1	70.8 27.9 18.1 6.0 12.9 4.1 12.1 109.6 36.5 74.5	147.9 57.8 37.3 12.4 26.4 8.4 24.7 224.0 74.6 152.2	2.08 2.07 2.07 2.06 2.05 2.05 2.04 2.04 2.04	0.0002 0.0343 0.0023 0.0053 0.0217 0.0440 0.0149 0.0291 1.33E- 0.0003
AT3G51430 AT3G54590 AT1G44800 AT3G21950 AT1G08320 AT4G16940 AT3G58810 AT3G58810 AT3G61740 AT3G61740 AT3G61740 AT3G12900 AT3G12900 AT1G70730 AT3G54580 AT3G54580 AT3G54580 AT4G18970 AT4G04955	nodulin MtN21 /EamA-like transporter family protein S-adenosyl-L-methionine- dependent methyltransferases superfamily protein TGA9, bZIP21 Disease resistance protein (TIR-NBS- LRR class) family MTPA2, ATMTPA2, MTP3, ATMTP3 SDG14, ATX3 basic helix-loop-helix (bHLH) DNA- binding superfamily protein 2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily PGM2 S-adenosyl-L-methionine- dependent methyltransferases superfamily protein Proline-rich extensin-like family GDSL-like Lipase/Acylhydrolase	68.6 25.5 20.8 7.2 20.3 4.7 14.4 111.8 50.8 115.7 25.2	117.0 35.3 30.3 6.2 22.0 3.7 17.0 270.9 56.4 177.2 48.8	102.8 25.1 45.4 5.3 18.3 5.2 43.2 167.0 47.3 155.1 39.2	70.8 27.9 18.1 6.0 12.9 4.1 12.1 109.6 36.5 74.5 15.5	147.9 57.8 37.3 12.4 26.4 8.4 24.7 224.0 74.6 152.2 31.7	2.08 2.07 2.07 2.06 2.05 2.05 2.04 2.04 2.04 2.04	0.0003 0.0002 0.0343 0.0023 0.0053 0.0217 0.0440 0.0149 0.0291 1.33E-0 0.0003 2.16E-1 8.78E-1

AT3G51895

SULTR3

174.7

96.9

124.7

148.5

299.5

2.02

Table S2 List of top 100 genes that are up- or down-regulated in *roxy19DS* plants (FC>1.5, p<0.05).

