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If you can keep your head when all about you
Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
If you can wait and not be tired by waiting,
Or being lied about, don’t deal in lies,
Or being hated, don’t give way to hating,
And yet don’t look too good, nor talk too wise:

If you can dream - and not make dreams your master;
If you can think - and not make thoughts your aim;
If you can meet with Triumph and Disaster
And treat those two impostors just the same;
If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools,
Or watch the things you gave your life to, broken,
And stoop and build ’em up with worn - out tools:

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings
And never breathe a word about your loss;
If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you
Except the Will which says to them: ’Hold on!’

If you can talk with crowds and keep your virtue,
Or walk with Kings - nor lose the common touch,
If neither foes nor loving friends can hurt you,
If all men count with you, but none too much;
If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,
And - which is more - you’ll be a Man, my son!

Rudyard Kipling, 1895
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Summary

Diophantine equations and cyclotomic fields
This thesis examines some approaches to address Diophantine equations, specifically we
focus on the connection between the Diophantine analysis and the theory of cyclotomic
fields.

First (in Chapter 2), we propose a quick introduction to the methods of Diophantine
approximation we have used in this research work. We remind the notion of height and
introduce the logarithmic gcd.

Then (in Chapter 3), we address a conjecture, made by Thoralf Skolem in 1937,
on an exponential Diophantine equation. For this conjecture, let K be a number field,
α1, . . . , αm, λ1, . . . , λm non-zero elements in K, and S a finite set of places of K (containing
all the infinite places) such that the ring of S-integers

OS = OK,S = {α ∈ K : |α|v ≤ 1 for places v /∈ S}

contains λ1, . . . , λm, α1, . . . , αm, α
−1
1 , . . . , α−1

m . For every n ∈ Z, let A(n) = λ1α
n
1 + · · · +

λmα
n
m ∈ OS. Skolem suggested [Skolem 1937]:

Conjecture 0.0.1 (Exponential Local-Global Principle) Assume that for every non
zero ideal a of the ring OS, there exists n ∈ Z such that A(n) ≡ 0 mod a. Then there exists
n ∈ Z such that A(n) = 0.

Let Γ be the multiplicative group generated by α1, . . . , αm. Then Γ is the product of a
finite abelian group and a free abelian group of finite rank. We prove that the conjecture
is true when the rank of Γ is one.

This result was proved in collaboration with Florian Luca, from University of the
Witwatersrand (South Africa) and Yuri Bilu. It was published in Acta Arithmetica
[Bartolomé et al. 2013]. Shortly after its publication, Florian Luca met Andrzej Schinzel
in a mathematical congress, and Schinzel told him that our result was a direct consequence
of [Schinzel 1977][Theorem 6]. A quick verification proved it was true. However, this work
has been done with no previous knowledge of this result and using other (subspace theorem
and Baker’s inequality), interesting per se, methods.

After that (in Chapter 4), we generalize a result previously published by Abouzaid
([Abouzaid 2008]). Let F (X, Y ) ∈ Q[X, Y ] be a Q-irreducible polynomial. In 1929 Skolem
[Skolem 1929] proved the following beautiful theorem:

Theorem 0.0.2 (Skolem) Assume that

F (0, 0) = 0.

Then for every non-zero integer d, the equation F (X, Y ) = 0 has only finitely many solu-
tions in integers (X, Y ) ∈ Z2 with gcd(X, Y ) = d.

In 2008, Abouzaid [Abouzaid 2008] generalized this result by working with arbitrary alge-
braic numbers and by obtaining an asymptotic relation between the heights of the coordi-
nates and their logarithmic gcd. He proved the following theorem:
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Theorem 0.0.3 (Abouzaid) Assume that (0, 0) is a non-singular point of the plane
curve F (X, Y ) = 0. Let m = degX F, n = degY F, M = max{m,n}. Let ε satisfy
0 < ε < 1. Then for any solution (α, β) ∈ Q̄2 of F (X, Y ) = 0, we have either

max{h(α), h(β)} ≤ 56M8ε−2hp(F ) + 420M10ε−2 log(4M),

or
max{|h(α)− nlgcd(α, β)|, |h(β)−mlgcd(α, β)|} ≤ εmax{h(α), h(β)}+ 742M7ε−1hp(F )

+ 5762M9ε−1 log(2m+ 2n).

However, he imposed the condition that (0, 0) be a non-singular point of the plane curve
F (X, Y ) = 0. Using a somewhat different version of Siegel’s “absolute" Lemma and of
Eisenstein’s Lemma, we could remove the condition and prove it in full generality. We
prove the following theorem:

Theorem 0.0.4 Let F (X, Y ) ∈ Q̄[X, Y ] be an absolutely irreducible polynomial satisfying
F (0, 0) = 0. Let m = degX F, n = degY F and r = min

{
i+ j : ∂i+jF

∂iX∂jY
(0, 0) 6= 0

}
. Let ε

satisfy 0 < ε < 1. Then, for any α, β ∈ Q̄ such that F (α, β) = 0, we have either:

h(α) ≤ 200ε−2mn6(hp(F ) + 5)

or ∣∣∣ lgcd(α,β)
r
− h(α)

n

∣∣∣ ≤ 1
r
(εh(α) + 4000ε−1n4(hp(F ) + log(mn) + 1)+

+ 30n2m(hp(F ) + log(nm))).

In our proof, we closely follow Abouzaid’s methods. This result was also submitted for
publication in 2014, and during the review process, the referee kindly pointed out that
this result had already been proven in Philipp Habegger’s unpublished PhD Thesis, and
quick check proved that to be true: the result is proved in [Habegger 2007][Appendix
B, Theorem B.3] using his quasi-equivalence of heights. While we admit his solution is
more "industrial" and provides a better bound, we still believe that Abouzaid’s inital
argument is quite enlightening and natural in certain ways. Our result has been published
in [Bartolomé 2015]. Our main tool is Puiseux expansions.

Then (in Chapter 5) we give an overview of the tools we have used in cyclotomic fields.
We try there to develop a systematic approach to address a certain type of Diophantine
equations. We discuss on cyclotomic extensions and give some basic but useful properties,
on group-ring properties and on Jacobi sums.

Finally, (in Chapter 6) we show a very interesting application of the approach devel-
opped in the previous chapter. There, we consider the Diophantine equation

Xn − 1 = BZn, (1)

where B ∈ Z is understood as a parameter. Define ϕ∗(B) := ϕ(rad (B)), where rad (B) is
the radical of B, and assume that

(n, ϕ∗(B)) = 1. (2)

For a fixed B ∈ N>1 we let

N (B) = {n ∈ N>1 | ∃ k > 0 such that n|ϕ∗(B)k}.
If p is an odd prime, we shall denote by CF the combined condition requiring that



xi

I The Vandiver Conjecture holds for p, so the class number h+
p of the maximal real

subfield of the cyclotomic field Q[ζp] is not divisible by p.

II We have ir(p) <
√
p− 1, in other words, there is at most √p− 1 odd integers k < p

such that the Bernoulli number Bk ≡ 0 mod p.

Current results on Equation (1) are restricted to values of B which are built up
from two small primes p ≤ 13 [Bennett et al. 2006] and complete solutions for B < 235
([A.Bazso et al. 2010]). If expecting that the equation has no solutions, – possibly with
the exception of some isolated examples – it is natural to consider the case when the expo-
nent n is a prime. Of course, the existence of solutions (X,Z) for composite n imply the
existence of some solutions with n prime, by raising X,Z to a power.

The main contribution of our work has been to relate (1) in the case when n is a prime
and (2) holds, to the diagonal Nagell – Ljunggren equation,

Xn − 1

X − 1
= neY n, e =

{
0 if X 6≡ 1 mod n,
1 otherwise.

This way, we can apply results from [Mihăilescu 2008] and prove the following:

Theorem 0.0.5 Let n be a prime and B > 1 an integer with (ϕ∗(B), n) = 1. Suppose
that equation (1) has a non trivial integer solution different from n = 3 and (X,Z;B) =
(18, 7; 17). Let X ≡ u mod n, 0 ≤ u < n and e = 1 if u = 1 and e = 0 otherwise. Then:

1. n > 163 · 106.

2. X − 1 = ±B/ne and B < nn.

3. If u 6∈ {−1, 0, 1}, then condition CF (II) fails for n and

2n−1 ≡ 3n−1 ≡ 1 mod n2, and
rn−1 ≡ 1 mod n2 for all r|X(X2 − 1).

If u ∈ {−1, 0, 1}, then Condition CF (I) fails for n.

Based on this theorem, we also prove the following:

Theorem 0.0.6 If equation (1) has a solution for a fixed B verifying the conditions (2),
then either n ∈ N (B) or there is a prime p coprime to ϕ∗(B) and a m ∈ N (B) such that
n = p ·m. Moreover Xm, Y m are a solution of (1) for the prime exponent p and thus verify
the conditions in Theorem 0.0.5.
This is a strong improvement of the currently known results.

As we have made heavy use of [Mihăilescu 2008], at the end of this thesis we have added
an appendix to expose some new result that allows for a full justification of Theorem 3 of
[Mihăilescu 2008].

Keywords
Diophantine Equations, Cyclotomic Fields, Nagell-Ljunggren Equation, Skolem, Abouzaid,
Exponential Diophantine Equation, Baker’s Inequality, Subspace Theorem.
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Zusammenfaßung

Diophantine equations and cyclotomic fields
Diese Doktorarbeit untersucht einige Verfahren zur Behandlung von Diophantischen Gle-
ichungen. Wir behandeln insbesondere den Zusammnehang zwischen Diophantischer Anal-
ysis und der Theorie von Kreisteilungskörper.

In Kapitel 2 wird eine kurze Einführung in den Methoden der Diophantischen Approx-
imation, die wir in dieser Arbeit verwendeten, gegeben. Insbesondere werden die Begriffe
von Höhe und logarithmischen grössten geminsamen Teiler eingeführt.

Im darauffolgenden Kapitel 3, wird eine Vermutung von Thoralf Skolem aus dem
Jahr 1937 behandelt, betreffend einer Diophantischen Gleichung. Sei K ein Zahlkör-
per, α1, . . . , αm, λ1, . . . , λm nicht verschwindende algebraische Zahlen aus K und S eine
endliche Menge von Stellen aus K, die alle unendlichen Stellen enthält und so, dass der
Ring der S-ganzen Zahlen

OS = OK,S = {α ∈ K : |α|v ≤ 1 für Stellen v /∈ S}

auch λ1, . . . , λm, α1, . . . , αm, α
−1
1 , . . . , α−1

m enthält.
Für jedes n ∈ Z, sei A(n) = λ1α

n
1 + · · ·+λmα

n
m ∈ OS. Skolem vermutete [Skolem 1937]:

Conjecture 0.0.7 (Exponential Local-Global Principle) Angenommen, dass für
jedes nicht triviale Ideal a im Ganzheitsring OS, ein n ∈ Z existiert, so dass A(n) ≡ 0 mod a;
dann existiert ein n ∈ Z, so dass A(n) = 0.

Sei Γ die durch α1, . . . , αm erzeugte multiplicative Gruppe. Dann ist Γ Produkt einer
endlichen abelschen Gruppe mit einer freien abelschen Gruppe von endlichem Rang. Wir
beweisen die Vermutung für den Fall in dem der freie Teil den Rang eins hat.

Das Ergebnis wurde in Zusammenarbeit mit Florian Luca, von der University of the
Witwatersrand (Süd Afrika) und Yuri Bilu erhalten und wurde in Acta Arithmetica
[Bartolomé et al. 2013] publiziert. Kurz nach der Publikation wurde Florian Luca von An-
drzej Schinzel davon informiert, dass unser Ergebnis eine direkte Konsequenz von Lehrsatz
6 von [Schinzel 1977] ist, was danach leicht zu konfirmieren war. Nicht destotrotz wurde
unser Ergebnis ohne Kenntnis der Arbeit von Schintzel erhalten und der Beweis verwendet
wesentlich verschiedene Methoden, die in sich interessant sind.

Im Kapitel 4 wird ein früheres Ergebnis von Abouzaid ([Abouzaid 2008]) verallge-
meinert. Sei F (X, Y ) ∈ Q[X, Y ] ein Q-unzerlegbares Polynom. In 1929 bewies Skolem
[Skolem 1929] folgenden schönen Satz:

Theorem 0.0.8 (Skolem) Sei
F (0, 0) = 0.

Dann ist die Menge der Lösungen Ld = {F (X, Y ) = 0 : X, Y ∈ Zund(X, Y ) = d} endlich,
für jeden d > 0.

In 2008, verallgemeinerte Abouzaid [Abouzaid 2008] dieses Ergebnis, indem er in Zahlenkör-
per arbeitete. Er bewies folgenden Satz:

Theorem 0.0.9 (Abouzaid) Sei (0, 0) ein nicht - singurlärer Punkt der ebenen Kurve
F (X, Y ) = 0. Sei m = degX F, n = degY F, M = max{m,n} und ε genüge den Un-
gleichungen 0 < ε < 1. Dann gilt für jede Lösung (α, β) ∈ Q̄2 von F (X, Y ) = 0, entweder

max{h(α), h(β)} ≤ 56M8ε−2hp(F ) + 420M10ε−2 log(4M),
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oder

max{|h(α)− nlgcd(α, β)|, |h(β)−mlgcd(α, β)|} ≤ εmax{h(α), h(β)}+ 742M7ε−1hp(F )

+ 5762M9ε−1 log(2m+ 2n).

Die Bedingung, dass (0, 0) ein nicht singulärer Punkt sei, ist eine Einschränkung in diesem
Ergebnis. Wir konnten diese Einschränkung aufheben, in dem wir eine leicht veränderte
Version des "absoluten" Lemma von Siegel und des Eisenstein-Lemmas verwendeten. Fol-
gender Satz ergibt sich:

Theorem 0.0.10 Sei F (X, Y ) ∈ Q̄[X, Y ] ein total unzerlegbarer Polynom mit F (0, 0) = 0.
Sei m = degX F, n = degY F und r = min

{
i+ j : ∂i+jF

∂iX∂jY
(0, 0) 6= 0

}
. Sei ε ∈ R mit

0 < ε < 1. Dann gilt für jede Lösung α, β ∈ Q̄ von F (X, Y ) = 0, entweder:

h(α) ≤ 200ε−2mn6(hp(F ) + 5)

oder ∣∣∣ lgcd(α,β)
r
− h(α)

n

∣∣∣ ≤ 1
r
(εh(α) + 4000ε−1n4(hp(F ) + log(mn) + 1)+

+ 30n2m(hp(F ) + log(nm))).

Dieses Ergebnis wurde 2014 zur Publikation eingereicht; doch wies der Referee darauf
hin, dass dieses Ergebnis in einer Doktorarbeit von Philipp Habegger bewiesen wurde –
tatsächlich befindet sich das Ergebnis in [Habegger 2007][Appendix B, Theorem B.3] und
wird bewiesen mittels der von Habegger eingeführten quasi-Äquivalenz von Höhen. Unser
Ergebnis ist weniger technisch und verwendet einleuchtende Methoden, die auf Puiseux-
Reihen basieren. Es wurde publiziert in [Bartolomé 2015].

Im Kapitel 5 werden einige Ergebnisse aus der Theorie der Kreisteilungskörper be-
wiesen, um einen systematischen Lösungsvorgang für bestimmte exponentielle Diophantis-
che Gleichungen darzustellen. Wir besprechen auch einige Eigenschaften von Gruppenringe
und von Jacobi-Summen. Darauf basierend wird in Kapitel 6 eine interessante Anwendung
entwickelt. Wir betrachten die Diophantische Gleichung

Xn − 1 = BZn, (3)

wobei B ∈ Z als Parameter zu verstehen ist. Sei ϕ∗(B) := ϕ(rad (B)), mit rad (B) dem
Radikal von B, und nehme an, dass

(n, ϕ∗(B)) = 1. (4)

Zudem definieren wir für festen B ∈ N>1

N (B) = {n ∈ N>1 | ∃ k > 0 such that n|ϕ∗(B)k}.

Falls p eine ungerade Primzahl ist, dann bezeichnen wir mit CF das Bedingungspaar

I Die Vermutung von Vandiver ist wahr für p: somit ist die Klassenzahl h+
p des maxi-

malen reellen Teilkörpers des p-ten Kreisteilungskörpers Q[ζp] nicht durch p teilbar.
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II Der irregularitätsindex ist beschränkt durch ir(p) <
√
p − 1; es gibt also höchstens√

p− 1 ungerade k < p für denen der Zähler der Bernoullizahl Bk ≡ 0 mod p.

Die besten Ergebnisse sind zur Zeit auf ParameterB eingeschränkt, die durch Primzahlen
q ≤ 13 teilbar sind [Bennett et al. 2006] und es sind vollständige Lösungen für B < 235
([A.Bazso et al. 2010]) bekannt.

Wenn man von der Erwartung ausgeht, dass die Gleichung keine Lösungen besitzt, ist es
natürlich vom Falle auszugehen, in dem der Exponent n eine Primzahl ist: die Existenz von
Lösungen für einen zusammengesetzten Exponent n impliziert die Existenz von Lösungen
für dessen Primteiler, als Exponent.

Das Hauptergebnis der Arbeit besteht darin, die Gleichung (3), unter Voraussetzung
dass n prim ist und (4) gilt, auf dem besser verstandenen Diagonalfall der Gleichung von
Nagell – Ljunggren zu beziehen:

Xn − 1

X − 1
= neY n, e =

{
0 Falls X 6≡ 1 mod n,
1 sonst.

Damit können Ergebnisse aus [Mihăilescu 2008] verwendet werden und wir beweisen

Theorem 0.0.11 Sei n prim und B > 1 eine ganze Zahl mit (ϕ∗(B), n) = 1. Angenom-
men, die Gleichung (3) habe eine nicht-triviale Lösung, die verschieden ist von n = 3 und
(X,Z;B) = (18, 7; 17), sei X ≡ u mod n, 0 ≤ u < n mit e = 1 falls u = 1 and e = 0 sonst.
Dann gilt:

1. n > 163 · 106.

2. X − 1 = ±B/ne und B < nn.

3. Falls u 6∈ {−1, 0, 1}, dann wird die Bedingung CF (II) durch n nicht erfüllt und

2n−1 ≡ 3n−1 ≡ 1 mod n2, und
rn−1 ≡ 1 mod n2 für alle r|X(X2 − 1).

Falls u ∈ {−1, 0, 1}, dann ist die Bedingung CF (I) für n falsch.

Aus diesem Satz folgern wir:

Theorem 0.0.12 Falls die Gleichung (3) für ein festes B, das die Bedingungen (4) erfüllt,
eine Lösung besitzt, dann ist entweder n ∈ N (B) oder es gibt eine Primzahl p, die zu ϕ∗(B)
teilerfremd ist und ein m ∈ N (B), so dass n = p ·m. Zudem bilden Xm, Y m eine Lösung
von (3) für den primen Exponent p und erfüllen somit die Bedingungen in Satz 0.0.11.

Dies verbessert die aktuelle Ergebnisse wesentlich.
Im Appendix wird eine ausführliche Beweisführung des Theorems 3 in [Mihăilescu 2008]

angegeben, das im Kapitel 6 eine wesntliche Rolle spielt.

Keywords
Diophantine Equations, Cyclotomic Fields, Nagell-Ljunggren Equation, Skolem, Abouzaid,
Exponential Diophantine Equation, Baker’s Inequality, Subspace Theorem.
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Résumé

Diophantine equations and cyclotomic fields
Cette thèse examine quelques approches aux équations diophantiennes, en particulier les
connexions entre l’analyse diophantienne et la théorie des corps cyclotomiques.

Tout d’abord (au chapitre 2), nous proposons une introduction très sommaire et rapide
aux méthodes d’analyse diophantienne que nous avons utilisées dans notre travail de
recherche. Nous rappelons la notion de hauteur et présentons le PGCD logarithmique.

Ensuite (au chapitre 3), nous attaquons une conjecture, formulée par Skolem en 1937,
sur une equation diophantienne exponentielle. Pour cette conjecture, soit K un corps de
nombres, α1, . . . , αm, λ1, . . . , λm des éléments non-nuls de K, et S un ensemble fini de places
de K (qui contient toutes les places infinies), de telle sorte que l’anneau de S-entiers

OS = OK,S = {α ∈ K : |α|v ≤ 1 for places v /∈ S}

contienne λ1, . . . , λm, α1, . . . , αm, α
−1
1 , . . . , α−1

m . Pour chaque n ∈ Z, soit A(n) = λ1α
n
1 +

· · ·+ λmα
n
m ∈ OS. Skolem a suggéré [Skolem 1937]:

Conjecture 0.0.13 (Principe local-global exponentiel) Supposons que pour chaque
ideal non-nul a de l’anneau OS, il existe n ∈ Z tel que A(n) ≡ 0 mod a. Alors il existe
n ∈ Z tel que A(n) = 0.

Soit Γ le groupe multiplicatif engendré par α1, . . . , αm. Alors Γ est le produit d’un groupe
abélien fini et d’un groupe libre de rang fini. Nous démontrons que cette conjecture est
vraie lorsque le rang de Γ est un.

Ce résultat a été démontré en collaboration avec Florian Luca, de l’université de
Witwatersrand (Afrique du Sud) et Yuri Bilu. Il a été publié dans Acta Arithmetica
[Bartolomé et al. 2013]. Juste aprs̀ sa publication, Florian Luca a rencontré Andrzej
Schinzel à un congrès mathématique, et Schinzel lui a dit que notre résultat était une
conséquence directe de [Schinzel 1977][Theorem 6]. Une vérification rapide a montré que
c’était bien vrai. Cependant, ce travail a été mené sans aucune connaissance préalable de
ce résultat et en utilisant d’autres méthodes (le théorème du sous-espace et l’inégalité de
Baker).

Après cela, (au chapitre 4), nous généralisons un résultat précédent de Mourad Abouzaid
([Abouzaid 2008]). Soit F (X, Y ) ∈ Q[X, Y ] un Q-polynôme irréductible. En 1929, Skolem
[Skolem 1929] a démontré le beau théorème suivant:

Theorem 0.0.14 (Skolem) Supposons que

F (0, 0) = 0.

Alors, pour tout entier non-nul d, l’équation n’adment qu’un nombre fini de solutions en-
tières (X, Y ) ∈ Z2 telles que pgcd(X, Y ) = d.

En 2008, Mourad Abouzaid [Abouzaid 2008] a généralisé ce résultat en travaillant avec des
entiers algébriques arbitraires et en obtenant une relation asymptotique entre les hauteurs
des coordonnées et leur PGCD logarithmique. Il a démontré le théorème suivant:
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Theorem 0.0.15 (Abouzaid) Supposons que (0, 0) soit un point non-singulier de la courbe
plane F (X, Y ) = 0. Soit m = degX F, n = degY F, M = max{m,n}. Soit ε tel que
0 < ε < 1. Alors, pour toute solution (α, β) ∈ Q̄2 de F (X, Y ) = 0, nous avons soit

max{h(α), h(β)} ≤ 56M8ε−2hp(F ) + 420M10ε−2 log(4M),

soit

max{|h(α)− nlgcd(α, β)|, |h(β)−mlgcd(α, β)|} ≤ εmax{h(α), h(β)}+ 742M7ε−1hp(F )

+ 5762M9ε−1 log(2m+ 2n).

Cependant, il a imposé la condition que (0, 0) soit un point non-singulier de la courbe plane
F (X, Y ) = 0. En utilisant des versions quelque peu différentes du lemme “absolu" de Siegel
et du Lemme d’Eisenstein, nous avons pu lever la condition et démontrer le théorème de
façon générale. Nous démontrons le théorème suivant:

Theorem 0.0.16 Soit F (X, Y ) ∈ Q̄[X, Y ] un polynôme absolument irréductible qui satis-
fasse F (0, 0) = 0. Soit m = degX F, n = degY F et r = min

{
i+ j : ∂i+jF

∂iX∂jY
(0, 0) 6= 0

}
.

Soit ε tel que 0 < ε < 1. Alors, pour tout α, β ∈ Q̄ tel que F (α, β) = 0, nous avons soit

h(α) ≤ 200ε−2mn6(hp(F ) + 5)

ou ∣∣∣ lgcd(α,β)
r
− h(α)

n

∣∣∣ ≤ 1
r
(εh(α) + 4000ε−1n4(hp(F ) + log(mn) + 1)+

+ 30n2m(hp(F ) + log(nm))).

Dans notre démonstration nous suivons de près les méthodes de Mourad Abouzaid. Ce
résultat a aussi été soumis pour publication en 2014, et pendant le processus de revue,
l’arbitre nous a gentiment indiqué que ce résultat avait déjà été démontré dans la thèse de
doctorat, jamais publiÃ©e, de Philipp Habegger. Une vérification rapide a aussi démontré
que cela était vrai: le résultat est démontré à [Habegger 2007][Appendix B, Theorem B.3]
en utilisant sa quasi-équivalence des hauteurs. Alors que nous admettons que sa solution est
plus "industrielle" et donne une meilleure borne, nous croyons cependant que l’argument
initial de Mourad Abouzaid est plus naturel et propose quelque éclairage supplémentaire
sur ce qui se passe. Notre résultat a été publié à [Bartolomé 2015]. Notre principal outil
sont les développements en séries de Puiseux.

Ensuite (au chapitre 5) nous donnons un aperçu des outils que nous avons utilisés dans
les corps cyclotomiques. Nous tentons de développer une approche systématique pour un
certain genre d’équations diophantiennes. Nous proposons quelques résultats sur les corps
cyclotomiques, les anneaux de groupe et les sommes de Jacobi, qui nous seront utiles pour
ensuite décrire l’approche.

Finalement (au chapitre 6) nous développons une application de l’approche précédem-
ment expliquée. Nous considérerons l’équation diophantienne

Xn − 1 = BZn, (5)

où B ∈ Z est un paramètre. Definissons ϕ∗(B) := ϕ(rad (B)), où rad (B) est le radical de
B, et supposons que

(n, ϕ∗(B)) = 1. (6)
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où rad (B) est le radical de B. Pour B ∈ N>1 fixé, soit

N (B) = {n ∈ N>1 | ∃ k > 0 tel que n|ϕ∗(B)k}.

Si p est un premier impair, nous appellerons CF les conditions combinées

I La conjecture de Vandiver est vraie pour p, c’est-à-dire que le nombre de classe h+
p

du sous-corps réel maximal du corps cyclotomique Q[ζp], n’est pas divisible par p.

II Nous avons ir(p) <
√
p − 1, en d’autre mots, il y a au plus √p − 1 entiers impairs

k < p tels que le nombre de Bernouilli Bk ≡ 0 mod p.

