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Summary 

 

European beech (Fagus sylvatica L.) is a dominant forest tree species of high economic 

and ecological value in Central Europe. The natural distribution range of the species across 

Central Europe is determined by water ability. Extreme weather events with severe drought and 

drought periods are predicted to occur more frequently in the future. In the forest sector, water 

supply probably becomes a limiting factor in extended areas. It is, thus, necessary to evaluate 

the potential ability of beech to acclimate or adapt to water limitation.  

The responses of beech to water shortage could be archived in wood anatomical 

properties and might be evaluated by analysing these properties. Moreover, water limitation 

may negatively affect carbon and nitrogen contents of beech wood. Soil humidity is an 

important factor influencing 13C variations in tree rings, since water limitation can induce 

stomatal closure and thus increase the δ13C of the incorporated carbon. Therefore, C, N content 

and δ13C signatures in beech wood samples were analyzed to investigate effects of water 

shortage on beech wood properties.  

A key pathway for drought acclimation involves abscisic acid (ABA) signaling to recruit 

drought defense responses and which result in stomatal closure, thereby, regulating plant water 

consumption. Another feature of drought stress is an increased production of reactive oxygen 

species. Therefore, activation of protective enzymes, especially of antioxidative defenses, is 

important to combat the oxidative degradation of vulnerable structures such as cell membranes. 

To address the plasticity and adaptation of beech in response to drought, expression levels of 

ABA- and stress-related genes were chosen for analyzing. In addition, leaf area and membrane 

integrity were determined as indicators of the responses of beech to drought stress.  

Plant species have different strategies to cope with water stress: avoidance or tolerance. 

The basic mechanism of either strategy involves isohydric or anisohydric stomatal regulation. 

Isohydric plants close stomata before any changes occur in plant water status, whereas 

anisohydric species show a slow stomatal reaction in response to a decrease in the water 

potential. Soil water content, leaf predawn water potential, relative water content, chlorophyll 

fluorescence and stomatal conductance were characterized as good candidates to test these 

strategies. Furthermore, expression of OST1 (open stomata 1), a protein kinase that links the 

guard cell reaction to the ABA signaling network was investigated.  
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In this study, the responses of seedlings, saplings and mature trees of  European beech 

to drought have been investigated. The following hypotheses were tested: 

Beech trees from drier habitats possesses changes in the xylem anatomy that enables 

them to cope with low precipitation.  

Dry climate negatively affects carbon and nitrogen contents of beech wood. 

Beech progenies from dry sites exhibit constitutively higher expression levels of ABA-

and stress-related genes and are therefore less drought responsive than progenies from moist 

sites.  

Beech originating from a low-precipitation climate show a stronger drought avoidance 

and beech from mesic habitats adopt a stronger drought tolerance strategy than those originating 

from dry habitats when exposed to decreasing soil water availability.  

To test these hypotheses, three experiments were set up and conducted with either 

mature beech trees along a precipitation gradient or beech seedlings exposed to experimental 

manipulation of the soil water level.  

A field study was carried out in three locations differing in the long-term annual 

precipitation. Wood increment, xylem anatomical properties as well as C, N content and δ13C 

signatures was investigated. A strong reduction of annual increment of beech trees was found 

from moist sites to dry sites. Thus, water availability of study sites might be one of the limiting 

factors of wood increment of beech trees. Beech trees from dry sites showed changes 

anatomical traits that enable them to cope better with low precipitation climate. To compensate 

for narrower vessel lumen areas, beech trees stocking in the dry site had higher vessel 

frequencies. These anatomical changes probably enable beech trees balance between water 

uptake efficiency and avoidance of embolism in beech stems. Moreover, this mechanism 

probably helped the plants to maintain the water status of beech trees under dry condition, and 

to maintain C and N content in beech wood.  This finding suggests that beech trees on the dry 

site may have a drought avoidance strategy to cope with low water availability in nature. 

Anatomical features varied significantly along the growing season. In early wood, anatomical 

parameters did not exhibit remarkable changes among sites. In latewood and transition wood 

regions, vessel lumen area decreased strongly and vessel frequency increased significantly. In 

late wood of beech trees stocking on the dry sites, thicker walls and narrower fibre lumina were 

found. In addition, decreased δ13C values of beech trees living in the driest indicate higher water 
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use efficiency in the late growing season. The comparison of beech trees at the wet and the dry 

sites suggests that water availability caused anatomical changes. However, other factors as 

genetic factors may also contribute to better adaptedness of on dry sites to low precipitation.  

To investigate the expression of genes related to ABA and stress in response to drought 

stress, a common garden experiment was conducted. The natural regeneration from five beech 

stands along a precipitation gradient was used in this experiment. The responses of well-watered 

and drought-stressed saplings to drought stress were measured throughout summer at an early, 

mid- and late season time points. Expression levels of ABA- and stress-related genes were 

determined. To link gene expression with plant performance we determined progeny-and 

drought-related effects on leaf area and membrane integrity in the absence and presence of acute 

oxidative stress. Drought stress resulted in decreased leaf area compared with well-watered 

saplings. Progenies from the wetter site, generally, showed larger leaf areas than those from the 

drier sites. Relative electrolyte leakage was changed by drought stress and increased toward the 

end of the growing season. Expression levels of ABA- and stress - related genes was strongly 

affected by drought stress except glutamine amido transferase (GAT). In addition, expression 

levels of genes (nine-cis-epoxy-dioxygenase (NCED), protein phosphatase 2C (PP2C), early 

responsive to dehydration (ERD), ascorbate peroxidase (APX), superoxide dismutase 

(Cu/ZnSOD), aldehyde dehydrogenase (ALDH), glutamine amido transferase (GAT) was higher 

in the progenies from moist than in those from drier sites. Seasonal analyses of the 

transcriptional regulation of genes for drought signaling and defense uncovered intraspecific 

differences in constitutive expression and drought responsiveness. The progeny-related 

differences were stronger than the stress responses suggesting that selection for drought 

adaptation may already take place in local beech populations.  

To investigate whether there is intraspecific variation in the drought resistance 

mechanisms, three beech provenances from a low, intermediate-, and high-precipitation climate 

(designated as LP, IP, and HP) were subjected to progressive drought. Soil and plant water 

status, the maximum quantum yield of photosystem II, and stomatal conductance of control and 

drought-treated seedlings were regularly measured. Moreover, transcript levels of OST1 were 

determined. The data support that the within-species drought responses of beech can also vary 

between isohydric or anisohydric stomatal behavior. The beech provenance LP exhibited an 

isohydric phenotype because the plants showed more rapid stomatal closure and maintained 

higher leaf relative water content and predawn water potentials than those from mesic 
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conditions. Thereby, the population from the dry habitat clearly displayed a drought avoidance 

strategy. In contrast, the HP progenies showed a slow decline in stomatal conductance, but a 

stronger decrease in the predawn water potential upon water limitation. There was no drought 

influence on plant growth biomass allocation throughout drought treatment. Beech exhibited 

intraspecific variation in drought resistance strategies characterized by anisohydric or isohydric 

behavior. It suggests that the anisohydric functional type of beech is better endowed to cope 

with the predicted climate extremes than the isohydric type because it possess a drought 

tolerance strategy. 

The results of this present study show that low precipitation climate and drought affect 

the anatomical, physiological and molecular responses of beech trees. Beech trees exhibited 

quite high intraspecific variation in drought resistance strategies with drought avoidance and 

drought tolerance strategies.  
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Zusammenfassung 

 

Die europäische Buche (Fagus sylvatica, L.) ist eine dominante Waldbaumart von 

hohem ökonomischen und ökologischem Wert in Zentraleuropa. Die natürliche Verbreitung 

der Spezies in Zentraleuropa ist abhängig von der Wasserverfügbarkeit. In der Zukunft wird  

vermehrt von extremen Wetterbedingungen wie Hitzewellen und extreme Trockenheit 

ausgegangen. In ausgedehnten Bereichen des Waldes wird die Wasserversorgung 

wahrscheinlich ein limitierender Faktor. Daher ist es notwendig, die potentielle Fähigkeit der 

Buchen, sich bei Wasserlimitierung zu akklimatisieren oder anzupassen, zu bewerten. 

Die Reaktionen der Buche auf Wasserknappheit könnten in anatomischen 

Eigenschaften des Holzes abgespeichert sein und durch die Analyse dieser Eigenschaften 

bewertet werden. Darüber hinaus könnte die Wasserlimitierung die Kohlenstoff- und 

Stickstoffgehalte im Buchenholz negativ beeinflussen. Die Bodenfeuchte ist ein wichtiger 

Faktor, der den 13C-Gehalt in den Baumringen beeinflußt. Da Wasserknappheit den Verschluß 

der Stomata induzieren kann, wird das δ13C des eingebauten Kohlenstoffes erhöht. Daher 

wurden C- und N-Gehalte und δ13C Signaturen in Buchenholzproben analysiert, um die 

Auswirkungen von Wasserknappheit auf Buchenholzeigenschaften zu untersuchen. 

Eine Schlüsselrolle für die Akklimatisierung an Trockenheit spielt Abscisinsäure 

(ABA), wodurch Abwehrreaktionen hervorgerufen werden, die zum Verschluß der Stomata 

führen und somit den Wasserverbrauch der Pflanzen regulieren. Ein weiteres Merkmal von 

Trockenstress ist eine erhöhte Produktion von reaktiven Sauerstoffspezies. Daher ist die 

Aktivierung von Schutzenzymen, insbesondere der antioxidativen Abwehr, wichtig bei der 

Bekämpfung des oxidativen Abbaus anfälliger Strukturen wie etwa der Zellmembranen. Um 

die Plastizität und Anpassung der Buche in Reaktion auf Trockenheit zu untersuchen, wurde 

die Expression von ABA- und stressverwandten Genen für die Analyse ausgewählt. Darüber 

hinaus wurden die Blattflächen und die Membranintegrität als Indikatoren für Reaktionen der 

Buche auf Trockenstress bestimmt. 

Pflanzen haben unterschiedliche Strategien, um Trockenstress zu bewältigen: 

Vermeidung oder Toleranz. Der Grundmechanismus beider Strategien beinhaltet die 

isohydrische oder anisohydrische Regulation der Stomata. Isohydrische Pflanzen schließen ihre 

Stomata noch bevor sich der Wasserstatus in der Pflanze verändert, wohingegen anisohydrische 
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Spezies eine langsame stomatale Reaktion als Antwort auf ein geringeres Wasserpotential 

zeigen. Der Wassergehalt des Bodens, in den Blättern vor Sonnenaufgang (Predawn Water 

Potential), der relative Wassergehalt, Chlorophyllfluoreszenz und stomatäre Leitfähigkeit 

wurden als gute Merkmale charakterisiert, um diese Strategien zu testen. Des Weiteren wurde 

die Expression von OST1 (open stomata 1), einer Proteinkinase, die zur Schließzellenreaktion 

des ABA-Signalnetzwerkes führt, untersucht. 

In dieser Studie wurden die Reaktionen von Sämlingen und jungen, sowie 

ausgewachsenen europäischen Buchen auf Trockenheit untersucht. Die folgenden Hypothesen 

wurden getestet: 

 Buchenpopulationen aus trockeneren Lebensräumen weisen Veränderungen in der 

Anatomie des Xylems auf, um mit geringem Niederschlag umzugehen. 

 Trockenes Klima wirkt sich negativ auf den Kohlenstoff und den Stickstoffgehalt 

in Buchenholz aus. 

 Buchennachkommen von trockenen Standorten zeigen eine konstitutiv erhöhte 

Expression von ABA-und stressinduzierten Genen und reagieren somit weniger auf 

Trockenheit als Nachkommen von feuchteren Standorten. 

 Buchen, die aus niederschlagsarmen klimatischen Bedingungen stammen, zeigen 

eine stärkere Trockenheitsvermeidung. Buchen aus mesischen Habitaten bilden 

eine stärkere Toleranz gegenüber Trockenheit aus, als solche aus trockenen 

Habitaten, wenn sie einer abnehmenden Wasserverfügbarkeit in der Erde ausgesetzt 

sind. 

Um diese Hypothesen zu testen, wurden drei Experimente durchgeführt. Einerseits mit 

adulten Buchen entlang eines Niederschlagsgradienten, andererseits mit Buchensetzlingen, die 

experimentell veränderten Bodenwassergehalten ausgesetzt waren.  

Ein Freilandexperiment wurde in drei verschiedenen Gebieten durchgeführt, die 

ähnliche Bodeneigenschaften aufwiesen, sich aber hinsichtlich der jährlichen Niederschlagsrate 

unterschieden. Holzzuwachs, die anatomischen Eigenschaften des Xylems, sowie C- und N- 

Gehalt und die δ13C Signaturen wurden untersucht. Es wurde eine starke Reduzierung des 

jährlichen Zuwachses bei Buchen von feuchten hin zu trockenen Standorten gefunden. So 

könnte die Verfügbarkeit von Wasser in den Untersuchungsgebieten einer der begrenzenden 

Faktoren des Holzzuwachses bei Buchen sein. Buchen auf  trockenen Standorten zeigten 

Veränderungen anatomischer Merkmale, die ihnen ermöglichten, besser mit geringen 
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Niederschlägen umzugehen. Um schmale Gefäßlumen auszugleichen, zeigten Buchen an 

trockenen Standorten mehr Gefäße. Diese anatomischen Veränderungen ermöglichen Buchen 

wahrscheinlich die Balance zwischen Wasseraufnahmeeffizienz und der Vermeidung von 

Embolien im Buchenstamm zu halten. Darüber hinaus trägt dieser Mechanismus 

wahrscheinlich dazu bei, das Wasserpotential und den C- und N-Gehalt im Holz der Buchen 

unter trockenen Bedingungen zu erhalten. Dieses Ergebnis deutet darauf hin, dass Buchen von 

trockenen Standorten eine Vermeidungsstrategie gegen Trockenheit haben, um mit geringer 

Wasserverfügbarkeit in der Natur umgehen zu können. Anatomische Merkmale variierten 

während der Vegetationsperiode signifikant. Zwischen den Standorten wiesen die 

anatomischen Parameter im Frühholz keine bemerkenswerten Veränderungen auf. Im Spät- und 

Übergangsholz war die Fläche der Gefäßlumen stark vermindert und die Anzahl der Gefäße 

signifikant erhöht. Im Spätholz der Buchen auf trockenen Standorten wurden dickere Wände 

und schmalere Faserlumina gefunden. Darüber hinaus zeigten verringerte δ13C Werte bei den 

Buchen auf den trockensten Standorten eine höhere Wassernutzungseffizienz am Ende der 

Wachstumsperiode. Der Vergleich der Bäume von feuchten und von trockenen Standorten wies 

darauf hin, dass die Verfügbarkeit von Wasser anatomische Veränderungen beeinflußte. Jedoch 

können auch andere Faktoren als die genetischen zu einer besseren Anpassung der Buchen auf 

den trockenen Standorten an geringe Niederschläge beitragen. 

Um die Expression von Genen im Zusammenhang mit ABA und Stress als Reaktion auf 

Trockenstress zu untersuchen, wurde ein Gartenexperiment durchgeführt. Für dieses 

Experiment wurden die Nachkommenschaften von fünf Buchenbeständen entlang eines 

Niederschlagsgradienten verwendet. Die Reaktionen von gut bewässerten und 

trockengestressten Keimlingen gegenüber Trockenstress wurden während des Sommers zu 

einem frühen, mittleren und späten Zeitpunkt gemessen. Die Expressionsniveaus von ABA- 

und stressbezogenen Genen wurde ermittelt. Um die Genexpression mit der Leistungsfähigkeit 

der Pflanzen vergleichen zu können, wurden herkunfts- und dürrebedingte Auswirkungen auf 

die Blattfläche und Membranintegrität in Abwesenheit und Anwesenheit von akutem 

oxidativen Stress untersucht. Trockenstress führte zu einer verringerten Blattfläche verglichen 

mit gut gewässerten Setzlingen. Die Nachkommen von feuchteren Standorten zeigten allgemein 

größere Blattflächen als die von trockenen Standorten. Der relative Verlust von Elektrolyten 

wurde durch Trockenstress verändert und erhöhte sich gegen Ende der Vegetationsperiode. Die 

Expressionsniveaus von ABA- und stressverwandten Genen wurden stark von Trockenstress 

beeinflußt. Eine Ausnahme bildet die Glutamin Amidotransferase (GAT). Zusätzlich waren die 
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Expressionsniveaus der Gene Nine cis-Epoxy Dioxygenase (NCED), Proteinphosphatase 2C 

(PP2C), Early Responsive to Dehydration (ERD), Ascorbat-Peroxidase (APX), Superoxid 

Dismutase (Cu / Zn-SOD), Aldehyde Dehydrogenase (ALDH), Glutamin Amido-Transferase 

(GAT) höher in den Nachkommen von feuchten Standorten verglichen mit trockeneren 

Standorten. Saisonale Analysen der transkriptomalen Regulation von Genen für die 

Signalisierung und Abwehr von Trockenheit zeigten intraspezifische Unterschiede in der 

konstitutiven Expression und Reaktionsfähigkeit bei Trockenheit. Die herkunftsbedingten 

Unterschiede waren größer als die Stressreaktionen, was darauf hindeutet, dass die Selektion 

für eine Anpassung an Trockeheit bereits in lokalen Buchenpopulationen stattfindet. 

 Um zu untersuchen, ob es intraspezifische Unterschiede bei den 

Resistenzmechanismen gegen Trockenheit gibt, wurden drei Buchenherkünfte, aus einem 

niedrigen, einem mittleren und einem hohen Niederschlagsklima (als LP, IP und HP 

bezeichnet), zunehmender Trockenheit ausgesetzt. Der Wassergehalt in Boden und Pflanzen, 

die maximale Quantenausbeute des Photosystems II und die stomatäre Leitfähigkeit der 

Kontrollen und der trockenheitsbehandelten Setzlinge wurden regelmäßig gemessen. 

Außerdem wurden die Transkriptionsniveaus von OST1 bestimmt. Die Daten weisen darauf 

hin, dass die innerartlichen Reaktionen auf Trockenheit bei Buchen auch zwischen 

isohydrischem und anisohydrischem Verhalten der Stomata variieren können. Die 

Buchenherkunft LP zeigte einen isohydrischen Phänotyp, da die Pflanzen einen schnelleren 

Verschluß der Stomata, einen höheren relativen Wassergehalt, sowie einen höheren 

Wassergehalt in den Blättern vor Sonnenaufgang (Predawn Water Potential) zeigten als 

Buchennachkommen aus mesischen Bedingungen. Dadurch wies die Population aus dem 

trockenen Habitat eine deutliche Vermeidungsstrategie bei Trockenheit auf. Im Gegensatz dazu 

zeigten die HP Nachkommen bei Wasserlimitierung einen langsamen Abfall der stomatären 

Leitfähigkeit, jedoch eine stärkere Abnahme des Predawn Water Potential. Es gab keinen 

Einfluss durch Trockenheit auf das Pflanzenwachstum oder die Biomasseallokation während 

der Trockenheitsbehandlung. Buchen zeigten intraspezifische Unterschiede bei den 

Resistenzstrategien gegen Trockenheit, gekennzeichnet durch anisohydrisches oder 

isohydrisches Verhalten. Das legt nahe, dass der anisohydrische Funktionstyp bei Buchen 

besser geeignet ist, um mit den vorhergesagten Klimaextremen umzugehen, als die isohydrische 

Typ, da er eine Trockentoleranz-Strategie aufweist. 

Die Ergebnisse der vorliegenden Studie zeigen, dass Klimate mit geringen 

Niederschlägen und Trockenheit die Anatomie, Physiologie und molekulare Reaktionen von 
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Buchen beeinflussen. Buchen zeigten recht hohe intraspezifische Unterschiede bei den 

Strategien zur Trockenheitsresistenz,  mit Strategien zur Trockenheitsvermeidung und 

Trockentoleranz. 
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Chapter 1: General introduction 

1.1. Global climate change 

Due to global warming, global surface temperature increased about 0.85oC in the period 

from 1880 to 2012 (IPCC 2014). The period from 1983 to 2012 was considered as the warmest 

30-year period of the last 1400 years in the Northern Hemisphere (EAA 2012). The global 

temperature was forecasted to increase from 0.3 to 4.8oC by the end of this century depending 

on different scenarios (IPCC 2014) (Figure 1.1). The exact prediction of extreme climatic 

events is currently impossible. However, extreme weather and climate events, such as hot 

summer days, summer drought will probably or very probably occur more frequently during 

the 21st century (IPCC 2001). 