1.5E-05

AT3G19330	Protein of unknown function	7.5	18.4	17.3	8.0	16.1	2.01	0.031041
	(DUF677)							
AT2G27550	ATC	121.9	84.8	70.8	92.0	184.8	2.01	7.61E-05
AT2G45070	SEC61 BETA	22.2	31.2	23.5	15.2	30.0	1.98	0.009518
AT1G12040	LRX1	19.1	26.0	28.7	14.8	29.2	1.97	0.001745
AT5G67400	RHS19	84.3	172.2	154.8	67.6	133.1	1.97	0.00137
AT4G10860	unknown protein	5.3	4.9	6.4	6.4	12.7	1.97	0.000185
AT4G00355	unknown protein	19.4	21.3	25.9	13.2	25.9	1.97	0.016704
AT1G76620	Protein of unknown function, DUF547	78.0	77.9	77.9	53.9	105.7	1.96	5.16E-05
AT4G24420	RNA-binding (RRM/RBD/RNP motifs) family protein	6.7	6.9	5.9	11.0	21.5	1.96	0.000146
AT1G78420	RING/U-box superfamily protein	47.8	65.8	54.7	42.2	82.6	1.96	0.008156
AT2G28670	Disease resistance-responsive (dirigent-like protein) family protein	121.4	151.5	133.3	90.1	176.5	1.96	0.00063
AT3G32920	P-loop containing nucleoside triphosphate hydrolases superfamily	3.2	6.4	4.9	4.4	8.6	1.95	0.049185
AT2G37460	nodulin MtN21 /EamA-like transporter family protein	19.7	21.4	23.5	18.6	36.2	1.95	0.00275
AT1G12110	NRT1.1, CHL1-1, NRT1, B-1, ATNRT1, CHL1	197.4	261.0	189.5	212.3	413.1	1.95	0.000152
AT1G56520	Disease resistance protein (TIR-NBS- LRR class) family	12.3	10.4	14.4	7.2	14.0	1.94	0.004039
AT1G64255	MuDR family transposase	9.7	9.3	8.8	10.1	19.6	1.94	0.001477
AT2G33855	unknown protein	20.2	20.7	20.2	20.6	39.8	1.94	0.000263
AT1G79530	GAPCP-1	551.4	667.1	627.6	347.7	671.0	1.93	8.44E-06
AT2G48080	oxidoreductase, 2OG-Fe(II) oxygenase family protein	28.9	21.0	21.7	34.1	65.7	1.93	0.000252
AT4G16220	GDSL-like Lipase/Acylhydrolase superfamily protein	13.6	14.2	13.6	7.6	14.6	1.93	3.43E-05
AT1G28395	unknown protein	18.7	16.4	18.4	11.9	22.8	1.93	7.63E-05
AT4G20020	unknown protein	240.1	247.7	259.6	233.9	448.8	1.92	4.11E-05
AT2G18230	AtPPa2, PPa2	426.5	226.5	298.0	318.6	611.2	1.92	1.9E-05
AT5G66005	Expressed protein	9.2	9.4	9.4	13.8	26.4	1.92	0.032545
AT1G70080	Terpenoid cyclases/Protein prenyltransferases superfamily protein	7.5	6.1	6.0	6.5	12.5	1.92	0.000325
AT4G26795	other RNA	26.5	16.9	23.7	21.4	40.9	1.91	0.013759
AT5G64630	FAS2, NFB01, NFB1, MUB3.9	18.4	17.1	16.5	15.3	29.3	1.91	0.019088
AT3G17712	unknown protein	4.1	3.7	3.5	2.9	5.6	1.91	0.049072
AT3G14940	ATPPC3, PPC3	186.0	174.9	140.2	255.1	486.1	1.91	1.71E-05
AT5G06180	Protein of unknown function (DUF1022)	17.4	11.7	24.6	12.9	24.6	1.91	0.001878
AT1G69640	SBH1	307.4	313.9	324.3	242.8	461.0	1.90	5.9E-06
AT4G11550	Cysteine/Histidine-rich C1 domain family protein	17.7	22.3	22.5	15.6	29.6	1.90	0.001593
ATMG01100	ORF105A	255.8	237.8	258.4	220.2	417.7	1.90	9.17E-06
AT4G19690	IRT1	183.3	350.9	303.2	238.5	451.0	1.89	0.000196
AT2G20750	ATEXPB1, EXPB1, ATHEXP BETA 1.5	85.3	88.0	77.3	54.1	102.3	1.89	1.37E-05
AT1G78820	D-mannose binding lectin protein with Apple-like carbohydrate- binding domain	36.1	41.9	38.7	37.3	70.4	1.89	2.57E-05
AT5G51080	RNase H family protein	33.2	57.5	57.4	39.3	74.0	1.88	0.000806
AT2G32960	Phosphotyrosine protein phosphatases superfamily protein	40.5	51.3	49.2	33.7	63.5	1.88	0.005447
AT4G09320	NDPK1	387.1	372.3	410.8	156.0	293.3	1.88	3.77E-05
AT1G30420	ATMRP12, MRP12, ABCC11	14.8	18.5	24.2	11.6	21.7	1.87	0.011465
AT2G07749	Mitovirus RNA-dependent RNA polymerase	29.8	30.8	32.4	20.8	39.0	1.87	0.001033
AT4G23670	Polyketide cyclase/dehydrase and lipid transport superfamily protein	146.2	151.8	147.0	109.9	205.0	1.86	2.35E-06
AT2G43100	IPMI2, ATLEUD1	336.1	369.1	292.3	236.3	440.0	1.86	6.94E-07
AT2G20180	PIL5	166.3	154.1	170.9	150.4	280.0	1.86	0.000634
AT3G47640	PYE	14.2	13.7	23.3	12.7	23.4	1.85	0.007259
AT5G64200	ATSC35, SC35, At-SC35	7.7	15.7	9.1	8.0	14.8	1.85	0.03354
A13004200			13.7	9.1	0.0	14.0	1.05	

Genes that are down-regulated in *roxy19DS* plants (FC>1.5, p<0.05)

