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Summary  

Genomic prediction has been successfully applied in many livestock breeding schemes, 

based on different densities of single nucleotide polymorphism (SNP) array data. With 

the availability of whole-genome sequencing (WGS) data, which may contain the causal 

mutations, there are a growing number of studies to conducting genomic prediction with 

WGS data. 

The main objective of this thesis was to investigate the possibility of imputing SNP array 

data up to the whole genome sequence level (Chapter 2) and then perform genomic pre-

diction based on the imputed WGS data and SNP array data with different genomic rela-

tionship matrices to account for genetic architecture (Chapter 3). To further understand 

the accuracy of genomic prediction, a simulation study was performed to determine the 

degree of overestimation of the accuracy of genomic prediction, in order to propose a 

new method (Chapter 4). 

The technical progress in the last decade has made it possible to sequence millions of 

DNA reads in a relatively short time frame. Several variant callers based on different 

algorithms have emerged and have made it possible to extract SNPs out of the whole-

genome sequence. Often, only a few individuals of a population are sequenced complete-

ly and imputation is used to obtain genotypes for all sequence-based SNP loci for other 

individuals that have been genotyped for a subset of SNPs using a genotyping array. 

Thus, in Chapter 2 we first compared the sets of variants detected with different variant 

callers, namely GATK, freebayes and SAMtools, and checked the quality of genotypes of 

the called variants in a set of 50 fully sequenced white and brown layers. There were 

1,741,573 SNPs detected by all three callers on the studied chromosomes 3, 6, and 28, 

which was 71.6% (81.6%, 88.0%) of SNPs detected by GATK (SAMtools, freebayes) in 

total. Genotype concordance (GC), defined as the proportion of individuals whose array-

derived genotypes are the same as the sequence-derived genotypes over all non-missing 

SNPs on the array, was 0.98 with GATK, 0.98 with SAMtools, and 0.97 with freebayes 

averaged over all SNPs on the studied chromosomes, respectively. Furthermore, for 

GATK (SAMtools, freebayes) 90 (88, 75) percent of variants had high values (>0.9) for 

other quality measures (non-reference sensitivity, non-reference genotype concordance 

and precision). Performance of all variant callers studied was very good in general, par-

ticularly for GATK and SAMtools. Second, we assessed the imputation accuracy (meas-

ured as the correlation between imputed and true genotype per SNP and per individual 

and genotype conflict between father-progeny pairs) when imputing from high density 
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SNP array data to whole-genome sequence using data from approximately 1000 individu-

als from six generations. Three different imputation programs (Minimac, FImpute and 

IMPUTE2) were checked in different validation scenarios. Across all imputation pro-

grams, correlation between true and imputed genotypes was >0.95 on average with ran-

domly masked 1000 SNPs from the SNP array and >0.85 for a leave-one-out cross-

validation within sequenced individuals. FImpute performed slightly worse than Minimac 

and IMPUTE2 in terms of genotype correlation, especially for SNPs with low minor al-

lele frequency, however, it did have the lowest numbers in Mendelian conflicts in availa-

ble father-progeny pairs. Correlations of real and imputed genotypes remained constantly 

high even if individuals to be imputed were several generations away from the sequenced 

individuals. In conclusion, among three variant callers tested GATK proved the relatively 

better performance; Minimac proved the relatively better performance comparing to the 

other two imputation programs tested. 

Based on the conclusions in Chapter 2, we applied a genomic prediction with imputed 

WGS in Chapter 3. A commercial brown layer line comprising of 892 chickens from 6 

generations was used in the study. These chickens were genotyped with a high density 

array data. Using the WGS data of 25 individuals, those array data were imputed up to the 

sequence level. The imputation was done with Minimac3, which needs pre-phased data 

generated with Beagle4. Accuracy of genomic prediction was measured as the correlation 

between de-regressed proofs and direct genomic breeding values of eggshell strength, 

feed intake and laying rate. In this study, besides the accuracy of genomic prediction 

based on array data and WGS data, accuracy based on different genomic relationship 

matrices to account for genetic architecture was investigated. The alternative weighting 

factors used were uniform, −(𝑙𝑜𝑔10𝑃) from a t-test of genome wide association study, 

and the square of estimated SNP effects from random regression BLUP. Best linear unbi-

ased prediction given genetic architecture (BLUP|GA) was investigated as well. Predic-

tion with uniform weights (the original GBLUP) was implemented with all SNPs or with 

only genic SNPs, both based on array and imputed whole sequence data. Averaging over 

the studied traits, predictive ability with only genic SNPs in WGS data was 0.366 ± 

0.075, which was the highest predictive ability observed in the current study. Genomic 

prediction with genic SNPs in high density array data provided the second highest accu-

racy (0.361 ± 0.072). The prediction with −(𝑙𝑜𝑔10𝑃) or squares of SNP effects as 

weighting factors for building a genomic relationship matrix or BLUP|GA did not lead to 

higher accuracy, compared to that with uniform weights, regardless of the SNP set used. 

The results from this study showed that little or no benefit was gained when using all 
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imputed WGS data to perform genomic prediction compared to using HD array data, 

regardless of the different SNP weightings tested. However, higher predictive ability was 

observed when using only genic SNPs extracted from the WGS data for genomic predic-

tion. 

Decisions of genomic selection schemes are made based on the genomic breeding values 

(GBV) of selection candidates. Thus, the accuracy of GBV is a relevant parameter, as it 

reflects the stability of the prediction and the possibility that the GBV might change when 

more information becomes available. It is also one of the key factors in expected response 

to selection, which is also known as breeders’ equation. Accuracy of genomic prediction, 

however, is difficult to assess, considering true breeding values (TBV) of the candidates 

are not available in reality. In previous studies, several methods are proposed to assess the 

accuracy of GBV by using population and trait parameters (e.g. the effective population 

size, the reliability of quasi-phenotypes used, the number of independent chromosome 

segments) or parameters inferred from the mixed model equations. In practice, most ap-

proaches were found to overestimate the accuracy of genomic prediction. Thus, in Chap-

ter 4 we tested several approaches used in previous studies based on simulated data under 

a variety of parameters mimicking different livestock breeding programs (i.e. a cattle-like 

and a pig-like as well as a basic scenario) and measured the magnitude of overestimation. 

Then we proposed a novel and computationally feasible method. Based on the compari-

son in Chapter 4, the new method provided a better prediction for the accuracy of GBV. 

The method still had one unknown parameter, for which we suggested an approach to 

approximate its value from a suitable data set reflecting two separate time points. In con-

clusion, the new approach provided a better assessment of the accuracy of GBVs in many 

cases. 
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Zusammenfassung 

Methoden zur genomischen Vorhersage basierend auf Genotypinformationen von Single 

Nucleotide Polymorphism (SNP)-Arrays mit unterschiedlicher Markeranzahl sind 

mittlerweile in vielen Zuchtprogrammen für Nutztiere fest implementiert. Mit der 

zunehmenden Verfügbarkeit von vollständigen Genomsequenzdaten, die auch kausale 

Mutationen enthalten, werden mehr und mehr Studien veröffentlicht, bei denen 

genomische Vorhersagen beruhend auf Sequenzdaten durchgeführt werden. 

Das Hauptziel dieser Arbeit war zu untersuchen, inwieweit SNP-Array-Daten mit 

statistischen Verfahren bis zum Sequenzlevel ergänzt werden können (sogenanntes 

„Imputing“) (Kapitel 2) und ob die genomische Vorhersage mit imputeten Sequenzdaten 

und zusätzlicher Information über die genetische Architektur eines Merkmals verbessert 

werden kann (Kapitel 3). Um die Genauigkeit der genomischen Vorhersage besser 

verstehen und eine neue Methode zur Approximation dieser Genauigkeit ableiten zu 

können, wurde außerdem eine Simulationsstudie durchgeführt, die den Grad der 

Überschätzung der Genauigkeit der genomischen Vorhersage verschiedener bereits 

bekannter Ansätze überprüfte (Kapitel 4). 

Der technische Fortschritt im letzten Jahrzehnt hat es ermöglicht, in relativ kurzer Zeit 

Millionen von DNA-Abschnitten zu sequenzieren. Mehrere auf unterschiedlichen 

Algorithmen basierende Software-Programme zur Auffindung von Sequenzvarianten 

(sogenanntes „Variant Calling“) haben sich etabliert und es möglich gemacht, SNPs in 

den vollständigen Genomsequenzdaten zu detektieren detektieren. Oft werden nur wenige 

Individuen einer Population vollständig sequenziert und die Genotypen der anderen 

Individuen, die mit einem SNP-Array an einer Teilmenge dieser SNPs typisiert wurden, 

imputet. 

In Kapitel 2 wurden deshalb anhand von 50 vollständig sequenzierten Weiß- und 

Braunleger-Individuen die mit drei unterschiedlichen Variant-Calling-Programmen 

(GATK, freebayes and SAMtools) detektierten Genomvarianten verglichen und die 

Qualität der Genotypen überprüft. Auf den untersuchten Chromosomen 3,6 und 26 

wurden 1.741.573 SNPs von allen drei Variant Callers detektiert was 71,6% (81,6%, 

88,0%) der Anzahl der von GATK (SAMtools, freebayes) detektierten Varianten 

entspricht. Die Kenngröße der Konkordanz der Genotypen („genotype concordance“), die 

durch den Anteil der Individuen definiert ist, deren Array-basierte Genotypen mit den 

Sequenz-basierten Genotypen an allen auch auf dem Array vorhandenen SNPs 
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übereinstimmt, betrug 0,98 mit GATK, 0,98 mit SAMtools und 0,97 mit freebayes 

(Werte gemittelt über SNPs auf den untersuchten Chromosomen). Des Weiteren wiesen 

bei Nutzung von GATK (SAMtools, freebayes) 90% (88 %, 75%) der Varianten hohe 

Werte (>0.9) anderer Qualitätsmaße (non-reference sensitivity, non-reference genotype 

concordance und precision) auf. 

Die Leistung aller untersuchten Variant-Calling-Programme war im Allgemeinen sehr 

gut, besonders die von GATK und SAMtools. In dieser Studie wurde außerdem in einem 

Datensatz von ungefähr 1000 Individuen aus 6 Generationen die Güte des Imputings von 

einem hochdichten SNP-Array zum Sequenzlevel untersucht. Die Güte des Imputings 

wurde mit Hilfe der Korrelationen zwischen imputeten und wahren Genotypen pro SNP 

oder pro Individuum und der Anzahl an Mendelschen Konflikten bei Vater-

Nachkommen-Paaren beschrieben. Drei unterschiedliche Imputing-Programme 

(Minimac, FImpute und IMPUTE2) wurden in unterschiedlichen Szenarien validiert.  

Bei allen Imputing-Programmen betrug die Korrelation zwischen wahren und imputeten 

Genotypen bei 1000 Array-SNPs, die zufällig ausgewählt und deren Genotypen im 

Imputing-Prozess als unbekannt angenommen wurden, durchschnittlich mehr als 0.95 

sowie mehr als 0.85 bei einer Leave-One-Out-Kreuzvalidierung, die mit den 

sequenzierten Individuen durchgeführt wurde. Hinsichtlich der Genotypenkorrelation 

zeigten Minimac und IMPUTE2 etwas bessere Ergebnisse als FImpute. Dies galt 

besonders für SNPs mit niedriger Frequenz des selteneren Allels. FImpute wies jedoch 

die kleinste Anzahl von Mendelschen Konflikten in verfügbaren Vater-Nachkommen-

Paaren auf. Die Korrelation zwischen wahren und imputeten Genotypen blieb auf hohem 

Niveau, auch wenn die Individuen, deren Genotypen imputet wurden, einige 

Generationen jünger waren als die sequenzierten Individuen. Zusammenfassend zeigte in 

dieser Studie GATK die beste Leistung unter den getesteten Variant-Calling-

Programmen, während Minimac sich unter den untersuchten Imputing-Programmen als 

das beste erwies.  

Aufbauend auf den Ergebnissen aus Kapitel 2 wurden in Kapitel 3 Studien zur 

genomischen Vorhersage mit imputeten Sequenzdaten durchgeführt. Daten von 892 

Individuen aus 6 Generationen einer kommerziellen Braunlegerlinie standen hierfür zur 

Verfügung. Diese Tiere waren alle mit einem hochdichten SNP-Array genotypisiert. 

Unter der Nutzung der Daten von 25 vollständig sequenzierten Individuen wurden jene 

Tiere ausgehend von den Array-Genotypen bis zum Sequenzlevel hin imputet. Das 
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Imputing wurde mit Minimac3 durchgeführt, das bereits haplotypisierte Daten (in dieser 

Studie mit Beagle4 erzeugt) als Input benötigt.  

Die Genauigkeit der genomischen Vorhersage wurde durch die Korrelation zwischen de-

regressierten konventionellen Zuchtwerten und direkt genomischen Zuchtwerten für die 

Merkmale Bruchfestigkeit, Futteraufnahme und Legerate gemessen. Neben dem 

Vergleich der Genauigkeit der auf SNP-Array-Daten und Sequenzdaten basierenden 

genomischen Vorhersage wurde in dieser Studie auch untersucht, wie sich die 

Verwendung verschiedener genomischer Verwandtschaftsmatrizen, die die genetische 

Architektur berücksichtigen, auf die Vorhersagegenauigkeit auswirkt. Hierbei wurden 

neben dem Basisszenario mit gleichgewichteten SNPs auch Szenarien mit 

Gewichtungsfaktoren, nämlich den −(𝑙𝑜𝑔10𝑃)-Werten eines t-Tests basierend auf einer 

genomweiten Assoziationsstudie und den quadrierten geschätzten SNP-Effekten aus 

einem Random Regression-BLUP-Modell, sowie die Methode BLUP|GA („best linear 

unbiased prediction given genetic architecture“) überprüft. Das Szenario GBLUP mit 

gleichgewichteten SNPs wurde sowohl mit einer Verwandtschaftsmatrix aus allen 

verfügbaren SNPs oder nur derer in Genregionen, jeweils ausgehend von der 

Grundmenge aller imputeten SNPs in der Sequenz oder der Array-SNPs, getestet.  

Gemittelt über alle untersuchten Merkmale war die Vorhersagegenauigkeit mit SNPs aus 

Genregionen, die aus den imputeten Sequenzdaten extrahiert wurden, mit 0,366 ± 0,075 

am höchsten. Den zweithöchsten Wert erreichte die genomische Vorhersage mit SNPs 

aus Genregionen, die im SNP-Array erhalten sind (0,361 ± 0,072). Weder die 

Verwendung gewichteter genomischer Verwandtschaftsmatrizen noch die Anwendung 

von BLUP|GA führten im Vergleich zum normalen GBLUP-Ansatz zu höheren 

Vorhersagegenauigkeiten. Diese Beobachtung war unabhängig davon, ob SNP-Array- 

oder imputete Sequenzdaten verwendet wurden. Die Ergebnisse dieser Studie zeigten, 

dass kaum oder kein Zusatznutzen durch die Verwendung von imputeten Sequenzdaten 

generiert werden kann. Eine Erhöhung der Vorhersagegenauigkeit konnte jedoch erreicht 

werden, wenn die Verwandschaftsmatrix nur aus den SNPs in Genregionen gebildet 

wurde, die aus den Sequenzdaten extrahiert wurden. 

Die Auswahl der Selektionskandidaten erfolgt in genomischen Selektionsprogrammen 

mit Hilfe der geschätzten genomischen Zuchtwerte (GBVs). Die Genauigkeit des GBV ist 

hierbei ein relevanter Parameter, weil sie die Stabilität der geschätzten Zuchtwerte 

beschreibt und zeigen kann, wie sich der GBV verändern kann, wenn mehr Informationen 

verfügbar werden. Des Weiteren ist sie einer der entscheidenden Faktoren beim 
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erwarteten Zuchtfortschritt (auch als so genannte „Züchtergleichung“ beschrieben). Diese 

Genauigkeit der genomischen Vorhersage ist jedoch in realen Daten schwer zu 

quantifizieren, da die wahren Zuchtwerte (TBV) nicht verfügbar sind. In früheren Studien 

wurden mehrere Methoden vorgeschlagen, die es ermöglichen, die Genauigkeit von GBV 

durch Populations- und Merkmalsparameter (z.B. effektive Populationsgröße, Sicherheit 

der verwendeten Quasi-Phänotypen, Anzahl der unabhängigen Chromosomen-Segmente) 

zu approximieren. Weiterhin kann die Genauigkeit bei Verwendung von gemischten 

Modellen mit Hilfe der Varianz des Vorhersagefehlers abgeleitet werden. 

In der Praxis wiesen die meisten dieser Ansätze eine Überschätzung der Genauigkeit der 

Vorhersage auf. Deshalb wurden in Kapitel 4 mehrere methodische Ansätze aus früheren 

Arbeiten in simulierten Daten mit unterschiedlichen Parametern, mit Hilfe derer 

verschiedene Tierzuchtprogramme (neben einem Basisszenario ein Rinder- und ein 

Schweinezuchtschema) abgebildet wurden, überprüft und die Höhe der Überschätzung 

gemessen. Außerdem wurde in diesem Kapitel eine neue und leicht rechenbare Methode 

zur Approximation der Genauigkeit vorgestellt Die Ergebnisse des Vergleichs der 

methodischen Ansätze in Kapitel 4 zeigten, dass die Genauigkeit der GBV durch den 

neuen Ansatz besser vorhergesagt werden kann. Der vorgestellte Ansatz besitzt immer 

noch einen unbekannten Parameter, für den jedoch eine Approximation möglich ist, wenn 

in einem geeigneten Datensatz Ergebnisse von Zuchtwertschätzungen zu zwei 

verschiedenen Zeitpunkten vorliegen. Zusammenfassend kann gesagt werden, dass diese 

neue Methode die Approximation der Genauigkeit des GBV in vielen Fällen verbessert.
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The main focus of this thesis is to investigate the prediction accuracy with imputed 

whole-genome sequencing data and high density array data. A short overview of different 

relevant theories and the availability of data will be described in this chapter. 

Genomic prediction 

The process of animal breeding includes selecting the best individuals from the current 

generation (selection) as parents for the next generation (mating). One of the methodolog-

ical cornerstones was the introduction of the best linear unbiased prediction (BLUP) 

(Henderson, 1975), which opened up an era of comprehensive selection. The theory of 

BLUP uses the phenotypic records from candidates themselves or records from relatives 

and relationships among individuals building the mixed model equations to estimate fixed 

effects (mostly environment effects) and random effects (including breeding values) sim-

ultaneously to predict estimated breeding values (EBVs). Breeders can select the candi-

dates with the largest EBVs as parents for the next generation. In addition to the basic 

mixed model, a number of extensions have been introduced to handle data with different 

structure, e.g. a sire model, a reduced animal model, and an animal model with groups 

(Mrode, 1996). 

With the availability of the first genetic markers, combining molecular genetic infor-

mation into selection has come into the scope of animal breeding and different methods 

have been proposed, summarized under the term marker-assisted selection (MAS). MAS 

refers to a method of selecting candidate individuals in a breeding scheme based on DNA 

molecular marker patterns in addition to their trait phenotype. MAS includes linkage 

disequilibrium-based MAS (LD-MAS) and linkage equilibrium-based MAS (LE-MAS) 

(Meuwissen and Goddard, 2010). The hypothesis for LD-MAS is that a maker is in link-

age disequilibrium with a causal mutation or quantitative trait locus (QTL); thus this 

marker can be used as a proxy for that QTL. The genetic variance explained by QTL can 

be captured by the nearby marker with a factor of 𝑟2, which is commonly a measure of 

linkage disequilibrium. However, in reality, the positions of QTLs are normally un-

known, not to mention the linkage disequilibrium between QTLs and markers. The basic 

idea of LE-MAS is to scan the genome to detect the inheritance of markers in order to 

build the identical-by-descent probability which then is used in a statistical model. Even 

though a few studies have identified the casual mutation for traits controlled by a single 

or limited number of QTLs (Dekkers, 2004), most economically important traits are of 

complex nature, which means that these traits are controlled by many genes, are influ-

javascript:void(0);
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enced by the environment and the observed phenotypes are mostly on a continuous scale. 

Consequently, the application of MAS was generally of limited success.  

Another major breakthrough after BLUP and MAS was genomic selection (Meuwissen et 

al., 2001), which came along with available dense marker information. Genomic selection 

is in fact a form of LD-MAS, since it also relies on the linkage disequilibrium between 

the markers and the QTLs. However, different from MAS, the idea behind genomic selec-

tion is to use (ten) thousands of markers covering the whole genome, so that some of the 

markers inevitably are in linkage disequilibrium with the QTLs. Thus, the markers can 

potentially explain a major part of the genetic variance (Meuwissen et al., 2001). The 

basic step of genomic prediction is estimating the effect of thousands of markers in a 

population for individuals with both phenotypic data and genotypic data (training set) 

simultaneously, then summing all the marker effects for candidates that only have geno-

typic, but no phenotypic data to obtain their genomic estimated breeding values (Goddard 

and Hayes, 2007). 

Compared to the previous selection methods, genomic selection holds at least two ad-

vantages. First, since the phenotypic data of selection candidates are not required, ge-

nomic selection can improve the selection process for traits that can only be measured in 

one sex, appear late in life (even after death), or that are too expensive to measure 

(Meuwissen et al., 2001). Second, in conventional BLUP the relationships between indi-

viduals are determined based on the pedigree information as an expected relationship, 

whilst in genomic selection the realized relationship between individuals can be estimated 

by using genomic information, which means that it can measure the Mendelian sampling 

effect which potentially increases accuracy of selection (Hayes et al., 2009b). Conse-

quently, genomic selection has become one of the most powerful tools in animal breeding 

schemes. 

Models for breeding value estimation 

1) Conventional BLUP and genomic BLUP 

Conventional BLUP in this thesis refers to the best linear unbiased prediction of Hender-

son (Henderson, 1975). The basic animal model of conventional BLUP is the following: 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆  
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where 𝒚 is a vector of phenotypic records with dimension number of individuals with 

phenotype times one (𝑛 ×  1),  𝜷 is a matrix with p fixed effects (𝑛 ×  𝑝), 𝑿 and 𝒁 are 

design matrices relating phenotypic records to the fixed effects and random additive ef-

fects 𝒖, 𝒆 is a vector of random residual effects. 𝒖 is assumed to be normally distributed 

with 𝒖~𝑁(0, 𝑨𝜎𝑢
2) and 𝒆 is assumed to be normally distributed with 𝒆~𝑁(0, 𝑰𝜎𝑒

2). 𝑨 is 

the pedigree-based numerator relationship matrix. 

In this animal-based model, replacing the pedigree-based numerator relationship matrix 𝑨 

by a genomic relationship matrix 𝑮 will lead to genomic BLUP (GBLUP) (Goddard, 

2009; Hayes et al., 2009b). The construction of the genomic relationship matrix will be 

presented in the following. 

2) Ridge regression BLUP 

𝒚 = 𝟏𝜇 + 𝑾𝒈 + 𝒆  

where 𝒚 is a vector of observations of individuals in the training set for a specific trait 

(quasi-phenotype); 𝟏 is a vector of 1s, relating the effect of the mean to each record; 𝜇 is 

the overall mean; 𝑾 is a design matrix relating quasi-phenotypes to the genotypes of m 

markers with dimension number of individuals in the training set × number of markers m; 

𝒈 is the vector of the random effects of the m markers and 𝒈 ~ 𝑁(0, 𝑰𝜎𝑔
2); 𝒆 is the vector 

of residual terms and 𝒆~ 𝑁(0, 𝑰𝜎𝑒
2). 

In this model only the individuals with observations are used to estimate the marker ef-

fects. However, the direct genomic breeding values (DGV) for an individual 𝑖 with or 

without observations can be assessed as the summation of estimated SNP effects times its 

genotypes: 

𝐷𝐺𝑉𝑖 = ∑ 𝑊𝑖𝑘𝑔𝑘̂

𝑚

𝑘=1
 

In fact, GBLUP and RRBLUP are two fully equivalent models if the genomic relation-

ship matrix is specified appropriately. This equivalence has been proven in several stud-

ies, e.g. Habier et. al. (2007), Goddard (2009), VanRaden (2008). Consequently, the 

DGVs from RRBLUP and those from GBLUP are identical. 

In conventional BLUP, the independent variables are normally the phenotypic observa-

tions of the selection candidates or observations of their relatives, while in GBLUP the 

independent variables are normally quasi-phenotypes, e.g. EBVs estimated from conven-
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tional BLUP, de-regressed proofs (DRPs) (Garrick et al., 2009), or daughter yield devia-

tions (DYD).  

There are more models that can be employed in animal breeding, e.g. Bayesian models. 

The ‘Bayesian alphabet’ refers to various Bayesian linear regression models used in ge-

nomic selection that differ in the priors (Gianola, 2013), for instance, BayesA and 

BayesB (Meuwissen et al., 2001), BayesC (Habier et al., 2011), BayesC𝜋 (Habier et al., 

2011), and BayesR (Erbe et al., 2012). More specifically, in BayesA, each SNP is as-

sumed to have a different variance, and these variances follow an inverse-chi-squared 

distribution. Model BayesB assumes that a certain proportion of SNPs have no effects, 

while the rest of the SNPs have a SNP-specific variance. Bayesian models are quite often 

found to outperform GBLUP with simulated data, while yielding similar predictive ability 

in real data (Habier et al., 2011; Wang et al., 2015). Genomic prediction with Bayesian 

alphabet methods is beyond the scope of this thesis; however, more details can be found 

in several review papers e.g. Gianola (2013), de los Campos et al. ( 2013).  

Conventional BLUP is used to estimate breeding values in Chapter 4. GBLUP for esti-

mating direct genomic breeding values is used in Chapter 3 and 4 of this thesis. SNP 

effects are estimated by RRBLUP in Chapter 3. 

Establishment of the genomic relationship matrix G 

The matrix of relationship between individuals is crucial since it can be used to estimate 

breeding values, to assess the covariance structure and to manage inbreeding. There are 

several ways to construct a relationship matrix. In conventional BLUP, relationships be-

tween individuals are estimated based on pedigree information only which can reflect the 

expected relationship between individuals; thus, pedigree-based relationship cannot dis-

tinguish full sibs from each other, since they share the same pedigree information. In 

genomic selection, a genomic relationship matrix can be constructed using the genomic 

markers covering the whole genome. In this genomic relationship matrix, a realized rela-

tionship between individuals can be measured, because different individuals may inherit 

different alleles from the last generation. In other words, Mendelian sampling effects are 

taken into account in a genomic relationship matrix, which is one of the sources of in-

creased accuracy of genomic selection compared to the selection based on breeding val-

ues estimated via conventional BLUP. 
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A genomic relationship matrix can be built in different ways. One of the first and one of 

the most widely used approaches to build the genomic relationship matrix was proposed 

by VanRaden (2008), i.e. 

𝑮 =
𝑴𝑫𝑴𝑻

2 ∑ 𝑝𝑘(1 − 𝑝𝑘)𝑚
𝑘=1

 

where 𝑴 contains the centered SNP genotypes with individuals in rows and SNPs in col-

umns. The elements of column 𝑘 of 𝑴 are 0 − 2𝑝𝑘 for homozygotes of the first allele, 

1 − 2𝑝𝑘 for heterozygotes, and 2 − 2𝑝𝑘 for homozygotes of the second allele, where 𝑝𝑘 

is the frequency of the second allele at locus 𝑘 from the current data set. 𝑫 is a diagonal 

matrix with weights on different loci. An identity matrix is used to construct matrix 𝑫 in 

VanRaden (2008), which implies that all loci equally contribute to the variance-

covariance structure. The i
th
 diagonal value of the 𝑮 matrix minus one is the genomic 

inbreeding coefficient of an individual i. 

Considering that different traits may be affected by different SNPs and different numbers 

of SNPs, the assumption that all SNPs have equal contribution to all traits may be not 

suitable. Thus, different approaches to build the trait-specific 𝑮 matrix are proposed in 

order to account for genetic architecture. Most of the approaches replace the identity ma-

trix of 𝑫 with a more informative diagonal matrix, for example, the squares of SNP ef-

fects estimated from the training set with RRBLUP (Su et al., 2014), or −(𝑙𝑜𝑔10𝑃) from 

a t-test in a GWAS (de los Campos et al., 2013b). In addition, Zhang et al. (2015) pro-

posed an approach named best linear unbiased prediction given genomic architecture 

(BLUP|GA), which can also account for different genomic architecture based on variable 

selection. 

More details regarding the construction of genomic relationship matrices based on differ-

ent weighting factors is reported in Chapter 3. Genomic prediction results based on dif-

ferent genomic relationship matrices with different weighting factors as presented above 

are reported in Chapter 3. 

Accuracy of genomic prediction 

Empirical accuracy of prediction can be measured as the correlation between the true 

breeding values and breeding values estimated from different models. Accuracy of pre-

diction is relevant because it is an important component of response to selection per year, 
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also known as the breeder’s equation (Falconer and Mackay, 1996) and shown in the 

following: 

∆𝐺 = 𝑖𝜌𝜎𝐴/𝐿 

where ∆𝐺 is the response to selection per year, i is the intensity of selection, 𝜌 is the cor-

relation between true and estimated breeding values (accuracy of selection), 𝜎𝐴 is the 

additive genetic standard deviation and L is the generation interval. This equation can 

predict how the mean value of a trait under selection changes from one year to the next.  