Les résultats actuels sur (5) sont restreints aux valeurs de B composées du produit
de deux premiers petits p ≤ 13 [Bennett et al. 2006] et de solutions complètes pour B <
235 ([A.Bazso et al. 2010]). Si nous pensons que l’équation n’a pas de solutions , – avec
l’exception potentielle de quelques exemples isolés – il est naturel de considérer le cas où
l’exposant n est premier. Bien sûr, l’existence de solutions (X,Z) pour n composé implique
l’existence de quelques solutions pour n premier, en élevant X,Z à une puissance.

La contribution principale de notre travail a été de trouver un lien entre (5) lorsque n
est premier et que (6) est vérifié, à l’équation diagonale de Nagell – Ljunggren,

Xn − 1

X − 1
= neY n, e =

{
0 si X 6≡ 1 mod n,
1 sinon.

Ainsi, nous pouvons appliquer des résultats de [Mihăilescu 2008] et démontrer le théorème
suivant:

Theorem 0.0.17 Soit n un nombre premier et B > 1 un entier tel que (ϕ∗(B), n) = 1.
Supposons que l’équation (5) admette une solution entière non-triviale, différente de n = 3
et (X,Z;B) = (18, 7; 17). Soit X ≡ u mod n, 0 ≤ u < n et e = 1 si u = 1 et e = 0 sinon.
Alors:

1. n > 163 · 106.

2. X − 1 = ±B/ne et B < nn.

3. Si u 6∈ {−1, 0, 1}, alors la condition CF (II) n’est pas vérifiée pour n et

2n−1 ≡ 3n−1 ≡ 1 mod n2, et
rn−1 ≡ 1 mod n2 pour tout r|X(X2 − 1).

Si u ∈ {−1, 0, 1}, alors la condition CF (I) n’est pas vérifiée pour n.

Sur la base de ce théorème, nous démontrons ensuite:

Theorem 0.0.18 Si l’équation (5) admet une solution pour B fixé vérifiant les conditions
(6), alors, soit n ∈ N (B), ou bien il y a un nombre premier p, premier avec ϕ∗(B) et un
m ∈ N (B) tels que n = p ·m. De plus Xm, Y m sont une solution de (5) pour l’exposant
premier p et donc vérifient les conditions du théorème 0.0.17.
Cela est une amélioration très considérable par rapport aux résultats actuellement connus.

Comme nous utilisons de façon intensive l’article [Mihăilescu 2008], nous avons rajouté
en annexe des résultats nouveaux qui permettent de justifier pleinement les résultats an-
noncés en [Mihăilescu 2008][Theorem 3].
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Mots clef
Equations diophantiennes, corps cyclotomiques, equations de Nagell-Ljunggren, Skolem,
Abouzaid, equations diophantiennes exponentielles, inégalité de Baker, théorème du sous-
espace.
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Chapter 1
Introduction

1.1 Diophantine equations
A Diophantine equation (named after one of the first mathematicians to have introduced
symbols into algebra, Diophantus, AD 250) is an equation in two or more variables in
which only the integer solutions are sought. This thesis addresses the study of Diophantine
equations. Obviously, the term integer depends on the field we are working on. The most
famous Diophantine equation is:

xn + yn = zn (1.1)
Fermat’s Last Theorem (FLT) states that equation (1.1) does not have integer solutions

(in Z), all different from zero, if n ≥ 3. Pierre De Fermat stated this conjecture around
1660 while working on problem 8 of Aritmetica, Diophantus’ book, where he wrote

Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non
caperet

(I have discovered a really marvelous proof of this statement, which this margin
is too narrow to contain)

This conjecture has fueled the development of mathematics in several directions (algebraic
number theory, analytic number theory, Diophantine approximation, Diophantine geom-
etry, algebraic geometry) for 350 years. Among the mathematicians having contributed
to the proof of this conjecture we can name Leonhard Euler, Carl Friedrich Gauß, Sophie
Germain, Ernst Kummer, Yutaka Taniyama, Goro Shimura, Gerhard Frey, Jean-Pierre
Serre, Ken Ribet, Barry Mazur, Andrew Wiles, Richard Taylor. The general steps of the
proof are:
A. Work on odd prime exponents n.

B. If x, y, z is a non-trivial solution to Fermat’s Last Equation, where x, y, z are relatively
primes, then associate to it a Frey-Hellegouarch elliptic curve. In 1986, Ken Ribet
[Ribet 1990] proved Jean-Pierre Serre’s ε conjecture that the Frey-Hellegouarch curve
cannot be parametrized with modular forms.

C. In 1994, Andrew Wiles [Wiles 1995] proved the Shimura-Taniyama-Weil conjecture
that any elliptic curve can be parametrized with modular forms. Thus a contradiction
arouse in the case of Fermat’s Last Equation.

Another famous Diophantine equation is:
xn − ym = 1 (1.2)

Eugène Catalan conjectured in 1842 [Catalan 1842] that equation (1.2) admits only one so-
lution in non-zero integers (that is, 32−23 = 1). Some mathematicians having contributed
to the proof of this conjecture are Victor Amédée Lebesgue, Trygve Nagell, Sigmund Sel-
berg, Kustaa Inkeri, Seppo Hyyrö, Ko Chao, J. W. S. Cassels, Yann Bugeaud, Guillaume
Hanrot, Maurice Mignotte, Preda Mihăilescu. It was Preda Mihăilescu [Mihăilescu 2004]
who finished the proof, using a cyclotomic approach, in 2001.



2 Chapter 1. Introduction

1.2 Structure of the thesis
In Chapter 2, we propose a quick introduction to the methods of Diophantine approxi-
mation we have used in this research work. We remind the notion of height and introduce
the logarithmic gcd.

In Chapter 3, we address a conjecture, made by Thoralf Skolem in 1937, on an expo-
nential Diophantine equation. For this conjecture, let K be a number field, α1, . . . , αm as
well as λ1, . . . , λm be non-zero elements in K, and S a finite set of places of K (containing
all the infinite places) such that the ring of S-integers

OS = OK,S = {α ∈ K : |α|v ≤ 1 for places v /∈ S}

contains λ1, . . . , λm, α1, . . . , αm, α
−1
1 , . . . , α−1

m . For every n ∈ Z, let A(n) = λ1α
n
1 + · · · +

λmα
n
m ∈ OS. Skolem suggested [Skolem 1937]:

Conjecture 1.2.1 (Exponential Local-Global Principle) Assume that for every non
zero ideal a of the ring OS, there exists n ∈ Z such that A(n) ≡ 0 mod a. Then there exists
n ∈ Z such that A(n) = 0.

Let Γ be the multiplicative group generated by α1, . . . , αm. Then Γ is the product of a
finite abelian group and a free abelian group of finite rank. In chapter 3, we prove that
the conjecture is true when the rank of Γ is one.

This result was proved in collaboration with Florian Luca, from University of the
Witwatersrand (South Africa) and Yuri Bilu. It was published in Acta Arithmetica
[Bartolomé et al. 2013]. Shortly after its publication, Florian Luca met Andrzej Schinzel
in a mathematical congress, and Schinzel told him that our result was a direct consequence
of [Schinzel 1977][Theorem 6]:

Theorem 1.2.2 Let αhij, βhi be non-zero elements of a number field K, D a positive in-
teger. If the system of congruences

gi∏
h=1

(
k∏
j=1

α
xj
hij − βhi

)
≡ 0 mod m (i = 1, 2, · · · , l)

is soluble for all moduli m prime to D, then the corresponding system of equations is soluble
in integers.

Andrej Schnizel used Tchebotarev’s theorem to prove Theorem 1.2.2, whereas we did not
use it. Our work has been done with no previous knowledge of this result and using other
(subspace theorem and Baker’s inequality), interesting per se, methods.

In Chapter 4, we generalize a previous result by Abouzaid ([Abouzaid 2008]). Let
F (X, Y ) ∈ Q[X, Y ] be a Q-irreducible polynomial. In 1929 Skolem [Skolem 1929] proved
the following beautiful theorem:

Theorem 1.2.3 (Skolem) Assume that F (0, 0) = 0. Then for every non-zero integer d,
the equation F (X, Y ) = 0 has only finitely many solutions in integers (X, Y ) ∈ Z2 with
gcd(X, Y ) = d.

In 2008, Abouzaid [Abouzaid 2008] generalized this result by working with arbitrary alge-
braic numbers and by obtaining an asymptotic relation between the heights of the coordi-
nates and their logarithmic gcd. He proved the following theorem:
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Theorem 1.2.4 (Abouzaid) Assume that (0, 0) is a non-singular point of the plane
curve F (X, Y ) = 0. Let m = degX F, n = degY F, M = max{m,n}. Let ε satisfy
0 < ε < 1. Then for any solution (α, β) ∈ Q̄2 of F (X, Y ) = 0, we have either

max{h(α), h(β)} ≤ 56M8ε−2hp(F ) + 420M10ε−2 log(4M),

or

max{|h(α)− nlgcd(α, β)|, |h(β)−mlgcd(α, β)|} ≤ εmax{h(α), h(β)}+ 742M7ε−1hp(F )

+ 5762M9ε−1 log(2m+ 2n).

However, he imposed the condition that (0, 0) be a non-singular point of the plane curve
F (X, Y ) = 0. Using a somewhat different version of Siegel’s “absolute” Lemma and of
Eisenstein’s Lemma, we could remove the condition and prove it in full generality. We
prove the following theorem:

Theorem 1.2.5 Let F (X, Y ) ∈ Q̄[X, Y ] be an absolutely irreducible polynomial satisfying
F (0, 0) = 0. Let m = degX F, n = degY F and r = min

{
i+ j : ∂i+jF

∂iX∂jY
(0, 0) 6= 0

}
. Let ε

satisfy 0 < ε < 1. Then, for any α, β ∈ Q̄ such that F (α, β) = 0, we have either:

h(α) ≤ 200ε−2mn6(hp(F ) + 5)

or ∣∣∣ lgcd(α,β)
r
− h(α)

n

∣∣∣ ≤ 1
r
(εh(α) + 4000ε−1n4(hp(F ) + log(mn) + 1)+

+ 30n2m(hp(F ) + log(nm))).

In our proof, we closely follow Abouzaid’s methods. This result was also submitted for
publication in 2014, and during the review process, the referee kindly pointed out that
this result had already been proven in Philipp Habegger’s unpublished PhD thesis; a quick
check proved that to be true: the result is proved in [Habegger 2007][Appendix B, Theorem
B.3] using his quantitative version of the quasi-equivalence of heights. Philipp Habegger’s
theorem is:

Theorem 1.2.6 Let P ∈ Q̄[X, Y ] be irreducible with n = degX P > 0, m = degY P > 0
and d = degP . If P (x, y) = 0 where x and y are non-zero algebraic numbers, then

max
{∣∣∣lgcd(x, y)− e(P )

m
h(x)

∣∣∣ , ∣∣∣lgcd(x, y)− e(P )
n

h(y)
∣∣∣} ≤

183dmax{d, hp(P )}1/2 max{1, h(x), h(y)}.

To prove this theorem, he uses his explicit version of quasi-equivalence of heights:

Theorem 1.2.7 Let P ∈ Q̄[X, Y ] be irreducible with n = degX P > 0, m = degY P > 0
and d = degP . If P (x, y) = 0 where x, y ∈ Q̄, then∣∣∣∣h(x)

m
− h(y)

n

∣∣∣∣ ≤ 51 max{n,m, hp(P )}1/2 max{1, h(x), h(y)}1/2.
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Philipp Habegger used his sharp quantitative method of the quasi-equivalence of heights
to prove Theorem 1.2.6, while the main ingredient of our proof are Puiseux expansions and
we closely follow Abouzaid’s arguments. While we admit that Philipp Habegger’s solution
is more “industrial” and provides a better bound, we still believe that Abouzaid’s inital
argument is quite enlightening and natural in certain ways. Our result has been published
in [Bartolomé 2015].

The next chapter (Chapter 5) describes our approach to a certain type of exponential
Diophantine equations:

xp − yp

(x− y)f
= B.zq with x, y ∈ Z, B ∈ Z, f ∈ {0, 1}, (p, q) ∈ Z2.

We start by giving an overview of some of the tools we have used: we give some basic
properties of cyclotomic extensions, group-rings and Jacobi sums, and of general binomial
series developments. Then we describe our approach in three main steps. Finally, we
show how this approach has been specialized in two specific cases: the proof of Catalan’s
conjecture, as well as some conditions and bounding of the potential solutions of the
diagonal Nagell-Ljunggren equation:

xp − 1

x− 1
= pe · yp with x, y ∈ Z e ∈ {0, 1}.

Chapter 6 shows a very interesting application of the approach developed in the
previous chapter. There, we consider the Diophantine equation

Xn − 1 = BZn, (1.3)

where B ∈ Z is understood as a parameter. Define ϕ∗(B) := ϕ(rad (B)), where rad (B) is
the radical of B, and assume that

(n, ϕ∗(B)) = 1. (1.4)

where rad (B) is the radical of B. For a fixed B ∈ N>1 we let

N (B) = {n ∈ N>1 | ∃ k > 0 such that n|ϕ∗(B)k}.

If p is an odd prime, we shall denote by CF the combined condition requiring that

I The Vandiver Conjecture holds for p, so the class number h+
p of the maximal real

subfield of the cyclotomic field Q[ζp] is not divisible by p.

II We have ir(p) <
√
p− 1, in other words, there is at most √p− 1 odd integers k < p

such that the Bernoulli number Bk ≡ 0 mod p.

Current results on Equation (1.3) are restricted to values of B which are built up
from two small primes p ≤ 13 [Bennett et al. 2006] and complete solutions for B < 235
([A.Bazso et al. 2010]). If expecting that the equation has no solutions, – possibly with the
exception of some isolated examples – it is natural to consider the case when the exponent n
is a prime. Of course, the existence of solutions (X,Z) for composite n imply the existence
of some solutions with n prime, by raising X,Z to a power.
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The main contribution of this chapter is to relate (1.3) in the case when n is a prime
and (1.4) holds, to the diagonal Nagell – Ljunggren equation,

Xn − 1

X − 1
= neY n, e =

{
0 if X 6≡ 1 mod n,
1 otherwise.

This way, we can apply results from [Mihăilescu 2008] and prove the following:

Theorem 1.2.8 Let n be a prime and B > 1 an integer with (ϕ∗(B), n) = 1. Suppose that
the equation (1.3) has a non trivial integer solution different from n = 3 and (X,Z;B) =
(18, 7; 17). Let X ≡ u mod n, 0 ≤ u < n and e = 1 if u = 1 and e = 0 otherwise. Then:

1. n > 163 · 106.

2. X − 1 = ±B/ne and B < nn.

3. If u 6∈ {−1, 0, 1}, then condition CF (II) fails for n and

2n−1 ≡ 3n−1 ≡ 1 mod n2, and
rn−1 ≡ 1 mod n2 for all r|X(X2 − 1).

If u ∈ {−1, 0, 1}, then Condition CF (I) fails for n.

Based on this theorem, we prove the following:

Theorem 1.2.9 If equation (1.3) has a solution for a fixed B verifying the conditions
(1.4), then either n ∈ N (B) or there is a prime p coprime to ϕ∗(B) and a m ∈ N (B)
such that n = p ·m. Moreover Xm, Y m are a solution of (1.3) for the prime exponent p
and thus verify the conditions in Theorem 1.2.8.

This is a strong improvement of the currently known results.





Chapter 2
Diophantine approximation

In this chapter we introduce some notions, definitions and properties of Diophantine anal-
ysis we will use in Chapters 3 and 4. We introduce heights and logarithmic GCD.

2.1 Diophantine analysis
Diophantine analysis, in its most classical form, studies integral and rational points on
algebraic varieties over number fields. One can speak on several aspects of this study:

• the finiteness aspect, or, more generally, the non-density aspect: proving that, under
sufficiently general assumptions, integral or rational points are finite in number or,
in higher dimension, are not Zariski dense;

• the counting aspect: when there are infinitely many integral (or rational) points, give
upper bounds or even asymptotics for their counting functions;

• the existence aspect: decide whether at least one integral point exists;

• the effectiveness aspect: determine, at least in principle, all integral points (say, give
an explicit upper bound for their heights);

• the algorithmic aspect: give a practical method permitting to determine integral
points, using computers.

Of course, this classification is very rough and incomplete, but it gives some initial idea
on the subject.

The finiteness/density and the counting aspects are most well developed. The finite-
ness aspect in dimension 1 is almost completely solved by the classical theorems of Siegel
[Siegel 1929] and Faltings [Faltings 1983]: there are finitely many integral points on affine
curves of genus at least 1 (or even of genus 0 but with at least 3 points at infinity), and
finitely many rational points on projective curves of genus at least 2. In higher dimension
much less is known, but some substantial progress has been made in the last decade in
the work of Corvaja, Zannier, Levin and Autissier, starting from the pioneering articles of
Corvaja and Zannier of 2002 [Corvaja & Zannier 2002] and 2004 [Corvaja & Zannier 2004].

The counting aspect is well advanced too, and is presented by seminal works of Tchinkel,
Pila, Heath-Brown and many others.

The existence aspect is much less elaborated. The celebrated result of Matiyasevich
[Matiyasevich 1970] states that on affine varieties of sufficiently high dimension the ex-
istence problem for integral points is not decidable. It is believed, however, that it is
decidable in low dimensions, most notably, in dimension 1. While decidability of existence
of an integral/rational point on a general affine/projective curve is still an open problem,
some results in this direction are obtained, and most of them are based on so-called effective
methods in Diophantine Analysis.

The above-mentioned general finiteness theorems of Siegel and Faltings are non-effective
in the sense that none of them implies any explicit bound for the height of the points.
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Partial effectivization of Siegel’s theorem is obtained by Baker’s method based on Baker’s
theory of logarithmic forms. Another effective method in Diophantine analysis is Runge’s
method, which is elementary, but remarkably efficient when it applies, and which was
used, for instance, by Preda Mihăilescu in the course of his proof of Catalan’s conjecture
[Mihăilescu 2004]. Both these methods, when they apply, give explicit upper bounds for
the heights of integral points on certain affine algebraic curves. In the most basic form, they
explicitly bound solutions of certain polynomial Diophantine equations. In particular, these
results imply that, in principle, one can determine all the solutions just by enumerating all
possible integers below the bound. Unfortunately, the bound is usually too high for this
to be practical, and if one wants to solve completely the equation in question, one should
apply special reduction and enumeration techniques.

2.2 Heights and logarithmic gcd
In this section we recall definitions and collect various results about absolute values and
heights.

We normalize the absolute values on number fields so that they extend standard abso-
lute values on Q: if v | p (non-Archimedean) then |p|v = p−1 and if v | ∞ (Archimedean)
then |2015|v = 2015.

2.2.1 Heights and lgcd of algebraic numbers
Let K be a number field, d = [K : Q] and dv = [Kv : Qv]. The height of an algebraic
number α ∈ K is defined as

h(α) =
1

d

∑
v∈MK

dv log+ |α|v.

where MK is the set of places (normalized absolute values) of the number field K and
log+ = max{log, 0}. It is well-known that the height does not depend on the particular
choice of K, but only on the number α itself. It is equally well-known that h(α) = h(α−1),
so that

h(α) =
1

d

∑
v∈MK

−dv log− |α|v =
∑
v∈MK

hv(α),

where log− = min{log, 0} and

hv(α) = −dv
d

log− |α|v.

The quantities hv(α) can be viewed as “local heights”. Clearly, hv(α) ≥ 0 for any v and α.
We define the logarithmic gcd of two algebraic numbers α and β, not both 0, as

lgcd(α, β) =
∑
v∈MK

min{hv(α), hv(β)},

where K is a number field containing both α and β. It again depends only α and β, not
on K. A simple verification shows that for α, β ∈ Z we have lgcd(α, β) = log gcd(α, β).
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Now let K be a number field and S be a set of places of K. We define the S-height by

hS(α) =
∑
v∈S

hv(α).

Similarly we define lgcdS. We shall use the inequality lgcdS(α, β) ≤ hS(α) ≤ h(α) without
special reference.

2.2.2 Affine and projective heights of polynomials
We define the projective and the affine height of a vector a = (a1, . . . , am) ∈ Q̄m with
algebraic entries, by

hp(a) =
1

d

∑
v∈MK

dv log max
1≤k≤m

|ak|v (a 6= 0),

ha(a) =
1

d

∑
v∈MK

dv log+ max
1≤k≤m

|ak|v,

where K is a number field containing a1, . . . , am. Here d, dv are defined as in the previous
subsection. We notice that the height of an algebraic number defined in the previous
subsection corresponds to the affine height of a one-dimensional vector.

We define the projective and affine height of a polynomial as the corresponding heights
of the vector of its non-zero coefficients. If F is a non-zero polynomial, then, for α ∈ Q̄∗
we have hp(αF ) = hp(F ). Also, hp(F ) ≤ ha(F ), with hp(F ) = ha(F ) if F has a coefficient
equal to 1.

In [Schmidt 1990, Lemma 4], Schmidt proves the following lemma:

Lemma 2.2.1 Let F (X, Y ) ∈ Q̄[X, Y ] be a polynomial with algebraic coefficients, such
that m = degX F and n = degY F . Let RF (X) = ResY (F, F

′
Y ) be the resultant of F and its

derivative polynomial with respect to Y. Then:

hp(RF ) ≤ (2n− 1)hp(F ) + (2n− 1) log((m+ 1)(n+ 1)
√
n). (2.1)

It is well-known that the height of a root of a polynomial is bounded in terms of
the height of the polynomial itself. The following lemma can be found in the article
[Bilu & Borichev 2013, Proposition 3.6]:

Lemma 2.2.2 Let F (X) be a polynomial of degree m with algebraic coefficients. Let α be
a root of F . Then, h(α) ≤ hp(F ) + log 2

We want to generalize this to a system of two algebraic equations in two variables.

Lemma 2.2.3 Let F1(X, Y ) and F2(X, Y ) be polynomials with algebraic coefficients, hav-
ing no common factor. Put:

mi = degX Fi, ni = degY Fi (i = 1, 2).

Let α, β be algebraic numbers satisfying F1(α, β) = F2(α, β) = 0. Then

h(α) ≤ n1hp(F2) + n2hp(F1) + (m1n2 +m2n1) + (n1 + n2) log(n1 + n2) + log 2.
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Proof Since F1 and F2 have no common factor, their Y -resultant R(X) is a non-zero
polynomial, and R(α) = 0. [Abouzaid 2008, Proposition 2.4] gives the estimate

hp(R) ≤ n1hp(F2) + n2hp(F1) + (m1n2 +m2n1) + (n1 + n2) log(n1 + n2).

Combining this with Lemma 2.2.2, the result follows. �

We will also use [Abouzaid 2008, Proposition 2.5]:

Lemma 2.2.4 Let F (X, Y ) ∈ Q̄[X, Y ] be a polynomial with m = degX F and n = degY F
and let α, β be two algebraic numbers. Then

A. We have h(F (α, β)) ≤ ha(F ) +mh(α) + nh(β) + log((m+ 1)(n+ 1)).

B. If F (α, β) = 0 with F (α, Y ) not vanishing identically, then:

h(β) ≤ hp(F ) +mh(α) + n+ log(m+ 1).

Proposition 2.2.5 We let S be a set of places of the number field K, and ¬S be the
complement of S in the set of all places of K.

A. For non-zero algebraic numbers α, β, γ we have

lgcd(αβ, γ) ≤ lgcd(α, γ) + lgcd(β, γ),

and similarly for lgcdS.

In the sequel K is a number field, S a set of places of K containing the infinite places,
and α, β, γ belong to the ring OS of S-integers.

B. α and β are co-prime in OS if and only if lgcd¬S(α, β) = 0.

C. If α and β are co-prime in OS then

lgcd¬S(αβ, γ) = lgcd¬S(α, γ) + lgcd¬S(β, γ).

D. We have lgcd¬S(α, β) ≤ h¬S(α), with equality exactly when α divides β in OS.



Chapter 3
On the Exponential Local-Global

Principle

3.1 Abstract
Skolem conjectured that the “power sum” A(n) = λ1α

n
1 + · · · + λmα

n
m satisfies a certain

local-global principle. We prove this conjecture in the case when the multiplicative group
generated by α1, · · · , αm is of rank 1.

3.2 Introduction
Let K be a number field, α1, . . . , αm, λ1, . . . , λm non-zero elements in K, and S a finite set
of places of K (containing all the infinite places) such that the ring of S-integers

OS = OK,S = {α ∈ K : |α|v ≤ 1 for places v /∈ S}

contains λ1, . . . , λm, α1, . . . , αm, α
−1
1 , . . . , α−1

m . Then, for every n ∈ Z

A(n) = λ1α
n
1 + · · ·+ λmα

n
m ∈ OS.

The expression A(n) will be called power sum. The following conjecture was suggested by
Skolem [Skolem 1937].

Conjecture 3.2.1 (Exponential Local-Global Principle) Assume that for every non
zero ideal a of the ring OS, there exists n ∈ Z such that A(n) ≡ 0 mod a. Then there exists
n ∈ Z such that A(n) = 0.

Some particular cases of this conjecture all addressing the instance when m = 2
and {A(n)}n≥0 ⊆ Z, have been dealt with in [Broughan & Luca 2010, Schinzel 1975,
Schinzel 1977, Schinzel 2003]. For some results on the analogous Skolem conjecture over
function fields, see [Sun 2011].

In this chapter, we prove this conjecture in a special case. Let Γ be the multiplicative
group generated by α1, . . . , αm. Then Γ is the product of a finite abelian group and a free
abelian group of finite rank, say ρ. In this case we shall call A(n) a power sum of rank ρ.

Theorem 3.2.2 Conjecture 3.2.1 holds for power sums of rank one.

Surprisingly enough, our proof makes no use of the Tchebotarev theorem, usually an
indispensable ingredient in this kind of arguments. Instead, it relies on two “powerful
tools” from the Diophantine Approximations. One is the celebrated Subspace Theorem
of Schmidt-Schlickewei, which is used through a theorem of Corvaja and Zannier (Theo-
rem 3.3.1). The other tool is Baker’s inequality (Theorem 3.4.5).
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3.3 Using the subspace theorem through a Theorem of
Corvaja and Zannier

In this section we state one theorem of Corvaja and Zannier and obtain a consequence of
this theorem, which will be one of our principal tools.

We remind here the result of Corvaja and Zannier [Corvaja & Zannier 2005, page 204,
Corollary 1]:

Theorem 3.3.1 Let Γ be a finitely generated subgroup of Q̄×, and ε > 0. Then for multi-
plicatively independent α, β ∈ Γ we have

lgcd(α− 1, β − 1) ≤ εmax{h(α), h(β)}+O(1),

where the constant implied by O(1) depends on Γ and ε (but not on α and β).