AGI code	Description		mean of linea	Nossen/	<i>p</i> -value			
AGI code	Description	Col-0	CCMC#8	CCMC#12	Nossen	roxy19DS	roxy19DS	
AT4G07825	unknown protein	992.5	967.2	1045.4	1275.1	15.4	82.6	2.85E-13
AT4G05631	unknown protein	542.6	503.4	588.9	393.7	8.8	44.9	9.74E-13
AT4G12917	other RNA	33.0	35.6	31.5	44.5	5.3	8.4	2.09E-09
AT4G16180	unknown protein	365.6	339.9	357.3	283.9	114.3	2.5	4.46E-08
AT4G11570	Haloacid dehalogenase-like hydrolase (HAD) superfamily protein	202.1	206.7	198.2	105.6	29.3	3.6	4.63E-08
AT2G27402	plastid transcriptionally active 18 (TAIR:AT2G32180.1)	77.1	56.8	72.1	98.5	7.9	12.5	5.41E-08
AT2G09795	other RNA	95.6	98.7	100.3	100.5	7.5	13.5	6.37E-08
AT4G15700	Thioredoxin superfamily protein	33.2	33.4	39.6	46.2	6.0	7.7	6.91E-08
AT1G24300	GYF domain-containing protein	134.8	120.9	137.0	105.3	31.7	3.3	1.36E-07