 

Figure 1.1: Change in average surface temperature (a) and change in precipitation (b) based on 
multi-model mean projections for 2081-2100 relative 1986-2005 under RCP2.6 (left) and 
RCP8.5 (right) scenarios (taken from IPCC 2014).  
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On the European continent, a remarkable increase of temperature was observed (EAA 

2012). Some studies indicated that the average temperature of Europe increased already by 

0.95oC (Brohan et al. 2006) and 2.0oC in the south of Germany and the Alps (Mayer et al. 2005) 

in the last century. In 2003, Europe faced a series of strong persistent heatwaves during the 

summer (Fink et al. 2004). The June-August period was 5oC warmer compared to the period of 

1961-1990 and was the warmest summer since at least 1864 (Schär et al. 2004). The land 

temperature in Europe is predicted to increase between 2.5oC to 4.0o C by the end of 21st century 

compared to the temperature of 2005 (EEA 2012, Schröter et al. 2005a). Moreover, the highest 

increase of temperature is projected to occur over eastern and northern Europe in winter and 

over southern Europe in summer (Schröter et al., 2005a, Zebisch et al., 2005). From the 1950s, 

annual precipitation increased across the northern parts of but declined in southern Europe 

(EAA 2012). Annual precipitation and its distribution over the seasons are among the most 

important factors affecting ecosystems. Most scenarios predict that precipitation will continue 

to increase in the northern part during winter and decrease in the southern part during summer 

(EEA 2012, Schröter et al. 2005a). 

In Germany, long-term weather recordings reveal that climate change is occurring 

(Schröter et al. 2005b). The annual temperature increased by ca. 0.85oC in the 20th century 

(Zebisch et al. 2005). By the end of this century, the annual temperature in Germany is 

forecasted to increase between 1.6oC and 3.8oC (Schröter et al. 2005b) (Fig.1.2).  In the last 30 

years, a definite increase of precipitation was recorded in winter and a decrease was observed 

in summer in Germany (Zebisch et al. 2005). All climate scenarios predicted that summer 

precipitation will decrease between 16.6 to 33.3% up to the year 2080 (Fig.1.3). These scenarios 

forecasted increases in winter precipitation in the southern part and decreases of summer 

precipitation in the southwest and central parts of Germany (Enke et al., 2005, Jacob et al., 

2008, Schröter et al., 2005b).   
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Figure 1.2: Scenarios of long-term annual average temperature change compared to 1990 in 
Germany up to 2080 (Schröter et al. 2005b). 

 

Figure 1.3: Change in summer precipitation compared to 1990 of seven scenarios in Germany 
up to 2080 (Schröter et al. 2005b) 

1.2. European beech forests in Germany 

European beech (Fagus sylvatica L.) is one of the ecologically and economically most 

important deciduous tree species of the vegetation in Germany (Wühlisch and Muhs 2010). The 

total forest area of Germany is 11,075 million ha (publicly 33.3%, corporate bodies 19.5% and 

private and to be privatized 47.2%). 1,565 million ha (approx.14.8%) are covered by beech. 
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Most of the beech forest are natural (60%) or managed close to nature (22.5%) (Federal 

Ministry 2002). Most beech forests (80%) occur in the southwest and central parts of Germany 

mainly in Rhineland-Palatinate, Saarland, Hessen, part of Bavaria and the southern parts of 

Lower Saxony and North Rhine-Westphalia. The data of the second Inventory of the German 

National Forests (Federal Ministry 2002) indicated that about 81,754 ha in 15 years or 5,450 

ha/year of mainly conifer forest were placed by broadleaved forest tree species. Thus, beech 

forests will be more widespread in Germany in the coming decades.  

1.3. Plant responses to drought stress 

Drought was defined as “a period of abnormally dry weather sufficiently prolonged for 

the lack of precipitation to cause a serious hydrological imbalance and carries 

connotations of a moisture deficiency with respect to water use requirements” (McMahon and 

Arenas 1982). Among environmental factors, water balance is considered as the most important 

factor for plants. Moreover, drought is estimated to be the most stressful factor, which reduces 

plant productivity alone more than any other climatic stress (Lambers et al. 2008). Drought not 

only influences trees’ growth but also cause changes at anatomical, physiological and 

biochemical levels (Micco and Aronne, 2012).  

Adaptation to drought of anatomical properties can be achieved by balancing between 

the need to maintain high conductivity when water supply is satisfactory, and to avoid embolism 

when drought occurs (Sperry 2003). The main ecological trends in wood anatomy indicate that, 

moving from mesic to xeric conditions, woods tend to lower their conductive efficiency, but 

are more resistant to cavitation (Micco and Aronne 2012). Wood properties that indicate 

adaptation to drought are generally a reduction of vessel lumina and increases of vessel 

frequencies as well as changes in internal structure of vessels such as intervessel pitting and pit 

membrane pores (Wheeler et al. 2005, Sperry et al. 2006). Narrow vessels only permit low 

water transport but they are safer because they maintain hydraulic conductivity and are less 

prone to embolism (Sperry et al. 2006, Carlquist 2013). Thickness and density of vessel helical 

sculpturing are strongly correlated with resistance to cavitation, and play an important role in 

preventing spreading of cavitation and  in increasing of mechanical strength (Lens et al. 2011).  

Plants have developed different strategies to deal with drought for example by 

increasing the root: shoot ratio in order to explore larger soil volumes and to acquire more water 

from deeper soil layers or by minimizing the water loss by stomatal closure (Verslues et al. 
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2006, Zollinger et al. 2006). Another mechanism involves a continuation of plant metabolic 

activities at a low tissue water potential, for example, by osmotic adjustment, changes in cell 

wall elasticity, etc. (Anjum et al. 2012).  

The plant hormone abscisic acid (ABA) plays a very important role in plants in response 

to drought stress. A key pathway for drought acclimation involves ABA signaling to recruit 

drought defense responses and which result in stomatal closure, thereby, regulating plant water 

consumption (Shinozaki and Yamaguchi-Shinozaki 2007, Popko et al. 2010, Raghavendra et 

al. 2010). A further common feature of drought stress is an increased production of reactive 

oxygen species (Cruz de Carvalho 2008). Thus, activation of protective enzymes, especially of 

antioxidative defenses is important to combat oxidative degradation of vulnerable structures 

such cell membranes (Polle et al. 2006, Fischer and Polle 2010).   

1.4. Responses of European beech (Fagus sylvatica L.) to drought stress 

In natural forests, beech dominates from moderately dry to moist environment 

(Ellenberg, 1996). However in dry locations beech is replaced by other broadleaves species like 

Quercus petrea or Q. pubescens (Wühlisch and Muhs,  2010). Water ability is the main limiting 

factor of the natural distribution of beech to the south of Germany (Ellenberg 1996). It has been 

predicted increased frequencies and duration of summer droughts in central European areas 

may lead to negative effects on the water balance, growth and competitive capacity of beech, 

especially on limestone-derived and sandy soils with low water retention capacity (Gessler et 

al. 2007).  

Under severe drought stress (several weeks), young beech trees show decreased growth 

and reduced nitrogen uptake from the soil (soil water potential < - 0.4 Mpa) (Fotelli et al. 2001, 

2002). Biomass accumulation of beech seedlings was significantly affected by irrigation 

regimes during a 52-day exposed drought (Fotelli et al. 2001). In addition, drought also 

significantly reduced transpiration rates (Fotelli et al. 2001) and led to embolism when  the 

predawn water potentials  of beech seedlings under controlled condition went  below – 1.9 MP 

(Hacke and Sauter 1995).  

Drought also lowered stomatal conductance and gross primary productivity of adult 

beech trees. The water deficit and extreme summer heat of 2003 were the main reasons reducing 

75% mean stomatal conductance  compared with the 2002 values and 30 % in gross productivity 
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of beech stand growing in forests in eastern France (Ciais et al. 2005).  Keitel (2003) and Keitel 

et al. (2006) measured foliar carbon isotope composition along a climate gradient. Their studies 

indicated that 13C depletion was reduced with decreasing summer precipitation exhibiting an 

exponential relationship when rainfall amounts were lower than 500 mm (Fotelli et al. 2003, 

Keitel et al. 2003, Keitel et al. 2006). Moreover, when average stomatal conductance (Gs) 

decreased below 25-30mmol m-2 s-1, 13C discrimination during CO2 fixation by ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco) was reduced, and that increased δ13C in the 

organic matter (Fotelli et al., 2003, Geßler et al., 2001). A summer drought further decreased 

the mean of fine root diameter and changed carbon allocation in the fine root of mature beech 

trees (Meier and Leuschner 2008).   

Because of the expected drought sensitivity of European beech, it is likely that the 

physiological performance, growth and competitive ability of the species will be negatively 

affected by climate change with drastic consequences for current forests. It is, therefore, highly 

desirable to understand anatomical, physiological and molecular responses of European beech 

to low precipitation climate and drought stress.  

 1.5. Scope of the present study 

The main aims of this research were to elucidate anatomical, physiological and 

molecular responses of European beech (Fagus sylvatica, L.) to drought. For this purpose, the 

following hypotheses were tested: 

- Beech trees from drier habitats possess some changes in the xylem anatomy that 

enables them to cope with low precipitation (Chapter 2). 

- Dry climate negatively affects carbon and nitrogen content of beech wood (Chapter 

2) 

- Beech progenies from dry sites exhibit constitutively higher expression levels of 

ABA-and stress-related genes and are therefore less drought responsive than 

progenies from dry sites (Chapter 3).  

Beech originating from a low-precipitation climate show a stronger drought avoidance 

and beech from mesic habitats adopt a stronger drought tolerance strategy than those originating 

from xeric habitats when exposed to decreasing soil water availability (Chapter 4).  
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Chapter 2: Anatomical responses of mature beech trees along a gradient of precipitation 

2.1. Introduction 

All climate scenarios forecasted that summer precipitation will decrease strongly in the 

21st century compared to the last century (Jacob et al. 2008, Schröter et al., 2005). As the 

consequence of climate change, a reduction of precipitation is expected to decrease the water 

supply (Zebisch, et al. 2005). The impacts of reduced water availability are drought stress, 

weakened growth and drought damage (Zebisch et al. 2005). Because of the long lifespan of 

forest trees, forest ecosystems are more vulnerable to predicted drier and warmer climate than 

other agricultural ecosystems (Gessler et al. 2007). Thus, increasing numbers of extreme 

weather events like drought will have negative impacts on forest ecosystems and key forest 

species. Moreover, it is difficult for foresters to choose the suitable tree species and to manage 

forest stands in the context of climate change. Therefore, it is necessary to study the ability to 

adapt to water limitation of key forest species.  

European beech (Fagus sylvatica L.) is the dominant and economically most important 

broad-leaf deciduous tree species of the natural potential vegetation in Germany (Wühlisch and 

Muhs 2010). In Germany, as the centre of distribution, 14.8% of the forest area is covered by 

European beech (Fagus sylvatica L.) (Hofmann et al. 2000). The beech forest proportion is 

currently increasing in Germany because of a forest conversion program in which coniferous 

forests are being converted to pure and mixed deciduous forests  (Geßler et al. 2007). Water 

shortage is the main limiting factor of the natural area distribution (Ellenberg 1996) and the 

competitive ability and natural regeneration of beech (Gessler et al. 2007). The predicted 

climate change is expected to lead to more negative effects on beech forests in the future. 

Moreover, the ability of European beech (Fagus sylvatica L.) to adapt to the changing 

environmental conditions is not yet well-known and therefore studies are needed to address this 

issue.   

Increasing frequency of drought events does not only affect the C-gains and C-losses of 

ecosystems, but also might impact tree growth by affecting the biochemical, physiological and 

anatomical responses (Schwartz 1999, Morison and Morecroft 2008). Wood anatomical traits 

have been increasingly studied with regard to the relationships between wood anatomy and 
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environmental factors (Sperry 2003). Drought can directly affect wood increment, through 

effects on cambial cells and their derivatives or, indirectly, through an effect on photosynthesis 

and the translocation of assimilates (Arend and Fromm 2007). In most studies, drought resulted 

in smaller vessel lumina but increased vessel density compared to well-watered plants  (Sperry 

2003, Sperry et al. 2006, Arend and Fromm 2007, Carlquist 2013, Beniwal et al. 2010). These 

changes of vessel properties resulted in a similar total cross-sectional vessel lumen area 

compared to non-stressed trees. The sum of vessel lumina remains unchanged and helped 

stressed plants to maintain water uptake because the xylem:vessel area ratio did not change 

(Sperry 2003, Arend and Fromm 2007). Other common traits of wood from dry habitat plants 

are the presence of helical thickening in vessels and thick wall cells (Carlquist 1989, Sperry 

2003). These modifications help plants to prevent spreading of cavitation and  increase their 

mechanical strength (Lens et al. 2011). Anatomical changes may allow plants adapt to dry 

conditions (Micco and Aronne 2008). Anatomical properties have the advantage that the tree´s 

development in response to environmental changes is archived in wood and may be evaluated 

retrospectively (Hacke and Sperry 2001, Carlquist 2013).  

Some recent studies indicate that beech may be more vulnerable to the predicted warmer 

future climate than co-occurring forest species such as Quercus, Tilia, Carpinus, Fraxinus or 

Pinus species  (Kölling et al., 2007, Köcher et al. 2009). The current climate-related drought 

events led to extensive growth restriction and mortality in some beech forest areas (Rennenberg 

et al. 2006, Fang and Lechowicz 2006, Gessler et al. 2007, Granier et al. 2007, Zang et al. 

2014). For example, the 2003 drought event resulted in strong reduction of net gross primary 

productivity of beech forests (Ciais et al. 2005) and in the growth of beech (Czajkowski 2006). 

Similar results were observed by other researchers (Granier et al. 2007, Nielsen and Jørgensen 

2003, Jump et al., 2006, Scharnweber et al. 2011, Eilmann et al. 2014). Van der Werf et al. 

(2007) found that, during drought stress, wood formation of beech ceased and recovered after 

drought treatment. Vessel lumen area of beech trees was strongly positively correlated with the 

monthly amount of precipitation during the growing season (Sass and Eckstein 1995). By 

analyzing vessel properties of beech branches of mature beech trees along a precipitation 

gradient (855-594 mm yr-1), Schuldt et al. (2015) found that vessel diameter decreased 7% and 

embolism resistance increased 10% with climatic aridity.  However, changes of other cells in 

beech xylem such as fibre and ray parenchyma under water stress were not yet well investigated.  
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Old beech trees which existed for long times at different sites might have acclimation 

to cope with wide range of ecosystems differing in water availability. Among these traits, the 

plasticity of wood anatomical properties may exist and might enable beech trees to deal with 

different water conditions. The present study focused on analyzing anatomical properties of 

different cell types in the xylem such as vessels, fibres and ray parenchyma of old beech trees. 

Mature beech trees from three locations differing in long-term annual precipitation were chosen 

for the analyses. In each location, two neighboring forest stands (loamy soil and one sandy soil) 

were chosen in order to include the influence of location and soil water storage capacity. It was 

expected that beech trees originating from dry conditions exhibited changes of anatomical 

properties of the xylem to adapt to dry conditions. We tested the hypotheses: (1) mature beech 

trees from drier habitats possess anatomical changes in the xylem to cope with low precipitation 

climate, (2) and dry climate negatively affects the carbon and nitrogen content of beech wood.  

2.2. Materials and Methods 

2.2.1. Study locations 

Beech (Fagus sylvatica L.) trees were collected in 3 areas differing in long-term (1971-

2000) mean annual precipitation (Deutscher Wetterdienst-DWD): 766 mm Unterlüss (high 

precipitation), 665 mm Göhrde (intermediate precipitation), and 544 mm Calvörde (low 

precipitation) in the North German Plain (Lower Saxony and Saxony-Anhalt, Germany). In 

order to evaluate the impact of soil water storage capacity on the water availability of trees, two 

neighboring plots were selected with different soil texture (sandy vs. loamy). Thereby, beech 

trees on six plots were studies. The forest structures, topography, climatic and edaphic 

characteristics of six plots are shown in Table 2.1. 
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Table 2.1. Survey of topographic, climatic, stand structural and edaphic characteristics of six 
European beech (Fagus sylvatica L.) forest stands along a precipitation gradient in Northern 
Germany. Climatic data were provided by National Climate Monitoring of Germany’s National 
Meteorological Service (Deutscher Wetterdienst-DWD). Other data provided by Hilmar 
Müller-Haubold (Plant Ecology and Ecosystems Research Department, Georg-August-
University Göttingen). 
1 – Mean values 1971-2000. Annual values/values referring to vegetation period April – September. 
2 – Soil chemical properties refer to the top mineral soil 0 – 30 cm soil depth, cation exchange capacity, DM = Dry 
mass. 
3 – Soil physical properties – water storage capacity as the sum, particle size distribution as the mean value of 0 – 
120 cm soil depth. 
4 – Diameter at breast height and timber volume refer to all beech trees > 7 cm stem diameter, tree height refers to 
all beech trees constituting the upper stand canopy. 
5 – Stem density (N ha-1) and cumulative basal area (G) include all trees > 7 cm stem diameter per plot, irrespective 
of tree species. 
6 – Mean values during the sampling period (2009-2012). Annual values/values referring to vegetation period April 
– September 

Parameter Sites 
Unterüss Göhrde Calvörde 

Clay 
soil 

Sandy 
 soil 

Clay 
soil 

Sandy  
soil 

Clay 
soil 

Sandy 
 soil 

Latitude 52°50' N 52°50' N 53°07' N 53°08' N 52°24' N 52°23' N 
Longitude 10°19' E 10°19' E 10°49 E 10°52' E 11°16' E 11°17' E 
Elevation (m a.s.l.) 120 117 85 85 72 75 
Mean temperature (°C) 1 8.5/13.6 8.5/13.6 8.7/13.8 8.7/13.9 9.1/14.5 9.2/14.5 
Mean precipitation (mm) 1 766/374 766/374 675/349 665/347 543/294 544/294 
pH value (H2O/KCl) mineral soil 2 4.42/4.05 4.31/4.05 4.25/3.88 4.33/4.08 4.17/3.76 4.25/3.95 
C  (mg g-1 DM) 2 10.21 11.17 9.52 13.31 5.67 5.67 
N  (mg g-1 DM) 2 0.40 0.46 0.42 0.52 0.36 0.43 
C/N ratio (g g-1) 2 25.8 24.1 22.9 25.5 15.9 13.2 
Cation exchange capacity (µmolc g-1) 2 18.4 24.2 20.2 26.5 18.6 14.7 
Base saturation (%) 2 14.8 8.3 6.7 2.8 7.4 5.0 
Soil texture particle size distribution 3 
∑ Vol.% < 63 μm  (silt+clay) 21.0 14.9 17.7 4.6 53.5 9.6 

Water storage capacity (mm/120 cm) 3 95 79 78 80 140 81 

Stand age (year) 115 115 142 133 131 97 
Mean diameter at breast height (cm) 4 26.1 18.6 51.0 30.7 36.6 23.4 
Stem density (N ha-1) 5 411 611 122 289 300 711 
Stand basal area G (m2 ha-1) 5 28.5 24.3 26.6 24.4 33.3 33.2 
Proportion of beech of G (%)  100 81 100 94 97 100 
Mean temperature (°C) during samplings 
period 6 8.8/14.6 8.8/14.6 8.9/14.8 9.0/14.9 9.2/15.4 9.3/15.5 

Mean precipitation (mm) during 
samplings period 6 786/372 786/372 707/361 692/359 611/332 615/335 
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2.2.2. Sampling 

Woody samples for this study were harvested from April 2009 to October 2012. 

Sampling was conducted on April 22nd, June 5th, August 22nd and October 6th during 2009 – 

2012. In total, 15 harvests took place during the field work. In each plot, five randomly chosen 

mature beech trees were used for harvesting. From each beech tree, samples for anatomical 

analysis, consisting of wood cores with 2.0 cm sample diameter and 1.5 cm depth, were 

harvested with a chisel and a hammer at the height of 2.0 m above ground and transferred 

immediately into 50 ml tubes (Falcon tube 50 ml, 115 x 20 mm, Sarstedt, Nümbrecht, Germany) 

containing FAE solution (37% formaldehyde,100% glacial acetic acid,70% ethyl alcohol in a 

ratio of 5%,5%,90% (v/v)). The FAE solution was already prepared in the laboratory before 

sampling.  The woody samples for carbon and nitrogen measurements were frozen in dry ice at 

-78oC, and were transferred to the laboratory where they were stored at -80oC. 