Since the true breeding values are unknown in reality, the correlation between quasi-

phenotypes and direct genomic breeding values, often called ‘predictive ability’, is often 

used as a proxy for the accuracy of prediction. Beyond this, there are several approaches 

to estimate the accuracy of selection at the individual level or in a population. First, accu-

racy of selection for each individual can be obtained from the framework of BLUP 

(Henderson, 1975), i.e. 

𝑟𝑩𝑽𝑖
= √1 −

𝑃𝐸𝑉𝑖

𝑣𝑎𝑟(𝑨𝑖)
 

where 𝑃𝐸𝑉𝑖 is the prediction error variance for individual 𝑖, and can be obtained from the 

framework of BLUP, and 𝑣𝑎𝑟(𝑨𝑖) is the genetic variance. Second, the expected accuracy 

of selection across all individuals can also be obtained from the definition of correlation 

between genomic and true breeding values, 𝑟𝐺𝑇 ,  (Amer and Banos, 2010), i.e.  

𝑟𝐺𝑇 =
𝑟𝐸𝐺

𝑟𝐸𝑇 (1 +
𝑐𝑜𝑣(𝜺𝑬,𝜺𝑮)

𝑣𝑎𝑟(𝑻)
)
 

where 𝑟𝐸𝐺 is the correlation between EBVs and GBVs; 𝑟𝐸𝑇 is the theoretical accuracy of 

EBVs which can be obtained from the framework of BLUP; 𝑐𝑜𝑣(𝜺𝑬, 𝜺𝑮) is the covari-

ance between errors of EBV (𝜺𝑬) and errors of GBV (𝜺𝑮); 𝑣𝑎𝑟(𝑻) is the variance of true 

breeding values (TBVs). In this approach, the covariance between TBVs and errors of 

EBVs [𝑐𝑜𝑣(𝑇𝐵𝑉, 𝜀𝐸)] and covariance between TBVs and errors of GBVs 

[𝑐𝑜𝑣(𝑇𝐵𝑉, 𝜀𝐺)] are both assumed to be zero. If we further assume the covariance be-

tween errors of EBVs and errors of GBVs [𝑐𝑜𝑣(𝜺𝑬, 𝜺𝑮)] to be zero as well, then accuracy 

of selection can be measured as  

𝑟𝐺𝑇 =
𝑟𝐸𝐺

𝑟𝐸𝑇
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which is the formula proposed by Hayes et al. (2009b). 

Complementarily, cross-validation is often used to assess the accuracy of prediction. In 

general, the population is split into two groups: training set and validation set. The analy-

sis is performed in the training set and validated in the validation set. The commonly used 

strategies to split the population are leave-one-out cross-validation and k-fold cross-

validation. In leave-one-out cross-validation, each training set is created by taking all the 

individuals except one. Consequently, the validation set is the one individual left out. 

Thus, for a dataset with 𝑛 individuals, 𝑛 replicates have to be run. In k-fold cross-

validation, all individuals are divided randomly into k groups with equal size. The learn-

ing process is performed using individuals in 𝑘 − 1 folds. The validation set is the fold 

left out. This process is repeated 𝑘 times with each of the 𝑘 groups acting as validation set 

once. As a measure of accuracy, the correlation between estimated genomic breeding 

values and (available, but not used) quasi phenotypes of the individuals in the left-out 

fold is calculated. This is then averaged across all folds – so that each individual is pre-

dicted once – and eventually across replicates of the validation set characterized by dif-

ferent random assignment of individuals to the k groups. In practice, 5-fold and 10 fold 

cross-validation are commonly used. If k=n, the k-fold cross-validation is the same as the 

leave-one-out cross-validation.  

In the cross-validation strategies mentioned above, individuals are randomly assigned to 

the training set or validation set. In reality, this may not be the most relevant case because 

the selection candidates are normally younger than the individuals in the training set, 

which can be mimicked by masking the phenotypic data of younger animal as unknown. 

Then predictive ability can be obtained for the young selection candidates after genomic 

prediction, which is called forward prediction. 

The different approaches to estimate accuracy of selection are investigated in Chapter 4 

based on a simulation study. Cross-validation strategies to assess the accuracy of selec-

tion are carried out in Chapter 3. In Chapter 2, we employ cross-validation to assess 

imputation accuracy. 

Factors affecting accuracy of genomic prediction 

There are many factors which can affect the accuracy of selection, such as the number of 

individuals in the training population (Goddard and Hayes, 2009), relationship between 

training population and validation population (Erbe et al., 2012; Fangmann et al., 2015), 

relationship among individuals in the training population (Pszczola et al., 2012), the her-
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itability of the trait of interest (Calus et al., 2008), availability of information (e.g. num-

ber of progenies), and marker density (Erbe et al., 2013). 

Marker density can determine the strength of linkage disequilibrium between SNPs and 

QTLs. With higher density of genotypic data, the linkage disequilibrium between SNPs 

and QTLs can be potentially increased, which makes genotypic data a better proxy for the 

causal QTLs. Furthermore, with the availability of whole-genome sequence data, the 

potential causal mutations can be included in the data. 

Given that the marker density is sufficient, the number of individuals in the training 

population (i.e. the number of individuals with both phenotypic records and genotypic 

data) is one of the crucial factors affecting accuracy of genomic prediction. This is due to 

the fact that with an increasing size of the training population, SNP effects can be esti-

mated more accurately. 

The relationship between training population and validation population is an important 

factor affecting accuracy of selection, especially in across breeds or across populations 

selection. For breeds or populations with only small training populations available, previ-

ous studies found that combining training populations from relatively close breeds may 

be helpful for the accuracy of selection (de Roos et al., 2009). However, genomic selec-

tion relies on the phase of linkage disequilibrium between SNPs and QTLs, which might 

be different from one breed to another, thus the genetic distance between training popula-

tion and validation population can influence accuracy of genomic prediction. 

Genomic prediction with high density commercial arrays and whole-genome sequencing 

data is carried out in Chapter 3. The effect of the heritability of traits of interest and 

availability of information on accuracy of genomic prediction is investigated in Chapter 

4 with a simulation study.  

Implementation of genomic selection 

Genomic selection was first and has been widely performed in breeding schemes of dairy 

cattle. The increase in accuracy of genomic selection has been reported in many studies 

for a range of traits and countries (Hayes et al., 2009a; Hayes et al., 2009b). For instance, 

based on data in year 2003, VanRaden et al. (2009) reported that realized reliability based 

on genomic selection was 0.50 compared to the reliability achieved with traditional selec-

tion of 0.27, averaging over more than 20 traits. 
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For pigs, the implementation of genomic selection so far is not as wide as in dairy cattle 

breeding. However, genomic prediction has started in this sector as well (e.g. the PigGS 

project in Germany, among others). Gierlaug-Enger et al. (2013) evaluated the accuracy 

of genomic selection for the trait intramuscular fat based on 4,576 Norsvin Landrace and 

3,408 Norsvin Duroc pigs, and reported that accuracy of breeding values increased from 

0.36 (accuracy with traditional selection) to 0.63 with genomic selection, averaged over 

the two breeds. 

For chickens, the literature and research on genomic selection is growing as well (Wang 

et al., 2013; Van Eenennaam et al., 2014). Wolc et al. (2015) performed a three-year ex-

periment by splitting a brown egg laying hen population into two sub-lines: conventional 

selection was performed in one sub-line, and genomic selection was performed in the 

other sub-line. Based on the results of 16 traits, they reported that chickens selected by 

genomic selection outperformed those selected by conventional selection, with a doubled 

response to selection for traits egg weight and yolk weight. In addition, they also found 

that the inbreeding per year in the genomically selected sub-line was lower than that in 

the conventionally selected sub-line.  

Availability of SNP array data and whole-genome sequencing data in chicken 

In 2004, the International Chicken Genome Sequencing Consortium released the first 

draft of the sequence of the chicken genome, based on DNA from an inbred Red Jungle 

Fowl (International Chicken Genome Sequencing Consortium, 2004). To date, the fourth 

version of the reference genome (Gallus_gallus-4.0) is available within public databases, 

and includes 28 of 38 heterosomes, two linkage groups and two sex chromosomes. A 

large amount of genomic variation including SNPs, copy number variants (CNVs), short 

insertion and deletion (INDELs) are available and are used for the design of commercial 

array chips. Groenen et al. (2011) designed a moderate density SNP array chip of chicken 

(Illumina SNP BeadChip, short for 60K chip), which in total consists of 60,800 SNPs 

known to be segregating in broilers and laying hens at high to medium allele frequencies. 

This 60K chip has been commercially available since 2011 and is designed based on the 

second build of the chicken genome (Gallus_gallus-2.1). In 2013, the Affymetrix Axi-

om® Chicken Genotyping Array with 600K SNPs (HD array) became commercially 

available (Kranis et al., 2013). 580,954 SNPs, including 21,534 coding variants, were 

selected from 243 chickens in 24 lines (including experimental, commercial broiler and 

layer lines). The selected SNPs are evenly distributed in the genetic map, resulting in a 

higher physical density (SNPs per kilo-basepairs) on micro- compared to macro-
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chromosomes. This HD array was designed based on the fourth build of the chicken ge-

nome (Gallus_gallus-4.0). Note that the individuals used in Chapter 2 and 3 were geno-

typed with this HD array offered by Affymetrix. 

The technical progress in the last decade has made it possible to sequence millions of 

DNA reads in a relatively short time frame at reasonable costs. Thus, whole-genome se-

quencing has become available which allows us to gather more information on genetic 

variation, genes, gene function and other characterizations of genomes (Bentley, 2006; 

Mardis, 2008), leading to the emergence of research projects dealing with whole-genome 

sequencing data in humans (Morozova and Marra, 2008; Lam et al., 2012; Goldstein et 

al., 2013; Sims et al., 2014), domestic animals (Rubin et al., 2010; Baes et al., 2014; 

Daetwyler et al., 2014) and other species (Hickey et al., 2012a). Large consortia, e.g. the 

1000 bull genomes project (Grant et al., 2011; Daetwyler et al., 2014) and the human 

genome project (International Human Genome Sequencing Consortium, 2001; 

International Human Genome Sequencing Consortium, 2004) have been established to 

accumulate available resources, detect new variants in genomes, better understand genetic 

architecture of different traits and to find or narrow down positions of potential causal 

loci. 

The basic workflow to obtain whole-genome sequencing data 

The raw output of next generation sequence technology for whole-genome sequencing 

data normally is in a FASTQ format, which is text-based sequence information with nu-

cleotides being represented by a single letter. The basic workflow to convert this format 

into the final set of SNP calls is illustrated in Figure 1.1. 

In the first step, we align the raw reads to a reference genome. There are several tools 

available for alignment, e.g. Burrows-Wheeler Alignment tool (BWA) (Li and Durbin, 

2009), Mapping and Assembly with Qualities (MAQ) (Li et al., 2008), and Bowtie 

(Langmead et al., 2009). BWA is one of the most popular alignment tools. BWA is based 

on backward search with Burrows–Wheeler Transform, which is an efficient algorithm to 

align short sequencing reads to a reference genome. It can also cope with sequencing 

errors and mismatches and supports both single-end and pair-end alignment. For each 

alignment, BWA also generates a mapping quality score reflecting the probability that the 

alignment is correct. By default, it generates a SAM/BAM format of alignment.  

In the second step, we mark or remove duplicates. This step can be done with MarkDu-

plicates utility of Picard (http://picard.sourceforge.net) or with rmdup utility of 

http://picard.sourceforge.net/
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SAMtools. Whether duplicates are marked or removed depends on the study design, since 

it is not easy to distinguish PCR artifacts and real DNA duplicates. 

 

Figure 1.1: Basic workflow to convert the raw output files of next generation sequence 

technology into the final set of SNP calls. 

The next step is calling the variant from the BAM file. Several variant callers based on 

different algorithms have emerged using single or multiple samples simultaneously, e.g. 

the utilities of SAMtools (Li et al., 2009), UnifiedGenotyper or HaplotypeCaller of 

GATK (McKenna et al., 2010), and freebayes (Garrison and Marth, 2012). Although the 

priors are different, GATK and SAMtools use rather similar Bayesian methods for esti-

mation of the posterior probability of the genotype and detection of variants relying on 

alignment. Freebayes also uses Bayesian methods to detect variants, but is haplotyped-

based, in the sense that it calls variants based on the literal sequences of reads aligned to a 

particular target, not their precise alignment (https://github.com/ekg/freebayes). 

To minimize the artefacts that may affect the downstream analyses and to enhance the 

quality of variants, it is crucial to perform a filtering for the called variants per individual 

and per position. Different strategies to select the so-called high-quality variants have 

been suggested (Qanbari et al., 2012; O’Rawe et al., 2013; Cheng et al., 2014). In our 

study, we only filtered depth of coverage and mapping quality as shown in Chapter 2 

https://github.com/ekg/freebayes
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and 3. Furthermore, this workflow actually only illustrates the basic guideline. There are 

some custom-modifications depending on the design of a study. For instance, there are 

several studies in which filtering for the raw reads was performed followed by the align-

ment of the reads which passed the filter to the reference genome (see e.g. Patel and Jain, 

2012). 

There are several options for programs of variant calling; thus, we performed a compari-

son among three variant callers (i.e. GATK, SAMtools, and freebayes) in Chapter 2. 

Imputation 

Imputation refers to the methods predicting the genotypes of SNPs which were not typed 

(Marchini and Howie, 2008). Since the idea of imputation was first proposed by Burdick 

(2006), it has become an essential tool in the analysis based on genotypic data in order to 

maximize the number of samples and SNPs used in genomic prediction (Su et al., 2012; 

Wellmann et al., 2013; Badke et al., 2014; Morota and Abdollahi-Arpanahi, 2014), to 

improve the power of GWAS (Scuteri et al., 2007; Willer and Mohlke, 2012), and to 

facilitate meta-analysis (Kathiresan et al., 2008; Sanna et al., 2008). 

Imputation algorithms 

There are several algorithms and programs available to perform the imputation procedure, 

which can be classified into two main categories: rule-based approaches and model-based 

approaches (Browning and Browning, 2011). 

One of the well-known rule-based approaches is used in the program FImpute (Sargolzaei 

et al., 2014). It is based on the rules that the closer relatives share longer haplotypes and 

the relatives distanced further apart share shorter haplotypes due to mutation and recom-

bination over generations. It identifies haplotypes using overlapping sliding windows, 

which is faster than most model-based programs. In addition, FImpute is one of the pro-

grams that can combine pedigree and linkage disequilibrium information in one imputa-

tion process. 

Among model-based algorithms, there are several models commonly used. Several well-

known programs are based on the coalescent model such as fastPHASE (Scheet and 

Stephens, 2006), HaploRec (Eronen et al., 2006), and PHASE (Stephens et al., 2001). 

Hidden Markov models are underlying programs like Beagle (Browning and Browning, 

2007), Impute2 (Howie et al., 2009), and Minimac3 (Howie et al., 2012). The general 

idea behind this model is estimating haplotypes that are present in both reference and 
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study samples and then imputing the missing genotype for the study samples. Beagle is 

one of the most popular programs for phasing and imputation in animal breeding, howev-

er, it is not convenient to use for whole-genome sequencing data in terms of imputation 

speed. In some relevant cases genotypic data from low density and high density SNP 

arrays along with WGS data for some individuals may be available in the same popula-

tion. Multiple step imputation (i.e. imputing low density array data into high density data, 

and then to a sequence level) could increase the imputation errors (Khatkar et al., 2012). 

Impute2 can address this challenge by using multiple reference panels that contain differ-

ent SNP sets. Minimac3 claims to be a low memory, computationally efficient imputation 

program, but requires pre-phased data as an input. 

Imputation accuracy 

Imputation accuracy can be measured in different ways, e.g. as the correlation between 

true and imputed genotypes, imputation error rates, and genotype conflicts between par-

ents and progeny. 

When measuring imputation accuracy as the correlation between the true and imputed 

genotypes, accuracy tends to increase with the increase of minor allele frequency (MAF). 

Because SNPs with lower MAF tend to have weaker linkage disequilibrium (LD) with 

their surrounding SNPs, and it is difficult to build haplotypes as the SNPs are in weak LD 

(Browning and Browning, 2011; Hickey et al., 2012b). Nonetheless, correlation between 

true and imputed genotypes is a relatively good and commonly used measure for imputa-

tion accuracy. 

Imputation error rate counts the incorrectly imputed alleles. It is difficult to compare im-

putation accuracy cross loci, since it depends on MAF of the respective SNP (Hickey et 

al., 2012a; Calus et al., 2014), in that imputation error rates tend to decrease with increas-

ing MAF.  

Measuring genotype conflict means to search for alternative homozygotes being present 

in parent and progeny pairs, which violates Mendelian rules. Genotype conflict cannot 

assess the imputation accuracy of heterozygous SNPs. Furthermore, genotype conflicts 

can only be verified in adjacent generations and can be easily affected by pedigree errors. 

Nevertheless, the measurements mentioned above can evaluate the imputation accuracy 

from different aspects. In addition, some imputation programs can also provide imputa-

tion accuracy according to their methods. For instance, Minimac (Howie et al., 2012) and 
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its later versions offer a criterion called Rsq to evaluate the quality of imputation per 

SNP. Rsq is the estimated squared correlation between true and imputed genotypes. Bea-

gle and several other programs offer similar measurements and have suggested threshold 

values. FImpute, however, does not offer such an evaluation. 

Different strategies are performed to assess the imputation accuracy in terms of correla-

tion and genotype conflicts in Chapter 2. 

Factors affecting imputation accuracy 

A number of factors can influence the imputation accuracy, e.g. size of reference popula-

tion, relationship between or within reference and study populations, marker density, 

allele frequency, and genotype errors. 

Size of reference population has been reported as one of the most important factors af-

fecting imputation accuracy (Druet et al., 2010; Browning and Browning, 2011; Hickey 

et al., 2011). With a large reference population, more haplotypes in the population can be 

discovered. Thus the possibility of matching the haplotypes showed in the study popula-

tion is increased. The relationship between or within reference and study populations is 

an important factor as well (Marchini et al., 2006), because closer relatives tend to share 

longer haplotypes and relatives further apart tend to share shorter haplotypes due to muta-

tion and recombination over generations. Thus, the relationship can affect the correctness 

of haplotypes and further affect imputation accuracy. MAF is another factor affecting 

imputation accuracy. As mentioned before, SNPs with low MAF normally are in low LD 

with surrounding SNPs. Consequently, it is difficult to build haplotypes for those SNPs, 

which can cause low imputation accuracy. 
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Objectives of this thesis 

Genomic selection has brought a breakthrough to modern animal breeding since it was 

proposed in 2001. With the feasibility of next-generation sequencing technologies, ge-

nomic selection has become possible using whole-genome sequencing data in animal 

breeding schemes. This is expected to lead to higher predictive ability, since whole-

genome sequencing data may contain all genomic variants including causal mutations. 

However, sequencing all individuals in a population is not realistic due to the lack of 

DNA resources and funding. Thus, the first objective of this thesis is to investigate the 

optimal strategy to impute array data up to the sequencing level. Further, we compare the 

advantage of using whole-genome sequencing data in genomic selection over high densi-

ty array data. The second objective is to measure the over-estimation of accuracy of ge-

nomic prediction with several available methods and further propose a new method to 

access the accuracy of genomic prediction. 

Chapter 2 first compares the sets of variants detected with different variant callers, 

namely GATK, freebayes and SAMtools, and checks the quality of genotypes of the 

called variants in a set of 25 white layer and 25 brown layer individuals. Second, an as-

sessment is presented regarding the imputation accuracy from SNP array data to whole-

genome sequencing with three different imputation programs, namely Minimac, FImpute 

and IMPUTE2, in a brown layer line. 

Chapter 3 compares genomic predictions using both high density array data and imputed 

whole-genome sequencing data in a commercial brown layer chicken line, based on the 

promising results in Chapter 2. In addition, GBLUP models with a variety of weighting 

factors for specific SNPs are studied. 

Chapter 4 investigates several available approaches that are often used as measures for 

accuracy of genomic prediction to assess the magnitude of over-estimation based on a 

simulation study. In addition, a novel and computationally feasible method is proposed. 

The quality of the new approximation is evaluated with both simulated and real data. 

Chapter 5 includes a general discussion about several critical issues regarding genomic 

prediction with imputed whole-genome sequencing data. 
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Abstract 

Background: The technical progress in the last decade has made it possible to sequence 

millions of DNA reads in a relatively short time frame. Several variant callers based on 

different algorithms have emerged and have made it possible to extract single nucleotide 

polymorphisms (SNPs) out of the whole-genome sequence. Often, only a few individuals 

of a population are sequenced completely and imputation is used to obtain genotypes for 

all sequence-based SNP loci for other individuals, which have been genotyped for a sub-

set of SNPs using a genotyping array. This study focused on two objectives. First, we 

compared the sets of variants detected with different variant callers, namely GATK, free-

bayes and SAMtools, and checked the quality of genotypes of the called variants in a set 

of 50 fully sequenced white and brown layers. Second, we assessed the imputation accu-

racy (measured as the correlation between imputed and true genotype per SNP and per 

individual, and genotype conflict between father-progeny pairs) when imputing from high 

density SNP array data to whole-genome sequence using data from around 1000 individ-

uals from six different generations. Three different imputation programs (Minimac, FIm-

pute and IMPUTE2) were checked in different validation scenarios. Results: There were 

1,741,573 SNPs detected by all three callers on the studied chromosomes 3, 6, and 28, 

which was 71.6% (81.6%, 88.0%) of SNPs detected by GATK (SAMtools, freebayes) in 

total. Genotype concordance (GC) defined as the proportion of individuals whose array-

derived genotypes are the same as the sequence-derived genotypes over all non-missing 

SNPs on the array were 0.98 (GATK), 0.97 (freebayes) and 0.98 (SAMtools). Further-

more, the percentage of variants that had high values (>0.9) for another three measures 

(non-reference sensitivity, non-reference genotype concordance and precision) were 90 

(88, 75) for GATK (SAMtools, freebayes). With all imputation programs, correlation 

between original and imputed genotypes was >0.95 on average with randomly masked 

1000 SNPs from the SNP array and >0.85 for a leave-one-out cross-validation within 

sequenced individuals. Conclusions: Performance of all variant callers studied was very 

good in general, particularly for GATK and SAMtools. FImpute performed slightly worse 

than Minimac and IMPUTE2 in terms of genotype correlation, especially for SNPs with 

low minor allele frequency, while it had lowest numbers in Mendelian conflicts in availa-

ble father-progeny pairs. Correlations of real and imputed genotypes remained constantly 

high even if individuals to be imputed were several generations away from the sequenced 

individuals.  
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Background 

The technical progress in the last decade has made it possible to sequence millions of 

DNA reads in a relatively short time frame for reasonable costs. Thus, whole-genome 

sequencing has become available that allows us to gather more information on genetic 

variation, genes, gene function and other characterizations of genomes (Bentley, 2006; 

Mardis, 2008) and the number of research projects dealing with whole-genome sequenc-

ing data has been emerging in humans (Morozova and Marra, 2008; Lam et al., 2012; 

Goldstein et al., 2013; Sims et al., 2014), domestic animals (Rubin et al., 2010; Baes et 

al., 2014; Daetwyler et al., 2014) and other species (Hickey et al., 2012) in the last years. 

Large consortia (e.g. 1000 bull genomes project (Grant et al., 2011; Daetwyler et al., 

2014) or the human genome project (International Human Genome Sequencing 

Consortium, 2001; International Human Genome Sequencing Consortium, 2004) have 

been established to accumulate available resources, detect new variants in genomes, bet-

ter understand genetic architecture of different traits and find or narrow down positions of 

potential causal loci. In dairy cattle, for example, 28.3 million variants in the whole ge-

nome were identified from 234 bulls sequenced with an average coverage of 8.3X in the 

first phase of the 1000 bull genomes project, and loci associated with milk production and 

curly coat were detected by genome-wide association studies (Daetwyler et al., 2014). In 

chicken, research projects using whole-genome sequencing data have been rare so far. 

Rubin et al. (2010) generated pooled whole-genome sequencing data representing eight 

populations of domestic chickens in order to identify how genetics adapt to new envi-

ronments. In the study of Qanbari et al. (2012) genome regions with strong evidence of 

selection were identified from pooled whole-genome sequencing data of 15 laying chick-

ens. Within the framework of the project Synbreed (http://www.synbreed.tum.de/) whole-

genome sequencing data of 50 individuals from commercial layer lines were generated 

which built the basis for this study. 

Several variant callers based on different algorithms have emerged using single or multi-

ple samples simultaneously, e.g. SAMtools (Li et al., 2009) or GATK (McKenna et al., 

2010). Recently, some studies have shown that there is significant difference in the set of 

variants called by different variant callers (Rosenfeld et al., 2012; O’Rawe et al., 2013; 

Baes et al., 2014). Baes et al. (2014) found that the number of variants varied between 

variant callers (i.e. Platypus, SAMtools and two difference GATK utilities: UnifiedGeno-

typer and HaplotypeCaller) in whole-genome sequencing data of dairy cattle. O’Rawe et 

al. (2013) carried out a study to examine the concordance among different variant calling 

pipelines with default parameters, but their analyses mainly focused on exome sequenc-
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ing and did not assess multiple sample variant calling algorithms. Thus, it is still im-

portant to evaluate genotype concordance and precision obtained with different variant 

callers in whole-genome sequencing data in chicken.  

Although over the past several years the cost of DNA sequencing has decreased by sever-

al orders of magnitude due to the rapid development of sequencing technology, it is still 

comparatively expensive (Meynert et al., 2014). There are two main strategies to reduce 

costs: One is to only sequence coding exons which has been commonly used in human 

clinical applications (Linderman et al., 2014), but actually none of the available kits can 

cover all the coding exons (Sulonen et al., 2011). Besides, it was shown that both natural 

and positive selection eventually occurred in the non-coding DNA blocks and some QTL 

have been mapped in such blocks, so that important parts of the genome may be missed 

by just using exome sequencing (Bird et al., 2006; Drake et al., 2006). The other major 

strategy to reduce costs when being interested in sequence information of a whole popu-

lation is to generate whole-genome sequencing data for a small set of individuals highly 

related to the population and then impute SNP array data of other individuals of the same 

population up to sequence level based on the whole-genome sequencing data of the se-

quenced individuals and array based SNP array data of the remaining individuals. Before 

whole-genome sequencing data had been available, the technique of imputation has al-

ready been used for imputing from low to high density SNP array data with high accuracy 

and thus has proven to be a successful line of action, e.g. in cattle (Pausch et al., 2013) to 

obtain higher marker densities for a large number of individuals. 

Heidaritabar et al. (2014) showed the possibility to impute SNP array data into whole-

genome sequencing data based on a small reference population of 22 sequenced individu-

als in simulated data. Druet et al. (2014) investigated the accuracy of imputation that can 

be achieved with Beagle (Browning and Browning, 2007) and found that the highest im-

putation accuracy was 0.86 when the simulated whole-genome sequencing data for 50 

bulls with a 12X coverage was used as reference dataset. Van Binsbergen et al. (2014) 

and Pausch et al. (2014) showed that a reasonable accuracy of imputation (e.g. correlation 

between observed and imputed genotypes as high as 0.83) could be achieved when imput-

ing from SNP array data to whole-genome sequencing data in dairy cattle breeds. Never-

theless, there has been no attempt so far to evaluate the accuracy of imputation from high 

density SNP array data (580k) up to sequence level with real chicken data. 

In this study, we first compared the sets of variants detected with different variant callers, 

namely GATK (McKenna et al., 2010), freebayes (Garrison and Marth, 2012) and 
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SAMtools (Li et al., 2009), and checked the quality of genotypes of the called variants in 

a set of 25 white layer and 25 brown layer individuals. Second, we assessed the imputa-

tion accuracy from SNP array data to whole-genome sequencing with three different im-

putation programs, namely Minimac (Howie et al., 2012), FImpute (Sargolzaei et al., 

2014) and IMPUTE2 (Howie et al., 2009), in a brown layer line. 

Methods 

Ethics statement 

Samples were collected by veterinarians in the Lohmann Company in the course of a 

routine health check for diagnostic reasons and a partition of retained samples was used 

to extract DNA. The authors collected no samples themselves. 

Data 

Blood samples and pedigree data of more than 5 generations backwards (2260 individuals 

in total) were available for purebred individuals from different generations of a brown 

layer line. Number of individuals per generation is shown in Additional file 2.1. Further-

more, genotypes from the Affymetrix Axiom® Chicken Genotyping Array (580k array) 

were available for 1081 brown layer chickens (including 24 of the 25 sequenced brown 

layers) from 5 different generations which were later imputed to whole sequence level. 

Genotyped SNPs with minor allele frequency (MAF) smaller than 0.5% and genotyping 

call rate smaller than 97% were removed so that 350,602 SNPs remained. Individuals 

with a call rate smaller than 95% in the remaining SNPs were then excluded leaving a set 

of 1075 genotyped brown layer individuals. 

