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1. Summary 

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. In children, 

the most common histological subtypes are embryonal RMS (ERMS) and alveolar RMS 

(ARMS). One feature of human RMS is aberrant Hedgehog (HH) signaling. In mice, RMS 

formation occurs due to mutations in the Hh receptor Patched (Ptch), which equally activate 

Hh signaling. Furthermore approximately 60 % of ERMS show active rat sarcoma (RAS) 

signaling. RAS and HH signaling are known to interact in several cancer types like lung, 

colon and pancreas. However an interdependency of these pathways in RMS is unknown.  

The aim of this thesis was to analyze whether RAS and HH signaling influence each other and 

cooperate in the pathogenesis of RMS. For this purpose oncogenic NRAS, KRAS and HRAS 

(collectively named oncRAS) were overexpressed in human RMS cell lines and in Ptch 

mutant mice.  

Indeed, oncRas signaling seems to cooperate with Hh signaling in RMS. This includes 

changes in the expression of Hh target genes and differences in RMS growth in Ptch mutant 

mice. Interestingly, the cooperation between Ras and Hh depends on the Ras isoform. Thus, 

the data of the genetic approach shows that expression of oncKRas and oncHRas in RMS 

decrease the tumor latency time and increase the tumor incidence, whereas oncNRas does not. 

Surprisingly, oncNRas decreases the tumor multiplicity in Ptch mutant mice and suppresses 

the proliferation of the tumors and thus improves the prognosis.  

Furthermore, the in vitro data show that oncRAS suppresses HH signaling activity in human 

RMS cell lines. However the mode of action differs depending on the RMS subtype. While in 

the ERMS cell line RUCH-2 the RAS–mediated inhibition is caused by the MEK/ERK axis, it 

seems to be regulated by a jet unknown factor in the ARMS cell line RMS-13. Additionally 

the effects of active RAS signaling on the proliferative capacity and metabolic activity seem 

to vary depending on the RMS subtype. While oncRAS suppresses the proliferative capacity 

and metabolic activity of RUCH-2 cells, it enhances the proliferative capacity and metabolic 

activity of RMS-13 cells. 

Together, these data indicate that HH and RAS signaling interact with each other in RMS. 

The outcome, however, depends on the RMS subtype and the RAS isoform. Thus, depending 

on the oncRas subtype the prognosis can either worsen or improve.   
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2. Introduction 

2.1. Rhabdomyosarcoma  
Cancer in children and adolescents is rare but since 1975 the overall incidence of childhood 

cancer in the United states has been slowly increasing (Smith et al. 2014). Besides 

Neuroblastoma and Wilms-Tumor, Rhabdomyosarcoma (RMS) is the most common soft 

tissue sarcoma in children and adolescents. Nowadays about 350 and 80 children are 

diagnosed with RMS each year in the United States (American Cancer Society) and Germany 

(Kompetenznetz Pädiatrische Onkologie und Hämatologie), respectively. RMS belongs to the 

broader category of small blue round cell tumors of childhood (Wexler and LJ 1997) and 

histologically resembles normal fetal skeletal muscle. About 65 % of the patients are younger 

than 6 years with a mortality rate of approximately 40 % (Dagher and Helman 1999). The 

incidence of RMS in adults could not be clarified in total, however Sultan et al. reported that 

40% of all RMS tumors are diagnosed in adults younger than 20 years (Sultan et al. 2009). In 

RMS patients the most common site of origin of these tumors is the head and the neck (40%), 

followed by the genitourinary tract, extremities, trunk and retroperitoneum (Wang 2012). 

During the last decades (1975-2007), the treatment of RMS has been made great progress, 

which is demonstrated by an increased 5-year survival rate from 53% to 67 % in children 

below 15 years and from 30 % to 51 % in young adolescents between 15 to 19 years (Smith et 

al. 2014).  

In children, the most common histological subtypes of RMS are alveolar (ARMS) and 

embryonal (ERMS) RMS. Patients with ERMS represent approximately 60 % of all childhood 

RMS and patients with metastatic ERMS show a 5-year overall survival of 40 % (Breneman 

et al. 2003) whereas patients with metastatic ARMS have a 5-year-overall survival of just 10-

30 % (De Giovanni et al. 2009). ARMS can be further divided in those with and without 

PAX3(7)/FOXO1 translocations resulting in respective fusion-proteins, whereas ERMS are 

always fusion-negative and frequently show loss of heterozygosity of 11p15.5 and 

concomitant overexpression of IGF2. Fusion-negative ARMS and ERMS in humans and in 

mice are characterized by pathological Hedgehog (HH)-signaling activity (Pressey et al. 2011, 

Zibat et al. 2010). Aberrant HH signaling activity can be monitored by the overexpression of 

the HH target gene Glioma-associated oncogene GLI1. 
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2.2. Hedgehog (Hh) signaling pathway  

The Hh signaling pathway was originally identified to affect multiple processes in tissue 

patterning during embryonic development. Today it is known that this pathway also regulates 

tissue homeostasis, regeneration and tissue healing as well as stem cell activation and self-

renewal (Beachy et al. 2004, Nusslein-Volhard and Wieschaus 1980, Ruiz i Altaba et al. 

2007). 

Components of the Hh pathway were first described by Nusslein-Volhard and Wieschaus who 

performed a screen of genes involved in body patterning of Drosophila melanogaster 

(Nusslein-Volhard and Wieschaus 1980).  

Today it is known that this pathway is highly conserved between the species, however with 

slight differences. Drosophila has only one Hh and Patched (Ptch) gene and one transcription 

factor Ci, while vertebrates have three different Hh genes, Sonic hedgehog (Shh), Indian 

hedgehog (Ihh), and Desert hedgehog (Dhh), two Patched genes, Ptch1 and Ptch2 and 3 

multiple Gli transcription factors, Gli1, Gli2 and Gli3 (Echelard et al. 1993).  

Of the 3 Hh homologs in vertebrates, Shh is the best characterized. Shh is involved in 

regulation of patterning of the limb bud and of the neural tube (Marigo et al. 1996, Marigo 

and Tabin 1996), while Ihh is specifically involved in bone and cartilage growth and 

differentiation and Dhh in gonadal differentiation (Bitgood et al. 1996, St-Jacques et al. 

1999). The three Gli zinc-finger transcription factors in vertebrates mediate the Hh signal to 

the nucleus and exist as activator and repressor forms. Thus, all Gli proteins consist of a C-

terminal activation domain, whereas Gli2 and Gli3 additionally have a N-terminal repressor 

domain (Briscoe and Therond 2013). The transcriptional activation of the pathway is mostly 

regulated by the full lengths Gli2/3 proteins (activator form) whereas the transcriptional 

repression is managed by the C-terminally truncated Gli proteins (repressor form). 

In vertebrates canonical Hh signaling is mediated by the Hh receptor Ptch, which regulates its 

interaction partner Smoothened (Smo) which in turn activates the Gli transcription factors. 

Despite the long research history on the Hh signaling pathway the interaction between the Hh 

components is quit incomplete.  



Introduction 

 

 

4 

 
Figure 1: Simplified schematic drawing of the canonical Hh/Ptch signaling pathway. The figure shows 

a schematic drawing of physiological activation and pathological activation of the Hh signaling pathway. 

(A) In the inactive state Ptch inhibits Smo, which promotes the Gli repressor form and blocks target genes 

(B) In the physiological active state the ligand Hh binds to Ptch. This blocks Ptch function and results in 

activation of Smo, which promotes the Gli activator forms that activate target gene expression in the 

nucleus. (C) Ligand dependent and independent pathological activation of the Hh signaling pathway by 

either oversupply of the ligand Hh or mutation in Hh components (inactivating mutations in Ptch or 

activating mutations in Smo). The figures are modified from the Dissertations of Nitzki 2008 and Linder 

2015. 

In the inactive state (see Figure 1A), the ligand Hh is absent, resulting in the repression of the 

pathway by Ptch. Ptch is a 12-span transmembrane receptor that inhibits the activity of Smo. 

The detailed mechanism behind the inhibition of Smo by Ptch is only partially understood. In 

the current model Ptch prevents the translocation the seven-transmembrane G-protein-coupled 

receptor-like protein Smo to the primary cilium (Rohatgi et al. 2007). Blocking of 

accumulation of Smo at the cilium results in the degradation of the zinc finger transcription 

factors Gli2 and Gli3 to the transcriptional C-terminal truncated repressor forms (Glirep) 

(Wang et al. 2000, Wen et al. 2010). The Glirep forms are translocated into the nucleus and 

block the Hh target gene promoters and thus target gene expression (Aza-Blanc et al. 1997).  

In the presence of Hh the pathway is activated (see Figure 1B) by binding of Hh to Ptch. This 

results in inhibition of Ptch function and in translocation of Smo, and accumulation in the 

primary cilium. This in turn leads to stabilization of the Gli2 and Gli3 activator forms (Gliact) 

and their translocation to the nucleus where they activate transcription of target genes (Cohen 

2010, Roberg-Larsen et al. 2014). One of these targets is Gli1, which expression is thought to 
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be a reliable marker of active Hh signaling. Another target gene is Ptch that thus is regulated 

in a negative feedback loop (Hooper and Scott 2005, Wetmore 2003).  

When components of the Hh signaling pathway are mutated, these mutations can result in a 

constitutive pathological activation of the Hh pathway (Figure 1C). These mutations can be 

loss of function mutation of Ptch or activating mutations in Smo. In addition, pathological 

activation of the pathway can occur due to overexpression of Hh or Gli. Pathological 

activation of Hh signaling is involved in the development of various cancer types like basal 

cell carcinoma, several other carcinomas, medulloblastoma, multiple myeloma, chronic 

myeloid leukaemia (Gupta et al. 2010, Hahn et al. 1996, Liu et al. 2011) and also RMS (Zibat 

et al. 2010). All of these tumors overexpress Gli1 mRNA, which is thought to be a very good 

indicator for pathological Hh signaling activity and sometimes this also goes along with 

overexpression of Ptch mRNA (Scales and de Sauvage 2009). 

Conclusively, Hh signaling pathway is an important pathway that regulates several essential 

functions like cell proliferation, differentiation and survival and is responsible for the proper 

development of numerous organs and tissues (Hooper and Scott 2005) and thus it requires an 

accurate onset control, strength and termination (Varjosalo and Taipale 2008). 

2.3. Hh signaling pathway and RMS 

In the past, several connections were discovered between aberrant Hh signaling and the 

pathogenesis of RMS (Bridge et al. 2000, Tostar et al. 2006, Zibat et al. 2010). First it has 

been shown that inherited PTCH mutations are responsible for Gorlin syndrome. Besides a 

predisposition to basal cell carcinoma and medulloblastoma, this syndrome predisposes the 

affected individual to other tumors including RMS (Hahn et al. 1996). In addition mice with 

inactivating Ptch or activating Smo mutations develop RMS resembling the human embryonal 

RMS subtype (Hahn et al. 1998, Hahn et al. 2004, Kappler et al. 2004, Mao et al. 2006) and 

both, human and murine RMS overexpress Hh target genes (Hahn et al. 1998, Zibat et al. 

2010). Investigations on human RMS samples revealed that 33 % of ERMS show loss of the 

PTCH locus at chromosome 9q22 (Bridge et al. 2000, Bridge et al. 2002). Furthermore HH 

signaling pathway is more active in ERMS and fusion negative ARMS compared to fusion 

positive ARMS (Zibat et al. 2010). In addition, a study of Paulson et al. showed that ERMS 

have a HH-signature and have high expression levels of GLI2 and GLI3 (Paulson et al. 2011). 



Introduction 

 

 

6 

Finally it has been shown that the GLI inhibitor GANT-61 and the PKA activity stimulator 

and Shh inhibitor forskolin reduce growth and induce apoptosis by inhibiting the HH 

signaling pathway in RMS cultures and xenografts (Tostar et al. 2010, Yamanaka et al. 2011). 

2.4. Ras signaling pathway 

The rat sarcoma (Ras) signaling pathway plays a major role in normal tissue. Ras is a proto 

oncogene and is involved in many cellular processes like growth and differentiation. In 

humans, mutations in the RAS subtypes KRAS, HRAS and NRAS were found in 

approximately 30% of all tumors according to the current data available at the COSMIC 

database (http://cancer.sanger.ac.uk/cosmic) (HRAS mutations in 3 %, KRAS mutation in 

20 % and NRAS mutations in 5 % of all tumors). The three human RAS genes encode for 

21 kDa proteins, are highly homologous and share 85 % identity at their amino acid sequence. 

Many mutant alleles were discovered in different human cancers and cancer cell lines for 

example in those of the pancreas (90 %), colon (50 %), thyroid gland (50 %) and lungs (25 %) 

(Der et al. 1982, Parada et al. 1982, Santos et al. 1982). Sometimes specific tumors harbor 

specific RAS mutations. For example HRAS mutation are often identified in bladder 

carcinoma, whereas KRAS mutations dominate in colorectal, pancreatic, lung and cervical 

cancers and NRAS mutations in melanoma and liver carcinoma, lymphoid and myeloid 

malignancies cancer.  

Ras is a guanine nucleotide-binding protein located at the inner surface of the plasma 

membrane. Ras activity is promoted by Guanine nucleotide Exchange Factor (GEF) or 

Guanine Dissociation Stimulators (GDS) and inactivated by GTPase Activating Protein 

(GAPs) (Boguski and McCormick 1993, Bollag and McCormick 1991). In inactive state Ras 

is bound to guanosine diphosphate (GDP). For activation of Ras signaling GDP has to be 

exchanged by guanosine triphosphate (GTP). For this purpose the GEFs or GDS form a 

complex with GDP bound Ras and release the GDP from the complex. The higher amount of 

intracellular GTP compared to GDP ensures that the released GDP is directly replaced by 

GTP. Next the GEFs or GDS release the Ras-GTP complex which leads to the activation of 

the downstream effector pathways (Bourne et al. 1990, Bourne et al. 1991). In a normal cell 

the activation of Ras is transient and the Ras-GTP complex is hydrolyzed by GAP to GDP, 

resulting in inactivation of Ras. In a cell with an activating mutation in Ras (for example in 
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codons 12, 13, 59 or 61) GAP can bind to the Ras-GTP complex but is not able to hydrolyze 

the GTP to GDP. This results in constitutive activation of Ras and its effector pathways. 

The Ras signaling pathway is a key element of different signaling pathways to transfer 

informations from the cell membrane to the nucleus. It is able to activate several effector 

pathways. The first identified and best characterized Ras effector was “rapidly accelerated 

fibrosarcoma” (Raf). The Ras-Raf signaling is known to regulate cell cycle progression or 

differentiation processes (Haigis et al. 2008). For the activation of Raf1, cytoplasmic Raf1 

binds to Ras in a GTP-dependent manner and thus Raf1 is translocated to the plasma 

membrane. There the Raf1 kinase can be activated by a Ras-independent modulation by 

tyrosine phosphorylation (Marais et al. 1995, Stokoe et al. 1994). Next the activated Raf1 

phosphorylates its downstream target, which is the MAP kinase-extracellular signal-regulated 

kinase (Mek) (Cowley et al. 1994, Kyriakis et al. 1992). Phosphorylation of Mek activates 

and phosphorylates the extracellular-signal-regulated kinases (Erk), p44/42 Erk1 and Erk2 

(Dent et al. 1992, Kyriakis et al. 1992, Robinson et al. 1996, Zheng and Guan 1993). Once 

activated Erk can mediate several important processes in a cell for example gene expression, 

cell differentiation, proliferation and programmed death (reviewed by (Mebratu and Tesfaigzi 

2009)). 

As mentioned above Ras can also regulate several other effector pathways. The second well-

characterized Ras effector pathway is the antiapoptotic Phosphatidylinositol 3-kinase (PI3K) 

pathway. In general the PI3K pathway is involved in survival, transcription and cytoskeletal 

signals of a cell. The PI3K pathway is a highly complex pathway consisting of several 

activators, inhibitors and second messengers. In a simplified description, PI3K can be 

activated by binding to Ras-GTP. The active PI3K phosphorylates the membrane 

phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP2) to form the second messenger 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) leading to recruitment of the 

phosphotidylinositide-dependent kinase (PDK1) and protein kinase B (known as Akt). While 

PDK1 is activated by recruitment to PIP3, Akt is partially phosphorylated on Thr308 by PDK1 

(Martelli et al. 2010). The full activation of Akt requires another phosphorylation of the 

hydrophobic motif at Ser473, which can be performed by several kinases for example by 

mammalian target of rapamycin complex 2 (mTORC2) or DNA-dependent kinase (DNA-PK) 

(Bozulic and Hemmings 2009). Ones activated Akt affects several other proteins involved in 
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proliferation, differentiation and cell survival (Downward 2004, Franke 2008). However, the 

activation of the PI3K pathway can also lead to the activation of Raf/Mek/Erk-signaling. This 

involves several proteins including Gab, Irs, Grb7 and Pdk1 (Aksamitiene et al. 2012). 

Interestingly, a bidirectional cross-talk between Erk and PI3K signaling has been described, 

that, dependent on the cellular context, can result in activation or inhibition of the Mek/Erk 

and PI3K/Akt axis, respectively (Aksamitiene et al. 2012).  

Beside the regulation of apoptotic processes caused by the activation of the PI3K/Akt 

pathway (Downward 2003) Ras can also regulate apoptosis via Bad, Bim, Mcl-1, caspase 9 

and Bcl-2 (Steelman et al. 2004). Furthermore it has been shown that beside growth 

promoting effects and the ability to induce tumors (Roop et al. 1986) active Ras signaling also 

can negatively regulate tumor growth by equalizing the growth promoting effects with 

protective mechanisms that decrease proliferation (Serrano et al. 1997). Indeed, several 

research groups showed that Ras is able to induced senescence in vivo in mouse models as 

well as in human cell lines (reviewed in Courtois-Cox, Jones et al. 2008). For example 

Courtois-Cox et al. reported that activation of RAS signaling in benign human tumors 

resulted in activation of the two tumor suppressors RB and TP53 and senescence (Courtois-

Cox et al. 2008). In this context several factors and complexes were regulated including NF-

κB (Downward 1998), cAMP signaling (Shirokawa et al. 2000), and the Nore1-RASSF1-

Mst1 complex (Feig and Buchsbaum 2002).  

2.5. Ras signaling pathway and RMS  

RAS mutations were also detected in human RMS. Thus, patients with Costello syndrome, 

which is caused by germline mutations in HRAS, are predisposed to ERMS. Moreover, up to 

42% of ERMS show activating mutation in either KRAS, HRAS or NRAS with mutations in 

NRAS being the most common ones (Chen et al. 2013, Martinelli et al. 2009, Paulson et al. 

2011, Shern et al. 2014, Stratton et al. 1989). Furthermore, alternative mutations can result in 

activation of RAS signaling for exsampe loss of function mutations in Neurofibromin 1 (NF1) 

(Paulson et al. 2011). Since NF1 normally regulates GAP to promote the hydrolysis of GTP to 

GDP, loss of NF1 function results in activation of RAS. Together, approximately 60 % of all 

ERMS exhibit active RAS signaling. Interestingly, just one case with an activating RAS 

mutation has been described in the alveolar subtype of RMS (Shern et al. 2014).  
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It has been shown that induction of KRas mutations in mice with a preexisting mutation in 

p53 results in the development of pleomorphic RMS (Doyle et al. 2010, Tsumura et al. 2006). 

Moreover, Langenau et al. expressed an oncogenic KRas mutation under the rag2 promotor in 

a zebrafish that resulted in ERMS-like tumors with a tumor-specific gene expression profile 

comparable to human ERMS (Langenau et al. 2007). These data suggest that Ras signaling 

may play a hitherto underestimated role in RMS, especially in the embryonal subtype. 

However, the exact role of oncogenic RAS in RMS is unknown. Recently, Rubin et al. 

published microarray-based results showing that a RAS signature in ERMS only occurs in 

connection with signatures of other active signaling pathways (e.g. HH signaling on, RB or 

TP53 Signaling-off) (Rubin et al. 2011). Therefore the authors assume that RAS Signaling 

probably plays a role as a modifier with respect to ERMS initiation. 

2.6. Interaction between Hh and Ras signaling 

Beside the canonical regulation of Hh signaling i.e. via the Hh/Ptch/Smo/Gli axis, the activity 

of Gli transcription factors can be modulated by other molecules or signaling pathway. These 

Gli modulators can act independently of the Hh ligand and in a Smo independent non-

canonical manner. The Smo independent non-canonical regulation of Gli activity involves 

several molecules and signaling pathways that can bypass the ligand-dependent Hh signaling 

axis and include Ras signaling that via the Mek/Erk axis can stimulate Gli activity. Ras also 

can stimulate Gli activity via the PI3K and Pkc axis (Figure 2).  
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Figure 2: Schematic drawing possible interactions between RAS and GLI activation. The figure shows 

a schematic drawing of the possible regulators of Smo independent non-canonical activation of GLI by 

active RAS signaling. Modified from Aberger (Aberger et al. 2012).  

In the literature, the data regarding the interaction of HH- and RAS-Signaling varies 

depending on the tumor entity. These tumors include those of the pancreas, lung and colon. 

This coincidence indicates a possible cooperation between the two signaling pathways 

involved in tumorigenesis and / or tumor maintenance. Indeed, it was shown that 

RAF/MEK/ERK signaling can have a positive regulatory role in GLI transcriptional activity 

in gastric cancer cells (Seto et al. 2009). Upon that it was reported that this involves 

modulation of GLI phosphorylation (Niewiadomski et al. 2014). This indicates that the 

MEK/ERK axis can directly regulate the activity of GLI. Furthermore it has been reported 

that the MEK/ERK axis prevents the degradation of GLI protein (Ji et al. 2007). Indeed, in 

keratinocytes activation of ERK1/2 by EGFR signaling results in stabilization of GLI 

proteins. This was shown for GLI2 that was stabilized by EGFR-mediated inhibition of the 

proteasome pathway (Kasper et al. 2006). In addition, PI3K/Akt signaling that is also 

downstream of Ras, can influence Gli activity. Thus, Riobo and colleagues showed that the 

PI3K/Akt pathway increases Shh induced Gli activation (Riobo et al. 2006b). 

Moreover, as published by Stecca et al. for melanoma, activating RAS mutations can also 

result in activation of the HH-signaling cascade via activation of GLI1 (Stecca et al. 2007). 

RAS 
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The authors showed that activation of RAS signaling either through the RAF/MEK/ERK or 

PI3K/AKT axis can enhance the nuclear localization and transcriptional activity of GLI. In 

addition, Riobo et al. showed that GLI can also be activated through the PKCδ/MEK/ERK 

axis, which also belongs to the RAS effector pathways (Riobo et al. 2006a).  

In contrast, as recently shown by Lauth et al. for pancreas carcinoma, active RAS signaling 

suppresses the activity of the transcription factors GLI2 and GLI3 by modulating the protein 

kinase DYRK1B. The latter mechanisms result in a tumor intrinsic inhibition of the HH-

signaling cascade (Lauth et al. 2010), although the tumors concomitantly express and secrete 

SHH.  

Taken together these data show that Ras signaling can either activate or inhibit Hh signaling, 

which strongly depends on the cellular context. 

2.7. Interaction between Hh and Ras signaling in RMS  

There have been several studies on the role of Hh signaling in RMS as well as on Ras 

signaling in RMS. However, it is completely unknown whether both pathways interact with 

each other in this tumor entity. Nevertheless, there is data strongly supporting connectivity 

between both pathways. Thus, as already mentioned above, a connection between those 

pathways could be investigated in several other tumor entities and due to the fact that 

approximately 60% of ERMS tumors show active RAS signaling, which is caused by either 

loss of function of NF1 (15 %) or activating mutation in RAS (42 %) itself (Paulson et al. 

2011) and HH signaling is mainly active in fusion negative ARMS and ERMS (Pressey et al. 

2011, Zibat et al. 2010).  

