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Summary  

Over the last two decades, Sumatra, Indonesia has experienced rapid expansion of 

rubber and oil palm plantations through conversion of rainforests. This is evident from the 

36% decrease in forest area in this region from 1990-2010. Such rapid land-use change 

necessitates assessment of its environmental impacts. Forest conversion to rubber and oil 

palm plantations are expected to increase nutrient leaching losses and decrease nutrient 

retention efficiency, following the changes in soil cover, litter input, soil nutrient 

availability and management practices. This thesis presents two studies, which focused on 

the impact of forest conversion to rubber and oil palm plantations on nutrient leaching and 

nutrient retention efficiency, and on the difference in nutrient leaching losses between 

fertilized and frond-stacked areas of oil palm plantations. All studies were conducted in 

two landscapes of highly weathered soils that mainly differed in texture (loam and clay 

Acrisol soils), located in the Jambi province, Sumatra, Indonesia. Nutrient leaching losses 

were measured using suction cup lysimeters installed at 1.5 m soil depth and sampling 

frequency was bi-weekly to monthly during February to December 2013.    

In the first study, nutrient leaching losses and nutrient retention efficiency in the 

soil were measured in four land uses: the reference land uses of lowland forest and jungle 

rubber (rubber trees interspersed in secondary forest), and the converted land uses of 

smallholder rubber and oil palm plantations. In each landscape, the first three land uses 

were represented by four replicate sites and the oil palm by three sites, totaling 30 sites. 

The results illustrated that for the reference land uses the loam Acrisol soil had higher 

leaching fluxes of dissolved nitrogen (N) and base cations, and lower retention efficiencies 

of N and base cations than the clay Acrisol soil. For the converted land uses, management 

practices such as fertilization and liming in oil palm plantations resulted in higher 

dissolved N, dissolved organic carbon (DOC), and base cations leaching fluxes, and lower 

N and base cation retention efficiencies in the soil than the reference land uses. On the 

other hand, in the unfertilized rubber plantations leaching losses of dissolved N, DOC, and 
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base cations were lower than in the oil palm plantations. Overall, the results showed that 

clay content and management practices controlled nutrient leaching losses and nutrient 

retention efficiencies in heavily weathered Acrisol soils of these converted landscapes.  

In the second study, nutrient leaching losses were measured in fertilized and frond-

stacked areas of smallholder oil palm plantations in clay and loam Acrisol soils. The 

results exhibited higher leaching losses (i.e. N, base cations, total aluminum (Al), total 

manganese (Mn), total sulfur (S), and chloride (Cl)) in the fertilized area than the frond-

stacked area due to pulse rates of applications of mineral fertilizers and lime. At the 

landscape scale, higher soil nutrient stocks and lower nutrient leaching losses in the clay 

Acrisol soil compared to the loam Acrisol soil both in the fertilized and frond stack areas 

were caused by the higher nutrient retention as a result of higher clay content.  

Combining nutrient leaching losses and nutrient input (i.e. bulk precipitation and 

fertilizers) with ancillary studies on nutrient output through harvest export provides more 

comprehensive information about the changes in partial nutrient budgets of N, phosphorus 

(P), and base cations due to forest conversion to oil palm and rubber plantations. Fertilized 

oil palm plantations had the lowest annual partial budget of N, calcium (Ca) and 

magnesium (Mg) due to the high annual leaching losses and harvest export. However, the 

high negative partial budgets of N, Ca and Mg in oil palm plantations did not significantly 

decrease those stocks at 1-m soil depth compared to all the other land uses, except for 

exchangeable Mg in the loam Acrisol landscape. Even though unfertilized rubber 

plantations have lower leaching losses (e.g. P) than forest, harvest export caused the lower 

annual partial budget of P. Overall, these results from the two studies suggests for 

improved management practices on these highly weathered soils through synchronizing 

rate of application of fertilizer with plant uptake and frequency of fertilizer application.  
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Zusammenfassung  

In den letzten zwei Jahrzehnten wurden in Sumatra (Indonesien) große 

Regenwaldflächen für den Anbau von Kautschuk- und Palmölplantagen zerstört. Dies zeigt 

sich in der Abnahme Waldfläche in dieser Region um 36% zwischen 1990-2010. Eine 

solch schnelle Landnutzungsänderung hat Auswirkungen auf die Umwelt: Es ist davon 

auszugehen, dass die Zerstörung von Regenwald und die Etablierung von Kautschuk- und 

Palmölplantagen aufgrund von Einflüssen auf die Bodenoberfläche, Veränderungen von 

Streufall, Nährstoffverfügbarkeit und Management in den Plantagen zu erhöhter 

Nährstoffauswaschung und einer verminderten Nährstoffretentionseffizienz führt. Diese 

Arbeit stellt zwei Studien vor, die sich mit den Auswirkungen der Regenwaldzerstörung - 

und der einhergehenden Kultivierung von Kautschuk und Ölpalmenbäumen - auf 

Nährstoffauswaschung und Nährstoffretentionseffizienz beschäftigt. Außerdem untersucht 

sie Unterschiede in der Nährstoffauswaschung zwischen gedüngten und mit Palmwedeln 

bedeckten Bereichen in Palmölplantagen. Beide Studien wurden in zwei Landschaften der 

Provinz Jambi (Sumatra, Indonesien) mit stark verwitterten Acrisol-Böden durchgeführt, 

die sich in der Bodenart unterscheiden (lehm- bzw. tonhaltiger Acrisol). Die 

Nährstoffauswaschung im Boden wurde mit Saugkerzen-Lysimetern gemessen, die in 

1,5m Tiefe im Boden installiert wurden. Beprobt wurde  von Februar  bis Dezember 2013 

zweiwöchentlich bis monatlich.  

Die erste Studie beschäftigt sich mit der Nährstoffauswaschung und 

Nährstoffretentionseffizienz im Boden vierer verschiedener Landnutzungsarten. Dabei 

handelt es sich um die zwei Referenznutzungsformen Tieflandregenwald sowie 

Sekundärwald durchsetzt mit Kautschukbäumen, als auch um die veränderten 

Landnutzungsformen kleinbäuerlicher  Kautschuk- und Ölpalmplantagen. Jede 

Landnutzung, ausgenommen der Palmölplantagen mit drei Wiederholungen, wurde durch 

vier Wiederholungsflächen innerhalb jeder Landschaft repräsentiert. Somit wurde die 

Studie auf insgesamt 30 Flächen durchgeführt. Die Ergebnisse zeigen für den lehmigen 
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Acrisol-Boden der Referenzflächen eine höhere Auswaschung und eine niedrigere N-

Retentionseffizienz für Stickstoff (N) und basische Kationen, verglichen mit dem tonigen 

Acrisol-Boden bestanden.  In den Palmölplantagen zeigte sich, dass Düngung und Kalkung 

zu erhöhter Auswaschung von gelöstem N, gelöstem organischen Kohlenstoff (DOC) und 

basischen Kationen führte, sowie zu einer geringeren Retentionseffizienz von N und 

basischen Kationen im Boden. In den ungedüngten Kautschukplantagen dagegen waren die 

Auswaschungsverluste von gelöstem N, DOC und basischen Kationen geringer als in den 

Palmölplantagen. Zusammenfassend zeigten die Ergebnisse, dass Nährstoffverluste und 

Nährstoffretentionseffizienz in Kautschuk- und Palmölplantagen auf stark verwitterten 

Acrisolen primär von Tongehalt und Management abhängen. 

In der zweiten Studie wurde die Nährstoffauswaschung in den gedüngten und mit 

Palmwedeln bedeckten Bereichen in Palmölplantagen von Kleinbauern in lehm- bzw. 

tonhaltigen Acrisolen gemessen. Die Ergebnisse zeigten höhere Auswaschverluste (d.h. N, 

basische Kationen, Gesamt-Aluminium, Gesamt-Mangan, Gesamt-Schwefel und Chlor) in 

den gedüngten Bereichen als in den mit Palmwedeln bedeckten Bereichen aufgrund der 

Frequenz des Mineraldünger- und Kalkeinsatzes. Auf Landschaftsebene wurden die 

höheren Bodennährstoffvorräte und eine niedrigere Nährstoffauswaschung im Ton-Acrisol 

im Vergleich zum Lehm-Acrisol sowohl in den gedüngten als auch in den mit Palmwedeln 

bedeckten Bereichen durch die höhere Nährstoffretention (als Ergebnis höheren 

Tongehaltes) verursacht. 

Die Kombination von Nährstoffauswaschung und Nährstoffeintrag (d.h. 

Gesamtniederschlag und Dünger) mit zusätzlichen Informationen über den 

Nährstoffaustrag durch die Ernte, geben uns umfassendere Informationen über die 

Veränderungen im partiellen Nährstoffhaushalt von N, Phosphor (P), und basischen 

Kationen bei Waldumwandlung zu Palmöl- und Kautschukplantagen. Gedüngte 

Palmölplantagen hatten aufgrund der hohen jährlichen Nährstoffauswaschung und des 

Ernteexports das niedrigste jährliche Teilbudget an N, Kalzium (Ca) und Magnesium 

(Mg). Dennoch verringerten die hohen negativen Teilbudgets von N, Ca und Mg in den 
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Palmölplantagen nicht deren Vorräte in 1m Bodentiefe verglichen mit den anderen 

Landnutzungsformen - außer für austauschbares Mg im Lehm-Acrisol. Obwohl 

ungedüngte Kautschukplantagen geringere Auswaschung zeigen als der Wald (z.B. für P), 

führte der Ernteexport zu einem geringeren jährlichen P-Teilbudget. Insgesamt implizieren 

die Ergebnisse der beiden Studien folgende verbesserte Managementverfahren für diese 

hochverwitterten Böden: eine Synchronisation der Düngermenge mit der 

Pflanzenaufnahme sowie eine Anpassung der Düngungshӓufigkeit.  
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Chapter 1  

General Introduction  

 

1.1 Overview of deforestation in Sumatra, Indonesia  

Forests can play a key role in maintaining soil fertility and nutrient balance, which 

is manifested by the high nutrient cycling rates and low nutrient loss by leaching measured 

in Indonesian forests (Dechert et al., 2004, 2005; Allen et al., 2015). However, in some 

regions, the role of forests in providing environmental services and supporting sustainable 

ecosystems has been continuously declining in the past two decades due to rapid 

conversion of forests to agricultural land-uses. Southeast Asia is experiencing rapid 

expansion of agricultural land area through rainforest conversion. According to forest 

resources assessments, tropical forest covered 247.3 million ha in 11 Southeast Asia 

countries in 1990, which was reduced to 214.1 million ha in 2010. Indeed, the 

deforestation rate in Southeast Asia from 1990 to 2010 was approximately 1.7 million ha 

per year, of which 1.2 million ha per year came from Indonesia (FAO, 2010). In Indonesia, 

the island of Sumatra experienced primary forest loss of approximately 36% (7.53 million 

ha) during this period, most of which (70%) occurred in the provinces of Riau, Jambi and 

South Sumatra. In total, forest-cover loss in Sumatra accounted for 31% of the total forest 

loss in all of Indonesia from 1990 to 2010 (Margono et al., 2012).     

Most of the deforestation in Sumatra has been driven by the expansion of oil palm 

plantations and pulp and timber operations (Margono et al., 2012), but the rapid conversion 

of lowland forest to rubber (both agroforest/jungle rubber and monoculture) and other 

crops has also played a role (Broich et al., 2011; Villamor et al., 2014). The main actors of 
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deforestation in Sumatra during the last two decades has consisted of large investors (i.e. 

large companies) and smallholders/small investors (i.e. urban-based businessman, 

government employees) (Holmes, 2002). According to Statistics Indonesia (2013a, 2013b), 

the structure of ownership in oil palm plantations consists of 51% of the area owned by 

smallholders and 49% of the area owned by large-scale enterprises (both state and private), 

whilst rubber plantations are dominated by smallholders (88%).          

1.2 Soil nutrient leaching losses  

Nutrient leaching losses are defined as the downward movement of dissolved 

nutrients below the rooting zone by percolating water (Lehman and Schroth, 2003). 

Nutrient leaching occurs when soil pores fill with rain water and gravity pulls the water 

down through the soil profile, thereby carrying away dissolved nutrients. Nutrient leaching 

losses can cause negative impacts such as groundwater contamination and increased 

operational/production costs in intensive agricultural systems (Goh and Hӓrdter, 2003; 

Caliman et al., 2007).         

Under natural conditions, nutrient leaching is controlled by climatic and soil factors 

(Kump et al., 2000; Lehman and Schroth, 2003). Climatic factors (i.e. precipitation, 

temperature, solar radiation, humidity and wind speed) control water usage of plants and 

water supply, both of which play an important role in determining soil drainage flux. 

Precipitation also regulates nutrient leaching losses through nutrient input from bulk 

precipitation (Havlin et al., 1999; Corre et al., 2010). Therefore, nutrient leaching losses 

are generally higher in humid climates as compared to dry climates (Havlin et al., 1999). 

Both precipitation and temperature also indirectly affect nutrient leaching losses, as they 

affect mineralization of soil organic matter (SOM) and weathering, releasing nutrients 
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which not only can be taken up by plants but also can be lost through run off and leaching 

to ground water (Wright et al., 1998).  

Soil characteristics affect nutrient leaching losses through 1) physical 

characteristics (e.g. texture, structure, soil porosity) which influence nutrient retention, 

water infiltration, water holding capacity, and percolation, and 2) biochemical 

characteristics (e.g. nutrient availability, pH, cation exchange capacity, SOM) which 

reflect nutrient supply and storage as influenced by weathering and mineralization (Silver 

et al., 2000; Lehman and Schroth, 2003; Mdemu, 2015). Soils with high nutrient retention 

and water holding capacity, and low water infiltration such as clay soil, generally have low 

nutrient leaching (Ohta et al., 1993; Lehman and Schroth, 2003). Conversely, nutrient 

leaching losses are usually higher in sandy-textured soils with high soil macroporosity that 

allow water to drain more easily (Ohta and Effendi, 1992; Silva et al., 2005). Hydrologic 

losses of nutrients are also controlled by weathering processes, which in part control solute 

concentration. Hedin et al. (2003) confirmed that the concentration of nutrients in soil 

solution was lower in an old soil (150000 yrs) than in a young soil (300 yrs). Furthermore, 

mineralization of SOM releases a large amount of nutrients to soil solution, and therefore 

nutrient leaching losses tend to be higher in soils with high mineralization rates than in 

soils with low mineralization rates. Nevertheless, soils with high mineralization rates can 

have low nutrient availability (i.e. NH4
+-N) due to microbial immobilization (Allen et al., 

2015), and may consequently have relatively low nutrient leaching losses. Silva et al. 

(2005) recorded lower NO3
- leaching in a soil with a high C:N ratio than in a soil with a 

low C:N ratio, which they attributed to the higher C:N ratio leading to N immobilization 

and hence low net N mineralization.       
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In addition to climatic and soil factors, leaching losses from converted land uses 

can also be affected by management practices. In a study comparing soils with the same 

climatic conditions and soil type (Fluvic Cambisol), conversion of old-growth forest to a 

cacao-agroforest system (6-7 yrs-old) in Sulawesi, Indonesia, increased leaching losses of 

N, K, Ca, and Mg (Dechert et al., 2005). In the early period of conversion from forest to 

agricultural land uses, increases in nutrient leaching losses may relate to: 1) increased 

water percolation due to the temporarily reduced water use by vegetation, 2) increased 

nutrient release from decomposition and mineralization of the felled biomass (i.e. leaves), 

ash from burning, and dead roots, and 3) decreased nutrient uptake by plants due to the 

inactivation of the root systems of the former vegetation (Malmer et al., 2005). With time, 

nutrient leaching losses in agricultural land with no soil amendment (i.e. fertilizer) will 

usually decrease due to the declining store of available nutrients (Dechert et al., 2004; 

Kimetu et al. 2008; Ngoze et al. 2008). Conversely, soil nutrient stocks and nutrient 

leaching losses in agricultural land uses may increase with more intensive fertilizer 

application (Goh et al., 2003).   

 

 

1.3 Management practices in oil palm plantations and its impact on soil fertility and 

nutrient losses   

 Oil palm (Elaeis guineensis) has been cultivated on approximately 11.7 million ha 

of land in Southeast Asia, 11 million ha of which is located in Indonesia and Malaysia 

(FAOSTAT, 2013). Smallholder oil palm plantations account for 40% of total oil palm 

area in Indonesia and Malaysia whilst the remaining 60% is owned by large-scale 

enterprises (both state and private) (Nagiah and Azmi, 2012). According to the roundtable 

for sustainable palm oil, smallholders are defined as family-based enterprises producing 
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palm oil from less than 50 ha of land, often around 2 ha (Vermeulen and Goad, 2006). In 

Indonesia, there are two types of smallholders: smallholders working under the nucleus 

estate scheme (NES) and independent smallholders. For the NES, smallholders cultivate 

oil palm under the contract of state-owned or private plantation companies and receive 

technical assistance (i.e. land preparation, planting and maintenance) from the company 

whilst independent smallholders plant oil palm independently (Comte et al., 2012).         

 Soil management practices in smallholder plantations are generally less intensive as 

compared to the industrial oil palm plantations (state and private companies). Smallholders 

usually apply less fertilizer than oil palm companies and the dose of fertilizer may not be 

determined using leaf diagnosis and soil analysis due to economic considerations and/or 

lack of knowledge (Feintrenie et al., 2010; Comte et al., 2012). In the industrial oil palm 

plantations, fertilizers (inorganic and organic) are managed by block (planting areas with 

size 25–30 ha) and applied twice a year, by hand, on the soil surface around the palm tree 

or sprayed by airplane (Caliman et al., 2002; Comte et al., 2013). In both types of 

plantations (companies and smallholders), fronds are usually cut and deposited in frond 

piles along inter-rows to decompose and recycle nutrients (Comte et al., 2012).  

Soil management practices (i.e. fertilization, liming, and pruning) play an important 

role in soil nutrient stocks and hydrologic loss of nutrients via leaching in oil palm 

plantations. In a mature oil palm plantation (17-25 years old) on Acrisol soil an in 

Sarawak, Malaysia, the higher soil NH4
+ (measured in the top 0.15 m depth) in the 

fertilized and in the frond-stacked areas than in the harvest path area indicated that 

management practices increased soil N availability (Anuar et al., 2008). Management in oil 

palm plantation controls nutrient leaching losses, since the vertical movement of nutrients 

in the soil profile is predominantly determined by nutrient availability. In an Acrisol soil, 
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higher leaching losses of nutrients (i.e. Ca, Mg, NH4
+, NO3

-) in fertilized as compared to 

unfertilized areas have been observed in a young (4 years old in Nigeria) and in a mature 

(26 years old in Malaysia) oil palm plantation (Omoti et al., 1983; Tung et al., 2009).   

 

 

1.4 Aims and Hypotheses  

 This study was conducted as part of subproject A05 “Trace gas fluxes and soil N 

cycling in heavily weathered soils under rainforest transformation systems” within 

CRC990: EEFForTs in the province of Jambi, Sumatra, Indonesia. The first study (chapter 

2) focused on the impact of forest conversion to oil palm and rubber plantations on nutrient 

leaching losses and nutrient retention efficiency. The aim of this study was to assess: 1) 

how soil physical and biochemical characteristics affect nutrient leaching losses in highly 

weathered soils, and 2) the impact of forest conversion to oil palm and rubber plantations 

on leaching losses and on nitrogen and base cation retention efficiencies. The following 

hypotheses were tested: 1) for the reference land uses (forest and jungle rubber), clay 

Acrisol soil have higher nutrient retention and lower leaching fluxes compared to loam 

Acrisol soil, 2) oil palm plantations with management practices (i.e. fertilization and 

liming) will have the highest nutrient leaching losses and consequently the lowest nutrient 

retention whereas rubber plantations with no fertilizer input will have the lowest nutrient 

leaching losses.    

The second study (chapter 3) focused on nutrient leaching losses in fertilized and 

frond-stacked areas in smallholder oil palm plantations. The aim of this study was to assess 

how in smallholder oil palm plantations soil management such as spreading fertilizer 

around the palm trees and stacking palm fronds in the palm inter-rows affects leaching 

losses in Acrisol soils with differing soil texture. The following hypotheses were tested in 
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this study: 1) fertilized areas around each palm tree will have higher soil nutrient stocks 

and nutrient leaching losses due to the pulsed nature of nutrient addition while under frond 

stacks leaching will be minimal since the slow mineralization of nutrients from 

decomposing fronds will be taken up by roots before it is lost through leaching, 2) soils 

with higher clay content will have higher soil nutrient levels and lower nutrient leaching 

losses both in the frond stack and fertilized areas than in soils with lower clay content.  

 

1.5 Sites 

The study took place in the Bukit Duabelas National Park, Harapan Rainforest, and 

in the area of Sarolangun and Batanghari regency within Jambi Province, Sumatra, 

Indonesia (Fig. 1.1). The research was conducted in two landscapes on highly weathered 

soils that mainly differed in soil texture: loam Acrisol and clay Acrisol. Four land-use 

types were selected in each landscape: lowland forest, rubber trees interspersed in 

secondary forest (hereafter, jungle rubber), and smallholder plantations of monoculture 

rubber and oil palm (Fig. 1.1). In each landscape, the three land uses (i.e. forest, jungle 

rubber, and rubber plantation) was represented by four replicate sites and the oil palm 

plantation by three sites, totaling to 30 sites. The size of each replicate plot was 50 m x 50 

m with a minimum distance of 200 m between plots. The site information is described in 

more detail in the following chapter. 
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Fig. 1.1. Map of Sumatra (left) and the study sites located in four land uses (i.e. forest, 

jungle rubber, rubber and oil palm plantations) within the province of Jambi. Picture 

adapted from http://cdn.iopscience.com/images/1748-9326/7/3/034010/Full/erl428965f1_ 

online.jpg (left) and map created by Oliver van Straaten (right). 
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Abstract 

Rapid rates of deforestation are occurring in tropical regions due to increasing global 

demands for palm oil and rubber. We examined the impact of forest conversion to oil palm 

and rubber plantations on soil nutrient leaching losses and nutrient retention efficiency. 

Our study was conducted in two landscapes with highly weathered soils (loam and clay 

Acrisol) in the province of Jambi, in Sumatra, Indonesia. Within each landscape, we 

investigated four land-use types: two reference land uses, lowland forest and jungle rubber 

(i.e. rubber interspersed in secondary forest), and two converted land uses, smallholder 

rubber and oil palm plantations. In each landscape, the first three land uses were 

represented by four replicate sites and the oil palm by three sites, totaling 30 sites. In each 

site, we measured leaching losses using suction cup lysimeters installed at 1.5-m soil 

depth. Soil water was sampled bi-weekly to monthly from February to December 2013. In 

the reference land uses, the clay Acrisol landscape had better soil biochemical 

characteristics and showed lower dissolved N and base cations leaching fluxes or, 

conversely, higher retention efficiency of N and base cations in the soil than the loam 

Acrisol landscape. Management practices in the converted land uses strongly influenced 

nutrient leaching losses. The fertilized oil palm plantations had higher dissolved N, organic 

C and base cation leaching fluxes, and lower N and base cation retention efficiencies in the 

soil than the reference land uses. The unfertilized rubber plantations had lower leaching 

fluxes of these elements than the oil palm plantations. High N fertilization in oil palm 

plantations of the loam Acrisol landscape had decreased soil solution pH and increased 

dissolved Al. Our results call for improved management practices in oil palm plantations 

on these highly weathered soils to minimize acidification and leaching effects on ground 

water quality.  