2.2.3. Wood anatomical analyses 

Woody samples that had been stored in FAE solution were washed three times with 

double distilled water for 5 minutes to remove the FAE solution. 20 µm-thick woody slices 

were cut using a sledge microtome (Reichert-Jung, Heidelberg, Germany). The cutting was 

done with a steel blade (16 cm) with c-grinding. The suitable angle of intersection was 10o. The 

optimal angle had to be tested for each tissue. For storing the cross-sections, freshly boiled 

distilled water was always used, and cross-sections were gently moved from the sledge 

microtome to microscope slides and stored at room temperature in double distilled water. Well-

cut sections were chosen and stained with Mäule-stain (Mäule 1901). For this purpose, sections 

were incubated for 3 min in 2% (w/v) potassium permanganate (KMnO4) solution, and then 

washed three times with double distilled water. Then, cross-sections were incubated about 2 

min in 5% (v/v) hydrochloric acid (HCl) for the formation of chlorlignin. Double distilled water 

was used to gently wash cross-sections again. The cross-sections were incubated in 10% (v/v) 

ammonia (NH3) solution. They were, then, mounted on glass slides with a drop of 50% (v/v) 

glycerin for microscopic viewing. By placing the slides on a 50oC warm plate (SD 12, MEDAX; 

Nagel GmBh, Kiel, Germany) cross-sections were flattened. Well-stained sections were viewed 

under a light microscope (Axioskop, Zeiss, Oberkochen, Germany) at 2.5-fold and 40-fold 

magnifications. Photographs were taken with an integrated digital camera (Axiocam, Zeiss, 

Oberkochen, Germany). Microphotographs of wood were analyzed using the software ImageJ 

(Abramoff et al. 2004) for the following parameters: thickness of annual growth ring (wood 
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increment), vessel lumen (VLA) and fibre lumen area (FLA), ray parenchyma area (RA), 

thickness of the double fibre wall (the wall between two adjacent fibre cells, TDFW), thickness 

of the vessel wall (VCW) as well as the frequency of vessel (VF) and frequency of fibre (FF) 

per unit area of 1.0 mm2 as indicated in Fig. 2.1A. The percentage of cell wall area (PCWA) 

was determined as described by (Luo et al. 2004): 

PCWA (%) = [total cross-section area – (vessel lumen area + fibre lumen area + ray 

parenchyma area)] × 100/total cross-section area. 

Measurements of vessel and fibre anatomical properties and percentages of cell wall 

areas were also carried out in three different regions of a year ring (early wood, transition wood 

and latewood). The early wood region was characterized by large vessel lumen area and was 

defined as from 0-20% area of the ring width, the transition wood region in the region from 55-

75% and the late wood region was defined as the wood area from 80 – 100% area of the whole 

year ring (Figure 2.1B).  

A 

  

Figure 2.1. Typical microscopic pictures of beech wood at 40-fold magnification (A) and at 
2.5-fold magnification (B). Vessel (V), fibre (F) and parenchyma ray (P), thickness of vessel 
cell wall (VCW) are shown in the figure and their anatomical properties were measured: 
thickness of vessel cell wall (VCW), vessel lumen area (VLA), fibre lumen area (FLA) and 
thickness of the double fibre wall (TDFW). Different regions in an annual ring of beech wood 
(Early wood, transition wood and late wood) are indicated. Magnifications are indicated by 
scale bars. 

2.2.4. Carbon and nitrogen measurements 

Annual rings from each beech tree were separated from frozen woody samples by using 

a scalpel under a dissecting microscope (Stemi SV11, Zeiss, Oberkochen, Germany). Four year 
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rings (2009-2012) derived from beech trees stocking in clay soil and sandy soil were prepared 

for this way. Five trees in each site were chosen as biological replicates. Thirty beech trees were 

used in total. The woody samples were dried for 48 hours in a drying oven at 60oC. Dry samples 

were ground to fine powder using a ball mill (Type MM2, Retsch, Hann, Germany). Milled dry 

woody samples were weighted using a super-micro balance (S4, Sartorius, Göttingen, 

Germany) into tin capsules (4x6 mm, IVA Analysentechnik, Meerbusch, Germany). One 

sample of wood consisted of 0.7 to 0.9 mg dry mass. Carbon and nitrogen content were 

determined using an analyzer (EA 1108 Elemental Analyzer, Carlo Erba Instruments, Rodano, 

Milan, Italy). Acetanilide standard (C6H5NH (COCH3)) was used as the standard.  

To determine 13C within annual rings, the annual ring of 2010 from beech trees on in 

sandy soil were split by using a scalpel under a dissecting microscope (Stemi SV11, Zeiss, 

Oberkochen, Germany). Five beech trees were chosen as biological replicates. Early wood, 

transition wood and late wood were separated from frozen woody samples (Figure 2.1B). All 

samples were dried for 48 hours in a drying oven at 60oC. Dry samples were ground to fine 

powder using a ball mill (Type MM2, Retsch, Hann, Germany). Milled dry woody samples 

were weighed using a super-micro balance (S4, Sartorius, Göttingen, Germany) into tin 

capsules (4x6 mm, IVA Analysentechnik, Meerbusch, Germany). 0.2 to 0.5 mg of dry mass per 

sample were necessary for the analysis of 13C. Samples were combusted in an elemental 

analyzer (EA 1108, Fisons, Rodano, Italy), CO2 was separated by chromatography and directly 

injected into a continuous-flow isotope ratio mass spectrometer (IRMS Delta plus Thermo 

Finigan Mat, Bremen, Germany). The analyses were conducted in the KOSI laboratory (Centre 

for Isotope Stable Research and Analysis, University of Göttingen). Acetanilide standard 

(C6H5NH (COCH3)) was run every six samples. δ13C values (‰) were determined by the 

following formula:  

δ13Csample (‰) = 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
× 1000 

where R is the ratio of 13C/12C. Pee Dee Belemnite was referred to as the standard. 

2.2.5. Data analysis 

Statistical data analysis was carried out with the software R 3.1.2 (the R Project for 

Statistical Computing www.r-project.org). Normal distribution was tested with the Shapiro – 

Wilk’s test and homogeneity of variances was tested with Levene’s test. Where necessary, data 
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were transformed to fulfill the requirements of normality and homogeneity of variances. Multi-

factor ANOVA was performed to determine the variation of the main variables precipitation, 

soil type, and the interactions between them. Values of P ≤ 0.05 were considered to indicate 

significant effects.  When the ANOVA revealed significant differences among the means with 

the P < 0.05, a post-hoc test (Tukey HSD) was performed. To test for relationships between 

wood increment or anatomical properties of beech trees with environmental factors 

(precipitation and temperature), regression analysis was carried out. The best models for linear 

or exponential correlation between wood increment and precipitation and temperature were 

chosen according to the coefficient of correlation. For investigating relationships between wood 

anatomical properties and precipitation were investigated by Pearson correlation analyses in 

Statgraphics (Centurion XVI, St. Louis, Mo, USA)). Graphs were generated using Origin Pro 

Lab 8.5 (OriginLab Corporation Northampton, USA).  

2.3. Results 

2.3.1. Growth along a precipitation gradient 

The mean annual increment of beech trees declined significantly with decreasing 

precipitation (Figure 2.2A). Beech trees in Unterlüss showed the widest ring width and followed 

by beech trees in Göhrde, and the smallest was observed in Calvörde (Figure 2.2B). Analysis 

of annual increment of beech wood showed no significant differences between beech trees 

stocking in sandy or loamy soil (F = 1.556, P = 0.228), whereas significant changes were found 

among the locations (F = 16.004, P < 0.001). General linear models analysis indicated that 

average monthly temperature did not affect annual increment of beech wood (F = 1.19, P = 

0.288). The average yearly wood increment of beech trees in this studied was strongly 

exponentially correlated to the annual precipitation amount of the studied sites (R = 0.915, P < 

0.001, Fig.2.3). 
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Figure 2.2. Average annual precipitation were observed from 2009-2012 in six locations (A) 
and average annual increment of beech (Fagus sylvatica L.) trees in in six sites (B) (Unterlüss 
loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde loam (CL), 
Calvörde sand (CS)). Increment data indicate means ± SE, n = 5. Different letters indicate 
significant differences at P ≤ 0.05.  

 

Figure 2.3. Relationship between the mean annual wood increment of adult beech trees (Fagus 
sylvatica L.) and the sum of yearly precipitation in six sites (Unterlüss loam (UL), Unterlüss 
sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde loam (CL), Calvörde sand (CS)) 
during the period from 2009-2012. Symbols indicate means ± SE, n = 5.   



 

36 
 

2.3.2. Anatomical characteristics of beech trees along a precipitation gradient 

In order to compare the differences between anatomical properties of the year ring 2010 

and 2011, T-test statistical analysis was carried out. There was no significant difference 

between the year ring 2010 and 2011 (Table 2.2). Therefore, we combined anatomical data of 

2010 and 2011 for further analyses. 

Table 2.2: Comparison of anatomical traits from the year 2010 and 2011. Traits were compared 
by T-test. P values were shown in the table.  

Site P-values 
VF VLA VCW FF FLA TDFW PCWA 

UL 0.1191 0.1130 0.7446 0.4074 0.7184 0.5871 0.4557 
US 0.7647 0.1032 0.3991 0.1532 0.8018 0.7240 0.4946 
GL 0.4161 0.2737 0.3434 0.8878 0.2940 0.7352 0.9858 
GS 0.0923 0.7043 0.9784 0.7014 0.4920 0.9325 0.7318 
CL 0.3591 0.0784 0.9540 0.9120 0.1700 0.9853 0.3595 
CS 0.2172 0.0731 0.2742 0.5481 0.3923 0.9980 0.1852 

 

The effect of precipitation and soil types (sandy and loamy soil texture) on the 

anatomical features of wood in beech trees were analyzed in cross-sectional samples in whole 

year rings (2010 and 2011). A significant difference was found among the different sites for the 

vessel frequencies in wood formed in 2010 and 2011 (F = 23.162, P < 0.001, Fig. 2.4A). The 

forest with the highest precipitation (UL/US) had the lowest vessel frequency and followed by 

the intermediate precipitation (GL/GS) and the driest one (CL/CS) had the highest vessel 

frequency (Fig. 2.4A). In all three locations, soil types did not lead to significant changes in 

vessel frequency (F = 0.058, P = 0.811, Fig. 2.4A). At sites with low precipitation, vessel 

lumen areas were significantly smaller than those in wetter site (F = 25.746, P < 0.001, Fig. 

2.4B). Soil type did not change vessel lumen area of beech trees (F = 0.082, P = 0.777). Cross-

sectional lumen area of vessel element increased significantly from the driest site to the wettest 

site: Calvörde ≤ Göhrde ≤ Unterlüss (Figure 2.4B). No significant differences in the thickness 

of vessel cell walls were observed among the forest sites (F = 0.836, P = 0.447), neither 

between the soil types (F = 0.248, P = 0.624) (Figure 2.4C).  
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Figure 2.4: Vessel properties of beech trees (Fagus sylvatica L.) in six sites (Unterlüss loam 
(UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde loam (CL) and 
Calvörde sand (CS)): vessel frequency (A), vessel lumen area (B) and the thickness of vessel 
cell wall (C). Data indicate means ± SE, n = 5. Different letters indicate significant differences 
at P ≤ 0.05. 

 In order to find out whether precipitation and soil types affected fibre properties, fibre 

frequency, fibre lumen area and fibre cell wall thickness were also determined. However, 

neither precipitation nor soil type resulted in any remarkable changes of fibre properties (P > 

0.05, Figure 2.5A, B and C).  

   

Figure 2.5: Fibre properties of beech trees (Fagus sylvatica L.) in six sites (Unterlüss loam 
(UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde loam (CL), 
Calvörde sand (CS)): fibre frequency (A), fibre lumen area (B) and the thickness of double fibre 
cell wall (C). Data indicate means ± SE, n = 5. Different letters indicate significant differences 
at P ≤ 0.05. 

 The fractions of cell wall area per cross-sectional area of beech trees from different sites 

were not significantly different among forest sites (F = 0.081, P = 0.9283) and between soil 

types (F = 0.070, P = 0.794) (Figure 2.6).   
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Figure 2.6: Percentage of cell wall areas of beech trees (Fagus sylvatica L.) in 6 sites (Unterlüss 
loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde loam (CL), 
Calvörde sand (CS)). Data indicate means ± SE, n = 5. Different letters indicate significant 
differences at P ≤ 0.05. 

The relationships between anatomical properties of beech trees and annual precipitation 

and average monthly temperature were analyzed. Vessel frequency (VF) and the thickness of 

double fibre cell wall (TDFW) were strongly negative correlated with annual precipitation, 

whereas vessel lumen area (VLA) and fibre lumen area (FLA) were significantly negative 

correlated with annual precipitation (Table 2.3 and Fig.2.7 A, B, C, D). No relationships were 

found between the thickness of vessel wall (VCW) or fibre frequency (FF) or fractions of cell 

wall area (PCWA) and yearly precipitation (Table 2.3). Vessel lumen area and fibre lumen were 

negatively correlated with average monthly temperature, but other anatomical properties 

showed no significant relationship with this parameter (Table 2.3 and Fig.2.8 A, B).  

Table 2.3: Summary of the linear regression models relating the annual precipitation, 
temperature to anatomical properties of beech trees adult beech trees (Fagus sylvatica L.) living 
in six sites (Unterlüss loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), 
Calvörde loam (CL), Calvörde sand (CS)). Asterisks in columns indicate significant differences 
with P ≤ 0.05.       

 Variables       Annual precipitation           Average monthly temperature 
R P  R P  

VF -0.991 < 0.001 *** 0.445 0.147  
VLA 0.992 < 0.001 *** -0.680 0.042 * 

VCW -0.564 0.060  0.544 0.067  

FF -0.247 0.439  0.349 0.266  
FLA 0.958 < 0.001 *** -0.820 0.009 ** 

TDFW -0.810 0.039 * 0.243 0.446  
PCWA -0.242 0.449  0.319 0.313  
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Figure 2.7: Relationships in adult beech trees (Fagus sylvatica L.) between annual precipitation 
and (A) vessel frequency, (B) vessel lumen area, (C) fibre lumen area, (D) the thickness of 
double fibre cell wall. The Pearson correlation coefficients (KP) and P-value for H0: KP = 0 are 
given.  

  
 

Figure 2.8: Relationships in adult beech trees (Fagus sylvatica L.) between average monthly 
temperature and (A) vessel lumen area, (B) fibre lumen area. The Pearson correlation 
coefficients (KP) and P-value for Ho: KP = 0 are given. Data indicate means ± SE, n = 5.  
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2.3.3. Variation of anatomical features within the year rings 

In order to compare anatomical features of different regions within the annual rings 

(2010 and 2011), anatomical features of early wood, transition wood and late wood regions 

were analyzed.  

 

Figure 2.9: Precipitation patterns during the growing season (from April – October) of 2010 
and 2011 in 6 sites (Unterlüss loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde 
sand (GS), Calvörde loam (CL), Calvörde sand (CS)). 

In early wood, none of the analyzed anatomical features of vessels and fibres showed 

any significant difference among the six sites (P > 0.05, Figure 2.10, Figure 2.11). A slight 

change of vessel lumen area and vessel frequency were observed but were not significant among 

beech trees stocking in the six sites. 

In transition wood, the average vessel lumen area (VLA) increased significantly (F = 

23.336, P < 0.001) and the vessel frequency (VF) increased strongly (F = 15.886, P <0.001) 

from dry sites to moist sites (Figure 2.10A, B). In these woody regions, no changes were 

observed for the thickness of vessel cell wall (VCW) and fibre properties under different sites 

and soil types (P > 0.05, Figure 2.10C, Figure 2.11).  

In late wood formed in 2010 and 2011, vessel frequency increased significantly from 

the moist to the dry site (F = 7.685, P < 0.001, Figure 2.10A) whereas vessel lumen areas 
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showed strong decreases (F = 19.151, P < 0.001, Figure 2.10B). The thickness of vessel cell 

walls exhibited no significant differences in the beech wood of the six sites (F = 0.484, P = 

0.784, Figure 2.10C). However, beech trees which stocked in low precipitation climate 

(Calvörde), possessed significantly narrower fibre lumen (Figure 2.11B) and thicker thickness 

of double fibre cell wall compared to the beech trees growing in forests with higher precipitation 

(Figure 2.11C). Fibre frequency stayed constant in the beech wood of beech trees stocking in 

six sites (Figure 2.11A).  

 
 

 

              

 

Figure 2.10. Variation of vessel properties of beech (Fagus sylvatica L.) trees in six sites 
(Unterlüss loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde 
loam (CL) and Calvörde sand (CS)) within the annual rings 2010 and 2011: vessel frequency 
(A), vessel lumen area (B) and the thickness of vessel cell wall (C). Early wood (E, black bars), 
transition wood (T, white bars) and late wood (L, grey bars). Data indicate means ± SE, n = 5. 
Different letters indicate significant differences at P ≤ 0.05. 

  



 

42 
 

   
 

 

 

Figure 2.11. Variation of fibre properties of beech (Fagus sylvatica L.) trees in six sites 
(Unterlüss loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde 
loam (CL) and Calvörde sand (CS)) within the annual rings 2010 and 2011: fibre frequency 
(A), fibre lumen area (B) and the thickness of double fibre cell wall (C). Early wood (E, black 
bars), transition wood (T, white bars) and late wood (L, grey bars). Data indicate means ± SE, 
n = 5. Different letters show significant differences at P ≤ 0.05. 

 

The percentages of cell wall area did not reveal significant differences among six sites 

in wood regions formed at different times during the growing season (early wood, transition 

wood and late wood) (P > 0.05, Figure 2.12).  

Seasonal changes also affected some anatomical features but not all. Vessel frequency, 

vessel lumen area, fibre lumen area decreased towards the end of the growing season (Figure 

2.10A, B; Figure 2.11B, respectively), whereas fibre frequency and thickness of double fibre 

walls and percentage of cell wall area (Figure 2.11A, C; Figure 2.12, respectively) increased 

from early wood to late wood in all beech trees from the six sites. The thickness of vessel cell 

wall remained constant during the growing season (Figure 2.10C). 
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Figure 2.12. Fractions cell wall area per cross-section area of beech (Fagus sylvatica L.) trees 
in six sites (Unterlüss loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), 
Calvörde loam (CL) and Calvörde sand (CS)) within the annual rings 2010 and 2011. Early 
wood (E, black bars), transition wood (T, white bars) and late wood (L, grey bars). Data indicate 
means ± SE, n = 5. Different letters show significant differences at P ≤ 0.05 

2.3.4. Nitrogen and carbon in wood 

Nitrogen concentration in the annual rings (2009-2012) showed no significant changes 

among beech tree along the precipitation gradient (P = 0.192, F = 1.513) or stocking in different 

soil types (F = 1.164, P = 0.283) (Figure 2.13A). The carbon concentration revealed no effect 

of precipitation (F = 2.226, P = 0.113) or soil types (F = 0.313, P = 0.577, Figure 2.13B). The 

carbon-to-nitrogen ratios (C: N), were neither affected by precipitation (F = 1.189, P = 0.308) 

nor soil type (F = 1.151, P = 0.226) (Figure 2.13C).   

 
  

Figure 2.13: Nitrogen concentration (A), carbon concentration (B) and Carbon – to – Nitrogen 
ratio (C) of woody samples of beech (Fagus sylvatica L.) trees living in the six sites (Unterlüss 
loam (UL), Unterlüss sand (US), Göhrde loam (GL), Göhrde sand (GS), Calvörde loam(CL), 
Calvörde sand (CS)). Data indicate means ± SE, n = 20. Different letters indicate significant 
differences at P ≤ 0.05. 
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To find out whether precipitation affected wood formation, the δ13C signature was 

determined in early, transition and late wood regions of the 2010 annual ring of beech trees 

stocking in sandy soil locations.  

In the early wood and transition wood, the δ13C ‰ signatures of beech wood samples 

from three locations were not significantly different among beech trees (P > 0.05, Figure 2.14A, 

B). But in the late wood, a significant increase was found in Calvörde (sandy soil) compared to 

Unterlüss (sandy soil) (F = 3.287, P = 0.043, Fig. 2.14C).  

   

Figure 2.14: Carbon isotope composition in the early wood region (A), in transition region (B) 
and late wood region (C) of beech (Fagus sylvatica L.) trees stocking in the three sandy 
locations (CS = Calvörde sand, GS = Göhrde sand, US = Unterlüss Sand). Data indicate means 
± SE, n = 5. Different letters show significant differences at P ≤ 0.05. Year ring 2010 was 
investigated. 