2.8. Mouse models used in this study 

In the present work five mouse strains were used to investigate the role of oncogenic RAS 

signaling in Hh-associated RMS. These were conventional Ptch deficient mice (Ptchdel/+), a 

tamoxifen inducible, muscle-specific Cre-driver (Myf5CreERTtg/-) and three strains that 

conditionally can express oncogenic N-, K- or HRas (NRasG12Dfl/-, KRasG12Dfl/- and 

HRasG12Vfl/-). 
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2.8.1. Ptch deficient mice: A mouse model to study the pathogenesis of ERMS 

In the presented work Ptchdel/+ mice were used. This mouse model was generated by breeding 

conditional knockout Ptchflox/flox to EIIaCre mice (Lakso et al. 1996). In Ptchflox/flox mice exon 

8 and 9 of the Ptch locus are flanked by loxP sites (Uhmann et al. 2007). The EIIaCre mouse 

expresses a Cre recombinase under control of the endogenous EIIa promoter. The expression 

is most efficient in mature oocytes. To achieve a germline deletion, Ptchflox/flox mice were 

crossed with EIIaCre mice (for exact crossing see (Zibat et al. 2009)). In the resulting 

heterozygous Ptchdel/+ mice exons 8 and 9 of the Ptch gene are excised. This leads to the 

expression of an aberrant Ptch transcript with exon 7 spliced into exon 10 resulting in a 

frameshift and a premature stop codon. Ptchdel/+ mice were backcrossed 10 times to a pure 

Balb/cJ background that confers high susceptibility to RMS resembling the human embryonal 

RMS subtype (Hahn et al. 2004). 

2.8.2. Conditional Ras Mice: Tools for the modulation of oncogenic Ras 

signaling in specific cells  

Three mouse strains were used in this study that allowed conditional expression of human 

variants of oncogenic Ras. These were the strains LSL-NRasG12D (Haigis et al. 2008), LSL-

KRasG12D (Tuveson et al. 2004) and FR-HRasG12V(Chen et al. 2009).  

For the generation of the LSL-NRasG12D strain Haigis and colleagues used V26.2 murine 

embryonic stem (ES) cells derived from the C57BL/6 strain to insert a floxed STOP element 

(LSL) followed by the first two exons of oncogenic NRasG12D into the wildtype locus of NRas. 

Due to the STOP element this constitutes a null NRas allele. Upon expression of Cre, the 

STOP element is excised and the activated allele of NRas (NRasG12D) is expressed. Because 

the mutant allele is expressed from its endogenous promoter, murine NRasG12D is expressed 

at the same level and in the same pattern as wild-type (wt) NRas (Haigis et al. 2008). The 

mice are born according to Mendelian ratio, are viable and fertile and can be kept homo- or 

heterozygote. 

The Cre-dependent conditional LSL-KRasG12D mouse was generated by Tuveson et al. who 

designed a targeting vector containing the G12D point mutation in exon 2 of the KRas allele 

and a floxed STOP element upstream of the mutation. Thus, similarly to the LSL-NRasG12D 

strain, expression of oncogenic KRas is controlled by a removable transcriptional termination 
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STOP element. This targeting vector was electroporated into 129S4/SvJae-derived J1 

embryonic stem cells and the mice carrying the LSL-KRasG12D allele were backcrossed to 

C57BL/6 (Tuveson et al. 2004). In the presence of a Cre recombinase the STOP element is 

removed and the oncogenic allele is expressed at the same level and pattern as the wt allele. 

The mice are born according to Mendelian ratio, are viable and fertile and can be kept 

heterozygote. 

For the development of the Cre-dependent conditional FR-HRasG12V mouse Chen and co-

workers transfected the targeting vector into 129SvEv (129S6) ES cell lines. The vector 

harbored a floxed HRas wt sequence followed by a Neo cassette flanked by Frt sites and a 

HRasG12V sequence. The FR-HrasG12V-Neo mice were crossed with the ß-actin-Flp mice to 

remove the Neo cassette. The resulting offspring were used for further breedings and 

experiments (Chen et al. 2009). In the presence of a Cre recombinase the wt HRas sequence is 

excised and the HRasG12V sequence is expressed. The mice were born according to Mendelian 

ratio, are viable, fertile, and survived normally. It was reported by Chen et al that they can 

have systemic hypertension and when aged they can develop myocardial and kidney fibrosis.  

2.8.3. Myf5creERT mice: Tool for induction of conditional mutations in Myf5 

expressing cells 

The Myf5 gene (Myogenic factor 5) belongs to the muscle specific determination genes and is 

important for skeletal muscle development. In order to generate a mouse line that allows 

targeting of cells expressing Myf5 at different developmental stages Biressi et al. generated a 

tamoxifen inducible Myf5creERT mouse line. For this purpose they designed a target vector 

that placed a tamoxifen-inducible Cre recombinase (ires-CreER™-FRT-Neo-FRT cassette) in 

the 3′ untranslated region of the Myf5 gene behind the Myf5 STOP codon (Biressi et al. 2013). 

Thus, the Cre recombinase is expressed from the Myf5 locus. The mice are born at a 

Mendelian ratio, are viable and fertile and can be kept homo- or heterozygote.  

Since ERMS and fusion negative ARMS in humans and RMS of Ptch mutant mice show very 

high Myf5 expression in comparison to normal skeletal muscle (Nitzki et al. 2011, Zibat et al. 

2010) Myf5creERT mice were considered to be useful for RMS-specific expression of the 

above mentioned oncogenic Ras genes.  
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3. Aim of the studies  

The primary aim of this study was to investigate the interaction of Hh and Ras signaling in 

RMS. This involved also the investigation of the role of oncogenic Ras variants in 

development and pathogenesis of RMS. Probably, this study will offer new therapy option for 

the treatment of RMS. For this purpose, in vitro and in vivo studies were performed.  

First, 2 human RMS cell lines, which were wildtype for RAS (RUCH-2 (ERMS) and RMS-13 

(ARMS)), were stably transduced with viral vectors expressing either oncogenic NRASG12V, 

KRASG12V or HRASG12V. After transduction, the RMS cell lines were examined with 

respect to HH signaling activity, cell viability and also to proliferative behavior both in 

culture and in nude mice. 

Second, the influence of all 3 oncogenic Ras genes on the growth behavior of Hh-associated 

ERMS was studied in a genetic approach. For this purpose Ptch deficient mice were crossed 

with mice that conditionally express oncogenic N-, K- or HRas. To drive the expression of 

oncogenic Ras specifically in RMS, the mice were crossed to Myf5CreERT mice. In the 

resulting offspring the expression of oncogenic Ras was activated shortly after birth by 

tamoxifen injection. If possible, the mice were monitored for up to 200 days and the influence 

of oncogenic Ras on tumor incidence, latency time and multiplicity was investigated by 

comparison with control mice. Furthermore the tumors were subjected to histological and 

molecular analyses. 

Excursion: In a first experiment the tamoxifen-inducible HSACreERT2tg/- Cre-driver was 

used that expresses the Cre recombinase specifically in skeletal muscle under the control of 

the human skeletal muscle actin promoter (Schuler et al. 2005).  These mice were crossed to 

Ptchdel/+ oncRasfl/- mice. In the resulting Ptchdel/+oncRasfl/-HSACreERT2tg/- mice the 

expression of mutant NRas, KRas or HRas was induced at an age of 4 weeks by tamoxifen. 

The mice were monitored weekly for up to an age of 200 days. However, very unfortunately, 

at the end of October 2013 it was discovered that the HSACreERT2 is active in the skeletal 

muscle of the induced mice but not in RMS of these animals. Therefore we switched to the 

Myf5creERTtg/- mouse model. 
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4. Materials and Methods 

4.1. Technical equipment 

The technical equipments used in this thesis are listed in Table 1. 

Table 1: List of technical equipment 

Equipment Supplier  

-80°C Freezer(MDF-U71V) Sanyo Electric Co., Ltd., Japan 

8-well pipette  Costar, Corning Incorporated, Corning, USA 

Agarose gel electrophoresis chamber Peqlab Biotechnologie GmbH, Erlangen 

Arium® 611 VF water purification system  Sartorius, Göttingen 

Autoclave (sanoclav)  W. Krannich GmbH & Co. KG, Göttingen 

Gas burner (Gasprofi 2 scs)  WLD-TEC GmbH, Göttingen 

Centrifuges (Biofuge pico, fresco, primo, 

Multifuge 3LR) 

Kendro Laboratory Products GmbH, Hanau, 

German 

Clean bench (Euroflow Class IIA)  Clean Air Techniek bv, Woerden, Netherlands 

Cryostat (Modell CM 1900-1-1) Leica Microsysteme Vertrieb GmbH, Bensheim 

Cell counter  Omnilab-Krannich, Göttingen, Germany 

Digital Monochrome Printer P91D  Mitsubishi, Ratingen 

Digital Photo camera (PowerShot G2) Canon Inc., Japan 

FACScalibur  BD Biosciences GmbH, Heidelberg 

Fluorchem Q  Fisher Scientific GmbH, Schwerte 

Freezer (-20 °C)  Liebherr GmbH, Ochshausen 

Fridge (4 °C)  Robert Bosch GmbH, Stuttgart 

Heating block (Thermomixer)  Eppendorf AG, Hamburg 

Heating and stirring plate (MR 3000/3001)  Heidolph Instruments, Schwabach 

Homogenizer (Miccra D-1) ART Prozess- & Labortechnik GmbH & Co. 

Hybridization oven (HB-1000 Hybridizer)  UVP, Inc., Upland, USA 

Incubators CO2 (6000, BBD 6220) Kendro Laboratory Products GmbH, Hanau 

Inverse microscope with fluorescence filter 

(Axiovert 25,Filter Set 43, 01, 09) 

Carl Zeiss Jena GmbH, Jena 

Liquid nitrogen tank L’air liquide S.A., Paris 

Luminometer (Synergy Mx)  BioTek Instruments, Inc., Bad Friedrichshall 

Mastercycler ep gradient S  Eppendorf AG, Hamburg 

Microtome (HN 40) Leica Microsysteme Vertrieb GmbH, Bensheim, 
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Germany 

MilliQ-water purifier  MembraPure GmbH, Bodenheim 

Mini centrifuge  Carl Roth GmbH, Karlsruhe 

Mr. FrostyTM Freezing Container  Thermo Fisher Scientific GmbH, Schwerte 

Multipette Eppendorf AG, Hamburg 

Nanodrop Thermo Fisher Scientific GmbH, Schwerte 

Paraffin dispenser, embedding machine 

(Dispenser PAG12) 

Medite Medizintechnik GmbH, Burgdorf 

PCR-machine  Eppendorf, Hamburg 

PCR-machine BIORON Diagnostics GmbH, Ludwigshafen 

pH-meter (inoLab pH Level 1)  WTW GmbH, Vienna, Austria 

Pipette controller(Accu-jet)  Brand GmbH & Co. KG, Wertheim, Germany 

Power source for electrophoresis Peqlab Biotechnologie GmbH, Erlangen, 

Germany 

Sequencer (ABI 3500 XL)  Life Technologies GmbH, Darmstadt 

Shaking incubator  New Brunswick Scientific GmbH, Nürtingen 

Single channel pipettes Eppendorf AG, Hamburg 

Sterile bench (Euroflow class IIA)  Clean Air Techniek bv, Woerden, Netherlands 

TaqMan (ABI Prism 7900HT)  Life Technologies GmbH, Darmstadt 

UV-printer (Digital Monochrome Printer 

P91D) 

Mitsubishi, Ratingen, Germany 

Trans-Blot SD semi-dry transfer cell Bio-Rad Laboratories GmbH, Munich 

Vortexer (Vortex-Genie 2)  Scientific Industries, Inc., Bohemia, USA 

Weighing scale (Sartorius Basic plus) Sartorius AG, Göttingen 

 

4.2. Consumable materials  

The consumable materials used in this thesis are listed in Table 2. 

Table 2: List of consumable materials 

Consumable materials  Supplier 

1.5 ml reaction tubes  Ochs GmbH, Bovenden/Lenglern  

1.5 ml Safeseal Microtubes  Sarstedt AG & Co., Nürnberg 

15 ml tubes  Greiner Bio-One GmbH, Frickenhausen 

2.0 ml reaction tubes Sarstedt AG & Co., Nürnberg 
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384-well Optical Reaction Plate  Life Technologies GmbH, Darmstadt 

50 ml tubes  Greiner Bio-One GmbH, Frickenhausen 

96-Well Assay Plate  Costar, Corning Incorporated, Corning, USA 

96-Well Optical Reaction Plate  Life Technologies GmbH, Darmstadt 

Blotting paper (GB 33 B003)  Heinemann Labortechnik GmbH, Duderstadt 

Cell culture dishes, 100 mm (Nunclon Surface) Nunc GmbH & Co.KG, Wiesbaden 

Cell scraper  Sarstedt AG & Co., Nürnberg 

Coverslips  Menzel GmbH & Co.KG, Braunschweig 

Cryo Pure  Sarstedt AG & Co., Nürnberg 

Disposable needles (Sterican Ø 0,45 x 12 mm)  B. Braun Medical AG, Emmenbrücke, Germany 

Eppendorf Combitips Plus/Advanced (0.2, 0.5, 

2.5, 5, 10, 25, 50 ml) 

Eppendorf AG, Hamburg 

Filter tips (10 μl)  Sarstedt AG & Co., Nürnberg 

Filter tips (100 μl, 200 μl, 1000 μl)  Kisker Biotech GmbH & Co. KG, Steinfurt 

Flow Cytometry Tube  Sarstedt AG & Co., Nürnberg 

Fluted filters  Sartorius AG, Göttingen 

Glassware  Schott AG, Mainz 

Milliporefilter (Nuclepore Track-Etch 

Membran)  

Whatman GmbH, Dassel 

Miscroscope slides (SuperFrost Plus)  Menzel GmbH & Co.KG, Braunschweig 

Neubauer counting chamber  Brand GmbH & Co KG, Wertheim 

Nitrocellulose membrane(Hybond ECL)  GE Healthcare Europe GmbH, Freiburg 

NuPAGE Novex 4 – 12 % Bis-Tris Midi Gel  Invitrogen GmbH, Karlsruhe 

Pasteur pipettes Brand GmbH & Co.KG, Wertheim 

PCR-Reaction tubes (ThermoFast 96, 

nonskirted, natural domed cap strips) 

Sarstedt AG & Co., Nürnberg 

Petri dishes  Ochs GmbH, Bovenden/Lenglern 

Pipette tips (10 μl, 200 μl) Ochs GmbH, Bovenden/Lenglern 

Pipette tips (1000 μl) Sarstedt AG & Co., Nürnberg 

Scalpel blade Aesculap AG & Co.KG, Tuttlingen 

Serological pipettes (2 ml, 5 ml, 10 ml, 25 ml, 

50 ml)  

Sarstedt AG & Co., Nürnberg 

Tissue Culture Plate 6-Well  Sarstedt AG & Co., Nürnberg 

Urine cup Sarstedt AG & Co., Nürnberg 
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4.3. Reagents and Chemicals  

All chemicals which are not listed in Table 3 were purchased from AppliChem GmbH, 

Darmstadt, Carl Roth GmbH & Co. KG, Karlsruhe, or from Sigma-Aldrich Chemistry GmbH, 

Steinheim. 

Table 3: List of reagents and chemicals  
Reagents and Chemicals Supplier 

1 kb DNA, 50 bp und 100 bp DNA Ladder Invitrogen GmbH, Karlsruhe, Germany 

99,9 % Ethanol  J.T. Baker B.V., Deventer, Netherlands 

99,9 % Methylated Ethanol CVH Chemie-Vertrieb GmbH & Co. Hannover 

KG, Hannover 

Agarose Invitrogen GmbH, Karlsruhe, Germany 

Ampuwa Fresenius Kabi Deutschland GmbH, Bad 

Homburg, 

Boric acid  MP Biomedicals LLC, Illkirch, France 

Cryoblock embedding medium Medite Medizintechnik GmbH, Burgdorf, 

Germany 

Deoxyribonucleotidtriphosphate (dNTP) Roche Diagnostics GmbH, Mannheim, Germany 

Dithiotreitol, 100mM (DTT)  Invitrogen GmbH, Karlsruhe 

Ethidium bromide (0.07 %)  inna-TRAIN-Diagnostics, Kronberg 

Ethylenediaminetetraacetic acid (EDTA) ICN Biochemicals Inc., Aurora, USA 

Formamide  Acros Organics b.v.b.a, Geel, Belgium 

Glycer gel mounting medium Dako GmbH, Hamburg, Germany 

Immuno Mount Shandon Thermo Electron Corporation, 

Waltham, USA 

Ketanest S (25 mg/ml) Pfizer Pharma GmbH, Karlsruhe, Germany 

Mayer's Hemalaun solution Merck KgaA, Darmstadt, Germany 

Mounting medium (Vectrashield Mounting 

Medium with DAPI) 

Vector Laboratories, Inc., Burlingame, USA 

NuPAGE MES SDS Running Buffer, 20 x  Invitrogen GmbH, Karlsruhe, Germany 

Oligo(dT)-Nucleotide (50 ng/μl) Roche Diagnostics GmbH, Mannheim, Germany 

Paraformaldehyde Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

PBS tablets; ready to use solution GIBCO Invitrogen GmbH, Karlsruhe, Germany 

Penicillin (10000 U/ml)/Streptomycin (10 PAN Biotech GmbH, Aidenbach, Germany 
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mg/ml) 

RNAse-DNAse free water Invitrogen GmbH, Karlsruhe, Germany 

SeeBlue® Plus2 Pre-Stained Standard  Invitrogen GmbH, Karlsruhe, Germany 

Sodiumdodecylsulfate (SDS) Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

SOC Medium  Invitrogen GmbH, Karlsruhe, Germany 

Tween-20 Scharlau Chemie S.A., Barcelona, Spain 

water (Ampuwa) Fresenius Kabi Deutschland GmbH, Bad 

Homburg, Germany 

WST-1 reagent Roche Diagnostics GmbH, Mannheim, Germany 

X-Gal  Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

 

4.4. Kits and ready-to-use reaction systems 

If not stated otherwise all kits and ready-to-use reaction systems mentioned in Table 4 were 

used as described in the manufacturer’s instructions. 

Table 4: List of kits and ready-to-use reaction systems used in this thesis 
Kits and ready-to-use reaction systems Supplier 

Amersham ECL Plus™ Western Blotting 

Detection Reagents  

GE Healthcare Europe GmbH, Freiburg, 

Germany 

Cell Proliferation ELISA, BrdU 

(chemiluminescence) 

Roche Diagnostics GmbH, Mannheim, Germany 

Cell Proliferation Reagent WST-1 Roche Diagnostics GmbH, Mannheim, Germany 

MolTaq Taq- Polymerase Molzym GmbH & Co. KG, Bremen 

Pierce ® BCA Protein Assay Kit Thermo Fisher Scientific, Rockford, USA 

PureLink HiPure Plasmid Midiprep Kit Invitrogen GmbH, Karlsruhe, Germany 

PureLink HiPure Plasmid Miniprep Kit Invitrogen GmbH, Karlsruhe, Germany 

QuantiTect SYBR Green PCR Qiagen GmbH, Hilden, Germany 

Ras Activation ELISA ASSAY Kit Millipoor S.A.S, Molsheim Cedex, France 

SuperScriptII® Reverse Transcriptase  Invitrogen GmbH, Karlsruhe, Germany 

SYBR Green Invitrogen Invitrogen GmbH, Karlsruhe, Germany 

TRIzol® Reagent Invitrogen GmbH, Karlsruhe, Germany 

QIAquick Gel Extraction Kit Qiagen GmbH, Hilden, Germany 
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4.5. Buffers and solutions  

All buffers and solutions mentioned in Table 5 were prepared in double distilled water 

(Satorius AG, Göttingen). 

Table 5: List of buffers and solutions 
Buffer or solution  Compositions 

6 x SDS loading buffer 

 

35 % (v/v)  Glycerol 

9 % (w/v)  SDS 

8.5 % (w/v)  DTT 

0.1 % (w/v)  Bromphenolblue 

  in upper gel buffer 

AEC chromogen, pH 5 

 

2 30 mM  Acetic acid 

70 mM   Sodium acetate trihydrate 

16 mM   3-Amino-9 Ethylcarbazole (dissolved 

  in dimethyl formamide) 

Blotting buffer 6 % (w/v)  Tris 

3 % (w/v)  Glycine 

0.075 % (w/v)  SDS 

20 % (v/v)  Methanol 

BSA/Azidee-TBST-Solution  0,02% (w/v)  Sodium Azidee solution 

2% (w/v)  BSA  

  1x TBST 

Citric Acid buffer, pH6 10 mM   Sodium citrate pH 6.0 

Cresol 0,1 % (w/v)  Cresol 

  Saturated sucrose solution 

Eosin, 1% 1 % (w/v)  Eosin y (water soluble) 

80 % (v/v)  Ethanol 

LacZ-staining buffer 5 mM  K3Fe(CN)6 

5 mM  K4Fe(CN)6 

2 mM  MgCl2 

0,02 % (v/v)  NP-40 

0,01 % (w/v)  Natrium Deoxycholat 

500 µg/ml X-Gal 

  1x PBS 

LacZ-buffer 2 mM  MgCl2 
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0,02 % (v/v)  NP-40 

0,01 % (w/v)  Natrium Deoxycholat 

  1x PBS 

LB Agar 1.5 % (w/v)  Agar 

  LB-medium 

Lysogeny broth medium (LB-

medium) 

1 % (w/v)  bacto-tryptone 

0.5 % (w/v)  yeast extract 

1% (w/v)  NaCl (pH7.0) 

Lysis Buffer 30 mM   Tris/HCl, pH 8.8 

150 mM  NaCl 

1 % (v/v)  Triton X-100 

10 % (v/v)  Glycerol 

500 μM  PMSF (added before use) 

2 mM   DTT (added before use) 

Protease and phosphatase inhibitors (1 tablet/50 ml) 

Modified RIPA Puffer 50 mM  Tris/HCl, pH7.4 

150 mM  NaCl 

1 mM   EDTA 

1 % (v/v)  Nonidet NP-40 

0.25 % (w/v)  Na-deoxycholate 

Protease and phosphatase inhibitors (1 tablet/10 ml) 

Paraformaldehyde 4 % (w/v)  Paraformaldehyde in 1x PBS 

PBS for cell culture 1 PBS tablet ad 500 ml ddH2O 

Proteinase K  

(40 μg/ml proteinase K) 

50 mM  Tris/HCl pH 8.0 

5 mM   EDTA 

Stripping Buffer 100 mM  ß-Mercaptoethanol, 

2% (v/v)  SDS 

62,5 mM  Tris/HCl, pH 6.7  

Tris-Boric acid-EDTA solution, 10x 

(TBE); stock solution 

890 mM  Tris/HCl pH 8.0 

730 mM  Boric acid 

12.5 mM  EDTA 

Tris-buffered Sodiumclorid solution, 

10x (TBS) stock solution 

0,5 M  Tris/HCl, pH 7,4 

1,5 M  NaCl 

Upper gel buffer 6 % (w/v)  Tris , pH 6.8 

4 % (v/v)  SDS 
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X-Gal stock solution  40 mg/ml X-Gal 

100%  N,N-Dimethylsulfoxid (DMSO) 

 

4.6. Inhibitors  
The stock concentrations as well as the solvents are listed in Table 6.  

Table 6: List of inhibitors and their stock concentrations 
Inhibitor Solvent   Stock concentration  Storage Supplier 

HhAntag DMSO  10 mM  -20°C  Genentech 

PI103 DMSO  3 mM  -20°C  Alexis 

UO126 DMSO  10 mM  -20°C  Cell Signaling 

 

4.7. siRNA  
The siRNAs used in this thesis is listed in Table 7.  

Table 7: List of siRNA and their stock concentrations 
siRNA Solvent   Stock concentration  Storage Supplier 

siDYRK1B_1 ddH2O  5 µM  -20°C  Dharmacon D-004806-01  

siDYRK1B_2 ddH2O 5 µM  -20°C  Dharmacon D-004806-02 

 

4.8. Media  

4.8.1. Media and agar plates for bacterial culturing  

Bacterial (E.coli) were cultured in Lysogeny broth medium and agar was prepared as 

described in Table 4. The LB medium/agar was autoclaved, cooled to 55 °C and 50 µg/ml 

Ampicillin (Carl Roth GmbH, Karlsruhe) or 25 µg/ml Kanamycin (Carl Roth GmbH, 

Karlsruhe) were added. The plates and the media were stored at 4 °C.  
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4.8.2. Media and reagents for cultivation of eukaryotic cell lines 

The media and reagents used for the culturing of eukaryotic cell lines are listed in Table 8.  