We shall use it through the following statement.

Corollary 3.3.2 Let K be a number field, S a finite subset of MK containing the infinite
places, β, γ ∈ O×S multiplicatively independent, and ε > 0. Then for k, n ∈ Z we have

lgcd¬S(γk − 1, γn − β) ≤ ε|k|+O(1),

where the implied constant depends on γ, β, K, S and ε, but not on k and n.

Proof Replacing, if necessary, γ by γ−1, we may assume that k > 0. Also, since
n ≡ n′ mod k implies the congruence γn ≡ γn

′
mod (γk − 1) in the ring OS, we may as-

sume that 0 ≤ n < k. Applying Theorem 3.3.1 with Γ = 〈γ, β〉, with γk as α and with
γnβ−1 as β, we obtain

lgcd¬S(γk − 1, γn − β) ≤ lgcd¬S(γk − 1, γnβ−1 − 1)

≤ lgcd(γk − 1, γnβ−1 − 1)

≤ ε
(
kh(γ) + h(β)

)
+O(1)

= εh(γ)k +O(1).

Redefining ε, we obtain the result. �

3.4 Cyclotomic polynomials
In this section we establish properties of the cyclotomic polynomials, needed for the proof.
We denote by Φk(T ) the k-th cyclotomic polynomial. Since T k − 1 =

∏
d|k Φd(T ), we have

Φk(T ) =
∏
d|k

(T d − 1)µ(k/d), (3.1)

where µ is the Möbius function. We shall systematically use this in the sequel.
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3.4.1 Divisibility
All the results of this subsection are well-known, but it is easier to supply quick proofs
than to find references.

Proposition 3.4.1 Let k and ` be distinct positive integers. Then the resultant of Φk(T )
and Φ`(T ) divides (in Z) a power of k`.

Proof The resultant of these polynomials is a product of factors of the type ζk − ζ`,
where ζk (respectively, ζ`) is a primitive k-th (respectively, `-th) root of unity. The elemen-
tary theory of cyclotomic fields (see, for instance, [Washington 1997, Chapters 1 and 2])
implies that ζk − ζ` divides k` in the ring Z[ζk`]. Hence the resultant divides a power of k`
in Z[ζk`]. Since Q ∩ Z[ζk`] = Z, the resultant divides the same power of k` in Z. �

Corollary 3.4.2 Let K, S be like in the Introduction, and k, ` like in Proposition 3.4.1.

A. Assume that S contains the places dividing k`. Then for any γ ∈ OS we have
gcd
(
Φk(γ),Φ`(γ)

)
= 1 in the ring OS; that is, no prime ideal of OS divides both

Φk(γ) and Φ`(γ).

B. Assume that S contains the places dividing k` and k - `. Then for any γ ∈ OS we
have gcd

(
Φk(γ), γ` − 1

)
= 1 in the ring OS.

C. Assume that S contains the places dividing k. For γ ∈ O×S let p be a prime ideal
of OS dividing Φk(γ). Then γ is of exact order k in (OS/p)×. In particular, if for
some n ∈ Z we have γn ≡ 1 mod p then k | n.

Proof Part A is immediate from Proposition 3.4.1. For part B observe that γ` − 1 is a
product of factors of the type Φ`′(γ) with `′ | `, and by the assumption none of these `′ is
equal to k. Hence part B follows from part A. Finally, part C follows immediately from
part B. �

3.4.2 Heights and cyclotomic polynomials
We need an asymptotic expression for the height of the algebraic number Φk(γ), in terms
of h(γ) and k. In general, if f(x) is a polynomial with algebraic coefficients, then, using
basic properties of heights, it is not difficult to show that h(f(γ)) = deg fh(γ) +O(1) as f
is fixed and γ is varying. We, however, need a result of different type: find asymptotics for
h
(
Φk(γ)

)
as γ is fixed, but k is growing.

For a positive integer k we denote by ϕ(k) the Euler function and by ω(k) the number
of distinct prime divisors of k.

Proposition 3.4.3 Let γ be an algebraic number. Then∣∣h(Φk(γ)
)
− ϕ(k)h(γ)

∣∣ ≤ 2ω(k)(log k +O(1)),

where the constant implied by O(1) depends on γ (but not on k).

The proof requires a complex analytic lemma.
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Lemma 3.4.4 For a positive integer k we have

max
|z|≤1

log |Φk(z)| ≤ 2ω(k)(log k +O(1)),

the maximum being over the unit disc on the complex plane, and the implied constant being
absolute.

Proof By the maximum principle, it suffices to show that

log |Φk(z)| ≤ 2ω(k)(log k +O(1)). (3.2)

for a complex z with |z| = 1. Thus, fix such z. We can write it in a unique way as
z = ζe2πiθ/k, where ζ is a k-th root of unity (not necessarily primitive) and −1/2 < θ ≤ 1/2.
Let ` be the exact order of ζ; thus, ` is a divisor of k and ζ is a primitive `-th root of unity.
Let d be any other divisor of k. If ` - d then 2 ≥ |zd − 1| ≥ 2 sin(πd/2k), which implies
that ∣∣log |zd − 1|

∣∣ ≤ log k +O(1). (3.3)

And if ` | d then, we have |zd − 1| = 2 sin(πθd/k). Writing d = d′`, this implies that

log |zd′` − 1| = log d′ − log(k/`θ) +O(1). (3.4)

Identity (3.1) implies that

log |Φk(z)| =
∑
d|k

µ(k/d) log |zd − 1|

=
∑
d|k,`-d

µ(k/d) log |zd − 1|+
∑
d′|k/`

µ
(
(k/`)/d′

)
log |z`d′ − 1|.

Notice that the first sum above has at most 2ω(k) − 1 non-zero summands. Now substituting
here (3.3) and (3.4), we obtain

log |Φk(z)| ≤ (2ω(k) − 1)(log k +O(1)) +
∑
d′|k/`

µ

(
k/`

d′

)(
log d′ − log

(
k

`θ

))
= (2ω(k) − 1)(log k +O(1)) + Λ(k/`)− δ log(k/`θ),

where Λ(·) is the von Mangoldt function, δ = 0 if ` < k and δ = 1 if ` = k. In any case we
obtain (3.2), proving the lemma. �

Proof of Proposition 3.4.3 Fix a number field K containing γ. For a finite place v
of K we, obviously, have

log+ |Φk(γ)|v =

{
ϕ(k) log |γ|v, |γ|v > 1,
1, |γ|v ≤ 1. (3.5)

For infinite places we have similar “approximate” statements

log+ |Φk(γ)|v
{

= ϕ(k) log |γ|v +O(2ω(k)), |γ|v > 1,
≤ 2ω(k)(log k +O(1)), |γ|v ≤ 1.

(3.6)
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The second inequality follows from Lemma 3.4.4. To prove the first one, assume that
|γ|v > 1. Then for n ≥ 1 we have log |γn − 1|v = n log |γ|v +O(1). Using (3.1) we find

log |Φk(γ)|v =
∑
d|k

µ(k/d) log |γd − 1|v

= log |γ|v
∑
d|k

dµ(k/d) +O(2ω(k))

= ϕ(k) log |γ|v +O(2ω(k)),

as wanted.
The (in)equalities (3.5) and (3.6) imply that∣∣log+ |Φk(γ)|v − ϕ(k) log+ |γ|v

∣∣ {= 0, v finite,
≤ 2ω(k)(log k +O(1)), v infinite.

Summing this up over v ∈MK, we obtain the result. �

3.4.3 Using Baker’s Inequality
Besides Theorem 3.3.1 of Corvaja and Zannier, our second principal tool is the celebrated
inequality of Baker, see the first two contributions in [Wüstholz 2002].

Theorem 3.4.5 Let γ1, . . . , γr be non-zero algebraic numbers, and v a place of a number
field containing them. Then for any n1, . . . , nr ∈ Z we have either γn1

1 · · · γnrr = 1 or∣∣γn1
1 · · · γnrr − 1

∣∣
v
≥ e−C logN , N = max{2, n1, . . . , nr},

where C is a positive constant depending on γ1, . . . , γr and v, but not on n1, . . . , nr.

We deduce from it the following property of cyclotomic polynomials, inspired by the
work of Schinzel [Schinzel 1974] and Stewart [Stewart 1977].

Proposition 3.4.6 Let K be a number field, S a finite set of places of K, and γ ∈ K not
a root of unity. Then for any integer k > 1 we have

hS
(
Φk(γ)

)
= O(2ω(k) log k),

where the implied constant depends on K, S and γ, but not on k.

Proof Since the set S is finite, it suffices to prove that for any v ∈MK we have

hv
(
Φk(γ)

)
= O(2ω(k) log k),

where here and below the constants implied by O(·) depend only on γ and v. Equivalently,
we have to show that ∣∣log− |Φk(γ)|v

∣∣ = O(2ω(k) log k). (3.7)

If |γ|v > 1 then log |Φk(γ)|v = ϕ(k) log |γ|v +O(2ω(k)), see the proof of Proposition 3.4.3.
It follows that log− |Φk(γ)|v = O(2ω(k)), better than (3.7).
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Now assume that |γ|v ≤ 1. Using Theorem 3.4.5 with r = 1, we obtain that
|γn − 1|v ≥ e−C logn with C > 0 depending on γ and v. Hence

log 2 ≥ log |γn − 1|v ≥ −C log n,

which implies that
∣∣log |γn − 1|v

∣∣ = O(log n). Using (3.1), we obtain

log |Φk(γ)|v =
∑
d|k

µ(k/d) log |γd − 1|v = O(2ω(k) log k),

which proves (3.7). �

Combining Propositions 3.4.3 and 3.4.6, we obtain the following consequence.

Corollary 3.4.7 In the set-up of Proposition 3.4.6 we have

h¬S(Φk(γ)) = ϕ(k)h(γ) +O(2ω(k) log k).

3.5 Proof of Theorem 3.2.2
Let A(n) = λ1α

n
1 + · · ·+ λmα

n
m be a power sum of rank 1. Assume that

(L) for every non-zero ideal a of the ring OS there exists n ∈ Z such that A(n) ≡ 0 mod a.
We want to prove that
(G) there exists n ∈ Z such that A(n) = 0.

3.5.1 General Observations
We start with some general observations, which hold true for any power sum, not just
power sums of rank 1.

Extension of the set of places We may replace the set S by any bigger (finite) set of
places. Indeed, condition (G) does not depend on S, and condition (L) becomes
weaker when S is replaced by a bigger set. In particular, extending the set S, we
may assume that

λ1, . . . , λm ∈ O×S . (3.8)

Extension of the base field We may replace the field K by a finite extension K′, the
set S being replaced by the set of places S ′ of K′ extending those from K. Condi-
tion (G) is again not concerned, and condition (L) is replaced by an equivalent one
(each ideal of OK′,S′ is contained in an ideal coming from OK,S).

The group Γ is torsion-free We may assume that the group Γ, generated by the “roots”
α1, . . . , αm is torsion-free. Indeed, since it is finitely generated, its torsion subgroup
is finite; denote its order by µ. Then the group Γµ = {xµ : x ∈ Γ} is torsion free.
Now consider instead of A(n) the power sum

Ã(n) = A(µn)A(µn+ 1) · · ·A(µn+ µ− 1) = λ̃1α̃
n
1 + · · ·+ λ̃m̃α̃

n
m̃.

Clearly, each of the conditions (L) and (G) holds simultaneously for A(n) and Ã(n),
and the group generated by α̃1, . . . , α̃m is contained in Γµ, a torsion-free group. Hence
we may replace A(n) by Ã(n) and assume in the sequel that Γ is torsion-free.
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3.5.2 Using the Rank 1 Assumption
Now we use the assumption that the rank of Γ is 1. Since we may assume it is torsion-free,
this means that Γ = 〈γ〉, where γ ∈ K× is not a root of unity. Write αj = γνj with νj ∈ Z.
Assuming that ν1 < ν2 < · · · < νm, we write

A(n) = λmγ
ν1nP (γn),

where
P (T ) = T νm−ν1 +

λm−1

λm
T νm−1−ν1 + · · ·+ λ2

λm
T ν2−ν1 +

λ1

λm
∈ K[T ].

Extending the field K, we may assume that it contains all the roots of the polynomial
P (T ). It follows from (3.8) that

the roots of P (T ) are S-units. (3.9)

Condition (G) is equivalent to saying that one of the roots of P (T ) belongs to Γ. Thus,
we assume from now on that

no root of P (T ) belongs to Γ, (3.10)

and we shall find a non-zero ideal a of OS such that P (γn) 6≡ 0 mod a for any n ∈ Z. This
will prove the theorem, since A(n) is equal to P (γn) times an S-unit.

3.5.3 The Ideal a
We are going now to define the ideal a. First of all, we split the polynomial P (T ) into two
factors: P (T ) = Pind(T )Pdep(T ), such that each of the roots of Pind(T ) is multiplicatively
independent of γ, and those of Pdep(T ) are multiplicatively dependent with γ. Fix a
positive integer q such that βq ∈ Γ for every root β of Pdep(T ). Then for every such β we
have βq = γr, where r = r(β) ∈ Z. Further, fix a prime number p, not dividing q and such
that

r(β) 6≡ r(β′) mod p (3.11)
for any roots β, β′ of Pdep(T ) such that r(β) 6= r(β′). Extending the set S we may assume
that

all places dividing pq belong to S. (3.12)
Assumption (3.12) has one implication that will be crucial in the sequel.

Observation Let ζµ be a primitive µ-th root of unity for some µ | pq. Then ζµ is of exact
order µ modulo p for any prime ideal p of OS.

Indeed, if this is not true, then p | ζµ′ − 1 for some µ′ | µ, µ′ > 1, which implies that
p | µ, contradicting (3.12).

We let a be the principal ideal generated by a = Φp`(γ)Φp`q(γ), where Φk denotes the
k-th cyclotomic polynomial and the positive integer ` will be specified later. We will show
that both Pind(γn) and Pdep(γn) have “small” common divisor with a. This will imply that,
when ` is chosen suitably, P (γn) cannot be divisible by a for any n.

Until the end of the proof the constants implied by O(·) may depend on the polynomial
P (T ), on γ, on p and q, and on the parameter ε introduced below, but they do not depend
on ` nor on n.

We claim the following.
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Claim I Fix ε > 0. Then for any n ∈ Z we have

lgcd¬S
(
Pind(γn), a

)
≤ εp` +O(1).

Claim D Let n be a rational integer. Then in the ring OS we have either
gcd
(
Pdep(γn),Φp`(γ)

)
= 1 or gcd

(
Pdep(γn),Φp`q(γ)

)
= 1.

We postpone the proof of the Claims until later, and show now how they imply the
theorem.

3.5.4 Proof of the Theorem (Assuming the Claims)

Assuming the Claims, we will show now that when the parameter ` is chosen large enough,
we have P (γn) 6≡ 0 mod a for any n ∈ Z.

Thus, assume that for some n we have P (γn) ≡ 0 mod a. In other words, both Φp`(γ)
and Φp`q(γ) divide P (γn) in the ring OS. In addition to this, Corollary 3.4.2:A together
with (3.12) implies that they are co-prime in OS. It follows that

lgcd¬S(P (γn), a) = lgcd¬S
(
P (γn),Φp`(γ)

)
+ lgcd¬S

(
P (γn),Φp`q(γ)

)
= h¬S

(
Φp`(γ)

)
+ h¬S

(
Φp`q(γ)

)
= ϕ(p`)h(γ) + ϕ(p`q)h(γ) +O(`), (3.13)

see Corollary 3.4.7.
On the other hand, Claim D implies that

lgcd¬S(Pdep(γn), a) ≤ max
{

h¬S
(
Φp`(γ)

)
, h¬S

(
Φp`q(γ)

)}
= ϕ(p`q)h(γ) +O(`),

again by Corollary 3.4.7. Combining this with Claim I, we obtain

lgcd¬S(P (γn), a) ≤ εp` + ϕ(p`q)h(γ) +O(`). (3.14)

Now select ε to have ε < (1− p−1)h(γ). Then (3.13) and (3.14) become contradictory for
large `. This proves the theorem. �

3.5.5 Proof of Claim I
Clearly, a | γp`q − 1. Corollary 3.3.2 implies that

lgcd¬S(γn − β, a) ≤ lgcd¬S
(
γn − β, γp`q − 1

)
≤ εp`q +O(1).

Hence
lgcd¬S

(
Pind(γn), a

)
≤ εp`q degPind +O(1).

Redefining ε, we obtain the result. �



3.5. Proof of Theorem 3.2.2 19

3.5.6 Proof of Claim D
Let us assume the contrary and let p, p′ be prime ideals of OS such that p divides
gcd
(
Pdep(γn),Φp`(γ)

)
and p′ divides gcd

(
Pdep(γn),Φp`q(γ)

)
. There exist (not necessarily

distinct) roots β, β′ of Pdep(T ) such that

γn ≡ β mod p, γn ≡ β′ mod p′.

Further, let r ∈ Z be such that βq = γr, see the beginning of Subsection 3.5.3. Then
γqn−r ≡ 1 mod p.

On the other hand, Corollary 3.4.2:C implies that for any root β of Pind(T ) we have

γ is of exact order p` in (OS/p)×. (3.15)

In particular, qn ≡ r mod p`. Similarly, if r′ ∈ Z is such that (β′)q = γr
′ then Corol-

lary 3.4.2:C implies that qn ≡ r′ mod p`q. We obtain the congruence r ≡ r′ mod p, which,
by our choice of p (see (3.11)) implies that r = r′. Thus, we have qn ≡ r mod p`q, which
implies that q | r. It follows that β = ζγν with ν ∈ Z and ζ a q-th root of unity, not
necessarily primitive.

Now it is the time to use our basic assumption (3.10). We obtain that β /∈ Γ, which
means that ζ 6= 1. Thus, ζ = ζµ is a primitive µ-th root of unity with µ | q and µ > 1.

Since ζµ ≡ γn−ν mod p, the image of ζµ in (OS/p)× belongs to the subgroup generated
by the image of γ. Hence the order of ζµ modulo p divides the order of γ. But the order
of ζµ is µ, see the “Observation” in Subsection 3.5.3, and the order of γ is p`, see (3.15).
Thus, µ | p`, which contradicts co-primarity of p and q. This proves the claim. �





Chapter 4
Skolem-Abouzaid’s theorem in the

singular case

4.1 Abstract
Let F (X, Y ) ∈ Q[X, Y ] be a Q-irreducible polynomial. In 1929, Skolem ([Skolem 1929])
proved a result allowing explicit bounding of the solutions of F (X, Y ) = 0 such that
gcd(X, Y ) = d in terms of the coefficients of F and d. In 2008, Abouzaid [Abouzaid 2008]
generalized this result by working with arbitrary algebraic numbers and by obtaining an
asymptotic relation between the heights of the coordinates and their logarithmic gcd. How-
ever, he imposed the condition that (0, 0) be a non-singular point of the plane curve
F (X, Y ) = 0. In this chapter, this constraint is removed.

4.2 Introduction
Let F (X, Y ) ∈ Q[X, Y ] be a Q-irreducible polynomial. In 1929 Skolem [Skolem 1929]
proved the following beautiful theorem:

Theorem 4.2.1 (Skolem) Assume that

F (0, 0) = 0. (4.1)

Then for every non-zero integer d, the equation F (X, Y ) = 0 has only finitely many solu-
tions in integers (X, Y ) ∈ Z2 with gcd(X, Y ) = d.

The same year, Siegel obtained his celebrated finiteness theorem for integral solutions
of Diophantine equations: equation F (X, Y ) = 0 has finitely many solutions in integers
unless the corresponding plane curve is of genus 0 and has at most 2 points at infinity.
While Siegel’s result is, certainly, deeper and more powerful than Theorem 4.2.1, the
latter has one important advantage. Siegel’s theorem is known to be non-effective: it
does not give any bound for the size of integral solutions. On the contrary, Skolem’s
method allows one to bound the solutions explicitly in terms of the coefficients of the
polynomial F and the integer d. Indeed, such a bound was obtained by Walsh [Walsh 1992];
see also [Poulakis 2004].

In 2008, Abouzaid [Abouzaid 2008] gave a far-going generalization of Skolem’s theorem.
He extended it in two directions.

First, he studied solutions not only in rational integers, but in arbitrary algebraic
numbers. To accomplish this, he introduced the notion of logarithmic gcd of two algebraic
numbers α and β, which coincides with the logarithm of the usual gcd when α, β ∈ Z.

Second, he not only bounded the solution in terms of the logarithmic gcd, but obtained
a sort of asymptotic relation between the heights of the coordinates and their logarithmic
gcd.

Let us state Abouzaid’s principal result (see [Abouzaid 2008, Theorem 1.3]). In the
sequel we assume that F (X, Y ) ∈ Q̄[X, Y ] is an absolutely irreducible polynomial, and use
the notation

m = degX F, n = degY F, M = max{m,n}. (4.2)
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We denote by h(α) the absolute logarithmic height of α ∈ Q̄ and by lgcd(α, β) the logarith-
mic gcd of α, β ∈ Q. We also denote by hp(F ) the projective height of the polynomial F .
For all definitions, see Subsection 2.2.1.

Theorem 4.2.2 (Abouzaid) Assume that (0, 0) is a non-singular point of the plane
curve F (X, Y ) = 0. Let ε satisfy 0 < ε < 1. Then for any solution (α, β) ∈ Q̄2 of
F (X, Y ) = 0, we have either

max{h(α), h(β)} ≤ 56M8ε−2hp(F ) + 420M10ε−2 log(4M),

or

max{|h(α)− nlgcd(α, β)|, |h(β)−mlgcd(α, β)|} ≤ εmax{h(α), h(β)}+ 742M7ε−1hp(F )

+ 5762M9ε−1 log(2m+ 2n).

Informally speaking,
h(α)

n
∼ h(β)

m
∼ lgcd(α, β) (4.3)

as max{h(α), h(β)} → ∞.
Unfortunately, Abouzaid’s assumption is slightly more restrictive than Skolem’s (4.1):

he assumes not only that the point (0, 0) belongs to the plane curve F (X, Y ) = 0, but also
that (0, 0) is a non-singular point on this curve.

Denote by r the “order of vanishing” of F (X, Y ) at the point (0, 0):

r = min

{
i+ j :

∂i+jF

∂iX∂jY
(0, 0) 6= 0

}
. (4.4)

Clearly, r > 0 if and only if F (0, 0) = 0 and r = 1 if and only (0, 0) is a non-singular point
of the plane curve F (X, Y ) = 0.

We can now state our principal result.

Theorem 4.2.3 Let F (X, Y ) ∈ Q̄[X, Y ] be an absolutely irreducible polynomial satisfying
F (0, 0) = 0. Let ε satisfy 0 < ε < 1. Then, for any α, β ∈ Q̄ such that F (α, β) = 0, we
have either:

h(α) ≤ 200ε−2mn6(hp(F ) + 5)

or ∣∣∣ lgcd(α,β)
r
− h(α)

n

∣∣∣ ≤ 1
r
(εh(α) + 4000ε−1n4(hp(F ) + log(mn) + 1)+

+ 30n2m(hp(F ) + log(nm))).

By symmetry, the same kind of bound holds true for the difference lgcd(α,β)
r
− h(β)

m
.

Informally speaking,
h(α)

n
∼ h(β)

m
∼ lgcd(α, β)

r
(4.5)

as max{h(α), h(β)} → ∞.
Validity of (4.5) was stated without proof by Abouzaid, see the end of Section 1

in [Abouzaid 2008] (Abouzaid’s definition of r looks different, but it can be easily shown
that it is equivalent to ours).
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As indicated above, our argument follows, in principle, Abouzaid’s pattern. However,
we had to substantially refine his proof at certain points, to accommodate it for the more
general set-up of Theorem 4.2.3. For instance, our Proposition 4.6.1 comparing the loga-
rithmic gcd with certain “partial height” is considerably more involved than its prototype
from [Abouzaid 2008].

Plan of the chapter Section 4.4 is preliminary: we compile therein some definitions and
results from different sources, which will be used in the article. In Section 4.5 we establish
the “Main Lemma”, which is the heart of the proof of Theorem 4.2.3. In Section 4.6 we
complete the proof of Theorem 4.2.3 using the “Main Lemma”.

4.3 Heights
We remind that we normalize the absolute values on number fields so that they extend
standard absolute values on Q: if v | p (non-Archimedean) then |p|v = p−1 and if v | ∞
(Archimedean) then |2015|v = 2015.

4.3.1 Coefficients versus roots
In this subsection we establish some simple relations between coefficients and roots of a
polynomial over a field with absolute value, needed in the proof of our main result. It will
be convenient to use the notion of v-Mahler measure of a polynomial.

Let K be a field with absolute value v and f(X) ∈ K[X] a polynomial of degree n. Let
β1, . . . , βn ∈ K̄ be the roots of f :

f(X) = anX
n + an−1X

n−1 + . . .+ a0 = an(X − β1) . . . (X − βn).

Define the v-Mahler measure of f by

Mv(f) = |an|v
n∏
i=1

max{1, |βi|v},

where we extend v somehow to K̄. (Clearly, Mv(f) does not depend on the particular
extension of v.) It is well-known that |f |v = Mv(f) for non-archimedean v (“Gauß lemma”)
and Mv(f) ≤ (n+ 1)|f |v for archimedean v (Mahler).

Lemma 4.3.1 Let β1, . . . , β`+1 be `+ 1 distinct roots of f(X), where 0 ≤ ` ≤ n− 1. Then

max{|β1|v, . . . , |β`+1|v} ≥ cv(n)
|a`|v
|f |v

,

where cv(n) = 1 for non-archimedean v and cv(n) = (n+ 1)−12−n for archimedean v.

Proof We have
a` = ±an

∑
1≤i1<...<in−`≤n

βi1 . . . βin−` , (4.6)

where β1, . . . , βn are all roots of f(X) in K̄ counted with multiplicities. Observe that each
term in the sum above contains one of the roots β1, . . . , β`+1, and the product of the other
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roots together with an is v-bounded byMv(f). Hence, denoting µ = max{|β1|v, . . . , |β`+1|v},
we obtain |a`|v ≤ µMv(f) in the non-archimedean case and |a`|v ≤

(
n
`

)
µMv(f) in the

archimedean case. Since
(
n
`

)
≤ 2n, the result follows. �

4.3.2 Siegel’s “Absolute” Lemma
In this section we give a version of the Absolute Siegel’s Lemma due to David and Philip-
pon [David & Philippon 1999], adapted for our purposes.