 

 

Figure 2.15: Precipitation patterns during the growing season of 2010 in 3 sites Unterlüss sand 
(US), Göhrde sand (GS), Calvörde sand (CS)). 
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2.4. Discussion 

One of the major questions in this study was whether precipitation or soil type affected 

secondary xylem development and xylem properties. Mature beech trees from six sites along a 

precipitation gradient showed significant differences in annual increment, and these changes 

were strongly related to sites but not soil types. Moreover, a strong negative correlation between 

annual precipitation and wood increment was found. It is clear that the reduction of wood 

increment (ring-width) will lead to a decrease gross primary productivity of beech trees at low 

precipitation locations. Some other studies found remarkable reduction in growth of beech trees 

because of low soil water supply (Bolte et al. 2007, Van Hees 1997, Fotelli et al. 2001, van der 

Werf et al. 2007, Piovesan et al. 2008), drought and heat waves (Ciais et al. 2005). Therefore, 

a decline of precipitation in Germany may reduce the productivity of European beech (Fagus 

sylvatica L.) in the future and make beech less competitive than other broadleaves species like 

oaks.  

Anatomical analysis of beech trees revealed that vessel lumen area and vessel frequency 

were significantly affected by the conditions of the sites. Under limited water condition, beech 

trees in the driest site (Calvörde) had the smallest vessels, but displayed a significant increase 

of vessel frequency. These changes of vessel properties of beech trees might, probably, be an 

adaptation to cope with low precipitation because narrow vessels prevent cavitation (Tyree et 

al. 1994, Hargrave et al. 1994, Sperry 2011). However, beech trees probably needed to balance 

their efficiency in water transport through secondary xylem because they have to maintain their 

water tissue status. Vessel density is another important anatomical parameter for water conduit 

in the xylem. Increased vessel frequency in beech trees in drier locations indicated a 

compensation for small vessel lumina since the total cross-sectional vessel lumen area was 

unchanged (Bacelar et al. 2007). The present study also found the similar results. Some other 

studies also showed the same results in other species (Lovisolo and Schubert 1998, Sperry et 

al. 2006, Arend and Fromm 2007, Bacelar et al. 2007). Schuldt et al. (2015) found that in 

branches of beech vessel diameter increased and beech vessel density decreased with increasing 

precipitation.  

In transition wood and late wood, the increased vessel frequencies and decreased vessel 

lumina were found compared to changes of the whole ring-width of beech trees. This suggests 

that in the middle and the late period of the growing season, beech trees, on the dry site, could 
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change their vessel features to acclimate to low precipitation (Fig. 2.9). Interestingly, patterns 

of precipitation during growing season of all six sites indicated that the precipitation as higher 

in early summer and was similar among the sites. However, from July to October monthly 

precipitation data in driest sites (CL/CS) were clearly lower than those in wettest sites (UL/US) 

(Fig. 2.9). Therefore, observed changes of anatomical properties suggest that beech trees may 

have an adaptive drought strategy to maintain a stable water status in habitats often exposed to 

low precipitation.    

Regarding fibre characteristics of early and transition wood, site and soil types did not 

affect these values. However, thicker fibre wall and narrower fibre lumina were found in beech 

trees living in the dry site (Calvörde). The same features of wood were described for xeric 

environments (Sperry 2003, Micco and Aronne 2012). Cell wall thickening increases the 

mechanical strength of wood and is correlated with resistance to cavitation (Carlquist 1989, 

Kohonen and Helland 2009, Lens et al. 2011). Therefore, thicker fibre walls and narrower fibre 

lumina found in the late wood region of beech trees suggest that not only vessels but also fibres 

could be changed because of low precipitation.  

The percentage of cell wall area per cross-sectional area is another important parameter 

representing the mechanical strength of wood since it is strongly correlated with wood density. 

Notably, despite some anatomical changes, the percentages of cell wall remained constant in 

the wood of all beech trees. Schuldt et al. (2015) also found that beech trees along a precipitation 

did not change their wood densities although these trees showed decreased vessels lumnia and 

increased vessel frequencies. Therefore, the mechanical strength of beech wood might be not 

affected by conditions of six beech forests.  

δ13C from dry sites is inversely correlated to the precipitation amount of summer months 

(Saurer et al. 1995) and soil conditions (Saurer and Siegenthaler 1989). Leavitt and Long (1988) 

found that δ13C showed a significant correlation with the drought index (Palmer Hydrological 

Drought Indices) of trees chronologies. Gessler et al. (2001) found that δ13C signatures of sap 

reflected short-term fluctuations in water availability. Here, carbon isotope analysis of beech 

trees on the dry site indicated that carbon discrimination in the late period of the growing season 

was stronger than early in the season. Water shortage can induce stomatal closure and thus 

increase δ13C of the incorporated carbon. This finding suggests that beech trees probably closed 

their stomata to prevent water loss and maintain their water tissue status. This change of δ13C 
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signatures and anatomical changes of late wood also confirmed that beech trees on the dry site 

may have a drought avoidance strategy to cope with low water availability in nature.  

Here, beech trees living in different habitats which differ in precipitation showed 

significant changes in annual increment values. However, carbon and nitrogen content in their 

wood did not vary among different locations. Since beech trees in dry habitats probably had an 

avoidance mechanism, and this mechanism contributes remaining their water tissue status and 

probably remained the rate of assimilation in plants. It is explained that carbon and nitrogen 

content did not differ among locations. However, the total C content of beech trees on dry site 

was significantly lower than those in wetter sites because a reduction wood increment of beech 

trees was clearly shown in dry sites. Decreased wood growth could be the cost that beech trees 

have to deal with low precipitation.  

In conclusion, the comparison of beech trees at wet and dry sites suggests that water 

availability caused anatomical changes. Beech trees seem to have a drought avoidance strategy 

to deal with dry conditions. However, other factors as genetic factors may also contribute to 

better adaptedness of beech to low precipitation.  
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3.1. Introduction 

 European beech (Fagus sylvatica, L.) is a dominant forest tree species of high economic 

and ecological value (Ellenberg and Strutt 2009). Within its distribution range across Central 

Europe, the species grow preferentially on well-drained, moist soils; but at the margins of its 

occurrence beech stands also exist under moderately dry conditions (Paule et al. 1994, Bolte et 

al. 2007). It has been forecast that climate change will lead to extended periods of drought stress 

in this century, especially during summer (Lindner et al. 2010). Extended periods of drought 

stress have profound, negative effects on tree vitality and forest productivity (Ciais et al.,  2005, 

Williams et al. 2013, Hanewinkel et al. 2013). Current beech forests are, therefore, most likely 

endangered by the consequences of global change (Rennenberg et al. 2006; Geßler et al. 2007). 

It is, thus, important to understand the drought adaptation potential of this species.  

The physiological drought responsiveness of beech has been studied in provenances 

from sites differing in annual precipitation. Progenies from different locations exhibit 

significant variations in growth, photosynthetic activity, leaf traits and leaf area, nutrient 

element concentrations, and accumulation of osmoprotectants under stress indicating 
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physiological plasticity (García-Plazaola and Becerril 2000, Peuke et al. 2002, Czaikowski and 

Bolte 2006, Rose et al. 2009, Peuke and Rennenberg 2011, Robson et al. 2012) and the potential 

availability of local, drought-adapted beech provenances (Bolte et al. 2007, Pluess and Weber 

2012, Weber et al. 2013). The molecular and cellular mechanisms that may lead to differences 

in drought performance of beech are currently unknown.  

A key pathway for drought acclimation involves abscisic acid (ABA) signaling to recruit 

drought defense responses and which results in stomatal closure, thereby, regulating plant water 

consumption (Shinozaki and Yamaguchi-Shinozaki 2007, Popko et al. 2010, Raghavendra et 

al. 2010). A further common feature of drought stress is an increased production of reactive 

oxygen species. Therefore, activation of protective enzymes, especially of antioxidative 

defenses, is important to combat oxidative degradation of vulnerable structures such as cell 

membranes (Polle et al. 2006, Fischer and Polle 2010).  

To address the plasticity and adaptation of beech in response to drought, we selected 

key genes involved in ABA signaling [nine-cis-epoxy-dioxygenase (NCED), protein 

phosphatase 2C (PP2C), early responsive to dehydration (ERD)] and stress protection 

[ascorbate peroxidase (APX), superoxide dismutase (Cu/ZnSOD), aldehyde dehydrogenase 

(ALDH), glutamine amido transferase (GAT)]. Briefly, NCED is a crucial enzyme for ABA 

biosynthesis because it catalyzes the first committed step cleaving cis-xanthophyll to xanthoxin, 

which is then converted to ABA (Nambara and Marion-Poll 2005). Transgenic approaches in 

Arabidopsis have shown the involvement of NCED in drought tolerance (Iuchi et al. 2001, Frey 

et al. 2012). PP2C is induced by high ABA levels and is an essential component in ABA signal 

transduction (Lorenzo et al. 2001, Saavedra et al. 2010). ERD proteins are transcription factors 

that act as regulators of ABA signaling. Because ERD overexpression renders plants less ABA-

responsive and more drought susceptible, it exerts negative control on the down-stream events  

(Kariola et al. 2006, Aalto et al. 2012). The beech homologs of the genes ERD15 and NCED1 

have been studied in response to ozone (Jehnes et al. 2007) and PP2C from beech was cloned 

and overexpressed in Arabidopsis supporting its role in ABA signal transduction (Reyes et al. 

2006). 

The antioxidative enzymes SOD and APX detoxify superoxide radicals and hydrogen 

peroxide, respectively. Their role in mediating drought tolerance is known for a long time 

(Gupta et al. 1993, Mittler and Zilinskas 1994, Badawi et al. 2004). In beech, APX and SOD 
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undergo strong seasonal regulation (Polle and Morawe 1995a, Polle and Morawe 1995b) and 

the responsiveness of SOD to oxidative stress declines with increasing leaf age resulting in 

increased membrane leakage under acute oxidative stress (Polle et al. 2001).  Here, homologs 

to cytosolic Cu/ZnSOD1 and APX1 were analyzed.  

Unattended reactive oxygen species result in lipid peroxidation and increase the 

formation of aldehydes (Bartels and Sunkar 2005). Aldehydes are removed by ALDH. 

Overexpression of ALDH increases dehydration tolerance  in Arabidopsis (Sunkar et al. 2003). 

ALDH2B7 from Arabidopsis, to which ALDH from Fagus sylvatica shows the highest 

homology, is localized in the mitochondrion and can oxidize acetaldehyde and glycolaldehyde 

(Skibbe et al. 2002, Kirch et al. 2004).   

Furthermore, we selected GAT, also known as asparagine synthase, which synthesizes 

asparagine from aspartate and glutamine (Heuvel et al. 2002). The expression of GAT is 

regulated by various stress factors and was identified as a constitutive drought marker in rice 

(Herrera-Rodríguez et al. 2007, Degenkolbe et al. 2013). In beech, GAT was induced after 

infection with Phytophthora citricola (Schlink 2009a). We expected that GAT. Which is 

involved in nitrogen metabolism, would also respond to drought because limited water 

availability suppresses beech nitrogen supply (Rennenberg et al. 2009).   

In the present study we selected five stands along a precipitation gradient from moist to 

dry conditions and determined their genetic structures. The natural regeneration of these stands 

was used in a common garden experiment to investigate the expression of genes related to ABA 

signaling and stress. The responses of well-irrigated and drought stressed saplings were 

compared throughout summer at an early, mid- and late season time point. We hypothesized 

that progenies from dry sites would have constitutively increased expression levels of ABA- 

and stress-related genes and would be less drought responsive than progenies from moist sites. 

To link gene expression with plant performance we determined progeny- and drought-related 

effects on leaf area and membrane integrity in the absence and presence of acute oxidative 

stress.  
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3.2. Material and Methods 

3.2.1. Field sites and plant material 

Five old-growth mono-specific beech (Fagus sylvatica L.) forests (Sellhorn, Unterlüss, 

Göhrde, Klötze, Calvörde) were selected along a 130-km-long NW-SE precipitation gradient 

from the Lüneburg Heath to the Altmark in the North German Plain (Lower Saxony, Saxony-

Anhalt, Germany, Table 1). The long-term mean annual precipitation decreased from 816 mm 

a-1 at the moist to 544 mm a-1 at the driest site, and the mean annual temperature increased along 

this gradient from 8.5 to 9.1 °C (Table 3.1). The forest stands exhibited similar structures with 

closed canopies, similar tree age of 100 to 130 years and were stocking on similar soil substrates 

(Pleistocene fluvioglacial sands from the penultimate Ice Age (Saalian), up to 30 % sand 

fraction, moderate to intense podzolic Umbrisols).  

Table 3.1 - Location, mean annual and summer precipitation, and mean annual and summer 
temperature of five beech forests. Mean annual climate data refer to long-term averages from 
1971 to 2000. Summer is defined as the time period from May to September. Climate data were 
derived from weather station data provided by National Climate Monitoring of Deutscher 
Wetterdienst and were corrected for altitude  

  

Origin Latitude (N) Longtitude (E) Elevation (m) 

Precipitation (mm) Temperature (°C) 

  Annual Summer Annual Summer 

Calvörde 52°22' 11°17' 105 544 260 9.1 15.6 

Klötze 53°09' 11°15' 85 614 284 8.9 15.4 

Göhrde 53°09' 10°52' 85 665 300 8.7 15.1 

Unterlüß 52°50' 10°19' 117 766 324 8.5 14.8 

Sellhorn 53°10 10°09' 130 816 352 8.5 14.6 

Fresh leaves from at least 99 adult trees were sampled in summer 2009 (Göhrde, 

Calvörde and Unterlüss) and in summer 2012 (Sellhorn and Klötze) for genetic analysis. In 

summer 2011, 160 about three-year-old beech saplings (height of about 0.2 m) from the natural 

regeneration were collected in each stand and transferred to the Experimental Botanical Garden 

of the University of Göttingen (51°33' N, 9°57' E, 177 m a.s.l.) for a common garden 

experiment. For this purpose, the forest soil was carefully washed off and the bare-rooted trees 

were planted individually in 5-L containers filled with coarse sand (Oppermann, Hedemünden, 
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Germany) to a depth of 0.25 m. The unfertilized, fluviatile sand had a pH (KCl) of 6.2, a base 

saturation of 99.5 % and contained 0.01 µmol N g-1 and 0.6 µmol P g-1. All saplings were kept 

well-watered and maintained outdoors during the growing season (mean air temperature: 

17.7/11.9 °C day/night). In fall 2011, they were transferred to a climate chamber and kept at air 

temperatures of 4-7 °C and 70-80 % air humidity during the cold season. In April 2012, the 

plants were moved outdoors into the common garden and kept well-watered until the 

experimental treatments started. 

3.2.2. Experimental treatments and harvests 

A three-factorial randomized block design was set-up with the factors progeny (5), soil 

moisture (2) and time of the season (3). A total number of 150 trees (n = 5 per treatment) was 

placed under a mobile Perspex roof equipped with a rain sensor (Eltako, Fellbach, Germany), 

with the roof automatically moving over the plants when it rained. This allowed the control of 

the soil water content while providing outdoor conditions for the saplings. A shading net 

(Wunderlich, Osterode, Germany) reduced photosynthetically active radiation by 

approximately 70 %. Each plant was treated once before the beginning of the experiment with 

150 ml of a biocide solution composed of 0.025 % dimethoate (Perfekthion 40EC, BASF, 

Ludwigshafen, Germany), 0.04 % fenazaquin (Magister 10EC, Margarita Internacional, 

Funchal, Portugal) and 0.15 % tebuconazole (Folicur, Bayer AG, Monheim, Germany), and 

was fertilized thrice during the growing season with 200 ml of a 0.2 % NPK 5-20-5 fertilizer 

solution (Wuxal P Profi; AGLUKON, Düsseldorf, Germany). 

During the experimental phase from May to September the microclimatic conditions 

were monitored (HOBO U10 data loggers, Onset, Cape Cod, MA, USA, iButton Thermocron 

Temperature, Maxim, San Jose, CA, USA) showing mean air temperatures of 17.5/12.0 °C 

(day/night) and root temperatures of 16.9/11.6 °C at a depth of 0.1 m. 

The drought treatments started on May 25, 2012, after the termination of leaf expansion 

and were continued until September 2012. Two soil moisture regimes were established 

according to the target precipitation amount (during this period) at plant origin: (i) a moist 

treatment with 260 mm, which resulted in average soil moisture of 10 % SWC v/v, and (ii) a 

dry treatment with 135 mm, which resulted in average soil moisture of 2 % SWC v/v. The SWC 

was monitored regularly to a soil depth of 0.16 m with a mobile TDR probe (time domain 
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reflectometry probe; TRIME-FM2, IMKO GmbH, Ettlingen, Germany) in 8 pots per treatment. 

Water lost by evapotranspiration was added every second day.  

Whole trees of each progeny and soil moisture regime (n = 5) were sampled four (June 

25, 2012), nine (July 30, 2012) and sixteen weeks (September 17, 2012) after the start of the 

drought stress. Leaves were removed from the stem and weighed. One leaf per tree (3rd or 4th 

fully expanded leaf from the top) was immediately frozen in liquid nitrogen for molecular 

analyses. Leaf disks were cut from fresh leaves and used for the determination of membrane 

leakage. The remaining leaves were used for leaf area analyses with WinFOLIA 2005b (Régent 

Instruments Inc., Quebec, QC, Canada). All fractions were dried (72 h, 70 °C) and weighed. 

Total leaf area per tree was calculated as specific leaf area (SLA; leaf area per leaf mass) x total 

leaf mass of the tree (cm²). 

 3.2.3. Relative electrolyte leakage (REL) 

Twenty leaf disks (6 mm in diameter) were cut and incubated at room temperature in 25 

ml distilled water (ddH2O) or 1 mM paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride, 

Sigma-Aldrich, Saint Louis, MO, USA) as described by Polle et al. (2001). The conductivity 

(C) of the floating solution was measured at time zero (to), and after 4 and 24 h (LF 315/Set, 

WTW Wissenschaftlich-Technische Werkstätten, Weilheim, Germany). To disrupt the tissue 

and to release all electrolytes into the solution, the samples were autoclaved (121oC, 20 min, 

HST 6x6x6 Zirbus Technology GmbH, Bad Grund, Germany) and cooled to room temperature 

before measurement of maximum electrolyte leakage (Cmax). REL was calculated as: REL (%) 

= (Ct – Cto) * 100/(Cmax – Cto). 

3.2.4. RNA extraction and analysis of gene expression 

Leaves of the beech progenies were powdered in liquid nitrogen and used for RNA 

extraction as described by Chang et al. (1993) with minor modifications: the extraction buffer 

contained 2% β-mercaptoethanol, but no spermidine. The isolated RNA was dissolved in 30 µl 

ddH2O. The quality of 1 µl of the isolated RNA was controlled by gel electrophoresis and the 

concentration was measured in a BioPhotometer (Eppendorf, Hamburg, Germany). 1 µg RNA 

was used for the following steps: genomic DNA digestion with “TURBO DNA-free’’ (Ambion, 

Austin, TX, USA) and subsequent cDNA synthesis with the “First Strand cDNA Synthesis Kit” 

(Thermo Scientific, Waltham, MA, USA), each according to the manufacturer’s protocol. The 
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resulting cDNA was diluted 1:10 and used for real-time PCR in a LightCycler 480 (Roche, 

Mannheim, Germany). In each well 5 µl diluted cDNA, 10 µl SYBR Green I Master (Roche), 

1 µl of each, forward and reverse primer (5 pmol) and 3 µl ddH2O were mixed for the 

amplification reaction. Each biological sample was measured twice; five biological samples 

were measured per treatment and gene. The PCR program comprised the following steps: pre-

incubation for 5 min at 95°C, 45 cycles of amplification for 10 sec at 95°C, 10 sec at 55°C, 20 

sec at 72°C. The relative expression was calculated as: E(Ct(actin)-Ct(target gene)) where E is the primer 

efficiency (Supplement Table S3.1). The primer efficiency was determined by a dilution series 

and ranged between 1.8 and 2 for the genes of this study. The primer sequences for the target 

genes were obtained from Olbrich et al. (2008) (Actin), Jehnes et al. (2007) (NCED) or designed 

using the programs Oligo Explorer and Oligo Analyzer (Gene Link, Hawthorne, NY, USA). 

Gene names, accession numbers and primer sequences have been compiled in Supplement 

Table S3.1. 

3.2.5. DNA extraction and microsatellite analysis 

Total DNA was extracted from leaves of the mature forest trees using the DNeasyTM 96 

Plant Kit (Qiagen, Hilden, Germany). The amount and the quality of the DNA were analyzed 

by 1% agarose gel electrophoresis with 1 X TAE as running buffer (Sambrook et al. 1989). 