Table 8: List of supplementary materials used for the eukaryotic cells 
Medium or reagent Supplier 

Accutase PAA Laboratories GmbH, Pasching 

Dulbecco's Modified Eagle Medium (DMEM) Gibco, Invitrogen GmbH, Karlsruhe 

Fetal calf serum (FCS) Gibco, Invitrogen GmbH, Karlsruhe 

HyperFect  

Penicillin (10.000 U/ml)/streptomycin (10 

mg/ml) (P/S)  

PAN Biotech GmbH, Aidenbach 

Puromycin dihydrochloride (10 mg/ml)  Sigma-Aldrich Chemistry GmbH, Steinheim 

RPMI 1640 Gibco, Invitrogen GmbH, Karlsruhe 

Trypsin/EDTA and TrypLE Express  Gibco, Invitrogen GmbH, Karlsruhe 

 

4.9. Biological materials  

4.9.1. Bacterial strains and growth 

In this thesis, E.coli stain DH5α (Invitrogen GmbH, Karlsruhe) was used for transformation 

and amplification of plasmid DNA. Until use the competent cells were stored at -80 °C. The 

competent cells were maximally defrosted for 3 times and then thrown away. 

4.9.2. Eukaryotic cell lines  

All cell lines were cultured at 37°C, 5% CO2 and 95% humidity in an incubator. The media 

was changed all 3-4 days and when the cells reached 80-90% confluence they were passaged. 

Dulbecco's Modified Eagle Medium (DMEM) or RPMI were used. The conditions for each 

cell line are given in Table 9. 
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Table 9: Culture conditions for the used cell lines 

Cell line Description  Media Supplement Reference  

HEK293 Human embryonic kidney 

cell line 

DMEM 10 % FCS, 1 % P/S  ATCC (cat# 

CRL-1573) 

HEK293SHH Shh-N secreting HEK 

Cells 

DMEM 10 % FCS, 1 % P/S 

0.4 mg/ml G418 

(Chen et al. 

2002) 

RMS-13 Alveolar RMS cell line, 

wtRAS 

RPMI 10 % FCS, 1 % P/S ATCC (cat# 

CRL-2061) 

RMS-13 

pMSCVpuro  

RMS-13 stably transduced 

with empty pMSCVpuro 

vector 

RPMI 10 % FCS, 1 % P/S, 

0.5µg/ml Puromycin 

this work 

RMS-13 

pMSCVpuro 

NRAS12V  

RMS-13 stably transduced 

with oncNRAS 

RPMI 10 % FCS, 1 % P/S, 

0.5µg/ml Puromycin 

this work 

RMS-13 

pMSCVpuro 

KRAS12V 

RMS-13 stably transduced 

with oncKRAS 

RPMI  10 % FCS, 1 % P/S, 

0.5µg/ml Puromycin 

this work 

RMS-13 

pMSCVpuro 

HRAS12V  

RMS-13 stably transduced 

with oncHRAS 

RPMI  10 % FCS, 1 % P/S, 

0.5µg/ml Puromycin 

this work 

RUCH-2 Embryonal RMS cell line, 

wtRAS 

DMEM 10 % FCS, 1 % P/S (Scholl et al. 

2000) 

RUCH-2 

pMSCVpuro  

RUCH-2 stably transduced 

with empty pMSCVpuro 

vector 

DMEM 10 % FCS, 1 % P/S, 

8µg/ml Puromycin 

this work 

RUCH-2 

pMSCVpuro 

NRAS12V  

RUCH-2 stably transduced 

with oncNRAS 

DMEM 10 % FCS, 1 % P/S, 

8µg/ml Puromycin 

this work 

RUCH-2 

pMSCVpuro 

KRAS12V  

RUCH-2 stably transduced 

with oncKRAS 

DMEM 10 % FCS, 1 % P/S, 

8µg/ml Puromycin 

this work 

RUCH-2 

pMSCVpuro 

HRAS12V  

RUCH-2 stably transduced 

with oncHRAS 

DMEM 10 % FCS, 1 % P/S, 

8µg/ml Puromycin 

this work 



Materials and Methods 

 

 

25 

4.9.3. Mouse lines 

The genetically manipulated mouse lines used in this work are listed in Table 10. Most mice 

were on an inbred C57BL/6 and BALB/c (Charles River Laboratories) background. Raising 

and breeding of animals and animal experimental methods are described in chapter 4.17. 

Table 10: List of mouse lines 
Mouse lines Background Genetic modification  Literature 

Ptchdel/+  Balb/c Ptch deletion (knockout) (Uhmann et al. 2007) 

NRAS LSL-G12D 

fl/- 

C57BL/6 Integration of a conditional 

NRasG12D allele in the NRas 

locus 

(Haigis et al. 2008) 

LSL-K-

RASG12Dfl/- 

C57BL/6 Integration of a conditional 

KRasG12D allele in the KRas 

locus 

(Tuveson et al. 2004) 

FR-HRASG12V fl/- C57BL/6 Integration of a conditional 

HRasG12V allele in the HRas 

locus 

(Chen et al. 2009) 

Myf5creERTtg/+ Mixed Balb/c, 

C57BL/6, SV/129 

and FVB/N  

Targeted insertion of cre 

cDNA into the endogenious 

Myf5 locus 

(Biressi et al. 2013) 

NMRI-Foxn1nu  outbred  Deletion of the FOXN1 gene The Jackson 

Laboratory, Baltimore  

ROSA26-Rfl/- C57BL/6 Integration of a conditional ß-

galactosidase allele in the 

ROSA26-locus 

(Soriano 1999) 

 

4.10. DNA Oligonucleotides 

The DNA oligonucleotides were obtained from Eurofins MWG Operon, Ebersberg. They 

were adjusted to a stock concentration of 100µM with DNAse and RNAse-free water. The 

working concentration for PCR (see section 4.15.5) was 10 µM. The DNA oligonucleotides 

used are listed in Table 11, Table 12 and Table 13. 
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Table 11: DNA-oligonucleotides (primers) for mouse genotyping and recombination assay. 

Mouse lines Primer name 
AT 
[°C] Primer Sequence (5’-3’ orientation) Literature 

Ptchdel/+  
 
wtPtch  

mPtcdelNx-F 

mPtcNxR 

mPTCNx_F 

mPTCwt_R 

60 

 

60 

TTCATTGAACCTTGGGGAACATT 

CCGGTAGAATTAGCTTGAAGTTCCT  

TGGTAATTCTGGGCTCCCGT 

TCAAGGAGCAGAGGCCCAA 

Dissertation 
F. Nitzki 
 
(Uhmann et 
al. 2007) 

NRas LSL-
G12Dfl/+ 

mNRas-WT-For 

mNRas-WT-Rev 

mNRas-Mut-Rev 

 

68 

AGACGCGGAGACTTGGCGAGC 

GCTGGATCGTCAAGGCGCTTTTCC 

AGCTAGCCACCATGGCTTGAGTAAGT

CTGCA 

(Haigis et 
al. 2008) 

LSL-KRas 
G12Dfl/- 

Kras-WT_UP1 

Kras-URP_Lp1 

KrasG12Dmut_UP 

55 

CACCAGCTTCGGCTTCCTATT 

AGCTAATGGCTCTCAAAGGAATGTA 

CCATGGCTTGAGTAAGTCTGC 

(Tuveson et 
al. 2004) 

FR-HRas 
G12Vfl/- 

eCreRASF  
eCreRasR  

64 GCCATCCCTCGCGTTCCTGTAGTC 
CCTGCCCCACCTGCCAATGAGAAG 

(Chen et al. 
2009) 

mHRasG12VrelF1 

mHRasG12VrelR1 
65 

TGGGGCAGGAGCTCCTGGATT 

GGTGTTGTTGATGGCAAATAC 
This work 
 

Myf5creER
Ttg/+ 

c-R 

c-F 
58 

CCCGGCAAAACAGGTAGTTA 

GCATTTCTGGGGATTGCTTA 
(Biressi et 
al. 2013) 

wtMyf5 
cK382 

cK383 
59 

ACCCTCCAGCTCCAGACTTATC 

CCCTGTAATGGATTCCAAGCTG 
(Biressi et 
al. 2013) 

ROSA26-

Rfl/+ 

Rosa1 

Rosa2 

Rosa3 

56 

AAAGTCGCTCTGAGTTGTTAT 

GCGAAGAGTTTGTCCTCAACC 

GGAGCGGGAGAAATGGATATG 

(P (Soriano 

1999) 

AT = Annealingtemperature 
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Table 12: DNA-oligonucleotides (primers) for quantitative RT PCR 
Analyzed 

transcript 

Primer name Primer Sequence (5’-3’ orientation) Supplier of 

SYBRGreen 

18s rRNA 18s forw 

18s rev2 

CGCAAATTACCCACTCCCG  

TTCCAATTACAGGGCCTCGAA  

Invitrogen 

and Quiagen 

hDESMIN Desmin_RT_F1 

Desmin_RT_R1:  

CATCGCGGCTAAGAACATTT 

GCCTCATCAGGGAATCGTTA 

Quiagen 

hDYRK1B hDYRK1B_F1 

hDYRK1B_R1 

TTGGCCAGGTGGTGAAAGCCTATGA 

CAATCTGGGCCTGGTTCAGGAAAGC 

Invitrogen 

hGLI1 HsaGli1 tq F 

HsaGli1 tq R 

AGCTACATCAACTCCGGCCA 

GCTGCGGCGTTCAAGAGA 

Invitrogen 

mGli1 mGli1-tq-f  

mGli1-tq-r 

TACATGCTGGTGGTGCACATG  

ACCGAAGGTGCGTCTTGAGG 

Quiagen 

mGli2 Gli2-RT-RCR-F 

Gli2-RT-RCR-R 

GGTCATCTACGAGACCAACTGC 

GTGTCTTCAGGTTCTCCAGGC 

Quiagen 

mGli3 Gli3F2 

Gli3-sybrgree R 

GAAGGAACAACCCTAGTCAAGGAGGA 

CCAGCGGCACACGAACTCCTTCT 

Invitrogen 

mMyoD MyoD-Scerj-F 

MyoD-Scerj-R 

CCCCGGCGGCAGAATGGCTACG 

GGTCTGGGTTCCCTGTTCTGT 

Quiagen 

hMYOD hMYOD F 

hMYOD R 

CGAACCCCCAACCCGATA 

GAAAAAACCGCGCTGTG 

Invitrogen 

mMyf5 mMyf5F.1 

mMyf5R.1 

TGACGGCATGCCTGAATGTAA 

CCAAGCTGGACACGGAGCT 

Invitrogen 

mMyogenin Myogenin-Scerj-F 

Myogenin-Scerj-R 

GCAATGCACTGGAGTTCG  

ACGATGGACGTAAGGGAGTG 

Invitrogen 

mPtch mPTC10 

mPTC22R 

TACAGTCCGGGACAGCATACC 

TCTCCTCACATTCCACGT 

Quiagen 

hSHH hSHH_forw 

hSHH_rev 

GATGACTCAGAGGTGTAAGGAC 

CCTCGTAGTGCAGAGACTCC 

Quiagen 
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Table 13: DNA-oligonucleotides (primers) for cloning and plasmid identification 

Application Primer name Primer Sequence (5’-3’ orientation) 

PCR-based amplification 

of oncHRAS sequence 

from pBabe puro 

HRasV12 plasmid  

HRasKlon-

XhoI-For 

AGTCTCTCGAGAGTGTGGTGGTCAGCTTGGG  

HRasKlon-

EcoRI-Rev 

AGCTCTGAATTCCACCTCCATGTCCTGAGCTT 

PCR-based amplification 

of oncNRAS sequence 

from pCaggs-NrasG12V 

NRasKlon-

XhoI-For3 

AGTCTCTCGAGATGACTGAGTACAAACTGGT 

NRasKlon-

EcoRI-Rev3 

AGCTCTGAATTCTTACATCACCACACATGGCA 

PCR-based amplification 

of oncKRAS sequence 

from KRAS12V plasmid 

KRasKlon-

XhoI-For3 

AGTCTCTCGAGCTTTTGGAGTACGTCTTTAGG 

KRasKlon-

HpaI-Rev3 

AGCTCTGTTAACTTACATAATTACACACTTTG 

Sanger sequencing 

pMSCVpuro-

seq-F CCCTTGAACCTCCTCGTTCGACC 

pMSCVpuro-

seq-R 

GAGACGTGCTACTTCCATTTGTC 

pNRasID-Rev GCCTTCGCCTGTCCTCATGTATTG 

pKRasID-Rev CCTCATGTACTGGTCCCTCATT 

pHRasID-Rev TCATCCGAGTCCTTCACCCGTT 
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4.11. Antibodies  

For immunohistochemistry (IHC) and Western blot (WB) analysis the following antibodies 
were used with the specified conditions (see Table 14 and Table 15).  

Table 14: List of primary antibodies  

Antibody Method Dilution Diulent 

pAb mouse anti-Akt, BD Pharmingen WB 1:1.000 2 % BSA/ 0.2 % Azide in TBST 

pAb rabbit anti-ERK, Sigma-Aldrich WB 1:4000 2 % BSA/ 0.2 % Azide in TBST 

mAb mouse anti-HSC70, Santa Cruz WB 1:10.000 2 % BSA/ 0.2 % Azide in TBST 

mAb mouse anti-Ki-67, BD Pharmingen IHC  1:50  0.02% casein in TBS 

pAb rabbit anti-Ras, Cell Signaling WB 1:1000 2 % BSA/ 0.2 % Azide in TBST 

mAb mouse anti-p-AKT, Cell Signaling WB 1:1.000 2 % BSA/ 0.2 % Azide in TBST 

pAb rabbit anti-p-ERK, Cell Signaling WB 1:2.000 2 % BSA/ 0.2 % Azide in TBST 

 

Table 15: List of secondary antibodies 
Secondary antibodies Method Dilution Diluent 

En vision+ anti- rabbit/mouse/HRP, Dako IHC undiluted  

rabbit anti rat/biotinylated, Dako IHC 1:100 0.02 % casein in TBS 

pAb goat anti-rabbit IgG, HRP-

conjugated, Sigma-Aldrich 

WB 1:5000  5 % (w/v) milkpowder in TBS-

0.1 % tween-20 

pAb sheep anti- mouse/HRP-conjugated, 

GE Healthcare 

WB 1:5000  5 % (w/v) milkpowder in TBS-

0.1 % tween-20 

Streptavidin/HRP, Dako IHC 1:1000 TBS 
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4.12. Plasmids 

The Plasmids used and generated in this work are listed in Table 16. 

Table 16: List of Plasmids 
Name Application  Supplier/Reference 
pCaggs-NrasG12V Amplification of NRAS12V for cloning 

into pMSCVpuro 

(Rudalska et al. 2014) 

KRAS12V Amplification of KRAS12V for cloning 

into pMSCVpuro 

obtained from Matthias Lauth 
(Lauth et al. 2010) 

pBabe puro HRas Amplification of HRAS12V for cloning 
into pMSCVpuro 

Addgene  

pMSCVpuro Backbone for pMSCVpuro oncRAS 

variants 

Clontech Laboratories, Inc., 

Mountain View, USA 

pMSCVpuro-NRAS12V Stable expression of NRAS12V in RMS 
cell lines 

this work 

pMSCVpuro-KRAS12V Stable expression of KRAS12V in RMS 
cell lines 

this work 

pMSCVpuro-HRAS12V Stable expression of HRAS12V in RMS 
cell lines 

this work 
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4.13. Software  

The Software used in this work is listed in Table 17. 

Table 17: List of Software used in this thesis: 
Name  Developer/Reference 

ABI 3500  Applied Biosystems, Darmstadt, Germany 

Adobe Photoshop CS5  Adobe Systems Incorporated, San Jose, USA 

BD FACSDiva  Becton Dickinson GmbH, Heidelberg 

BioEdit  Ibis Biosciences, Carlsbad, USA 

Cell F  Olympus Europa GmbH, Hamburg, Germany 

Endnote X5  Thomson ISI ResearchSoft , California, USA 

Fiji  (Schindelin et al. 2012) 

GraphPad Prism 6 GraphPad Software, Inc., La Jolla, CA, USA 

Intas GDS  Intas Science Imaging Instruments GmbH, Göttingen 

Gen5 1.11  BioTek Instruments, Inc., Bad Friedrichshall 

Microsoft Office  Microsoft Co., Redmont, USA 

SDS 2.2  Applied Biosystems, Darmstadt 

SnapGene  GSL Biotech (snapgene.com) 

 

4.14. Cell biology methods  

4.14.1. Cryoconservation of cells  

For cryconservation the cells were grown up to 80 % confluency, washed with PBS and 

incubated for 2 min with 2 ml TriplExpress® to detach. After that the reaction was stopped 

with 8 ml FCS containing media. The cells were transferred to a 15 ml tube and centrifuged 

for 5 min at 300 g. The pellets were resuspended in 5% DMSO containing FCS and aliquoted 

in 1 ml portions into cryotubes. The cryotubes were stored overnight at -80 °C in a freezing 

container and then transferred to a liquid nitrogen tank. 

4.14.2. Stable retroviral transduction of RMS cell lines 

Virus particles were generated with the packaging cell line Platinum-E. This was performed 

in collaboration with Dr. Michael Engelke, Institute of Cellular and Molecular Immunology. 
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For this purpose Platinum-E were grown to approximately 70 % confluency in 5 cm culture 

dishes and incubated overnight in culture medium. The next day the cells were transfected for 

30 min at RT by adding drop wise the transfection mixture to the dish while shaking. The 

transfection mixture contained 400 μl serum free medium, 9 μl TransIT®-LT1 Transfection 

Reagent and 3 μg of the retroviral expression vectors pMSCVpuro, pMSCVpuro-NRAS12V, 

pMSCVpuro-KRAS12V or pMSCVpuropuro-HRAS12V. After transfection the cells were 

washed with PBS and incubated for 48h with 4 ml fresh culture medium (DMEM 2% FCS, 

1% P/S). After that the virus containing supernatant was sterile-filtered by using a 0.45 μm 

pore sterile filter and used for the stable transduction. 

The stable transduction of the RMS cell lines was performed in collaboration with Tobias 

Puckrop, Institute of Hematology and Oncology. For this purpose the cells were grown to 70-

80 % confluency, washed with PBS, detached and counted. 1x105 cells were seeded in a 6-

well plate and 100 µl of the virus-containing supernatant (virus particle with the expression 

plasmids pMSCVpuro, pMSCVpuro-NRAS12V, pMSCVpuro-KRAS12V or pMSCVpuro-

HRAS12V) were added. The incubation with the respective virus particles was performed in 

duplicates. Next, the plate was centrifuged for 1 h, 2000 rpm at RT, followed by incubation at 

37 °C overnight. During the next 3 days the media with the virus particles were refreshed 

daily. After 3 days the cells containing the plasmid were selected by culturing with culture 

media containing puromycin. 

4.14.3. Generation of conditioned medium  

In order to generate conditioned medium the cells were grown to a density of 70 %, washed 

with PBS and incubated for 24 h in DMEM containing 2 % FCS and 1 % P/S. After that time 

the supernatant was sterile-filtered (0.2 μm pore size) and stored for up to 3 month at 4 °C. 

4.14.4. SHH secretion analysis 

For the identification whether cells were able to secrete SHH, B9 cells were incubated with 

conditioned medium of the respective cell line. For this purpose 1 x 105 B9 cells were seeded 

onto a 6-well plate and incubated overnight. The next day the medium was replaced by the 

conditioned medium (see chapter 4.14.3). As positive control the conditioned medium from 

SHH secreting HEK293SHH cells was used. After 48 h the RNA was isolated, reversed 

transcribed and the 18S and Gli1 expression were measured by qRT-PCR.  
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Figure 3: Experimental setting for the SHH secretion analysis. The cells to be tested were grown in 

medium as described in chapter 4.14.3, the supernatant was taken, filtered and transferred to the reporter 

cells B9. After 48 h the cells were harvested and used for gene expression analysis.  

 

4.14.5. Metabolic activity assay and cell proliferation assay 

To test metabolic activity of human cell lines, WST-1 reagent from Roche was used. For this 

purpose 8000 cells were seeded in a 96-well-platte and incubated overnight. The next day the 

cells were incubated for 24 h with the desired inhibitors or solvents. The incubation was 

stopped 3 h before the end of treatment, by replacement of the drug-containing medium with 

fresh media containing 100 µl of WST-1 reagent (1:10 dilution) at 37◦C for 3 h. During the 

incubation with the WST-1 reagent, the tetrazolium salt WST-1 is cleaved to a soluble 

formazan dye by cellular mitochondrial dehydrogenases of viable cells. Thus, the amount of 

formazan dye is proportional to the amount of living cells and can be quantified by measuring 

the absorbance using a spectrophotometer at a wavelength of 450 nm. 

To test proliferation of human cell lines the chemiluminescence based Cell Proliferation BrdU 

ELISA Kit from Roche was used as described by the manufacturer’s instruction. This assay is 

based on the principal that during replication the pyrimidinanalog Bromdeoxyuridin (BrdU) 

replaced thymidine residues in the DNA. Therefore the amount of incorporated BrdU is 

proportional to the amount of proliferating cells. For the assay 8000 cells were seeded in a 96-

well-platte. The next day the cells were incubated for 24 h with the desired inhibitors or 

solvents.10 µM BrdU-reagent was added to the media for the last 22 h. Then the cells were 

fixed, denaturated and labeled with anti-BrdU-POD for 1 h. After a washing step, the 

peroxidase substrate was added and BrdU incorporation was measured by a luminometer. The 

resulting luminescence is proportional to the proliferation of cells. 

4.14.6. DYRK1B knockdown in RMS cells lines 

For knockdown of DYRK1B two specific siRNAs i.e. DYRK1B_01 and DYRK1B_02 

siRNA from Dharmacon (D-004806-01 and D-004806-02) were used. For this purpose 
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2 x 105 cells were seeded onto a 6-well plate in a final volume of 2.4 ml. Next the siRNA 

mixture containing 4 µl siRNA (2 µl of DYRK1B_01 [5 µM] and 2 µl DYRK1B_02 [5 µM]) 

or solvent, 12 µl HiPerFect reagent and 82 µl media containing FSC was added to the cells 

and incubated for 48 h. After incubation the RNA was isolated, reverse transcribed and the 

18S, GLI1 and DYRK1B expression measured by qRT-PCR.  

4.15. Molecular biology methods 

4.15.1. Genomic DNA isolation from murine mouse tail and tissue  

For the isolation of genomic DNA (gDNA) from mouse tails (mouse tail biopsy see chapter 

4.17.2) or tissue a small peace (~5-10mg) was sliced and incubated with 500 μl STE-Buffer 

and 25 μl Proteinase K (10 mg/ml stock) over night at 55 °C in a 1.5 ml tube. Undigested 

tissue was pelleted for 10 min at 13.000 rpm and 400 µl of the supernatant were transferred in 

a new 1.5 ml tube with 1 ml precooled 99.9 % Ethanol. The tubes were shaken and 

centrifuged for 25 min at 13000 rpm and 4 °C. Pellets were washed with 70 % Ethanol and 

dried for 10 min at 55 °C. After the incubation time the pellets were solved with 100 µl 

Ampuwa water and stored at 4 °C. 

4.15.2. Total RNA isolation with TRIzol® 

For RNA isolation from cells the TRIzol® Reagent from the company Invitrogen was used 

according to the manufacturer’s instruction. Briefly, the cells on the plate were washed once 

with PBS and solved with 1ml TRIzol®. Unless stated otherwise, the following steps were 

performed on ice to prevent RNA degradation. The detached cells were transferred into a pre 

cooled 2 ml tube and vortexed for 2 min at the highest level followed by an incubation of 5 

min at RT. Afterwards, 200µl chloroform were added and vortexed at the highest level for 15 

seconds. After 3 minute incubation the tubes were centrifuged for 10 min at 12000 rpm and 

4 °C. Subsequently the upper phase, which contains the RNA, was transferred to a new pre-

cooled 2 ml tube containing 500 µl Isopropanol. After precipitation over night at -20 °C the 

RNA was pelleted by centrifugation at 12000 rpm 4 °C for 20 min. The pellets were washed 

two times with 500 µl 70 % Ethanol, dried at room temperature (RT) for 5 min. and dissolved 

with 10-60 µl RNase-free H2O for 5-10 min at 56 °C depending on the pellet size and the used 

cell number.  
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4.15.3. RNA isolation from tissue with TRIzol® 

The RNA isolation from tissues was performed by using the TRIzol® Reagent from the 

company Invitrogen according to the manufacturer’s instruction. In short, approximately 

20 mg tissue was transferred in a 2 ml tube containing 1 ml TRIzol®. The tissue was 

homogenized on ice with the homogenization tool at stage B-C for up to 1 minute followed by 

incubation for 5 min at RT. RNA isolation was done as described in chapter 4.15.2.  