Chapter 2. Nutrient leaching losses and nutrient retention efficiency 

 

14 
 

 

2.1 Introduction  

Rainforests can play an important role in maintaining ground water quality in 

tropical regions; however, in some regions their effectiveness may have decreased as a 

consequence of forest conversion to agricultural land. From 1990 to 2010, the global 

deforestation rate was approximately 13 million ha per year, of which 3 million ha per year 

occurred in South and Southeast Asia (FAO, 2010). In Indonesia, the province of Jambi (in 

Sumatra) experienced loss of primary forest by approximately 40% from 1990 to 2010, 

which accounts for 15% of the total primary forest loss in all of Sumatra island (Margono 

et al., 2012). The two most common land uses for converted forest in Jambi are oil palm 

and rubber plantations. From 2000 to 2010, the area of oil palm plantations in Jambi 

increased by approximately 85% whereas rubber plantations increased by 19% (Luskin et 

al., 2013). The expansion of rubber and oil palm plantations has had sizable benefits, by 

increasing the income of Jambi in general and of the smallholders in particular (Rist et al., 

2010; Statistics of Jambi Province, 2012). Nevertheless, forest conversion also has 

negative environmental effects, including loss of soil carbon stocks (van Straaten et al., 

2015), reduction in soil N availability (Allen et al., 2015) and decrease in stocks of 

exchangeable base cations in the soil due to leaching losses (Dechert et al., 2005).  

The two major factors that influence nutrient leaching losses after forest conversion 

in a region with the same climatic conditions are soil texture and management practices. 

Soil texture affects nutrient leaching losses through its effect on soil fertility (e.g., cation 

exchange capacity, decomposition, and nutrient cycling) and water-holding capacity 

(Silver et al., 2000; Sotta et al., 2008; Allen et al., 2015). Soils with high clay contents 

have high cation exchange capacity and high nutrient cycling, which aid in retaining 
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nutrients in the soil (Ohta et al., 1993; Allen et al., 2015), whereas coarse-textured soils are 

particularly conducive to nutrient leaching due to low nutrient retention (Lehman and 

Schroth, 2003). However, in heavily weathered soils such as Acrisols, which dominate the 

converted lowland landscapes in the province of Jambi (FAO et al., 2009), even soils with 

high clay contents may not contain high amounts of base cations, as the clay exchange sites 

are already saturated with exchangeable Al (Ohta et al., 1993; Allen et al., 2015). Finally, 

water percolation (which moves nutrients through the soil profile) is largely controlled by 

soil texture. Clay soils can hold a large amount of water against the force of gravity due to 

their large surface areas and dominance of small pores. Coarse-textured soils have large 

pores that allow water to drain easily, and consequently, the potential for leaching losses of 

dissolved solutes increases (Lehman and Schroth, 2003; Fujii et al., 2009). In summary, the 

typical characteristics of increasing clay content with depth in Acrisol soils may slow 

down water percolation and reduce nutrient leaching losses, leading to nutrient retention 

and consequently conserve soil fertility (Ohta and Effendi, 1992; Ohta et al., 1993; Silva et 

al., 2005).  

In areas that have undergone forest conversion, soil management practices (e.g. 

fertilization and liming) also plays an important role in influencing nutrient leaching, since 

the magnitude of nutrients moving downward in the soil profile is predominantly driven by 

the availability of those nutrients (Dechert et al., 2004, 2005). Without fertilization, 

nutrient leaching losses in agricultural land will usually decrease in the years following 

forest conversion due to the declining store of available nutrients in the soil (Dechert et al., 

2004). This would be the case in most rubber plantations as they are not - or only rarely - 

fertilized (Aweto, 1987). However, soils in oil palm plantations are very often 

supplemented with chemical fertilizer and lime applications to augment nutrient 

availability (Goh et al., 2003). In cases where oil palm plantations are regularly fertilized, 
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nutrient leaching losses in older plantations may actually be higher than in younger ones, 

since nutrients may have accumulated in the soil over time (Omoti et al., 1983; Goh et al., 

2003). As a consequence, nutrient leaching losses in agricultural land with regular fertilizer 

inputs are typically higher than in primary forest (Silva et al., 2005). In addition, 

application of fertilizer typically decreases nutrient retention efficiency in the soil-plant 

system due to decreases in microbial immobilization and plant uptake efficiency (Keuter et 

al., 2013; Hoeft et al., 2014). The low nutrient retention efficiency may also drive increases 

in nutrient leaching losses in agricultural land with regular fertilizer application. 

Despite a growing body of information on the effects of deforestation on soil 

properties and processes, there is a clear lack of information on how rainforest 

transformation to tree cash crops, like oil palm and rubber, affects nutrient leaching and the 

efficiency with which nutrients are retained in the soil. Our study aimed to assess: 1) how 

soil physical and biochemical characteristics affect nutrient leaching losses in highly 

weathered soils, and 2) the impact of forest conversion to oil palm and rubber plantations 

on leaching losses and on nitrogen and base cation retention efficiencies. We hypothesized 

that: 1) for the reference land uses (forest and jungle rubber), clay Acrisol soil have higher 

nutrient retention and lower leaching fluxes compared to loam Acrisol soil, and 2) oil palm 

plantations with management practices (i.e. fertilization and liming) will have the highest 

nutrient leaching losses and consequently the lowest nutrient retention whereas rubber 

plantations with no fertilizer input will have the lowest nutrient leaching losses.  
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2.2 Materials and methods 

2.2.1. Study sites and experimental design  

The study area is located in the lowlands (35–95 m above sea level) of Jambi 

Province, Sumatra, Indonesia. The climate is humid tropical with a mean annual air 

temperature of 26.7 ± 0.1 °C and a mean annual precipitation of 2235 ± 385 mm (1991–

2011; Jambi-Sultan-Thaha airport data from the Meteorological, Climatological and 

Geophysical Agency). The dry season is usually from May to September and the rainy 

season occurs from October to April. During our study period (2013), the wet season lasted 

slightly longer, while a drier period was detected between mid-June until end of October. 

During this dry season, rainfall was reduced by 35–57% compared to the wetter months 

during which rainfall was 333–362 mm per month.  

We selected two landscapes that were both dominated by heavily weathered Acrisol 

soils but differed in soil texture: loam (36 ± 6% sand, 32 ± 4% silt and 32 ± 2% clay in the 

top 0.5 m) and clay (26 ± 6% sand, 29 ± 3% silt and 45 ± 4% clay in the top 0.5 m). This 

textural difference led to differences in soil fertility: forest sites in the clay Acrisol had 

higher base saturation, Bray-extractable P and lower Al saturation compared to those in the 

loam soil (p ≤ 0.01 to 0.04; Table S1; Allen et al., 2015). The loam Acrisol landscape is in 

the Batanghari regency, 80 km southwest of Jambi City (01.79° S, 103.24° E and 2.19° S, 

103.36° E). The forest sites in this landscape were within the Harapan Forest Reserve 

(administered by the Restoration Ecosystem Indonesia Harapan, PT REKI). The clay 

Acrisol landscape is part of the Sarolangun regency and the National Park Bukit Duabelas, 

160 km southwest of Jambi City (01.94° S, 102.58° E and 02.14° S, 102.85° E). The forest 

sites in this landscape were within the Bukit Duabelas National Park (administered by the 

Ministry of Forestry, PHKA). Acrisol soils dominate the lowland area converted to 
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plantations. They cover about half of the land area in Sumatra and about one third of 

Indonesia (FAO et al., 2009). 

Within each soil landscape, we selected four land-use types: lowland forest, 

secondary forest with rubber trees (hereafter, jungle rubber), and smallholder plantations of 

rubber and oil palm (Table S2.2). Rubber and oil palm plantations were established on 

logged and/or burned forest or jungle rubber sites (Euler, 2015), and thus we consider both 

forest and jungle rubber as reference land uses that represent the baseline conditions with 

which we compared the converted smallholder plantations. Within each landscape, forest, 

jungle rubber and rubber were represented by four replicate sites and the oil palm by three 

sites, totaling 30 sites. In the clay Acrisol landscape, one landowner sold his oil palm 

plantation and nullified our contract for access to continue sampling; in the loam Acrisol 

landscape, the lysimeter for soil water sampling in one oil palm plantation was damaged by 

the workers. Each replicate plot was 50 m x 50 m with a minimum distance of 200 m 

between plots. Trees in monoculture plantations ranged from 7–17 years old, and tree 

species diversity, tree density, tree height and basal area were higher in the reference land 

uses (forest and jungle rubber) than in the converted land uses (rubber and oil palm 

plantations) (Table S2.2).  

The oil palm and rubber plantations in both landscapes represented management 

practices typical for smallholders. During our study period (2013), oil palm plantations in 

the clay Acrisol soil were fertilized once in the rainy season (October to March) whereas 

those in the loam Acrisol soil were fertilized once in the rainy season and once in the dry 

season (April to September). Fertilization rates ranged between 48–88 kg N ha-1 yr-1 

(except two smallholders who applied 138 kg N ha-1 yr-1 during our study period), 21–38 

kg P ha-1 yr-1 and 40–157 kg K ha-1 yr-1 (accompanied by Cl input of 143 kg Cl ha-1 yr-1), 

with the lower range in the clay Acrisol soil and the upper range in the loam Acrisol soil. 
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The fertilizer sources were NPK complete, urea and KCl fertilizers. One smallholder also 

applied lime (200 kg dolomite (CaMg(CO3)2) ha-1 year-1) in the loam Acrisol soil. Prior to 

our study year, kieserite (MgSO4.H2O) and borate (Na2B4O2.5H2O) fertilizers were also 

used in some oil palm plantations in the loam Acrisol soil. All oil palm sites used a 

combination of herbicides (Gramoxone and Roundup) and manual weeding. Soil 

amendments were applied by hand around each palm tree at about 0.8–1.5 m distance from 

the palm stem. Senescing oil palm fronds were regularly cut and stacked at a distance of 

4.5 m from the rows of palm trees (row spacing was about 9 m). This was done to facilitate 

walking and working (e.g. harvesting) in the plantations. The rubber plantations had no 

fertilizer or lime application but had weeding. Harvesting in oil palm plantations was done 

on average every two weeks, whilst latex from rubber and jungle rubber were collected 

every week.    

The implicit assumption of our experimental design, comparing the changes in 

converted land uses to the reference land uses to assess effects of land-use change, is that 

the initial conditions were comparable prior to conversion. To test this assumption, we 

compared land-use independent soil characteristics (i.e. soil texture at deeper depths, ≥0.5 

m) among land uses within each landscape. We did not detect significant differences in soil 

texture between the reference land uses and the converted plantations within a soil 

landscape (Table S2.1); this, together with our interviews of the smallholders about the 

previous land use, support our assumption of comparable soil conditions prior to land 

conversion such that changes in nutrient leaching can be attributed to land-use change. 

2.2.2 Lysimeter installation and soil water sampling  

For measuring nutrient leaching, we collected soil water samples in two subplots of 

5 m x 5 m each per replicate plot (50 m x 50 m), except in oil palm plantations where we 



Chapter 2. Nutrient leaching losses and nutrient retention efficiency 

 

20 
 

sampled only in one subplot. In each subplot, we installed a suction cup lysimeter (P80 

ceramic, maximum pore size 1 μm; CeramTec AG, Marktredwitz, Germany) 1.5 m into the 

soil. In the oil palm sites, the lysimeters were installed 1.3–1.5 m distance from the palm 

stem. In all plots, the 1.5-m depth of lysimeter cup installation was well below the rooting 

depth. This was ascertained from the fine and course root distribution with depth (Fig. 

S2.1). Prior to installation, lysimeters, sample tubes and collection containers were acid-

washed and rinsed with copious amounts of deionized water. Lysimeters were installed in 

the field 3 months prior to the first sampling to allow resettling of natural soil conditions 

prior to measurement. The collection containers (dark glass bottles) were placed in plastic 

buckets with lid and buried in the ground approximately 1.3-m distance from the 

lysimeters. Soil water was sampled biweekly to monthly, depending on the frequency of 

rainfall, from February to December 2013. Soil water was withdrawn by applying a 40 kPa 

vacuum on the sampling tube, which represents soil water in rapidly and slowly draining 

pores (Amer, 2012). The collected soil water was transferred into 100 ml plastic bottles, 

which were acid-washed and thoroughly rinsed with deionized water before use. Upon 

arrival at the laboratory, a subsample of about 20 ml from each water sample was set aside 

for pH measurement while the remaining water was immediately frozen. All frozen soil 

water samples were transported by air to the laboratory of Soil Science Tropical and 

Subtropical Ecosystems (SSTSE), Goettingen University, Germany, and remained frozen 

until analysis. 

The total dissolved N (TDN), NH4
+, NO3

- and Cl concentrations were measured 

using continuous flow injection colorimetry (SEAL Analytical AA3, SEAL Analytical 

GmbH, Norderstedt, Germany). Total dissolved N was determined by ultraviolet-persulfate 

digestion followed by hydrazine sulfate reduction (Autoanalyzer Method G-157-96); NH4
+ 

was analyzed by salicylate and dicloro isocyanuric acid reaction (Autoanalyzer Method G-
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102-93) and NO3
- by cadmium reduction method with NH4Cl buffer (Autoanalyzer 

Method G-254-02); Cl was determined with an ion strength adjustor reagent that is 

pumped through an ion selective chloride electrode with an integrated reference electrode 

(Auto analyzer Method G-329-05). Dissolved organic N (DON) is the difference between 

TDN and mineral N (NH4
+ + NO3

-). Dissolved organic C (DOC) was determined using a 

Total Organic Carbon Analyzer (TOC-Vwp, Shimadzu Europa GmbH, Duisburg, 

Germany). DOC was analyzed by pre-treating the samples with H3PO4 solution (to remove 

inorganic C) followed by UV-enhanced persulfate oxidation of organic C to CO2, and 

determined by an infrared detector. Base cations (Na, K, Ca, Mg), total Al, total Fe, total 

Mn, total S, total P, and total Si in soil water were analyzed using inductively coupled 

plasma-atomic emission spectrometer (iCAP 6300 Duo View ICP Spectrometer, Thermo 

Fischer Scientific GmbH, Dreieich, Germany). Method detection limits for each element 

were: 6 µg NH4
+-N l-1, 5 µg NO3

--N l-1, 2 µg TDN l-1, 4 µg DOC l-1, 30 µg Na l-1, 50 µg K 

l-1, 3 µg Ca l-1, 3 µg Mg l-1, 2 µg total Al l-1, 3 µg total Fe l-1, 2 µg total Mn l-1, 10 µg P l-1, 

10 µg total S l-1, 1 µg total Si l-1 and 30 µg Cl l-1. For concentrations below these detection 

limits, we assigned a value of zero. Partial cation-anion charge balance of the major solutes 

(i.e. concentrations >0.03 mg l-1) in soil solution was conducted by expressing solute 

concentrations into µmolc l-1 (molar concentration multiplied by the equivalent charge of 

each solute). Contributions of organic acids (RCOO-) and bicarbonate (HCO3
-) were not 

measured, but were calculated together with S (having very low concentration) from the 

difference of cations minus anions. Charge contributions of total Al were assumed to be 3+, 

respectively; other solutes (total Fe, Mn and P that had very low concentrations and thus 

minimal charge contribution) as well as total dissolved Si (commonly in a form of 

monosilicic acid (H4SiO4
0) that has no net charge) were excluded (Hedin et al., 2003).  
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2.2.3 Soil water modelling and calculation of nutrient leaching fluxes  

Daily drainage water fluxes were estimated using the soil water module of the 

Expert-N model (Priesack, 2005). This model was used successfully in our earlier work on 

nutrient leaching losses from conversion of montane forest to agricultural land uses in 

Sulawesi, Indonesia (Dechert et al., 2005). The model was parameterized with the 

conditions in our sites (i.e. climate, vegetation, and soil data). The climate data consisted of 

daily minimum, maximum and average air temperature, daily average relative humidity, 

daily average wind speed, daily total solar radiation, and daily total precipitation. For the 

loam Acrisol landscape, the climate data were taken from a climatological station at the 

Harapan Forest Reserve approximately 10–20 km from our plots. For the clay Acrisol 

landscape, the climate data were taken from climatological stations at the villages of 

Sarolangun and Lubuk Kepayang, approximately 20 km and 10 km, respectively, from our 

plots. The vegetation data consist of leaf area index (LAI in m2 m-2) and fine root mass 

distribution. The LAI in the loam soil landscape was 5.8 for forest, 4.8 for jungle rubber, 

3.5 for rubber, and 3.9 for oil palm, whereas the LAI of forest, jungle rubber, rubber and 

oil palm in the clay soil was 6.2, 4.5, 2.8 and 3.1, respectively (Rembold et al., unpublished 

data). Our measured fine root biomass distribution (Fig. S2.1) was used to partition root 

water uptake at various depths and assumed that water uptake by evapotranspiration 

mainly occurred in the upper 1.5-m depth. Further data input of soil characteristics 

included soil bulk density, texture (Table S2.1) and the water retention curve. The soil 

water retention curve was determined using the pressure plate procedure; we took 250-cm3 

intact soil cores from one soil pit per land use and landscape at depths of 0.05, 0.2, 0.4, 

0.75 and 1.25 m and water contents were measured at pressure heads of 0, 100, 330 and 

15000 hPa. 
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Calculation of daily drainage water fluxes follows the equation of the water 

balance:  

∆W + D = P - R - ET and ET = I + E + T 

in which ∆W = change in soil water storage, D = drainage water below rooting zone, P = 

precipitation, R = runoff, and ET = evapotranspiration, which is equal to the sum of three 

terms: I = interception of water by plant foliage, assumed to evaporate, E = evaporation 

from soil, and T = transpiration by plants following water uptake. The Expert-N model 

calculates actual evapo-transpiration using the Penman-Monteith method, actual runoff 

based on the sites’ slope, and vertical water movement using Richards equation, of which 

the parameterization of the hydraulic functions was based on the measured soil texture and 

water retention curve using standard equations (Mualem, 1976; Van Genuchten, 1980).  

To validate the output of the Expert-N model, we compared the modelled soil 

matrix potential with the measured matrix potential. Soil matrix potential was measured 

biweekly to monthly from February to December 2013, using tensiometers  (P80  ceramic,  

maximum  pore  size 1 µm; CeramTec AG, Marktredwitz, Germany), which were installed 

at 0.3 m and 0.6 m depths in two replicate plots per land use and landscape. The modelled 

and measured soil matrix potential were strongly correlated (Pearson correlation 

coefficients of 0.79 to 0.98, p = 0.000–0.007; Fig. S2.2). Predicted daily drainage water 

fluxes at a depth of 1.5 m were summed to get the biweekly or monthly drainage fluxes. 

Nutrient leaching fluxes from each replicate plot were calculated by multiplying the 

average element concentrations from two lysimeters per plot (except for oil palm sites, 

which had one lysimeter per plot) on each sampling period with the total biweekly or 

monthly drainage water flux at 1.5 m.  
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2.2.4 Nutrient retention efficiency  

To evaluate the efficiency with which nutrients were retained in soil, we calculated 

for each replicate plot the N and base cation retention efficiency as: 1 – (nutrient leaching 

loss/soil available nutrient), an index that is shown to be sensitive for evaluating effects of 

management practices on nutrient retention in the soil (Hoeft et al., 2014). This calculation 

does not include harvest export and thus we emphasize that this index of nutrient retention 

entails the fraction of nutrient retained in the soil in relation to the index of available 

nutrients in the soil. For N retention efficiency, N loss was TDN leaching flux and soil 

available N used gross N mineralization rate as an index, with both terms expressed in mg 

N m-2 d-1
. For base cation retention efficiency, base cation leaching flux was the sum of K, 

Na, Mg and Ca in units of molcharge ha-1 yr-1 and soil available base cations are the sum of 

these exchangeable cations in units of molcharge ha-1. Gross N mineralization in the top 5-

cm depth and exchangeable bases in the top 10-cm depth were measured on the same plots 

of our present study in 2013 and reported earlier by Allen et al. (2015). Retention 

efficiency of P in the soil was not reported because total P leaching flux was very low (see 

result section). 

2.2.5 Supporting parameter: nutrient input through bulk precipitation  

In each landscape, we installed two rain samplers in an open area at 1.5 m above 

ground level. Rain samplers consisted of 1 l high-density polyethylene bottles with lids 

attached to funnels that were covered with a 0.5-mm sieve to prevent insects, twigs or 

leaves from entering, and were placed inside polyvinyl chloride tubes (to shield from 

sunlight and prevent algae from growing). These rain samplers were washed with acid and 

rinsed with deionized water immediately after each collection. Rain was sampled during 

the same sampling period as the soil water. Each rain sample was immediately filtered 
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through prewashed (with deionized water) filter paper (4 m nominal pore size) into 100 

ml plastic bottles and stored frozen for transport to SSTSE. The element analyses were the 

same as those described for soil water. The biweekly or monthly measurement of element 

concentrations in rain water was weighted with the rainfall volume during the two-week or 

1-month collection period to get volume-weighted concentrations. The annual element 

input from bulk precipitation was calculated by multiplying the volume-weighted average 

concentration in a year with the annual rainfall in each landscape.  

2.2.6 Statistical analysis  

Tests for normality (Shapiro-Wilk’s test) and homogeneity of variance (Levene’s 

test) were conducted for each variable across landscapes or across land-use types prior to 

tests of differences between landscapes for each land use or differences among land-use 

types within each landscape. Logarithmic or square-root transformation was used for 

variables that showed non-normal distribution or heterogeneity of variance. We used linear 

mixed effects (LME) model (Crawley, 2009) to assess: 1) differences between landscapes 

for the reference land uses (hypothesis 1), and 2) differences among land-use types within 

each landscape (hypothesis 2). For element concentrations, the LME model had landscape 

or land-use type as the fixed effect with spatial replication (plot) and time (biweekly or 

monthly sampling period of element concentrations) as random effects. For the annual 

leaching fluxes (which were the sum of the bi-weekly or monthly sampling), the LME 

model had landscape or land-use type as the fixed effect with only spatial replication (plot) 

as a random effect. We extended the LME model to include: either 1) a variance function 

that allows different variances of the fixed effect, 2) a first-order temporal autoregressive 

process that assumes that correlation between measurement periods decreases with 

increasing time difference, or both if these improved the relative goodness of the model fit 
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based on the Akaike information criterion. Fixed effect was considered significant based 

on analysis of variance at p ≤ 0.05, and differences between landscapes or land-use types 

were assessed using Fisher’s least significant difference test p ≤ 0.05. For a few specified 

parameters, we also considered marginal significance at p ≤ 0.09, because our 

experimental design encompassed the inherent spatial variability in our study area. Pearson 

correlation analysis was conducted to assess the relationships among cation and anion 

charge concentrations in soil solution for each land use within each landscape, using the 

monthly average (n = 12 within one year of measurement) of the four replicate plots per 

land use. Finally, Spearman’s rank correlation test was conducted to assess the 

relationships between annual nutrient leaching fluxes and soil biochemical characteristics 

across landscapes, separately for the reference land uses and the converted land uses (n = 

16). All statistical analyses were conducted using R 3.0.2 (R Development Core Team, 

2013).  