We start from a slightly modified definition of the projective height of a non-zero vector
a = (a1, . . . , an) ∈ Q̄n. As before, we fix a number field K containing a1, . . . , an and set
d = [K : Q], dv = [Kv : Qv] for v ∈MK.

Now we define
hs(a) =

∑
v∈MK

dv
d

log ‖a‖v,

where
‖a‖v =

{
max{|a1|v, . . . , |an|v}, v <∞,
(|a1|2v + . . .+ |an|2v)1/2, v | ∞.

This definition is the same as for hp(a), except that for the archimedean places the sup-
norm is replaced by the euclidean norm. We have clearly hs(λa) = hs(a) for λ ∈ Q̄×, and

hp(a) ≤ hs(a) ≤ hp(a) +
1

2
log n. (4.7)

Now let us define the height of a linear subspace of Q̄n. IfW is a 1-dimensional subspace
of Q̄n then we set

hs(W ) := hs(w),

where w is an arbitrary non-zero vector from W . Clearly, hs(W ) does not depend on the
particular choice of the vector w.

To extend this to subspaces of arbitrary dimension, we use Grassmann spaces. Recall
that the mth Grassmann space ∧mQ̄n is of dimension

(
n
m

)
, and has a standard basis

consisting of the vectors

ei1 ∧ . . . ∧ eim , (1 ≤ i1 < . . . < im ≤ n),

where e1, . . . , en is the standard basis of Q̄n. If W is an m-dimensional subspace of Q̄n

then ∧mW is a 1-dimensional subspace of ∧mQ̄n, and we simply define

hs(W ) := hs(∧mW ).

Finally, we set hs(W ) = 0 for the zero subspace W = {0}.
To make this more explicit, pick a basis w1, . . . , wm of W . Then ∧mW is generated by

w1 ∧ . . . ∧ wm, and we have

hs(W ) = hs(w1 ∧ . . . ∧ wm). (4.8)

This allows one to estimate the height of a subspace generated by a finite set of vectors in
terms of heights of generators.

Proposition 4.3.2 Let W be a subspace of Q̄n generated by vectors w1, . . . , wm ∈ Q̄n.
Then

hs(W ) ≤ hs(w1) + . . .+ hs(wm).
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Proof Selecting among w1, . . . , wm a maximal linearly independent subset, we may as-
sume that w1, . . . , wm is a basis of W . Then we have (4.8). It remains to observe that for
any place v we have

‖w1 ∧ . . . ∧ wm‖v ≤ ‖w1‖v . . . ‖wm‖v.
For non-archimedean v this is obvious, and for archimedean v this is the classical Hadamard’s
inequality. �

We denote by (x · y) the standard inner product on Q̄n:

(x · y) = x1y1 + . . .+ xnyn.

Let W⊥ denote the orthogonal complement to W with respect to this product. It is well-
known that the coordinates of ∧mW (where m = dimW ) in the standard basis of ∧mQ̄n

are the same (up to a scalar multiple) as the coordinates of ∧n−mW⊥ in the standard basis
of ∧n−mQ̄n. In particular,

hs(W ) = hs(W
⊥). (4.9)

We use this to estimate the height of the subpace defined by a system of linear equations.

Proposition 4.3.3 Let L1, . . . , Lm be non-zero linear forms on Q̄n, and let W be the
subspace of Q̄n defined by L1(x) = . . . = Lm(x) = 0. Then

hs(W ) ≤ hp(L1) + . . .+ hp(Lm) +
m

2
log n. (4.10)

Proof Let a1, . . . , am be vectors in Q̄n such that Li(x) = (x · ai). Then
hp(Li) = hp(ai) (i = 1, . . . ,m). (4.11)

The spaceW⊥ is generated by a1, . . . , am. Applying to it Proposition 4.3.2 and using (4.7),
we obtain

hs(W
⊥) ≤ hs(a1) + . . .+ hs(am) ≤ hp(a1) + . . .+ hp(am) +

m

2
log n.

Together with (4.9) and (4.11), this gives (4.10). �

Remark 4.3.4 It is not difficult to slightly refine (4.10), replacing log n by logm in the
right-hand side, but this would not lead to any substantial improvement of our results.

In [Bilu & Borichev 2013, Lemma 4.7] the following version of “absolute Siegel’s lemma”
is given.

Proposition 4.3.5 Let W be an `-dimensional subspace of Q̄n and ε > 0. Then, there is
a non-zero vector x ∈ W , satisfying:

hp(x) ≤ hs(W )

`
+

1

2`

`−1∑
i=1

i∑
k=1

1

k
+ ε.

Corollary 4.3.6 Let L1, . . . , Lm be non-zero linear forms in n variables with algebraic co-
efficients. Then, there exists a non-zero vector x ∈ Q̄n such that L1(x) = . . . = Lm(x) = 0
and

hp(x) ≤ 1

n−m
(hp(L1) + . . .+ hp(Lm)) +

1

2

n

n−m
log n. (4.12)
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Proof We apply Proposition 4.3.5, where W is the vector subspace of Q̄n defined by
L1(x) = . . . = Lm(x) = 0. Denoting ` = dimW , we have clearly n−m ≤ r ≤ n and

1

2`

`−1∑
i=1

i∑
k=1

1

k
<

1

2
log ` ≤ 1

2
log n.

Hence there exists a non-zero x ∈ W satisfying

hp(x) ≤ 1

n−m
hs(W ) +

1

2
log n.

Using (4.10), we find

hp(x) ≤ 1

n−m
(hp(L1) + . . .+ hp(Lm)) +

1

2

m

n−m
log n+

1

2
log n,

which is (4.12). �

4.4 Power series
In this section we recall various results about power series, used in our proof.

4.4.1 Puiseux Expansions
Let K be a field of characteristic 0, and K[[x]] the field of formal power series over K. It
is well-known that an extension of K[[x]] of degree n is a subfield of a field of the form
L[[x1/e]], where e is a positive integer (the ramification index), L is a finite extension of K,
and

[L : K], e ≤ n.

This fact (quoted sometimes as the “Theorem of Puiseux”) has the following consequence:
if we fix an algebraic closure K̄ of K, then the algebraic closure of K[[x]] can be given by

K[[x]] =
∞⋃
e=1

⋃
K⊂L⊂K̄
[L:K]<∞

L[[x1/e]],

where the interior union is over all subfields L of K̄ finite over K.
Another immediate consequence of the “Theorem of Puiseux” is the following statement:

Proposition 4.4.1 Let

F (X, Y ) = fn(X)Y n + · · ·+ f0(X) ∈ K[X, Y ]

be a polynomial of Y -degree n. Then there exists a finite extension L of K, positive integers
e1, . . . , en, all not exceeding n, and series yi ∈ L[[x1/ei ]] such that

F (x, Y ) = fn(x)(Y − y1) · · · (Y − yn). (4.13)
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We write the series y1, . . . , yn as

yi =
∞∑
k=κi

aikx
k/ei

with aiκi 6= 0. It is well-known and easy to show that
|κi| ≤ degX F (i = 1, . . . , n).

This inequality will be used throughout the article without special notice.
We want to link the numbers ei and κi with the “order of vanishing” at (0, 0), introduced

in (4.4).

Proposition 4.4.2 Let F (X, Y ) ∈ K[X, Y ] and y1, . . . , yn be as above, and assume that
F (0, Y ) is not identically 0. Then the quantity r, introduced in (4.4), satisfies

r =
∑
κi>0

min{1, κi/ei}, (4.14)

where the sum extends only to those i for which κi > 0.

Proof We denote by νx the standard additive valuation on K[[x]], normalized to have
νx(x) = 1. This νx extends in a unique way to the algebraic closure K[[x]]; precisely, for

y(x) =
∞∑
k=κ

akx
k/e ∈ K[[x]] (aκ 6= 0)

we have νx(y) = κ/e. Furthermore, for

G(x, Y ) = gs(x)Y s + · · ·+ g0(x) ∈ K[[x]][Y ]

we set νx(G) = min{νx(g0), . . . , νx(gs)}. Gauß’ lemma asserts that for G1, G2 ∈ K[[x]][Y ],
we have νx(G1G2) = νx(G1) + νx(G2).

Since F (0, Y ) is not identically 0, we have νx(F (x, Y )) = 0. Applying Gauß’ lemma
to (4.13), we obtain

νx(fn(x)) +
∑

min{0, κi/ei} = 0.

Hence, setting f̃n = x−νx(fn(x))fn(x), we may re-write (4.13) as

F (x, Y ) =
∏
κi>0

(Y − yi) · f̃n(x)
∏
κi≤0

(x−κi/eiY − x−κi/eiyi). (4.15)

Now set G(x, Y ) = F (x, xY ). Then clearly r = νx(G). Applying Gauß’ Lemma to the
decomposition

G(x, Y ) =
∏
κi>0

(xY − yi) · f̃n(x)
∏
κi≤0

(x1−κi/eiY − x−κi/eiyi),

we obtain (4.14). �

Here is one more useful property.

Proposition 4.4.3 In the set-up of Proposition 4.4.2, assume that κi > 0 for exactly `
indexes i ∈ {1, . . . , n}. Then fk(0) = 0 for k < `, but f`(0) 6= 0.
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Proof Re-write (4.15) as

F (x, Y ) =
∏
κi>0

(Y − yi)
∏
κi=0

(Y − yi) · f̃0(x)
∏
κi<0

(x−κi/eiY − x−κi/eiyi).

Substituting x = 0, every factor in the first product becomes Y , every factor in the second
product becomes Y − ai0, with ai0 6= 0, and every factor in the third product (including
f̃0(0)) becomes constant. Whence the result. �.

4.4.2 Eisenstein’s theorem
In this subsection, we recall the quantitative version of Eisentsein’s theorem, due to work
from Dwork, Robba [Dwork & Robba 1979], Schmidt [Schmidt 1990] and Van der Poorten
[Dwork & van der Poorten 1992], as given in [Bilu & Borichev 2013]. It will be convenient
to use the notion of MK-divisor.

An MK-divisor is an infinite vector (Av)v∈MK of positive real numbers, each Av being
associated to one v ∈MK, such that for all but finitely many v ∈MK we have Av = 1. An
MK-divisor is effective if for all v ∈MK, Av ≥ 1.

We define the height of an MK-divisor A = (Av)v∈MK as

h(A ) =
∑
v∈MK

dv
d

logAv. (4.16)

The following version of Eisenstein’s theorem is from [Bilu & Borichev 2013, Theorem
7.5].

Theorem 4.4.4 Let F (X, Y ) be a separable polynomial of degrees m = degX F and
n = degY F . Further, let y(x) =

∑∞
k=κ akx

k/e ∈ K[[x1/e]] be a power series satisfying
F (x, y(x)) = 0. (Here we do not assume that aκ 6= 0.) Then there exists an effective
MK-divisor A = (Av)v∈MK

such that:

|ak|v ≤ max{1, |aebκ/ec|v}Ak/e−bκ/ecv ,

for any v ∈MK and any k ≥ κ, and such that h(A ) ≤ 4nhp(F ) + 3n log(nm) + 10en.

Applying this theorem to the series of the form a1x
1/e + a2x

2/e + . . . (that is, with
ak = 0 for k ≤ 0) and setting κ = 0, we obtain that:

Corollary 4.4.5 Let F (X, Y ) be a separable polynomial of degrees m = degX F and
n = degY F . Further, let y(x) =

∑∞
k=1 akx

k/e ∈ K[[x1/e]] be a power series satisfying
F (x, y(x)) = 0. Then, there exists an effective MK-divisor A = (Av)v∈MK

such that:

|ak|v ≤ Ak/ev (v ∈MK, k = 1, 2, . . .), (4.17)

and such that
h(A ) ≤ 4nhp(F ) + 3n log(nm) + 10en. (4.18)

The following lemma is a slightly modified version of Proposition 2.7 of Abouzaid’s
article [Abouzaid 2008]:



4.5. The “Main Lemma” 29

Lemma 4.4.6 Let K be a number field and let y(x) =
∑∞

k=1 akx
k/e be a series with coeffi-

cients in K. Assume further that there exists an effective MK-divisor A = (Av)v∈MK
, such

that for all k ≥ 1 we have |ak|v ≤ A
k/e
v . For ` ∈ N write y(x)` =

∑∞
k=1 a

(`)
k c

k/e. Then, for
any v ∈MK and for all k ≥ 1 we have:

|a(`)
k |v ≤

{
2`+kA

k/e
v , if v|∞,

A
k/e
v , if v <∞.

(4.19)

In [Abouzaid 2008], a slightly sharper estimate, with
(
`+k−1
k

)
instead of 2`+k is given.

4.5 The “Main Lemma”
In this section we prove an auxiliary statement which is crucial for the proof of The-
orem 4.2.3. It can be viewed as a version of the famous Theorem of Sprindzhuk, see
[Bombieri 1983, Bilu & Masser 2006]. In fact, our argument is an adaptation of that from
[Bilu & Masser 2006]. We follow [Abouzaid 2008, Sections 3.1–3.3] with some changes.

4.5.1 Statement of the Main Lemma
In this section K is a number field, F (X, Y ) ∈ K[X, Y ] an absolutely irreducible polynomial
of degrees m = degX F and n = degY F , and α, β ∈ K× satisfy F (α, β) = 0. Furthermore,
everywhere in this section except Subsection 4.5.6

y(x) =
∞∑
k=1

akx
k ∈ K[[x]]

is a power series satisfying F (x, y(x)) = 0; in particular, F (0, 0) = 0.
We consider the following finite subset of MK:

T = {v ∈MK : |α|v < 1 and y(x) converges v-adically to β at x = α}.

Lemma 4.5.1 (“Main Lemma”) Let ε satisfy 0 < ε ≤ 1. Then we have either

h(α) ≤ 200ε−2mn4(hp(F ) + 5), (4.20)
or ∣∣∣∣h(α)

n
− hT (α)

∣∣∣∣ ≤ εnh(α) + 200ε−1n2(hp(F ) + log(mn) + 10). (4.21)

4.5.2 Preparations
The proof of the “Main Lemma” requires some preparation. First of all, recall that, accord-
ing to Eisenstein’s Theorem as given in Corollary 4.4.5, there exists an effectiveMK-divisor
A = (Av)v∈MK

such that both (4.17) and (4.18) hold with e = 1:

|ak|v ≤ Akv (v ∈MK, k = 1, 2, . . .),

h(A ) ≤ 4nhp(F ) + 3n log(nm) + 10n.

We fix this A until the end of the section.
Next, we need to construct an “auxiliary polynomial”.
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Proposition 4.5.2 (Auxiliary polynomial) Let δ be a real number 0 < δ ≤ 1/2 and
let N be a positive integer. There exists a non-zero polynomial G(X, Y ) ∈ Q̄[X, Y ] satis-
fying degX G ≤ N , degY G ≤ n− 1,

νx(G(x, y(x))) ≥ (1− δ)Nn, (4.22)
hp(G) ≤ δ−1nN(h(A ) + 3). (4.23)

Proof It is quite analogous to the proof of Proposition 3.1 in [Abouzaid 2008]. Condi-
tion (4.22) is equivalent to a system of (1− δ)Nn linear equations in the n(N + 1) coeffi-
cients of G. Each coefficient of each linear equation is a coefficient of xk, for k ≤ Nn, one
of the series y(x)` for ` = 0, . . . , n− 1.

Using Corollary 4.4.5 and Lemma 4.4.6, we estimate the height of every equation as
nNh(A ) + (Nn+ n) log 2. Corollary 4.3.6 implies now that we can find a non-zero solution
of our system of height at most

δ−1(nNh(A ) + (Nn+ n) log 2 +
1

2
δ−1 log(nN)).

This is smaller than the right-hand side of (4.23). �

4.5.3 Upper Bound
Now we can obtain an upper bound for hT (α) in terms of h(α).

Proposition 4.5.3 (Upper bound for hT (α)) Let δ satisfy 0 < δ ≤ 1/2. Then we have
either

h(α) ≤ 10δ−2mn4(hp(F ) + 5), (4.24)
or

nhT (α) ≤ (1 + 4δ)h(α) + 8δ−1n(h(A ) + 10) + hp(F ). (4.25)

Proof Fix a positive integer N , to be specified later, and let G(X, Y ) be the auxiliary
polynomial introduced in Proposition 4.5.2. Extending the field K, we may assume that
G(X, Y ) ∈ K[X, Y ]. We may also assume that G has a coefficient equal to 1; in partic-
ular, |G|v ≥ 1 for all v ∈MK, where we denote by |G|v the maximum of v-adic norms of
coefficients of G.

The series z(x) = G(x, y(x)) ∈ K[[x]] can be written as

z(x) =
∞∑
k=η

bkx
k

with η ≥ (1− δ)Nn ≥ 1
2
Nn (recall that δ ≤ 1/2). Again using (4.17) and Lemma 4.4.6, we

estimate the coefficients bk as follows: for v <∞ we have |bk|v ≤ |G|vAkv , and for v | ∞ we
have |bk|v ≤ n(N + 1)2k+n−1|G|vAkv . Since for k ≥ η ≥ 1

2
Nn we have n(N + 1)2k+n−1 ≤ 8k,

we obtain the estimate

|bk| ≤
{
|G|vAkv , v <∞,
|G|v(8Av)k, v | ∞. (v ∈Mk, , k ≥ η). (4.26)

Now we distinguish two cases.
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Case 1: G(α, β) = 0 In this case we have F (α, β) = G(α, β) = 0. We want to apply
Lemma 2.2.3; for this, we have to verify that polynomials F and G do not have a common
factor. This is indeed the case, because F is absolutely irreducible, and degY G < degY F .

Lemma 2.2.3, combined with (4.23) and (4.18), gives

h(α) ≤ nhp(G) + (n− 1)hpF + (m(n− 1) +Nn) + (2n− 1) log(2n− 1) + log 2

≤ δ−1Nn2(h(A ) + 6) + (n− 1)(hp(F ) +m)

≤ 5δ−1Nn3(hp(F ) + 5) +mn. (4.27)

Below, after specifying N , we will see that this is sharper than (4.24).

Case 2: G(α, β) = γ 6= 0 To treat this case it will be convenient to use, instead of the
set T , a slightly smaller subset T̃ , consisting of v ∈ T satisfying

|α|v <
{
A−1
v , v <∞,

(16Av)
−1, v | ∞.

We have clearly
0 ≤ hT (α)− hT̃ (α) ≤ h(A ) + log 16, (4.28)

and (4.26) implies the estimate

|bkαk|v <
{
|G|vAηv|α|ηv, v <∞,
|G|v(8Av)η|α|ηv · (1/2)k−η, v | ∞. (v ∈ T̃ , k ≥ η). (4.29)

Recall that for v ∈ T , the series y(x) converges v-adically to β at x = α. Hence the
same holds true for v ∈ T̃ . It follows that, for v ∈ T̃ , the series z(x) = G(x, y(x)) converges
v-adically to1 G(α, β) = γ.

Using (4.29), we can estimate |γ|v for v ∈ T̃ :

|γ|v <
{
|G|vAηv|α|ηv, v <∞,
2|G|v(8Av)η|α|ηv, v | ∞. (v ∈ T̃ , k ≥ η).

Using this and remembering that |G|v ≥ 1 for all v, we obtain the following lower estimate
for h(γ):

h(γ) ≥ hT̃ (γ)

≥ ηhT̃ (α)− hp(G)− ηh(A )− η log 16− log 2

≥ Nn(1− δ)hT̃ (α)− 2δ−1nN(h(A ) + 6).

Combining this with (4.28), we obtain

h(γ) ≥ Nn(1− δ)hT (α)− 3δ−1nN(h(A ) + 6). (4.30)

1For archimedean v to make this conclusion we need absolute convergence of y(x) at x = α, which is
obvious for v ∈ T̃ .
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On the other hand, using Lemma 2.2.4 it is easy to bound h(γ) from above. Indeed,
part B of this lemma implies that

h(β) ≤ hp(F ) +mh(α) + n+ log(m+ 1),

and part A implies that

h(γ) ≤ ha(G) +Nh(α) + (n− 1)h(β) + log((N + 1)n).

Since G has a coefficient equal to 1, we have ha(G) = hp(G) ≤ δ−1nN(h(A ) + 3). Hence

h(γ) ≤ hp(G) +Nh(α) + (n− 1)(hp(F ) +mh(α) + n+ log(m+ 1)) + log((N + 1)n)

≤ (N +mn)h(α) + δ−1nN(h(A ) + 4) + nhp(F ) + n2 + n log(m+ 1).

Combining this with (4.30) and dividing by N , we obtain

n(1− δ)hT (α) ≤
(

1 +
mn

N

)
h(α) + 4δ−1n(h(A ) + 6) +N−1(nhp(F ) + n2 + n log(m+ 1)).

(4.31)

Completing the proof of Proposition 4.5.3 Now it is the time to specify N : we set
N = dδ−1mne. With this choice of N , inequality (4.27) is indeed sharper than (4.24), and
inequality (4.31) implies the following:

n(1− δ)hT (α) ≤ (1 + δ)h(α) + 4δ−1n(h(A ) + 10) + δhp(F ).

Since δ ≤ 1/2, this is sharper than (4.25). �

4.5.4 Lower Bound
Our next objective is a lower bound for hT (α). We will see that it easily follows from the
upper bound.

Proposition 4.5.4 (Lower bound for hT (α)) Let δ satisfy 0 < δ ≤ 1/2. Then we have
either (4.24) or

nhT (α) ≥ (1− 4nδ)h(α)− 9δ−1n2(h(A ) + 10)− nhp(F ). (4.32)

Proof Remark first of all that we may assume that the polynomial F (α, Y ) is of degree n
and separable. Indeed, if this is not the case, then RF (α) = 0, where RF (X) is the Y -
resultant of F (X, Y ) and its Y -derivative F ′Y (X, Y ). In this case, the joint application of
Lemmas 2.2.1 and 2.2.2 gives

h(α) ≤ 2nhp(F ) + 2n log((m+ 1)(n+ 1)
√
n) + log 2,

sharper than (4.24).
Thus, F (α, Y ) has n distinct roots in Q̄, one of which is β; we denote them β1 = β, . . . , βn.

Extending the field K, we may assume that β1, . . . , βn ∈ K.
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Set S = {v ∈MK : |α|v < 1}. For i = 1, . . . , n we let Ti be the set of v ∈ S such that
y(x) converges v-adically to βi at x = α; in particular, T1 = T . The sets T1, . . . , Tn are
clearly disjoint, and we have

S ⊃ T1 ∪ . . . ∪ Tn ⊃ S̃, (4.33)

where S̃ consists of v ∈ S for which |α|v < A−1
v . The left inclusion in (4.33) is trivial, and to

prove the right one just observes that for every v ∈ S̃, the series y(x) absolutely converges
v-adically at x = α, and, since F (x, y(x)) = 0, the sum must be a root of F (α, Y ).

Clearly,
0 ≤ h(α)− hS̃(α) = hS(α)− hS̃(α) ≤ h(A ).

It follows that
hT1(α) + · · ·+ hTn(α) ≥ hS̃(α) ≥ h(α)− h(A ).

Now observe that the upper bound (4.25) holds true with T replaced by any Ti:

nhTi(α) ≤ (1 + 4δ)h(α) + 8δ−1n(h(A ) + 10) + hp(F ) (i = 1, . . . , n).

The last two inequalities imply that

nhT (α) = nhT1(α) ≥ n(h(α)− h(A ))− (n− 1)((1 + 4δ)h(α) + 8δ−1n(h(A ) + 10) + hp(F )),

which easily transforms into (4.32). �

4.5.5 Proof of the “Main Lemma”
Using Propositions 4.5.3 and 4.5.4 with δ = ε/4 and dividing by n, we obtain that ei-
ther (4.20) holds, or∣∣∣∣hT (α)− h(α)

n

∣∣∣∣ ≤ εh(α) + 40ε−1n(h(A ) + 10) + hp(F ).

Combining this with (4.18), we obtain (4.21). �

4.5.6 “Ramified Main Lemma”
We will actually need a slightly more general statement, allowing ramification in the series
y(x). The set-up is as before, except that now we consider the series

y(x) =
∞∑
k=1

akx
k/e ∈ K[[x1/e]]

satisfying F (x, y(x)) = 0. We fix an e-th root α1/e and we will assume that it belongs
to K. We will now say that the series y(x) converges v-adically to β at α if the series y(xe)
converges v-adically to β at α1/e. (Of course, this depends on the particular choice of the
root α1/e.) We again define T as the set of all v ∈ S for which y(x) converges v-adically
to β at α.

Lemma 4.5.5 (“Ramified Main Lemma”) Let ε satisfy 0 < ε ≤ 1. Then we have ei-
ther

h(α) ≤ 200ε−2me2n4(hp(F ) + 5), (4.34)
or ∣∣∣∣h(α)

n
− hT (α)

∣∣∣∣ ≤ εh(α) + 200ε−1en2(hp(F ) + 2 log(mn) + 10). (4.35)
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Proof The proof is by reduction to the unramified case. Apply Lemma 4.5.1 to the
polynomial F (Xe, Y ), the series y(xe) and the number α1/e. We obtain that either

h(α1/e) ≤ 200ε−2men6(hp(F ) + 5),

or
|h(α1/e)− nhT (α1/e)| ≤ εh(α1/e) + 200ε−1n4(hp(F ) + log(men) + 10).

These estimates easily transform into (4.34) and (4.35), respectively, using that

h(α1/e) = e−1h(α), hT (α1/e) = e−1hT (α), e ≤ n. �

4.6 Proof of the Main Theorem
In this section we prove Theorem 4.2.3. First of all, we investigate the relation between
hT (α) and lgcdT (α, β), where T is defined as in Section 4.5.

4.6.1 Comparing hT (α) and lgcdT (α, β)

In this subsection we retain the set-up of Subsection 4.5.1, except that we allow ramification
in the series y(x), as we did in Subsection 4.5.6. Thus, in this subsection:

• K is a number field;

• F (X, Y ) ∈ K[X, Y ] is an absolutely irreducible polynomial;

• α, β ∈ K satisfy F (α, β) = 0;

• y(x) =
∑∞

k=1 akx
k/e ∈ K[[x1/e]] satisfies F (x, y(x)) = 0;

• T ⊂MK is the set of all v ∈MK such that |α|v < 1 and y(x) converges v-adically
at α to β.

The v-adic convergence is understood in the same sense as in Subsection 4.5.6: we fix an
e-th root α1/e, assume that it belongs to K and and define v-adic convergence of y(x) to β
at α as v-adic convergence of y(xe) to β at α1/e.