AT4G02600 AT4G02850	MLO1, ATMLO1 phenazine biosynthesis PhzC/PhzF	37.4 34.2	56.9 43.7	53.5 33.7	30.2 30.1	9.1	3.3	1.77E-07 5.16E-07
A14002030	family	54.2	43.7	55.7	50.1	10.2	5.0	5.102 07
AT2G35980	YLS9, NHL10, ATNHL10	76.0	104.6	142.9	44.2	16.3	2.7	7.35E-07
AT4G03820	Protein of unknown function (DUF3537)	82.8	70.7	64.2	52.0	21.2	2.5	7.54E-07
AT4G08280	Thioredoxin superfamily protein	210.1	208.8	213.1	186.7	90.2	2.1	9.29E-07
AT4G04040	MEE51	412.0	411.9	430.5	470.8	243.0	1.9	1.02E-06
AT2G03340	WRKY3	142.0	166.9	155.2	169.3	92.4	1.8	1.11E-06
AT2G17695	FUNCTIONS IN: molecular_function	115.0	91.2	95.2	77.9	10.0	7.8	1.18E-06
AT1G52100	unknown Mannose-binding lectin superfamily	45.3	58.2	50.1	55.7	25.7	2.2	1.43E-06
AT1G52100 AT1G70550	Protein of Unknown Function	49.4	68.5	66.5	29.1	6.3	4.6	1.49E-06
	(DUF239)				-		-	
AT1G24530	Transducin/WD40 repeat-like superfamily	56.3	62.1	63.4	24.5	13.3	1.8	1.92E-06
AT4G24780	Pectin lyase-like superfamily protein	156.3	198.4	168.0	153.6	27.8	5.5	2.82E-06
AT1G30820	CTP synthase family protein	453.8	241.6	276.6	407.5	205.0	2.0	3.2E-06
AT4G15690	Thioredoxin superfamily protein	27.6	22.4	25.8	14.5	8.2	1.8	3.34E-06
AT2G40920	F-box and associated interaction	157.6	170.0	149.5	70.7	12.3	5.8	3.43E-06
AT4G02405	domains-containing protein S-adenosyl-L-methionine-dependent	46.2	44.4	49.6	60.3	31.9	1.9	4.22E-06
A14002405	methyltransferases superfamily protein	40.2	44.4	49.0	00.5	51.9	1.9	4.22E-00
AT2G27050	EIL1, AtEIL1	273.2	294.1	308.0	316.4	155.6	2.0	4.52E-06
AT4G07950	DNA-directed RNA polymerase,	80.2	82.8	83.4	63.1	15.7	4.0	4.62E-06
AT2G28930	subunit M, archaeal APK1B, PK1B	134.8	130.4	143.8	142.1	83.2	1.7	5.19E-06
AT1G08930	ERD6	622.9	812.3	860.6	870.6	524.4	1.7	6.18E-06
AT1G19670	ATCLH1, CORI1, ATHCOR1, CLH1	274.8	384.7	332.3	299.0	165.7	1.8	6.49E-06
AT2G01850	EXGT-A3, XTH27, ATXTH27	294.5	294.6	333.8	332.8	158.6	2.1	6.7E-06
AT4G11900	S-locus lectin protein kinase family	71.1	82.6	85.8	46.1	16.6	2.8	1.09E-05
AT2G16660	Major facilitator superfamily protein	486.4	254.2	333.9	365.8	137.8	2.7	1.2E-05
AT2G16380	Sec14p-like phosphatidylinositol	141.3	149.0	146.6	103.9	59.3	1.8	1.28E-05
AT2G02180	transfer family protein TOM3	232.3	251.8	261.2	313.0	188.6	1.7	1.44E-05
AT2G02180	CCCH-type zinc fingerfamily protein	128.9	119.0	136.7	118.9	34.5	3.4	1.53E-05
ATEGE5500	with RNA-binding domain	120.5	115.0	150.7	110.9	54.5	5.4	1.552 05
AT4G14930	Survival protein SurE-like	152.0	140.8	152.1	198.0	100.3	2.0	1.68E-05
AT2G29120	phosphatase/nucleotidase ATGLR2.7, GLR2.7	34.4	39.9	41.6	32.7	13.0	2.5	1.85E-05
AT2G29120	NAD(P)-binding Rossmann-fold	107.4	129.9	138.7	85.4	12.8	6.7	1.91E-05
	superfamily protein	10/11	12515	10017	6511	12:0	0.7	1.512 00
AT3G57520	AtSIP2, SIP2	1355.3	821.4	970.6	1218.0	557.3	2.2	1.96E-05
AT2G40280	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein	135.5	138.9	134.3	153.3	98.8	1.6	2.03E-05
AT4G14590	emb2739	59.8	54.5	55.4	52.4	22.8	2.3	2.52E-05
ATMG01210	ORF101B	1047.3	985.7	1018.6	1315.6	734.9	1.8	2.69E-05
AT4G38540	FAD/NAD(P)-binding oxidoreductase	207.6	161.6	198.1	211.6	106.0	2.0	2.72E-05
472026080	family protein CIPK3	275.0	220.7	245.2	192.0	07.2	2.1	2.945.05
AT2G26980 AT2G05540	Glycine-rich protein family	275.9 1571.1	220.7 1485.9	245.3 1552.7	183.9 1137.0	87.3 428.7	2.1	2.84E-05 3.18E-05
AT2G03340 AT2G02390	ATGSTZ1, GST18, GSTZ1	78.8	64.6	48.9	30.8	428.7	6.6	3.36E-05
AT2G25480	TPX2 (targeting protein for Xklp2)	43.2	47.7	41.8	30.5	15.3	2.0	3.79E-05
	protein family					1010	210	
AT2G19610	RING/U-box superfamily protein	5.8	5.7	5.5	9.3	5.1	1.8	3.95E-05
AT2G28930	APK1B, PK1B	7.7	7.6	6.7	10.9	4.2	2.6	4.05E-05
AT3G51600	LTP5 FUNCTIONS IN: molecular function	162.7	145.6	158.8	190.6	122.8	1.6	4.24E-05
AT2G17695	unknown	217.5	173.3	178.3	204.8	49.8	4.1	4.49E-05
AT2G41640	Glycosyltransferase family 61 protein	84.7	80.8	79.6	116.0	38.6	3.0	4.8E-05
AT4G11410	NAD(P)-binding Rossmann-fold	50.4	43.5	41.6	58.7	31.5	1.9	4.99E-05
	superfamily protein			2746.0	2621.4	1241.2	2.0	5.24E-05
472045050	170 1707					1341.3	2.0	
	LTP, LTP7	2955.3	2779.8	2746.9	2621.4		1 5	
AT1G19080	TTN10	7.4	6.7	6.5	9.1	5.9	1.5	5.83E-05
AT2G15050 AT1G19080 AT2G20360							1.5 1.6	
AT1G19080	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10	7.4	6.7	6.5	9.1	5.9		5.83E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein	7.4 675.2 74.1 402.6	6.7 672.7 68.8 398.1	6.5 658.6 75.0 391.9	9.1 638.4 57.4 393.7	5.9 410.7 35.4 223.9	1.6 1.6 1.8	5.83E-05 6.55E-05 6.58E-05 6.65E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8	7.4 675.2 74.1 402.6 41.3	6.7 672.7 68.8 398.1 44.3	6.5 658.6 75.0 391.9 50.9	9.1 638.4 57.4 393.7 41.4	5.9 410.7 35.4 223.9 18.6	1.6 1.6 1.8 2.2	5.83E-05 6.55E-05 6.58E-05 6.65E-05 6.69E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16	7.4 675.2 74.1 402.6 41.3 119.5	6.7 672.7 68.8 398.1 44.3 115.3	6.5 658.6 75.0 391.9 50.9 119.5	9.1 638.4 57.4 393.7 41.4 79.7	5.9 410.7 35.4 223.9 18.6 37.9	1.6 1.6 1.8 2.2 2.1	5.83E-05 6.55E-05 6.58E-05 6.65E-05 6.69E-05 6.82E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family	7.4 675.2 74.1 402.6 41.3 119.5 181.8	6.7 672.7 68.8 398.1 44.3 115.3 184.8	6.5 658.6 75.0 391.9 50.9 119.5 183.8	9.1 638.4 57.4 393.7 41.4 79.7 114.4	5.9 410.7 35.4 223.9 18.6 37.9 66.5	1.6 1.6 1.8 2.2 2.1 1.7	5.83E-05 6.55E-05 6.58E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16	7.4 675.2 74.1 402.6 41.3 119.5	6.7 672.7 68.8 398.1 44.3 115.3	6.5 658.6 75.0 391.9 50.9 119.5	9.1 638.4 57.4 393.7 41.4 79.7	5.9 410.7 35.4 223.9 18.6 37.9	1.6 1.6 1.8 2.2 2.1	5.83E-05 6.55E-05 6.58E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat	7.4 675.2 74.1 402.6 41.3 119.5 181.8	6.7 672.7 68.8 398.1 44.3 115.3 184.8	6.5 658.6 75.0 391.9 50.9 119.5 183.8	9.1 638.4 57.4 393.7 41.4 79.7 114.4	5.9 410.7 35.4 223.9 18.6 37.9 66.5	1.6 1.6 1.8 2.2 2.1 1.7	5.83E-05 6.55E-05 6.58E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05 