4.15.4. Photometric quantification of total RNA by NanoDrop  

To determine the concentration of DNA and RNA, 1 µl of the solution was added onto the 

lower optical surface slot at the NanoDrop and the concentration was measured by 

determining the optical density (OD). For calculation of the final concentration (c = ng/µl) the 

device uses the following formula. 

𝑐 = 𝑂𝐷260 × 50 (𝑑𝑠𝐷𝑁𝐴) 𝑜𝑟 40 (𝑠𝑠𝑅𝑁𝐴) 

Additional to the OD260 the OD280 was measured to determine the amount of protein and to 

calculate the purity of the RNA or DNA. For this purpose the ratio of the OD260 and OD280 

was calculated that should be between 1.8 - 2.0 for DNA (purity of DNA >90%) and 2.0 for 

RNA (purity of RNA >90%).  

4.15.5. Polymerase chain reaction (PCR)  

For the amplification of double strand DNA molecules a polymerase chain reaction (PCR) 

was performed in a total volume of 10 µl. The conditions used for PCR varied depending on 

the DNA oligonucleotide, the amplified fragment size and the GC-content. The PCR starts 

with initial denaturation step for 5-10 min at 95 °C followed by 25-35 cycles of denaturation 

(95 °C for 30-90 seconds), annealing (55-65 °C for 30-90 seconds) and an elongation step 

(72 °C for 1-2 min depending on the fragment size). At the end an additional elongation step 

was performed at 72 °C for 3-7 min. For analysis of the PCR product the DNA was loaded to 

a 0.5-2 % agarose gel in TBE buffer.  
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Example for a typical PCR approach 

10 – 100 ng   DNA template 
0.5 μM   specific Forward DNA-oligonucleotide  
0.5 μM   specific Reverse DNA-oligonucleotide  
0.2 mM   dNTP-mix 
1 % (v/v)   Cresol solution  
1 x    Taq-Polymerase-buffer  
0.1 U   Taq-Polymerase 
 
 

4.15.6. Agarose gel electrophoresis  

Agarose gel electrophoresis was performed in 0.5 to 2.0 % (w/v) agarose gels and TBE 

buffer. The percentage of the gel was dependent on the size of the DNA-/ or RNA fragment. 

For visualization of the fragments 0.2 µg/ml ethidium bromide was added to the gel. The 

fragments were separated in a TBE buffer filed gel electrophoresis chamber at a constant 

voltage of 100V. For the detection a UV-transilluminart (Intas, Göttingen) was used that 

visualizes the ethidium bromide stained fragments. The identification of the band size was 

done with the help of a DNA-ladder (100bp ladder). 

4.15.7. Reverse transcription 

Reverse transcription of RNA was done in a final volume of 20 µl. For this purpose 2 µg 

RNA were incubated with 250 g hexameres at 70 °C for 10 min. Afterwards, 1st strand Buffer 

(Invitrogen), 10 mM DTT and 0.5 mM dNTPs were added, followed by a 10 min incubation 

at RT. After pre-warming at 42 °C for 2 min, 50 U reverse transcriptase (SuperScript II) were 

added to start the reaction. The reaction was stopped after 1 h at 70 °C for 10 min. The cDNA 

was stored at -20 °C. Assuming that the reverse transcription was 50 % efficient the resulting 

cDNA has a concentration of 50 ng/μl. 

4.15.8. Quantitative Real Time-PCR (qRT-PCR) 

For quantification of gene expression levels a SYBR-green based quantitative realtime PCR 

(qRT-PCR) assay was performed with the primer combinations given in Table 12. For the 

reaction 4 µl qPCR SuperMix-UDG (Invitrogen) or QuantiTect SYBR-Green RT-PCR-Mix 

(Qiagen), 0.4 µM forward and reverse primer and 100 ng template cDNA were used in a final 

volume of 10 µl. The quantification of the expression of murine and human genes was 

calculated using the standard curve method. For this purpose each sample was measured in 
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parallel to a corresponding standard. The standard curves were prepared by 1:5 serial dilutions 

of the standard sample. Based on the determined values of the standard curve, a linear 

trendline was generated. This was done by plotting the logarithm of the quantity against the 

Ct-value for each dilution. Thus, the linear trendline follows the equation y = mx + b. With 

this equation the quantity of each gene was determined.  

At the end the expression of each gene was normalized to 18S rRNA expression of the 

respective cDNA sample. To analyze the results the software’s SDS 2.2.1 (Applied 

Biosystems) and Microsoft EXCEL (Microsoft Co) were used. Statistics and graphics were 

done with GraphPadPrism6. 

4.15.9. Cloning and sequencing techniques 

4.15.9.1. Transformation of E.coli to amplify plasmid DNA 

For transformation competent E. coli DH5α were thawed on ice, 100 μl of the cells were 

mixed with 50-100 ng of plasmid DNA and incubated on ice for 20 min. Next, the mixture 

was heat shocked at 42°C for 45 seconds followed by incubation for 2 min on ice. Afterwards, 

500 μl super optimal broth with catabolite repression (SOC) medium were added and the 

mixture was incubated for 1 h at 37°C and 900 rpm. At the end, 20 - 200 μl of the cell 

suspension was plated onto lysogeny broth (LB) agar plates containing the adequate antibiotic 

as a selection marker and incubated overnight in an incubator at 37°C. Single colonies were 

picked and used for inoculation of 1.5 ml LB medium at 37 °C overnight. This was followed 

by a small scale plasmid purification with the HiPure Plasmid DNA Purification Kit 

(Invitrogen GmbH, Karlsruhe) according to the manufacturer’s instruction. To perform a large 

scale plasmid purification 100 ml LB medium were inoculated with 1 ml of transformed 

E.coli cells and incubated overnight at 37 °C. The purification of plasmids was done with the 

PureLink®HiPure Plasmid Midiprep kit according to the manufacturer’s instructions.  

4.15.9.2. Restriction digest  

Restriction digests of plasmids and PCR products were performed with appropriate enzymes 

and buffers according to the manufacturer’s instructions. If necessary, a double restriction was 

performed. If the buffers were not compatible the DNA was precipitated after the first 

restriction reaction and subjected to the second restriction reaction. Each restriction reaction 
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was carried out for 1 h at the optimal temperature for each enzyme. All used restriction 

enzymes used in this work were ordered from NEB (Ipswich, USA). 

4.15.9.3. Isolation of DNA fragments from agarose gels 

For isolation of DNA fragments from agarose gels, the fragments were loaded to a 1% 

agarose gel, separated and cut out using a sterile scalpel under 70 % UV light (to reduce the 

risk of UV-induced mutations). The DNA was purified with the DNA purification QIAquick 

Gel Extraction Kit (Quiagen) according to the manufacturer’s instructions. The concentration 

of the purified DNA was calculated as described in chapter 4.15.4.  

4.15.9.4. Ligation 

To connect two pieces of DNA with compatible restriction ends a ligation T4 DNA Ligase 

system was used. For ligation the molecular ratio of the insert and vector was 3:1 

(insert:vector). To calculate the molar ratio for the amount of the insert the following formula 

was used.  

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 [𝑛𝑔] =  
𝑖𝑛𝑠𝑒𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ [𝑏𝑝] × 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 [𝑛𝑔]

𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ [𝑏𝑝] × 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 (
𝑖𝑛𝑠𝑒𝑟𝑡
𝑣𝑒𝑐𝑡𝑜𝑟)

 

Ligation was performed using an insert and vector mixture at a molar ratio of 3:1 in a total 

amount of 100 ng DNA. The DNA was incubated with 4 U T4 DNA Ligase in 1 x T4 Ligase 

buffer in a final volume of 10 µl (ad with ddH2O) at 4°C for at least 48 h. The reaction was 

stopped by heat-inactivation for 10 min at 65 °C and the plasmids were transformed into 

E.coli (see chapter 4.15.9.1). 

4.15.9.5. Generation of RAS expression plasmids 

To generate the vectors pMSCVpuro-NRAS12V, pMSCVpuro-KRAS12V and pMSCVpuro-

HRAS12V, the respective RAS sequences were amplified from pCaggs-NRASG12V, a KRAS 

plasmid and pBabe puro HRAS12V (addgene), by PCR. The primers used for the PCR are 

given in Table 13 and had overhangs containing specific restriction enzymes for cloning the 

fragments into pMSCVpuro. The PCR was done with the Phusion® High-Fidelity DNA 

Polymerase (NEB) in final reaction volume of 20 μl according to the following protocol: 
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50 ng  template plasmidDNA  1‘  95 °C  
  

 
0.5 μM  forward Primer  30‘‘  95 °C 30 cycles 0.5 μM  reverse Primer  2.5‘  60 °C 
0.2 mM  dNTP mix  5‘  60 °C  
1x  Phusion® GC Buffer Pack  ∞ 8°C  
2.5 mM  MgCl2     
0.05 U  Phusion® High-Fidelity DNA 

Polymerase 
 

 

The amplified fragments were purified by agarose gel extraction and eluted in 30 μl ddH2O. 

The inserts were digested with XhoI and EcoRI (HRAS12V and NRAS12V) or XhoI and 

HpaI (KRAS12V) (see chapter4.15.9.2), separated on a 0.7 % agarose gel, purified and cloned 

into the pMSCVpuro vector which was also digested with XhoI and EcoRI (HRAS12V and 

NRAS12V) or XhoI and HpaI (KRAS12V). For this purpose insert and the vector were mixed 

at a molar ratio of 3:1, respectively, and ligated using T4 DNA Ligase. The plasmids were 

transfected into E.coli DH5α and small and medium-scale plasmid purification was 

performed. For the final plasmids see attachment Figures Appendix 1, 2 und 3. 

4.15.10. DNA Sequencing  

Sanger sequencing using the BigDye® reagent was employed. For sequencing 20-200 ng 

plasmid DNA, 100 pmol sequencing primer (see Table 13), 1x BigDye 3.1 and 1x BigDye 

buffer reagent were mixed with ddH2O to a final volume of 10 µl and the reaction was done in 

an ABI3500XL sequencing device under the following conditions. 

1‘  95°C   
30‘‘  95°C 

  

 
2.5‘  60°C 30 cycles 
5‘  60°C  
∞ 8°C   

 

The resulting sequences and electropherograms were analyzed with the help of the BioEdit 

software. 
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4.16. Protein chemistry and histochemistry methods  

4.16.1. Protein isolation from cells 

For the isolation of protein from cultured cells, the cells were removed with a cell scraper 

from the plate, transferred to a 15 ml tubes and pelleted by centrifugation for 5 min at 2.000 

rpm. The cell pellet was once washed with 700 µl PBS and transferred to a 1.5 ml tube. 

Afterwards the cells were pelleted, shock-frozen in liquid nitrogen and thawed on ice. The 

pellets were solved in 50-100 µl lysis buffer containing 500 μM PMSF and 2 mM DTT, and 

incubated on ice for 20 min. Then the cell lysates were centrifuged at 13.000 rpm for 25 min 

at 4 °C. The supernatant was transferred to a new 1.5 ml tube and the protein concentration 

was measured by Pierce ® BCA Protein Assay Kit according to manufacturer’s instructions. 

As standard bovine serum albumin was used. The protein lysates were stored at -80 °C. 

4.16.2. Protein isolation from tissue for Western Blot 

Approximately 20 mg tissue was transferred in a 2 ml tube containing 300µL modified RIPA 

buffer. The tissue was homogenized on ice with the homogenization tool at stage B-C for up 

to 1 min, lysed for 10 min on ice and centrifuged at 13.000 rpm for 25 min at 4 °C. The 

supernatant was transferred to a new 1.5 ml tube and the protein concentration was measured 

by Pierce ® BCA Protein Assay Kit according to manufacturer’s instructions. As standard 

Bovine serum albumin was used. The protein lysates were stored at -80 °C. 

4.16.3. Western blot  

To perform a western blot analysis, 30-50 µg of total protein lysates were denatured at 96 °C 

for 5 min at 700 rpm and 3 µl 6x loading buffer was added. The proteins and a pre-stained 

protein standard (SeeBlue Plus2), to estimate the molecular weight of the proteins, were 

loaded to a NuPAGE Novex midi gel and electrophoresed in 1x NuPAGE MES SDS running 

buffer for 1.5 to 2 h at 160 mA, 160 V and 100 W. The transfer of the proteins to a 

nitrocellulose membrane (GE Healthcare) was performed using a semi-dry blotting device at 

120 mA, 20 V and 100 W for 90 min. After blotting the membrane was blocked in 5 % milk 

in TBST for 1.5 h at RT. The membrane was washed 3 times for 10 min in TBS with 0.1% 

Tween 20 and incubated overnight at 4 °C with the appropriate primary antibodies (see Table 

14). After washing 3 times for 10 min in TBS with 0.1% Tween 20 membranes were 
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incubated in HRP-conjugated secondary antibody for 1 h at RT. After another 3 washing steps 

1-3 ml of the detection reagent (Amersham ECL Plus™ Western Blotting Detection Reagent) 

was added onto the membrane (so that the membrane was totally covered with the substrate) 

and incubated for 2 min at RT. For visualization of the proteins the FluorchemQ camera 

system and software was used. 

4.16.4. Ras activation ELISA 

For the detection of Ras activity in cell lines and tissue a commercially available ELISA kit, 

(Ras Activation ELISA ASSAY Kit) was used according to the manufacturer's instruction.   

For protein isolation from cell lines, 1 x 106 cells were grown on a 10 cm dish for 24 h. The 

culture media was removed and the cells were washed twice with ice-cooled PBS. The cells 

were lysed according to the Kit specification. For the lysis 200 µl lysis buffer were used. . For 

analysis of tissue samples 20µg of the tissue were homogenized with a homogenizer in 300 µl 

Mg2+lysis/wash buffer in a 2 ml tube and centrifuged at 14000 rpm for 10 min at 4 ºC. The 

supernatant was transferred to a new 1.5 ml tube and the protein concentration of the lysates 

was measured by Pierce ® BCA Protein Assay Kit according to manufacturer’s instructions.  

Then the glutathione coated wells of the Kit were washed with TBST (washing buffer) and 

incubated for 1 with Raf-1-RBD, which is able to bind via a GST/Glutathione interaction to 

the coated wells. After a washing step the cell lysate (50µg) were added to the wells and 

incubated at RT for 1 the active/GTP-bound Ras proteins of the lysates are able to bind to the 

Ras binding domain of Raf-1 whereas the inactive/GDP-bound RAS will be washed away 

during the next washing step. After another washing step the wells are incubated with a 

monoclonal anti-Ras antibody specific for the detection of N-, K-, HRas isoforms, followed 

by another washing step. Next, the HRP conjugated secondary antibody was incubated for 

1 h. At the end the wells were washed with TBST followed by another washing step with TBS 

to remove the Tween20 from the wells. For the detection the chemiluminescent substrate was 

added and the signals were measured by using a luminometer. 

4.16.5. Hematoxylin-Eosin (H&E) staining of paraffin embedded tissue 

For H&E staining of paraffin embedded tissue, the tissue was cut into 4-5 µm sections, 

transferred to a slide and dried at 80 °C for 20 min. Then the sections were deparaffinized 2 

times for 10 min in Xylol and subsequently rehydrated by using descending ethanol solutions 
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(100% to 70%). After 2 min incubation in ddH2O the sections were transferred to 

hematoxylin solution for 15 min. For coloring the sections were incubated with flowing tepid 

tab water for 5 min. Then the sections were shortly dipped into 1 % eosin-solution with 

freshly added glacial acetic acid (0.5 % v/v) and washed with ddH2O. At the end the sections 

were dehydrated by using ascending ethanol solutions (70 % to 100 % ethanol), shortly placed 

in xylene and mounted in Pertex.  

4.16.6. Immunohistochemistry 

For immunohistochemistry staining, paraffin embedded tissue was cut at 2-4 µm sections, 

deparaffinized by xylene and rehydrated using descending ethanol solutions (100 %, 95 % to 

35 %). If necessary, a permeabilization treatment was done as described in Table 14. Next, the 

sections were blocked with 3 % H2O2 to inhibit endogenous peroxidase. This was followed 

by a blocking step with 0.2 % casein to prevent non-specific antibody binding.  Next, the 

sections were incubated with a primary antibody (see Table) for 1 h at RT in a humid 

chamber. After washing with TBS the sections were incubated with the appropriate secondary 

antibody for 1 h at RT. After another wash step the visualization of the antibody binding was 

done either by using DAB+ (Envision+ system-HRP, Dako) as chromogen. At the end the 

reaction was stopped by transferring the sections to distilled water. Counterstaining was 

performed with hematoxilin and the slides were embedded in Glycergel® Mounting Medium 

(Dako, Hamburg). 

The quantification of Ki-67 positive cells was performed using the imageJ software. For this 

purpose 5 representative pictures per section were taken and 1000 cells of these pictures were 

counted. The Ki-67 positive cells are given in percent. 

4.16.7. X-Gal staining of cryo-embedded tissue  

For X-Gal staining the tissue was fixed for 2 h with 4 % paraformaldehyde/PBS on ice, 

thoroughly washed and incubated in 25% sucrose/PBS overnight. The next day, the tissue was 

embedded in OCT cryoblock embedding media on dry ice and cut into 5 µm sections at -20 to 

-22°C and mounted onto slides and dried at RT for 2 h. Then the sections were incubated for 

10 min with 0.2 % Glutaraldehyd /PBS on ice. After incubation in LacZ-buffer 3 times for 10 

min the sections were incubated overnight in LacZ-staining solution (ingredients see Table X) 
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at 30 °C. The next day the sections were mounted with Glycergel® Mounting Medium (Dako, 

Hamburg). 

4.17. Animal Experiments   

All animal experiments described in this thesis were performed in compliance with all 

relevant legal and ethical requirements. 

4.17.1. Breeding and keeping of mice  

All mouse lines used in this thesis were bred and kept in the private institute animal facility of 

the Institute of Human Genetic, University of Göttingen. The Ptchdel/+, LSL-K-RASG12Dfl/+, 

NRAS LSL-G12Dfl/+, FR-HRASG12V fl/+, Myf5creERTtg/+ and ROSA26-Rfl/+ mice were housed 

in Makrolon cages type I and II and the immune deficient NMRI-Foxn1nu mice were housed 

in specific pathogen free (SPF) cages. All animals were housed in rooms with a twelve-hour 

light-dark cycle (light period: 6.a.m.-6 p.m.), a temperature of 20 ± 2 ° C and a relative 

humidity of 50 ± 10%. They were fed ad libitum with rodent pellets (complete diet for mice 

breeding) and tap water which was autoclaved in case of the NMRI-Foxn1nu mice.  

4.17.2. Tail biopsy and genotyping of mice 

For identification of the mice the weaned mice (age approx. 4 weeks) were labeled by ear-

clipping. Respective tail biopsies (approx. a peace of 0.2 cm from the tip of the tail) were 

taken at the age of four weeks. Mice that were younger and not yet weaned were labeled by a 

tattoo code on their foot pads and later at the age of four weeks by an ear code.  

DNA isolation from tail biopsies and genotyping was performed by PCR. The used 

oligonucleotides and PCR conditions are listed in Table 11.  

4.17.3. Tamoxifen treatment of mice 

To induce the expression of mutant KRAS, HRAS or NRAS in Ptchdel/+oncRASfl/-

Myf5CreERTtg/- mice (see chapter 4.9.3) the animals were injected with tamoxifen (Sigma-

Aldrich, Chemie GmbH, Steinheim). For preparing a 10 mg/ml tamoxifen solution, 200 mg 

tamoxifen was emulsified in 800 µl 99.9 % EtOH and diluted with sunflower oil (Sigma-

Aldrich, Chemie GmbH, Steinheim) to a 20 ml final volume. The tamoxifen solution was 

stored until application at -20 °C. For the activation of the Cre recombinase 100 µl of the 
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tamoxifen solution (dosis of 1 mg tamoxifen) was injected intraperitoneally (i.p.) for five 

consecutive days (final dose of 5 mg tamoxifen) starting at an age of 4 weeks.  

4.17.4. Tumor monitoring and isolation  

The genetically engineered and RMS-prone Ptchdel+/-oncRASfl/-Myf5CreERTtg/+ mice were 

monitored each week. Soft tissue tumors of the animals were detected by manual palpation. In 

addition, they were checked for symptoms of medulloblastoma namely ataxia, emaciation, 

lethargy or development of a hydrocephalus. Animals which showed this type of symptoms 

were painlessly killed by CO2 anesthesia and cervical dislocation. When soft tissue tumors 

were detected, the date was documented. The animals were also sacrificed when the tumor 

reached 1 cm in size or after the monitoring time (200 days after birth). All mice were 

autopsied and all parable and non-palpable tumors and skeletal muscle as reference tissue 

were isolated and fixed in 4 % PFA-solution overnight. 

4.17.5. Anesthesia of mice 

An anesthesia-solution was prepared containing 1 ml Ketamin Inresa (50 mg/ml 

Ketaminhydrochlorid) and 400 µl Xylazin (2 % Xylazinhydrochlorid) dissolved in 1.4 ml 

ddH2O. The solution was injected intraperitoneally at a concentration of 3.6 µl/ml body 

weight. For preventing drying of the eyes during anesthesia the eyes were covered with 

Bepanthen® eye and nose lotion (Bayer Vital GmbH).  

4.17.6. Tumor xenograft  

For transplantation of RMS cells in nude mice the cells were grown until they were 80-90 % 

confluent. Media was discarded and the cells were trypsinized and pelleted at 300 g for 5 min 

at 4 °C. Next, the cells were washed two times with PBS and dissolved in 500-1000 µl PBS. 

The amount of viable cells was determined by counting trypan blue stained cells in a 

Neubauer counting chamber. The RMS cells were transferred to pre-chilled syringes in a total 

volume of 100 µl containing 5 x 106 (RMS-13) cells per mouse. The cells were transplanted 

into the flanks of anesthetized nude mice at the age of 8 – 10 weeks. The mice were controlled 

daily and the tumor size was measured using a digital caliper. The calculation of the tumor 

volume was done according to the following formula (Tomayko and Reynolds 1989). 
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𝑉 =
(𝐿𝑒𝑛𝑔𝑡ℎ × 𝐵𝑟𝑜𝑎𝑑 × 𝐻𝑖𝑔ℎ)

2
 

All mice were sacrificed at the end of the experiment at approximately 30 days after 

transplantation and the tumors were isolated, fixed in 4 % paraformaldehyde and embedded in 

paraffin for histological analysis. If the tumor was large a part of the tumor was stored at -

80°C for further analysis.  
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5. Results 

5.1. Effects of oncogenic N-, K- or HRAS (in short oncRAS) on human RMS 

cell lines 

5.1.1. Generation of oncRAS RMS cell lines  

To investigate whether oncogenic N-, K- or HRAS (in short oncRAS) can influence HH 

signaling in human RMS cells, pMSCVpuro plasmids containing inserts of constitutive active 

forms of RAS (pMSCVpuro-NRAS12V, pMSCVpuro-KRAS12V or pMSCVpuro-HRAS12V) 

were generated (see chapter 4.15.9). After sequencing, the plasmids were stably transduced in 

RMS cell lines that were wildtype RAS (wtRAS), namely RMS-13 (ARMS) and RUCH-2 

(ERMS) cells (see chapter 4.14.2) (Schaaf et al. 2010). As control, the cell lines were 

transduced with the empty pMSCVpuro vector.  