DNA was stained with Roti®-Safe GelStain (Roth, Karlsruhe, Germany), visualized by UV 

illumination and compared to a Lambda DNA size marker (Roche, Mannheim, Germany).   

To analyze the genetic structures of the beech populations, nine highly polymorphic 

microsatellite markers were used. Four of them were originally developed for Fagus crenata 

(sfc_0018, sfc_0161, sfc_1063, sfc_1143; Asuka et al. 2004), whereas two of them were 

directly developed for F. sylvatica (FS 3-04, Pastorelli et al. 2003, mfs 11, Vornam et al. 2004). 

In addition, three EST microsatellite markers were applied originally developed and transferred 

from Quercus robur (GOT 066, FIR 065, FIR 004; Durand et al. 2010). We performed 

multiplexing of two to four primers, labeled with different fluorescent dyes (6-

Carboxyfluorescein: sfc1063 sfc0161, FIR004, mfs11; 6-Hexafluorescein: sfc0018, 

sfc1143FIR065, FS 3-04), in set 1: all sfc loci, set 2: FS 3-04 and mfs 11, set 3: GOT 066, 

FIR 065, FIR 004.  
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PCR amplifications were conducted in a 15 µl volume containing 2 µl of genomic DNA 

(~10 ng), 10 x reaction buffer (0.8 M Tris-HCl pH 9.0, 0.2 M (NH4)2SO4, 0.2% w/v Tween-20; 

Solis BioDyne, Tartu, Estonia), 2.5 mM MgCl2, 0.2 mM of each dNTP, 1 unit of Taq DNA 

polymerase (HOT FIREPol® DNA Polymerase, Solis BioDyne, Estonia), 0.3 µM of each 

forward and reverse primer. The PCR protocol consisted of an initial denaturation step of 95 °C 

for 15 min followed by 30 cycles of 94 °C for 1 min (denaturation), 47 °C (for the EST primer 

set 3) or 55 °C (for primer set 1 and 2) for 30 sec (annealing), 72 °C for 1 min (denaturation) 

and a final extension step of 72 °C for 20 min. Microsatellite fragments were separated on an 

ABI PRISM® 3100 Genetic Analyzer (Applied Biosystems, Foster City, USA). Data were 

collected and aligned with the help of the internal size standard GS 500 ROXTM using 

GeneScan 3.7® (Applied Biosystems). Fragments were scored with the software 

Genotyper 3.7® (Applied Biosystems).       

3.2.6. Data analysis 

Nei’s genetic distance (Nei 1972) and the molecular diversity indices “number of 

alleles” (Na), “observed heterozygosity” (Ho), “expected heterozygosity” (He) as well as the 

analysis of molecular variance (AMOVA) and pairwise FST (both based on 9,999 permutations) 

between the adult stands were calculated with the software GenAlEx, version 6.5 (Peakall and 

Smouse 2012). The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

dendrogram, based on Nei’s distance, and the bootstrap values based on 1000 permutations 

were calculated with the software Populations, version 1.2.32 (Langella 1999). The dendrogram 

was visualized with the program TreeView, version 1.6.6 (Page 1996) using the phylogram tree 

style. 

Statistical data analysis was conducted with Statgraphics (Centurion XVI, St. Louis, 

Mo, USA). Data for REL, leaf area and relative transcript abundance are shown as means (±SE). 

After testing for normality (skewness, kurtosis), multivariate analysis of variance (MANOVA) 

was conducted to determine the effects of the main factors progeny, drought and time and their 

interactions. Treatment effects were considered to be significant when the P values were ≤ 0.05. 

Post-hoc test was performed to discriminate between means using Fisher´s least significant 

differences procedure; homogenous group were considered to be significantly different, when 

P value was < 0.05. The P values are indicated in the results sections as post-hoc P. Correlation 

between the expression levels of different genes were tested by Spearman rank correlations.  
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Principle component analysis (PCA) was performed using the free PAST software 

package 2.17c (http://folk.uio.no/ohammer/past/ Hammer et al. 2001). Data were analyzed as 

correlation matrix based on Euclidean distances. 

3.3. Results 

3.3.1. Genetic structure of beech stands along a precipitation gradient 

The genetic distances (Nei 1972) between the adult stands were relatively low and 

ranged from 0.015 between the stands Göhrde and Calvörde and 0.053 between Unterlüß and 

Göhrde (Table 3.2). The mean genetic distance between all stands was 0.037. In the 

dendrogram, only the stands Göhrde and Calvörde grouped close together whereas the 

remaining stands did not show a distinct clustering (Fig. 3.1). All clades were supported by 

significant bootstrap values. The genetic differentiation between the stands did not reflect the 

geographic distances or mean precipitation, but clearly showed significant differences between 

all populations (mean pairwise Fst = 0.012, p < 0.01). However, the differences of the molecular 

diversity indices between the different populations were low (Table 3.3). The number of alleles 

ranged from 7.556 for the population Klötze to 8.444 for the population Göhrde. The observed 

heterozygosity ranged from 0.594 for the population Unterlüß to 0.611 for the population 

Sellhorn. The mean expected heterozygosity was 0.610, whereas the lowest value was found 

for the population Klötze (He = 0.582) and the highest one for the population Göhrde 

(He = 0.638). The AMOVA revealed that 97 % of the molecular variance can be found within 

populations and 3% among them. 

  

http://folk.uio.no/ohammer/past/
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Table 3.2: Nei's genetic distances (Nei 1972) between the different adult stand 

Calvörde Klötze Göhrde Unterlüß Sellhorn   

0.000         Sellhon 

0.050 0.000       Unterlüß 

0.027 0.053 0.000     Göhrde 

0.035 0.041 0.048 0.000   Klötze 

0.025 0.043 0.015 0.037 0.000 Calvörde 

           

 

 

 

Figure 3.1: Dendrogram of European beech (F. sylvatica) populations from five locations 
(Sellhorn, Unterlüß, Göhrde, Klötze and Calvörde) along a precipitation gradient. The 
dendrogram was calculated with Nei's distance based on the analysis of nine microsatellite 
markers. Bootstrap values (1000 permutations) are indicated. Details of the sites are 
summarized in Table 1. 
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Table 3.3: Molecular diversity indices for the different populations. N, number of individuals; 
Na, number of alleles; Ho, observed heterozygosity; He, expected heterozygosity. 

 

Population  N  Na  Ho  He  

Sellhorn  99.9  7.778 0.611  0.615  

Unterlüß  99.4  8.000 0.594  0.595  

Göhrde  103.0  8.444 0.602  0.638  

Klötze  99.7  7.556 0.598  0.582  

Calvörde  104.0  8.111 0.599  0.619  

Mean  101.2  7.978 0.601  0.610 

3.3.2. Stress responses of beech progenies from a precipitation gradient 

Leaf area is an indicator of plant growth and critically determines drought responses. 

The natural regeneration of the five genetically distinct beech forests showed significant 

differences in leaf area, generally with larger leaf areas present on progenies from wetter sites 

than on those from drier sites (P = 0.005, Fig. 3.2A). Drought stress resulted in decreased leaf 

area compared with well-watered trees (P = 0.010, Fig. 3.2A).  

To test whether drought stress affected the cellular integrity, REL was determined after 

24h incubation of leaf disks in water (Fig. 3.2B). Progenies from drier origins showed lower 

REL than those from moister origins (P < 0.001, Fig. 3.2B). REL increased towards the end of 

the growing season (post-hoc P < 0.05) and increased in response to drought stress (P < 0.001, 

Fig. 3.2B). Higher drought sensitivity of the progeny from Sellhorn (moist site) than of those 

of the drier sites is indicated by significant interactions between SWC x time and progeny x 

SWC x time (post-hoc P < 0.05, Fig. 3.2B).   
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Figure 3.2: Leaf area (LA) of young beech (F. sylvatica) trees (A), relative electrolyte leakage 
(REL %) of leaf disks after incubation in water (B) or paraquat (PQ) (C). The beech trees 
originated from five locations (SE, Sellhorn; UN, Unterlüß; GÖ, Göhrde; KL, Klötze; and CA, 
Calvörde). Data are arranged from moist to dry sites. The trees were maintained in a common 
garden experiment with sufficient water availability (gray bars) or drought (black bars) imposed 
by soil water contents SWC of 10 and 2% v/v, respectively, and harvested in the growing season 
after 4, 9 and 16 weeks of drought. Scale bars indicate means ± SE (n = 5). 

 

The ability to cope with an acute stress situation was tested by challenging the leaf disks 

with paraquat, an herbicide known to induce massive oxidative stress (Polle et al. 2001).  Early 

in the growing season, leaves from Sellhorn progenies, which originate from the most mesic 

site, withstood oxidative stress better than those from drier sites (post-hoc P < 0.05, Fig. 3.2C). 
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Towards the end of the growing season, REL was reduced indicating higher protection in all 

progenies (post-hoc P < 0.05, Fig. 3.2C). Leaves from drought-stressed trees exhibited 

generally lower REL than those from unstressed trees, but the magnitude of the ameliorating 

effect was very small (P = 0.042, Fig. 3.2C).  

3.3.3. ABA-related gene expression in beech progenies from a precipitation gradient  

The expression of NCED, which is required for ABA biosynthesis, increased from the 

beginning towards the end of the growing season (post-hoc P < 0.05) and was higher in 

progenies from wetter sites than in those from drier sites (post-hoc P < 0.05, Fig. 3.3A). Drought 

stress affected NCED only at the end of the growing season, with the strongest increases in 

progenies from Sellhorn and Unterlüss (moist sites, post-hoc P < 0.05, Fig. 3.3A).  

In contrast to NCED, the expression of PP2C, a phosphatase kinase involved in ABA 

signal transduction, decreased towards the end of the growing season (post-hoc P < 0.05). 

Progeny-related differences in PP2C expression were found (P = 0.001), which were however, 

less pronounced than those found for NCED. Drought stress resulted in most cases in increases 

in PP2C, which were generally stronger in the early growing season than at the end of the 

growth phase (interaction progeny x drought, P = 0.018, Fig. 3.3B).    

The expression of ERD15, an ABA-responsive transcription factor that attenuates ABA 

responses, was higher in progenies from moist than in those from drier sites (post-hoc P < 0.05), 

increased towards the end of the growing season (P = 0.013) and increased in response to 

drought stress (P < 0.001). The responses were stronger in progenies from Sellhorn and 

Unterlüss than in those from the other sites (interaction progeny x drought, Fig. 3.3C). 



 

66 
 

 

Figure 3.3: Relative transcript abundance (rel. TA) of NCED (A), PP2C (B) and ERD (C) in 
leaves from beech (F. sylvatica). The leaves were obtained from progenies originating from 
five sites (SE, Sellhorn; UN, Unterlüß; GÖ, Göhrde; KL, Klötze; CA, Calvörde). Data are 
arranged from moist to dry sites. The trees were maintained in a common garden with sufficient 
water availability (gray bars) or drought (black bars) imposed by SWC of 10 and 2%, 
respectively, and harvested in the growing season after 4, 9 and 16 weeks of drought. Scale bars 
indicate means ± SE (n = 4–5).  

 

3.3.4. Stress-related gene expression in progenies from a precipitation gradient 

The expression of SOD, APX and ALDH, genes encoding enzymes required for the 

scavenging of superoxide radicals, hydrogen peroxide and toxic aldehydes were higher in 

Sellhorn progenies than in those from the other sites (post-hoc P < 0.05 for each gene, Fig. 3.4). 

SOD and ALDH showed intermediate expression levels in progenies from Unterlüss and 

Göhrde and very low expression levels in progenies from the driest sites, Klötze and Calvörde 
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(Fig. 3.4A, C). The expression levels of SOD and ALDH increased at the end of the growing 

season in the Sellhorn progeny (post-hoc P < 0.05 for each gene, Fig. 3.4A, C). 

The expression levels of APX were lower than those of SOD and ALDH (post-hoc P < 

0.001 for both comparisons), and decreased towards the end of the growing season compared 

with mid-season values (post-hoc P < 0.05, Fig. 3.4B). Drought stress resulted in increased 

APX levels (P = 0.001), but the magnitude of this effect was relatively small (Fig. 3.4B).    

 

Figure 3.4. Relative transcript abundance (rel. TA) of superoxide dismutase (SOD, A), 
ascorbate peroxidase (APX, B) and aldehyde dehydrogenase (ALDH, C) in leaves from beech 
(F. sylvatica). The leaves were obtained from progenies originating from five sites (SE, 
Sellhorn; UN, Unterlüß; GÖ, Göhrde; KL, Klötze; CA, Calvörde). Data are arranged from moist 
to dry sites. The trees were maintained in a common garden with sufficient water availability 
(gray bars) or drought (black bars) imposed by SWC of 10 and 2%, respectively, and harvested 
in the growing season after 4, 9 and 16 weeks of drought. Scale bars indicate means ± SE (n = 
4–5). 
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We also determined the expression of GAT, which is expected to respond to drought-

induced changes in nutrient supply. GAT expression was highest in progenies from Sellhorn, 

intermediate in those from Unterlüss and Göhrde and lowest in those from Klötze and Calvörde 

(P < 0.001, Fig. 3.5). GAT expression levels increased towards the end of the growing season 

(P < 0.001, Fig. 3.5). In contrast to our expectation, they were not affected by drought (P = 

0.299, Fig. 3.5). 

 

Figure 3.5: Relative transcript abundance (rel. TA) of glutamine amidotransferase (GAT; syn. 
asparagine synthase) in leaves from beech (F. sylvatica). The leaves were obtained from 
progenies originating from five sites (SE, Sellhorn; UN, Unterlüß; GÖ, Göhrde; KL, Klötze; 
CA, Calvörde). Data are arranged from moist to dry sites. The trees were maintained in a 
common garden with sufficient water availability (gray bars) or drought (black bars) imposed 
by SWC of 10 and 2%, respectively, and harvested in the growing season after 4, 9 and 16 
weeks of drought. Scale bars indicate means ± SE (n = 4–5). 

 

Correlation analyses conducted for the transcript levels of the genes revealed significant 

relationships for most of the genes studied (Supplement Table S3.2). The exception were PP2C 

levels, which were only correlated with ERD and APX, and APX levels, which were not 

correlated with NCED and ALDH (Supplement Table S3.2).  

3.3.5. Multivariate analysis of progeny- and drought-related performance of beech 

progenies 

To determine the main factors responsible for progeny-related differences and stress 

responsiveness, PCAs were conducted for early, mid- and late time points during the growing 

season using all measuring variables (Fig. 3.6).  PC1 was the main component representing 40.2 
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to 42.0 % of the variation and separating the five progenies according to the precipitation at the 

sites of their origin (Fig. 3.6A-C, Supplement Table S3.3). Although mean summer 

precipitation was included, ALDH, GAT, and SOD were the main positive loadings of PC1 with 

a high correlation of r ranging from 0.81 to 0.93 (Supplement Table S3.3). Negative loadings 

of the PC1 were acute stress responses (PQ4 with r > 0.6) at early and mid-season time points 

(Fig. 3.6 A, B), whereas no significant negative loading was determined for PC1 at the end of 

the growing season (Fig. 3.6 C). 

PC2 and PC3 separated drought-stressed from unstressed treatments, but their 

contributions to the variation were less important than PC1 (13.1 to 17.6% for PC2; 10.7 to 

13.0% for PC3, Supplement Table S3.3). For PC2 SWC was the most significant loading with 

r = 0.83 in the mid-season (Fig. 3.6B), whereas leaf area was the main loadings early and late 

in the season with r = 0.61 and 0.76, respectively (Fig. 3.6A, C). The main loadings of PCA3, 

which was similarly important as PC2, were SWC with -0.50 and 0.50 early and late in the 

growing season and leaf area (r = 0.82) in the mid-season (Supplement Table S3.3). SWC as 

the main loading was always opposed by PP2C as main loading for the opposite direction with 

0.79 (early season), -0.70 (mid-season), and -0.57 (late season) on either the first or second 

PCA axis. 
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Figure 3.6: Principal component analysis of all measuring parameters in June (A), July (B) and 
September (C). Each progeny is indicated by the minimum hulls with light colors for drought-
stressed and full colors for non-stress trees: gray, Sellhorn (Se); red, Unterlüß (Un); yellow, 
Göhrde (Gö); green, Klötze (Kl); blue, Calvörde (Ca). ADH, aldehyde dehydrogenase; APX, 
ascorbate peroxidase; C24, membrane leakage after water incubation; ERD, early dehydration 
responsive protein; GAT, glutamine amidotransferase; LA, leaf area; NCED, 9-cis-epoxy-
dioxygenase; PP2C, protein phosphatase 2C; PQ4, membrane leakage after paraquat treatment; 
SWC, soil water content. 
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 3.4. Discussion 

3.4.1. Beech populations exhibit strong differentiation of stress-related gene transcription, 

but not of neutral genetic markers  

Beech populations display high genetic variation in natural and managed stands and 

even in stands that are geographically close to each other (Buiteveld et al. 2007, Jump and 

Penuelas 2007). In concordance with other studies applying neutral genetic markers (Vornam 

et al. 2004, Chybicki et al. 2009, Gömöry et al. 2010), we found that the beech trees from the 

five sites analyzed here exhibited only very little variation between and high variation within 

the populations. The applied neutral markers were sufficient to distinguish the populations, but 

the genetic distances did not reflect the climatic gradient of the sites. A reason for this result 

was probably that neutral markers are under lower selection pressure than adaptive genes. 

However, some studies found evidence for on-going selection in beech. For example, Jump et 

al. (2006a) identified a gene locus whose frequency correlated with temperature in populations 

at the southern range edge of in Spain, where increasing temperatures enhanced evaporative 

demand and resulted in growth decline (Jump et al. 2006b). Jump et al. (2006a) suggested that 

this locus may indicate an adaptive in situ response to the changing environment.  

Beech populations in Switzerland also exhibited higher differentiation than expected of 

some genetic markers in trees of a dry compared to those of a mesic site (Pluess and Weber 

2012). This finding suggested ongoing selection, but no correlation between the genetic 

diversity indices and growth was observed (Pluess and Weber 2012). 

In addition to neutral genetic markers, we used the transcript abundance and stress 

responsiveness of a number of structural genes to distinguish between genetic adaptation and 

flexible stress adjustment. PCA of transcript abundances of stress-related genes and 

physiological parameters ordered the populations according to mean precipitation and 

temperature. Numerous previous investigations using beech provenances or ecotypes from 

different (micro-)geographic areas have already identified physiological and phenotypical 

differences that suggested the presence of adaptive traits (Peuke et al. 2002, Meier et al. 2006, 

Rose et al. 2009, Czajkowski and Bolte 2006, Robson et al. 2012, Stajner et al. 2013). Our 

results show that GAT, ALDH, SOD and with slightly lower impact also ERD were the major 
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factors ordering the progenies according to precipitation gradient (SE > UN ≥ GÖ ≥ KL > CA). 

These findings suggest that these genes were either direct or indirect targets of selection.    

In contrast to our initial hypothesis SOD, ALDH, and GAT were constitutively lower 

and not higher in progenies from dry than from mesic sites. Furthermore, the transcript levels 

increased towards fall more strongly in beeches from mesic than in those from dry sites. These 

observations suggest that beech origins from sites with higher precipitation may have an 

increased need to detoxify products of oxidative stress. In fact, leaves from unstressed Sellhorn 

beeches, the site with the highest annual precipitation, exhibited higher membrane leakage than 

those from the other sites pointing to the higher constitutive production of reactive oxygen 

species than in the other beech progenies. Currently, we can only speculate about the reasons 

for these results. It is possible that beeches from drier sites avoid production of toxic metabolites 

by yet unknown mechanisms, whereas those from sites with sufficient precipitation protect 

themselves by enhanced activation of scavenging mechanisms. As detoxification is energy and 

reductant consuming, we speculate that prevention of oxidant production may be more 

favorable that permanent scavenging in progenies from dry sites.  

Other selected genes in our study also showed significant site-of-origin related 

differences in in transcript abundance. However, these genes contributed less than SOD, GAT 

and ALDH to the order of the progenies on PC1. Among these genes, the transcriptional 

regulation of ERD is noteworthy because ERD is a negative regulator of ABA sensitivity. 

Increased transcript levels of ERD in Sellhorn beeches, therefore, suggest that the sensitivity to 

ABA is lower in these progenies than in those from the other sites. ABA is known for its role 

in stomatal closure, but many other down-stream effects of ABA have been recognized such as 

its antagonizing effect on growth and up-regulation of proteins involved in osmotic adaptation, 

e.g. LEA proteins, dehydrins, etc. (Cutler et al. 2010). The present results may imply that 

selection acts on the balance between the capacity for detoxification of injurious metabolites 

and the presence of pre-formed anti-drought proteins. It is clear that more work is required in 

future to identify adaptive traits in beech and unravel their molecular basis.   