 

2.3 Results  

2.3.1 Water balance and nutrient input from bulk precipitation 

The trends (since statistical comparison was not possible) of the simulated water 

balance showed that evapotranspiration (ET) and runoff were higher in the clay than loam 

Acrisol soils, whilst cumulative water drainage showed the reverse trend (Table 2.1). 

Transpiration was the largest component of total ET in the reference land uses in both 

landscapes (74% of total ET for forest and 67% of total ET for jungle rubber). Within each 

landscape, rubber and oil palm plantations had lower ET and higher cumulative water 

drainage and runoff than the reference land uses (Table 2.1). 
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Table 2.1. The simulated water balance for 2013 in four different land uses (forest, jungle 

rubber, rubber plantations, oil palm plantations) within two soil landscapes (loam and clay 

Acrisols) in Jambi, Sumatra, Indonesia. 

Water balance components 
(mm yr-1) 

Forest Jungle rubber Rubber 
plantations 

Oil palm 
plantations 

loam Acrisol landscape (precipitation: 3418 mm yr-1) 
Evapotranspiration  1384 1224 1077 1027 

Transpiration  1033 815 594 437 
Evaporation  155 213 287 408 
Interception  196 196 196 182 

Water drainage  1483 1487 1544 1614 
Runoff  545 704 800 761 

clay Acrisol landscape (precipitation: 3475 mm yr-1) 
Evapotranspiration  1622 1271 1114 1071 

Transpiration  1284 861 402 446 
Evaporation  157 242 548 459 
Interception  181 168 164 166 

Water drainage  1117 1268 1280 1311 
Runoff  722 932 1070 1087 

 

Mean volume-weighted element concentrations of collected rain water (Table 2.2) 

between landscapes were also not tested statistically since we only had n = 2. In the clay 

Acrisol soil, the volume-weighted concentration of DOC tended to increase during the dry 

season (May-October: 9.28 ± 0.58 mg l-1) compared to the wet season (November-April: 

6.80 ± 1.51 mg l-1) whereas in the loam Acrisol soil, they were similar (May-October: 6.70 

± 1.80 mg l-1; November-April: 6.74 ± 0.66 mg l-1). Most other element concentrations 

were similar between the two landscapes. Averaged across landscapes, annual input from 

bulk precipitation was dominated by DOC (58% of total element deposition rate), followed 

by Na (14%), Cl (12%), total dissolved N (3%), Ca (3%), K (2%), and total S (2%) (Table 

2.2). We also detected small amounts of Mg, total Al, total Fe, total Mn, total P and total Si 
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from bulk precipitation. Average chlorinity ratios across landscapes were: 1.13 ± 0.05 for 

Na:Cl, 0.05 ± 0.01 for Mg:Cl, 0.20 ± 0.02 for Ca:Cl and 0.13 ± 0.04 for K:Cl. 

 

Table 2.2. Mean (± SE, n = 2) volume-weighted element concentrations and annual inputs 

from bulk precipitation from February to December 2013 within two soil landscapes (loam 

and clay Acrisol) in Jambi, Sumatra, Indonesia.  

Elements Volume-weighted concentration  
(mg l-1) 

 Annual input  
(kg ha-1 yr-1) 

 loam Acrisol clay Acrisol  loam Acrisol clay Acrisol 
Ammonium (NH4

+-N)  0.17 (0.02) 0.20 (0.02)  5.8 (0.6) 6.9 (0.7) 
Nitrate (NO3

--N) 0.04 (0.02) 0.07 (0.01)  1.3 (0.6) 2.6 (0.4) 
Dissolved organic nitrogen (N)  0.17 (0.01) 0.20 (0.04)  5.8 (0.2) 7.0 (1.4) 
Total dissolved nitrogen (N) 0.38 (0.00) 0.47 (0.07)  12.9 (0.1) 16.4 (2.6) 
Dissolved organic carbon (C)  8.15 (0.19) 7.44 (0.07)  278.4 (6.6) 258.6 (2.5) 
Sodium (Na)   1.84 (0.04) 1.90 (0.18)  63.0 (1.3) 66.1 (6.3) 
Potassium (K)              0.16 (0.04) 0.28 (0.14)  5.5 (1.5) 9.6 (4.9) 
Calcium (Ca) 0.32 (0.02) 0.36 (0.07)  10.9 (0.8) 12.4 (2.4) 
Magnesium (Mg)               0.07 (0.01) 0.09 (0.01)  2.4 (0.5) 3.0 (0.4) 
Total aluminum (Al)  0.02 (0.01) 0.01 (0.00)  0.5 (0.3) 0.4 (0.1) 
Total iron (Fe)                0.01 (0.00) 0.01 (0.00)  0.4 (0.1) 0.3 (0.1) 
Total manganese (Mn)    0.001 (0.00) 0.001 (0.00)  0.03 (0.0) 0.04 (0.0) 
Total phosphorus (P)     0.01 (0.00) 0.02 (0.00)  0.4 (0.1) 0.8 (0.1) 
Total sulfur (S)   0.26 (0.00) 0.30 (0.03)  9.0 (0.1) 10.4 (1.0) 
Total silica (Si)   0.02 (0.01) 0.03 (0.01)  0.6 (0.2) 0.9 (0.3) 
Chloride (Cl) 1.79 (0.25) 1.54 (0.30)  61.1 (8.4) 53.4 (10.6) 
 

 

2.3.2 Leaching losses and nutrient retention efficiencies in the reference land uses – 

forest and jungle rubber   

Differences in soil characteristics between the two landscapes were more 

pronounced in jungle rubber than forest. In the forest sites, exchangeable Na and Bray-

extractable P were lower in the loam than clay Acrisol soils (all p ≤ 0.05, Table S2.1). In 
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the jungle rubber sites, soil organic C (SOC), total N, and exchangeable K, Na, Ca and Mg 

were lower in the loam than clay Acrisol soils (all p ≤ 0.05, except p ≤ 0.09 for Ca; Table 

S2.1). Averaged exchangeable Al saturation was 78-80% (with 11-16% exchangeable base 

saturation) and 61-71% (with 23% base saturation) in the loam and clay Acrisol soils, 

respectively (Table S2.1). 

Differences in nutrient concentrations in soil solution at 1.5-m depth between the 

two landscapes were stronger in forest than jungle rubber (Table 2.3). In the jungle rubber 

sites, NO3
--N was higher (p ≤ 0.05) and total Si was lower (p ≤ 0.09) in the loam than clay 

Acrisol soils (Table 2.3). In the forest sites, NH4
+-N, DON, Na, Mg, total Al, total Fe and 

Cl were higher (all p ≤ 0.05, except p ≤ 0.09 for NH4
+-N, DON, total Fe and Cl) in the 

loam than clay Acrisol soils (Table 2.3). The partial charge balance of cations and anions 

in soil solution showed that forests in the loam Acrisol soil had higher (p = 0.01) total ionic 

charges (274 ± 19 µmolcharge l-1) than forests in the clay Acrisol soil (203 ± 20 µmolcharge l-

1) (Fig. 2.1). Element concentrations in soil solutions of the forests, particularly in the loam 

Acrisol soil that had high leaching fluxes, exhibited a strong positive correlations between 

solute cations (NH4
+-N, Ca, Mg and Al) and anions (DOC, DON and Cl) (Table S2.3). For 

the jungle rubber, the total ionic charges were comparable between the loam (199 ± 31 

µmolcharge l-1) and clay (207 ± 24 µmolcharge l-1) Acrisol soils (Fig. 2.1) and there were also 

strong correlations between solute cations (NH4
+-N, K, Ca, Mg and Al) and anions (DOC, 

DON, Cl and NO3
--N) in both landscapes (Table S2.3 and S2.4).  

Annual leaching fluxes of NH4
+-N, DON, Na, Ca, Mg, total Al, total Si and Cl in 

the forest sites were higher (all p ≤ 0.05 except p ≤ 0.09 for NH4
+-N and DON) in the loam 

than clay Acrisol soils, whereas in the jungle rubber sites, only annual NO3
--N leaching 

flux was higher (p ≤ 0.05) in the loam than clay Acrisol soils (Table 2.4). We correlated 

the annual nutrient leaching fluxes with potential soil controlling factors across both 
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landscapes; there are no other significant correlations observed except those that are 

presented here. Annual leaching fluxes of negatively charged solutes, DON and NO3
--N, 

were correlated with indicators of soil exchangeable cations: base saturation, effective 

cation exchange capacity (ECEC) or exchangeable Al in the reference land uses across 

landscapes (Spearman’s ρ = -0.51 - -0.61, n = 16, p ≤ 0.05). On the other hand, annual 

leaching flux of positively charged NH4
+-N was negatively correlated with SOC 

(Spearman’s ρ = -0.53, n = 16, p = 0.04). The higher leaching fluxes in the loam than clay 

Acrisol soils were mirrored by decreased N and base cation retention efficiency (Table 

2.5). N and base cation retention efficiency in the soils of these reference land uses were 

also positively correlated with base saturation, ECEC and SOC across landscapes 

(Spearman’s ρ = 0.52–0.70, n = 16, p ≤ 0.04). These soil biochemical properties (base 

saturation, exchangeable Al, ECEC and SOC) were also positively correlated with clay 

contents across landscapes (Spearman’s ρ = 0.55–0.59, n = 12 sites with analysis of clay 

content, p ≤ 0.05).  

2.3.3 Leaching losses and nutrient retention efficiency in unfertilized rubber 

plantations  

In the loam Acrisol landscape, rubber plantations had lower NO3
--N and DOC 

concentrations in soil solution than both forest and jungle rubber (p ≤ 0.09) and lower 

DON, Na, Ca, total P, total S and Cl concentrations than forest (all p ≤ 0.05, except p ≤ 

0.09 for total P and total S) (Table 2.3). The low concentrations of organic (DON and 

DOC) and inorganic (Na, Ca and Cl) elements resulted in the lower (p < 0.01) total ionic 

charges in soil solutions of rubber plantations (200 ± 21 µmolcharge l-1) as compared to 

forest (Fig. 2.1). There were strong positive correlations between dissolved positive ions 

(Ca, Mg and total Al) and Cl as well as weaker correlations between dissolved positive 
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ions (Na, Ca and Mg) and negatively charged DOC (Table S2.3). Finally, unfertilized 

rubber plantations had lower annual total P leaching than forest (p ≤ 0.09) and lower 

annual DOC leaching than jungle rubber (p ≤ 0.05) (Table 2.4). N and base cation retention 

efficiency in soils of unfertilized rubber plantations were comparable with the reference 

land uses (Table 2.5).  

In the clay Acrisol landscape, rubber plantations had 30% lower DOC (p = 0.07) 

and 20% lower Na (p ≤ 0.01) concentrations in soil solution than jungle rubber; also total S 

and total Si were 30% lower (all p ≤ 0.09) compared to forest (Table 2.3). The total solute 

ionic charges in rubber plantations (189 ± 23 µmolcharge l-1) were comparable to both 

reference land uses (Fig. 2.1). As was the case with rubber plantations in the loam Acrisol 

landscape, we detected strong positive correlations of dissolved positive ions (Ca, Mg and 

Al) with negative ions (Cl), and strong positive correlations of dissolved monovalent bases 

(Na and K) with negatively charged DOC (Table S2.4). Only annual DOC leaching fluxes 

in rubber plantations were lower than in jungle rubber (p ≤ 0.05) (Table 2.4). These 

unfertilized rubber plantations had similar N and base cation retention effeciency as 

compared to the reference land uses (Table 2.5). 
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Fig. 2.1. Partial cation-anion charge balance of the major solutes (solutes with 

concentrations >0.03 mg l-1) in soil water at a depth of 1.5 m in different land uses (forest, 

jungle rubber, rubber plantations and oil palm plantations) within two soil landscapes 

(loam and clay Acrisols) in Jambi, Sumatra, Indonesia. 

 

2.3.4 Leaching losses and nutrient retention efficiencies in fertilized oil palm 

plantations  

In the loam Acrisol soil, application of dolomite and K-containing fertilizers during 

our study year (2013) and application of kieserite and borate in previous years to these oil 
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palm plantations (see section 2.2.1) led to two to three times higher saturation of 

exchangeable bases (p = 0.06) and four times higher exchangeable Na in the soil (p ≤ 0.01) 

than in forest and jungle rubber (Table S2.1). Application of dolomite also increased the 

Ca concentration in the soil solution up to four months after application, with a monthly 

rate increment of 26% (2.64 mg Ca l-1 before application and 3.08, 3.80, 5.17, and 6.61 mg 

Ca l-1 in the following four consecutive months). Despite dolomite application and 

temporal increase in Ca concentrations in the soil solution, stocks of exchangeable Ca in 

the soil were not significantly different between oil palm and the reference land uses due to 

the high variability among oil palm sites (as indicated by the large standard errors; Table 

S2.1).  

Oil palm plantations in the loam Acrisol landscape lower soil solution pH and 

higher concentrations of NO3
--N, DOC, Na, Ca, Mg, total Al and Cl (all p ≤ 0.05, except p 

≤ 0.09 for pH, NO3
--N and DOC) in soil solution compared to forest and jungle rubber 

(Table 2.3). We observed negative correlations of NO3
--N and total Al concentrations with 

soil solution pH (r = -0.57 – -0.76, p ≤ 0.05, n = 12) and positive correlations between 

NO3
--N and total Al concentration (p = 0.03; Table S2.3). The total ionic charge 

concentrations in soil solutions of oil palm plantations (648 ± 306 µmolcharge l-1) were 

higher (p < 0.01) than the reference land uses (Fig. 2.1). As opposed to the other land uses, 

we did not detect correlations of cations with Cl in soil solutions of oil palm plantations. 

Instead, we found that base cations (K, Ca and Mg) were positively correlated with total S 

concentration in the soil solution (all p ≤ 0.05; Table S2.3). In oil palm plantations, annual 

leaching fluxes of Na, Ca, Mg, total Al and Cl were higher (all p ≤ 0.05, except p ≤ 0.09 

for Mg) than any other land uses, DOC were higher (p = 0.04) than in forest, and NH4
+-N, 

NO3
--N, total P and total S were higher than in unfertilized rubber plantations (all p ≤ 0.05, 
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except p = 0.08 for total P; Table 2.4). Consequently, N and base cation retention 

efficiency decreased in oil palm plantations (all p ≤ 0.01; Table 2.5). 

 In the clay Acrisol landscape, oil palm plantations had lower DON (p ≤ 0.09) and 

higher Na concentrations (p = 0.05) in soil solution than both reference land uses, as well 

as higher DOC and total Si concentrations (all p ≤ 0.09) as compared to forest (Table 2.3). 

The total ionic charges of soil water in oil palm plantations (317 ± 83 µmolcharge l-1) were 

higher (p < 0.01) than in both reference land uses (Fig. 2.1). In this landscape, we observed 

strong correlations between base cations (Na, K, Ca and Mg) and anions (Cl, total S and 

DOC) (Table S2.4). Although we did not find significant differences in base cation 

retention efficiency among land uses (Table 2.5), annual Na and Mg leaching fluxes were 

higher in the oil palm than forest and jungle rubber (all p ≤ 0.05) as well as higher annual 

Ca leaching than forest (p = 0.03) (Table 2.4).  

Lastly, we related the annual nutrient leaching fluxes in these converted land uses 

(smallholder oil palm and rubber plantations) to potential soil controlling factors across 

landscapes. Annual N leaching fluxes (NH4
+-N and DON) were negatively correlated with 

clay content (Spearman’s ρ = -0.54 – -0.73, n = 12 sites analyzed for clay content, p ≤ 

0.05). Base cation retention efficiency in the soil was positively correlated with ECEC and 

SOC (Spearman’s ρ = 0.66 - 0.87, n ≤ 14, p ≤ 0.01), which in turn were positive correlated 

with clay content (Spearman’s ρ = 0.87 - 0.90, n = 12 sites analyzed for clay content, p ≤ 

0.05). There were no other significant correlations observed. 
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Table 2.3. Nutrient concentrations in soil solution from a depth of 1.5 m in different land uses (forest, jungle rubber, rubber plantations, oil 

palm plantations) within two soil landscapes (loam and clay Acrisols) in Jambi, Sumatra, Indonesia.  

Elements loam Acrisol landscape  clay Acrisol landscape 
Forest                Jungle rubber         Rubber               Oil palm              Forest              Jungle rubber     Rubber        Oil palm     

pH a4.26 (0.03)a†  4.33 (0.09)a† 4.37 (0.04)a† 4.11 (0.11)b† B†  4.35 (0.11)  4.38 (0.10)  4.37 (0.04)  4.56 (0.14)A† 
Ammonium  
(mg NH4

+-N l-1) 
0.22 (0.03)A† 0.27 (0.12)  0.15 (0.00)  0.17 (0.01)   0.18 (0.02)B† 0.15 (0.00)  0.14 (0.00) 0.15 (0.01) 

Nitrate (mg NO3
--N l-1) 0.12 (0.05)b† 0.09 (0.04)b† A 0.02 (0.00)c† B† 0.32 (0.15)a†  0.08 (0.04) 0.02 (0.00)B 0.24 (0.15)A† 0.90 (0.88) 

Dissolved organic N 
(mg N l-1) 

0.17 (0.03)a A† 0.08 (0.02)b 0.08 (0.02)b 0.11 (0.03)ab A  0.07 (0.02)a† B† 0.09 (0.01)a   0.05 (0.01)ab 0.04 (0.01)b B 

Total dissolved N  
(mg N l-1) 

0.51 (0.06)ab† A† 0.44 (0.13)b† A† 0.25 (0.02)c†  0.60 (0.18)a†  0.34 (0.04)B† 0.24 (0.02)B† 0.43 (0.14)  1.09 (0.89) 

Dissolved organic C 
(mg C l-1) 

3.69 (0.28)b† 3.98 (0.49)b† 3.15 (0.17)c† 4.19 (0.10)a†  3.31 (0.45)b†  4.04 (0.28)a†   2.87 (0.07)b† 4.79 (0.88)a†  

Sodium (mg Na l-1) 3.16 (0.10)b A 2.37 (0.23)c 2.24 (0.18)c 7.20 (3.88)a  2.36 (0.18)bc B 2.49 (0.14)b 2.02 (0.08)c 4.63 (1.20)a 
Potassium (mg K l-1) 0.35 (0.03) 0.25 (0.08) 0.27 (0.09) 0.39 (0.14)  0.31 (0.04) 0.26 (0.05) 0.26 (0.04) 0.38 (0.05) 
Calcium (mg Ca l-1) 0.83 (0.04)b  0.68 (0.10)c  0.66 (0.06)c 2.74 (0.91)a A†  0.72 (0.07) 0.73 (0.04) 0.69 (0.08) 0.77 (0.17)B† 
Magnesium (mg Mg l-1) 0.35 (0.03)b A 0.25 (0.03)c 0.30 (0.07)b 0.49 (0.11)a A†  0.27 (0.03)B 0.27 (0.03) 0.27 (0.03) 0.43 (0.10)B† 
Total aluminum  
(mg Al l-1) 

0.41 (0.07)b A 0.18 (0.04)c 0.26 (0.02)b 1.24 (0.71)a A†  0.21 (0.03)B 0.22 (0.10)  0.27 (0.05)  0.21 (0.11)B† 

Total iron (mg Fe l-1) 0.19 (0.15)A† 0.02 (0.00) 0.02 (0.01) 0.02 (0.00)A  0.02 (0.00)B† 0.03 (0.01) 0.02 (0.00) 0.01 (0.00)B 
Total manganese  
(mg Mn l-1) 

0.02 (0.01)  0.01 (0.01) 0.01 (0.00) 0.01 (0.01)   0.01 (0.00)  0.01 (0.00) 0.01 (0.00) 0.08 (0.06)  

Total phosphorus 
 (mg P l-1) 

0.01 (0.00)a† 0.00 (0.00)b† 0.00 (0.00)c† B† 0.00 (0.00)ab†  0.01 (0.00) 0.00 (0.00) 0.00 (0.00)A† 0.00 (0.00) 

Total sulfur (mg S l-1) 0.16 (0.02)a† 0.14 (0.04)ab† 0.10 (0.01)b† 0.14 (0.01)ab†  0.15 (0.02)a† 0.11 (0.00)b† 0.11 (0.00)b† 0.13 (0.01)ab† 
Total silica (mg Si l-1) 0.53 (0.07) 0.33 (0.12)B† 0.22 (0.07) 0.31 (0.13)B†  0.37 (0.05)b† 0.60 (0.10)ab† A† 0.26 (0.02)c† 1.03 (0.39)a† A† 
Chloride (mg Cl l-1) 8.91 (0.83)b A† 6.61 (0.76)c 6.70 (0.64)c 20.99 (2.72)a A  6.39 (0.57)B† 6.76 (0.87) 5.73 (0.83) 7.19 (2.10)B 
a Means (± SE, n = 4, except for oil palm n = 3) followed by different lowercase letters indicate significant differences among land uses for 
each landscape and different uppercase letters indicate significant differences between landscapes for each land use (Linear mixed effects 
models with Fisher's LSD test at p ≤ 0.05, except those indicated with † at p ≤ 0.09).  
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Table 2.4. Annual (2013) nutrient leaching fluxes measured at a depth of 1.5 m, in different land uses (forest, jungle rubber, rubber 

plantations, oil palm plantations) within two soil landscapes (loam and clay Acrisols) in Jambi, Sumatra, Indonesia  

Elements loam Acrisol landscape  clay Acrisol landscape 
Forest                Jungle rubber         Rubber               Oil palm              Forest              Jungle rubber     Rubber        Oil palm     

Ammonium  
(kg NH4

+-N ha-1 yr-1) 
a2.7 (0.4)ab A† 4.9 (2.9)ab  2.0 (0.1)b A 3.2 (0.1)a A  1.7 (0.2)B† 1.8 (0.1) 1.7 (0.1)B 2.0 (0.2)B 

Nitrate (kg NO3
--N ha-1 yr-1) 1.5 (0.6)ab 1.3 (0.6)ab A 0.2 (0.02)b 5.9 (2.9)a  1.0 (0.7)  0.2 (0.0)B 3.3 (2.0) 11.4 (11.2) 

Dissolved organic N  
(kg N ha-1 yr-1) 

1.8 (0.4)A† 1.5 (0.5) 1.3 (0.4) 2.2 (0.6)A  0.7 (0.2)B† 1.0 (0.2) 0.8 (0.1) 0.5 (0.0)B 

Total dissolved N  
(kg N ha-1 yr-1) 