6.95E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700 AT2G25100 AT4G14905	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3	1.6 1.8 2.2 2.1 1.7 1.6 2.0	5.83E-05 6.55E-05 6.65E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05 7.06E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700 AT2G25100 AT4G14905 AT4G17050	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein UGLYAH	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1 303.5	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9 296.3	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9 285.9	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7 222.0	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3 139.7	1.6 1.6 1.8 2.2 1.7 1.6 2.0 1.6	5.83E-05 6.55E-05 6.58E-05 6.65E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05 6.95E-05 7.06E-05 7.12E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700 AT2G25100 AT4G14905 AT4G17050 AT4G02590	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein UGLYAH UNE12	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1 303.5 249.7	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9 296.3 264.6	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9 285.9 290.6	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7 222.0 216.6	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3 139.7 135.6	1.6 1.6 1.8 2.2 1.7 1.6 2.0 1.6 1.6 1.6	5.83E-05 6.55E-05 6.55E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05 6.95E-05 7.06E-05 7.12E-05 7.31E-05
AT1G19080 AT2G20360 AT1G63260 AT1G632830 AT4G13800 AT2G13800 AT2G13800 AT2G17700 AT2G25100 AT4G14905 AT4G14905 AT4G17050 AT4G02590 AT4G26700	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein UGLYAH UNE12 ATFIM1, FIM1	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1 303.5 249.7 253.3	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9 296.3 264.6 259.6	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9 285.9 290.6 263.4	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7 222.0 216.6 199.7	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3 139.7 135.6 125.1	1.6 1.8 2.2 2.1 1.7 1.6 2.0 1.6 1.6 1.6 1.6	5.83E-05 6.55E-05 6.55E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05 6.95E-05 7.06E-05 7.12E-05 7.31E-05 7.38E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700 AT2G25100 AT4G14905 AT4G17050 AT4G02590	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein UGLYAH UNE12	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1 303.5 249.7	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9 296.3 264.6 259.6 19.8	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9 285.9 290.6	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7 222.0 216.6 199.7 9.9	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3 139.7 135.6 125.1 4.6	1.6 1.6 1.8 2.2 1.7 1.6 2.0 1.6 1.6 1.6	5.83E-05 6.55E-05 6.58E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700 AT2G25100 AT4G14905 AT4G14905 AT4G17050 AT4G2590 AT4G2590 AT4G26700 AT4G26700 AT4G03020	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein UGLYAH UNE12 ATFIM1, FIM1 citrate synthase-related transducin family protein / WD-40 repeat family protein	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1 303.5 249.7 253.3 17.8 199.3	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9 296.3 264.6 259.6 19.8 179.8	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9 285.9 200.6 263.4 14.7 192.7	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7 222.0 216.6 199.7 9.9 220.2	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3 139.7 135.6 125.1 4.6 132.0	1.6 1.6 1.8 2.2 2.1 1.7 1.6 2.0 1.6 1.6 1.6 1.7	5.83E-05 6.55E-05 6.65E-05 6.65E-05 6.69E-05 6.92E-05 6.91E-05 7.06E-05 7.06E-05 7.31E-05 7.31E-05 7.57E-05 7.74E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT2G17700 AT2G25100 AT4G14905 AT4G14905 AT4G17050 AT4G2590 AT4G2590 AT4G26700 AT4G26700 AT4G26700 AT4G3020 AT3G57520	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein UGLYAH UNE12 ATFIM1, FIM1 citrate synthase-related transducin family protein / WD-40 repeat family protein AtSIP2, SIP2	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1 303.5 249.7 253.3 17.8 199.3 862.5	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9 296.3 264.6 259.6 19.8 179.8 510.3	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9 285.9 290.6 263.4 14.7 192.7 556.1	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7 222.0 216.6 199.7 9.9 220.2 770.4	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3 139.7 135.6 125.1 4.6 132.0 310.0	1.6 1.6 1.8 2.2 1.7 1.6 2.0 1.6 1.6 1.6 1.7 1.6 2.0 1.6 1.7 1.6 2.0 1.6 1.7 2.5	5.83E-05 6.55E-05 6.65E-05 6.65E-05 6.69E-05 6.82E-05 6.91E-05 6.95E-05 7.06E-05 7.31E-05 7.31E-05 7.38E-05 7.57E-05 7.74E-05 8.15E-05
AT1G19080 AT2G20360 AT1G63260 AT1G63830 AT2G13800 AT4G13640 AT4G13640 AT4G125100 AT4G14905 AT4G17050 AT4G17050 AT4G02590 AT4G25700 AT4G26700 AT2G11270	TTN10 NAD(P)-binding Rossmann-fold superfamily protein TET10 PLAC8 family protein ATSERK5, SERK5, BAK8 UNE16 ACT-like protein tyrosine kinase family Polynucleotidyl transferase, ribonuclease H-like superfamily protein Galactose oxidase/kelch repeat superfamily protein UGLYAH UNE12 ATFIM1, FIM1 citrate synthase-related transducin family protein / WD-40 repeat family protein	7.4 675.2 74.1 402.6 41.3 119.5 181.8 82.3 16.1 303.5 249.7 253.3 17.8 199.3	6.7 672.7 68.8 398.1 44.3 115.3 184.8 81.8 13.9 296.3 264.6 259.6 19.8 179.8	6.5 658.6 75.0 391.9 50.9 119.5 183.8 86.4 17.9 285.9 200.6 263.4 14.7 192.7	9.1 638.4 57.4 393.7 41.4 79.7 114.4 75.9 10.7 222.0 216.6 199.7 9.9 220.2	5.9 410.7 35.4 223.9 18.6 37.9 66.5 48.7 5.3 139.7 135.6 125.1 4.6 132.0	1.6 1.6 1.8 2.2 2.1 1.7 1.6 2.0 1.6 1.6 1.6 1.7	5.83E-05 6.55E-05 6.55E-05 6.65E-05 6.69E-05 6.92E-05 6.91E-05 6.95E-05 7.06E-05 7.06E-05 7.31E-05 7.31E-05 7.57E-05 7.74E-05