Whole-genome sequencing and alignment 

Fifty individuals (25 brown layers and 25 white layers) chosen to be from one of the older 

generations and highly related to the set of already genotyped individuals were sequenced 

with the Illumina HiSeq2000 technology with a target coverage of 8X. Sequence reads 

were aligned to Build 4 of the chicken reference genome (galGal4) using BWA (version 

0.7.9a-r786) (Li and Durbin, 2009) with default parameters for paired-end alignment. In 

this step SAM files were generated, which were converted to BAM files using SAMtools 

(Li et al., 2009) in the following step. Reads were then further processed with the Mark-

Duplicates utility of Picard (http://picard.sourceforge.net) to remove potential PCR dupli-

cates. 
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Variant detection  

Variants including SNPs and short insertion and deletion (INDELs) were called using 

different software programs: GATK (version 3.1-1-g07a4bf8, UnifiedGenotyper) 

(McKenna et al., 2010), freebayes (version v0.9.15-1-g076a2a2) (Garrison and Marth, 

2012) and the mpileup utility of SAMtools (version 0.1.19-96b5f2294a) (Li et al., 2009) 

with default parameters, respectively. With all programs mentioned, variant calling was 

performed with multi-sample approaches using all 50 sequenced chickens simultaneous-

ly. Sets of variants obtained with the three different callers were processed in equal man-

ner, but independent from each other in the following. Different versions of the same 

variant callers may result in a different set of variants for the same underlying sequencing 

data. Thus, two versions of freebayes (version v0.9.15-1-g076a2a2 and version v9.9.2-22-

gc283d6d) were compared regarding the overlap of called variants.  

Filtering and genotype quality enhancement 

To reduce the proportion of the false positive variants, different strategies to select the so-

called high-quality variants have been suggested (Qanbari et al., 2012; O’Rawe et al., 

2013; Yu and Sun, 2013; Cheng et al., 2014). We applied thresholds for depth of cover-

age (DP) and mapping quality (MQ) according to the following protocol: Extraction of 

SNPs from the set of all called variants was done using the SelectVariants command of 

GATK. Filtering for the SNPs called on all chromosomes of the whole-genome included 

the following criteria: First, outlier SNPs (top 0.5% of DP) were removed. Then, mean 

and standard deviation of DP of the remaining SNPs were calculated and SNPs with a DP 

above and below 3 times the standard deviation from the mean were removed as well. For 

mapping quality, SNPs with a MQ score smaller than 30 within SNP sets obtained with 

the variant callers GATK and SAMtools and SNPs with both mean mapping quality of 

observed alternate alleles (MQM) and mean mapping quality of observed reference al-

leles (MQMR) smaller than 30 within the SNP set obtained with freebayes were excluded 

from further analyses. Separate SNP sets were built for brown and white layers, respec-

tively, in which SNPs that were monomorphic in the respective set of individuals were 

removed. Finally, we used Beagle 3.3.2 (Browning and Browning, 2007) (see Additional 

file 2.2 for the pipeline) in order to enhance the original genotype quality of the remain-

ing SNPs following the proposal of Jansen et al. (2013). For all subsequent analyses re-

garding imputation, only data from brown layers and variants called by GATK were used. 

Furthermore, considering the computational efforts especially in the imputation process, 
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all further analyses were not performed for the entire genome, but three chromosomes 

(chromosomes 3, 6 and 28) of different length were selected for the following analyses.  

Validation of different variant callers 

Genotype concordance (GC), non-reference sensitivity (NRS), non-reference genotype 

concordance (NRC), and precision were calculated based on array genotypes and corre-

sponding sequence-based genotypes obtained with different variant callers (GATK 

(McKenna et al., 2010), freebayes (Garrison and Marth, 2012), SAMtools (Li et al., 

2009). For each SNP, GC is the proportion of individuals whose array-derived genotypes 

are the same as the sequence-derived genotypes over all non-missing SNPs on the array. 

NRS is the number of individuals who have at least one non-reference allele in both 

whole-genome sequencing data and SNP array data divided by total number of individu-

als who have at least one non-reference allele in the array data. NRC is the number of 

animals whose array-derived genotypes are the same as the sequence-derived genotypes 

and are not homozygous for the reference allele divided by total number of individuals 

who have at least one non-reference allele in the SNP array data. Precision is the number 

of animals whose array-derived genotypes are the same as the sequence-derived geno-

types and are not homozygous for the reference allele divided by total number of individ-

uals who have at least one non-reference allele in the sequencing data. The detailed calcu-

lations are shown in Additional file 2.3, which were based on the definitions in DePristo 

et al. (2011) and Linderman et al. (2014). Validation of variant callers was done for all 

positions at which SNPs from the array were available on chromosomes 3, 6 and 28 

(34,311, 13,627 and 2,730 SNPs), respectively, for the 24 brown layer individuals that 

were both genotyped and sequenced.  

Imputation 

Imputation was done with three software packages: Minimac (Howie et al., 2012), FIm-

pute (Sargolzaei et al., 2014) and IMPUTE2 (Howie et al., 2009), among which Minimac 

and IMPUTE2 are based on pedigree-free algorithms, while FImpute can combine link-

age disequilibrium (LD) information and pedigree information in the imputation process. 

FImpute uses an overlapping sliding window method to detect the relationship between 

study and reference set, while IMPUTE2 apples a hidden Markov model. Minimac im-

plements the MaCH (Li et al., 2010) algorithm for genotype imputation. For all software, 

a default number of iteration was used. As Minimac and IMPUTE2 need phased input 
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data, pre-phasing for whole-genome sequencing and SNP array data was performed using 

Beagle 4 (Browning and Browning, 2007). 

Assessment of imputation quality 

To evaluate the accuracy of imputation from SNP array data to whole-genome sequenc-

ing data, three strategies (described below) were used.  

Leave-one-out cross-validation 

Since 24 out of the 25 sequenced brown layer chickens were also genotyped with the 

580k array, each of these individuals was excluded from the imputation reference data set 

once and imputation from SNP array data to whole-genome sequencing data was per-

formed with the respective individual being one of the validation individuals in the result-

ing dataset. Genotype concordance and correlation between the imputed and sequenced 

genotypes from these run for all non-monomorphic SNPs being not on the array was cal-

culated afterwards per the respective individual.  

Father-progeny pair conflicts 

Among the genotyped brown layer individuals there were 134 individuals that were prog-

eny of one of the sequenced individuals. Thus, genotypes on imputed SNPs in the proge-

ny could be compared to the father’s genotypic information at these SNP positions and 

genotype conflicts (alternative homozygotes in father and progeny) were counted. Pro-

portion of genotype conflicts were calculated per father-progeny-pair over all SNPs ex-

cluding the ones which were also genotyped using the 580k array on chromosomes 3, 6 

and 28, respectively. 

Accuracy of randomly masked 1000 SNPs 

As imputation accuracy depends (amongst others) on the degree of relationship between 

sequenced individuals and individuals to be imputed, we also checked how imputing 

accuracy changes when different numbers of generations are between sequenced individ-

uals and individuals to be imputed. For this analysis, we randomly masked (i.e. setting 

them to missing) 1000 SNPs (680 out of total 34’311 SNPs on chromosome 3, 270 out of 

13’627 on chromosome 6 and 50 out of 2736 on chromosome 28) from the SNP array 

data in all genotyped individuals and imputed those SNPs as if they were SNPs from the 

sequence data. Afterwards, imputed genotypes on these 1000 SNPs and real array geno-

types were compared and genotype correlation was calculated for each SNP and also for 
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each individual. As Calus et al. (2014) and Mulder et al. (2012) demonstrated that it is 

better to center and scale true and impute genotype when calculating the individual-

specific imputation accuracy, we investigated the individual-specific imputation accuracy 

based on original genotypes and standardized genotypes. The random masking was repli-

cated five times with different random sets of 1000 SNPs and means of these five repli-

cates are reported in the results. 

Results and discussion  

Alignment and coverage 

For brown layer chickens, on average 88 million paired-end reads were obtained per indi-

vidual. Among these reads, 1.72% (ranging from 0.76% -1.98%) on average were marked 

as duplications and excluded and on average 96.7% (ranging from 96.1% - 96.9%) were 

mapped against the reference genome (galGal4). Coverage per sample ranged from 5.0 to 

16.6, with an average of 7.6. For white layer chickens, on average 94 million paired-end 

reads were obtained per individual. Among these reads, 1.69% (range 1.45% - 1.92%) 

were marked as duplications and excluded; and 96.7% (range 96.3% - 96.9%) were 

mapped against reference genome. Coverage per sample ranged from 7.9 to 15.6, with an 

average of 10.8. Based on this data set, the number of raw paired-end reads obtained was 

higher in white layer chickens than in brown layer chickens. However there was no dif-

ference in percentage of duplications and percentage of mapping. Details can be seen in 

Additional file 2.4. 

Variant detection  

Depending on the variant caller, totally 14,757,670 (GATK), 13,442,923 (freebayes), and 

13,642,483 (SAMtools) variants (i.e. SNPs and INDELs) were detected with multi-

sample calling on the 50 available brown and white layer chicken genomes (Additional 

file 2.5). In the study of Cheng et al. (2014) GATK identified almost the same amount of 

variants as SAMtools, while Pattnaik et al. (2012) identified more SNPs with freebayes 

than with SAMtools or GATK in the human genome. Unlike their results, we found that 

GATK identified more variants than SAMtools and freebayes, thus showing the same 

tendency as in studies of Liu et. al (2013), O’Rawe et al. (2013) and Baes et al. (2014). 

On the three chromosomes 3, 6, and 28 selected for imputation, GATK identified 

2,297,603 variants per animal of which 2,054,930 were SNPs. After excluding low-

quality SNPs that did not match the filtering criteria (as defined in the method section), 

there were 2,021,911 SNPs remaining. Compared to GATK, both SAMtools (2,125,837) 
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and freebayes (2,055,976) detected less variants, and after excluding INDELs and filter-

ing, there were 1,759,887 (1,652,870) SNPs remaining with SAMtools (freebayes).  

Figure 2.1 illustrates the number of overlapping SNPs detected by the three variant callers 

on the three chromosomes 3, 6 and 28. Many SNPs were detected only by one variant 

caller (236,322 for GATK, 29,187 for SAMtools, and 138,860 for freebayes). However, 

1,471,573 SNPs were detected by all three callers, which is 71.6% (81.6%, 88.0%) of 

SNPs detected by GATK (SAMtools, freebayes) in total. When focusing on GATK and 

SAMtools only, 1,763,383 SNPs were detected by both of them, which were the 86% of 

total SNPs detected by GATK, and 98% of total SNPs detected by SAMtools. Baes et al. 

(2014) found that around 18.3 million SNPs were both detected by SAMtools and GATK 

in the whole-genome of 65 individuals of the Swiss dairy cattle population, which was 

83% of the total number of SNPs detected by GATK and 98% of SAMtools which are 

very similar proportions to the ones we observed in our study. Based on data from exo-

mes of 20 humans, Liu et al. (2013) found in an exome sequencing study that 23,824 

SNPs were both detected by SAMtools and GATK, which is 95.5% of the total number of 

SNPs detected by GATK and 89.8% of SAMtools. A high agreement of different callers 

(i.e. a high percentage of SNPs detected by different callers simultaneously) with each 

other in terms of called variants, is an advantage if whole-genome sequencing data is 

handled in a way like O’Rawe (2013) suggested, namely using only the variants discov-

ered by multiple variants callers or pipelines for further analyses. 
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Figure 2.1: The overlap of single nucleotide polymorphisms detected by different variant 

callers. 

Except the number of SNPs shared by different variant callers, we also compared GC, 

NRS, NRC, and precision of different callers as suggested in DePristo et al. (2011) and 

Linderman et al. (2014). Different quality measures are shown in Table 2.1 and Addition-

al file 2.6. In general terms, we obtained very high values (> 0.9) for all metrics and all 

different callers, particularly for GATK and SAMtools. For 90% of variants called by 

GATK all four metrics were simultaneously larger than 0.9, while this was the case for 

88% (75%) of variants called with SAMtools (freebayes), which was mainly due to lower 

values in NRC and precision. The four different metrics which were binned into 100 

groups according to their array-derived MAF plotted against array-derived MAF are 

shown in Figure 2.2.In general, the similarity of metrics based on the SNPs called by 

GATK and SAMtools in different MAF bins was extremely high when compared to met-

rics based on SNPs called by freebayes. Results obtained with GATK and SAMtools 

were rather insensitive to MAF with the exception of GC, which showed a slight increase 

when MAF (<0.05) was low. Metrics for freebayes were in general lower (with the ex-

ception of NRS) and showed a slight increase with increasing MAF. The different proper-
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ties of results of freebayes compared to GATK and SAMtools is likely due to 

(dis)similarities of the algorithms underlying the three programs. Although the priors are 

different, GATK (McKenna et al., 2010) and SAMtools (Li et al., 2009) use rather similar 

Bayesian methods for estimation of the posterior probability of the genotype and detec-

tion of variants relying on alignment. freebayes (Garrison and Marth, 2012) also uses 

Bayesian methods to detect variants, but is haplotyped-based, in the sense that it calls 

variants based on the literal sequences of reads aligned to a particular target, not their 

precise alignment (https://github.com/ekg/freebayes). Although GATK and SAMtools 

have equivalent performances and both perform better than freebayes, the metrics used 

here relied on the accuracy of array-derived genotypes which were assumed to be the 

‘true’ genotypes. Eventually existing genotyping errors may thus bias the results. Besides, 

SNPs on the array were selected to be almost evenly distributed across the genome and 

were preselected to match a certain MAF spectrum which differs from the MAF distribu-

tion present in the sequence (Kranis et al., 2013), which also could bias the relative per-

formance of variant callers if they differ in sensitivity to such patterns. Furthermore, the 

coverage of sequencing as a potential influence factor was not under consideration here. 

Linderman et al. (2014) discovered that insufficient coverage could bias the GC metrics, 

particularly the NRS. Thus, freebayes might have more similar results to GATK or 

SAMtools if individuals were sequenced with a higher coverage. 
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Table 2.1: Genotype concordance metrics. The calculation based on array genotypes and corresponding sequence-based genotypes obtained with different vari-

ant callers at positions where SNPs from the array were available on chromosomes 3, 6 and 28  

 
Genotype concordance Non-reference sensitivity 

 
GATK freebayes SAMtools GATK freebayes SAMtools 

 
No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD 

≤0.1 23 0.03±0.03 9 0.03±0.03 3 0.08±0.00 3 0.01±0.02 9 0.04±0.04 5 0.04±0.04 

≤0.2 18 0.14±0.03 6 0.15±0.03 6 0.15±0.02 13 0.15±0.03 10 0.14±0.03 15 0.14±0.03 

≤0.3 12 0.25±0.02 9 0.27±0.02 9 0.25±0.03 25 0.25±0.03 7 0.24±0.03 20 0.24±0.03 

≤0.4 13 0.33±0.02 5 0.33±0.01 18 0.35±0.03 20 0.34±0.02 11 0.34±0.03 19 0.34±0.03 

≤0.5 22 0.45±0.03 18 0.45±0.03 24 0.45±0.03 20 0.45±0.02 14 0.45±0.03 24 0.44±0.03 

≤0.6 42 0.55±0.03 39 0.55±0.04 43 0.55±0.03 59 0.52±0.03 89 0.51±0.02 82 0.51±0.03 

≤0.7 73 0.65±0.03 64 0.66±0.03 62 0.66±0.03 96 0.66±0.02 105 0.66±0.02 158 0.66±0.03 

≤0.8 110 0.76±0.03 183 0.76±0.03 123 0.76±0.03 152 0.75±0.02 150 0.75±0.02 215 0.75±0.02 

≤0.9 679 0.87±0.03 3828 0.88±0.02 738 0.87±0.03 1206 0.86±0.03 1171 0.86±0.03 1561 0.86±0.03 

≤1 50441 0.98±0.02 46725 0.97±0.02 50334 0.98±0.02 49732 0.99±0.02 49206 0.99±0.02 49148 0.99±0.02 
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Table 2.1: Genotype concordance metrics. The calculation based on array genotypes and corresponding sequence-based genotypes obtained with different vari-

ant callers at positions where SNPs from the array were available on chromosomes 3, 6 and 28  

 
Non-reference genotype concordance Precision 

 GATK freebayes SAMtools GATK freebayes SAMtools       

 No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD No.SNPs Mean±SD 

≤0.1 55 0.02±0.03 34 0.02±0.03 35 0.02±0.03 46 0.02±0.04 28 0.01±0.03 28 0.01±0.03 

≤0.2 18 0.13±0.03 10 0.14±0.03 23 0.14±0.03 11 0.14±0.03 12 0.15±0.03 11 0.16±0.03 

≤0.3 24 0.26±0.03 20 0.25±0.03 24 0.25±0.03 22 0.25±0.03 22 0.25±0.03 17 0.25±0.03 

≤0.4 32 0.34±0.02 35 0.34±0.02 43 0.35±0.02 26 0.35±0.03 21 0.34±0.02 20 0.35±0.03 

≤0.5 32 0.43±0.03 41 0.43±0.03 38 0.43±0.03 15 0.42±0.02 36 0.43±0.03 21 0.44±0.03 

≤0.6 144 0.52±0.03 249 0.52±0.03 168 0.52±0.03 99 0.52±0.03 161 0.52±0.03 99 0.53±0.03 

≤0.7 245 0.66±0.03 540 0.66±0.03 297 0.65±0.03 157 0.66±0.03 499 0.66±0.03 156 0.66±0.03 

≤0.8 445 0.75±0.02 1725 0.76±0.03 584 0.76±0.02 270 0.75±0.02 2246 0.76±0.02 240 0.75±0.02 

≤0.9 3019 0.86±0.03 6607 0.86±0.03 3720 0.86±0.03 1644 0.86±0.03 6808 0.85±0.03 1964 0.86±0.03 

≤1 47312 0.98±0.03 41511 0.97±0.03 46315 0.98±0.03 49038 0.99±0.02 40941 0.97±0.03 48692 0.98±0.03 

 



Chapter 2 Comparison among three variant callers and assessment of the accuracy 

of imputation from SNP array data to whole-genome sequence level in chicken 48 

 

 

Figure 2.2: Comparison of the genotype concordance, non-reference sensitivity, non-

reference genotype concordance and precision of GATK, freebayes and SAMtools over 

various minor allele frequency bins. SNPs were binned into 100 groups according to their 

array-derived MAF. The mean of each metric was calculated within each minor allele 

frequency bin. The statistics of different genotype concordance metrics were measured 

according to Linderman et.al (2014). The orange squares represent variant caller GATK. 

The green circles stand for variant caller freebayes. The blue triangles stand for variant 

caller SAMtools. 

In this study, the analyses were mainly focused on the comparison of specific versions 

(namely the newest at the time point of performing the analyses) of different variant call-

ers. Different versions of the same variant callers may result in a different set of variants 

for the same underlying sequencing data. We thus compared two different versions of 

freebayes. The older version of freebayes (version v9.9.2-22-gc283d6d) called 524,938 

SNPs (29%) more than the newer version (version v0.9.15-1-g076a2a2) based on the 

same data material on chromosomes 3, 6, and 28. Thus, our ranking of callers is only 

valid for the specific versions used here.  
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It needs to be mentioned that the only alignment tool used in this study was BWA with 

different variant callers to make sure that variants are called based on the same basic data 

sets, to ensure a fair comparison of the callers. However, each step listed in the pipeline 

(Additional file 2.7) affects the quality of the final SNP calls, including the alignment 

step. Besides, it is possible that different callers combined with different alignment tools 

may have a different performance, an aspect which was not investigated in this study. 

However, BWA is one of the widely used alignment tools, which is known to have a 

good performance as well (Li and Durbin, 2009). Based on the results on the quality 

measures and regarding computation time (GATK which supports multiple threads was 

faster than SAMtools and freebayes, as shown in Additional file 2.8) and usefulness (i.e. 

quality, completeness and availability) of the software documentation, we decided to use 

the variants called by GATK as basis for the imputation part of this study. It turned out 

that there were 1,652,105 SNPs remaining on chromosomes 3, 6 and 28 totally in the 

brown layer chicken dataset for the imputation study. As mentioned before, there were 

different pipelines to deal with the whole-genome sequencing data with or without strictly 

filtering on genotype quality of each SNP and each individual. In this study, we did not 

filter genotype quality while enhancing the original genotype quality with Beagle 3.3.2 as 

was done in the study of Jansen et al. (2013) in order to use more SNPs in the analysis.  

Imputation accuracy 

Leave-one-out cross-validation 

A leave-one-out cross-validation was performed for each individual that was both se-

quenced and genotyped (i.e. 24 out of 25 sequenced individuals) to assess imputation 

accuracy from SNP array data to whole-genome sequence. For chromosomes 3, 6 and 28, 

the genotype correlation and concordance achieved by three different imputation packag-

es (Minimac, FImpute and IMPUTE2) are shown in Figure 2.3. Generally speaking, im-

putation accuracy assessed as correlation and concordance between imputed and se-

quence-derived genotypes within sequenced individuals was high with all imputation 

packages, with the performance of FImpute being slightly worse than the one of Minimac 

and IMPUTE2.  

Over all three chromosomes, the average genotype correlation ± standard deviation be-

tween imputed and sequence-derived genotypes was 0.91±0.028 for Minimac, 0.89 

±0.028 for FImpute and 0.90 ±0.027 for IMPUTE2. These results implied that also pedi-

gree-free imputation software (Minimac and IMPUTE2) yielded accurate genotypes for 
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whole sequence variants in this data set. Most of the sequenced individuals in this study 

were contemporaries in a commercial breeding program which controls for the level of 

relationship and inbreeding, thus pedigree relationship among these individuals was rela-

tively low. This may explain why imputation programs based on pedigree algorithms, 

such as FImpute, have no advantage in this leave-one-out cross-validation strategy.  

 

Figure 2.3: Imputation accuracy assessed by leave-one-out cross-validation. Genotype 

correlation (top panel) and genotype concordance (bottom panel) between the sequenced 

and imputed genotypes for 24 sequenced individuals with different imputing programs. 

Over all three imputation programs, the average genotype correlations for SNPs on chro-

mosomes 3 and 6 were quite similar. However, for chromosome 28, which is much 

smaller than the other two chromosomes studied, the average genotype correlation was 

slightly lower and the standard deviation was larger compared to chromosomes 3 and 6. 

In the study of Hancock et al. (2012), it was also found that imputation accuracy tended 

to be better on larger chromosomes (i.e. chromosome 1) than on smaller chromosomes 

(i.e. chromosome 22) in the human genome, even when there was no significant differ-

ence between these two chromosomes in typical characteristics (e.g. SNP density). The 

results of genotype concordance had a similar tendency as genotype correlation, but with 
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a smaller standard deviation, particularly for chromosome 28. Overall, the imputation 

accuracies of different programs were largely similar in this scheme, although FImpute 

again performed slightly worse than the other two on chromosomes 3 and 6.  

Leave-one-out cross-validation is the only strategy of assessment of imputation quality 

that allows taking all SNPs from sequenced data into account when calculating measures 

like genotype correlation. However, it should be mentioned that in most cases in practice 

individuals to be imputed are descendants of the sequenced individuals, which was not 

the case in this leave-one-out setup. Assessing whether the sequence of offspring is cor-

rectly imputed can only be done if a sample of such offspring is actually sequenced, and 

such data are presently not available in sufficient quantities. Thus these results of this 

analysis should only be extrapolated with caution to the practically most relevant case of 

imputing sequence of current selection candidates based on sequenced founder animals.  

Genotype conflicts in father-progeny pairs 

Based on the available pedigree, it is possible to apply Mendelian rules to estimate the 

percentage of genotype conflicts for all SNPs in father-progeny pairs (i.e. progeny’s gen-

otype is alternatively homozygous to father’s homozygous genotype) for an imputed 

progeny compared to each sequenced individual. There were 134 father-progeny pairs in 

the available pedigree for which the father was sequenced and the progeny was imputed. 

The number of progenies per father varied from 1 to 44. Comparisons of the imputation 

performance based on the father-progeny pair conflict (Figure 2.4) show that FImpute (on 

average 0.01%) outperformed Minimac and IMPUTE2 clearly, which should be ex-

pected, since pedigree information is used in FImpute while both other programs are ped-

igree-free algorithms. Furthermore, Minimac was still much better (on average 0.11%) 

than IMPUTE2 which produced conflicts with 2.5% of the imputed SNPs on average. 

When focusing on the performance of Minimac and FImpute on each chromosome, Min-

imac showed better performance on the larger chromosome 3 than on smaller chromo-

somes, likely due to the fact that there is more recombination on the micro-chromosomes 

which can result in less LD (Megens et al., 2009). The results of FImpute for the three 

chromosomes were similar, in spite of the fact that the percentage of conflicts was slight-

ly higher on chromosome 28 than on the other two. 
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Figure 2.4: The percentage of genotype conflicts in father-progeny pairs. The conflicts 

were calculated within 952,826 (365,802, 37,556) imputed SNPs on chromosome 3 (6, 

28) for 134 pairs of sequenced fathers and imputed progeny. Imputation was performed 

using minimac (left), FImpute (middle) or IMPUTE2 (right). 

Imputation accuracy for randomly masked 1000 SNPs in genotyped individuals 

In this scenario, the quality of imputation was assessed by the correlation between imput-

ed and masked true genotypes per individual and/or per SNP. The average imputation 

accuracy of different software programs plotted for MAF bins is shown in Figure 2.5. 

Correlation between imputed and true genotypes per SNP over all individuals was calcu-

lated. For this, all SNPs randomly masked in all 5 replicates were binned based by their 

sequence-derived MAF, and the average correlation in each bin was assessed. In general, 

the imputation accuracy (± S.D.) of FImpute was lower (0.90±0.11) compared to Min-

imac (0.97±0.033) and IMPUTE2 (0.97±0.036). FImpute performed particularly poor for 

SNPs with a MAF smaller than 0.2. Imputation accuracies from Minimac and IMPUTE2 

were comparatively stable with different MAFs, with a small reduction when MAF was 

low (< 0.1). Our results are in general agreement with several previous studies (e.g. in 

cattle (Ma et al., 2013; Bouwman and Veerkamp, 2014; Daetwyler et al., 2014) or human 

(Howie et al., 2011; Deelen et al., 2014) which also found that imputation accuracy de-

creased rapidly when MAF is low with different imputation software packages. Hence, 

the ability to accurately impute SNPs with low MAF is one of the most important criteria 

to assess the imputation programs. Usage of a diverse reference population may increase 

the imputation accuracy of rare variants (Deelen et al., 2014; Liu et al., 2014; Zheng et 

al., 2015), however, the computational burden also increases with the increase of the size 
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of the reference population (Howie et al., 2011; Howie et al., 2012). Thus, the trade-off 

between the imputation accuracy and imputation efficiency needs to be considered. 

 

Figure 2.5: Mean of imputation accuracy of different software against minor allele fre-

quency among 5 replications. SNP were binned by their sequence-derived MAF. 

As imputation accuracy depends (amongst others) on the relationship between reference 

individuals and individuals to be imputed, the trend of imputation accuracy when there 

was a different number of generations between reference and validation individuals was 

investigated. The relationship between sequenced individuals and genotyped individuals, 

which was estimated as the percentage of genotyped individuals having a high relation-

ship ≥ 0.25 (or 0.5) with at least one of sequenced individual is shown in Additional file 

2.9. Imputation accuracy with 95% confidence interval obtained for individuals from 

different generations with different imputation programs is shown in Figure 2.6. Imputa-

tion accuracy measured as the correlation between original imputed and original true 

genotype per individual is shown in Figure 2.6A, while imputation accuracy measured as 

the correlation between standardized imputed and standardized true genotype per individ-

ual is shown in Figure 2.6B. Generally, imputation accuracies for all three programs 

based on standardized genotype were lower than based on original genotype with larger 

standard deviation; however, the tendency of imputation accuracy along generations was 

the same for both measures. In the scenario with original genotype, comparing the three 

imputation software studied here, IMPUTE2 showed the highest genotype correlation for 

individuals from all generations, while FImpute showed the lowest genotype correlation. 

From generations 1 to 3, the average genotype correlation increased slightly, while from 

generations 4 to 6 hardly any trend was observed. However, there was no significant dif-

ference between adjacent generations while there was significant increase when compar-

ing generation 1 to generations 4, 5 and 6 respectively for Minimac and IMPUTE2, and 
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there was a significant increase between generation 1 and 4 for FImpute. In the scenario 

with standardized genotype, there was a significant increase between generation 1 and 

generation 2. These results suggested that imputing SNP array data up to sequence level 

is possible with high accuracy even across several generations. Our results thus confirm 

results from a previous study (Heidaritabar et al., 2014) which suggested that imputation 

quality did not deteriorate when the imputed population was three generations away from 

the sequencing population. It should be mentioned that the data we used here were from a 

closed line (Qanbari et al. (2010) estimated the effect population size (𝑁𝑒) for individuals 

from a commercial brown layer line cross and found a recent 𝑁𝑒 of 70 ) and the results 

may differ in more open populations with higher effective population size, migration or 

variability in mating schemes.  