6.0 (0.8)ab† A† 7.7 (3.3)ab†  3.5 (0.4)b† 11.3 (3.1)a†  3.4 (0.8)B† 3.0 (0.2) 5.7 (2.0) 14.0 (11.2) 

Dissolved organic C  
(kg C ha-1 yr-1) 

41.7 (5.1)bc 62.1 (14.6)ab 38.6 (2.1)c 72.9 (2.5)a  33.6 (3.7)c 53.8 (7.4)ab 36.2 (1.7)bc 62.5 (13.9)a 

Sodium (kg Na ha-1 yr-1) 37.7 (3.6)b A 37.0 (7.6)b 31.0 (2.7)b A† 130.6 (75.8)a  24.9 (3.8)b B 32.3 (3.2)b 25.2 (0.8)b B† 62.6 (17.7)a 
Potassium (kg K ha-1 yr-1) 4.3 (0.57) 4.3 (1.9) 4.1 (1.4) 7.0 (2.2)  3.1 (0.4) 3.4 (0.9) 3.2 (0.5) 4.9 (0.6) 
Calcium (kg Ca ha-1 yr-1) 10.0 (0.7)b A 11.6 (3.3)b 9.4 (0.9)b 46.4 (13.4)a A†  6.8 (0.6)b B 9.0 (0.4)ab 8.4 (0.9)ab 10.2 (2.3)a B† 
Magnesium (kg Mg ha-1 yr-1) 4.1 (0.3)b† A 4.4 (1.2)b† 4.4 (0.9)b† 8.8 (2.1)a†  2.5 (0.2)b B 3.3 (0.5)b 3.2 (0.3)b 5.7 (1.4)a 
Total aluminum  
(kg Al ha-1 yr-1) 

4.4 (0.7)b A 3.1 (0.8)b 4.0 (0.2)b  23.2 (13.4)a A†  1.8 (0.2)B 2.3 (0.9) 3.5 (0.7) 2.7 (1.2)B† 

Total iron (kg Fe ha-1 yr-1) 1.7 (1.3)  0.2 (0.1)  0.3 (0.1) 0.4 (0.1)A  0.2 (0.01) 0.3 (0.1) 0.2 (0.02) 0.1 (0.0)B 
Total manganese  
(kg Mn ha-1 yr-1) 

0.2 (0.1) 0.3 (0.2) 0.1 (0.1)  0.3 (0.1)  0.1 (0.0) 0.2 (0.1) 0.1 (0.0) 0.9 (0.7) 

Total phosphorus  
(kg P ha-1 yr-1) 

0.1 (0.0)a† 0.1 (0.0)ab† 0.0 (0.0)b† B 0.1 (0.0)a†  0.1 (0.0) 0.1 (0.0) 0.1 (0.0)A 0.1 (0.0) 

Total sulfur (kg S ha-1 yr-1) 2.1 (0.3)ab 2.3 (1.0)ab 1.3 (0.1)b 2.4 (0.2)a A  1.6 (0.3) 1.5 (0.1) 1.4 (0.1) 1.7 (0.2)B 
Total silica (kg Si ha-1 yr-1) 7.4 (1.8)A† 6.2 (2.6) 3.6 (1.3) 4.3 (1.1)   3.3 (0.5)b B† 6.8 (1.2)ab 3.0 (0.3)b 12.9 (5.8)a 
Chloride (kg Cl ha-1 yr-1) 105.2 (9.0)b A 114.8 (24.4)b  90.6 (5.6)b  380.2 (67.3)a A  60.0 (3.2)B 82.5 (11.3) 69.3 (9.7) 97.7 (30.0)B 
a Means (± SE, n = 4, except for oil palm n = 3) followed by different lower case letters indicate significant differences among land uses for 
each landscape and different upper case letters indicate significant differences between landscapes for each land use (Linear mixed effects 
models with Fisher's LSD test at p ≤ 0.05, except those indicated with † at p ≤ 0.09).  
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Table 2.5. Nitrogen and base cation retention efficiency from different land uses in two 

soil landscapes of Jambi, Sumatra, Indonesia.  

Characteristic Forest Jungle rubber Rubber 

plantation 

Oil palm 

plantation 

loam Acrisol landscape 

N retention efficiency 

(mg N m-2 d-1/ mg N m-2 d-1)  

a0.69 (0.04)a B 0.55 (0.16)ab B†  0.84 (0.01)a 0.33 (0.16)b  

Base cation retention efficiency 

(molcharge ha-1 yr-1/ molcharge ha-1) 

0.45 (0.09)a B 0.59 (0.09)a B† 0.70 (0.08)a 0.07 (0.07)b B 

clay Acrisol landscape 

N retention efficiency 

(mg N m-2 d-1/ mg N m-2 d-1) 

0.91 (0.03)A 0.91 (0.02)A† 0.74 (0.08)  0.72 (0.18) 

Base cation retention efficiency 

(molcharge ha-1 yr-1/ molcharge ha-1) 

0.81 (0.08)A 0.85 (0.08)A† 0.84 (0.02) 0.86 (0.04)A 

a Means (± SE, n = 4, except for oil palm n = 3) followed by different lower case letters 
indicate significant differences among land uses for each landscape and different upper 
case letters indicate significant differences between landscapes for each land use (Linear 
mixed effects models with Fisher's LSD test at p ≤ 0.05, except those indicated with † at p 
≤ 0.09) 

 

2.4 Discussion  

2.4.1. Water balance and nutrient input from bulk precipitation  

Our estimated ET (Table 2.1) was comparable to the ET from a tropical rainforest in 

central Kalimantan, Indonesia (1217–1519 mm yr-1; Suryatmojo et al., 2013). Also, our 

estimates of daily ET in the oil palm plantations (2.4 ± 0.1 and 2.2 ± 0.1 mm d-1 in the 

loam and clay Acrisol soils, respectively) were similar to those reported by Niu et al. 

(2015) (2.6 ± 0.7 mm d-1) for the same oil palm sites with the micro-meteorological data 

measured on site. The lower ET in the forest sites of the loam Acrisol soil compared to the 

clay Acrisol soil was primarily due to the lower transpiration from plants (Table 2.1), 
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which was probably related to the lower LAI in the loam Acrisol soils. Similarly, the lower 

LAI in rubber and oil palm plantations as compared to forests likely led to the lower ET 

(Table 2.1), as leaf area is closely related to transpiration and plant water use (Granier et 

al., 1996; Santiago et al., 2000), a resulting in higher water drainage in the converted land 

uses (Table 2.1).  

The high DOC contents in precipitation from our study area reflected the high 

biomass burning (Coelho et al., 2008) and dusts common in these landscapes with active 

land-use conversion. The Na:Cl and K:Cl ratios in bulk precipitation at our sites were 

higher than those in seawater (Na:Cl = 0.56 and K:Cl = 0.02; Schlesinger, 1997), whereas 

the Mg:Cl and Ca:Cl ratios were comparable to those in seawater (Mg:Cl = 0.07 and Ca:Cl 

= 0.02; Schlesinger, 1997). The high Na:Cl and K:Cl ratios, accompanied by high 

concentrations of elements associated with organic molecules (TDN, DOC and total S), in 

precipitation at our studied landscapes are common for areas influenced by biomass 

burning and terrigenous dust from agriculture (Eklund et al., 1997; Balasubramanian et al., 

1999), which are common features in our study region.   

2.4.2 Leaching losses and nutrient retention efficiency and in the reference land uses – 

forest and jungle rubber  

Heavily weathered soils, like Acrisols, have relatively little internal input from rock-

derived nutrients through weathering (Markewitz et al., 2001; Hedin et al., 2003) and thus 

nutrient leaching fluxes are largely influenced by internal input from 

decomposition/mineralization of organic matter, external input from atmospheric 

deposition (including sources like biomass burning), nutrient retention processes in the soil 

and water balance. The higher soil nutrient stocks (i.e. SOC, total N, extractable P and 

exchangeable bases) in the clay Acrisol soil (Table S2.1) were reflected by lower nutrient 
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leaching losses (e.g. total N, Na, Ca, Mg and total Al) than in the loam Acrisol soil (Table 

2.4). We attribute this to the high nutrient and water holding capacity of clay soil (Ohta and 

Effendi, 1992; Ohta et al., 1993) which, in turn, facilitate high plant productivity and 

efficient cycling of nutrient between vegetation and soil (Silver et al., 2000). This is 

evident from the higher ECEC (Table S2.1) and water-filled pore space of these reference 

sites in the clay than loam Acrisol soils (Hassler et al., 2015). In addition, clay content also 

affects the soil pore size distribution, with higher proportion of small pores in clay soils 

compared to loamy soils, which slows water percolation and thus also contributes to lower 

nutrient leaching losses (Ohta and Effendi, 1992; Silva et al., 2005).  

The generally low total ionic charge concentrations in soil solutions of our forest 

sites are typical for highly weathered soils (Hedin et al., 2003), for which weathering of 

primary minerals must be already low (Markewitz et al., 2001). For Na and K, which ratios 

to Cl suggest large influence from biomass burning and dust, their inputs from bulk 

deposition (Table 2.2) were at most three times larger than their annual leaching losses 

(Table 2.4), suggesting the importance of atmospheric deposition (common in our study 

region with land clearing and biomass burning) as external sources of these elements. 

Additionally, internal supply of nutrients from decomposition of organic matter was 

possibly the reason for our observed high correlations between inorganic cations (Ca, Mg 

and Al) and organic anions (DOC and DON) (Table S2.3 and S2.4). 

Nitrogen (NH4
+-N, NO3

--N and DON) leaching losses are influenced by N 

availability (e.g. measured as gross N mineralization) and N retention processes (e.g. 

microbial N immobilization) in the soil (Corre et al., 2010). In our reference land uses, the 

clay Acrisol had higher gross N mineralization and NH4
+ immobilization than the loam 

Acrisol (Allen et al., 2015), corroborating the lower N leaching losses (Table 2.4) and 

higher N retention efficiency in the clay than loam Acrisol soils (Table 2.5). Across 
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landscapes, the negative correlation of annual DON and NO3
--N leaching losses with soil 

base saturation, ECEC and exchangeable Al suggested a link between N leaching and the 

buffering capacity of the soils. Acrisol soils are characterized by low pH and low base 

saturation (Table S2.1) and these correlations observed in our sites suggest that the 

buffering reactions for DON and NO3
--N losses included not only the soil exchangeable 

bases but also the Al buffering range (through Al solubilization at pH 3-5; Van Breemen et 

al., 1983). Similarly, the negative correlation of annual NH4
+-N leaching losses with SOC 

suggested both biotic and abiotic mechanisms of increased NH4
+ retention with increasing 

SOC (i.e. clay Acrisol; Table S2.1). In the same reference sites, microbial biomass and 

microbial NH4
+ immobilization are higher in clay Acrisol with high SOC than in loam 

Acrisol with low SOC (Allen et al., 2015). Also, abiotic NH4
+ immobilization via physical 

condensation with organic compounds and clay fixation (Davidson et al., 1991) could be 

higher in clay Acrisol than in loam Acrisol (Table S2.1; Allen et al., 2015). All these 

mechanisms contributed to our observation of positive correlations between N and base 

cation retention efficiency with base saturation, ECEC and SOC (see section 2.3.2).  

2.4.3 Leaching losses and nutrient retention efficiency in unfertilized rubber 

plantations  

 In converted land uses with the same soil types and climate, age of land use and 

management practices are important factors that influence soil nutrient levels and leaching 

losses (e.g. Dechert et al., 2005; Corre et al., 2006; Ngoze et al., 2008). In our loam Acrisol 

landscape, the smallholder rubber plantations were already 14–17 years old (Table S2.2) 

without external nutrient input from fertilization. In this landscape, input of organic 

material from aboveground litterfall is lower than in forest and jungle rubber (Kotowska et 

al., 2015) and together with harvest export these might have resulted in lower 
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replenishment of soil nutrients than in the reference land uses. This was reflected in the 

lower total ionic charges in soil solutions of rubber plantations compared to forest (Fig. 

2.1). Such reduction in total ionic charges was not statistically different from the reference 

land uses in soil solutions of younger rubber plantations (7–8 years old, except one site that 

was 16 years; Table S2.2) in the clay Acrisol landscape (Fig. 2.1), possibly because the 

legacy effect of ashes (from burning of the original vegetation) on leaching losses 

(Markewitz et al., 2001) was still evident during the relatively early years.  

 Nonetheless, the ultimate results after years of agricultural production without soil 

amendments are decreases in soil nutrient levels and cycling (e.g. soil N availability, Corre 

et al., 2006; Davidson et al., 2007; Allen et al., 2015; P availability, Ngoze et al., 2008). 

This was evident in the lower annual P leaching in rubber plantations compared to forest in 

the loam Acrisol soil (Table 2.4) that already had low levels of extractable P (Table S2.1). 

In these unfertilized rubber plantations, extractable P decreases not only in the top 10 cm 

(Allen et al., 2015) but also down to a 2-m depth when compared to forest (Allen, 2015). 

Similarly, the decrease in annual DOC leaching flux in rubber plantations compared to 

jungle rubber in both landscapes was due to a reduced amount of C in this land use, as 

shown by its decreases in microbial C (Allen et al., 2015), litterfall and root production 

(Kotowska et al., 2015) and SOC stocks (van Straaten et al., 2015). Interestingly, our 

observation of reduced NO3
--N leaching losses (i.e. rubber plantations in the loam Acrisol 

soil; Tables 2.3 and 2.4) were also mirrored with reduced soil extractable NO3
- in rubber 

plantations compared to forest in both landscapes (Allen et al., 2015), which was attributed 

to monoterpenes produced by rubber trees (Wang et al., 2007). Monoterpenes serve as a C 

source that increases microbial activity and reduces NO3
- level in soil (White, 1991), 

possibly through increases in dissimilatory NO3
- reduction to NH4

+ and NO3
- 

immobilization (Allen et al., 2015), resulting in the reduced NO3
- leaching in these rubber 
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plantations. Altogether, the high N and base cation retention efficiency in the soils of these 

unfertilized rubber plantations were because of low leaching from decreased levels of these 

nutrients (i.e. gross N mineralization and base saturation were lower in rubber than either 

oil palm or forest; Allen et al., 2015; Allen, 2015). 

2.4.4 Leaching losses and nutrient retention efficiency in fertilized oil palm 

plantations  

 Given that land-uses within the same landscape had similar nutrient input from bulk 

precipitation, the most important factor contributing to the increase in nutrient leaching in 

oil palm plantations (i.e. higher total ionic charge concentrations; Fig. 2.1) was the external 

input of nutrients from fertilization. This difference was evident in both landscapes 

between oil palm plantations and all other land uses (i.e. reference land uses and 

unfertilized rubber plantations). Although harvest export is high from these oil palm 

plantations (i.e. harvested fruit bunches are 60% and 50% of the total annual net primary 

production in the loam and clay Acrisol soils, respectively; Kotowska et al., 2015), 

depletion of soil nutrients, as was detected in the unfertilized rubber plantations (e.g. soil 

available N and extractable P; Allen et al., 2015), was abated through fertilization. The 

drawback, however, was increases in nutrient leaching. We attributed the more pronounced 

increases in solute concentrations (Table 2.3), total ionic charge concentrations (Fig. 2.1) 

and annual leaching fluxes (Table 2.4) in the loam than the clay Acrisol landscapes to the 

higher fertilization rate (see section 2.2.1) and lower nutrient and water holding capacity 

(i.e. lower ECEC, Table S2.1; higher drainage flux, Table 2.1). Clay content influences the 

nutrient and water-holding capacity of soil which, in turn, regulates the cycling of nutrients 

between vegetation and soil (e.g. Silver et al., 2000). Therefore, altogether, the main 
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factors influencing leaching losses from these smallholder oil palm plantations were 

fertilization rate and clay content.  

 In the loam Acrisol landscape, increased NO3
- concentrations and acidity in soil 

solution of oil palm plantations compared to the other land uses (Table 2.3) were likely due 

to nitrification of added N fertilizer. This suggests that the pulse N application had 

exceeded the N demand of plant and microbial biomass at the time of application (e.g. 

Corre et al., 2010). In these oil palm sites, elevated NO3
- and NH4

+ concentrations in the 

soil were observed up to six weeks following fertilization application (Hassler et al., 

unpublished data), and both compounds are susceptible to leaching losses. Other studies in 

Indonesia and Malaysia have also reported increase in soil acidity due to N fertilization in 

oil palm plantations (Anuar et al., 2008; Comte et al., 2013). Since our loam Acrisol soil 

had initially low acid-buffering capacity (i.e. low base saturation in reference land uses; 

Table S2.1), nitrification-induced acidity may have enhanced the Al acid-buffering 

reaction and thus led to the increases in soluble Al (Table 2.3) and its correlation with NO3
- 

concentrations in soil solution (Table S2.3). Even though the effect of ashes from biomass 

burning can linger years after conversion (e.g. van Straaten et al., 2015) and these 

smallholder oil palm plantations experienced occasional liming (i.e. in at least one site 

during our study year), the soil pH (Table S2.1) was still within the Al buffering range (pH 

3-5; Van Breemen et al., 1983). Concurrent with increased soluble Al we also observed 

increased dissolved base cations (Table 2.3); the correlation of the latter with total S in the 

loam Acrisol landscape (Table S2.3) reflected the application of base cation- and sulfur-

containing fertilizer (i.e. dolomite and kieserite) at these sites (see section 2.2.1). In the 

clay Acrisol landscape, where fertilizer applications were lower than in the loam Acrisol, 

dissolved cations correlated with the typical dominant anions (Cl, DOC and total S; Table 

S2.4). In sum, pulse N fertilization in oil palm plantations in these soils with low acid-
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buffering capacity caused acidic soil water and elevated Al concentrations, which may 

have caused decreases in mychorrhizal colonization of fine roots and the increases in 

distorted root tips found in these oil palm plantations compared to the reference land uses 

(Sahner et al., 2015). 

 High net primary production in these oil palm plantations (Kotowska et al., 2015), 

despite the highly weathered soils, was clearly sustained due to fertilizer application. 

However, increased leaching losses from these fertilized oil palm plantations compared to 

the original land uses showed decreased in nutrient retention efficiency (Table 2.5) and 

implied deleterious effects on ground water quality. Increased annual leaching fluxes of 

Na, Ca and Mg (Table 2.4) were primarily due to the application of borate fertilizer and 

lime. These values were within the range of those reported for fertilized oil palm 

plantations on Acrisol soil in Nigeria (26 kg Ca ha-1 and 6.5 kg Mg ha-1 during six-month 

measurement period; Omoti et al., 1983). The annual NH4
+-N and NO3

--N leaching fluxes 

in our oil palm sites were also comparable with those from fertilized oil palm plantation on 

Acrisol soil in Malaysia (3-6 kg N ha-1 during five-month measurement period; Tung et al., 

2009). These annual NH4
+-N + NO3

--N leaching losses from oil palm sites in the loam 

Acrisol landscape (Table 2.4) were 10.4% of the typically applied rate of N fertilizer (88 

kg N ha-1; see section 2.2.1). Low annual P leaching is a common feature in highly 

weathered soils like Acrisols, as P tends to sorb onto Al and Fe hydrous oxides (McDowell 

et al., 2001). However, despite the generally low annual P leaching fluxes across land uses 

(Table 2.4), the higher annual total P leaching losses in the fertilized oil palm plantations 

than in unfertilized rubber plantations in the loam Acrisol landscape (Table 2.4) was 

presumably due to the relatively higher rate of inorganic P fertilization than in the clay 

Acrisol landscape. Moreover, the increased annual DOC fluxes in these fertilized oil palm 

plantations (Table 2.4) together with the large harvest export and decrease in litterfall input 
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compared to forests (Kotowska et al., 2015) provided strong support for the observed 

decreases in soil organic C stocks in these oil palm plantations (van Straaten et al., 2015). 

Finally, the reduced N and base cation retention efficiency in the fertilized oil palm 

plantation occurred only in the loam Acrisol landscape (Table 2.5), which had a higher 

fertilization rate (see section 2.2.1) and lower nutrient and water holding capacity (i.e. 

lower ECEC, Table S2.1; higher drainage flux, Table 2.1) than the clay Acrisol landscape. 

Across these converted land uses, correlations of annual N leaching fluxes (NH4
+-N and 

DON) and base cation retention efficiency with ECEC and SOC, which in turn were 

correlated with clay content, indicated the influence of clay content on nutrient adsorption 

and water holding capacity in these highly weathered soils to enhance cycling or retention 

of nutrients within the system. 

 In conclusion, this study highlighted the importance of soil texture in these highly 

weathered Acrisol landscapes. Higher clay content supported better soil biochemical 

characteristics, which supported efficient cycling of nutrients in the reference land uses and 

resulted in low nutrient leaching losses or conversely high nutrient retention efficiency in 

the soil. This supported our first hypothesis. Management practices in converted land uses 

strongly influenced nutrient leaching and retention efficiency in the soils. The unfertilized 

rubber plantations had lower nutrient leaching losses than the fertilized oil palm 

plantations. However, the high N and base cation retention efficiency in the unfertilized 

rubber plantations had a different meaning from that of the reference land uses since the 

low leaching fluxes from the rubber plantations clearly reflected the decreased levels of 

these nutrients in the soil (Allen et al., 2015), possibly due to harvest export and less input 

from litterfall and root production (Kotowska et al., 2015). This has implications for 

sustainability of yield from such smallholder rubber plantations as well as for the duration 

until such land use must be further converted. On the contrary, the fertilized oil palm 
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plantations showed increased leaching of mineral N, accompanied by increased dissolved 

Al and acidity of soil solution, increased leaching of DOC, total P and total S compared to 

the rubber plantations and higher base cation leaching fluxes than any of the land-use 

types. This supported our second hypothesis. The high net primary production from these 

oil palm plantations (Kotowska et al., 2015), despite the highly weathered soils with low 

initial soil fertility, was aided by fertilizer input. Sustainability of palm oil yield must take 

into account the long-term effect of pulse N application on soil acidity, dependency on 

liming input that requires additional capital by smallholders, and the impact of increased 

nutrient leaching on ground water quality. In general, these smallholder oil palm 

plantations had lower fertilization rates compared to the large-scale plantations in our study 

region (e.g. a large-scale plantation in the loam Acrisol landscape (PTPN VI) has 

fertilization rates of 175-40-175 kg N-P-K ha-1 yr-1), implying that the effects of increased 

leaching losses from oil palm plantations on ground water quality may be substantially 

higher than what we see from these smallholder plantations. Thus, our results suggest the 

need to improve fertilization practices on these highly weathered soils, synchronizing time 

and rate of application with plant uptake (e.g. by basing fertilizer rate to only compensate 

harvest export) and enhancing microbial immobilization (e.g. by maintaining the microbial 

biomass as in the original land use; Allen et al., 2015).  
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Fig. S2.1. Fine root biomass distribution to a depth of 1-m in different land uses (forest, 

jungle rubber, rubber plantations and oil palm plantations) within two soil landscapes 

(loam and clay Acrisol), in Jambi, Sumatra, Indonesia. 
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Fig. S2.2. Validation between Expert N-modelled and field-measured matric potential at 

0.3-m depth in different land uses at two soil landscapes, Jambi, Sumatra, Indonesia. 
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Table S2.1. Soil characteristicsa in the top 0.1 m of soil (except for clay content, which is 

given in depth intervals), from different land uses in two soil landscapes of Jambi, 

Sumatra, Indonesia.  