AT4G00335	RHB1A	85.2	82.4	86.9	110.0	58.8	1.9	9.35E-05
AT1G69890	Protein of unknown function (DUF569)	102.0	130.6	132.4	91.6	42.5	2.2	9.54E-05
AT4G21680	NRT1.8	82.4	69.4	64.7	79.3	38.5	2.1	9.55E-05
AT2G19800	MIOX2	991.6	779.0	924.8	1382.7	536.1	2.6	0.000103
AT2G29570	PCNA2, ATPCNA2	151.0	146.6	138.0	107.4	37.3	2.9	0.000105
AT2G03500	Homeodomain-like superfamily protein	157.0	149.3	150.8	179.7	111.4	1.6	0.00011
AT4G02590	UNE12	167.2	179.5	185.9	143.5	89.0	1.6	0.000127
AT5G64570	XYL4, ATBXL4	444.3	522.4	549.4	630.2	378.9	1.7	0.000133
AT4G14870	SECE1	87.3	80.8	82.6	89.0	56.3	1.6	0.00014
AT4G22592	CPuORF27	200.1	143.5	146.7	178.8	111.6	1.6	0.000143
AT2G01090	Ubiquinol-cytochrome C reductase hinge	13.1	13.4	14.1	11.2	4.0	2.8	0.000144
AT1G65520	ATECI1, ECI1, ECHIC, PEC11	28.3	23.8	19.3	21.4	13.4	1.6	0.000151
AT1G75220	Major facilitator superfamily protein	149.4	179.0	173.7	161.3	103.9	1.6	0.000152
AT1G53440	Leucine-rich repeat transmembrane protein kinase	295.4	286.7	324.8	350.8	215.6	1.6	0.000162
AT2G13100	Major facilitator superfamily protein	97.8	110.5	100.2	65.7	21.0	3.1	0.000164
AT2G39900	GATA type zinc finger transcription factor family protein	464.9	554.4	507.7	559.3	348.7	1.6	0.000176
AT2G29950	ELF4-L1	19.1	17.6	16.0	14.6	8.0	1.8	0.0002
AT2G26190	calmodulin-binding family protein	99.8	124.5	120.2	101.9	63.8	1.6	0.000211
AT2G39570	ACT domain-containing protein	416.7	374.1	407.8	437.7	263.4	1.7	0.000217
AT2G15560	Putative endonuclease or glycosyl hydrolase	65.1	60.4	58.4	54.3	32.8	1.7	0.000219
AT2G09795	other RNA	40.0	48.1	47.5	40.0	9.4	4.2	0.000221
AT1G69880	ATH8, TH8	17.6	11.2	10.3	8.6	5.2	1.6	0.000237
AT4G34950	Major facilitator superfamily protein	1705.7	1656.3	1720.0	1625.0	1004.6	1.6	0.000257
AT1G76860	Small nuclear ribonucleoprotein family	55.8	62.8	61.4	68.9	36.9	1.9	0.000261
AT2G39210	Major facilitator superfamily protein	83.3	83.8	78.4	94.7	62.7	1.5	0.000264
AT2G17820	ATHK1, AHK1, HK1	128.1	123.5	124.0	157.8	102.3	1.5	0.000298
AT1G56150	SAUR-like auxin-responsive protein family	63.2	45.5	55.8	62.9	37.5	1.7	0.000308
AT1G22570	Major facilitator superfamily protein	86.8	73.2	98.1	107.5	45.0	2.4	0.000314