 

Figure 2.6: Imputation accuracy with 95% CI of masked SNPs in different generations 

obtained with different imputation software package. The imputation accuracy is the cor-

relation between the sequenced and imputed genotypes which were masked as dummy 

genotypes on 3 chromosomes (3, 6 and 28) with 5 replications. Imputation accuracy 

measured as the correlation between original imputed and original true genotype per indi-

vidual is shown in Figure 2.6A, while imputation accuracy measured as the correlation 

between standardized imputed and standardized true genotype per individual is shown in 

Figure 2.6B. 

Conclusions 

Based on data from 50 sequenced individuals from two layer lines, we compared the per-

formance of three variant callers for a subset of SNPs (~50K) that were available from 

whole-genome sequencing and SNP array in 24 out of 1081 individuals that were both 
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fully sequenced and genotyped with the 580k array. Results showed that a high propor-

tion of SNP calls had high values in different measures of quality (amongst others geno-

type concordance and non-reference sensitivity) with all variant callers. GATK showed a 

slightly better performance than SAMtools and freebayes. We further demonstrated that 

three commonly used imputation programs were capable of imputing from SNP array 

data up to whole-genome level in a brown layer line based on a small number of se-

quenced individuals with substantial imputation accuracy, even across several genera-

tions. FImpute performed slightly worse than Minimac and IMPUTE2 in terms of geno-

type correlation, especially for SNPs with low minor allele frequency, while it yielded the 

lowest numbers of Mendelian conflicts in available father-progeny pairs. Imputation ac-

curacy was lower for rare SNPs than for common SNPs, which confirmed previous re-

sults in other species. Overall, sequence imputation from a very limited number of se-

quenced individuals appears to yield reasonably accurate results in closed breeding popu-

lations as available in many nucleus breeding programs. 

Availability of supporting data 

The reference genome used for alignment was taken from a public database and is availa-

ble for download from UCSC genome browser 

(http://hgdownload.soe.ucsc.edu/downloads.html#chicken). PLINK binary files contain-

ing genotype and map information of all variants on chromosomes 3, 6 and 28 detected 

by GATK in the 50 sequenced individuals are available at doi: 10.6070/H47H1GKK. 

Additional file  

Additional files are available online 

http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-2059-2#Sec22 
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SNPs: Single nucleotide polymorphisms; MAF: Minor allele frequency; INDELs: Inser-

tion and deletion; DP: Read depth; MQ: Mapping quality; MQM: mean mapping quality 

of observed alternate alleles; MQMR: mean mapping quality of observed reference al-

leles; GC: Genotype concordance; NRS: non-reference sensitivity; NRC: Non-reference 

genotype concordance; LD: Linkage disequilibrium; CI: Confidence interval; SAM: Se-

quence Alignment/Map format; BAM file: binary version of SAM file 
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Abstract  

Background: Applying genomic prediction with whole-genome sequencing data in ani-

mal breeding schemes has become possible with the feasibility of next-generation se-

quencing technologies. This was expected to lead to higher predictive ability, since these 

data may contain all genomic variants including causal mutations. Our objective was to 

compare prediction ability with high density array data and whole-genome sequencing 

data in a commercial brown layer line with GBLUP models using a variety of SNP 

weightings. Methods: A total of 892 chickens from a commercial brown layer line were 

genotyped with 336K segregating SNPs (array data) including 157K characterized as 

genic SNPs (i.e. SNPs in or around a gene). For these individuals genome-wide sequence 

information was imputed based on data from re-sequencing runs of 25 individuals, lead-

ing to 5.2M imputed SNPs (whole-genome sequencing data), including 2.6M SNPs char-

acterized as genic. De-regressed proofs for the traits eggshell strength, feed intake and 

laying rate were used as quasi-phenotypic data in genomic prediction analyses. Four dif-

ferent weighting factors for building a trait-specific genomic relationship matrix were 

investigated: identical weights, −(𝑙𝑜𝑔10𝑃) from genome-wide association study results, 

squares of SNP effects from random regression BLUP, and variable selection based 

weights (known as BLUP|GA). Predictive ability was measured as correlation between 

DRPs and direct genomic breeding values in five replications of a 5-fold cross-validation. 

Results: Averaging over the studied traits, predictive ability with only genic SNPs in 

whole-genome sequencing data was 0.366 ± 0.075, which was the highest predictive abil-

ity in the current study. Genomic prediction with genic SNPs in high density array data 

provided the second highest accuracy (0.361 ± 0.072). The prediction with −(𝑙𝑜𝑔10𝑃) or 

squares of SNP effects as weighting factors for building a genomic relationship matrix or 

BLUP|GA did not lead to higher accuracy, compared to that with identical weights, re-

gardless of the SNP set used. Conclusions: The results from this study showed that little 

or no benefit was gained when using all imputed whole-genome sequencing data to per-

form genomic prediction compared to using HD array data regardless of the different 

SNP weightings tested. However, higher predictive ability was observed when using only 

genic SNPs extracted from the whole-genome sequencing data for genomic prediction. 
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Background  

Genomic prediction (GP) refers to a method using genomic information to obtain esti-

mated breeding values which are subsequently used to select candidate 

individuals(Meuwissen et al., 2001). It has been widely implemented in livestock (Hayes 

et al., 2009; VanRaden et al., 2009; Daetwyler and Hickey, 2010) and plant (Daetwyler et 

al., 2013) breeding schemes. The feasibility of next-generation sequencing technologies 

has made it possible to apply GP with whole-genome sequencing (WGS) data. GP with 

WGS was expected to lead to higher predictive ability, since WGS data may contain all 

genomic variants including causal mutations. Thus, prediction is no longer depending on 

linkage disequilibrium (LD) between single-nucleotide polymorphisms (SNPs) and causal 

mutations. Furthermore, Georges (2014) claimed that WGS data can measure the SNP 

segregation properly, which is the drawback that commercial chips suffer from, particu-

larly for rare SNPs. Based on a simulated study, Pérez-Enciso et al. (2015) stated that 

using WGS data did not increase the prediction accuracy over high density array data. In 

a first study using sequenced inbred lines of Drosophila melanogaster prediction based 

on whole sequence data using ~2.5 mio SNPs did not increase accuracy compared to an 

approach using only ~5 per cent of the segregating SNPs (Ober et al., 2012). In cattle 

data, Hayes et al. (2014) found that accuracy of GP was improved by only 2% with WGS 

data compared to the 800K array data when using BayesRC and imputed 1000 Bull Ge-

nomes data. In addition, Van Binsbergen et al. (2015) reported that GP with imputed 

WGS data did not lead to a higher prediction accuracy, compared to the HD array data 

from more than 5000 Holstein Friesian bulls. Brøndum et al. (2015) showed that the reli-

ability of GP can be improved by adding several significant quantitative trait loci (QTLs), 

detected by genome-wide association studies (GWAS) of WGS data, into the regular 54K 

array data of cattle, especially for production traits. Thus, GP with whole-genome se-

quence data could be attractive, although the expectations for higher accuracies have not 

been realized so far with real cattle data. 

In chicken, most previous studies regarding GP were based on commercial array data. For 

instance, Morota et al. (2014) reported that GP accuracy was higher when using all avail-

able SNPs than only using validated SNPs from partial genome (e.g. coding regions), 

based on the 600K SNP array data of 1,351 commercial broiler chicken. Abdollahi-

Arpanahi et al. (2015) studied 1,331 chicken which were genotyped with a 600K Affy-

metrix platform and phenotyped for the trait body weight, and reported that predictive 

ability could be increased by adding the top 20 SNPs with largest effects from GWAS as 
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fixed effects in the genomic best linear unbiased prediction (GBLUP) model. So far, stud-

ies to evaluate the predictive ability with WGS data in chicken are lacking. 

Regardless the genotyping source (i.e. WGS data or array data) used, GBLUP has been 

widely used in genomic prediction studies. Besides GBLUP in its classical form, in which 

each SNP is assumed to have the same contribution to the genetic variance, several 

weighting factors for SNPs or parts of the SNP set were proposed to account for the ge-

netic architecture (de los Campos et al., 2013; Zhou et al., 2014; Zhang et al., 2015). de 

los Campos et al. (2013) proposed a method using the −(𝑙𝑜𝑔10𝑃) from GWAS as a 

weighting factor for each SNP to build a genomic relationship matrix (G matrix). They 

observed that prediction accuracy of height was improved compared to the original 

GBLUP, based on around 6,000 records drawn from a public human type-2 diabetes case-

control data set with a 500K SNP platform. Zhou et al. (2014) used LD phase consisten-

cy, the estimated SNP effects or both as weighting factors to build a weighted G matrix, 

and reported that GBLUP with those weighted G matrices did not lead to higher genomic 

prediction accuracy, based on 5,215 Nordic Holstein bulls and 4,361 Nordic Red bulls. 

With a German Holstein dataset, Zhang et al. (2015) reported that best linear unbiased 

prediction given genomic architecture (BLUP|GA), which puts an optimal weight on a 

subset of SNPs with highest effects in the training set, had similar performance as 

GBLUP for trait somatic cell score (SCS), but outperformed GBLUP for the traits fat 

percentage and milk yield. Advantages of BLUP|GA were larger when the datasets were 

relatively small. 

The objective of this study was to compare results from genomic prediction analyses 

using both HD array data and WGS data performed with GBLUP models with a variety 

of weighting factors for specific SNPs in a purebred commercial brown layer chicken 

line. 

Material and Methods 

Data 

High density array data 

Individuals from a purebred commercial brown layer line were used in this study. The 

sample comprised 892 female and male chickens from 6 generations. These chickens 

were genotyped with the Affymetrix Axiom® Chicken Genotyping Array (hereinafter 

denoted as HD array), which initially had 580K SNPs. This HD array data were pruned 
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by discarding sex chromosomes, unmapped linkage groups, and SNPs with minor allele 

frequency (MAF) lower than 0.5% or genotyping call rate smaller than 97%. Individuals 

with call rates smaller than 95% were also discarded. After filtering, there were 336,224 

segregating SNPs for 892 individuals available in the HD array data set. 

Imputed whole-genome sequence data 

Data of re-sequencing runs with the Illumina HiSeq2000 technology with a target cover-

age of 8X were available for 25 brown layer chickens from the same population (18 of 

them were also genotyped with the HD array), together with another 25 white layer 

chickens. Those data from re-sequencing runs (brown and white layer together) were 

aligned to Build 4 of the chicken reference genome (galGal4) with BWA (version 0.7.9a-

r786) (Li and Durbin, 2009) using default parameters for paired-end alignment and SNP 

variants were called using GATK (version 3.1-1-g07a4bf8, UnifiedGenotyper) (McKenna 

et al., 2010). Called variants (25 brown layers only) were edited for depth of coverage 

(DP) and mapping quality (MQ) based on the following protocols: for DP, outlier SNPs 

(top 0.5% of DP) were removed. Then, mean and standard deviation of DP of the remain-

ing SNPs were calculated and SNPs with a DP above and below 3 times the standard 

deviation from the mean were removed as well. For MQ, SNPs with MQ lower than 30 

were removed. After filtering, within the set of 25 re-sequenced brown layers there were 

10,420,560 SNPs left, which were used as a reference data set to impute HD array data up 

to sequence level. Imputation of all genotyped individuals was then performed using 

Minimac3 (Howie et al., 2009) which needs pre-phased data as input. The pre-phasing 

procedure was done with the BEAGLE 4 package (Browning and Browning, 2007). De-

fault numbers of iteration were used in pre-phasing and imputation. According to our 

previous study (Ni et al., 2015), in which we used the same population, phasing genotype 

data with BEAGLE 4 and further imputing with Minimac3 provided the highest imputa-

tion accuracy under different validation strategies. After imputation, post-imputation 

filtering criteria were applied per SNP, namely SNPs with MAF smaller than 0.5% or 

SNPs with imputation accuracy smaller than 0.8 were removed. The imputation accuracy 

used here was the Rsq measurement from Minimac3, which was the estimated value of 

the squared correlation between true and imputed genotype. After this step, there were 

5,243,860 imputed SNPs for 892 individuals available, hereinafter denoted as WGS data.  

In addition, SNPs regardless the data set were classified with gene-based annotation of 

ANNOVAR (Wang et al., 2010) with default parameters and galGal4 as reference ge-
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nome. SNPs were categorized into a total of 9 classes (Curwen et al., 2004). Our set of 

genic SNPs (SNP_genic) included all SNPs from categories exonic, splicing, ncRNA, 

UTR5’, UTR3’, intronic, upstream, and downstream. There were 2,593,054 SNPs charac-

terized as genic SNPs in WGS data (hereinafter denoted as WGS_genic data) and 

157,393 SNPs characterized as genic SNPs in HD array data (hereinafter denoted as 

HD_genic data).  

Phenotypic observations 

The quasi-phenotypic data were de-regressed proofs (DRPs) for eggshell strength (ES), 

feed intake (FI), and arcsine transformed laying rate in the last third of the laying period 

(LR). The arcsine transformation of the latter trait was performed to achieve an approxi-

mate normalization. To obtain the de-regressed proofs, a single trait BLUP animal model 

was performed for each trait using raw phenotypic and pedigree data, respectively. Esti-

mated breeding values from these models were then de-regressed following Garrick et 

al.(Garrick et al., 2009). The de-regression process included removing of the parent aver-

age information. 

Genomic prediction 

Genomic prediction was performed using the following GBLUP model with difference 

genomic relationship matrices which will be described later: 

𝒚 = 𝑿𝜇 + 𝒁𝒈 + 𝒆, 

where 𝒚 is the vector of DRPs of individuals in the training set for a specific trait; 𝜇 is the 

overall mean; 𝒈 is the vector of additive genetic values (i.e. genomic breeding values) for 

all genotyped chickens; 𝒆 is the vector of residual terms; 𝑿 and 𝒁 are design matrices 

assigning DRPs to the overall mean and additive genetic values with dimension number 

of individuals in the training set times number of all genotyped individuals. 

The distribution of residual term 𝒆 is assumed to be 𝒆 ~ 𝑁(0, 𝑹𝜎𝑒
2), where 𝑹 is a diago-

nal matrix, and its diagonal elements 𝑅𝑖𝑖 = (1 − 𝑟𝐷𝑅𝑃𝑖
2 ) 𝑟𝐷𝑅𝑃𝑖

2⁄  (Su et al., 2014) if individ-

ual i in the training set, where 𝑟𝐷𝑅𝑃𝑖
2  is the reliability of DRP for individual i, and 𝜎𝑒

2 is 

the residual variance. The distribution of additive genetic values is assumed to be 

𝒈 ~ 𝑁(0, 𝑮𝜎𝑔
2), where 𝜎𝑔

2 is the additive genetic variance and 𝑮 is a realized genomic 

relationship matrix including all genotyped individuals, which can be calculated with 

difference approaches resulting in difference GBLUP models. 
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The general approach to build a 𝑮 matrix is:  

𝑮 =
𝑴𝑫𝑴𝑻

2 ∑ 𝑝𝑖(1−𝑝𝑖)𝑚
𝑖=1

, 

where 𝑴 contains the corrected SNP genotypes with individuals in rows and SNPs in 

columns. The elements of column 𝑖 of 𝑴 are 0 − 2𝑝𝑖 (for homozygotes of the first allele), 

1 − 2𝑝𝑖 (for heterozygotes), and 2 − 2𝑝𝑖 (for homozygotes of the second allele), where 

𝑝𝑖 is the frequency of the second allele at locus 𝑖 from the current data set. 𝑫 is a diagonal 

matrix giving weights to different loci in various alternatives. An identity matrix was 

used (𝑫 = 𝑰) in the original GBLUP (VanRaden, 2008) which implies that all loci con-

tribute to the variance-covariance structure equally. The resulting G matrix is denoted as 

𝑮𝑰 in the following. de los Campos et al. (2013) suggested using the corresponding 

−(𝑙𝑜𝑔10𝑃) from a t-test of a GWAS as weighting factors to consider the relative im-

portance of different SNPs on a specific trait. The genomic relationship matrix including 

a D matrix based on this weighing factor will be denoted as 𝑮𝑷. The corresponding P-

values were derived from different GWAS models each performed for each trait of inter-

est separately in the respective training set. In order to correct for population stratification 

and relationship between individuals, a principal component analysis (PCA) was per-

formed and significance among principal components (PCs) was tested in advance with a 

Tracy Widom test as implemented in the program EIGENSTRAT (Price et al., 2006). 

Then, those PCs with P-values ≤ 10
-100

 (or ≤ 0.05) were used as fixed covariates in single 

SNP GWAS runs. The resulting genomic relationship matrix was denoted as 𝑮𝑷𝟏𝟎𝟎 (or 

𝑮𝑷𝟎𝟎𝟓). Genomic relationship matrices with weightings based on results from single SNP 

GWAS may not adequately represent or may overweight regions because different SNPs 

can capture the effect from the same QTL due to long-range LD. However, SNP effects 

are not corrected for each other in a single SNP GWAS. We also investigated the useful-

ness of weighting the G matrix with results from a random-regression BLUP (RRBLUP) 

in which random SNP effects are fitted simultaneously. For matrix 𝑮𝑺, we thus used the 

squares of the estimated SNP effects of the respective trait as weighting factors to build 

matrix 𝑫 (as also done in (Su et al., 2014)). BLUP|GA (Zhang et al., 2015) was investi-

gated in this study as well. To account for genetic architecture, the trait-specific genomic 

relationship matrix 𝑮𝒛 was constructed as a weighted sum of a genetic architecture matrix 

𝑺 and a realized relationship matrix 𝑮𝑰 (i.e. 𝑮𝒛 = 𝜔𝑺 + (1 − 𝜔)𝑮𝑰). The construction of 

the 𝑺 matrix was similar to the construction of 𝑮𝑺, but only based on selected SNPs ac-

cording to the size of their absolute SNP effects (top%) from RRBLUP. The optimal 
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choices for top% and 𝜔 were identified with a grid search strategy applied in the training 

population. The combinations for searching for optimal parameters were the same as in 

the original study of Zhang et al. (2015) (top% within a range of [0.05, 10] and 𝜔 within 

a range of [0.1, 0.99]). To make sure that the weighted 𝑮 matrices were in the same scale 

as 𝑮𝑰, all weighting factors were divided by their mean. To mimic the real situation best 

and avoid overfitting, all weighing factors in all models were derived exclusively with 

individuals in the respective training set. To assess whether focusing on functional infor-

mation improves prediction accuracy, the original GBLUP was applied to the functional 

subset of the WGS data (HD array data) by building a genomic relationship matrix 𝑮𝑮 

based on WGS_genic data (HD_genic data) with weights in 𝑫 being 1. 

Each approach mentioned above was investigated using 5-fold random cross validation 

with five replications, and was applied to both WGS and HD array data. Predictive ability 

was measured as the correlation between the obtained direct genomic values (DGVs) and 

DRPs for each trait of interest. DGVs and corresponding variance components were esti-

mated using ASReml 3.0 (Gilmour et al., 2009). 

In layer breeding, genomic breeding values are especially interesting for selecting the 

best individuals out of full-sib families. Thus we performed the Spearman’s rank correla-

tion to evaluate the ranking full-sibs according to DRPs and DGVs in a full-sib family 

with 12 individuals. Results presented here were from the validation sets of the first repli-

cate of a 5-fold cross validation. 

Results and discussion 

Data summary 

Numbers of SNPs in different MAF bins for different data sets are shown in Figure 3.1. 

The difference in terms of total number of SNPs between HD array data and data from re-

sequencing runs can be clearly seen in the top panel. The last bin (0.48 < MAF ≤ 0.5) 

contains only half the number of SNPs since in this bin only one allele frequency class 

(25 out of 50 alleles) is represented while in all other bins two frequency classes (e.g. 24 

and 26 out of 50 alleles in the adjacent class) are reflected. For the HD data set, the num-

ber of SNPs per MAF bin was uniformly distributed over all MAF classes, reflecting the 

ascertainment process in the construction of the array (Kranis et al., 2013). In contrast, for 

data from re-sequencing runs of the 25 sequenced individuals, the number of SNPs per 

bin decreased with increasing MAF. SNPs with very small MAF are not that extremely 
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overrepresented in the re-sequenced set as in other studies with sequenced data (Fujimoto 

et al., 2010; Eynard et al., 2015), which may be due to the following two reasons. First, 

the size of reference data set was relatively small (25 chickens). Thus, some extremely 

rare variants might not be captured. Second, the commercial broilers and layers have been 

subject to an intensive within-line selection, which could reduce the genetic diversity 

dramatically, further resulting in the lacking of rare SNPs (Muir et al., 2008). The number 

of SNPs in different MAF bins in the WGS data set before and after post-imputation fil-

tering is shown in the bottom panel of Figure 3.1. Unlike Van Binsbergen et al. (2015), in 

which 429 sequenced individuals from several cattle breeds were used as a reference set 

for imputation process, we did not observe a clear U-shaped distribution of MAFs in the 

imputed WGS data. This means that some of the rare variants in the re-sequenced indi-

viduals were either not present in all other individuals of the population or got lost during 

the imputation process, partly caused by the poor imputation accuracy for SNPs with low 

MAF (Hickey et al., 2012; Calus et al., 2014). Starting from more than 9 million SNPs 

after imputation (monomorphic SNPs excluded), 200,679 SNPs were filtered due to low 

MAF and 85% of those filtered SNPs had low imputation accuracy (Rsq of minimac3 < 

0.8) as well, which makes SNPs with low MAF even less represented in the SNP set. 

Further, 1.3 million SNPs among the imputed SNP set which have passed the MAF crite-

ria were filtered due to low imputation accuracy alone, which were evenly distributed 

over all MAF bins. In total, more than 50% of SNPs were filtered due to low imputation 

accuracy in the most left three MAF bins (0 < MAF ≤0.06). The fact that we found high 

rates of low Rsq values within the set of SNPs with low MAF could be due to low linkage 

disequilibrium of these SNPs with adjacent SNPs. This can lead to lower imputation ac-

curacy (Additional file 3.1 showing imputation accuracy in different MAF bins) (Ma et 

al., 2013; Daetwyler et al., 2014; Deelen et al., 2014; Liu et al., 2014; Zheng et al., 2015). 

Filtering a large amount of SNPs with low MAF (in many cases, because imputation ac-

curacy is too low) could weaken the advantage of imputed WGS data which contains a 

large number of rare SNPs (Georges, 2014), although GP with all imputed SNPs without 

quality-based filtering did not improve the prediction accuracy in our case (results not 

shown). 
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Figure 3.1: Number of SNPs (x1000) in each MAF bin for high density (HD) array data 

and data from re-sequencing runs of the 25 sequenced individuals (top), and for imputed 

whole-genome sequence (WGS) data after imputation and after post-imputation filtering 

(bottom). The values on the x-axis are the upper limit of the respective bin.  

Comparison between HD array data and WGS data using different weighting factors 

Predictive ability with GBLUP under different weighting factors based on HD array data 

and WGS data is shown in Figure 3.2 for the traits ES, FI, and LR, respectively. The pre-

dictive ability was defined as the correlation between DGVs and DRPs of individuals in 

the validation set. Generally speaking, predictive ability could not be enhanced clearly 

when using WGS data compared to using HD array data regardless of the different 

weighting factors studied. However, genomic prediction with genic SNPs annotated in 

WGS data gave the highest predictive ability averaged over the three studied traits. 

Averaging over three traits, the predictive ability ± standard deviation for the original 

GBLUP was 0.353 ± 0.074 based on HD array data and 0.358 ± 0.076 based on WGS 

data. In the case that employing −(𝑙𝑜𝑔10𝑃) (with P-values from GWAS with different 

covariates in the model) as weighting factors, predictive abilities were 0.352 ± 0.062 
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(0.347 ± 0.072) for 𝑮𝑷𝟏𝟎𝟎 ( 𝑮𝟎𝟎𝟓) based on HD array data and were 0.356 ± 0.062 (0.354 

± 0.073) based on WGS data. Unlike SNP effects estimated from RRBLUP, in which 

effects are assessed simultaneously, SNP effects were estimated independently in GWAS. 

Thus, effects of a group of SNPs which present the same QTL could not be fitted simul-

taneously and thus the overall weighting of a region might depend on the marker density. 

de los Campos et al. (2013) studied a public human type-2 diabetes case-control data set 

containing genotype data from a 500K SNP platform and around 6,000 phenotype rec-

ords. They reported that the predictive reliability (square of predictive ability) with a pre-

diction model weighted by −(𝑙𝑜𝑔10𝑃) was increased by a factor of 110% compared to 

that with the original GBLUP. Similarly, Su et al. (2014) reported that predictive ability 

using −(𝑙𝑜𝑔10𝑃) as weighting factors was higher than the original GBLUP, based on 

more than 5,000 Nordic Holstein bulls which were genotyped with the Illumina Bovine 

SNP50 BeadChip. However, the improvement of predictive ability by employing 

−(𝑙𝑜𝑔10𝑃) as weighting factors in GP was not observed in our dataset. 
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Figure 3.2: Predictive ability with GBLUP using different weighting factors based on high 

density array data and whole-genome sequencing data. The predictive ability was measured as 

correlation between direct genomic breeding values (DGVs) and de-regressed proofs (DRPs) in 

the validation set. Results are for the traits eggshell strength (ES), feed intake (FI) and arcsine 

transformed laying rate in the last third of the laying period (LR). HD stands for high density 

data and WGS stands for whole-genome sequencing data. 𝑮𝑰 stands for the original 

GBLUP, 𝑮𝑷 represents the model with −(𝑙𝑜𝑔10𝑃) of GWAS as weighting factors where prin-

cipal components being significant with P-values ≤ 1E-100 (≤ 0.05) were used as covariates in 

the GWAS model, denoted as 𝑷100 ( 𝑷005). 𝑮𝑺 stands for the GBLUP model with the squares 

of estimated SNPs effect as weighing factors. 𝑮𝒛 stands for results from BLUP|GA as described 

in the methods section. 𝑮𝑮 stands for the original GBLUP but only based on genic SNPs. The 

dashed horizontal line denotes the median predictive ability of GBLUP with HD data as a refer-

ence. Note that all the outliers for trait LR were from the same replicate. 



Chapter 3 Whole-genome sequence-based genomic prediction in laying chickens 

with different genomic relationship matrices to account for genetic architecture 73 

 

Furthermore, using the squares of SNP effects as weighting factors in GBLUP (𝑮𝑺) gave 

slightly lower predictive ability compared to the original GBLUP, in both analyses based 

on HD array data and on WGS data, respectively, as shown in Figure 3.2. For 𝑮𝑺, averag-

ing over the 3 traits, predictive ability was 0.341 ± 0.076 based on HD data and 0.348 ± 

0.078 based on WGS array data, compared to 0.353 ± 0.074 (for HD array data) and 

0.358 ± 0.076 (for WGS data) with the original GBLUP. These results are in agreement 

with Su et al. (2014), who described that GBLUP with the squares of SNP effects as 

weighting factors did not improve the predictive ability compared to the original GBLUP 

or compared to the model with −(𝑙𝑜𝑔10𝑃) as weighting factors. The lack of improvement 

of predictive ability when using the squares of SNP effects as weighting factors might be 

due to the following reasons: First, this could be due to sequencing or imputation errors. 

In this study, the most probable genotypes imputed from Minimac3 instead of genotype 

probabilities were used as WGS data, which does not account for the uncertainty of impu-

tation. Second, the noise and uncertainty of estimated SNP effects could also bias the 

predictive ability (Su et al., 2014). DGVs of the training population were assigned to 

millions of SNPs (Figure 3.3 and Additional file 3.2). Thus the effect of each SNP was 

tiny. The prediction error of a SNP effect, however, might be even larger than the SNP 

effect itself. In addition, the size of the training set was relatively small which could fur-

ther enhance the uncertainty of SNP effects. The accumulation of the above two reasons 

could lead to lower predictive ability, since the DGV of individual i is the summation of 

estimated SNP effects times its genotypes (i.e. 𝐷𝐺𝑉𝑖 = ∑ 𝑋𝑖𝑘𝛽𝑘
𝑚
𝑘=1  ). 
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Figure 3.3: Manhattan plot of absolute estimated SNP effects for trait eggshell strength 

based on high density (HD) array data (a) and whole-genome sequence (WGS) data (b), 

respectively. SNP effects were obtained from RRBLUP in the training set of the first 

replicate.  

With BLUP|GA, the predictive ability was 0.342 (± 0.085) based on HD array data and 

0.346 (± 0.091) based on WGS data averaged over three traits of interest (Figure 3.2). 

Generally speaking, BLUP|GA did not improve predictive ability with WGS or HD data, 

compared to the original GBLUP. Zhang et al. (2015) reported that BLUP|GA 

outperformed the original GBLUP for production traits (i.e. fat percentage, milk yield) in 

a German Holstein cattle population, while it had a similar performance as GBLUP for 

the trait SCS. A well-known candidate gene DGAT1 has a big influence on fat percentage 

(Grisart et al., 2002; Winter et al., 2003), while for SCS no major genes are known. This 

suggests that BLUP|GA is especially useful when there are QTL regions in the genome 

that heavily influence the trait. The genetic architecture of ES, FI, and LR seems to be 

more similar to SCS than to fat percentage which means no large candidate genes have 
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been found yet and also no large SNP effects have been found in GWAS runs performed 

in this study (Additional file 3.3). The SNP effects estimated from RRBLUP based on 

HD array data and WGS data are in Figure 3.3, which further illustrates that ES, FI, and 

LR are controlled by numerous SNPs with tiny effects. 