3.4.2. Stress-related genes exhibit seasonal changes and differ in drought responsiveness  

Antioxidative enzymes play important roles in plant development and adaptation to 

environmental stresses (Suzuki et al. 2012). It is therefore critical to balance the removal and 
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production of reactive species throughout the plant´s life (Suzuki et al. 2012). Antioxidative 

systems as well as transcript abundances in beech leaves vary with tissue age and physiological 

stage (Polle and Morawe 1995b, Luwe 1996, Olbrich et al. 2009). Furthermore, the stress 

susceptibility of beech leaves varies during the growing season and is generally higher in young 

than mature leaves (Polle et al. 2001).  Here, acute stress imposed by paraquat also resulted in 

strong membrane injury at the earlier time points (June, July) than in September, with the 

exception of the progeny Sellhorn, whose leaves exhibited higher antioxidative capacities than 

those from the other sites. Notably, the leaves from drought exposed plants were either not or 

only marginally better protected from acute oxidative injury suggesting that stress did not 

trigger enhance responsiveness or generally higher activation of the antioxidative defenses. 

This notion is also supported by the relatively small increases in transcript levels of SOD, APX 

and ALDH in response to drought.  

Many studies, mostly conducted with crops or herbaceous model plants, have shown 

that overexpression of enzymes such as SOD, APX and ALDH increased drought protection 

(Reddy et al. 2004, Kotchoni et al. 2006, Foyer and Noctor 2009, Kar 2010). A drawback of 

our analysis is that only a limited number of stress-related genes were analyzed and that the 

genes included here are members of larger families. Therefore, the current analysis provides 

only a glimpse into the drought regulation of antioxidative systems in beech. However, the 

finding that membrane leakage of drought stressed leaves was not much changed compared to 

that of non-drought stressed leaves supports our suggestion that plasticity or flexibility of 

antioxidative defenses may not play a major role in stress amelioration in beech.  

In concordance with other studies (Cutler et al. 2010, Raghavendra et al. 2010), our 

results point to ABA signaling as a critical drought response.  Among the analyzed genes, PP2C 

was the only one, whose transcript abundance was the main driver separating drought and non-

drought stressed behavior in the PCA. PP2C loading was opposed to soil water content. 

However, the separation of drought and non-stressed treatments was less important (about 17% 

or 11% of the variation) than plant origin (40 % of the variation). PP2C is probably the best-

studied gene in European beech (Lorenzo et al. 2001). It was isolated from beech nuts, induced 

by ABA in seeds during dormancy, but not in other vegetative tissues (Lorenzo et al. 2001). 

Our data show that its drought inducibility depends on the beech population studied and was 

generally stronger early than late in the growing season. Heterologous overexpression of beech 

PP2C in Arabidopsis rendered the plants more stress sensitive (Reyes et al. 2006). Furthermore, 
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beech PP2C interacts with PYL/RCAR in the presence of ABA and thereby enables the 

transcription of drought-responsive target genes (Saavedra et al. 2010). Here, decreased PP2C 

and increased NCED levels imply higher ABA biosynthesis, but lower sensitivity in fall than at 

earlier time points. Overall, this pattern was more pronounced in beech from moist than in those 

from drier sites underlining that intraspecific progeny-related differences exist to cope with 

drought.   

There is now increasing awareness that our knowledge on stress responses and 

regulation, gained by in-depth analysis of model plants such as Arabidopsis thaliana, is often 

not applicable to other plants species (Martin 2013). Our attempts to increase understanding of 

non-model plants have to be re-enforced because climate change with decreasing water 

availability and increasing temperatures is expected to limit the current range of many plant 

species, especially of long-lived forest trees. The present study addresses the adaptability of 

beech, an economically important, widespread species in European temperate forests, to 

drought. Analyses of the transcriptional regulation of genes for drought signaling and defense 

throughout the growing season uncovered intraspecific differences in constitutive expression 

and drought responsiveness. The progeny-related differences were stronger than the stress 

responses suggesting that selection for drought adaptation may already take place in local beech 

populations. An important future task will be to elucidate the molecular reasons for the observed 

differentiation.   
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Table S3.1: Target genes and primers used for the analysis of beech (Fagus sylvatica) leaves. 

_______________________________________________________________________________________________________________________ 

Gene name Accession no.  Forward primer    Reverse primer    Tm Primer 
efficiency 

_______________________________________________________________________________________________________________________ 

Actin  AM063027  AGAGATTCCGTTGCCCAGAA  TGGATTCCAGCAGCTTCCA  57°C  1.93 

PP2C  AJ277743  GGAGGTGCAAGAGTGGAGAG  AGTCTGGACGTCGCATCTG  59°C  1.88 

GAT  Fs_Pc_009_C08 AAGGCTCAACAGCATTCCAC  TCAGCTATTGTGAGTCCCACTG   60°C  1.91 

ALDH  FR774766  ACGAGGTGATACGAAGAGCAAAT CGTGTCAAAGTGTTAGCAGTGTC 59°C  1.90 

APX1  FR774767  ATGCCTGAGGATTTGAGGAACA AAGAGGGCGGAAGACGG  58°C  2.00 

ERD  FR775803  CCTCGTCAAGTCCTCACCT  GGATCGTCAATATCGGGAAAGT 59°C  1.83 

CuZnSOD AJ586519  TTATCGGAAGGGCTGTTGTTG  GGCCACCAGCATTTCCAGT  59°C  1.92 

NCED  DQ787262  GCAACCTATGTCTCCCGCTATG  GAATAATCCAAACAGCCCCTTGA 59°C  1.95 

_____________________________________________________________________________________________________________________ 
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Table S3.2: Spearman Rank Correlations of the genes studied in 5 progenies. Lower part: Correlation 
coefficients (black), upper panel: p-values (red: significant), blue = insignificant).  

 

 PP2C ERD ALDH SOD GAT APX NCED 
PP2C  0.033 0.171 0.051 0.060 0.049 0.804 

ERD 0.396  0.000 0.000 0.000 0.010 0.007 

ALDH 0.254 0.712  0.000 0.000 0.058 0.000 

SOD 0.362 0.781 0.841  0.000 0.002 0.002 

GAT 0.350 0.693 0.952 0.877  0.040 0.000 

APX 0.366 0.479 0.352 0.565 0.381  0.282 

NCED -0.046 0.505 0.796 0.571 0.675 0.200  
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Table S3.3: Principal component analyis all measuring parameters after 4 weeks, 9 weeks and 16 weeks of drought treatment.  

4 weeks 

PC Eigenvalue % variance 
cumulative 

variance 
loadings PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 

1 4.878 40.65 40.7 PRE 0.696 0.298 -0.112 -0.064 0.209 -0.450 0.327 0.048 0.220 0.068 -0.043 -0.013 

2 1.573 13.11 53.8 SWC -0.282 0.447 -0.502 0.060 0.536 0.353 -0.112 0.157 0.118 -0.048 0.019 -0.014 

3 1.562 13.02 66.8 LA -0.002 0.611 0.536 0.446 -0.026 0.250 0.227 -0.018 -0.072 0.134 -0.029 0.039 

4 0.957 7.97 74.8 PP2C 0.507 0.103 0.793 0.082 0.115 -0.048 -0.105 0.075 0.111 -0.211 0.088 -0.031 

5 0.844 7.03 81.8 ERD 0.702 -0.379 0.324 -0.057 0.137 0.121 -0.373 0.159 0.115 0.203 -0.061 0.007 

6 0.651 5.42 87.2 ADH 0.912 -0.079 -0.254 0.103 0.102 -0.042 0.037 0.027 -0.133 0.114 0.202 0.021 

7 0.561 4.68 91.9 SOD 0.934 -0.050 -0.111 0.143 0.091 0.081 0.056 0.001 -0.194 -0.045 -0.083 -0.170 

8 0.469 3.91 95.8 GAT 0.917 0.175 -0.135 -0.030 0.095 -0.080 -0.112 0.080 -0.164 -0.128 -0.086 0.155 

9 0.227 1.90 97.7 APX 0.556 -0.490 0.009 -0.220 -0.069 0.442 0.430 0.054 0.101 -0.055 -0.004 0.040 

10 0.148 1.24 98.9 NCED 0.412 -0.052 -0.417 0.612 -0.476 0.021 -0.109 0.084 0.177 -0.051 -0.004 0.004 

11 0.070 0.59 99.5 PQ4 -0.688 -0.328 0.082 0.200 0.083 -0.162 0.153 0.553 -0.102 -0.006 -0.005 0.001 

12 0.059 0.49 100.0 C24 0.264 0.606 -0.033 -0.496 -0.464 0.089 -0.059 0.296 -0.014 0.025 0.022 -0.037 
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Table S3.3: Continued 

9 weeks 

PC Eigenvalue % variance 
cumulative 

variance 
loadings PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 

1 4.822 40.19 40.2 PRE 0.764 0.172 0.310 -0.090 -0.163 0.256 -0.117 0.300 0.177 -0.198 -0.118 -0.043 

2 1.750 14.58 54.8 SWC -0.255 0.838 0.210 0.204 -0.082 0.067 0.054 -0.187 0.284 0.073 0.107 0.024 

3 1.476 12.30 67.1 LA -0.209 0.120 0.817 -0.086 0.311 0.153 0.324 0.121 -0.136 0.095 -0.018 0.010 

4 0.890 7.42 74.5 PP2C 0.377 -0.706 0.098 0.215 0.042 0.492 -0.117 -0.098 0.102 0.121 0.080 0.077 

5 0.742 6.18 80.7 ERD 0.698 -0.218 -0.058 0.372 -0.232 -0.004 0.475 -0.161 -0.007 -0.082 -0.054 -0.096 

6 0.646 5.39 86.1 ADH 0.828 0.359 -0.108 0.274 -0.069 -0.059 0.022 0.081 -0.157 -0.015 -0.042 0.237 

7 0.515 4.29 90.3 SOD 0.836 0.091 0.235 -0.139 0.204 -0.023 -0.109 -0.196 -0.113 -0.216 0.256 -0.028 

8 0.386 3.22 93.6 GAT 0.840 0.212 0.087 0.103 -0.255 -0.053 -0.169 0.135 -0.134 0.271 0.092 -0.129 

9 0.264 2.20 95.8 APX 0.662 -0.109 -0.334 0.090 0.498 -0.228 0.145 0.233 0.210 0.063 0.083 -0.011 

10 0.217 1.80 97.6 NCED 0.521 0.451 -0.436 -0.160 0.341 0.331 -0.030 -0.191 -0.074 0.059 -0.183 -0.060 

11 0.192 1.60 99.2 PQ4 -0.618 0.231 -0.518 0.016 -0.095 0.379 0.187 0.233 -0.105 -0.066 0.197 -0.017 

12 0.101 0.84 100.0 C24 0.563 -0.082 -0.109 -0.714 -0.268 -0.006 0.237 -0.053 0.085 0.096 0.047 0.074 
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Table S3.3: Continued 

16 weeks 

PC Eigenvalue 
% 

variance 

cumulative 

variance 
 loadings PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 

1 5.048 42.06 42.1 PRE 0.726 0.335 0.306 0.087 -0.353 -0.083 0.025 -0.141 -0.319 0.033 -0.019 -0.061 

2 2.117 17.65 59.7 SWC -0.351 0.578 0.500 0.313 0.221 0.020 -0.255 0.272 -0.052 0.017 0.055 -0.013 

3 1.296 10.80 70.5 LA -0.172 0.761 -0.080 -0.063 -0.350 0.312 0.365 0.121 0.095 0.040 0.017 0.034 

4 0.886 7.39 77.9 PP2C 0.525 -0.142 -0.574 0.390 -0.357 -0.103 -0.180 0.202 -0.018 -0.102 -0.007 0.029 

5 0.718 5.99 83.9 ERD 0.838 -0.386 0.056 0.196 -0.085 0.104 -0.041 -0.027 0.128 0.189 0.187 -0.023 

6 0.617 5.14 89.0 ADH 0.875 -0.094 0.348 -0.069 0.108 0.102 0.112 -0.022 -0.047 -0.183 0.111 0.132 

7 0.524 4.37 93.4 SOD 0.816 0.443 0.022 -0.165 0.013 0.047 -0.137 -0.053 0.214 -0.143 0.007 -0.144 

8 0.269 2.24 95.6 GAT 0.865 0.196 0.064 -0.077 0.031 0.233 -0.303 -0.042 0.065 0.103 -0.174 0.098 

9 0.238 1.98 97.6 APX 0.607 0.311 -0.092 -0.457 0.043 -0.529 0.042 0.161 0.014 0.081 0.030 0.036 

10 0.121 1.01 98.6 NCED 0.576 -0.483 0.437 0.243 0.026 -0.104 0.339 0.165 0.099 0.001 -0.144 -0.042 

11 0.103 0.86 99.5 PQ4 0.283 0.589 -0.284 0.515 0.329 -0.207 0.183 -0.196 0.052 0.018 -0.009 0.032 

12 0.062 0.52 100.0 C24 0.658 -0.057 -0.456 -0.121 0.405 0.302 0.133 0.148 -0.207 0.026 -0.002 -0.061 



 

 

87 
 

Chapter 4: Drought avoidance and drought tolerance: evidence for intraspecific variation 

in juvenile beech (Fagus sylvatica L.) 

Ngoc Quynh Nguyen1, 2, Andrea Polle1, Rodica Pena1* 

(Submitted to Journal: Frontiers in Plant Sciences; the manuscript is being reviewed) 
 

1Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August Universität Göttingen, 
Germany 
2 Hung Vuong University, Nong Trang, Viet Tri, Phu Tho, Viet Nam 
*Corresponding author 

 

 

 4.1. Introduction 

The current climate change-related weather extremes have a severe, negative impact on 

forest ecosystems (Ciais et al., 2005, Bréda et al., 2006, Lindner et al., 2010). The most recent 

report of the International Panel on Climate Change (IPCC, 2014) states that with “very high 

confidence” ecosystems are highly vulnerable to these conditions. Particularly, the scenarios 

emphasize the increased frequency, intensity, and duration of drought events (IPCC, 2014). 

European beech (Fagus sylvatica L.) is the most abundant and dominant tree of natural 

vegetation in Central Europe (Ellenberg, 1996). Its distribution is mainly determined by water 

availability (Ellenberg, 1988, Stojanović et al., 2013). As the direct consequence of current 

drought events beech forests suffer already from extensive growth restriction and tree mortality 

in some areas  (Fang and Lechowicz, 2006, Rennenberg et al., 2006, Geßler et al., 2006, Granier 

et al., 2007, Zang et al., 2014). Therefore, there are concerns about the adaptedness and 

adaptability of beech to survive in habitats that have been forecasted to experience extensive 

summer drought in the future.  

Plant species exhibit two main strategies to cope with drought: avoidance or tolerance 

(Levitt, 1972, Jones, 1993). Drought avoidance implies that the plant maintains a high water 

status under stress, for example by acquiring more water from the soil by increasing root growth 

or by minimizing the water loss by the stomatal closure (Verslues et al., 2006). Drought 

tolerance mechanisms involve a continuation of plant metabolic activities at a low tissue water 
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potential, for example, by osmotic adjustment, changes in cell wall elasticity, the activation of 

antioxidant defense systems, etc. (Polle and Fischer 2010, Anjum et al., 2012). The basic 

mechanism of either strategy involves isohydric or anisohydric stomatal regulation (Tardieu  

and Simonneau, 1998, McDowell et al., 2008, Skelton et al., 2015). Isohydric plants close 

stomata before any changes occur in plant water status, whereas anisohydric species show a 

slow stomatal reaction in response to a decrease in the water potential. Species that grow in 

habitats where only mild drought or drought events of limited duration usually occur employ a 

drought avoidance strategy (Verslues et al., 2006). Divergent drought resistance strategies were 

observed in closely related species (Ambrose et al., 2015) reflecting adaptation to the 

contrasting habitat conditions that each species experienced.  

European beech forests cover an area with wide climatic variation from mesic to semi-

dry conditions, and, therefore, intraspecific variation in drought adaptedness is expected (Pluess 

and Weber, 2012, Weber et al., 2012). Studies with beech provenances from different 

geographic origins showed that plant water status and photosynthesis were less affected by 

drought in provenances from drought-prone habitats than in those from mesic environments 

(Tognetti et al., 1995, Peuke et al., 2002, Robson et al., 2012, Sánchez-Gómez et al., 2013). 

Recently, Aranda et al. (2015) found that vulnerability to xylem cavitation is higher in drought-

sensitive mesic beech populations than in drought-adapted populations. However, the capability 

of drought-adapted beech progenies to acclimate flexibly to varying water availability is 

questionable because cell wall elastic adjustment and the activation of molecular defenses was 

impeded in progenies from low- compared with those from high-precipitation habitats (Carsjens 

et al., 2014, Knutzen et al., 2015). Carsjens et al. (2014) speculated that beech progenies from 

dry habitats may have evolved different strategies to cope with low water availability than those 

from mesic environments.     

Here, we investigated whether there is intraspecific variation in the drought resistance 

mechanisms employed by beech progenies from different habitats. We tested the hypothesis 

that beech trees originating from a low-precipitation climate show a stronger drought avoidance 

and beech from a relative mesic habitat adopt a stronger drought tolerance strategy than those 

originating from the reciprocal habitat when exposed to decreasing soil water availability. 

Specifically, we anticipated a prompt isohydric stomatal reaction in progenies from the low-

precipitation climate and anisohydric stomatal regulation in the plants from mesic conditions 

since beech is known to exhibit high stomatal sensitivity to water shortage (Cano et al., 2013, 

Aranda et al., 2015a). Furthermore, we expected differences in drought-induced damage to 
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photosystem II (PSII) among the low- and higher-precipitation climate provenances because 

drought-avoiding trees suffer more from limited carbon assimilation than drought-tolerant tree 

species (Picon et al., 1996, Schwanz et al., 1996). To address these hypotheses, three beech 

provenances from habitats differing in precipitation, 544 mm year-1 (low-precipitation, 

designed as LP), 665 mm year-1 (intermediate-precipitation, IP), and 766 mm year-1 (higher-

precipitation, HP) were subjected to progressive drought, which lasted until the leaf predawn 

water potential dropped below the cavitation-inducing threshold of Ψcav= -1.9 MPa (Hacke and 

Sauter, 1995). Soil and plant water status, the maximum quantum yield of PSII, and stomatal 

conductance of control and drought-treated seedlings were regularly measured. Furthermore, 

transcript levels of OST1 (open stomata 1), a protein kinase that links the guard cell reaction to 

the abscisic acid (ABA) signaling network (Mustilli et al., 2002, Sirichandra et al., 2010) were 

determined. We expected that transcriptional up-regulation of OST1 would characterize the 

beech progenies with drought avoidance compared to those drought tolerance mechanisms at 

the molecular level.   

 4.2. Materials and Methods 

4.2.1. Plant material  

Beech (Fagus sylvatica L.) nuts were collected in three locations differing in long-term 

annual precipitation: 766 mm Unterlüss (HP), 665 mm Göhrde (IP), and 544 mm Calvörde (LP) 

in Lower Saxony and Saxony-Anhalt, Germany (Table 4.1). The provenances were selected to 

represent the gradient in long-term yearly precipitation that determines natural distribution 

regions of European beech (EUFORGEN, http://www.euforgen.org/distribution-maps). The 

three forests exhibited similar stand structure with closed canopies. The tree age was about 100 

to 130 years. The soil substrates, Pleistocene fluvioglacial sands from the penultimate Ice Age 

(Saalian), up to 30 % sand fraction, moderate to intense podzolic Umbrisols, was similar for all 

the three locations (for further details see Carsjens et al., 2014). All stands originated from 

natural regeneration (Müller-Haubold et al. 2013). In autumn 2009, beech nuts were collected 

after a scheme including at least 100 mother trees per plot with about 100 nuts harvested from 

each tree. 

 

 

http://www.euforgen.org/distribution-maps


 

 

90 
 

Table 4.1. Location, mean annual temperature, and mean annual sum of precipitation in three 
beech forest stands. Mean annual climate data refer to long-term the averages from 1971 to 
2000. Climate data were provided by National Climate Monitoring of Germany’s National 
Meteorological Service (Deutscher Wetterdienst-DWD). Low precipitation (LP), intermediate 
precipitation (IP), high precipitation (HP).  