5.1.2. Successful transduction of oncRas in RMS cell lines 

To confirm the successful transduction with pMSCVpuro, pMSCVpuro-NRAS12V, 

pMSCVpuro-KRAS12V or pMSCVpuro-HRAS12V, cDNA of the cells was prepared. After 

amplification with pMSCVpuroF (that binds to vector-derived sequences of the cDNA) and 

oncRAS-specific reverse primers (i.e. pNRasID-Rev, pKRasID-Rev or pHRasID-Rev) the 

respective PCR-fragments (Figure 4; shows data for RUCH-2 cells as an example) were also 

sequenced. Indeed, all oncRAS plasmids expressed the respective oncogenic versions of the 

RAS genes in exon 2 (Figure 5; shows data for RUCH-2 cells as an example).  

 

A B C 
  1 2 3   4   1 2 3   4   1 2 3   4 

   
Figure 4: PCR Fragments amplified with pMSCV-seq-F and either pNRasID-Rev, pKRasID-Rev or 

pHRasID-Rev from cDNA isolated from RUCH-2 cells. cDNA isolated from RUCH-2 cells transduced 

with pMSCV (Line 1), RUCH-2 NRAS12V (Line 2), RUCH-2 KRAS12V (Line 3) and RUCH-2 

HRAS12V(Line 4). PCR with the primers (A) pMSCV-seq-F/pNRasID-Rev (B) pMSCV-seq-F/ pKRasID-

Rev (C)pMSCV-seq-F/ pHRasID-Rev. 
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Figure 5: Sequences of the PCR fragments shown in Figure 4. Shown are the sequences of the second 

exons of oncogenic N-, K- and HRAS. The codon 12 located in exon 2 encodes for valine (instead of 

glycine), which results in constitutive activation of the corresponding RAS protein.  

 

5.1.3. Increased RAS expression levels in oncRas transduced RMS cell lines 

In order to investigate, if the stable transduction of the oncRAS plasmids in RMS cell lines 

resulted in elevated levels of RAS protein, a Western Blot analysis was performed using an 

anti-Pan-RAS antibody (see Figure 6).  
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Figure 6: Elevated RAS levels in RMS cell lines transduced with oncRAS. Western blot analyses using 

anti-Pan-RAS antibody with protein lysates of (A) RUCH-2 (ERMS) and (B) RMS-13 (ARMS) cells stably 

transduced with pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-KRAS12V 

(KRAS12V), or pMSCVpuro-HRAS12V (HRAS12V). Detection of the HSC70 expression levels served as 

loading control.  

As illustrated in Figure 6 protein samples collected from pMSCVpuro transduced RMS cells 

(RUCH-2 pMSCVpuro and RMS-13 pMSCVpuro) express low levels of RAS, as shown by a 

weak band at the expected size of 21 kDa. The cells expressing oncogenic RAS show 

moderately increased RAS expression levels. In cells that had been transduced with 

pMSCVpuro-KRAS12V a double band can be detected. The larger protein is the mutant 

KRAS12V since KRAS12V expressed by the plasmid pMSCVpuro-KRAS12V is HA-Tagged 

(see Figure Appendix 1, 2 and 3). 

5.1.4. No obvious morphological changes of oncRAS transduced RMS cell lines  

Yeh et al. showed that the activation of the RAS signaling pathway can change the 

morphology of different cell lines (Yeh et al. 2008). However, as illustrated in Figure 7, none 

of the cell lines stably transduced with oncRAS showed distinct morphological changes 

compared to control vector transduced cells. 

  



Results 

 

 

49 

A B C 

   
D E F 

   
G 

 

H 

 

 

Figure 7: Morphology of oncRAS transduced RMS cell lines. Shown are representative pictures of 

RUCH-2 (A-D) and RMS-13 (E-H) cells stably transduced with pMSCVpuro (pMSCV), pMSCVpuro-

NRAS12V (NRAS12V), pMSCVpuro-KRAS12V (KRAS12V), or pMSCVpuro-HRAS12V (HRAS12V) as 

indicated (20 x magnification). 

5.1.5. Inhibition of GLI1 expression in oncRAS transduced RMS cell lines  

To see whether active RAS signaling can modulate HH signaling the expression levels of 

GLI1 in the RAS transduced cell lines were measured. As mentioned in the introduction the 

expression level of GLI1 is a reliable marker for HH signaling activity (Hooper and Scott 

2005). As shown in Figure 8 overexpression of all 3 oncogenic RAS isoforms decreased GLI1 

expression levels as revealed by qRT-PCR. This indicates that oncRAS probably inhibits the 

HH-signaling pathway in both ERMS (RUCH-2) and ARMS (RMS-13) cells. This is similar 
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to data shown by Lauth et al. (Lauth et al. 2010), who demonstrated that KRAS12V inhibits 

HH signaling and thus GLI1 expression by blocking GLI2/3 (see introduction). 

A B 

  
Figure 8: Downregulation of GLI1 expression in oncRAS transduced RMS cell lines. Quantification of 

GLI1 expression levels by qRT-PCR in (A) RUCH-2 (ERMS) and (B) RMS-13 (ARMS) cells stably 

transduced with the empty vector pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), 

pMSCVpuro-KRAS12V (KRAS12V) or pMSCVpuro-HRAS12V (HRAS12V), as indicated. Expression 

levels were normalized to 18S rRNA levels. GLI1 expression of the pMSCVpuro-transduced cells was set 

to 1. All data represent at least 3 independent experiments measured in triplicates displayed as mean ± 

SEM. Statistical significance was tested by using Mann-Whitney test. * P<0.05, ** P<0.005, *** P<0.0005 

and **** P<0.0001. 

Since KRAS12V simultaneously can induce SHH in pancreatic cancer cells (Lauth et al. 

2010), SHH expression levels were analyzed by qRT-PCR. The data show that oncRAS 

indeed induced SHH expression in RUCH-2 cells. However, this was not the case in RMS-13 

cells, in which oncRAS inhibited SHH expression (Figure 9).  
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Figure 9: SHH expression levels in oncRAS transduced RMS cell lines. Quantification of SHH 

expression levels by qRT-PCR in (A) RUCH-2 and (B) RMS-13 cells stably transduced with the empty 

vector pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-KRAS12V (KRAS12V) 

or pMSCVpuro-HRAS12V (HRAS12V). Expression levels were normalized to 18S rRNA levels. SHH 
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expression of the pMSCVpuro-transduced cells was set to 1. All data represent at least 2 independent 

experiments measured in triplicates displayed as mean ± SEM. Statistical significance was tested by using 

Mann-Whitney test. * P<0.05, ** P<0.005 and *** P<0.0005.  

Next, it was analyzed whether the transduced RUCH-2 cells were able to secrete SHH. For 

this purpose the supernatant of the cells was harvested as described in chapter 4.14.3. The 

murine HH-responsive fibroblast cell line B9 (also called PtchfloxfloxCreERT2 cells;(Uhmann 

et al. 2011)) was incubated with the respective supernatants and the Gli1 expression was 

measured by qRT-PCR. Supernatant from HEK293-SHH cells served as control. However, as 

seen in Figure 10, RUCH-2 cells transduced with oncRAS were not able to secrete SHH.  

 
Figure 10: oncRAS transduced RUCH-2 cell lines are not able to secrete SHH. Quantification of Gli1 

expression levels by qRT-PCR analyses in B9 cells incubated with conditioned medium (in short CM) from 

HEK293-wildtype () and HEK293-SHH (SHH) cells and from RUCH-2 cells stably transduced with the 

empty vector pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-KRAS12V 

(KRAS12V) or pMSCVpuro-HRAS12V (HRAS12V). Expression levels were normalized to 18S rRNA 

levels. Gli1 expression of B9 cells treated with the HEK293 wildtype-CM was set to 1. All data represent 1 

experiment measured in triplicates displayed as mean ± SEM. Statistical significance was tested by using 

Mann-Whitney test. 

Together these data show that oncRAS suppresses GLI1 expression in both RUCH-2 and 

RMS-13 cell lines. In addition, oncRAS induced SHH expression, but not secretion, in 

RUCH-2 cells, whereas SHH expression was repressed in RMS-13 cells. 
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5.1.6. Inhibition of GLI1 expression in oncRAS transduced RUCH-2 depends on 

MEK activity  

In order to investigate if oncRAS inhibited HH signaling via the RAF/MEK/ERK or 

PI3K/AKT/mTOR axis cells were treated with the MEK inhibitor UO126 or the dual 

PI3K/mTOR inhibitor PI103. In addition, the cells were incubated with HhAantag (HhA) that 

binds and inhibits SMO and thus can block canonical HH signaling (Figure 11). However, as 

recently shown by our group HhA can additionally reduce phosphorylation of AKT in ERMS 

cell lines (Dissertation Rosalie Ridzewski). GLI1 expression served as readout.  

 
Figure 11: Schematic representation: Treatment strategy of stably transduced RMS cells. As shown 

in Figure 8 oncRAS inhibits GLI1 expression. In order to see whether this is mediated by the 

RAF/MEK/ERK axis the MEK inhibitor UO126 that is a dual MEK1 & MEK2 inhibitor and therefore also 

blocks the phosphorylation of the downstream targets ERK1 and ERK2 (Favata et al. 1998) was employed. 

The dual PI3K/mTOR inhibitor PI103 which can inhibit both the rapamycin-sensitive and -insensitive 

complexes of mTOR and block PI3K activity and thus also its downstream effector AKT (Fan et al. 2006, 

Knight et al. 2006), was used to inhibit the PI3K/AKT/mTOR axis. The SMO inhibitor HhA that 

supposedly blocks canonical HH signaling (Dijkgraaf et al. 2011) and can show interaction with AKT 

activity was used as a control. 

As shown in Figure 12 HhA and PI103, but not UO126, inhibited GLI1 expression and thus 

HH signaling activity in RUCH-2 (Figure 12A) and RMS-13 (Figure 12E) control cells. In 

RUCH-2 cells that express oncRAS, UO126, but not PI103 or HhA, increased HH signaling 

activity back to normal levels (Figure 12B-D; values not significant in comparison to the 
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solvent-treated control cell line). This suggested that oncRAS-induced downregulation of 

GLI1 expression in RUCH-2 cells depends on MEK activity. In contrast in RMS-13 that 

express oncRAS (Figure 12F-H) and show decreased expression of GLI1 when compared to 

the control, the inhibitors did not result in any changes in GLI1 expression.  
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Figure 12: oncRAS may inhibit GLI1 expression via the MEK/ERK axis in RUCH-2, but not RMS-13 

cells. Quantification of GLI1 expression levels measured by qRT-PCR analyses of (A-D) RUCH-2 (ERMS) 

and (E-F) RMS-13 (ARMS) cells stably transduced with pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V 

(NRAS12V), pMSCVpuro-KRAS12V (KRAS12V) or pMSCVpuro-HRAS12V (HRAS12V), as indicated. 

Cells were treated for 24h with solvent, HhA (SMO inhibitor), UO126 (MEK inhibitor) or PI103 (Dual 

PI3K/mTOR inhibitor). Expression levels were normalized to 18S rRNA levels. GLI1 expression levels of 
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the solvent controls were set to 1 (please note that in the figures showing data of solvent treated control and 

oncRAS cell lines, the data of solvent treated oncRAS cell lines were set to one) All data represent at least 

3 independent experiments measured in triplicates displayed as mean ± SEM. Statistical significance was 

tested by using Mann-Whitney test. * P<0.05, ** P<0.005, *** P<0.0005 and **** P<0.0001. Please note 

that in the Figures showing the comparison of control and oncRAS transduced cells, significant values are 

only shown for the comparison of the solvent-treated cells and not for the comparison of the solvent-treated 

control and oncRAS transduced cells that have been treated with the inhibitors. The only exception is the 

comparison of solvent-treated control RUCH-2 cells with oncRAS-transduced cells that have been treated 

with UO126. 

Together the data show that oncRAS mutations in both ERMS and ARMS cell lines decrease 

GLI1 expression, which is indicative for blockage of the HH signal cascade. However, the 

mode of action seems to be different. Whereas in the ERMS cell line RUCH-2 oncRAS-

mediated inhibition of HH signaling is probably communicated via the MEK axis, the RAS-

induced inhibition of HH signaling in the ARMS cell line RMS-13 is not. 

 

5.1.7. oncRAS increase pERK levels in RMS-13 and RAS activity in RUCH-2 

Next, the phosphorylation status of ERK and AKT in oncRAS-transduced cell lines was 

examined. For this purpose protein lysates from stably transduced RUCH-2 and RMS-13 cells 

were used for Western blot analysis (see Chapter 4.16.3). Here, only unambiguous results of 

at least 3 Western Blots are discussed. As illustrated in Figure 13 and Figure 14 the expression 

of NRAS12V, KRAS12V, or HRAS12V increased phosphorylation of ERK in RMS-13 (Figure 

14) but not in RUCH-2 cells (Figure 13) when compared to the respective cell line that have 

been transduced with the control plasmid pMSCVpuro.  

The increased phosphorylation of ERK in RMS-13 was an indication that the expressed 

oncRAS proteins were functional. The lack of any changes in ERK and AKT phosphorylation 

in RUCH-2 prompted us perform a RAS Activation ELISA. As demonstrated in Figure 15, 

RAS signaling activity was increased in RUCH-2 cells transduced with oncRAS compared to 

the control cells. These data show that the expressed oncRAS proteins in RUCH-2 were 

functional as well. 
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pERK1/2 [44/42kDa] 

    HSC70 [70kDa] 
Figure 13: Modulation of RAS effector pathways in oncRAS-transduced RUCH-2 cells. Western blot 

analyses using antibodies specific for downstream targets of RAS signaling with protein lysates of RUCH-

2 cells stably transduced with pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-

KRAS12V (KRAS12V) or pMSCVpuro-HRAS12V (HRAS12V), as indicated. Cells were treated with 

solvent, HhA, UO126 or PI103 for 24h as indicated. Detection of the HSC70 expression levels served as 

loading control.  
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Figure 14: Modulation of RAS effector pathways in oncRAS-transduced RMS-13 cells. Western blot 

analyses using antibodies specific for downstream targets of RAS signaling with protein lysates of RMS-13 

cells stably transduced with pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-

KRAS12V (KRAS12V) or pMSCVpuro-HRAS12V (HRAS12V), as indicated, and were treated with solvent, 

HhA, UO126 or PI103 for 24h as indicated. Detection of the HSC70 expression levels served as loading 

control.  
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Figure 15: Moderately increased RAS activity in RUCH-2 cells stably transduced with oncRAS. RAS 

activity analysis using the Ras Activation ELISA ASSAY Kit in protein lysates of RUCH-2 cells stably 

transduced with either pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-

KRAS12V (KRAS12V) or pMSCVpuro-HRAS12V (HRAS12V), as indicated.  

5.1.8. HhA decreases and increases pAKT and pERK levels, respectively in 

RUCH-2 cells, whereas UO126 decreases pERK and concomitantly induces 

pAKT levels in RMS 13 cells 

In RUCH-2 cells, treatment with HhA decreased AKT/pAKT levels. In addition, it increased 

phosphorylation of ERK in RUCH-2 cells that express oncRAS (Figure 13 and Figure 14). As 

expected, treatment with UO126 decreased phosphorylation of ERK in all settings. Finally 

and equally expected, treatment of the cells with PI103 blocked phosphorylation of AKT.  

In RMS-13 cells treatment with HhA did not affect any of the analyzed proteins, whereas 

treatment with UO126 decreased pERK and concomitantly induced pAKT levels, which also 

has been shown in RMS and other cell lines (Chen et al. 2012, Graham et al. 2006, Guenther 

et al. 2013). As expected, PI103 decreased pAKT levels. Otherwise it had no effects. 

With respect to the decrease of GLI1 expression by oncRAS in RUCH2 and RMS-13 cells 

(see Figure 8) these data suggest that neither the phosphorylation status of AKT nor of ERK 

play a role in HH signaling activation. Thus, pAKT was not altered at all by oncRAS in none 

of the cell lines, whereas oncRAS strongly induced phosphorylation of ERK in RMS-13, but 

not in RUCH-2 cells.  
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5.1.9. MEK activity inhibits proliferation of oncRAS-transduced RUCH-2 cells 

RAS signaling is known to be involved in various cellular processes including proliferation 

and metabolic activity. In order to investigate the effects of oncRAS on the proliferative 

capacity and metabolic activity in human RMS cell lines BrdU and WST-1 assays were 

performed, respectively. As shown in Figure 16A and B oncRAS decreased the proliferative 

capacity and metabolic activity in RUCH-2 cells, whereas it increased it in RMS-13 (Figure 

16B und D). 

A
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D

 
Figure 16: Modulation of the proliferative capacity and metabolic activity in oncRAS transduced 

RMS cell lines. Quantification of the proliferative capacity measured by BrdU assay and metabolic activity 

by WST-1 of (A and B) RUCH-2 and (C and D) RMS-13 cells stably transduced with either pMSCVpuro 

(pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-KRAS12V (KRAS12V), or pMSCVpuro-

HRAS12V (HRAS12V), as indicated. BrdU incorporation and metabolic activity of the pMSCVpuro-

transduced cells was set to 100 %. All data represent at least 3 independent experiments measured in 
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triplicates displayed as mean ± SEM. Statistical significance was tested by using Mann-Whitney test. * 

P<0.05,** P<0.005, *** P<0.0005 and **** P<0.0001 

In order to investigate if canonical HH signaling, RAF/MEK/ERK signaling or PI3K 

signaling are involved in the changes of the proliferation and metabolic activity behavior in 

RMS cells, the cells were incubated for 24h with HhA, UO126 and PI103. When RUCH-2 

cells were incubated with HhA and PI103, proliferation and metabolic activity were decreased 

in all settings independently of the RAS activity (Figure 17). However, UO126 significantly 

increased metabolic activity in RUCH-2 transduced with oncogenic NRAS and KRAS and the 

proliferative capacity in NRAS-transduced cells to the basal levels detected in control RUCH-

2 cells. This indicates that in RUCH-2 transduced with oncogenic NRAS or KRAS it is MEK 

activity that decreases the metabolic capacity. In addition, MEK activity also inhibits the 

proliferative capacity of NRAS- transduced cells. The data also suggest that MEK inhibitors 

are probably not a good treatment option in ERMS harboring oncogenic RAS mutations.  
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Figure 17: oncRAS modulates the proliferative capacity and metabolic activity ERMS. Quantification 

of the proliferative capacity measured by BrdU assay (A-D) and metabolic activity by WST-1 (F-H) of 

RUCH-2 cells stably transduced with either pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), 

pMSCVpuro-KRAS12V (KRAS12V), or pMSCVpuro-HRAS12V (HRAS12V), as indicated. Cells were 

treated for 24h with solvent, HhA, UO126 or PI103 for 24h. The proliferation rates and metabolic activity 

of the solvent controls were set to 100 % (please note that in the figures showing data of solvent treated 

control and oncRAS cell lines, the data of solvent treated oncRAS cell lines were set to 100%). All data 

represent at least 3 independent experiments measured in triplicates displayed as mean ± SEM. Statistical 

significance was tested by using Mann-Whitney test. * P<0.05, ** P<0.005, *** P<0.0005 and **** 

P<0.0001. Please note that the depiction of significance is equal as in Figure 12.   
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Figure 18: oncRAS modulates the proliferative capacity and metabolic activity in ARMS. 

Quantification of the proliferative capacity measured by BrdU assay (A-D) and metabolic activity by WST-

1 (F-H) of RMS-13 cells stably transduced with either pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V 

(NRAS12V), pMSCVpuro-KRAS12V (KRAS12V), or pMSCVpuro-HRAS12V (HRAS12V), as indicated. 

Cells were treated for 24h with solvent, HhA, UO126 or PI103 for 24h. The proliferation rates and 

metabolic activity of the solvent controls were set to 100 %(please note that in the figures showing data of 

solvent treated control and oncRAS cell lines, the data of solvent treated oncRAS cell lines were set to 

100%). All data represent at least 3 independent experiments measured in triplicates displayed as mean ± 

SEM. Statistical significance was tested by using Mann-Whitney test. * P<0.05, ** P<0.005, *** P<0.0005 

and **** P<0.0001 (depiction of significant values as in Figure 17). 
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In RMS-13 cells the incubation with the above mentioned inhibitors revealed that HhA and 

PI103, but not UO126, can inhibit proliferation and metabolic activity of control cells (Figure 

18). This indicates that proliferation of RMS-13 control cells may be regulated by HH and 

PI3K/mTOR signaling. HhA and PI103 also repressed proliferation and metabolic activity in 

RMS-13 cells that express oncogenic NRAS, KRAS and HRAS. This was different for 

UO126 that not consistently repressed the proliferative capacity and metabolic activity of 

oncRAS-transduced RMS-13 cells. 

5.1.10. oncRAS slightly induces muscle differentiation in RMS-13 cells 

Since it is known that oncogenic RAS signaling is involved in processes of differentiation 

(Haigis et al. 2008), the changes in the expression of muscle differentiation markers were 

measured by qRT PCR reaction. As shown in Figure 19 all 3 oncRAS slightly increased the 

expression levels of the muscle differentiation markers MYOD and DESMIN in RMS-13 cells. 

However the increase was not significant. This indicates that oncRAS may induce a slightly 

more differentiated phenotype in RMS-13 cells.  

Unfortunately the ERMS cell line RUCH-2, does not or merely expresses muscle 

differentiation markers, which were also not upregulated by oncRAS. 

A B 

  

Figure 19: Slightly increased muscle differentiation in oncRAS-transduced RMS-13 cells. 

Quantification of (A) MYOD and (B) DESMIN expression levels measured by qRT-PCR of RMS-13 stably 

transduced with either pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-

KRAS12V (KRAS12V), or pMSCVpuro-HRAS12V (HRAS12V), as indicated. The expression levels of the 

oncRas transduced cells were normalized to expression in RMS-13 pMSCV which was set to 1. All data 

represent at least 2 independent experiments measured in triplicates displayed as mean ± SEM. Statistical 

significance was tested by using Mann-Whitney test.  
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5.1.11. oncRAS-induced HH signaling inhibition in RMS-13 cells is not 

mediated by DYRK1B  

In the ARMS cell line RMS-13 oncRAS probably inhibited GLI1 expression manner 

independently of the MEK or the PI3K/mTOR axis. Thus, the inhibition may be mediated by 

a yet unknown factor or signaling cascade. A good candidate is DYRK1B that can be 

activated by RAS and that has been reported to block the function of GLI2 and to promote 

GLI3 repressor formation (Lauth et al. 2010). Surprisingly, and as shown in Figure 20 

oncRAS expression decreases DYRK1B levels in RMS-13.  

Next, DYRK1B was targeted with 2 specific siRNAs i.e. DYRK1B_01 and DYRK1B_02 

siRNA from Dharmacon (D-004806-01 and D-004806-02).  

 
Figure 20: Downregulation of DYRK1B expression in oncRAS-transduced RMS-13 cells. 

Quantification of DYRK1B expression levels measured by qRT-PCR in RMS-13 cells stably transduced 

with either pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V (NRAS12V), pMSCVpuro-KRAS12V 

(KRAS12V), or pMSCVpuro-HRAS12V (HRAS12V). Expression levels were normalized to 18S rRNA 

levels. The expression levels of the oncRas transduced cells were normalized to expression in RMS-13 

pMSCV which was set to 1. All data represent at least 2 independent experiments measured in triplicates 

displayed as mean ± SEM. Statistical significance was tested by Mann-Whitney test. * P<0.05 and ** 

P<0.005 

The DYRK1B knockdown significantly decreased DYRK1B expression in RMS-13 cells 

transduced with the control vector (pMSCV in Figure 21A). This decrease went along with an 

inhibition of the GLI1 expression (Figure 21B) and not – as expected – with an induction of 

GLI1. A similar result was revealed in oncRAS-transduced RMS-13 upon siRNA treatment. 

Although the decrease of DYRK1B expression in oncRAS-transduced RMS-13 was not 

significant it was accompanied by a decrease in GLI1 expression level.  
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Unfortunately, due to shortage of time I was not able to repeat the experiment using different 

siRNAs that would have allowed for a more efficient knockdown of DYRK1B. Nevertheless, 

the coincidence of significant downregulation of both DYRK1B and GLI1 expression in 

oncRAS RMS-13 cells indicates that DYRK1B in RMS-13 activates GLI1 expression rather 

than inhibiting it. This would be different from human pancreatic cancer in which DYRK1B 

inhibits HH signaling activity (Lauth et al. 2010).  