When focusing on the training stage of BLUP|GA, the burden of calculation was huge to 

identify the optimal combination for parameters top% and 𝜔 with a grid strategy. Predic-

tion abilities of BLUP|GA in the training stage are displayed in Figure 3.4 for each pa-

rameter combination exemplarily for the first fold of the first replicate. The combination 

of large 𝜔 and small top% tended to give lower predictive ability. With the increasing of 

top% and decreasing of 𝜔, predictive ability tended to increase. In most of cases, the op-

timal option for 𝜔 based on HD data and WGS data were 0.1 in our study, which is the 

minimal 𝜔 we analyzed. The optimal option for top% were 10%, which is the maximal 

top% we analyzed, and is different from the findings of Zhang et al. (2015). They tended 

to select a smaller top% while there was no obvious pattern in the selection of 𝜔. The 

optimal combination in each 5-fold cross-validation of each replicate for each trait is 

shown in Additional file 3.4 and 3.5. It should be noted that, as described in Zhang et al. 

(2015), accuracy of GP based on the optimal parameters obtained from training stage by 

cross validation may not lead to the highest accuracy in the application stage. 
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Figure 3.4: Predictive ability of the best linear unbiased prediction given genetic archi-

tecture (BLUP|GA) in the training stage to select the optimal parameter combination for 

the application stage. Predictive ability in this figure is the mean correlation between 

direct genomic breeding values (DGV) and de-regressed proofs (DRP). The first row is 

for high density (HD) array data, while the second row is for whole-genome sequence 

(WGS) data. The x-axis stands for the overall weighting factor 𝜔; y-axis stands for the 

percentage of SNPs selected based on the SNP effects (top%); different colors stand for 

different levels of predictive ability. 

 

Averaging over three traits, the predictive ability ± standard deviation was 0.366 ± 0.075 

based on the WGS_genic data and was 0.361± 0.072 based on HD_genic data, compared 

to 0.353 (HD array data) and 0.358 (WGS data), which means GP with WGS_genic of-

fered the highest predictive ability in our study. Similarly, Do et al. (2015) reported that 

predictive ability was increased with only SNPs in genes for residual feed intake based on 

1,272 Duroc pigs which were genotyped with 60K SNP chip, although the increase was 

not significantly different from that with 1,000 randomly SNPs. In chicken, Morota et al. 

(2014) studied predictive ability with 1,351 commercial broiler chickens which were 

genotyped with Affymetrix 600K chip and found that prediction based on SNPs in or 

around genes did not lead to a higher accuracy using kernel-based Bayesian ridge regres-

sion. In our data set, predictive ability with HD_genic data was slightly higher than that 

with all HD data. Furthermore, the benefit was observed when using WGS_genic. This 
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could be due to that using only genic SNPs reduces the noise in WGS data and might 

increase the chance to identify the potential causal mutations. Koufariotis et al. (2014) 

found that significant SNPs in the GWAS were enriched in coding region based on 

17,425 bulls and cows of Holstein or Jersey which were genotyped with 777K Illumina 

Bovine HD array. The enrichment of significant SNPs could further imply that using 

genic SNPs can help us to achieve higher predictive ability.  

Comparison within a full-sib family 

To get an insight into the ranking of 12 full-sibs within a family according to DRPs and 

DGVs, DGVs predicted in validation sets with different G matrices in the first of the five 

replicates of the cross-validation runs is shown in Figure 3.5 for ES (Additional files 6-7 

for trait FI and LR). The higher the rank correlation is, the higher the possibility is to 

select the same candidates. Based on HD array data, DGVs from different weighting 

models had a relative high rank correlation with that from 𝑮𝑰 (from 0.88 to 0.97 for ES). 

This suggested that the same candidate tended to be selected in different models. Like-

wise, the rank correlations based on WGS data were relatively high as well, with minimal 

values 0.91 between 𝑮𝑮 and 𝑮𝑷𝟎𝟎𝟓. In addition, Spearman’s rank correlation between 𝑮𝑰 

based on HD array data and that based on WGS data was 0.98. Spearman’s rank correla-

tion between 𝑮𝑮 with WGS_genic data and 𝑮𝑰 with WGS data was 0.99, indicating that 

there is hardly any difference in selecting candidates based on HD array data, or WGS 

data, or WGS_genic data with GBLUP. Generally, the same set of candidates tended to 

be selected regardless of the data set (HD array data or WGS data) and weighting factors 

(identity weights, the squares of SNPs effect, or P-values from GWAS) used in the mod-

el. When comparing the DGVs from different models with DPRs, the Spearman’s rank 

correlations were modest (from 0.38 to 0.54 with HD data, from 0.31 to 0.50 with WGS 

data) and within the expected range considering the overall predictive ability obtained in 

the cross-validation study (see Figure 3.2). Even though DGVs from different models 

were highly correlated, Spearman’s rank correlation of the respective DGVs to DRPs 

varied clearly. This fact, however, should not be overvalued regarding the small sample 

size we used here (n=12). 
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Figure 3.5: Predictive ability in a full-sib family with 12 individuals for eggshell strength 

based on high density (HD) array data (a) and whole-genome sequence (WGS) data (b) of 

one replicate. In each plot matrix, the diagonal shows the histograms of DRPs and DGVs 

obtained with various G matrices. The upper triangle shows the Spearman’s rank correla-

tion between DGVs with different G matrices and with DRPs. The lower triangle shows 

the scatter plot of DGVs with different G matrices and DRPs. 
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Perspectives and implication 

Using WGS data in GP was expected to lead to higher predictive ability, since WGS data 

should include the causal mutations that influence the trait and prediction is no longer 

limited by LD between SNPs and causal mutations. On the contrary to this expectation, 

little gain was found in our study. One possible reason could be that QTL effects were not 

estimated properly, due to the relatively small dataset (892 chickens) with imputed WGS 

data (Druet et al., 2014). Imputation has been employed widely in many livestock 

(Mulder et al., 2012; Segelke et al., 2012; Ma et al., 2013; Chen et al., 2014), however, 

the magnitude of the potential imputation errors was difficult to detect. In fact, Van Bins-

bergen et al. (2015) reported based on data of more than 5000 Holstein Friesian bulls that 

predictive ability was lower with imputed HD array data than that with the actual geno-

typed HD array data, which confirms our assumption that imputation could lead to lower 

predictive ability. In addition, discrete genotype data were used as imputed WGS data in 

this study, instead of genotype probabilities which can account for the uncertainty of im-

putation and may be more informative (Kutalik et al., 2011). At present, sequencing all 

individuals in a population is not realistic. In practice, there is a trade-off between predic-

tive ability and cost efficiency. When focusing on the post-imputation filtering criteria, 

the threshold for imputation accuracy was 0.8 in our study to guarantee the high quality 

of the imputed WGS data. Numerous rare SNPs, however, were filtered due to the low 

imputation accuracy as shown in Figure 3.1 and Additional file 3.1. This could increase 

the risk of excluding rare causal mutations. Ober et al. (2012), however, did not observe 

the increase of predictive ability for starvation resistance with rare SNPs included in the 

GBLUP based on ~2.5 million SNPs determined in Drosophila melanogaster. Further 

investigation needs to be done in chicken. 

A further reason why we do not observe any increase in predictive ability when using 

WGS data could be that we did not apply variable selection. The density of WGS data 

was around 15 times higher than of HD array data, which increased the linkage disequi-

librium between SNPs. Thus, QTL effects were assigned to more SNPs in WGS data than 

in HD array data, which could be overcome by variable selection. Su et al. (2014) report-

ed that reliability of GP increased by more than 5% when grouping 30 adjacent SNPs. In 

each group, a common weight was assigned reflecting the mean over the SNP effects in 

the same group. In addition, Brøndum et al. (2015) reported that the reliability of GP can 

be improved by adding several significant QTLs into the regular 54K array data of cattle. 

In our study, twenty top SNPs were selected according to their estimated effects from 
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RRBLUP or −(𝑙𝑜𝑔10𝑃) of GWAS and used as fixed effect in GBLUP. However, in the 

present study, this did not lead to an improvement of predictive ability (results not 

shown). GP with genic SNPs in WGS (the WGS_genic data) offered the highest predic-

tive ability, comparing to that with all SNPs in WGS data. This implies that selecting the 

proper variables could help us to reduce noise and increase predictive ability. Thus, with 

increasing knowledge about gene networks and pathways, blending biological knowledge 

based on gene annotations and complex interactions may provide insights to guide GP 

(Snelling and Cushman, 2013). 

Our fourth possible explanation for the small improvement with WGS data refers to the 

population structure. Commercial chickens have been subject to an intensive within-line 

selection, which has a strong effect on the population structure. Macleod et al. (2014) 

studied the accuracy of genomic prediction based on WGS data for two simulation popu-

lations with different demographic history. They found that in a highly selected popula-

tion with small effective population size there was almost no gain in prediction accuracy 

when using WGS data compared to HD data, which is in agreement with our findings. 

The use of incomplete whole-genome sequence information could also weaken the pre-

dictive ability of WGS data. First, in most studies, sexual chromosomes were disregarded 

in the GP scheme, considering that the inheritance of sexual chromosomes differs from 

autosomes and the density of SNPs and LD structure on sexual chromosomes is lower 

compared to autosomes in commercial SNP chips. However, recent studies have discov-

ered an increasing number of genes on heterosomes affecting economic traits: For exam-

ple, Su et al. (2014) found that including sexual chromosomes in the GP scheme could 

increase the predictive ability averaging over 15 traits which were included in the Nordic 

Total Merit index (e.g. milk yield, fat yield). Second, WGS data, technically, includes all 

the DNA variations (e.g. CNV, INDELs), but, the studies in GP of livestock so far are 

generally focusing on SNPs. However, according to previous studies (McCarroll et al., 

2005; Redon et al., 2006), CNV and other types of structural variation play an important 

role in gene expression and phenotypic variation. Third, the chicken karyotype consists of 

39 chromosomes, however, data from re-sequencing represent only 30 chromosomes and 

two linkage groups since the reference genome was not available for some of the micro-

chromosomes which are also supposed to be gene-rich (Mcqueen et al., 1998; 

International Chicken Genome Sequencing Consortium, 2004). Beyond that, chromo-

some 16, which hosts the chicken major histocompatibility complex, is included in the 

reference sequence but has a low marker density (Kranis et al., 2013) and the quality of 
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the reference sequence is expected to be inferior due to the high genetic variability. Fur-

ther, non-nuclear DNA hosted in the mitochondria is also not accounted for. In general, 

further work is necessary to assess the importance of the entire DNA variation on the 

predictive ability in chicken. 

Conclusion 

In this study, we compared ability of genomic prediction using both high density array 

data and imputed whole-genome sequencing data. Further comparisons were performed 

based on GBLUP with different genomic relationship matrices to account for genetic 

architecture of the three traits eggshell strength, feed intake, and laying rate. The results 

show that little or no benefit was gained when using all imputed WGS data compared to 

using HD array data with different weighting approaches in the GBLUP model. However, 

our results provide evidence that using genic SNPs for genomic prediction has the poten-

tial to improve the predictive ability both with HD and WGS data. Overall the same can-

didates tend to be selected from a full-sib family of interest regardless of the genotype 

data and weighting factors used.  



Chapter 3 Whole-genome sequence-based genomic prediction in laying chickens 

with different genomic relationship matrices to account for genetic architecture 82 

 

Additional file 

 

Additional file 3.1: Imputation accuracy (Rsq of Minimac3) in each minor allele fre-

quency (MAF) interval. 
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Additional file 3.2: Manhattan plot of absolute estimated SNP effects for traits FI and LR 

based on high density (HD) array data and whole-genome sequence (WGS) data respec-

tively. 
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Additional file 3.3: Manhattan plots of −(𝑙𝑜𝑔10𝑃) for the three traits based on high den-

sity array data (panels1-3) and the whole-genome sequence (WGS) data (panels 4-6). 

Significance among principal components (PCs) was tested in advance with a Tracy 

Widom test and PCs with P-values ≤ 0.05 were used as fixed covariates in single SNP 

GWAS runs. 
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Additional file 3.4: The optimal parameter in the training stage of BLUP|GA based on HD array data for each fold 5-fold cross-validation of each replicate 

  
Fold1 Fold2 Fold3 Fold4 Fold5 

Trait rep top% 𝜔 acc top% 𝜔 acc top% 𝜔 acc top% 𝜔 acc top% 𝜔 acc 

Eggshell  

strength 

1 10 0.1 0.368 10 0.1 0.333 10 0.1 0.358 10 0.1 0.373 10 0.1 0.413 

2 10 0.1 0.326 10 0.1 0.284 10 0.1 0.360 2.5 0.1 0.373 0.2 0.1 0.413 

3 1 0.1 0.395 10 0.1 0.369 10 0.1 0.357 10 0.1 0.361 0.1 0.1 0.367 

4 1 0.1 0.393 10 0.1 0.305 0.3 0.1 0.342 10 0.1 0.391 10 0.1 0.378 

5 10 0.1 0.379 10 0.1 0.336 10 0.1 0.400 10 0.1 0.329 10 0.1 0.399 

Feed 

intake 

1 10 0.2 0.399 5 0.1 0.388 10 0.1 0.419 5 0.2 0.394 0.4 0.1 0.375 

2 10 0.1 0.427 5 0.2 0.362 10 0.1 0.379 10 0.7 0.413 10 0.1 0.366 

3 5 0.1 0.392 10 0.7 0.385 5 0.4 0.352 10 0.6 0.371 10 0.1 0.443 

4 10 0.2 0.439 10 0.1 0.369 10 0.4 0.406 10 0.1 0.392 5 0.2 0.450 

5 10 0.5 0.379 10 0.1 0.426 10 0.2 0.409 2.5 0.1 0.394 0.2 0.2 0.395 

Laying 

rate 

1 10 0.1 0.214 10 0.1 0.239 10 0.1 0.212 10 0.1 0.225 10 0.1 0.280 

2 10 0.1 0.244 10 0.1 0.239 10 0.1 0.238 10 0.1 0.204 10 0.1 0.196 

3 10 0.1 0.181 10 0.1 0.283 10 0.1 0.260 10 0.1 0.230 0.05 0.1 0.184 

4 10 0.1 0.183 10 0.1 0.209 1 0.7 0.255 10 0.1 0.235 10 0.1 0.212 

5 10 0.1 0.248 0.5 0.7 0.260 0.05 0.1 0.237 10 0.1 0.222 5 0.1 0.292 
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Additional file 3.5: The optimal parameter in the training stage of BLUP|GA based on WGS data for each fold 5-fold cross-validation of each replicate 

  
Fold1 Fold2 Fold3 Fold4 Fold5 

Trait rep top% 𝜔 acc top% 𝜔 acc top% 𝜔 acc top% 𝜔 acc top% 𝜔 acc 

Eggshell 

strength 

1 10 0.1 0.378 10 0.1 0.346 0.1 0.1 0.356 10 0.1 0.382 10 0.1 0.427 

2 10 0.1 0.329 10 0.1 0.302 10 0.1 0.367 2.5 0.1 0.386 1 0.1 0.422 

3 5 0.1 0.415 10 0.1 0.373 10 0.1 0.367 10 0.1 0.364 0.1 0.1 0.375 

4 1 0.1 0.408 1 0.1 0.308 10 0.1 0.350 10 0.1 0.405 10 0.1 0.384 

5 10 0.1 0.389 10 0.1 0.340 10 0.1 0.412 10 0.1 0.336 10 0.1 0.407 

Feed 

intake 

1 10 0.2 0.394 10 0.1 0.394 10 0.1 0.418 10 0.3 0.391 0.2 0.1 0.368 

2 10 0.1 0.420 10 0.3 0.356 10 0.1 0.385 10 0.6 0.413 10 0.1 0.372 

3 10 0.1 0.395 10 0.7 0.390 10 0.2 0.353 10 0.6 0.375 10 0.1 0.447 

4 10 0.2 0.441 10 0.1 0.371 10 0.3 0.409 10 0.1 0.388 5 0.2 0.447 

5 10 0.5 0.395 10 0.1 0.434 10 0.3 0.411 5 0.1 0.400 0.4 0.1 0.378 

Laying 

rate 

1 10 0.1 0.218 0.5 0.1 0.232 0.05 0.8 0.218 10 0.1 0.227 10 0.1 0.285 

2 0.5 0.1 0.254 10 0.1 0.240 10 0.1 0.241 10 0.1 0.204 10 0.1 0.204 

3 10 0.1 0.178 10 0.1 0.285 10 0.1 0.261 10 0.1 0.229 0.1 0.99 0.189 

4 10 0.1 0.180 10 0.1 0.216 2.5 0.7 0.253 10 0.1 0.240 2.5 0.1 0.217 

5 10 0.1 0.247 0.3 0.2 0.278 10 0.1 0.236 10 0.1 0.228 2.5 0.1 0.285 
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Additional file 3.6: Predictive ability in a full-sib family with 12 individuals for feed 

intake based on high density (HD) array data (top) and whole-genome sequence (WGS) 

data (bottom) of one replicate. In each plot matrix, the diagonal shows the histograms of 

DRPs and DGVs obtained with various G matrices. The upper triangle shows the Spear-

man’s rank correlation between DGVs with different G matrices and DRPs. The lower 

triangle shows the scatter plot of DGVs with different G matrices and DRPs. 
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Additional file 7: Predictive ability in a full-sib family with 12 individuals for laying rate 

based on high density (HD) array data (left) and whole-genome sequence (WGS) data 

(right) of one replicate. In each plot matrix, the diagonal shows the histograms of DRPs 

and DGVs obtained with various G matrices. The upper triangle shows the Spearman’s 

rank correlation between DGVs with different G matrices and DRPs. The lower triangle 

shows the scatter plot of DGVs with different G matrices and DRPs. 
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Abbreviations 

GP: Genomic prediction; HD: High density; WGS: Whole-genome sequence; GWAS: 

Genome-wide association studies; QTL: Quantitative trait loci; GBLUP: Genomic best 

linear unbiased prediction; LD: Linkage disequilibrium; BLUP|GA: Best linear unbiased 

prediction given genetic architecture ; MAF: Minor allele frequency; MQ: Mapping qual-

ity; DP: Depth of coverage; DRP: De-regressed proofs; ES: Eggshell strength; FI: Feed 

intake; LR: Arcsine transformed laying rate in the last third of the laying period ; PC: 

Principal components; DGV: Direct genomic breeding values; RRBLUP: Ridge regres-

sion best linear unbiased prediction; CNV: Copy number variation; INDELs: Insertion 

and deletions  
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Abstract 

Decisions of genomic selection schemes are made based on the genomic breeding values 

(GBV) of selection candidates. Thus, the accuracy of GBV is a relevant parameter, as it 

reflects the stability of the prediction and the possibility that the GBV might change when 

more information becomes available. Accuracy of genomic prediction, however, is diffi-

cult to assess, considering true breeding values of the candidates are not available in reali-

ty. In previous studies, several methods were proposed to assess the accuracy of GBV by 

using population and trait parameters or parameters inferred from the mixed model equa-

tions. In practice, most approaches were found to overestimate the accuracy of genomic 

prediction. Thus, we tested several approaches used in previous studies based on simulat-

ed data under a variety of parameters mimicking different livestock breeding programs in 

order to measure the magnitude of overestimation. Further we proposed a novel and com-

putationally feasible method and tested in a real Holstein data set. Based on the compari-

sons with simulated data, the new method provided a better prediction for the accuracy of 

GBV. The new method still has one unknown parameter, for which we suggest an ap-

proach to approximate its value from a suitable data set reflecting two separate time 

points. In conclusion, the new approach has the potential to provide a better assessment of 

the accuracy of GBVs in many cases. 

Introduction 

With the widespread availability of high throughput single-nucleotide polymorphism 

(SNP) genotyping, genomic selection (GS) has been widely used in livestock (Hayes et 

al., 2009a; Meuwissen et al., 2013) and plant (Jannink et al., 2010; Rincent et al., 2012) 

breeding, and displays dramatic advantages in genetic progress in both simulated (Habier 

et al., 2013) and real (Hayes et al., 2009a) selection scenarios, especially for sex limited 

traits or traits that can only be measured late in life (Meuwissen et al., 2013). Decisions of 

genomic selection schemes are made based on the genomic breeding values (GBV) of 

selection candidates. A GBV as used in this study is the prediction of an individual’s true 

breeding value (TBV) derived from its SNP genotype and marker effects estimated based 

on a set of genotyped and phenotyped animals of the same population. Thus, the accuracy 

of GBV, defined as the correlation between TBV and GBV, is a relevant parameter, since 

it reflects the stability of the prediction and the possibility that the GBV might change 

when more information becomes available (Bijma, 2012). Furthermore, it is also one of 
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the key factors in expected response to selection which is also known as breeders’ equa-

tion (Falconer and Mackay, 1996; Nirea et al., 2012). 

In two-step genomic prediction, conventional estimated breeding values (EBV) are first 

estimated with pedigree based best linear unbiased prediction (BLUP), and then GBV are 

estimated in genomic BLUP with EBV or their derivates, e.g. de-regressed proofs (DRP), 

daughter yield deviations (DYD), used as quasi-phenotypes. To assess the predictive 

ability of GBV, it is possible to easily calculate the correlation between GBV and EBV in 

genomic prediction schemes. The actually interesting correlation between GBV and TBV, 

namely the accuracy of genomic prediction, however, is difficult to assess, considering 

TBV of the candidates are not available in reality. 

In previous studies, several branches have been suggested to assess the accuracy of GBV: 

one of the branches is using population and trait parameters, such as the effective popula-

tion size, the size of a chromosome, the number of independent chromosome segments, 

and the heritability of the considered trait to approximate the accuracy. The advantage of 

this branch is that these approaches can be used before data of selection candidates are 

collected (Wientjes et al., 2013). These approaches give an overall assessment of the ex-

pected accuracy, which treat the studied samples as a whole but are independent on the 

set of information available for a specific animal in question. Different suggested equa-

tions predicting accuracy from known population parameters, however, were shown to 

provide different results not always matching with the real values, especially when ex-

trapolating parameters beyond the actually observed space (Erbe et al., 2013).  

The second branch of estimating the accuracy of GBV is using parameters inferred from 

the mixed model equations (MMEs). Following Henderson (1975), accuracy of estimated 

breeding values for a given animal i (𝑟𝑩𝑽𝑖
) can be calculated from the prediction error 

variance for individual i, 𝑷𝑬𝑽𝑖, which can be obtained from the inverse of the coefficient 

matrix of the MMEs, and the genetic variance 𝑣𝑎𝑟(𝑨𝒊), as 

𝑟𝑩𝑽𝑖
= √1 −

𝑷𝑬𝑽𝑖

𝑣𝑎𝑟(𝑨𝒊)
. 

In principle, this type of assessment can also be used in genomic breeding value estima-

tion implemented with GBLUP (VanRaden, 2008), where the pedigree-based numerator 

relationship matrix in BLUP is replaced by the genomic relationship matrix. However, 

this accuracy only holds under the absence of selection (Dekkers, 1992) and is biased 
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when ignoring the changes in the (co)variance structure in selected populations 

(Henderson, 1975; Dekkers, 1992). A basic advantage of this approach is that a specific 

accuracy can be obtained for each individual for which a breeding value is estimated. 

A third branch to assess the average accuracy of GBV is based on observed correlations 

between different quantities obtained or derived in the course of breeding value estima-

tion. Assuming no covariance between TBV and errors of GBV (𝜺𝑮) and errors of EBV 

(𝜺𝑬), Amer and Banos (2010) suggested the accuracy of GBV to be  

 𝑟𝐺𝑇 =
𝑟𝐸𝐺

𝑟𝐸𝑇 (1 +
𝑐𝑜𝑣(𝜺𝑮,𝜺𝑬)

𝑣𝑎𝑟(𝑻)
)
 

(1) 

where 𝑟𝐸𝐺 is the empirical correlation between EBV and GBV, 𝑟𝐸𝑇 is the accuracy of 

EBV obtained from conventional BLUP MMEs, 𝜀𝐺(𝜀𝐸) is the error of GBV (EBV) which 

is defined as the deviation of predicted values divided by its own reliability from TBV: 

𝜺𝑮 = 𝑻 −
𝑮

𝑟𝐺
2 

 

However, 𝜀𝐺 and 𝜀𝐸 usually are not available in real data so that their covariance is not 

known. Hence, ignoring the covariance between 𝜀𝐺 and 𝜀𝐸 (or more precisely, assuming 

this covariance to be zero), equation (1) simplifies to  

𝑟𝐺𝑇 =
𝑟𝐸𝐺

𝑟𝐸𝑇
. 

This last formula or formulas with derivatives of EBV (e.g. DYD, or DRP) have been 

widely used in real data analysis (Hayes et al., 2009a; Luan et al., 2009; Saatchi et al., 

2011) and are easy to implement, since 𝑟𝐸𝑇 exactly or approximately is available from 

MMEs of conventional BLUP and 𝑟𝐸𝐺 can be empirically calculated as the correlation 

between EBV and GBV. 

In practical applications, most approaches were found to overestimate the accuracy of 

GBV (Goddard, 2009; Hayes et al., 2009b; Goddard et al., 2011). In addition, the magni-

tude of overestimation is unknown in real data sets, and little attention has been given to 

the quantification of how much these approaches overestimate the accuracy of GBV.  

The first objective of this study was thus to test several approaches mentioned above with 

simulated data under a variety of parameters mimicking different livestock breeding pro-
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grams (i.e. a cattle-like and a pig-like as well as a basic scenario) and to measure the 

magnitude of overestimation. The second objective of this study was to suggest a novel 

and computationally feasible method that can provide a better prediction for the accuracy 

of GBV in real data sets and to assess the quality of the new approximation with both 

simulated and real data.  

Material and Methods 

Different approaches of estimating accuracy of genomic breeding values 

Previous approaches of estimating accuracy of GBV 

According to the definition of a correlation, the correlation between GBV and EBV is 

defined as: 

 
𝑟𝐺𝐸 =

𝑐𝑜𝑣(𝑮, 𝑬)

√𝑣𝑎𝑟(𝑮)𝑣𝑎𝑟(𝑬)
 

(2) 

GBV or EBV of individuals can be written as 𝑮 = 𝑟𝐺𝑇
2 (𝑻 + 𝜺𝑮) or 𝑬 = 𝑟𝐸𝑇

2 (𝑻 + 𝜺𝑬), and 

𝑣𝑎𝑟(𝑮) = 𝑐𝑜𝑣(𝑮, 𝑻) and 𝑣𝑎𝑟(𝑬) = 𝑐𝑜𝑣(𝑬, 𝑻) based on the assumption of BLUP. Thus 

equation (2) can be expressed as follows: 

 
𝑟𝐺𝐸 =

𝑐𝑜𝑣(𝑟𝐺𝑇
2 (𝑻 + 𝜺𝑮), 𝑟𝐸𝑇

2 (𝑻 + 𝜺𝑬))

√𝑐𝑜𝑣(𝑟𝐺𝑇
2 (𝑻 + 𝜺𝑮), 𝑻)𝑐𝑜𝑣(𝑟𝐸𝑇

2 (𝑻 + 𝜺𝑬), 𝑻)

 

=
𝑟𝐺𝑇

2 𝑟𝐸𝑇
2 (𝑣𝑎𝑟(𝑻) + 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) + 𝑐𝑜𝑣(𝑻, 𝜺𝑮) + 𝑐𝑜𝑣(𝑻, 𝜺𝑬))

√𝑟𝐺𝑇
2 (𝑣𝑎𝑟(𝑻) + 𝑐𝑜𝑣(𝑻, 𝜺𝑮))𝑟𝐸𝑇

2 (𝑣𝑎𝑟(𝑻) + 𝑐𝑜𝑣(𝑻, 𝜺𝑬))

 

=
𝑟𝐺𝑇

2 𝑟𝐸𝑇
2 (𝑣𝑎𝑟(𝑻) + 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) + 𝑐𝑜𝑣(𝑻, 𝜺𝑮) + 𝑐𝑜𝑣(𝑻, 𝜺𝑬))

𝑟𝐺𝑇𝑟𝐸𝑇√(𝑣𝑎𝑟(𝑻) + 𝑐𝑜𝑣(𝑻, 𝜺𝑮))(𝑣𝑎𝑟(𝑻) + 𝑐𝑜𝑣(𝑻, 𝜺𝑬))
 

 

 

 

 

(3) 

By rearranging formula (3), we get 

 𝑟𝐺𝑇 =
𝑟𝐺𝐸

𝑟𝐸𝑇
(𝑣𝑎𝑟(𝑻)+𝑐𝑜𝑣(𝜺𝑮,𝜺𝑬)+𝑐𝑜𝑣(𝑻,𝜺𝑮)+𝑐𝑜𝑣(𝑻,𝜺𝑬))

√(𝑣𝑎𝑟(𝑻)+𝑐𝑜𝑣(𝑻,𝜺𝑮))(𝑣𝑎𝑟(𝑻)+𝑐𝑜𝑣(𝑻,𝜺𝑬))

 
(4) 
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Assuming the covariance between TBV and 𝜀𝐸, and the covariance between TBV and 𝜀𝐺 

are both equal to 0 (i.e. 𝑐𝑜𝑣(𝑇, 𝜀𝐺) = 𝑐𝑜𝑣(𝑇, 𝜀𝐸) = 0), formula (4) can be simplified as: 

 𝑟𝐺𝑇 =
𝑟𝐺𝐸

𝑟𝐸𝑇
(𝑣𝑎𝑟(𝑻)+𝑐𝑜𝑣(𝜺𝑮,𝜺𝑬))

√𝑣𝑎𝑟(𝑻)𝑣𝑎𝑟(𝑻)

 

=
𝑟𝐺𝐸

𝑟𝐸𝑇(1 +
𝑐𝑜𝑣(𝜺𝑮,𝜺𝑬)

𝑣𝑎𝑟(𝑻)
)
 

 

 

 

(5) 

which is the approximation for predicting the accuracy of GBV suggested by Amer and 

Banos (2010) and will be denoted as ‘Acc_AB’ in the following. By further assuming 

that 𝜺𝑮 and 𝜺𝑬 are independent (𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) = 0), we get 

 𝑟𝐺𝑇 = 
𝑟𝐺𝐸

𝑟𝐸𝑇
 (6) 

which is the formula used in Hayes et al. (2009b) and will be referred as ‘Acc_H’ in the 

following.  