Origin Latitude  
(N) 

Longitude 
(E) 

Elevation  
(m) 

Annual 
precipitation 

(mm) 

Annual average  
temperature 

(°C) 

Calvörde (LP) 52°22' 11°17' 105 544 9.1 

Göhrde (IP) 53°09' 10°52' 85 665 8.7 

Unterlüss (HP) 52°50' 10°19' 117 766 8.5 

 

Beech nuts were germinated on moist filter paper at 4°C in darkness in April 2010. After 

five-six weeks, when the radicles of beech nuts had developed a length of 1-2 cm, the seedlings 

were transferred in 30-cell growing trays (Herkuplast Kubern GmbH, Ering, Germany).  The 

substrate consisted of a mixture of sand (WOLFF & MÜLLER Baustoffe GmbH, Röderland 

OT Haida, Germany) and perlite (HAWITA GRUPPE GmbH, Vechta, Germany) with a ratio 

of 3:1 (v/v). The plants were fertilized once with a fertilizer (Wuxal Top N 12-4-6, AGLUKON, 

Spezialdünger GmbH& Co. Kg, Düsseldorf, Germany). After two months, on 6th and 7th  July 

2010, the seedlings were transferred to 2L pots containing a mixture of soil (Type N, HAWITA 

GRUPPE GmbH, Vechta, Germany), sand of 1.5 mm and sand of 0.8 mm particle size (WOLFF 

& MÜLLER Baustoffe GmbH, Röderland OT Haida, Germany) in a ratio of 4:3:1 (v/v). All 

beech plants were kept well-watered and maintained outdoors (Forest Botany, Georg August 

University, Göttingen, Germany). To control the soil water content, exposure to rain was 

prevented by installing a transparent roof. The light was adjusted to the requirements of beech 

by a shading net (mesh width of 5 mm, Mayer, Rellingen, Germany).   

4.2.2. Drought treatment and harvests 

From August 5th, 2010, half of the 4-month-old beech seedlings from each provenance 

were subjected to drought treatment by withholding water. The control plants were irrigated 

daily with 31.3 ml tap water that represented the mean daily precipitation in the high-

precipitation site. The soil moisture was daily monitored in eight pots per treatment using a 

moisture meter (HH2 Moisture Meter, Delta-T Devices, Cambridge, UK).  

Plants were harvested after 0, 33, 45, 47, and 60 days of withholding water. The harvests 

took place at the same day time from 8 to 11 a.m. At each harvest, a number of eight plants 
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were completely harvested. Roots were briefly washed with tap water to remove adhering soil 

particles. Leaves, stems, and fine and coarse roots were separated and weighed. Aliquots of all 

fractions were taken, immediately weighed, dried until constant mass in an oven at 60oC for 

48h and weighed again to determine the fresh and dry biomass. Leaves of the harvested plants 

were immediately shock-frozen in liquid nitrogen and stored at -80°C. 

4.2.3. Physiological Measurements 

Eight beech plants in each treatment were randomly selected for physiological 

measurements throughout the experiment. Leaf predawn water potential (Ψ) was regularly 

measured using a Scholander pressure chamber (Soil-moisture Equipment Corp., Santa 

Barbara, CA) (Scholander et al., 1965). A leaf of each plant was cut using a razor, then 

immediately was placed inside the chamber, with its petiole projecting to the exterior through 

the sealing port. Then, the pressure in the chamber was gradually increased until a drop of liquid 

appeared at the cut end of the petiole. The value revealed by the gauge of the chamber was 

immediately recorded. The leaves used for Ψ were weighted, and immediately plastic wrapped 

and further subjected to estimation of relative water content (RWC).  

Leaf RWC was calculated as:  

RWC (%) = [(w-dw) / (tw-dw)] x 100  

where: w = sample fresh weight; tw = sample turgid weight; dw = sample dry weight 

The leaves used for measuring the turgid weight were previously hydrated to full 

turgidity for 24h at room temperature under a constant light. Dry weight was registered after 

drying the leaves in the oven at 60oC for 48h.  

Chlorophyll fluorescence parameters of beech plants were regularly determined with a 

portable Chlorophyll Fluorometer (Mini-PAM, Walz, Effeltrich, Germany) connected to a leaf 

clip holder (Model 2030-B, Walz, Effeltrich, Germany). Fully expanded leaves of control and 

stressed plants were used for measurements of the maximum fluorescence yield (Fm) and the 

initial fluorescence (F0) of PSII on the dark-adapted leaves just before dawn. From these 

measurements, the maximum quantum yield of PSII was calculated as described by Maxwell 

and Johnson (Maxwell & Johnson, 2000):  

ΦPSI = Fv/Fm = (Fm – Fo)/Fm  
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Stomatal conductance (Gs) was measured in control and drought-stressed plants in the 

time interval between 1 pm and 2 pm using a transient state diffusion porometer (AP4, Delta-T 

Devices, Cambridge, UK). A single leaf of a plant was randomly chosen to carry out stomatal 

conductance measurements. 

We assessed the percentage of tree mortality by visual estimation: a tree was considered 

dead when all leaves were scorched, curled or cracked indicated a complete desiccation. 

4.2.4. Total RNA isolation and gene expression analysis 

4.2.4.1. RNA extraction from frozen beech leaves 

Frozen eaves of beech seedlings were stored at -80oC. Frozen beech leaves were ground 

with a mortar and a pestle in liquid nitrogen. A modified RNA extraction method was used to 

isolate total RNA (Chang et al., 1993) as follows:  

Day 1: 800 µl CTAB extraction buffer (1 liter CTAB buffer contains 2% CTAB 

(hexadecyltrimethylammonium bromide), 2% PVP (polyvinylpyrrolidinone K30), 100 mM 

Tris-HCl (pH = 8.0), 25 mM EDTA (Ethylenediaminetetraacetic acid), 2.0 M NaCl, pH = 8.0) 

pre-warmed to 65oC was added to 150 mg of the ground frozen leaves powder in a 2.0 ml plastic 

tube. Afterward, 16 µl mercaptoethanol was added into each tube and then mixed for 15 min at 

65oC (Thermo-mixer Comfort, Eppendorf, Hamburg, Germany). Each tube was taken out and 

cooled to room temperature with regular shaking for 5 min. Then, 800 µl chloroform: 

isomylalcohol (24:1) was added to the CTAB extraction mixture. Samples were mixed at 14000 

rpm for 5 min at room temperature (5417 R, Eppendorf, Hamburg, Germany). Then, the upper 

phase was transferred to a new 2.0 ml tube. 800 µl chloroform: isomylalcohol (24:1) was added 

to each new tube. 200 µl of the volumes 10 M Lithiumchlorid (-20oC) was added to the upper 

phase, mixed and kept on ice at 4oC overnight.  

Day 2: Samples were centrifuged at 14000 rpm for 20 min at 4oC. The upper phases 

were discarded and the pellets were dissolved with 400 µl SSTE buffer (100 ml SSTE buffer 

contains 0.5% SDS (Sodium dodecyl sulfate), 10 mM Tris – HCl, 1 mM EDTA 

(Ethylenediaminetetraacetic acid), 1.0 M NaCl, pH = 8.0) for 10 min at 42oC by using a 

Thermo-Mixer Comfort (Eppendorf, Hamburg, Germany). Samples were shortly centrifuged 

one more (5417 R, Eppendorf, Hamburg, Germany). Adding 400 µl chloroform: isomylalcohol 

(24:1) to the mixture and mixed it for 5 min at room temperature by centrifuging at 14000 rpm 

(5417 R, Eppendorf, Hamburg, Germany) and upper phases were transferred to new tubes. 
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RNA was precipitated by using 800 µl pre-cooled 96% ethanol for 60 min at -80oC (or 2h at -

20oC) and spun down at 14000 rpm for 20 min at 4oC. Then, 500 µl 70% ethanol was added to 

each tube and centrifuged at 14000 rpm for 10 min at room temperature to wash pellets and to 

remove residual salts. RNA was dried using a concentrator (Concentrator 5301, Eppendorf, 

Hamburg, Germany) for 4 min and was dissolved by adding 30 µl RNase-free water and mixing 

at 850 rpm for 10 min at 42oC (Thermo - mixer Comfort, Eppendorf, Hamburg, Germany). 

Finally, RNA was store at -80oC for further steps.   

4.2.4.2. Evaluation of RNA concentration and purity 

Total RNA yield and purity were estimated by using a Nanodrop™ 2000c 

spectrophotometer (Thermo Scientific, Waltham, MA, USA). RNA integrity was determined 

by gel-electrophoresis. Intact RNA was on a denaturing gel should have at least two bands 28S 

and 18S rRNA.  The 28S rRNA band should be absent more than the 18S rRNA band. Degraded 

RNA is shown as a smear and lacks the sharp rRNA bands, or does not satisfy the 2:1 ratio of 

high quality RNA.  

Highly degraded RNA was excluded from further analysis. RNA gel electrophoresis 

was carried out with the protocol of the manufacturer (Thermo Scientific, Waltham, MA, USA) 

as follows: 1.2 g agarose was used and dissolved in 70 ml double distilled H2O and 10 ml 10x 

running buffer (1 liter running buffer contains 0.2 M MOPS (3-(N-morpholino) propane 

sulfonic acid), 50 mM Sodium acetate, 10 mM EDTA (Ethylenediaminetetraacetic acid)). Then 

a microwave oven was used to heat the mixture for 2 min to dissolve this mixture. After that, 

10 ml of 37% (w/v) formaldehyde solution was added to the mixture under a fume hood and 

shaken. The mixture was poured in a prepared gel electrophoresis tray and equipped with a 

comb. The gel polymerized at room temperature for 15 min. The gel was placed in a tank 

containing 1x running buffer after removing the comb. 1.0 µl RNA extract and 1.5 µl double 

distilled H2O were mixed with 2.5 µl 2 x loading buffer (1 ml loading buffer contains 660 µl 

formamide (deionized), 80 µl formaldehyde 37% (w/v), 140 µl nuclease-free water, 10 µl 10% 

bromophenol blue, 10 µl ethidium bromide) for RNA in a 1.5 ml tube.  The mixture was heated 

for 10 min at 70oC, then kept on ice at least 5 min and was shortly centrifuged. After loading 

RNA to the gel, the electrophoresis was run for 5 min at 100 V, then 40 min at 120 V under the 

fume hood. After that, gels were moved out and scanned using 300 nm excitation as indicated 

(Fluorescence-Multiimager, Bio-Rad, Munich, Germany). 
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4.2.4.3. DNase treatment 

In order to obtain pure RNA, DNase I treatment (Turbo DNA - Free kit, Ambion, 

Austin, TX, USA) was applied to clean from DNA contamination as follows: 1 µg RNA, which 

was extracted from previous steps, was added to 2 µl of 10x Turbo DNase buffer (Turbo DNA 

- Free kit, Ambion, Austin, TX, USA), 1 µl of Turbo DNase (2U) (Turbo DNA - Free kit, 

Ambion, Austin, TX, USA) and mixed. The mixture was incubated at 37oC for 20 min and spun 

down for 1 min at 14000 rpm. 2 µl of resuspended DNase Inactivation Reagent (Turbo DNA - 

Free kit, Ambion, Austin, TX, USA) was added to the mixture and mixed. Then, the tubes were 

incubated for at least 2 min at room temperature and mixed 3 times during incubation. Finally, 

the mixture was centrifuged at 10000 rpm for 2 min and was transferred supernatant to a new 

tube. The RNA was stored at -80oC for further use.   

4.2.4.5. Synthesis of first strand complementary DNA (cDNA) 

RNA was treated with DNase I treatment (Turbo DNA - Free kit, Ambion, Austin, TX, 

USA) to remove DNA contamination. Subsequently, the pure RNA was used to perform cDNA 

synthesis using First Strand cDNA synthesis kit (Thermo Scientific, Waltham, MA, USA) as 

follow: 1 µg of DNA-free total RNA (was treated above) added to 1 µl Oligo (dT) (1.5 µg/µl) 

primers and nucleic acid free water was added to reach a volume of 11 µl. The mixture was 

incubated at 65oC for 5 min and cooled on ice. 4 µl of 5x Reaction buffers (Thermo Scientific, 

Waltham, MA, USA) was added to the mixture (1 µl RiboLockTM Ribonuclease Inhibitor 

(20U/µl) (Thermo Scientific, Waltham, MA, USA) and 2 µl dNTP mix (10 mM)), well mixed.  

The mixture was incubated at 37oC for 5 min and 2 µl Reverse Transcriptase M-MuLV RT (200 

U/µL) (Thermo Scientific, Waltham, MA, USA) was added. The final mixture was incubated 

at 37oC for 1 hour and 70oC for 5 min in a PCR machine (GeneAmp PCR System 9700, A&B 

Applied Biosystems, Thermo Scientific, Waltham, MA, USA). 10 times of Nuclease – Free 

Water was added to the cDNA for dilution and stored at -80oC in the fridge.  

4.2.4.6 Quantitative real time PCR (qRT-PCR) 

Five micro liters of 1:10 diluted cDNA were used for quantitative real-time PCR (qRT-

PCR) in a LightCycler®480 (Roche, Mannheim, Germany). The master mix for amplification 

reaction was prepared with 10 μl of SYBR Green I Master (Roche), 1 μl of a pair of forward 

and reverse primers and 3 μl of ddH2O. The PCR program was same as described by Carsjens 

et al. (2014). Each sample was measured twice; three samples were measured per treatment.  
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The primer sequences for the housekeeping gene (Actin: 5’-AGAGATTCCGTTGCCCAGAA-

3’ and 3’-TGGATTCCAGCAGCTTCCA-5’)  was obtained from (Olbrich et al., 2008). The 

cDNA sequences of Fagus OST1 (FR612317) were obtained from NCBI, 

http://www.ncbi.nlm.nih.gov/genbank. Specific primers (5’-

GGAGTGGCAAGGCTTATGAG-3’ and 3’-TGGGATGCCTCAATGACCTG-5’) for qRT-

PCR were designed for Fagus OST1 with the programs Oligo Explorer (Gene Link, Hawthorne, 

NY, USA). The designed primers were tested by using Oligo Analyzer (Both Gene Link, 

Hawthorne, NY, USA) for checking melting temperature (Tm), primer dimers, and primers 

loops. Primers were obtained from Microsynth (Microsynth Austria GmbH, Vienna, Austria). 

A 5-fold dilution series was applied to determine the primer real-time PCR efficiencies. These 

values were 2.0 for actin and 1.89 for OST1. OST1 transcript level was normalized to actin as 

the housekeeping gene according to the following equation: 𝑅𝐸 =  𝐸(𝐶𝑡 (𝐴𝑐𝑡𝑖𝑛)−𝐶𝑡(𝑇𝑎𝑟𝑔𝑒𝑡), 

where E is the primer efficiency, Ct is the cycle threshold, RE is the relative expression (Pfaffl, 

2004).   

4.2.5. Data analyses 

Statistical data analysis was carried out with the software R 3.1.2 (the R Project for 

Statistical Computing www.r-project.org). Normal distribution was tested with the Shapiro – 

Wilk’s test and homogeneity of variances were tested with Levene’s test. Where necessary, data 

were transformed to fulfill to assumptions of normality and homogeneity of variance. After 

testing for normality (skewness, kurtosis), multi-factor ANOVA analysis was performed to 

determine the significance of the main variables provenance, time and treatment, and 

interactions between them. Data obtained from the same individual plant measured at distinct 

time points were subjected to repeated measures ANOVA, where the individual plant were 

considered a random factor and Provenance (P), Treatment (D), and Time (T) were fixed 

factors. When the ANOVA revealed significant differences among the means with the P < 0.05, 

a posthoc test (Tukey HSD) was performed. A t-test was performed to test the differences of 

ecophysiological data between control and drought-stressed plants at each harvest. Graphs were 

generated using Origin Pro Lab 8.5 (OriginLab Corporation Northampton, USA).  

4.3. Results 

4.3.1. Juvenile beech dry matter remains unaffected by drought   

A significant decline in soil water content (SWC) was observed after a 10-day period of 

withholding water (Fig. 4.1). In the control treatment, SWC was maintained constant at 0.259 

http://www.ncbi.nlm.nih.gov/genbank
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± 0.030 m3m-3 throughout the experiment, with no significant differences among the 

provenances (P = 0.526, F = 0.644). In the drought treatment, SWC progressively decreased 

relative to controls (P < 0.001, F = 51.913) by about 67% after four weeks and 80% after six 

weeks (Fig. 4.1). The provenance had a significant effect on SWC in drought treatment (P < 

0.001, F = 102.106) with the lowest SWC values found in LP (Fig. 4.1).  

No significant differences in plant biomass were found among the provenances either 

in well-watered or among drought-treated plants (P = 0.376, F = 0.983). The drought treatment 

did not lead to reduction in biomass (Table 4.2) or affected its allocation between the shoot and 

root compartments (root-to-shoot ratio of HP, IP, and LP: 1.62 ± 0.4, 1.63 ± 0.38, 1.56 ± 0.45, 

P = 0.996, F = 0.001). However, the IP provenances died earlier than HP and LP provenances 

(Table 4.2). 

 

 
Variables F-Ratio P-Value 

Provenance 19.219 < 0.001 

Time 48.047 < 0.001 

Treatment 7786.092 < 0.001 

Provenance* 
Time 0.886 0.686 

Time * 
Treatment 51.913 < 0.001 

 

 

Figure 4.1. Soil water content (SWC) at ten cm-depth in pots of well-watered controls (C) and 
drought-treated (D) young beech (Fagus sylvatica L.) trees. Beech nuts were collected in 
locations differing in mean annual precipitation: 766 mm Unterlüss (HP), 665 mm Göhrde (IP), 
and 544 mm Calvörde (LP) and exposed to drought.  Symbols indicate means ± SE (n=8).  F- 
and P-values (repeated measures ANOVA analysis) are shown next to the figure. P-values < 
0.05 are shown by bold letters.  
 

4.3.2. The plant water status under drought treatment varies with the provenance 

Plant water status was characterized by the leaf relative water content (RWC) and leaf 

predawn water potential (Ψ). Both RWC and Ψ declined with proceeding drought exposure (P 

< 0.001, Time*Treatment, Fig. 4.2). Overall, in the drought-treated plants, RWC was 

significantly reduced compared with the RWC in well-watered plants (P < 0.001, F= 274.544, 

Fig. 4.2A). Control plants maintained a constant RWC of 85 % throughout the duration of the 
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experiment (P = 0.450, F = 1.089, Fig. 4.2A). The RWC decline started immediately after 

withholding irrigation (Fig. 4.2A). Within a 14-day period of water withholding, RWC 

significantly decreased relative to controls in the HP (P = 0.001, t-test) and IP (P = 0.003, t-

test) provenances while the drought-treated LP provenance showed a reduced RWC only after 

25 days of water withholding (Fig. 4.2A). The latter provenance maintained a high RWC of 

75% throughout 45 days of drought. The strongest constraints of drought on RWC were 

registered in the IP provenance with values, which dropped below 70% already 16 days after 

withholding irrigation (Fig. 4.2A). The HP provenance showed a slow RCW decrement 

reaching values of about 75% to 60 % after a 50-day period of withholding water.  

Withholding water resulted in a massive drop of Ψ, closely matching the trends 

observed in RWC changes under drought treatment (Fig. 4.2). The well-watered plants showed 

constant Ψ values of -0.328 ± 0.003 MPa throughout the experiment (Fig 4.2B). The drought 

treatment strongly lowered Ψ in the treated compared with control plants (P < 0.001, F= 1679, 

Fig. 4.2B).  

Within a 14-day drought period, Ψ significantly decreased in HP (P < 0.001, t-test) and 

IP (P < 0.001, t-test) provenances compared with Ψ in well-watered plants. The LP provenance 

maintained Ψ values similar to those of control plants for a 31-day period after drought 

inception (Fig. 4.2B). The provenances showed not only differences among the time points 

when Ψ declined, but also in the magnitude of the drought effect. The strongest Ψ decline was 

found in the HP provenance, which suffered a sharp Ψ drop from -0.445 ± 0.026 MPa to - 0.825 

± 0.07 MPa within a 23-day drought period. At this point time, the LP and IP provenances still 

maintained Ψ above -0.466 ± 0.063 MPa (Fig. 4.2B). When the predawn water potential 

dropped below the cavitation-inducing threshold of Ψcav = -1.9 MPa, the trees are susceptible 

to hydraulic failure and consequently death. The decline in the predawn water potential was in 

the order HP (lowest), LP and IP (highest).   
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Table 4.2. Biomass of the well-watered and drought-treated beech (Fagus sylvatica) plants throughout drought experiment. Beech (Fagus 
sylvatica) nuts provenances were collected in locations differing in mean annual precipitation: 766 mm Unterlüss (HP), 665mm Göhrde (IP), and 
544 mm Calvörde (LP) and exposed to drought.  