Let κ be the smallest k such that ak 6= 0; by the assumption, κ > 0. Then we have
νx(y) = κ/e and

y(x) =
∞∑
k=κ

akx
k/e

with aκ 6= 0. In this subsection we prove that lgcdT (α, β) can be approximated by
min{1, κ/e}hT (α).

Proposition 4.6.1 In the above set-up we have

|lgcdT (α, β)−min{κ/e, 1}hT (α)| ≤ 30nκhp(F ) + 30nκ log(nm) + 15en. (4.36)

This statement corresponds to Proposition 3.6 in [Abouzaid 2008]. Our proof is, how-
ever, much more involved, in particular because Abouzaid did not need the lower estimate.
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Proof Let A = (Av)v∈MK
be the MK-divisor from Corollary 4.4.5. For the reader’s con-

venience, we reproduce here (4.17) and (4.18):

|ak|v ≤ Ak/ev (v ∈MK, k ≥ 1),

h(A ) ≤ 4nhp(F ) + 3n log(nm) + 10en.

As we already did several times in Section 4.5, it will be convenient to replace T by a
smaller subset. Thus, let T̃ consist of v ∈ T satisfying

|α|v <
{
A−κ−1
v min{1, |aκ|v}e, v <∞,

(1/4)eA−κ−1
v min{1, |aκ|v}e, v <∞. (4.37)

(Attention: this is not the same T̃ as in Subsection 4.5.3!) Clearly,

0 ≤ hT (α)− hT̃ (α) ≤ (κ+ 1)h(A ) + ehTrT̃ (aκ).

Using (4.17) we estimate h(aκ) ≤ (κ/e)h(A ). We obtain

0 ≤ hT (α)− hT̃ (α) ≤ (κ+ 1)h(A ) ≤ 3κh(A ) + e log 4, (4.38)

where for the latter estimate we use κ ≥ 1. In particular,

0 ≤ lgcdT (α, β)− lgcdT̃ (α, β) ≤ 3κh(A ) + e log 4. (4.39)

After this preparation, we can now proceed with the proof. For every v ∈ T̃ we want
to obtain an estimate of the form cv|α|κ/ev ≤ |β|v ≤ c′v|α|

κ/e
v , where cv and c′v are some

quantities not depending on α.

Upper estimate for |β|v. This is easy. It follows from (4.37) that

|α|v <
{
A−1
v , v <∞,

(4eAv)
−1, v <∞.

From this and (4.17) we deduce that

|akαk/e|v <
{
A
κ/e
v |α|κ/ev , v <∞,

A
κ/e
v |α|κ/ev · (1/4)k−κ, v | ∞

(k ≥ κ). (4.40)

Hence

|β|v <
{
A
κ/e
v |α|κ/ev , v <∞,

2A
κ/e
v |α|κ/ev , v | ∞.
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Lower estimate for |β|v. The lower estimate is slightly more subtle. First, we bound
the difference β − aκακ/e from above using (4.37).

Similarly to (4.40), we have

|akαk/e|v <
{
A

(κ+1)/e
v |α|(κ+1)/e

v , v <∞,
A

(κ+1)/e
v |α|(κ+1)/e

v · (1/4)(k−κ−1)/e, v | ∞
(k ≥ κ+ 1).

Hence, presenting β − aκακ/e as the v-adic sum of the series

y(x)− aκxκ/e =
∞∑

k=κ+1

akx
k/e

at x = α, we obtain the estimate

|β − aκακ/e|v <
{
A

(κ+1)/e
v |α|(κ+1)/e

v , v <∞,
2A

(κ+1)/e
v |α|(κ+1)/e

v , v | ∞.

Combining this with (4.37), we find

|β − aκακ/e|v <
{

min{|aκ|v, 1}|α|κ/ev , v <∞,
(1/2) min{|aκ|v, 1}|α|κ/ev , v | ∞.

Hence

|β|v ≥
{

min{|aκ|v, 1}|α|κ/ev , v <∞,
(1/2) min{|aκ|v, 1}|α|κ/ev , v | ∞,

the lower estimate we were seeking.

Completing the proof of Proposition 4.6.1 Thus, we proved that

cv|α|κ/ev ≤ |β|v ≤ c′v|α|κ/ev , (4.41)

with

cv =

{
min{|aκ|v, 1}, v <∞,
(1/2) min{|aκ|v, 1}, v | ∞, , c′v =

{
A
κ/e
v , v <∞,

2A
κ/e
v , v | ∞.

From (4.41) we deduce that for v ∈ T̃

cv|α|min{κ/e,1}
v max{|α|v, |β|v} ≤ c′v|α|min{κ/e,1}

v .

(We use here the obvious inequality cv ≤ 1 ≤ c′v.) Hence

−(κ/e)h(A )− log 2 ≤ lgcdT̃ (α, β)−min{κ/e, 1}hT̃ (α) ≤ h(aκ) + log 2.

Since h(aκ) ≤ (κ/e)h(A ), this implies

|lgcdT̃ (α, β)−min{κ/e, 1}hT̃ (α)| ≤ (κ/e)h(A ) + log 2,

which, together with (4.38) and (4.39) gives

|lgcdT̃ (α, β)−min{κ/e, 1}hT̃ (α)| ≤ 7κh(A ) + 4e.

Combining this with (4.17), we obtain (4.36). �
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4.6.2 Proving Theorem 4.2.3
Now we are fully equipped for the proof of our main result. We want to show that, assuming

h(α) ≥ 200ε−2mn6(hp(F ) + 5), (4.42)

we have∣∣∣ lgcd(α,β)
r
− h(α)

n

∣∣∣ ≤ 1
r
(εh(α) + 4000ε−1n4(hp(F ) + log(mn) + 1)+

+ 30n2m(hp(F ) + log(nm))).
(4.43)

Write F (X, Y ) = fn(X)Y n + · · ·+ f0(X). According to Proposition 4.4.1 we have

F (x, Y ) = fn(x)(Y − y1) · · · (Y − yn).

where

yi =
∞∑
k=κi

aikx
k/ei ∈ K((x1/ei)) (i = 1, . . . , n).

We assume that aiκi 6= 0 for i = 1, . . . , n, so that κi/ei = νx(yi).
Denoting by ` the number of indexes i such that κi > 0, we may assume that κ1, . . . , κ` >

0 and κ`+1, . . . , κn ≤ 0. Proposition 4.4.2 implies that

r =
∑̀
i=1

min{1, κi/ei}, (4.44)

and Proposition 4.4.3 implies that f`(0) 6= 0. We may normalize polynomial F (X, Y ) to
have

f`(0) = 1.

In particular, |F |v ≥ 1 for every v ∈MK, where |F |v denotes the maximum of v-adic norms
of the coefficients of F , and also hp(F ) = ha(F ).

Set E = lcm(e1, . . . , e`) and fix an E-th root α1/E. This fixes uniquely the roots
α1/e1 , . . . , α1/e` . Extending the field K we may assume that the coefficients of the se-
ries y1, . . . , y` belong to K, and the same is true for α1/E (and hence for α1/e1 , . . . , α1/e` as
well). Having fixed the root α1/ei ∈ K, we may define v-adic convergence of yi at α, see
Subsection 4.5.6.

Extending further the field K, we may assume that it contains all the roots of the
polynomial F (α, Y ). Hence, if one of the series y1, . . . , y` converges v-adically at α (and if
the convergence is absolute in the archimedean case), then the sum must belong to K.

Consider the following subsets of MK:

S = {v ∈MK : |α|v < 1},
Ti = {v ∈ S : the series yi converges v-adically to β at α} (i = 1, . . . , `).

(These sets are not the same Ti as in Subsection 4.5.4!)
We have clearly lgcd(α, β) = lgcdS(α, β). If we manage to show that the sets Ti are pair-

wise disjoint, and that hSr(T1∪···∪T`)(β) is “negligible”, then joint application of Lemma 4.5.5,
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Proposition 4.6.1 and identity (4.44) would prove Theorem 4.2.3. We will argue like this,
only with the sets Ti replaced by slightly smaller subsets.

Let Ai = (Aiv)v∈MK be the MK-divisor for the series yi given by Corollary 4.4.5. Define
the MK-divisor A = (Av)v∈MK by

Av = max{A1v, . . . , A`v} (v ∈MK).

We have clearly

|aki|v ≤ Ak/ev (v ∈MK, 1 ≤ i ≤ `, k ≥ κi), (4.45)
h(A ) ≤ h(A1) + · · ·+ h(A`)

≤ 4n2hp(F ) + 3n2 log(nm) + 10n3.

Now let S̃ consist of v ∈ S satisfying

|α|v <
{
|F |−nv A−1

v , v <∞,
((n+ 1)2n+3|F |v)−nA−1

v , v | ∞, (4.46)

and set T̃i = Ti ∩ S̃. (This is not the same S̃ that in Subsection 4.5.4!) Clearly,

0 ≤ lgcd(α, β)− lgcdS̃(α, β) ≤ h(α)− hS̃(α)

= hSrS̃(α)

≤ h(A ) + nhp(F ) + log((n+ 1)2n+3)

≤ 5n2hp(F ) + 3n2 log(nm) + 15n3, (4.47)
0 ≤ lgcdTirT̃i(α, β) ≤ hSrS̃(α)

≤ 5n2hp(F ) + 3n2 log(nm) + 15n3 (i = 1, . . . , `). (4.48)

Here we used the equality hp(F ) = ha(F ).
Mention also that for v ∈ S̃, we have |α|v < A−1

v , which implies that the series y1, . . . , y`
converge v-adically at α in the completion Kv, the convergence being absolute when v is
archimedean. Hence, as we have seen above, the sum must belong to K.

Proposition 4.6.2 The sets T̃1, . . . , T̃` pairwise disjoint. Furthermore, if v ∈ S̃ but
v /∈ T̃1 ∪ . . . ∪ T̃` then

|β|v ≥
{
|F |−1

v , v <∞,
((n+ 1)2n+2|F |v)−1, v | ∞. (4.49)

Proof The polynomial

Q(Y ) = (Y − y1) · · · (Y − y`) ∈ K[[x1/E]][Y ].

divides F (x, Y ) in the ring K((x1/E))[Y ]. By Gauß’ Lemma, Q(Y ) divides F (x, Y ) in the
ring K[[x1/E]][Y ] as well. Moreover, writing F (x, Y ) = Q(Y )U(Y ) with

U(Y ) = fn(x)Y n−` + un−`−1Y
n−`−1 + · · ·+ u0 ∈ K[[x1/E]](Y ),
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the coefficients u0, . . . , un−`−1 belong to the ring2 K[x, y1, . . . , y`]. Recall that for v ∈ S̃
the series y1, . . . , y` converge v-adically at α in the field K, the convergence being absolute
when v is archimedean. Hence so do the coefficients of U .

Fix v ∈ S̃ and write

F (α, Y ) = (Y − y1(α)) · · · (Y − y`(α))(fn(α)Y n−` + un−`−1(α)Y n−`−1 + · · ·+ u0(α)),

where y1(α), . . . , y`(α) ∈ K the v-adic sum of the corresponding series at α, and similarly
for un−`−1(α), . . . , u0(α). We claim that F (α, Y ) is a separable polynomial of degree n;
indeed, if this is not the case, then, as we have seen in Subsection 4.5.4, our α must
satisfy (4.43), which contradicts (4.42).

Now if v ∈ Ti ∩ Tj for i 6= j then β = yi(α) = yj(α), and F (α, Y ) must have β as a
double root, a contradiction. This proves disjointedness of the sets T̃i.

Now assume that v ∈ S̃ but v /∈ T̃1 ∪ . . . ∪ T̃`. Then none of the sums y1(α), . . . , y`(α)
is equal to β; in other words y1(α), . . . , y`(α), β are `+ 1 distinct roots of the polynomial

P (Y ) = F (α, Y ) = fn(α)Y n + · · ·+ f0(α).

We are going to use Lemma 4.3.1. Since f`(0) = 1 and

|α|v <
{
|Fv|−1, v <∞,
(2|F |v)−1, v | ∞,

we have
|f`(α)|v ≥

{
1, v <∞,
1/2, v | ∞, , |P |v ≤

{
|F |v, v <∞,
2|F |v, v | ∞.

Now Lemma 4.3.1 implies that

max{|y1(α)|v, . . . , |y`(α)|v, |β|v} ≥
{
|F |−1

v , v <∞,
((n+ 1)2n+2|F |v)−1, v | ∞. (4.50)

On the other hand, we may estimate |yi(α)|v from above using (4.45) and (4.46). In
what follows we repeatedly use the inequality ei ≤ n. Since

|α|v <
{
A−1
v , v <∞,

(2eiAv)
−1, v | ∞ (i = 1, . . . , `),

we have

|akαk/ei |v <
{

(Av|α|v)1/ei , v <∞,
(Av|α|v)1/ei · (1/2)k−1, v | ∞ (k ≥ 1, i = 1, . . . , `),

which implies

|yi(α)|v <
{

(Av|α|v)1/ei , v <∞,
2(Av|α|v)1/ei , v | ∞ (i = 1, . . . , `).

2This is a consequence of the general algebraic property: let R be a commutative ring, R′ a subring
and Q(Y ), F (Y ) ∈ R′[Y ], the polynomial Q being monic; assume that Q | F in R[Y ]; then Q | F in R′[Y ].
Indeed, denoting by a the leading coefficient of F , the polynomial Q divides G = F − aY degF−degQQ in
R[Y ], and degG < degF , so by induction Q | G in R′[Y ].
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Now since

|α|v <
{
|F |−eiv A−1

v , v <∞,
((n+ 1)2n+3|F |v)−eiA−1

v , v | ∞ (i = 1, . . . , `),

we obtain finally

|yi(α)|v <
{
|F |−1

v , v <∞,
((n+ 1)2n+2|F |v)−1, v | ∞ (i = 1, . . . , `).

Compared with (4.50), this implies (4.49). The proposition is proved. �

An immediate consequence of the second statement of Proposition 4.6.2 is the estimate

lgcdS̃r(T̃1∪...∪T̃`) ≤ hS̃r(T̃1∪...∪T̃`)(β) ≤ hp(F ) + log((n+ 1)2n+2) (4.51)

(we again use ha(F ) = hp(F )).

Now we collect everything together to prove Theorem 4.2.3. According to Lemma 4.5.5,
condition (4.42) implies that∣∣∣∣h(α)

n
− hTi(α)

∣∣∣∣ ≤ εh(α) + 200ε−1n3(hp(F ) + 2 log(mn) + 10) (i = 1, . . . , `).

Combining this with Proposition 4.6.1 and estimate (4.48), we obtain∣∣∣∣min
{κi
ei
, 1
}h(α)

n
− lgcdT̃i(α, β)

∣∣∣∣ ≤ εh(α) + 3000ε−1n3(hp(F ) + log(mn) + 1)

+ 30nmhp(F ) + 30nm log(nm). (i = 1, . . . , `).

Summing up, using (4.44) and the disjointedness of the sets T̃i, we obtain∣∣∣∣rh(α)

n
− lgcdT̃1∪...∪T̃`(α, β)

∣∣∣∣ ≤ εh(α) + 3000ε−1n4(hp(F ) + log(mn) + 1)

+ 30n2mhp(F ) + 30n2m log(nm).

Finally, combining this with (4.47) and (4.51), we obtain (4.43). �



Chapter 5
A cyclotomic approach to Diophantine

equations

5.1 Introduction
In this chapter, we generalize an approach initiated by Preda Mihăilescu in his article
[Mihăilescu 2004] and developed since in [Mihăilescu 2008], [Bartolomé & Mihăilescu 2015]
(Chapter 6) and still ongoing, to address certain types of Diophantine equations, of general
form

xp − yp

(x− y)f
= B.zq with x, y ∈ Z, B ∈ Z, f ∈ {0, 1}, (p, q) ∈ Z2.

We will discuss some prerequisites and develop step by step the approach. In Chapter
6, the equation Xn − 1 = B.Zn is treated without any further reference to this chapter;
the reader will however be able to follow the approach through the chapter.

5.2 Prerequisites
In this section, we will state, sometimes without proof, the technical knowledge required
for our approach. We will use the following facts on cyclotomic fields (these basic facts can
be found in any introductory book to algebraic number theory, for instance Chapter IV of
[Lang 1994]):

• Let n ∈ N>1. The discriminant of the n-th cyclotomic extension is Discr(Q(ζn)) =

(−1)ϕ(n)/2 nϕ(n)∏
p|n p

ϕ(n)/(p−1) , so that a prime ramifies in Q(ζn) if and only if it divides n.

• Decomposition of a prime in Z not dividing n: if f is the smallest positive integer
such that qf ≡ 1 mod n, then, qZ[ζn] = q1 · · · qg, where g = ϕ(n)/f and each qi
has residue class degree f . This means that a prime q splits completely in the n-th
cyclotomic extension if and only if q ≡ 1 mod n.

• An integral basis of the cyclotomic field Q(ζn) is (1, ζn, · · · , ζϕ(n)−1
n ).

• Finally, we know that the cyclotomic field Q(ζn) is a cyclic Galois extension with
Galois group isomorphic to (Z/nZ)× and that its ring of integers is Z[ζn]. The
same holds for its maximal real subfield K+ = Q[ζn + ζ−1

n ], with ring of integers
O+

K = Z[ζn + ζ−1
n ] and Galois group G+.

Let p be a prime and let ζ be primitive p-th root of unity. We work in the p-th cyclotomic
extension K = Q(ζ) because it factors the right hand side of our equation. The ring of
integers is thus OK = Z[ζ]. We let σc be the Q-automorphism of K such that σc(ζ) = ζc.
Also, let G = Gal (K/Q) = {σc|c = 1, · · · , p− 1} (and G+ = {σ′c : ζ + ζ−1 7→ ζc + ζp−c; c ∈
{1, · · · , (p− 1)/2}}). Finally, let λ = 1− ζ be a generator of the ramified prime above p.
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We will work with group rings of the form R[G] (or R[G+]), where R can be Z or Fq
(where q is the other prime appearing in the equation). If R = Fq, then we consider the
canonical lift of θ =

∑
σ∈G lσσ ∈ Fq[G] to the unique Θ =

∑
σ∈G nσσ ∈ Z[G] such that

0 ≤ nσ < q and nσ ≡ lσ mod q. We use exponential notation for the action of elements
of the group ring onto elements of the cyclotomic field: the action of

∑p−1
c=1 ncσc ∈ Z[G] on

the number ε ∈ K is noted as ε
∑p−1
c=1 ncσc and means

∏p−1
c=1 σc(ε)

nc . This is why, for instance,
the norm is written NK/Q =

∑p−1
c=1 σc.

In group ring theory, we will especially consider annihilators. We remind that if R
is a ring, M is an R-module and we write exponentially the action of an element of R
on an element of this module, then we call annihilator M the ideal ann(M) = {a ∈
R| for all s ∈ M, sa = 1}. The Stickelberger ideal is defined as follows: let the element
ϑ = 1

p

∑p−1
c=1 c · σ−1

c ∈ Q[G] be the Stickelberger element; then the Stickelberger ideal is
I = (ϑZ[G])∩Z[G]. It is of dimension (p+ 1)/2. When M is the class group of an abelian
extension K of Q, the Stickelberger ideal I annihilates of M in Z[G]. That is, for any
element Θ ∈ I, for any ideal a ⊂ K, the ideal aΘ is principal. The proof can be found in
[Stickelberger 1890] or in a modern form in [Washington 1997].

For θ =
∑

σ∈G nσσ ∈ Z[G], we define the absolute weight of θ, w(θ) =
∑

σ∈G nσ.
A notion specific to elements in the Stickelberger ideal is the relative weight: for θ =∑

σ∈G nσσ ∈ I we have the relation θ + θ = ς(θ) · NK/Q, where ς(θ) ∈ Z is called the
relative weight of θ.

Now we remind a series of notions and properties related specifically to the Stickelberger
ideal I: the interested reader can find a deeper treatise on the Stickelberger ideal in several
standard books, for instance in [Washington 1997], [Ireland. & Rosen 1990] or [Jha 1992].

Let
(
ψd =

∑p−1
ν=1 (b(d+ 1)ν/pc − bdν/pc)σ−1

ν

) p−1
2

d=1
∈ Z[G] be the family of Fueter elements.

Together with the norm, it consitutes a basis of the Stickelberger ideal as a Z-module
([Fueter 1922]). Note that ς(ψd) = 1 for all d. The Fuchsian elements are

Θk = (k − σk) · ϑ =

p−1∑
c=1

⌊
kc

p

⌋
· σ−1

c , 1 ≤ k ≤ p.

They also generate I as a Z - module. Note that Θp is the norm, and that we have the
following relationship between the Fueter and the Fuchsian elements:

ψ1 = Θ2 and ψk = Θk+1 −Θk, k ≥ 2

An element Θ =
∑

σ∈G nσσ ∈ Z[G] is positive if nσ ≥ 0 for all σ ∈ G. We write I+ ⊂ I
for the set of all positive elements of the Stickelberger ideal. They form a multiplicative
and an additive semigroup.

There exists an additive map ϕ from I into {0, 1, · · · , p− 1} such that, for any Θ ∈ I,
ζϕ(Θ) = ζΘ. It is given by ϕ : θ =

∑p−1
c=1 ncσc 7→ ϕ(θ), where ϕ(θ) is the element of

{0, 1, · · · , p− 1} such that ϕ(θ) ≡
∑p−1

c=1 cnc mod p. It is called the Fermat quotient map,
and it verifies, for any Fuchsian element Θn, ϕ(Θn) = np−n

p
. The kernel of the Fermat

quotient map is If = {θ ∈ I : ζθ = 1} (the Fermat module). We will note I+
f = {θ =∑p−1

c=1 ncσc ∈ If : nc ≥ 0}.
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Proposition 5.2.1 The Fermat quotient map enjoys the properties:

ζθ = ζϕ(θ),

(1 + ζ)θ = ζϕ(θ)/2,

(1− ζ)θ = ζϕ(θ)/2 ·
((
−1

p

)
p

)ς(θ)/2
,

where
(
−1
p

)
is the Legendre symbol.

Note that for θ ∈ I with ς(θ) = 2 we have (1− ζ)2θ = ζϕ(θ) · p2.

Theorem 5.2.2 (Jacobi sums and the Stickelberger ideal) Let l be an odd prime
number such that l ≡ 1 mod p, χ be a Dirichlet character of order p, and τ(χ) =∑

c∈Fl χ(c).ζcl ∈ Q(ζ, ζl) be its Gauß sum. Let J(χa, χb) = −
∑

x∈Z/lZ χ
a(x) · χb(1 − x) ∈

Q(ζ, ζl) be the Jacobi sum
(
J(χa, χb) = − τ(χa)·τ(χb)

τ(χa+b)

)
. Then, the ideal (J(χa, χb)) can be

expressed as the action of ψ(a, b) =
∑p−1

c=1

(⌊
c(a+b)
p

⌋
−
⌊
ca
p

⌋
−
⌊
cb
b

⌋)
.σ−1
c over any ideal L

of Z[ζl] above the conductor l of χ.

The proof of this theorem can be found in [Ireland. & Rosen 1990][Chapter 14, Section 4].
We define by multiplicativity the set of Jacobi integers to be the multiplicative semigroup
generated by the Jacobi sums J ⊂ Z[ζ]. Let’s also define J = {(j) : j ∈ J} the subset of
principal ideals generated by Jacobi integers. Let A ⊂ Z[ζ] be an ideal withN(A) = t, such
that t factors into powers of primes ` ≡ 1 mod p. Then Stickelberger’s theorem implies
in particular that AΘ ∈ J, ∀Θ ∈ I.

The following lemma is a special case adaptation of [Jha 1992][Proposition 1.2], which
relates J to J. The adaptation was provided in [Mihăilescu 2008].

Lemma 5.2.3 Let ι be the natural map ι : J → J given by j 7→ (j). Then ι is injective.
In particular, a principal ideal can be generated by at most one Jacobi integer and if for
some α ∈ Z[ζ] with α · α ∈ Z, the equality (α) = j ∈ J holds, then there is a unique Jacobi
integer a with:

α = ±ζn · a. (5.1)

for some n ∈ Z.

Proof. Let α generate the principal ideal j ∈ J and let a ∈ J with (α) = (a): such a
Jacobi integer exists by definition of J. The principal ideals being equal, there is a unit
ε ∈ Z[ζ] such that α = ε · a. Furthermore, a · a ∈ N follows by multiplicativity from the
property of Gauß sums and since α · α ∈ Z, it follows that ε · ε = 1. By Kronecker’s unit
theorem, ε is a root of unity. This proves (5.1).

We still have to prove that the Jacobi integer a is unique. Iwasawa shows in
[Iwasawa 1975] (see also [Ireland. & Rosen 1990][p. 226, Ex. 13]) that Jacobi integers
j verify

j ≡ 1 mod (1− ζ)2Z[ζ]. (5.2)
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This property is useful for establishing the power n in (5.1). In particular, assuming there
is a second Jacobi integer a’, with (α) = (a’), we would have by (5.1) that α = ±ζn′a’ for
some n′ ∈ {0, · · · , p− 1}. By Iwasawa’s relation, α ≡ sζn ≡ s′ζn

′
mod λ2, where s, s′ are

the implicit signs for a, a’, and λ = 1 − ζ. In particular sζn ≡ s ≡ s′ζn
′ ≡ s′ mod λ and

thus s = s′. Also, 1− ζn ≡ nλ ≡ 1− ζn′ ≡ n′λ mod λ2, so n ≡ n′ mod p. Consequently,
a = a’, which completes the proof. �

We will be interested in series expansions of algebraic numbers µ ∈ Z[ζ] which verify
µq = (1+ζ/z)Θ, where q is again the prime appearing in the equation and Θ =

∑
σ∈G nσσ ∈

Fq[G]. That is, µ = (1+ζ/z)Θ/q. For that, we will use properties of the generalized binomial
series f(z) =

∑
k≥0

(
α
k

)
zk, where α, z ∈ C and

(
α
k

)
= α(α−1)···(α−k+1)

k!
. We know that

if |z| < 1, this series converges absolutely to (1 + z)α. The next definition links binomial
series and the action of group ring elements on numbers:

Definition 5.2.4 (Elementary q-th root power series) Let Q(ζ)[[T ]] be the ring of
formal power series over the p−th cyclotomic field. The elementary q−th root power
series is defined as:

f(T ) = (1 + ζT )1/q =
∑
k≥0

(
1/q
k

)
· (ζ · T )k =

∑
k≥0

ak · T k ∈ Q(ζ)[[T ]],

where ak =
(

1/q
k

)
· ζk. Let σ ∈ G; then, when σ acts on f(T ), it acts on ζ and not upon

the formal variable T .
We can thus generalize the previous definition: let Θ =

∑
σ∈G nσσ ∈ Z[G]. Then:

f [Θ](T ) = (1 + ζT )Θ/q =
∏
c∈P

f [ncσc](T ) =
∏
c∈P

(∑
k≥0

(
nc/q
k

)
(ζc · T )k

)
. (5.3)

Since f [Θ] ∈ Q(ζ)[[T ]], it also has a development as a simple power series. We shall write
this development as

f [Θ](T ) =
∑
k≥0

ak(Θ) · T k and let (5.4)

b̃k(Θ) = ak(Θ) ·
(
qk · k!