Since the covariance between two errors is not available in reality, Acc_AB is not imme-

diately applicable in reality. Acc_H was found to overestimate the accuracy of GBV 

(Goddard, 2009; Hayes et al., 2009b; Goddard et al., 2011). Thus it is necessary to sug-

gest a novel and computationally feasible method that provides a better prediction for the 

accuracy of GBV in real data sets. 

A novel approach for approximating the accuracy of GBV 

Let 𝒕, 𝒆 and 𝒈 denote the standardized transformed vectors TBV, EBV and GBV for in-

dividuals in a population, i.e.  

𝒕 =
𝑻−1𝑛𝑇

√𝑣𝑎𝑟(𝑻)
,  𝒆 =

𝑬−1𝑛𝐸̅

√𝑣𝑎𝑟(𝑬)
, and  𝒈 =

𝑮−1𝑛𝐺̅

√𝑣𝑎𝑟(𝑮)
; 

where 𝑇, 𝐸, 𝐺 is the mean of TBV (𝑻), EBV (𝑬) and GBV (𝑮), respectively. 𝑛 is the 

length of vector TBV, 1𝑛 is a column vector of 1s of length 𝑛. 



Chapter 4 Comparison between approaches to estimate the accuracy of genomic 

breeding values 104 

 

Then, the sums of the elements of 𝒕, 𝒆 and 𝒈 are equal to 0, the variances of 𝒕, 𝒆 and 𝒈 

are equal to 1, and the correlation coefficients equal the regression coefficients. Since 

such a scaling does not affect correlations,  

𝑟𝐺𝑇 ≡ 𝑟𝑔𝑡, 𝑟𝐸𝑇 ≡ 𝑟𝑒𝑡, and 𝑟𝐸𝐺 ≡ 𝑟𝑒𝑔. 

Now, 𝒕 can be rewritten as  

𝒕 = 𝑟𝑒𝑡  𝒆 + 𝒎𝑒𝑡                 

with 𝑟𝑒𝑡 being the regression coefficient of 𝒕 on e (as all variances are 1). Thus, the vector 

of true breeding values 𝒕 is expressed as its expectation given the estimated breeding 

values 𝒆 and an error term, denoted as 𝒎𝑒𝑡. Note that 𝒆 and 𝒎𝑒𝑡 are uncorrelated, i.e. 

𝑐𝑜𝑟(𝒆, 𝒎𝒆𝒕) =  0. In the same way, we can write 𝒈 = 𝑟𝑒𝑔 𝒆 + 𝒎𝑒𝑔 with 𝑐𝑜𝑟(𝒆, 𝒎𝒆𝒈) =

0.  

Then, the accuracy of GBV can be written as 

𝑟𝐺𝑇 ≡ 𝑟𝑔𝑡 ≡
𝑐𝑜𝑣(𝑟𝑒𝑡  𝒆 + 𝒎𝒆𝒕, 𝑟𝑒𝑔 𝒆 + 𝒎𝒆𝒈)

√𝑣𝑎𝑟(𝒈)𝑣𝑎𝑟(𝒕)
 

Since 𝑣𝑎𝑟(𝒈) = 𝑣𝑎𝑟(𝒕) = 1, it follows 

𝑟𝐺𝑇 ≡ 𝑐𝑜𝑣(𝑟𝑒𝑡  𝒆 + 𝒎𝒆𝒕, 𝑟𝑒𝑔 𝒆 + 𝒎𝒆𝒈) 

≡ 𝑟𝑒𝑔𝑟𝑒𝑡𝑐𝑜𝑣(𝒆, 𝒆) + 𝑟𝑒𝑡𝑐𝑜𝑣(𝒆, 𝒎𝒆𝒈) + 𝑟𝑒𝑔𝑐𝑜𝑣(𝒆, 𝒎𝒆𝒕) + 𝑐𝑜𝑣(𝒎𝒆𝒕, 𝒎𝒆𝒈) 

Because 𝒆 and 𝒎𝑒𝑡 are uncorrelated, therefore, 𝑐𝑜𝑣(𝒆, 𝒎𝒆𝒈) = 𝑐𝑜𝑣(𝒆, 𝒎𝒆𝒕) = 0, thus,  

𝑟𝐺𝑇 ≡ 𝑟𝑒𝑔𝑟𝑒𝑡 + 𝑐𝑜𝑣(𝒎𝒆𝒕, 𝒎𝒆𝒈) 

≡ 𝑟𝑒𝑔𝑟𝑒𝑡 + 𝑟𝑚𝑚√𝑣𝑎𝑟(𝒎𝒆𝒕)𝑣𝑎𝑟(𝒎𝒆𝒈) 

with 𝑟𝑚𝑚 being the correlation between 𝒎𝒆𝒕 and 𝒎𝒆𝒈. 

𝑣𝑎𝑟(𝒎𝒆𝒕) is 

𝑣𝑎𝑟(𝒎𝒆𝒕) = 𝑣𝑎𝑟(𝒕 − 𝑟𝑒𝑡  𝒆) 
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= 𝑣𝑎𝑟(𝒕) + 𝑟𝑒𝑡
2 𝑣𝑎𝑟(𝒆) − 2𝑟𝑒𝑡 𝑐𝑜𝑣(𝒕, 𝒆), 

As 𝑣𝑎𝑟(𝒕) = 𝑣𝑎𝑟(𝒆) = 1, 

𝑣𝑎𝑟(𝒕) + 𝑟𝑒𝑡
2 𝑣𝑎𝑟(𝒆) − 2𝑟𝑒𝑡 𝑐𝑜𝑣(𝒕, 𝒆) = 1 + 𝑟𝑒𝑡

2 − 2𝑟𝑒𝑡 𝑟𝑒𝑡  

= 1 − 𝑟𝑒𝑡
2  

and analogously 

𝑣𝑎𝑟(𝒎𝒆𝒈) = 1 − 𝑟𝑒𝑔
2 . 

This results in  

𝑟𝐺𝑇 ≡ 𝑟𝑒𝑔𝑟𝑒𝑡 + 𝑟𝑚𝑚√(1 − 𝑟𝑒𝑡
2 ) (1 − 𝑟𝑒𝑔

2 ) 

 
≡ 𝑟𝐸𝐺𝑟𝐸𝑇 + 𝑟𝑚𝑚√(1 − 𝑟𝐸𝑇

2 ) (1 − 𝑟𝐸𝐺
2 ) 

(7) 

which we will hereinafter denote as Acc_N. Since 𝑟𝐸𝐺 (as the empirical correlation of 

EBV and GBV) and 𝑟𝐸𝑇 (as the average theoretical value based on the prediction error 

variance) are available from breeding value estimation runs in real data, 𝑟𝑚𝑚, which we 

will call a weighting factor, is the only unknown parameter which needs to be deter-

mined.  

We will study the range of the optimal weighting factor 𝑟𝑚𝑚 by minimizing the squared 

difference between the true accuracy of GBV, which is available in simulated data, and 

the approximation with the new formula over replicates of the simulation data described 

below. We will further assess the usefulness of the new approximation in real data by 

using highly accurate progeny-based breeding values as a proxy of TBV, thus demon-

strating that at least a good approximation of 𝑟𝑚𝑚  can be obtained with real data. In addi-

tion, we will discuss the influence of using the average theoretical values based on the 

prediction error variance instead of empirical correlation between EBV and TBV, 

𝑐𝑜𝑟(𝐸, 𝑇) which is not available in real data, on all the approaches listed above. 
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Simulation of data 

Accuracy of genomic prediction was estimated for three alternative main simulated data 

sets with different population parameters, called cattle-like, pig-like, and basic scenario, 

for which the details are presented in the following. The simulation was performed by 

using the software QMSim (Sargolzaei and Schenkel, 2009). The whole simulation pro-

cess was repeated 20 times. 

Genome 

The simulated genome for all scenarios was the same: The genome consisted of 10 chro-

mosomes with 100 centiMorgan each. Initially, there were 3,000 polymorphic markers 

and 50 quantitative trait loci (QTLs) randomly distributed on each chromosome. Markers 

and QTLs with a minor allele frequency (MAF) ≥ 0.01 in the last historical population 

were selected and used in the simulation of the recent population. The additive allelic 

effects of QTLs were drawn from a gamma distribution with shape parameter 0.2. The 

positions of markers and QTLs across the genome were randomized in each of the 20 

replications. 

A quantitative trait with heritability of 0.2 or 0.5 was simulated. TBV were simulated by 

summing up all true additive QTL allelic effects. The phenotypes were obtained by add-

ing random residual effects to TBV. The simulation included random selection of parents 

(abbreviated as ‘noSel’) or selection of parents based on EBV with predefined accuracy 

(abbreviated as ‘Sel’) in each sex in each scenario, in which the predefined accuracy were 

calculated based on the available information in each scenario e.g. the heritability of the 

trait, and the number of progeny, as suggested in Falconer and Mackay (1996). 

Cattle-like scenario (Additional file 4.1a): 

A historical random mating population with a constant size of 1,000 in the first 900 gen-

erations and with a continuous increase in size to 100,000 for the last 100 generations was 

simulated. 500 founder males and 10,000 founder females were randomly chosen from 

the last generation of the historical population. 

To mimic a real cattle breeding scheme, a recent population with 12 generations was 

simulated. 500 sires were mated to 10,000 dams per generation. Each dam produced 2 

progenies with a probability of 50% for male progenies. Therefore, the number of simu-

lated individuals in each generation was 20,000. Each sire had 20 female offspring and 20 
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male offspring. In the selection scenario, the male parents were selected based on an EBV 

with an accuracy ≥0.7 (0.85) for heritability 0.2 (0.5); the female parents were selected 

based on EBV with an accuracy ≥ 0.45 for both heritabilities. A sex limited trait was sim-

ulated; consequently, phenotypes were assigned only to females in generation 6 to 12. 

Pig-like scenario (Additional file 4.1b): 

The simulation of the first 900 generations of the historical random mating population 

was performed with a fixed population size of 1,000 followed by 100 generations with a 

gradual increase in size to 10,000. The founder population was built up by 500 sires and 

500 dams randomly sampled form generation 1,000 of the historical population. 

The parameters used in the recent population mimicked a 12-generation pig breeding 

scheme. In each generation, each litter consisted of 4 pigs (2 males, 2 females). It needs 

to be mentioned that we only simulated the individuals used in the breeding scheme. In 

the selection scenario, both parents were selected based on EBV with an accuracy ≥0.6 

(0.7) for heritability 0.2 (0.5). Phenotypes were assigned only to females in generation 6 

to 12.  

Basic scenario (Additional file 4.1c):  

A historical random mating population was simulated over 1,000 generations with a con-

stant population size of 10,000. From the last generation of the historical population, 500 

males and 1,000 females were randomly chosen to act as founders of the recent popula-

tion. 

The recent population consisted of 12 generations in which each of the 500 sires mated 

with 2 out of 1000 dams randomly per generation. Each dam produced 2 offspring. The 

proportion of male offspring was 0.5. For heritability 0.2 (0.5), the selection of female 

parents was based on EBV with accuracy ≥0.65 (0.75); the selection of female parents 

was based on EBV with accuracy 0.45 for both heritabilities. Starting from generation 6, 

both males and females got phenotypic records. 

Training and validation sets for the genomic breeding value prediction 

In reality, there are two situations in genomic selection schemes in which a measure of 

accuracy is considered. The first one is cross-validation (abbreviated as ‘CV’). In this 

case, the phenotypes of individuals in the validation set have already been collected and 
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the accuracy is validated based on the correlation between predicted and observed pheno-

types in the validation set. The other situation, called ‘forward prediction’ (abbreviated as 

‘FP’), is similar the real challenge in genomic selection, since the phenotypes of candi-

dates have not been collected at the time point the genomic breeding values are predicted. 

Both situations were investigated for each scenario and each replication (Additional file 

4.1), and the accuracy of GBV of sires in the validation set obtained with different formu-

las was assessed for each scenario in each replicate separately. The validation set were 

sires in generation 11 for both CV and FP scenarios. Progeny information from genera-

tion 12 was available for the CV scenario while it was not available for the FP scenario, 

when estimating EBV and GBV with the models described in the following. 

Estimation of conventional and genomic breeding values in a two-step model 

In the first step, the conventional EBV of individuals were estimated based on the follow-

ing animal model: 

𝒚 = 𝟏𝜇1 + 𝒁𝒂 + 𝒆𝟏 

where  𝒚 is a vector of phenotypic records, 𝜇1 is the overall mean, 𝒁  is the design matrix 

of breeding values, 𝒂~𝑁(0,  𝑨𝜎𝑎
2) is the vector of breeding values and 𝒆𝟏 is a vector of 

random errors following a normal distribution 𝒆𝟏~𝑁(0, 𝑰𝜎𝑒1
2 ). 𝑨 is the pedigree-based 

numerator relationship matrix. Based on this model, the vector of conventional breeding 

values (EBV) is obtained via a BLUP estimation. 

In the second step, the GBV of sires were estimated based on the following model: 

𝒚𝟐 = 𝟏𝜇2 + 𝑾𝒈 + 𝒆𝟐 

where 𝒚𝟐 is a vector of quasi phenotypes (EBVs in this case) of sires in the training popu-

lation, 𝜇2 is the overall mean, 𝑾 is the design matrix corresponding to 𝒈, the vector of 

the animals’ GBV which was assumed to be distributed 𝒈~𝑁(0, 𝑮𝜎𝑔
2), and 𝒆𝟐 is a vector 

of random errors following a normal distribution 𝒆𝟐~𝑁(0, 𝑰𝜎𝑒2
2 ). 𝐆 is the genomic rela-

tionship matrix according to VanRaden (2007).  

EBV, GBV and corresponding variance components were estimated using ASReml 3.0 

for each scenario and each replicate (Gilmour et al., 2009). 
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Real cattle data 

The real Holstein cattle data used for testing the validity of the proposed approach are 

from two routine breeding value runs 2010 and 2014 conducted by vit Verden 

(http://www.vit.de/). For each individual, EBV, reliabilities of EBV, and GBV were pro-

vided for the traits milk yield (MY), fat yield (FY), protein yield (PY), and somatic cell 

score (SCS). Individuals were selected based on two criteria: First, individuals had to be 

in the candidate set in 2010 and in the training set in 2014 in the genomic prediction. 

Second, individuals had EBV with reliability ≤0.85 in 2010 and EBV with reliability 

≥0.95 in 2014. For studying on how to estimate 𝑟𝑚𝑚 best in real data, the EBV estimated 

in 2014 with 𝑟2 ≥ 0.95 (i.e. an accuracy ≥ 0.974) was used as a proxy for the TBV of 

that individual for the respective trait, denoted as TBVE hereinafter. Besides the empirical 

correlation between EBV and GBV (𝑟𝐸𝐺), the empirical correlation between TBVE and 

EBV, and GBV ( 𝑟𝐸𝑇_𝐸  , 𝑟𝐺𝑇_𝐸) can be approximated as well. Consequently, the optimal 

weighting factor can be approximated as 
𝑟𝐺𝑇_𝐸−𝑟𝐸𝐺𝑟𝐸𝑇_𝐸

√(1−𝑟𝐸𝑇_𝐸
2 ) (1−𝑟𝐸𝐺

2 )

. Based on this, the robustness 

of the weighting factor in different traits can be investigated. 

Results  

Simulation 

On average, there were 27,585 SNPs and 459 QTLs randomly distributed on the simulat-

ed chromosomes. The minor allele frequency (MAF) based on the simulated genotypes of 

sires from generation 6 to generation 11 in the first replicate of cattle_5 noSel scenario is 

shown in Additional file 4.2. The average linkage disequilibrium (𝑟2) between SNPs 

whose distance was smaller than 2 cM is shown in Additional file 4.3 for different scenar-

ios. There was no significant difference in the level of LD between pig-like and cattle-

like scenarios, which both had a higher LD level than the basic scenario. 

MSE of Acc_N with different weighting factors and the optimal weighting factor 

Since 𝑟𝑚𝑚 in Acc_N is defined as a correlation, 𝑟𝑚𝑚 can only take values between -1 and 

+1. In other words, all possible MSE can be inspected when 𝑟𝑚𝑚 is moved from -1 to +1, 

as shown in Figure 4.1, in which MSE is the average of the squares of the difference be-

tween the empirical accuracy and theoretical accuracy. Compared to the Sel scenarios, the 

curves of the noSel scenarios were more flat. The curves of FP scenarios were more con-

vex than the curves of CV scenarios (e.g. Sel_FP vs Sel_CV), which means that FP sce-
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narios were more sensitive to the choice of the weighting factor. In FP scenarios, the op-

timal weighting factor of cattle-like scenarios were larger than pig-like and basic scenari-

os, however, there were no differences in CV scenarios. Furthermore, the optimal 

weighting factor which is defined as 𝑟𝑚𝑚 giving the minimum MSE in each scenario can 

be located and is shown in Table 4.1. Across all the scenarios, the average (± standard 

deviation) of the optimal weighting factor was 0.25 (± 0.15) for Sel_FP, 0.25 (±0.15) for 

Sel_CV, 0.40 (±0.14) for noSel_FP, and 0.33 (±0.1) for noSel_CV. The optimal 

weighting factors of noSel_FP were larger than Sel_FP in each scenario, while there was 

no systematic pattern in the CV scenarios.  

 

Figure 4.1: Mean squared errors (MSE) of the predicted accuracy of GBV calculated by 

Acc_N in different simulation scenarios plotted against all possible weighting factors 

𝑟𝑚𝑚. Red stands for cattle-like scenarios, blue represents pig-like scenarios and black 

denotes intermediate scenarios. Solid lines (—) stand for scenarios with heritability equal 

to 0.2 and dashed lines (- -) denote scenarios with heritability equal to 0.5. 
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Table 4.1: The optimal weighting factors in different scenarios 

 
cattle_2 cattle_5 pig_2 pig_5 basic_2 basic_5 

Sel_FP 0.38 0.48 0.10 0.24 0.12 0.20 

Sel_CV 0.40 0.46 0.10 0.24 0.12 0.18 

noSel_FP 0.52 0.62 0.28 0.38 0.28 0.34 

noSel_CV 0.40 0.40 0.26 0.32 0.28 0.30 

 

Predicted accuracy with different approaches in different simulated scenarios 

Predicted accuracies of GBV calculated from different approaches in validation data sets 

are shown in Figure 4.2 where they were plotted against the empirical accuracies of GBV 

defined as the correlation between GBV and TBV. It should be mentioned that the empir-

ical (true) accuracy is not available in real applications. The grey dashed lines in the plots 

stand for equality of predicted accuracies of GBV and empirical accuracy, which means 

that the closer the values are to the grey line, the more accurate the predication is. In gen-

eral, Acc_N with the optimal weighting factor showed considerably better performance 

than the other three approaches in most of the simulated cases. Acc_H systematically 

overestimated the empirical accuracy in this simulated dataset, with a substantial propor-

tion of accuracies larger than 1 and thus outside the parameter space, except for Sel_CV 

in the cattle scenario. The overestimation of Acc_H was stronger in the noSel scenarios 

than that in Sel scenarios. Acc_AB had a relative good performance in Sel scenarios, 

especially in the case when more information is available (i.e. Sel_CV). However, in 

some cases of noSel scenarios, predicted accuracies with Acc_AB were larger than 1 as 

well. Compared to Acc_AB and Acc_H, 𝑟𝐸𝐺 had equal or better performance. It should 

be noticed that when the empirical accuracy was lower, Acc_H, Acc_AB, and 𝑟𝐸𝐺 had a 

stronger tendency to overestimate the empirical accuracy. Focusing on prediction with 

Acc_N, the results were close to even along with the grey dash lines, especially in the Sel 

scenarios. The prediction with Acc_N, however, was always in the same range regardless 

of the level of empirical accuracies of GBV in noSel scenarios. All in all, Acc_H and 𝑟𝐸𝐺 

had relative good prediction in breeding schemes with more information and higher accu-

rate EBVs available (e.g. cattle). However, overestimation still needs to be paid attention. 

The agreement between Acc_N and empirical accuracy was higher than that with Acc_H, 

Acc_AB, and 𝑟𝐸𝐺 in most simulated scenarios, especially in the breeding schemes under 

selection.  
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Figure 4.2: Accuracy of GBV estimated by different approaches in validation sets plotted 

against the empirical accuracy of GBVs calculated as the correlation of GBVs and TBVs. 

Values on the X axis are the empirical accuracies of GBV, 𝑐𝑜𝑟(𝐺, 𝑇), among different 

simulated scenarios. Values on the Y axis are the accuracies of GBV estimated by 

Acc_N, Acc_H, Acc_AB and 𝑟𝐸𝐺. Grey lines in the plots stand for where estimated accu-

racies equaling to empirical accuracies. Values above the grey line denote overestimation 

of empirical accuracies while values below the grey line mean underestimation of empiri-

cal accuracies. Number two (five) in the legend stands for the respective scenario with 

simulated heritability equaling to 0.2 (0.5). 

Results from the real cattle data 

In order to check the different approaches with real data, there were 1,271 individuals 

selected based on the two criteria mentioned above. Distributions of reliabilities of EBVs 
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for MY, FY, PY, and SCS are shown in Additional file 4.4. Since TBVE, EBV, and GBV 

are available, the correlations among them are available. Thus, the optimal 𝑟𝑚𝑚 [=

𝑟𝐺𝑇_𝐸−𝑟𝐸𝐺𝑟𝐸𝑇_𝐸

√(1−𝑟𝐸𝑇_𝐸
2 ) (1−𝑟𝐸𝐺

2 )

], Acc_H and 𝑟𝐸𝐺 can be assessed in this real data set as shown in Table 

4.2 for several traits of interest. Acc_AB is not available based on this dataset, because in 

Acc_AB, errors of GBV is defined as the deviation of predicted values divided by its own 

reliability from TBV, i.e. 

𝜺𝑮 = 𝑻 −
𝑮

𝑟𝐺𝑇
2  

 

in which 𝑟𝐺𝑇
2 is the values that we want to estimate. The optimal weighting factors were 

relatively stable in all traits and ranged between 0.608 and 0.676. Empirical correlations 

between EBV and GBV were smaller than the accuracy of GBV. Acc_H overestimated 

the accuracy of GBV.  

Table 4.2: The optimal weighting factor and correlation between EBV, GBV and TBVE 

for the real cattle data  

Traits 𝒓𝒎𝒎 𝒓𝑬𝑻_𝑬 𝒓𝑮𝑻_𝑬 𝒓𝑬𝑮 Acc_H 

Milk yield 0.670 0.525 0.768 0.571 1.088 

Fat yield 0.656 0.520 0.757 0.573 1.102 

Protein yield 0.608 0.518 0.723 0.571 1.101 

Somatic cell score 0.676 0.466 0.752 0.515 1.104 

Covariance between TBV, errors of GBV and errors of EBV 

The degree of overestimation of accuracy of GBV by any method is determined by omit-

ting 𝑐𝑜𝑣(𝑻, 𝜺𝑬), 𝑐𝑜𝑣(𝑻, 𝜺𝑮), and 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬), which are basically not known in reality. 

However, based on the simulated data, Figure 4.3a and 4.3b is demonstrating 

  𝑐𝑜𝑣(𝑻, 𝜺𝑬), 𝑐𝑜𝑣(𝑻, 𝜺𝑮), and 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) in Sel and noSel scenarios, respectively, allow-

ing to assess the deviation of these covariances from zero. In Sel scenarios, 

𝑐𝑜𝑣(𝑻, 𝜺𝑬), 𝑐𝑜𝑣(𝑻, 𝜺𝑮), and 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) were all significantly different from zero. 

𝑐𝑜𝑣(𝑻, 𝜺𝑮) tended to be upward biased compared to ‘noSel’. The magnitudes of bias 

varied in different scenarios. Nowadays, most of livestock breeding scheme are under 

strong selection, which will lead to overestimate the accuracy of GBV if 

𝑐𝑜𝑣(𝑻, 𝜺𝑬), 𝑐𝑜𝑣(𝑻, 𝜺𝑮), or 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) assumed to zero. 𝑐𝑜𝑣(𝑻, 𝜺𝑬) approximated to 

zero in all noSel scenarios (Figure 4.3b), which is in agreement with the assumption of 
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traditional BLUP. However, in GBLUP, the 𝑐𝑜𝑣(𝑻, 𝜺𝑮) were biased from zero and tend-

ed to have negative values. 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) were biased from zero as well with varying posi-

tive values in different scenarios. 

 

Figure 4.3a: Covariance between errors of EBV and TBV [𝑐𝑜𝑣(𝑻, 𝜺𝑬)], covariance be-

tween errors of GBV and TBV [𝑐𝑜𝑣(𝑻, 𝜺𝑮)], and covariance of errors of EBV and errors 

of GBV [𝑐𝑜𝑣(𝜺𝑬, 𝜺𝑮)] in Sel_FP and Sel_CV scenarios. 

 

Figure 4.3b: Covariance between errors of EBV and TBV [𝑐𝑜𝑣(𝑻, 𝜺𝑬)], covariance be-

tween errors of GBV and TBV [𝑐𝑜𝑣(𝑻, 𝜺𝑮)], and covariance of errors of EBV and errors 

of GBV [𝑐𝑜𝑣(𝜺𝑬, 𝜺𝑮)] in noSel_FP and noSel_CV scenarios. 
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Discussion 

Comparison among approaches  

The results of this study suggested that the new approach proposed here held good poten-

tials for estimating the accuracy of GBV more accurate compared to several approaches 

used before. In previous studies, one of the most popular approaches of estimating the 

accuracy of GBV was Acc_H (i.e. 𝑟𝐸𝐺 𝑟𝐸𝑇⁄ ), since it is easy to apply in real data sets by 

receiving 𝑟𝐸𝐺 as the empirical correlation between EBV and GBV, 𝑐𝑜𝑟(𝐸, 𝐺), and receiv-

ing 𝑟𝐸𝑇 from the MMEs of traditional BLUP. In real cattle breeding schemes, particularly 

for bulls in the training set with information from many daughters, the accuracy of EBV 

is reasonably high even close to one, thus, dividing by 𝑟𝐸𝑇 does not have a strong effect 

on 𝑟𝐸𝐺. Consequencely, Acc_H were in a resonable range for cattle scenarios, which also 

makes Acc_H works better in cattle breeding schemes than in others (Figure 4.2). How-

ever, an overestimation of accuracy of GBV was still discovered frequently (Goddard, 

2009; Hayes et al., 2009b; Goddard et al., 2011). For instance, based on the DRP of more 

than 900 Yorkshire pigs, Badke et al. (2014) found that accuracy of trait “number of days 

to 250 lb” estimated by Acc_H was significantly higher than the individual accuracy es-

timated from MMEs of genomic evaluation. Furthermore, the magnitude of inaccurate-

ness of accuracy of GBV can hardly be quantified in the real data, which makes this ap-

proximation of accuracy unreliable. With less favorable data structures, Acc_H appears to 

be substantially biased, partly resulting in accuracies larger than 1, which we also ob-

served in some simulated scenarios (Figure 4.2) and even in the real cattle data (Table 

4.2). 

The correlation between EBV (or its derives e.g. DRP, DYD) and GBV ( 𝑟𝐸𝐺) is a widely 

used measure to assess quality of prediction especially in cross-validation scenarios 

(Luan et al., 2009), although it is not claimed to be an approximation of the accuracy of 

genomic breeding values in the strict sense. Equation (7), however, provides some insight 

into the link between 𝑟𝐸𝐺 and 𝑟𝐺𝑇. Since −1 ≤ 𝑟𝑚𝑚 ≤ 1, the range of 𝑟𝐺𝑇 is between 

𝑟𝐸𝐺𝑟𝐸𝑇 + √(1 − 𝑟𝐸𝐺
2 ) (1 − 𝑟𝐺𝑇

2 ) and 𝑟𝐸𝐺𝑟𝐸𝑇 − √(1 − 𝑟𝐸𝐺
2 ) (1 − 𝑟𝐺𝑇

2 ). This means that if 

you obtain estimates of e.g. 𝑟𝐸𝐺 = 0.7 and 𝑟𝐸𝑇 = 0.8, underlying 𝑟𝐺𝑇 can still be between 

0.13 and 0.99. Besides, the overestimation for the accuracy of GBV is stronger when the 

accuracy of EBV is lower as shown in Figure 4.2, which was also found in Wellmann et 

al. (2013). It is even possible to underestimate the accuracy of GBV when the accuracy of 
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EBV is high as shown in Table 4.2 for the real cattle data. Even though, Daetwlyer et al. 