 

Drought time  0 days 33 days 45 days 47 days 60 days 
Provenance Treatment  Dry biomass (g plant-1) 

HP Control  1.376 ± 
0.070 1.574 ± 0.102 2.190 ± 0.091 2.077 ± 0.088 1.811 ± 0.101 

 Drought  - 1.807 ± 0.082 1.987 ± 0.084 1.901 ± 0.064 2.103 ± 0.117 

IP Control  1.560 ± 
0.134 1.584 ± 0.071 1.806 ± 0.066 na 

 
na 
 

 Drought  - 1.792 ± 0.063 1.689 ± 0.076 pd 
 

pd 
 

LP Control  1.237 ± 
0.104 1.831 ± 0.131 1.850 ± 0.114 2.132 ± 0.097 

 
na 
 

 Drought  - 1.760 ± 0.077 1.596 ± 0.072 1.921 ± 0.076 
 

pd 
 

Significances (multi-factor ANOVA analysis)*: Provenance (F = 0.983, P = 0.376); Treatment (F = 0.001, P = 0.997);  Time (F = 
7.058, P < 0.001)   

A number of days in parenthesis represent the length of the drought stress. Values represent the means ± standard errors (8<n<9).  
pd, plants died by 100% during drought stress.  
na, data not available 
* Calculated for the total plant biomass for the variables: Provenance, Treatment and Time.
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Variables F-Ratio P-Value 

Provenance 3.249 0.042 

Time 10.315 < 0.001 

Treatment 274.544 < 0.001 

Provenance* 

Time 
1.429 0.153 

Time* 

Treatment 
7.830 < 0.001 

 

 

 
Variables F-Ratio P-Value 

Provenance 7.010 0.001 

Time 33.951 < 0.001 

Treatment 1679.011 < 0.001 

Provenance* 

Time 
3.379 < 0.001 

Time* 

Treatment 
42.408 < 0.001 

 

 

Figure 4.2. Relative leaf water content (RWC, A) and predawn leaf water potential (Ψ, B) of 
young beech (Fagus sylvatica L.) trees exposed to drought by withholding water (D) and well-
watered control plants (C). Beech nuts provenances were collected in locations differing in 
mean annual precipitation: 766 mm Unterlüss (HP), 665 mm Göhrde (IP), and 544 mm 
Calvörde (LP) and exposed to drought. Symbols indicate the means ± SE standard errors (n=5).  
F- and P-values (multi-factor ANOVA analysis) are shown next to the figure. P-values < 0.05 
are shown by bold letters. Asterisks indicate significant differences (t-test, P < 0.05) between 
means of the control and drought-treated plants. 
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4.3.3. Minor injury to PSII performance under drought treatment  

To investigate whether drought treatment caused photo-inhibitory damage, we 

determined the maximum photochemical efficiency of PSII (ΦPSII) in dark-adapted leaves of 

control and drought-treated beeches. Control plants showed a slight ΦPSII variation of 3 to 7%. 

These alterations might indicate fluctuations in environmental conditions because the plants 

were kept outdoors. The impairment of ΦPSII by drought was about 10% in comparison with 

controls (P < 0.001, F = 95.030, Fig. 4.3A). The three provenances varied in the ΦPSII response 

to drought (Fig. 4.3A). The IP provenance, which showed a depressed plant water status, was 

the first among the three provenances displaying reduced ΦPSII relative to control plants after a 

25-day period of drought treatment (Fig. 4.3A). At the same time, the HP provenance 

maintained ΦPSII levels similar to those found in control plants for a 47-day period of drought 

treatment. The LP provenance experienced, in comparison to control plants, a 6% drop in ΦPSII 

after a 33-day drought treatment period. In contrast to IP and HP provenances, which 

maintained a fairly stable ΦPSII after the initial decrement, ΦPSII decreased continuously in the 

LP provenance; when the LP plants reached Ψcav ΦPSII was 10% lower than that of controls 

(Fig. 4.3A).  

4.3.4. Stomatal responses to drought vary with the provenance 

Stomatal conductance (gs) was regularly measured in drought-treated and well-watered 

plants. Control plants showed significant changes in stomatal conductance among provenances 

(P < 0.001, F = 16.396) and among the measuring days (P < 0.001, F = 4.619, Fig. 4.3B). In 

the drought-treated plants, gs significantly decreased compared with control plants (P < 0.001, 

F = 321.980) with a high variation among the provenances (Fig. 4.3B). The LP provenance 

showed an abrupt decline in gs between 14 and 20 days of drought and thereafter steadily 

continued to decrease (Fig. 4.3B). When Ψcav was reached in LP plants, gs dropped almost to 

zero. In contrast to LP, the stomatal conductance decreased more slowly in the HP provenance 

and about 30% of the initial gs was maintained almost until the end of treatment (Fig. 4.3B). At 

the time when Ψcav was reached, the HP provenance had reduced its stomatal conductance only 

by 59% (Fig. 4.3B). The reduction of gs was least pronounced in the IP provenance among the 

three progenies in response drought (Fig. 4.3B). At the time when Ψcav was reached, the LP 

provenance still showed about 50% of the initial stomatal conductance (Fig. 4.3B).   
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Variables F-Ratio P-Value 

Provenance 9.100 0.001 

Time 43.400 < 0.001 

Treatment 95.030 < 0.001 

Provenance* 

Time 
1.210 0.286 

Time* 

Treatment 
9.670 < 0.001 

 

 

 

Variables F-Ratio P-Value 

Provenance 59.550 < 0.001 

Time 49.320 < 0.001 

Treatment 321.980 < 0.001 

Provenance* 

Time 
3.190 0.001 

Time* 

Treatment 
11.890 < 0.001 

 

 

Figure 4.3. Photochemical efficiency of PSII (ΦPSII, A) in dark-adapted leaves and stomatal 
conductance (gs, B) in young beech (Fagus sylvatica L.) exposed to drought by withholding 
water (D) and in well-watered and well-watered control plants (C). Beech (Fagus sylvatica) 
nuts provenances were collected in locations differing in mean annual precipitation: 766 mm 
Unterlüss (HP), 665 mm Göhrde (IP), and 544 mm Calvörde (LP) and exposed to drought. 
Symbols indicate the means ± SE standard errors (n=8).  F- and P-values (repeated measures 
ANOVA analysis) are shown next to the figure. P-values < 0.05 are shown by bold letters. 
Asterisks indicate significant differences (t-test, P < 0.05) between means of the control and 
drought-treated plants. 
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4.3.5. OST1 gene expression 

To catch a glimpse of the molecular sensing and signaling in stomatal guard cells that 

might explain the variation in stomatal adjustment among the three provenances, OST1 was 

analyzed. OST1 functions as a positive regulator of ABA-induced stomatal closure (Schroeder 

et al. 2001). The expression of OST1 showed a large variation among the three beech 

provenances, in both well-watered and drought-treated plants (P < 0.001, F = 31.365, Fig. 

4.4). In the LP provenance, drought treatment induced a significant increase in the OST1 

transcript levels by 160% and 322% relative to control plants after a 45-day and 47-day period 

of drought, respectively (Fig. 4.4); in the same period, stomatal conductance decreased by 82% 

(Fig 4.3B). The HP provenance showed a significant OST1 up-regulation under drought 

treatment compared with control plants only at the time point of Ψcav while an OST1 down-

regulation occurred before, at 47-day of drought (Fig. 4.4). OST1 transcript abundance 

remained unchanged in drought-treated and well-watered plants of the IP provenance 

throughout the experiment (Fig. 4.4). The interaction between the factors Drought*Time was 

not significant (P = 0.447, F = 0.774) indicating that the OST1 expression level under drought 

stress was less dependent on the time scale and subsequently drought severity (Fig. 4.4).  

 

 

Variables F-Ratio P-Value 

Provenance 31.365 < 0.001 

Time 36.416 < 0.001 

Treatment 2.538 0.118 
Provenance* 
Time 11.471 < 0.001 

Time* 
Treatment 0.447 0.774 

 

Figure 4.4. Relative transcript abundance of OST1 in leaves of young beech (Fagus sylvatica 
L.) trees of three provenances grown under control (black bars) and drought treatments (grey 
bars). Beech nuts provenances were collected in locations differing in mean annual 
precipitation: 766 mm Unterlüss (HP), 665mm Göhrde (IP), and 544 mm Calvörde (LP) and 
exposed to drought. Symbols indicate the means ± SE standard errors (n=5).  F- and P-values 
(multi-factor ANOVA analysis) are shown next to the figure. P-values < 0.05 are shown by 
bold letters. Asterisks indicate significant differences (t-test, P < 0.05) between means of the 
control and drought-treated plants.  
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 4.4. Discussion 

4.4.1. Beech provenances differ in drought resistance strategies  

The main question addressed in this study was whether there is intraspecific variation 

in the drought resistance mechanisms employed by beech progenies from different habitats. 

The beech populations from which the progenies of the current study originated show very high 

genetic variation within (97%) and very little variation (3%) among the populations (Carsjens 

et al., 2014). This genetic structure with high within- and low among-population variation is 

typical for beech (Jump et al., 2006, Pluess and Weber, 2012). Therefore, it was unclear if the 

variation in drought adaptedness of different genotypes within the population was higher than 

the differences between the populations. The strongly diverging drought responses among these 

populations, which we detected here for stomatal conductance and those found in earlier studies 

for antioxidative systems, drought-signaling related genes (Carsjens et al., 2014) and cell wall 

elasticity (Knutzen et al., 2015) indicate that high genetic relatedness does not preclude local 

adaptation.    

Recently, the concept classifying drought responses of species according to their 

stomatal behavior as isohydric or anisohydric functional types has been advanced (Brodribb 

and McAdam, 2013). Isohydric and anisohydric stomatal behavior indicate divergent drought 

resistance mechanisms. Our data support that the within-species drought responses of beech 

can also vary between isohydric or anisohydric stomatal behavior. The beech provenance LP 

from the dry habitat exhibited an isohydric phenotype because the plants showed more rapid 

stomatal closure and maintained higher leaf RWC and predawn water potentials than those from 

mesic conditions. Thereby, the population from the dry habitat clearly displayed a drought 

avoidance strategy. In contrast, the HP progenies showed a slow decline in stomatal 

conductance, but a stronger fall in the predawn water potential upon water limitation. These 

findings suggest that the progenies from mesic conditions displayed an anisohydric functional 

type and a drought tolerance strategy. The latter suggestion is also supported by the finding that 

the HP provenances activated antioxidant systems (Carsjens et al., 2014) and exhibited higher 

cell wall elasticity (Knutzen et al., 2015) under drought than the LP provenances.  

The observation that beech provenances from different areas show differences in 

stomatal responses to drought agrees with previous findings (Tognetti et al., 1995, Peuke et al., 

2002, Sánchez-Gómez et al., 2013, Knutzen et al., 2015). Therefore, it is possible that 

intraspecific variation from aniso- to isohydric functional types forms a continuum in beech, 
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similar to that reported for different forest tree species (Klein, 2014). This suggestion is 

speculative and should be investigated in future.  

Furthermore, the genetic basis of intraspecific variation of isohydric or anisohydric 

functional types in beech is currently unknown. Differences in OST1 (this study), ERD and 

PP2C expression (Carsjens et al., 2014) suggest that differences in ABA regulation, which are 

responsible for the between-species variation of stomatal behavior (Brodribb et al., 2014), could 

also lead to divergent drought resistance mechanisms among the beech progenies. We found 

lower OST1 relative transcript abundance in the mesic than in the xeric provenance, but the up-

regulation occurred exclusively under severe drought stress, at the time when stomatal closure 

reached the maximum value while before no pattern was observed. Overall, our results 

demonstrate that variation in the mechanism of drought responsiveness of stomatal behavior 

exists within an important forest tree species, even in the absence of strong genetic divergence 

among populations. Likewise, the reliance of stomatal regulation mechanism on drought 

intensity and duration, transcription levels of ABA-related genes were also impacted by drought 

characteristics and seasonality (Carsjens et al., 2014).    

4.4.2. Fitness of beech provenances in relation to drought avoidance and drought 

tolerance 

An important question is whether drought avoidance or tolerance mechanisms afford 

higher fitness to young beech trees. Among the fitness traits studied here ΦPSII and biomass 

loss, which integrate the negative impact of drought on the primary processes of photosynthesis 

and growth, were not useful to answer this question. Only severe stress indicated by water 

potentials below -1.7 to 1.9 MPa (Hacke and Sauter, 1995, Leuzinger et al., 2005) resulted in a 

moderate decline in ΦPSII. High resistance of ΦPSII to drought has also been found in other 

studies with beech (García-Plazaola and Becerril, 2000, Valladares et al., 2002). Similarly, no 

differences in ΦPSII were found among drought-avoiding and drought–tolerant tree species in 

Mediterranean climate (Martínez-Ferri et al., 2000). These observations underpin high 

tolerance of the primary processes of photosynthesis to drought across beech provenances from 

a large precipitation gradient.  

Young beech trees display a high plasticity on growth and biomass allocation under low 

water availability (Tognetti et al., 1995, Meier and Leuschner, 2008, Schall et al., 2012), but 

here we found no drought influence, either on growth or biomass allocation. The reason for this 

finding is that beech has a determinate growth pattern, where the main growth phase of the 
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leader shoot occurs early in the season (Heilmann-Clausen et al., 2007). Drought applied after 

termination of leader shoot growth, as in the present study, has no effect on whole plant biomass 

of young, drought-exposed beech trees (this study, Peuke et al., 2002, Knutzen et al., 2015). 

Once the soil became exhausted of available water, the severity of drought overcame 

the plant capacity to maintain their water content above the lethal threshold. Hydraulic failure 

was probably the primary cause of mortality since production of new xylem or repair of 

embolized xylem under the progressive severe drought are less possible (McDowell et al., 

2008). The provenances were distinguished by the time point when they reached Ψcav.  

According to this, the fitness decreased in the order HP > LP ≥ IP. This result is in an apparent 

contrast to other studies showing that beech from drought-prone habitats perform better under 

drought that beeches from mesic climates (Peuke et al., 2002, Robson et al., 2012, Thiel et al., 

2014, Aranda et al., 2015), though some exceptions have been noted (Peuke et al., 2002, Baudis 

et al., 2014). Here, the HP provenance with the longest time maintaining Ψ above Ψcav came 

from the site with the highest precipitation, whereas LP from the lowest and IP from an 

intermediate precipitation level suddenly dropped to Ψcav. The evolutionary history of the beech 

forests in these areas is not entirely clear but is unlikely that entirely unadapted beech trees 

would have survived for more than 100 years. In general, resident populations have an 

advantage of higher fitness under their local environmental conditions than plants originating 

from other habitats (Kawecki and Ebert, 2004). Under the current climatic conditions very long-

lasting drought periods of more than six weeks during summer, which have been applied in our 

study, are unlikely. Therefore, drought avoidance, which instantaneously protects the water 

status of the more isohydric plants, might be a necessary safety strategy for beech trees often 

exposed to moderate drought because the metabolic costs incurred by this behavior are probably 

low, and maintenance of the water status has high priority. In contrast, beech trees from mesic 

climate, where drought events are rare, tolerate a moderate decline in their water status but 

activate other metabolic protection measures(Carsjens et al., 2014, Knutzen et al., 2015), whose 

production and maintenance may be more costly. Therefore, the beech progenies might be well 

adapted to the current climatic conditions. Based on the results of this study, we suggest that 

the anisohydric functional type of beech is better endowed to cope with the predicted future 

climate extremes than the isohydric type.  

In conclusion, beech exhibited intraspecific variation in drought resistance strategies 

characterized by anisohydric or isohydric behavior. In future studies, it will be important to 

investigate the magnitude of variation between these functional types, their presence in matures 
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trees and the underlying molecular mechanisms. The latter is critical for the development of 

marker genes to distinguish these functional types at an early stage. The finding of a higher 

adaptedness of the functional tolerance type to severe drought must also be tested in mature 

beech trees and related to their hydraulic architecture.  
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Chapter 5: Conclusion and Outlook 

 

5.1. Conclusion 

 

This study was conducted to investigate the responses of European beech (Fagus 

sylvatica L.) to drought stress and different annual precipitation amounts. A field experiment 

in beech forests was carried out to characterize anatomical responses of mature beech trees 

along a gradient of precipitation. A common garden experiment was set out with three-year-old 

beech saplings to investigate the expression of genes related to ABA signaling and stress. To 

link gene expression with plant performance, progeny-and drought-related effects on leaf area 

and membrane integrity in the absence and presence of acute oxidative stress were determined. 

A drought stress experiment was conducted to explore intraspecific variation in the drought 

resistance mechanisms employed by 4-month-old beech seedlings from contrasting habitats. 

 The comparison of beech trees at the wet and the dry sites indicated that mature beech 

trees on the dry site changed their anatomical properties to balance between water uptake 

efficiency and avoidance of embolism in beech stems (chapter 2). This mechanism probably 

helped the trees to maintain the water status under dry condition. Another typical characteristic 

of drought avoidance mechanism was found for beech saplings exposed to drought stress (in 

chapter 3). Progenies from the drier site, generally, showed smaller leaf areas than those from 

the wetter sites under drought stress. Reduced leaf size is advantageous to restricted water use 

and to withstand water deficit conditions and is considered as a morphologic change to avoid 

drought (Micco and Aronne 2012). Carbon isotope analysis of beech trees on the dry site 

showed changes in carbon discrimination in the late period of the growing season. This finding 

suggests that beech trees probably closed their stomata to prevent water loss and to maintain 

their tissue water status. There were, however, differences in the behavior because beech 

provenance from low precipitation exhibited an isohydric phenotype showing more rapid 

stomatal closure and maintenance of higher leaf relative water contents and predawn water 

potentials than those from mesic conditions (chapter 4). These results suggest that mature beech 

trees on the dry site and young beech trees (seedlings and saplings) from dry site exhibit a 

drought avoidance strategy to cope with low water availability.  
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Another strategy to deal with drought is drought tolerance. The high precipitation 

progenies showed a slow decline in stomatal conductance, but a stronger decrease in the 

predawn water potential upon water limitation, which is typical for a drought tolerance strategy 

of anisohydric plants (in chapter 4). The mesic-precipitation provenance maintained its water 

potential above -2.0 MPa for a longer period than the other two provenances and consequently 

mortality was delayed in this population. In addition, expression levels of ABA- and stress-

related genes (nine-cis-epoxy-dioxygenase (NCED), protein phosphatase 2C (PP2C), early 

responsive to dehydration (ERD), ascorbate peroxidase (APX), superoxide dismutase 

(Cu/ZnSOD), aldehyde dehydrogenase (ALDH), glutamine amido transferase (GAT) were 

higher in the progenies from moist than in those from drier sites (chapter 3). As described in 

the introduction part of chapter 3, these above genes are strongly involved in or mediate drought 

tolerance in plants. These results suggest that beech seedlings/saplings derived from mesic site 

have a drought tolerance strategy and genetic factors may regulate this mechanism.  

In conclusion, beech exhibited intraspecific variation in drought resistance strategies 

characterized by drought avoidance or drought tolerance. Drought avoidant type of beech was 

able to suffer with the moderate drought. However, the drought tolerant type of beech was better 

endowed to cope with the predicted climate extremes than the drought avoidant type because it 

possess a drought tolerance strategy. Overall, the present study show that European beech 

(Fagus sylvatica L.) has the ability to deal with low water availability.  

5.2. Outlook 

Water availability strongly affected the wood anatomical features of European beech 

(Fagus sylvatica L.) to deal with low water availability. These changes converged in vessel 

properties but not in fibre features since vessels play the most important role of water conduit 

in the stem of hardwood species. Other anatomical characteristics of vessels such as the internal 

structure of the vessel walls, vessel wall composition and wood density of beech xylem should 

be studied in the future work. In addition, soil nutrients and other environmental factors of study 

locations should be considered for the evolution of beech drought persistence. Here, the 

adaptability of beech to drought was addressed in young saplings. Intraspecific differences in 

constitutive expression and drought responsiveness were explored by analyzing the 

transcriptional regulation of genes for drought signaling and defense throughout the growing 

season. The molecular reasons for the observed differentiation should be elucidated. An 

important finding was that different drought resistance strategies of beech was exhibited with 

anisohydric (drought tolerance) and isohydric (drought avoidance) behavior. However, the 
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magnitude of variation between these functional types, their presence in matures trees and the 

underlying molecular mechanisms are unknown and should be investigated. Moreover, the 

functional tolerance type to severe drought must also be tested in mature beech trees and related 

to the hydraulic architecture of the plants.  
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