Characteristic Forest Jungle rubber Rubber 
plantation 

Oil palm 
plantation 

loam Acrisol landscape 
Bulk density (g cm-3)  1.0 (0.0)ab 0.9 (0.0)b A  1.1 (0.1)a 1.1 (0.1)a A 
pH (1:4 H2O)  4.3 (0.0)b† 4.3 (0.0)b† B 4.5 (0.1)ab† 4.5 (0.1)a† 
Soil organic C (kg C m-2)  2.6 (0.2) 2.7 (0.3)B 2.0 (0.3) 1.8 (0.2)B 
Total N (g N m-2) 182.9 (10.8) 186.1 (11.0)B 172.6 (23.8)  145.0 (13.5)B 
C:N ratio 14.3 (0.2)a 13.7 (0.8)a 11.7 (0.7)b B 12.5 (0.5)ab 
Effective cation exchange 
capacity (mmolcharge kg-1) 

44.8 (5.0) 40.6 (7.6)B 46.0 (5.4) 39.5 (7.9)B 

Base saturation (%) 10.6 (0.5)b† B 16.0 (2.2)ab† 21.1 (7.5)ab† 27.9 (5.4)a† 
Potassium (g K m-2) 3.3 (0.3) 2.6 (0.2)B 3.4 (0.8) 2.1 (0.8)B† 
Sodium (g Na m-2) 0.5 (0.1)c B 1.5 (0.2)b B 1.4 (0.1)b 3.9 (1.1)a 
Calcium (g Ca m-2) 5.5 (2.0)  6.9 (0.8)B† 14.5 (7.1) 18.5 (7.4)B† 
Magnesium (g Mg m-2)  1.8 (0.1) 2.0 (0.3)B 3.4 (1.4) 1.7 (0.9) 
Aluminum (g Al m-2) 33.1 (3.5) 29.6 (6.6)B 30.7 (4.3) 23.5 (2.7)B 
Iron (g Fe m-2)  0.8 (0.1)a B 0.3 (0.0)bc B 0.3 (0.1)c B 0.5 (0.0)ab 
Manganese (g Mn m-2) 0.3 (0.1) 0.4 (0.2)B 0.8 (0.3) 0.5 (0.2)B 
Bray-extractable phosphorus  
(g P m-2) 

0.5 (0.1)B 0.7 (0.1) 0.5 (0.1) 0.8 (0.1)B† 

Clay at 0-0.5 m (%, weighted 
for the top 50 cm) 

26.0 (2.6) 30.6 (4.6) 37.3 (10.2) 33.4 (2.2)B 

Clay at 0.5-1.0 m (%) 28.7 (4.8) 38.8 (9.0) 45.1 (11.3) 41.0 (3.1)B 
Clay at 1.0-1.5 m (%) 33.3 (7.6) 42.4 (9.9) 46.1 (9.9) 43.3 (2.8)B 
Clay at 1.5-2.0 m (%) 37.3 (8.7) 44.5 (10.0) 43.4 (6.5) 47.6 (4.5) 

clay Acrisol landscape 
Bulk density (g cm-3)  1.0 (0.1) 0.8 (0.1)B 0.9 (0.1) 0.9 (0.1)B 
pH (1:4 H2O)   4.2 (0.0)b 4.5 (0.0)a A 4.5 (0.1)a 4.4 (0.0)a 
Soil organic C (kg C m-2)   3.3 (0.5)  4.3 (0.4)A 2.8 (0.4) 3.5 (0.2)A 
Total N (g N m-2)  263.4 (67.1) 331.4 (34.1)A 198.9 (32.5) 260.2 (22.6)A 
C:N ratio 13.1 (1.3) 13.0 (0.3) 14.3 (0.6)A 13.5 (0.2) 
Effective cation exchange 
capacity (mmolcharge kg-1) 

94.3 (40.8) 124.5 (25.5)A 71.3 (22.3) 78.1 (8.4)A 

Base saturation (%) 22.9 (5.6)A 23.2 (5.8) 20.1 (2.6) 37.5 (7.1) 
Potassium (g K m-2) 9.4 (3.9) 9.6 (2.6)A 4.2 (1.1) 4.8 (0.9)A† 
Sodium (g Na m-2) 3.6 (0.8)A 4.2 (0.2)A 3.7 (1.3) 1.9 (1.3)  
Calcium (g Ca m-2) 32.3(21.2) 33.3 (10.9)A† 14.7 (2.8) 59.1 (19.5)A† 
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Magnesium (g Mg m-2)  7.3 (3.9) 12.0 (4.1)A 4.0 (0.9) 3.5 (0.8)  
Aluminum (g Al m-2) 50.9 (22.7) 76.6 (15.6)A 47.2 (17.6) 34.4 (2.0)A 
Iron (g Fe m-2)   3.7 (1.1)a A 3.0 (0.4)a A 2.3 (0.6)a A 0.7 (0.3)b 
Manganese (g Mn m-2) 4.5 (3.1) 2.5 (0.7)A 1.5 (0.4) 3.4 (1.3)A 
Bray-extractable phosphorus  
(g P m-2) 

1.4 (0.1)ab A 0.8 (0.1)bc 0.4 (0.04)c 4.7 (1.5)a A† 

Clay at 0-0.5 m (%, depth-
weighted average) 

31.5 (5.4) 47.2 (12.4) 42.4 (3.1) 59.7 (5.2)A 

Clay at 0.5-1.0 m (%) 34.9 (9.0) 
b† 51.4 (12.6)ab 36.8 (8.0)b 69.7 (4.8)a A 

Clay at 1.0-1.5 m (%) 39.0 (13.0) 62.8 (12.6) 40.8 (10.3) 62.8 (3.7)A 
Clay at 1.5-2.0 m (%) 41.3 (11.2) 46.6 (16.2) 36.5 (10.8) 63.3 (6.1) 
a Allen et al. (2015).  
b Means (± SE, n = 4, except for clay content n = 3) followed by different lower case letters 
indicate significant differences among land uses for each landscape and different upper 
case letters indicate significant differences between landscapes for each land use (Linear 
mixed effects models with Fisher's LSD test at p ≤ 0.05, except those indicated with † at p 
≤ 0.09).  
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Table S2.2. Mean (± SE, n = 4) tree density, diameter at breast height (DBH), basal area, height, the most common species of trees with DBH 

≥ 0.10 m and cumulative fine root mass in the top 1 m depth in different land uses at two soil landscapes, Jambi, Sumatra, Indonesia.  

Characteristics Forest Jungle rubber Rubber Oil palm 
 loam Acrisol landscape 
Plantation age (years) not determined (ND) ND 14–17  12–16 
Tree density (trees ha-1)a

 658 (26) 525 (60) 440 (81) 140 (4) 
DBH (cm)a 21.0 (0.5) 16.8 (0.5) 17.8 (1.2) not applicable (NA) 
Basal area (m2 ha-1)a 30.7 (1.0) 16.6 (0.4) 12.2 (1.6) NA 
Tree height (m)a 20.0 (0.6) 14.0 (0.2) 13.4 (0.5) 4.9 (0.6) 
Cumulative fine root 
biomass in the top 1 m of 
soil (g m-2) 

290.2 (82.6) ab† 143.9 (33.0) b 188.2 (37.6) b 356.8 (49.9) a 

Most common tree 
speciesb 

Aporosa spp., Burseraceae spp., 
Dipterocarpaceae spp., Fabaceae 
spp., Gironniera spp., Myrtaceae 
spp., Plaquium spp., Porterandia 
sp., Shorea spp. 

Alstonia spp., Artocarpus spp., 
Fabaceae sp., Hevea sp., 
Macaranga spp., Porterandia sp., 
Sloetia sp. 

Hevea brasiliensis Elaeis guineensis 

 clay Acrisol landscape 
Plantation age (years) ND ND 7–16  9–13 
Tree density (trees ha-1)a 471 (31) 685 (72) 497 (15) 134 (6) 
DBH (cm)a 23.0 (0.4) 17.3 (0.6) 15.2 (0.7) NA 
Basal area1 (m2 ha-1)a

 29.4 (1.7) 21.1 (1.4) 10.0 (1.4) NA 
Tree height (m)a 17.0 (0.5) 15.2 (0.3) 13.4 (0.1) 4.0 (0.3) 
Cumulative fine root 
biomass in the top 1 m of 

140.4 (33.0) c 402.2 (65.9) b 309.6 (16.0) bc 630.1 (86.2) a 
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soil (g m-2) 
Most common tree 
speciesb 

Archidendron sp., Baccaurea spp., 
Ochanostachys sp. 

Artocarpus spp., Endospermum 
sp., Hevea sp., Macaranga spp. 

Hevea brasiliensis Elaeis guineensis 

a Kotowska et al., 2015. 
b Rembold et al. (unpublished data), based on trees found in five subplots (5 m x 5 m) of each replicate plot (50 m x 50 m) which had ≥ 20 
individuals, except Fabaceae spp. which had ≤ 20 individuals.  
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Table S2.3. Pearson correlations among element concentrations (mg l-1) in soil solution (1.5-

m depth) from four land uses in a loam Acrisol soil landscape, Jambi, Sumatra, Indonesia. 

Correlations were carried out using monthly averages of four replicate plots, except oil palm 

plantation using average of three replicate plots, per land use (n = 12).  

Elements NO3
--N DON DOC Na K Ca Mg Total Al Total S  Cl 

 Forest 
NH4

+-N 0.22 0.79** 0.48 0.23 0.64* 0.67* 0.65* 0.58* 0.30 0.58* 
NO3

--N  -0.24 -0.12 -0.09 0.35 -0.26 -0.25 -0.45 0.63* -0.47 
DON   0.77** 0.36 0.43  0.80** 0.77** 0.84** -0.17 0.86** 
DOC    0.36 0.45 0.72** 0.71** 0.73** -0.02 0.68* 
Na     0.58* 0.53† 0.46 0.34 0.23 0.45 
K      0.51† 0.45 0.29 0.71** 0.33 
Ca       0.99** 0.94** 0.00 0.92** 
Mg        0.95** -0.03 0.92** 
Total Al         -0.28 0.95** 
Total S          -0.23 
 Jungle rubber 
NH4

+-N 0.32 0.80** 0.73** 0.35 0.77** 0.53† 0.67* 0.55* 0.17 0.79** 
NO3

--N  0.28 0.35 0.17 0.20 0.65* 0.62* 0.61* -0.11 0.65* 
DON   0.77** 0.72** 0.85** 0.72** 0.79** 0.30 0.60* 0.68* 
DOC    0.63* 0.76** 0.51† 0.53† 0.13 0.57* 0.49† 
Na     0.80** 0.58* 0.55* -0.18 0.93** 0.29 
K      0.65* 0.70** 0.12 0.65* 0.60* 
Ca       0.97** 0.56* 0.32 0.84** 
Mg        0.65* 0.27 0.93** 
Total Al         -0.47 0.85** 
Total S          -0.02 
 Rubber plantation 
NH4

+-N 0.10 -0.12 0.31 0.61* -0.05 0.17 -0.07 -0.41 0.65* -0.18 
NO3

--N  -0.32 -0.25 0.25 -0.48 0.42 0.15 -0.09 0.26 0.31 
DON   0.53† 0.04 0.65* 0.37 0.65 0.67* -0.28 0.39 
DOC    0.50† 0.46 0.51† 0.50† 0.29 0.30 0.34 
Na     0.17 0.46 0.08 -0.34 0.85** 0.00 
K      0.24 0.55* 0.54† -0.15 0.38 
Ca       0.81** 0.40 0.27 0.72** 
Mg        0.84** -0.26 0.92** 
Total Al         -0.7** 0.83** 
Total S          -0.35 
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Elements NO3
--N DON DOC Na K Ca Mg Total Al Total S  Cl 

 Oil palm plantation 
NH4

+-N 0.54† -0.28 -0.12 0.00 0.50 0.15 0.37 0.46 0.22 0.46 
NO3

--N  0.08 -0.12 0.14 -0.02 -0.49 0.00 0.63* -0.38 0.10 
DON   -0.18 -0.57* -0.12 0.16 0.31 0.50 -0.06 0.08 
DOC    -0.22 0.08 0.02 0.29 -0.17 0.40 -0.47 
Na     -0.12 -0.45 -0.45 -0.37 -0.38 0.22 
K      0.58* 0.43 -0.17 0.58* 0.27 
Ca       0.48 -0.19 0.79** 0.45 
Mg        0.40 0.72** 0.41 
Total Al         -0.16 0.27 
Total S                  0.30 
*, ** - significant at p ≤ 0.05 and p ≤ 0.01, respectively; † - marginally significant at p ≤ 0.09; 
element that had concentrations < 0.03 mg l-1 (total Fe, total Mn, and total P) and total Si (that 
has no net charge and did not show correlation with other elements) were excluded. 
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Table S2.4. Pearson correlations among element concentrations (mg l-1) in soil solution (1.5 

m depth of soil) from four land uses in a clay Acrisol soil landscape, Jambi, Sumatra, 

Indonesia. Correlations were carried out using monthly averages of four replicate plots, 

except oil palm plantation using average of three replicate plots, per land use (n = 12). 

Elements NO3
--N DON DOC Na K Ca Mg Total Al Total S Cl 

 Forest 
NH4

+-N -0.48 0.10 0.81** 0.63* 0.23 0.51† 0.28 -0.11 -0.27 0.09 
NO3

--N  -0.39 -0.48 -0.24 -0.18 -0.05 -0.03 0.36 0.12 0.37 
DON   0.57* 0.32 0.53† 0.17 0.20 -0.28 0.25 -0.20 
DOC    0.66* 0.41 0.48 0.31 -0.25 -0.15 -0.06 
Na     0.69* 0.52† 0.54† -0.22 -0.24 -0.10 
K      0.74** 0.88** 0.22 -0.17 0.26 
Ca       0.93** 0.54† -0.29 0.70** 
Mg        0.52† -0.34 0.59* 
Total Al         -0.15 0.94** 
Total S          -0.10 
 Jungle rubber 
NH4

+-N 0.01 0.23 0.36 0.35 0.35 0.29 0.29 0.16 0.31 0.18 
NO3

--N  0.55* 0.32 0.30 0.49† 0.51† 0.50† 0.35 0.13 0.42 
DON   0.58* 0.19 0.69** 0.50† 0.63* 0.70** -0.22 0.49† 
DOC    -0.24 0.11 -0.14 -0.05 0.29 0.06 -0.20 
Na     0.68** 0.84** 0.73** 0.01 0.52† 0.66* 
K      0.87** 0.93** 0.63* 0.09 0.84** 
Ca       0.97** 0.50† 0.09 0.95** 
Mg        0.66* -0.04 0.97** 
Total Al         -0.62* 0.68* 
Total S                  -0.18 
 Rubber plantation 
NH4

+-N 0.22 -0.20 0.81** 0.85** 0.47 0.19 0.10 -0.20 0.52† -0.06 
NO3

--N  -0.18 -0.07 -0.16 -0.44 -0.68* -0.60* -0.38 0.05 -0.63* 
DON   0.21 -0.29 0.41 0.40 0.55* 0.65* -0.57* 0.48 
DOC    0.79** 0.71** 0.54† 0.45 0.20 0.43 0.30 
Na     0.61* 0.38 0.21 -0.15 0.65* 0.07 
K      0.67* 0.66* 0.46 0.08 0.64* 
Ca       0.93** 0.73** -0.16 0.83** 
Mg        0.88** -0.39 0.93** 
Total Al         -0.58* 0.89** 
Total S          -0.40 
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Elements NO3
--N DON DOC Na K Ca Mg Total Al Total S Cl 

 Oil palm plantation 
NH4

+-N 0.08 0.02 0.15 0.39 0.37 0.16 0.06 0.06 0.46 -0.01 
NO3

--N  -0.09 -0.18 0.03 0.46 0.51† -0.01 0.19 0.33 -0.49 
DON   0.49 0.70* 0.69* 0.67* 0.42 0.45 0.54† 0.63* 
DOC    0.52† 0.66* 0.56† 0.50 0.56† 0.25 0.70* 
Na     0.61* 0.61* 0.29 0.21 0.75** 0.55† 
K      0.85** 0.74** 0.78** 0.52† 0.59* 
Ca       0.81** 0.74** 0.69* 0.64* 
Mg        0.95** 0.26 0.74** 
Total Al         0.15 0.75** 
Total S                  0.26 
*, ** - significant at p ≤ 0.05 and p ≤ 0.01, respectively; † - marginally significant at p ≤ 0.09; 
element that had concentrations < 0.03 mg l-1 (total Fe, total Mn, and total P) and total Si (that 
has no net charge and did not show correlation with other elements) were excluded. 
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Abstract 

In oil palm plantations converted from tropical forests, it is not known whether and how 

management practices affect nutrient leaching losses. Our study aimed to quantify nutrient 

leaching losses from fertilized areas and areas covered by frond stacks in smallholder oil palm 

plantations. In Jambi Province, Indonesia, we selected two landscapes with highly weathered 

Acrisol soils that differed in texture: loam and clay. In each landscape, we investigated four 

sites in the loam Acrisol and three sites in the clay Acrisol. Using suction cup lysimeters 

installed under frond stacks and within fertilized area at 1.5-m soil depth, we sampled soil 

water at bi-weekly to monthly interval from February to December 2013 to measure leaching 

losses. In the loam Acrisol landscape with high fertilization rates and recent lime application, 

leaching fluxes of dissolved N, base cations, S, Mn, Al and Cl were higher in the fertilized 

than the frond-stacked areas. Dissolved organic carbon (DOC) leaching losses in the fertilized 

area were 70% higher than the frond-stacked area, probably as a result of high DOC 

production and/or low DOC retention. In the clay Acrisol landscape with low fertilization 

rates, trends were the same but differences were only significant for dissolved K leaching. 

Differences in dissolved organic N leaching losses between loam and clay Acrisol soils were 

related to clay contents. Lower total ionic concentrations in soil solution of the fertilized area 

in the clay Acrisol soil compared to the loam Acrisol soil were due to the higher clay contents 

and lower fertilization rates of the former than the latter. The present fertilizer application 

practice of smallholders (i.e. pulse rate of fertilization around oil palm trees) results in soil 

water acidification and increased Al concentrations, which may potentially affect ground 

water quality.  
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3.1 Introduction 

In the last two decades, annual world palm oil consumption has strongly increased, 

driving the global expansion of oil palm plantations. The majority of new oil palm plantation 

development is occurring in Southeast Asia (between 100N and 100S of the equator) due to 

the crop’s particular climatic requirements, with the two largest cultivation areas located in 

Indonesia and Malaysia (Fairhust and Hӓrdter, 2003). In Indonesia, the province of Jambi, 

Sumatra, experienced oil palm expansion of approximately 85% from 2000 to 2010, 

conversely the primary forest area in Jambi decreased by approximately 17% during this 

period (Margono et al., 2012; Luskin et al., 2013). According to Statistics Indonesia (2013), 

61% of the oil palm plantation area in the province of Jambi is owned by smallholders whilst 

39% is owned by large-scale enterprises (both state and private). Whereas the economy 

benefits from the oil palm expansion by providing jobs and income to many people are 

considerable (Rist et al., 2010; Statistics of Jambi Province, 2012), it also strongly reduces the 

quality of ecosystem functions provided such as strong decreases in soil carbon stocks (van 

Straaten et al., 2015), changes in nitrogen cycling (Allen et al., 2015) and trace gas fluxes 

(Hassler et al., 2015).  

 Oil palm plantations require large quantities of nutrients to support vegetative growth 

and fruit production (Goh and Hӓrdter, 2003). The nutrient demand of nitrogen (N), 

phosphorus (P), potassium (K) and magnesium (Mg) per hectare per year increases up to five 

times from 3- to 15-year old oil palm plantations (Ng et al., 1999). On the other hand, the 

majority of land conversion for plantations in Sumatra has occurred on heavily weathered 

soils such as Acrisol soils (Red-yellow Podzolic soil in the Indonesian classification system), 

which are characterized by low soil fertility (Tan, 2008; FAO et al., 2009). Since low soil 

fertility inhibits oil palm production, copious amounts of fertilizer are typically applied in oil 
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palm plantations to maintain or increase nutrient availability especially on soils with 

inherently low fertility such as Acrisol soils.  

In most oil palm plantations, nutrient levels in soils are increased or replenished by 

application of chemical fertilizer around the palm tree base or by stacking pruned fronds in 

palm inter-rows. Recycling of oil palm residue is less commonly practiced, but if it is done, 

this is also concentrated around the palm trees (Comte et al., 2012). These management 

practices cause considerable spatial variation in nutrient input which is also likely to affect 

nutrient leaching losses, since the rate of nutrient leaching is typically determined by the 

availability of nutrients in soil profile (Dechert et al., 2005). Soil nutrient stocks are usually 

higher in fertilized areas than in unfertilized areas, as a direct result of the spatial placement of 

chemical fertilizer (Anuar et al., 2008). The spatial variability in nutrient input is also likely to 

increase nutrient concentrations of draining water from fertilized compared to unfertilized 

areas (Tung et al., 2009). In the frond-stacked area, decomposition of fronds can replenish 

substantial quantities of nutrients back into the soil via mineralization processes since fronds 

contain considerable amount of nutrients (e.g. 10 ton of frond dry matter contained 82 kg N, 7 

kg P and 102 kg K; Kee and Chew, 1997). The temporal release of nutrients (i.e. N, P, K, 

Calcium (Ca), and Mg) from the pruned fronds typically follows an exponential decrease with 

larger nutrient release in the beginning followed by slower release during later stages of 

decomposition (Moradi et al., 2014). Nevertheless, the availability of nutrients in soils under 

the frond stack has been shown to be lower than in the area with inorganic fertilizer 

application, since chemical fertilizer dissolve quickly, causing a peak in nutrient 

concentrations in the soil solution, which is absent when nutrients are mineralized in 

decomposing fronds (Anuar et al., 2008; Banabas et al., 2008).          

Apart from management practices, nutrient leaching losses are also strongly affected 

by soil texture through its effect on soil fertility (Silver et al., 2000; Silva et al., 2005). In our 
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study area with highly weathered Acrisol soils, it has been shown that soils with higher clay 

content exhibited larger soil-N cycling pools and rates (Allen et al., 2015). Additionally, soils 

with high clay contents have more negative charge and consequently retain more cations than 

soils with low clay contents (Ohta et al., 1993). As a result the increasing clay content with 

soil depth which is typical for Acrisol soils may prevent nutrient leaching.   