(2013) suggested to report 𝑟𝐸𝐺 to compare result across studies, attention has thus to be 

paid, especially in the case when accuracy of EBV is relatively small. Generally, it is not 

robust to use the correlation between EBV and GBV as the proxy for the accuracy of 

GBV. 

Beside Acc_H and 𝑟𝐸𝐺, Acc_AB (
𝑟𝐺𝐸

𝑟𝐸𝑇(1+
𝑐𝑜𝑣(𝜺𝑮,𝜺𝑬)

𝑣𝑎𝑟(𝑇)
)
) conceptually is a relatively precise 

formula to estimate the accuracy of GBV in most simulation scenarios. Acc_AB achieved 

the minimal MSEs in two scenarios (Additional file 4.5), while both Acc_H and 𝑟𝐸𝐺 had 

relative larger MSEs in all scenarios. However, in the noSel scenarios, Acc_AB tended to 

overestimate the accuracy of GBV and provided estimations larger than 1 in some scenar-

ios. In any case, the non-availability of covariance between errors of GBV and errors of 

EBV limits the applicability of this approach in real data analyses. 

Acc_N, however, presented several potential advantages compared to the above listed 

methods. The items needed in Acc_N can be either obtained from the MMEs of BLUP 

( 𝑟𝐸𝑇 ) or from the empirical correlation (𝑟𝐺𝐸) which is one of advantages of the new ap-

proach. The only undetermined item is 𝑟𝑚𝑚 with a boundary from -1 to 1, used as a 

weighting factor. Thus, the overestimation and underestimation of accuracy of GBV is 

limited to  

𝑟𝐸𝐺𝑟𝐸𝑇 − √(1 − 𝑟𝐸𝑇
2 ) (1 − 𝑟𝐸𝐺

2 ) ≤ 𝑟𝐺𝑇 ≤ 𝑟𝐸𝐺𝑟𝐸𝑇 + √(1 − 𝑟𝐸𝑇
2 ) (1 − 𝑟𝐸𝐺

2 ). 

Besides, we demonstrated the possibility to estimate 𝑟𝑚𝑚 from the real data set, in which 

the estimated 𝑟𝑚𝑚 was relative stable for production traits and SCS. Accuracies of GBV 

estimated from Acc_N in most scenarios (11 out of 12 in both Sel and noSel scenarios) 

had the minimum MSEs for the predicted accuracy of GBV (Figure 4.2 and Additional 

file 4.5) which proved the robust agreement between empirical and predicted accuracy. 

This can be seen as the second advantage.  

It should be mentioned that accuracy of EBV (𝑟𝐸𝑇 ) used in all the tested approaches is the 

average of theoretical accuracy for MMEs, since the TBV are unknown in reality, leading 

to the empirical correlation between EBV and TBV, 𝑐𝑜𝑟(𝐸, 𝑇), to be unknown. The in-

fluence of using theoretical accuracy of EBV from MMEs, 𝑟𝐸𝑇 , instead of 𝑐𝑜𝑟(𝐸, 𝑇) is 

shown in Figure 4.4. The use of  𝑟𝐸𝑇  is the main reason that Acc_N tended to provide the 
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same values regardless of the level of empirical accuracies of GBV in noSel scenarios, 

for example, the standard deviation of 𝑐𝑜𝑟(𝐸, 𝑇) of pig_2 in noSel_CV scenario was 

0.051, while the standard deviation of average of 𝑟𝐸𝑇 was only 0.014 over 20 replicates. 

By replacing 𝑟𝐸𝑇 with 𝑐𝑜𝑟(𝐸, 𝑇), the performance of Acc_N is improved. In addition, if 

the theoretical accuracy of EBV and the optimal weighting factor were known, Acc_N 

should lead to the exact true accuracy of GBV, since it is based on the definition of a 

correlation and no assumption about the variance of EBV and variance of GBV in the 

derivation of Acc_N. When replacing the theoretical accuracy in Acc_AB with empirical 

correlation, the performance of Acc_AB was better, although there was still a slight over-

estimation in all tested scenarios. This could be due to the fact that variance of GBV was 

smaller than the covariance of TBV and GBV (Additional file 4.6). Acc_H with empirical 

correlation, however, still overestimated the empirical accuracy of GBV clearly. 
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Figure 4.4: Estimated accuracy of GBV based different approaches with theoretical accu-

racy of EBV from MMEs against that with empirical correlation used based on the data in 

noSel_CV scenarios. 

Weighting factor 𝒓𝒎𝒎 

As shown in Figure 4.1, with more information available, the curves of MSE for the pre-

dicted accuracy of GBV calculated by Acc_N were more flat, and less sensitive to the 

choice of the weighting factor. This might be because when more information is availa-

ble, the accuracy of EBV (GBV) is higher and 𝑟𝐸𝐺 is increased. Therefore, 1 − 𝑟𝐸𝑇
2  and 

1 − 𝑟𝐸𝐺
2  in equation (7) is reduced (tends to 0), causing the estimation being less sensitive 
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to the choice of the weighting factors. We reported an approximation for the optimal 

weighting factor based on available data. Furthermore, the similarity of optimal 

weighting factors across traits in the real data (Table 4.3) suggested that the empirical 

value from the data set of a trait could be used in another trait as well, which means that 

for traits for which we don’t have highly reliable EBVs available, it is possible to use the 

weighing factors derived for traits with highly reliable EBVs available. 

EBV, DYD or DRP 

In this study, when applying GBLUP, EBVs were used as quasi-phenotype to estimate 

GBV for the respective traits. However, progeny performances are often used as quasi-

phenotype in reality. For example, in cattle breeding schemes, daughter yield deviations 

(DYD) are commonly employed, especially in the international genetic evaluation of 

bulls (Liu et al., 2004; Mrode and Swanson, 2004; Szyda et al., 2008), where DYD is 

defined as the weighted average of a bull’s daughters’ yields corrected for all fixed ef-

fects. Thus, we estimated prediction accuracy of GBV with Acc_N by using DYD as 

phenotypic data in one of simulated scenarios (cattle_2_Sel_CV) to test the variety of 

weighting factors. The mean (± S.D.) of the optimal weighting factor was 0.47 (± 0.04) 

when using DYD as input, compared to 0.45 (± 0.04) using EBV as input. Besides, the 

correlation between weighting factors when using DYDs as input and that using EBVs as 

input was 0.87. There was a small shift for the optimal weighting factors (0.45 with EBV, 

0.47 with DYD) considering that correlation between EBV and DYD and correlations 

between GBVs based on EBV and DYD were not exactly one. 

Limitation of this study 

Most of the analyses were based on different simulation scenarios trying to mimic breed-

ing schemes of cattle or pig, and some ‘basic’ breeding scenario. However, breeding 

schemes in reality are much more complex, hence the conclusions drawn from those sim-

ulation studies may be of limited value.  

Conclusion 

Accuracy of GBV is a critical parameter when performing genomic selection, because it 

determines the reliability of the selected individuals, and further is a critical parameter in 

optimization of the design of a breeding scheme. In most approximations suggested so far 

𝑐𝑜𝑣(𝑻, 𝜺𝑬), 𝑐𝑜𝑣(𝑻, 𝜺𝑮), and 𝑐𝑜𝑣(𝜺𝑮, 𝜺𝑬) are assumed to be zero, which they are not, 

especially when the data are from a population under selection. This could be the reason 



Chapter 4 Comparison between approaches to estimate the accuracy of genomic 

breeding values 120 

 

that most approaches overestimate the accuracy of GBV. In this study, we compared sev-

eral approaches estimating accuracy of GBV and proposed a new approach, i.e. 

𝑟𝐺𝑇 ≡ 𝑟𝐸𝐺𝑟𝐸𝑇 + 𝑟𝑚𝑚√(1 − 𝑟𝐸𝑇
2 ) (1 − 𝑟𝐸𝐺

2 ) 

to have a better prediction for the accuracy of GBV. This approximation provides a relia-

ble range for the true accuracy 𝑟𝐺𝑇. Based on simulated and real data, the new method 

held several advantages compared to the previously available approaches: it was compu-

tationally applicable and convenient in real data, provided smaller MSE for the predicted 

accuracy of GBV calculated, and appeared robust in different scenarios. The only un-

known parameters here was 𝑟𝑚𝑚, for which we suggested an approach to approximate an 

empirical value from a suitable data set reflecting two separate time points. In conclusion, 

the new approach provided a better assessment of the accuracy of GBV in many cases.  
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Additional files 

 

Additional file 4.1a: Schematic representation of the cattle scenario. 

 

Additional file 4.1b: Schematic representation of the pig scenario. 
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Additional file 4.1c: Schematic representation of the basic scenario. 

 

 

Additional file 4.2: The minor allele frequency (MAF) based on the simulated genotypes 

of sires from generation 6 to generation 11 in the first replicate of cattle_5 noSel scenario. 
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Additional file 4.3: Decline of smoothed averages of linkage disequilibrium among SNPs 

with distance smaller than 2 cM.   
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Additional file 4.4: Distribution of reliabilities of EBV for milk yield, fat yield and pro-

tein yield for the selected individuals. 
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Additional file 4.5: Mean squared errors of predicted accuracy of GBV calculated by 

different approaches in different simulated scenarios of validation sets over 20 replicates 

Scenario Acc_N Acc_H Acc_AB 𝒓𝑬𝑮 

Sel_FP 

cattle_2 0.0012 0.1420 0.0208 0.0057 

cattle_5 0.0017 0.0096 0.0502 0.0412 

pig_2 0.0034 0.9390 0.0421 0.0723 

pig_5 0.0022 0.1911 0.0025 0.0062 

basic_2 0.0010 0.3541 0.0243 0.0315 

basic_5 0.0010 0.0357 0.0005 0.0017 

Sel_CV 

cattle_2 0.0008 0.0017 0.0226 0.0138 

cattle_5 0.0005 0.0064 0.0174 0.0169 

pig_2 0.0025 0.3911 0.0114 0.0364 

pig_5 0.0017 0.0481 0.0030 0.0023 

basic_2 0.0008 0.1714 0.0090 0.0168 

basic_5 0.0008 0.0181 0.0004 0.0011 

noSel_FP 

cattle_2 0.0006 0.4382 0.0349 0.0009 

cattle_5 0.0002 0.1346 0.0059 0.0085 

pig_2 0.0023 1.5736 0.3527 0.0616 

pig_5 0.0015 0.5076 0.0850 0.0127 

basic_2 0.0006 0.4104 0.0633 0.0172 

basic_5 0.0003 0.0530 0.0041 0.0008 

noSel_CV 

cattle_2 0.0003 0.0371 0.0036 0.0009 

cattle_5 0.0001 0.0042 0.0002 0.0012 

pig_2 0.0021 0.8307 0.1991 0.0413 

pig_5 0.0012 0.2124 0.0375 0.0067 

basic_2 0.0005 0.2298 0.0357 0.0106 

basic_5 0.0003 0.0287 0.0022 0.0006 
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Additional file 4.6: Covariance of EBV and TBV against variance of EBV; Covariance 

of GBV and TBV against variance of GBV in noSel_CV scenarios. 
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The main objective of this thesis was to investigate the possibility of imputing SNP array 

data up to the whole-genome sequence level (Chapter 2), then perform genomic predic-

tion based on the imputed whole-genome sequencing data and SNP array data with dif-

ferent genomic relationship matrices to account for genetic architecture (Chapter 3). To 

further understand the accuracy of genomic prediction, a simulation study was performed 

to determine the degree of overestimation of the accuracy of genomic prediction, in order 

to propose a new method measuring the accuracy of genomic breeding values (Chapter 

4). 

In this discussion chapter, some of the important questions arising from the previous stud-

ies are discussed. In addition, needs for further investigations are presented. 

Impact of imputation on genomic prediction 

Genomic prediction is becoming a routine practice for a range of animals in many coun-

tries (Van Eenennaam et al., 2014). Considering cost-effectiveness, genomic prediction 

based on imputed genotypes is often conducted. The question we were interested in is 

whether conducting genomic prediction with imputed genotypic data has a negative effect 

on predictive ability or not. 

In Chapter 3, genomic prediction with imputed whole-genome sequencing (WGS) data 

was conducted, since it is not realistic to sequence a whole population due to the cost of 

sequencing. Thus, it is not possible to compare the predictive ability with real WGS data 

and imputed WGS data so far. However, there are several studies investigating the effect 

of using imputed genotypic data on genomic prediction with other densities of array data. 

A strategy often used is: first to mask a certain amount of SNPs in the data set available 

to produce a lower density data set; then second, use both data sets to perform genomic 

prediction and then compare the results derived from the two data sets. For example, Pi-

mentel et al. (2015) studied the direct genomic breeding values (DGVs) for 37 traits of 

3,494 Brown Swiss candidates from two genotype data sets. The mimicked 6K chip was 

created by only keeping the SNPs that are both on Illumina BovineLD BeadChip and on 

Illumina Bovine SNP50 BeadChip, which is the chip that candidates were actually geno-

typed with. The imputation process was done with Findhap V2 (VanRaden et al., 2011) 

and FImpute (Sargolzaei et al., 2014) independently. Note that FImpute is one of the im-

putation programs tested in Chapter 2. 6,243 individuals were used as the reference set 

for imputation, which were the same individuals in the training set of genomic prediction. 

Pimentel et al. (2015) found that DGVs of top candidates tended to be underestimated, 
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whilst DGVs of bottom candidates tended to be overestimated. They believe that this is 

because imputation programs tend to give the most frequent haplotype when a clear hap-

lotype cannot be determined.  

Unlike the study of Pimentel et al. (2015), in which how imputation error biased the 

DGVs of candidates was investigated, Khatkar et al. (2012) investigated how imputation 

errors affected the accuracy of genomic prediction. They did not observe the decrease of 

predictive ability with imputed 50K genotypes that were imputed from 7K compared to 

that with actual 50K genotypes for five production traits. Segelke et al. (2012) reported 

that the loss of reliability of genomic prediction was around 5.3% (1.9%) with imputed 

genotyped data from 3K (6K) by Findhap and around 1.9% (1%) with imputed genotyped 

data form 3K (6K) by Beagle (Browning and Browning, 2007), averaged over 12 traits 

from a EuroGenomics data set including 11,670 Holstein bulls. The predictive ability of 

somatic cell scores based on imputed 777K genotypes was 3.8% lower than that based on 

true genotype data in the study of Van Binsbergen et al. (2015) in which 5,503 Holstein 

Friesian bulls were employed. Chen et al. (2014) studied the de-regressed proofs of more 

than ten thousand Holstein bulls across several traits and found that the reduction of pre-

dictive ability with Bayesian methods was larger than that with GBLUP, especially for 

traits which are influenced by a few large QTLs (e.g. milk yield, fat percentage, protein 

percentage). 

Based on previous studies, the reduction of predictive ability is affected by the studied 

population (e.g. number of individuals in the training set), traits of interest (e.g. heritabil-

ity, genetic architecture), prediction methods (e.g. GBLUP, Bayesian) and imputation 

programs (e.g. Beagle, Findhap). However, the degree of reduction is almost negligible 

when averaged over traits and individuals. Nonetheless, the effect may differ from indi-

vidual to individual, for example between individuals that do have few or many close 

relatives in the reference population, or individuals who are supposed to have higher di-

rect genomic breeding values (Pimentel et al., 2015). Similar conclusions could be drawn 

based on WGS data. Thus, attention should be paid when conducting genomic prediction 

with imputed genotypic data. 

Persistency of predictive ability with whole-genome sequencing data across genera-

tions 

One of the assumed advantages of employing whole-genome sequencing (WGS) data in 

genomic prediction is that WGS may contain causal mutations for the traits of interest. 
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When genomic information passes through generations, the linkage disequilibrium be-

tween SNPs and QTLs might be broken down due to recombination. QTLs, however, 

should be passed through if the selection goals are the same as before. Thus, genomic 

prediction with WGS data is no longer limited by the linkage disequilibrium. Conse-

quently, the predictive ability should be maintained across generations. Cross-validation, 

as employed in Chapter 3, is an often used strategy to compare different data sets or 

different methods in different fields. In animal breeding the general process of cross-

validation is the following: the whole population is randomly split into two sets: the train-

ing set in which the (quasi-) phenotype of individuals are known, the validation set in 

which the (quasi-) phenotype of individuals are pretended to be known. Then the infor-

mation derived from the training set is used to assess the performance of the validation 

set. In practice, we are more interested in the performance of young animals for which 

phenotypes are not available yet and for which the phenotype of their parents and rela-

tives are available, which means that the population should not be split randomly but split 

by year or age, resulting in a so-called forward prediction. However, studies regarding 

forward prediction across generations with real WGS data are so far lacking. 

To investigate whether predictive ability can be better maintained across generations with 

WGS data, we carried out the following forward prediction: the data set, which was the 

same as used in Chapter 3, was divided into a training set and validation sets by genera-

tion. The training set contained individuals from generation 1 to generation 4, whereas 

three validation sets were used: individuals in generations 5 and 6 (G5+G6), individuals 

in generation 5 (G5), and individuals in generation 6 (G6). The same prediction model as 

in Chapter 3 was used. The genomic relationship matrix was built according to Van-

Raden (VanRaden, 2007), which was denoted as GI in Chapter 3. The number of indi-

viduals in each generation is given in Table 5.1. Four different data sets were used: HD 

array data (including 336,224 SNPs), HD_genic data (including 157,393 SNPs), WGS 

data (including 5,243,860 SNPs), WGS_genic data (including 2,593,054 SNPs).  

Table 5.1: Number of individuals in each generation 

Generation 1 2 3 4 5 6 Total  

Number 52 49 49 596 78 68 892 

Predictive ability (i.e. the correlation between DRPs and DGVs in a respective validation 

set) of trait eggshell strength based on different data sets is shown in Figure 5.1. In gen-

eral, a higher consistency of predictive ability with WGS data was not observed for egg-

shell strength. There was a clear decrease when individuals were two generations away 
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from the training set, and even more so with WGS data, which is contrary to our expecta-

tion. In addition, predictive ability with genic SNPs (HD_genic or WGS_genic) was 

slightly lower than that with the full SNP set (HD and WGS), which contrasts with our 

results in Chapter 3. In Chapter 3 a 5-fold cross validation strategy was used and the 

highest predictive ability was achieved by the WGS_genic SNP set for trait eggshell 

strength. 

 

Figure 5.1: Predictive ability of forward prediction for different validation sets based on 

different SNP data sets. 

Based on a simulated population mimicking a bovine breeding scheme, MacLeod et al. 

(2014) studied the persistency of accuracy with WGS and HD data by comparing the 

accuracy of genomic prediction with validation individuals either from the same genera-

tion as the training set or ten generations away from the training set. They found that the 

accuracy of genomic prediction based on GBLUP was reduced to ~75% in generation 10 

compared to that in generation 0, regardless of the data set (WGS data or HD data) and 

number of QTLs (15 or 50) simulated. The drop of accuracy based on BayesR was small-

er for traits controlled by a small number of QTLs than that by a large number of QTLs. 

van Binsbergen et al. (2015) carried out a forward genomic prediction with imputed WGS 

data based on 5,505 bulls. The imputation was done with Beagle by using 429 cattle se-

quences from the third run of the 1000 bull genomes project as the reference set. They 

split the validation set according to the presence of close relatives in the training set or 

not, and found that the drop of predictive reliability, which is the square of predictive 

ability, was substantial when the validation set was one generation away from the training 

set. They also did not find that the persistency of predictive reliability exists across gen-

erations, which is in agreement with our results. 
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So far, conducting genomic prediction with WGS did not fulfill all of our expectations. 

The reasons could be complex. First, imputed WGS data for genomic perdition was used 

in our study and van Binsbergen’s study (2015). Even though it is speculative to assume 

that predictive ability will be increased with true WGS data, it is possible that persistency 

of predictive ability will be higher than that with imputed WGS data. Second, we hypoth-

esized that persistency of predictive ability should be higher with WGS data than that 

with array data, because WGS data should contain the causal mutations for the traits of 

interest. The traits that we are interested in for animal breeding, however, are commonly 

quantitative traits. On one hand, quantitative traits mean that there exists numerous vari-

ants (including SNPs, CNVs among others) contributing to the variance of the traits. 

Thus, it might be that there is a large and complex set of true causal mutations. On anoth-

er hand, the quantitative traits also indicate that they are substantially affected by the en-

vironment. Even though some environmental effects are considered as fixed effects in the 

model to estimate EBVs, it is possible that different individuals have different responses 

to the same environment, which might be controlled by epigenetics. Consequently, WGS 

data might not be enough, but data from other –omics layers might be required. Third, 

based on the previous studies, predictive ability with GBLUP methods were slightly dif-

ferent from that with Bayesian models. Thus, it is possible that the models we have used 

so far might not capture the advantages of WGS data. Nevertheless, our expectations and 

findings regarding WGS data should be perceived with caution. 

Genomic prediction with DNA structural variations 

A major focus of genomic prediction nowadays is on estimating direct genomic breeding 

values based on SNPs. In fact, DNA variation is far more than single base-pair changes; it 

also includes copy number variants (CNVs), short insertion and deletion (INDELs), seg-

mental duplications and other motifs. Even though there is no common definition of what 

a CNV is, it normally refers to a segment of DNA with an arbitrarily defined minimal 

length of 500bp (Valsesia et al., 2013) for which different individuals vary in the number 

of copies they carry. 

Due to the technological advances in sequencing, numerous DNA structural variations 

have become accessible. Among others, CNVs have been found to provide a non-

negligible contribution of genetic diversity and also have a substantial effect on gene 

expression. There are several studies that perform association between CNVs and pheno-

types by CNV-based genome-wide association studies in humans (Valsesia et al., 2012), 

chicken (Yi et al., 2014) and other species (Wang et al., 2015). Stranger et al. (2007) per-
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formed an association study to investigate the impact of SNPs and CNVs on gene expres-

sion. To assay transcript levels, they sequenced total RNA from lymphoblastoid cell lines 

of 210 individuals with two arrays: Illumina's commercial whole genome expression ar-

ray and Sentrix Human-6 Expression BeadChip. After filtering, 14,925 transcripts were 

available for association analyses of expression levels. Stranger et al. (2007) found that 

SNPs contribute 83.6% of the total detected genetic variation in gene expression while 

CNVs contribute 17.7%. In addition, the contributions of CNVs are largely independent 

to the contributions of SNPs. 

CNV-based genome-wide association study (GWAS) are more difficult than SNP-based 

GWAS, not only because there is no fixed starting and ending position for each CNV in 

each individual (i.e. the same CNV might have different lengths in different individuals), 

but also because it is difficult to determine the number of independent tests. When using 

CNVs in genomic prediction, effects of all CNVs are estimated simultaneously, and then 

multiple-testing is no longer needed. To our knowledge, there is no research so far using 

CNVs for genomic prediction along with SNPs data. Nonetheless, to better understand 

the genomic architecture of quantitative traits, CNVs should be taken into account, which 

might provide interesting insights in the missing heritability. 

SNP annotation-based genomic prediction 

In Chapter 3, predictive abilities with SNPs located in or around genes were higher than 

those with high density (HD) array data and whole-genome sequencing (WGS) data, 

which made us wonder which annotated classes contributed to this increase in predictive 

abilities, or more generally, whether genomic prediction can benefit from SNP annota-

tion. 

To investigate the performance of annotated SNP classes in our data, the original GBLUP 

with a 5-fold cross-validation was carried out, in which the 𝑮 matrix was built according 

to VanRaden (2008). The classification of SNPs was the same as in Chapter 3. The pre-

dictive ability of eggshell strength and the number of SNPs in each class is shown in Fig-

ure 5.2 and Table 5.2. Predictive abilities with SNP classified in intron, exon, upstream, 

downstream, and genic (ranged from 0.409 to 0.411) were slightly higher than that with 

WGS data (0.407) and higher than that with all HD data (0.397). The highest predictive 

ability was 0.423 offered by SNPs in the UTR class (including 5’ UTR and 3’ UTR), 

while the lowest predictive ability was 0.400 offered by SNPs in the intergenic class. 
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Table 5.2: Number of SNPs in each class 

Class Intronic Exonic Upstream Downstream UTR 

# 2,330,659 63,093 67,701 10,635 60,772 

Class Genic Intergenic WGS HD - 

# 2,593,054 2,650,806 5,243,860 336,224 - 

 

Figure 5.2: Predictive ability based on annotated classes in whole-genome sequencing 

data for eggshell strength versus the predictive ability based on all SNPs in whole-

genome sequencing data and high density data. GI_WGS stands for the predictive ability 

based on all SNPs in whole-genome sequencing data. GI_HD stands for the predictive abil-

ity based on high density array data. The dashed horizontal line denotes the median pre-

dictive ability of GBLUP with HD data as a reference. 

Do et al. (2015) carried out a SNP annotation-based genomic prediction in a Duroc popu-

lation that was genotyped by the PorcineSNP60 BeadChip with 30,234 segregating SNPs. 

They divided a total of 1,272 Duroc pig into a training set (968 pigs) and a validation set 

(304 pigs) containing the youngest pigs and considered various traits (i.e. residual feed 

intake, back fat, and average daily gain). SNPs were characterized into 14 different clas-

ses including intergenic, upstream, and downstream. Genomic prediction was applied in 

each SNP class with GBLUP and several Bayesian methods. Predictive ability of residual 

feed intake in several annotated classes (i.e. gene, upstream, and gene ± 5kb) was higher 

than the mean predictive ability based on 1,000 random SNPs; however the results were 

not statistically significant. Predictive ability in the intergenic class was lower than that 

based on the 1,000 random SNPs. 

Although the increased predictive ability in Do et al. (2015) was not significant, which 

could be due to the small number of SNP in total (30K), it shows the same tendency as 
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our results. The tendency is that predictive ability is higher based on SNPs in or around 

genes than that with intergenic SNPs. Thus, based on our data set, genomic prediction 

clearly benefits from SNP annotation. In addition, annotation-based genomic prediction 

might be useful to reduce the substantial computational demand of incorporating WGS 

data, because SNP that are in or around genes are only 50% of the WGS data and func-

tional annotated SNPs are even less, e.g. the most informative class of UTR SNPs made 

only up for 1.16 per cent of all SNPs. 

Why understanding genome annotation is important for genomic prediction 

Genomic prediction with GBLUP assumes that all SNPs effects are sampled form the 

same distribution while genomic prediction with Bayesian methods arbitrarily assigns a 

subset of SNPs having a relatively larger effect than others. However, different SNPs 

may play different roles in different pathways and gene networks which can lead to dif-

ferent precedence relating to the phenotype. Thus, understanding the genome annotation 

might help us to determine the precedence of SNPs in respective traits. 

Genome annotation normally refers to two annotation processes: structural genome anno-

tation and functional genome annotation (Yandell and Ence, 2012). Structural genome 

annotation means that the process of classifying SNPs and further identifying genes and 

their intron-exon structures. As shown in Figure 5.2, genomic prediction with classified 

SNPs has shown a benefit compared to genomic prediction without structural genome 

annotation. 

Functional genome annotation refers to attaching the biological functions to the structural 

genome annotations (Yandell and Ence, 2012). Combining functional annotation with the 

results of a GWAS is an often employed pipeline to using annotation information. More 

specifically, genes which harbor the significant SNPs of GWAS can be identified from 

the database. Further the pathways or gene networks of those genes can be determined 

from the annotation databases. Next, overrepresentation or enrichment analysis for the 

pathways or gene networks can be done. SNPs related to the significant pathways can be 

used for the following genomic prediction. The general idea behind overrepresentation 

and enrichment analysis is to determine whether the representation of certain annotation 

categories is statically higher than expected by chance or not (Subramanian et al., 2005).  

There are several databases to identify gene sets to guide functional genomic prediction. 

For example, gene ontology (GO) which provides the descriptions of gene products 

across databases for more than 45 species (The Gene Ontology Consortium, 2000; The 
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Gene Ontology Consortium, 2014). In addition, the National Center for Biotechnology 

Information (NCBI; http://www.ncbi.nlm.nih.gov/), Ensembl Genome Browser 

(http://www.ensembl.org/index.html), and Kyoto Encyclopedia of Genes and Genomes 

(KEGG; http://www.genome.jp/kegg/) also provide functional annotation of SNPs. 

Although studies of genomic prediction based on genome annotation still are rare in live-

stock, there is, as discussed in Chapter 3, an increasing number of such studies showing 

the benefit of conducting genomic prediction with annotation information e.g. Do et al. 

(2015) and Pérez-Enciso et al. (2015). In addition, Snelling et al. (2013) performed ge-

nomic prediction of heifer pregnancy rate using SNPs detected by genome annotation and 

all SNPs from the BovineHD chip and found that the accuracy of genomic breeding val-

ues with annotation information was higher than that without annotation information. 