A  

 
B 

 
Figure 21: DYRK1B knockdown decreases the expression levels of GLI1 and DYRK1B in oncRAS-

transduced RMS-13 cells. Quantification of (A) DYRK1B and (B) GLI1 expression levels measured by 

qRT-PCR in RMS-13 cells stably transduced with either pMSCVpuro (pMSCV), pMSCVpuro-NRAS12V 

(NRAS12V), pMSCVpuro-KRAS12V (KRAS12V), or pMSCVpuro-HRAS12V (HRAS12V) without and 

with DYRK1B knockdown. Expression levels were normalized to 18S rRNA levels. All expression levels 

were normalized to expression of solvent treated RMS-13 pMSCV cells which was set to 1. All data 

measured in triplicates displayed as mean ± SEM. Statistical significance was tested by using Mann-

Whitney test. Significances are discussed in the text.   
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5.2. Growth of oncRas-transduced RMS cell lines in nude mice  

Additionally to the above mentioned in vitro analysis of human RMS cell lines, the cells were 

transplanted in nude mice. This was done to investigate if oncRAS influence the growth 

behavior of human RMS cell lines in vivo.  

5.2.1. oncRAS change the tumor growth behavior of RMS tumor xenografts  

RMS cells were injected into the flanks of 8 weeks old nude mice (see chapter 4.17.6). To 

circumvent individual mouse effects that might have influenced the growth of control- and 

oncRAS-transduced cell lines, each mouse was injected with pMSCVpuro transduced RMS 

cells on one side and with either pMSCVpuro-NRAS12V or pMSCVpuro-KRAS12V transduced 

RMS cells into the other side. When the tumors were visible, the size was measured 5 to 7 

times a week.  

Unfortunately and unexpectedly, the transplantation of RUCH-2 (ERMS) cells was 

unsuccessful, because the injected tumor cells didn’t form tumors at all, even when a higher 

number of cells were injected.  

When oncRAS-transduced RMS-13 cell lines were transplanted both oncogenic KRAS and 

NRAS induced a more aggressive tumor growth. This was demonstrated by increased tumor 

size and weight (Figure 22). Indeed, the monitoring studies had to be stopped at day 18 

(NRAS12V) or at day 20 (KRAS12V) after transplantation. Thus, the tumor size of the oncRAS 

RMS-13 xenografts reached a diameter of 1.5 cm, which is an abort criteria in transplantation 

studies of tumor cells. Within this time frame most of the control xenografts derived from 

pMSCVpuro-transduced RMS-13 cells did not grow. Therefore, only very small tumors could 

be isolated, which hampered further molecular analyses of RNA or protein lysates. Taken 

together, these results indicate that oncogenic NRAS and KRAS increase the tumor growth 

rate of human ARMS cells. This data fits to the in vitro data showing that both NRAS and 

KRAS induce a more aggressive growth behavior of RMS-13 cells (see Figure 22). 
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C D 

 

 

Figure 22: oncRAS enhances tumor growth of RMS-13 cells. 5x106 cells in a final volume of 100 µl 

were injected into the flanks of 8 weeks old nude mice. When the tumors were visible the size was 

measured with a caliper. At the end tumors were isolated and weighted. (A) Growth curve and (B) tumor 

weight of the tumors derived from RMS-13 xenografts that have been transduced with pMSCVpuro 

(pMSCV) or pMSCVpuro-NRAS12V (NRAS12V). (C) Monitoring curve and (D) tumor weight of the 

tumors derived from RMS-13 xenografts that have been transduced with pMSCVpuro (pMSCV) or 

pMSCVpuro-KRAS12V (KRAS12V). All data are displayed as mean ± SEM. Statistical significance of the 

tumor volume was tested by Wilcoxon test and of the tumor weight by using unpaired t test with Welch`s 

correction. * P<0.05,** P<0.005 and *** P<0.0005. 
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5.2.2. oncRAS does not obviously influence the morphology of RMS xenografts  

To investigate if oncRAS influenced the morphology of tumor xenografts from RMS-13 cells, 

the tumors were embedded in paraffin, sliced into sections, mounted on a slide and stained by 

H&E staining (see chapter 4.16.5). As illustrated in Figure 23, oncRas in RMS-13 does not 

obviously change the tissue structure.  

A B C 

   
Figure 23: Histology of oncRAS-transduced RMS-13 xenografts. Representative pictures from H&E 

stained tumors derived from RMS-13 cells that have been stably transduced with (A) pMSCVpuro (B) 

pMSCVpuro-NRAS12V or (C) pMSCVpuro-KRAS12V, Scale bar = 100 µm.  
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5.3. Growth of RMS after conditional expression of oncRas in Ptch mutant 

mice 

5.3.1. Generation and identification of Ptchdel/+oncRasfl/-Myf5creERTtg/- mice 

As already explained in the introduction, Ptchdel/+ mice were used as an in vivo mouse model 

for RMS. Figure 24 shows the wt and mutant Ptch locus and the location of the primers used 

for genotyping tail biopsies of Ptchdel/+ mice. 

A

 

B

 
Figure 24: Scheme of the Ptch locus and genotyping of heterozygous Ptchdel mice. (A) The figure shows 

the wtPtch allele and the mutant Ptchdel allele in which the floxed Exon 8 and 9 were deleted. The primer 

locations are indicated as blue arrows (1 = mPtcdelNx-F, 2 = mPtcNxR, 3 = mPTCNx_F and 4 = 

mPTCwt_R). The figure was adapted from (Uhmann et al. 2007). (B) The primer pairs mPtcdelNx-F (1) 

and mPtcNxR (2) and mPTCNx_F (3) and mPTCwt_R (4) indicated in panel A were used to identify the 

Ptchdel allele (160 bp) and wtPtch allele (455 bp), respectively, by PCR performed on mouse tail DNA. 

Line 1 shows genotyping of a homozygous wtPtch mouse and line 2 that of a heterozygous Ptchdel/+ mouse.  

As shown by our working group, Ptchdel/+ mice develop RMS depending on the genetic 

background. On a mixed C57BL/6 x BALB/c (B6xBALB 50 %:50 %) background 

approximately 60 % of Ptchdel/+ mice develop this tumor, whereas inactivation of one Ptch 

allele on a pure B6 background does not result in RMS formation. On a pure BALB 

background approximately 90 % of Ptchdel/+ develop RMS. In order to see whether the 

expression of oncRas genes has an impact on RMS incidence, latency time or multiplicity a 

mixed B6xBALB background was anticipated. This was due to the fact that a RMS incidence 

of 60% allows for monitoring of an increase as well as a decrease in Ras-induced changes of 

the tumor incidence. For this purpose heterozygous Ptchdel/+ (100% BALB) mice were bred to 

mice that conditionally express oncogenic KRas (LSL-K-RASG12D(Tuveson et al. 2004)), 

HRas (FR-HRASG12V (Chen et al. 2009)) or NRas (NRAS LSL-G12D (Haigis et al. 2008)). 

All conditional Ras mutants were on a pure B6 background. Whereas LSL-K-RASG12D and 

NRAS LSL-G12D mice conditionally express the murine RasG12D variant, FR-HRASG12V 

mice conditionally express the murine RasG12V variant (see Figure 25). The conditional 
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expression of the respective Ras variants is accomplished in the presence of a cre 

recombinase, that removes a floxed stop cassette in NRasG12Dfl/- and KRasG12Dfl/- mice or 

the floxed wtRas locus in HRasG12Vfl/- mice (see Figure 25). This results in the expression of 

the oncogenic Ras variants.  

A

 

B 
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Figure 25: Scheme of the Ras loci and genotyping of conditional oncogenic Ras mice. (A) The figure 

shows the wtNRas allele, the floxed NRasG12Dfl allele and the recombined NRasG12Ddel allele. The floxed 

NRasG12Dfl allele consists of a lox-stop-lox element (LSL) (red triangles and squared) which was inserted 

into the first intron, upstream of the G12D activating mutation in the second exon (Haigis et al. 2008). In 

the presence of a cre recombinase the stop element is excised and NRasG12D is expressed. The primer 
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locations are indicated as blue arrows (1 = mNRas-WT-For, 2 = mNRas-WT-Rev and 3 = NRas-Mut-Rev). 

The figure was adapted from (Haigis et al. 2008) (B) The primers mNRas-WT-For (1), mNRas-WT-Rev 

(2) and NRas-Mut-Rev (3) indicated in panel A identify the genomic wtNRas allele (487 bp) and the 

NRasG12Dfl allele (345 bp) by PCR performed on mouse tail DNA. Line 1 shows genotyping of a 

homozygous wtNRas mouse and line 2 that of a heterozygous NRasG12Dfl/-mouse. (C) The figure shows 

the wtKRas allele, the floxed KRasG12Dfl allele and the recombined KRasG12Ddel allele. The floxed 

KRasG12Dfl allele consists of a lox-stop-lox element (LSL) (red triangles and squared) which was inserted 

into the first intron, upstream of the G12D activating mutation in the second exon. In the presence of a cre 

recombinase the stop element is excised and KRasG12D is expressed. The primer locations are indicated as 

blue arrows (4 = Kras-WT_UP1, 5 = Kras-URP_Lp1 and 6 = KrasG12Dmut_UP). The figure was adapted 

from (Tuveson et al. 2004) (D) The primers Kras-WT_UP1 (4), Kras-URP_Lp1 (5) and KrasG12Dmut_UP 

(6) indicated in panel C were used to identify the wtKRas allele (270 bp) and the KRasG12Dfl allele 

(170 bp). Line 1 shows genotyping of a homozygous wtKRas mouse and line 2 that of a heterozygous 

KRasG12Dfl/-mouse. (E) The figure shows the wtHRas allele, the floxed HRasG12Vfl allele and the 

recombined HRasG12Vdel allele. The floxed HRasG12Vfl allele consists of a floxed (red triangles) wtHRas 

followed by a complete mutant HRasG12V gene. The respective vector was inserted into the first intron of 

the wt Hras locus. In the presence of a cre recombinase the floxed wtHRas sequence is excised and 

HRasG12V is expressed. The primer locations are indicated as blue arrows (7 = eCreRASF, 8 = eCreRasR, 

9 = mHRasG12Vrel F1and 10 = mHRasG12Vrel R1). The primers 9 and 10 are used for the quantification 

from cDNA for the recombination assay (see Figure 26C). The figure was adapted from (Chen et al. 2009) 

(F) The primers eCreRASF (7) and eCreRasR (8) indicated in panel E were used to identify the wtHRas 

allele (622 bp) and the HRasG12Vfl allele (667 bp). Line 1 shows genotyping of a homozygous wtHRas 

mouse and line 2 that of a heterozygous HRasG12Vfl/- mouse.  

Myf5creERTtg/- mice express a tamoxifen-inducible Cre recombinase under the control of 

Myf5 promoter (see Figure 26) which is expressed in RMS (Figure 29). For this purpose the 

Ptchdel/+ oncRasfl/- mice were crossed to Myf5creERTtg/- mice that were on a mixed 

background (50 % BALB, 25 % B6, 12.5 % FVB, 12.5 % SV129) (see Figure 26).  
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A B 

  

Figure 26: Scheme of the Myf5 locus and genotyping of the inducible Myf5CreERT mice. (A) The 

figure shows the wtMyf5 allele and the Myf5creERTtg allele. For the Myf5CreER mouse line, a targeting 

vector was constructed that placed an ires-CreER™-FRT-Neo-FRT cassette in the 3′ untranslated region of 

the Myf5 gene following the stop codon in exon3. The FRT (green triangle) flanked Neo-cassette was 

flipped out resulting in the left FRT-site behind the CreERT insert. The primer locations are indicated as 

blue arrows (1 = cK382, 2 = ck383, 3 = c-F and 4 = c-R). The figure was adapted from (Biressi et al. 2013). 

(B) The primer pairs cK382 (1) and cK383 (2) and c-F (3) and c-R (4) indicated in panel A identify the 

genomic wtMyf5 allele (454 bp) and the Myf5creERTtg allele (241 bp) by PCR performed on mouse tail 

DNA. Line 1 genotyping of a wtMyf5 mouse, line 2 genotyping of a homozygous Myf5creERTtg/tg mouse 

and line 3 that of a heterozygous Myf5creERTtg/- mouse. 

In the resulting Ptchdel/+oncRasfl/-Myf5CreERTtg/- offspring (50 % BALB, 37.7 % B6, 6.25 % 

FVB, 6.25 % SV129) the expression of oncogenic NRas, KRas or HRas was induced at an age 

of 4 weeks by tamoxifen. The mice were monitored weekly for up to 200 days for RMS 

formation. A schematic representation of the monitoring study is shown in Figure 27. 

 

 

Figure 27: Schematic representation of the schedule for mouse monitoring. The Ptchdel/+oncRasfl/-

Myf5CreERTtg/- mice were biopsied at the age of 1-7 days, genotyped and half of them were treated at an 

age of 4 weeks with 1mg tamoxifen on 5 consecutive days. Untreated Ptchdel/+oncRasfl/-Myf5CreERTtg/- 

served as controls. Both cohorts were monitored for up to an age 200 days and sacrificed. All tumors and 

the reference tissue (skeletal muscle) were isolated. 

To test the extent of the Cre recombinase induction, Myf5creERTtg/+ mice were crossed with 

the R26R reporter mice. The R26R reporter mice express a Cre-inducible LacZ gene under the 

control of the endogenous Rosa26 promoter. The expression of the β-galactosidase gene was 
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investigated in double heterozygous Myf5creERTtg/+R26R+/- mice after the injection (i.p.) of 

5 mg tamoxifen for five consecutive days. One week after the first injection the tissue was 

isolated kyro-embedded and the activity of the Myf5creERT was detected by X-Gal staining 

(Figure 28)  

 Skeletal muscle Heart Intestine 

Uninduced 

   

Tamoxifen-
induced 

   
Figure 28: Tamoxifen-induced activity of the Myf5creERT in R26R-reporter mice. X-Gal-stainings of 

kryo-sections of tissues isolated from uninduced and tamoxifen-induced Myf5creERTtg/+R26R+/-mice. Scale 

bar = 50 µm.  

The skeletal muscle, heart and intestine were isolated from uninduced and tamoxifen-induced 

Myf5creERTtg/+R26R+/- mice. Especially in the skeletal muscle of tamoxifen-induced mice a 

weak blue staining could be detected, whereas heart and intestine were negative. Furthermore 

I also planned to investigate the extent of the Cre induction in RMS. For this purpose 

heterozygous Ptchdel/+ Myf5creERTtg/+R26R+/- mice were generated. Unfortunately, so far 

these mice have not developed any RMS.  

However, to confirm recombination at the Ras loci after tamoxifen-mediated Cre induction, 

gDNA from skeletal muscle and RMS of uninduced and tamoxifen-induced 

Ptchdel/+NRasG12Dfl/-Myf5creERTtg/- and Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice was 

isolated (see chapter 4.15.1). The gDNA was analyzed by PCR (see chapter 4.15.5) with the 

primer pairs mNRas-WT-For and mNRas-WT-Rev for Ptchdel/+NRasG12Dfl/-Myf5creERTtg/- 

mice and Kras-WT_UP1 and Kras-URP_Lp1 for Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice. 

As seen in Figure 29A and B, in skeletal muscle only the wt band was detected from both 
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tamoxifen-induced and none-induced mice. In addition, the wt band was also detected in RMS 

from none-induced mice. The wt band has a size of 487 bp for Ptchdel/+NRasG12Dfl/-

Myf5creERTtg/- and a size of 270 bp for Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- tissue. In 

contrast the PCR (using the same primers) on the recombined gDNA results in a 30 bp larger 

band (see Figure 25 panel A and C recombined NRasG12Ddel and KRasG12Ddel allele), which 

is due to the remaining LoxP site after successful recombination. This band was only detected 

in RMS of mice that have been treated with tamoxifen. This shows that Myf5creERT is not 

leaky and that it is indeed strongly expressed in RMS.  

Confirmation of the recombination at the floxed HRas locus was not possible by PCR on 

gDNA. For the testing cDNA from SM and RMS of tamoxifen-induced (oncHRas) and 

uninduced (wtHRas) Ptchdel/+HRasG12Vfl/-Myf5creERTtg/- mice was amplified by PCR (see 

chapter 4.15.5) with the primer pair mHRasG12Vrel F1 and mHRasG12Vrel R1 (for primer 

location see Figure 25E primer 9 and 10). After amplification the PCR product was digested 

with BpmI. Since the G12V mutation destroys a BpmI site within the HRas sequence BpmI 

only digests wtHRas but not oncHRas cDNA. We would have expected to see just the 

digested fragments at 230 bp and 72 bp in uninduced mice and in tamoxifen-induced mice 

also the undigested one at 302 bp. However, as seen in Figure 29C the digested of the PCR 

product from SM and RMS cDNA of uninduced and tamoxifen-induced mice results in all 

three bands. Thus, suggesting that this system seems to be leaky. Nevertheless, the undigested 

band could also be detected in wt mice without a HRasG12V allele (data not shown), 

indicating that there seems to be an error in the experimental setup. 

Taken together these results indicate that the recombination at the NRas and KRas loci after 

tamoxifen-mediated Cre induction in induced Ptchdel/+oncRasfl/-Myf5creERTtg/-mice was 

successful in RMS, whereas the recombination at the HRas loci remained to be discovered.  
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Figure 29: Recombination at the Ras loci in tamoxifen induced oncNRas and oncKRas 

Ptchdel/+oncRasfl/-Myf5CreERTtg/+ mice. The recombination at the Ras loci was analyzed by PCR on 

gDNA obtained from SM and RMS of uninduced and tamoxifen-induced (A) Ptchdel/+NRasG12Dfl/-

Myf5creERTtg/-, (B) Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice and (C) on cDNA from SM and RMS 

undigested and digested with BpmI of uninduced and tamoxifen-induced Ptchdel/+HRasG12Vfl/-

Myf5creERTtg/- mice. For detailed explanation see text.  

In order to get insight into the functionality of the oncRas alleles, we next measured Ras 

activity was measured in RMS of uninduced and tamoxifen-induced Ptchdel/+NRasG12Dfl/-

Myf5creERTtg/-, Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- and Ptchdel/+HRasG12Vfl/-

Myf5creERTtg/- mice using the Ras Activation ELISA Assay Kit. As demonstrated in Figure 

30, the Ras signaling activity was increased in RMS of the induced Ptchdel/+NRasG12Dfl/-

Myf5creERTtg/-, Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-and Ptchdel/+HRasG12Vfl/-Myf5creERTtg 

mice compared to none-induced mice. Together these data show that the recombination at the 

Ras loci after tamoxifen-mediated Cre induction was successful and results in the activation 

of the Ras pathway in RMS of induced mice.  
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A B C 

 
Figure 30: Enhanced Ras activity in RMS from induced Ptchdel/+oncRasfl/-Myf5creERTtg/- mice. Ras 

activity analysis using the Ras Activation ELISA ASSAY Kit in protein lysates of RMS from uninduced 

(wtRas) and tamoxifen-induced (oncRas) (A) Ptchdel/+NRasG12Dfl/-Myf5creERTtg/-mice (B) 

Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-mice and (C) Ptchdel/+HRasG12Vfl/-Myf5creERTtg/- mice, as indicated. 

The Ras activity in wtRas RMS was set to 1.  

In a next setting of preparatory experiments, the influence of tamoxifen on the RMS growth 

was analyzed. For this purpose Ptchdel/+ mice on exactly the same background as 

Ptchdel/+oncRas Myf5creERTtg/-mice were used. As shown in Table 18 and Figure 31, the 

injection of 1 mg tamoxifen on 5 consecutive days slightly increases but does not significantly 

change the RMS free survival of the animals. It also does not change the tumor incidence or 

RMS multiplicity. 

Table 18: Influence of Tamoxifen on RMS development of Ptchdel/+ mice  
Genotype Status of 

tamoxifen 
induction 

N Mice with 
RMS 

Mice with 
multiple 

RMS 

RMS 
number 

per mouse 
(mean±SEM) 

Median latency 
time of RMS 

(days) 

Ptchdel/+ uninjected 30 17 
(60.7 %) 

9 (52.9%) 1.650 ± 0.187 60 

Ptchdel/+ tamoxifen-
injected 

29 14 
(53.8 %) 

5 (35.7%) 1.429 ± 0.173 118 
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Figure 31: No significant effect of tamoxifen on RMS incidence, multiplicity and latency time. (A) 

Kaplan Mayer Curve showing the RMS free survival of Ptchdel/+ mice (black) and Ptchdel/+ mice injected 

with 5 mg tamoxifen (grey). Every event represents the detection of the first RMS in a mouse. (B) Graph 

shows the tumor multiplicity as RMS/animal of Ptchdel/+ mice and Ptchdel/+ mice injected with 5 mg 

tamoxifen. Statistical significance of the RMS-free survival was tested by log-rank test (P=0.1955), of the 

latency time by Gehan-Breslow-Wilcoxon test (P=0.078) and of the multiplicity by Chi-squared test 

(P=0.1687).  

5.3.2. Characterization of RMS after conditional expression of oncNRas in Ptch 

mutant mice 

To analyze the effects of the expression of oncNRas on the growth of Hh-associated RMS, 65 

Ptchdel/+NRasG12Dfl/-Myf5CreERTtg/- mice were randomized in two groups and treated with 

tamoxifen or left untreated as described above. 

5.3.2.1. oncNRas increases the expression of Gli transcription factors and 

downregulates expression of early and late muscle markers in RMS of 

Ptch mutant mice  

As mentioned above expression of oncRAS in human RMS cell lines can influence HH 

signaling activity. In order to evaluate whether this was also true for RMS of Ptch mutant 

mice the expression levels of Gli1-3 was measured in skeletal muscle that was used as a 
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reference tissue and in RMS from tamoxifen-induced and uninduced Ptchdel/+NRasG12Dfl/-

Myf5creERTtg/-mice (Figure 32). The tumors of induced Ptchdel/+NRasG12Dfl/-Myf5creERTtg/-

mice (n=6) show a significantly increased expression of the Hh pathway components Gli2 and 

Gli3 while the expression of Gli1 seems to be unchanged. 

 
Figure 32: Increased expression of Gli2 and Gli3 by oncNRas in Ptch mutant RMS. Quantification of 

the Gli1, Gli2 and Gli3 expression levels measured by qRT-PCR analyses on cDNA from RMS of not 

induced (expression levels were set to 1) and induced Ptchdel/+NRasG12Dfl/-Myf5creERTtg/- mice. For this 

purpose gene expression was measured in both RMS and skeletal muscle. Then all expression levels were 

normalized to 18S rRNA levels. Next the data was normalized to expression in normal skeletal muscle of 

the same animal. Then all data was pooled and the plots finally show the relation of expression levels of 

oncNRas RMS to wtRas RMS that was set to 1. All data are displayed as mean ± SEM. Statistical 

significance was tested by Mann-Whitney test. * P<0.05 

Due to the fact that active Ras signaling can influence Raf/Mek/Erk and PI3K/Akt signaling, 

the phosphorylation status of Erk and Akt were examined by Western blot analysis (see 

Chapter 4.16.3). As shown in Figure 33 the expression of oncNRas in Ptch mutant RMS does 

not obviously change phosphorylation levels of Erk and Akt.  
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Figure 33: No obvious phosphorylation changes in oncNRas-expressing Ptch mutant RMS. Western 

blot analyses of Akt, pAkt, Erk, pErk in protein lysates from RMS isolated from uninduced (wtRas) and 

tamoxifen-induced (oncNRas) Ptchdel/+NRasG12Dfl/-Myf5creERTtg/-mice. Hsc70 expression levels served as 

loading control.  

Since Ras signaling also influences differentiation processes, the expression of the 

myogenesis proliferation and determination markers MyoD and Myf5 and of the 

differentiation marker Myogenin was measured by qRT PCR in skeletal muscle and RMS of 

wtRas (n=6) and oncNRas (n=6) mice. As illustrated in Figure 34, the expression of the markers 

is decreased in RMS that express oncogenic NRas compared to control. Although the decrease is 

not significant that data indicate that oncogenic NRas may inhibit the expression of muscle 

differentiation in RMS, at least in this mouse model.   

 
Figure 34: Decreased expression of MyoD and Myogenin in oncNRas-expressing Ptch mutant RMS. 