Table S3 List of genes that are reciprocally regulated in *ROXY19* gain- and loss-of-function plants.

AGI code	Description		mea	in of linear e	xpression va	Col-0/	n voluo				
	Description	Col-0	SSMS#9	CCMC#8	CCMC#12	Nossen	roxy19DS	CCMC#8	<i>p</i> -value	roxy19DS/Nossen	<i>p</i> -value
AT4G15530	PPDK pyruvate orthophosphate dikinase	25.0	18.5	9.3	18.3	23.0	53.2	2.67	0.00722	2.31	0.01893
AT5G36130	Cytochrome P450 superfamily	51.7	50.9	24.3	19.6	55.2	95.8	2.13	0.00017	1.73	0.00501
AT2G21187	other RNA	12.3	11.8	6.3	11.8	5.6	9.6	1.96	0.00559	1.70	0.01812
AT2G18230	AtPPa2, PPa2	426.5	362.6	226.5	298.0	318.6	611.2	1.88	0.00253	1.92	1.9E-05
AT4G33040	Thioredoxin superfamily	9.3	7.4	5.0	7.1	8.0	12.5	1.85	0.00028	1.57	0.01186
AT3G51895	SULTR3;1, AST12 Bifunctional	174.7	182.2	96.9	124.7	148.5	299.5	1.80	0.03529	2.02	1.5E-05
AT2G44300	inhibitor/lipid- transfer protein	22.7	20.2	13.3	17.2	14.2	25.8	1.70	0.00117	1.81	0.00512
AT4G37980	ELI3-1, ELI3, ATCAD7, CAD7	60.0	46.9	37.0	52.6	61.4	91.0	1.62	0.00278	1.48	0.00804
AT2G01422	unknown protein	6.1	4.3	3.9	4.5	5.1	14.9	1.58	0.00263	2.92	0.00668
AT3G50740	UGT72E1	226.9	236.9	144.6	123.1	123.2	199.9	1.57	0.00023	1.62	0.00086
AT4G34000	ABF3, DPBF5 Thiamine pyrophosphate	112.8	94.6	73.0	90.0	55.8	88.6	1.55	0.02235	1.59	0.00247
AT4G33070	dependent pyruvate decarboxylase family protein	70.5	87.8	46.2	47.8	40.7	72.2	1.53	0.00356	1.77	0.0082