To our knowledge, in oil palm no studies of nutrient leaching have been conducted 

that account for the spatial and temporal variability caused by frond stack area and fertilizer 

application. Our research aimed to assess how in smallholder oil palm plantations soil 

management such as spreading fertilizer around the palm trees and stacking palm fronds in 

the palm inter-rows affects leaching losses in Acrisol soils with differing soil texture. We 

hypothesized that: 1) fertilized area around each palm tree will have higher soil nutrient 

stocks and nutrient leaching losses due to the pulsed nature of nutrient addition while under 

frond stacks leaching will be minimal since the slow mineralization of nutrients from 

decomposing fronds will be taken up by roots before it is lost through leaching, and 2) soils 

with higher clay content will have higher soil nutrient levels and lower nutrient leaching 

losses both in the frond-stacked and fertilized areas than in soils with lower clay content. 

3.2 Materials and methods 

3.2.1 Study sites and experimental design  

 The study was conducted in smallholder oil palm plantations that were located at 

elevations between 35-84 m above sea level and had slopes ≤ 8 % in Jambi Province, 

Sumatra, Indonesia. The climate is humid tropical with a mean annual air temperature of 26.7 

± 0.1 °C and a mean annual precipitation of 2235 ± 385 mm (1991-2011; Jambi-Sultan-Thaha 

airport data from the Meteorological, Climatological and Geophysical Agency). During our 

study period (2013), the dry season lasted from mid-June until end of October, when rainfall 
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was reduced by 35-57 % compared to the wetter months during which rainfall was between 

333 and 362 mm per month. 

We selected eight smallholder oil palm plantations that were established after logging, 

clearing and burning of either forest or secondary forest enriched with rubber trees (Euler, 

2015). The oil palm plantations were selected in two different landscapes (four smallholders 

in each landscape) that mainly differed in soil texture: loam Acrisol soils and clay Acrisol 

soils. In the loam Acrisol landscape, the particle size distribution in the top 0.5 m depth of oil 

palm sites consisted of 38.0 ± 11.5% of sand, 28.6 ± 9.9% of silt and 33.4 ±  2.2% of clay 

whilst in the clay Acrisol landscape the soil contained 10.3 ± 2.4% sand, 30.0 ± 5.6% of silt 

and 59.7 ± 5.2% clay in the top 0.5 m depth. At each plantation we established a plot of 50 m 

x 50 m with a minimum distance of 200 m between plots. Annual nutrient deposition from 

bulk precipitation was comparable between the loam and the clay Acrisol landscape (Table 

2.2; pg. 28). 

For the loam Acrisol landscape, the smallholder oil palm plantations were all located 

in the Bajubang and Muara Bulian districts within the Batanghari regency, 80 km southwest 

of Jambi City (01°55'40'' S, 103°15'33'' E). The plantations in this landscape ranged from 12-

16 years old, and had a tree density of 140 ± 5 tree ha-1, tree height 4.9 ± 0.6 m and 

cumulative fine root biomass in the top 0.5 m of soil of 6.6 ± 0.9 Mg ha-1 (Kotowska et al. 

2015). In the clay Acrisol landscape, the plantations were located in the Air Hitam district 

within the Sarolangun regency, 160 km southwest of Jambi City (02°0'57'' S, 102°45'12'' E). 

Oil palm trees in the clay landscape ranged from 9 to 13 years old with tree densities of 134 ± 

6 tree ha-1, tree heights of 4.0 ± 0.3 m and cumulative fine root biomass in the top 0.5 m of 

soil 3.7 ± 0.5 Mg ha-1 (Kotowska et al., 2015).  

Since all oil palm sites in both landscapes were owned and managed by smallholders, 

there was considerable variation in management practices employed. During our study period 
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(2013), fertilization were applied once in the rainy season (October to March) in the clay 

Acrisol soil whereas those in the loam Acrisol soil were applied once in the rainy season and 

once in the dry season (April to September). Fertilization rates ranged between 300-550 kg 

NPK-fertilizer ha-1 year-1 (equivalent to 48-88 kg N ha-1 year-1, 21-38 kg P ha-1 year-1 and 40-

73 kg K ha-1 year-1), with the lower range in the clay Acrisol soil and the upper range in the 

loam Acrisol soil. Additionally, three of the smallholders applied 157 kg K-KCl ha-1 year-1 

and 143 kg Cl-KCl ha-1 year-1; two of the smallholders applied 138 kg urea-N ha-1 year-1. One 

smallholder also applied lime (200 kg dolomite (CaMg(CO3)2) ha-1 year-1) in the loam Acrisol 

soil. Prior to our study year, kieserite (MgSO4.H2O) and borate (Na2B4O2.5H2O) fertilizers 

were also used in some oil palm plantations in the loam Acrisol soil. Although the type, rate 

and timing of fertilizer application varied among smallholders, the spatial location of fertilizer 

application in all sites was similar: fertilizers and lime were spread by hand around each palm 

tree at about 0.8-1.5 m distance from the palm stem. For weed control, smallholders used 

herbicide (i.e. Gramoxone and Roundup) at 2.5 to 5 liters ha-1 year-1 and/or manual weeding, 

twice a year. In all plantations, senescing oil palm fronds were regularly cut and stacked at a 

distance of 4-5 m from the rows of palm trees (row spacing was about 9 m). This was done to 

facilitate walking and working (e.g. harvesting) in the plantations. The annual input of pruned 

fronds was 5.5 ± 0.2 Mg ha-1 on the loam Acrisol soil and 7.2 ± 1.0 Mg ha-1 on the clay 

Acrisol soil (Kotowska et al., 2015). Harvesting was done on average every two weeks with a 

mean total dry yield of 19.9 ± 1.3 Mg ha-1 year-1 in the loam Acrisol and 14.7 ± 1.6 Mg ha-1 

year-1 in the clay Acrisol (Kotowska et al., 2015).  

3.2.2 Lysimeter installation and soil water sampling and laboratory analysis  

We measured nutrient leaching losses by collecting soil water samples at 1.5 m depth 

(below the rooting depth) from each replicate plot in the fertilized and frond-stacked areas. 

Soil water was sampled using suction cup lysimeters (P80 ceramic, maximum pore size 1 μm; 
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CeramTec AG, Marktredwitz, Germany) that were connected to collection containers (dark 

glass bottles). All equipment (i.e. lysimeters, sample tubes and collection containers) were 

acid-washed and rinsed with copious amounts of deionized water before installation. We 

installed lysimeters in the field three months before the first sampling to allow resettling of 

natural soil conditions prior to measurement. The collection containers were placed in plastic 

buckets with lids and buried in the ground approximately 1.3-m from the lysimeters. In the 

fertilized areas, the lysimeters were installed 1.3 to 1.5 m from the palm stem, whilst in the 

frond-stacked areas, lysimeters were installed under the frond stack (4-5 m from the palm 

tree).  

In the clay Acrisol landscape, soil water samples were collected on three replicate 

plots only, because one of the land-owners sold his plantation and nullified our contract for 

access to continue sampling; an alternative plot was established in the middle of sample 

collection which did not give enough time to collect water samples since acclimatization 

should be done for three months prior to first water sampling. In the loam Acrisol landscape, 

the lysimeter for soil water sampling in one fertilized area was damaged by the workers. Soil 

water was sampled biweekly to monthly from February to December 2013 by applying a 40 

kPa vacuum in the collection containers, thus collecting water from rapidly and slowly 

draining soil pores. Soil water samples were transferred from the collection container into 100 

ml plastic bottles, which were acid-washed and thoroughly rinsed with deionized water prior 

to sampling time. After arrival in the laboratory of Jambi University, we used a 20 ml 

subsample for pH measurement while the remaining water was immediately frozen and 

transported by air to the laboratory of Soil Science Tropical and Subtropical Ecosystems 

(SSTSE), Goettingen University, Germany, for measuring element concentrations.  

We analyzed soil water samples for macro and micro element concentrations. Total 

dissolved nitrogen (TDN), ammonium (NH4
+), nitrate (NO3

-) and chloride (Cl-) 
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concentrations were measured using flow injection colorimetry (SEAL Analytical AA3, 

SEAL Analytical GmbH, Norderstedt, Germany). We calculated dissolved organic nitrogen 

(DON) as: [DON] = [TDN] – [NH4
+-N] – [NO3

--N]. Dissolved organic carbon (DOC) was 

determined using a Total Organic Carbon Analyzer (TOC-Vwp, Shimadzu Europa GmbH, 

Duisburg, Germany). Sodium (Na), K, Ca, Mg, total aluminum (Al), total iron (Fe), total 

manganese (Mn), total sulfur (S), total P, and total silica (Si) in soil water were measured 

using inductively coupled plasma-atomic emission spectrometer (iCAP 6300 Duo View ICP 

Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). Method detection 

limits for each element were: 6 µg NH4
+-N l-1, 5 µg NO3

--N l-1, 2 µg TDN l-1, 4 µg DOC l-1, 

30 µg Na l-1, 50 µg K l-1, 3 µg Ca l-1, 3 µg Mg l-1, 2 µg total Al l-1, 3 µg total Fe l-1, 2 µg total 

Mn l-1, 10 µg total P l-1, 10 µg total S l-1, 1 µg total Si l-1 and 30 µg Cl l-1. For concentrations 

below these detection limits, we assigned a value of zero. 

We made partial cations-anions charge balances (Fig. 3.1) of the major solutes (i.e. 

concentrations > 0.03 mg l-1) in soil solution by expressing solute concentrations into 

µmolcharge l-1 (molar concentration multiplied by the equivalent charge of each solute). 

Contributions of organic acids (RCOO-) and bicarbonate (HCO3
-) were not measured, but 

were calculated together with S (having very low concentration) from the difference of 

cations minus anions. Charge contributions of total Al were assumed to be 3+. Elements that 

had concentrations < 0.03 mg l-1 (total Fe, Mn and P) and total Si (commonly in a form of 

monosilicic acid (H4SiO4
0) that has no net charge) were excluded (Hedin et al., 2003). 

3.2.3 Soil characteristics  

To evaluate the effect of management practices (i.e. fertilizer and frond stack) on soil 

nutrient stocks and its relation to nutrient leaching losses, we measured soil characteristics 

data for the top 0.1 m soil depth (Allen et al., 2015). Soil samples were collected from the 
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area where fronds were piled in the inter-rows; from the fertilized area and from inter-row 

where no fronds were stacked. The sampling distance of the frond-stacked area from the 

planted rows of palm trees was 3.5 m, while fertilizer was never placed more than 1.5 m from 

the palm tree. For the fertilized area, the soil samples were taken at 1.4 ± 0.1 m from the palm 

tree. The soil samples from the inter-row without frond were taken at approximately > 2.0 m 

from the tree base. All soil samples were air-dried and sieved (2 mm sieve) in the laboratory 

of Jambi University before transport by air to the laboratory of SSTSE, Goettingen 

University, Germany, for measuring soil biochemical characteristics (i.e. pH, organic C, total 

N, effective cation exchange capacity (ECEC), exchangeable Ca, Mg, K, Na, Al, Fe, Mn, and 

extractable P). Soil sampling and analysis are described in detail by Allen et al. (2015).  

3.2.4 Calculation of element leaching fluxes and water balance  

Nutrient leaching fluxes were calculated by multiplying the element concentrations 

from lysimeters in each sampling period with the total biweekly or monthly drainage water 

fluxes calculated for 1.5 m depth. For the biweekly or monthly drainage fluxes, we used the 

cumulative predicted daily drainage water fluxes at depth of 1.5 m. We estimated daily 

drainage water fluxes using the soil water module of the Expert-N model (Priesack, 2005). 

This model was used successfully in our earlier work on nutrient leaching losses from 

conversion of montane forest to agricultural land uses in Sulawesi, Indonesia (Dechert et al., 

2005). Calculation of daily drainage water fluxes follows the equation of the water balance:  

∆W + D = P - R - ET and ET = I + E + T 

in which ∆W = change in soil water storage, D = drainage water below rooting zone, P = 

precipitation, R = runoff, and ET = total evapotranspiration, which is equal to the sum of three 

terms: I = interception of water by plant foliage, assumed to evaporate, E = evaporation from 

soil, and T = transpiration by plants following water uptake. 
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The Expert-N model calculates actual evapotranspiration using the Penman-Monteith 

method, with aerodynamic and canopy conductance adjusted to the site conditions. Estimation 

of actual runoff based on the sites’ slope, whilst vertical water movement using Richards 

equation, of which the parameterization of the hydraulic functions was based on the measured 

water retention curve using standard equations (Mualem, 1976; Van Genuchten, 1980). The 

data input for water balance simulation consisted of daily climate (i.e. air temperature, 

average relative humidity, average wind speed, total solar radiation, and total precipitation), 

vegetation (i.e. leaf area index (LAI) and fine root biomass distribution), and soil 

characteristics (i.e. soil texture, water retention curve, and bulk density). For the loam Acrisol 

landscape, the climate data were taken from a climatological station at the Harapan Forest 

Reserve approximately 10-20 km from our plots. For the clay Acrisol landscape, we used the 

climate data from climatological stations at the villages of Sarolangun and Lubuk Kepayang, 

approximately 20 km and 10 km, respectively, from our plots. The LAI were taken from field 

measurements (Rembold et al. unpublished data), while the fine root biomass and soil 

characteristics were taken from our measurements.  

The output of the Expert-N model was validated by comparing the modelled soil 

matrix potential with the field measurement of matrix potential. We measured soil matrix 

potential biweekly to monthly from February to December 2013, using tensiometers  (P80  

ceramic,  maximum  pore  size 1 µm; CeramTec AG, Marktredwitz, Germany), which were 

installed at 0.3 m and 0.6 m depths in two smallholder oil palm plantation per landscape. We 

accepted the output of the Expert-N model if the modelled and measured soil matrix potential 

at each depth were comparable (paired t-test; all p  0.21, n = 10 for 30 cm depth and n = 9 

for 60 cm depth) and had strong correlations (Pearson correlation coefficients of 0.79 to 0.96, 

all p  0.01). The resulting annual water balance in the loam Acrisol landscape showed 3418 

mm of precipitation, 1384 mm of evapotranspiration, 545 mm of runoff, and 1483 mm of 
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drainage fluxes. In the clay Acrisol landscape, the annual water balance consisted of 3475 mm 

of precipitation, 1622 mm of evapotranspiration, 722 mm of runoff, and 1117 mm of water 

drainage (Table 2.1; pg. 27).  

3.2.5 Statistical analysis  

Prior to statistical analyses, we tested all data for normality (Shapiro-Wilk’s test) and 

homogeneity of variance (Levene’s test) across sampling area (i.e. fertilized and frond-

stacked areas) in each soil landscapes and across soil landscapes in each sampling area. 

Logarithmic or square-root transformation was used for data that were non-normally 

distributed or heterogeneity of variance. We tested differences in soil nutrient stocks for 0.1 m 

depth, in element concentration in soil solution at 1.5 m depth, and in annual nutrient leaching 

fluxes at 1.5 m depth: 1) between fertilized and frond-stacked areas for each soil landscape 

(hypothesis 1), and 2) between loam and clay Acrisol soils for each sampling area (fertilized 

and frond-stacked; hypothesis 2) using linear mixed effects (LME) models (Crawley, 2009). 

For element concentrations, the LME model had sampling area or landscape as the fixed 

effect with spatial replication (plot) and time (biweekly or monthly sampling period of 

element concentrations) as random effects. For the annual leaching fluxes (which were the 

sum of the bi-weekly or monthly sampling), the LME model had sampling area or landscape 

as the fixed effect with only spatial replication (plot) as a random effect. We extended the 

LME model to include: either 1) a variance function that allows different variances of the 

fixed effect, 2) a first-order temporal autoregressive process that assumes that correlation 

between measurement periods decreases with increasing time difference, or both if these 

improved the relative goodness of the model fit based on the Akaike information criterion. 

Fixed effect were considered significant based on analysis of variance at p ≤ 0.05, and 

differences between sampling site or landscape were assessed using Fisher’s least significant 

difference test p ≤ 0.05. For a few specified parameters, we also considered marginal 
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significance at p ≤ 0.09, because our experimental design encompassed the inherent spatial 

variability in our study area. We tested the relationships among cation and anion charge 

concentrations in soil solution across one year (i.e. n = 12) for each sampling area within each 

landscape with Pearson correlation analysis; the data taken from the average of four replicate 

plots per land use and landscape (Table S3.1). Additionally, Spearman’s rank correlation tests 

were conducted to assess relationships between annual nutrient leaching fluxes and soil 

biochemical characteristics across sampling area (fertilized and frond-stacked) for loam and 

clay Acrisol soil landscape (n = 7 and 6, respectively) and across landscapes within each 

sampling area (n = 7). All statistical analyses were conducted using R 3.0.2 (R Development 

Core Team, 2013).  

 

3.3 Results  

3.3.1 Difference between frond stack area, fertilized area and inter-row area within each 

landscape  

In the loam Acrisol landscape, the fertilized area in smallholder oil palm plantation 

had higher soil pH and soil nutrient stocks (i.e. exchangeable Ca, extractable P and base 

saturation) as compared to the frond-stacked and inter-row areas (all p ≤ 0.05, except p ≤ 0.09 

for exchangeable Ca; Table 3.1). We did not detect any difference between the frond-stacked 

and inter-row areas. Furthermore, the soil solution under the fertilized area in the loam 

landscape had a lower pH and higher concentrations of DOC, Na, Ca, Mg, total Al, total Mn 

and Cl (all p ≤ 0.05, except p ≤ 0.09 for pH and Na) compared to the frond-stacked area 

(Table 3.2). Management practices (i.e. fertilization and liming) also resulted in increased 

annual leaching fluxes of N-NH4
+, TDN, Na, Ca, Mg, total Al, total Mn, total S and Cl (all p 

≤ 0.05, except p ≤ 0.09 for Na, total Mn, and total S) in the fertilized area compared to the 

frond-stacked area within the loam landscape (Table 3.3). Also annual leaching fluxes of 
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DOC were higher (p ≤ 0.00) in the fertilized area than in the frond-stacked area (Table 3.3). 

Finally, we observed negative correlations (p ≤ 0.05) of soil solution pH with total Al (in 

fertilized and frond-stacked areas) and total Mn (in frond-stacked area) concentrations in soil 

solution within the loam Acrisol landscape (Table S3.1) and positive correlation of annual 

leaching fluxes (i.e. NH4
+-N, DOC, Na, total S) with soil pH  (all p ≤ 0.05, r = 0.89 to 0.99) 

and Na leaching fluxes with base saturation (p = 0.03, r = 0.89) across sampling areas in the 

loam Acrisol landscape.    

In the clay Acrisol landscape, the top soil in the fertilized area had lower exchangeable 

Al and higher C:N ratio, ECEC, base saturation, exchangeable Ca and extractable P as 

compared to the frond-stacked and inter-row areas (all p ≤ 0.05; Table 3.1). Also in this 

landscape we did not detect any difference between soil nutrient content of the frond-stacked 

and inter-row areas, and thus we will only discuss differences in soil parameters between 

fertilized and frond-stacked areas in the rest of this manuscript. Nutrient concentrations (i.e. 

Na and K) in the soil solution were also higher (all p ≤ 0.06) in the fertilized than frond-stack 

areas (Table 3.2). This also resulted in an increased K leaching flux in the fertilized area 

compared to the frond-stacked area (p = 0.06) that only received pruned fronds (Table 3.3). 

We observed a strong correlation (p ≤ 0.01) among base cations (K, Na, Ca, and Mg) in the 

soil solution (Table S3.1) within the fertilized and frond-stacked areas in the clay Acrisol, 

whilst the annual leaching fluxes of K were marginally correlated with base saturation across 

sampling areas in the clay Acrisol (p = 0.06, r = 0.83).   
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Table 3.1. Soil characteristics at the top 0.1 m depth within the fertilized, near the frond- 

stacked, and inter-row areas in smallholder oil palm plantations in the loam and clay Acrisol 

soils, Jambi, Sumatra, Indonesia.  