Quantification of MyoD, Myf5 and Myogenin expression levels measured by qRT-PCR analyses on cDNA 

from RMS and skeletal muscle of uninduced and tamoxifen-induced Ptchdel/+NRasG12Dfl/-Myf5creERTtg/- 

mice. Normalization procedure is given in Figure 32. The All data are displayed as mean ± SEM. Statistical 

significance was tested by using Mann-Whitney test. 
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5.3.2.2. oncNRas decreases multiplicity of RMS in Ptch mutant mice  

To investigate the effects of oncNras on the tumor incidence, latency time and RMS 

multiplicity, the mice were monitored weekly (see chapter 4.17.4) until an age of 200 days, if 

possible. As shown in Table 19 and Figure 35, the analysis of Ptchdel/+NRasG12Dfl/-

Myf5CreERTtg/- mice (wtRas n=32; oncNRas n=33) shows no significant differences in tumor 

incidence (62.5 % vs 60.6 %) (P = 0.835 for palpable RMS by log-rank test) or tumor-latency 

time (77.5 days vs 93 days) (P = 0.8449 for RMS by Gehan-Breslow-Wilcoxon test) between 

tamoxifen-induced mice compared to uninduced ones (Figure 35A). Thus, the NRas mutation 

did not alter the RMS-free survival. However, several mice developed more than one RMS, 

which were either detected during life or upon autopsy. Most interestingly, in mice with the 

NRas mutation the average number of tumors per mouse (1.850 ± 0.196 vs 1.364 ± 0.140) and 

the occurrence of multiple tumors (60 % vs 30 %) was significantly decreased compared to 

the wtRas controls (P = 0.0283) (Table 19). (Figure 35B). Together, these data suggest that 

oncogenic NRas in the Ptch mouse model for RMS inhibits tumor initiation and probably also 

progression of the tumors.  

Table 19: Influence of oncNRas on RMS development of Ptchdel/+NRasG12Dfl/-

Myf5CreERTtg/- mice  
Genotype Status of 

tamoxifen 
induction 

n Mice 
with 
RMS 

Mice with 
multiple 

RMS 

RMS 
number 

per mouse 
(mean±SEM) 

Median 
latency 
time of 

RMS (days) 
Ptchdel/+NRasG12Dfl/-

Myf5CreERTtg/- 
uninduced 32 20 

(62.5 %) 
12 (60 %) 1.850 ± 0.196 77.5 

Ptchdel/+NRasG12Dfl/-

Myf5CreERTtg/- 
tamoxifen-

induced 
33 20 

(60.6 %) 
6 (30 %) 1.364 ± 0.140 93 
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Figure 35: oncNRas decreases multiplicity of RMS of Ptch mutant mice. (A) Kaplan Mayer Curve 

showing the RMS free survival of wtRas (black) and oncNRas (grey) Ptchdel/+NRasG12Dfl/-Myf5CreERTtg/- 

mice. Every event represents the detection of the first RMS in a mouse. (B) Graph shows the tumor 

multiplicity as RMS/animal of wtRas and oncNRas Ptchdel/+NRasG12Dfl/-Myf5CreERTtg/- mice. Statistical 

significance of the RMS-free survival was tested by log-rank test (P=0.8356), of the latency time by 

Gehan-Breslow-Wilcoxon test (P=0.8449) and of the multiplicity by Chi-squared test (P=0.0283). 

5.3.2.3. oncNRas decreases the proliferation rate of RMS of Ptch mutant 

mice  

In order to investigate the impact of oncNRas on proliferative capacity of RMS of Ptch 

mutant mice immunohistochemically stainings of RMS were performed with the Ki67 

antibody. Ki67 is a nuclear protein required for proliferation. The tumors derived from wtRas 

(n=8) and oncNRas (n=7) Ptchdel/+NRasG12Dfl/-Myf5CreERTtg/- mice were stained and Ki67 

positive and negative nuclei were calculated (Figure 36).  
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Figure 36: Decreased proliferation of oncNRas expressing RMS of Ptch mutant mice. Ki-67 staining 

of tumors derived from Ptchdel/+NRasG12Dfl/-Myf5CreERTtg/- mice expressing (A) wtRas (20x 

magnification) or (B) oncNRas (20x magnification). (C) Percentage of Ki67 positive nuclei counted on 

paraffin section of wtRas and oncNRas-expressing RMS derived from Ptch mutant mice. 6 pictures per 

section per RMS were analyzed. More than 1000 cells were counted. All data are displayed as mean ± 

SEM. The cells were counted using image processing software FIJI as described in the Material and 

Methods section. Statistical significance was analyzed by Mann-Whitney Test. * P<0.05 

The results revealed that oncNRas RMS significantly reduced the number of Ki67 positive 

cells compared to RMS from wtRas animals (2.249 % ± 0.8144 % vs 5.311 % ± 1.768 %). 

These results indicate that oncogenic NRas reduces the proliferative capacity and thus the 

progression of Ptch deficient RMS. 

The histological characterization by microscopy was done in collaboration with Dr. Walter 

Schulz-Schäfer, Department of Neuropathology at the University of Göttingen. As revealed 

by H&E staining (see chapter 4.16.5) oncNRas expression does not change the histology of 

RMS of Ptch mutant mice (Figure 37).  
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Figure 37: oncNRas expression does not change the histology of Ptch mutant RMS. H&E stainings of 

RMS derived from Ptchdel/+NRasG12Dfl/-Myf5CreERTtg/- mice expressing wtRas are shown in (A) and (B). 

(A) shows 10x magnification; scale bar=100 µm and (B) a 20x magnification; scale bar = 50 µm. (C) and 

(D) show RMS expressing oncNRas. (C) shows a 10x magnification, scale bar = 100 µm and (D) a 20x 

magnification; scale bar = 50 µm.  

 

5.3.3. Characterization of RMS after conditional expression of oncKRas in Ptch 

mutant mice 

To analyze the effects of the expression of oncKRas on the growth of Hh-associated RMS 65 

Ptchdel/+KRasG12Dfl/-Myf5CreERTtg/- mice were randomized in two groups.  
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5.3.3.1. oncKras decreases the expression of Gli transcription factors, 

increases pErk and pAkt levels and enhances the expression of early 

muscle differentiation markers in RMS of Ptch mutant mice  

As already seen in the study of Ptchdel/+NRasG12Dfl/-Myf5creERTtg/-mice oncRAS can 

influence HH signaling activity. In order to evaluate whether this was also true for RMS of 

Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-mice the expression of Gli1-3 was measured in the 

reference tissue skeletal muscle and RMS from tamoxifen-induced (n=5) and uninduced (n=2) 

mice (Figure 38). Preliminary expression analysis shows that the expression of all three Glis 

is suppressed in tumors of induced Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-mice. However the 

suppression was not significant.  

 
Figure 38: oncKRas decreases the expression of Glis in RMS of Ptch mutant mice. Quantification of 

the Gli1, Gli2 and Gli3 expression levels measured by qRT-PCR analyses on cDNA from RMS and 

skeletal muscle of uninduced and tamoxifen-induced Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice. For 

normalization of the data see Figure 32. All data are displayed as mean ± SEM. Statistical significance was 

tested by using Mann-Whitney test.  

Furthermore a western blot analysis from uninduced and tamoxifen-induced 

Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-mice was performed (see Chapter 4.16.3). To see whether 

active KRas signaling can influence Raf/Mek/Erk and PI3K/Akt signaling the 

phosphorylation status of Erk and Akt was examined. Figure 39 shows that the expression of 

oncKRas in Ptch mutant RMS results in increased phosphorylation of Erk and Akt, which 
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indicates that active KRas signaling in oncRas Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-mice 

results in the activation of the Raf/Mek/Erk and PI3K/Akt pathways. 

wtRas oncKRas 
RMS RMS 

 
Akt [60kDa] 

 
pAkt [60kDa] 

 
Erk [44/42kDa] 

 
pErk [44/42kDa] 

 
Hsc70 [70kDa] 

Figure 39: oncKRas increases pErk and pAkt levels in RMS of Ptch mutant mice. Western blot 

analyses of Akt, pAkt, Erk, pErk in protein lysates from RMS isolated from wtRas and oncKRas 

Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-mice. Hsc70 expression levels served as loading control.  

Next the expression of muscle differentiation markers were measured by qRT PCR in skeletal 

muscle and RMS of wtRas (n=2) and oncKRas (n=5) Ptchdel/+KRasG12Dfl/-Myf5creERTtg/-

mice. The preliminary data illustrated in Figure 40 show an increased expression of the early 

differentiation markes MyoD and Myf5 and a suppressed expression of the late differentiation 

marker Myogenin in RMS expressing oncogenic KRas compared to the control. Although the 

modulations are not significant (probably due to the small sample size) the data indicate that 

oncogenic KRas may cause a more undifferentiated RMS phenotype i.e. it causes expression 

of myogenesis proliferation and determination markers and concomitantly block late muscle 

differentiation. 



Results 

 

 

84 

 
Figure 40: Slightly increased expression of the myogenesis proliferation and determination markers 

and decreased muscle differentiation marker in oncRas RMS of Ptch mutant mice. Quantification of 

the MyoD, Myf5 and Myogenin expression levels measured by qRT-PCR analyses on cDNA from RMS and 

skeletal muscle of uninduced and tamoxifen-induced Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice. 

Normalization was done as described in Figure legend 32. All data are displayed as mean ± SEM. 

Statistical significance was tested by using Mann-Whitney test.  

5.3.3.2.  oncKRas increases incidence and shortens latency time of RMS in 

Ptch mutant mice  

In order to investigate if the above mentioned modulation of oncKRas has an influence on the 

tumor incidence, latency time RMS multiplicity, the mice were monitored weekly (see 

chapter 4.17.4) for up to 200 days. As illustrated in Table 20 and Figure 41, the analysis of 

Ptchdel/+KRasG12Dfl/-Myf5CreERTtg/- mice shows significant differences in tumor 

development. Thus, in mice expressing oncogenic KRas the tumor incidence is significantly 

increased when compared to the control (82.2 % vs 49.3 %, respectively) (P = 0.0013 for 

RMS by log-rank test). In addition the tumor-latency time is significantly decreased (79.7 

days vs 102.8 days, respectively) (P = 0.0018 for RMS by Gehan-Breslow-Wilcoxon test). 

However the oncKRas does not influence the tumor multiplicity. 
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Table 20: Influence of oncKRas on RMS development of Ptchdel/+KRasG12Dfl/-

Myf5CreERTtg/-  
Genotype Status of 

tamoxifen 
induction 

n Mice 
with 
RMS 

Mice with 
multiple 

RMS 

RMS 
number 

per mouse 
(mean±SEM) 

Median 
Latency 
time of 

RMS (days) 
Ptchdel/+KRasG12Dfl/-

Myf5CreERTtg/- 
uninduced 28 13 

(49.3 %) 
6 (46.2 %) 1.615 ± 0.241 103 

Ptchdel/+KRasG12Dfl/-

Myf5CreERTtg/- 
tamoxifen-

induced 
30 24 

(82.2 %) 
13 

(54.2 %) 
1.583 ± 0.119 79 

 
A 

 

B 

 

Figure 41: oncKRas significantly increases tumor incidence and shortens latency time. (A) Kaplan 

Mayer Curve with the RMS free survival of wtRas (black) and oncKRas (grey) Ptchdel/+KRasG12Dfl/-

Myf5CreERTtg/- mice. Every event represents the detection of the first RMS in a mouse. (B) Graph shows 

tumor multiplicity as RMS/animal in wtRas and oncKRas Ptchdel/+KRasG12Dfl/-Myf5CreERTtg/- mice. 

Statistical significance of the RMS-free survival was tested by log-rank test (P = 0.0013), of the latency 

time by Gehan-Breslow-Wilcoxon test (P = 0.0018) and of the multiplicity by Chi-squared test (P = 

0.3208).  

5.3.3.3. oncKras does not change the proliferation rate or morphology of 

RMS of Ptch mutant mice 

In order to investigate if the decreased latency time and the increased tumor incidence in 

oncKRas expressing Ptch mutant mice are caused by changes in the proliferative capacity, 

RMS isolated from wtRas (n=7) and oncKRas (n=9) Ptchdel/+KRasG12Dfl/-Myf5CreERTtg/- 

mice were stained with the Ki-67 antibody and the Ki-67 positive and negative nuclei were 
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calculated (Figure 36). The results show that oncKRas does not significantly increase the 

number of Ki67 positive nuclei compared to RMS from wtRas animal (4.21 % ± 2.252 % vs 

3.782 % ± 1.188 %). This indicates that oncogenic KRas signaling does not or only 

moderately increase the proliferative capacity of Ptch deficient RMS.  

A B C 

  
 

Figure 42: oncKRas does not significantly increase the proliferation rate of RMS of Ptch mutant 

mice. Ki-67 stainings of tumors derived from Ptchdel/+KRasG12Dfl/-Myf5CreERTtg/- mice expressing (A) 

wtRas (20x magnification) or (B) oncKRas (20x magnification). (C) The plot show the percentage of Ki67 

positive nuclei per paraffin section of wtRas and oncRas mice. All data are displayed as mean ± SEM. The 

cells were counted using image processing software FIJI. 3 (6 pictures per section per RMS were analyzed. 

More than 1000 cells were counted). Statistical significance was analyzed using Mann-Whitney test.  

As revealed by H&E staining (see chapter 4.16.5) oncKRas expression also does not 

obviously change the histology of RMS of Ptch mutant mice (Figure 43).  
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Figure 43: No differences in the tissue structure of RMS with and without active KRas signaling. 
H&E stainings of tumors derived from Ptchdel/+KRasG12Dfl/-Myf5CreERTtg/- mice expressing wtRas 
(A) 10x magnification (scale bar = 100 µm), (B) 20x magnification (scale bar = 50 µm) or oncKRas 
(C) 10x magnification (scale bar = 100 µm) and (D) 20x magnification (scale bar = 50 µm).  
 

5.3.4. Preliminary characterization of RMS after conditional expression of 

oncHRas in Ptch mutant mice  

In order to analyze the effects of oncogenic HRas (oncHRas) on RMS of Ptch mutant mice 60 

Ptchdel/+HRasG12Vfl/-Myf5CreERTtg/- mice were randomized in two groups. As also done with 

the other oncRas animals, one group was treated with 1 mg tamoxifen on 5 consecutive days. 

The other group was left untreated. Figure 44 and Table 21 shows the data for approximately 

half of the animals. Although half of the mice is still living, the preliminary analysis reveals 

that compared to the controls oncHRas significantly increases the tumor incidence (62.2 % vs 

83.3 %, respectively) (P = 0.0391 for RMS by log-rank test), and significantly decreases the 

tumor-latency time (95 days vs 78 days, respectively) (P = 0.0189 for RMS by Gehan-

Breslow-Wilcoxon test). It however does not influence the tumor multiplicity. 
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Table 21: Influence of oncHRas on RMS development of Ptchdel/+HRasG12Vfl/-

Myf5CreERTtg/-  
Genotype Status of 

tamoxifen 
induction 

nA Mice 
with 

RMSA 

Mice with 
multiple 
RMSB 

RMS number 
per mouse 

(mean±SEM)B 

Median 
Latency 
time of 
RMS 

(days)A 
Ptchdel/+HRasG12Vfl/-

Myf5CreERTtg/- 
uninduced 30 16 

(62.2 %) 
6     

(46.2 %) 
1.615 ± 0.241 95 

Ptchdel/+HRasG12Vfl/-

Myf5CreERTtg/- 
tamoxifen-

induced 
31 25 

(83.3 %) 
7     

(46.6 %) 
1.583 ± 0.119 78 

A=all mice  
B=mice that have been already subjected to autopsy  
 

A

 

B 

 
 
 

Figure 44: oncHRas significantly increases tumor incidence and shortens latency time. (A) Kaplan 

Mayer Curve with the RMS free survival of wtRas (black) and oncHRas (grey) Ptchdel/+HRasG12Vfl/-

Myf5CreERTtg/- mice. Every event represents the detection of the first RMS in a mouse. (B) Graph shows 

tumor multiplicity as RMS/animal in wtRas and oncHRas Ptchdel/+HRasG12Vfl/-Myf5CreERTtg/- mice. 

Statistical significance of the RMS-free survival was tested by log-rank test (P = 0.0391), of the latency 

time by Gehan-Breslow-Wilcoxon test (P = 0.0189) and of the multiplicity by Chi-squared test (P = 

0.4892). * P<0.05 
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6. Discussion  

6.1. Generation of RMS models with active Ras signaling in vivo and in vitro 

As already mentioned in the introduction activating mutations in RAS and active HH 

signaling are frequently found in human RMS (Paulson et al. 2011, Pressey et al. 2011, Zibat 

et al. 2010). Furthermore, these pathways are known to interact with each other. However, so 

far a connection of these two pathways in RMS has not been studied. The aim of this thesis 

was to investigate the interaction of Ras and Hh signaling in RMS. For this purpose, two 

experimental systems were established.  

The first experimental system of this thesis was the establishment of stable cell lines for the in 

vitro analysis. These cell lines were used as tools to investigate the effects of oncogenic RAS 

signaling on HH signaling in RMS. Benefits of such cell lines are the possibility for simple 

manipulation, working with homogeneous material and the ability of various experiments 

within a short time.  

It is known that active RAS signaling in cancer can have various outcomes depending on the 

tumor entity and can influence various functions of a cell. In this thesis we used ERMS and 

ARMS cell lines i.e. RUCH-2 and RMS-13, respectively, that are RAS wild type and that 

express major components of the HH signaling pathway. Despite the fact that so far just one 

case with an activating RAS mutation has been described in the alveolar subtype of RMS 

(Shern et al. 2014) we also checked the effects of RAS signaling on ARMS cells. With this 

experiment we hoped to get some insight into the mechanisms that prevent the prevalence of 

frequent RAS mutations in ARMS. These mechanisms could for example involve death of the 

cells due to apoptosis.  

Since it is known that the three RAS proteins NRAS, KRAS and HRAS can differ in their 

posttranslational modifications and also can influence different cellular functions (Hancock 

2003), cells expressing either oncogenic NRAS, KRAS or HRAS were generated and 

analyzed. In order to generate these cells, oncogenic RAS cDNA sequences, containing a 

glycine (G) to valine (V) substitution at residue 12 (G12V) that constitutively activate RAS 

signaling, were cloned into a viral vector and stably transduced into in the above mentioned 

RMS cell lines. This should result in ectopical activation of RAS signaling in those cells. 
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Indeed, both RUCH-2 and RMS-13 cells overexpressed RAS. RAS activity on the other hand 

was detected in RMS-13 cells by increased levels of pERK and in RUCH-2 cells by a RAS 

activation ELISA.  

The second experimental system was the in vivo mouse models that allowed for the 

investigation of the effects of active Ras signaling on RMS. For this purpose the Ptchdel/+ 

mouse model was employed. Based on histology these mice develop RMS resembling the 

human embryonal subtype. Furthermore, as human ERMS, these RMS show high Hh 

signaling activity, express Igf2 and show activity of PI3K/Akt signaling (Hahn et al. 2000, 

Kappler et al. 2003, Kappler et al. 2004). Thus, this mouse model is an ideal tool for studying 

murine RMS which share characteristics comparable to human ERMS. As mutations of all 

three subtypes of Ras were identified in human embryonal RMS (Stratton et al. 1989), distinct 

oncogenic Ras mouse models for each Ras subtype were generated, which namely were 

Ptchdel/+NRasG12Dfl/-Myf5creERTtg/-, Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- and 

Ptchdel/+HRasG12Vfl/-Myf5creERTtg/- mice.  

When the mice were treated with tamoxifen, recombination of the lox sites occurred in 

oncNRas and oncKRas Ptchdel/+oncRasfl/-Myf5CreERTtg/- mice were comparable to those 

reported for other mouse models employing the respective oncRas mice (Haigis et al. 2008). 

Whereas, the recombination of the lox sites at the HRas locus could not be proven 

Ptchdel/+HRasG12Vfl/-Myf5creERTtg/- mice. For this purpose a new experimental setup 

remained to be established to investigate for correct recombination at the HRas locus. 

However, the recombination seems to be successful in all Ptchdel/+oncRasfl/-Myf5CreERTtg/- 

mice thus the tamoxifen-induction led to a RMS-specific increased Ras activity in induced 

compared to uninduced. Therefore these mouse lines were a useful tool for the investigation 

of the effects of active Ras signaling on RMS that show Hh-signaling activity.  

6.2. No obvious morphological changes of RMS by oncRas  

Active Ras signaling can have several effects on a tumor cell, including changes in the 

morphology. For example active HRas signaling was reported to change the morphology from 

flat-like to round-up-like of e.g. mouse NIH3T3 fibroblasts, normal rat kidney (NRK) cell and 

human MSU-1.1 cells (Yeh et al. 2008). The authors showed that active HRas signaling via 

activation of MEK/ERK mediates proteasome degradation of the signal transducer and 

activator of transcription (Stat3), which resulted in disruption of the microtubule in those 
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cells. However, the activation of Ras signaling did not obviously change the morphology of 

neither RMS of induced Ptchdel/+NRasG12Dfl/-Myf5CreERTtg/- and Ptchdel/+KRasG12Dfl/-

Myf5CreERTtg/- mice nor of the cells and xenografts of the stably transduced RMS cell lines. 

This may indicate that oncRas signaling in RMS is not able to target the microtubule 

disruption by suppression of Stat3.  

6.3. Crosstalk of Ras and Hh signaling in RMS 
Several connections between the Ras and Hh signaling pathways have been shown in the past 

for example in lung, prostate and pancreas (reviewed by (Lauth 2011)). The modulations of 

active Ras signaling on Hh signaling can vary depending on the cancer and cell type. The 

outcome of such interaction can exhibit an activating as well as inhibiting effect on the 

activation state of these pathways (reviewed by (Aberger et al. 2012)). Since both pathways 

are active in RMS the potential crosstalk of RAS and HH signaling was investigated. 

First, the effect of active Ras signaling on Hh signaling activity was analyzed. Indeed, oncRas 

altered the expression of Gli transcription factors both in human and in murine RMS. In the 

mouse, the effects of NRas and KRas were different. However, neither the NRas nor the KRas 

mutation significantly altered the expression level of Gli1 which is a potent read-out for active 

Hh signaling. (The analysis of the effect of the HRas mutation was not possible because 

Ptchdel/+HRasG12Dfl/-Myf5creERTtg/-mice were still under observation). 

In addition, active KRas signaling seems to slightly inhibit the expression of the Hh 

components Gli2 and Gli3 in Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice, whereas in 

Ptchdel/+NRasG12Dfl/-Myf5creERTtg/- mice the activation of NRas signaling resulted in 

significant upregulation of expression levels of Gli2 and Gli3. The latter observation is in line 

with previous investigations of our collaboration partners Marcel Kool and Simone Fulda on 

human RMS, who showed by microarray gene expression analysis that fusion-gene-negative 

RMS with active RAS signaling show an increased expression of the HH components, 

especially of GLI2. Furthermore, the array analysis showed that all fusion-gene-negative RMS 

samples that show a RAS signature are within the group showing active HH signaling. This 

was seen in three independent cohorts of RMS samples. These microarray data indicate that 

there is a positive correlation between both pathways in RMS, at least in human primary RMS 

samples. Since NRAS mutations are the most frequent ones in human RMS and since the 
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microarray analysis did not distinguish between the individual RAS mutations in the samples, 

the mouse and human data may fit very nicely. Further analysis of the microarray data with 

discrimination between those samples with NRAS or KRAS mutations may allow for a better 

comparison of the mouse and human data. 

Taken together the mouse data indicate that oncNRas and oncKRas can modulate the 

expression levels of components of the Hh pathway. The not significant results with respect to 

RAS/Ras-modulated GLI1/Gli1 expression levels - that is currently thought to be the best 

read-out for HH/Hh signaling activity  - hampers a clear statement about the influence of RAS 

mutations on HH/Hh signaling activity in RMS. A clear statement probably requires a set of 

marker genes (instead of using only one i.e. GLI1/Gli1 as a read-out for HH/Hh signaling 

activity). Thus, in medulloblastoma HH signaling activity is demonstrated by a 5-gene-

signature that besides GLI1 includes PHK1, SHROOM2, PDLIM3, and OTX2 (Shou et al. 