)
.

We next prove a general lemma, and then show two important properties of the coeffi-
cients of the q−th power series. These results have been used in [Mihăilescu 2004] and in
[Mihăilescu 2008].

Lemma 5.2.5 For k ≥ 0, let E(k) = k + vq(k!). Then E(k) is strictly monotonous and
verifies

E(k) < k · q

q − 1
. (5.5)

Furthermore

qE(k) ·
(
n/q
k

)
∈ Z and E(k) = −vq

((
n/q
k

))
, (5.6)

this last equality holding only if n 6≡ 0 mod q.
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Proof. Since k + 1 > k and vq((k + 1)!) ≥ vq( k! ), the function E(k) is strictly
monotonous. We now use Legendre’s theorem, so vq( k! ) =

∑
i>0bk/qic < k/(q − 1); this

leads to the upper bound for E(k).
If n ≡ 0 mod q, then the first part of (5.6) is obvious. Let’s now assume that n 6≡ 0

mod q. Developing
(
n/q
k

)
, we find

(
n/q
k

)
= n(n−q)···(n−(k−1)q)

qkk!
. The numerator is not

divisible by q (as we assumed n 6≡ 0 mod q), thus obviously vq
((

n/q
k

))
= −k−vq(k!) =

−E[k], which proves the second part of (5.6).
Let’s compute the valuation v` of the numerator of

(
n/q
k

)
for any prime ` - q. The

pigeon hole principle shows that the number of multiples of `i in the above numerator is
bk/`ic. Adding up we find:

v` (n · (n− q) . . . (n− (k − 1)q)) ≥
∑
i>0

bk/`ic = v`(k!).

Therefore, k! divides n(n − q) · · · (n − (k − 1)q) and qE[k]
(
n/q
k

)
∈ Z, which proves the

first part of (5.6). �
For Θ =

∑
c∈P nc · σc ∈ Z[G] we define the additive map ρ : Z[G]→ Z[ζ]

ρ : Θ 7→ −
∑
σ∈G

nc · ζσ.

Corollary 5.2.6 Writing b̃k(nσ) = (qk · k!) · ak(nσ), the following congruence holds:

b̃k(nσ) ≡ (−nζσ)k = ρ(nσ)k mod qZ[ζ]. (5.7)

Proof. We know that b̃k(nσ) = (n · (n− q) . . . (n− (k − 1)q))·(−ζ)kσ. It is then obvious,
using Equation (5.6), that

b̃k(nσ) ≡ (−nζσ)k mod qZ[ζ].

�
The arithmetic properties of the coefficients ak, b̃k are given by the following:

Lemma 5.2.7 The coefficients ak(Θ), b̃k(Θ) of the series f [Θ] ∈ Q(ζ)[[T ]] have the prop-
erties:

1. Both ak, b̃k commute with the Galois action, i.e.: ak(σΘ) = (ak(Θ))σ and the same
for b̃k.

2. qE(k) · ak(Θ) ∈ Z[ζ].

3. On the coefficients b̃k:

b̃k(Θ) ∈ Z[ζ] and b̃k(Θ) ≡ ρ(Θ)k mod q · Z[ζ]. (5.8)
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4. If Θ = Θ, then ak(Θ) ∈ R.
Proof. Property 1. follows from the definition of f [Θ] (5.3) and the fact that σ acts on
ζ but not on the formal parameter T . Suppose that Θ = Θ1 + Θ2; then the coefficients of
f [Θ] are derived from the ones of f [Θi], i = 1, 2 as follows:

ak(Θ) = ak(Θ1 + Θ2) =
k∑
l=0

al(Θ1) · a(k−l)(Θ2) (5.9)

b̃k(Θ) = b̃k(Θ1 + Θ2) =
k∑
l=0

(
k
l

)
·
(
b̃l(Θ1) · b̃(k−l)(Θ2)

)
. (5.10)

We have

vp
(
al(Θ1) · a(k−l)(Θ2)

)
= − (E(l) + E(k − l)) = −E(k) + vq

((
k
l

))
≥ −E(k);

thus vq(ak(Θ)) ≥ −E(k), by induction on the canonical weights w(Θ1), w(Θ2). This proves
2. By Equation (5.7), we have b̃k(Θ) ≡ ρ(Θ)k mod qZ[ζ] for Θ = nσ, ∀σ ∈ G. Assume
that Equation (5.8) holds for Θi, i = 1, 2. Then by the previous identity for b̃k(Θ1 + Θ2),
we have

b̃k(Θ1 + Θ2) =
k∑
l=0

(
k
l

)
·
(
b̃l(Θ1) · b̃(k−l)(Θ2)

)
≡

k∑
l=0

(
k
l

)
ρ(Θ1)l · ρ(Θ2)k−l = ρ(Θ1 + Θ2)k mod qZ[ζ].

Relation (5.8) follows from this by induction on the weights of Θ1,Θ2. �
The coefficients b̃n[Θ] have the advantage of being algebraic integers. Writing ak[Θ] =

b̃k[Θ]
k!qk

, we see from the above, keeping the same definition for E, that the denominator and
numerator have a massive common factor. Therefore we shall define

bk[Θ] = ak[Θ] · qE(k) ∈ Z[ζ], E(k) = k + vq(k!). (5.11)

In particular,

bk[Θ] · k!

qvq(k!)
= ak[Θ] · (k! · qk),

and for k < q we have

bk[Θ] ≡ ρ[Θ]k/k! mod qZ[ζ]. (5.12)

We now give an estimate of the error term in the evaluation of the general series
f [Θ](1/z). We know that the exponent in our function is not integer. The convergence
radius of f(T ) being one, it follows by multiplicativity, that the series f [Θ](T ) also have
the same domain of convergence, for all Θ ∈ Z[G]. Let

Sm(Θ;T ) =
m∑
k=0

ak(Θ) · Tm
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be the m−th partial sum of f [Θ] and Rm(Θ;T ) = f [Θ] − Sm(Θ;T ) the remainder term.
We estimate this remainder, when T is replaced by a complex number |z| < 1 (inspired by
[Bilu 2004][Proposition 8.2.1]).

Lemma 5.2.8 Let Θ =
∑

σ∈G nσσ ∈ Z[G] have weight w(Θ) = H. If z ∈ C, |z| < 1, then

|f [Θ](z)− Sm(Θ; z)| ≤
( −H/q
m+ 1

)
· |z|m+1

(1− |z|)m+1+h
. (5.13)

Furthermore, the coefficients bk[Θ] are bounded by:

|bk[Θ]| ≤ qE(k) ·
(
k + t

k

)
, where t =

⌊
H

q

⌋
. (5.14)

Proof. For this proof we remind the notion of dominance of series. A power series
f(T ) =

∑∞
k=0 akT

k with complex coefficients is dominated by the series g(T ) =
∑∞

k=0AkT
k

with non-negative real coefficients if |ak| ≤ Ak for k = 0, 1, . . .; if this is the case, we write
f � g. The relation of dominance is preserved by addition and multiplication of power
series.

Let r be a real number, and s a complex number satisfying |s| ≤ 1. Then, the binomial
series (1 + sT )r =

∑∞
k=0

(
r
k

)
skT k is dominated by (1−T )−|r| =

∑∞
k=0(−1)k

(−|r|
k

)
T k. Indeed,

the coefficients of the latter series are positive and
∣∣(r
k

)∣∣ ≤ ∣∣∣(−|r|k )∣∣∣.
It follows that f [Θ](T ) � (1− T )−H/p. This together with the definition of bn[Θ] and

the properties of generalized binomial numbers yield (5.14).
From common remainder estimates for Taylor series, we obtain the following:

|f [Θ](z)− Sm(Θ; z)| ≤
∣∣(1− |z|)−H/q − Sm(|z|)

∣∣
≤ sup

0≤|ξ|≤|z|

∣∣∣∣∣∣
dm+1(1− T )−H

dTm+1

∣∣∣∣∣
T=ξ

∣∣∣∣∣∣ |z|
m+1

(m+ 1)!

=

(
−H/q
m+ 1

)
· |z|m+1

(1− |z|)H/q+m+1
,

as claimed. �
We will use the Voronoi identities – see [Jha 1992][Lemma 1.0] –, which we remind here

for convenience:

Lemma 5.2.9 Let m be an even integer such that 2 ≤ m ≤ n − 1. Let a be an integer,
coprime to n. Then

am
n−1∑
j=1

⌊
aj

n

⌋
jm−1 ≡ (am+1 − a)Bm

m
mod n, (5.15)

where Bm is the m-th Bernoulli number. In particular, for m = n− 1, we get
n−1∑
j=1

⌊
aj

n

⌋
jn−2 ≡ an − a

n
mod n,

which is the Fermat quotient map of the a-th Fuchsian element, ϕ(Θa).
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5.3 The binomial cyclotomic series approach
We remind that we work on equations of the type:

xp − yp

(x− y)f
= B.zq with x, y ∈ Z, B ∈ Z, f ∈ {0, 1}, (p, q) ∈ Z2. (5.16)

This approach has been applied, for instance, to the case of Catalan’s conjecture (cf.
[Mihăilescu 2004]) where f = 0, y = 1, B = 1, to the case of Diagonal Nagell-Ljunggren
(cf. [Mihăilescu 2008]), where f = 1, y = 1, B = 1, q = p or to the case of binomial Thue
(Chapter 6), where f = 0, y = 1, q = p.

We will be using the same notation than and the results stated in the previous section.
As usual, we start by assuming that there is a solution (x, y, z, p, q, f, B) to Equation
(5.16). In this section, we first describe the binomial cyclotomic series approach step by
step in the general context of Equation (5.16). We will then show how this approach
has been applied in three different cases: the conjecture of Catalan ([Mihăilescu 2004]),
conditions for the diagonal Nagell-Ljunggren equation ([Mihăilescu 2008]) and binary Thue
([Bartolomé & Mihăilescu 2015], Chapter 6).

A very simple but useful lemma we will be using is Euler’s:

Lemma 5.3.1 (Euler) Let p be an odd prime, and (x, y) ∈ O2
K such that (x, y) = 1.

Then, δ =
(
xp−yp
x−y , x− y

)
divides p, and if δ = p, then p2 does not divide xp−yp

x−y .

Proof. We can rewrite xp−yp
x−y = ((x−y)+y)p−yp

x−y =
∑p−1

k=1

(
p
k

)
(x − y)k−1yp−k + (x −

y)p−1. Therefore, xp−yp
x−y ≡ (x − y)p−1 mod p, and if xp−yp

x−y ≡ 0 mod p, then (x − y) ≡

0 mod p. We can also rewrite xp−yp
x−y = pyp−1 + (x − y)

∑p
k=2

(
p
k

)
(x − y)k−2yp−k,

which implies that δ|pyp−1. As (x, y) = 1, (δ, y) = 1 and thus δ|p. Together with
the previous result, this proves that δ ∈ {1, p}. Finally, writing xp−yp

x−y = pyp−1 + (x −

y)
(∑p−1

k=2

(
p
k

)
(x− y)k−2yp−k + (x− y)p−2

)
, we see that xp−yp

x−y ≡ pyp−1 mod p2 and the
lemma is proved. �

A. Kummer was the first to thoroughly study a similar equation in cyclotomic extensions.
The results he obtained were the most advanced results on Fermat’s Last Equation
known at that time. The splitting of the initial equation is also the point of departure
of the binomial cyclotomic series approach. We work in the p-th cyclotomic extension
of Q, K = Q(ζ) (where ζ is a primitive p-th root of unity), with ring of integers
OK = Z[ζ] and Galois group G = Gal (K/Q) = {σc : ζ 7→ ζc}. Indeed, in this
extension, the right hand side of Equation (5.16) factors. The equation naturally
yields the characteristic algebraic integer, let it be ([Lennon & McCartney 1970])
α ∈ OK. This algebraic integer (in K) is such that our initial equation can be
written NK/Q(α) = zq. We choose the algebraic integer α such that it is not divisible
by λ (and so, neither are its conjugates). For instance, if we assumed f = 1 and
B = 1 in Equation (5.16), we might choose α = (x − ζy)/(1 − ζ)e, where e = 1
if (x

p−yp
x−y , x − y) = p (cf. Lemma 5.3.1) and e = 0 otherwise. This characteristic

algebraic integer α gives naturally rise to the characteristic ideal A = (α, z) ⊂ OK
such that Aq = (α). To see this, with α chosen as above (α = (x− ζy)/(1− ζ)e), we
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have, for c 6= d, (1−ζd)eασd−(1−ζc)eασc = (ζd−ζc)y and thus (yλ) ⊂ (ασc , ασd). We
also have ζ̄d(1− ζd)eασd − ζ̄c(1− ζc)eασc = x(ζ−d− ζ−c), and thus (xλ) ⊂ (ασc , ασd).
We have chosen α such that neither α nor its conjugates are divisible by p, and
(x, y) = 1. However, the above linear combination shows that (ασc , ασd) divides the
prime p. Thus, the ασc are coprime. Given that NK/Q(α) =

∏
σ∈G α

σ = zq, each
ideal (ασ) is the q-th power of an ideal. Considering the generators of (α, z)q and the
fact that

(
NK/Q(α)/α, α

)
= 1, we see that A = (α, z).

B. Let θ =
∑

σ∈G nσσ ∈ R[G] be an annihilator of A in the class group of K (remember
that R = Fq or Z). Thus, there exists ν ∈ OK such that Aθ = (ν), and thus
Aqθ = (αθ) = (νq). Therefore, there exists a unit εθ ∈ O×K such that αθ = εθ ·νq. One
first objective is to have a pure q-th equation, and thus to eliminate the unit εθ. For
that, we have two main strategies, the plus and the minus stategy, depending on the
situation. We say that an element θ ofR[G] belongs to the plus part of the group ring
if θ ∈ R[G]+ = (1 + )R[G], where  denotes complex conjugation. And an element
θ of R[G] belongs to the minus part of the group ring if θ ∈ R[G]− = (1− )R[G].

Plus Let θ′ ∈ R[G]+ annihilate A1+ ∈ O+
K in the class group of K+, and θ =

(1 + )θ
′ ∈ R[G] (where (1 + )θ

′ is the composition of (1 + ) with a lift of θ′

to Z[G]). Then again, there exists ν ∈ O+
K and a real unit εθ ∈ O+×

K such that
αθ = (α.ᾱ)θ

′
= εθ · νq. The approach can be completed if the properties of the

solution to our initial equation allow a choice of θ such that εθ = 1.
Minus Alternatively, one chooses an annihilator θ′ ∈ R[G]− of A1−. Proceeding as

previously, let θ = (1 − )θ′ ∈ R[G]. Thus, αθ = α(1−)θ′ =
(
α
ᾱ

)θ′
= εθ

ε̄θ
·
(
ν
ν̄

)q.
We see that εθ

ε̄θ
is a root of unity in K (it is an algebraic integer, all of whose

conjugates have absolute value 1 and thus it is a root of unity by Kronecker’s
theorem), and as such belongs to < −ζ >.

C. If we rewrite the previous α as α = x
(1−ζ)e (1− ζ

(
y
x

)
), and in a more generic form as

α = υ(1 +$T ), where υ ∈ O×K , $ ∈ OK, we obtain that:

Plus ν = υθ/q · (1 + $T )θ/q. We can rationalize the factor υθ/q by selecting θ such
that |w(θ)| is a multiple of q,

Minus ν
ν̄

=
(
εθ
ε̄θ

)−1/q

·
(
υ
ῡ

)θ/q · (1+$T
1+$̄T

)θ/q. We note that εθ
ε̄θ
, as well as υ

ῡ
are both roots

of unity, and since any root of unity in K is a q-th power, they are q-th powers
in K.

We will consider the formal series development f(θ, T,$) ∈ K[[T ]] of ν in the plus
case, and of ν/ν̄ in the minus case: f(θ, T,$) = (1 + $T )θ/q in the plus case, and
f(θ, T,$) = (1 +$T )θ/q · (1 + $̄T )−θ/q in the minus case. This series converges in a
local or global topology and in whatever local or global topology it converges, the limit
verifies νq = f q(θ, T,$) in the plus case, and

(
ν
ν̄

)q
= f q(θ, T,$) in the minus case.

What happens to this equation under Galois action? The same equation holds for all
the conjugates: νqσc = f q(σc ·θ, T,$) in the plus case, and

(
ν
ν̄

)qσc
= f q(σc ·θ, T,$) in

the minus case. When taking the q-th root on both sides of the equation, we obtain
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(a) in the plus case
νσc = ξκθ,σc · f(σc · θ, T,$), (5.17)

(b) in the minus case (ν
ν̄

)σc
= ξκθ,σc · f(σc · θ, T,$), (5.18)

where ξ is a primitive q-th root of unity and κθ,σc is called the Galois exponent. In
general the Galois exponents are unknown. They are additive and verify κθ,σ+κθ,σ =
0, where  ∈ G denotes again complex conjugation. Beyond this relation, the Galois
exponents are random and in particular they do not commute with Galois action on
ξ: we say that Equation (5.17) and Equation (5.18) are not Galois covariant.
The approach is different depending on which case we are in:

Plus We have seen that in the plus case, ν is real. When we have been able to
eliminate the real root εθ, we can choose θ such that |w(θ)| be a mutliple of q:
|w(θ)| = hq. We obtain then an equation like Equation (5.17). The only real
roots of unity in R being ±1, the κ map constantly vanishes and we obtain an
equation of the type xh ·f(θ, T,$) = polynomial(x)+remainder. Provided that
there are sufficiently large lower bounds on |x|, one can show that the remainder
is null. This is a “ Runge type ” approach.

Minus In the minus case, ν is not real. In this case, we treat the Galois exponents as
unknowns. The approach differs depending on whether p = q or p 6= q.

p = q In this case Equation (5.18) becomes(ν
ν̄

)σc
= ζκθ,σc · f(σc · θ, T,$),

Let m = |G|/2 and ∆ =
∑m

c=1 λc
(
ν
ν̄

)σc
+ λc

(
ν
ν̄

)σc
=
∑m

c=1 λcζ
κθ,σcf(σc ·

θ, x,$)) + λ̄cζ
−κθ,σcf(σc · θ, x,$)), where λ1 · · ·λm ∈ OK. Let also ∆a =

σa(∆), a ∈ {1, · · · , |G|}. The purpose of elimination in this case will be to
find a set of λ1 · · ·λm such that ∆a = O(

√
y/x), ∀a ∈ {1, · · · , |G|}. This

condition is equivalent to:
ζ−κθ,σ1

/1 ζ−κθ,σ2
/1 · · · ζ−κθ,σm/1

ζ−κθ,σ2
/2 ζ−κθ,σ4

/2 · · · ζ−κθ,σ2m
/2

...
...

...
...

ζ−κθ,σm/m ζ−κθ,σ2m
/m · · · ζ

−κθ,σ
m2

/m


λ1
λ2
...
λm

 =

0
0
...
0


where the indexes of σ are mod p. LetA =

(
ζ−κθ,σij /j

)m
i,j=1

. We first assume

that A is regular. In order to ascertan that ∆ is not zero, we impose the
condition

ζ−κθ,σ1
/1 ζ−κθ,σ2

/1 · · · ζ−κθ,σm/1

ζ−κθ,σ2
/2 ζ−κθ,σ4

/2 · · · ζ−κθ,σ2m
/2

...
...

...
...

ζ−κθ,σk/k ζ−κθ,σ2k
/k · · · ζ−κθ,σkm/k

...
...

...
...

ζ−κθ,σm/m ζ−κθ,σ2m
/m · · · ζ

−κθ,σ
m2

/m




λ1
λ2
...
λk
...
λm

 =


0
0
...

C 6= 0
...
0

 .
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Let ~d = (Cδc,k)
m
c=1 (here, δ is the Kronecker symbol). By Cramer’s rule,

the solutions of our system are λc = Ac/A, where A = det(A) and Ac is
the determinant of a minor of A obtained by replacing the c-th column by
the column vector ~d. Using Hadamard’s inequality, we find that |Ac| ≤(
p−3

2

)(p−3)/4 and |A| ≤
(
p−1

2

)(p−1)/4. Then, obviously A∆ ∈ OK. Lemma
5.2.8 yields an upper bound for N(A∆). And since N(A∆) is an integer
different from zero, it must be greater or equal to 1, which leads to an upper
bound for |x|.
When A is not regular, we restraint the system to its largest regular subsys-
tem. Then, using Lemma A.1.1 from Appendix A, we can add an additional
equation and the system remains regular. Finally, proceeding now as in the
case when A is regular, we again find upper bounds for |x|. These upper
bounds are slightly better than in the regular case. We can thus use in both
cases the bounds from the regular case.

p 6= q The idea of the approach in this case is the same as in the case p = q, always
building linear combinations and trying to cancel enough leading coefficients
in the power series developments. The same distinction between the case
when A is regular or irregular will be made. Depending on the annihilators
and the characteristics of the system, p/q will play an essential role. Also,
given that G does not act on the q-th root of unity ξ, there will be no
division of the exponent κθ,σc by an integer in the matrix A. This case and
some of its possible ramifications are illustrated in [Mihăilescu 2007].

This approach was initiated with the proof of Catalan’s conjecture by Preda Mihăilescu
in [Mihăilescu 2004]. It was pursued with the objective of bounding potential solutions of
the Diagonal Nagell-Ljunggren equation in [Mihăilescu 2008] and has been further pursued
in [Bartolomé & Mihăilescu 2015] to study the binary Thue equation Xn−B.Y n = 1. We
will now see how this approach can be found in some works.

5.3.1 Catalan’s conjecture

In 1842, the Belgian mathematician Eugène Catalan conjectured that two consecutive
numbers, other than 8 and 9, could not be exact powers [Catalan 1842]. Catalan held a
position as “répétiteur” (he was in the process of obtaining his teaching degree, and this
training process included helping individually students with issues “repeat” their lesson
after class) at Ecole Polytechnique, near Paris, at that time. He sent a letter to August
Leopold Crelle, to be published in his journal [Catalan 1844]:
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160 years after Catalan published his conjecture in [Catalan 1842], Preda Mihăilescu
proved it to be a theorem. We will be interested in part of the proof (which we will
not reproduce here, it has been discussed abundantly in [Mihăilescu 2004], [Bilu 2004],
[Schoof 2008], [Bilu et al. 2014]). We will show how our approach was applied in the case
of Catalan.

The facts that were known before Mihăilescu’s last part of the proof ([Mihăilescu 2004])
were:
• p 6≡ 1 mod q,

• |x| ≥ q(2p+ 1)(2qp−1 + 1),

• There exist a non-zero integer a and a positive integer v such that x − 1 = pq−1aq,
y = pav and xp−1

x−1
= pvq, and there exist a non-zero integer b and a positive integer

u such that y + 1 = qp−1bp, x = qub and yq+1
y+1

= qup,

• q2|x, and pq−1 ≡ 1 mod q2,
Catalan’s conjecture was reduced to prove that for any two odd primes p and q, there

do not exist two integers x and y (other than the known solution 23 − 32 = 1) such that
xp − yq = 1. We find Equation (5.16) with f = 0, y = 1, B = 1.

Our general approach specializes to the case of Catalan’s conjecture as follows:
A. The characteristic algebraic integer is α = (x− ζ)/(1− ζ) ∈ Z[ζ]in this case, and it

verifies N(α) = vq. The characteristic ideal associated to the characteristic algebraic
integer is A = (α, v). It verifies Aq = (α).

B. In the case of Catalan’s equation, we find ourselves in the plus situation. However,
Mihăilescu finds in this case a special set of annihilators (“Mihăilescu’s ideal”), that
is the set of Θ ∈ Z[G] such that (x− ζ)Θ is a q-th power.

C. Mihăilescu then proves that the plus part of IM contains at least one element Θ that
is non-trivial. As we are in the plus case, ν is real and the Galois exponents are
cancelled.

The series and bounds are used to prove that for the real annihilators chosen, the rest
of the series development is null. This can be seen as an application of Runge’s method,
even though Mihăilescu had not heard about this method until after his proof.
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5.3.2 Diagonal Nagell-Ljunggren
We are interested in equation:

xn − 1

x− 1
= yq, in integers x > 1, y > 1, n > 2, q ≥ 2. (5.19)

The study of this equation started in [Nagell 1920a] and [Nagell 1920b] with Nagell, and
later Ljunggren brought some precisions to Nagell’s proof in [Ljunggren 1943]. They proved
that

Theorem 5.3.2 (Nagell-Ljunggren) Apart from the solutions

35 − 1

3− 1
= 112,

74 − 1

7− 1
= 202 and

183 − 1

18− 1
= 73,

equation (5.19) has no other solution (x, y, n, q) if either one of the following conditions is
satisfied:

(i) q=2,

(ii) 3 divides n,

(iii) 4 divides n,

(iv) q = 3 and n 6≡ 5 mod 6.

The diagonal case of the Nagell-Ljunggren equation is

xp − 1

x− 1
= pe · yp with x, y ∈ Z e ∈ {0, 1}, (5.20)

and p an odd prime. The only known non - trivial solution is

183 − 1

18− 1
= 73,

and it is conjectured to be also the only such solution. However, it is not even proved
that (5.20) has only finitely many solutions. In [Mihăilescu 2008], Preda Mihăilescu uses
again this approach to find conditions and upper bounds on the potential solutions to this
equation. We find Equation (5.16) with f = 1, y = 1, B = 1, q = p.

A. The characteristic algebraic integer is α = (x − ζ)/(1 − ζ) ∈ Z[ζ] and it verifies
N(α) = yp. The characteristic ideal associated to the characteristic algebraic integer
is A = (α, y). It verifies Ap = (α).

B. Because q = p, it is necessary to work in Fermat’s ideal to cancel the unit, and we
can even work in the plus part of Fermat’s ideal. We are thus in the plus situation.

C. However, the Galois exponents cannot not be cancelled. The linear system ∆ is thus
created and its norm bounded.
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D. A non-vanishing linear combination of the values of νσ.Θ1 and νσ.Θ2 , where Θ1 and
Θ2 have been selected in the positive part of the Fermat ideal, is used. The series
development and its conjugates converge to the conjugate of the limit in the complex
topology. The bounds computed on the determinant of the linear system as well as
equation-specific properties allow then to find the upper bounds:

|x| <

{
4.(p− 3/2)(p+2)/2 if x 6≡ ±1, 0 mod p
(4p)(p−1)/2 if x ≡ 0 mod p
4.(p− 2)p otherwise

.