Characteristics  fertilized area  frond-stacked area inter-row area 
  loam Acrisol soil landscape 
pH (1:4 H2O)  a4.91 (0.2)a A 4.43 (0.05)b 4.49 (0.07)b 
Soil organic C (kg C m-2)  1.87 (0.09)B 1.86 (0.33)B 1.80 (0.18)B 
Total N (g N m-2) 159.60 (15.44)B 148.70 (23.38)B 141.90 (12.21)B 
C:N ratio 11.79 (0.54)B 12.38 (0.31) 12.58 (0.62) 
Effective cation exchange capacity 
(mmolcharge kg-1 soil) 

51.43 (8.56)B 37.91 (8.02)B 39.04 (8.01)B 

Base saturation (%) 66.06 (17.76)a 23.28 (5.39)b 25.63 (4.91)b 
Potassium (g K m-2) 3.09 (0.81) 2.12 (0.75)B 1.98 (0.77) 
Sodium (g Na m-2) 5.06 (0.14)A 4.05 (1.71) 3.61 (1.13) 
Calcium (g Ca m-2) 63.29 (23.92)a† 12.89 (6.32)b† 15.75 (6.77)b† 
Magnesium (g Mg m-2)  3.68 (1.92) 1.32 (0.54) 1.68 (0.89) 
Aluminum (g Al m-2) 12.60 (4.77) 24.62 (4.38)B 24.40 (3.16)B 
Iron (g Fe m-2)  0.37 (0.17) 0.58 (0.11) 0.54 (0.04) 
Manganese (g Mn m-2) 0.68 (0.41) 0.56 (0.31)B 0.41 (0.18)B 
Bray-extractable phosphorus (g P m-2) 2.30 (0.62)a 0.65 (0.14)b B† 0.71 (0.14)b B† 
 clay Acrisol soil landscape 
pH (1:4 H2O)  4.28 (0.09)B 4.43 (0.05)  4.44 (0.05) 
Soil organic C (kg C m-2)  3.84 (0.34)A 3.68 (0.10)A 3.45 (0.37)A 
Total N (g N m-2) 262.69 (23.60)A 277.02 (12.88)A 260.10 (28.84)A 
C:N ratio 14.62 (0.38)a A 13.33 (0.42)b 13.28 (0.19)b 
Effective cation exchange capacity 
(mmolcharge kg-1 soil) 

110.16 (11.18)a A 72.05 (6.17)b A 69.48 (8.55)b A 

Base saturation (%) 71.17 (13.53)a 26.35 (2.85)b 28.63 (7.93)b 
Potassium (g K m-2) 9.61 (4.94) 4.39 (0.52)A 3.93 (0.71) 
Sodium (g Na m-2) 1.45 (0.94)B 1.91 (1.80) 1.48 (1.21) 
Calcium (g Ca m-2) 152.10 (46.20)a 28.03 (6.57)b 35.00 (15.44)b 
Magnesium (g Mg m-2)  4.54 (0.57) 3.36 (1.04) 3.15 (1.23) 
Aluminum (g Al m-2) 19.63 (9.39)b 42.29 (1.76)a A 38.12 (0.79)a A 
Iron (g Fe m-2)  0.75 (0.31) 0.81 (0.31) 0.67 (0.27) 
Manganese (g Mn m-2) 1.95 (1.13) 4.42 (1.69)A 3.70 (1.50)A 
Bray-extractable phosphorus (g P m-2) 21.18 (12.18)a 1.33 (0.29)b A† 1.47 (0.35)b A† 

aMeans (SE, n = 4) followed by different lower case letters indicate significant differences 
between sampling areas (fertilized, frond-stacked, and inter-row areas) within each landscape 
and different upper case letters indicate significant differences between landscapes for each 
sampling areas (Linear mixed effects models with Fisher's LSD test at p ≤ 0.05, except those 
indicated with † at p ≤ 0.09) 
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Table 3.2. Nutrient concentrations in soil solution from a depth of 1.5 m within the fertilized 

area and under the frond-stacked area in smallholder oil palm plantations in the loam and clay 

Acrisol soils, Jambi, Sumatra, Indonesia  

Element loam Acrisol landscape clay Acrisol landscape 

fertilized area  frond-stacked 

area 

fertilized area  frond-stacked 

area 

pH a4.11 (0.11)b† B† 4.32 (0.03)a† B 4.56 (0.14)A† 4.64 (0.06)A 

Ammonium (mg N l-1) 0.17 (0.01)  0.16 (0.01) 0.15 (0.01)  0.14 (0.00)  

Nitrate (mg N l-1) 0.32 (0.15) 0.08 (0.04) 0.90 (0.88) 0.02 (0.00) 

Dissolved organic nitrogen 

(mg N l-1) 

0.11 (0.03)A 0.07 (0.01)A† 0.04 (0.01)B 0.04 (0.01)B† 

Total dissolved N (mg N l-1) 0.60 (0.18)  0.31 (0.04)A 1.09 (0.89) 0.20 (0.01)B  

Dissolved organic carbon 

(mg C l-1) 

4.19 (0.10)a 3.58 (0.07)b 4.79 (0.88) 4.40 (1.14)  

Sodium (mg Na l-1) 7.20 (3.88)a† 2.32 (0.27)b† 4.63 (1.20)a† 2.50 (0.54)b† 

Potassium (mg K l-1) 0.39 (0.14) 0.36 (0.14) 0.38 (0.05)a 0.18 (0.06)b 

Calcium (mg Ca l-1) 2.74 (0.91)a  0.72 (0.07)b A† 0.77 (0.17) 0.51 (0.07)B† 

Magnesium (mg Mg l-1) 0.49 (0.11)a A† 0.24 (0.03)b 0.43 (0.10)B† 0.21 (0.07) 

Total aluminum  (mg Al l-1) 1.24 (0.71)a A† 0.14 (0.01)b 0.21 (0.11)B† 0.08 (0.03) 

Total iron (mg Fe l-1) 0.02 (0.00)A 0.08 (0.06) 0.01 (0.00)B 0.05 (0.04) 

Total manganese (mg Mn l-1) 0.013 (0.005)a 0.006 (0.001)b B 0.08 (0.06)  0.02 (0.01)A 

Total phosphorus (mg P l-1) 0.005 (0.001)  0.005 (0.001) 0.004 (0.000) 0.01 (0.006) 

Total sulfur (mg S l-1) 0.14 (0.01) 0.12 (0.00) 0.13 (0.01) 0.12 (0.01) 

Total silica (mg Si l-1) 0.31 (0.13) 0.17 (0.02)B 1.03 (0.39) 0.68 (0.17)A 

Chloride (mg Cl l-1) 20.99 (2.72)a A 6.20 (0.79)b 7.19 (2.10)B 4.63 (0.77) 
aMeans (SE, n = 4, except for the clay Acrisol soil and the fertilized area in the loam Acrisol n 
= 3; see section 3.2.2) followed by different lower case letters indicate significant differences 
between sampling areas (fertilized vs frond-stacked areas) within each landscape and different 
upper case letters indicate significant differences between landscapes for each sampling areas 
(Linear mixed effects models with Fisher's LSD test at p ≤ 0.05, except those indicated with † 
at p ≤ 0.09).  
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Table 3.3. Annual leaching fluxes from a depth of 1.5 m within the fertilized area and under 

the frond-stacked area in smallholder oil palm plantations in loam and clay Acrisol soils, 

Jambi, Sumatra, Indonesia.  

Element loam Acrisol landscape clay Acrisol landscape 

fertilized area  frond-stacked 

area 

fertilized area  frond-stacked 

area 

Ammonium (g N m-2 year-1) a0.32 (0.01)a A 0.20 (0.02)b 0.20 (0.02)B 0.18 (0.00)  

Nitrate (g N m-2 year-1) 0.59 (0.29) 0.11 (0.05) 1.14 (1.12) 0.03 (0.01) 

Dissolved organic nitrogen         

(g N m-2 year-1) 

0.22 (0.06)A 0.11 (0.02)A† 0.05 (0.00)B 0.05 (0.01)B† 

Total dissolved N                         

(g N m-2 year-1) 

1.13 (0.31)a 0.42 (0.08)b 1.39 (1.12) 0.27 (0.02)  

Dissolved organic carbon              

(g C m-2 year-1) 

7.29 (0.25)a 4.18 (0.35)b 6.25 (1.38) 5.61 (0.99)  

Sodium (g Na m-2 year-1) 13.06 (7.58)a† 3.07 (0.54)b† 6.26 (1.77) 3.29 (0.60) 

Potassium (g K m-2 year-1) 0.70 (0.22) 0.42 (0.13) 0.49 (0.06)a† 0.24 (0.07)b† 

Calcium (g Ca m-2 year-1) 4.63 (1.34)a A† 0.99 (0.20)b  1.02 (0.23)B† 0.66 (0.07) 

Magnesium (g Mg m-2 year-1) 0.88 (0.21)a 0.33 (0.05)b 0.57 (0.14) 0.25 (0.06) 

Total aluminum  

(g Al m-2 year-1) 

2.32 (1.34)a A† 0.23 (0.02)b A 0.27 (0.12)B† 0.10 (0.03)B 

Total iron (g Fe m-2 year-1) 0.04 (0.00)A 0.13 (0.11) 0.01 (0.00)B 0.06 (0.05) 

Total manganese                             

(g Mn m-2 year-1) 

0.03 (0.01)a† 0.01 (0.00)b† B† 0.09 (0.07)  0.02 (0.01)A† 

Total phosphorus                        

(g P m-2 year-1) 

0.01 (0.00) 0.005 (0.001) 0.01 (0.00) 0.02 (0.01) 

Total sulfur (g S m-2 year-1) 0.24 (0.02)a† A 0.15 (0.03)b† 0.17 (0.02)B 0.17 (0.00) 

Total silica (g Si m-2 year-1) 0.43 (0.11) 0.29 (0.06)B† 1.29 (0.58) 0.80 (0.31)A† 

Chloride (g Cl m-2 year-1) 38.01 (6.73)a A 7.83 (1.21)b 9.77 (3.00)B 5.62 (0.62) 
aMeans (SE, n = 4, except for the clay Acrisol soil and the fertilized area in the loam Acrisol n 
= 3; see section 3.2.2) followed by different lowercase letters indicate significant differences 
between sampling areas (fertilized vs frond-stacked) within each landscape and different 
uppercase letters indicate significant differences between landscapes for each sampling area 
(Linear mixed effects models with Fisher's LSD test at p ≤ 0.05, except those indicated with † 
at p ≤ 0.09).  
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3.3.2 Differences between loam and clay Acrisol soils in each sampling areas  

In the fertilized area, we observed lower soil pH and exchangeable Na, and higher soil 

organic C, total N, C:N ratio, and ECEC (all p ≤ 0.05) in the clay Acrisol soil as compared to 

the loam Acrisol soil (Table 3.1). The clay soil also had higher soil solution pH and lower 

concentration of DON, Mg, total Al, total Fe and Cl (all p ≤ 0.05, except p ≤ 0.09 for pH, Mg 

and total Al) in the soil solution than the loam soil in the fertilized area (Table 3.2). Also 

annual leaching fluxes of NH4
+-N, DON, Ca, total Al, total Fe, total S and Cl were lower (all 

p ≤ 0.05, except p ≤ 0.09 for Ca and total Al) in the clay soil compared to the loam soil (Table 

3.3). The ionic strengths of the soil solution were lower (p = 0.00) in the clay Acrisol (317 ± 

83 µmolcharge l-1) than the loam Acrisol (648 ± 306 µmolcharge l-1) within the fertilized area, 

while the ionic strengths of the frond-stack area were comparable (p = 0.46) between the clay 

Acrisol (173 ± 37 µmolcharge l-1) and the loam Acrisol (190 ± 23 µmolcharge l-1) (Fig. 3.1). We 

observed positive correlations of base cations (Na+, K+, Ca2+, Mg2+), total Al, and total Fe 

with Cl under the fertilized area in the clay Acrisol (Table S3.1). Annual leaching fluxes of 

Ca, total Al and DON were negatively correlated with ECEC (all p = 0.08, r = -0.90) whilst 

NH4
+-N leaching flux was negatively correlated with C:N ratio (p = 0.08, r = -0.90). Soil 

organic C was negatively correlated with total Fe leaching flux (p = 0.08, r = -0.90) across 

soil landscapes, while soil pH was positively correlated with total S leaching flux (p ≤ 0.01, r 

= 0.99).     

   In the clay Acrisol soil, soil nutrient stocks (i.e. organic C, total N, K, Al, Mn and 

extractable P) and ECEC under frond stacks were higher than in the loam Acrisol soil (p ≤ 

0.05, except p ≤ 0.09 for extractable P) (Table 3.1). The soil solution from the frond-stacked 

area in the clay Acrisol soil also showed higher pH and concentrations of total Mn and total Si 

in soil solution (all p ≤ 0.05; Table 3.2) as well as higher annual leaching fluxes of total Mn 

and total Si compared to the loam Acrisol soil (all p ≤ 0.09; Table 3.3). In contrast, 
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concentrations of DON, TDN and Ca in soil solution (all p ≤ 0.09, except p ≤ 0.05 for TDN; 

Table 3.2) and annual leaching fluxes of DON and total Al (p = 0.09 for DON and p = 0.02 

for total Al; Table 3.3) were lower in the clay Acrisol than loam Acrisol soils. This was 

supported by strong correlations (p ≤ 0.01) of base cations (K+, Na+, Ca2+, and Mg2+), total Al 

and total Mn with Cl- in the soil solution under the frond-stacked area within the clay Acrisol 

soil (Table S3.1). Annual leaching fluxes of total Mn were positively correlated with soil 

exchangeable Mn (p = 0.01, r = 0.86).  

 

Fig. 3.1. Partial cations-anions charge balance of the major solutes (solutes with 

concentrations > 0.03 mg l-1) in soil water at a depth of 1.5 m within the fertilized area and 

under the frond-stacked area in smallholder oil palm plantations in the loam (top) and clay 

(bottom) Acrisol soils, Jambi, Sumatra, Indonesia. 
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3.4 Discussion 

3.4.1 Nutrient leaching losses between frond stack area and fertilized area  

In the loam Acrisol soil landscape, total N in the top 0.1 m soil of our fertilized area 

(Table 3.1; ~1.55 ± 0.15 g N kg-1) was lower than total N reported for a smallholder oil palm 

plantation (2.1 g N kg-1; 1-17 years old) in Sarawak, Malaysia on a more fertile Typic 

Dystrudept soil (USDA classification; Tanaka et al., 2009), but comparable to total N (top 

0.15 m) measured in industrial oil palm plantations on comparable soils in the neighbouring 

province of Riau (2.6 ± 1.5 g N kg-1; Comte et al., 2013). Also exchangeable Ca (~3.07 ± 1.16 

cmolcharge kg-1) was comparable to the values reported by Tanaka et al. (2009) for a 

smallholder oil palm plantation (1.07 cmolcharge kg-1) and oil palm estate (1.57 cmolcharge kg-1) 

in Sarawak, Malaysia. Compared to leaching fluxes measured at 0.6 m depth in the fertilized 

area of a 22 year old oil palm plantation in Nigeria (Acrisol soils with sand to sandy clay 

texture and 1342 mm rainfall), leaching fluxes in the fertilized area were comparable for 

NH4
+-N and NO3

--N (3.6 and 2.5 kg N ha-1), whereas they were higher for Ca and Mg and 

total S (~46.4 ± 13.4 kg Ca ha-1 year-1, 8.8 ± 2.1 kg Mg ha-1 year-1, 2.40 ± 0.20 kg S ha-1 year-

1; Omoti et al. 1983). However, Omoti et al. (1983) measured only for six months during the 

rainy season and did not use a soil water model to calculate leaching fluxes; instead they 

assumed that the amount that they sampled with their tension plate lysimeters was 

representative for the amount leached, which makes comparison of our values with this study 

problematic. Elevated NH4
+ leaching losses (measured at 1.2 m depth) were also observed 

from a 26-year old oil palm plantation on Acrisol soil in Malaysia with NPK fertilizer 

treatment compared to the control area (Tung et al., 2009). However, this study had 

application rates that were two to three times higher as compared to the rates applied by the 

smallholders in our study. Since no previous data have been reported on DOC leaching losses 
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from the subsoil of oil palm plantations, we can only compare our values with measurements 

from a tropical wet forest in Costa Rica (5.1 ± 1.2 g m-2 year-1; Schwendenmann and 

Veldkamp, 2005) which were comparable to our fluxes.     

The higher annual leaching fluxes of NH4
+-N and tendentially of NO3

--N from the 

fertilized area (Table 3.3) in the loam Acrisol landscape were probably the result of rapid 

dissolution of chemical fertilizers, leading to a period with elevated NH4
+ and NO3

-

concentrations in the soil, during which the availability of mineral N surpassed the N uptake 

by the oil palm trees. This, together with the precipitation surplus and a decrease in NH4
+ and 

NO3
- -immobilization due to fertilization (Keuter et al., 2013; Allen et al., 2015) probably lead 

to the elevated NH4
+ and NO3

- leaching losses. The generally low ECEC especially in the 

loam Acrisol soils may have exacerbated this effect for NH4
+ leaching. In contrast, the NH4

+ 

released during mineralization of pruned fronds did not result in elevated concentration peaks 

of dissolved NH4
+ probably due to quick uptake by palm roots and consequently NH4

+ 

leaching losses were low. The lower soil pH in the frond stack area may also have contributed 

to slow mineralization of pruned frond resulting in slow release of NH4
+-N.  

The higher soil pH, exchangeable Ca and base saturation (Table 3.1) together with the 

higher concentrations of Ca, Mg, total Al, total Mn, Na, and Cl in soil solution (Table 3.2), 

and annual leaching fluxes of Ca, Mg, total Al, total Mn, Na, total S and Cl (Table 3.3) of the 

fertilized compared to the frond-stacked areas within the loam Acrisol landscape show that 

management practices resulted in large spatial variability in soil fertility and nutrient leaching. 

Especially the application of dolomite (Ca Mg (CO3)2) in the fertilized area increased Ca2+ 

and Mg2+ concentrations in soil water and produced hydroxyl ions, resulting in higher soil pH. 

Furthermore, the higher Ca2+ and Mg2+ concentrations probably replaced exchangeable Al, 

which is high in the loam Acrisol soil (Al saturation between 67-80%; Hassler et al., 2015), 

and exchangeable Mn causing the elevated annual leaching fluxes of total Al and total Mn 
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(Table 3.3) in the fertilized area compared to the frond-stacked area. Application of mineral N 

fertilizer may have exacerbated the Al solubility and lowered the pH in soil solution in the 

fertilized area within the loam Acrisol (see section 3.2.1; Table S3.1) since N fertilizer can 

cause soil acidification if NO3
- is being leaching. Application of other fertilizers such as 

borate, KCl, and sulfur-containing fertilizer (i.e. kieserite; section 3.2.1) explains the higher 

Na, total S and Cl leaching losses in the fertilized compared to the frond-stacked areas (Table 

3.2 and 3.3).       

The higher annual leaching fluxes of DOC that we detected in the fertilized area 

compared to the frond-stacked area of the loam Acrisol soils may be related to lower DOC 

retention and/or higher DOC production. Positive correlations of DOC leaching fluxes with 

soil pH across sampling areas in the loam Acrisol landscape (section 3.3.1) suggests that 

either an increase in soil pH may have caused higher root activity or higher microbial activity 

which both can result in higher DOC production, or an increase in pH may have resulted in a 

shift from a more positive charge in favor of a more negative charge in these soils which are 

dominated by variable charge. Since in heavily weathered soils negatively charged organic 

acids are an important part of DOC (Hedin et al., 2003), this would reduce the DOC retention 

capacity and potentially result in higher annual leaching fluxes of DOC. 

For the clay Acrisol landscape the differences in soil characteristics between fertilized 

and frond-stacked areas were very similar to the effects for exchangeable Ca, extractable P 

and base saturation that we discussed for the loam Acrisol landscape (Table 3.1). Fertilizer 

applications probably decrease exchangeable Al and increase ECEC in the fertilized 

compared to the frond-stacked areas (Table 3.1). However, even though the fertilized area 

received inorganic fertilizers, we only detected significant differences in annual leaching 

fluxes of K between the fertilized and frond-stacked areas (Table 3.3). The tendency towards 

higher soil exchangeable K (Table 3.1), the correlation of annual leaching fluxes of K and 
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base saturation, and the correlation among base cations in soil solution from each sampling 

areas in the clay Acrisol (Table S3.1) suggest that higher annual leaching fluxes of K in the 

fertilized areas were most likely the result of dissolved K fertilizer (i.e. NPK, KCl) and the 

replacement of K on the negative exchange sites with other cations (i.e. Ca2+, Mg2+). The 

absence of significant differences in annual leaching fluxes of other elements was probably 

caused by the higher clay content which can retain larger amounts of nutrients against 

leaching losses (see also below).   

3.4.2 Nutrient leaching losses between loam and clay Acrisol soil  

We attribute the higher soil nutrient stocks (i.e. soil organic C, total N, K, Na, total Al, 

extractable P) and ECEC (Table 3.1), and lower DON leaching losses in clay Acrisol soil 

compared to the loam Acrisol soil (Tables 3.2 and 3.3) to the clay content in these heavily 

weathered soils which supports our second hypothesis. Higher nutrient stocks are often 

related to higher clay content, since clay is known increase organic matter contents of soils 

(van Straaten et al., 2015) while a higher clay content also increases the cation exchange 

capacity. Furthermore, an ancillary study conducted in the same smallholder oil palm 

plantations showed that the clay Acrisol had higher rates of NH4
+ immobilization. The lower 

annual DON leaching fluxes in the clay Acrisol soil compared to the loam Acrisol soil 

suggests higher sorption of organic N caused by higher clay content (see section 3.2.1) as well 

as higher sesquioxide content and exchangeable Al (i.e. frond stack; Table 3.1) in the clay soil 

compared to the loam Acrisol soil. Since clay and sesquioxide particles combine large surface 

areas with charge characteristics, a higher clay content can lead to increased sorption of 

organic components that have a negative charge (i.e. DON) resulting in lower DON 

concentrations and annual leaching fluxes. Such a mechanism was also reported in a lowland 

forest in Costa Rica with Ferralsol soil where low DON leaching losses were explained by 

high sorption capacity (Schwendenmann and Veldkamp, 2005).  
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The lower concentrations of Mg, total Al, and total Fe in soil solution and total ionic 

strength from the fertilized area in the clay Acrisol soil compared to the loam Acrisol soil 

were probably related to the low anion (especially Cl-) concentration in soil solution (Table 

3.2; Table S3.1) since positively charged cations can only be leached if they are accompanied 

by negatively charged anions (Fig. 3.1). We attributed the elevated Cl- anion concentrations of 

the fertilized area compared to the frond-stacked area to the type and amount of fertilizer 

applied, and suggest that this is also the most likely explanation for the higher Cl- 

concentrations of the fertilized areas in the loam Acrisol soil compared to the clay Acrisol 

soil. Cl- is considered a biologically inert anion (since it is not a nutrient) and has e.g. been 

used to compare evapotranspiration between sites that have similar Cl- input (Grimaldi et al., 

2009). Since the total ionic strengths of the frond-stacked area (where no fertilizer was 

applied) in both soil were comparable, the water balance is comparable between the sites and 

differences in Cl- input (i.e. fertilizer application) are thus the most likely explanation of the 

large observed differences.             

Finally, the higher total Mn concentrations and annual leaching fluxes (Table 3.2 and 

3.3) in the frond-stacked area of the clay soil and the higher exchangeable Mn values of that 

soil were probably related to occasional water stagnation on the B horizons of the clay 

Acrisol. We observed stagnic properties in some of the clay Acrisol soils. Mn in reduced form 

is dissolvable and can thus be adsorbed to the cation exchange complex, but it can also be 

leached more readily.  

3.4.3 Consequences for nutrient management in oil palm plantation 

Our present study showed that the higher leaching losses in the fertilized area 

compared to the frond-stacked area especially in the loam Acrisol landscape were mainly 

caused by the application of fertilizer and dolomite, which was absent from the frond-stacked 



Chapter 3. Nutrient leaching losses in smallholder oil palm plantations 

 

86 
 

area. The current practices of smallholders to apply fertilizer in concentrated form around oil 

palm trees causes a temporary increase in nutrient concentrations that surpass the nutrient 

demand of the oil palm trees. As long as these elevated nutrient concentrations occur, this can 

result in high nutrient leaching which potentially affects ground water quality and reduces the 

nutrient use efficiency of oil palm plantations. Management practices directed at reducing the 

period with elevated nutrient concentrations (e.g. more frequent fertilizer applications at lower 

doses) would probably reduce nutrient losses through leaching. The higher soil nutrient stocks 

and lower nutrient leaching losses in the clay Acrisol soil compared to the loam Acrisol soil 

both in the fertilized and frond-stacked areas were caused by the higher nutrient retention as a 

result of increased clay content. Heavily weathered soil with high clay content are thus less 

susceptible to nutrient leaching losses than heavily weathered soils with low clay content and 

may thus be preferable locations for the establishment of oil palm plantations. Earlier work on 

the same sites illustrated the importance of NH4
+ and NO3

- immobilization processes for 

nitrogen retention in these soils (Allen et al., 2015). If this finding can be extrapolated to other 

nutrients, this would suggest that stacking pruned fronds (with high C / nutrient ratios) near 

the fertilized area around the oil palm trees may increase soil microbial biomass and 

consequently nutrient immobilization, which may help to decrease nutrient leaching losses, 

especially in the fertilized areas in the loam Acrisol soil landscape. Since fine root biomass 

decreases with increasing distance from the oil palm tree, recycling pruned fronds near the 

fertilized area would probably also increase nutrient uptake from mineralization and further 

reduce leaching losses. 
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Supplementary information 

Table S3.1. Pearson correlations among element concentrations (mg l-1) in soil solution (1.5-m depth) from smallholder oil palm plantation 

under fertilized and frond-stacked areas in the loam and the clay Acrisol soil landscape, Jambi, Sumatra, Indonesia. Correlations were carried 

out using monthly averages of four replicate plots for the loam Acrisol and average of three replicates plots for the clay Acrisol per sampling 

area (n = 12).  