AGI code	Description		mea	n of linear e	expression va	alues	CCMC#8	m value	Nossen/roxy19DS		
		Col-0	SSMS#9	CCMC#8	CCMC#12	Nossen	roxy19DS	/Col-0	<i>p</i> -value	Nossen/Toxy19D3	<i>p</i> -value
AT4G01680	MYB55	25.0	28.8	41.6	41.3	25.4	16.7	1.66	0.00349	1.52	0.01065
AT4G02600	MLO1, ATMLO1	7.8	8.2	11.9	9.9	12.0	7.9	1.51	0.02774	1.52	1.77E-07
AT2G26530	AR781	777.5	789.3	1232.2	854.1	376.7	242.0	1.58	0.00058	1.56	0.00484
AT1G52400	BGLU18	72.4	90.3	116.8	107.0	31.9	15.3	1.61	0.00952	2.08	0.04185
AT2G15090	KCS8	77.4	104.5	131.5	104.1	55.5	22.7	1.70	0.01269	2.45	0.00198
AT1G70700	JAZ9, TIFY7	89.8	107.7	138.8	132.3	74.8	40.4	1.55	0.01359	1.85	0.00352
AT3G59880	unknown protein	37.4	50.4	56.9	53.5	30.2	9.1	1.52	0.00099	3.31	0.00351
AT2G26530	AR781	45.3	42.3	58.2	50.1	55.7	25.7	1.28	0.04452	2.17	0.00910
AT1G53340	Cysteine/Histidi ne-rich C1 domain family Protein of	12.5	15.4	22.0	18.2	13.1	8.3	1.76	0.00463	1.57	0.02192
AT4G37080	unknown function, DUF547	31.8	24.9	59.6	28.8	42.4	27.9	1.88	0.04496	1.52	0.02096
AT1G07960	ATPDIL5-1	263.4	329.2	427.3	348.1	326.4	188.8	1.62	0.01400	1.73	0.03577

Acknowledgement

After an intensive period of learning and writing, it is a pleasure to complete the thesis by writing an acknowledgment. This thesis reflects not only my research work but also support and help from many people in the past four years.

First and foremost, I would like to express my sincerest thanks and gratitude to my doctoral advisor Prof. Dr. Christiane Gatz for the continuous support of my doctoral research and study, for her patience, motivation and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I am also thankful to her for carefully reading and commenting on countless revisions of my thesis in order to achieve high standards.

Thanks are also due to members of my thesis committee and examination board Prof. Dr. Ivo Feussner, Prof. Dr. Volker Lipka, PD Dr. Thomas Teichmann, Jr. Prof. Cynthia Gleason and Prof. Dr. Andrea Polle for generously giving their time and expertise to support and improve this work.

It is a great fortune to work in a friendly and cheerful group. I would like to express my gratitude to Ronald Scholz, Anna Hermann, Katharina Dworak and Larissa Kunz for their excellent technical assistance. Especially, I would like to express my gratitude to Dr. Guido Kriete who managed and maintained all laboratory related issues and stuffs so carefully and efficiently and I could always ask for advice and opinions. I am deeply grateful to Dr. Corinna Thurow for her insightful comments and valuable suggestions and for help analyzing the data. I acknowledge the special contribution of PD Dr. Joachim Uhrig who initiated the exciting project to understand the mechanism and his working attitude inspired me to strive for important science task. I am grateful as well for all former and current colleagues - Sina Barghahn, Ronja Hacke, Florian Jung, Dr. Nathannon Leelarasamee, Ning Li (李宁), Dr. Alexander Meier, Dr. Martin Muthreich, Jan Oberdiek, Dr. Frederik Polzin, Dr. Neena Ratnakaran, Dr. Johanna Schmitz, Julia Schröder, Dr. Armin Töller and Dr. Mark Zander - in the Department of Plant Molecular Biology and Physiology.

I am grateful to many friends here in Göttingen over the years. I greatly value and will cherish their friendship, hospitality, knowledge and wisdom. In many ways, I learned much from them. I doubt that I could ever be able to convey my thanks fully, but I owe everyone my warm appreciation.

Finally, I thank my family for always support me spiritually throughout my life. Words cannot express how much I am indebted to my mother for all of the sacrifices she has made on my behalf.