5.3.3 Binary Thue
We call binomial Thue equation:

A.Xn −B.Y n = C,

where n ≥ 3 and A, B and C are non-zero integers. Thue proved in 1909 in [Thue 1909]
that, for a fixed n, this equation has at most a finite number of solutions in integers (x, y).
Currently, even the best numerical bounds on the solutions are too large for numerical
resolution. This equation has been totally solved in some particular cases, always with
C = ±1. We study equation:

Xn −B.Y n = 1, (5.21)
which we call binary Thue. The detailed study of this function is the object of Chapter 6.

5.4 Conclusion
In this chapter, we have shown an approach to certain exponential Diophantine equations,
using several techniques from cyclotomy and series develomment, for which we have given
some prerequisite properties and definitions. However, one can notice that it has so far
been applied only to binomial equations (that is, with two unknowns). It is an interesting
follow-up of this work to apply this approach to ternary (that is, with three unknowns)
equations.



Chapter 6
On the equation Xn − 1 = B · Zn

6.1 Abstract
We consider the Diophantine equation Xn − 1 = BZn, where B ∈ Z is understood as a
parameter. We prove that if this equation has a solution, then either the Euler totient of
the radical, ϕ(rad (B)), has a common divisor with the exponent n, or the exponent is a
prime and the solution stems from a solution to the diagonal case of the Nagell–Ljunggren
equation: Xn−1

X−1
= neY n, e ∈ {0, 1}. This allows us to apply recent results on this equation

to the binary Thue equation in question. In particular, we can then display parametrized
families for which the Thue equation has no solution. The first such family was proved by
Bennett in his seminal paper on binary Thue equations [Bennet 2001].

6.2 Introduction
Let B ∈ Z, n ∈ N>1, define ϕ∗(B) := ϕ(rad (B)), where rad (B) is the radical of B, and
assume that:

(n, ϕ∗(B)) = 1. (6.1)

This condition implies that B has no prime factors t ≡ 1 mod n. In particular, none of its
prime factors splits completely in the n−th cyclotomic field.

More generally, for a fixed B ∈ Z we let

N (B) = {n ∈ N>1 | ∃ k > 0 such that n|ϕ∗(B)k}. (6.2)

If p is an odd prime, we shall denote by CF the combined condition requiring that

I The Vandiver Conjecture holds for p, so the class number h+
p of the maximal real

subfield of the cyclotomic field Q[ζp] is not divisible by p.

II The index of irregularity of p is small, namely ir(p) <
√
p− 1, so there are ir(p) odd

integers k < p such that the Bernoulli number Bk ≡ 0 mod p.

The second condition was discovered by Eichler, as a sufficient condition for the first case
of Fermat’s Last Theorem (FLT) to be true. It is known from recent computations of
Buhler and Harvey [Buhler & Harvey 2011] that the condition CF is satisfied for primes
up to 163 · 106.

We consider the Binary Thue equation

Xn − 1 = B · Zn, (6.3)

where solutions with Z ∈ {−1, 0, 1} are considered to be trivial. The assertion that equa-
tion (6.3) has finitely many solutions other than the trivial ones is a special case of the
general Pillai conjecture (cf. [Bilu et al. 2014][Conjecture 13.17]):
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Conjecture 6.2.1 Let a, b, c be nonzero integers. Then the equation axm + byn = c has
finitely many solutions in integers x, y and positive integers m, n such that x, y 6= 0,±1;
m, n > 1; (m,n) 6= (2, 2).

One has to exclude the case m = n = 2, because equation ax2 +by2 = c may have infinitely
many solutions.

The Binary Thue equation is encountered as a particular case of binomial Thue equa-
tions of the type

aXn − bY n = c, (6.4)

see [Bennett et al. 2006]. In a seminal paper [Bennet 2001], Michael Bennett proves that
in the case when c = ±1, there is at most one solution for fixed (a, b;n) and deduces that
the parametric family (a + 1, a;n) has the only solution (1, 1) for all n. Equation (6.3)
inserts naturally in the family of equations (6.4), with a = c = ±1. Current results on
Equation (1.3) are restricted to values of B which are built up from two small primes
p ≤ 13 [Bennett et al. 2006] and complete solutions for B < 235 ([A.Bazso et al. 2010]).

A conjecture directly related to Equation (6.3) states that

Conjecture 6.2.2 Let n be a prime and B > 1 an integer, verifying condition (6.1).
Then, Equation (6.3) has no other non-trivial solution than (X, Y ;B, n) = (18, 7; 17, 3).

The main contribution of this paper is to relate Equation (6.3) to the diagonal Nagell
– Ljunggren equation,

Xn − 1

X − 1
= neY n, e =

{
0 if X 6≡ 1 mod n,
1 otherwise, (6.5)

in the case when n is a prime and condition (6.1) holds. We can then apply results from
[Mihăilescu 2008] and prove the following:

Theorem 6.2.3 Let n be a prime and B > 1 an integer with (ϕ∗(B), n) = 1. Suppose
that Equation (6.3) has a non trivial integer solution different from n = 3 and (X,Z;B) =
(18, 7; 17). Let X ≡ u mod n, 0 ≤ u < n and e = 1 if u = 1 and e = 0 otherwise. Then:

1. n > 163 · 106.

2. X − 1 = ±B/ne and B < nn.

3. If u 6∈ {n− 1, 0, 1}, then condition CF (II) fails for n and

2n−1 ≡ 3n−1 ≡ 1 mod n2, and
rn−1 ≡ 1 mod n2 for all r|X(X2 − 1).

If u ∈ {n− 1, 0, 1}, then Condition CF (I) fails for n.

The particular solution n = 3 and (X,Z;B) = (18, 7; 17) is reminiscent of a solution
of the diagonal Nagell equation; it is commonly accepted that the existence of non trivial
solutions tends to render Diophantine equations more difficult to solve. Based on Theorem
6.2.3, we prove the following
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Theorem 6.2.4 If Equation (6.3) has a solution for a fixed B verifying condition (6.1),
then either n ∈ N (B) or there is a prime p coprime to ϕ∗(B) and an m ∈ N (B) such
that n = p ·m. Moreover Xm, Y m is a solution of (6.3) for the prime exponent p and thus
verifies the conditions of Theorem 6.2.3.

Remark 6.2.5 Theorem 6.2.3 uses criteria from the diagonal case of the Nagell-Ljunggren
equation, the relation being established by point (2.) of the theorem. The criteria were
proved in [Mihăilescu 2008] and are in part reminiscent from classical cyclotomic results
on Fermat’s Last Theorem. Thus, the criteria for the First Case, which are ennounced in
point (3.) are the Eichler criterion CF (II) and the criteria of Wieferich and Furtwängler
(cf. [Mihăilescu 2008][Theorem 2]). For the Second Case of Diagonal Nagell-Ljunggren, in
point (3.), it was possible to restrict the two conditions proved by Kummer for the second
case of FLT to the single condition CF (I), namely Vandiver’s conjecture (cf. Theorem 4 of
[Mihăilescu 2008]). This is a consequence of the fact that unlike FLT, Nagell-Ljunggren is
a binary equation, a fact which allowed also to prove upper bounds for the solutions, which
are given in Theorem 6.4.2. The fact that the Nagell-Ljunggren equation is not homogenous
in X makes it difficult to prove lower bounds, thus leaving a gap on the way to a complete
proof of Conjecture 6.2.2.

The plan of the chapter is as follows: in Section 2 we drop the condition that n be
a prime and use Theorem 6.2.3 to deduce the results on Equation (6.3) for arbitrary
exponents n which are stated in Theorem 6.2.4. In Section 3 we establish the connection
between equations (6.3) and (6.5), review some basic properties of Stickelberger ideals and
prove auxiliary technical lemmata concerning coefficients of binomial series development.

With these prerequisites, we complete the proof of Theorem 6.2.3. Given the reduction
to the Nagell-Ljunggren Diagonal Case, the proof focuses on point (2.) of Theorem 6.2.3.

6.3 Proof of Theorem 6.2.4 assuming Theorem 6.2.3
In this section we derive Theorem 6.2.4 assuming Theorem 6.2.3. For this we assume that
Equation (6.3) has a solution with (ϕ∗(B), n) = 1, since our results only hold in this case,
a fact which is reflected also in the formulation of Theorem 6.2.4.

Consider the case when n = p · q is the product of two distinct primes. If (n,B) = 1,
then Theorem 6.2.3 holds for both p and q with the value e = 0. If X,Z is a solution, then
Theorem 6.2.3 . (2.) implies that Xp = ±B + 1 and Xq = ±B + 1. Consequently either
Xp +Xq = 2 or Xp−Xq = 2. This is impossible for |X| > 2 and a simple case distinction
implies that there are no solutions. As a consequence,

Corollary 6.3.1 Consider Equation (6.3) for fixed B and suppose that n is an integer
which has two distinct prime divisors q > p > 2 with (p,B) = (q, B) = 1. Then Equation
(6.3) has no solutions for which condition (6.1) holds.

If all divisors of n are among the primes dividing B, we are led to the following equation:
p(Xq−1) = q(Xp−1), which has no solutions in the integers other than 1. Indeed, assume
X 6= 1 to be a solution of the previous equation, and q = p + t, t ≥ 0. The real function
f(t) = p(Xp+t − 1)− (p+ t)(Xp − 1) is strictly monotonous and f(0) = 0. Therefore, the
equation p(Xq − 1) = q(Xp − 1) has no solutions. There is only the case left in which n is
built from two primes, one dividing B and one not. In this case, one obtains that equation
p(Xq − 1) = Xp − 1 which can also be shown not to have non trivial solutions, using the
above remark, this time with f(t) = p(Xp+t − 1)− (Xp − 1). Hence:
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Corollary 6.3.2 Equation (6.3) has no solutions for exponents n which are divisible by
more than one prime such that condition (6.1) holds.

We are left to consider the case of prime powers n = pc with c > 1. If p - B, we obtain
Xn/p − 1 = B/pe, so in particular B/pe + 1 ≥ 2p

c−1 is a pc−1−th power. Since in this case,
Equation (6.3) has in particular a solution for the exponent p, Theorem 6.2.3 implies that
B < pp; when c > 2, combining this with the previous lower bound implies that there are
no solutions. For c = 2, we deduce that |X| < p and, after applying Theorem 6.2.3 again
and letting ξ = ζ1/p be a primitive p2−th root of unity, we obtain the following equation

Y p2

=
Xp2 − 1

pe(Xp − 1)
= NQ[ξ]/Q(α) α =

X − ξ
(1− ξ)e

.

As usual, the conjugates of the ideal (α) are pairwise coprime. We let A = (Y, α) be
an ideal with N(A) = (Y ); moreover, if L|A is a prime ideal and N(L) = (`), then the
rational prime ` is totally split in Q[ξ], the factors being the primes (`, σc(α)). Being
totally split, it follows in particular that ` ≡ 1 mod p2 so Y ≥ ` > 2p2, in contradiction
with Y < X < p+ 1. This shows that there are no solutions for n = p2.

Corollary 6.3.3 If Equation (6.3) in which n = pc is a prime power has non trivial
solutions for which condition (6.1) holds, then c = 1.

�
The primes dividing the exponent n used in the above corollaries are by definition

coprime to ϕ∗(B). As a consequence, if n is an exponent for which Equation (6.3) has a
solution and m|n is the largest factor of n with m ∈ N (B) – as defined in (6.2) – then the
corollaries imply that there is at most one prime dividing n/m and the exponent of this
prime in the prime decomposition of n must be one. This is the first statement of Theorem
6.2.4, which thus follows from these corollaries and Theorem 6.2.3.

6.4 Proof of Theorem 6.2.3
6.4.1 Preliminary results
It should be noted that we followed the tradition when addressing this equation,
and noted n for a prime. This is rather disturbing (even for us), but we felt
we should not change the tradition.

The proof of Theorem 6.2.3 emerges by relating Equation (6.3) to the Diagonal Case
of the Nagell – Ljunggren conjecture. In this section we shall recall several technical tools
used for reducing one conjecture to the other. The reduction is performed in the next
section.

6.4.1.1 Link of (6.3) with the diagonal Nagell – Ljunggren equation

We note that δ =
(
Xn−1
X−1

, X − 1
)
divides n and δ = n exactly when X ≡ 1 mod n. The

first part is Euler’s Lemma 5.3.1. If X ≡ 1 mod n, then δ = n and thus n|(X − 1) must
hold. Conversely, inserting X ≡ 1 mod n in the previous expression shows that in this case
δ = n.

We first show that any solution of the Binary Thue equation (6.3) leads to a solution
of the Diagonal Nagell-Ljunggren equation (6.5). Let ζ ∈ C be a primitive n−th root of
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unity. Then the numbers αc = X−ζc
(1−ζc)e ∈ Z[ζ] by definition of e, and (αc, n) = 1. Since for

distinct c, d 6≡ 0 mod n we have (1 − ζd)e · αd − (1 − ζc)e · αc = ζc − ζd, it follows that
(αc, αd) | (1− ζ) and in view of (αc, n) = 1, it follows that the αc are coprime.

Let F =
∏n−1

c=1 αc = Xn−1
ne(X−1)

and q | F be a rational prime. In the ring Z[ζ], it splits
completely as the product of prime ideals Qc = (q, αc), c = 1, 2, . . . , n − 1: these ideals
are coprime, as a consequence of the coprimality of the αc. Therefore q ≡ 1 mod n and it
follows from Equation (6.1) that (q, B) = 1, so q|Z. Furthermore, Equation (6.3) implies
that there exists jq > 0 such that qjqn||Zn and thus qjqn||F . This holds for all primes
q | rad (F ). It follows that Equation (6.5) is verified for Y =

∏
q|F q

jq and Y | Z. We have
thus proved that if (X,Z) is a solution of Equation (6.3) for the prime n, then there exists
C ∈ Z such that Z = C · Y with Y as above, and:

Xn − 1

ne(X − 1)
= Y n and (6.6)

X − 1 = B · Cn/ne. (6.7)

From now on, we shall write D = X − 1.
From the above, we conclude that any integer solution of Equation (6.3) (binary Thue)

induces one of Equation (6.5) (Diagonal Nagell-Ljunggren). Conversely, if (X, Y ) is a
solution of Equation (6.5), then (X, Y ;ne(X − 1)) is a solution of Equation (6.3). For
instance, the particular solution (X, Y ;B) = (18, 7; 17) of Equation (6.3) stems from

183 − 1

18− 1
= 73,

which is supposed to be the only non trivial solution of Equation (6.5).

Remark 6.4.1 Note that if (X,Z) verify Equation (6.3), then (−X,Z) is a solution of
Xn+1
X+1

= BZn, so the results apply also to the equation:

Xn + 1 = BZn.

6.4.1.2 Bounds to the solutions of Equation (6.5)

We shall use [Mihăilescu 2008][Theorem 2]:

Theorem 6.4.2 Suppose that X, Y are integers verifying Equation (6.5) (diagonal Nagell-
Ljunggren) with n ≥ 17 being a prime. Let u = (X mod n). Then there is an E ∈ R+

such that |X| < E. The values of E in the various cases of the equation are the following:

E =

 4 ·
(
n−3

2

)n+2
2 if u 6∈ {−1, 0, 1}

(4n)
n−1

2 if u = 0 ,
4 · (n− 2)n otherwise.

(6.8)

Comparing the bounds (6.8) with Equation (6.7), it follows that |C| < 2n−1. In particular,
any prime dividing C would not split completely in Q[ζn] – since a prime splitting in this
field has the form r = 2kn+ 1 > 2n.
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Remark 6.4.3 Note that |C| < 2n − 1 implies a fortiori that for all primes r|C, r2 6≡
1 mod n. If d(r) ⊂ Gal(Q[ζ]/Q) is the decomposition group of the unramified prime r, it
follows that |d(r)| ≥ 3; moreover, either d(r) contains a subcycle d′ ⊂ d(r) of odd order
|d′| ≥ 3 or it is a cyclic 2-group with at least 4 elements.

6.4.1.3 A combinatorial lemma
Lemma 6.4.4 Let p be an odd prime, k ∈ N with 1 < k < log2(p) and P = {1, 2, . . . , p−1}.
If S = {a1, a2, . . . , ak} ⊂ P be a set of numbers coprime to p and such that ai 6≡ ±aj mod p
for i 6= j. We set the bound A = 2dp1/ke; then there are k numbers bi ∈ Z, i = 1, 2, . . . , k,
not all zero, with 0 ≤ |bi| ≤ A and such that

k∑
i=1

aibi ≡ 0 mod p.

For k = 2, we can choose the bi such that the additional condition
2∑
i=1

bi/ai 6≡ 0 mod p.

holds.
Proof. Let T = {1, 2, . . . , A} ⊂ P . Consider the functional f : T k → Z/(p · Z) given by

f(~t) ≡
k∑
i=1

tiai mod p, with ~t = (t1, t2, . . . , tk) ∈ T k.

Since |T k| > p, by the pigeon hole principle there are two vectors ~t 6= ~t′ such that f(~t) ≡
f(~t′) mod p. Let bi = ti − t′i; by construction, 0 ≤ |bi| ≤ A and not all bi are zero, since
~t 6= ~t′. The choice of these vectors implies

∑k
i=1 aibi ≡ 0 mod p, as claimed.

We now turn to the second claim. If the claim were false, then

a1b1 + a2b2 ≡ 0 mod p and b1/a1 + b2/a2 ≡ 0 mod p,

a homogenous linear system S with determinant det(S) =
a2

1−a2
2

a1a2
, which is non vanishing

under the premise of the lemma. This would imply that the solution b1, b2 is trivial, in
contradiction with our construction. This completes the proof. �

6.4.1.4 Some notation
We assume that n is prime and let ζ be a primitive n−th root of unity, K = Q(ζ) the
n−th cyclotomic field and G = Gal(K/Q) its Galois group. The automorphisms σa ∈ G
are given by ζ 7→ ζa, a = 1, 2, . . . , n− 1; complex conjugation is denoted by  ∈ Z[G]. In
the ring of integers Z[ζ], one has finite λ-adic expansions: for any α ∈ Z[ζ], there are some
Nα > 0 and aj ∈ {−(p− 1)/2, · · · , 0, 1, · · · , (p− 3)/2}, j = 0, 1, . . . N such that:

α =
Nα∑
j=0

aj(1− ζ)j. (6.9)
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We shall use the algebraic O(·)-notation, to suggest the remainder of a power series.
This occurs explicitly in the following four contexts
(i) In a λ-adic development of the type (6.9), we write α = x + O(λm) to mean that

there is some y ∈ Z[ζ] such that α − x = λmy. Since (n) = (λp−1), powers of n can
occur as well as powers of λ in this notation.

(ii) We also use formal power series, often written f = f(D) ∈ K[[D]]. For f =∑∞
k=0 fkD

k with partial sum Sm(f) =
∑m

k=0 fkD
k we may also use the O(·)-notation

and denote the remainder by f(D) = Sm(D) +O(Dm+1).

(iii) Suppose that D is an integer and the formal power series converges in the completion
KP at some primeP ⊂ O(K) dividingD. Suppose also that in this case all coefficients
of f are integral: then the remainder f(D)−Sm(D) is by definition divisible byPm+1,
so O(Dm+1) means in this context that the remainder is divisible by Pm+1.

(iv) If f(D) converges at all the prime ideals dividing some integer a|D, then O(Dm+1)
will denote a number divisible by am+1. In this paper we shall use this fact in the
context in which a = p is an integer prime dividing D and such that f(D) converges
at all prime ideals of K above p.

6.4.2 Auxiliary facts on the Stickelberger module
The following results are mostly deduced in [Mihăilescu 2008][§4], with some being deduced
in [Mihăilescu 2004][§2.1-2.3 and 4.1]. The results shall only be mentioned here without
proof. As usual, we note the Stickelberger ideal I and the Fermat’s module If (cf Section
5.2). Also, I+ is the set of all positive elements of the Stickelberger ideal I.

We shall want to consider the action of elements of θ ∈ Fn[G] on explicit algebraic
numbers β ∈ K. Unless otherwise specified, an element θ =

∑n−1
c=1 mcσc ∈ Fn[G] is lifted

to
∑n−1

c=1 ncσc, where nc ∈ Z are the unique integers with 0 ≤ nc < p and nc ≡ mc mod p.
In particular, lifts are always positive, of bounded weight w(θ) ≤ (p − 1)2. Rather than
introducing an additional notation for the lift defined herewith, we shall always assume,
unless otherwise specified, that θ ∈ Fn[G] acts upon β ∈ K via this lift.

Using this lift, we define the following additive maps:

ρ0 : Fn[G]→ Q(ζ) θ =
n−1∑
c=1

ncσc 7→
∑
c∈P

nc
1− ζc

,

and
ρ : Fn[G]→ Z[ζ] θ 7→ (1− ζ) · ρ0[θ].

The i−th moment of an element θ =
∑n−1

c=1 ncσc of Z[G] is defined as:

φ(i)(θ) =
n−1∑
c=1

ncc
i mod n.

Note that φ(1) is the Fermat quotient map: φ(1) = ϕ. Moments are linear maps of Fn-vector
spaces and homomorphisms of algebras, verifying:

φ(i)(aθ1 + bθ2) = aφ(i)(θ1) + bφ(i)(θ2), and
φ(i)(θ1θ2) = φ(i)(θ1)φ(i)(θ2), with θj ∈ Fn[G]; a, b ∈ Fn.

(6.10)
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The linearity in the first identity is a straight-forward verification from the definition. For
the second, note that for θ =

∑
c ncσc we have

φ(i)(σaθ) = φ(i)

(∑
c

ncσac

)
=
∑

nc · (ac)i = ai · φ(i)(θ).

Using the already established linearity, one deduces the multiplicativity of φ(i) as a ring
homomorphism.

Let α = X−ζ
(1−ζ)e ∈ Z[ζ], as before, and define cX ∈ {0, 1, · · · , n − 1} such that cX ≡

1/(X − 1) mod n if e = 0 and cX = 0 if e = 1. For any θ ∈ I+, there is a Jacobi integer
β[θ] ∈ Z[ζ] such that β[θ]n = (ζcXα)θ, normed by β[θ] ≡ 1 mod (1 − ζ)2 (Lemma 5.2.3).
The definition of the relative weight ς(θ) (cf. Section 5.2) implies that

β[θ] · β[θ] = NK/Q(α)ς(θ) = Y ς(θ). (6.11)

We have for any θ ∈ I+,

β[θ]n = (ζcXα)θ = (ζcX (1− ζ)1−e)θ ·
(

1 +
X − 1

1− ζ

)θ
(6.12)

Lemma 6.4.5 We remind that D = X−1. For any θ ∈ 2 · I+
f , for any prime ideal P | D,

there is a κ = κP(θ) ∈ Z/(n · Z) such that

β[θ] ≡ ζκ · Y
ς(θ)

2 mod P.

Proof. Let θ0 be an element of I+
f , and let θ = 2θ0. Note that from (6.11) we have

Y ς(θ0)n = β[θ0]n · β[θ0]n. Thus β[θ]n = β[θ0]2n = Y ς(θ0)n ·
(
β[θ0]/β[θ0]

)n. Using (6.12) and
the previous observations, we find:

β[θ]n = Y ς(θ0)n ·
(
ζcX · (1− ζ)1−e)(θ0−θ0) ·

(
1 +

X − 1

1− ζ

)(θ0−θ0)

= Y ς(θ0)n · ζ(2cX+1)ϕ(θ0) · (1 +D/(1− ζ))(θ0−θ0)

β[θ]n = Y ς(θ0)n ·
(

1 +
D

1− ζ

)(θ0−θ0)

. (6.13)

Thus for any prime ideal P | D there is a κ = κP(θ) ∈ Z/(n · Z) such that

β[θ] ≡ ζκ · Y ς(θ0) mod P. (6.14)

�
In the sequel, we indicate how to choose θ such that κ = 0 in Lemma 6.4.5. In this

case, Equation (6.12) leads to a P-adic binomial series expansion for β[θ].

Lemma 6.4.6 Let ψk denote the k-th Fueter element. Then, there exists a linear com-
bination θ = σψk + τψl ∈ I with σ, τ ∈ G and 1 ≤ k, l < n, such that φ(1)(θ) = 0 and
φ(−1)(θ) 6= 0.
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The proof of this Lemma is elementary, using the Voronoi relations (5.15); since the details
are rather lengthy, they will be given at the end of the chapter.

The following two lemmata contain computational information for the binomial series
developments that we shall use below. First, we remind that ρ0 is the following additive
map:

ρ0 : Fn[G]→ Q(ζ) θ =
n−1∑
c=1

ncσc 7→
∑
c∈P

nc
1− ζc

Lemma 6.4.7 Let D be an indeterminate. Let θ =
∑n−1

c=1 ncσc ∈ Z[G] and f [θ] =(
1 + D

1−ζ

)θ/n
∈ K[[D]]. Let 0 < N < n be a fixed integer. Then,

f [θ] = 1 +
N∑
k=1

ak[θ]

k!nk
Dk +O(DN+1),

where, for 1 ≤ k ≤ N , we have

ak[θ] = ρk0[θ] +O

(
n

(1− ζ)k

)
.

In the above identity, ak[θ], ρk0[θ] ∈ Z[ζ, 1
n
] are not integral, but their difference is an alge-

braic integer ak[θ]− ρk0[θ] ∈ n
(1−ζ)k · Z[ζ].

Proof. Let θ =
∑

c ncσc and m = m(θ) = | {c : nc 6= 0} | be the number of non
vanishing coefficients of θ. We prove this result by induction on m. First, note that(

nc/n

k

)
=

1

k!
· n

k
c

nk
· (1 +O(n)).