Thus, the value of conducting genomic prediction with functional annotation appears 

promising.  

Annotation of livestock genomes so far is not as complete and good as that of the human 

genome and some lab animals, such as mouse. Fortunately, evidence exists showing that 

it is possible to borrow information from human and model animals to infer functions of 

certain genes. For instance, with the help of the myostatin knock-out mice, a deletion in 

bovine myostatin genes was confirmed as the causal mutation of the double-muscled 

phenotype (Grobet et al., 1997) in some beef cattle breeds, which illustrates that a gene 

has a similar function on the same trait across rather distant species. Thus, annotation 

information of similar traits from one species might be useful to assist the detection of 

gene sets or pathways contributing to the traits of other species, even for quantitative 

traits. One should be aware that the possibility of using functional annotation from human 

or model animals does not mean that it is not necessary to fill the annotation gap of the 

respective species based on studies of biological processes, because gene interactions 

might differ between species, breeds, and even between subpopulations selected for dif-

ferent goals (International Chicken Genome Sequencing Consortium, 2004). 

Computational demands with whole-genome sequencing data 

With the availability of whole-genome sequencing (WGS) data, computational demands 

have increased dramatically; especially for genomic prediction. WGS studies revealed up 

to ~28 million SNPs in cattle (Daetwyler et al., 2014) and ~7 million SNPs in chicken 

(Rubin et al., 2010). The processing of a GWAS analysis using single marker regression 

can easily be parallelized; therefore the overall demands are not as big as with genomic 

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/index.html
http://www.genome.jp/kegg/
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prediction. There are several approaches that might be useful to reduce computational 

demands. 

The first aspect that needs to be clarified is whether or not it is necessary to conduct ge-

nomic prediction with WGS data. In other words, are the densities of the current com-

mercial array chips sufficient for genomic prediction? Erbe et al. (2013) have suggested a 

general formula for the average accuracy of genomic breeding values, suggesting that 

accuracy of genomic prediction is inversely proportional to the log of the marker density. 

This means, that substantial gains in accuracy can be observed when going from low or 

moderate marker densities to higher ones (Su et al., 2012; Wellmann et al., 2013) while 

the scope of improvement is limited when the basic marker density is already high 

(Vazquez et al., 2010; Makowsky et al., 2011; de los Campos et al., 2013). Given the fact 

that accuracy of genomic prediction is operating through modelling the segregation of 

QTLs controlling the trait of interest, the density of array data is sufficient as long as 

SNPs are in strong linkage disequilibrium with potential QTLs, which means that there is 

no need to keep on increasing the density of array data once this objective is sufficiently 

achieved. 

If the density of the current array data is considered sufficient, there are several strategies 

that might be useful to reduce the computational demands. One can remove the SNPs that 

are in very high or perfect linkage disequilibrium with adjacent SNPs. Harris et al. (2011) 

reported the predictive ability of first-lactation protein yield with imputed HD data was 

0.594, and that with imputed HD data which were edited by deleting one of a pair of 

SNPs within an interval of 250 SNPs if they are nearly in perfect LD was 0.589. Calus et 

al. (2015) discarded ~ 59.7 % SNPs on whole-genome sequencing data due to high LD in 

a simulation study. Gonzalez-Recio et al. (2015) excluded more than 70% of SNPs due to 

high LD for 3,311 Holstein bulls, which were imputed from the coding regions of 122 

Holstein and 26 Jersey animals. Excluding SNPs which are in perfect LD is an effective 

way to reduce computation demands. 

Apart from reducing redundant SNPs, the use of variable selection can be a strategy to 

reduce the computational demands. Calus et al. (2015) conducted genomic prediction 

with split-and-merge Bayesian variable selection methods, and reduced the computation 

time from months to hours by parallelization. Genome annotation could be considered as 

variable selection as well. As discussed before, SNPs that are related to overrepresented 

or enriched genes for a trait can be determined by functional annotation, which normally 

returns only a subset of all available SNPs. In Chapter 3, a subset of SNPs which are 
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located around genes was selected from the whole-genome sequencing data and provided 

the highest predictive ability when averaging over three studies traits. In addition, Figure 

5.2 in General Discussion shows the predictive ability based on annotated classes in 

whole-genome sequencing data for eggshell strength and implies that conducting ge-

nomic prediction with functional annotation can reduce the computational burden (i.e. the 

number of SNPs) and potentially increase the predictive ability, although the increase of 

predictive ability was not observed in the forward prediction (Figure 5.1 of General Dis-

cussion). 

Availability and unavailability of data  

The International Chicken Genome Sequencing Consortium provided the first build of the 

chicken genome in 2004 using DNA from an inbred Jungle Fowl (International Chicken 

Genome Sequencing Consortium, 2004). The second build was released in 2006, which 

corrected some of the insufficiency found in the first version. Although the reference 

genome used in Chapter 2 and 3 is the fourth build of the chicken genome, which was 

released in 2011, there are still several deficiencies. 

In our data set used in Chapter 2, which includes 25 sequenced white layers and 25 se-

quenced brown layers, there were only 18,641 variants (i.e. SNPs and INDELs) called on 

chromosome 16 by GATK and 7,434 segregating SNPs. This is extremely few compared 

to Chromosome 15 and 17, which is almost the same physical length as chromosome 16 

(Wallis et al., 2004), where 164,806 and 156,344 variants were called. Thus, massive 

numbers of presumably segregating SNPs could not be identified due to the poor quality 

of the reference genome for chromosome 16. In addition, the coverage of chromosome 16 

(with an average of 240) was lower than with other chromosomes (with an average of 

400) in our re-sequencing runs. Chromosome 16, which contains the major histocompati-

bility complex (MHC), is still poorly sequenced in the reference genome. The chicken 

MHC consists of several clusters of highly polymorphic genes with significant effects on 

the immune system and play an important role in disease resistance (Lamont, 1998; 

Taylor, 2004). When health and welfare comes into the scope of animal breeding 

schemes, there are more and more studies focusing on traits relating to functional disor-

ders or diseases e.g. (Liu et al., 2014), whose genomic analysis might be hampered by the 

poor sequence quality of chromosome 16. 

The reference sequence used was derived from the DNA of a single female Red Jungle 

Fowl. In chicken, it is the female who is the heterogametic sex (i.e. carrying a single copy 



Chapter 5 General discussion 141 

 

of the Z and W chromosome, respectively), thus, chromosome Z might be poorly repre-

sented in the final assembly. In addition, chromosome W, which has a high repeat content 

and is different from the rest of chromosomes, is also poorly represented in the current 

version of the reference genome (International Chicken Genome Sequencing Consortium, 

2004; Burt, 2005).  

To date, the fourth version of the chicken reference genome is the newest version, which 

includes 28 pairs of chromosomes, two linkage groups and two sex chromosomes, in total 

30 pairs. The chicken karyotype consists of 39 pairs of chromosomes, often classified 

into five pairs of macro-chromosomes, five pairs of intermediate chromosomes, twenty-

eight pairs of micro-chromosomes and two sexual chromosomes (Masabanda et al., 

2004). Several of the micro-chromosomes are not present in the reference genome, and it 

has been found that micro-chromosomes are gene-rich, having twice as many genes as the 

macro-chromosomes (Burt, 2004). Further, non-nuclear DNA hosted in the mitochondria 

is also not accounted for in the present assembly. In general, further work is necessary to 

assess the importance of the entire DNA variation on the predictive ability in chicken. 

Sequencing design 

Among all the factors characterizing the design of a sequencing experiment, we are only 

focusing on the following three factors. 

1. Whole-genome sequencing (WGS) vs. whole-genome exome sequencing (WES). Basi-

cally, WGS generates all variations including SNPs, copy number variations, and 

INDELs across the entire genome, whilst WES only generates variations in protein-

coding genes and other functional regions. WES is commonly used in human clinical 

applications as a cost-effective alternative to WGS (Linderman et al., 2014). In addi-

tion, in General Discussion, predictive ability with exonic SNPs of WGS (similar to 

WES data) was higher than that with WGS data based on 5-fold cross-validation 

(seen in Figure 5.2), even though there is no difference between the predictive ability 

with WGS data and that with WGS_genic data in the forward prediction (shown in 

Figure 5.1 in General Discussion). But WES has limitations. First, none of the kits 

available in human genetics can cover all the coding exons (Sulonen et al., 2011). 

Second, it was shown that both natural and positive selection eventually occurred in 

the non-coding DNA blocks and some QTLs (Bird et al., 2006; Plomin and 

Schalkwyk, 2007; Kellis et al., 2014) and selection signatures (Ponting and Lunter, 

2006; Haddrill et al., 2008) have been mapped in such blocks, so that important parts 
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of the genome may be missed by just using exome sequencing (Bird et al., 2006; 

Drake et al., 2006). However, WGS is more expensive than WES for the same depth 

of coverage and certainly deserves further consideration in livestock genetics. 

2. Depth of coverage. This quantity, which is defined as the average number of times a 

nucleotide is expected to be sequenced (International Human Genome Sequencing 

Consortium, 2001) is one of the crucial parameters determining the reliability of a 

SNP called from sequence reads. Theoretical coverage can be estimated by the 

Lander-Waterman equation as following:  

𝑐 = 𝐿𝑁/𝐺 

where 𝑐 is the theoretical coverage, 𝐿 is the read length, 𝑁 is the number of reads and 

𝐺 is haploid genome length (Sims et al., 2014). Empirical coverage per-base is the 

exact number of times that a base in the reference genome is coverage by reads (Sims 

et al., 2014). High coverage (on average > 20× coverage) of whole-genome sequenc-

ing can provide almost complete genetic variation at an individual level, which also 

comes at higher costs (Nielsen et al., 2011). In animal breeding, genomic prediction 

or genomic wide association study are population-based studies, which means that a 

large number of individuals are needed with genotypic data and phenotypic data. 

Thus, sequencing with a medium (5-20×) or low (on average < 5× per site per indi-

vidual ) coverage, and genotyping by sequencing with extremely low-coverage (0.1 – 

0.5×) are often employed to achieve the maximum number of individuals to be se-

quenced out of cost-effective concerns (Nielsen et al., 2011; Pasaniuc et al., 2012). 

3. Number and identity of individuals to be sequenced. The price of sequencing is still 

relatively expensive, and it is not realistic to sequence all the breeding animals. Thus, 

identifying the individuals to be sequenced is crucial. In Chapter 2 and 3, the se-

quenced individuals were selected to maximize the explained genetic variation with a 

limited number of individuals as proposed in Druet et al. (2014). Even though the 25 

selected brown layer chickens explained around 85% of total genetic variation proba-

bility of missing rare SNPs in the population is large if too few chickens are se-

quenced. Furthermore, a clear U-shaped distribution of MAFs was not observed in 

Chapter 3, and it is difficult to say whether or not it should exist, because the com-

mercial chickens have been subject to an intensive within-line selection, which could 

reduce the genetic diversity dramatically, further resulting in the lacking of rare 

SNPs. Thus, increasing the number of sequencing individuals is crucial.  
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Main conclusions from this thesis 

Based on the results of this thesis, the main conclusions can be summarized as: 

 A high proportion of sequence-based SNP calls had high values in different measures 

of quality with all variant callers. GATK showed a slightly better performance than 

SAMtools and freebayes. 

 When measuring imputation accuracy as the correlation between true and imputed 

genotypes, Minimac and IMPUTE2 performed slightly better than FImpute. 

 When measuring imputation accuracy as the occurrence of Mendelian inconsisten-

cies, FImpute performed better than Minimac and IMPUTE2. 

 Imputation accuracy was clearly lower for rare than for common SNPs in all tested 

imputation programs. 

 Imputing high density data to the sequencing level yielded reasonable accuracy, even 

across several generations from a very limited number of sequenced individuals.  

 

 Little or no benefit was gained when using all imputed whole-genome sequencing 

data compared to using high density array data with different weighting approaches 

in the GBLUP model. 

 Evidence was found that using genic SNPs for genomic prediction has the potential to 

improve the predictive ability both with high density array data and whole-genome 

sequencing data in a cross-validation study. 

 The same candidates tended to be selected from a full-sib family of interest regardless 

of the genotypic data and weighting factors used. 

 

 A newly suggested approach provided a better prediction for the average accuracy of 

genomic prediction. 

 The single unknown parameters in the new approach could be estimated from a real 

data set. 

  



Chapter 5 General discussion 144 

 

Reference 

Bernstein, B. E., E. Birney, I. Dunham, E. D. Green, C. Gunter, and M. Snyder. 2012. An 

integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. 

Van Binsbergen, R., M. P. L. Calus, M. C. A. M. Bink, F. A. van Eeuwijk, C. Schrooten, 

and R. F. Veerkamp. 2015. Genomic prediction using imputed whole-genome sequence 

data in Holstein Friesian cattle. Genet. Sel. Evol. 47:71. 

Bird, C. P., B. E. Stranger, and E. T. Dermitzakis. 2006. Functional variation and 

evolution of non-coding DNA. Curr. Opin. Genet. Dev. 16:559–64. 

Browning, S. R., and B. L. Browning. 2007. Rapid and accurate haplotype phasing and 

missing-data inference for whole-genome association studies by use of localized 

haplotype clustering. Am. J. Hum. Genet. 81:1084–97. 

Burt, D. W. 2004. The chicken genome and the developmental biologist. Mech. Dev. 

121:1129–35. 

Burt, D. W. 2005. Chicken genome: current status and future opportunities. Genome Res. 

15:1692–1698. 

Calus, M. P. L., C. Schrooten, and R. F. Veerkamp. 2015. Split-and-merge Bayesian 

varibale selection enables efficient genomic prediction using sequence data. In: 66th 

EAAP Annual Meeting (Warsaw, Poland), p505. p. 505. 

Chen, L., C. Li, M. Sargolzaei, and F. Schenkel. 2014. Impact of genotype imputation on 

the performance of GBLUP and Bayesian methods for genomic prediction. PLoS One 

9:e101544. 

Daetwyler, H. D., A. Capitan, H. Pausch, P. Stothard, R. van Binsbergen, R. F. Brøndum, 

X. Liao, A. Djari, S. C. Rodriguez, C. Grohs, D. Esquerré, O. Bouchez, M.-N. Rossignol, 

C. Klopp, D. Rocha, S. Fritz, A. Eggen, P. J. Bowman, D. Coote, A. J. Chamberlain, C. 

Anderson, C. P. VanTassell, I. Hulsegge, M. E. Goddard, B. Guldbrandtsen, M. S. Lund, 

R. F. Veerkamp, D. A. Boichard, R. Fries, and B. J. Hayes. 2014. Whole-genome 

sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. 

Nat. Genet. 46:858–865. 

Do, D. N., L. L. G. Janss, J. Jensen, and H. N. Kadarmideen. 2015. SNP annotation-based 

whole genomic prediction and selection : An application to feed efficiency and its 

component traits in pigs. J. Anim. Sci.:2056–2063. 

Drake, J. a, C. Bird, J. Nemesh, D. J. Thomas, C. Newton-Cheh, A. Reymond, L. 

Excoffier, H. Attar, S. E. Antonarakis, E. T. Dermitzakis, and J. N. Hirschhorn. 2006. 

Conserved noncoding sequences are selectively constrained and not mutation cold spots. 

Nat. Genet. 38:223–7. 

Druet, T., I. M. Macleod, and B. J. Hayes. 2014. Toward genomic prediction from whole-

genome sequence data: impact of sequencing design on genotype imputation and 

accuracy of predictions. Heredity (Edinb). 112:39–47. 



Chapter 5 General discussion 145 

 

Van Eenennaam, A. L., K. a Weigel, A. E. Young, M. a Cleveland, and J. C. M. Dekkers. 

2014. Applied animal genomics: results from the field. Annu. Rev. Anim. Biosci. 2:105–

39. 

Erbe, M., B. Gredler, F. R. Seefried, B. Bapst, and H. Simianer. 2013. A function 

accounting for training set size and marker density to model the average accuracy of 

genomic prediction. PLoS One 8:e81046. 

Gonzalez-Recio, O., H. D. Daetwyler, I. M. MacLeod, J. E. Pryce, P. J. Bowman, B. J. 

Hayes, and M. E. Goddard. 2015. Rare Variants in Transcript and Potential Regulatory 

Regions Explain a Small Percentage of the Missing Heritability of Complex Traits in 

Cattle. PLoS One 10:e0143945. 

Grobet, L., L. J. R. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. 

Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset, and M. 

Georges. 1997. A deletion in the bovine myostation gene causes the double-muscled 

phenotype in cattle. Nat. Genet. 17:71–74. 

Haddrill, P. R., D. Bachtrog, and P. Andolfatto. 2008. Positive and negative selection on 

noncoding DNA in Drosophila simulans. Mol. Biol. Evol. 25:1825–34. 

Harris, B. L., F. E. Creagh, A. M. Winkelman, and D. L. Johnson. 2011. Experiences 

with the Illumina High Density Bovine BeadChip.3–7. 

International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative 

analysis of the chicken genome provide unique perspectives on vertebrate evolution. 

Nature 432:695–777. 

International Human Genome Sequencing Consortium. 2001. Initial sequencing and 

analysis of the human genome. Nature 409. 

Kellis, M., B. Wold, M. P. Snyder, B. E. Bernstein, A. Kundaje, G. K. Marinov, L. D. 

Ward, E. Birney, G. E. Crawford, J. Dekker, I. Dunham, L. L. Elnitski, P. J. Farnham, E. 

a Feingold, M. Gerstein, M. C. Giddings, D. M. Gilbert, T. R. Gingeras, E. D. Green, R. 

Guigo, T. Hubbard, J. Kent, J. D. Lieb, R. M. Myers, M. J. Pazin, B. Ren, J. a 

Stamatoyannopoulos, Z. Weng, K. P. White, and R. C. Hardison. 2014. Defining 

functional DNA elements in the human genome. Proc. Natl. Acad. Sci. U. S. A. 

111:6131–8. 

Khatkar, M. S., G. Moser, B. J. Hayes, and H. W. Raadsma. 2012. Strategies and utility 

of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 13:538. 

Koufariotis, L., Y.-P. P. Chen, S. Bolormaa, and B. J. Hayes. 2014. Regulatory and 

coding genome regions are enriched for trait associated variants in dairy and beef cattle. 

BMC Genomics 15:436. 

Lamont, S. J. 1998. The chicken major histocompatibility complex and disease. 7:128–

142. 

Linderman, M. D., T. Brandt, L. Edelmann, O. Jabado, Y. Kasai, R. Kornreich, M. 

Mahajan, H. Shah, A. Kasarskis, and E. E. Schadt. 2014. Analytical validation of whole 



Chapter 5 General discussion 146 

 

exome and whole genome sequencing for clinical applications. BMC Med. Genomics 

7:20. 

Liu, T., H. Qu, C. Luo, X. Li, D. Shu, M. S. Lund, and G. Su. 2014. Genomic selection 

for the improvement of antibody response to Newcastle disease and avian influenza virus 

in chickens. PLoS One 9:e112685. 

de los Campos, G., A. I. Vazquez, R. Fernando, Y. C. Klimentidis, and D. Sorensen. 

2013. Prediction of complex human traits using the genomic best linear unbiased 

predictor. PLoS Genet. 9:e1003608. 

MacLeod, I. M., B. J. Hayes, and M. E. Goddard. 2014. The effects of demography and 

long-term selection on the accuracy of genomic prediction with sequence data. Genetics 

198:1671–84. 

Makowsky, R., N. M. Pajewski, Y. C. Klimentidis, A. I. Vazquez, C. W. Duarte, D. B. 

Allison, and G. de los Campos. 2011. Beyond missing heritability: prediction of complex 

traits. PLoS Genet. 7:e1002051. 

Masabanda, J. S., D. W. Burt, P. C. M. O. Brien, A. Vignal, V. Fillon, P. S. Walsh, H. 

Cox, H. G. Tempest, J. Smith, F. Habermann, M. Schmid, Y. Matsuda, M. A. Ferguson-

smith, R. P. M. A. Crooijmans, M. A. M. Groenen, D. K. Griffin, U. Mu, and D.- Wu. 

2004. Molecular Cytogenetic Definition of the Chicken Genome : The First Complete 

Avian Karyotype. 1373:1367–1373. 

Nielsen, R., J. S. Paul, A. Albrechtsen, and Y. S. Song. 2011. Genotype and SNP calling 

from next-generation sequencing data. Nat. Rev. Genet. 12:443–51. 

Nobrega, M., Y. Zhu, I. Plajzer-frick, V. Afzal, and E. M. Rubin. 2004. Megabase 

deletions of gene deserts result in viable mice. Nature 431:988–993. 

Ovcharenko, I., G. G. Loots, M. A. Nobrega, R. C. Hardison, W. Miller, and L. Stubbs. 

2005. Evolution and functional classification of vertebrate gene deserts. :137–145. 

Pasaniuc, B., N. Rohland, P. J. Mclaren, K. Garimella, H. Li, N. Gupta, B. Neale, M. 

Daly, P. Sklar, F. Sullivan, S. Bergen, J. L. Moran, C. M. Hultman, P. Lichtenstein, P. 

Magnusson, S. M. Purcell, D. W. Haas, L. Liang, N. Patterson, P. I. W. De Bakker, D. 

Reich, and A. L. Price. 2012. Extremely low-coverage sequencing and imputation 

increases power for genome-wide association studies. Nat. Genet. 44:631–635. 

Pérez-Enciso, M., J. C. Rincón, and A. Legarra. 2015. Sequence- vs. chip-assisted 

genomic selection: accurate biological information is advised. Genet. Sel. Evol. 47:43. 

Pimentel, E. C. G., C. Edel, R. Emmerling, and K.-U. Götz. 2015. How imputation errors 

bias genomic predictions. J. Dairy Sci. 98:4131–8. 

Plomin, R., and L. C. Schalkwyk. 2007. Microarrays. Dev. Sci. 10:19–23. 

Ponting, C. P., and G. Lunter. 2006. Signatures of adaptive evolution within human non-

coding sequence. Hum. Mol. Genet. 15 Spec No 2:R170–5. 



Chapter 5 General discussion 147 

 

Rubin, C.-J., M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood, M. T. Webster, L. 

Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallböök, F. Besnier, O. Carlborg, B. Bed’hom, 

M. Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, and L. Andersson. 2010. 

Whole-genome resequencing reveals loci under selection during chicken domestication. 

Nature 464:587–91. 

Sargolzaei, M., J. P. Chesnais, and F. S. Schenkel. 2014. A new approach for efficient 

genotype imputation using information from relatives. BMC Genomics 15:478. 

Segelke, D., J. Chen, Z. Liu, F. Reinhardt, G. Thaller, and R. Reents. 2012. Reliability of 

genomic prediction for German Holsteins using imputed genotypes from low-density 

chips. J. Dairy Sci. 95:5403–11. 

Sims, D., I. Sudbery, N. E. Ilott, A. Heger, and C. P. Ponting. 2014. Sequencing depth 

and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15:121–32. 

Snelling, W. M., R. A. Cushman, J. W. Keele, C. Maltecca, M. G. Thomas, M. R. S. 

Fortes, and A. Reverter. 2013. BREEDING AND GENETICS SYMPOSIUM : Networks 

and pathways to guide genomic selection. J. Anim. Sci.:537–552. 

Stranger, B. E., M. S. Forrest, M. Dunning, C. E. Ingle, C. Beazley, N. Thorne, R. Redon, 

C. P. Bird, A. De Grassi, C. Lee, C. Tyler-smith, N. Carter, S. W. Scherer, S. Tavaré, P. 

Deloukas, M. E. Hurles, and E. T. Dermitzakis. 2007. Relative Impact of Nucleotide and 

Copy Number Variation on Gene Expression Phenotypes. Science (80-. ). 315:848–854. 

Su, G., R. F. Brøndum, P. Ma, B. Guldbrandtsen, G. P. Aamand, and M. S. Lund. 2012. 

Comparison of genomic predictions using medium-density (∼54,000) and high-density 

(∼777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red 

Dairy Cattle populations. J. Dairy Sci. 95:4657–65. 

Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, and B. L. Ebert. 2005. Gene 

set enrichment analysis : A knowledge-based approach for interpreting genome-wide. 

PNAS 102:15545–15550. 

Sulonen, A.-M., P. Ellonen, H. Almusa, M. Lepistö, S. Eldfors, S. Hannula, T. Miettinen, 

H. Tyynismaa, P. Salo, C. Heckman, H. Joensuu, T. Raivio, A. Suomalainen, and J. 

Saarela. 2011. Comparison of solution-based exome capture methods for next generation 

sequencing. Genome Biol. 12:R94. 

Taylor, R. L. 2004. Major Histocompatibility ( B ) Complex Control of Responses 

Against Rous Sarcomas Poult. Sci. 83 :638–649. 

The Gene Ontology Consortium. 2000. Gene Ontology : tool for the unification of 

biology. Nat. Genet. 25:25–29. 

The Gene Ontology Consortium. 2014. Gene Ontology Consortium: going forward. 

Nucleic Acids Res. 43:1049–1056. 

Valsesia, A., A. Macé, S. Jacquemont, J. S. Beckmann, and Z. Kutalik. 2013. The 

Growing Importance of CNVs: New Insights for Detection and Clinical Interpretation. 

Front. Genet. 4:92. 



Chapter 5 General discussion 148 

 

Valsesia, A., B. J. Stevenson, D. Waterworth, V. Mooser, P. Vollenweider, G. Waeber, C. 

V. Jongeneel, J. S. Beckmann, Z. Kutalik, and S. Bergmann. 2012. Identification and 

validation of copy number variants using SNP genotyping arrays from a large clinical 

cohort. BMC Genomics 13:241. 

VanRaden, P. M., J. R. O’Connell, G. R. Wiggans, and K. a Weigel. 2011. Genomic 

evaluations with many more genotypes. Genet. Sel. Evol. 43:10. 

VanRaden, P. M. 2007. Genomic Measures of Relationship and Inbreeding. Interbull 

37:33–36. 

VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 

91:4414–23. 

Vazquez, a I., G. J. M. Rosa, K. a Weigel, G. de los Campos, D. Gianola, and D. B. 

Allison. 2010. Predictive ability of subsets of single nucleotide polymorphisms with and 

without parent average in US Holsteins. J. Dairy Sci. 93:5942–9. 

Wallis, J. W., J. Aerts, and M. A. M. Groenen. 2004. A physical map of the chicken 

genome. Nature 432:761–764. 

Wang, L., L. Xu, X. Liu, T. Zhang, N. Li, E. H. Hay, Y. Zhang, H. Yan, K. Zhao, G. E. 

Liu, L. Zhang, and L. Wang. 2015. Copy number variation-based genome wide 

association study reveals additional variants contributing to meat quality in Swine. Sci. 

Rep. 5:12535. 

Wellmann, R., S. Preuß, E. Tholen, J. Heinkel, K. Wimmers, and J. Bennewitz. 2013. 

Genomic selection using low density marker panels with application to a sire line in pigs. 

Genet. Sel. Evol. 45:28. 

Yandell, M., and D. Ence. 2012. A beginner’s guide to eukaryotic genome annotation. 

Nat. Rev. Genet. 13:329–42. 

Yi, G., L. Qu, J. Liu, Y. Yan, G. Xu, and N. Yang. 2014. Genome-wide patterns of copy 

number variation in the diversified chicken genomes using next-generation sequencing. 

BMC Genomics 15:962.  

 

 



 

 

Acknowledgements 

 

I would like to thank 

 

Prof. Dr. Henner Simianer for being my main supervisor and giving me the oppor-

tunity to work on those interesting topics.  

 

Dr. Malena Erbe for guiding me patiently through my PhD study. I have gained price-

less knowledge and skills from you. 

 

 Prof. Dr Jörn Bennewitz for accepting to co-reference this thesis. 

 

 Prof. Dr. Christoph Knorr for being my third supervisor. 

 

 Dr. Xiangdong Ding for recommending me to Goettingen University. 

 

 Chinese Scholarship Council for the financial support. 

 

All the colleagues from the Department of Animal Sciences, especially the Animal 

Breeding and Genetics Group, and in highlights, Mahmood, Christian, Anna, Reza, 

Saber and Swetlana for cultivating a great scientific and social working environ-

ment.  

 

Ms. Döring for helping me with all the work-related and personal matters of life in 

Goettingen. 

 

My Mother for her never-ending supports through my whole life.  

 


	Untitled
	  
	Summary  
	Zusammenfassung 
	Chapter 1 General introduction 
	Genomic prediction 
	Models for breeding value estimation 
	Establishment of the genomic relationshi
	Accuracy of genomic prediction 
	Factors affecting accuracy of genomic pr
	Implementation of genomic selection 
	Availability of SNP array data and whole
	Imputation 
	Imputation algorithms 
	Imputation accuracy 
	Factors affecting imputation accuracy 
	Objectives of this thesis 
	Chapter 2 Comparison among three variant
	Chapter 3 Whole-genome sequence-based ge
	Chapter 4 Comparison between approaches 
	Chapter 5 General discussion 
	Impact of imputation on genomic predicti
	Persistency of predictive ability with w
	Genomic prediction with DNA structural v
	SNP annotation-based genomic prediction 
	Why understanding genome annotation is i
	Computational demands with whole-genome 
	Availability and unavailability of data 
	Sequencing design 
	Main conclusions from this thesis 