2015). Such a signature should also be established for RMS. In addition in situ hybridization 

assays for Hh signaling components should be performed. Together, this could finally help to 

draw a final conclusion about whether Hh signaling activity is modulated by oncRas or not.  

Furthermore, the results from the in vivo experiments were different from those of the cell 

culture. Thus, the expression of all three RAS genes in cultured RUCH-2 and RMS-13 cells 

resulted in downregulation of the GLI1 transcription factors. This difference may be due to 

the fact that the cultured cells were not exposed to the tumor microenvironment that is well 

known to influence the tumor biology. Thus, the cells should be co-cultured with e.g. 

fibroblasts or bone-marrow-derived macrophages and the expression of the GLI transcription 

factors should be measured again. 

Nevertheless, the fact that activation of RAS signaling decreased HH signaling activity in 

cultured RMS cell lines is similar to the RAS-mediated inhibition of HH signaling activity in 

cultured pancreatic carcinoma cells. In this cell line active KRAS signaling concomitantly 

suppressed the activity of the transcription factor GLI2 and GLI3 and thus inhibited HH 

signaling activity as demonstrated by downregulation of GLI1 expression. Furthermore 

oncKRAS simultaneously increased the expression and secretion of SHH, which resulted in 

simultaneous activation of the surrounding tumor cells (Lauth et al. 2010). Gene expression 

analysis in RUCH-2 cells reveals the same effect on the expression levels of GLI1 (readout of 
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HH signaling activity) and SHH. However, in contrast to pancreatic carcinoma cells RUCH-2 

cells were not able to secrete SHH. Furthermore gene expression analysis in oncRAS-

transduced RUCH-2 cells in combination with specific inhibitors for canonical HH, 

RAF/MEK/ERK and PI3K/AKT signaling provided evidence that GLI1 expression is 

regulated via MEK signaling, but not via canonical HH or PI3K signaling. This was due to the 

fact that blocking of canonical HH and PI3K signaling in the oncRAS cell lines did not 

reactivate GLI1 expression, whereas inhibition of MEK went along with the upregulation of 

the GLI1 expression back to the basal level of wtRAS control cells. In addition, since none of 

the RAS mutations by themselves altered the phosphorylation status of ERK the data suggest 

that ERK does not play a role in HH signaling activation.  

The data also show that the MEK-inhibitor UO126 in NRAS- or KRAS-transduced RUCH-2 

cells increased metabolic and proliferative capacity. This suggests that it is MEK activity that 

decreases the metabolic capacity and also inhibits the proliferative capacity of RAS- 

transduced cells. These data therefore also suggest that MEK inhibitors are probably not a 

good treatment option in ERMS harboring oncogenic RAS mutations. Contrary effects of the 

MEK activation have been previously published by Seto and colleagues. These authors 

showed that KRAS-mediated MEK signaling positively, and not negatively, regulated GLI1 

expression in gastric cancer cells (Seto et al. 2009). How active MEK signaling decreases HH 

signaling activity in RUCH-2 remains to be resolved. To further investigate the missing link 

between MEK and HH signaling in RUCH-2 cells, it first has to be analyzed if active MEK1 

or MEK2 is responsible for this inhibition. As MEK1 has been shown to exhibit a stimulating 

effect on GLI1 transcription (see Seto and colleagues), it is possible that MEK2 is the kinase 

that inhibits the transcription of GLI1.  

In the ARMS cell line RMS-13 and in contrast to RUCH-2, none of the two RAS effector 

pathways (i.e. MEK/ERK or PI3K/AKT signaling) seemed to be involved in inhibition of 

GLI1 expression.  Thus, neither, HhA, PI103 nor UO126 were able to reverse the RAS-

mediated downregulation of GLI1 expression. In addition, the fact that all three RAS 

oncogenes induced a strong phosphorylation of ERK that was reversed by UO126, again 

strongly argues against a role of ERK in GLI1 regulation.  
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Since Lauth and colleagues showed that DYRK1B can be activated by RAS and can inhibit 

HH signaling in pancreas carcinoma cells, we next investigated the role of this kinase in 

RMS-13 cells.  However, in contrast to Lauth et al. gene the expression analysis showed that 

oncogenic RAS signaling in the RMS-13 cells lead to the downregulation of the expression 

levels of DYRK1B. This downregulation was also detectable after knockdown DYRK1B in 

control cells and did not go along with upregulation of GLI1, but rather with an even more 

pronounced downregulation of GLI1. Together it can be said that RAS inhibits the expression 

of GLI1 by a jet unknown factor that is independent of RAF/MEK/ERK or PI3K/AKT 

signaling in RMS-13 cells. 

Taken together there is a crosstalk between active Ras signaling and Hh signaling in RMS. 

However, this crosstalk seems to be differently regulated in ERMS and ARMS. In addition, 

the modulation of HH/Hh signaling i.e. GLI1/Gli1 expression by active Ras signaling is 

different between the ERMS cell line RUCH-2 and ERMS of mice. Thus, RAS-mediated 

inhibition of HH signaling activity was exclusively observed in cultured RUCH-2. Besides the 

possibility that the tumor microenvironment plays a role (see above) it is also possible that 

tumor cells in vivo may bypass the Ras-mediated inhibition of Hh signaling activity. This may 

involve additional genetically changes that may occur during tumor progression in the mouse.  

In addition to the regulation of HH signaling by RAS, HH signaling activity seems to vice 

versa regulate RAS signaling, at least in the ERMS cell line RUCH-2. Thus, in RUCH-2 cells 

treatment with HhA decreased AKT/pAKT levels in both wtRAS and onRAS expressing 

cells. In addition, it increased phosphorylation of ERK in RUCH-2 cells that express oncRAS. 

Similar results have been demonstrated in RD cells that harbor an endogenous oncogenic 

NRAS mutation (Ridzewski et al. 2015).   

The fact that HhA decreased AKT/pAKT levels in both wtRAS and onRAS expressing cells, 

but only it increased phosphorylation of ERK in onRAS-expressing cells RUCH-2 cells is 

hard to explain. However, a cross-inhibition between RAF/MEK/ERK and PI3K/AKT 

signaling pathways is well known. As reviewed by Mendoza et al such a crosstalk occurs 

mostly when one of the pathways is chemically blocked by a specific inhibitor. This results in 

the activation of the other pathway (Mendoza et al. 2011). A cross-inhibition can be seen 

between AKT and RAF. AKT can negatively regulate ERK activation by phosphorylation of 
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the inhibitory sites in the Raf N-terminus (Cheung et al. 2008, Dhillon et al. 2002, Guan et al. 

2000, Zimmermann and Moelling 1999). Furthermore, it has been shown that active 

PI3K/AKT signaling can inhibit the activation of oncRAS mediated MEK/ERK signaling, 

which prevents cell cycle arrest or senescence caused by too high levels of phosphorylated 

ERK (Cheung et al. 2008).  

Our data reveals that the inhibition of HH signaling with HhA in parallel inhibits the 

phosphorylation of AKT and increases phosphorylation of ERK, especially in embryonal 

RMS cell lines with oncRAS signaling. Based on these data one can hypothesize that HhA 

inhibits canonical Hedgehog signaling and somehow the phosphorylation of AKT. This in 

turn blocks the ability of AKT to phosphorylate the inhibitory sites in the RAF N-terminus, 

which results in strong induction of ERK phosphorylation especially in oncRAS RUCH-2 

cells.  

A different effect can be seen in RMS-13 cells. Thus, AKT phosphorylation went up after 

inhibition of MEK by UO126 in the oncRAS as well as in the wtRAS ARMS cells. MEK 

inhibitors can increase AKT activation by inducing epidermal growth factor (EGF)-mediated 

pathway activation (Hoeflich et al. 2009, Yu et al. 2002). It is expected that normally the 

phosphorylation of ERK inhibits GAB, which is responsible for the recruitment of PI3K to the 

EGF receptor (EGFR) and thus increases PI3K signaling (Lemmon and Schlessinger 2010, 

Wohrle et al. 2009). 

 

6.4. Active Ras signaling changes the growth behavior in RMS 
It has been shown that active Ras signaling can change the growth behavior of tumors in other 

cancers types like colon, lung and prostate cancers (Erlich et al. 2006, Haigis et al. 2008, 

Hofmann et al. 2012, Johnson et al. 2001). Despite the fact that the RAS genes are highly 

homologue they can act differently.  

Indeed, expression of oncogenic NRas, KRas and HRas genes results in gene-specific 

differences with respect to RMS growth. While oncNRas had no effects neither on incidence 

nor latency time of RMS in Ptch mutant mice, oncKRas signaling strongly increased the RMS 

incidence and decreased the latency time. Furthermore preliminary data of RMS development 

after conditional expression of oncHRas in Ptch mutant mice provide evidence that oncHRas, 
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as oncKRas, strongly increases the tumor incidence and decreases the latency time. This 

shows that oncogenic KRas and HRas mutations have a similar impact on RMS incidence and 

latency time, whereas the expression of the oncNRas mutation apparently does not influence 

these parameters. This suggests that oncKRas and oncHRas may not influence the growth of 

already initiated RMS. Due to the fact that RMS in Ptch mutant mice are initiated during 

embryogenesis during a small window that closes at embryonic day 13.5 (Nitzki et al. 2011). 

Nevertheless, it is also possible that oncHRas and oncKRas may initiate new tumors after 

birth (i.e. in 4 week old mice, when the mutation is induced) in the Ptch deficient organism.  

Very unfortunately, the size of the tumors was not measured. Therefore it was not possible to 

judge whether the tumors harboring the respective oncRas mutations grew faster or slower 

after their initiation. For example the oncNRas mutation in RMS of Ptch-mutant mice did not 

influence incidence and latency time of the tumor. It however, and in contrast to oncKRas, 

lowered the number of Ki67 positive RMS cells. Thus, it is possible that the NRas mutation 

may have reduced the growth of RMS and may have resulted in smaller tumor volumes.  

Regarding the lower numbers of Ki67 positive RMS cells in the Ptchdel/+NRasG12Dfl/-

Myf5creERTtg/- model and the unchanged number of Ki67 positive cells in 

Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice it remains to be said that this is different in colon 

cancer mouse models where oncKRas induces hyperproliferation and oncNRas does not 

change the proliferative capacity (Haigis et al. 2008). 

With respect to the increased RMS incidence and shortening of the latency time of RMS in 

Ptchdel/+KRasG12Dfl/-Myf5creERTtg/- mice it was reported that active KRAS and HH signaling 

also increase the number of pancreatic intraepithelial tumors and increase the lethality of Pdx-

Cre;CLEG2;KrasG12D mice  (Pasca di Magliano et al. 2006). However, how oncKRas 

modulates the tumorigenesis in Ptch mutant mice remains to be identified. As published by 

our group and others it is expected that the formation of human and murine rhabdomyoblastic 

tumors, which harbor a heterozygous mutation in Ptch, necessitates the epigenetic silencing of 

the remaining wt Ptch allele (Ecke et al. 2009, Tostar et al. 2006, Uhmann et al. 2005). The 

formation of RMS by the epigenetic silencing of the wt Ptch allele depends in the DNA 

methylation thus it can be suppressed by the treatment of the DNA methyltransferase (Dnmt) 

inhibitor 5-aza-20deoxycytidin (Ecke et al. 2009). Furthermore, we could recently 

demonstrated that the RMS formation in Ptch heterozygous mice requires the overexpression 
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of the mutant Ptch allele which is associated with the promoter hypomethylation of the 

mutant Ptch allele (Nitzki et al. 2015). Interestingly, oncogenic RAS signaling has often been 

shown to be able to modulate DNA methylation by the upregulation of DNMT expression and 

promotion of cellular DNMTs activity. This induces a RAS-mediated hypomethylation 

(reviewed by (Mei et al. 2006). Thus, it is possible that oncKRas in Ptch mutant mice either 

promotes the overexpression of Dnmt which would result in the hypomethylation of the 

mutant Ptch allele or the process to silence the wt Ptch allele and thus increases the tumor 

incidence and decreases the latency time without affecting the proliferation.  

Additionally to the tumor incidence and latency time the tumor multiplicity was investigated. 

Interestingly, activated NRas decreased the tumor multiplicity in the Ptchdel/+oncNRasfl/-

Myf5creERTtg/- mouse model, whereas the KRas and HRas mutations did not. The decrease of 

the tumor number per Ptchdel/+oncNRasfl/-Myf5creERTtg/- mouse fits nicely to the fact that 

oncNRas suppressed the proliferative capacity of RMS.  

A hypothesis for the decreased proliferative capacity in oncNRas expressing RMS might be 

oncogene-induced senescence (OIS). Thus, it was reported, that oncogenic Ras signaling can 

lead to OIS by accumulation of p53 and p16 (Serrano et al. 1997). It was shown that the 

inhibition of either p53 or p16 reversed the Ras-mediated senescence in human and primary 

human or rodent cells. Furthermore Courtois-Cox et al. reported that there was an 

upregulation of several senescence markers in benign dermal neurofibromas after the 

suppression of NF1. In this model, loss of NF1 resulted in activation of RAS that was 

responsible for senescence (Courtois-Cox et al. 2006). However, if OIS is responsible for the 

decreased proliferative capacity in the oncNRas expressing Ptch mutant RMS remains to be 

validated. Thus, the tissue of those animals should be analyzed for different senescence 

markers i.e. by performing a senescence-associated β-galactosidase (SA-β-Gal) staining and 

by checking p53 and p16.  

Taken together these results indicate that, although the RAS genes code for highly 

homologous RAS proteins, N-, K- and HRAS mutations can induce different phenotypes of 

murine and human RMS, especially of the embryonal subtype.  

In order to identify, which downstream targets of oncogenic NRas, KRas and HRas in Ptch 

mutant mice are responsible for the differences in RMS incidence, latency time or 

multiplicity, one could perform an array assay. 
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At the moment the evidence of dual inhibition of RAS and HH targets is frequency discussed 

(Brechbiel et al. 2014). Whether it makes sense to inhibit both RAS signaling and HH 

signaling in RMS remains to be established. However so far it can be concluded that it is of 

importance to discriminate between the three RAS subtypes. Thus, in our mouse model, 

oncNRas seems to improve the prognosis (since it decreases the proliferation and tumor 

multiplicity), whereas oncKRas worsen the prognosis. This is in line with an unpublished 

Kaplan Mayer Curve of our collaborative project together with Marcel Kool and Simone 

Fulda that reveals that ERMS patients (many of them having NRAS mutations) with active 

RAS and HH signaling seem to have a better prognosis compared to those without.  

In contrast to the embryonal subtype, oncogenic RAS signaling in the alveolar RMS subtype 

results in the enhancement of the tumor growth in nude mice and of proliferation and 

metabolic activity in vitro. The injected tumor cells with constitutively active forms of NRAS 

and KRAS showed an increased tumor growth rate in the xenograft model compared to the 

control cells.  

When the ARMS cell line RMS-13 was incubated with inhibitors, the results revealed that 

HhA and PI103, but not UO126, can inhibit proliferation and metabolic activity of control 

cells, which indicated that proliferation of RMS-13 cells may be regulated by HH and 

PI3K/mTOR signaling. HhA and PI103 also repressed proliferation and metabolic activity in 

RMS-13 cells that express oncogenic NRAS, KRAS and HRAS. This was different for 

UO126. This MEK inhibitor repressed proliferation only in oncHRAS-transduced cells and 

metabolic activity in oncNRAS and oncHRAS transduced cells.  

These results are hard to explain. However, it is possible that it is again MEK that decreases 

proliferation and metabolic activity in the settings in which ARMS cells express oncogenic 

RAS. In wtRAS RMS-13 cells, however, inhibition of MEK is not useful to stop proliferation. 

Since most ARMS do not harbor oncRAS mutations MEK inhibitors thus also do not appear 

to be a good treatment option for this RMS subtype. Furthermore, UO126 decreased pERK 

levels in wtRAS RMS-13 cells. This indicates that the drug must have inhibited MEK. It also 

indicates that the proliferation of wtRAS RMS-13 cells is independent of the MEK/ERK axis 
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6.5. Active Ras signaling slightly modulates the muscle differentiation 

behavior in RMS 

Several studies suggest that oncogenic RAS result in the dysregulation of the differentiation 

behavior in tumors. Thus, in a myogenic cell line constitutive activation of Ras signaling 

resulted in downregulation of the myogenic differentiation markers MyoD and Myogenin 

(Konieczny et al. 1989). Furthermore other studies suggest that the change in muscle 

differentiation is regulated via RAS-mediated PI3K signaling (Lee et al. 2010).  

When the expression of the early myogenesis marker MYOD and the late muscle 

differentiation marker DESMIN were measured in wtRAS and oncRAS expressing cell lines, 

no significant differences were detected. Thus RUCH-2 merely express any of these markers, 

and the expression was slightly, but not significantly enhanced by oncRAS in RMS-13 cells.   

Next, the expression levels of the myogenesis proliferation and determination markers MyoD 

and Myf5 and the differentiation marker Myogenin were measured in RMS from uninduced 

and tamoxifen-induced Ptchdel/+oncRasfl/-Myf5creERTtg/- mice. Here, the effects on the 

expression of these muscle differentiation markers were dependent on the respective Ras 

mutation. Our preliminary expression analysis provides evidence that oncNRas signaling 

rather suppresses the expression of the myogenesis proliferation and muscle differentiation 

markers in Ptch mutant RMS. This is comparable to the effects of oncogenic Ras signaling in 

murine muscle cells. Although the decrease in the expression of muscle differentiation 

markers is rather indicative for less differentiated cells, the RMS histologically did not 

obviously differ from control RMS (Lassar et al. 1989, Olson et al. 1987). In contrast, 

oncKRas rather seems to increase the expression levels of the early markers MyoD and Myf5 

and to decrease the expression of the late differentiation marker Myogenin in Ptch mutant 

RMS, which may indicate that the RMS cells still maintain their muscle fate but lose the 

possibility for terminal differentiation. However, the differences in myogenesis proliferation 

and determination markers were not significant thus indicating that oncRas signaling probably 

does not modulate the muscle differentiation behavior in RMS. In order to prove whether 

oncRas influences the muscle differentiation behavior in RMS gene expression analysis of 

more mice and IHC stainings with the above mentioned muscle differentiation markers should 

be performed.  
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8. Abbreviations 

% Percent 

° Degree 

µ Micro 

Ab Antibody  

AEC  3-amino-9 ethylcarbazole  

Akt/AKT v-akt murine thymoma viral oncogene homolog or Protein kinase B 

AP  Alkaline phosphatase 

ARMS Alveolar Rhabdomyosarcoma 

BCC  Basal cell carcinoma 

Bp base pair 

BrdU 5-Bromo-2-Deoxyuridine 

BSA bovine serum albumine 

cDNA cDNA copyDNA 

C Celcius 

CO2  Carbon dioxyde  

Cre  causes recombination 

Ct cycle threshold 

D Days 

DAB Diamino-Benzidine 

ddH2O double distilled water 

del  deleted, deletion 

Dhh/DHH Desert Hedgehog 

DMEM Dulbeco’s Modified Eagle Medium 

DMSO N.N.-Dimethylsulfoxide 

Dnmt/DNMT DNA methyltransferase 

DNA Deoxyribonucleic acid 

dNTPs Desoxyribonucleotide triphosphate 

DTT Dithiothreitol 

E Extinction 

E Exon 

E. coli  Escherichia coli 

EDTA Ethylen-diamine-tetraacetate 

EGF epidermal growth factor 

EGFR endothelial growth factor receptor 
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ERMS Embryonal Rhabdomyosarcoma 

ERT  tamoxifen-inducible estrogen receptor 

EtOH  ethanol  

FCS fetal calf serum 

FICS Fluorescein isothiocyanate 

FoxF1/FOXF1 Forkhead box F1 

GAPs GTPase Activating Protein 

gDNA genomic DNA 

GDP Guanosine diphosphate 

GDS Guanine Dissociation Stimulators  

GEF Guanine nucleotide Exchange Factor 

Gli/GLI Glioma oncogene 

Gliact Gli activator form 

Glirep Gli repressor form 

GTP Guanosine triphosphate 

Erk/ERK Extracellular-signal-regulated kinases 

H hour(s) 

H2O2  hydrogen peroxide 

HCl  hydrochloric acid 

H&E Haematoxylin/Eosin 

HEK-293  human embryonic kidney cells 293 

Hh/HH Hedgehog 

HhA HhAntag: (Benzamide, N-[4-chloro-3-[6-(dimethylamino)-1H-

benzimidazol-2-yl]phenyl]-3,5-dimethoxy-) 

HRP horseradish peroxidase 

Hsc70  heat-shock protein 70 

i.p. Intraperitoneal 

IHC Immunhistochemistry 

Ihh/IHH Indian Hedgehog 

K Kilo 

kDa Kilodalton 

LacZ LacZ β-Galactosidase 

LB-Medium lysogeny broth Medium 

loxP loxP Sequence (DNA-Consensus sequence for binding of cre-

recombinase) 

Map  Mitogen-activated protein 
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Mek/MEK MAP kinase-extracellular signal-regulated kinase 

Min minute(s) 

MSCV  murine stem cell virus 

mTOR  mammalian target of rapamycin 

mRNA messenger RNA 

Myf5 Myogenic factor 5 

N number (sample) 

neoR Neomycin resistance 

NF1  Neurofibromin 1 

Nf-κB  kappa light polypeptide gene enhancer in B cells 

n.s.  not significant 

N-terminal N-terminal aminoterminal 

OD optical density 

OIS oncogene-induced senescence 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PFA Paraformaldehyde 

pH  lat. potentia hydrogenii 

PI103 PI3-K alpha Inhibitor 1 

PI3K Phosphatidylinositol 3-kinase 

PIP2 Phosphatidylinositol (4,5)-bisphosphate  

PIP3 Phosphatidylinositol (3,4,5)-trisphosphate  

PS Penicillin/Streptomycin 

Ptch Patched 

Ptchdel  Ptch allele with deletion of Exon 8 and 9 

PDK1 Phosphotidylinositide-dependent kinase  

p53 Transformation related protein 53 

qRT-PCR quantitative real time PCR 

Raf/RAF rapidly accelerated fibrosarcoma 

Ras/RAS Rat sarcoma 

RIPA buffer  radioimmunoprecipitation assay buffer 

RLU relative light units 

RMS Rhabdomyosarcoma 

RNA Ribonucleicacid 

Rpm rounds per minute 

RT room temperature 
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RTK Receptor tyrosine kinase 

Stat3 signal transducer and activator of transcription 

SDS  Sodiumdodecyl sulfate 

SEM  standard error of the mean 

Shh/SHH Sonic hedgehog 

SMA Smooth muscle actin 

Smo/SMO Smoothened 

SNP  single nucleotide polymorphism 

SOC  super optimal broth with catabolite repression 

STE  SDS/Tris/EDTA-buffer 

Sufu Suppressor of fused 

SYBR. Synergy Brands Inc 

T transgenes Allele 

Taq Thermus aquaticus 

TBE  Tris-boric acid-EDTA-solution 

TBS Tris-buffered saline 

TBST  Tris-buffered sodium chloride-solution containing Tween-20 

Tris  tris(hydroxymethyl)aminomethane 

U unit (enzyme) 

UO126 1,4-Diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene 

v/v volume/volume 

Vol Volume 

w/v weight/volume 

WST-1  water soluble tetrazolium salt 1 

wt  Wild type 

X-Gal 5-Bromo-4-chloro-3-indolyl-β-Galaktosid 
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9. Appendix 

 

Appendix 1: Plasmid map of pMSCVpuro-NRAS12V plasmid. The plasmid was used to stably generate 

constitutive active RAS signaling in human RMS cell lines. The map was created by using SnapGene® 

Viewer. 

 

pMSCVpuro-NRAS12V 

6,8 k bp 
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Appendix 2: Plasmid map of pMSCVpuro-KRAS12V plasmid. The plasmid was used to stably generate 

constitutive active KRAS signaling in human RMS cell lines. The map was created by using SnapGene® 

Viewer.  

pMSCVpuro-KRAS12V 
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Appendix 3: Plasmid map of pMSCVpuro-HRAS12V plasmid. The plasmid was used to stably generate 

constitutive active HRAS signaling in human RMS cell lines. The map was created by using SnapGene® 

Viewer. 
  

pMSCVpuro-HRAS12V 

6,9 k bp 
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