Thus, if θ = ncσc and m = 1, then:

f [θ] = 1 +
n−1∑
k=1

1

k!
· n

k
c

nk
· (1 +O(n)) · Dk

(1− ζ)k
= 1 +

N∑
k=1

ak[θ]

k!nk
Dk +O(DN+1),

where, for 1 ≤ k ≤ N ,

ak[θ] = ρk0[θ] +O

(
n

(1− ζ)k

)
,

which confirms the claim for m = 1. Suppose the claim holds for all j ≤ m and let
θ = θ1 + θ2 with m(θi) < m and m(θ) = m. Then,

f [θ] =
(

1 + D
1−ζ

)θ1/n
·
(

1 + D
1−ζ

)θ2/n
= 1 +

∑N
k=1 αk[θ]D

k +O(DN+1),
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where for k < n− 1 we have

αk[θ] =
∑k

j=1
aj [θ1]

njj!(1−ζ)l ·
ak−j [θ2]

nk−j(k−j)!(1−ζ)k−l · (1 +O(n))

= 1
k!nk

(ρ0[θ1] + ρ0[θ2])k +O
(

n
k!nk(1−ζ)k

)
= 1

k!nk
· ρk0[θ] +O

(
n

k!nk(1−ζ)k

)
= 1

k!nk
·
(
ρk0[θ] +O(n/(1− ζ)k

)
This proves the claim by complete induction. �

Lemma 6.4.8 By proceeding like in [Mihăilescu 2004][Lemma 8], we notice that ak[θ]
k!
∈

Z[ζ] (notation is different between both articles).

As a consequence, we will deduce that matrices built from the first coefficients occurring
in some binary series developments are regular.

Lemma 6.4.9 Let θ =
∑n−1

c=1 ncσc ∈ Z[G] such that φ(−1)(θ) 6≡ 0 mod n, let f [θ] =(
1 + D

1−ζ

)θ/n
and 0 < N < n− 1 be a fixed integer. Then,

f [θ] = 1 +
N∑
k=1

bk[θ]

k!nk(1− ζ)k
Dk +O(DN+1), with

bk[θ]

k!
∈ Z[ζ].

Moreover, if J ⊂ Gal(Q[ζ]/Q) is a subset with |J | = N , then the matrix1

AN = (bk[σcθ])
N−1
k=0;σc∈J ∈ GL(K, N)

.
Proof. Let λ = 1− ζ; we show that the determinant of AN is not zero modulo λ. Using
Lemma 6.4.7, we know that we have a development of symbolic power series

f [θ] = 1 +
N∑
k=1

ak[θ]

k!nk
Dk +O(DN+1),

where
ak[θ] = ρk0[θ] +O

(
n

(1− ζ)k

)
.

By definition, (1 − ζ)k · ak[σcθ] ∈ Z[ζ] for all σc ∈ G. Let bk[θ] = (1 − ζ)k · ak[θ] ∈ Z[ζ].
Then, according to Lemma 6.4.7,

bk[σcθ] = (1− ζ)k ·
(
ρk0[σcθ] +O

(
n

(1−ζ)k

))
= ρk[σcθ] +O(n) =

(∑n−1
l=1 nl ·

1−ζ
1−ζlc

)k
+O(n)

≡
(∑n−1

l=1
nl
lc

)k
mod λ ≡

(
φ(−1)[θ]

c

)k
mod λ.

1We shall apply this Lemma below, in a context in which J satisfies the additional condition that
i+ j 6= n for any i, j with σi ∈ J and σj ∈ J .
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Thus, detAN ≡

∣∣∣∣∣
((

φ(−1)[θ]
c

)k)N−1

k=0,σc∈J

∣∣∣∣∣ mod λ. We have obtained a Vandermonde deter-

minant:
detAN ≡

(
φ(−1)[θ]

)N(N−1)/2 ·
∏

i 6=j;σi,σj∈J

(
1

i
− 1

j

)
mod λ.

We have assumed that φ(−1)[θ] 6≡ 0 mod n, and 1/i 6≡ 1/j mod n for σi, σj ∈ J ; this
implies finally that

∏
σi,σj∈J

(
1
i
− 1

j

)
6≡ 0 mod n, which confirms our claim. �

6.4.3 Proof of Theorem 6.2.3
[Mihăilescu 2008][Theorem 4] proves that if CF holds, then Equation (6.5) (diagonal Nagell-
Ljunggren) has no solution except for (6.8). The computations in [Buhler & Harvey 2011]
prove that CF holds for n ≤ 163.106. This proves Theorem 6.2.3:1.. Theorem 6.2.3:3. is
also proved in [Mihăilescu 2008][Theorem 4]. In the sequel we shall show that the only
possible solutions are X = ±B/ne + 1. We may assume in particular that n > 163 · 106.

We have already proved that X − 1 = B · Cn/ne in Section 6.4.1.1. If C = ±1, then
X − 1 = ±B/ne, as stated in point (2.) of Theorem 6.2.3 and X is a solution of Equation
(6.5). The bounds on |X| in (6.8) imply |B| < nn, the second claim of Theorem 6.2.3:2..

Consequently, Theorem 6.2.3 will follow if we prove that C = ±1; we do this in this
section. Assume that there is a prime p|C with pi||C. Let P ⊂ Z[ζ] be a prime ideal
lying above p and let d(p) ⊂ G be its decomposition group. We shall use Remark 6.4.3
in order to derive some group ring elements which cancel the exponents κ occurring in
Lemma 6.4.5.

Recall that D = B · Cn/ne = X − 1, with C defined by Equation (6.7). Note that
Equation (6.7) implies that either (n,D) = 1, or n2|B and (n,C) = 1. Indeed, if (n,D) 6= 1,
then e = 1 and n2|ne(X − 1) = BCn and since (C, n) = 1, it follows that n2|B; the last
relation follows from the bounds Cn ≤ E < 4(n − 2)n, hence |C| < n. In both cases
1/(1− ζ) is congruent to an algebraic integer modulo D/nvn(D) · Z[ζ].

According to Remark 6.4.3, we know that there are at least two elements, σ′1, σ
′
2 ∈ d(p)

such that σ′1 6=  · σ′2. Let σ′i(ζ) = ζci , ci ∈ (Z/nZ)×. It follows from Lemma 6.4.4 that,
for ci 6= cj when i 6= j, there are h′1, h′2 ∈ Z with |h′i| ≤

√
n and

∑2
i=1 h

′
ici ≡ 0 mod n while∑2

i=1 h
′
i/ci 6≡ 0 mod n.

We define

µ =
∑2

i=1 hiσi ∈ Z[d(p)] ⊂ Z[G], with

hi =

{
h′i if h′i > 0 and
−h′i otherwise, and

σi =

{
σ
′
i if h′i > 0 and
σ
′
i otherwise.

(6.15)

By construction, µ is a positive element, i.e. the coefficients hi ≥ 0. Let ·̂ : G→ (Z/nZ)×

denote the cyclotomic character and note that h′iσ̂ = hiσ̂′ for h′i < 0 and thus φ(1)(µ) = 0.
In view of Lemma 6.4.4, we also know that we can choose the h′i and thus µ, such that

φ(1)(µ) = 0, but φ(−1)(µ) 6= 0.
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Since K/Q is abelian, all the primes P|(p) have the same decomposition group d(p) and
µ enjoys the following stronger property: let P|(p) and S ⊂ G be a set of representatives of
G/d(p); let γ ∈ Z[ζ] be such that γ ≡ ζcσ mod σ(P) for all σ ∈ S; then γµ ≡ 1 mod pZ[ζ],
as follows directly from ζµ ≡ 1 mod σ(P), for all σ ∈ S.

In view of Lemma 6.4.6 and the fact that Fueter elements are positive, we also know
that there is a θ0 ∈ I+

f such that ς(θ0) = 2 and φ(−1)(θ0) 6= 0.
Let

Θ = 2 · µ · θ0.

In view of the properties (6.10) of moments and since for both µ and θ0, the Fermat
quotient vanishes, while φ(−1) is non-null, it follows that the same must hold for Θ, so
Θ ∈ 2 · I+

f and φ(−1)(Θ) 6= 0. Let

h = 2 ·
l∑

i=1

|hi| = 2.w(µ),

where we defined the absolute weight w(
∑

c ncσc) =
∑

c |nc|. From subsection 6.4.2, we
know that there exists a Jacobi integer β[2θ0] ∈ Z[ζ] such that β[2θ0]n = (ζcX (1− ζ)1−e)θ0 ·(

1 + X−1
1−ζ

)θ0
(see Equation (6.12)). It follows from Lemma 6.4.5, that we have β[2θ0] ≡

ζκ(θ0) · Y 4 mod P. We have chosen µ as a linear combination of two elements from the
decompostion group D(P) ⊂ G, so µ acts on ζ mod P by ζ mod P 7→ ζµ ≡ 1 mod P.
Therefore, from β[Θ] = β[2θ0]µ and thus, by the choice of µ, we have

β[Θ] ≡ Y h mod pZ[ζ]. (6.16)

Let Θ = 2
∑n−1

c=1 ncσc; for any prime P|(p), the binomial series of the n−th root of the
right hand side in Equation (6.13) converges in the P - adic valuation and its sum is equal
to β[Θ] up to a possible n−th root of unity ζc. Here we make again use of the choice of
Θ: comparing (6.16) with the product above, it follows that ζc = 1 for all primes P | (p).
For any N > 0, we have pinN ||DN and thus

β[Θ] ≡ Y h

n−1∏
c=1

(
N−1∑
k=0

(
nc/n

k

)(
D

1− ζc

)k)
mod pinN . (6.17)

We develop the product in a series, obtaining an expansion which converges uniformly
at primes above p and is Galois covariant; for N < n− 1 and σ ∈ G, we have:

β[σΘ] = Y h

(
1 +

N−1∑
k=1

bk[σΘ]

(1− ζ)knkk!
·Dk

)
+O(pinN),

with bk[Θ] ∈ Z[ζ]. Let P ⊂ {1, 2, · · · , n− 1} be a set of cardinal 1 < N < (n− 1)/2 such
that if c ∈ P then n− c 6∈ P , and J ⊂ Z[G] be the Galois automorphisms of K indexed by
P : J = {σc}c∈P . Consider the linear combination ∆ =

∑
σ∈J λσ · β[σ ·Θ] where λσ ∈ Q[ζ]

verify the linear system:∑
σ∈J

λσ · bk[σ ·Θ] = 0, for k = 0, . . . , N − 1, k 6= dN/2e and∑
σ∈J

λσ · bdN/2e[σ ·Θ] = (1− ζ)dN/2endN/2edN/2e!. (6.18)
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Applying Lemma 6.4.9 we observe that this system is regular for any N < n − 1. There
exists therefore a unique solution in λσ which is not null.

We recall that a power series
∑∞

k=0 akX
k ∈ C[[X]] is dominated by the series∑∞

k=0 bkX
k ∈ R[[X]] with non-negative coefficients, if for all k ≥ 0, we have |ak| ≤ bk.

The dominance relation is preserved by addition and multiplication of power series.
As in Lemma 5.2.8, one shows that if r ∈ R>0 and χ ∈ C, with |χ| ≤ K with K ∈ R>0,

then the binomial series (1 +χT )r is dominated by (1−KT )−r. From this, we obtain that
(1 + χT )Θ/n is dominated by (1 −KT )−w(Θ)/n. In our case of congruence (6.17), T = D,
χ = 1

1−ζc and

K = max
1≤c<n

|1/(1− ζc)| = 1/ sin(π/n) ≤ n/π cos(π/3) = 2n/π < n.

Applying this to our selected Θ, whose absolute weight is bounded by w ≤ 4n
√
n, we find

after some computations that |bk[σ ·Θ]| < nk ·
(−w/n

k

)
· k! < n3k for N < n/2.

Let A = det (bk[σc ·Θ])N−1
k=0;c∈I 6= 0 be the determinant of the matrix of the system

(6.18), which is non vanishing, as noticed above: note that the division by k! along a
complete row does not modify the regularity of the matrix.

Let ~d = (1 − ζ)dN/2endN/2edN/2e!
(
δk,dN/2e

)N−1

k=0
, where δi,j is Kronecker’s symbol. The

solution to our system is λσ = Aσ/A, where Aσ ∈ Z[ζ] are the determinants of some minors
of (bk[σc ·Θ])N−1

k=0;c∈I obtained by replacing the respective column by ~d.
Noticing that |(1− ζ)dN/2endN/2edN/2e!| < n3(N−1), Hadamard’s inequality implies that

|Aσ| ≤ n3(N−1)(N−2)/2 · (N − 1)(N−1)/2 ≤ n3N2/2 ·NN/2 and
|A| ≤ n3N2/2 ·NN/2

Let δ = A ·∆ ∈ Z[ζ],
δ =

∑
σ∈J

Aσ · β[σ ·Θ] ∈ Z[ζ].

We set N = dn3/4e and claim that for such N , δ 6= 0. By choice of the λ’s, we
have δ = A.pindN/2e.u + pinNz for some z ∈ Z[ζ], where u = DdN/2e

pindN/2e
.Y h is a unit in

(Z/pZ)×. Therefore, if we assume that δ = 0, then necessarily pindN/2e divides A. However,
vp(A) < ndN/2e. Indeed, the upper bound for |A| implies a fortiori that vp(A) ≤ dN/2 ·
logN + 3N2

2
log ne. Then, the assumption δ = 0 would imply n ≤ 3

[
n3/4 + 1

4

]
log n, which

is false for n ≥ 4, 5.106. This contradicts thus our initial assumption. Therefore δ 6= 0.
Given the bounds on Aσ, we obtain |δ| ≤ NY hn3N2/2 · NN/2 and using the fact that

h < 4n1/2, Y < nn (Theorem 6.2.3:2.) and N = dn3/4e, we find

|NK/Q(δ)| <
(
n

11
2
n3/2+ 3

8
n3/4+ 3

4

)n−1

. (6.19)

The initial homogenous conditions of the system (6.18) imply δ ≡ 0 mod pindN/2e, therefore
|NK/Q(δ)| ≥ pin(n−1)N/2. Combining this inequality with inequality (6.19) and n ≥ 163·106,
one finds that log p < 1.64. This shows that p = 2, 3 or 5.
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We consider the case p ≤ 5 separately as follows. Note that in this case p 6≡ ±1 mod n
and the decomposition group D(p) contains the automorphism σp. We choose thus µ =
1 + pσ−1

p and verify that ϕ(µ) = 0, while φ−1(µ) = 1 − p2 6≡ 0 mod n. Consequently
ς(Θ) = 4(p+ 1) and the norm of δ is thus bounded by

pn(n−1)N/2 ≤ |NK/Q(δ)| <
(
n4(p+1)+3N2/2 ·NN/2+1

)n−1

.

Letting N = 48, we obtain the inequality

2n ≤ n73 · 4825/24 < 64n73 ⇒ n− 6

73
≤ log(n)/ log(2),

which is false for for n > 695, and a fortiori for n > 163.106. We obtain a contradiction in
this case too, and thus C = ±1, which completes the proof of Theorem 6.2.3. �

6.5 Proof of Lemma 6.4.6
Proof. Let θ = σwψu+σzψv. The conditions required by the lemma lead to the following
linear system of equations over Fn:{

w · ϕ(ψu) + z · ϕ(ψv) = 0
1/w · φ(−1)(ψu) + 1/z · φ(−1)(ψv) 6= 0

(6.20)

Considered as a linear system in the unknowns w, z ∈ Fn, the above system has the matrix

M =

(
ϕ(ψu) ϕ(ψv)

φ(−1)(ψv) φ(−1)(ψu)

)
. Assume that the product P (t) = ϕ(ψt) · φ(−1)(ψt) is

not constant for all t ∈ (Z/n · Z)×. Then there are two elements u, v ∈ (Z/n · Z)× such
that P (u) 6= P (v); for such values u, v, the matrix M is regular over Fp and for any non
vanishing right hand side in the second equation, the system has a unique solution (w, z).
For this choice of u, v;w, z, the element θ = σwψu + σzψv satisfies the condition of the
lemma.

We now show that P (t) : (Z/n · Z)× → Fp is not a constant function. The proof uses
explicit computations which include divisions by several constants which must be assumed
to be non - null. Therefore we suppose that n 6∈ E := {3, 7} and shall verify independently
that the claim of the lemma holds for this exceptional set.

Let ϕ be the Fermat quotient map and Θk be the k−th Fuchsian. For any integer
1 < k < n− 1, we have:

(n− k)n − (n− k) ≡ −kn − n+ k mod n2

≡ −n
(
kn−k
n

+ 1
)

mod n2.

Dividing both terms by n and recalling from Lemma 5.2.9 that ϕ(Θk) = ϕ(k) ≡ kn−k
n

mod
n, we find:

ϕ(Θn−k) = n− (1 + ϕ(Θk)) . (6.21)

Using now (5.15) from Lemma 5.2.9, with m = 2, we find that:

φ(−1)(Θk) ≡
k3 − k

2k2
B2 ≡

1

12
·
(
k − 1

k

)
mod n,
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where we used the fact that B2 = 1/6. Finally, using that ψk = Θk+1−Θk for k > 1 while
ψ1 = Θ2, we obtain the following expressions for the moments of interest:

ϕ(ψk) = ϕ(k + 1)− ϕ(k),

φ(−1)(ψk) ≡
1

12
·
(

1 +
1

k(k + 1)

)
.

Note that φ(−1)(ψk) = 0 iff k2 + k + 1 = 0; if n ≡ 1 mod 6, the equation has two solutions
in Fn, otherwise it has none. In the latter case φ(−1)(ψk) 6= 0 for all k.

We shall assume that P is the constant function and shall show that this assumption
fully determines the Fermat quotient of integers in dependence of ϕ(2), and this determi-
nation is in contradiction with (6.21); the contradiction implies that P cannot be constant,
thus completing the proof.

Let thus C = ϕ(2) · φ(−1)(Θ2) = ϕ(2) · 1
8
. Assume first that ϕ(2) = 0 and recall from

(6.21) that ϕ(k) + ϕ(n − k) + 1 = 0. Therefore at least n−1
2

of the values of ϕ are non-
vanishing. Since φ(−1)(k) · (ϕ(k + 1)− ϕ(k)) = 0 for all k we see that if n 6≡ 1 mod 6, then
ϕ is constantly vanishing, which is impossible.

If n ≡ 1 mod 6, let l,m ∈ Fn be the non trivial third roots of unity, so φ(−1)(ψl) =
φ(−1)(ψm) = 0, while for all k 6∈ {l,m} we must have ϕ(k + 1) = ϕ(k). In particular, if
l < m, there are two integers a, b such that

ϕ(2) = 0 = . . . = ϕ(l); ϕ(l + 1) = a = . . . = ϕ(m); ϕ(m+ 1) = b = . . . = ϕ(n− 1).

But ϕ(n − 1) = −1 while ϕ(n − 2) = −1 − ϕ(2) = −1, so b = −1. For symmetry
reasons induced by (6.21), we must have a = −1/2 and m = n − l. This is absurd since
m3 ≡ 1 mod n implies l3 = (n − m)3 ≡ −m3 ≡ −1 mod n, so n = 2 6≡ 1 mod 6. Thus
ϕ(2) 6= 0 in this case too. Since φ(−1)(l) = 0, it follows however that C = ϕ(l) ·φ(−1)(l) = 0
and thus C = 0 = ϕ(2)/8 and we should have ϕ(2) = 0, in contradiction with the facts
established above. Consequently, if n ≡ 1 mod 6, then P cannot be constant.

We consider now the case n 6≡ 1 mod 6, in which we know that C 6= 0. By expressing
C = P (2) = P (k) we obtain the following induction formula

C =
1

12
· 3ϕ(2)

2
=

1

12
(ϕ(k + 1)− ϕ(k)) · k

2 + k + 1

k(k + 1)
, hence

ϕ(k + 1)− ϕ(k) =
3ϕ(2)

2
· k(k + 1)

k2 + k + 1
,

ϕ(3)− ϕ(2) =
9

7
ϕ(2) ⇒ ϕ(3) =

16

7
ϕ(2).

By eliminating ϕ(2) from the above identity for two successive values of k one finds

ϕ(k + 1) =
2k3

k3 − 1
· ϕ(k) +

k3 + 1

k3 − 1
· ϕ(k − 1).

We shall use the reflexion formula (6.21) between the last and the first values in the
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sequence 1, 2, . . . , n− 2, n− 1. Letting k = n− 2 in the above induction, we find

−1 ≡ ϕ(n− 1) ≡ 16

9
· ϕ(n− 2) +

7

9
· ϕ(n− 3)

≡ 16

9
· (−1− ϕ(2)) +

7

9
· (−1− ϕ(3)) mod n,

9 ≡ 16 + 16ϕ(2) + 7 + 7ϕ(3) ≡ 23 + (16 + 7 · 16

7
)ϕ(2) mod n, hence

−7 ≡ 16 · ϕ(2) mod n.

Consequently ϕ(2) ≡ − 7
16

mod n and thus ϕ(3) ≡ 16
7
ϕ(2) ≡ −1 mod n. But then the

reflexion formula (6.21) implies that ϕ(n − 3) = −1 − ϕ(3) = 0, and thus C = 0, in
contradiction with the previously obtained non vanishing fact. This confirms that P (t) is
non constant in this case too.

It remains to verify the claim for the exceptional primes in E. For n = 3 the Stickel-
berger ideal is trivial, so there is nothing to prove. For n = 7 one can repeat the proof
of the case n ≡ 1 mod 6, which requires no division by 7; this completes the proof of the
Lemma. �



Appendix A
Addendum to

[Mihăilescu 2008][Theorem 3]

The proof of Theorem 6.2.3 is based on results from [Mihăilescu 2008]. It has been pointed
out that the proof of [Mihăilescu 2008][Theorem 3] may require some more detailed expla-
nation in the case of a singular system of equations in the proof of [Mihăilescu 2008][Lemma
14]. Since the statements of [Mihăilescu 2008] are correct and can even be slightly im-
proved, while the explanations may have seemed insufficient, we provide here for the readers
interested to understand the technicalities of the proofs in [Mihăilescu 2008] some addi-
tional details and explanation, confirming those claims and results.

A.1 Clarification on the singular case of the Theorem 3
of [Mihăilescu 2008]

Letm ∈ Z>0 be a positive integer, K a field, V = Km as aK-vector space and let L ( V be a
proper subspace of V of dimension r. We assume that there exists at least one vector w1 ∈ L
which is free of 0-coefficients over the canonical base E . For (x, y) ∈ V 2, x = (x1, · · · , xm)
and y = (y1, · · · , ym), the Hadamard product is defined by [x, y] = (x1y1, · · · , xmym). For
any subspace W ⊂ V we define the W -bouquet of L by

LW = 〈 { [w, x] : w ∈ W, x ∈ L } 〉K,

the K-span of all the Hadamard products of elements in W by vectors from L.

Lemma A.1.1 Let a1 = (1, 1, . . . , 1) over E, and a2 ∈ V such that its coordinates be
pairwise distinct over E. Let A2 = 〈{a1, a2}〉K be the subspace generated by a1, a2. We
assume that w1 ∈ W , and we let LA2 be the resulting A2-bouquet. Then dim(LA2) >
dim(L).

Proof. Obviously, L ⊂ LA2 (as a1 ∈ A). We would like to show that LA2 6= L. We
know that the system (w1, [w1, a2], [w1, a

2
2], · · · , [w1, a

m−1
2 ]) (the notion of power of a vector

here is to be understood as an “Hadamard power”) is free (as it induces a Vandermonde
matrix over E , w1 does not have any zero among its coordinates and all coordinates of a2

are pairwise distinct). We know that w1 ∈ L; let us assume that [w1, a
i
2] ∈ L for i ≤ j (we

know that j ≤ m−r < m). Then, [w1, a
j
2] ∈ L and [w1, a

j+1
2 ] /∈ L. However, the Hadamard

product of [w1, a
j
2] ∈ L by a2, that is [w1, a

j+1
2 ], belongs to LA2 . Thus, dimLA2 > dimL. �

A.1.1 Application of Lemma A.1.1 to the proof of the singular case
in the argument on pages 266 – 270 of [Mihăilescu 2008]

We apply here the lemma in the first case (that is x 6≡ s mod p, where s ∈ {−1, 0, 1}),
the application to the second case being similar.
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Let all notation be like in Lemma 14 in [Mihăilescu 2008]. As in [Mihăilescu 2008], we
will assume that A =

(
ζ−κac/a

)(p−1)/2

a,c=1
(where κac are the Galois exponents) is singular. Let

m = (p − 1)/2, K = Q(ζp) and r = rank (A) < (p − 1)/2. Without loss of generality, we
assume that a regular r-submatrix ofA is built with the first r rows and the first r columns.
Therefore, the first r rows of A are independent, and we denote by W the sub-space of
V = Km generated by the first r row vectors w1, · · · , wr of A. For a1 = (1, 1, . . . , 1), we
let a2 be the vector of V whose components are 1 (η(σcθ))

(p−1)/2
c=1 and A2 = {a1, a2}. Then,

according to Lemma A.1.1, there exists at least one vector ~v ∈ LA2 which is independent
on the first r vectors of A.

Let S be the (r + 1) × (r + 1) submatrix of A comprising the first r rows and r + 1
columns of A, to which we have added an additional row: the first r+ 1 components of ~v.
Let ~λ′ be the vector solution of A~λ′ = ~d′, where ~d′ = (δc,r+1)r+1

c=1. We know that ~λ′ 6= ~0, as
S is regular and ~d′ is not the null vector. For 1 ≤ c ≤ r + 1, by Cramer’s rule, λc = Sc

S
,

where Sc are the determinants of some minors of S obtained by replacing the c-column by
~d′, and S = detS.

Let ~λ ∈ V be a vector whose first r + 1 coordinates are those of ~λ′ and the others are
0. Let (δc,r+1)mc=1. Then, ~λ verifies: A~λ = ~d.

Let δ =
∑r+1

c=1

(
λc · βc + λc · βc

)
. Using Hadamard’s inequality, we bound

|Sc| ≤
(
p−3

2

) p−3
4 = D1 and |S| ≤

(
p−1

2

) p−1
4 = D0. Then, using the fact that the choice

of λc eliminates the first term in the expansion of fc, we find that |S| · |δ| ≤ 2x(p−1)/2p ·∑r+1
c=1 |Sc||Rc,0(x)|, where Rc,0(x) = fc(x) − x(p−1)/2p. With the same arguments as in

[Mihăilescu 2008], we deduce:

|Sδ| < 2(p− 1)D1 ·
1

|x|(p+1)/2p
.

This inequality holds for all conjugates σc(δ), thus leading to:

|N (Sδ)| < (2(p− 1)D1)(p−1)/2 · 1

|x|
(p−1)(p+1)

4p

.

If δ 6= 0, then |N (Sδ)| ≥ 1 and thus |x| ≤ 25−p (p
2

) p
2 . If δ = 0, then 0 = Sδ =

S · |x|(p−1)/2 −
∑(p−1)/2

c=1 ScR0,c, and thus:

|x| ≤
∑
c

|Sc|/|S| < (p− 1)D1 < 3

(
p− 3

2

)(p−3)/2

.

These bounds are better than the ones in [Mihăilescu 2008], and this concludes the clari-
fication.

1In the context of [Mihăilescu 2008], η corresponds to b1[θ] in our context
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