Element NH4
+-N NO3

--N DOC Na K Ca Mg Total 
Al 

Total 
Fe 

Total 
Mn 

Total 
P 

Total S Cl pH 

 Fertilized area in the loam Acrisol 
DON -0.28 0.08 -0.18 -0.38 -0.12 0.16 0.31 0.50 0.11 0.35 -0.27 -0.06 0.08 -0.17 
NH4

+-N  0.54† -0.12 0.0 0.50 0.15 0.37 0.46 0.11 0.64* -0.16 0.22 0.46 -0.21 
NO3

--N    -0.12 0.14 -0.02 -0.49 0.00 0.63* 0.53† 0.81 -0.05 -0.38 0.10 -0.57* 
DOC    -0.22 0.08 0.02 0.29 -0.17 0.04 -0.19 0.58* 0.40 -0.47 0.26 
Na     -0.12 -0.45 -0.45 -0.37 0.04 -0.10 -0.01 -0.38 0.22 0.01 
K      0.58* 0.43 -0.17 -0.28 0.14 -0.25 0.58* 0.27 0.36 
Ca       0.48 -0.19 -0.29 -0.08 -0.33 0.79** 0.45 0.55* 
Mg        0.40 -0.04 0.31 -0.30 0.72** 0.41 -0.06 
Total Al         0.46 0.78** -0.04 -0.16 0.27 -0.76** 
Total Fe          0.33 0.05 -0.31 0.16 -0.56* 
Total Mn           -0.21 -0.07 0.42 -0.40 
Total P            -0.15 -0.55† -0.12 
Total S             0.30 0.39 
Cl-              -0.10 
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 Frond stack area in the loam Acrisol 
DON -0.38 0.38 0.22 -0.38 0.24 -0.47 -0.16 0.47 -0.02 0.38 0.21 -0.43 0.53* -0.42 
NH4

+-N  0.07 0.23 0.40 0.25 0.04 0.08 -0.17 -0.17 -0.12 -0.08 0.42 0.06 0.24 
NO3

--N    0.61* 0.12 0.56* -0.26 -0.21 0.11 -0.08 0.04 0.17 0.20 0.02 0.18 
DOC    -0.1 0.57* -0.38 -0.54† -0.28 -0.23 -0.31 0.79** 0.22 -0.42 0.29 
Na     0.09 0.23 0.22 -0.35 0.16 -0.30 -0.47 0.61* 0.09 0.66* 
K      -0.27 -0.21 -0.07 -0.26 -0.12 0.14 0.29 -0.06 0.20 
Ca       0.83** 0.30 0.70** 0.44 -0.34 -0.15 0.72** 0.03 
Mg        0.63* 0.72** 0.75** -0.52† -0.41 0.95** -0.16 
Total Al         0.51† 0.96** -0.22 -0.81** 0.79** -0.65* 
Total Fe          0.59* -0.13 -0.46 0.67** 0.04 
Total Mn           -0.23 -0.80** 0.87** -0.59* 
Total P            -0.12 -0.49† 0.10 
Total S             -0.48 0.66* 
Cl              -0.25 
 Fertilized area in the clay Acrisol 
DON 0.02 -0.09 0.49 0.70* 0.69* 0.67* 0.42 0.45 0.25 0.38 0.57* 0.54† 0.63* 0.06 
NH4

+-N  0.08 0.15 0.39 0.37 0.16 0.06 0.06 0.54† 0.06 -0.07 0.46 -0.01 0.26 
NO3

--N    -0.18 0.03 0.46 0.51† -0.01 0.19 -0.01 0.25 -0.23 0.33 -0.49 -0.43 
DOC    0.52† 0.66* 0.56† 0.5 0.56† 0.49 0.51† 0.06 0.25 0.70* 0.03 
Na     0.61* 0.61* 0.29 0.21 0.19 0.15 0.24 0.75** 0.55† 0.12 
K      0.85** 0.74** 0.78** 0.54† 0.43 0.16 0.52† 0.59* -0.31 
Ca       0.81** 0.74** 0.33 0.66* 0.01 0.69* 0.64* -0.25 
Mg        0.95** 0.49 0.73** -0.01 0.26 0.74** -0.54† 
Total Al         0.64* 0.80** 0.03 0.15 0.75** -0.51† 
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Total Fe          0.43 -0.09 0.16 0.59* 0.05 
Total Mn           -0.09 0.12 0.42 -0.59* 
Total P            -0.11 0.17 0.10 
Total S             0.26 0.25 
Cl              -0.13 
 Frond stack area in the loam Acrisol 
DON 0.19 0.34 0.15 0.49† 0.47 0.51† 0.23 0.29 -0.52† 0.48 -0.06 0.28 0.36 -0.12 
NH4

+-N  -0.07 0.27 0.21 0.38 0.11 0.06 0.07 -0.16 0.06 0.02 0.13 0.09 0.12 
NO3

--N    0.34 0.24 0.32 0.13 -0.13 0.09 -0.36 0.03 0.80** 0.56* -0.05 -0.07 
DOC    0.09 0.23 0.25 0.45 0.02 -0.09 0.25 -0.14 -0.46 0.19 0.18 
Na     0.91** 0.94** 0.76** 0.91** 0.11 0.85** -0.04 0.33 0.89** -0.29 
K      0.88** 0.74** 0.80** 0.02 0.81** 0.17 0.21 0.79** -0.21 
Ca       0.90** 0.91** 0.10 0.95** -0.12 0.10 0.95** -0.35 
Mg        0.81** 0.27 0.04 -0.22 -0.28 0.93** -0.38 
Total Al         0.24 0.91** -0.23 0.16 0.92** -0.38 
Total Fe          0.04 -0.18 -0.02 0.25 -0.06 
Total Mn           -0.27 -0.09 0.94** -0.44 
Total P            0.31 -0.27 0.03 
Total S             -0.06 0.18 
Cl              -0.47 

*, ** - significant at p ≤ 0.05 and p ≤ 0.01, respectively, † show marginal significant at p ≤ 0.09; element that did not show correlation with 
other elements (total Si) were excluded.  
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Chapter 4 

Synthesis 

4.1. Key findings 

Chapter 2. In the reference land uses, the higher clay content in the clay Acrisol soil 

exhibited higher soil nutrient stocks (i.e. SOC, total N, extractable P and exchangeable 

bases) and retention efficiencies of N and base cations, and lower nutrient leaching losses 

(e.g. N, Na, Ca, Mg and total Al) than in the loam Acrisol soil. In the converted land uses, 

management practices (i.e. fertilization, liming) mainly controlled nutrient leaching losses 

(e.g. N, DOC, base cation) and retention efficiencies of N and base cations.   

Chapter 3. The pulse rates of applications of mineral fertilizers and lime around the oil 

palm tree elevated nutrient concentrations in soil solution, resulting in higher leaching 

losses (e.g. N, base cations, total Al, total Mn, total S and Cl) compared to the area (inter-

rows) stacked with fronds. At the landscape scale, the higher soil nutrient stocks and lower 

nutrient leaching losses (e.g. N, base cation, total Al and total Fe) in the clay Acrisol 

landscape compared to the loam Acrisol landscape in both fertilized and frond-stacked 

areas were caused by the higher nutrient retention as a result of higher clay content.  

   

4.2. Implications 

 Nutrient leaching is just one process involved in the partial budgets of nutrients in 

land-use types. Other key processes involved in the partial input-output budgets of 

nutrients include inputs through deposition from bulk precipitation, fertilization and 
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outputs through harvest export. The magnitudes of these components can provide us with a 

more holistic view of the major causes of nutrient changes with land-use change. In line 

with this view, I conducted partial nutrient budgets as synthesis of my studies, 

incorporating my measured annual leaching fluxes with annual nutrient inputs (i.e. bulk 

precipitation and fertilization) as well as those results from ancillary studies on nutrient 

exports through harvest (Kotowska, 2015) and soil nutrient stocks in the top 1-m depth 

(Allen, 2015). Through these partial nutrient budgets, I am able to quantify the magnitude 

of changes of nutrients (K, Ca, Mg, and Na) with conversion of forest to rubber and oil 

palm plantations. This information is important to identify the main pathway of nutrient 

losses in agricultural systems and the sustainability of converted land uses following years 

of cultivation. 

In the reference land uses, the higher soil nutrient stocks (i.e. extractable P, 

exchangeable K, Ca and Mg) and base saturation in the top 1-m depth (Table 4.1) of the 

clay than the loam Acrisol soils were mirrored with the lower nutrient leaching losses (e.g. 

N, Ca, Mg and Na; Table 2.4; pg. 36). These results suggested a more efficient retention of 

nutrients (e.g. soil-vegetation cycling) in the reference land uses of the clay than the loam 

Acrisol soils, which was also supported by higher (all p ≤ 0.05) annual partial budgets of 

N, P, and base cation (Table 4.2), higher NPP (Kotowska et al., 2015) and subsequently 

increased retention efficiency of N and base cations (Chapter 2). Annual leaching fluxes 

were the main output pathways for N, P and base cations in the reference land uses, except 

for P in the jungle rubber sites where the major output pathway was the harvest export. 

Decrease in extractable P stock in the top 1-m depth in jungle rubber compared to forest in 

the clay Acrisol landscape (Table 4.1) contrasted the positive, albeit low, partial budget of 

P (Table 4.2). This could be attributed to the fluctuations of harvest export over time, as 

the present annual partial budget was only based during 2013. Additionally, this result 
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suggests that losses via runoff and/or soil erosion (not measured in this study) could have 

also contributed to other losses of soil P from this land use.         

When forest and jungle rubber are converted to unfertilized rubber plantations, soil 

nutrient stocks and nutrient leaching losses could decrease over time (Chapter 2). In 

unfertilized rubber plantations, with continuous harvest export and decrease inputs from 

litter and root production compared to the reference land uses (Kotowska et al., 2015), 

there were negative partial budget of nutrients (N, P, K and Mg in either landscapes;  Table 

4.2). It is noteworthy that the negative partial budget of P in rubber plantations (Table 4.2) 

was reflected by decrease in P stock in the top 1-m depth (Table 4.1) and lower total P 

leaching losses in rubber plantations compared to the reference land uses, particularly in 

the loam Acrisol landscape  with older rubber plantations (14-17 years old). Additionally, 

lower annual NO3
--N and DOC leaching fluxes in rubber plantations compared to the 

reference land uses were also detected in the loam Acrisol landscape (Chapter 2), and may 

be attributed to the low stocks of soil organic C (van Straaten et al., 2015) and soil 

extractable NO3
- (Allen et al., 2015). The negative partial budget, low nutrient stocks and 

leaching losses in unfertilized rubber plantation has implication on the sustainability of 

yield, as well as on the duration of the existing land use or further conversion to another 

land use. 

The higher soil nutrient stocks (Table 4.1; Allen, 2015) and nutrient leaching in oil 

palm plantations (Chapter 2) compared to the reference land uses and unfertilized rubber 

plantations in both soil landscapes confirmed that management practices (i.e. fertilization, 

liming) controlled soil nutrient levels and leaching losses. An ancillary study conducted in 

the same sites reported that oil palm plantations had higher nutrient loss through harvest 

export (Kotowska, 2015) compared to the other land uses. The high leaching losses 
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(Chapter 2) and harvest export (Kotowska, 2015) resulted in the lowest annual partial 

budgets (i.e. Ca and Mg) in oil palm plantations than in the other land uses in both 

landscapes (all p  0.05, except p  0.09 for Ca in the loam Acrisol) (Table 4.2), as well as 

the lowest base cation retention efficiency in the loam Acrisol landscape (Table 2.5; pg. 

37). The high net annual loss Mg (Table 4.2) contributed to the decrease in Mg stocks in 

the top 1-m depth in oil palm plantations compared to the other land uses in the loam 

Acrisol landscape (Table 4.1). Furthermore, the net annual loss of Mg (Table 4.2) 

contributed to a 73 ± 19% decrease in Mg stocks in the top 1-m depth in oil palm 

plantations in the loam Acrisol landscape. Thus, addition of Mg through fertilizer (i.e. 

kieserite) or liming (i.e. dolomite) was indeed needed in this highly weathered soil to slow 

down degradation of the soil fertility and to maintain the sustainability of yield in 

smallholder oil palm plantations.  

The amount of fertilizer applied also affects leaching losses and partial budget of 

nutrients in oil palm plantations. For example, the higher N input from fertilizer in oil palm 

plantations in the loam than clay Acrisol soils (section 2.2.1) resulted in higher leaching 

losses of N (Table 2.4; pg. 36) and lower N retention efficiency (Table 2.5; pg. 37) than in 

the other land uses. Additionally, such high N fertilizer application in the loam Acrisol soil 

also increased acidity of soil solution and concentration of dissolved Al (Table 2.3; pg. 35). 

The high N fertilization plus the bulk precipitation N input in oil palm plantations in the 

loam Acrisol landscape were higher than the N output (leaching and harvest export), 

resulting in a positive partial budget of N (Table 4.2). In contrast, the negative partial 

budget of N in the oil palm plantations of the clay Acrisol landscape (Table 4.2) was due to 

lower N fertilization rates, even though N leaching and retention efficiency did not differ 

among land uses (Table 2.4 and 2.5; pg. 36-37). These findings imply that the 

sustainability of palm oil yield should take into account the long-term effects of pulse N 
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application on soil acidity, which can result in a dependency on liming input that requires 

additional capital by smallholders, and its impact on increased nutrient leaching on ground 

water quality.   

Due to the increased nutrient leaching losses with conversion of forest or jungle 

rubber to fertilized oil palm plantations, it is important to critically observe in more detail 

the impact of current management practices in smallholder oil palm plantations. 

Management practices in the smallholder oil palm plantations in our landscapes were 

characterized by the application of chemical fertilizers around each palm or by stacking 

pruned fronds on inter-rows of oil palm trees. Pulse rate of fertilization around each oil 

palm tree increased nutrient concentrations in soil solutions, resulting in higher leaching 

losses in the fertilized area compared to the area where palm fronds were stacked on inter-

rows (Chapter 3). The higher soil nutrient stocks and lower nutrient leaching losses in the 

clay Acrisol soil compared to the loam Acrisol soil in both fertilized and frond-stacked 

areas reflected the higher nutrient retention due to the ability of clay to retain more 

nutrients against the force of gravity. Heavily weathered soil with high clay content are 

thus less susceptible to nutrient leaching losses than heavily weathered soils with low clay 

content and may thus be preferable locations for the establishment of oil palm plantations.  

Also, the amount of fertilizer applied strongly impacted nutrient leaching in the fertilized 

areas between the loam and clay Acrisol soils. Earlier work on the same sites illustrated the 

importance of microbial immobilization for N retention in these soils (Allen et al., 2015). 

If this finding can be extrapolated to other nutrients, this would suggest that stacking 

pruned fronds (with high C / nutrient ratios) near the fertilized area around the oil palm 

trees may increase soil microbial biomass and consequently nutrient immobilization, which 

may help to decrease nutrient leaching losses.  
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Table 4.1. Soil characteristicsa in the top 1 m of soil from different land uses in two soil 

landscapes of Jambi, Sumatra, Indonesia 

Characteristics Forest Jungle rubber Rubber 
plantation 

Oil palm 
plantation 

  loam Acrisol soil landscape 
Total nitrogen  
(kg N ha-1) 

b9642 ± 622 10669 ± 808B† 11079 ± 1376 7697 ± 586  

Extractable phosphorus 
(kg P ha-1) 

14 ± 2B 27 ± 12 15 ± 2  21 ± 6 

Exchangeable potassium 
(kg K ha-1) 

216 ± 3 198 ± 31B† 226 ± 55 146 ± 36 

Exchangeable calcium 
(kg Ca ha-1) 

571 ± 165 376 ± 65B† 634 ± 149 695 ± 246 

Exchangeable 
magnesium (kg Mg ha-1) 

84 ± 17ab 78 ± 8ab B† 172 ± 69a 42 ± 8 b 

Exchangeable sodium  
(kg Na ha-1) 

144 ± 69  120 ± 35  216 ± 78   335 ± 67   

ECEC (mmolc kg-1) 192 ± 20 149 ± 43 209 ± 27 128 ± 36 
Base saturation (%, 
weighted for the top 1 m) 

6.4 ± 0.9b† B 8.5 ± 2.0ab† 9.0 ± 1.5ab† 13 ± 0.3a† 

  clay Acrisol landscape 
Total nitrogen  
(kg N ha-1) 

14018 ± 4578 16940 ± 2682A† 11658 ± 2944 12889 ± 1564  

Extractable phosphorus 
(kg P ha-1) 

37 ± 4a A 17 ± 2bc 9 ± 1c  32 ± 12ab 

Exchangeable potassium 
(kg K ha-1) 

652 ± 412 743 ± 310A† 201 ± 66 258 ± 64 

Exchangeable calcium 
(kg Ca ha-1) 

1087 ± 558  1184 ± 344A† 560 ± 92  1194 ± 337  

Exchangeable 
magnesium (kg Mg ha-1) 

289 ± 174 569 ± 235A† 158 ± 51 142 ± 33 

Exchangeable sodium  
(kg Na ha-1) 

52 ± 7 68 ± 21 40 ± 13  60 ± 8  

ECEC (mmolc kg-1) 330 ± 181 565 ± 165 279 ± 91 290 ± 57 
Base saturation (%, 
weighted for the top 1 m) 

11.1 ± 0.6a† A 8.1 ± 1.7ab† 7.1 ± 0.6b† 10.4 ± 1.1ab† 

a Allen (2015).  
b Means (± SE, n = 4, except for oil palm n = 3, the same plot with leaching measurement) 
followed by different lower case letters indicate significant differences among land uses 
within each landscape and different upper case letters indicate significant differences 
between landscapes for each reference land use (Linear mixed effects models with Fisher's 
LSD test at p ≤ 0.05, except those indicated with † at p ≤ 0.09). 
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Table 4.2. Annual (2013) partial nutrient budgetsa of different land uses (forest, jungle rubber, rubber and oil palm plantations) in two landscapes 

(loam and clay Acrisol soils) in Jambi, Sumatra, Indonesia  

Element loam Acrisol soil landscape clay Acrisol soil landscape 
Forest Jungle rubber Rubber 

plantation 
Oil palm 
plantation 

Forest Jungle rubber Rubber 
plantation 

Oil palm 
plantation 

Nitrogen (kg N ha-1 year-1)         
Input b12.90 ± 0.13 12.90 ± 0.13 12.90 ± 0.13 104.90 ± 45.51 16.44 ± 2.56 16.44 ± 2.56 16.44 ± 2.56 32.44 ± 16.00 
Output 5.96 ± 0.81  11.59 ± 4.01 12.71 ± 2.47 93.17 ± 4.01 3.44 ± 0.83 4.24 ± 0.62 16.87 ± 2.48 81.28 ± 11.09 
Balance 6.94 ± 0.81B  1.31 ± 4.01B 0.19 ± 2.47  11.73 ± 46.37  13.00 ± 0.83a A 12.21 ± 0.62a A - 0.42 ± 2.48b - 48.84 ± 15.82c 

Phosphorus (kg P ha-1 year-1)         
Input 0.42 ± 0.05 0.42 ± 0.05 0.42 ± 0.05 21.42 ± 0.00 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 7.79 ± 7.00 
Output 0.10 ± 0.03  1.37 ± 0.25 3.13 ± 0.84 7.41 ± 0.24 0.05 ± 0.00 0.47 ± 0.19 3.79 ± 0.96 6.09 ± 0.86 
Balance 0.32 ± 0.03b B - 0.95 ± 0.25b B  - 2.71 ± 0.84c 14.01 ± 0.24a 0.74 ± 0.00a A 0.31 ± 0.19a A - 3.00 ± 0.96b 1.70 ± 6.14ab 

Potassium (kg K ha-1 year-1)         
Input 5.49 ± 1.50 5.49 ± 1.50 5.49 ± 1.50 96.09 ± 51.91 9.60 ± 4.87 9.60 ± 4.87 9.60 ± 4.87 75.27 ± 47.10 
Output 4.33 ± 0.57 5.98 ± 2.21 8.10 ± 1.57 69.77 ± 4.08 3.07 ± 0.39  3.92 ± 1.00  8.06 ± 1.44  56.51 ± 7.18 
Balance 1.16 ± 0.57B - 0.50 ± 2.21B  - 2.61 ± 1.57 26.32 ± 48.00 6.53 ± 0.39a A  5.68 ± 1.00a A 1.54 ± 1.44b 18.76 ± 48.57ab 

Calcium (kg Ca ha-1 year-1)         
Input 10.94 ± 0.78 10.94 ± 0.78 10.94 ± 0.78 25.23 ± 14.29 12.41 ± 2.41 12.41 ± 2.41 12.41 ± 2.41 15.97 ± 3.57 
Output 10.00 ± 0.70  11.96 ± 3.40 10.14 ± 1.06 84.50 ± 13.70 6.75 ± 0.55  9.12 ± 0.42 9.38 ± 1.15 41.56 ± 5.61 
Balance 0.94 ± 0.70a† B - 1.02 ± 3.40a†  0.80 ± 1.06a†  - 59.27 ± 10.96b† 5.66 ± 0.55a A 3.28 ± 0.42a 3.03 ± 1.15a - 25.59 ± 2.88b 

Magnesium (kg Mg ha-1 year-1)         
Input 2.41 ± 0.47 2.41 ± 0.47 2.41 ± 0.47 9.61 ± 7.20 3.01 ± 0.38 3.01 ± 0.38 3.01 ± 0.38 3.91 ± 0.90 
Output 4.14 ± 0.26  4.94 ± 1.31 5.75 ± 1.02 39.88 ± 1.12 2.50 ± 0.19 3.51 ± 0.49 4.91 ± 0.52 31.31 ± 4.78 
Balance - 1.73 ± 0.26a B - 2.52 ± 1.31a - 3.33 ± 1.02a - 30.27 ± 8.12b 0.52 ± 0.19a A - 0.50 ± 0.49a - 1.90 ± 0.52a - 27.40 ± 3.92b 

Sodium (kg Na ha-1 year-1)         
Input 62.99 ± 1.26 62.99 ± 1.26 62.99 ± 1.26 62.99 ± 1.26 66.14 ± 6.33 66.14 ± 6.33 66.14 ± 6.33 66.14 ± 6.33 
Output 37.67 ± 3.58 37.00 ± 7.59 30.98 ± 2.65 130.69 ± 75.82 24.89 ± 3.77 32.28 ± 3.19 25.15 ± 0.78 62.73 ± 17.69 
Balance 25.31 ± 3.58 B  25.99 ± 7.59  32.01 ± 2.65 - 67.70 ± 75.82 41.25 ± 3.77A  33.86 ± 3.19  40.99 ± 0.78  3.41 ± 17.69  

a Partial nutrient budget = Input (bulk precipitation + fertilizers) – Output (annual leaching fluxes + harvest export) 
 Element balance that showed: + = net nutrient gain; - = net nutrient loss 
b Means (SE, n = 4; except oil palm n = 3; see Chapter 2) followed by different lower case letters indicate significant differences among land uses within each 

landscape and different upper case letters indicate significant differences between landscapes for each reference land use (one-way analysis of variance with 
Fisher's LSD test at p ≤ 0.05, except those indicated with † at p ≤ 0.09).  
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